2005-04-28 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
3 Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation,
4 Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c 22
c906108c
SS
23#include "defs.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "expression.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "frame.h"
32#include "target.h"
33#include "ax.h"
34#include "ax-gdb.h"
309367d4 35#include "gdb_string.h"
fe898f56 36#include "block.h"
7b83296f 37#include "regcache.h"
c906108c 38
6426a772
JM
39/* To make sense of this file, you should read doc/agentexpr.texi.
40 Then look at the types and enums in ax-gdb.h. For the code itself,
41 look at gen_expr, towards the bottom; that's the main function that
42 looks at the GDB expressions and calls everything else to generate
43 code.
c906108c
SS
44
45 I'm beginning to wonder whether it wouldn't be nicer to internally
46 generate trees, with types, and then spit out the bytecode in
47 linear form afterwards; we could generate fewer `swap', `ext', and
48 `zero_ext' bytecodes that way; it would make good constant folding
49 easier, too. But at the moment, I think we should be willing to
50 pay for the simplicity of this code with less-than-optimal bytecode
51 strings.
52
c5aa993b
JM
53 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
54\f
c906108c
SS
55
56
c906108c
SS
57/* Prototypes for local functions. */
58
59/* There's a standard order to the arguments of these functions:
60 union exp_element ** --- pointer into expression
61 struct agent_expr * --- agent expression buffer to generate code into
62 struct axs_value * --- describes value left on top of stack */
c5aa993b 63
a14ed312
KB
64static struct value *const_var_ref (struct symbol *var);
65static struct value *const_expr (union exp_element **pc);
66static struct value *maybe_const_expr (union exp_element **pc);
67
68static void gen_traced_pop (struct agent_expr *, struct axs_value *);
69
70static void gen_sign_extend (struct agent_expr *, struct type *);
71static void gen_extend (struct agent_expr *, struct type *);
72static void gen_fetch (struct agent_expr *, struct type *);
73static void gen_left_shift (struct agent_expr *, int);
74
75
76static void gen_frame_args_address (struct agent_expr *);
77static void gen_frame_locals_address (struct agent_expr *);
78static void gen_offset (struct agent_expr *ax, int offset);
79static void gen_sym_offset (struct agent_expr *, struct symbol *);
80static void gen_var_ref (struct agent_expr *ax,
81 struct axs_value *value, struct symbol *var);
82
83
84static void gen_int_literal (struct agent_expr *ax,
85 struct axs_value *value,
86 LONGEST k, struct type *type);
87
88
89static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
90static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
91static int type_wider_than (struct type *type1, struct type *type2);
92static struct type *max_type (struct type *type1, struct type *type2);
93static void gen_conversion (struct agent_expr *ax,
94 struct type *from, struct type *to);
95static int is_nontrivial_conversion (struct type *from, struct type *to);
96static void gen_usual_arithmetic (struct agent_expr *ax,
97 struct axs_value *value1,
98 struct axs_value *value2);
99static void gen_integral_promotions (struct agent_expr *ax,
100 struct axs_value *value);
101static void gen_cast (struct agent_expr *ax,
102 struct axs_value *value, struct type *type);
103static void gen_scale (struct agent_expr *ax,
104 enum agent_op op, struct type *type);
105static void gen_add (struct agent_expr *ax,
106 struct axs_value *value,
107 struct axs_value *value1,
108 struct axs_value *value2, char *name);
109static void gen_sub (struct agent_expr *ax,
110 struct axs_value *value,
111 struct axs_value *value1, struct axs_value *value2);
112static void gen_binop (struct agent_expr *ax,
113 struct axs_value *value,
114 struct axs_value *value1,
115 struct axs_value *value2,
116 enum agent_op op,
117 enum agent_op op_unsigned, int may_carry, char *name);
118static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
119static void gen_complement (struct agent_expr *ax, struct axs_value *value);
120static void gen_deref (struct agent_expr *, struct axs_value *);
121static void gen_address_of (struct agent_expr *, struct axs_value *);
122static int find_field (struct type *type, char *name);
123static void gen_bitfield_ref (struct agent_expr *ax,
124 struct axs_value *value,
125 struct type *type, int start, int end);
126static void gen_struct_ref (struct agent_expr *ax,
127 struct axs_value *value,
128 char *field,
129 char *operator_name, char *operand_name);
130static void gen_repeat (union exp_element **pc,
131 struct agent_expr *ax, struct axs_value *value);
132static void gen_sizeof (union exp_element **pc,
133 struct agent_expr *ax, struct axs_value *value);
134static void gen_expr (union exp_element **pc,
135 struct agent_expr *ax, struct axs_value *value);
c5aa993b 136
a14ed312 137static void agent_command (char *exp, int from_tty);
c906108c 138\f
c5aa993b 139
c906108c
SS
140/* Detecting constant expressions. */
141
142/* If the variable reference at *PC is a constant, return its value.
143 Otherwise, return zero.
144
145 Hey, Wally! How can a variable reference be a constant?
146
147 Well, Beav, this function really handles the OP_VAR_VALUE operator,
148 not specifically variable references. GDB uses OP_VAR_VALUE to
149 refer to any kind of symbolic reference: function names, enum
150 elements, and goto labels are all handled through the OP_VAR_VALUE
151 operator, even though they're constants. It makes sense given the
152 situation.
153
154 Gee, Wally, don'cha wonder sometimes if data representations that
155 subvert commonly accepted definitions of terms in favor of heavily
156 context-specific interpretations are really just a tool of the
157 programming hegemony to preserve their power and exclude the
158 proletariat? */
159
160static struct value *
fba45db2 161const_var_ref (struct symbol *var)
c906108c
SS
162{
163 struct type *type = SYMBOL_TYPE (var);
164
165 switch (SYMBOL_CLASS (var))
166 {
167 case LOC_CONST:
168 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
169
170 case LOC_LABEL:
4478b372 171 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
172
173 default:
174 return 0;
175 }
176}
177
178
179/* If the expression starting at *PC has a constant value, return it.
180 Otherwise, return zero. If we return a value, then *PC will be
181 advanced to the end of it. If we return zero, *PC could be
182 anywhere. */
183static struct value *
fba45db2 184const_expr (union exp_element **pc)
c906108c
SS
185{
186 enum exp_opcode op = (*pc)->opcode;
187 struct value *v1;
188
189 switch (op)
190 {
191 case OP_LONG:
192 {
193 struct type *type = (*pc)[1].type;
194 LONGEST k = (*pc)[2].longconst;
195 (*pc) += 4;
196 return value_from_longest (type, k);
197 }
198
199 case OP_VAR_VALUE:
200 {
201 struct value *v = const_var_ref ((*pc)[2].symbol);
202 (*pc) += 4;
203 return v;
204 }
205
c5aa993b 206 /* We could add more operators in here. */
c906108c
SS
207
208 case UNOP_NEG:
209 (*pc)++;
210 v1 = const_expr (pc);
211 if (v1)
212 return value_neg (v1);
213 else
214 return 0;
215
216 default:
217 return 0;
218 }
219}
220
221
222/* Like const_expr, but guarantee also that *PC is undisturbed if the
223 expression is not constant. */
224static struct value *
fba45db2 225maybe_const_expr (union exp_element **pc)
c906108c
SS
226{
227 union exp_element *tentative_pc = *pc;
228 struct value *v = const_expr (&tentative_pc);
229
230 /* If we got a value, then update the real PC. */
231 if (v)
232 *pc = tentative_pc;
c5aa993b 233
c906108c
SS
234 return v;
235}
c906108c 236\f
c5aa993b 237
c906108c
SS
238/* Generating bytecode from GDB expressions: general assumptions */
239
240/* Here are a few general assumptions made throughout the code; if you
241 want to make a change that contradicts one of these, then you'd
242 better scan things pretty thoroughly.
243
244 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
245 sometimes we'll swap to get at the left argument to a binary
246 operator. If we decide that void values should occupy no stack
247 elements, or that synthetic arrays (whose size is determined at
248 run time, created by the `@' operator) should occupy two stack
249 elements (address and length), then this will cause trouble.
c906108c
SS
250
251 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
252 don't have to worry what happens if the user requests an
253 operation that is wider than the actual interpreter's stack.
254 That is, it's up to the interpreter to handle directly all the
255 integer widths the user has access to. (Woe betide the language
256 with bignums!)
c906108c
SS
257
258 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 259 GCC's generalized lvalues, function calls, etc.
c906108c
SS
260
261 - We don't support floating point. Many places where we switch on
c5aa993b
JM
262 some type don't bother to include cases for floating point; there
263 may be even more subtle ways this assumption exists. For
264 example, the arguments to % must be integers.
c906108c
SS
265
266 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
267 we tried to support convenience variables, this would be a
268 problem.
c906108c
SS
269
270 - All values on the stack should always be fully zero- or
c5aa993b
JM
271 sign-extended.
272
273 (I wasn't sure whether to choose this or its opposite --- that
274 only addresses are assumed extended --- but it turns out that
275 neither convention completely eliminates spurious extend
276 operations (if everything is always extended, then you have to
277 extend after add, because it could overflow; if nothing is
278 extended, then you end up producing extends whenever you change
279 sizes), and this is simpler.) */
c906108c 280\f
c5aa993b 281
c906108c
SS
282/* Generating bytecode from GDB expressions: the `trace' kludge */
283
284/* The compiler in this file is a general-purpose mechanism for
285 translating GDB expressions into bytecode. One ought to be able to
286 find a million and one uses for it.
287
288 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
289 of expediency. Let he who is without sin cast the first stone.
290
291 For the data tracing facility, we need to insert `trace' bytecodes
292 before each data fetch; this records all the memory that the
293 expression touches in the course of evaluation, so that memory will
294 be available when the user later tries to evaluate the expression
295 in GDB.
296
297 This should be done (I think) in a post-processing pass, that walks
298 an arbitrary agent expression and inserts `trace' operations at the
299 appropriate points. But it's much faster to just hack them
300 directly into the code. And since we're in a crunch, that's what
301 I've done.
302
303 Setting the flag trace_kludge to non-zero enables the code that
304 emits the trace bytecodes at the appropriate points. */
305static int trace_kludge;
306
307/* Trace the lvalue on the stack, if it needs it. In either case, pop
308 the value. Useful on the left side of a comma, and at the end of
309 an expression being used for tracing. */
310static void
fba45db2 311gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
312{
313 if (trace_kludge)
314 switch (value->kind)
315 {
316 case axs_rvalue:
317 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 318 produce them. So just dispose of this value. */
c906108c
SS
319 ax_simple (ax, aop_pop);
320 break;
321
322 case axs_lvalue_memory:
323 {
324 int length = TYPE_LENGTH (value->type);
325
326 /* There's no point in trying to use a trace_quick bytecode
327 here, since "trace_quick SIZE pop" is three bytes, whereas
328 "const8 SIZE trace" is also three bytes, does the same
329 thing, and the simplest code which generates that will also
330 work correctly for objects with large sizes. */
331 ax_const_l (ax, length);
332 ax_simple (ax, aop_trace);
333 }
c5aa993b 334 break;
c906108c
SS
335
336 case axs_lvalue_register:
337 /* We need to mention the register somewhere in the bytecode,
338 so ax_reqs will pick it up and add it to the mask of
339 registers used. */
340 ax_reg (ax, value->u.reg);
341 ax_simple (ax, aop_pop);
342 break;
343 }
344 else
345 /* If we're not tracing, just pop the value. */
346 ax_simple (ax, aop_pop);
347}
c5aa993b 348\f
c906108c
SS
349
350
c906108c
SS
351/* Generating bytecode from GDB expressions: helper functions */
352
353/* Assume that the lower bits of the top of the stack is a value of
354 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
355static void
fba45db2 356gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
357{
358 /* Do we need to sign-extend this? */
c5aa993b 359 if (!TYPE_UNSIGNED (type))
0004e5a2 360 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
361}
362
363
364/* Assume the lower bits of the top of the stack hold a value of type
365 TYPE, and the upper bits are garbage. Sign-extend or truncate as
366 needed. */
367static void
fba45db2 368gen_extend (struct agent_expr *ax, struct type *type)
c906108c 369{
0004e5a2 370 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
c906108c
SS
371 /* I just had to. */
372 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
373}
374
375
376/* Assume that the top of the stack contains a value of type "pointer
377 to TYPE"; generate code to fetch its value. Note that TYPE is the
378 target type, not the pointer type. */
379static void
fba45db2 380gen_fetch (struct agent_expr *ax, struct type *type)
c906108c
SS
381{
382 if (trace_kludge)
383 {
384 /* Record the area of memory we're about to fetch. */
385 ax_trace_quick (ax, TYPE_LENGTH (type));
386 }
387
0004e5a2 388 switch (TYPE_CODE (type))
c906108c
SS
389 {
390 case TYPE_CODE_PTR:
391 case TYPE_CODE_ENUM:
392 case TYPE_CODE_INT:
393 case TYPE_CODE_CHAR:
394 /* It's a scalar value, so we know how to dereference it. How
395 many bytes long is it? */
0004e5a2 396 switch (TYPE_LENGTH (type))
c906108c 397 {
c5aa993b
JM
398 case 8 / TARGET_CHAR_BIT:
399 ax_simple (ax, aop_ref8);
400 break;
401 case 16 / TARGET_CHAR_BIT:
402 ax_simple (ax, aop_ref16);
403 break;
404 case 32 / TARGET_CHAR_BIT:
405 ax_simple (ax, aop_ref32);
406 break;
407 case 64 / TARGET_CHAR_BIT:
408 ax_simple (ax, aop_ref64);
409 break;
c906108c
SS
410
411 /* Either our caller shouldn't have asked us to dereference
412 that pointer (other code's fault), or we're not
413 implementing something we should be (this code's fault).
414 In any case, it's a bug the user shouldn't see. */
415 default:
8e65ff28 416 internal_error (__FILE__, __LINE__,
3d263c1d 417 _("gen_fetch: strange size"));
c906108c
SS
418 }
419
420 gen_sign_extend (ax, type);
421 break;
422
423 default:
424 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
425 pointer (other code's fault), or we're not implementing
426 something we should be (this code's fault). In any case,
427 it's a bug the user shouldn't see. */
8e65ff28 428 internal_error (__FILE__, __LINE__,
3d263c1d 429 _("gen_fetch: bad type code"));
c906108c
SS
430 }
431}
432
433
434/* Generate code to left shift the top of the stack by DISTANCE bits, or
435 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
436 unsigned (logical) right shifts. */
437static void
fba45db2 438gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
439{
440 if (distance > 0)
441 {
442 ax_const_l (ax, distance);
443 ax_simple (ax, aop_lsh);
444 }
445 else if (distance < 0)
446 {
447 ax_const_l (ax, -distance);
448 ax_simple (ax, aop_rsh_unsigned);
449 }
450}
c5aa993b 451\f
c906108c
SS
452
453
c906108c
SS
454/* Generating bytecode from GDB expressions: symbol references */
455
456/* Generate code to push the base address of the argument portion of
457 the top stack frame. */
458static void
fba45db2 459gen_frame_args_address (struct agent_expr *ax)
c906108c 460{
39d4ef09
AC
461 int frame_reg;
462 LONGEST frame_offset;
c906108c
SS
463
464 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 465 ax_reg (ax, frame_reg);
c906108c
SS
466 gen_offset (ax, frame_offset);
467}
468
469
470/* Generate code to push the base address of the locals portion of the
471 top stack frame. */
472static void
fba45db2 473gen_frame_locals_address (struct agent_expr *ax)
c906108c 474{
39d4ef09
AC
475 int frame_reg;
476 LONGEST frame_offset;
c906108c
SS
477
478 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 479 ax_reg (ax, frame_reg);
c906108c
SS
480 gen_offset (ax, frame_offset);
481}
482
483
484/* Generate code to add OFFSET to the top of the stack. Try to
485 generate short and readable code. We use this for getting to
486 variables on the stack, and structure members. If we were
487 programming in ML, it would be clearer why these are the same
488 thing. */
489static void
fba45db2 490gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
491{
492 /* It would suffice to simply push the offset and add it, but this
493 makes it easier to read positive and negative offsets in the
494 bytecode. */
495 if (offset > 0)
496 {
497 ax_const_l (ax, offset);
498 ax_simple (ax, aop_add);
499 }
500 else if (offset < 0)
501 {
502 ax_const_l (ax, -offset);
503 ax_simple (ax, aop_sub);
504 }
505}
506
507
508/* In many cases, a symbol's value is the offset from some other
509 address (stack frame, base register, etc.) Generate code to add
510 VAR's value to the top of the stack. */
511static void
fba45db2 512gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
513{
514 gen_offset (ax, SYMBOL_VALUE (var));
515}
516
517
518/* Generate code for a variable reference to AX. The variable is the
519 symbol VAR. Set VALUE to describe the result. */
520
521static void
fba45db2 522gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
c906108c
SS
523{
524 /* Dereference any typedefs. */
525 value->type = check_typedef (SYMBOL_TYPE (var));
526
527 /* I'm imitating the code in read_var_value. */
528 switch (SYMBOL_CLASS (var))
529 {
530 case LOC_CONST: /* A constant, like an enum value. */
531 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
532 value->kind = axs_rvalue;
533 break;
534
535 case LOC_LABEL: /* A goto label, being used as a value. */
536 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
537 value->kind = axs_rvalue;
538 break;
539
540 case LOC_CONST_BYTES:
8e65ff28 541 internal_error (__FILE__, __LINE__,
3d263c1d 542 _("gen_var_ref: LOC_CONST_BYTES symbols are not supported"));
c906108c
SS
543
544 /* Variable at a fixed location in memory. Easy. */
545 case LOC_STATIC:
546 /* Push the address of the variable. */
547 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
548 value->kind = axs_lvalue_memory;
549 break;
550
551 case LOC_ARG: /* var lives in argument area of frame */
552 gen_frame_args_address (ax);
553 gen_sym_offset (ax, var);
554 value->kind = axs_lvalue_memory;
555 break;
556
557 case LOC_REF_ARG: /* As above, but the frame slot really
558 holds the address of the variable. */
559 gen_frame_args_address (ax);
560 gen_sym_offset (ax, var);
561 /* Don't assume any particular pointer size. */
562 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
563 value->kind = axs_lvalue_memory;
564 break;
565
566 case LOC_LOCAL: /* var lives in locals area of frame */
567 case LOC_LOCAL_ARG:
568 gen_frame_locals_address (ax);
569 gen_sym_offset (ax, var);
570 value->kind = axs_lvalue_memory;
571 break;
572
573 case LOC_BASEREG: /* relative to some base register */
574 case LOC_BASEREG_ARG:
575 ax_reg (ax, SYMBOL_BASEREG (var));
576 gen_sym_offset (ax, var);
577 value->kind = axs_lvalue_memory;
578 break;
579
580 case LOC_TYPEDEF:
3d263c1d 581 error (_("Cannot compute value of typedef `%s'."),
de5ad195 582 SYMBOL_PRINT_NAME (var));
c906108c
SS
583 break;
584
585 case LOC_BLOCK:
586 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
587 value->kind = axs_rvalue;
588 break;
589
590 case LOC_REGISTER:
591 case LOC_REGPARM:
592 /* Don't generate any code at all; in the process of treating
593 this as an lvalue or rvalue, the caller will generate the
594 right code. */
595 value->kind = axs_lvalue_register;
596 value->u.reg = SYMBOL_VALUE (var);
597 break;
598
599 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
c5aa993b
JM
600 register, not on the stack. Simpler than LOC_REGISTER and
601 LOC_REGPARM, because it's just like any other case where the
602 thing has a real address. */
c906108c
SS
603 case LOC_REGPARM_ADDR:
604 ax_reg (ax, SYMBOL_VALUE (var));
605 value->kind = axs_lvalue_memory;
606 break;
607
608 case LOC_UNRESOLVED:
609 {
c5aa993b 610 struct minimal_symbol *msym
22abf04a 611 = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (var), NULL, NULL);
c5aa993b 612 if (!msym)
3d263c1d 613 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
c5aa993b 614
c906108c
SS
615 /* Push the address of the variable. */
616 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
617 value->kind = axs_lvalue_memory;
618 }
c5aa993b 619 break;
c906108c 620
a55cc764
DJ
621 case LOC_COMPUTED:
622 case LOC_COMPUTED_ARG:
a67af2b9
AC
623 /* FIXME: cagney/2004-01-26: It should be possible to
624 unconditionally call the SYMBOL_OPS method when available.
d3efc286 625 Unfortunately DWARF 2 stores the frame-base (instead of the
a67af2b9
AC
626 function) location in a function's symbol. Oops! For the
627 moment enable this when/where applicable. */
628 SYMBOL_OPS (var)->tracepoint_var_ref (var, ax, value);
a55cc764
DJ
629 break;
630
c906108c 631 case LOC_OPTIMIZED_OUT:
3d263c1d 632 error (_("The variable `%s' has been optimized out."),
de5ad195 633 SYMBOL_PRINT_NAME (var));
c906108c
SS
634 break;
635
636 default:
3d263c1d 637 error (_("Cannot find value of botched symbol `%s'."),
de5ad195 638 SYMBOL_PRINT_NAME (var));
c906108c
SS
639 break;
640 }
641}
c5aa993b 642\f
c906108c
SS
643
644
c906108c
SS
645/* Generating bytecode from GDB expressions: literals */
646
647static void
fba45db2
KB
648gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
649 struct type *type)
c906108c
SS
650{
651 ax_const_l (ax, k);
652 value->kind = axs_rvalue;
653 value->type = type;
654}
c5aa993b 655\f
c906108c
SS
656
657
c906108c
SS
658/* Generating bytecode from GDB expressions: unary conversions, casts */
659
660/* Take what's on the top of the stack (as described by VALUE), and
661 try to make an rvalue out of it. Signal an error if we can't do
662 that. */
663static void
fba45db2 664require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
665{
666 switch (value->kind)
667 {
668 case axs_rvalue:
669 /* It's already an rvalue. */
670 break;
671
672 case axs_lvalue_memory:
673 /* The top of stack is the address of the object. Dereference. */
674 gen_fetch (ax, value->type);
675 break;
676
677 case axs_lvalue_register:
678 /* There's nothing on the stack, but value->u.reg is the
679 register number containing the value.
680
c5aa993b
JM
681 When we add floating-point support, this is going to have to
682 change. What about SPARC register pairs, for example? */
c906108c
SS
683 ax_reg (ax, value->u.reg);
684 gen_extend (ax, value->type);
685 break;
686 }
687
688 value->kind = axs_rvalue;
689}
690
691
692/* Assume the top of the stack is described by VALUE, and perform the
693 usual unary conversions. This is motivated by ANSI 6.2.2, but of
694 course GDB expressions are not ANSI; they're the mishmash union of
695 a bunch of languages. Rah.
696
697 NOTE! This function promises to produce an rvalue only when the
698 incoming value is of an appropriate type. In other words, the
699 consumer of the value this function produces may assume the value
700 is an rvalue only after checking its type.
701
702 The immediate issue is that if the user tries to use a structure or
703 union as an operand of, say, the `+' operator, we don't want to try
704 to convert that structure to an rvalue; require_rvalue will bomb on
705 structs and unions. Rather, we want to simply pass the struct
706 lvalue through unchanged, and let `+' raise an error. */
707
708static void
fba45db2 709gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
710{
711 /* We don't have to generate any code for the usual integral
712 conversions, since values are always represented as full-width on
713 the stack. Should we tweak the type? */
714
715 /* Some types require special handling. */
0004e5a2 716 switch (TYPE_CODE (value->type))
c906108c
SS
717 {
718 /* Functions get converted to a pointer to the function. */
719 case TYPE_CODE_FUNC:
720 value->type = lookup_pointer_type (value->type);
721 value->kind = axs_rvalue; /* Should always be true, but just in case. */
722 break;
723
724 /* Arrays get converted to a pointer to their first element, and
c5aa993b 725 are no longer an lvalue. */
c906108c
SS
726 case TYPE_CODE_ARRAY:
727 {
728 struct type *elements = TYPE_TARGET_TYPE (value->type);
729 value->type = lookup_pointer_type (elements);
730 value->kind = axs_rvalue;
731 /* We don't need to generate any code; the address of the array
732 is also the address of its first element. */
733 }
c5aa993b 734 break;
c906108c 735
c5aa993b
JM
736 /* Don't try to convert structures and unions to rvalues. Let the
737 consumer signal an error. */
c906108c
SS
738 case TYPE_CODE_STRUCT:
739 case TYPE_CODE_UNION:
740 return;
741
742 /* If the value is an enum, call it an integer. */
743 case TYPE_CODE_ENUM:
744 value->type = builtin_type_int;
745 break;
746 }
747
748 /* If the value is an lvalue, dereference it. */
749 require_rvalue (ax, value);
750}
751
752
753/* Return non-zero iff the type TYPE1 is considered "wider" than the
754 type TYPE2, according to the rules described in gen_usual_arithmetic. */
755static int
fba45db2 756type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
757{
758 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
759 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
760 && TYPE_UNSIGNED (type1)
c5aa993b 761 && !TYPE_UNSIGNED (type2)));
c906108c
SS
762}
763
764
765/* Return the "wider" of the two types TYPE1 and TYPE2. */
766static struct type *
fba45db2 767max_type (struct type *type1, struct type *type2)
c906108c
SS
768{
769 return type_wider_than (type1, type2) ? type1 : type2;
770}
771
772
773/* Generate code to convert a scalar value of type FROM to type TO. */
774static void
fba45db2 775gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
776{
777 /* Perhaps there is a more graceful way to state these rules. */
778
779 /* If we're converting to a narrower type, then we need to clear out
780 the upper bits. */
781 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
782 gen_extend (ax, from);
783
784 /* If the two values have equal width, but different signednesses,
785 then we need to extend. */
786 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
787 {
788 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
789 gen_extend (ax, to);
790 }
791
792 /* If we're converting to a wider type, and becoming unsigned, then
793 we need to zero out any possible sign bits. */
794 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
795 {
796 if (TYPE_UNSIGNED (to))
797 gen_extend (ax, to);
798 }
799}
800
801
802/* Return non-zero iff the type FROM will require any bytecodes to be
803 emitted to be converted to the type TO. */
804static int
fba45db2 805is_nontrivial_conversion (struct type *from, struct type *to)
c906108c
SS
806{
807 struct agent_expr *ax = new_agent_expr (0);
808 int nontrivial;
809
810 /* Actually generate the code, and see if anything came out. At the
811 moment, it would be trivial to replicate the code in
812 gen_conversion here, but in the future, when we're supporting
813 floating point and the like, it may not be. Doing things this
814 way allows this function to be independent of the logic in
815 gen_conversion. */
816 gen_conversion (ax, from, to);
817 nontrivial = ax->len > 0;
818 free_agent_expr (ax);
819 return nontrivial;
820}
821
822
823/* Generate code to perform the "usual arithmetic conversions" (ANSI C
824 6.2.1.5) for the two operands of an arithmetic operator. This
825 effectively finds a "least upper bound" type for the two arguments,
826 and promotes each argument to that type. *VALUE1 and *VALUE2
827 describe the values as they are passed in, and as they are left. */
828static void
fba45db2
KB
829gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
830 struct axs_value *value2)
c906108c
SS
831{
832 /* Do the usual binary conversions. */
833 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
834 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
835 {
836 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
837 integer types by size, and then by signedness: an n-bit
838 unsigned type is considered "wider" than an n-bit signed
839 type. Promote to the "wider" of the two types, and always
840 promote at least to int. */
c906108c
SS
841 struct type *target = max_type (builtin_type_int,
842 max_type (value1->type, value2->type));
843
844 /* Deal with value2, on the top of the stack. */
845 gen_conversion (ax, value2->type, target);
846
847 /* Deal with value1, not on the top of the stack. Don't
848 generate the `swap' instructions if we're not actually going
849 to do anything. */
850 if (is_nontrivial_conversion (value1->type, target))
851 {
852 ax_simple (ax, aop_swap);
853 gen_conversion (ax, value1->type, target);
854 ax_simple (ax, aop_swap);
855 }
856
857 value1->type = value2->type = target;
858 }
859}
860
861
862/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
863 the value on the top of the stack, as described by VALUE. Assume
864 the value has integral type. */
865static void
fba45db2 866gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
c906108c 867{
c5aa993b 868 if (!type_wider_than (value->type, builtin_type_int))
c906108c
SS
869 {
870 gen_conversion (ax, value->type, builtin_type_int);
871 value->type = builtin_type_int;
872 }
c5aa993b 873 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
c906108c
SS
874 {
875 gen_conversion (ax, value->type, builtin_type_unsigned_int);
876 value->type = builtin_type_unsigned_int;
877 }
878}
879
880
881/* Generate code for a cast to TYPE. */
882static void
fba45db2 883gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
884{
885 /* GCC does allow casts to yield lvalues, so this should be fixed
886 before merging these changes into the trunk. */
887 require_rvalue (ax, value);
888 /* Dereference typedefs. */
889 type = check_typedef (type);
890
0004e5a2 891 switch (TYPE_CODE (type))
c906108c
SS
892 {
893 case TYPE_CODE_PTR:
894 /* It's implementation-defined, and I'll bet this is what GCC
895 does. */
896 break;
897
898 case TYPE_CODE_ARRAY:
899 case TYPE_CODE_STRUCT:
900 case TYPE_CODE_UNION:
901 case TYPE_CODE_FUNC:
3d263c1d 902 error (_("Invalid type cast: intended type must be scalar."));
c906108c
SS
903
904 case TYPE_CODE_ENUM:
905 /* We don't have to worry about the size of the value, because
906 all our integral values are fully sign-extended, and when
907 casting pointers we can do anything we like. Is there any
908 way for us to actually know what GCC actually does with a
909 cast like this? */
910 value->type = type;
911 break;
c5aa993b 912
c906108c
SS
913 case TYPE_CODE_INT:
914 gen_conversion (ax, value->type, type);
915 break;
916
917 case TYPE_CODE_VOID:
918 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
919 the type and notice that this value doesn't occupy a stack
920 slot. But for now, leave the value on the stack, and
921 preserve the "value == stack element" assumption. */
c906108c
SS
922 break;
923
924 default:
3d263c1d 925 error (_("Casts to requested type are not yet implemented."));
c906108c
SS
926 }
927
928 value->type = type;
929}
c5aa993b 930\f
c906108c
SS
931
932
c906108c
SS
933/* Generating bytecode from GDB expressions: arithmetic */
934
935/* Scale the integer on the top of the stack by the size of the target
936 of the pointer type TYPE. */
937static void
fba45db2 938gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
939{
940 struct type *element = TYPE_TARGET_TYPE (type);
941
0004e5a2 942 if (TYPE_LENGTH (element) != 1)
c906108c 943 {
0004e5a2 944 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
945 ax_simple (ax, op);
946 }
947}
948
949
950/* Generate code for an addition; non-trivial because we deal with
951 pointer arithmetic. We set VALUE to describe the result value; we
952 assume VALUE1 and VALUE2 describe the two operands, and that
953 they've undergone the usual binary conversions. Used by both
954 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
955static void
fba45db2
KB
956gen_add (struct agent_expr *ax, struct axs_value *value,
957 struct axs_value *value1, struct axs_value *value2, char *name)
c906108c
SS
958{
959 /* Is it INT+PTR? */
0004e5a2
DJ
960 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
961 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
c906108c
SS
962 {
963 /* Swap the values and proceed normally. */
964 ax_simple (ax, aop_swap);
965 gen_scale (ax, aop_mul, value2->type);
966 ax_simple (ax, aop_add);
c5aa993b 967 gen_extend (ax, value2->type); /* Catch overflow. */
c906108c
SS
968 value->type = value2->type;
969 }
970
971 /* Is it PTR+INT? */
0004e5a2
DJ
972 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
973 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
974 {
975 gen_scale (ax, aop_mul, value1->type);
976 ax_simple (ax, aop_add);
c5aa993b 977 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
978 value->type = value1->type;
979 }
980
981 /* Must be number + number; the usual binary conversions will have
982 brought them both to the same width. */
0004e5a2
DJ
983 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
984 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
985 {
986 ax_simple (ax, aop_add);
c5aa993b 987 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
988 value->type = value1->type;
989 }
990
991 else
3d263c1d 992 error (_("Invalid combination of types in %s."), name);
c906108c
SS
993
994 value->kind = axs_rvalue;
995}
996
997
998/* Generate code for an addition; non-trivial because we have to deal
999 with pointer arithmetic. We set VALUE to describe the result
1000 value; we assume VALUE1 and VALUE2 describe the two operands, and
1001 that they've undergone the usual binary conversions. */
1002static void
fba45db2
KB
1003gen_sub (struct agent_expr *ax, struct axs_value *value,
1004 struct axs_value *value1, struct axs_value *value2)
c906108c 1005{
0004e5a2 1006 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
c906108c
SS
1007 {
1008 /* Is it PTR - INT? */
0004e5a2 1009 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
1010 {
1011 gen_scale (ax, aop_mul, value1->type);
1012 ax_simple (ax, aop_sub);
c5aa993b 1013 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1014 value->type = value1->type;
1015 }
1016
1017 /* Is it PTR - PTR? Strictly speaking, the types ought to
c5aa993b
JM
1018 match, but this is what the normal GDB expression evaluator
1019 tests for. */
0004e5a2 1020 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
c906108c
SS
1021 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1022 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1023 {
1024 ax_simple (ax, aop_sub);
1025 gen_scale (ax, aop_div_unsigned, value1->type);
c5aa993b 1026 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
c906108c
SS
1027 }
1028 else
3d263c1d 1029 error (_("\
c906108c 1030First argument of `-' is a pointer, but second argument is neither\n\
3d263c1d 1031an integer nor a pointer of the same type."));
c906108c
SS
1032 }
1033
1034 /* Must be number + number. */
0004e5a2
DJ
1035 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1036 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
1037 {
1038 ax_simple (ax, aop_sub);
c5aa993b 1039 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1040 value->type = value1->type;
1041 }
c5aa993b 1042
c906108c 1043 else
3d263c1d 1044 error (_("Invalid combination of types in subtraction."));
c906108c
SS
1045
1046 value->kind = axs_rvalue;
1047}
1048
1049/* Generate code for a binary operator that doesn't do pointer magic.
1050 We set VALUE to describe the result value; we assume VALUE1 and
1051 VALUE2 describe the two operands, and that they've undergone the
1052 usual binary conversions. MAY_CARRY should be non-zero iff the
1053 result needs to be extended. NAME is the English name of the
1054 operator, used in error messages */
1055static void
fba45db2
KB
1056gen_binop (struct agent_expr *ax, struct axs_value *value,
1057 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1058 enum agent_op op_unsigned, int may_carry, char *name)
c906108c
SS
1059{
1060 /* We only handle INT op INT. */
0004e5a2
DJ
1061 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1062 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
3d263c1d 1063 error (_("Invalid combination of types in %s."), name);
c5aa993b 1064
c906108c
SS
1065 ax_simple (ax,
1066 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1067 if (may_carry)
c5aa993b 1068 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1069 value->type = value1->type;
1070 value->kind = axs_rvalue;
1071}
1072
1073
1074static void
fba45db2 1075gen_logical_not (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1076{
1077 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1078 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1079 error (_("Invalid type of operand to `!'."));
c906108c
SS
1080
1081 gen_usual_unary (ax, value);
1082 ax_simple (ax, aop_log_not);
1083 value->type = builtin_type_int;
1084}
1085
1086
1087static void
fba45db2 1088gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1089{
1090 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
3d263c1d 1091 error (_("Invalid type of operand to `~'."));
c906108c
SS
1092
1093 gen_usual_unary (ax, value);
1094 gen_integral_promotions (ax, value);
1095 ax_simple (ax, aop_bit_not);
1096 gen_extend (ax, value->type);
1097}
c5aa993b 1098\f
c906108c
SS
1099
1100
c906108c
SS
1101/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1102
1103/* Dereference the value on the top of the stack. */
1104static void
fba45db2 1105gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1106{
1107 /* The caller should check the type, because several operators use
1108 this, and we don't know what error message to generate. */
0004e5a2 1109 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
8e65ff28 1110 internal_error (__FILE__, __LINE__,
3d263c1d 1111 _("gen_deref: expected a pointer"));
c906108c
SS
1112
1113 /* We've got an rvalue now, which is a pointer. We want to yield an
1114 lvalue, whose address is exactly that pointer. So we don't
1115 actually emit any code; we just change the type from "Pointer to
1116 T" to "T", and mark the value as an lvalue in memory. Leave it
1117 to the consumer to actually dereference it. */
1118 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
0004e5a2 1119 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1120 ? axs_rvalue : axs_lvalue_memory);
1121}
1122
1123
1124/* Produce the address of the lvalue on the top of the stack. */
1125static void
fba45db2 1126gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1127{
1128 /* Special case for taking the address of a function. The ANSI
1129 standard describes this as a special case, too, so this
1130 arrangement is not without motivation. */
0004e5a2 1131 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1132 /* The value's already an rvalue on the stack, so we just need to
1133 change the type. */
1134 value->type = lookup_pointer_type (value->type);
1135 else
1136 switch (value->kind)
1137 {
1138 case axs_rvalue:
3d263c1d 1139 error (_("Operand of `&' is an rvalue, which has no address."));
c906108c
SS
1140
1141 case axs_lvalue_register:
3d263c1d 1142 error (_("Operand of `&' is in a register, and has no address."));
c906108c
SS
1143
1144 case axs_lvalue_memory:
1145 value->kind = axs_rvalue;
1146 value->type = lookup_pointer_type (value->type);
1147 break;
1148 }
1149}
1150
1151
1152/* A lot of this stuff will have to change to support C++. But we're
1153 not going to deal with that at the moment. */
1154
1155/* Find the field in the structure type TYPE named NAME, and return
1156 its index in TYPE's field array. */
1157static int
fba45db2 1158find_field (struct type *type, char *name)
c906108c
SS
1159{
1160 int i;
1161
1162 CHECK_TYPEDEF (type);
1163
1164 /* Make sure this isn't C++. */
1165 if (TYPE_N_BASECLASSES (type) != 0)
8e65ff28 1166 internal_error (__FILE__, __LINE__,
3d263c1d 1167 _("find_field: derived classes supported"));
c906108c
SS
1168
1169 for (i = 0; i < TYPE_NFIELDS (type); i++)
1170 {
1171 char *this_name = TYPE_FIELD_NAME (type, i);
1172
bde58177 1173 if (this_name && strcmp (name, this_name) == 0)
c906108c
SS
1174 return i;
1175
1176 if (this_name[0] == '\0')
8e65ff28 1177 internal_error (__FILE__, __LINE__,
3d263c1d 1178 _("find_field: anonymous unions not supported"));
c906108c
SS
1179 }
1180
3d263c1d 1181 error (_("Couldn't find member named `%s' in struct/union `%s'"),
7495dfdb 1182 name, TYPE_TAG_NAME (type));
c906108c
SS
1183
1184 return 0;
1185}
1186
1187
1188/* Generate code to push the value of a bitfield of a structure whose
1189 address is on the top of the stack. START and END give the
1190 starting and one-past-ending *bit* numbers of the field within the
1191 structure. */
1192static void
fba45db2
KB
1193gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1194 struct type *type, int start, int end)
c906108c
SS
1195{
1196 /* Note that ops[i] fetches 8 << i bits. */
1197 static enum agent_op ops[]
c5aa993b
JM
1198 =
1199 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1200 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1201
1202 /* We don't want to touch any byte that the bitfield doesn't
1203 actually occupy; we shouldn't make any accesses we're not
1204 explicitly permitted to. We rely here on the fact that the
1205 bytecode `ref' operators work on unaligned addresses.
1206
1207 It takes some fancy footwork to get the stack to work the way
1208 we'd like. Say we're retrieving a bitfield that requires three
1209 fetches. Initially, the stack just contains the address:
c5aa993b 1210 addr
c906108c 1211 For the first fetch, we duplicate the address
c5aa993b 1212 addr addr
c906108c
SS
1213 then add the byte offset, do the fetch, and shift and mask as
1214 needed, yielding a fragment of the value, properly aligned for
1215 the final bitwise or:
c5aa993b 1216 addr frag1
c906108c 1217 then we swap, and repeat the process:
c5aa993b
JM
1218 frag1 addr --- address on top
1219 frag1 addr addr --- duplicate it
1220 frag1 addr frag2 --- get second fragment
1221 frag1 frag2 addr --- swap again
1222 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1223 Notice that, since the third fragment is the last one, we don't
1224 bother duplicating the address this time. Now we have all the
1225 fragments on the stack, and we can simply `or' them together,
1226 yielding the final value of the bitfield. */
1227
1228 /* The first and one-after-last bits in the field, but rounded down
1229 and up to byte boundaries. */
1230 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1231 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1232 / TARGET_CHAR_BIT)
1233 * TARGET_CHAR_BIT);
c906108c
SS
1234
1235 /* current bit offset within the structure */
1236 int offset;
1237
1238 /* The index in ops of the opcode we're considering. */
1239 int op;
1240
1241 /* The number of fragments we generated in the process. Probably
1242 equal to the number of `one' bits in bytesize, but who cares? */
1243 int fragment_count;
1244
1245 /* Dereference any typedefs. */
1246 type = check_typedef (type);
1247
1248 /* Can we fetch the number of bits requested at all? */
1249 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28 1250 internal_error (__FILE__, __LINE__,
3d263c1d 1251 _("gen_bitfield_ref: bitfield too wide"));
c906108c
SS
1252
1253 /* Note that we know here that we only need to try each opcode once.
1254 That may not be true on machines with weird byte sizes. */
1255 offset = bound_start;
1256 fragment_count = 0;
1257 for (op = num_ops - 1; op >= 0; op--)
1258 {
1259 /* number of bits that ops[op] would fetch */
1260 int op_size = 8 << op;
1261
1262 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1263 more fragments, then the address. */
1264
c906108c
SS
1265 /* Does this fetch fit within the bitfield? */
1266 if (offset + op_size <= bound_end)
1267 {
1268 /* Is this the last fragment? */
1269 int last_frag = (offset + op_size == bound_end);
1270
c5aa993b
JM
1271 if (!last_frag)
1272 ax_simple (ax, aop_dup); /* keep a copy of the address */
1273
c906108c
SS
1274 /* Add the offset. */
1275 gen_offset (ax, offset / TARGET_CHAR_BIT);
1276
1277 if (trace_kludge)
1278 {
1279 /* Record the area of memory we're about to fetch. */
1280 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1281 }
1282
1283 /* Perform the fetch. */
1284 ax_simple (ax, ops[op]);
c5aa993b
JM
1285
1286 /* Shift the bits we have to their proper position.
c906108c
SS
1287 gen_left_shift will generate right shifts when the operand
1288 is negative.
1289
c5aa993b
JM
1290 A big-endian field diagram to ponder:
1291 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1292 +------++------++------++------++------++------++------++------+
1293 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1294 ^ ^ ^ ^
1295 bit number 16 32 48 53
c906108c
SS
1296 These are bit numbers as supplied by GDB. Note that the
1297 bit numbers run from right to left once you've fetched the
1298 value!
1299
c5aa993b
JM
1300 A little-endian field diagram to ponder:
1301 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1302 +------++------++------++------++------++------++------++------+
1303 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1304 ^ ^ ^ ^ ^
1305 bit number 48 32 16 4 0
1306
1307 In both cases, the most significant end is on the left
1308 (i.e. normal numeric writing order), which means that you
1309 don't go crazy thinking about `left' and `right' shifts.
1310
1311 We don't have to worry about masking yet:
1312 - If they contain garbage off the least significant end, then we
1313 must be looking at the low end of the field, and the right
1314 shift will wipe them out.
1315 - If they contain garbage off the most significant end, then we
1316 must be looking at the most significant end of the word, and
1317 the sign/zero extension will wipe them out.
1318 - If we're in the interior of the word, then there is no garbage
1319 on either end, because the ref operators zero-extend. */
d7449b42 1320 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 1321 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1322 else
c906108c
SS
1323 gen_left_shift (ax, offset - start);
1324
c5aa993b 1325 if (!last_frag)
c906108c
SS
1326 /* Bring the copy of the address up to the top. */
1327 ax_simple (ax, aop_swap);
1328
1329 offset += op_size;
1330 fragment_count++;
1331 }
1332 }
1333
1334 /* Generate enough bitwise `or' operations to combine all the
1335 fragments we left on the stack. */
1336 while (fragment_count-- > 1)
1337 ax_simple (ax, aop_bit_or);
1338
1339 /* Sign- or zero-extend the value as appropriate. */
1340 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1341
1342 /* This is *not* an lvalue. Ugh. */
1343 value->kind = axs_rvalue;
1344 value->type = type;
1345}
1346
1347
1348/* Generate code to reference the member named FIELD of a structure or
1349 union. The top of the stack, as described by VALUE, should have
1350 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1351 the operator being compiled, and OPERAND_NAME is the kind of thing
1352 it operates on; we use them in error messages. */
1353static void
fba45db2
KB
1354gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1355 char *operator_name, char *operand_name)
c906108c
SS
1356{
1357 struct type *type;
1358 int i;
1359
1360 /* Follow pointers until we reach a non-pointer. These aren't the C
1361 semantics, but they're what the normal GDB evaluator does, so we
1362 should at least be consistent. */
0004e5a2 1363 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
c906108c
SS
1364 {
1365 gen_usual_unary (ax, value);
1366 gen_deref (ax, value);
1367 }
e8860ec2 1368 type = check_typedef (value->type);
c906108c
SS
1369
1370 /* This must yield a structure or a union. */
1371 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1372 && TYPE_CODE (type) != TYPE_CODE_UNION)
3d263c1d 1373 error (_("The left operand of `%s' is not a %s."),
c906108c
SS
1374 operator_name, operand_name);
1375
1376 /* And it must be in memory; we don't deal with structure rvalues,
1377 or structures living in registers. */
1378 if (value->kind != axs_lvalue_memory)
3d263c1d 1379 error (_("Structure does not live in memory."));
c906108c
SS
1380
1381 i = find_field (type, field);
c5aa993b 1382
c906108c
SS
1383 /* Is this a bitfield? */
1384 if (TYPE_FIELD_PACKED (type, i))
1385 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1386 TYPE_FIELD_BITPOS (type, i),
1387 (TYPE_FIELD_BITPOS (type, i)
1388 + TYPE_FIELD_BITSIZE (type, i)));
1389 else
1390 {
1391 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1392 value->kind = axs_lvalue_memory;
1393 value->type = TYPE_FIELD_TYPE (type, i);
1394 }
1395}
1396
1397
1398/* Generate code for GDB's magical `repeat' operator.
1399 LVALUE @ INT creates an array INT elements long, and whose elements
1400 have the same type as LVALUE, located in memory so that LVALUE is
1401 its first element. For example, argv[0]@argc gives you the array
1402 of command-line arguments.
1403
1404 Unfortunately, because we have to know the types before we actually
1405 have a value for the expression, we can't implement this perfectly
1406 without changing the type system, having values that occupy two
1407 stack slots, doing weird things with sizeof, etc. So we require
1408 the right operand to be a constant expression. */
1409static void
fba45db2
KB
1410gen_repeat (union exp_element **pc, struct agent_expr *ax,
1411 struct axs_value *value)
c906108c
SS
1412{
1413 struct axs_value value1;
1414 /* We don't want to turn this into an rvalue, so no conversions
1415 here. */
1416 gen_expr (pc, ax, &value1);
1417 if (value1.kind != axs_lvalue_memory)
3d263c1d 1418 error (_("Left operand of `@' must be an object in memory."));
c906108c
SS
1419
1420 /* Evaluate the length; it had better be a constant. */
1421 {
1422 struct value *v = const_expr (pc);
1423 int length;
1424
c5aa993b 1425 if (!v)
3d263c1d 1426 error (_("Right operand of `@' must be a constant, in agent expressions."));
04624583 1427 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
3d263c1d 1428 error (_("Right operand of `@' must be an integer."));
c906108c
SS
1429 length = value_as_long (v);
1430 if (length <= 0)
3d263c1d 1431 error (_("Right operand of `@' must be positive."));
c906108c
SS
1432
1433 /* The top of the stack is already the address of the object, so
1434 all we need to do is frob the type of the lvalue. */
1435 {
1436 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1437 done with it. */
c906108c 1438 struct type *range
c5aa993b 1439 = create_range_type (0, builtin_type_int, 0, length - 1);
c906108c
SS
1440 struct type *array = create_array_type (0, value1.type, range);
1441
1442 value->kind = axs_lvalue_memory;
1443 value->type = array;
1444 }
1445 }
1446}
1447
1448
1449/* Emit code for the `sizeof' operator.
1450 *PC should point at the start of the operand expression; we advance it
1451 to the first instruction after the operand. */
1452static void
fba45db2
KB
1453gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1454 struct axs_value *value)
c906108c
SS
1455{
1456 /* We don't care about the value of the operand expression; we only
1457 care about its type. However, in the current arrangement, the
1458 only way to find an expression's type is to generate code for it.
1459 So we generate code for the operand, and then throw it away,
1460 replacing it with code that simply pushes its size. */
1461 int start = ax->len;
1462 gen_expr (pc, ax, value);
1463
1464 /* Throw away the code we just generated. */
1465 ax->len = start;
c5aa993b 1466
c906108c
SS
1467 ax_const_l (ax, TYPE_LENGTH (value->type));
1468 value->kind = axs_rvalue;
1469 value->type = builtin_type_int;
1470}
c906108c 1471\f
c5aa993b 1472
c906108c
SS
1473/* Generating bytecode from GDB expressions: general recursive thingy */
1474
3d263c1d 1475/* XXX: i18n */
c906108c
SS
1476/* A gen_expr function written by a Gen-X'er guy.
1477 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1478static void
fba45db2
KB
1479gen_expr (union exp_element **pc, struct agent_expr *ax,
1480 struct axs_value *value)
c906108c
SS
1481{
1482 /* Used to hold the descriptions of operand expressions. */
1483 struct axs_value value1, value2;
1484 enum exp_opcode op = (*pc)[0].opcode;
1485
1486 /* If we're looking at a constant expression, just push its value. */
1487 {
1488 struct value *v = maybe_const_expr (pc);
c5aa993b 1489
c906108c
SS
1490 if (v)
1491 {
1492 ax_const_l (ax, value_as_long (v));
1493 value->kind = axs_rvalue;
df407dfe 1494 value->type = check_typedef (value_type (v));
c906108c
SS
1495 return;
1496 }
1497 }
1498
1499 /* Otherwise, go ahead and generate code for it. */
1500 switch (op)
1501 {
1502 /* Binary arithmetic operators. */
1503 case BINOP_ADD:
1504 case BINOP_SUB:
1505 case BINOP_MUL:
1506 case BINOP_DIV:
1507 case BINOP_REM:
1508 case BINOP_SUBSCRIPT:
1509 case BINOP_BITWISE_AND:
1510 case BINOP_BITWISE_IOR:
1511 case BINOP_BITWISE_XOR:
1512 (*pc)++;
1513 gen_expr (pc, ax, &value1);
1514 gen_usual_unary (ax, &value1);
1515 gen_expr (pc, ax, &value2);
1516 gen_usual_unary (ax, &value2);
1517 gen_usual_arithmetic (ax, &value1, &value2);
1518 switch (op)
1519 {
1520 case BINOP_ADD:
1521 gen_add (ax, value, &value1, &value2, "addition");
1522 break;
1523 case BINOP_SUB:
1524 gen_sub (ax, value, &value1, &value2);
1525 break;
1526 case BINOP_MUL:
1527 gen_binop (ax, value, &value1, &value2,
1528 aop_mul, aop_mul, 1, "multiplication");
1529 break;
1530 case BINOP_DIV:
1531 gen_binop (ax, value, &value1, &value2,
1532 aop_div_signed, aop_div_unsigned, 1, "division");
1533 break;
1534 case BINOP_REM:
1535 gen_binop (ax, value, &value1, &value2,
1536 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1537 break;
1538 case BINOP_SUBSCRIPT:
1539 gen_add (ax, value, &value1, &value2, "array subscripting");
1540 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1541 error (_("Invalid combination of types in array subscripting."));
c906108c
SS
1542 gen_deref (ax, value);
1543 break;
1544 case BINOP_BITWISE_AND:
1545 gen_binop (ax, value, &value1, &value2,
1546 aop_bit_and, aop_bit_and, 0, "bitwise and");
1547 break;
1548
1549 case BINOP_BITWISE_IOR:
1550 gen_binop (ax, value, &value1, &value2,
1551 aop_bit_or, aop_bit_or, 0, "bitwise or");
1552 break;
1553
1554 case BINOP_BITWISE_XOR:
1555 gen_binop (ax, value, &value1, &value2,
1556 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1557 break;
1558
1559 default:
1560 /* We should only list operators in the outer case statement
c5aa993b 1561 that we actually handle in the inner case statement. */
8e65ff28 1562 internal_error (__FILE__, __LINE__,
3d263c1d 1563 _("gen_expr: op case sets don't match"));
c906108c
SS
1564 }
1565 break;
1566
1567 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1568 for comma. In C, we can do some optimizations here because
1569 we know the left operand is only being evaluated for effect.
1570 However, if the tracing kludge is in effect, then we always
1571 need to evaluate the left hand side fully, so that all the
1572 variables it mentions get traced. */
c906108c
SS
1573 case BINOP_COMMA:
1574 (*pc)++;
1575 gen_expr (pc, ax, &value1);
1576 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1577 in which case we want to emit code to trace it if it's an
1578 lvalue. */
c906108c
SS
1579 gen_traced_pop (ax, &value1);
1580 gen_expr (pc, ax, value);
1581 /* It's the consumer's responsibility to trace the right operand. */
1582 break;
c5aa993b 1583
c906108c
SS
1584 case OP_LONG: /* some integer constant */
1585 {
1586 struct type *type = (*pc)[1].type;
1587 LONGEST k = (*pc)[2].longconst;
1588 (*pc) += 4;
1589 gen_int_literal (ax, value, k, type);
1590 }
c5aa993b 1591 break;
c906108c
SS
1592
1593 case OP_VAR_VALUE:
1594 gen_var_ref (ax, value, (*pc)[2].symbol);
1595 (*pc) += 4;
1596 break;
1597
1598 case OP_REGISTER:
1599 {
1600 int reg = (int) (*pc)[1].longconst;
1601 (*pc) += 3;
1602 value->kind = axs_lvalue_register;
1603 value->u.reg = reg;
7b83296f 1604 value->type = register_type (current_gdbarch, reg);
c906108c 1605 }
c5aa993b 1606 break;
c906108c
SS
1607
1608 case OP_INTERNALVAR:
3d263c1d 1609 error (_("GDB agent expressions cannot use convenience variables."));
c906108c 1610
c5aa993b 1611 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1612 case BINOP_REPEAT:
1613 /* Note that gen_repeat handles its own argument evaluation. */
1614 (*pc)++;
1615 gen_repeat (pc, ax, value);
1616 break;
1617
1618 case UNOP_CAST:
1619 {
1620 struct type *type = (*pc)[1].type;
1621 (*pc) += 3;
1622 gen_expr (pc, ax, value);
1623 gen_cast (ax, value, type);
1624 }
c5aa993b 1625 break;
c906108c
SS
1626
1627 case UNOP_MEMVAL:
1628 {
1629 struct type *type = check_typedef ((*pc)[1].type);
1630 (*pc) += 3;
1631 gen_expr (pc, ax, value);
1632 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1633 it's just a hack for dealing with minsyms; you take some
1634 integer constant, pretend it's the address of an lvalue of
1635 the given type, and dereference it. */
1636 if (value->kind != axs_rvalue)
1637 /* This would be weird. */
8e65ff28 1638 internal_error (__FILE__, __LINE__,
3d263c1d 1639 _("gen_expr: OP_MEMVAL operand isn't an rvalue???"));
c906108c
SS
1640 value->type = type;
1641 value->kind = axs_lvalue_memory;
1642 }
c5aa993b 1643 break;
c906108c 1644
36e9969c
NS
1645 case UNOP_PLUS:
1646 (*pc)++;
1647 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
1648 gen_expr (pc, ax, value);
1649 gen_usual_unary (ax, value);
1650 break;
1651
c906108c
SS
1652 case UNOP_NEG:
1653 (*pc)++;
1654 /* -FOO is equivalent to 0 - FOO. */
1655 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
c5aa993b 1656 gen_usual_unary (ax, &value1); /* shouldn't do much */
c906108c
SS
1657 gen_expr (pc, ax, &value2);
1658 gen_usual_unary (ax, &value2);
1659 gen_usual_arithmetic (ax, &value1, &value2);
1660 gen_sub (ax, value, &value1, &value2);
1661 break;
1662
1663 case UNOP_LOGICAL_NOT:
1664 (*pc)++;
1665 gen_expr (pc, ax, value);
1666 gen_logical_not (ax, value);
1667 break;
1668
1669 case UNOP_COMPLEMENT:
1670 (*pc)++;
1671 gen_expr (pc, ax, value);
1672 gen_complement (ax, value);
1673 break;
1674
1675 case UNOP_IND:
1676 (*pc)++;
1677 gen_expr (pc, ax, value);
1678 gen_usual_unary (ax, value);
1679 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1680 error (_("Argument of unary `*' is not a pointer."));
c906108c
SS
1681 gen_deref (ax, value);
1682 break;
1683
1684 case UNOP_ADDR:
1685 (*pc)++;
1686 gen_expr (pc, ax, value);
1687 gen_address_of (ax, value);
1688 break;
1689
1690 case UNOP_SIZEOF:
1691 (*pc)++;
1692 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1693 of the other unary operator functions. This is because we
1694 have to throw away the code we generate. */
c906108c
SS
1695 gen_sizeof (pc, ax, value);
1696 break;
1697
1698 case STRUCTOP_STRUCT:
1699 case STRUCTOP_PTR:
1700 {
1701 int length = (*pc)[1].longconst;
1702 char *name = &(*pc)[2].string;
1703
1704 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1705 gen_expr (pc, ax, value);
1706 if (op == STRUCTOP_STRUCT)
1707 gen_struct_ref (ax, value, name, ".", "structure or union");
1708 else if (op == STRUCTOP_PTR)
1709 gen_struct_ref (ax, value, name, "->",
1710 "pointer to a structure or union");
1711 else
1712 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1713 shouldn't mention it, and we shouldn't be here. */
8e65ff28 1714 internal_error (__FILE__, __LINE__,
3d263c1d 1715 _("gen_expr: unhandled struct case"));
c906108c 1716 }
c5aa993b 1717 break;
c906108c
SS
1718
1719 case OP_TYPE:
3d263c1d 1720 error (_("Attempt to use a type name as an expression."));
c906108c
SS
1721
1722 default:
3d263c1d 1723 error (_("Unsupported operator in expression."));
c906108c
SS
1724 }
1725}
c906108c 1726\f
c5aa993b
JM
1727
1728
c906108c
SS
1729/* Generating bytecode from GDB expressions: driver */
1730
1731/* Given a GDB expression EXPR, produce a string of agent bytecode
1732 which computes its value. Return the agent expression, and set
1733 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1734struct agent_expr *
fba45db2 1735expr_to_agent (struct expression *expr, struct axs_value *value)
c906108c
SS
1736{
1737 struct cleanup *old_chain = 0;
6426a772 1738 struct agent_expr *ax = new_agent_expr (0);
c906108c
SS
1739 union exp_element *pc;
1740
f23d52e0 1741 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1742
1743 pc = expr->elts;
1744 trace_kludge = 0;
1745 gen_expr (&pc, ax, value);
1746
1747 /* We have successfully built the agent expr, so cancel the cleanup
1748 request. If we add more cleanups that we always want done, this
1749 will have to get more complicated. */
1750 discard_cleanups (old_chain);
1751 return ax;
1752}
1753
1754
6426a772 1755#if 0 /* not used */
c906108c
SS
1756/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1757 string of agent bytecode which will leave its address and size on
1758 the top of stack. Return the agent expression.
1759
1760 Not sure this function is useful at all. */
1761struct agent_expr *
fba45db2 1762expr_to_address_and_size (struct expression *expr)
c906108c
SS
1763{
1764 struct axs_value value;
1765 struct agent_expr *ax = expr_to_agent (expr, &value);
1766
1767 /* Complain if the result is not a memory lvalue. */
1768 if (value.kind != axs_lvalue_memory)
1769 {
1770 free_agent_expr (ax);
3d263c1d 1771 error (_("Expression does not denote an object in memory."));
c906108c
SS
1772 }
1773
1774 /* Push the object's size on the stack. */
1775 ax_const_l (ax, TYPE_LENGTH (value.type));
1776
1777 return ax;
1778}
6426a772 1779#endif
c906108c
SS
1780
1781/* Given a GDB expression EXPR, return bytecode to trace its value.
1782 The result will use the `trace' and `trace_quick' bytecodes to
1783 record the value of all memory touched by the expression. The
1784 caller can then use the ax_reqs function to discover which
1785 registers it relies upon. */
1786struct agent_expr *
fba45db2 1787gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
c906108c
SS
1788{
1789 struct cleanup *old_chain = 0;
1790 struct agent_expr *ax = new_agent_expr (scope);
1791 union exp_element *pc;
1792 struct axs_value value;
1793
f23d52e0 1794 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1795
1796 pc = expr->elts;
1797 trace_kludge = 1;
1798 gen_expr (&pc, ax, &value);
1799
1800 /* Make sure we record the final object, and get rid of it. */
1801 gen_traced_pop (ax, &value);
1802
1803 /* Oh, and terminate. */
1804 ax_simple (ax, aop_end);
1805
1806 /* We have successfully built the agent expr, so cancel the cleanup
1807 request. If we add more cleanups that we always want done, this
1808 will have to get more complicated. */
1809 discard_cleanups (old_chain);
1810 return ax;
1811}
c906108c
SS
1812
1813static void
fba45db2 1814agent_command (char *exp, int from_tty)
c906108c
SS
1815{
1816 struct cleanup *old_chain = 0;
1817 struct expression *expr;
1818 struct agent_expr *agent;
6426a772 1819 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
1820
1821 /* We don't deal with overlay debugging at the moment. We need to
1822 think more carefully about this. If you copy this code into
1823 another command, change the error message; the user shouldn't
1824 have to know anything about agent expressions. */
1825 if (overlay_debugging)
3d263c1d 1826 error (_("GDB can't do agent expression translation with overlays."));
c906108c
SS
1827
1828 if (exp == 0)
3d263c1d 1829 error_no_arg (_("expression to translate"));
c5aa993b 1830
c906108c 1831 expr = parse_expression (exp);
c13c43fd 1832 old_chain = make_cleanup (free_current_contents, &expr);
bdd78e62 1833 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
f23d52e0 1834 make_cleanup_free_agent_expr (agent);
c906108c 1835 ax_print (gdb_stdout, agent);
085dd6e6
JM
1836
1837 /* It would be nice to call ax_reqs here to gather some general info
1838 about the expression, and then print out the result. */
c906108c
SS
1839
1840 do_cleanups (old_chain);
1841 dont_repeat ();
1842}
c906108c 1843\f
c5aa993b 1844
c906108c
SS
1845/* Initialization code. */
1846
a14ed312 1847void _initialize_ax_gdb (void);
c906108c 1848void
fba45db2 1849_initialize_ax_gdb (void)
c906108c 1850{
c906108c 1851 add_cmd ("agent", class_maintenance, agent_command,
3d263c1d 1852 _("Translate an expression into remote agent bytecode."),
c906108c
SS
1853 &maintenancelist);
1854}
This page took 0.475394 seconds and 4 git commands to generate.