* bcache.c (bcache_data): Call deprecated_bcache_added function.
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
9b254dd1 3 Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008
6aba47ca 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c
SS
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "expression.h"
27#include "command.h"
28#include "gdbcmd.h"
29#include "frame.h"
30#include "target.h"
31#include "ax.h"
32#include "ax-gdb.h"
309367d4 33#include "gdb_string.h"
fe898f56 34#include "block.h"
7b83296f 35#include "regcache.h"
c906108c 36
6426a772
JM
37/* To make sense of this file, you should read doc/agentexpr.texi.
38 Then look at the types and enums in ax-gdb.h. For the code itself,
39 look at gen_expr, towards the bottom; that's the main function that
40 looks at the GDB expressions and calls everything else to generate
41 code.
c906108c
SS
42
43 I'm beginning to wonder whether it wouldn't be nicer to internally
44 generate trees, with types, and then spit out the bytecode in
45 linear form afterwards; we could generate fewer `swap', `ext', and
46 `zero_ext' bytecodes that way; it would make good constant folding
47 easier, too. But at the moment, I think we should be willing to
48 pay for the simplicity of this code with less-than-optimal bytecode
49 strings.
50
c5aa993b
JM
51 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
52\f
c906108c
SS
53
54
c906108c
SS
55/* Prototypes for local functions. */
56
57/* There's a standard order to the arguments of these functions:
58 union exp_element ** --- pointer into expression
59 struct agent_expr * --- agent expression buffer to generate code into
60 struct axs_value * --- describes value left on top of stack */
c5aa993b 61
a14ed312
KB
62static struct value *const_var_ref (struct symbol *var);
63static struct value *const_expr (union exp_element **pc);
64static struct value *maybe_const_expr (union exp_element **pc);
65
66static void gen_traced_pop (struct agent_expr *, struct axs_value *);
67
68static void gen_sign_extend (struct agent_expr *, struct type *);
69static void gen_extend (struct agent_expr *, struct type *);
70static void gen_fetch (struct agent_expr *, struct type *);
71static void gen_left_shift (struct agent_expr *, int);
72
73
74static void gen_frame_args_address (struct agent_expr *);
75static void gen_frame_locals_address (struct agent_expr *);
76static void gen_offset (struct agent_expr *ax, int offset);
77static void gen_sym_offset (struct agent_expr *, struct symbol *);
78static void gen_var_ref (struct agent_expr *ax,
79 struct axs_value *value, struct symbol *var);
80
81
82static void gen_int_literal (struct agent_expr *ax,
83 struct axs_value *value,
84 LONGEST k, struct type *type);
85
86
87static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
88static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
89static int type_wider_than (struct type *type1, struct type *type2);
90static struct type *max_type (struct type *type1, struct type *type2);
91static void gen_conversion (struct agent_expr *ax,
92 struct type *from, struct type *to);
93static int is_nontrivial_conversion (struct type *from, struct type *to);
94static void gen_usual_arithmetic (struct agent_expr *ax,
95 struct axs_value *value1,
96 struct axs_value *value2);
97static void gen_integral_promotions (struct agent_expr *ax,
98 struct axs_value *value);
99static void gen_cast (struct agent_expr *ax,
100 struct axs_value *value, struct type *type);
101static void gen_scale (struct agent_expr *ax,
102 enum agent_op op, struct type *type);
103static void gen_add (struct agent_expr *ax,
104 struct axs_value *value,
105 struct axs_value *value1,
106 struct axs_value *value2, char *name);
107static void gen_sub (struct agent_expr *ax,
108 struct axs_value *value,
109 struct axs_value *value1, struct axs_value *value2);
110static void gen_binop (struct agent_expr *ax,
111 struct axs_value *value,
112 struct axs_value *value1,
113 struct axs_value *value2,
114 enum agent_op op,
115 enum agent_op op_unsigned, int may_carry, char *name);
116static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
117static void gen_complement (struct agent_expr *ax, struct axs_value *value);
118static void gen_deref (struct agent_expr *, struct axs_value *);
119static void gen_address_of (struct agent_expr *, struct axs_value *);
120static int find_field (struct type *type, char *name);
121static void gen_bitfield_ref (struct agent_expr *ax,
122 struct axs_value *value,
123 struct type *type, int start, int end);
124static void gen_struct_ref (struct agent_expr *ax,
125 struct axs_value *value,
126 char *field,
127 char *operator_name, char *operand_name);
128static void gen_repeat (union exp_element **pc,
129 struct agent_expr *ax, struct axs_value *value);
130static void gen_sizeof (union exp_element **pc,
131 struct agent_expr *ax, struct axs_value *value);
132static void gen_expr (union exp_element **pc,
133 struct agent_expr *ax, struct axs_value *value);
c5aa993b 134
a14ed312 135static void agent_command (char *exp, int from_tty);
c906108c 136\f
c5aa993b 137
c906108c
SS
138/* Detecting constant expressions. */
139
140/* If the variable reference at *PC is a constant, return its value.
141 Otherwise, return zero.
142
143 Hey, Wally! How can a variable reference be a constant?
144
145 Well, Beav, this function really handles the OP_VAR_VALUE operator,
146 not specifically variable references. GDB uses OP_VAR_VALUE to
147 refer to any kind of symbolic reference: function names, enum
148 elements, and goto labels are all handled through the OP_VAR_VALUE
149 operator, even though they're constants. It makes sense given the
150 situation.
151
152 Gee, Wally, don'cha wonder sometimes if data representations that
153 subvert commonly accepted definitions of terms in favor of heavily
154 context-specific interpretations are really just a tool of the
155 programming hegemony to preserve their power and exclude the
156 proletariat? */
157
158static struct value *
fba45db2 159const_var_ref (struct symbol *var)
c906108c
SS
160{
161 struct type *type = SYMBOL_TYPE (var);
162
163 switch (SYMBOL_CLASS (var))
164 {
165 case LOC_CONST:
166 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
167
168 case LOC_LABEL:
4478b372 169 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
170
171 default:
172 return 0;
173 }
174}
175
176
177/* If the expression starting at *PC has a constant value, return it.
178 Otherwise, return zero. If we return a value, then *PC will be
179 advanced to the end of it. If we return zero, *PC could be
180 anywhere. */
181static struct value *
fba45db2 182const_expr (union exp_element **pc)
c906108c
SS
183{
184 enum exp_opcode op = (*pc)->opcode;
185 struct value *v1;
186
187 switch (op)
188 {
189 case OP_LONG:
190 {
191 struct type *type = (*pc)[1].type;
192 LONGEST k = (*pc)[2].longconst;
193 (*pc) += 4;
194 return value_from_longest (type, k);
195 }
196
197 case OP_VAR_VALUE:
198 {
199 struct value *v = const_var_ref ((*pc)[2].symbol);
200 (*pc) += 4;
201 return v;
202 }
203
c5aa993b 204 /* We could add more operators in here. */
c906108c
SS
205
206 case UNOP_NEG:
207 (*pc)++;
208 v1 = const_expr (pc);
209 if (v1)
210 return value_neg (v1);
211 else
212 return 0;
213
214 default:
215 return 0;
216 }
217}
218
219
220/* Like const_expr, but guarantee also that *PC is undisturbed if the
221 expression is not constant. */
222static struct value *
fba45db2 223maybe_const_expr (union exp_element **pc)
c906108c
SS
224{
225 union exp_element *tentative_pc = *pc;
226 struct value *v = const_expr (&tentative_pc);
227
228 /* If we got a value, then update the real PC. */
229 if (v)
230 *pc = tentative_pc;
c5aa993b 231
c906108c
SS
232 return v;
233}
c906108c 234\f
c5aa993b 235
c906108c
SS
236/* Generating bytecode from GDB expressions: general assumptions */
237
238/* Here are a few general assumptions made throughout the code; if you
239 want to make a change that contradicts one of these, then you'd
240 better scan things pretty thoroughly.
241
242 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
243 sometimes we'll swap to get at the left argument to a binary
244 operator. If we decide that void values should occupy no stack
245 elements, or that synthetic arrays (whose size is determined at
246 run time, created by the `@' operator) should occupy two stack
247 elements (address and length), then this will cause trouble.
c906108c
SS
248
249 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
250 don't have to worry what happens if the user requests an
251 operation that is wider than the actual interpreter's stack.
252 That is, it's up to the interpreter to handle directly all the
253 integer widths the user has access to. (Woe betide the language
254 with bignums!)
c906108c
SS
255
256 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 257 GCC's generalized lvalues, function calls, etc.
c906108c
SS
258
259 - We don't support floating point. Many places where we switch on
c5aa993b
JM
260 some type don't bother to include cases for floating point; there
261 may be even more subtle ways this assumption exists. For
262 example, the arguments to % must be integers.
c906108c
SS
263
264 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
265 we tried to support convenience variables, this would be a
266 problem.
c906108c
SS
267
268 - All values on the stack should always be fully zero- or
c5aa993b
JM
269 sign-extended.
270
271 (I wasn't sure whether to choose this or its opposite --- that
272 only addresses are assumed extended --- but it turns out that
273 neither convention completely eliminates spurious extend
274 operations (if everything is always extended, then you have to
275 extend after add, because it could overflow; if nothing is
276 extended, then you end up producing extends whenever you change
277 sizes), and this is simpler.) */
c906108c 278\f
c5aa993b 279
c906108c
SS
280/* Generating bytecode from GDB expressions: the `trace' kludge */
281
282/* The compiler in this file is a general-purpose mechanism for
283 translating GDB expressions into bytecode. One ought to be able to
284 find a million and one uses for it.
285
286 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
287 of expediency. Let he who is without sin cast the first stone.
288
289 For the data tracing facility, we need to insert `trace' bytecodes
290 before each data fetch; this records all the memory that the
291 expression touches in the course of evaluation, so that memory will
292 be available when the user later tries to evaluate the expression
293 in GDB.
294
295 This should be done (I think) in a post-processing pass, that walks
296 an arbitrary agent expression and inserts `trace' operations at the
297 appropriate points. But it's much faster to just hack them
298 directly into the code. And since we're in a crunch, that's what
299 I've done.
300
301 Setting the flag trace_kludge to non-zero enables the code that
302 emits the trace bytecodes at the appropriate points. */
303static int trace_kludge;
304
305/* Trace the lvalue on the stack, if it needs it. In either case, pop
306 the value. Useful on the left side of a comma, and at the end of
307 an expression being used for tracing. */
308static void
fba45db2 309gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
310{
311 if (trace_kludge)
312 switch (value->kind)
313 {
314 case axs_rvalue:
315 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 316 produce them. So just dispose of this value. */
c906108c
SS
317 ax_simple (ax, aop_pop);
318 break;
319
320 case axs_lvalue_memory:
321 {
648027cc 322 int length = TYPE_LENGTH (check_typedef (value->type));
c906108c
SS
323
324 /* There's no point in trying to use a trace_quick bytecode
325 here, since "trace_quick SIZE pop" is three bytes, whereas
326 "const8 SIZE trace" is also three bytes, does the same
327 thing, and the simplest code which generates that will also
328 work correctly for objects with large sizes. */
329 ax_const_l (ax, length);
330 ax_simple (ax, aop_trace);
331 }
c5aa993b 332 break;
c906108c
SS
333
334 case axs_lvalue_register:
335 /* We need to mention the register somewhere in the bytecode,
336 so ax_reqs will pick it up and add it to the mask of
337 registers used. */
338 ax_reg (ax, value->u.reg);
339 ax_simple (ax, aop_pop);
340 break;
341 }
342 else
343 /* If we're not tracing, just pop the value. */
344 ax_simple (ax, aop_pop);
345}
c5aa993b 346\f
c906108c
SS
347
348
c906108c
SS
349/* Generating bytecode from GDB expressions: helper functions */
350
351/* Assume that the lower bits of the top of the stack is a value of
352 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
353static void
fba45db2 354gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
355{
356 /* Do we need to sign-extend this? */
c5aa993b 357 if (!TYPE_UNSIGNED (type))
0004e5a2 358 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
359}
360
361
362/* Assume the lower bits of the top of the stack hold a value of type
363 TYPE, and the upper bits are garbage. Sign-extend or truncate as
364 needed. */
365static void
fba45db2 366gen_extend (struct agent_expr *ax, struct type *type)
c906108c 367{
0004e5a2 368 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
c906108c
SS
369 /* I just had to. */
370 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
371}
372
373
374/* Assume that the top of the stack contains a value of type "pointer
375 to TYPE"; generate code to fetch its value. Note that TYPE is the
376 target type, not the pointer type. */
377static void
fba45db2 378gen_fetch (struct agent_expr *ax, struct type *type)
c906108c
SS
379{
380 if (trace_kludge)
381 {
382 /* Record the area of memory we're about to fetch. */
383 ax_trace_quick (ax, TYPE_LENGTH (type));
384 }
385
0004e5a2 386 switch (TYPE_CODE (type))
c906108c
SS
387 {
388 case TYPE_CODE_PTR:
389 case TYPE_CODE_ENUM:
390 case TYPE_CODE_INT:
391 case TYPE_CODE_CHAR:
392 /* It's a scalar value, so we know how to dereference it. How
393 many bytes long is it? */
0004e5a2 394 switch (TYPE_LENGTH (type))
c906108c 395 {
c5aa993b
JM
396 case 8 / TARGET_CHAR_BIT:
397 ax_simple (ax, aop_ref8);
398 break;
399 case 16 / TARGET_CHAR_BIT:
400 ax_simple (ax, aop_ref16);
401 break;
402 case 32 / TARGET_CHAR_BIT:
403 ax_simple (ax, aop_ref32);
404 break;
405 case 64 / TARGET_CHAR_BIT:
406 ax_simple (ax, aop_ref64);
407 break;
c906108c
SS
408
409 /* Either our caller shouldn't have asked us to dereference
410 that pointer (other code's fault), or we're not
411 implementing something we should be (this code's fault).
412 In any case, it's a bug the user shouldn't see. */
413 default:
8e65ff28 414 internal_error (__FILE__, __LINE__,
3d263c1d 415 _("gen_fetch: strange size"));
c906108c
SS
416 }
417
418 gen_sign_extend (ax, type);
419 break;
420
421 default:
422 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
423 pointer (other code's fault), or we're not implementing
424 something we should be (this code's fault). In any case,
425 it's a bug the user shouldn't see. */
8e65ff28 426 internal_error (__FILE__, __LINE__,
3d263c1d 427 _("gen_fetch: bad type code"));
c906108c
SS
428 }
429}
430
431
432/* Generate code to left shift the top of the stack by DISTANCE bits, or
433 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
434 unsigned (logical) right shifts. */
435static void
fba45db2 436gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
437{
438 if (distance > 0)
439 {
440 ax_const_l (ax, distance);
441 ax_simple (ax, aop_lsh);
442 }
443 else if (distance < 0)
444 {
445 ax_const_l (ax, -distance);
446 ax_simple (ax, aop_rsh_unsigned);
447 }
448}
c5aa993b 449\f
c906108c
SS
450
451
c906108c
SS
452/* Generating bytecode from GDB expressions: symbol references */
453
454/* Generate code to push the base address of the argument portion of
455 the top stack frame. */
456static void
fba45db2 457gen_frame_args_address (struct agent_expr *ax)
c906108c 458{
39d4ef09
AC
459 int frame_reg;
460 LONGEST frame_offset;
c906108c 461
c7bb205c
UW
462 gdbarch_virtual_frame_pointer (current_gdbarch,
463 ax->scope, &frame_reg, &frame_offset);
c5aa993b 464 ax_reg (ax, frame_reg);
c906108c
SS
465 gen_offset (ax, frame_offset);
466}
467
468
469/* Generate code to push the base address of the locals portion of the
470 top stack frame. */
471static void
fba45db2 472gen_frame_locals_address (struct agent_expr *ax)
c906108c 473{
39d4ef09
AC
474 int frame_reg;
475 LONGEST frame_offset;
c906108c 476
c7bb205c
UW
477 gdbarch_virtual_frame_pointer (current_gdbarch,
478 ax->scope, &frame_reg, &frame_offset);
c5aa993b 479 ax_reg (ax, frame_reg);
c906108c
SS
480 gen_offset (ax, frame_offset);
481}
482
483
484/* Generate code to add OFFSET to the top of the stack. Try to
485 generate short and readable code. We use this for getting to
486 variables on the stack, and structure members. If we were
487 programming in ML, it would be clearer why these are the same
488 thing. */
489static void
fba45db2 490gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
491{
492 /* It would suffice to simply push the offset and add it, but this
493 makes it easier to read positive and negative offsets in the
494 bytecode. */
495 if (offset > 0)
496 {
497 ax_const_l (ax, offset);
498 ax_simple (ax, aop_add);
499 }
500 else if (offset < 0)
501 {
502 ax_const_l (ax, -offset);
503 ax_simple (ax, aop_sub);
504 }
505}
506
507
508/* In many cases, a symbol's value is the offset from some other
509 address (stack frame, base register, etc.) Generate code to add
510 VAR's value to the top of the stack. */
511static void
fba45db2 512gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
513{
514 gen_offset (ax, SYMBOL_VALUE (var));
515}
516
517
518/* Generate code for a variable reference to AX. The variable is the
519 symbol VAR. Set VALUE to describe the result. */
520
521static void
fba45db2 522gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
c906108c
SS
523{
524 /* Dereference any typedefs. */
525 value->type = check_typedef (SYMBOL_TYPE (var));
526
527 /* I'm imitating the code in read_var_value. */
528 switch (SYMBOL_CLASS (var))
529 {
530 case LOC_CONST: /* A constant, like an enum value. */
531 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
532 value->kind = axs_rvalue;
533 break;
534
535 case LOC_LABEL: /* A goto label, being used as a value. */
536 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
537 value->kind = axs_rvalue;
538 break;
539
540 case LOC_CONST_BYTES:
8e65ff28 541 internal_error (__FILE__, __LINE__,
3d263c1d 542 _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
c906108c
SS
543
544 /* Variable at a fixed location in memory. Easy. */
545 case LOC_STATIC:
546 /* Push the address of the variable. */
547 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
548 value->kind = axs_lvalue_memory;
549 break;
550
551 case LOC_ARG: /* var lives in argument area of frame */
552 gen_frame_args_address (ax);
553 gen_sym_offset (ax, var);
554 value->kind = axs_lvalue_memory;
555 break;
556
557 case LOC_REF_ARG: /* As above, but the frame slot really
558 holds the address of the variable. */
559 gen_frame_args_address (ax);
560 gen_sym_offset (ax, var);
561 /* Don't assume any particular pointer size. */
562 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
563 value->kind = axs_lvalue_memory;
564 break;
565
566 case LOC_LOCAL: /* var lives in locals area of frame */
c906108c
SS
567 gen_frame_locals_address (ax);
568 gen_sym_offset (ax, var);
569 value->kind = axs_lvalue_memory;
570 break;
571
c906108c 572 case LOC_TYPEDEF:
3d263c1d 573 error (_("Cannot compute value of typedef `%s'."),
de5ad195 574 SYMBOL_PRINT_NAME (var));
c906108c
SS
575 break;
576
577 case LOC_BLOCK:
578 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
579 value->kind = axs_rvalue;
580 break;
581
582 case LOC_REGISTER:
c906108c
SS
583 /* Don't generate any code at all; in the process of treating
584 this as an lvalue or rvalue, the caller will generate the
585 right code. */
586 value->kind = axs_lvalue_register;
587 value->u.reg = SYMBOL_VALUE (var);
588 break;
589
590 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
2a2d4dc3
AS
591 register, not on the stack. Simpler than LOC_REGISTER
592 because it's just like any other case where the thing
593 has a real address. */
c906108c
SS
594 case LOC_REGPARM_ADDR:
595 ax_reg (ax, SYMBOL_VALUE (var));
596 value->kind = axs_lvalue_memory;
597 break;
598
599 case LOC_UNRESOLVED:
600 {
c5aa993b 601 struct minimal_symbol *msym
22abf04a 602 = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
c5aa993b 603 if (!msym)
3d263c1d 604 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
c5aa993b 605
c906108c
SS
606 /* Push the address of the variable. */
607 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
608 value->kind = axs_lvalue_memory;
609 }
c5aa993b 610 break;
c906108c 611
a55cc764 612 case LOC_COMPUTED:
a67af2b9
AC
613 /* FIXME: cagney/2004-01-26: It should be possible to
614 unconditionally call the SYMBOL_OPS method when available.
d3efc286 615 Unfortunately DWARF 2 stores the frame-base (instead of the
a67af2b9
AC
616 function) location in a function's symbol. Oops! For the
617 moment enable this when/where applicable. */
618 SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
a55cc764
DJ
619 break;
620
c906108c 621 case LOC_OPTIMIZED_OUT:
3d263c1d 622 error (_("The variable `%s' has been optimized out."),
de5ad195 623 SYMBOL_PRINT_NAME (var));
c906108c
SS
624 break;
625
626 default:
3d263c1d 627 error (_("Cannot find value of botched symbol `%s'."),
de5ad195 628 SYMBOL_PRINT_NAME (var));
c906108c
SS
629 break;
630 }
631}
c5aa993b 632\f
c906108c
SS
633
634
c906108c
SS
635/* Generating bytecode from GDB expressions: literals */
636
637static void
fba45db2
KB
638gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
639 struct type *type)
c906108c
SS
640{
641 ax_const_l (ax, k);
642 value->kind = axs_rvalue;
648027cc 643 value->type = check_typedef (type);
c906108c 644}
c5aa993b 645\f
c906108c
SS
646
647
c906108c
SS
648/* Generating bytecode from GDB expressions: unary conversions, casts */
649
650/* Take what's on the top of the stack (as described by VALUE), and
651 try to make an rvalue out of it. Signal an error if we can't do
652 that. */
653static void
fba45db2 654require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
655{
656 switch (value->kind)
657 {
658 case axs_rvalue:
659 /* It's already an rvalue. */
660 break;
661
662 case axs_lvalue_memory:
663 /* The top of stack is the address of the object. Dereference. */
664 gen_fetch (ax, value->type);
665 break;
666
667 case axs_lvalue_register:
668 /* There's nothing on the stack, but value->u.reg is the
669 register number containing the value.
670
c5aa993b
JM
671 When we add floating-point support, this is going to have to
672 change. What about SPARC register pairs, for example? */
c906108c
SS
673 ax_reg (ax, value->u.reg);
674 gen_extend (ax, value->type);
675 break;
676 }
677
678 value->kind = axs_rvalue;
679}
680
681
682/* Assume the top of the stack is described by VALUE, and perform the
683 usual unary conversions. This is motivated by ANSI 6.2.2, but of
684 course GDB expressions are not ANSI; they're the mishmash union of
685 a bunch of languages. Rah.
686
687 NOTE! This function promises to produce an rvalue only when the
688 incoming value is of an appropriate type. In other words, the
689 consumer of the value this function produces may assume the value
690 is an rvalue only after checking its type.
691
692 The immediate issue is that if the user tries to use a structure or
693 union as an operand of, say, the `+' operator, we don't want to try
694 to convert that structure to an rvalue; require_rvalue will bomb on
695 structs and unions. Rather, we want to simply pass the struct
696 lvalue through unchanged, and let `+' raise an error. */
697
698static void
fba45db2 699gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
700{
701 /* We don't have to generate any code for the usual integral
702 conversions, since values are always represented as full-width on
703 the stack. Should we tweak the type? */
704
705 /* Some types require special handling. */
0004e5a2 706 switch (TYPE_CODE (value->type))
c906108c
SS
707 {
708 /* Functions get converted to a pointer to the function. */
709 case TYPE_CODE_FUNC:
710 value->type = lookup_pointer_type (value->type);
711 value->kind = axs_rvalue; /* Should always be true, but just in case. */
712 break;
713
714 /* Arrays get converted to a pointer to their first element, and
c5aa993b 715 are no longer an lvalue. */
c906108c
SS
716 case TYPE_CODE_ARRAY:
717 {
718 struct type *elements = TYPE_TARGET_TYPE (value->type);
719 value->type = lookup_pointer_type (elements);
720 value->kind = axs_rvalue;
721 /* We don't need to generate any code; the address of the array
722 is also the address of its first element. */
723 }
c5aa993b 724 break;
c906108c 725
c5aa993b
JM
726 /* Don't try to convert structures and unions to rvalues. Let the
727 consumer signal an error. */
c906108c
SS
728 case TYPE_CODE_STRUCT:
729 case TYPE_CODE_UNION:
730 return;
731
732 /* If the value is an enum, call it an integer. */
733 case TYPE_CODE_ENUM:
734 value->type = builtin_type_int;
735 break;
736 }
737
738 /* If the value is an lvalue, dereference it. */
739 require_rvalue (ax, value);
740}
741
742
743/* Return non-zero iff the type TYPE1 is considered "wider" than the
744 type TYPE2, according to the rules described in gen_usual_arithmetic. */
745static int
fba45db2 746type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
747{
748 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
749 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
750 && TYPE_UNSIGNED (type1)
c5aa993b 751 && !TYPE_UNSIGNED (type2)));
c906108c
SS
752}
753
754
755/* Return the "wider" of the two types TYPE1 and TYPE2. */
756static struct type *
fba45db2 757max_type (struct type *type1, struct type *type2)
c906108c
SS
758{
759 return type_wider_than (type1, type2) ? type1 : type2;
760}
761
762
763/* Generate code to convert a scalar value of type FROM to type TO. */
764static void
fba45db2 765gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
766{
767 /* Perhaps there is a more graceful way to state these rules. */
768
769 /* If we're converting to a narrower type, then we need to clear out
770 the upper bits. */
771 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
772 gen_extend (ax, from);
773
774 /* If the two values have equal width, but different signednesses,
775 then we need to extend. */
776 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
777 {
778 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
779 gen_extend (ax, to);
780 }
781
782 /* If we're converting to a wider type, and becoming unsigned, then
783 we need to zero out any possible sign bits. */
784 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
785 {
786 if (TYPE_UNSIGNED (to))
787 gen_extend (ax, to);
788 }
789}
790
791
792/* Return non-zero iff the type FROM will require any bytecodes to be
793 emitted to be converted to the type TO. */
794static int
fba45db2 795is_nontrivial_conversion (struct type *from, struct type *to)
c906108c
SS
796{
797 struct agent_expr *ax = new_agent_expr (0);
798 int nontrivial;
799
800 /* Actually generate the code, and see if anything came out. At the
801 moment, it would be trivial to replicate the code in
802 gen_conversion here, but in the future, when we're supporting
803 floating point and the like, it may not be. Doing things this
804 way allows this function to be independent of the logic in
805 gen_conversion. */
806 gen_conversion (ax, from, to);
807 nontrivial = ax->len > 0;
808 free_agent_expr (ax);
809 return nontrivial;
810}
811
812
813/* Generate code to perform the "usual arithmetic conversions" (ANSI C
814 6.2.1.5) for the two operands of an arithmetic operator. This
815 effectively finds a "least upper bound" type for the two arguments,
816 and promotes each argument to that type. *VALUE1 and *VALUE2
817 describe the values as they are passed in, and as they are left. */
818static void
fba45db2
KB
819gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
820 struct axs_value *value2)
c906108c
SS
821{
822 /* Do the usual binary conversions. */
823 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
824 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
825 {
826 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
827 integer types by size, and then by signedness: an n-bit
828 unsigned type is considered "wider" than an n-bit signed
829 type. Promote to the "wider" of the two types, and always
830 promote at least to int. */
c906108c
SS
831 struct type *target = max_type (builtin_type_int,
832 max_type (value1->type, value2->type));
833
834 /* Deal with value2, on the top of the stack. */
835 gen_conversion (ax, value2->type, target);
836
837 /* Deal with value1, not on the top of the stack. Don't
838 generate the `swap' instructions if we're not actually going
839 to do anything. */
840 if (is_nontrivial_conversion (value1->type, target))
841 {
842 ax_simple (ax, aop_swap);
843 gen_conversion (ax, value1->type, target);
844 ax_simple (ax, aop_swap);
845 }
846
648027cc 847 value1->type = value2->type = check_typedef (target);
c906108c
SS
848 }
849}
850
851
852/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
853 the value on the top of the stack, as described by VALUE. Assume
854 the value has integral type. */
855static void
fba45db2 856gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
c906108c 857{
c5aa993b 858 if (!type_wider_than (value->type, builtin_type_int))
c906108c
SS
859 {
860 gen_conversion (ax, value->type, builtin_type_int);
861 value->type = builtin_type_int;
862 }
c5aa993b 863 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
c906108c
SS
864 {
865 gen_conversion (ax, value->type, builtin_type_unsigned_int);
866 value->type = builtin_type_unsigned_int;
867 }
868}
869
870
871/* Generate code for a cast to TYPE. */
872static void
fba45db2 873gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
874{
875 /* GCC does allow casts to yield lvalues, so this should be fixed
876 before merging these changes into the trunk. */
877 require_rvalue (ax, value);
878 /* Dereference typedefs. */
879 type = check_typedef (type);
880
0004e5a2 881 switch (TYPE_CODE (type))
c906108c
SS
882 {
883 case TYPE_CODE_PTR:
884 /* It's implementation-defined, and I'll bet this is what GCC
885 does. */
886 break;
887
888 case TYPE_CODE_ARRAY:
889 case TYPE_CODE_STRUCT:
890 case TYPE_CODE_UNION:
891 case TYPE_CODE_FUNC:
3d263c1d 892 error (_("Invalid type cast: intended type must be scalar."));
c906108c
SS
893
894 case TYPE_CODE_ENUM:
895 /* We don't have to worry about the size of the value, because
896 all our integral values are fully sign-extended, and when
897 casting pointers we can do anything we like. Is there any
74b35824
JB
898 way for us to know what GCC actually does with a cast like
899 this? */
c906108c 900 break;
c5aa993b 901
c906108c
SS
902 case TYPE_CODE_INT:
903 gen_conversion (ax, value->type, type);
904 break;
905
906 case TYPE_CODE_VOID:
907 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
908 the type and notice that this value doesn't occupy a stack
909 slot. But for now, leave the value on the stack, and
910 preserve the "value == stack element" assumption. */
c906108c
SS
911 break;
912
913 default:
3d263c1d 914 error (_("Casts to requested type are not yet implemented."));
c906108c
SS
915 }
916
917 value->type = type;
918}
c5aa993b 919\f
c906108c
SS
920
921
c906108c
SS
922/* Generating bytecode from GDB expressions: arithmetic */
923
924/* Scale the integer on the top of the stack by the size of the target
925 of the pointer type TYPE. */
926static void
fba45db2 927gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
928{
929 struct type *element = TYPE_TARGET_TYPE (type);
930
0004e5a2 931 if (TYPE_LENGTH (element) != 1)
c906108c 932 {
0004e5a2 933 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
934 ax_simple (ax, op);
935 }
936}
937
938
939/* Generate code for an addition; non-trivial because we deal with
940 pointer arithmetic. We set VALUE to describe the result value; we
941 assume VALUE1 and VALUE2 describe the two operands, and that
942 they've undergone the usual binary conversions. Used by both
943 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
944static void
fba45db2
KB
945gen_add (struct agent_expr *ax, struct axs_value *value,
946 struct axs_value *value1, struct axs_value *value2, char *name)
c906108c
SS
947{
948 /* Is it INT+PTR? */
0004e5a2
DJ
949 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
950 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
c906108c
SS
951 {
952 /* Swap the values and proceed normally. */
953 ax_simple (ax, aop_swap);
954 gen_scale (ax, aop_mul, value2->type);
955 ax_simple (ax, aop_add);
c5aa993b 956 gen_extend (ax, value2->type); /* Catch overflow. */
c906108c
SS
957 value->type = value2->type;
958 }
959
960 /* Is it PTR+INT? */
0004e5a2
DJ
961 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
962 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
963 {
964 gen_scale (ax, aop_mul, value1->type);
965 ax_simple (ax, aop_add);
c5aa993b 966 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
967 value->type = value1->type;
968 }
969
970 /* Must be number + number; the usual binary conversions will have
971 brought them both to the same width. */
0004e5a2
DJ
972 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
973 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
974 {
975 ax_simple (ax, aop_add);
c5aa993b 976 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
977 value->type = value1->type;
978 }
979
980 else
3d263c1d 981 error (_("Invalid combination of types in %s."), name);
c906108c
SS
982
983 value->kind = axs_rvalue;
984}
985
986
987/* Generate code for an addition; non-trivial because we have to deal
988 with pointer arithmetic. We set VALUE to describe the result
989 value; we assume VALUE1 and VALUE2 describe the two operands, and
990 that they've undergone the usual binary conversions. */
991static void
fba45db2
KB
992gen_sub (struct agent_expr *ax, struct axs_value *value,
993 struct axs_value *value1, struct axs_value *value2)
c906108c 994{
0004e5a2 995 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
c906108c
SS
996 {
997 /* Is it PTR - INT? */
0004e5a2 998 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
999 {
1000 gen_scale (ax, aop_mul, value1->type);
1001 ax_simple (ax, aop_sub);
c5aa993b 1002 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1003 value->type = value1->type;
1004 }
1005
1006 /* Is it PTR - PTR? Strictly speaking, the types ought to
c5aa993b
JM
1007 match, but this is what the normal GDB expression evaluator
1008 tests for. */
0004e5a2 1009 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
c906108c
SS
1010 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1011 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1012 {
1013 ax_simple (ax, aop_sub);
1014 gen_scale (ax, aop_div_unsigned, value1->type);
c5aa993b 1015 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
c906108c
SS
1016 }
1017 else
3d263c1d 1018 error (_("\
c906108c 1019First argument of `-' is a pointer, but second argument is neither\n\
3d263c1d 1020an integer nor a pointer of the same type."));
c906108c
SS
1021 }
1022
1023 /* Must be number + number. */
0004e5a2
DJ
1024 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1025 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
1026 {
1027 ax_simple (ax, aop_sub);
c5aa993b 1028 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1029 value->type = value1->type;
1030 }
c5aa993b 1031
c906108c 1032 else
3d263c1d 1033 error (_("Invalid combination of types in subtraction."));
c906108c
SS
1034
1035 value->kind = axs_rvalue;
1036}
1037
1038/* Generate code for a binary operator that doesn't do pointer magic.
1039 We set VALUE to describe the result value; we assume VALUE1 and
1040 VALUE2 describe the two operands, and that they've undergone the
1041 usual binary conversions. MAY_CARRY should be non-zero iff the
1042 result needs to be extended. NAME is the English name of the
1043 operator, used in error messages */
1044static void
fba45db2
KB
1045gen_binop (struct agent_expr *ax, struct axs_value *value,
1046 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1047 enum agent_op op_unsigned, int may_carry, char *name)
c906108c
SS
1048{
1049 /* We only handle INT op INT. */
0004e5a2
DJ
1050 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1051 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
3d263c1d 1052 error (_("Invalid combination of types in %s."), name);
c5aa993b 1053
c906108c
SS
1054 ax_simple (ax,
1055 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1056 if (may_carry)
c5aa993b 1057 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1058 value->type = value1->type;
1059 value->kind = axs_rvalue;
1060}
1061
1062
1063static void
fba45db2 1064gen_logical_not (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1065{
1066 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1067 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1068 error (_("Invalid type of operand to `!'."));
c906108c
SS
1069
1070 gen_usual_unary (ax, value);
1071 ax_simple (ax, aop_log_not);
1072 value->type = builtin_type_int;
1073}
1074
1075
1076static void
fba45db2 1077gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1078{
1079 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
3d263c1d 1080 error (_("Invalid type of operand to `~'."));
c906108c
SS
1081
1082 gen_usual_unary (ax, value);
1083 gen_integral_promotions (ax, value);
1084 ax_simple (ax, aop_bit_not);
1085 gen_extend (ax, value->type);
1086}
c5aa993b 1087\f
c906108c
SS
1088
1089
c906108c
SS
1090/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1091
1092/* Dereference the value on the top of the stack. */
1093static void
fba45db2 1094gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1095{
1096 /* The caller should check the type, because several operators use
1097 this, and we don't know what error message to generate. */
0004e5a2 1098 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
8e65ff28 1099 internal_error (__FILE__, __LINE__,
3d263c1d 1100 _("gen_deref: expected a pointer"));
c906108c
SS
1101
1102 /* We've got an rvalue now, which is a pointer. We want to yield an
1103 lvalue, whose address is exactly that pointer. So we don't
1104 actually emit any code; we just change the type from "Pointer to
1105 T" to "T", and mark the value as an lvalue in memory. Leave it
1106 to the consumer to actually dereference it. */
1107 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
0004e5a2 1108 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1109 ? axs_rvalue : axs_lvalue_memory);
1110}
1111
1112
1113/* Produce the address of the lvalue on the top of the stack. */
1114static void
fba45db2 1115gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1116{
1117 /* Special case for taking the address of a function. The ANSI
1118 standard describes this as a special case, too, so this
1119 arrangement is not without motivation. */
0004e5a2 1120 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1121 /* The value's already an rvalue on the stack, so we just need to
1122 change the type. */
1123 value->type = lookup_pointer_type (value->type);
1124 else
1125 switch (value->kind)
1126 {
1127 case axs_rvalue:
3d263c1d 1128 error (_("Operand of `&' is an rvalue, which has no address."));
c906108c
SS
1129
1130 case axs_lvalue_register:
3d263c1d 1131 error (_("Operand of `&' is in a register, and has no address."));
c906108c
SS
1132
1133 case axs_lvalue_memory:
1134 value->kind = axs_rvalue;
1135 value->type = lookup_pointer_type (value->type);
1136 break;
1137 }
1138}
1139
1140
1141/* A lot of this stuff will have to change to support C++. But we're
1142 not going to deal with that at the moment. */
1143
1144/* Find the field in the structure type TYPE named NAME, and return
1145 its index in TYPE's field array. */
1146static int
fba45db2 1147find_field (struct type *type, char *name)
c906108c
SS
1148{
1149 int i;
1150
1151 CHECK_TYPEDEF (type);
1152
1153 /* Make sure this isn't C++. */
1154 if (TYPE_N_BASECLASSES (type) != 0)
8e65ff28 1155 internal_error (__FILE__, __LINE__,
3d263c1d 1156 _("find_field: derived classes supported"));
c906108c
SS
1157
1158 for (i = 0; i < TYPE_NFIELDS (type); i++)
1159 {
1160 char *this_name = TYPE_FIELD_NAME (type, i);
1161
747f3d18
MS
1162 if (this_name)
1163 {
1164 if (strcmp (name, this_name) == 0)
1165 return i;
c906108c 1166
747f3d18
MS
1167 if (this_name[0] == '\0')
1168 internal_error (__FILE__, __LINE__,
1169 _("find_field: anonymous unions not supported"));
1170 }
c906108c
SS
1171 }
1172
3d263c1d 1173 error (_("Couldn't find member named `%s' in struct/union `%s'"),
7495dfdb 1174 name, TYPE_TAG_NAME (type));
c906108c
SS
1175
1176 return 0;
1177}
1178
1179
1180/* Generate code to push the value of a bitfield of a structure whose
1181 address is on the top of the stack. START and END give the
1182 starting and one-past-ending *bit* numbers of the field within the
1183 structure. */
1184static void
fba45db2
KB
1185gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1186 struct type *type, int start, int end)
c906108c
SS
1187{
1188 /* Note that ops[i] fetches 8 << i bits. */
1189 static enum agent_op ops[]
c5aa993b
JM
1190 =
1191 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1192 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1193
1194 /* We don't want to touch any byte that the bitfield doesn't
1195 actually occupy; we shouldn't make any accesses we're not
1196 explicitly permitted to. We rely here on the fact that the
1197 bytecode `ref' operators work on unaligned addresses.
1198
1199 It takes some fancy footwork to get the stack to work the way
1200 we'd like. Say we're retrieving a bitfield that requires three
1201 fetches. Initially, the stack just contains the address:
c5aa993b 1202 addr
c906108c 1203 For the first fetch, we duplicate the address
c5aa993b 1204 addr addr
c906108c
SS
1205 then add the byte offset, do the fetch, and shift and mask as
1206 needed, yielding a fragment of the value, properly aligned for
1207 the final bitwise or:
c5aa993b 1208 addr frag1
c906108c 1209 then we swap, and repeat the process:
c5aa993b
JM
1210 frag1 addr --- address on top
1211 frag1 addr addr --- duplicate it
1212 frag1 addr frag2 --- get second fragment
1213 frag1 frag2 addr --- swap again
1214 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1215 Notice that, since the third fragment is the last one, we don't
1216 bother duplicating the address this time. Now we have all the
1217 fragments on the stack, and we can simply `or' them together,
1218 yielding the final value of the bitfield. */
1219
1220 /* The first and one-after-last bits in the field, but rounded down
1221 and up to byte boundaries. */
1222 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1223 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1224 / TARGET_CHAR_BIT)
1225 * TARGET_CHAR_BIT);
c906108c
SS
1226
1227 /* current bit offset within the structure */
1228 int offset;
1229
1230 /* The index in ops of the opcode we're considering. */
1231 int op;
1232
1233 /* The number of fragments we generated in the process. Probably
1234 equal to the number of `one' bits in bytesize, but who cares? */
1235 int fragment_count;
1236
1237 /* Dereference any typedefs. */
1238 type = check_typedef (type);
1239
1240 /* Can we fetch the number of bits requested at all? */
1241 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28 1242 internal_error (__FILE__, __LINE__,
3d263c1d 1243 _("gen_bitfield_ref: bitfield too wide"));
c906108c
SS
1244
1245 /* Note that we know here that we only need to try each opcode once.
1246 That may not be true on machines with weird byte sizes. */
1247 offset = bound_start;
1248 fragment_count = 0;
1249 for (op = num_ops - 1; op >= 0; op--)
1250 {
1251 /* number of bits that ops[op] would fetch */
1252 int op_size = 8 << op;
1253
1254 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1255 more fragments, then the address. */
1256
c906108c
SS
1257 /* Does this fetch fit within the bitfield? */
1258 if (offset + op_size <= bound_end)
1259 {
1260 /* Is this the last fragment? */
1261 int last_frag = (offset + op_size == bound_end);
1262
c5aa993b
JM
1263 if (!last_frag)
1264 ax_simple (ax, aop_dup); /* keep a copy of the address */
1265
c906108c
SS
1266 /* Add the offset. */
1267 gen_offset (ax, offset / TARGET_CHAR_BIT);
1268
1269 if (trace_kludge)
1270 {
1271 /* Record the area of memory we're about to fetch. */
1272 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1273 }
1274
1275 /* Perform the fetch. */
1276 ax_simple (ax, ops[op]);
c5aa993b
JM
1277
1278 /* Shift the bits we have to their proper position.
c906108c
SS
1279 gen_left_shift will generate right shifts when the operand
1280 is negative.
1281
c5aa993b
JM
1282 A big-endian field diagram to ponder:
1283 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1284 +------++------++------++------++------++------++------++------+
1285 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1286 ^ ^ ^ ^
1287 bit number 16 32 48 53
c906108c
SS
1288 These are bit numbers as supplied by GDB. Note that the
1289 bit numbers run from right to left once you've fetched the
1290 value!
1291
c5aa993b
JM
1292 A little-endian field diagram to ponder:
1293 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1294 +------++------++------++------++------++------++------++------+
1295 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1296 ^ ^ ^ ^ ^
1297 bit number 48 32 16 4 0
1298
1299 In both cases, the most significant end is on the left
1300 (i.e. normal numeric writing order), which means that you
1301 don't go crazy thinking about `left' and `right' shifts.
1302
1303 We don't have to worry about masking yet:
1304 - If they contain garbage off the least significant end, then we
1305 must be looking at the low end of the field, and the right
1306 shift will wipe them out.
1307 - If they contain garbage off the most significant end, then we
1308 must be looking at the most significant end of the word, and
1309 the sign/zero extension will wipe them out.
1310 - If we're in the interior of the word, then there is no garbage
1311 on either end, because the ref operators zero-extend. */
0d20ae72 1312 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c 1313 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1314 else
c906108c
SS
1315 gen_left_shift (ax, offset - start);
1316
c5aa993b 1317 if (!last_frag)
c906108c
SS
1318 /* Bring the copy of the address up to the top. */
1319 ax_simple (ax, aop_swap);
1320
1321 offset += op_size;
1322 fragment_count++;
1323 }
1324 }
1325
1326 /* Generate enough bitwise `or' operations to combine all the
1327 fragments we left on the stack. */
1328 while (fragment_count-- > 1)
1329 ax_simple (ax, aop_bit_or);
1330
1331 /* Sign- or zero-extend the value as appropriate. */
1332 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1333
1334 /* This is *not* an lvalue. Ugh. */
1335 value->kind = axs_rvalue;
1336 value->type = type;
1337}
1338
1339
1340/* Generate code to reference the member named FIELD of a structure or
1341 union. The top of the stack, as described by VALUE, should have
1342 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1343 the operator being compiled, and OPERAND_NAME is the kind of thing
1344 it operates on; we use them in error messages. */
1345static void
fba45db2
KB
1346gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1347 char *operator_name, char *operand_name)
c906108c
SS
1348{
1349 struct type *type;
1350 int i;
1351
1352 /* Follow pointers until we reach a non-pointer. These aren't the C
1353 semantics, but they're what the normal GDB evaluator does, so we
1354 should at least be consistent. */
0004e5a2 1355 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
c906108c
SS
1356 {
1357 gen_usual_unary (ax, value);
1358 gen_deref (ax, value);
1359 }
e8860ec2 1360 type = check_typedef (value->type);
c906108c
SS
1361
1362 /* This must yield a structure or a union. */
1363 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1364 && TYPE_CODE (type) != TYPE_CODE_UNION)
3d263c1d 1365 error (_("The left operand of `%s' is not a %s."),
c906108c
SS
1366 operator_name, operand_name);
1367
1368 /* And it must be in memory; we don't deal with structure rvalues,
1369 or structures living in registers. */
1370 if (value->kind != axs_lvalue_memory)
3d263c1d 1371 error (_("Structure does not live in memory."));
c906108c
SS
1372
1373 i = find_field (type, field);
c5aa993b 1374
c906108c
SS
1375 /* Is this a bitfield? */
1376 if (TYPE_FIELD_PACKED (type, i))
1377 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1378 TYPE_FIELD_BITPOS (type, i),
1379 (TYPE_FIELD_BITPOS (type, i)
1380 + TYPE_FIELD_BITSIZE (type, i)));
1381 else
1382 {
1383 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1384 value->kind = axs_lvalue_memory;
1385 value->type = TYPE_FIELD_TYPE (type, i);
1386 }
1387}
1388
1389
1390/* Generate code for GDB's magical `repeat' operator.
1391 LVALUE @ INT creates an array INT elements long, and whose elements
1392 have the same type as LVALUE, located in memory so that LVALUE is
1393 its first element. For example, argv[0]@argc gives you the array
1394 of command-line arguments.
1395
1396 Unfortunately, because we have to know the types before we actually
1397 have a value for the expression, we can't implement this perfectly
1398 without changing the type system, having values that occupy two
1399 stack slots, doing weird things with sizeof, etc. So we require
1400 the right operand to be a constant expression. */
1401static void
fba45db2
KB
1402gen_repeat (union exp_element **pc, struct agent_expr *ax,
1403 struct axs_value *value)
c906108c
SS
1404{
1405 struct axs_value value1;
1406 /* We don't want to turn this into an rvalue, so no conversions
1407 here. */
1408 gen_expr (pc, ax, &value1);
1409 if (value1.kind != axs_lvalue_memory)
3d263c1d 1410 error (_("Left operand of `@' must be an object in memory."));
c906108c
SS
1411
1412 /* Evaluate the length; it had better be a constant. */
1413 {
1414 struct value *v = const_expr (pc);
1415 int length;
1416
c5aa993b 1417 if (!v)
3d263c1d 1418 error (_("Right operand of `@' must be a constant, in agent expressions."));
04624583 1419 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
3d263c1d 1420 error (_("Right operand of `@' must be an integer."));
c906108c
SS
1421 length = value_as_long (v);
1422 if (length <= 0)
3d263c1d 1423 error (_("Right operand of `@' must be positive."));
c906108c
SS
1424
1425 /* The top of the stack is already the address of the object, so
1426 all we need to do is frob the type of the lvalue. */
1427 {
1428 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1429 done with it. */
c906108c 1430 struct type *range
c5aa993b 1431 = create_range_type (0, builtin_type_int, 0, length - 1);
c906108c
SS
1432 struct type *array = create_array_type (0, value1.type, range);
1433
1434 value->kind = axs_lvalue_memory;
1435 value->type = array;
1436 }
1437 }
1438}
1439
1440
1441/* Emit code for the `sizeof' operator.
1442 *PC should point at the start of the operand expression; we advance it
1443 to the first instruction after the operand. */
1444static void
fba45db2
KB
1445gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1446 struct axs_value *value)
c906108c
SS
1447{
1448 /* We don't care about the value of the operand expression; we only
1449 care about its type. However, in the current arrangement, the
1450 only way to find an expression's type is to generate code for it.
1451 So we generate code for the operand, and then throw it away,
1452 replacing it with code that simply pushes its size. */
1453 int start = ax->len;
1454 gen_expr (pc, ax, value);
1455
1456 /* Throw away the code we just generated. */
1457 ax->len = start;
c5aa993b 1458
c906108c
SS
1459 ax_const_l (ax, TYPE_LENGTH (value->type));
1460 value->kind = axs_rvalue;
1461 value->type = builtin_type_int;
1462}
c906108c 1463\f
c5aa993b 1464
c906108c
SS
1465/* Generating bytecode from GDB expressions: general recursive thingy */
1466
3d263c1d 1467/* XXX: i18n */
c906108c
SS
1468/* A gen_expr function written by a Gen-X'er guy.
1469 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1470static void
fba45db2
KB
1471gen_expr (union exp_element **pc, struct agent_expr *ax,
1472 struct axs_value *value)
c906108c
SS
1473{
1474 /* Used to hold the descriptions of operand expressions. */
1475 struct axs_value value1, value2;
1476 enum exp_opcode op = (*pc)[0].opcode;
1477
1478 /* If we're looking at a constant expression, just push its value. */
1479 {
1480 struct value *v = maybe_const_expr (pc);
c5aa993b 1481
c906108c
SS
1482 if (v)
1483 {
1484 ax_const_l (ax, value_as_long (v));
1485 value->kind = axs_rvalue;
df407dfe 1486 value->type = check_typedef (value_type (v));
c906108c
SS
1487 return;
1488 }
1489 }
1490
1491 /* Otherwise, go ahead and generate code for it. */
1492 switch (op)
1493 {
1494 /* Binary arithmetic operators. */
1495 case BINOP_ADD:
1496 case BINOP_SUB:
1497 case BINOP_MUL:
1498 case BINOP_DIV:
1499 case BINOP_REM:
1500 case BINOP_SUBSCRIPT:
1501 case BINOP_BITWISE_AND:
1502 case BINOP_BITWISE_IOR:
1503 case BINOP_BITWISE_XOR:
1504 (*pc)++;
1505 gen_expr (pc, ax, &value1);
1506 gen_usual_unary (ax, &value1);
1507 gen_expr (pc, ax, &value2);
1508 gen_usual_unary (ax, &value2);
1509 gen_usual_arithmetic (ax, &value1, &value2);
1510 switch (op)
1511 {
1512 case BINOP_ADD:
1513 gen_add (ax, value, &value1, &value2, "addition");
1514 break;
1515 case BINOP_SUB:
1516 gen_sub (ax, value, &value1, &value2);
1517 break;
1518 case BINOP_MUL:
1519 gen_binop (ax, value, &value1, &value2,
1520 aop_mul, aop_mul, 1, "multiplication");
1521 break;
1522 case BINOP_DIV:
1523 gen_binop (ax, value, &value1, &value2,
1524 aop_div_signed, aop_div_unsigned, 1, "division");
1525 break;
1526 case BINOP_REM:
1527 gen_binop (ax, value, &value1, &value2,
1528 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1529 break;
1530 case BINOP_SUBSCRIPT:
1531 gen_add (ax, value, &value1, &value2, "array subscripting");
1532 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1533 error (_("Invalid combination of types in array subscripting."));
c906108c
SS
1534 gen_deref (ax, value);
1535 break;
1536 case BINOP_BITWISE_AND:
1537 gen_binop (ax, value, &value1, &value2,
1538 aop_bit_and, aop_bit_and, 0, "bitwise and");
1539 break;
1540
1541 case BINOP_BITWISE_IOR:
1542 gen_binop (ax, value, &value1, &value2,
1543 aop_bit_or, aop_bit_or, 0, "bitwise or");
1544 break;
1545
1546 case BINOP_BITWISE_XOR:
1547 gen_binop (ax, value, &value1, &value2,
1548 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1549 break;
1550
1551 default:
1552 /* We should only list operators in the outer case statement
c5aa993b 1553 that we actually handle in the inner case statement. */
8e65ff28 1554 internal_error (__FILE__, __LINE__,
3d263c1d 1555 _("gen_expr: op case sets don't match"));
c906108c
SS
1556 }
1557 break;
1558
1559 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1560 for comma. In C, we can do some optimizations here because
1561 we know the left operand is only being evaluated for effect.
1562 However, if the tracing kludge is in effect, then we always
1563 need to evaluate the left hand side fully, so that all the
1564 variables it mentions get traced. */
c906108c
SS
1565 case BINOP_COMMA:
1566 (*pc)++;
1567 gen_expr (pc, ax, &value1);
1568 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1569 in which case we want to emit code to trace it if it's an
1570 lvalue. */
c906108c
SS
1571 gen_traced_pop (ax, &value1);
1572 gen_expr (pc, ax, value);
1573 /* It's the consumer's responsibility to trace the right operand. */
1574 break;
c5aa993b 1575
c906108c
SS
1576 case OP_LONG: /* some integer constant */
1577 {
1578 struct type *type = (*pc)[1].type;
1579 LONGEST k = (*pc)[2].longconst;
1580 (*pc) += 4;
1581 gen_int_literal (ax, value, k, type);
1582 }
c5aa993b 1583 break;
c906108c
SS
1584
1585 case OP_VAR_VALUE:
1586 gen_var_ref (ax, value, (*pc)[2].symbol);
1587 (*pc) += 4;
1588 break;
1589
1590 case OP_REGISTER:
1591 {
67f3407f
DJ
1592 const char *name = &(*pc)[2].string;
1593 int reg;
1594 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1595 reg = frame_map_name_to_regnum (deprecated_safe_get_selected_frame (),
1596 name, strlen (name));
1597 if (reg == -1)
1598 internal_error (__FILE__, __LINE__,
1599 _("Register $%s not available"), name);
02e4669d
JB
1600 if (reg >= gdbarch_num_regs (current_gdbarch))
1601 error (_("'%s' is a pseudo-register; "
1602 "GDB cannot yet trace pseudoregister contents."),
1603 name);
c906108c
SS
1604 value->kind = axs_lvalue_register;
1605 value->u.reg = reg;
7b83296f 1606 value->type = register_type (current_gdbarch, reg);
c906108c 1607 }
c5aa993b 1608 break;
c906108c
SS
1609
1610 case OP_INTERNALVAR:
3d263c1d 1611 error (_("GDB agent expressions cannot use convenience variables."));
c906108c 1612
c5aa993b 1613 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1614 case BINOP_REPEAT:
1615 /* Note that gen_repeat handles its own argument evaluation. */
1616 (*pc)++;
1617 gen_repeat (pc, ax, value);
1618 break;
1619
1620 case UNOP_CAST:
1621 {
1622 struct type *type = (*pc)[1].type;
1623 (*pc) += 3;
1624 gen_expr (pc, ax, value);
1625 gen_cast (ax, value, type);
1626 }
c5aa993b 1627 break;
c906108c
SS
1628
1629 case UNOP_MEMVAL:
1630 {
1631 struct type *type = check_typedef ((*pc)[1].type);
1632 (*pc) += 3;
1633 gen_expr (pc, ax, value);
1634 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1635 it's just a hack for dealing with minsyms; you take some
1636 integer constant, pretend it's the address of an lvalue of
1637 the given type, and dereference it. */
1638 if (value->kind != axs_rvalue)
1639 /* This would be weird. */
8e65ff28 1640 internal_error (__FILE__, __LINE__,
3d263c1d 1641 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
c906108c
SS
1642 value->type = type;
1643 value->kind = axs_lvalue_memory;
1644 }
c5aa993b 1645 break;
c906108c 1646
36e9969c
NS
1647 case UNOP_PLUS:
1648 (*pc)++;
1649 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
1650 gen_expr (pc, ax, value);
1651 gen_usual_unary (ax, value);
1652 break;
1653
c906108c
SS
1654 case UNOP_NEG:
1655 (*pc)++;
1656 /* -FOO is equivalent to 0 - FOO. */
1657 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
c5aa993b 1658 gen_usual_unary (ax, &value1); /* shouldn't do much */
c906108c
SS
1659 gen_expr (pc, ax, &value2);
1660 gen_usual_unary (ax, &value2);
1661 gen_usual_arithmetic (ax, &value1, &value2);
1662 gen_sub (ax, value, &value1, &value2);
1663 break;
1664
1665 case UNOP_LOGICAL_NOT:
1666 (*pc)++;
1667 gen_expr (pc, ax, value);
1668 gen_logical_not (ax, value);
1669 break;
1670
1671 case UNOP_COMPLEMENT:
1672 (*pc)++;
1673 gen_expr (pc, ax, value);
1674 gen_complement (ax, value);
1675 break;
1676
1677 case UNOP_IND:
1678 (*pc)++;
1679 gen_expr (pc, ax, value);
1680 gen_usual_unary (ax, value);
1681 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1682 error (_("Argument of unary `*' is not a pointer."));
c906108c
SS
1683 gen_deref (ax, value);
1684 break;
1685
1686 case UNOP_ADDR:
1687 (*pc)++;
1688 gen_expr (pc, ax, value);
1689 gen_address_of (ax, value);
1690 break;
1691
1692 case UNOP_SIZEOF:
1693 (*pc)++;
1694 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1695 of the other unary operator functions. This is because we
1696 have to throw away the code we generate. */
c906108c
SS
1697 gen_sizeof (pc, ax, value);
1698 break;
1699
1700 case STRUCTOP_STRUCT:
1701 case STRUCTOP_PTR:
1702 {
1703 int length = (*pc)[1].longconst;
1704 char *name = &(*pc)[2].string;
1705
1706 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1707 gen_expr (pc, ax, value);
1708 if (op == STRUCTOP_STRUCT)
1709 gen_struct_ref (ax, value, name, ".", "structure or union");
1710 else if (op == STRUCTOP_PTR)
1711 gen_struct_ref (ax, value, name, "->",
1712 "pointer to a structure or union");
1713 else
1714 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1715 shouldn't mention it, and we shouldn't be here. */
8e65ff28 1716 internal_error (__FILE__, __LINE__,
3d263c1d 1717 _("gen_expr: unhandled struct case"));
c906108c 1718 }
c5aa993b 1719 break;
c906108c
SS
1720
1721 case OP_TYPE:
3d263c1d 1722 error (_("Attempt to use a type name as an expression."));
c906108c
SS
1723
1724 default:
3d263c1d 1725 error (_("Unsupported operator in expression."));
c906108c
SS
1726 }
1727}
c906108c 1728\f
c5aa993b
JM
1729
1730
c906108c
SS
1731/* Generating bytecode from GDB expressions: driver */
1732
c906108c
SS
1733/* Given a GDB expression EXPR, return bytecode to trace its value.
1734 The result will use the `trace' and `trace_quick' bytecodes to
1735 record the value of all memory touched by the expression. The
1736 caller can then use the ax_reqs function to discover which
1737 registers it relies upon. */
1738struct agent_expr *
fba45db2 1739gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
c906108c
SS
1740{
1741 struct cleanup *old_chain = 0;
1742 struct agent_expr *ax = new_agent_expr (scope);
1743 union exp_element *pc;
1744 struct axs_value value;
1745
f23d52e0 1746 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1747
1748 pc = expr->elts;
1749 trace_kludge = 1;
1750 gen_expr (&pc, ax, &value);
1751
1752 /* Make sure we record the final object, and get rid of it. */
1753 gen_traced_pop (ax, &value);
1754
1755 /* Oh, and terminate. */
1756 ax_simple (ax, aop_end);
1757
1758 /* We have successfully built the agent expr, so cancel the cleanup
1759 request. If we add more cleanups that we always want done, this
1760 will have to get more complicated. */
1761 discard_cleanups (old_chain);
1762 return ax;
1763}
c906108c
SS
1764
1765static void
fba45db2 1766agent_command (char *exp, int from_tty)
c906108c
SS
1767{
1768 struct cleanup *old_chain = 0;
1769 struct expression *expr;
1770 struct agent_expr *agent;
6426a772 1771 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
1772
1773 /* We don't deal with overlay debugging at the moment. We need to
1774 think more carefully about this. If you copy this code into
1775 another command, change the error message; the user shouldn't
1776 have to know anything about agent expressions. */
1777 if (overlay_debugging)
3d263c1d 1778 error (_("GDB can't do agent expression translation with overlays."));
c906108c
SS
1779
1780 if (exp == 0)
3d263c1d 1781 error_no_arg (_("expression to translate"));
c5aa993b 1782
c906108c 1783 expr = parse_expression (exp);
c13c43fd 1784 old_chain = make_cleanup (free_current_contents, &expr);
bdd78e62 1785 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
f23d52e0 1786 make_cleanup_free_agent_expr (agent);
c906108c 1787 ax_print (gdb_stdout, agent);
085dd6e6
JM
1788
1789 /* It would be nice to call ax_reqs here to gather some general info
1790 about the expression, and then print out the result. */
c906108c
SS
1791
1792 do_cleanups (old_chain);
1793 dont_repeat ();
1794}
c906108c 1795\f
c5aa993b 1796
c906108c
SS
1797/* Initialization code. */
1798
a14ed312 1799void _initialize_ax_gdb (void);
c906108c 1800void
fba45db2 1801_initialize_ax_gdb (void)
c906108c 1802{
c906108c 1803 add_cmd ("agent", class_maintenance, agent_command,
3d263c1d 1804 _("Translate an expression into remote agent bytecode."),
c906108c
SS
1805 &maintenancelist);
1806}
This page took 0.62813 seconds and 4 git commands to generate.