* elfxx-ia64.c (elfNN_ia64_dynamic_symbol_p): Properly return false
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
51603483 2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
8818c391
TR
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
de18ac1f 22/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
4add8633
TR
28#include "frame.h"
29#include "frame-unwind.h"
30#include "frame-base.h"
31#include "trad-frame.h"
8818c391
TR
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "inferior.h"
35#include "symfile.h"
36#include "arch-utils.h"
37#include "regcache.h"
5f8a3188 38#include "gdb_string.h"
8818c391
TR
39
40/* AVR Background:
41
42 (AVR micros are pure Harvard Architecture processors.)
43
44 The AVR family of microcontrollers have three distinctly different memory
45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
46 the most part to store program instructions. The sram is 8 bits wide and is
47 used for the stack and the heap. Some devices lack sram and some can have
48 an additional external sram added on as a peripheral.
49
50 The eeprom is 8 bits wide and is used to store data when the device is
51 powered down. Eeprom is not directly accessible, it can only be accessed
52 via io-registers using a special algorithm. Accessing eeprom via gdb's
53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
54 not included at this time.
55
56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
58 work, the remote target must be able to handle eeprom accesses and perform
59 the address translation.]
60
61 All three memory spaces have physical addresses beginning at 0x0. In
62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
63 bytes instead of the 16 bit wide words used by the real device for the
64 Program Counter.
65
66 In order for remote targets to work correctly, extra bits must be added to
67 addresses before they are send to the target or received from the target
68 via the remote serial protocol. The extra bits are the MSBs and are used to
69 decode which memory space the address is referring to. */
70
71#undef XMALLOC
72#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
73
74#undef EXTRACT_INSN
75#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
76
77/* Constants: prefixed with AVR_ to avoid name space clashes */
78
79enum
2e5ff58c
TR
80{
81 AVR_REG_W = 24,
82 AVR_REG_X = 26,
83 AVR_REG_Y = 28,
84 AVR_FP_REGNUM = 28,
85 AVR_REG_Z = 30,
86
87 AVR_SREG_REGNUM = 32,
88 AVR_SP_REGNUM = 33,
89 AVR_PC_REGNUM = 34,
90
91 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
92 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
93
94 AVR_PC_REG_INDEX = 35, /* index into array of registers */
95
4add8633 96 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c
TR
97
98 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
99 AVR_MAX_PUSHES = 18,
100
101 /* Number of the last pushed register. r17 for current avr-gcc */
102 AVR_LAST_PUSHED_REGNUM = 17,
103
4add8633
TR
104 AVR_ARG1_REGNUM = 24, /* Single byte argument */
105 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
106
107 AVR_RET1_REGNUM = 24, /* Single byte return value */
108 AVR_RETN_REGNUM = 25, /* Multi byte return value */
109
2e5ff58c
TR
110 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
111 bits? Do these have to match the bfd vma values?. It sure would make
112 things easier in the future if they didn't need to match.
113
114 Note: I chose these values so as to be consistent with bfd vma
115 addresses.
116
117 TRoth/2002-04-08: There is already a conflict with very large programs
118 in the mega128. The mega128 has 128K instruction bytes (64K words),
119 thus the Most Significant Bit is 0x10000 which gets masked off my
120 AVR_MEM_MASK.
121
122 The problem manifests itself when trying to set a breakpoint in a
123 function which resides in the upper half of the instruction space and
124 thus requires a 17-bit address.
125
126 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
127 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
128 but could be for some remote targets by just adding the correct offset
129 to the address and letting the remote target handle the low-level
130 details of actually accessing the eeprom. */
131
132 AVR_IMEM_START = 0x00000000, /* INSN memory */
133 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 134#if 1
2e5ff58c
TR
135 /* No eeprom mask defined */
136 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 137#else
2e5ff58c
TR
138 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
139 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 140#endif
2e5ff58c 141};
8818c391 142
4add8633
TR
143/* Prologue types:
144
145 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
146 causes the generation of the CALL type prologues). */
147
148enum {
149 AVR_PROLOGUE_NONE, /* No prologue */
150 AVR_PROLOGUE_NORMAL,
151 AVR_PROLOGUE_CALL, /* -mcall-prologues */
152 AVR_PROLOGUE_MAIN,
153 AVR_PROLOGUE_INTR, /* interrupt handler */
154 AVR_PROLOGUE_SIG, /* signal handler */
155};
156
8818c391
TR
157/* Any function with a frame looks like this
158 ....... <-SP POINTS HERE
159 LOCALS1 <-FP POINTS HERE
160 LOCALS0
161 SAVED FP
162 SAVED R3
163 SAVED R2
164 RET PC
165 FIRST ARG
166 SECOND ARG */
167
4add8633 168struct avr_unwind_cache
2e5ff58c 169{
4add8633
TR
170 /* The previous frame's inner most stack address. Used as this
171 frame ID's stack_addr. */
172 CORE_ADDR prev_sp;
173 /* The frame's base, optionally used by the high-level debug info. */
174 CORE_ADDR base;
175 int size;
176 int prologue_type;
177 /* Table indicating the location of each and every register. */
178 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 179};
8818c391
TR
180
181struct gdbarch_tdep
2e5ff58c
TR
182{
183 /* FIXME: TRoth: is there anything to put here? */
184 int foo;
185};
8818c391
TR
186
187/* Lookup the name of a register given it's number. */
188
fa88f677 189static const char *
8818c391
TR
190avr_register_name (int regnum)
191{
2e5ff58c
TR
192 static char *register_names[] = {
193 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
194 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
195 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
196 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
197 "SREG", "SP", "PC"
198 };
199 if (regnum < 0)
200 return NULL;
201 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
202 return NULL;
203 return register_names[regnum];
204}
205
8818c391
TR
206/* Return the GDB type object for the "standard" data type
207 of data in register N. */
208
209static struct type *
866b76ea 210avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 211{
866b76ea
TR
212 if (reg_nr == AVR_PC_REGNUM)
213 return builtin_type_uint32;
866b76ea
TR
214 if (reg_nr == AVR_SP_REGNUM)
215 return builtin_type_void_data_ptr;
216 else
217 return builtin_type_uint8;
8818c391
TR
218}
219
220/* Instruction address checks and convertions. */
221
222static CORE_ADDR
223avr_make_iaddr (CORE_ADDR x)
224{
225 return ((x) | AVR_IMEM_START);
226}
227
228static int
229avr_iaddr_p (CORE_ADDR x)
230{
231 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
232}
233
234/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
235 devices are already up to 128KBytes of flash space.
236
237 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
238
239static CORE_ADDR
240avr_convert_iaddr_to_raw (CORE_ADDR x)
241{
242 return ((x) & 0xffffffff);
243}
244
245/* SRAM address checks and convertions. */
246
247static CORE_ADDR
248avr_make_saddr (CORE_ADDR x)
249{
250 return ((x) | AVR_SMEM_START);
251}
252
253static int
254avr_saddr_p (CORE_ADDR x)
255{
256 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
257}
258
259static CORE_ADDR
260avr_convert_saddr_to_raw (CORE_ADDR x)
261{
262 return ((x) & 0xffffffff);
263}
264
265/* EEPROM address checks and convertions. I don't know if these will ever
266 actually be used, but I've added them just the same. TRoth */
267
268/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
269 programs in the mega128. */
270
271/* static CORE_ADDR */
272/* avr_make_eaddr (CORE_ADDR x) */
273/* { */
274/* return ((x) | AVR_EMEM_START); */
275/* } */
276
277/* static int */
278/* avr_eaddr_p (CORE_ADDR x) */
279/* { */
280/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
281/* } */
282
283/* static CORE_ADDR */
284/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
285/* { */
286/* return ((x) & 0xffffffff); */
287/* } */
288
289/* Convert from address to pointer and vice-versa. */
290
291static void
292avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
293{
294 /* Is it a code address? */
295 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
296 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
297 {
2e5ff58c 298 store_unsigned_integer (buf, TYPE_LENGTH (type),
4ea2465e 299 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
300 }
301 else
302 {
303 /* Strip off any upper segment bits. */
2e5ff58c
TR
304 store_unsigned_integer (buf, TYPE_LENGTH (type),
305 avr_convert_saddr_to_raw (addr));
8818c391
TR
306 }
307}
308
309static CORE_ADDR
66140c26 310avr_pointer_to_address (struct type *type, const void *buf)
8818c391 311{
7c0b4a20 312 CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
8818c391 313
8818c391
TR
314 /* Is it a code address? */
315 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
316 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 317 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 318 return avr_make_iaddr (addr << 1);
8818c391
TR
319 else
320 return avr_make_saddr (addr);
321}
322
323static CORE_ADDR
324avr_read_pc (ptid_t ptid)
325{
326 ptid_t save_ptid;
8619218d 327 ULONGEST pc;
8818c391
TR
328 CORE_ADDR retval;
329
330 save_ptid = inferior_ptid;
331 inferior_ptid = ptid;
8619218d 332 regcache_cooked_read_unsigned (current_regcache, AVR_PC_REGNUM, &pc);
8818c391
TR
333 inferior_ptid = save_ptid;
334 retval = avr_make_iaddr (pc);
335 return retval;
336}
337
338static void
339avr_write_pc (CORE_ADDR val, ptid_t ptid)
340{
341 ptid_t save_ptid;
342
343 save_ptid = inferior_ptid;
344 inferior_ptid = ptid;
345 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
346 inferior_ptid = save_ptid;
347}
348
349static CORE_ADDR
350avr_read_sp (void)
351{
8619218d
TR
352 ULONGEST sp;
353
354 regcache_cooked_read_unsigned (current_regcache, AVR_SP_REGNUM, &sp);
355 return (avr_make_saddr (sp));
8818c391
TR
356}
357
4add8633
TR
358static int
359avr_scan_arg_moves (int vpc, unsigned char *prologue)
8818c391 360{
4add8633 361 unsigned short insn;
866b76ea 362
4add8633
TR
363 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
364 {
365 insn = EXTRACT_INSN (&prologue[vpc]);
366 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
367 continue;
368 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
369 continue;
370 else
371 break;
372 }
373
374 return vpc;
8818c391
TR
375}
376
4add8633 377/* Function: avr_scan_prologue
8818c391 378
4add8633 379 This function decodes an AVR function prologue to determine:
8818c391
TR
380 1) the size of the stack frame
381 2) which registers are saved on it
382 3) the offsets of saved regs
4add8633 383 This information is stored in the avr_unwind_cache structure.
8818c391 384
e3d8b004
TR
385 Some devices lack the sbiw instruction, so on those replace this:
386 sbiw r28, XX
387 with this:
388 subi r28,lo8(XX)
389 sbci r29,hi8(XX)
390
391 A typical AVR function prologue with a frame pointer might look like this:
392 push rXX ; saved regs
393 ...
394 push r28
395 push r29
396 in r28,__SP_L__
397 in r29,__SP_H__
398 sbiw r28,<LOCALS_SIZE>
399 in __tmp_reg__,__SREG__
8818c391 400 cli
e3d8b004 401 out __SP_H__,r29
72fab697
TR
402 out __SREG__,__tmp_reg__
403 out __SP_L__,r28
e3d8b004
TR
404
405 A typical AVR function prologue without a frame pointer might look like
406 this:
407 push rXX ; saved regs
408 ...
409
410 A main function prologue looks like this:
411 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
412 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
413 out __SP_H__,r29
414 out __SP_L__,r28
415
416 A signal handler prologue looks like this:
417 push __zero_reg__
418 push __tmp_reg__
419 in __tmp_reg__, __SREG__
420 push __tmp_reg__
421 clr __zero_reg__
422 push rXX ; save registers r18:r27, r30:r31
423 ...
424 push r28 ; save frame pointer
425 push r29
426 in r28, __SP_L__
427 in r29, __SP_H__
428 sbiw r28, <LOCALS_SIZE>
429 out __SP_H__, r29
430 out __SP_L__, r28
431
432 A interrupt handler prologue looks like this:
433 sei
434 push __zero_reg__
435 push __tmp_reg__
436 in __tmp_reg__, __SREG__
437 push __tmp_reg__
438 clr __zero_reg__
439 push rXX ; save registers r18:r27, r30:r31
440 ...
441 push r28 ; save frame pointer
442 push r29
443 in r28, __SP_L__
444 in r29, __SP_H__
445 sbiw r28, <LOCALS_SIZE>
446 cli
447 out __SP_H__, r29
448 sei
449 out __SP_L__, r28
450
451 A `-mcall-prologues' prologue looks like this (Note that the megas use a
452 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
453 32 bit insn and rjmp is a 16 bit insn):
454 ldi r26,lo8(<LOCALS_SIZE>)
455 ldi r27,hi8(<LOCALS_SIZE>)
456 ldi r30,pm_lo8(.L_foo_body)
457 ldi r31,pm_hi8(.L_foo_body)
458 rjmp __prologue_saves__+RRR
459 .L_foo_body: */
8818c391 460
4add8633
TR
461/* Not really part of a prologue, but still need to scan for it, is when a
462 function prologue moves values passed via registers as arguments to new
463 registers. In this case, all local variables live in registers, so there
464 may be some register saves. This is what it looks like:
465 movw rMM, rNN
466 ...
467
468 There could be multiple movw's. If the target doesn't have a movw insn, it
469 will use two mov insns. This could be done after any of the above prologue
470 types. */
471
472static CORE_ADDR
473avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info)
8818c391 474{
2e5ff58c
TR
475 int i;
476 unsigned short insn;
2e5ff58c 477 int scan_stage = 0;
8818c391 478 struct minimal_symbol *msymbol;
8818c391
TR
479 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
480 int vpc = 0;
481
4add8633
TR
482 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
483 reading in the bytes of the prologue. The problem is that the figuring
484 out where the end of the prologue is is a bit difficult. The old code
485 tried to do that, but failed quite often. */
486 read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE);
8818c391
TR
487
488 /* Scanning main()'s prologue
489 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
490 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
491 out __SP_H__,r29
492 out __SP_L__,r28 */
493
4add8633 494 if (1)
8818c391
TR
495 {
496 CORE_ADDR locals;
2e5ff58c
TR
497 unsigned char img[] = {
498 0xde, 0xbf, /* out __SP_H__,r29 */
499 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
500 };
501
8818c391
TR
502 insn = EXTRACT_INSN (&prologue[vpc]);
503 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
504 if ((insn & 0xf0f0) == 0xe0c0)
505 {
506 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
507 insn = EXTRACT_INSN (&prologue[vpc + 2]);
508 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
509 if ((insn & 0xf0f0) == 0xe0d0)
510 {
511 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
512 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
513 {
4add8633
TR
514 info->prologue_type = AVR_PROLOGUE_MAIN;
515 info->base = locals;
516 return pc + 4;
2e5ff58c
TR
517 }
518 }
519 }
8818c391 520 }
2e5ff58c 521
4add8633
TR
522 /* Scanning `-mcall-prologues' prologue
523 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 524
e3d8b004 525 while (1) /* Using a while to avoid many goto's */
8818c391
TR
526 {
527 int loc_size;
528 int body_addr;
529 unsigned num_pushes;
4add8633 530 int pc_offset = 0;
2e5ff58c 531
8818c391
TR
532 insn = EXTRACT_INSN (&prologue[vpc]);
533 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
534 if ((insn & 0xf0f0) != 0xe0a0)
535 break;
8818c391 536 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 537 pc_offset += 2;
2e5ff58c 538
8818c391
TR
539 insn = EXTRACT_INSN (&prologue[vpc + 2]);
540 /* ldi r27,<LOCALS_SIZE> / 256 */
541 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 542 break;
8818c391 543 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 544 pc_offset += 2;
2e5ff58c 545
8818c391
TR
546 insn = EXTRACT_INSN (&prologue[vpc + 4]);
547 /* ldi r30,pm_lo8(.L_foo_body) */
548 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 549 break;
8818c391 550 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 551 pc_offset += 2;
8818c391
TR
552
553 insn = EXTRACT_INSN (&prologue[vpc + 6]);
554 /* ldi r31,pm_hi8(.L_foo_body) */
555 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 556 break;
8818c391 557 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 558 pc_offset += 2;
8818c391 559
8818c391
TR
560 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
561 if (!msymbol)
2e5ff58c 562 break;
8818c391 563
8818c391
TR
564 insn = EXTRACT_INSN (&prologue[vpc + 8]);
565 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
566 if ((insn & 0xf000) == 0xc000)
567 {
568 /* Extract PC relative offset from RJMP */
569 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
570 /* Convert offset to byte addressable mode */
571 i *= 2;
572 /* Destination address */
4add8633 573 i += pc + 10;
e3d8b004 574
4add8633 575 if (body_addr != (pc + 10)/2)
e3d8b004 576 break;
4add8633
TR
577
578 pc_offset += 2;
e3d8b004 579 }
e3d8b004
TR
580 else if ((insn & 0xfe0e) == 0x940c)
581 {
582 /* Extract absolute PC address from JMP */
583 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
584 | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff));
585 /* Convert address to byte addressable mode */
586 i *= 2;
587
4add8633 588 if (body_addr != (pc + 12)/2)
e3d8b004 589 break;
4add8633
TR
590
591 pc_offset += 4;
e3d8b004
TR
592 }
593 else
594 break;
2e5ff58c 595
4add8633 596 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391
TR
597 Which is a pushes count in `-mcall-prologues' mode */
598 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
599
600 if (num_pushes > AVR_MAX_PUSHES)
4add8633
TR
601 {
602 fprintf_unfiltered (gdb_stderr, "Num pushes too large: %d\n",
603 num_pushes);
604 num_pushes = 0;
605 }
2e5ff58c 606
8818c391 607 if (num_pushes)
2e5ff58c
TR
608 {
609 int from;
4add8633
TR
610
611 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 612 if (num_pushes >= 2)
4add8633
TR
613 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
614
2e5ff58c
TR
615 i = 0;
616 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
617 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 618 info->saved_regs [from].addr = ++i;
2e5ff58c 619 }
4add8633
TR
620 info->size = loc_size + num_pushes;
621 info->prologue_type = AVR_PROLOGUE_CALL;
622
623 return pc + pc_offset;
8818c391
TR
624 }
625
4add8633
TR
626 /* Scan for the beginning of the prologue for an interrupt or signal
627 function. Note that we have to set the prologue type here since the
628 third stage of the prologue may not be present (e.g. no saved registered
629 or changing of the SP register). */
8818c391 630
4add8633 631 if (1)
8818c391 632 {
2e5ff58c
TR
633 unsigned char img[] = {
634 0x78, 0x94, /* sei */
635 0x1f, 0x92, /* push r1 */
636 0x0f, 0x92, /* push r0 */
637 0x0f, 0xb6, /* in r0,0x3f SREG */
638 0x0f, 0x92, /* push r0 */
639 0x11, 0x24 /* clr r1 */
8818c391
TR
640 };
641 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 642 {
4add8633 643 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 644 vpc += sizeof (img);
4add8633
TR
645 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
646 info->saved_regs[0].addr = 2;
647 info->saved_regs[1].addr = 1;
648 info->size += 3;
2e5ff58c 649 }
4add8633 650 else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 651 {
4add8633
TR
652 info->prologue_type = AVR_PROLOGUE_SIG;
653 vpc += sizeof (img) - 2;
654 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
655 info->saved_regs[0].addr = 2;
656 info->saved_regs[1].addr = 1;
657 info->size += 3;
2e5ff58c 658 }
8818c391
TR
659 }
660
661 /* First stage of the prologue scanning.
4add8633 662 Scan pushes (saved registers) */
8818c391 663
4add8633 664 for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2)
8818c391
TR
665 {
666 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
667 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
668 {
669 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
670 int regno = (insn & 0x1f0) >> 4;
671 info->size++;
672 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
673 scan_stage = 1;
674 }
8818c391 675 else
2e5ff58c 676 break;
8818c391
TR
677 }
678
4add8633
TR
679 if (vpc >= AVR_MAX_PROLOGUE_SIZE)
680 fprintf_unfiltered (gdb_stderr,
681 "Hit end of prologue while scanning pushes\n");
682
8818c391
TR
683 /* Second stage of the prologue scanning.
684 Scan:
685 in r28,__SP_L__
686 in r29,__SP_H__ */
687
4add8633 688 if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391 689 {
2e5ff58c
TR
690 unsigned char img[] = {
691 0xcd, 0xb7, /* in r28,__SP_L__ */
692 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
693 };
694 unsigned short insn1;
2e5ff58c 695
8818c391 696 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
697 {
698 vpc += 4;
2e5ff58c
TR
699 scan_stage = 2;
700 }
8818c391
TR
701 }
702
703 /* Third stage of the prologue scanning. (Really two stages)
704 Scan for:
705 sbiw r28,XX or subi r28,lo8(XX)
72fab697 706 sbci r29,hi8(XX)
8818c391
TR
707 in __tmp_reg__,__SREG__
708 cli
e3d8b004 709 out __SP_H__,r29
8818c391 710 out __SREG__,__tmp_reg__
e3d8b004 711 out __SP_L__,r28 */
8818c391 712
4add8633 713 if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE)
8818c391
TR
714 {
715 int locals_size = 0;
2e5ff58c
TR
716 unsigned char img[] = {
717 0x0f, 0xb6, /* in r0,0x3f */
718 0xf8, 0x94, /* cli */
e3d8b004 719 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 720 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 721 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 722 };
2e5ff58c 723 unsigned char img_sig[] = {
e3d8b004
TR
724 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
725 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 726 };
2e5ff58c
TR
727 unsigned char img_int[] = {
728 0xf8, 0x94, /* cli */
e3d8b004 729 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 730 0x78, 0x94, /* sei */
e3d8b004 731 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 732 };
2e5ff58c 733
8818c391
TR
734 insn = EXTRACT_INSN (&prologue[vpc]);
735 vpc += 2;
2e5ff58c
TR
736 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
737 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
738 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
739 {
740 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
741 insn = EXTRACT_INSN (&prologue[vpc]);
742 vpc += 2;
743 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
744 }
8818c391 745 else
4add8633
TR
746 return pc + vpc;
747
748 /* Scan the last part of the prologue. May not be present for interrupt
749 or signal handler functions, which is why we set the prologue type
750 when we saw the beginning of the prologue previously. */
751
752 if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
753 {
754 vpc += sizeof (img_sig);
755 }
756 else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
757 {
758 vpc += sizeof (img_int);
759 }
760 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
761 {
762 info->prologue_type = AVR_PROLOGUE_NORMAL;
763 vpc += sizeof (img);
764 }
765
766 info->size += locals_size;
767
768 return pc + avr_scan_arg_moves (vpc, prologue);
8818c391 769 }
4add8633
TR
770
771 /* If we got this far, we could not scan the prologue, so just return the pc
772 of the frame plus an adjustment for argument move insns. */
773
774 return pc + avr_scan_arg_moves (vpc, prologue);;
8818c391
TR
775}
776
4add8633
TR
777static CORE_ADDR
778avr_skip_prologue (CORE_ADDR pc)
779{
780 CORE_ADDR func_addr, func_end;
781 CORE_ADDR prologue_end = pc;
8818c391 782
4add8633 783 /* See what the symbol table says */
8818c391 784
4add8633
TR
785 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
786 {
787 struct symtab_and_line sal;
788 struct avr_unwind_cache info = {0};
789 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
2e5ff58c 790
4add8633 791 info.saved_regs = saved_regs;
8818c391 792
4add8633
TR
793 /* Need to run the prologue scanner to figure out if the function has a
794 prologue and possibly skip over moving arguments passed via registers
795 to other registers. */
2e5ff58c 796
4add8633 797 prologue_end = avr_scan_prologue (pc, &info);
8818c391 798
4add8633
TR
799 if (info.prologue_type != AVR_PROLOGUE_NONE)
800 {
801 sal = find_pc_line (func_addr, 0);
8818c391 802
4add8633
TR
803 if (sal.line != 0 && sal.end < func_end)
804 return sal.end;
805 }
806 }
2e5ff58c 807
4add8633
TR
808/* Either we didn't find the start of this function (nothing we can do),
809 or there's no line info, or the line after the prologue is after
810 the end of the function (there probably isn't a prologue). */
2e5ff58c 811
4add8633
TR
812 return prologue_end;
813}
8818c391 814
4add8633
TR
815/* Not all avr devices support the BREAK insn. Those that don't should treat
816 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
817 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 818
4add8633
TR
819static const unsigned char *
820avr_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
821{
822 static unsigned char avr_break_insn [] = { 0x98, 0x95 };
823 *lenptr = sizeof (avr_break_insn);
824 return avr_break_insn;
8818c391
TR
825}
826
4add8633
TR
827/* Given a return value in `regbuf' with a type `valtype',
828 extract and copy its value into `valbuf'.
829
830 Return values are always passed via registers r25:r24:... */
8818c391
TR
831
832static void
4add8633
TR
833avr_extract_return_value (struct type *type, struct regcache *regcache,
834 void *valbuf)
8818c391 835{
4add8633
TR
836 ULONGEST r24, r25;
837 ULONGEST c;
838 int len;
839 if (TYPE_LENGTH (type) == 1)
8818c391 840 {
4add8633
TR
841 regcache_cooked_read_unsigned (regcache, 24, &c);
842 store_unsigned_integer (valbuf, 1, c);
8818c391
TR
843 }
844 else
845 {
4add8633
TR
846 int i;
847 /* The MSB of the return value is always in r25, calculate which
848 register holds the LSB. */
849 int lsb_reg = 25 - TYPE_LENGTH (type) + 1;
8818c391 850
4add8633
TR
851 for (i=0; i< TYPE_LENGTH (type); i++)
852 {
853 regcache_cooked_read (regcache, lsb_reg + i,
854 (bfd_byte *) valbuf + i);
4add8633
TR
855 }
856 }
857}
8818c391 858
4add8633
TR
859static void
860avr_saved_regs_unwinder (struct frame_info *next_frame,
861 struct trad_frame_saved_reg *this_saved_regs,
862 int regnum, int *optimizedp,
863 enum lval_type *lvalp, CORE_ADDR *addrp,
864 int *realnump, void *bufferp)
865{
866 if (this_saved_regs[regnum].addr != 0)
867 {
868 *optimizedp = 0;
869 *lvalp = lval_memory;
870 *addrp = this_saved_regs[regnum].addr;
871 *realnump = -1;
872 if (bufferp != NULL)
873 {
874 /* Read the value in from memory. */
875
876 if (regnum == AVR_PC_REGNUM)
877 {
878 /* Reading the return PC from the PC register is slightly
879 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
880 but in reality, only two bytes (3 in upcoming mega256) are
881 stored on the stack.
882
883 Also, note that the value on the stack is an addr to a word
884 not a byte, so we will need to multiply it by two at some
885 point.
886
887 And to confuse matters even more, the return address stored
888 on the stack is in big endian byte order, even though most
889 everything else about the avr is little endian. Ick! */
890
891 /* FIXME: number of bytes read here will need updated for the
892 mega256 when it is available. */
893
894 ULONGEST pc;
895 unsigned char tmp;
896 unsigned char buf[2];
897
898 read_memory (this_saved_regs[regnum].addr, buf, 2);
899
900 /* Convert the PC read from memory as a big-endian to
901 little-endian order. */
902 tmp = buf[0];
903 buf[0] = buf[1];
904 buf[1] = tmp;
905
906 pc = (extract_unsigned_integer (buf, 2) * 2);
907 store_unsigned_integer (bufferp,
908 register_size (current_gdbarch, regnum),
909 pc);
910 }
911 else
912 {
913 read_memory (this_saved_regs[regnum].addr, bufferp,
914 register_size (current_gdbarch, regnum));
915 }
916 }
917
918 return;
8818c391 919 }
4add8633
TR
920
921 /* No luck, assume this and the next frame have the same register
922 value. If a value is needed, pass the request on down the chain;
923 otherwise just return an indication that the value is in the same
924 register as the next frame. */
925 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
926 realnump, bufferp);
8818c391
TR
927}
928
4add8633
TR
929/* Put here the code to store, into fi->saved_regs, the addresses of
930 the saved registers of frame described by FRAME_INFO. This
931 includes special registers such as pc and fp saved in special ways
932 in the stack frame. sp is even more special: the address we return
933 for it IS the sp for the next frame. */
8818c391 934
4add8633
TR
935struct avr_unwind_cache *
936avr_frame_unwind_cache (struct frame_info *next_frame,
937 void **this_prologue_cache)
8818c391 938{
4add8633
TR
939 CORE_ADDR pc;
940 ULONGEST prev_sp;
941 ULONGEST this_base;
942 struct avr_unwind_cache *info;
943 int i;
944
945 if ((*this_prologue_cache))
946 return (*this_prologue_cache);
947
948 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
949 (*this_prologue_cache) = info;
950 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
951
952 info->size = 0;
953 info->prologue_type = AVR_PROLOGUE_NONE;
954
955 pc = frame_func_unwind (next_frame);
956
957 if ((pc > 0) && (pc < frame_pc_unwind (next_frame)))
958 avr_scan_prologue (pc, info);
959
960 if (info->prologue_type != AVR_PROLOGUE_NONE)
961 {
962 ULONGEST high_base; /* High byte of FP */
963
964 /* The SP was moved to the FP. This indicates that a new frame
965 was created. Get THIS frame's FP value by unwinding it from
966 the next frame. */
967 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM, &this_base);
968 frame_unwind_unsigned_register (next_frame, AVR_FP_REGNUM+1, &high_base);
969 this_base += (high_base << 8);
970
971 /* The FP points at the last saved register. Adjust the FP back
972 to before the first saved register giving the SP. */
973 prev_sp = this_base + info->size;
974 }
8818c391 975 else
4add8633
TR
976 {
977 /* Assume that the FP is this frame's SP but with that pushed
978 stack space added back. */
979 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &this_base);
980 prev_sp = this_base + info->size;
981 }
982
983 /* Add 1 here to adjust for the post-decrement nature of the push
984 instruction.*/
985 info->prev_sp = avr_make_saddr (prev_sp+1);
986
987 info->base = avr_make_saddr (this_base);
988
989 /* Adjust all the saved registers so that they contain addresses and not
990 offsets. We need to add one to the addresses since push ops are post
991 decrement on the avr. */
992 for (i = 0; i < NUM_REGS - 1; i++)
993 if (info->saved_regs[i].addr)
994 {
995 info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr);
996 }
997
998 /* Except for the main and startup code, the return PC is always saved on
999 the stack and is at the base of the frame. */
1000
1001 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1002 {
1003 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1004 }
1005
1006 return info;
8818c391
TR
1007}
1008
1009static CORE_ADDR
4add8633 1010avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1011{
4add8633
TR
1012 ULONGEST pc;
1013
1014 frame_unwind_unsigned_register (next_frame, AVR_PC_REGNUM, &pc);
1015
1016 return avr_make_iaddr (pc);
8818c391
TR
1017}
1018
4add8633
TR
1019/* Given a GDB frame, determine the address of the calling function's
1020 frame. This will be used to create a new GDB frame struct. */
8818c391 1021
4add8633
TR
1022static void
1023avr_frame_this_id (struct frame_info *next_frame,
1024 void **this_prologue_cache,
1025 struct frame_id *this_id)
8818c391 1026{
4add8633
TR
1027 struct avr_unwind_cache *info
1028 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
1029 CORE_ADDR base;
1030 CORE_ADDR func;
1031 struct frame_id id;
1032
1033 /* The FUNC is easy. */
1034 func = frame_func_unwind (next_frame);
1035
1036 /* This is meant to halt the backtrace at "_start". Make sure we
1037 don't halt it at a generic dummy frame. */
1038 if (inside_entry_file (func))
1039 return;
1040
1041 /* Hopefully the prologue analysis either correctly determined the
1042 frame's base (which is the SP from the previous frame), or set
1043 that base to "NULL". */
1044 base = info->prev_sp;
1045 if (base == 0)
1046 return;
1047
1048 id = frame_id_build (base, func);
1049
1050 /* Check that we're not going round in circles with the same frame
1051 ID (but avoid applying the test to sentinel frames which do go
1052 round in circles). Can't use frame_id_eq() as that doesn't yet
1053 compare the frame's PC value. */
1054 if (frame_relative_level (next_frame) >= 0
1055 && get_frame_type (next_frame) != DUMMY_FRAME
1056 && frame_id_eq (get_frame_id (next_frame), id))
1057 return;
1058
1059 (*this_id) = id;
8818c391
TR
1060}
1061
4add8633
TR
1062static void
1063avr_frame_prev_register (struct frame_info *next_frame,
1064 void **this_prologue_cache,
1065 int regnum, int *optimizedp,
1066 enum lval_type *lvalp, CORE_ADDR *addrp,
1067 int *realnump, void *bufferp)
8818c391 1068{
4add8633
TR
1069 struct avr_unwind_cache *info
1070 = avr_frame_unwind_cache (next_frame, this_prologue_cache);
8818c391 1071
4add8633
TR
1072 avr_saved_regs_unwinder (next_frame, info->saved_regs, regnum, optimizedp,
1073 lvalp, addrp, realnump, bufferp);
1074}
8818c391 1075
4add8633
TR
1076static const struct frame_unwind avr_frame_unwind = {
1077 NORMAL_FRAME,
1078 avr_frame_this_id,
1079 avr_frame_prev_register
1080};
1081
1082const struct frame_unwind *
1083avr_frame_p (CORE_ADDR pc)
1084{
1085 return &avr_frame_unwind;
8818c391
TR
1086}
1087
1088static CORE_ADDR
4add8633 1089avr_frame_base_address (struct frame_info *next_frame, void **this_cache)
8818c391 1090{
4add8633
TR
1091 struct avr_unwind_cache *info
1092 = avr_frame_unwind_cache (next_frame, this_cache);
8818c391 1093
4add8633
TR
1094 return info->base;
1095}
8818c391 1096
4add8633
TR
1097static const struct frame_base avr_frame_base = {
1098 &avr_frame_unwind,
1099 avr_frame_base_address,
1100 avr_frame_base_address,
1101 avr_frame_base_address
1102};
ced15480 1103
4add8633
TR
1104/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1105 dummy frame. The frame ID's base needs to match the TOS value
1106 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1107 breakpoint. */
8818c391 1108
4add8633
TR
1109static struct frame_id
1110avr_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1111{
1112 ULONGEST base;
8818c391 1113
4add8633
TR
1114 frame_unwind_unsigned_register (next_frame, AVR_SP_REGNUM, &base);
1115 return frame_id_build (avr_make_saddr (base), frame_pc_unwind (next_frame));
8818c391
TR
1116}
1117
4add8633
TR
1118/* When arguments must be pushed onto the stack, they go on in reverse
1119 order. The below implements a FILO (stack) to do this. */
8818c391 1120
4add8633
TR
1121struct stack_item
1122{
1123 int len;
1124 struct stack_item *prev;
1125 void *data;
1126};
8818c391 1127
4add8633
TR
1128static struct stack_item *push_stack_item (struct stack_item *prev,
1129 void *contents, int len);
1130static struct stack_item *
1131push_stack_item (struct stack_item *prev, void *contents, int len)
8818c391 1132{
4add8633
TR
1133 struct stack_item *si;
1134 si = xmalloc (sizeof (struct stack_item));
1135 si->data = xmalloc (len);
1136 si->len = len;
1137 si->prev = prev;
1138 memcpy (si->data, contents, len);
1139 return si;
8818c391
TR
1140}
1141
4add8633
TR
1142static struct stack_item *pop_stack_item (struct stack_item *si);
1143static struct stack_item *
1144pop_stack_item (struct stack_item *si)
8818c391 1145{
4add8633
TR
1146 struct stack_item *dead = si;
1147 si = si->prev;
1148 xfree (dead->data);
1149 xfree (dead);
1150 return si;
8818c391
TR
1151}
1152
8818c391
TR
1153/* Setup the function arguments for calling a function in the inferior.
1154
1155 On the AVR architecture, there are 18 registers (R25 to R8) which are
1156 dedicated for passing function arguments. Up to the first 18 arguments
1157 (depending on size) may go into these registers. The rest go on the stack.
1158
4add8633
TR
1159 All arguments are aligned to start in even-numbered registers (odd-sized
1160 arguments, including char, have one free register above them). For example,
1161 an int in arg1 and a char in arg2 would be passed as such:
1162
1163 arg1 -> r25:r24
1164 arg2 -> r22
1165
1166 Arguments that are larger than 2 bytes will be split between two or more
1167 registers as available, but will NOT be split between a register and the
1168 stack. Arguments that go onto the stack are pushed last arg first (this is
1169 similar to the d10v). */
1170
1171/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1172 inaccurate.
8818c391
TR
1173
1174 An exceptional case exists for struct arguments (and possibly other
1175 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1176 not a multiple of WORDSIZE bytes. In this case the argument is never split
1177 between the registers and the stack, but instead is copied in its entirety
1178 onto the stack, AND also copied into as many registers as there is room
1179 for. In other words, space in registers permitting, two copies of the same
1180 argument are passed in. As far as I can tell, only the one on the stack is
1181 used, although that may be a function of the level of compiler
1182 optimization. I suspect this is a compiler bug. Arguments of these odd
1183 sizes are left-justified within the word (as opposed to arguments smaller
1184 than WORDSIZE bytes, which are right-justified).
1185
1186 If the function is to return an aggregate type such as a struct, the caller
1187 must allocate space into which the callee will copy the return value. In
1188 this case, a pointer to the return value location is passed into the callee
1189 in register R0, which displaces one of the other arguments passed in via
1190 registers R0 to R2. */
1191
1192static CORE_ADDR
4add8633
TR
1193avr_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1194 struct regcache *regcache, CORE_ADDR bp_addr,
1195 int nargs, struct value **args, CORE_ADDR sp,
1196 int struct_return, CORE_ADDR struct_addr)
8818c391 1197{
4add8633
TR
1198 int i;
1199 unsigned char buf[2];
1200 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1201 int regnum = AVR_ARGN_REGNUM;
1202 struct stack_item *si = NULL;
8818c391 1203
8818c391 1204#if 0
4add8633
TR
1205 /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */
1206 if (struct_return)
8818c391 1207 {
4add8633
TR
1208 fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr);
1209 write_register (argreg--, struct_addr & 0xff);
1210 write_register (argreg--, (struct_addr >>8) & 0xff);
8818c391 1211 }
4add8633 1212#endif
8818c391 1213
4add8633 1214 for (i = 0; i < nargs; i++)
8818c391 1215 {
4add8633
TR
1216 int last_regnum;
1217 int j;
1218 struct value *arg = args[i];
1219 struct type *type = check_typedef (VALUE_TYPE (arg));
1220 char *contents = VALUE_CONTENTS (arg);
1221 int len = TYPE_LENGTH (type);
1222
1223 /* Calculate the potential last register needed. */
1224 last_regnum = regnum - (len + (len & 1));
1225
1226 /* If there are registers available, use them. Once we start putting
1227 stuff on the stack, all subsequent args go on stack. */
1228 if ((si == NULL) && (last_regnum >= 8))
1229 {
1230 ULONGEST val;
1231
1232 /* Skip a register for odd length args. */
1233 if (len & 1)
1234 regnum--;
1235
1236 val = extract_unsigned_integer (contents, len);
1237 for (j=0; j<len; j++)
1238 {
1239 regcache_cooked_write_unsigned (regcache, regnum--,
1240 val >> (8*(len-j-1)));
1241 }
1242 }
1243 /* No registers available, push the args onto the stack. */
1244 else
1245 {
1246 /* From here on, we don't care about regnum. */
1247 si = push_stack_item (si, contents, len);
1248 }
8818c391 1249 }
909cd28e 1250
4add8633
TR
1251 /* Push args onto the stack. */
1252 while (si)
1253 {
1254 sp -= si->len;
1255 /* Add 1 to sp here to account for post decr nature of pushes. */
1256 write_memory (sp+1, si->data, si->len);
1257 si = pop_stack_item (si);
1258 }
3605c34a 1259
4add8633
TR
1260 /* Set the return address. For the avr, the return address is the BP_ADDR.
1261 Need to push the return address onto the stack noting that it needs to be
1262 in big-endian order on the stack. */
1263 buf[0] = (return_pc >> 8) & 0xff;
1264 buf[1] = return_pc & 0xff;
3605c34a 1265
4add8633
TR
1266 sp -= 2;
1267 write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */
3605c34a 1268
4add8633
TR
1269 /* Finally, update the SP register. */
1270 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1271 avr_convert_saddr_to_raw (sp));
3605c34a 1272
4add8633 1273 return sp;
3605c34a
TR
1274}
1275
8818c391
TR
1276/* Initialize the gdbarch structure for the AVR's. */
1277
1278static struct gdbarch *
2e5ff58c
TR
1279avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1280{
2e5ff58c
TR
1281 struct gdbarch *gdbarch;
1282 struct gdbarch_tdep *tdep;
8818c391
TR
1283
1284 /* Find a candidate among the list of pre-declared architectures. */
1285 arches = gdbarch_list_lookup_by_info (arches, &info);
1286 if (arches != NULL)
1287 return arches->gdbarch;
1288
1289 /* None found, create a new architecture from the information provided. */
1290 tdep = XMALLOC (struct gdbarch_tdep);
1291 gdbarch = gdbarch_alloc (&info, tdep);
1292
1293 /* If we ever need to differentiate the device types, do it here. */
1294 switch (info.bfd_arch_info->mach)
1295 {
1296 case bfd_mach_avr1:
1297 case bfd_mach_avr2:
1298 case bfd_mach_avr3:
1299 case bfd_mach_avr4:
1300 case bfd_mach_avr5:
1301 break;
1302 }
1303
1304 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1305 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1306 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1307 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1308 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1309 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1310
1311 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1312 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1313 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1314
1315 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1316 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1317 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1318
1319 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1320 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391 1321 set_gdbarch_read_sp (gdbarch, avr_read_sp);
8818c391
TR
1322
1323 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1324
1325 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1326 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1327
1328 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1329 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1330
3605c34a 1331 set_gdbarch_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1332 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1333
4add8633 1334 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391
TR
1335
1336 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1337 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8818c391 1338
8818c391 1339 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
8818c391 1340
8818c391 1341 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1342 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1343
1344 set_gdbarch_decr_pc_after_break (gdbarch, 0);
909cd28e 1345 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391
TR
1346
1347 set_gdbarch_function_start_offset (gdbarch, 0);
98be1e77 1348
8818c391 1349 set_gdbarch_frame_args_skip (gdbarch, 0);
4add8633
TR
1350 set_gdbarch_frameless_function_invocation (gdbarch,
1351 frameless_look_for_prologue);
4add8633
TR
1352
1353 frame_unwind_append_predicate (gdbarch, avr_frame_p);
1354 frame_base_set_default (gdbarch, &avr_frame_base);
1355
1356 set_gdbarch_unwind_dummy_id (gdbarch, avr_unwind_dummy_id);
1357
1358 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
8818c391 1359
8818c391
TR
1360 return gdbarch;
1361}
1362
1363/* Send a query request to the avr remote target asking for values of the io
1364 registers. If args parameter is not NULL, then the user has requested info
1365 on a specific io register [This still needs implemented and is ignored for
1366 now]. The query string should be one of these forms:
1367
1368 "Ravr.io_reg" -> reply is "NN" number of io registers
1369
1370 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1371 registers to be read. The reply should be "<NAME>,VV;" for each io register
1372 where, <NAME> is a string, and VV is the hex value of the register.
1373
1374 All io registers are 8-bit. */
1375
1376static void
1377avr_io_reg_read_command (char *args, int from_tty)
1378{
2e5ff58c
TR
1379 int bufsiz = 0;
1380 char buf[400];
1381 char query[400];
1382 char *p;
1383 unsigned int nreg = 0;
1384 unsigned int val;
1385 int i, j, k, step;
8818c391 1386
2e5ff58c 1387 if (!current_target.to_query)
8818c391 1388 {
2e5ff58c 1389 fprintf_unfiltered (gdb_stderr,
98be1e77
TR
1390 "ERR: info io_registers NOT supported by current "
1391 "target\n");
8818c391
TR
1392 return;
1393 }
1394
1395 /* Just get the maximum buffer size. */
1396 target_query ((int) 'R', 0, 0, &bufsiz);
2e5ff58c
TR
1397 if (bufsiz > sizeof (buf))
1398 bufsiz = sizeof (buf);
8818c391
TR
1399
1400 /* Find out how many io registers the target has. */
1401 strcpy (query, "avr.io_reg");
2e5ff58c 1402 target_query ((int) 'R', query, buf, &bufsiz);
8818c391
TR
1403
1404 if (strncmp (buf, "", bufsiz) == 0)
1405 {
2e5ff58c
TR
1406 fprintf_unfiltered (gdb_stderr,
1407 "info io_registers NOT supported by target\n");
8818c391
TR
1408 return;
1409 }
1410
2e5ff58c 1411 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1412 {
2e5ff58c
TR
1413 fprintf_unfiltered (gdb_stderr,
1414 "Error fetching number of io registers\n");
8818c391
TR
1415 return;
1416 }
1417
2e5ff58c 1418 reinitialize_more_filter ();
8818c391
TR
1419
1420 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1421
1422 /* only fetch up to 8 registers at a time to keep the buffer small */
1423 step = 8;
1424
2e5ff58c 1425 for (i = 0; i < nreg; i += step)
8818c391 1426 {
91ccbfc1
TR
1427 /* how many registers this round? */
1428 j = step;
1429 if ((i+j) >= nreg)
1430 j = nreg - i; /* last block is less than 8 registers */
8818c391 1431
2e5ff58c 1432 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8818c391
TR
1433 target_query ((int) 'R', query, buf, &bufsiz);
1434
1435 p = buf;
2e5ff58c
TR
1436 for (k = i; k < (i + j); k++)
1437 {
1438 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1439 {
1440 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1441 while ((*p != ';') && (*p != '\0'))
1442 p++;
1443 p++; /* skip over ';' */
1444 if (*p == '\0')
1445 break;
1446 }
1447 }
8818c391
TR
1448 }
1449}
1450
a78f21af
AC
1451extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1452
8818c391
TR
1453void
1454_initialize_avr_tdep (void)
1455{
1456 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1457
1458 /* Add a new command to allow the user to query the avr remote target for
1459 the values of the io space registers in a saner way than just using
1460 `x/NNNb ADDR`. */
1461
1462 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1463 io_registers' to signify it is not available on other platforms. */
1464
1465 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1466 "query remote avr target for io space register values", &infolist);
8818c391 1467}
This page took 0.243957 seconds and 4 git commands to generate.