Add per-section and per-sub-section literal pools.
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391
TR
1/* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* Contributed by Theodore A. Roth, troth@verinet.com */
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "inferior.h"
31#include "symfile.h"
32#include "arch-utils.h"
33#include "regcache.h"
34
35/* AVR Background:
36
37 (AVR micros are pure Harvard Architecture processors.)
38
39 The AVR family of microcontrollers have three distinctly different memory
40 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
41 the most part to store program instructions. The sram is 8 bits wide and is
42 used for the stack and the heap. Some devices lack sram and some can have
43 an additional external sram added on as a peripheral.
44
45 The eeprom is 8 bits wide and is used to store data when the device is
46 powered down. Eeprom is not directly accessible, it can only be accessed
47 via io-registers using a special algorithm. Accessing eeprom via gdb's
48 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
49 not included at this time.
50
51 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
52 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
53 work, the remote target must be able to handle eeprom accesses and perform
54 the address translation.]
55
56 All three memory spaces have physical addresses beginning at 0x0. In
57 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
58 bytes instead of the 16 bit wide words used by the real device for the
59 Program Counter.
60
61 In order for remote targets to work correctly, extra bits must be added to
62 addresses before they are send to the target or received from the target
63 via the remote serial protocol. The extra bits are the MSBs and are used to
64 decode which memory space the address is referring to. */
65
66#undef XMALLOC
67#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
68
69#undef EXTRACT_INSN
70#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
71
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
74enum
2e5ff58c
TR
75{
76 AVR_REG_W = 24,
77 AVR_REG_X = 26,
78 AVR_REG_Y = 28,
79 AVR_FP_REGNUM = 28,
80 AVR_REG_Z = 30,
81
82 AVR_SREG_REGNUM = 32,
83 AVR_SP_REGNUM = 33,
84 AVR_PC_REGNUM = 34,
85
86 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
87 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
88
89 AVR_PC_REG_INDEX = 35, /* index into array of registers */
90
91 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
92
93 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
94 AVR_MAX_PUSHES = 18,
95
96 /* Number of the last pushed register. r17 for current avr-gcc */
97 AVR_LAST_PUSHED_REGNUM = 17,
98
99 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
100 bits? Do these have to match the bfd vma values?. It sure would make
101 things easier in the future if they didn't need to match.
102
103 Note: I chose these values so as to be consistent with bfd vma
104 addresses.
105
106 TRoth/2002-04-08: There is already a conflict with very large programs
107 in the mega128. The mega128 has 128K instruction bytes (64K words),
108 thus the Most Significant Bit is 0x10000 which gets masked off my
109 AVR_MEM_MASK.
110
111 The problem manifests itself when trying to set a breakpoint in a
112 function which resides in the upper half of the instruction space and
113 thus requires a 17-bit address.
114
115 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
116 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
117 but could be for some remote targets by just adding the correct offset
118 to the address and letting the remote target handle the low-level
119 details of actually accessing the eeprom. */
120
121 AVR_IMEM_START = 0x00000000, /* INSN memory */
122 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 123#if 1
2e5ff58c
TR
124 /* No eeprom mask defined */
125 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 126#else
2e5ff58c
TR
127 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
128 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 129#endif
2e5ff58c 130};
8818c391
TR
131
132/* Any function with a frame looks like this
133 ....... <-SP POINTS HERE
134 LOCALS1 <-FP POINTS HERE
135 LOCALS0
136 SAVED FP
137 SAVED R3
138 SAVED R2
139 RET PC
140 FIRST ARG
141 SECOND ARG */
142
143struct frame_extra_info
2e5ff58c
TR
144{
145 CORE_ADDR return_pc;
146 CORE_ADDR args_pointer;
147 int locals_size;
148 int framereg;
149 int framesize;
150 int is_main;
151};
8818c391
TR
152
153struct gdbarch_tdep
2e5ff58c
TR
154{
155 /* FIXME: TRoth: is there anything to put here? */
156 int foo;
157};
8818c391
TR
158
159/* Lookup the name of a register given it's number. */
160
fa88f677 161static const char *
8818c391
TR
162avr_register_name (int regnum)
163{
2e5ff58c
TR
164 static char *register_names[] = {
165 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
166 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
167 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
168 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
169 "SREG", "SP", "PC"
170 };
171 if (regnum < 0)
172 return NULL;
173 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
174 return NULL;
175 return register_names[regnum];
176}
177
178/* Index within `registers' of the first byte of the space for
179 register REGNUM. */
180
181static int
182avr_register_byte (int regnum)
183{
184 if (regnum < AVR_PC_REGNUM)
185 return regnum;
186 else
187 return AVR_PC_REG_INDEX;
188}
189
190/* Number of bytes of storage in the actual machine representation for
191 register REGNUM. */
192
193static int
194avr_register_raw_size (int regnum)
195{
196 switch (regnum)
197 {
198 case AVR_PC_REGNUM:
199 return 4;
200 case AVR_SP_REGNUM:
201 case AVR_FP_REGNUM:
202 return 2;
203 default:
204 return 1;
205 }
206}
207
208/* Number of bytes of storage in the program's representation
209 for register N. */
210
211static int
212avr_register_virtual_size (int regnum)
213{
214 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
215}
216
217/* Return the GDB type object for the "standard" data type
218 of data in register N. */
219
220static struct type *
221avr_register_virtual_type (int regnum)
222{
223 switch (regnum)
224 {
225 case AVR_PC_REGNUM:
226 return builtin_type_unsigned_long;
227 case AVR_SP_REGNUM:
228 return builtin_type_unsigned_short;
229 default:
230 return builtin_type_unsigned_char;
231 }
232}
233
234/* Instruction address checks and convertions. */
235
236static CORE_ADDR
237avr_make_iaddr (CORE_ADDR x)
238{
239 return ((x) | AVR_IMEM_START);
240}
241
242static int
243avr_iaddr_p (CORE_ADDR x)
244{
245 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
246}
247
248/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
249 devices are already up to 128KBytes of flash space.
250
251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
252
253static CORE_ADDR
254avr_convert_iaddr_to_raw (CORE_ADDR x)
255{
256 return ((x) & 0xffffffff);
257}
258
259/* SRAM address checks and convertions. */
260
261static CORE_ADDR
262avr_make_saddr (CORE_ADDR x)
263{
264 return ((x) | AVR_SMEM_START);
265}
266
267static int
268avr_saddr_p (CORE_ADDR x)
269{
270 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
271}
272
273static CORE_ADDR
274avr_convert_saddr_to_raw (CORE_ADDR x)
275{
276 return ((x) & 0xffffffff);
277}
278
279/* EEPROM address checks and convertions. I don't know if these will ever
280 actually be used, but I've added them just the same. TRoth */
281
282/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
283 programs in the mega128. */
284
285/* static CORE_ADDR */
286/* avr_make_eaddr (CORE_ADDR x) */
287/* { */
288/* return ((x) | AVR_EMEM_START); */
289/* } */
290
291/* static int */
292/* avr_eaddr_p (CORE_ADDR x) */
293/* { */
294/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
295/* } */
296
297/* static CORE_ADDR */
298/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
299/* { */
300/* return ((x) & 0xffffffff); */
301/* } */
302
303/* Convert from address to pointer and vice-versa. */
304
305static void
306avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
307{
308 /* Is it a code address? */
309 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
310 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
311 {
2e5ff58c
TR
312 store_unsigned_integer (buf, TYPE_LENGTH (type),
313 avr_convert_iaddr_to_raw (addr));
8818c391
TR
314 }
315 else
316 {
317 /* Strip off any upper segment bits. */
2e5ff58c
TR
318 store_unsigned_integer (buf, TYPE_LENGTH (type),
319 avr_convert_saddr_to_raw (addr));
8818c391
TR
320 }
321}
322
323static CORE_ADDR
324avr_pointer_to_address (struct type *type, void *buf)
325{
326 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
327
2e5ff58c 328 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391 329 {
2e5ff58c
TR
330 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
331 addr);
332 fprintf_unfiltered (gdb_stderr,
333 "+++ If you see this, please send me an email <troth@verinet.com>\n");
8818c391
TR
334 }
335
336 /* Is it a code address? */
337 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
338 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 339 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391
TR
340 return avr_make_iaddr (addr);
341 else
342 return avr_make_saddr (addr);
343}
344
345static CORE_ADDR
346avr_read_pc (ptid_t ptid)
347{
348 ptid_t save_ptid;
349 CORE_ADDR pc;
350 CORE_ADDR retval;
351
352 save_ptid = inferior_ptid;
353 inferior_ptid = ptid;
354 pc = (int) read_register (AVR_PC_REGNUM);
355 inferior_ptid = save_ptid;
356 retval = avr_make_iaddr (pc);
357 return retval;
358}
359
360static void
361avr_write_pc (CORE_ADDR val, ptid_t ptid)
362{
363 ptid_t save_ptid;
364
365 save_ptid = inferior_ptid;
366 inferior_ptid = ptid;
367 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
368 inferior_ptid = save_ptid;
369}
370
371static CORE_ADDR
372avr_read_sp (void)
373{
374 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
375}
376
377static void
378avr_write_sp (CORE_ADDR val)
379{
380 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
381}
382
383static CORE_ADDR
384avr_read_fp (void)
385{
386 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
387}
388
389/* Translate a GDB virtual ADDR/LEN into a format the remote target
390 understands. Returns number of bytes that can be transfered
391 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
392 (segmentation fault).
393
394 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
395 pointer? */
396
397static void
398avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
2e5ff58c 399 CORE_ADDR *targ_addr, int *targ_len)
8818c391
TR
400{
401 long out_addr;
402 long out_len;
403
404 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
405 point and see if the high bit are set with the masks that we want. */
406
407 *targ_addr = memaddr;
408 *targ_len = nr_bytes;
409}
410
411/* Function pointers obtained from the target are half of what gdb expects so
412 multiply by 2. */
413
414static CORE_ADDR
415avr_convert_from_func_ptr_addr (CORE_ADDR addr)
416{
417 return addr * 2;
418}
419
420/* avr_scan_prologue is also used as the frame_init_saved_regs().
421
422 Put here the code to store, into fi->saved_regs, the addresses of
423 the saved registers of frame described by FRAME_INFO. This
424 includes special registers such as pc and fp saved in special ways
425 in the stack frame. sp is even more special: the address we return
426 for it IS the sp for the next frame. */
427
428/* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
429 This function decodes a AVR function prologue to determine:
430 1) the size of the stack frame
431 2) which registers are saved on it
432 3) the offsets of saved regs
433 This information is stored in the "extra_info" field of the frame_info.
434
435 A typical AVR function prologue might look like this:
436 push rXX
437 push r28
438 push r29
439 in r28,__SP_L__
440 in r29,__SP_H__
441 sbiw r28,<LOCALS_SIZE>
442 in __tmp_reg__,__SREG__
443 cli
444 out __SP_L__,r28
445 out __SREG__,__tmp_reg__
446 out __SP_H__,r29
447
448 A `-mcall-prologues' prologue look like this:
449 ldi r26,<LOCALS_SIZE>
450 ldi r27,<LOCALS_SIZE>/265
451 ldi r30,pm_lo8(.L_foo_body)
452 ldi r31,pm_hi8(.L_foo_body)
453 rjmp __prologue_saves__+RRR
454 .L_foo_body: */
455
456static void
457avr_scan_prologue (struct frame_info *fi)
458{
459 CORE_ADDR prologue_start;
460 CORE_ADDR prologue_end;
2e5ff58c
TR
461 int i;
462 unsigned short insn;
463 int regno;
464 int scan_stage = 0;
465 char *name;
8818c391 466 struct minimal_symbol *msymbol;
2e5ff58c 467 int prologue_len;
8818c391
TR
468 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
469 int vpc = 0;
470
471 fi->extra_info->framereg = AVR_SP_REGNUM;
2e5ff58c
TR
472
473 if (find_pc_partial_function
474 (fi->pc, &name, &prologue_start, &prologue_end))
8818c391
TR
475 {
476 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
477
2e5ff58c
TR
478 if (sal.line == 0) /* no line info, use current PC */
479 prologue_end = fi->pc;
480 else if (sal.end < prologue_end) /* next line begins after fn end */
481 prologue_end = sal.end; /* (probably means no prologue) */
8818c391
TR
482 }
483 else
484 /* We're in the boondocks: allow for */
485 /* 19 pushes, an add, and "mv fp,sp" */
2e5ff58c 486 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
8818c391
TR
487
488 prologue_end = min (prologue_end, fi->pc);
489
490 /* Search the prologue looking for instructions that set up the
491 frame pointer, adjust the stack pointer, and save registers. */
492
493 fi->extra_info->framesize = 0;
494 prologue_len = prologue_end - prologue_start;
495 read_memory (prologue_start, prologue, prologue_len);
496
497 /* Scanning main()'s prologue
498 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
499 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
500 out __SP_H__,r29
501 out __SP_L__,r28 */
502
503 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
504 {
505 CORE_ADDR locals;
2e5ff58c
TR
506 unsigned char img[] = {
507 0xde, 0xbf, /* out __SP_H__,r29 */
508 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
509 };
510
511 fi->extra_info->framereg = AVR_FP_REGNUM;
512 insn = EXTRACT_INSN (&prologue[vpc]);
513 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
514 if ((insn & 0xf0f0) == 0xe0c0)
515 {
516 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
517 insn = EXTRACT_INSN (&prologue[vpc + 2]);
518 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
519 if ((insn & 0xf0f0) == 0xe0d0)
520 {
521 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
522 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
523 {
524 fi->frame = locals;
525
526 /* TRoth: Does -1 mean we're in main? */
527 fi->extra_info->is_main = 1;
528 return;
529 }
530 }
531 }
8818c391 532 }
2e5ff58c 533
8818c391
TR
534 /* Scanning `-mcall-prologues' prologue
535 FIXME: mega prologue have a 12 bytes long */
536
2e5ff58c 537 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
8818c391
TR
538 {
539 int loc_size;
540 int body_addr;
541 unsigned num_pushes;
2e5ff58c 542
8818c391
TR
543 insn = EXTRACT_INSN (&prologue[vpc]);
544 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
545 if ((insn & 0xf0f0) != 0xe0a0)
546 break;
8818c391 547 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
2e5ff58c 548
8818c391
TR
549 insn = EXTRACT_INSN (&prologue[vpc + 2]);
550 /* ldi r27,<LOCALS_SIZE> / 256 */
551 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 552 break;
8818c391 553 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
2e5ff58c 554
8818c391
TR
555 insn = EXTRACT_INSN (&prologue[vpc + 4]);
556 /* ldi r30,pm_lo8(.L_foo_body) */
557 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 558 break;
8818c391
TR
559 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560
561 insn = EXTRACT_INSN (&prologue[vpc + 6]);
562 /* ldi r31,pm_hi8(.L_foo_body) */
563 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 564 break;
8818c391
TR
565 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
566
567 if (body_addr != (prologue_start + 10) / 2)
2e5ff58c 568 break;
8818c391
TR
569
570 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
571 if (!msymbol)
2e5ff58c 572 break;
8818c391
TR
573
574 /* FIXME: prologue for mega have a JMP instead of RJMP */
575 insn = EXTRACT_INSN (&prologue[vpc + 8]);
576 /* rjmp __prologue_saves__+RRR */
577 if ((insn & 0xf000) != 0xc000)
2e5ff58c
TR
578 break;
579
8818c391
TR
580 /* Extract PC relative offset from RJMP */
581 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
582 /* Convert offset to byte addressable mode */
583 i *= 2;
584 /* Destination address */
585 i += vpc + prologue_start + 10;
586 /* Resovle offset (in words) from __prologue_saves__ symbol.
587 Which is a pushes count in `-mcall-prologues' mode */
588 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
589
590 if (num_pushes > AVR_MAX_PUSHES)
2e5ff58c
TR
591 num_pushes = 0;
592
8818c391 593 if (num_pushes)
2e5ff58c
TR
594 {
595 int from;
596 fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes;
597 if (num_pushes >= 2)
598 fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
599 i = 0;
600 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
601 from <= AVR_LAST_PUSHED_REGNUM; ++from)
602 fi->saved_regs[from] = ++i;
603 }
8818c391
TR
604 fi->extra_info->locals_size = loc_size;
605 fi->extra_info->framesize = loc_size + num_pushes;
606 fi->extra_info->framereg = AVR_FP_REGNUM;
607 return;
608 }
609
610 /* Scan interrupt or signal function */
611
612 if (prologue_len >= 12)
613 {
2e5ff58c
TR
614 unsigned char img[] = {
615 0x78, 0x94, /* sei */
616 0x1f, 0x92, /* push r1 */
617 0x0f, 0x92, /* push r0 */
618 0x0f, 0xb6, /* in r0,0x3f SREG */
619 0x0f, 0x92, /* push r0 */
620 0x11, 0x24 /* clr r1 */
8818c391
TR
621 };
622 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c
TR
623 {
624 vpc += sizeof (img);
625 fi->saved_regs[0] = 2;
626 fi->saved_regs[1] = 1;
627 fi->extra_info->framesize += 3;
628 }
8818c391 629 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
2e5ff58c
TR
630 {
631 vpc += sizeof (img) - 1;
632 fi->saved_regs[0] = 2;
633 fi->saved_regs[1] = 1;
634 fi->extra_info->framesize += 3;
635 }
8818c391
TR
636 }
637
638 /* First stage of the prologue scanning.
639 Scan pushes */
640
641 for (; vpc <= prologue_len; vpc += 2)
642 {
643 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
644 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
645 {
646 /* Bits 4-9 contain a mask for registers R0-R32. */
647 regno = (insn & 0x1f0) >> 4;
648 ++fi->extra_info->framesize;
649 fi->saved_regs[regno] = fi->extra_info->framesize;
650 scan_stage = 1;
651 }
8818c391 652 else
2e5ff58c 653 break;
8818c391
TR
654 }
655
656 /* Second stage of the prologue scanning.
657 Scan:
658 in r28,__SP_L__
659 in r29,__SP_H__ */
660
661 if (scan_stage == 1 && vpc + 4 <= prologue_len)
662 {
2e5ff58c
TR
663 unsigned char img[] = {
664 0xcd, 0xb7, /* in r28,__SP_L__ */
665 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
666 };
667 unsigned short insn1;
2e5ff58c 668
8818c391 669 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
670 {
671 vpc += 4;
672 fi->extra_info->framereg = AVR_FP_REGNUM;
673 scan_stage = 2;
674 }
8818c391
TR
675 }
676
677 /* Third stage of the prologue scanning. (Really two stages)
678 Scan for:
679 sbiw r28,XX or subi r28,lo8(XX)
680 sbci r29,hi8(XX)
681 in __tmp_reg__,__SREG__
682 cli
683 out __SP_L__,r28
684 out __SREG__,__tmp_reg__
685 out __SP_H__,r29 */
686
687 if (scan_stage == 2 && vpc + 12 <= prologue_len)
688 {
689 int locals_size = 0;
2e5ff58c
TR
690 unsigned char img[] = {
691 0x0f, 0xb6, /* in r0,0x3f */
692 0xf8, 0x94, /* cli */
693 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
694 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
695 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 696 };
2e5ff58c
TR
697 unsigned char img_sig[] = {
698 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
699 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 700 };
2e5ff58c
TR
701 unsigned char img_int[] = {
702 0xf8, 0x94, /* cli */
703 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
704 0x78, 0x94, /* sei */
705 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 706 };
2e5ff58c 707
8818c391
TR
708 insn = EXTRACT_INSN (&prologue[vpc]);
709 vpc += 2;
2e5ff58c
TR
710 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
711 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
712 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
713 {
714 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
715 insn = EXTRACT_INSN (&prologue[vpc]);
716 vpc += 2;
717 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
718 }
8818c391 719 else
2e5ff58c 720 return;
8818c391
TR
721 fi->extra_info->locals_size = locals_size;
722 fi->extra_info->framesize += locals_size;
723 }
724}
725
726/* This function actually figures out the frame address for a given pc and
727 sp. This is tricky because we sometimes don't use an explicit
728 frame pointer, and the previous stack pointer isn't necessarily recorded
729 on the stack. The only reliable way to get this info is to
730 examine the prologue. */
731
732static void
733avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
734{
735 int reg;
736
737 if (fi->next)
738 fi->pc = FRAME_SAVED_PC (fi->next);
739
740 fi->extra_info = (struct frame_extra_info *)
741 frame_obstack_alloc (sizeof (struct frame_extra_info));
742 frame_saved_regs_zalloc (fi);
743
744 fi->extra_info->return_pc = 0;
745 fi->extra_info->args_pointer = 0;
746 fi->extra_info->locals_size = 0;
747 fi->extra_info->framereg = 0;
748 fi->extra_info->framesize = 0;
749 fi->extra_info->is_main = 0;
2e5ff58c 750
8818c391
TR
751 avr_scan_prologue (fi);
752
753 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
754 {
755 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
756 by assuming it's always FP. */
2e5ff58c 757 fi->frame = generic_read_register_dummy (fi->pc, fi->frame, fi->frame);
8818c391 758 }
2e5ff58c 759 else if (!fi->next) /* this is the innermost frame? */
8818c391 760 fi->frame = read_register (fi->extra_info->framereg);
2e5ff58c 761 else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
8818c391
TR
762 /* If we have an next frame, the callee saved it. */
763 {
2e5ff58c 764 struct frame_info *next_fi = fi->next;
8818c391 765 if (fi->extra_info->framereg == AVR_SP_REGNUM)
2e5ff58c
TR
766 fi->frame =
767 next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
8818c391
TR
768 /* FIXME: I don't analyse va_args functions */
769 else
2e5ff58c
TR
770 {
771 CORE_ADDR fp = 0;
772 CORE_ADDR fp1 = 0;
773 unsigned int fp_low, fp_high;
774
775 /* Scan all frames */
776 for (; next_fi; next_fi = next_fi->next)
777 {
778 /* look for saved AVR_FP_REGNUM */
779 if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
780 fp = next_fi->saved_regs[AVR_FP_REGNUM];
781 /* look for saved AVR_FP_REGNUM + 1 */
782 if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
783 fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
784 }
785 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
786 : read_register (AVR_FP_REGNUM)) & 0xff;
787 fp_high =
788 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
789 read_register (AVR_FP_REGNUM + 1)) & 0xff;
790 fi->frame = fp_low | (fp_high << 8);
791 }
8818c391
TR
792 }
793
794 /* TRoth: Do we want to do this if we are in main? I don't think we should
795 since return_pc makes no sense when we are in main. */
796
2e5ff58c 797 if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
8818c391
TR
798 {
799 CORE_ADDR addr;
800 int i;
2e5ff58c 801
8818c391 802 addr = fi->frame + fi->extra_info->framesize + 1;
2e5ff58c 803
8818c391
TR
804 /* Return address in stack in different endianness */
805
806 fi->extra_info->return_pc =
2e5ff58c 807 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
8818c391 808 fi->extra_info->return_pc |=
2e5ff58c
TR
809 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
810
8818c391
TR
811 /* This return address in words,
812 must be converted to the bytes address */
813 fi->extra_info->return_pc *= 2;
814
815 /* Resolve a pushed registers addresses */
816 for (i = 0; i < NUM_REGS; i++)
2e5ff58c
TR
817 {
818 if (fi->saved_regs[i])
819 fi->saved_regs[i] = addr - fi->saved_regs[i];
820 }
8818c391
TR
821 }
822}
823
824/* Restore the machine to the state it had before the current frame was
825 created. Usually used either by the "RETURN" command, or by
826 call_function_by_hand after the dummy_frame is finished. */
827
828static void
829avr_pop_frame (void)
830{
831 unsigned regnum;
832 CORE_ADDR saddr;
833 struct frame_info *frame = get_current_frame ();
834
2e5ff58c 835 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
8818c391 836 {
2e5ff58c 837 generic_pop_dummy_frame ();
8818c391
TR
838 }
839 else
840 {
841 /* TRoth: Why only loop over 8 registers? */
842
843 for (regnum = 0; regnum < 8; regnum++)
2e5ff58c
TR
844 {
845 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
846 actual value we want, not the address of the value we want. */
847 if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
848 {
849 saddr = avr_make_saddr (frame->saved_regs[regnum]);
850 write_register (regnum,
851 read_memory_unsigned_integer (saddr, 1));
852 }
853 else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
854 write_register (regnum, frame->frame + 2);
855 }
8818c391
TR
856
857 /* Don't forget the update the PC too! */
858 write_pc (frame->extra_info->return_pc);
859 }
860 flush_cached_frames ();
861}
862
863/* Return the saved PC from this frame. */
864
865static CORE_ADDR
866avr_frame_saved_pc (struct frame_info *frame)
867{
2e5ff58c
TR
868 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
869 return generic_read_register_dummy (frame->pc, frame->frame,
870 AVR_PC_REGNUM);
8818c391
TR
871 else
872 return frame->extra_info->return_pc;
873}
874
875static CORE_ADDR
876avr_saved_pc_after_call (struct frame_info *frame)
877{
878 unsigned char m1, m2;
879 unsigned int sp = read_register (AVR_SP_REGNUM);
880 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
881 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
882 return (m2 | (m1 << 8)) * 2;
883}
884
885/* Figure out where in REGBUF the called function has left its return value.
886 Copy that into VALBUF. */
887
888static void
889avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
890{
891 int wordsize, len;
892
893 wordsize = 2;
894
2e5ff58c
TR
895 len = TYPE_LENGTH (type);
896
897 switch (len)
898 {
899 case 1: /* (char) */
900 case 2: /* (short), (int) */
901 memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2);
902 break;
903 case 4: /* (long), (float) */
904 memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4);
905 break;
906 case 8: /* (double) (doesn't seem to happen, which is good,
907 because this almost certainly isn't right. */
908 error ("I don't know how a double is returned.");
909 break;
910 }
8818c391
TR
911}
912
913/* Returns the return address for a dummy. */
914
915static CORE_ADDR
916avr_call_dummy_address (void)
917{
918 return entry_point_address ();
919}
920
921/* Place the appropriate value in the appropriate registers.
922 Primarily used by the RETURN command. */
923
924static void
925avr_store_return_value (struct type *type, char *valbuf)
926{
927 int wordsize, len, regval;
2e5ff58c 928
8818c391
TR
929 wordsize = 2;
930
2e5ff58c
TR
931 len = TYPE_LENGTH (type);
932 switch (len)
933 {
934 case 1: /* char */
935 case 2: /* short, int */
936 regval = extract_address (valbuf, len);
937 write_register (0, regval);
938 break;
939 case 4: /* long, float */
940 regval = extract_address (valbuf, len);
941 write_register (0, regval >> 16);
942 write_register (1, regval & 0xffff);
943 break;
944 case 8: /* presumeably double, but doesn't seem to happen */
945 error ("I don't know how to return a double.");
946 break;
947 }
8818c391
TR
948}
949
950/* Setup the return address for a dummy frame, as called by
951 call_function_by_hand. Only necessary when you are using an empty
952 CALL_DUMMY. */
953
954static CORE_ADDR
955avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
956{
957 unsigned char buf[2];
958 int wordsize = 2;
959 struct minimal_symbol *msymbol;
960 CORE_ADDR mon_brk;
961
962 fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n");
963
964 buf[0] = 0;
965 buf[1] = 0;
966 sp -= wordsize;
967 write_memory (sp + 1, buf, 2);
968
969#if 0
970 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
971 left-over from Denis' original patch which used avr-mon for the target
972 instead of the generic remote target. */
973 if ((strcmp (target_shortname, "avr-mon") == 0)
974 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
975 {
976 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
977 store_unsigned_integer (buf, wordsize, mon_brk / 2);
978 sp -= wordsize;
979 write_memory (sp + 1, buf + 1, 1);
980 write_memory (sp + 2, buf, 1);
981 }
982#endif
983 return sp;
984}
985
986static CORE_ADDR
987avr_skip_prologue (CORE_ADDR pc)
988{
989 CORE_ADDR func_addr, func_end;
990 struct symtab_and_line sal;
991
992 /* See what the symbol table says */
993
994 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
995 {
996 sal = find_pc_line (func_addr, 0);
997
2e5ff58c
TR
998 if (sal.line != 0 && sal.end < func_end)
999 return sal.end;
8818c391
TR
1000 }
1001
1002/* Either we didn't find the start of this function (nothing we can do),
1003 or there's no line info, or the line after the prologue is after
1004 the end of the function (there probably isn't a prologue). */
1005
1006 return pc;
1007}
1008
1009static CORE_ADDR
1010avr_frame_address (struct frame_info *fi)
1011{
1012 return avr_make_saddr (fi->frame);
1013}
1014
1015/* Given a GDB frame, determine the address of the calling function's frame.
1016 This will be used to create a new GDB frame struct, and then
1017 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1018
1019 For us, the frame address is its stack pointer value, so we look up
1020 the function prologue to determine the caller's sp value, and return it. */
1021
1022static CORE_ADDR
1023avr_frame_chain (struct frame_info *frame)
1024{
1025 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1026 {
1027 /* initialize the return_pc now */
1028 frame->extra_info->return_pc = generic_read_register_dummy (frame->pc,
2e5ff58c
TR
1029 frame->
1030 frame,
1031 AVR_PC_REGNUM);
8818c391
TR
1032 return frame->frame;
1033 }
1034 return (frame->extra_info->is_main ? 0
2e5ff58c 1035 : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ );
8818c391
TR
1036}
1037
1038/* Store the address of the place in which to copy the structure the
1039 subroutine will return. This is called from call_function.
1040
1041 We store structs through a pointer passed in the first Argument
1042 register. */
1043
1044static void
1045avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1046{
1047 write_register (0, addr);
1048}
1049
1050/* Extract from an array REGBUF containing the (raw) register state
1051 the address in which a function should return its structure value,
1052 as a CORE_ADDR (or an expression that can be used as one). */
1053
1054static CORE_ADDR
1055avr_extract_struct_value_address (char *regbuf)
1056{
1057 return (extract_address ((regbuf) + REGISTER_BYTE (0),
2e5ff58c 1058 REGISTER_RAW_SIZE (0)) | AVR_SMEM_START);
8818c391
TR
1059}
1060
1061/* Setup the function arguments for calling a function in the inferior.
1062
1063 On the AVR architecture, there are 18 registers (R25 to R8) which are
1064 dedicated for passing function arguments. Up to the first 18 arguments
1065 (depending on size) may go into these registers. The rest go on the stack.
1066
1067 Arguments that are larger than WORDSIZE bytes will be split between two or
1068 more registers as available, but will NOT be split between a register and
1069 the stack.
1070
1071 An exceptional case exists for struct arguments (and possibly other
1072 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1073 not a multiple of WORDSIZE bytes. In this case the argument is never split
1074 between the registers and the stack, but instead is copied in its entirety
1075 onto the stack, AND also copied into as many registers as there is room
1076 for. In other words, space in registers permitting, two copies of the same
1077 argument are passed in. As far as I can tell, only the one on the stack is
1078 used, although that may be a function of the level of compiler
1079 optimization. I suspect this is a compiler bug. Arguments of these odd
1080 sizes are left-justified within the word (as opposed to arguments smaller
1081 than WORDSIZE bytes, which are right-justified).
1082
1083 If the function is to return an aggregate type such as a struct, the caller
1084 must allocate space into which the callee will copy the return value. In
1085 this case, a pointer to the return value location is passed into the callee
1086 in register R0, which displaces one of the other arguments passed in via
1087 registers R0 to R2. */
1088
1089static CORE_ADDR
1090avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2e5ff58c 1091 int struct_return, CORE_ADDR struct_addr)
8818c391
TR
1092{
1093 int stack_alloc, stack_offset;
1094 int wordsize;
1095 int argreg;
1096 int argnum;
1097 struct type *type;
1098 CORE_ADDR regval;
1099 char *val;
1100 char valbuf[4];
1101 int len;
1102
2e5ff58c 1103 wordsize = 1;
8818c391
TR
1104#if 0
1105 /* Now make sure there's space on the stack */
2e5ff58c
TR
1106 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1107 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1108 sp -= stack_alloc; /* make room on stack for args */
8818c391
TR
1109 /* we may over-allocate a little here, but that won't hurt anything */
1110#endif
1111 argreg = 25;
2e5ff58c 1112 if (struct_return) /* "struct return" pointer takes up one argreg */
8818c391
TR
1113 {
1114 write_register (--argreg, struct_addr);
1115 }
1116
1117 /* Now load as many as possible of the first arguments into registers, and
1118 push the rest onto the stack. There are 3N bytes in three registers
1119 available. Loop thru args from first to last. */
1120
1121 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1122 {
1123 type = VALUE_TYPE (args[argnum]);
1124 len = TYPE_LENGTH (type);
1125 val = (char *) VALUE_CONTENTS (args[argnum]);
1126
1127 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1128 some *&^%$ things get passed on the stack AND in the registers! */
1129 while (len > 0)
2e5ff58c
TR
1130 { /* there's room in registers */
1131 len -= wordsize;
1132 regval = extract_address (val + len, wordsize);
1133 write_register (argreg--, regval);
1134 }
8818c391
TR
1135 }
1136 return sp;
1137}
1138
1139/* Initialize the gdbarch structure for the AVR's. */
1140
1141static struct gdbarch *
2e5ff58c
TR
1142avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1143{
8818c391
TR
1144 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1145 be bigger or not. Initial testing seems to show that `call my_func()`
1146 works and backtrace from a breakpoint within the call looks correct.
1147 Admittedly, I haven't tested with more than a very simple program. */
2e5ff58c 1148 static LONGEST avr_call_dummy_words[] = { 0 };
8818c391 1149
2e5ff58c
TR
1150 struct gdbarch *gdbarch;
1151 struct gdbarch_tdep *tdep;
8818c391
TR
1152
1153 /* Find a candidate among the list of pre-declared architectures. */
1154 arches = gdbarch_list_lookup_by_info (arches, &info);
1155 if (arches != NULL)
1156 return arches->gdbarch;
1157
1158 /* None found, create a new architecture from the information provided. */
1159 tdep = XMALLOC (struct gdbarch_tdep);
1160 gdbarch = gdbarch_alloc (&info, tdep);
1161
1162 /* If we ever need to differentiate the device types, do it here. */
1163 switch (info.bfd_arch_info->mach)
1164 {
1165 case bfd_mach_avr1:
1166 case bfd_mach_avr2:
1167 case bfd_mach_avr3:
1168 case bfd_mach_avr4:
1169 case bfd_mach_avr5:
1170 break;
1171 }
1172
1173 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1174 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1175 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1176 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1177 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1178 set_gdbarch_addr_bit (gdbarch, 32);
2e5ff58c 1179 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
8818c391
TR
1180
1181 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1182 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1183 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1184
1185 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1186 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1187 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1188
1189 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1190 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1191 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1192 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1193 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1194
1195 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1196
1197 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1198 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1199 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1200
1201 set_gdbarch_register_name (gdbarch, avr_register_name);
1202 set_gdbarch_register_size (gdbarch, 1);
1203 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1204 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1205 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1206 set_gdbarch_max_register_raw_size (gdbarch, 4);
1207 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1208 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1209 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1210
1211 /* We might need to define our own here or define FRAME_INIT_SAVED_REGS */
1212 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1213
1214 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1215
1216 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1217 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1218 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1219 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1220 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1221 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1222 set_gdbarch_call_dummy_length (gdbarch, 0);
1223 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1224 set_gdbarch_call_dummy_p (gdbarch, 1);
1225 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1226 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1227 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1228
1229/* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1230
1231 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1232 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
26e9b323 1233 set_gdbarch_deprecated_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1234 set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1235 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1236/* set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */
1237 set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1238
1239 set_gdbarch_store_return_value (gdbarch, avr_store_return_value);
1240
1241 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1242 set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
26e9b323
AC
1243 set_gdbarch_deprecated_extract_struct_value_address
1244 (gdbarch, avr_extract_struct_value_address);
8818c391
TR
1245
1246 set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1247 set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1248 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1249/* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
1250 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1251
1252 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1253
1254 set_gdbarch_function_start_offset (gdbarch, 0);
2e5ff58c
TR
1255 set_gdbarch_remote_translate_xfer_address (gdbarch,
1256 avr_remote_translate_xfer_address);
8818c391 1257 set_gdbarch_frame_args_skip (gdbarch, 0);
2e5ff58c 1258 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
8818c391
TR
1259 set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1260 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1261 set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1262 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1263 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1264 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1265 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1266
2e5ff58c
TR
1267 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1268 avr_convert_from_func_ptr_addr);
8818c391
TR
1269
1270 return gdbarch;
1271}
1272
1273/* Send a query request to the avr remote target asking for values of the io
1274 registers. If args parameter is not NULL, then the user has requested info
1275 on a specific io register [This still needs implemented and is ignored for
1276 now]. The query string should be one of these forms:
1277
1278 "Ravr.io_reg" -> reply is "NN" number of io registers
1279
1280 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1281 registers to be read. The reply should be "<NAME>,VV;" for each io register
1282 where, <NAME> is a string, and VV is the hex value of the register.
1283
1284 All io registers are 8-bit. */
1285
1286static void
1287avr_io_reg_read_command (char *args, int from_tty)
1288{
2e5ff58c
TR
1289 int bufsiz = 0;
1290 char buf[400];
1291 char query[400];
1292 char *p;
1293 unsigned int nreg = 0;
1294 unsigned int val;
1295 int i, j, k, step;
8818c391
TR
1296
1297/* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1298/* args, from_tty); */
1299
2e5ff58c 1300 if (!current_target.to_query)
8818c391 1301 {
2e5ff58c
TR
1302 fprintf_unfiltered (gdb_stderr,
1303 "ERR: info io_registers NOT supported by current target\n");
8818c391
TR
1304 return;
1305 }
1306
1307 /* Just get the maximum buffer size. */
1308 target_query ((int) 'R', 0, 0, &bufsiz);
2e5ff58c
TR
1309 if (bufsiz > sizeof (buf))
1310 bufsiz = sizeof (buf);
8818c391
TR
1311
1312 /* Find out how many io registers the target has. */
1313 strcpy (query, "avr.io_reg");
2e5ff58c 1314 target_query ((int) 'R', query, buf, &bufsiz);
8818c391
TR
1315
1316 if (strncmp (buf, "", bufsiz) == 0)
1317 {
2e5ff58c
TR
1318 fprintf_unfiltered (gdb_stderr,
1319 "info io_registers NOT supported by target\n");
8818c391
TR
1320 return;
1321 }
1322
2e5ff58c 1323 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1324 {
2e5ff58c
TR
1325 fprintf_unfiltered (gdb_stderr,
1326 "Error fetching number of io registers\n");
8818c391
TR
1327 return;
1328 }
1329
2e5ff58c 1330 reinitialize_more_filter ();
8818c391
TR
1331
1332 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1333
1334 /* only fetch up to 8 registers at a time to keep the buffer small */
1335 step = 8;
1336
2e5ff58c 1337 for (i = 0; i < nreg; i += step)
8818c391 1338 {
2e5ff58c 1339 j = step - (nreg % step); /* how many registers this round? */
8818c391 1340
2e5ff58c 1341 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8818c391
TR
1342 target_query ((int) 'R', query, buf, &bufsiz);
1343
1344 p = buf;
2e5ff58c
TR
1345 for (k = i; k < (i + j); k++)
1346 {
1347 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1348 {
1349 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1350 while ((*p != ';') && (*p != '\0'))
1351 p++;
1352 p++; /* skip over ';' */
1353 if (*p == '\0')
1354 break;
1355 }
1356 }
8818c391
TR
1357 }
1358}
1359
1360void
1361_initialize_avr_tdep (void)
1362{
1363 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1364
1365 /* Add a new command to allow the user to query the avr remote target for
1366 the values of the io space registers in a saner way than just using
1367 `x/NNNb ADDR`. */
1368
1369 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1370 io_registers' to signify it is not available on other platforms. */
1371
1372 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1373 "query remote avr target for io space register values", &infolist);
8818c391 1374}
This page took 0.113442 seconds and 4 git commands to generate.