Fix thinko: m32r, not mips!
[deliverable/binutils-gdb.git] / gdb / avr-tdep.c
CommitLineData
8818c391
TR
1/* Target-dependent code for Atmel AVR, for GDB.
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22/* Contributed by Theodore A. Roth, troth@verinet.com */
23
24/* Portions of this file were taken from the original gdb-4.18 patch developed
25 by Denis Chertykov, denisc@overta.ru */
26
27#include "defs.h"
28#include "gdbcmd.h"
29#include "gdbcore.h"
30#include "inferior.h"
31#include "symfile.h"
32#include "arch-utils.h"
33#include "regcache.h"
5f8a3188 34#include "gdb_string.h"
8818c391
TR
35
36/* AVR Background:
37
38 (AVR micros are pure Harvard Architecture processors.)
39
40 The AVR family of microcontrollers have three distinctly different memory
41 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
42 the most part to store program instructions. The sram is 8 bits wide and is
43 used for the stack and the heap. Some devices lack sram and some can have
44 an additional external sram added on as a peripheral.
45
46 The eeprom is 8 bits wide and is used to store data when the device is
47 powered down. Eeprom is not directly accessible, it can only be accessed
48 via io-registers using a special algorithm. Accessing eeprom via gdb's
49 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
50 not included at this time.
51
52 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
53 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
54 work, the remote target must be able to handle eeprom accesses and perform
55 the address translation.]
56
57 All three memory spaces have physical addresses beginning at 0x0. In
58 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
59 bytes instead of the 16 bit wide words used by the real device for the
60 Program Counter.
61
62 In order for remote targets to work correctly, extra bits must be added to
63 addresses before they are send to the target or received from the target
64 via the remote serial protocol. The extra bits are the MSBs and are used to
65 decode which memory space the address is referring to. */
66
67#undef XMALLOC
68#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
69
70#undef EXTRACT_INSN
71#define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2)
72
73/* Constants: prefixed with AVR_ to avoid name space clashes */
74
75enum
2e5ff58c
TR
76{
77 AVR_REG_W = 24,
78 AVR_REG_X = 26,
79 AVR_REG_Y = 28,
80 AVR_FP_REGNUM = 28,
81 AVR_REG_Z = 30,
82
83 AVR_SREG_REGNUM = 32,
84 AVR_SP_REGNUM = 33,
85 AVR_PC_REGNUM = 34,
86
87 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
88 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
89
90 AVR_PC_REG_INDEX = 35, /* index into array of registers */
91
92 AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */
93
94 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
95 AVR_MAX_PUSHES = 18,
96
97 /* Number of the last pushed register. r17 for current avr-gcc */
98 AVR_LAST_PUSHED_REGNUM = 17,
99
100 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
101 bits? Do these have to match the bfd vma values?. It sure would make
102 things easier in the future if they didn't need to match.
103
104 Note: I chose these values so as to be consistent with bfd vma
105 addresses.
106
107 TRoth/2002-04-08: There is already a conflict with very large programs
108 in the mega128. The mega128 has 128K instruction bytes (64K words),
109 thus the Most Significant Bit is 0x10000 which gets masked off my
110 AVR_MEM_MASK.
111
112 The problem manifests itself when trying to set a breakpoint in a
113 function which resides in the upper half of the instruction space and
114 thus requires a 17-bit address.
115
116 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
117 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
118 but could be for some remote targets by just adding the correct offset
119 to the address and letting the remote target handle the low-level
120 details of actually accessing the eeprom. */
121
122 AVR_IMEM_START = 0x00000000, /* INSN memory */
123 AVR_SMEM_START = 0x00800000, /* SRAM memory */
8818c391 124#if 1
2e5ff58c
TR
125 /* No eeprom mask defined */
126 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
8818c391 127#else
2e5ff58c
TR
128 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
129 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
8818c391 130#endif
2e5ff58c 131};
8818c391
TR
132
133/* Any function with a frame looks like this
134 ....... <-SP POINTS HERE
135 LOCALS1 <-FP POINTS HERE
136 LOCALS0
137 SAVED FP
138 SAVED R3
139 SAVED R2
140 RET PC
141 FIRST ARG
142 SECOND ARG */
143
144struct frame_extra_info
2e5ff58c
TR
145{
146 CORE_ADDR return_pc;
147 CORE_ADDR args_pointer;
148 int locals_size;
149 int framereg;
150 int framesize;
151 int is_main;
152};
8818c391
TR
153
154struct gdbarch_tdep
2e5ff58c
TR
155{
156 /* FIXME: TRoth: is there anything to put here? */
157 int foo;
158};
8818c391
TR
159
160/* Lookup the name of a register given it's number. */
161
fa88f677 162static const char *
8818c391
TR
163avr_register_name (int regnum)
164{
2e5ff58c
TR
165 static char *register_names[] = {
166 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
167 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8818c391
TR
168 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
169 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
170 "SREG", "SP", "PC"
171 };
172 if (regnum < 0)
173 return NULL;
174 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
175 return NULL;
176 return register_names[regnum];
177}
178
179/* Index within `registers' of the first byte of the space for
180 register REGNUM. */
181
182static int
183avr_register_byte (int regnum)
184{
185 if (regnum < AVR_PC_REGNUM)
186 return regnum;
187 else
188 return AVR_PC_REG_INDEX;
189}
190
191/* Number of bytes of storage in the actual machine representation for
192 register REGNUM. */
193
194static int
195avr_register_raw_size (int regnum)
196{
197 switch (regnum)
198 {
199 case AVR_PC_REGNUM:
200 return 4;
201 case AVR_SP_REGNUM:
202 case AVR_FP_REGNUM:
203 return 2;
204 default:
205 return 1;
206 }
207}
208
209/* Number of bytes of storage in the program's representation
210 for register N. */
211
212static int
213avr_register_virtual_size (int regnum)
214{
215 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
216}
217
218/* Return the GDB type object for the "standard" data type
219 of data in register N. */
220
221static struct type *
222avr_register_virtual_type (int regnum)
223{
224 switch (regnum)
225 {
226 case AVR_PC_REGNUM:
227 return builtin_type_unsigned_long;
228 case AVR_SP_REGNUM:
229 return builtin_type_unsigned_short;
230 default:
231 return builtin_type_unsigned_char;
232 }
233}
234
235/* Instruction address checks and convertions. */
236
237static CORE_ADDR
238avr_make_iaddr (CORE_ADDR x)
239{
240 return ((x) | AVR_IMEM_START);
241}
242
243static int
244avr_iaddr_p (CORE_ADDR x)
245{
246 return (((x) & AVR_MEM_MASK) == AVR_IMEM_START);
247}
248
249/* FIXME: TRoth: Really need to use a larger mask for instructions. Some
250 devices are already up to 128KBytes of flash space.
251
252 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
253
254static CORE_ADDR
255avr_convert_iaddr_to_raw (CORE_ADDR x)
256{
257 return ((x) & 0xffffffff);
258}
259
260/* SRAM address checks and convertions. */
261
262static CORE_ADDR
263avr_make_saddr (CORE_ADDR x)
264{
265 return ((x) | AVR_SMEM_START);
266}
267
268static int
269avr_saddr_p (CORE_ADDR x)
270{
271 return (((x) & AVR_MEM_MASK) == AVR_SMEM_START);
272}
273
274static CORE_ADDR
275avr_convert_saddr_to_raw (CORE_ADDR x)
276{
277 return ((x) & 0xffffffff);
278}
279
280/* EEPROM address checks and convertions. I don't know if these will ever
281 actually be used, but I've added them just the same. TRoth */
282
283/* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
284 programs in the mega128. */
285
286/* static CORE_ADDR */
287/* avr_make_eaddr (CORE_ADDR x) */
288/* { */
289/* return ((x) | AVR_EMEM_START); */
290/* } */
291
292/* static int */
293/* avr_eaddr_p (CORE_ADDR x) */
294/* { */
295/* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
296/* } */
297
298/* static CORE_ADDR */
299/* avr_convert_eaddr_to_raw (CORE_ADDR x) */
300/* { */
301/* return ((x) & 0xffffffff); */
302/* } */
303
304/* Convert from address to pointer and vice-versa. */
305
306static void
307avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
308{
309 /* Is it a code address? */
310 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
311 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
312 {
2e5ff58c
TR
313 store_unsigned_integer (buf, TYPE_LENGTH (type),
314 avr_convert_iaddr_to_raw (addr));
8818c391
TR
315 }
316 else
317 {
318 /* Strip off any upper segment bits. */
2e5ff58c
TR
319 store_unsigned_integer (buf, TYPE_LENGTH (type),
320 avr_convert_saddr_to_raw (addr));
8818c391
TR
321 }
322}
323
324static CORE_ADDR
325avr_pointer_to_address (struct type *type, void *buf)
326{
327 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
328
2e5ff58c 329 if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391 330 {
2e5ff58c
TR
331 fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n",
332 addr);
333 fprintf_unfiltered (gdb_stderr,
334 "+++ If you see this, please send me an email <troth@verinet.com>\n");
8818c391
TR
335 }
336
337 /* Is it a code address? */
338 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
339 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
2e5ff58c 340 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
8818c391
TR
341 return avr_make_iaddr (addr);
342 else
343 return avr_make_saddr (addr);
344}
345
346static CORE_ADDR
347avr_read_pc (ptid_t ptid)
348{
349 ptid_t save_ptid;
350 CORE_ADDR pc;
351 CORE_ADDR retval;
352
353 save_ptid = inferior_ptid;
354 inferior_ptid = ptid;
355 pc = (int) read_register (AVR_PC_REGNUM);
356 inferior_ptid = save_ptid;
357 retval = avr_make_iaddr (pc);
358 return retval;
359}
360
361static void
362avr_write_pc (CORE_ADDR val, ptid_t ptid)
363{
364 ptid_t save_ptid;
365
366 save_ptid = inferior_ptid;
367 inferior_ptid = ptid;
368 write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val));
369 inferior_ptid = save_ptid;
370}
371
372static CORE_ADDR
373avr_read_sp (void)
374{
375 return (avr_make_saddr (read_register (AVR_SP_REGNUM)));
376}
377
378static void
379avr_write_sp (CORE_ADDR val)
380{
381 write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val));
382}
383
384static CORE_ADDR
385avr_read_fp (void)
386{
387 return (avr_make_saddr (read_register (AVR_FP_REGNUM)));
388}
389
390/* Translate a GDB virtual ADDR/LEN into a format the remote target
391 understands. Returns number of bytes that can be transfered
392 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
393 (segmentation fault).
394
395 TRoth/2002-04-08: Could this be used to check for dereferencing an invalid
396 pointer? */
397
398static void
399avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
2e5ff58c 400 CORE_ADDR *targ_addr, int *targ_len)
8818c391
TR
401{
402 long out_addr;
403 long out_len;
404
405 /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this
406 point and see if the high bit are set with the masks that we want. */
407
408 *targ_addr = memaddr;
409 *targ_len = nr_bytes;
410}
411
412/* Function pointers obtained from the target are half of what gdb expects so
413 multiply by 2. */
414
415static CORE_ADDR
416avr_convert_from_func_ptr_addr (CORE_ADDR addr)
417{
418 return addr * 2;
419}
420
421/* avr_scan_prologue is also used as the frame_init_saved_regs().
422
423 Put here the code to store, into fi->saved_regs, the addresses of
424 the saved registers of frame described by FRAME_INFO. This
425 includes special registers such as pc and fp saved in special ways
426 in the stack frame. sp is even more special: the address we return
427 for it IS the sp for the next frame. */
428
429/* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info)
430 This function decodes a AVR function prologue to determine:
431 1) the size of the stack frame
432 2) which registers are saved on it
433 3) the offsets of saved regs
434 This information is stored in the "extra_info" field of the frame_info.
435
436 A typical AVR function prologue might look like this:
437 push rXX
438 push r28
439 push r29
440 in r28,__SP_L__
441 in r29,__SP_H__
442 sbiw r28,<LOCALS_SIZE>
443 in __tmp_reg__,__SREG__
444 cli
445 out __SP_L__,r28
446 out __SREG__,__tmp_reg__
447 out __SP_H__,r29
448
449 A `-mcall-prologues' prologue look like this:
450 ldi r26,<LOCALS_SIZE>
451 ldi r27,<LOCALS_SIZE>/265
452 ldi r30,pm_lo8(.L_foo_body)
453 ldi r31,pm_hi8(.L_foo_body)
454 rjmp __prologue_saves__+RRR
455 .L_foo_body: */
456
457static void
458avr_scan_prologue (struct frame_info *fi)
459{
460 CORE_ADDR prologue_start;
461 CORE_ADDR prologue_end;
2e5ff58c
TR
462 int i;
463 unsigned short insn;
464 int regno;
465 int scan_stage = 0;
466 char *name;
8818c391 467 struct minimal_symbol *msymbol;
2e5ff58c 468 int prologue_len;
8818c391
TR
469 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
470 int vpc = 0;
471
472 fi->extra_info->framereg = AVR_SP_REGNUM;
2e5ff58c
TR
473
474 if (find_pc_partial_function
475 (fi->pc, &name, &prologue_start, &prologue_end))
8818c391
TR
476 {
477 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
478
2e5ff58c
TR
479 if (sal.line == 0) /* no line info, use current PC */
480 prologue_end = fi->pc;
481 else if (sal.end < prologue_end) /* next line begins after fn end */
482 prologue_end = sal.end; /* (probably means no prologue) */
8818c391
TR
483 }
484 else
485 /* We're in the boondocks: allow for */
486 /* 19 pushes, an add, and "mv fp,sp" */
2e5ff58c 487 prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE;
8818c391
TR
488
489 prologue_end = min (prologue_end, fi->pc);
490
491 /* Search the prologue looking for instructions that set up the
492 frame pointer, adjust the stack pointer, and save registers. */
493
494 fi->extra_info->framesize = 0;
495 prologue_len = prologue_end - prologue_start;
496 read_memory (prologue_start, prologue, prologue_len);
497
498 /* Scanning main()'s prologue
499 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
500 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
501 out __SP_H__,r29
502 out __SP_L__,r28 */
503
504 if (name && strcmp ("main", name) == 0 && prologue_len == 8)
505 {
506 CORE_ADDR locals;
2e5ff58c
TR
507 unsigned char img[] = {
508 0xde, 0xbf, /* out __SP_H__,r29 */
509 0xcd, 0xbf /* out __SP_L__,r28 */
8818c391
TR
510 };
511
512 fi->extra_info->framereg = AVR_FP_REGNUM;
513 insn = EXTRACT_INSN (&prologue[vpc]);
514 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
2e5ff58c
TR
515 if ((insn & 0xf0f0) == 0xe0c0)
516 {
517 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
518 insn = EXTRACT_INSN (&prologue[vpc + 2]);
519 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
520 if ((insn & 0xf0f0) == 0xe0d0)
521 {
522 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
523 if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
524 {
525 fi->frame = locals;
526
527 /* TRoth: Does -1 mean we're in main? */
528 fi->extra_info->is_main = 1;
529 return;
530 }
531 }
532 }
8818c391 533 }
2e5ff58c 534
8818c391
TR
535 /* Scanning `-mcall-prologues' prologue
536 FIXME: mega prologue have a 12 bytes long */
537
2e5ff58c 538 while (prologue_len <= 12) /* I'm use while to avoit many goto's */
8818c391
TR
539 {
540 int loc_size;
541 int body_addr;
542 unsigned num_pushes;
2e5ff58c 543
8818c391
TR
544 insn = EXTRACT_INSN (&prologue[vpc]);
545 /* ldi r26,<LOCALS_SIZE> */
2e5ff58c
TR
546 if ((insn & 0xf0f0) != 0xe0a0)
547 break;
8818c391 548 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
2e5ff58c 549
8818c391
TR
550 insn = EXTRACT_INSN (&prologue[vpc + 2]);
551 /* ldi r27,<LOCALS_SIZE> / 256 */
552 if ((insn & 0xf0f0) != 0xe0b0)
2e5ff58c 553 break;
8818c391 554 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
2e5ff58c 555
8818c391
TR
556 insn = EXTRACT_INSN (&prologue[vpc + 4]);
557 /* ldi r30,pm_lo8(.L_foo_body) */
558 if ((insn & 0xf0f0) != 0xe0e0)
2e5ff58c 559 break;
8818c391
TR
560 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
561
562 insn = EXTRACT_INSN (&prologue[vpc + 6]);
563 /* ldi r31,pm_hi8(.L_foo_body) */
564 if ((insn & 0xf0f0) != 0xe0f0)
2e5ff58c 565 break;
8818c391
TR
566 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
567
568 if (body_addr != (prologue_start + 10) / 2)
2e5ff58c 569 break;
8818c391
TR
570
571 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
572 if (!msymbol)
2e5ff58c 573 break;
8818c391
TR
574
575 /* FIXME: prologue for mega have a JMP instead of RJMP */
576 insn = EXTRACT_INSN (&prologue[vpc + 8]);
577 /* rjmp __prologue_saves__+RRR */
578 if ((insn & 0xf000) != 0xc000)
2e5ff58c
TR
579 break;
580
8818c391
TR
581 /* Extract PC relative offset from RJMP */
582 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
583 /* Convert offset to byte addressable mode */
584 i *= 2;
585 /* Destination address */
586 i += vpc + prologue_start + 10;
587 /* Resovle offset (in words) from __prologue_saves__ symbol.
588 Which is a pushes count in `-mcall-prologues' mode */
589 num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2;
590
591 if (num_pushes > AVR_MAX_PUSHES)
2e5ff58c
TR
592 num_pushes = 0;
593
8818c391 594 if (num_pushes)
2e5ff58c
TR
595 {
596 int from;
597 fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes;
598 if (num_pushes >= 2)
599 fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1;
600 i = 0;
601 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
602 from <= AVR_LAST_PUSHED_REGNUM; ++from)
603 fi->saved_regs[from] = ++i;
604 }
8818c391
TR
605 fi->extra_info->locals_size = loc_size;
606 fi->extra_info->framesize = loc_size + num_pushes;
607 fi->extra_info->framereg = AVR_FP_REGNUM;
608 return;
609 }
610
611 /* Scan interrupt or signal function */
612
613 if (prologue_len >= 12)
614 {
2e5ff58c
TR
615 unsigned char img[] = {
616 0x78, 0x94, /* sei */
617 0x1f, 0x92, /* push r1 */
618 0x0f, 0x92, /* push r0 */
619 0x0f, 0xb6, /* in r0,0x3f SREG */
620 0x0f, 0x92, /* push r0 */
621 0x11, 0x24 /* clr r1 */
8818c391
TR
622 };
623 if (memcmp (prologue, img, sizeof (img)) == 0)
2e5ff58c
TR
624 {
625 vpc += sizeof (img);
626 fi->saved_regs[0] = 2;
627 fi->saved_regs[1] = 1;
628 fi->extra_info->framesize += 3;
629 }
8818c391 630 else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0)
2e5ff58c
TR
631 {
632 vpc += sizeof (img) - 1;
633 fi->saved_regs[0] = 2;
634 fi->saved_regs[1] = 1;
635 fi->extra_info->framesize += 3;
636 }
8818c391
TR
637 }
638
639 /* First stage of the prologue scanning.
640 Scan pushes */
641
642 for (; vpc <= prologue_len; vpc += 2)
643 {
644 insn = EXTRACT_INSN (&prologue[vpc]);
2e5ff58c
TR
645 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
646 {
647 /* Bits 4-9 contain a mask for registers R0-R32. */
648 regno = (insn & 0x1f0) >> 4;
649 ++fi->extra_info->framesize;
650 fi->saved_regs[regno] = fi->extra_info->framesize;
651 scan_stage = 1;
652 }
8818c391 653 else
2e5ff58c 654 break;
8818c391
TR
655 }
656
657 /* Second stage of the prologue scanning.
658 Scan:
659 in r28,__SP_L__
660 in r29,__SP_H__ */
661
662 if (scan_stage == 1 && vpc + 4 <= prologue_len)
663 {
2e5ff58c
TR
664 unsigned char img[] = {
665 0xcd, 0xb7, /* in r28,__SP_L__ */
666 0xde, 0xb7 /* in r29,__SP_H__ */
8818c391
TR
667 };
668 unsigned short insn1;
2e5ff58c 669
8818c391 670 if (memcmp (prologue + vpc, img, sizeof (img)) == 0)
2e5ff58c
TR
671 {
672 vpc += 4;
673 fi->extra_info->framereg = AVR_FP_REGNUM;
674 scan_stage = 2;
675 }
8818c391
TR
676 }
677
678 /* Third stage of the prologue scanning. (Really two stages)
679 Scan for:
680 sbiw r28,XX or subi r28,lo8(XX)
681 sbci r29,hi8(XX)
682 in __tmp_reg__,__SREG__
683 cli
684 out __SP_L__,r28
685 out __SREG__,__tmp_reg__
686 out __SP_H__,r29 */
687
688 if (scan_stage == 2 && vpc + 12 <= prologue_len)
689 {
690 int locals_size = 0;
2e5ff58c
TR
691 unsigned char img[] = {
692 0x0f, 0xb6, /* in r0,0x3f */
693 0xf8, 0x94, /* cli */
694 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
695 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
696 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 697 };
2e5ff58c
TR
698 unsigned char img_sig[] = {
699 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
700 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 701 };
2e5ff58c
TR
702 unsigned char img_int[] = {
703 0xf8, 0x94, /* cli */
704 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */
705 0x78, 0x94, /* sei */
706 0xde, 0xbf /* out 0x3e,r29 ; SPH */
8818c391 707 };
2e5ff58c 708
8818c391
TR
709 insn = EXTRACT_INSN (&prologue[vpc]);
710 vpc += 2;
2e5ff58c
TR
711 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
712 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
713 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
714 {
715 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
716 insn = EXTRACT_INSN (&prologue[vpc]);
717 vpc += 2;
718 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8);
719 }
8818c391 720 else
2e5ff58c 721 return;
8818c391
TR
722 fi->extra_info->locals_size = locals_size;
723 fi->extra_info->framesize += locals_size;
724 }
725}
726
727/* This function actually figures out the frame address for a given pc and
728 sp. This is tricky because we sometimes don't use an explicit
729 frame pointer, and the previous stack pointer isn't necessarily recorded
730 on the stack. The only reliable way to get this info is to
731 examine the prologue. */
732
733static void
734avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
735{
736 int reg;
737
738 if (fi->next)
739 fi->pc = FRAME_SAVED_PC (fi->next);
740
741 fi->extra_info = (struct frame_extra_info *)
742 frame_obstack_alloc (sizeof (struct frame_extra_info));
743 frame_saved_regs_zalloc (fi);
744
745 fi->extra_info->return_pc = 0;
746 fi->extra_info->args_pointer = 0;
747 fi->extra_info->locals_size = 0;
748 fi->extra_info->framereg = 0;
749 fi->extra_info->framesize = 0;
750 fi->extra_info->is_main = 0;
2e5ff58c 751
8818c391
TR
752 avr_scan_prologue (fi);
753
754 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
755 {
756 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
757 by assuming it's always FP. */
135c175f
AC
758 /* FIXME: cagney/2002-09-13: This is wrong. The third parameter
759 to deprecated_read_register_dummy() is REGNUM and not a frame
760 address. */
761 fi->frame = deprecated_read_register_dummy (fi->pc, fi->frame,
762 fi->frame);
8818c391 763 }
2e5ff58c 764 else if (!fi->next) /* this is the innermost frame? */
8818c391 765 fi->frame = read_register (fi->extra_info->framereg);
2e5ff58c 766 else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */
8818c391
TR
767 /* If we have an next frame, the callee saved it. */
768 {
2e5ff58c 769 struct frame_info *next_fi = fi->next;
8818c391 770 if (fi->extra_info->framereg == AVR_SP_REGNUM)
2e5ff58c
TR
771 fi->frame =
772 next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize;
8818c391
TR
773 /* FIXME: I don't analyse va_args functions */
774 else
2e5ff58c
TR
775 {
776 CORE_ADDR fp = 0;
777 CORE_ADDR fp1 = 0;
778 unsigned int fp_low, fp_high;
779
780 /* Scan all frames */
781 for (; next_fi; next_fi = next_fi->next)
782 {
783 /* look for saved AVR_FP_REGNUM */
784 if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp)
785 fp = next_fi->saved_regs[AVR_FP_REGNUM];
786 /* look for saved AVR_FP_REGNUM + 1 */
787 if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1)
788 fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1];
789 }
790 fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1)
791 : read_register (AVR_FP_REGNUM)) & 0xff;
792 fp_high =
793 (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) :
794 read_register (AVR_FP_REGNUM + 1)) & 0xff;
795 fi->frame = fp_low | (fp_high << 8);
796 }
8818c391
TR
797 }
798
799 /* TRoth: Do we want to do this if we are in main? I don't think we should
800 since return_pc makes no sense when we are in main. */
801
2e5ff58c 802 if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */
8818c391
TR
803 {
804 CORE_ADDR addr;
805 int i;
2e5ff58c 806
8818c391 807 addr = fi->frame + fi->extra_info->framesize + 1;
2e5ff58c 808
8818c391
TR
809 /* Return address in stack in different endianness */
810
811 fi->extra_info->return_pc =
2e5ff58c 812 read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8;
8818c391 813 fi->extra_info->return_pc |=
2e5ff58c
TR
814 read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1);
815
8818c391
TR
816 /* This return address in words,
817 must be converted to the bytes address */
818 fi->extra_info->return_pc *= 2;
819
820 /* Resolve a pushed registers addresses */
821 for (i = 0; i < NUM_REGS; i++)
2e5ff58c
TR
822 {
823 if (fi->saved_regs[i])
824 fi->saved_regs[i] = addr - fi->saved_regs[i];
825 }
8818c391
TR
826 }
827}
828
829/* Restore the machine to the state it had before the current frame was
830 created. Usually used either by the "RETURN" command, or by
831 call_function_by_hand after the dummy_frame is finished. */
832
833static void
834avr_pop_frame (void)
835{
836 unsigned regnum;
837 CORE_ADDR saddr;
838 struct frame_info *frame = get_current_frame ();
839
2e5ff58c 840 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
8818c391 841 {
2e5ff58c 842 generic_pop_dummy_frame ();
8818c391
TR
843 }
844 else
845 {
846 /* TRoth: Why only loop over 8 registers? */
847
848 for (regnum = 0; regnum < 8; regnum++)
2e5ff58c
TR
849 {
850 /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the
851 actual value we want, not the address of the value we want. */
852 if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM)
853 {
854 saddr = avr_make_saddr (frame->saved_regs[regnum]);
855 write_register (regnum,
856 read_memory_unsigned_integer (saddr, 1));
857 }
858 else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM)
859 write_register (regnum, frame->frame + 2);
860 }
8818c391
TR
861
862 /* Don't forget the update the PC too! */
863 write_pc (frame->extra_info->return_pc);
864 }
865 flush_cached_frames ();
866}
867
868/* Return the saved PC from this frame. */
869
870static CORE_ADDR
871avr_frame_saved_pc (struct frame_info *frame)
872{
2e5ff58c 873 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
135c175f
AC
874 return deprecated_read_register_dummy (frame->pc, frame->frame,
875 AVR_PC_REGNUM);
8818c391
TR
876 else
877 return frame->extra_info->return_pc;
878}
879
880static CORE_ADDR
881avr_saved_pc_after_call (struct frame_info *frame)
882{
883 unsigned char m1, m2;
884 unsigned int sp = read_register (AVR_SP_REGNUM);
885 m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1);
886 m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1);
887 return (m2 | (m1 << 8)) * 2;
888}
889
890/* Figure out where in REGBUF the called function has left its return value.
891 Copy that into VALBUF. */
892
893static void
894avr_extract_return_value (struct type *type, char *regbuf, char *valbuf)
895{
896 int wordsize, len;
897
898 wordsize = 2;
899
2e5ff58c
TR
900 len = TYPE_LENGTH (type);
901
902 switch (len)
903 {
904 case 1: /* (char) */
905 case 2: /* (short), (int) */
906 memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2);
907 break;
908 case 4: /* (long), (float) */
909 memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4);
910 break;
911 case 8: /* (double) (doesn't seem to happen, which is good,
912 because this almost certainly isn't right. */
913 error ("I don't know how a double is returned.");
914 break;
915 }
8818c391
TR
916}
917
918/* Returns the return address for a dummy. */
919
920static CORE_ADDR
921avr_call_dummy_address (void)
922{
923 return entry_point_address ();
924}
925
926/* Place the appropriate value in the appropriate registers.
927 Primarily used by the RETURN command. */
928
929static void
930avr_store_return_value (struct type *type, char *valbuf)
931{
932 int wordsize, len, regval;
2e5ff58c 933
8818c391
TR
934 wordsize = 2;
935
2e5ff58c
TR
936 len = TYPE_LENGTH (type);
937 switch (len)
938 {
939 case 1: /* char */
940 case 2: /* short, int */
941 regval = extract_address (valbuf, len);
942 write_register (0, regval);
943 break;
944 case 4: /* long, float */
945 regval = extract_address (valbuf, len);
946 write_register (0, regval >> 16);
947 write_register (1, regval & 0xffff);
948 break;
949 case 8: /* presumeably double, but doesn't seem to happen */
950 error ("I don't know how to return a double.");
951 break;
952 }
8818c391
TR
953}
954
955/* Setup the return address for a dummy frame, as called by
956 call_function_by_hand. Only necessary when you are using an empty
957 CALL_DUMMY. */
958
959static CORE_ADDR
960avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
961{
962 unsigned char buf[2];
963 int wordsize = 2;
964 struct minimal_symbol *msymbol;
965 CORE_ADDR mon_brk;
966
967 fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n");
968
969 buf[0] = 0;
970 buf[1] = 0;
971 sp -= wordsize;
972 write_memory (sp + 1, buf, 2);
973
974#if 0
975 /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a
976 left-over from Denis' original patch which used avr-mon for the target
977 instead of the generic remote target. */
978 if ((strcmp (target_shortname, "avr-mon") == 0)
979 && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL)))
980 {
981 mon_brk = SYMBOL_VALUE_ADDRESS (msymbol);
982 store_unsigned_integer (buf, wordsize, mon_brk / 2);
983 sp -= wordsize;
984 write_memory (sp + 1, buf + 1, 1);
985 write_memory (sp + 2, buf, 1);
986 }
987#endif
988 return sp;
989}
990
991static CORE_ADDR
992avr_skip_prologue (CORE_ADDR pc)
993{
994 CORE_ADDR func_addr, func_end;
995 struct symtab_and_line sal;
996
997 /* See what the symbol table says */
998
999 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1000 {
1001 sal = find_pc_line (func_addr, 0);
1002
ced15480
TR
1003 /* troth/2002-08-05: For some very simple functions, gcc doesn't
1004 generate a prologue and the sal.end ends up being the 2-byte ``ret''
1005 instruction at the end of the function, but func_end ends up being
1006 the address of the first instruction of the _next_ function. By
1007 adjusting func_end by 2 bytes, we can catch these functions and not
1008 return sal.end if it is the ``ret'' instruction. */
1009
1010 if (sal.line != 0 && sal.end < (func_end-2))
2e5ff58c 1011 return sal.end;
8818c391
TR
1012 }
1013
1014/* Either we didn't find the start of this function (nothing we can do),
1015 or there's no line info, or the line after the prologue is after
1016 the end of the function (there probably isn't a prologue). */
1017
1018 return pc;
1019}
1020
1021static CORE_ADDR
1022avr_frame_address (struct frame_info *fi)
1023{
1024 return avr_make_saddr (fi->frame);
1025}
1026
1027/* Given a GDB frame, determine the address of the calling function's frame.
1028 This will be used to create a new GDB frame struct, and then
1029 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1030
1031 For us, the frame address is its stack pointer value, so we look up
1032 the function prologue to determine the caller's sp value, and return it. */
1033
1034static CORE_ADDR
1035avr_frame_chain (struct frame_info *frame)
1036{
1037 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1038 {
1039 /* initialize the return_pc now */
135c175f
AC
1040 frame->extra_info->return_pc
1041 = deprecated_read_register_dummy (frame->pc, frame->frame,
1042 AVR_PC_REGNUM);
8818c391
TR
1043 return frame->frame;
1044 }
1045 return (frame->extra_info->is_main ? 0
2e5ff58c 1046 : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ );
8818c391
TR
1047}
1048
1049/* Store the address of the place in which to copy the structure the
1050 subroutine will return. This is called from call_function.
1051
1052 We store structs through a pointer passed in the first Argument
1053 register. */
1054
1055static void
1056avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1057{
1058 write_register (0, addr);
1059}
1060
1061/* Extract from an array REGBUF containing the (raw) register state
1062 the address in which a function should return its structure value,
1063 as a CORE_ADDR (or an expression that can be used as one). */
1064
1065static CORE_ADDR
1066avr_extract_struct_value_address (char *regbuf)
1067{
1068 return (extract_address ((regbuf) + REGISTER_BYTE (0),
2e5ff58c 1069 REGISTER_RAW_SIZE (0)) | AVR_SMEM_START);
8818c391
TR
1070}
1071
1072/* Setup the function arguments for calling a function in the inferior.
1073
1074 On the AVR architecture, there are 18 registers (R25 to R8) which are
1075 dedicated for passing function arguments. Up to the first 18 arguments
1076 (depending on size) may go into these registers. The rest go on the stack.
1077
1078 Arguments that are larger than WORDSIZE bytes will be split between two or
1079 more registers as available, but will NOT be split between a register and
1080 the stack.
1081
1082 An exceptional case exists for struct arguments (and possibly other
1083 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1084 not a multiple of WORDSIZE bytes. In this case the argument is never split
1085 between the registers and the stack, but instead is copied in its entirety
1086 onto the stack, AND also copied into as many registers as there is room
1087 for. In other words, space in registers permitting, two copies of the same
1088 argument are passed in. As far as I can tell, only the one on the stack is
1089 used, although that may be a function of the level of compiler
1090 optimization. I suspect this is a compiler bug. Arguments of these odd
1091 sizes are left-justified within the word (as opposed to arguments smaller
1092 than WORDSIZE bytes, which are right-justified).
1093
1094 If the function is to return an aggregate type such as a struct, the caller
1095 must allocate space into which the callee will copy the return value. In
1096 this case, a pointer to the return value location is passed into the callee
1097 in register R0, which displaces one of the other arguments passed in via
1098 registers R0 to R2. */
1099
1100static CORE_ADDR
1101avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2e5ff58c 1102 int struct_return, CORE_ADDR struct_addr)
8818c391
TR
1103{
1104 int stack_alloc, stack_offset;
1105 int wordsize;
1106 int argreg;
1107 int argnum;
1108 struct type *type;
1109 CORE_ADDR regval;
1110 char *val;
1111 char valbuf[4];
1112 int len;
1113
2e5ff58c 1114 wordsize = 1;
8818c391
TR
1115#if 0
1116 /* Now make sure there's space on the stack */
2e5ff58c
TR
1117 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1118 stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1119 sp -= stack_alloc; /* make room on stack for args */
8818c391
TR
1120 /* we may over-allocate a little here, but that won't hurt anything */
1121#endif
1122 argreg = 25;
2e5ff58c 1123 if (struct_return) /* "struct return" pointer takes up one argreg */
8818c391
TR
1124 {
1125 write_register (--argreg, struct_addr);
1126 }
1127
1128 /* Now load as many as possible of the first arguments into registers, and
1129 push the rest onto the stack. There are 3N bytes in three registers
1130 available. Loop thru args from first to last. */
1131
1132 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1133 {
1134 type = VALUE_TYPE (args[argnum]);
1135 len = TYPE_LENGTH (type);
1136 val = (char *) VALUE_CONTENTS (args[argnum]);
1137
1138 /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because
1139 some *&^%$ things get passed on the stack AND in the registers! */
1140 while (len > 0)
2e5ff58c
TR
1141 { /* there's room in registers */
1142 len -= wordsize;
1143 regval = extract_address (val + len, wordsize);
1144 write_register (argreg--, regval);
1145 }
8818c391
TR
1146 }
1147 return sp;
1148}
1149
1150/* Initialize the gdbarch structure for the AVR's. */
1151
1152static struct gdbarch *
2e5ff58c
TR
1153avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1154{
8818c391
TR
1155 /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should
1156 be bigger or not. Initial testing seems to show that `call my_func()`
1157 works and backtrace from a breakpoint within the call looks correct.
1158 Admittedly, I haven't tested with more than a very simple program. */
2e5ff58c 1159 static LONGEST avr_call_dummy_words[] = { 0 };
8818c391 1160
2e5ff58c
TR
1161 struct gdbarch *gdbarch;
1162 struct gdbarch_tdep *tdep;
8818c391
TR
1163
1164 /* Find a candidate among the list of pre-declared architectures. */
1165 arches = gdbarch_list_lookup_by_info (arches, &info);
1166 if (arches != NULL)
1167 return arches->gdbarch;
1168
1169 /* None found, create a new architecture from the information provided. */
1170 tdep = XMALLOC (struct gdbarch_tdep);
1171 gdbarch = gdbarch_alloc (&info, tdep);
1172
1173 /* If we ever need to differentiate the device types, do it here. */
1174 switch (info.bfd_arch_info->mach)
1175 {
1176 case bfd_mach_avr1:
1177 case bfd_mach_avr2:
1178 case bfd_mach_avr3:
1179 case bfd_mach_avr4:
1180 case bfd_mach_avr5:
1181 break;
1182 }
1183
1184 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1185 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1186 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1187 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1188 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1189 set_gdbarch_addr_bit (gdbarch, 32);
2e5ff58c 1190 set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */
8818c391
TR
1191
1192 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1193 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1194 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1195
1196 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1197 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1198 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little);
1199
1200 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1201 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1202 set_gdbarch_read_fp (gdbarch, avr_read_fp);
1203 set_gdbarch_read_sp (gdbarch, avr_read_sp);
1204 set_gdbarch_write_sp (gdbarch, avr_write_sp);
1205
1206 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1207
1208 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1209 set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM);
1210 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1211
1212 set_gdbarch_register_name (gdbarch, avr_register_name);
1213 set_gdbarch_register_size (gdbarch, 1);
1214 set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES);
1215 set_gdbarch_register_byte (gdbarch, avr_register_byte);
1216 set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size);
1217 set_gdbarch_max_register_raw_size (gdbarch, 4);
1218 set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size);
1219 set_gdbarch_max_register_virtual_size (gdbarch, 4);
1220 set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type);
1221
8a55a7c5 1222 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
8818c391
TR
1223
1224 set_gdbarch_print_insn (gdbarch, print_insn_avr);
1225
1226 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1227 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1228 set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address);
1229 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1230 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1231 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1232 set_gdbarch_call_dummy_length (gdbarch, 0);
1233 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1234 set_gdbarch_call_dummy_p (gdbarch, 1);
1235 set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words);
1236 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1237 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1238
1239/* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */
1240
1241 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1242 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
26e9b323 1243 set_gdbarch_deprecated_extract_return_value (gdbarch, avr_extract_return_value);
8818c391
TR
1244 set_gdbarch_push_arguments (gdbarch, avr_push_arguments);
1245 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1246/* set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */
1247 set_gdbarch_pop_frame (gdbarch, avr_pop_frame);
1248
ebba8386 1249 set_gdbarch_deprecated_store_return_value (gdbarch, avr_store_return_value);
8818c391
TR
1250
1251 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
1252 set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return);
26e9b323
AC
1253 set_gdbarch_deprecated_extract_struct_value_address
1254 (gdbarch, avr_extract_struct_value_address);
8818c391
TR
1255
1256 set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue);
1257 set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info);
1258 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1259/* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */
1260 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1261
1262 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1263
1264 set_gdbarch_function_start_offset (gdbarch, 0);
2e5ff58c
TR
1265 set_gdbarch_remote_translate_xfer_address (gdbarch,
1266 avr_remote_translate_xfer_address);
8818c391 1267 set_gdbarch_frame_args_skip (gdbarch, 0);
2e5ff58c 1268 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */
8818c391
TR
1269 set_gdbarch_frame_chain (gdbarch, avr_frame_chain);
1270 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
1271 set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc);
1272 set_gdbarch_frame_args_address (gdbarch, avr_frame_address);
1273 set_gdbarch_frame_locals_address (gdbarch, avr_frame_address);
1274 set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call);
1275 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1276
2e5ff58c
TR
1277 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
1278 avr_convert_from_func_ptr_addr);
8818c391
TR
1279
1280 return gdbarch;
1281}
1282
1283/* Send a query request to the avr remote target asking for values of the io
1284 registers. If args parameter is not NULL, then the user has requested info
1285 on a specific io register [This still needs implemented and is ignored for
1286 now]. The query string should be one of these forms:
1287
1288 "Ravr.io_reg" -> reply is "NN" number of io registers
1289
1290 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1291 registers to be read. The reply should be "<NAME>,VV;" for each io register
1292 where, <NAME> is a string, and VV is the hex value of the register.
1293
1294 All io registers are 8-bit. */
1295
1296static void
1297avr_io_reg_read_command (char *args, int from_tty)
1298{
2e5ff58c
TR
1299 int bufsiz = 0;
1300 char buf[400];
1301 char query[400];
1302 char *p;
1303 unsigned int nreg = 0;
1304 unsigned int val;
1305 int i, j, k, step;
8818c391
TR
1306
1307/* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */
1308/* args, from_tty); */
1309
2e5ff58c 1310 if (!current_target.to_query)
8818c391 1311 {
2e5ff58c
TR
1312 fprintf_unfiltered (gdb_stderr,
1313 "ERR: info io_registers NOT supported by current target\n");
8818c391
TR
1314 return;
1315 }
1316
1317 /* Just get the maximum buffer size. */
1318 target_query ((int) 'R', 0, 0, &bufsiz);
2e5ff58c
TR
1319 if (bufsiz > sizeof (buf))
1320 bufsiz = sizeof (buf);
8818c391
TR
1321
1322 /* Find out how many io registers the target has. */
1323 strcpy (query, "avr.io_reg");
2e5ff58c 1324 target_query ((int) 'R', query, buf, &bufsiz);
8818c391
TR
1325
1326 if (strncmp (buf, "", bufsiz) == 0)
1327 {
2e5ff58c
TR
1328 fprintf_unfiltered (gdb_stderr,
1329 "info io_registers NOT supported by target\n");
8818c391
TR
1330 return;
1331 }
1332
2e5ff58c 1333 if (sscanf (buf, "%x", &nreg) != 1)
8818c391 1334 {
2e5ff58c
TR
1335 fprintf_unfiltered (gdb_stderr,
1336 "Error fetching number of io registers\n");
8818c391
TR
1337 return;
1338 }
1339
2e5ff58c 1340 reinitialize_more_filter ();
8818c391
TR
1341
1342 printf_unfiltered ("Target has %u io registers:\n\n", nreg);
1343
1344 /* only fetch up to 8 registers at a time to keep the buffer small */
1345 step = 8;
1346
2e5ff58c 1347 for (i = 0; i < nreg; i += step)
8818c391 1348 {
2e5ff58c 1349 j = step - (nreg % step); /* how many registers this round? */
8818c391 1350
2e5ff58c 1351 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
8818c391
TR
1352 target_query ((int) 'R', query, buf, &bufsiz);
1353
1354 p = buf;
2e5ff58c
TR
1355 for (k = i; k < (i + j); k++)
1356 {
1357 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1358 {
1359 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1360 while ((*p != ';') && (*p != '\0'))
1361 p++;
1362 p++; /* skip over ';' */
1363 if (*p == '\0')
1364 break;
1365 }
1366 }
8818c391
TR
1367 }
1368}
1369
1370void
1371_initialize_avr_tdep (void)
1372{
1373 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1374
1375 /* Add a new command to allow the user to query the avr remote target for
1376 the values of the io space registers in a saner way than just using
1377 `x/NNNb ADDR`. */
1378
1379 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1380 io_registers' to signify it is not available on other platforms. */
1381
1382 add_cmd ("io_registers", class_info, avr_io_reg_read_command,
2e5ff58c 1383 "query remote avr target for io space register values", &infolist);
8818c391 1384}
This page took 0.107388 seconds and 4 git commands to generate.