import strstr and strerror modules
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
28e7fd62 3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
5f8a3188 37#include "gdb_string.h"
a89aa300 38#include "dis-asm.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
0963b4bd 61 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
0963b4bd
MS
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
8818c391 70
8818c391
TR
71/* Constants: prefixed with AVR_ to avoid name space clashes */
72
73enum
2e5ff58c
TR
74{
75 AVR_REG_W = 24,
76 AVR_REG_X = 26,
77 AVR_REG_Y = 28,
78 AVR_FP_REGNUM = 28,
79 AVR_REG_Z = 30,
80
81 AVR_SREG_REGNUM = 32,
82 AVR_SP_REGNUM = 33,
83 AVR_PC_REGNUM = 34,
84
85 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
86 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
87
7d2552b4
TG
88 /* Pseudo registers. */
89 AVR_PSEUDO_PC_REGNUM = 35,
90 AVR_NUM_PSEUDO_REGS = 1,
91
2e5ff58c
TR
92 AVR_PC_REG_INDEX = 35, /* index into array of registers */
93
4add8633 94 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 95
0963b4bd 96 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
97 AVR_MAX_PUSHES = 18,
98
0963b4bd 99 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
100 AVR_LAST_PUSHED_REGNUM = 17,
101
4add8633
TR
102 AVR_ARG1_REGNUM = 24, /* Single byte argument */
103 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
104
105 AVR_RET1_REGNUM = 24, /* Single byte return value */
106 AVR_RETN_REGNUM = 25, /* Multi byte return value */
107
2e5ff58c 108 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 109 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
110 things easier in the future if they didn't need to match.
111
112 Note: I chose these values so as to be consistent with bfd vma
113 addresses.
114
115 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 116 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
117 thus the Most Significant Bit is 0x10000 which gets masked off my
118 AVR_MEM_MASK.
119
120 The problem manifests itself when trying to set a breakpoint in a
121 function which resides in the upper half of the instruction space and
122 thus requires a 17-bit address.
123
124 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 125 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
126 but could be for some remote targets by just adding the correct offset
127 to the address and letting the remote target handle the low-level
0963b4bd 128 details of actually accessing the eeprom. */
2e5ff58c
TR
129
130 AVR_IMEM_START = 0x00000000, /* INSN memory */
131 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 132#if 1
2e5ff58c
TR
133 /* No eeprom mask defined */
134 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 135#else
2e5ff58c
TR
136 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
137 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 138#endif
2e5ff58c 139};
8818c391 140
4add8633
TR
141/* Prologue types:
142
143 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
144 causes the generation of the CALL type prologues). */
145
146enum {
147 AVR_PROLOGUE_NONE, /* No prologue */
148 AVR_PROLOGUE_NORMAL,
149 AVR_PROLOGUE_CALL, /* -mcall-prologues */
150 AVR_PROLOGUE_MAIN,
151 AVR_PROLOGUE_INTR, /* interrupt handler */
152 AVR_PROLOGUE_SIG, /* signal handler */
153};
154
8818c391
TR
155/* Any function with a frame looks like this
156 ....... <-SP POINTS HERE
157 LOCALS1 <-FP POINTS HERE
158 LOCALS0
159 SAVED FP
160 SAVED R3
161 SAVED R2
162 RET PC
163 FIRST ARG
164 SECOND ARG */
165
4add8633 166struct avr_unwind_cache
2e5ff58c 167{
4add8633
TR
168 /* The previous frame's inner most stack address. Used as this
169 frame ID's stack_addr. */
170 CORE_ADDR prev_sp;
171 /* The frame's base, optionally used by the high-level debug info. */
172 CORE_ADDR base;
173 int size;
174 int prologue_type;
175 /* Table indicating the location of each and every register. */
176 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 177};
8818c391
TR
178
179struct gdbarch_tdep
2e5ff58c 180{
4e99ad69
TG
181 /* Number of bytes stored to the stack by call instructions.
182 2 bytes for avr1-5, 3 bytes for avr6. */
183 int call_length;
7d2552b4
TG
184
185 /* Type for void. */
186 struct type *void_type;
187 /* Type for a function returning void. */
188 struct type *func_void_type;
189 /* Type for a pointer to a function. Used for the type of PC. */
190 struct type *pc_type;
2e5ff58c 191};
8818c391 192
0963b4bd 193/* Lookup the name of a register given it's number. */
8818c391 194
fa88f677 195static const char *
d93859e2 196avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 197{
4e99ad69 198 static const char * const register_names[] = {
2e5ff58c
TR
199 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
200 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
201 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
202 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
203 "SREG", "SP", "PC2",
204 "pc"
8818c391
TR
205 };
206 if (regnum < 0)
207 return NULL;
208 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
209 return NULL;
210 return register_names[regnum];
211}
212
8818c391
TR
213/* Return the GDB type object for the "standard" data type
214 of data in register N. */
215
216static struct type *
866b76ea 217avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 218{
866b76ea 219 if (reg_nr == AVR_PC_REGNUM)
df4df182 220 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
221 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
222 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 223 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 224 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 225 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
226}
227
0963b4bd 228/* Instruction address checks and convertions. */
8818c391
TR
229
230static CORE_ADDR
231avr_make_iaddr (CORE_ADDR x)
232{
233 return ((x) | AVR_IMEM_START);
234}
235
0963b4bd 236/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
237 devices are already up to 128KBytes of flash space.
238
0963b4bd 239 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
240
241static CORE_ADDR
242avr_convert_iaddr_to_raw (CORE_ADDR x)
243{
244 return ((x) & 0xffffffff);
245}
246
0963b4bd 247/* SRAM address checks and convertions. */
8818c391
TR
248
249static CORE_ADDR
250avr_make_saddr (CORE_ADDR x)
251{
ee143e81
TG
252 /* Return 0 for NULL. */
253 if (x == 0)
254 return 0;
255
8818c391
TR
256 return ((x) | AVR_SMEM_START);
257}
258
8818c391
TR
259static CORE_ADDR
260avr_convert_saddr_to_raw (CORE_ADDR x)
261{
262 return ((x) & 0xffffffff);
263}
264
0963b4bd
MS
265/* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
8818c391
TR
267
268/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 269 programs in the mega128. */
8818c391
TR
270
271/* static CORE_ADDR */
272/* avr_make_eaddr (CORE_ADDR x) */
273/* { */
274/* return ((x) | AVR_EMEM_START); */
275/* } */
276
277/* static int */
278/* avr_eaddr_p (CORE_ADDR x) */
279/* { */
280/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281/* } */
282
283/* static CORE_ADDR */
284/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285/* { */
286/* return ((x) & 0xffffffff); */
287/* } */
288
0963b4bd 289/* Convert from address to pointer and vice-versa. */
8818c391
TR
290
291static void
9898f801
UW
292avr_address_to_pointer (struct gdbarch *gdbarch,
293 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 294{
e17a4113
UW
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296
8818c391
TR
297 /* Is it a code address? */
298 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
299 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
300 {
e17a4113 301 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 302 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
303 }
304 else
305 {
306 /* Strip off any upper segment bits. */
e17a4113 307 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 308 avr_convert_saddr_to_raw (addr));
8818c391
TR
309 }
310}
311
312static CORE_ADDR
9898f801
UW
313avr_pointer_to_address (struct gdbarch *gdbarch,
314 struct type *type, const gdb_byte *buf)
8818c391 315{
e17a4113
UW
316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
317 CORE_ADDR addr
318 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 319
8818c391
TR
320 /* Is it a code address? */
321 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
322 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 323 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 324 return avr_make_iaddr (addr << 1);
8818c391
TR
325 else
326 return avr_make_saddr (addr);
327}
328
8a1d23b2
TG
329static CORE_ADDR
330avr_integer_to_address (struct gdbarch *gdbarch,
331 struct type *type, const gdb_byte *buf)
332{
333 ULONGEST addr = unpack_long (type, buf);
334
335 return avr_make_saddr (addr);
336}
337
8818c391 338static CORE_ADDR
61a1198a 339avr_read_pc (struct regcache *regcache)
8818c391 340{
8619218d 341 ULONGEST pc;
61a1198a
UW
342 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
343 return avr_make_iaddr (pc);
8818c391
TR
344}
345
346static void
61a1198a 347avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 348{
61a1198a 349 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
350 avr_convert_iaddr_to_raw (val));
351}
352
05d1431c 353static enum register_status
7d2552b4
TG
354avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
355 int regnum, gdb_byte *buf)
356{
357 ULONGEST val;
05d1431c 358 enum register_status status;
7d2552b4
TG
359
360 switch (regnum)
361 {
362 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
363 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
364 if (status != REG_VALID)
365 return status;
7d2552b4
TG
366 val >>= 1;
367 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 368 return status;
7d2552b4
TG
369 default:
370 internal_error (__FILE__, __LINE__, _("invalid regnum"));
371 }
372}
373
374static void
375avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
376 int regnum, const gdb_byte *buf)
377{
378 ULONGEST val;
379
380 switch (regnum)
381 {
382 case AVR_PSEUDO_PC_REGNUM:
383 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
384 val <<= 1;
385 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
386 break;
387 default:
388 internal_error (__FILE__, __LINE__, _("invalid regnum"));
389 }
8818c391
TR
390}
391
4add8633 392/* Function: avr_scan_prologue
8818c391 393
4add8633 394 This function decodes an AVR function prologue to determine:
8818c391
TR
395 1) the size of the stack frame
396 2) which registers are saved on it
397 3) the offsets of saved regs
4add8633 398 This information is stored in the avr_unwind_cache structure.
8818c391 399
e3d8b004
TR
400 Some devices lack the sbiw instruction, so on those replace this:
401 sbiw r28, XX
402 with this:
403 subi r28,lo8(XX)
404 sbci r29,hi8(XX)
405
406 A typical AVR function prologue with a frame pointer might look like this:
407 push rXX ; saved regs
408 ...
409 push r28
410 push r29
411 in r28,__SP_L__
412 in r29,__SP_H__
413 sbiw r28,<LOCALS_SIZE>
414 in __tmp_reg__,__SREG__
8818c391 415 cli
e3d8b004 416 out __SP_H__,r29
72fab697
TR
417 out __SREG__,__tmp_reg__
418 out __SP_L__,r28
e3d8b004
TR
419
420 A typical AVR function prologue without a frame pointer might look like
421 this:
422 push rXX ; saved regs
423 ...
424
425 A main function prologue looks like this:
426 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
427 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
428 out __SP_H__,r29
429 out __SP_L__,r28
430
431 A signal handler prologue looks like this:
432 push __zero_reg__
433 push __tmp_reg__
434 in __tmp_reg__, __SREG__
435 push __tmp_reg__
436 clr __zero_reg__
437 push rXX ; save registers r18:r27, r30:r31
438 ...
439 push r28 ; save frame pointer
440 push r29
441 in r28, __SP_L__
442 in r29, __SP_H__
443 sbiw r28, <LOCALS_SIZE>
444 out __SP_H__, r29
445 out __SP_L__, r28
446
447 A interrupt handler prologue looks like this:
448 sei
449 push __zero_reg__
450 push __tmp_reg__
451 in __tmp_reg__, __SREG__
452 push __tmp_reg__
453 clr __zero_reg__
454 push rXX ; save registers r18:r27, r30:r31
455 ...
456 push r28 ; save frame pointer
457 push r29
458 in r28, __SP_L__
459 in r29, __SP_H__
460 sbiw r28, <LOCALS_SIZE>
461 cli
462 out __SP_H__, r29
463 sei
464 out __SP_L__, r28
465
466 A `-mcall-prologues' prologue looks like this (Note that the megas use a
467 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
468 32 bit insn and rjmp is a 16 bit insn):
469 ldi r26,lo8(<LOCALS_SIZE>)
470 ldi r27,hi8(<LOCALS_SIZE>)
471 ldi r30,pm_lo8(.L_foo_body)
472 ldi r31,pm_hi8(.L_foo_body)
473 rjmp __prologue_saves__+RRR
474 .L_foo_body: */
8818c391 475
4add8633
TR
476/* Not really part of a prologue, but still need to scan for it, is when a
477 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
478 registers. In this case, all local variables live in registers, so there
479 may be some register saves. This is what it looks like:
4add8633
TR
480 movw rMM, rNN
481 ...
482
0963b4bd
MS
483 There could be multiple movw's. If the target doesn't have a movw insn, it
484 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
485 types. */
486
487static CORE_ADDR
e17a4113 488avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 489 struct avr_unwind_cache *info)
8818c391 490{
e17a4113 491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
492 int i;
493 unsigned short insn;
2e5ff58c 494 int scan_stage = 0;
8818c391 495 struct minimal_symbol *msymbol;
8818c391
TR
496 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
497 int vpc = 0;
4e99ad69
TG
498 int len;
499
500 len = pc_end - pc_beg;
501 if (len > AVR_MAX_PROLOGUE_SIZE)
502 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 503
4add8633 504 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
505 reading in the bytes of the prologue. The problem is that the figuring
506 out where the end of the prologue is is a bit difficult. The old code
4add8633 507 tried to do that, but failed quite often. */
4e99ad69 508 read_memory (pc_beg, prologue, len);
8818c391
TR
509
510 /* Scanning main()'s prologue
511 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
512 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
513 out __SP_H__,r29
514 out __SP_L__,r28 */
515
4e99ad69 516 if (len >= 4)
8818c391
TR
517 {
518 CORE_ADDR locals;
4e99ad69 519 static const unsigned char img[] = {
2e5ff58c
TR
520 0xde, 0xbf, /* out __SP_H__,r29 */
521 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
522 };
523
e17a4113 524 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 525 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
526 if ((insn & 0xf0f0) == 0xe0c0)
527 {
528 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 529 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
530 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
531 if ((insn & 0xf0f0) == 0xe0d0)
532 {
533 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
534 if (vpc + 4 + sizeof (img) < len
535 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 536 {
4add8633
TR
537 info->prologue_type = AVR_PROLOGUE_MAIN;
538 info->base = locals;
4e99ad69 539 return pc_beg + 4;
2e5ff58c
TR
540 }
541 }
542 }
8818c391 543 }
2e5ff58c 544
4add8633
TR
545 /* Scanning `-mcall-prologues' prologue
546 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 547
e3d8b004 548 while (1) /* Using a while to avoid many goto's */
8818c391
TR
549 {
550 int loc_size;
551 int body_addr;
552 unsigned num_pushes;
4add8633 553 int pc_offset = 0;
2e5ff58c 554
4e99ad69
TG
555 /* At least the fifth instruction must have been executed to
556 modify frame shape. */
557 if (len < 10)
558 break;
559
e17a4113 560 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 561 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
562 if ((insn & 0xf0f0) != 0xe0a0)
563 break;
8818c391 564 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 565 pc_offset += 2;
2e5ff58c 566
e17a4113 567 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
568 /* ldi r27,<LOCALS_SIZE> / 256 */
569 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 570 break;
8818c391 571 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 572 pc_offset += 2;
2e5ff58c 573
e17a4113 574 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
575 /* ldi r30,pm_lo8(.L_foo_body) */
576 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 577 break;
8818c391 578 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 579 pc_offset += 2;
8818c391 580
e17a4113 581 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
582 /* ldi r31,pm_hi8(.L_foo_body) */
583 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 584 break;
8818c391 585 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 586 pc_offset += 2;
8818c391 587
8818c391
TR
588 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
589 if (!msymbol)
2e5ff58c 590 break;
8818c391 591
e17a4113 592 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 593 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
594 if ((insn & 0xf000) == 0xc000)
595 {
596 /* Extract PC relative offset from RJMP */
597 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
598 /* Convert offset to byte addressable mode */
599 i *= 2;
600 /* Destination address */
4e99ad69 601 i += pc_beg + 10;
e3d8b004 602
4e99ad69 603 if (body_addr != (pc_beg + 10)/2)
e3d8b004 604 break;
4add8633
TR
605
606 pc_offset += 2;
e3d8b004 607 }
e3d8b004
TR
608 else if ((insn & 0xfe0e) == 0x940c)
609 {
610 /* Extract absolute PC address from JMP */
611 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
612 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
613 & 0xffff));
e3d8b004
TR
614 /* Convert address to byte addressable mode */
615 i *= 2;
616
4e99ad69 617 if (body_addr != (pc_beg + 12)/2)
e3d8b004 618 break;
4add8633
TR
619
620 pc_offset += 4;
e3d8b004
TR
621 }
622 else
623 break;
2e5ff58c 624
4add8633 625 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
626 Which is a pushes count in `-mcall-prologues' mode */
627 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
628
629 if (num_pushes > AVR_MAX_PUSHES)
4add8633 630 {
edefbb7c 631 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
632 num_pushes);
633 num_pushes = 0;
634 }
2e5ff58c 635
8818c391 636 if (num_pushes)
2e5ff58c
TR
637 {
638 int from;
4add8633
TR
639
640 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 641 if (num_pushes >= 2)
4add8633
TR
642 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
643
2e5ff58c
TR
644 i = 0;
645 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
646 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 647 info->saved_regs [from].addr = ++i;
2e5ff58c 648 }
4add8633
TR
649 info->size = loc_size + num_pushes;
650 info->prologue_type = AVR_PROLOGUE_CALL;
651
4e99ad69 652 return pc_beg + pc_offset;
8818c391
TR
653 }
654
4add8633
TR
655 /* Scan for the beginning of the prologue for an interrupt or signal
656 function. Note that we have to set the prologue type here since the
657 third stage of the prologue may not be present (e.g. no saved registered
658 or changing of the SP register). */
8818c391 659
4add8633 660 if (1)
8818c391 661 {
4e99ad69 662 static const unsigned char img[] = {
2e5ff58c
TR
663 0x78, 0x94, /* sei */
664 0x1f, 0x92, /* push r1 */
665 0x0f, 0x92, /* push r0 */
666 0x0f, 0xb6, /* in r0,0x3f SREG */
667 0x0f, 0x92, /* push r0 */
668 0x11, 0x24 /* clr r1 */
8818c391 669 };
4e99ad69
TG
670 if (len >= sizeof (img)
671 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 672 {
4add8633 673 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 674 vpc += sizeof (img);
4add8633
TR
675 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
676 info->saved_regs[0].addr = 2;
677 info->saved_regs[1].addr = 1;
678 info->size += 3;
2e5ff58c 679 }
4e99ad69
TG
680 else if (len >= sizeof (img) - 2
681 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 682 {
4add8633
TR
683 info->prologue_type = AVR_PROLOGUE_SIG;
684 vpc += sizeof (img) - 2;
685 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
686 info->saved_regs[0].addr = 2;
687 info->saved_regs[1].addr = 1;
243e2c5d 688 info->size += 2;
2e5ff58c 689 }
8818c391
TR
690 }
691
692 /* First stage of the prologue scanning.
4add8633 693 Scan pushes (saved registers) */
8818c391 694
4e99ad69 695 for (; vpc < len; vpc += 2)
8818c391 696 {
e17a4113 697 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
698 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
699 {
0963b4bd 700 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
701 int regno = (insn & 0x1f0) >> 4;
702 info->size++;
703 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
704 scan_stage = 1;
705 }
8818c391 706 else
2e5ff58c 707 break;
8818c391
TR
708 }
709
243e2c5d 710 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 711
1bd0bb72
TG
712 /* Handle static small stack allocation using rcall or push. */
713
714 while (scan_stage == 1 && vpc < len)
715 {
716 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
717 if (insn == 0xd000) /* rcall .+0 */
718 {
719 info->size += gdbarch_tdep (gdbarch)->call_length;
720 vpc += 2;
721 }
722 else if (insn == 0x920f) /* push r0 */
723 {
724 info->size += 1;
725 vpc += 2;
726 }
727 else
728 break;
729 }
730
8818c391
TR
731 /* Second stage of the prologue scanning.
732 Scan:
733 in r28,__SP_L__
734 in r29,__SP_H__ */
735
4e99ad69 736 if (scan_stage == 1 && vpc < len)
8818c391 737 {
4e99ad69 738 static const unsigned char img[] = {
2e5ff58c
TR
739 0xcd, 0xb7, /* in r28,__SP_L__ */
740 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 741 };
2e5ff58c 742
4e99ad69
TG
743 if (vpc + sizeof (img) < len
744 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
745 {
746 vpc += 4;
2e5ff58c
TR
747 scan_stage = 2;
748 }
8818c391
TR
749 }
750
0963b4bd 751 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
752 Scan for:
753 sbiw r28,XX or subi r28,lo8(XX)
72fab697 754 sbci r29,hi8(XX)
8818c391
TR
755 in __tmp_reg__,__SREG__
756 cli
e3d8b004 757 out __SP_H__,r29
8818c391 758 out __SREG__,__tmp_reg__
e3d8b004 759 out __SP_L__,r28 */
8818c391 760
4e99ad69 761 if (scan_stage == 2 && vpc < len)
8818c391
TR
762 {
763 int locals_size = 0;
4e99ad69 764 static const unsigned char img[] = {
2e5ff58c
TR
765 0x0f, 0xb6, /* in r0,0x3f */
766 0xf8, 0x94, /* cli */
e3d8b004 767 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 768 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 769 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 770 };
4e99ad69 771 static const unsigned char img_sig[] = {
e3d8b004
TR
772 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
773 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 774 };
4e99ad69 775 static const unsigned char img_int[] = {
2e5ff58c 776 0xf8, 0x94, /* cli */
e3d8b004 777 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 778 0x78, 0x94, /* sei */
e3d8b004 779 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 780 };
2e5ff58c 781
e17a4113 782 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 783 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
784 {
785 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
786 vpc += 2;
787 }
2e5ff58c
TR
788 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
789 {
790 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 791 vpc += 2;
e17a4113 792 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 793 vpc += 2;
1bd0bb72 794 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 795 }
8818c391 796 else
1bd0bb72 797 return pc_beg + vpc;
4add8633 798
0963b4bd 799 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
800 or signal handler functions, which is why we set the prologue type
801 when we saw the beginning of the prologue previously. */
802
4e99ad69
TG
803 if (vpc + sizeof (img_sig) < len
804 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
805 {
806 vpc += sizeof (img_sig);
807 }
4e99ad69
TG
808 else if (vpc + sizeof (img_int) < len
809 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
810 {
811 vpc += sizeof (img_int);
812 }
4e99ad69
TG
813 if (vpc + sizeof (img) < len
814 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
815 {
816 info->prologue_type = AVR_PROLOGUE_NORMAL;
817 vpc += sizeof (img);
818 }
819
820 info->size += locals_size;
821
4e99ad69 822 /* Fall through. */
8818c391 823 }
4add8633
TR
824
825 /* If we got this far, we could not scan the prologue, so just return the pc
826 of the frame plus an adjustment for argument move insns. */
827
4e99ad69
TG
828 for (; vpc < len; vpc += 2)
829 {
e17a4113 830 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
831 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
832 continue;
833 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
834 continue;
835 else
836 break;
837 }
838
839 return pc_beg + vpc;
8818c391
TR
840}
841
4add8633 842static CORE_ADDR
6093d2eb 843avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
844{
845 CORE_ADDR func_addr, func_end;
8c201e54 846 CORE_ADDR post_prologue_pc;
8818c391 847
4add8633 848 /* See what the symbol table says */
8818c391 849
8c201e54
TG
850 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
851 return pc;
2e5ff58c 852
8c201e54
TG
853 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
854 if (post_prologue_pc != 0)
855 return max (pc, post_prologue_pc);
8818c391 856
8c201e54
TG
857 {
858 CORE_ADDR prologue_end = pc;
859 struct avr_unwind_cache info = {0};
860 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 861
8c201e54
TG
862 info.saved_regs = saved_regs;
863
864 /* Need to run the prologue scanner to figure out if the function has a
865 prologue and possibly skip over moving arguments passed via registers
866 to other registers. */
867
868 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
869
870 if (info.prologue_type != AVR_PROLOGUE_NONE)
871 return prologue_end;
872 }
2e5ff58c 873
4e99ad69
TG
874 /* Either we didn't find the start of this function (nothing we can do),
875 or there's no line info, or the line after the prologue is after
0963b4bd 876 the end of the function (there probably isn't a prologue). */
2e5ff58c 877
8c201e54 878 return pc;
4add8633 879}
8818c391 880
0963b4bd
MS
881/* Not all avr devices support the BREAK insn. Those that don't should treat
882 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
883 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 884
4add8633 885static const unsigned char *
0963b4bd
MS
886avr_breakpoint_from_pc (struct gdbarch *gdbarch,
887 CORE_ADDR *pcptr, int *lenptr)
4add8633 888{
4e99ad69 889 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
890 *lenptr = sizeof (avr_break_insn);
891 return avr_break_insn;
8818c391
TR
892}
893
4c8b6ae0
UW
894/* Determine, for architecture GDBARCH, how a return value of TYPE
895 should be returned. If it is supposed to be returned in registers,
896 and READBUF is non-zero, read the appropriate value from REGCACHE,
897 and copy it into READBUF. If WRITEBUF is non-zero, write the value
898 from WRITEBUF into REGCACHE. */
899
63807e1d 900static enum return_value_convention
6a3a010b 901avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
902 struct type *valtype, struct regcache *regcache,
903 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 904{
1bd0bb72
TG
905 int i;
906 /* Single byte are returned in r24.
907 Otherwise, the MSB of the return value is always in r25, calculate which
908 register holds the LSB. */
909 int lsb_reg;
910
911 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
912 || TYPE_CODE (valtype) == TYPE_CODE_UNION
913 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
914 && TYPE_LENGTH (valtype) > 8)
915 return RETURN_VALUE_STRUCT_CONVENTION;
916
917 if (TYPE_LENGTH (valtype) <= 2)
918 lsb_reg = 24;
919 else if (TYPE_LENGTH (valtype) <= 4)
920 lsb_reg = 22;
921 else if (TYPE_LENGTH (valtype) <= 8)
922 lsb_reg = 18;
923 else
f3574227 924 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
925
926 if (writebuf != NULL)
927 {
1bd0bb72
TG
928 for (i = 0; i < TYPE_LENGTH (valtype); i++)
929 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
930 }
931
932 if (readbuf != NULL)
933 {
1bd0bb72
TG
934 for (i = 0; i < TYPE_LENGTH (valtype); i++)
935 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
936 }
937
1bd0bb72 938 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
939}
940
941
4add8633
TR
942/* Put here the code to store, into fi->saved_regs, the addresses of
943 the saved registers of frame described by FRAME_INFO. This
944 includes special registers such as pc and fp saved in special ways
945 in the stack frame. sp is even more special: the address we return
0963b4bd 946 for it IS the sp for the next frame. */
8818c391 947
63807e1d 948static struct avr_unwind_cache *
94afd7a6 949avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 950 void **this_prologue_cache)
8818c391 951{
4e99ad69 952 CORE_ADDR start_pc, current_pc;
4add8633
TR
953 ULONGEST prev_sp;
954 ULONGEST this_base;
955 struct avr_unwind_cache *info;
4e99ad69
TG
956 struct gdbarch *gdbarch;
957 struct gdbarch_tdep *tdep;
4add8633
TR
958 int i;
959
4e99ad69
TG
960 if (*this_prologue_cache)
961 return *this_prologue_cache;
4add8633
TR
962
963 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 964 *this_prologue_cache = info;
94afd7a6 965 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
966
967 info->size = 0;
968 info->prologue_type = AVR_PROLOGUE_NONE;
969
4e99ad69
TG
970 start_pc = get_frame_func (this_frame);
971 current_pc = get_frame_pc (this_frame);
972 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
973 avr_scan_prologue (get_frame_arch (this_frame),
974 start_pc, current_pc, info);
4add8633 975
3b85b0f1
TR
976 if ((info->prologue_type != AVR_PROLOGUE_NONE)
977 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
978 {
979 ULONGEST high_base; /* High byte of FP */
980
981 /* The SP was moved to the FP. This indicates that a new frame
982 was created. Get THIS frame's FP value by unwinding it from
983 the next frame. */
94afd7a6 984 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 985 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
986 this_base += (high_base << 8);
987
988 /* The FP points at the last saved register. Adjust the FP back
989 to before the first saved register giving the SP. */
990 prev_sp = this_base + info->size;
991 }
8818c391 992 else
4add8633
TR
993 {
994 /* Assume that the FP is this frame's SP but with that pushed
995 stack space added back. */
94afd7a6 996 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
997 prev_sp = this_base + info->size;
998 }
999
1000 /* Add 1 here to adjust for the post-decrement nature of the push
1001 instruction.*/
4e99ad69 1002 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1003 info->base = avr_make_saddr (this_base);
1004
4e99ad69
TG
1005 gdbarch = get_frame_arch (this_frame);
1006
4add8633 1007 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1008 offsets. */
4e99ad69
TG
1009 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1010 if (info->saved_regs[i].addr > 0)
1011 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1012
1013 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1014 the stack and is at the base of the frame. */
4add8633
TR
1015
1016 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1017 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1018
3b85b0f1
TR
1019 /* The previous frame's SP needed to be computed. Save the computed
1020 value. */
4e99ad69
TG
1021 tdep = gdbarch_tdep (gdbarch);
1022 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1023 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1024
4add8633 1025 return info;
8818c391
TR
1026}
1027
1028static CORE_ADDR
4add8633 1029avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1030{
4add8633
TR
1031 ULONGEST pc;
1032
11411de3 1033 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1034
1035 return avr_make_iaddr (pc);
8818c391
TR
1036}
1037
30244cd8
UW
1038static CORE_ADDR
1039avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1040{
1041 ULONGEST sp;
1042
11411de3 1043 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1044
1045 return avr_make_saddr (sp);
1046}
1047
4add8633
TR
1048/* Given a GDB frame, determine the address of the calling function's
1049 frame. This will be used to create a new GDB frame struct. */
8818c391 1050
4add8633 1051static void
94afd7a6 1052avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1053 void **this_prologue_cache,
1054 struct frame_id *this_id)
8818c391 1055{
4add8633 1056 struct avr_unwind_cache *info
94afd7a6 1057 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1058 CORE_ADDR base;
1059 CORE_ADDR func;
1060 struct frame_id id;
1061
1062 /* The FUNC is easy. */
94afd7a6 1063 func = get_frame_func (this_frame);
4add8633 1064
4add8633
TR
1065 /* Hopefully the prologue analysis either correctly determined the
1066 frame's base (which is the SP from the previous frame), or set
1067 that base to "NULL". */
1068 base = info->prev_sp;
1069 if (base == 0)
1070 return;
1071
1072 id = frame_id_build (base, func);
4add8633 1073 (*this_id) = id;
8818c391
TR
1074}
1075
94afd7a6
UW
1076static struct value *
1077avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1078 void **this_prologue_cache, int regnum)
8818c391 1079{
e17a4113
UW
1080 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1081 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1082 struct avr_unwind_cache *info
94afd7a6 1083 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1084
7d2552b4 1085 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1086 {
7d2552b4 1087 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1088 {
94afd7a6
UW
1089 /* Reading the return PC from the PC register is slightly
1090 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1091 but in reality, only two bytes (3 in upcoming mega256) are
1092 stored on the stack.
1093
1094 Also, note that the value on the stack is an addr to a word
1095 not a byte, so we will need to multiply it by two at some
1096 point.
1097
1098 And to confuse matters even more, the return address stored
1099 on the stack is in big endian byte order, even though most
0963b4bd 1100 everything else about the avr is little endian. Ick! */
94afd7a6 1101 ULONGEST pc;
4e99ad69 1102 int i;
e362b510 1103 gdb_byte buf[3];
4e99ad69
TG
1104 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1106
7d2552b4
TG
1107 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1108 buf, tdep->call_length);
94afd7a6 1109
4e99ad69
TG
1110 /* Extract the PC read from memory as a big-endian. */
1111 pc = 0;
1112 for (i = 0; i < tdep->call_length; i++)
1113 pc = (pc << 8) | buf[i];
94afd7a6 1114
7d2552b4
TG
1115 if (regnum == AVR_PC_REGNUM)
1116 pc <<= 1;
1117
1118 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1119 }
94afd7a6
UW
1120
1121 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1122 }
94afd7a6
UW
1123
1124 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1125}
8818c391 1126
4add8633
TR
1127static const struct frame_unwind avr_frame_unwind = {
1128 NORMAL_FRAME,
8fbca658 1129 default_frame_unwind_stop_reason,
4add8633 1130 avr_frame_this_id,
94afd7a6
UW
1131 avr_frame_prev_register,
1132 NULL,
1133 default_frame_sniffer
4add8633
TR
1134};
1135
8818c391 1136static CORE_ADDR
94afd7a6 1137avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1138{
4add8633 1139 struct avr_unwind_cache *info
94afd7a6 1140 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1141
4add8633
TR
1142 return info->base;
1143}
8818c391 1144
4add8633
TR
1145static const struct frame_base avr_frame_base = {
1146 &avr_frame_unwind,
1147 avr_frame_base_address,
1148 avr_frame_base_address,
1149 avr_frame_base_address
1150};
ced15480 1151
94afd7a6
UW
1152/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1153 frame. The frame ID's base needs to match the TOS value saved by
1154 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1155
4add8633 1156static struct frame_id
94afd7a6 1157avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1158{
1159 ULONGEST base;
8818c391 1160
94afd7a6
UW
1161 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1162 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1163}
1164
4add8633 1165/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1166 order. The below implements a FILO (stack) to do this. */
8818c391 1167
4add8633
TR
1168struct stack_item
1169{
1170 int len;
1171 struct stack_item *prev;
1172 void *data;
1173};
8818c391 1174
4add8633 1175static struct stack_item *
0fd88904 1176push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1177{
4add8633
TR
1178 struct stack_item *si;
1179 si = xmalloc (sizeof (struct stack_item));
1180 si->data = xmalloc (len);
1181 si->len = len;
1182 si->prev = prev;
1183 memcpy (si->data, contents, len);
1184 return si;
8818c391
TR
1185}
1186
4add8633
TR
1187static struct stack_item *pop_stack_item (struct stack_item *si);
1188static struct stack_item *
1189pop_stack_item (struct stack_item *si)
8818c391 1190{
4add8633
TR
1191 struct stack_item *dead = si;
1192 si = si->prev;
1193 xfree (dead->data);
1194 xfree (dead);
1195 return si;
8818c391
TR
1196}
1197
8818c391
TR
1198/* Setup the function arguments for calling a function in the inferior.
1199
1200 On the AVR architecture, there are 18 registers (R25 to R8) which are
1201 dedicated for passing function arguments. Up to the first 18 arguments
1202 (depending on size) may go into these registers. The rest go on the stack.
1203
4add8633 1204 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1205 arguments, including char, have one free register above them). For example,
4add8633
TR
1206 an int in arg1 and a char in arg2 would be passed as such:
1207
1208 arg1 -> r25:r24
1209 arg2 -> r22
1210
1211 Arguments that are larger than 2 bytes will be split between two or more
1212 registers as available, but will NOT be split between a register and the
0963b4bd 1213 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1214 similar to the d10v). */
1215
1216/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1217 inaccurate.
8818c391
TR
1218
1219 An exceptional case exists for struct arguments (and possibly other
1220 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1221 not a multiple of WORDSIZE bytes. In this case the argument is never split
1222 between the registers and the stack, but instead is copied in its entirety
1223 onto the stack, AND also copied into as many registers as there is room
1224 for. In other words, space in registers permitting, two copies of the same
1225 argument are passed in. As far as I can tell, only the one on the stack is
1226 used, although that may be a function of the level of compiler
1227 optimization. I suspect this is a compiler bug. Arguments of these odd
1228 sizes are left-justified within the word (as opposed to arguments smaller
1229 than WORDSIZE bytes, which are right-justified).
1230
1231 If the function is to return an aggregate type such as a struct, the caller
1232 must allocate space into which the callee will copy the return value. In
1233 this case, a pointer to the return value location is passed into the callee
1234 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1235 registers R0 to R2. */
8818c391
TR
1236
1237static CORE_ADDR
7d9b040b 1238avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1239 struct regcache *regcache, CORE_ADDR bp_addr,
1240 int nargs, struct value **args, CORE_ADDR sp,
1241 int struct_return, CORE_ADDR struct_addr)
8818c391 1242{
e17a4113 1243 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1244 int i;
e362b510 1245 gdb_byte buf[3];
6d1915d4 1246 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1247 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1248 int regnum = AVR_ARGN_REGNUM;
1249 struct stack_item *si = NULL;
8818c391 1250
4add8633 1251 if (struct_return)
8818c391 1252 {
fd6d6815
TG
1253 regcache_cooked_write_unsigned
1254 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1255 regcache_cooked_write_unsigned
1256 (regcache, regnum--, struct_addr & 0xff);
1257 /* SP being post decremented, we need to reserve one byte so that the
1258 return address won't overwrite the result (or vice-versa). */
1259 if (sp == struct_addr)
1260 sp--;
8818c391
TR
1261 }
1262
4add8633 1263 for (i = 0; i < nargs; i++)
8818c391 1264 {
4add8633
TR
1265 int last_regnum;
1266 int j;
1267 struct value *arg = args[i];
4991999e 1268 struct type *type = check_typedef (value_type (arg));
0fd88904 1269 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1270 int len = TYPE_LENGTH (type);
1271
0963b4bd 1272 /* Calculate the potential last register needed. */
4add8633
TR
1273 last_regnum = regnum - (len + (len & 1));
1274
0963b4bd
MS
1275 /* If there are registers available, use them. Once we start putting
1276 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1277 if ((si == NULL) && (last_regnum >= 8))
1278 {
1279 ULONGEST val;
1280
0963b4bd 1281 /* Skip a register for odd length args. */
4add8633
TR
1282 if (len & 1)
1283 regnum--;
1284
e17a4113 1285 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1286 for (j = 0; j < len; j++)
1287 regcache_cooked_write_unsigned
1288 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1289 }
0963b4bd 1290 /* No registers available, push the args onto the stack. */
4add8633
TR
1291 else
1292 {
0963b4bd 1293 /* From here on, we don't care about regnum. */
4add8633
TR
1294 si = push_stack_item (si, contents, len);
1295 }
8818c391 1296 }
909cd28e 1297
0963b4bd 1298 /* Push args onto the stack. */
4add8633
TR
1299 while (si)
1300 {
1301 sp -= si->len;
0963b4bd 1302 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1303 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1304 si = pop_stack_item (si);
1305 }
3605c34a 1306
4add8633
TR
1307 /* Set the return address. For the avr, the return address is the BP_ADDR.
1308 Need to push the return address onto the stack noting that it needs to be
1309 in big-endian order on the stack. */
6d1915d4
TG
1310 for (i = 1; i <= call_length; i++)
1311 {
1312 buf[call_length - i] = return_pc & 0xff;
1313 return_pc >>= 8;
1314 }
3605c34a 1315
6d1915d4 1316 sp -= call_length;
0963b4bd 1317 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1318 write_memory (sp + 1, buf, call_length);
3605c34a 1319
0963b4bd 1320 /* Finally, update the SP register. */
4add8633
TR
1321 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1322 avr_convert_saddr_to_raw (sp));
3605c34a 1323
6d1915d4
TG
1324 /* Return SP value for the dummy frame, where the return address hasn't been
1325 pushed. */
1326 return sp + call_length;
3605c34a
TR
1327}
1328
53f6a2c9
TG
1329/* Unfortunately dwarf2 register for SP is 32. */
1330
1331static int
1332avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1333{
1334 if (reg >= 0 && reg < 32)
1335 return reg;
1336 if (reg == 32)
1337 return AVR_SP_REGNUM;
1338
1339 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1340
1341 return -1;
1342}
1343
0963b4bd 1344/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1345
1346static struct gdbarch *
2e5ff58c
TR
1347avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1348{
2e5ff58c
TR
1349 struct gdbarch *gdbarch;
1350 struct gdbarch_tdep *tdep;
4e99ad69
TG
1351 struct gdbarch_list *best_arch;
1352 int call_length;
8818c391 1353
4e99ad69 1354 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1355 switch (info.bfd_arch_info->mach)
1356 {
1357 case bfd_mach_avr1:
1358 case bfd_mach_avr2:
1359 case bfd_mach_avr3:
1360 case bfd_mach_avr4:
1361 case bfd_mach_avr5:
4e99ad69
TG
1362 default:
1363 call_length = 2;
1364 break;
1365 case bfd_mach_avr6:
1366 call_length = 3;
8818c391
TR
1367 break;
1368 }
1369
4e99ad69
TG
1370 /* If there is already a candidate, use it. */
1371 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1372 best_arch != NULL;
1373 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1374 {
1375 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1376 return best_arch->gdbarch;
1377 }
1378
0963b4bd 1379 /* None found, create a new architecture from the information provided. */
4e99ad69
TG
1380 tdep = XMALLOC (struct gdbarch_tdep);
1381 gdbarch = gdbarch_alloc (&info, tdep);
1382
1383 tdep->call_length = call_length;
1384
7d2552b4
TG
1385 /* Create a type for PC. We can't use builtin types here, as they may not
1386 be defined. */
1387 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1388 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1389 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1390 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1391 TYPE_UNSIGNED (tdep->pc_type) = 1;
1392
8818c391
TR
1393 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1394 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1395 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1396 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1397 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1398 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1399
1400 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1401 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1402 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1403
8da61cc4
DJ
1404 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1405 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1406 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1407
1408 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1409 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1410
1411 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1412
1413 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1414 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1415
1416 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1417 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1418
7d2552b4
TG
1419 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1420 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1421 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1422
4c8b6ae0 1423 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1424 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1425
4add8633 1426 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1427
53f6a2c9
TG
1428 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1429
8818c391
TR
1430 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1431 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1432 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1433
8818c391 1434 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1435 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1436
909cd28e 1437 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1438
94afd7a6 1439 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1440 frame_base_set_default (gdbarch, &avr_frame_base);
1441
94afd7a6 1442 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1443
1444 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1445 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1446
8818c391
TR
1447 return gdbarch;
1448}
1449
1450/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1451 registers. If args parameter is not NULL, then the user has requested info
8818c391 1452 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1453 now]. The query string should be one of these forms:
8818c391
TR
1454
1455 "Ravr.io_reg" -> reply is "NN" number of io registers
1456
1457 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1458 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1459 where, <NAME> is a string, and VV is the hex value of the register.
1460
0963b4bd 1461 All io registers are 8-bit. */
8818c391
TR
1462
1463static void
1464avr_io_reg_read_command (char *args, int from_tty)
1465{
1e3ff5ad 1466 LONGEST bufsiz = 0;
13547ab6 1467 gdb_byte *buf;
001f13d8 1468 const char *bufstr;
2e5ff58c 1469 char query[400];
001f13d8 1470 const char *p;
2e5ff58c
TR
1471 unsigned int nreg = 0;
1472 unsigned int val;
1473 int i, j, k, step;
8818c391 1474
0963b4bd 1475 /* Find out how many io registers the target has. */
13547ab6
DJ
1476 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1477 "avr.io_reg", &buf);
001f13d8 1478 bufstr = (const char *) buf;
8818c391 1479
13547ab6 1480 if (bufsiz <= 0)
8818c391 1481 {
2e5ff58c 1482 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1483 _("ERR: info io_registers NOT supported "
1484 "by current target\n"));
8818c391
TR
1485 return;
1486 }
1487
001f13d8 1488 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1489 {
2e5ff58c 1490 fprintf_unfiltered (gdb_stderr,
edefbb7c 1491 _("Error fetching number of io registers\n"));
13547ab6 1492 xfree (buf);
8818c391
TR
1493 return;
1494 }
1495
13547ab6
DJ
1496 xfree (buf);
1497
2e5ff58c 1498 reinitialize_more_filter ();
8818c391 1499
edefbb7c 1500 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1501
1502 /* only fetch up to 8 registers at a time to keep the buffer small */
1503 step = 8;
1504
2e5ff58c 1505 for (i = 0; i < nreg; i += step)
8818c391 1506 {
91ccbfc1
TR
1507 /* how many registers this round? */
1508 j = step;
1509 if ((i+j) >= nreg)
1510 j = nreg - i; /* last block is less than 8 registers */
8818c391 1511
2e5ff58c 1512 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1513 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1514 query, &buf);
8818c391 1515
001f13d8 1516 p = (const char *) buf;
2e5ff58c
TR
1517 for (k = i; k < (i + j); k++)
1518 {
1519 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1520 {
1521 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1522 while ((*p != ';') && (*p != '\0'))
1523 p++;
1524 p++; /* skip over ';' */
1525 if (*p == '\0')
1526 break;
1527 }
1528 }
13547ab6
DJ
1529
1530 xfree (buf);
8818c391
TR
1531 }
1532}
1533
a78f21af
AC
1534extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1535
8818c391
TR
1536void
1537_initialize_avr_tdep (void)
1538{
1539 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1540
1541 /* Add a new command to allow the user to query the avr remote target for
1542 the values of the io space registers in a saner way than just using
0963b4bd 1543 `x/NNNb ADDR`. */
8818c391
TR
1544
1545 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1546 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1547
1548 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1549 _("query remote avr target for io space register values"),
1550 &infolist);
8818c391 1551}
This page took 0.818609 seconds and 4 git commands to generate.