Fix paginate-*.exp races
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391 1/* Target-dependent code for Atmel AVR, for GDB.
0fd88904 2
ecd75fc8 3 Copyright (C) 1996-2014 Free Software Foundation, Inc.
8818c391
TR
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
8818c391
TR
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8818c391 19
de18ac1f 20/* Contributed by Theodore A. Roth, troth@openavr.org */
8818c391
TR
21
22/* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25#include "defs.h"
4add8633
TR
26#include "frame.h"
27#include "frame-unwind.h"
28#include "frame-base.h"
29#include "trad-frame.h"
8818c391
TR
30#include "gdbcmd.h"
31#include "gdbcore.h"
e6bb342a 32#include "gdbtypes.h"
8818c391
TR
33#include "inferior.h"
34#include "symfile.h"
35#include "arch-utils.h"
36#include "regcache.h"
0e9f083f 37#include <string.h>
a89aa300 38#include "dis-asm.h"
77e371c0 39#include "objfiles.h"
8818c391
TR
40
41/* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
0963b4bd
MS
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
8818c391
TR
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
0963b4bd
MS
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
8818c391
TR
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
0963b4bd 62 All three memory spaces have physical addresses beginning at 0x0. In
8818c391
TR
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
0963b4bd
MS
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
8818c391 71
8818c391
TR
72/* Constants: prefixed with AVR_ to avoid name space clashes */
73
487d9753
PL
74/* Address space flags */
75
76/* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79#define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80#define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
8818c391 84enum
2e5ff58c
TR
85{
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
7d2552b4
TG
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
2e5ff58c
TR
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
4add8633 105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
2e5ff58c 106
0963b4bd 107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
2e5ff58c
TR
108 AVR_MAX_PUSHES = 18,
109
0963b4bd 110 /* Number of the last pushed register. r17 for current avr-gcc */
2e5ff58c
TR
111 AVR_LAST_PUSHED_REGNUM = 17,
112
4add8633
TR
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
115
116 AVR_RET1_REGNUM = 24, /* Single byte return value */
117 AVR_RETN_REGNUM = 25, /* Multi byte return value */
118
2e5ff58c 119 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
0963b4bd 120 bits? Do these have to match the bfd vma values? It sure would make
2e5ff58c
TR
121 things easier in the future if they didn't need to match.
122
123 Note: I chose these values so as to be consistent with bfd vma
124 addresses.
125
126 TRoth/2002-04-08: There is already a conflict with very large programs
0963b4bd 127 in the mega128. The mega128 has 128K instruction bytes (64K words),
2e5ff58c
TR
128 thus the Most Significant Bit is 0x10000 which gets masked off my
129 AVR_MEM_MASK.
130
131 The problem manifests itself when trying to set a breakpoint in a
132 function which resides in the upper half of the instruction space and
133 thus requires a 17-bit address.
134
135 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
0963b4bd 136 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
2e5ff58c
TR
137 but could be for some remote targets by just adding the correct offset
138 to the address and letting the remote target handle the low-level
0963b4bd 139 details of actually accessing the eeprom. */
2e5ff58c
TR
140
141 AVR_IMEM_START = 0x00000000, /* INSN memory */
142 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 143#if 1
2e5ff58c
TR
144 /* No eeprom mask defined */
145 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 146#else
2e5ff58c
TR
147 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
148 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 149#endif
2e5ff58c 150};
8818c391 151
4add8633
TR
152/* Prologue types:
153
154 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
155 causes the generation of the CALL type prologues). */
156
157enum {
158 AVR_PROLOGUE_NONE, /* No prologue */
159 AVR_PROLOGUE_NORMAL,
160 AVR_PROLOGUE_CALL, /* -mcall-prologues */
161 AVR_PROLOGUE_MAIN,
162 AVR_PROLOGUE_INTR, /* interrupt handler */
163 AVR_PROLOGUE_SIG, /* signal handler */
164};
165
8818c391
TR
166/* Any function with a frame looks like this
167 ....... <-SP POINTS HERE
168 LOCALS1 <-FP POINTS HERE
169 LOCALS0
170 SAVED FP
171 SAVED R3
172 SAVED R2
173 RET PC
174 FIRST ARG
175 SECOND ARG */
176
4add8633 177struct avr_unwind_cache
2e5ff58c 178{
4add8633
TR
179 /* The previous frame's inner most stack address. Used as this
180 frame ID's stack_addr. */
181 CORE_ADDR prev_sp;
182 /* The frame's base, optionally used by the high-level debug info. */
183 CORE_ADDR base;
184 int size;
185 int prologue_type;
186 /* Table indicating the location of each and every register. */
187 struct trad_frame_saved_reg *saved_regs;
2e5ff58c 188};
8818c391
TR
189
190struct gdbarch_tdep
2e5ff58c 191{
4e99ad69 192 /* Number of bytes stored to the stack by call instructions.
9c97a070 193 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
4e99ad69 194 int call_length;
7d2552b4
TG
195
196 /* Type for void. */
197 struct type *void_type;
198 /* Type for a function returning void. */
199 struct type *func_void_type;
200 /* Type for a pointer to a function. Used for the type of PC. */
201 struct type *pc_type;
2e5ff58c 202};
8818c391 203
0963b4bd 204/* Lookup the name of a register given it's number. */
8818c391 205
fa88f677 206static const char *
d93859e2 207avr_register_name (struct gdbarch *gdbarch, int regnum)
8818c391 208{
4e99ad69 209 static const char * const register_names[] = {
2e5ff58c
TR
210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
211 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
212 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
213 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
7d2552b4
TG
214 "SREG", "SP", "PC2",
215 "pc"
8818c391
TR
216 };
217 if (regnum < 0)
218 return NULL;
219 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
220 return NULL;
221 return register_names[regnum];
222}
223
8818c391
TR
224/* Return the GDB type object for the "standard" data type
225 of data in register N. */
226
227static struct type *
866b76ea 228avr_register_type (struct gdbarch *gdbarch, int reg_nr)
8818c391 229{
866b76ea 230 if (reg_nr == AVR_PC_REGNUM)
df4df182 231 return builtin_type (gdbarch)->builtin_uint32;
7d2552b4
TG
232 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
233 return gdbarch_tdep (gdbarch)->pc_type;
866b76ea 234 if (reg_nr == AVR_SP_REGNUM)
0dfff4cb 235 return builtin_type (gdbarch)->builtin_data_ptr;
7d2552b4 236 return builtin_type (gdbarch)->builtin_uint8;
8818c391
TR
237}
238
0963b4bd 239/* Instruction address checks and convertions. */
8818c391
TR
240
241static CORE_ADDR
242avr_make_iaddr (CORE_ADDR x)
243{
244 return ((x) | AVR_IMEM_START);
245}
246
0963b4bd 247/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
8818c391
TR
248 devices are already up to 128KBytes of flash space.
249
0963b4bd 250 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
8818c391
TR
251
252static CORE_ADDR
253avr_convert_iaddr_to_raw (CORE_ADDR x)
254{
255 return ((x) & 0xffffffff);
256}
257
0963b4bd 258/* SRAM address checks and convertions. */
8818c391
TR
259
260static CORE_ADDR
261avr_make_saddr (CORE_ADDR x)
262{
ee143e81
TG
263 /* Return 0 for NULL. */
264 if (x == 0)
265 return 0;
266
8818c391
TR
267 return ((x) | AVR_SMEM_START);
268}
269
8818c391
TR
270static CORE_ADDR
271avr_convert_saddr_to_raw (CORE_ADDR x)
272{
273 return ((x) & 0xffffffff);
274}
275
0963b4bd
MS
276/* EEPROM address checks and convertions. I don't know if these will ever
277 actually be used, but I've added them just the same. TRoth */
8818c391
TR
278
279/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
0963b4bd 280 programs in the mega128. */
8818c391
TR
281
282/* static CORE_ADDR */
283/* avr_make_eaddr (CORE_ADDR x) */
284/* { */
285/* return ((x) | AVR_EMEM_START); */
286/* } */
287
288/* static int */
289/* avr_eaddr_p (CORE_ADDR x) */
290/* { */
291/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
292/* } */
293
294/* static CORE_ADDR */
295/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
296/* { */
297/* return ((x) & 0xffffffff); */
298/* } */
299
0963b4bd 300/* Convert from address to pointer and vice-versa. */
8818c391
TR
301
302static void
9898f801
UW
303avr_address_to_pointer (struct gdbarch *gdbarch,
304 struct type *type, gdb_byte *buf, CORE_ADDR addr)
8818c391 305{
e17a4113
UW
306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
307
487d9753
PL
308 /* Is it a data address in flash? */
309 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
310 {
311 /* A data address in flash is always byte addressed. */
312 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
313 avr_convert_iaddr_to_raw (addr));
314 }
8818c391 315 /* Is it a code address? */
487d9753
PL
316 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
317 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
8818c391 318 {
487d9753
PL
319 /* A code address, either a function pointer or the program counter, is
320 word (16 bits) addressed. */
e17a4113 321 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
4ea2465e 322 avr_convert_iaddr_to_raw (addr >> 1));
8818c391
TR
323 }
324 else
325 {
326 /* Strip off any upper segment bits. */
e17a4113 327 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
2e5ff58c 328 avr_convert_saddr_to_raw (addr));
8818c391
TR
329 }
330}
331
332static CORE_ADDR
9898f801
UW
333avr_pointer_to_address (struct gdbarch *gdbarch,
334 struct type *type, const gdb_byte *buf)
8818c391 335{
e17a4113
UW
336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
337 CORE_ADDR addr
338 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
8818c391 339
487d9753
PL
340 /* Is it a data address in flash? */
341 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
342 return avr_make_iaddr (addr);
8818c391 343 /* Is it a code address? */
487d9753
PL
344 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
345 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
346 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
4ea2465e 347 return avr_make_iaddr (addr << 1);
8818c391
TR
348 else
349 return avr_make_saddr (addr);
350}
351
8a1d23b2
TG
352static CORE_ADDR
353avr_integer_to_address (struct gdbarch *gdbarch,
354 struct type *type, const gdb_byte *buf)
355{
356 ULONGEST addr = unpack_long (type, buf);
357
358 return avr_make_saddr (addr);
359}
360
8818c391 361static CORE_ADDR
61a1198a 362avr_read_pc (struct regcache *regcache)
8818c391 363{
8619218d 364 ULONGEST pc;
61a1198a
UW
365 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
366 return avr_make_iaddr (pc);
8818c391
TR
367}
368
369static void
61a1198a 370avr_write_pc (struct regcache *regcache, CORE_ADDR val)
8818c391 371{
61a1198a 372 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
7d2552b4
TG
373 avr_convert_iaddr_to_raw (val));
374}
375
05d1431c 376static enum register_status
7d2552b4
TG
377avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
378 int regnum, gdb_byte *buf)
379{
380 ULONGEST val;
05d1431c 381 enum register_status status;
7d2552b4
TG
382
383 switch (regnum)
384 {
385 case AVR_PSEUDO_PC_REGNUM:
05d1431c
PA
386 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
387 if (status != REG_VALID)
388 return status;
7d2552b4
TG
389 val >>= 1;
390 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
05d1431c 391 return status;
7d2552b4
TG
392 default:
393 internal_error (__FILE__, __LINE__, _("invalid regnum"));
394 }
395}
396
397static void
398avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
399 int regnum, const gdb_byte *buf)
400{
401 ULONGEST val;
402
403 switch (regnum)
404 {
405 case AVR_PSEUDO_PC_REGNUM:
406 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
407 val <<= 1;
408 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
409 break;
410 default:
411 internal_error (__FILE__, __LINE__, _("invalid regnum"));
412 }
8818c391
TR
413}
414
4add8633 415/* Function: avr_scan_prologue
8818c391 416
4add8633 417 This function decodes an AVR function prologue to determine:
8818c391
TR
418 1) the size of the stack frame
419 2) which registers are saved on it
420 3) the offsets of saved regs
4add8633 421 This information is stored in the avr_unwind_cache structure.
8818c391 422
e3d8b004
TR
423 Some devices lack the sbiw instruction, so on those replace this:
424 sbiw r28, XX
425 with this:
426 subi r28,lo8(XX)
427 sbci r29,hi8(XX)
428
429 A typical AVR function prologue with a frame pointer might look like this:
430 push rXX ; saved regs
431 ...
432 push r28
433 push r29
434 in r28,__SP_L__
435 in r29,__SP_H__
436 sbiw r28,<LOCALS_SIZE>
437 in __tmp_reg__,__SREG__
8818c391 438 cli
e3d8b004 439 out __SP_H__,r29
72fab697
TR
440 out __SREG__,__tmp_reg__
441 out __SP_L__,r28
e3d8b004
TR
442
443 A typical AVR function prologue without a frame pointer might look like
444 this:
445 push rXX ; saved regs
446 ...
447
448 A main function prologue looks like this:
449 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
450 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
451 out __SP_H__,r29
452 out __SP_L__,r28
453
454 A signal handler prologue looks like this:
455 push __zero_reg__
456 push __tmp_reg__
457 in __tmp_reg__, __SREG__
458 push __tmp_reg__
459 clr __zero_reg__
460 push rXX ; save registers r18:r27, r30:r31
461 ...
462 push r28 ; save frame pointer
463 push r29
464 in r28, __SP_L__
465 in r29, __SP_H__
466 sbiw r28, <LOCALS_SIZE>
467 out __SP_H__, r29
468 out __SP_L__, r28
469
470 A interrupt handler prologue looks like this:
471 sei
472 push __zero_reg__
473 push __tmp_reg__
474 in __tmp_reg__, __SREG__
475 push __tmp_reg__
476 clr __zero_reg__
477 push rXX ; save registers r18:r27, r30:r31
478 ...
479 push r28 ; save frame pointer
480 push r29
481 in r28, __SP_L__
482 in r29, __SP_H__
483 sbiw r28, <LOCALS_SIZE>
484 cli
485 out __SP_H__, r29
486 sei
487 out __SP_L__, r28
488
489 A `-mcall-prologues' prologue looks like this (Note that the megas use a
490 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
491 32 bit insn and rjmp is a 16 bit insn):
492 ldi r26,lo8(<LOCALS_SIZE>)
493 ldi r27,hi8(<LOCALS_SIZE>)
494 ldi r30,pm_lo8(.L_foo_body)
495 ldi r31,pm_hi8(.L_foo_body)
496 rjmp __prologue_saves__+RRR
497 .L_foo_body: */
8818c391 498
4add8633
TR
499/* Not really part of a prologue, but still need to scan for it, is when a
500 function prologue moves values passed via registers as arguments to new
0963b4bd
MS
501 registers. In this case, all local variables live in registers, so there
502 may be some register saves. This is what it looks like:
4add8633
TR
503 movw rMM, rNN
504 ...
505
0963b4bd
MS
506 There could be multiple movw's. If the target doesn't have a movw insn, it
507 will use two mov insns. This could be done after any of the above prologue
4add8633
TR
508 types. */
509
510static CORE_ADDR
e17a4113 511avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
4e99ad69 512 struct avr_unwind_cache *info)
8818c391 513{
e17a4113 514 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e5ff58c
TR
515 int i;
516 unsigned short insn;
2e5ff58c 517 int scan_stage = 0;
3b7344d5 518 struct bound_minimal_symbol msymbol;
8818c391
TR
519 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
520 int vpc = 0;
4e99ad69
TG
521 int len;
522
523 len = pc_end - pc_beg;
524 if (len > AVR_MAX_PROLOGUE_SIZE)
525 len = AVR_MAX_PROLOGUE_SIZE;
8818c391 526
4add8633 527 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
0963b4bd
MS
528 reading in the bytes of the prologue. The problem is that the figuring
529 out where the end of the prologue is is a bit difficult. The old code
4add8633 530 tried to do that, but failed quite often. */
4e99ad69 531 read_memory (pc_beg, prologue, len);
8818c391
TR
532
533 /* Scanning main()'s prologue
534 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
535 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
536 out __SP_H__,r29
537 out __SP_L__,r28 */
538
4e99ad69 539 if (len >= 4)
8818c391
TR
540 {
541 CORE_ADDR locals;
4e99ad69 542 static const unsigned char img[] = {
2e5ff58c
TR
543 0xde, 0xbf, /* out __SP_H__,r29 */
544 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
545 };
546
e17a4113 547 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 548 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
549 if ((insn & 0xf0f0) == 0xe0c0)
550 {
551 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
e17a4113 552 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
2e5ff58c
TR
553 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
554 if ((insn & 0xf0f0) == 0xe0d0)
555 {
556 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4e99ad69
TG
557 if (vpc + 4 + sizeof (img) < len
558 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
2e5ff58c 559 {
4add8633
TR
560 info->prologue_type = AVR_PROLOGUE_MAIN;
561 info->base = locals;
4e99ad69 562 return pc_beg + 4;
2e5ff58c
TR
563 }
564 }
565 }
8818c391 566 }
2e5ff58c 567
4add8633
TR
568 /* Scanning `-mcall-prologues' prologue
569 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
8818c391 570
e3d8b004 571 while (1) /* Using a while to avoid many goto's */
8818c391
TR
572 {
573 int loc_size;
574 int body_addr;
575 unsigned num_pushes;
4add8633 576 int pc_offset = 0;
2e5ff58c 577
4e99ad69
TG
578 /* At least the fifth instruction must have been executed to
579 modify frame shape. */
580 if (len < 10)
581 break;
582
e17a4113 583 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
8818c391 584 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
585 if ((insn & 0xf0f0) != 0xe0a0)
586 break;
8818c391 587 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 588 pc_offset += 2;
2e5ff58c 589
e17a4113 590 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
8818c391
TR
591 /* ldi r27,<LOCALS_SIZE> / 256 */
592 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 593 break;
8818c391 594 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 595 pc_offset += 2;
2e5ff58c 596
e17a4113 597 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
8818c391
TR
598 /* ldi r30,pm_lo8(.L_foo_body) */
599 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 600 break;
8818c391 601 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
4add8633 602 pc_offset += 2;
8818c391 603
e17a4113 604 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
8818c391
TR
605 /* ldi r31,pm_hi8(.L_foo_body) */
606 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 607 break;
8818c391 608 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
4add8633 609 pc_offset += 2;
8818c391 610
8818c391 611 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
3b7344d5 612 if (!msymbol.minsym)
2e5ff58c 613 break;
8818c391 614
e17a4113 615 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
8818c391 616 /* rjmp __prologue_saves__+RRR */
e3d8b004
TR
617 if ((insn & 0xf000) == 0xc000)
618 {
619 /* Extract PC relative offset from RJMP */
620 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
621 /* Convert offset to byte addressable mode */
622 i *= 2;
623 /* Destination address */
4e99ad69 624 i += pc_beg + 10;
e3d8b004 625
4e99ad69 626 if (body_addr != (pc_beg + 10)/2)
e3d8b004 627 break;
4add8633
TR
628
629 pc_offset += 2;
e3d8b004 630 }
e3d8b004
TR
631 else if ((insn & 0xfe0e) == 0x940c)
632 {
633 /* Extract absolute PC address from JMP */
634 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
e17a4113
UW
635 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
636 & 0xffff));
e3d8b004
TR
637 /* Convert address to byte addressable mode */
638 i *= 2;
639
4e99ad69 640 if (body_addr != (pc_beg + 12)/2)
e3d8b004 641 break;
4add8633
TR
642
643 pc_offset += 4;
e3d8b004
TR
644 }
645 else
646 break;
2e5ff58c 647
4add8633 648 /* Resolve offset (in words) from __prologue_saves__ symbol.
8818c391 649 Which is a pushes count in `-mcall-prologues' mode */
77e371c0 650 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
8818c391
TR
651
652 if (num_pushes > AVR_MAX_PUSHES)
4add8633 653 {
edefbb7c 654 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
4add8633
TR
655 num_pushes);
656 num_pushes = 0;
657 }
2e5ff58c 658
8818c391 659 if (num_pushes)
2e5ff58c
TR
660 {
661 int from;
4add8633
TR
662
663 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
2e5ff58c 664 if (num_pushes >= 2)
4add8633
TR
665 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
666
2e5ff58c
TR
667 i = 0;
668 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
669 from <= AVR_LAST_PUSHED_REGNUM; ++from)
4add8633 670 info->saved_regs [from].addr = ++i;
2e5ff58c 671 }
4add8633
TR
672 info->size = loc_size + num_pushes;
673 info->prologue_type = AVR_PROLOGUE_CALL;
674
4e99ad69 675 return pc_beg + pc_offset;
8818c391
TR
676 }
677
4add8633
TR
678 /* Scan for the beginning of the prologue for an interrupt or signal
679 function. Note that we have to set the prologue type here since the
680 third stage of the prologue may not be present (e.g. no saved registered
681 or changing of the SP register). */
8818c391 682
4add8633 683 if (1)
8818c391 684 {
4e99ad69 685 static const unsigned char img[] = {
2e5ff58c
TR
686 0x78, 0x94, /* sei */
687 0x1f, 0x92, /* push r1 */
688 0x0f, 0x92, /* push r0 */
689 0x0f, 0xb6, /* in r0,0x3f SREG */
690 0x0f, 0x92, /* push r0 */
691 0x11, 0x24 /* clr r1 */
8818c391 692 };
4e99ad69
TG
693 if (len >= sizeof (img)
694 && memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c 695 {
4add8633 696 info->prologue_type = AVR_PROLOGUE_INTR;
2e5ff58c 697 vpc += sizeof (img);
4add8633
TR
698 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
699 info->saved_regs[0].addr = 2;
700 info->saved_regs[1].addr = 1;
701 info->size += 3;
2e5ff58c 702 }
4e99ad69
TG
703 else if (len >= sizeof (img) - 2
704 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
2e5ff58c 705 {
4add8633
TR
706 info->prologue_type = AVR_PROLOGUE_SIG;
707 vpc += sizeof (img) - 2;
708 info->saved_regs[AVR_SREG_REGNUM].addr = 3;
709 info->saved_regs[0].addr = 2;
710 info->saved_regs[1].addr = 1;
243e2c5d 711 info->size += 2;
2e5ff58c 712 }
8818c391
TR
713 }
714
715 /* First stage of the prologue scanning.
4add8633 716 Scan pushes (saved registers) */
8818c391 717
4e99ad69 718 for (; vpc < len; vpc += 2)
8818c391 719 {
e17a4113 720 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c
TR
721 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
722 {
0963b4bd 723 /* Bits 4-9 contain a mask for registers R0-R32. */
4add8633
TR
724 int regno = (insn & 0x1f0) >> 4;
725 info->size++;
726 info->saved_regs[regno].addr = info->size;
2e5ff58c
TR
727 scan_stage = 1;
728 }
8818c391 729 else
2e5ff58c 730 break;
8818c391
TR
731 }
732
243e2c5d 733 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
4add8633 734
1bd0bb72
TG
735 /* Handle static small stack allocation using rcall or push. */
736
737 while (scan_stage == 1 && vpc < len)
738 {
739 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
740 if (insn == 0xd000) /* rcall .+0 */
741 {
742 info->size += gdbarch_tdep (gdbarch)->call_length;
743 vpc += 2;
744 }
7588d2ec 745 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
1bd0bb72
TG
746 {
747 info->size += 1;
748 vpc += 2;
749 }
750 else
751 break;
752 }
753
8818c391
TR
754 /* Second stage of the prologue scanning.
755 Scan:
756 in r28,__SP_L__
757 in r29,__SP_H__ */
758
4e99ad69 759 if (scan_stage == 1 && vpc < len)
8818c391 760 {
4e99ad69 761 static const unsigned char img[] = {
2e5ff58c
TR
762 0xcd, 0xb7, /* in r28,__SP_L__ */
763 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391 764 };
2e5ff58c 765
4e99ad69
TG
766 if (vpc + sizeof (img) < len
767 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
768 {
769 vpc += 4;
2e5ff58c
TR
770 scan_stage = 2;
771 }
8818c391
TR
772 }
773
0963b4bd 774 /* Third stage of the prologue scanning. (Really two stages).
8818c391
TR
775 Scan for:
776 sbiw r28,XX or subi r28,lo8(XX)
72fab697 777 sbci r29,hi8(XX)
8818c391
TR
778 in __tmp_reg__,__SREG__
779 cli
e3d8b004 780 out __SP_H__,r29
8818c391 781 out __SREG__,__tmp_reg__
e3d8b004 782 out __SP_L__,r28 */
8818c391 783
4e99ad69 784 if (scan_stage == 2 && vpc < len)
8818c391
TR
785 {
786 int locals_size = 0;
4e99ad69 787 static const unsigned char img[] = {
2e5ff58c
TR
788 0x0f, 0xb6, /* in r0,0x3f */
789 0xf8, 0x94, /* cli */
e3d8b004 790 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 791 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
e3d8b004 792 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 793 };
4e99ad69 794 static const unsigned char img_sig[] = {
e3d8b004
TR
795 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
796 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 797 };
4e99ad69 798 static const unsigned char img_int[] = {
2e5ff58c 799 0xf8, 0x94, /* cli */
e3d8b004 800 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
2e5ff58c 801 0x78, 0x94, /* sei */
e3d8b004 802 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
8818c391 803 };
2e5ff58c 804
e17a4113 805 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 806 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
1bd0bb72
TG
807 {
808 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
809 vpc += 2;
810 }
2e5ff58c
TR
811 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
812 {
813 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
1bd0bb72 814 vpc += 2;
e17a4113 815 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
2e5ff58c 816 vpc += 2;
1bd0bb72 817 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
2e5ff58c 818 }
8818c391 819 else
1bd0bb72 820 return pc_beg + vpc;
4add8633 821
0963b4bd 822 /* Scan the last part of the prologue. May not be present for interrupt
4add8633
TR
823 or signal handler functions, which is why we set the prologue type
824 when we saw the beginning of the prologue previously. */
825
4e99ad69
TG
826 if (vpc + sizeof (img_sig) < len
827 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
4add8633
TR
828 {
829 vpc += sizeof (img_sig);
830 }
4e99ad69
TG
831 else if (vpc + sizeof (img_int) < len
832 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
4add8633
TR
833 {
834 vpc += sizeof (img_int);
835 }
4e99ad69
TG
836 if (vpc + sizeof (img) < len
837 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
4add8633
TR
838 {
839 info->prologue_type = AVR_PROLOGUE_NORMAL;
840 vpc += sizeof (img);
841 }
842
843 info->size += locals_size;
844
4e99ad69 845 /* Fall through. */
8818c391 846 }
4add8633
TR
847
848 /* If we got this far, we could not scan the prologue, so just return the pc
849 of the frame plus an adjustment for argument move insns. */
850
4e99ad69
TG
851 for (; vpc < len; vpc += 2)
852 {
e17a4113 853 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
4e99ad69
TG
854 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
855 continue;
856 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
857 continue;
858 else
859 break;
860 }
861
862 return pc_beg + vpc;
8818c391
TR
863}
864
4add8633 865static CORE_ADDR
6093d2eb 866avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
4add8633
TR
867{
868 CORE_ADDR func_addr, func_end;
8c201e54 869 CORE_ADDR post_prologue_pc;
8818c391 870
4add8633 871 /* See what the symbol table says */
8818c391 872
8c201e54
TG
873 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
874 return pc;
2e5ff58c 875
8c201e54
TG
876 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
877 if (post_prologue_pc != 0)
878 return max (pc, post_prologue_pc);
8818c391 879
8c201e54
TG
880 {
881 CORE_ADDR prologue_end = pc;
882 struct avr_unwind_cache info = {0};
883 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
8818c391 884
8c201e54
TG
885 info.saved_regs = saved_regs;
886
887 /* Need to run the prologue scanner to figure out if the function has a
888 prologue and possibly skip over moving arguments passed via registers
889 to other registers. */
890
891 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
892
893 if (info.prologue_type != AVR_PROLOGUE_NONE)
894 return prologue_end;
895 }
2e5ff58c 896
4e99ad69
TG
897 /* Either we didn't find the start of this function (nothing we can do),
898 or there's no line info, or the line after the prologue is after
0963b4bd 899 the end of the function (there probably isn't a prologue). */
2e5ff58c 900
8c201e54 901 return pc;
4add8633 902}
8818c391 903
0963b4bd
MS
904/* Not all avr devices support the BREAK insn. Those that don't should treat
905 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
906 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
8818c391 907
4add8633 908static const unsigned char *
0963b4bd
MS
909avr_breakpoint_from_pc (struct gdbarch *gdbarch,
910 CORE_ADDR *pcptr, int *lenptr)
4add8633 911{
4e99ad69 912 static const unsigned char avr_break_insn [] = { 0x98, 0x95 };
4add8633
TR
913 *lenptr = sizeof (avr_break_insn);
914 return avr_break_insn;
8818c391
TR
915}
916
4c8b6ae0
UW
917/* Determine, for architecture GDBARCH, how a return value of TYPE
918 should be returned. If it is supposed to be returned in registers,
919 and READBUF is non-zero, read the appropriate value from REGCACHE,
920 and copy it into READBUF. If WRITEBUF is non-zero, write the value
921 from WRITEBUF into REGCACHE. */
922
63807e1d 923static enum return_value_convention
6a3a010b 924avr_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
925 struct type *valtype, struct regcache *regcache,
926 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0 927{
1bd0bb72
TG
928 int i;
929 /* Single byte are returned in r24.
930 Otherwise, the MSB of the return value is always in r25, calculate which
931 register holds the LSB. */
932 int lsb_reg;
933
934 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
935 || TYPE_CODE (valtype) == TYPE_CODE_UNION
936 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
937 && TYPE_LENGTH (valtype) > 8)
938 return RETURN_VALUE_STRUCT_CONVENTION;
939
940 if (TYPE_LENGTH (valtype) <= 2)
941 lsb_reg = 24;
942 else if (TYPE_LENGTH (valtype) <= 4)
943 lsb_reg = 22;
944 else if (TYPE_LENGTH (valtype) <= 8)
945 lsb_reg = 18;
946 else
f3574227 947 gdb_assert_not_reached ("unexpected type length");
4c8b6ae0
UW
948
949 if (writebuf != NULL)
950 {
1bd0bb72
TG
951 for (i = 0; i < TYPE_LENGTH (valtype); i++)
952 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
4c8b6ae0
UW
953 }
954
955 if (readbuf != NULL)
956 {
1bd0bb72
TG
957 for (i = 0; i < TYPE_LENGTH (valtype); i++)
958 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
4c8b6ae0
UW
959 }
960
1bd0bb72 961 return RETURN_VALUE_REGISTER_CONVENTION;
4c8b6ae0
UW
962}
963
964
4add8633
TR
965/* Put here the code to store, into fi->saved_regs, the addresses of
966 the saved registers of frame described by FRAME_INFO. This
967 includes special registers such as pc and fp saved in special ways
968 in the stack frame. sp is even more special: the address we return
0963b4bd 969 for it IS the sp for the next frame. */
8818c391 970
63807e1d 971static struct avr_unwind_cache *
94afd7a6 972avr_frame_unwind_cache (struct frame_info *this_frame,
4add8633 973 void **this_prologue_cache)
8818c391 974{
4e99ad69 975 CORE_ADDR start_pc, current_pc;
4add8633
TR
976 ULONGEST prev_sp;
977 ULONGEST this_base;
978 struct avr_unwind_cache *info;
4e99ad69
TG
979 struct gdbarch *gdbarch;
980 struct gdbarch_tdep *tdep;
4add8633
TR
981 int i;
982
4e99ad69
TG
983 if (*this_prologue_cache)
984 return *this_prologue_cache;
4add8633
TR
985
986 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
4e99ad69 987 *this_prologue_cache = info;
94afd7a6 988 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
4add8633
TR
989
990 info->size = 0;
991 info->prologue_type = AVR_PROLOGUE_NONE;
992
4e99ad69
TG
993 start_pc = get_frame_func (this_frame);
994 current_pc = get_frame_pc (this_frame);
995 if ((start_pc > 0) && (start_pc <= current_pc))
e17a4113
UW
996 avr_scan_prologue (get_frame_arch (this_frame),
997 start_pc, current_pc, info);
4add8633 998
3b85b0f1
TR
999 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1000 && (info->prologue_type != AVR_PROLOGUE_MAIN))
4add8633
TR
1001 {
1002 ULONGEST high_base; /* High byte of FP */
1003
1004 /* The SP was moved to the FP. This indicates that a new frame
1005 was created. Get THIS frame's FP value by unwinding it from
1006 the next frame. */
94afd7a6 1007 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
4e99ad69 1008 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
4add8633
TR
1009 this_base += (high_base << 8);
1010
1011 /* The FP points at the last saved register. Adjust the FP back
1012 to before the first saved register giving the SP. */
1013 prev_sp = this_base + info->size;
1014 }
8818c391 1015 else
4add8633
TR
1016 {
1017 /* Assume that the FP is this frame's SP but with that pushed
1018 stack space added back. */
94afd7a6 1019 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
4add8633
TR
1020 prev_sp = this_base + info->size;
1021 }
1022
1023 /* Add 1 here to adjust for the post-decrement nature of the push
1024 instruction.*/
4e99ad69 1025 info->prev_sp = avr_make_saddr (prev_sp + 1);
4add8633
TR
1026 info->base = avr_make_saddr (this_base);
1027
4e99ad69
TG
1028 gdbarch = get_frame_arch (this_frame);
1029
4add8633 1030 /* Adjust all the saved registers so that they contain addresses and not
3b85b0f1 1031 offsets. */
4e99ad69
TG
1032 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1033 if (info->saved_regs[i].addr > 0)
1034 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
4add8633
TR
1035
1036 /* Except for the main and startup code, the return PC is always saved on
0963b4bd 1037 the stack and is at the base of the frame. */
4add8633
TR
1038
1039 if (info->prologue_type != AVR_PROLOGUE_MAIN)
4e99ad69 1040 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
4add8633 1041
3b85b0f1
TR
1042 /* The previous frame's SP needed to be computed. Save the computed
1043 value. */
4e99ad69
TG
1044 tdep = gdbarch_tdep (gdbarch);
1045 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1046 info->prev_sp - 1 + tdep->call_length);
3b85b0f1 1047
4add8633 1048 return info;
8818c391
TR
1049}
1050
1051static CORE_ADDR
4add8633 1052avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
8818c391 1053{
4add8633
TR
1054 ULONGEST pc;
1055
11411de3 1056 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
4add8633
TR
1057
1058 return avr_make_iaddr (pc);
8818c391
TR
1059}
1060
30244cd8
UW
1061static CORE_ADDR
1062avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1063{
1064 ULONGEST sp;
1065
11411de3 1066 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
30244cd8
UW
1067
1068 return avr_make_saddr (sp);
1069}
1070
4add8633
TR
1071/* Given a GDB frame, determine the address of the calling function's
1072 frame. This will be used to create a new GDB frame struct. */
8818c391 1073
4add8633 1074static void
94afd7a6 1075avr_frame_this_id (struct frame_info *this_frame,
4add8633
TR
1076 void **this_prologue_cache,
1077 struct frame_id *this_id)
8818c391 1078{
4add8633 1079 struct avr_unwind_cache *info
94afd7a6 1080 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
4add8633
TR
1081 CORE_ADDR base;
1082 CORE_ADDR func;
1083 struct frame_id id;
1084
1085 /* The FUNC is easy. */
94afd7a6 1086 func = get_frame_func (this_frame);
4add8633 1087
4add8633
TR
1088 /* Hopefully the prologue analysis either correctly determined the
1089 frame's base (which is the SP from the previous frame), or set
1090 that base to "NULL". */
1091 base = info->prev_sp;
1092 if (base == 0)
1093 return;
1094
1095 id = frame_id_build (base, func);
4add8633 1096 (*this_id) = id;
8818c391
TR
1097}
1098
94afd7a6
UW
1099static struct value *
1100avr_frame_prev_register (struct frame_info *this_frame,
4e99ad69 1101 void **this_prologue_cache, int regnum)
8818c391 1102{
e17a4113
UW
1103 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1104 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1105 struct avr_unwind_cache *info
94afd7a6 1106 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
8818c391 1107
7d2552b4 1108 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
3b85b0f1 1109 {
7d2552b4 1110 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
3b85b0f1 1111 {
94afd7a6
UW
1112 /* Reading the return PC from the PC register is slightly
1113 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1114 but in reality, only two bytes (3 in upcoming mega256) are
1115 stored on the stack.
1116
1117 Also, note that the value on the stack is an addr to a word
1118 not a byte, so we will need to multiply it by two at some
1119 point.
1120
1121 And to confuse matters even more, the return address stored
1122 on the stack is in big endian byte order, even though most
0963b4bd 1123 everything else about the avr is little endian. Ick! */
94afd7a6 1124 ULONGEST pc;
4e99ad69 1125 int i;
e362b510 1126 gdb_byte buf[3];
4e99ad69
TG
1127 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
94afd7a6 1129
7d2552b4
TG
1130 read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1131 buf, tdep->call_length);
94afd7a6 1132
4e99ad69
TG
1133 /* Extract the PC read from memory as a big-endian. */
1134 pc = 0;
1135 for (i = 0; i < tdep->call_length; i++)
1136 pc = (pc << 8) | buf[i];
94afd7a6 1137
7d2552b4
TG
1138 if (regnum == AVR_PC_REGNUM)
1139 pc <<= 1;
1140
1141 return frame_unwind_got_constant (this_frame, regnum, pc);
3b85b0f1 1142 }
94afd7a6
UW
1143
1144 return frame_unwind_got_optimized (this_frame, regnum);
3b85b0f1 1145 }
94afd7a6
UW
1146
1147 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
4add8633 1148}
8818c391 1149
4add8633
TR
1150static const struct frame_unwind avr_frame_unwind = {
1151 NORMAL_FRAME,
8fbca658 1152 default_frame_unwind_stop_reason,
4add8633 1153 avr_frame_this_id,
94afd7a6
UW
1154 avr_frame_prev_register,
1155 NULL,
1156 default_frame_sniffer
4add8633
TR
1157};
1158
8818c391 1159static CORE_ADDR
94afd7a6 1160avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
8818c391 1161{
4add8633 1162 struct avr_unwind_cache *info
94afd7a6 1163 = avr_frame_unwind_cache (this_frame, this_cache);
8818c391 1164
4add8633
TR
1165 return info->base;
1166}
8818c391 1167
4add8633
TR
1168static const struct frame_base avr_frame_base = {
1169 &avr_frame_unwind,
1170 avr_frame_base_address,
1171 avr_frame_base_address,
1172 avr_frame_base_address
1173};
ced15480 1174
94afd7a6
UW
1175/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1176 frame. The frame ID's base needs to match the TOS value saved by
1177 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
8818c391 1178
4add8633 1179static struct frame_id
94afd7a6 1180avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
4add8633
TR
1181{
1182 ULONGEST base;
8818c391 1183
94afd7a6
UW
1184 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1185 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
8818c391
TR
1186}
1187
4add8633 1188/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 1189 order. The below implements a FILO (stack) to do this. */
8818c391 1190
4add8633
TR
1191struct stack_item
1192{
1193 int len;
1194 struct stack_item *prev;
1195 void *data;
1196};
8818c391 1197
4add8633 1198static struct stack_item *
0fd88904 1199push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
8818c391 1200{
4add8633
TR
1201 struct stack_item *si;
1202 si = xmalloc (sizeof (struct stack_item));
1203 si->data = xmalloc (len);
1204 si->len = len;
1205 si->prev = prev;
1206 memcpy (si->data, contents, len);
1207 return si;
8818c391
TR
1208}
1209
4add8633
TR
1210static struct stack_item *pop_stack_item (struct stack_item *si);
1211static struct stack_item *
1212pop_stack_item (struct stack_item *si)
8818c391 1213{
4add8633
TR
1214 struct stack_item *dead = si;
1215 si = si->prev;
1216 xfree (dead->data);
1217 xfree (dead);
1218 return si;
8818c391
TR
1219}
1220
8818c391
TR
1221/* Setup the function arguments for calling a function in the inferior.
1222
1223 On the AVR architecture, there are 18 registers (R25 to R8) which are
1224 dedicated for passing function arguments. Up to the first 18 arguments
1225 (depending on size) may go into these registers. The rest go on the stack.
1226
4add8633 1227 All arguments are aligned to start in even-numbered registers (odd-sized
0963b4bd 1228 arguments, including char, have one free register above them). For example,
4add8633
TR
1229 an int in arg1 and a char in arg2 would be passed as such:
1230
1231 arg1 -> r25:r24
1232 arg2 -> r22
1233
1234 Arguments that are larger than 2 bytes will be split between two or more
1235 registers as available, but will NOT be split between a register and the
0963b4bd 1236 stack. Arguments that go onto the stack are pushed last arg first (this is
4add8633
TR
1237 similar to the d10v). */
1238
1239/* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1240 inaccurate.
8818c391
TR
1241
1242 An exceptional case exists for struct arguments (and possibly other
1243 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1244 not a multiple of WORDSIZE bytes. In this case the argument is never split
1245 between the registers and the stack, but instead is copied in its entirety
1246 onto the stack, AND also copied into as many registers as there is room
1247 for. In other words, space in registers permitting, two copies of the same
1248 argument are passed in. As far as I can tell, only the one on the stack is
1249 used, although that may be a function of the level of compiler
1250 optimization. I suspect this is a compiler bug. Arguments of these odd
1251 sizes are left-justified within the word (as opposed to arguments smaller
1252 than WORDSIZE bytes, which are right-justified).
1253
1254 If the function is to return an aggregate type such as a struct, the caller
1255 must allocate space into which the callee will copy the return value. In
1256 this case, a pointer to the return value location is passed into the callee
1257 in register R0, which displaces one of the other arguments passed in via
0963b4bd 1258 registers R0 to R2. */
8818c391
TR
1259
1260static CORE_ADDR
7d9b040b 1261avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4add8633
TR
1262 struct regcache *regcache, CORE_ADDR bp_addr,
1263 int nargs, struct value **args, CORE_ADDR sp,
1264 int struct_return, CORE_ADDR struct_addr)
8818c391 1265{
e17a4113 1266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4add8633 1267 int i;
e362b510 1268 gdb_byte buf[3];
6d1915d4 1269 int call_length = gdbarch_tdep (gdbarch)->call_length;
4add8633
TR
1270 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1271 int regnum = AVR_ARGN_REGNUM;
1272 struct stack_item *si = NULL;
8818c391 1273
4add8633 1274 if (struct_return)
8818c391 1275 {
fd6d6815
TG
1276 regcache_cooked_write_unsigned
1277 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1278 regcache_cooked_write_unsigned
1279 (regcache, regnum--, struct_addr & 0xff);
1280 /* SP being post decremented, we need to reserve one byte so that the
1281 return address won't overwrite the result (or vice-versa). */
1282 if (sp == struct_addr)
1283 sp--;
8818c391
TR
1284 }
1285
4add8633 1286 for (i = 0; i < nargs; i++)
8818c391 1287 {
4add8633
TR
1288 int last_regnum;
1289 int j;
1290 struct value *arg = args[i];
4991999e 1291 struct type *type = check_typedef (value_type (arg));
0fd88904 1292 const bfd_byte *contents = value_contents (arg);
4add8633
TR
1293 int len = TYPE_LENGTH (type);
1294
0963b4bd 1295 /* Calculate the potential last register needed. */
4add8633
TR
1296 last_regnum = regnum - (len + (len & 1));
1297
0963b4bd
MS
1298 /* If there are registers available, use them. Once we start putting
1299 stuff on the stack, all subsequent args go on stack. */
4add8633
TR
1300 if ((si == NULL) && (last_regnum >= 8))
1301 {
1302 ULONGEST val;
1303
0963b4bd 1304 /* Skip a register for odd length args. */
4add8633
TR
1305 if (len & 1)
1306 regnum--;
1307
e17a4113 1308 val = extract_unsigned_integer (contents, len, byte_order);
6d1915d4
TG
1309 for (j = 0; j < len; j++)
1310 regcache_cooked_write_unsigned
1311 (regcache, regnum--, val >> (8 * (len - j - 1)));
4add8633 1312 }
0963b4bd 1313 /* No registers available, push the args onto the stack. */
4add8633
TR
1314 else
1315 {
0963b4bd 1316 /* From here on, we don't care about regnum. */
4add8633
TR
1317 si = push_stack_item (si, contents, len);
1318 }
8818c391 1319 }
909cd28e 1320
0963b4bd 1321 /* Push args onto the stack. */
4add8633
TR
1322 while (si)
1323 {
1324 sp -= si->len;
0963b4bd 1325 /* Add 1 to sp here to account for post decr nature of pushes. */
4e99ad69 1326 write_memory (sp + 1, si->data, si->len);
4add8633
TR
1327 si = pop_stack_item (si);
1328 }
3605c34a 1329
4add8633
TR
1330 /* Set the return address. For the avr, the return address is the BP_ADDR.
1331 Need to push the return address onto the stack noting that it needs to be
1332 in big-endian order on the stack. */
6d1915d4
TG
1333 for (i = 1; i <= call_length; i++)
1334 {
1335 buf[call_length - i] = return_pc & 0xff;
1336 return_pc >>= 8;
1337 }
3605c34a 1338
6d1915d4 1339 sp -= call_length;
0963b4bd 1340 /* Use 'sp + 1' since pushes are post decr ops. */
6d1915d4 1341 write_memory (sp + 1, buf, call_length);
3605c34a 1342
0963b4bd 1343 /* Finally, update the SP register. */
4add8633
TR
1344 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1345 avr_convert_saddr_to_raw (sp));
3605c34a 1346
6d1915d4
TG
1347 /* Return SP value for the dummy frame, where the return address hasn't been
1348 pushed. */
1349 return sp + call_length;
3605c34a
TR
1350}
1351
53f6a2c9
TG
1352/* Unfortunately dwarf2 register for SP is 32. */
1353
1354static int
1355avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1356{
1357 if (reg >= 0 && reg < 32)
1358 return reg;
1359 if (reg == 32)
1360 return AVR_SP_REGNUM;
1361
1362 warning (_("Unmapped DWARF Register #%d encountered."), reg);
1363
1364 return -1;
1365}
1366
487d9753
PL
1367/* Implementation of `address_class_type_flags' gdbarch method.
1368
1369 This method maps DW_AT_address_class attributes to a
1370 type_instance_flag_value. */
1371
1372static int
1373avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1374{
1375 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1376 __flash qualifier. Note that this attribute is only valid with
1377 pointer types and therefore the flag is set to the pointer type and
1378 not its target type. */
1379 if (dwarf2_addr_class == 1 && byte_size == 2)
1380 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1381 return 0;
1382}
1383
1384/* Implementation of `address_class_type_flags_to_name' gdbarch method.
1385
1386 Convert a type_instance_flag_value to an address space qualifier. */
1387
1388static const char*
1389avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1390{
1391 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1392 return "flash";
1393 else
1394 return NULL;
1395}
1396
1397/* Implementation of `address_class_name_to_type_flags' gdbarch method.
1398
1399 Convert an address space qualifier to a type_instance_flag_value. */
1400
1401static int
1402avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1403 const char* name,
1404 int *type_flags_ptr)
1405{
1406 if (strcmp (name, "flash") == 0)
1407 {
1408 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1409 return 1;
1410 }
1411 else
1412 return 0;
1413}
1414
0963b4bd 1415/* Initialize the gdbarch structure for the AVR's. */
8818c391
TR
1416
1417static struct gdbarch *
2e5ff58c
TR
1418avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1419{
2e5ff58c
TR
1420 struct gdbarch *gdbarch;
1421 struct gdbarch_tdep *tdep;
4e99ad69
TG
1422 struct gdbarch_list *best_arch;
1423 int call_length;
8818c391 1424
4e99ad69 1425 /* Avr-6 call instructions save 3 bytes. */
8818c391
TR
1426 switch (info.bfd_arch_info->mach)
1427 {
1428 case bfd_mach_avr1:
9c97a070 1429 case bfd_mach_avrxmega1:
8818c391 1430 case bfd_mach_avr2:
9c97a070 1431 case bfd_mach_avrxmega2:
8818c391 1432 case bfd_mach_avr3:
9c97a070 1433 case bfd_mach_avrxmega3:
8818c391 1434 case bfd_mach_avr4:
9c97a070 1435 case bfd_mach_avrxmega4:
8818c391 1436 case bfd_mach_avr5:
9c97a070 1437 case bfd_mach_avrxmega5:
4e99ad69
TG
1438 default:
1439 call_length = 2;
1440 break;
1441 case bfd_mach_avr6:
9c97a070
PL
1442 case bfd_mach_avrxmega6:
1443 case bfd_mach_avrxmega7:
4e99ad69 1444 call_length = 3;
8818c391
TR
1445 break;
1446 }
1447
4e99ad69
TG
1448 /* If there is already a candidate, use it. */
1449 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1450 best_arch != NULL;
1451 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1452 {
1453 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1454 return best_arch->gdbarch;
1455 }
1456
0963b4bd 1457 /* None found, create a new architecture from the information provided. */
70ba0933 1458 tdep = XNEW (struct gdbarch_tdep);
4e99ad69
TG
1459 gdbarch = gdbarch_alloc (&info, tdep);
1460
1461 tdep->call_length = call_length;
1462
7d2552b4
TG
1463 /* Create a type for PC. We can't use builtin types here, as they may not
1464 be defined. */
1465 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1466 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1467 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL);
1468 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type;
1469 TYPE_UNSIGNED (tdep->pc_type) = 1;
1470
8818c391
TR
1471 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1472 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1473 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1474 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1475 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476 set_gdbarch_addr_bit (gdbarch, 32);
8818c391
TR
1477
1478 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1479 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1480 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1481
8da61cc4
DJ
1482 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1483 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1484 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
8818c391
TR
1485
1486 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1487 set_gdbarch_write_pc (gdbarch, avr_write_pc);
8818c391
TR
1488
1489 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1490
1491 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
8818c391
TR
1492 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1493
1494 set_gdbarch_register_name (gdbarch, avr_register_name);
866b76ea 1495 set_gdbarch_register_type (gdbarch, avr_register_type);
8818c391 1496
7d2552b4
TG
1497 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1498 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1499 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1500
4c8b6ae0 1501 set_gdbarch_return_value (gdbarch, avr_return_value);
8818c391
TR
1502 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1503
4add8633 1504 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
8818c391 1505
53f6a2c9
TG
1506 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1507
8818c391
TR
1508 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1509 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
8a1d23b2 1510 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
8818c391 1511
8818c391 1512 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
8818c391
TR
1513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1514
909cd28e 1515 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc);
8818c391 1516
94afd7a6 1517 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
4add8633
TR
1518 frame_base_set_default (gdbarch, &avr_frame_base);
1519
94afd7a6 1520 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
4add8633
TR
1521
1522 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
30244cd8 1523 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
8818c391 1524
487d9753
PL
1525 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1526 set_gdbarch_address_class_name_to_type_flags
1527 (gdbarch, avr_address_class_name_to_type_flags);
1528 set_gdbarch_address_class_type_flags_to_name
1529 (gdbarch, avr_address_class_type_flags_to_name);
1530
8818c391
TR
1531 return gdbarch;
1532}
1533
1534/* Send a query request to the avr remote target asking for values of the io
0963b4bd 1535 registers. If args parameter is not NULL, then the user has requested info
8818c391 1536 on a specific io register [This still needs implemented and is ignored for
0963b4bd 1537 now]. The query string should be one of these forms:
8818c391
TR
1538
1539 "Ravr.io_reg" -> reply is "NN" number of io registers
1540
1541 "Ravr.io_reg:addr,len" where addr is first register and len is number of
0963b4bd 1542 registers to be read. The reply should be "<NAME>,VV;" for each io register
8818c391
TR
1543 where, <NAME> is a string, and VV is the hex value of the register.
1544
0963b4bd 1545 All io registers are 8-bit. */
8818c391
TR
1546
1547static void
1548avr_io_reg_read_command (char *args, int from_tty)
1549{
1e3ff5ad 1550 LONGEST bufsiz = 0;
13547ab6 1551 gdb_byte *buf;
001f13d8 1552 const char *bufstr;
2e5ff58c 1553 char query[400];
001f13d8 1554 const char *p;
2e5ff58c
TR
1555 unsigned int nreg = 0;
1556 unsigned int val;
1557 int i, j, k, step;
8818c391 1558
0963b4bd 1559 /* Find out how many io registers the target has. */
13547ab6
DJ
1560 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1561 "avr.io_reg", &buf);
001f13d8 1562 bufstr = (const char *) buf;
8818c391 1563
13547ab6 1564 if (bufsiz <= 0)
8818c391 1565 {
2e5ff58c 1566 fprintf_unfiltered (gdb_stderr,
13547ab6
DJ
1567 _("ERR: info io_registers NOT supported "
1568 "by current target\n"));
8818c391
TR
1569 return;
1570 }
1571
001f13d8 1572 if (sscanf (bufstr, "%x", &nreg) != 1)
8818c391 1573 {
2e5ff58c 1574 fprintf_unfiltered (gdb_stderr,
edefbb7c 1575 _("Error fetching number of io registers\n"));
13547ab6 1576 xfree (buf);
8818c391
TR
1577 return;
1578 }
1579
13547ab6
DJ
1580 xfree (buf);
1581
2e5ff58c 1582 reinitialize_more_filter ();
8818c391 1583
edefbb7c 1584 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
8818c391
TR
1585
1586 /* only fetch up to 8 registers at a time to keep the buffer small */
1587 step = 8;
1588
2e5ff58c 1589 for (i = 0; i < nreg; i += step)
8818c391 1590 {
91ccbfc1
TR
1591 /* how many registers this round? */
1592 j = step;
1593 if ((i+j) >= nreg)
1594 j = nreg - i; /* last block is less than 8 registers */
8818c391 1595
2e5ff58c 1596 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
13547ab6
DJ
1597 bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1598 query, &buf);
8818c391 1599
001f13d8 1600 p = (const char *) buf;
2e5ff58c
TR
1601 for (k = i; k < (i + j); k++)
1602 {
1603 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1604 {
1605 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1606 while ((*p != ';') && (*p != '\0'))
1607 p++;
1608 p++; /* skip over ';' */
1609 if (*p == '\0')
1610 break;
1611 }
1612 }
13547ab6
DJ
1613
1614 xfree (buf);
8818c391
TR
1615 }
1616}
1617
a78f21af
AC
1618extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1619
8818c391
TR
1620void
1621_initialize_avr_tdep (void)
1622{
1623 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1624
1625 /* Add a new command to allow the user to query the avr remote target for
1626 the values of the io space registers in a saner way than just using
0963b4bd 1627 `x/NNNb ADDR`. */
8818c391
TR
1628
1629 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
0963b4bd 1630 io_registers' to signify it is not available on other platforms. */
8818c391
TR
1631
1632 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
1a966eab
AC
1633 _("query remote avr target for io space register values"),
1634 &infolist);
8818c391 1635}
This page took 1.336636 seconds and 4 git commands to generate.