*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
3 Copyright 1998, 1999, 2000, 2001, 2003 Free Software Foundation,
4 Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c 22
c906108c
SS
23#include "defs.h"
24#include "symtab.h"
25#include "symfile.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "expression.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "frame.h"
32#include "target.h"
33#include "ax.h"
34#include "ax-gdb.h"
309367d4 35#include "gdb_string.h"
c906108c 36
6426a772
JM
37/* To make sense of this file, you should read doc/agentexpr.texi.
38 Then look at the types and enums in ax-gdb.h. For the code itself,
39 look at gen_expr, towards the bottom; that's the main function that
40 looks at the GDB expressions and calls everything else to generate
41 code.
c906108c
SS
42
43 I'm beginning to wonder whether it wouldn't be nicer to internally
44 generate trees, with types, and then spit out the bytecode in
45 linear form afterwards; we could generate fewer `swap', `ext', and
46 `zero_ext' bytecodes that way; it would make good constant folding
47 easier, too. But at the moment, I think we should be willing to
48 pay for the simplicity of this code with less-than-optimal bytecode
49 strings.
50
c5aa993b
JM
51 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
52\f
c906108c
SS
53
54
c906108c
SS
55/* Prototypes for local functions. */
56
57/* There's a standard order to the arguments of these functions:
58 union exp_element ** --- pointer into expression
59 struct agent_expr * --- agent expression buffer to generate code into
60 struct axs_value * --- describes value left on top of stack */
c5aa993b 61
a14ed312
KB
62static struct value *const_var_ref (struct symbol *var);
63static struct value *const_expr (union exp_element **pc);
64static struct value *maybe_const_expr (union exp_element **pc);
65
66static void gen_traced_pop (struct agent_expr *, struct axs_value *);
67
68static void gen_sign_extend (struct agent_expr *, struct type *);
69static void gen_extend (struct agent_expr *, struct type *);
70static void gen_fetch (struct agent_expr *, struct type *);
71static void gen_left_shift (struct agent_expr *, int);
72
73
74static void gen_frame_args_address (struct agent_expr *);
75static void gen_frame_locals_address (struct agent_expr *);
76static void gen_offset (struct agent_expr *ax, int offset);
77static void gen_sym_offset (struct agent_expr *, struct symbol *);
78static void gen_var_ref (struct agent_expr *ax,
79 struct axs_value *value, struct symbol *var);
80
81
82static void gen_int_literal (struct agent_expr *ax,
83 struct axs_value *value,
84 LONGEST k, struct type *type);
85
86
87static void require_rvalue (struct agent_expr *ax, struct axs_value *value);
88static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
89static int type_wider_than (struct type *type1, struct type *type2);
90static struct type *max_type (struct type *type1, struct type *type2);
91static void gen_conversion (struct agent_expr *ax,
92 struct type *from, struct type *to);
93static int is_nontrivial_conversion (struct type *from, struct type *to);
94static void gen_usual_arithmetic (struct agent_expr *ax,
95 struct axs_value *value1,
96 struct axs_value *value2);
97static void gen_integral_promotions (struct agent_expr *ax,
98 struct axs_value *value);
99static void gen_cast (struct agent_expr *ax,
100 struct axs_value *value, struct type *type);
101static void gen_scale (struct agent_expr *ax,
102 enum agent_op op, struct type *type);
103static void gen_add (struct agent_expr *ax,
104 struct axs_value *value,
105 struct axs_value *value1,
106 struct axs_value *value2, char *name);
107static void gen_sub (struct agent_expr *ax,
108 struct axs_value *value,
109 struct axs_value *value1, struct axs_value *value2);
110static void gen_binop (struct agent_expr *ax,
111 struct axs_value *value,
112 struct axs_value *value1,
113 struct axs_value *value2,
114 enum agent_op op,
115 enum agent_op op_unsigned, int may_carry, char *name);
116static void gen_logical_not (struct agent_expr *ax, struct axs_value *value);
117static void gen_complement (struct agent_expr *ax, struct axs_value *value);
118static void gen_deref (struct agent_expr *, struct axs_value *);
119static void gen_address_of (struct agent_expr *, struct axs_value *);
120static int find_field (struct type *type, char *name);
121static void gen_bitfield_ref (struct agent_expr *ax,
122 struct axs_value *value,
123 struct type *type, int start, int end);
124static void gen_struct_ref (struct agent_expr *ax,
125 struct axs_value *value,
126 char *field,
127 char *operator_name, char *operand_name);
128static void gen_repeat (union exp_element **pc,
129 struct agent_expr *ax, struct axs_value *value);
130static void gen_sizeof (union exp_element **pc,
131 struct agent_expr *ax, struct axs_value *value);
132static void gen_expr (union exp_element **pc,
133 struct agent_expr *ax, struct axs_value *value);
c5aa993b 134
d9fcf2fb 135static void print_axs_value (struct ui_file *f, struct axs_value * value);
a14ed312 136static void agent_command (char *exp, int from_tty);
c906108c 137\f
c5aa993b 138
c906108c
SS
139/* Detecting constant expressions. */
140
141/* If the variable reference at *PC is a constant, return its value.
142 Otherwise, return zero.
143
144 Hey, Wally! How can a variable reference be a constant?
145
146 Well, Beav, this function really handles the OP_VAR_VALUE operator,
147 not specifically variable references. GDB uses OP_VAR_VALUE to
148 refer to any kind of symbolic reference: function names, enum
149 elements, and goto labels are all handled through the OP_VAR_VALUE
150 operator, even though they're constants. It makes sense given the
151 situation.
152
153 Gee, Wally, don'cha wonder sometimes if data representations that
154 subvert commonly accepted definitions of terms in favor of heavily
155 context-specific interpretations are really just a tool of the
156 programming hegemony to preserve their power and exclude the
157 proletariat? */
158
159static struct value *
fba45db2 160const_var_ref (struct symbol *var)
c906108c
SS
161{
162 struct type *type = SYMBOL_TYPE (var);
163
164 switch (SYMBOL_CLASS (var))
165 {
166 case LOC_CONST:
167 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
168
169 case LOC_LABEL:
4478b372 170 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
171
172 default:
173 return 0;
174 }
175}
176
177
178/* If the expression starting at *PC has a constant value, return it.
179 Otherwise, return zero. If we return a value, then *PC will be
180 advanced to the end of it. If we return zero, *PC could be
181 anywhere. */
182static struct value *
fba45db2 183const_expr (union exp_element **pc)
c906108c
SS
184{
185 enum exp_opcode op = (*pc)->opcode;
186 struct value *v1;
187
188 switch (op)
189 {
190 case OP_LONG:
191 {
192 struct type *type = (*pc)[1].type;
193 LONGEST k = (*pc)[2].longconst;
194 (*pc) += 4;
195 return value_from_longest (type, k);
196 }
197
198 case OP_VAR_VALUE:
199 {
200 struct value *v = const_var_ref ((*pc)[2].symbol);
201 (*pc) += 4;
202 return v;
203 }
204
c5aa993b 205 /* We could add more operators in here. */
c906108c
SS
206
207 case UNOP_NEG:
208 (*pc)++;
209 v1 = const_expr (pc);
210 if (v1)
211 return value_neg (v1);
212 else
213 return 0;
214
215 default:
216 return 0;
217 }
218}
219
220
221/* Like const_expr, but guarantee also that *PC is undisturbed if the
222 expression is not constant. */
223static struct value *
fba45db2 224maybe_const_expr (union exp_element **pc)
c906108c
SS
225{
226 union exp_element *tentative_pc = *pc;
227 struct value *v = const_expr (&tentative_pc);
228
229 /* If we got a value, then update the real PC. */
230 if (v)
231 *pc = tentative_pc;
c5aa993b 232
c906108c
SS
233 return v;
234}
c906108c 235\f
c5aa993b 236
c906108c
SS
237/* Generating bytecode from GDB expressions: general assumptions */
238
239/* Here are a few general assumptions made throughout the code; if you
240 want to make a change that contradicts one of these, then you'd
241 better scan things pretty thoroughly.
242
243 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
244 sometimes we'll swap to get at the left argument to a binary
245 operator. If we decide that void values should occupy no stack
246 elements, or that synthetic arrays (whose size is determined at
247 run time, created by the `@' operator) should occupy two stack
248 elements (address and length), then this will cause trouble.
c906108c
SS
249
250 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
251 don't have to worry what happens if the user requests an
252 operation that is wider than the actual interpreter's stack.
253 That is, it's up to the interpreter to handle directly all the
254 integer widths the user has access to. (Woe betide the language
255 with bignums!)
c906108c
SS
256
257 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 258 GCC's generalized lvalues, function calls, etc.
c906108c
SS
259
260 - We don't support floating point. Many places where we switch on
c5aa993b
JM
261 some type don't bother to include cases for floating point; there
262 may be even more subtle ways this assumption exists. For
263 example, the arguments to % must be integers.
c906108c
SS
264
265 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
266 we tried to support convenience variables, this would be a
267 problem.
c906108c
SS
268
269 - All values on the stack should always be fully zero- or
c5aa993b
JM
270 sign-extended.
271
272 (I wasn't sure whether to choose this or its opposite --- that
273 only addresses are assumed extended --- but it turns out that
274 neither convention completely eliminates spurious extend
275 operations (if everything is always extended, then you have to
276 extend after add, because it could overflow; if nothing is
277 extended, then you end up producing extends whenever you change
278 sizes), and this is simpler.) */
c906108c 279\f
c5aa993b 280
c906108c
SS
281/* Generating bytecode from GDB expressions: the `trace' kludge */
282
283/* The compiler in this file is a general-purpose mechanism for
284 translating GDB expressions into bytecode. One ought to be able to
285 find a million and one uses for it.
286
287 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
288 of expediency. Let he who is without sin cast the first stone.
289
290 For the data tracing facility, we need to insert `trace' bytecodes
291 before each data fetch; this records all the memory that the
292 expression touches in the course of evaluation, so that memory will
293 be available when the user later tries to evaluate the expression
294 in GDB.
295
296 This should be done (I think) in a post-processing pass, that walks
297 an arbitrary agent expression and inserts `trace' operations at the
298 appropriate points. But it's much faster to just hack them
299 directly into the code. And since we're in a crunch, that's what
300 I've done.
301
302 Setting the flag trace_kludge to non-zero enables the code that
303 emits the trace bytecodes at the appropriate points. */
304static int trace_kludge;
305
306/* Trace the lvalue on the stack, if it needs it. In either case, pop
307 the value. Useful on the left side of a comma, and at the end of
308 an expression being used for tracing. */
309static void
fba45db2 310gen_traced_pop (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
311{
312 if (trace_kludge)
313 switch (value->kind)
314 {
315 case axs_rvalue:
316 /* We don't trace rvalues, just the lvalues necessary to
c5aa993b 317 produce them. So just dispose of this value. */
c906108c
SS
318 ax_simple (ax, aop_pop);
319 break;
320
321 case axs_lvalue_memory:
322 {
323 int length = TYPE_LENGTH (value->type);
324
325 /* There's no point in trying to use a trace_quick bytecode
326 here, since "trace_quick SIZE pop" is three bytes, whereas
327 "const8 SIZE trace" is also three bytes, does the same
328 thing, and the simplest code which generates that will also
329 work correctly for objects with large sizes. */
330 ax_const_l (ax, length);
331 ax_simple (ax, aop_trace);
332 }
c5aa993b 333 break;
c906108c
SS
334
335 case axs_lvalue_register:
336 /* We need to mention the register somewhere in the bytecode,
337 so ax_reqs will pick it up and add it to the mask of
338 registers used. */
339 ax_reg (ax, value->u.reg);
340 ax_simple (ax, aop_pop);
341 break;
342 }
343 else
344 /* If we're not tracing, just pop the value. */
345 ax_simple (ax, aop_pop);
346}
c5aa993b 347\f
c906108c
SS
348
349
c906108c
SS
350/* Generating bytecode from GDB expressions: helper functions */
351
352/* Assume that the lower bits of the top of the stack is a value of
353 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
354static void
fba45db2 355gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
356{
357 /* Do we need to sign-extend this? */
c5aa993b 358 if (!TYPE_UNSIGNED (type))
0004e5a2 359 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
360}
361
362
363/* Assume the lower bits of the top of the stack hold a value of type
364 TYPE, and the upper bits are garbage. Sign-extend or truncate as
365 needed. */
366static void
fba45db2 367gen_extend (struct agent_expr *ax, struct type *type)
c906108c 368{
0004e5a2 369 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
c906108c
SS
370 /* I just had to. */
371 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
372}
373
374
375/* Assume that the top of the stack contains a value of type "pointer
376 to TYPE"; generate code to fetch its value. Note that TYPE is the
377 target type, not the pointer type. */
378static void
fba45db2 379gen_fetch (struct agent_expr *ax, struct type *type)
c906108c
SS
380{
381 if (trace_kludge)
382 {
383 /* Record the area of memory we're about to fetch. */
384 ax_trace_quick (ax, TYPE_LENGTH (type));
385 }
386
0004e5a2 387 switch (TYPE_CODE (type))
c906108c
SS
388 {
389 case TYPE_CODE_PTR:
390 case TYPE_CODE_ENUM:
391 case TYPE_CODE_INT:
392 case TYPE_CODE_CHAR:
393 /* It's a scalar value, so we know how to dereference it. How
394 many bytes long is it? */
0004e5a2 395 switch (TYPE_LENGTH (type))
c906108c 396 {
c5aa993b
JM
397 case 8 / TARGET_CHAR_BIT:
398 ax_simple (ax, aop_ref8);
399 break;
400 case 16 / TARGET_CHAR_BIT:
401 ax_simple (ax, aop_ref16);
402 break;
403 case 32 / TARGET_CHAR_BIT:
404 ax_simple (ax, aop_ref32);
405 break;
406 case 64 / TARGET_CHAR_BIT:
407 ax_simple (ax, aop_ref64);
408 break;
c906108c
SS
409
410 /* Either our caller shouldn't have asked us to dereference
411 that pointer (other code's fault), or we're not
412 implementing something we should be (this code's fault).
413 In any case, it's a bug the user shouldn't see. */
414 default:
8e65ff28
AC
415 internal_error (__FILE__, __LINE__,
416 "gen_fetch: strange size");
c906108c
SS
417 }
418
419 gen_sign_extend (ax, type);
420 break;
421
422 default:
423 /* Either our caller shouldn't have asked us to dereference that
c5aa993b
JM
424 pointer (other code's fault), or we're not implementing
425 something we should be (this code's fault). In any case,
426 it's a bug the user shouldn't see. */
8e65ff28
AC
427 internal_error (__FILE__, __LINE__,
428 "gen_fetch: bad type code");
c906108c
SS
429 }
430}
431
432
433/* Generate code to left shift the top of the stack by DISTANCE bits, or
434 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
435 unsigned (logical) right shifts. */
436static void
fba45db2 437gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
438{
439 if (distance > 0)
440 {
441 ax_const_l (ax, distance);
442 ax_simple (ax, aop_lsh);
443 }
444 else if (distance < 0)
445 {
446 ax_const_l (ax, -distance);
447 ax_simple (ax, aop_rsh_unsigned);
448 }
449}
c5aa993b 450\f
c906108c
SS
451
452
c906108c
SS
453/* Generating bytecode from GDB expressions: symbol references */
454
455/* Generate code to push the base address of the argument portion of
456 the top stack frame. */
457static void
fba45db2 458gen_frame_args_address (struct agent_expr *ax)
c906108c 459{
39d4ef09
AC
460 int frame_reg;
461 LONGEST frame_offset;
c906108c
SS
462
463 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 464 ax_reg (ax, frame_reg);
c906108c
SS
465 gen_offset (ax, frame_offset);
466}
467
468
469/* Generate code to push the base address of the locals portion of the
470 top stack frame. */
471static void
fba45db2 472gen_frame_locals_address (struct agent_expr *ax)
c906108c 473{
39d4ef09
AC
474 int frame_reg;
475 LONGEST frame_offset;
c906108c
SS
476
477 TARGET_VIRTUAL_FRAME_POINTER (ax->scope, &frame_reg, &frame_offset);
c5aa993b 478 ax_reg (ax, frame_reg);
c906108c
SS
479 gen_offset (ax, frame_offset);
480}
481
482
483/* Generate code to add OFFSET to the top of the stack. Try to
484 generate short and readable code. We use this for getting to
485 variables on the stack, and structure members. If we were
486 programming in ML, it would be clearer why these are the same
487 thing. */
488static void
fba45db2 489gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
490{
491 /* It would suffice to simply push the offset and add it, but this
492 makes it easier to read positive and negative offsets in the
493 bytecode. */
494 if (offset > 0)
495 {
496 ax_const_l (ax, offset);
497 ax_simple (ax, aop_add);
498 }
499 else if (offset < 0)
500 {
501 ax_const_l (ax, -offset);
502 ax_simple (ax, aop_sub);
503 }
504}
505
506
507/* In many cases, a symbol's value is the offset from some other
508 address (stack frame, base register, etc.) Generate code to add
509 VAR's value to the top of the stack. */
510static void
fba45db2 511gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
512{
513 gen_offset (ax, SYMBOL_VALUE (var));
514}
515
516
517/* Generate code for a variable reference to AX. The variable is the
518 symbol VAR. Set VALUE to describe the result. */
519
520static void
fba45db2 521gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var)
c906108c
SS
522{
523 /* Dereference any typedefs. */
524 value->type = check_typedef (SYMBOL_TYPE (var));
525
526 /* I'm imitating the code in read_var_value. */
527 switch (SYMBOL_CLASS (var))
528 {
529 case LOC_CONST: /* A constant, like an enum value. */
530 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
531 value->kind = axs_rvalue;
532 break;
533
534 case LOC_LABEL: /* A goto label, being used as a value. */
535 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
536 value->kind = axs_rvalue;
537 break;
538
539 case LOC_CONST_BYTES:
8e65ff28
AC
540 internal_error (__FILE__, __LINE__,
541 "gen_var_ref: LOC_CONST_BYTES symbols are not supported");
c906108c
SS
542
543 /* Variable at a fixed location in memory. Easy. */
544 case LOC_STATIC:
545 /* Push the address of the variable. */
546 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
547 value->kind = axs_lvalue_memory;
548 break;
549
550 case LOC_ARG: /* var lives in argument area of frame */
551 gen_frame_args_address (ax);
552 gen_sym_offset (ax, var);
553 value->kind = axs_lvalue_memory;
554 break;
555
556 case LOC_REF_ARG: /* As above, but the frame slot really
557 holds the address of the variable. */
558 gen_frame_args_address (ax);
559 gen_sym_offset (ax, var);
560 /* Don't assume any particular pointer size. */
561 gen_fetch (ax, lookup_pointer_type (builtin_type_void));
562 value->kind = axs_lvalue_memory;
563 break;
564
565 case LOC_LOCAL: /* var lives in locals area of frame */
566 case LOC_LOCAL_ARG:
567 gen_frame_locals_address (ax);
568 gen_sym_offset (ax, var);
569 value->kind = axs_lvalue_memory;
570 break;
571
572 case LOC_BASEREG: /* relative to some base register */
573 case LOC_BASEREG_ARG:
574 ax_reg (ax, SYMBOL_BASEREG (var));
575 gen_sym_offset (ax, var);
576 value->kind = axs_lvalue_memory;
577 break;
578
579 case LOC_TYPEDEF:
580 error ("Cannot compute value of typedef `%s'.",
581 SYMBOL_SOURCE_NAME (var));
582 break;
583
584 case LOC_BLOCK:
585 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
586 value->kind = axs_rvalue;
587 break;
588
589 case LOC_REGISTER:
590 case LOC_REGPARM:
591 /* Don't generate any code at all; in the process of treating
592 this as an lvalue or rvalue, the caller will generate the
593 right code. */
594 value->kind = axs_lvalue_register;
595 value->u.reg = SYMBOL_VALUE (var);
596 break;
597
598 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
c5aa993b
JM
599 register, not on the stack. Simpler than LOC_REGISTER and
600 LOC_REGPARM, because it's just like any other case where the
601 thing has a real address. */
c906108c
SS
602 case LOC_REGPARM_ADDR:
603 ax_reg (ax, SYMBOL_VALUE (var));
604 value->kind = axs_lvalue_memory;
605 break;
606
607 case LOC_UNRESOLVED:
608 {
c5aa993b
JM
609 struct minimal_symbol *msym
610 = lookup_minimal_symbol (SYMBOL_NAME (var), NULL, NULL);
611 if (!msym)
c906108c 612 error ("Couldn't resolve symbol `%s'.", SYMBOL_SOURCE_NAME (var));
c5aa993b 613
c906108c
SS
614 /* Push the address of the variable. */
615 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
616 value->kind = axs_lvalue_memory;
617 }
c5aa993b 618 break;
c906108c
SS
619
620 case LOC_OPTIMIZED_OUT:
621 error ("The variable `%s' has been optimized out.",
622 SYMBOL_SOURCE_NAME (var));
623 break;
624
625 default:
626 error ("Cannot find value of botched symbol `%s'.",
627 SYMBOL_SOURCE_NAME (var));
628 break;
629 }
630}
c5aa993b 631\f
c906108c
SS
632
633
c906108c
SS
634/* Generating bytecode from GDB expressions: literals */
635
636static void
fba45db2
KB
637gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
638 struct type *type)
c906108c
SS
639{
640 ax_const_l (ax, k);
641 value->kind = axs_rvalue;
642 value->type = type;
643}
c5aa993b 644\f
c906108c
SS
645
646
c906108c
SS
647/* Generating bytecode from GDB expressions: unary conversions, casts */
648
649/* Take what's on the top of the stack (as described by VALUE), and
650 try to make an rvalue out of it. Signal an error if we can't do
651 that. */
652static void
fba45db2 653require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
654{
655 switch (value->kind)
656 {
657 case axs_rvalue:
658 /* It's already an rvalue. */
659 break;
660
661 case axs_lvalue_memory:
662 /* The top of stack is the address of the object. Dereference. */
663 gen_fetch (ax, value->type);
664 break;
665
666 case axs_lvalue_register:
667 /* There's nothing on the stack, but value->u.reg is the
668 register number containing the value.
669
c5aa993b
JM
670 When we add floating-point support, this is going to have to
671 change. What about SPARC register pairs, for example? */
c906108c
SS
672 ax_reg (ax, value->u.reg);
673 gen_extend (ax, value->type);
674 break;
675 }
676
677 value->kind = axs_rvalue;
678}
679
680
681/* Assume the top of the stack is described by VALUE, and perform the
682 usual unary conversions. This is motivated by ANSI 6.2.2, but of
683 course GDB expressions are not ANSI; they're the mishmash union of
684 a bunch of languages. Rah.
685
686 NOTE! This function promises to produce an rvalue only when the
687 incoming value is of an appropriate type. In other words, the
688 consumer of the value this function produces may assume the value
689 is an rvalue only after checking its type.
690
691 The immediate issue is that if the user tries to use a structure or
692 union as an operand of, say, the `+' operator, we don't want to try
693 to convert that structure to an rvalue; require_rvalue will bomb on
694 structs and unions. Rather, we want to simply pass the struct
695 lvalue through unchanged, and let `+' raise an error. */
696
697static void
fba45db2 698gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
699{
700 /* We don't have to generate any code for the usual integral
701 conversions, since values are always represented as full-width on
702 the stack. Should we tweak the type? */
703
704 /* Some types require special handling. */
0004e5a2 705 switch (TYPE_CODE (value->type))
c906108c
SS
706 {
707 /* Functions get converted to a pointer to the function. */
708 case TYPE_CODE_FUNC:
709 value->type = lookup_pointer_type (value->type);
710 value->kind = axs_rvalue; /* Should always be true, but just in case. */
711 break;
712
713 /* Arrays get converted to a pointer to their first element, and
c5aa993b 714 are no longer an lvalue. */
c906108c
SS
715 case TYPE_CODE_ARRAY:
716 {
717 struct type *elements = TYPE_TARGET_TYPE (value->type);
718 value->type = lookup_pointer_type (elements);
719 value->kind = axs_rvalue;
720 /* We don't need to generate any code; the address of the array
721 is also the address of its first element. */
722 }
c5aa993b 723 break;
c906108c 724
c5aa993b
JM
725 /* Don't try to convert structures and unions to rvalues. Let the
726 consumer signal an error. */
c906108c
SS
727 case TYPE_CODE_STRUCT:
728 case TYPE_CODE_UNION:
729 return;
730
731 /* If the value is an enum, call it an integer. */
732 case TYPE_CODE_ENUM:
733 value->type = builtin_type_int;
734 break;
735 }
736
737 /* If the value is an lvalue, dereference it. */
738 require_rvalue (ax, value);
739}
740
741
742/* Return non-zero iff the type TYPE1 is considered "wider" than the
743 type TYPE2, according to the rules described in gen_usual_arithmetic. */
744static int
fba45db2 745type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
746{
747 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
748 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
749 && TYPE_UNSIGNED (type1)
c5aa993b 750 && !TYPE_UNSIGNED (type2)));
c906108c
SS
751}
752
753
754/* Return the "wider" of the two types TYPE1 and TYPE2. */
755static struct type *
fba45db2 756max_type (struct type *type1, struct type *type2)
c906108c
SS
757{
758 return type_wider_than (type1, type2) ? type1 : type2;
759}
760
761
762/* Generate code to convert a scalar value of type FROM to type TO. */
763static void
fba45db2 764gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
765{
766 /* Perhaps there is a more graceful way to state these rules. */
767
768 /* If we're converting to a narrower type, then we need to clear out
769 the upper bits. */
770 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
771 gen_extend (ax, from);
772
773 /* If the two values have equal width, but different signednesses,
774 then we need to extend. */
775 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
776 {
777 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
778 gen_extend (ax, to);
779 }
780
781 /* If we're converting to a wider type, and becoming unsigned, then
782 we need to zero out any possible sign bits. */
783 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
784 {
785 if (TYPE_UNSIGNED (to))
786 gen_extend (ax, to);
787 }
788}
789
790
791/* Return non-zero iff the type FROM will require any bytecodes to be
792 emitted to be converted to the type TO. */
793static int
fba45db2 794is_nontrivial_conversion (struct type *from, struct type *to)
c906108c
SS
795{
796 struct agent_expr *ax = new_agent_expr (0);
797 int nontrivial;
798
799 /* Actually generate the code, and see if anything came out. At the
800 moment, it would be trivial to replicate the code in
801 gen_conversion here, but in the future, when we're supporting
802 floating point and the like, it may not be. Doing things this
803 way allows this function to be independent of the logic in
804 gen_conversion. */
805 gen_conversion (ax, from, to);
806 nontrivial = ax->len > 0;
807 free_agent_expr (ax);
808 return nontrivial;
809}
810
811
812/* Generate code to perform the "usual arithmetic conversions" (ANSI C
813 6.2.1.5) for the two operands of an arithmetic operator. This
814 effectively finds a "least upper bound" type for the two arguments,
815 and promotes each argument to that type. *VALUE1 and *VALUE2
816 describe the values as they are passed in, and as they are left. */
817static void
fba45db2
KB
818gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
819 struct axs_value *value2)
c906108c
SS
820{
821 /* Do the usual binary conversions. */
822 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
823 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
824 {
825 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
826 integer types by size, and then by signedness: an n-bit
827 unsigned type is considered "wider" than an n-bit signed
828 type. Promote to the "wider" of the two types, and always
829 promote at least to int. */
c906108c
SS
830 struct type *target = max_type (builtin_type_int,
831 max_type (value1->type, value2->type));
832
833 /* Deal with value2, on the top of the stack. */
834 gen_conversion (ax, value2->type, target);
835
836 /* Deal with value1, not on the top of the stack. Don't
837 generate the `swap' instructions if we're not actually going
838 to do anything. */
839 if (is_nontrivial_conversion (value1->type, target))
840 {
841 ax_simple (ax, aop_swap);
842 gen_conversion (ax, value1->type, target);
843 ax_simple (ax, aop_swap);
844 }
845
846 value1->type = value2->type = target;
847 }
848}
849
850
851/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
852 the value on the top of the stack, as described by VALUE. Assume
853 the value has integral type. */
854static void
fba45db2 855gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
c906108c 856{
c5aa993b 857 if (!type_wider_than (value->type, builtin_type_int))
c906108c
SS
858 {
859 gen_conversion (ax, value->type, builtin_type_int);
860 value->type = builtin_type_int;
861 }
c5aa993b 862 else if (!type_wider_than (value->type, builtin_type_unsigned_int))
c906108c
SS
863 {
864 gen_conversion (ax, value->type, builtin_type_unsigned_int);
865 value->type = builtin_type_unsigned_int;
866 }
867}
868
869
870/* Generate code for a cast to TYPE. */
871static void
fba45db2 872gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
873{
874 /* GCC does allow casts to yield lvalues, so this should be fixed
875 before merging these changes into the trunk. */
876 require_rvalue (ax, value);
877 /* Dereference typedefs. */
878 type = check_typedef (type);
879
0004e5a2 880 switch (TYPE_CODE (type))
c906108c
SS
881 {
882 case TYPE_CODE_PTR:
883 /* It's implementation-defined, and I'll bet this is what GCC
884 does. */
885 break;
886
887 case TYPE_CODE_ARRAY:
888 case TYPE_CODE_STRUCT:
889 case TYPE_CODE_UNION:
890 case TYPE_CODE_FUNC:
891 error ("Illegal type cast: intended type must be scalar.");
892
893 case TYPE_CODE_ENUM:
894 /* We don't have to worry about the size of the value, because
895 all our integral values are fully sign-extended, and when
896 casting pointers we can do anything we like. Is there any
897 way for us to actually know what GCC actually does with a
898 cast like this? */
899 value->type = type;
900 break;
c5aa993b 901
c906108c
SS
902 case TYPE_CODE_INT:
903 gen_conversion (ax, value->type, type);
904 break;
905
906 case TYPE_CODE_VOID:
907 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
908 the type and notice that this value doesn't occupy a stack
909 slot. But for now, leave the value on the stack, and
910 preserve the "value == stack element" assumption. */
c906108c
SS
911 break;
912
913 default:
914 error ("Casts to requested type are not yet implemented.");
915 }
916
917 value->type = type;
918}
c5aa993b 919\f
c906108c
SS
920
921
c906108c
SS
922/* Generating bytecode from GDB expressions: arithmetic */
923
924/* Scale the integer on the top of the stack by the size of the target
925 of the pointer type TYPE. */
926static void
fba45db2 927gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
928{
929 struct type *element = TYPE_TARGET_TYPE (type);
930
0004e5a2 931 if (TYPE_LENGTH (element) != 1)
c906108c 932 {
0004e5a2 933 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
934 ax_simple (ax, op);
935 }
936}
937
938
939/* Generate code for an addition; non-trivial because we deal with
940 pointer arithmetic. We set VALUE to describe the result value; we
941 assume VALUE1 and VALUE2 describe the two operands, and that
942 they've undergone the usual binary conversions. Used by both
943 BINOP_ADD and BINOP_SUBSCRIPT. NAME is used in error messages. */
944static void
fba45db2
KB
945gen_add (struct agent_expr *ax, struct axs_value *value,
946 struct axs_value *value1, struct axs_value *value2, char *name)
c906108c
SS
947{
948 /* Is it INT+PTR? */
0004e5a2
DJ
949 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
950 && TYPE_CODE (value2->type) == TYPE_CODE_PTR)
c906108c
SS
951 {
952 /* Swap the values and proceed normally. */
953 ax_simple (ax, aop_swap);
954 gen_scale (ax, aop_mul, value2->type);
955 ax_simple (ax, aop_add);
c5aa993b 956 gen_extend (ax, value2->type); /* Catch overflow. */
c906108c
SS
957 value->type = value2->type;
958 }
959
960 /* Is it PTR+INT? */
0004e5a2
DJ
961 else if (TYPE_CODE (value1->type) == TYPE_CODE_PTR
962 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
963 {
964 gen_scale (ax, aop_mul, value1->type);
965 ax_simple (ax, aop_add);
c5aa993b 966 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
967 value->type = value1->type;
968 }
969
970 /* Must be number + number; the usual binary conversions will have
971 brought them both to the same width. */
0004e5a2
DJ
972 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
973 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
974 {
975 ax_simple (ax, aop_add);
c5aa993b 976 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
977 value->type = value1->type;
978 }
979
980 else
981 error ("Illegal combination of types in %s.", name);
982
983 value->kind = axs_rvalue;
984}
985
986
987/* Generate code for an addition; non-trivial because we have to deal
988 with pointer arithmetic. We set VALUE to describe the result
989 value; we assume VALUE1 and VALUE2 describe the two operands, and
990 that they've undergone the usual binary conversions. */
991static void
fba45db2
KB
992gen_sub (struct agent_expr *ax, struct axs_value *value,
993 struct axs_value *value1, struct axs_value *value2)
c906108c 994{
0004e5a2 995 if (TYPE_CODE (value1->type) == TYPE_CODE_PTR)
c906108c
SS
996 {
997 /* Is it PTR - INT? */
0004e5a2 998 if (TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
999 {
1000 gen_scale (ax, aop_mul, value1->type);
1001 ax_simple (ax, aop_sub);
c5aa993b 1002 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1003 value->type = value1->type;
1004 }
1005
1006 /* Is it PTR - PTR? Strictly speaking, the types ought to
c5aa993b
JM
1007 match, but this is what the normal GDB expression evaluator
1008 tests for. */
0004e5a2 1009 else if (TYPE_CODE (value2->type) == TYPE_CODE_PTR
c906108c
SS
1010 && (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1011 == TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))))
1012 {
1013 ax_simple (ax, aop_sub);
1014 gen_scale (ax, aop_div_unsigned, value1->type);
c5aa993b 1015 value->type = builtin_type_long; /* FIXME --- should be ptrdiff_t */
c906108c
SS
1016 }
1017 else
1018 error ("\
1019First argument of `-' is a pointer, but second argument is neither\n\
1020an integer nor a pointer of the same type.");
1021 }
1022
1023 /* Must be number + number. */
0004e5a2
DJ
1024 else if (TYPE_CODE (value1->type) == TYPE_CODE_INT
1025 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
c906108c
SS
1026 {
1027 ax_simple (ax, aop_sub);
c5aa993b 1028 gen_extend (ax, value1->type); /* Catch overflow. */
c906108c
SS
1029 value->type = value1->type;
1030 }
c5aa993b 1031
c906108c
SS
1032 else
1033 error ("Illegal combination of types in subtraction.");
1034
1035 value->kind = axs_rvalue;
1036}
1037
1038/* Generate code for a binary operator that doesn't do pointer magic.
1039 We set VALUE to describe the result value; we assume VALUE1 and
1040 VALUE2 describe the two operands, and that they've undergone the
1041 usual binary conversions. MAY_CARRY should be non-zero iff the
1042 result needs to be extended. NAME is the English name of the
1043 operator, used in error messages */
1044static void
fba45db2
KB
1045gen_binop (struct agent_expr *ax, struct axs_value *value,
1046 struct axs_value *value1, struct axs_value *value2, enum agent_op op,
1047 enum agent_op op_unsigned, int may_carry, char *name)
c906108c
SS
1048{
1049 /* We only handle INT op INT. */
0004e5a2
DJ
1050 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1051 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
c906108c 1052 error ("Illegal combination of types in %s.", name);
c5aa993b 1053
c906108c
SS
1054 ax_simple (ax,
1055 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1056 if (may_carry)
c5aa993b 1057 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1058 value->type = value1->type;
1059 value->kind = axs_rvalue;
1060}
1061
1062
1063static void
fba45db2 1064gen_logical_not (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1065{
1066 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1067 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1068 error ("Illegal type of operand to `!'.");
1069
1070 gen_usual_unary (ax, value);
1071 ax_simple (ax, aop_log_not);
1072 value->type = builtin_type_int;
1073}
1074
1075
1076static void
fba45db2 1077gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1078{
1079 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1080 error ("Illegal type of operand to `~'.");
1081
1082 gen_usual_unary (ax, value);
1083 gen_integral_promotions (ax, value);
1084 ax_simple (ax, aop_bit_not);
1085 gen_extend (ax, value->type);
1086}
c5aa993b 1087\f
c906108c
SS
1088
1089
c906108c
SS
1090/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1091
1092/* Dereference the value on the top of the stack. */
1093static void
fba45db2 1094gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1095{
1096 /* The caller should check the type, because several operators use
1097 this, and we don't know what error message to generate. */
0004e5a2 1098 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
8e65ff28
AC
1099 internal_error (__FILE__, __LINE__,
1100 "gen_deref: expected a pointer");
c906108c
SS
1101
1102 /* We've got an rvalue now, which is a pointer. We want to yield an
1103 lvalue, whose address is exactly that pointer. So we don't
1104 actually emit any code; we just change the type from "Pointer to
1105 T" to "T", and mark the value as an lvalue in memory. Leave it
1106 to the consumer to actually dereference it. */
1107 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
0004e5a2 1108 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1109 ? axs_rvalue : axs_lvalue_memory);
1110}
1111
1112
1113/* Produce the address of the lvalue on the top of the stack. */
1114static void
fba45db2 1115gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1116{
1117 /* Special case for taking the address of a function. The ANSI
1118 standard describes this as a special case, too, so this
1119 arrangement is not without motivation. */
0004e5a2 1120 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1121 /* The value's already an rvalue on the stack, so we just need to
1122 change the type. */
1123 value->type = lookup_pointer_type (value->type);
1124 else
1125 switch (value->kind)
1126 {
1127 case axs_rvalue:
1128 error ("Operand of `&' is an rvalue, which has no address.");
1129
1130 case axs_lvalue_register:
1131 error ("Operand of `&' is in a register, and has no address.");
1132
1133 case axs_lvalue_memory:
1134 value->kind = axs_rvalue;
1135 value->type = lookup_pointer_type (value->type);
1136 break;
1137 }
1138}
1139
1140
1141/* A lot of this stuff will have to change to support C++. But we're
1142 not going to deal with that at the moment. */
1143
1144/* Find the field in the structure type TYPE named NAME, and return
1145 its index in TYPE's field array. */
1146static int
fba45db2 1147find_field (struct type *type, char *name)
c906108c
SS
1148{
1149 int i;
1150
1151 CHECK_TYPEDEF (type);
1152
1153 /* Make sure this isn't C++. */
1154 if (TYPE_N_BASECLASSES (type) != 0)
8e65ff28
AC
1155 internal_error (__FILE__, __LINE__,
1156 "find_field: derived classes supported");
c906108c
SS
1157
1158 for (i = 0; i < TYPE_NFIELDS (type); i++)
1159 {
1160 char *this_name = TYPE_FIELD_NAME (type, i);
1161
bde58177 1162 if (this_name && strcmp (name, this_name) == 0)
c906108c
SS
1163 return i;
1164
1165 if (this_name[0] == '\0')
8e65ff28
AC
1166 internal_error (__FILE__, __LINE__,
1167 "find_field: anonymous unions not supported");
c906108c
SS
1168 }
1169
1170 error ("Couldn't find member named `%s' in struct/union `%s'",
7495dfdb 1171 name, TYPE_TAG_NAME (type));
c906108c
SS
1172
1173 return 0;
1174}
1175
1176
1177/* Generate code to push the value of a bitfield of a structure whose
1178 address is on the top of the stack. START and END give the
1179 starting and one-past-ending *bit* numbers of the field within the
1180 structure. */
1181static void
fba45db2
KB
1182gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1183 struct type *type, int start, int end)
c906108c
SS
1184{
1185 /* Note that ops[i] fetches 8 << i bits. */
1186 static enum agent_op ops[]
c5aa993b
JM
1187 =
1188 {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1189 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1190
1191 /* We don't want to touch any byte that the bitfield doesn't
1192 actually occupy; we shouldn't make any accesses we're not
1193 explicitly permitted to. We rely here on the fact that the
1194 bytecode `ref' operators work on unaligned addresses.
1195
1196 It takes some fancy footwork to get the stack to work the way
1197 we'd like. Say we're retrieving a bitfield that requires three
1198 fetches. Initially, the stack just contains the address:
c5aa993b 1199 addr
c906108c 1200 For the first fetch, we duplicate the address
c5aa993b 1201 addr addr
c906108c
SS
1202 then add the byte offset, do the fetch, and shift and mask as
1203 needed, yielding a fragment of the value, properly aligned for
1204 the final bitwise or:
c5aa993b 1205 addr frag1
c906108c 1206 then we swap, and repeat the process:
c5aa993b
JM
1207 frag1 addr --- address on top
1208 frag1 addr addr --- duplicate it
1209 frag1 addr frag2 --- get second fragment
1210 frag1 frag2 addr --- swap again
1211 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1212 Notice that, since the third fragment is the last one, we don't
1213 bother duplicating the address this time. Now we have all the
1214 fragments on the stack, and we can simply `or' them together,
1215 yielding the final value of the bitfield. */
1216
1217 /* The first and one-after-last bits in the field, but rounded down
1218 and up to byte boundaries. */
1219 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1220 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1221 / TARGET_CHAR_BIT)
1222 * TARGET_CHAR_BIT);
c906108c
SS
1223
1224 /* current bit offset within the structure */
1225 int offset;
1226
1227 /* The index in ops of the opcode we're considering. */
1228 int op;
1229
1230 /* The number of fragments we generated in the process. Probably
1231 equal to the number of `one' bits in bytesize, but who cares? */
1232 int fragment_count;
1233
1234 /* Dereference any typedefs. */
1235 type = check_typedef (type);
1236
1237 /* Can we fetch the number of bits requested at all? */
1238 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28
AC
1239 internal_error (__FILE__, __LINE__,
1240 "gen_bitfield_ref: bitfield too wide");
c906108c
SS
1241
1242 /* Note that we know here that we only need to try each opcode once.
1243 That may not be true on machines with weird byte sizes. */
1244 offset = bound_start;
1245 fragment_count = 0;
1246 for (op = num_ops - 1; op >= 0; op--)
1247 {
1248 /* number of bits that ops[op] would fetch */
1249 int op_size = 8 << op;
1250
1251 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1252 more fragments, then the address. */
1253
c906108c
SS
1254 /* Does this fetch fit within the bitfield? */
1255 if (offset + op_size <= bound_end)
1256 {
1257 /* Is this the last fragment? */
1258 int last_frag = (offset + op_size == bound_end);
1259
c5aa993b
JM
1260 if (!last_frag)
1261 ax_simple (ax, aop_dup); /* keep a copy of the address */
1262
c906108c
SS
1263 /* Add the offset. */
1264 gen_offset (ax, offset / TARGET_CHAR_BIT);
1265
1266 if (trace_kludge)
1267 {
1268 /* Record the area of memory we're about to fetch. */
1269 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1270 }
1271
1272 /* Perform the fetch. */
1273 ax_simple (ax, ops[op]);
c5aa993b
JM
1274
1275 /* Shift the bits we have to their proper position.
c906108c
SS
1276 gen_left_shift will generate right shifts when the operand
1277 is negative.
1278
c5aa993b
JM
1279 A big-endian field diagram to ponder:
1280 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1281 +------++------++------++------++------++------++------++------+
1282 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1283 ^ ^ ^ ^
1284 bit number 16 32 48 53
c906108c
SS
1285 These are bit numbers as supplied by GDB. Note that the
1286 bit numbers run from right to left once you've fetched the
1287 value!
1288
c5aa993b
JM
1289 A little-endian field diagram to ponder:
1290 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1291 +------++------++------++------++------++------++------++------+
1292 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1293 ^ ^ ^ ^ ^
1294 bit number 48 32 16 4 0
1295
1296 In both cases, the most significant end is on the left
1297 (i.e. normal numeric writing order), which means that you
1298 don't go crazy thinking about `left' and `right' shifts.
1299
1300 We don't have to worry about masking yet:
1301 - If they contain garbage off the least significant end, then we
1302 must be looking at the low end of the field, and the right
1303 shift will wipe them out.
1304 - If they contain garbage off the most significant end, then we
1305 must be looking at the most significant end of the word, and
1306 the sign/zero extension will wipe them out.
1307 - If we're in the interior of the word, then there is no garbage
1308 on either end, because the ref operators zero-extend. */
d7449b42 1309 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c 1310 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1311 else
c906108c
SS
1312 gen_left_shift (ax, offset - start);
1313
c5aa993b 1314 if (!last_frag)
c906108c
SS
1315 /* Bring the copy of the address up to the top. */
1316 ax_simple (ax, aop_swap);
1317
1318 offset += op_size;
1319 fragment_count++;
1320 }
1321 }
1322
1323 /* Generate enough bitwise `or' operations to combine all the
1324 fragments we left on the stack. */
1325 while (fragment_count-- > 1)
1326 ax_simple (ax, aop_bit_or);
1327
1328 /* Sign- or zero-extend the value as appropriate. */
1329 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1330
1331 /* This is *not* an lvalue. Ugh. */
1332 value->kind = axs_rvalue;
1333 value->type = type;
1334}
1335
1336
1337/* Generate code to reference the member named FIELD of a structure or
1338 union. The top of the stack, as described by VALUE, should have
1339 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1340 the operator being compiled, and OPERAND_NAME is the kind of thing
1341 it operates on; we use them in error messages. */
1342static void
fba45db2
KB
1343gen_struct_ref (struct agent_expr *ax, struct axs_value *value, char *field,
1344 char *operator_name, char *operand_name)
c906108c
SS
1345{
1346 struct type *type;
1347 int i;
1348
1349 /* Follow pointers until we reach a non-pointer. These aren't the C
1350 semantics, but they're what the normal GDB evaluator does, so we
1351 should at least be consistent. */
0004e5a2 1352 while (TYPE_CODE (value->type) == TYPE_CODE_PTR)
c906108c
SS
1353 {
1354 gen_usual_unary (ax, value);
1355 gen_deref (ax, value);
1356 }
e8860ec2 1357 type = check_typedef (value->type);
c906108c
SS
1358
1359 /* This must yield a structure or a union. */
1360 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1361 && TYPE_CODE (type) != TYPE_CODE_UNION)
1362 error ("The left operand of `%s' is not a %s.",
1363 operator_name, operand_name);
1364
1365 /* And it must be in memory; we don't deal with structure rvalues,
1366 or structures living in registers. */
1367 if (value->kind != axs_lvalue_memory)
1368 error ("Structure does not live in memory.");
1369
1370 i = find_field (type, field);
c5aa993b 1371
c906108c
SS
1372 /* Is this a bitfield? */
1373 if (TYPE_FIELD_PACKED (type, i))
1374 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, i),
1375 TYPE_FIELD_BITPOS (type, i),
1376 (TYPE_FIELD_BITPOS (type, i)
1377 + TYPE_FIELD_BITSIZE (type, i)));
1378 else
1379 {
1380 gen_offset (ax, TYPE_FIELD_BITPOS (type, i) / TARGET_CHAR_BIT);
1381 value->kind = axs_lvalue_memory;
1382 value->type = TYPE_FIELD_TYPE (type, i);
1383 }
1384}
1385
1386
1387/* Generate code for GDB's magical `repeat' operator.
1388 LVALUE @ INT creates an array INT elements long, and whose elements
1389 have the same type as LVALUE, located in memory so that LVALUE is
1390 its first element. For example, argv[0]@argc gives you the array
1391 of command-line arguments.
1392
1393 Unfortunately, because we have to know the types before we actually
1394 have a value for the expression, we can't implement this perfectly
1395 without changing the type system, having values that occupy two
1396 stack slots, doing weird things with sizeof, etc. So we require
1397 the right operand to be a constant expression. */
1398static void
fba45db2
KB
1399gen_repeat (union exp_element **pc, struct agent_expr *ax,
1400 struct axs_value *value)
c906108c
SS
1401{
1402 struct axs_value value1;
1403 /* We don't want to turn this into an rvalue, so no conversions
1404 here. */
1405 gen_expr (pc, ax, &value1);
1406 if (value1.kind != axs_lvalue_memory)
1407 error ("Left operand of `@' must be an object in memory.");
1408
1409 /* Evaluate the length; it had better be a constant. */
1410 {
1411 struct value *v = const_expr (pc);
1412 int length;
1413
c5aa993b 1414 if (!v)
c906108c 1415 error ("Right operand of `@' must be a constant, in agent expressions.");
0004e5a2 1416 if (TYPE_CODE (v->type) != TYPE_CODE_INT)
c906108c
SS
1417 error ("Right operand of `@' must be an integer.");
1418 length = value_as_long (v);
1419 if (length <= 0)
1420 error ("Right operand of `@' must be positive.");
1421
1422 /* The top of the stack is already the address of the object, so
1423 all we need to do is frob the type of the lvalue. */
1424 {
1425 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1426 done with it. */
c906108c 1427 struct type *range
c5aa993b 1428 = create_range_type (0, builtin_type_int, 0, length - 1);
c906108c
SS
1429 struct type *array = create_array_type (0, value1.type, range);
1430
1431 value->kind = axs_lvalue_memory;
1432 value->type = array;
1433 }
1434 }
1435}
1436
1437
1438/* Emit code for the `sizeof' operator.
1439 *PC should point at the start of the operand expression; we advance it
1440 to the first instruction after the operand. */
1441static void
fba45db2
KB
1442gen_sizeof (union exp_element **pc, struct agent_expr *ax,
1443 struct axs_value *value)
c906108c
SS
1444{
1445 /* We don't care about the value of the operand expression; we only
1446 care about its type. However, in the current arrangement, the
1447 only way to find an expression's type is to generate code for it.
1448 So we generate code for the operand, and then throw it away,
1449 replacing it with code that simply pushes its size. */
1450 int start = ax->len;
1451 gen_expr (pc, ax, value);
1452
1453 /* Throw away the code we just generated. */
1454 ax->len = start;
c5aa993b 1455
c906108c
SS
1456 ax_const_l (ax, TYPE_LENGTH (value->type));
1457 value->kind = axs_rvalue;
1458 value->type = builtin_type_int;
1459}
c906108c 1460\f
c5aa993b 1461
c906108c
SS
1462/* Generating bytecode from GDB expressions: general recursive thingy */
1463
1464/* A gen_expr function written by a Gen-X'er guy.
1465 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1466static void
fba45db2
KB
1467gen_expr (union exp_element **pc, struct agent_expr *ax,
1468 struct axs_value *value)
c906108c
SS
1469{
1470 /* Used to hold the descriptions of operand expressions. */
1471 struct axs_value value1, value2;
1472 enum exp_opcode op = (*pc)[0].opcode;
1473
1474 /* If we're looking at a constant expression, just push its value. */
1475 {
1476 struct value *v = maybe_const_expr (pc);
c5aa993b 1477
c906108c
SS
1478 if (v)
1479 {
1480 ax_const_l (ax, value_as_long (v));
1481 value->kind = axs_rvalue;
1482 value->type = check_typedef (VALUE_TYPE (v));
1483 return;
1484 }
1485 }
1486
1487 /* Otherwise, go ahead and generate code for it. */
1488 switch (op)
1489 {
1490 /* Binary arithmetic operators. */
1491 case BINOP_ADD:
1492 case BINOP_SUB:
1493 case BINOP_MUL:
1494 case BINOP_DIV:
1495 case BINOP_REM:
1496 case BINOP_SUBSCRIPT:
1497 case BINOP_BITWISE_AND:
1498 case BINOP_BITWISE_IOR:
1499 case BINOP_BITWISE_XOR:
1500 (*pc)++;
1501 gen_expr (pc, ax, &value1);
1502 gen_usual_unary (ax, &value1);
1503 gen_expr (pc, ax, &value2);
1504 gen_usual_unary (ax, &value2);
1505 gen_usual_arithmetic (ax, &value1, &value2);
1506 switch (op)
1507 {
1508 case BINOP_ADD:
1509 gen_add (ax, value, &value1, &value2, "addition");
1510 break;
1511 case BINOP_SUB:
1512 gen_sub (ax, value, &value1, &value2);
1513 break;
1514 case BINOP_MUL:
1515 gen_binop (ax, value, &value1, &value2,
1516 aop_mul, aop_mul, 1, "multiplication");
1517 break;
1518 case BINOP_DIV:
1519 gen_binop (ax, value, &value1, &value2,
1520 aop_div_signed, aop_div_unsigned, 1, "division");
1521 break;
1522 case BINOP_REM:
1523 gen_binop (ax, value, &value1, &value2,
1524 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
1525 break;
1526 case BINOP_SUBSCRIPT:
1527 gen_add (ax, value, &value1, &value2, "array subscripting");
1528 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1529 error ("Illegal combination of types in array subscripting.");
1530 gen_deref (ax, value);
1531 break;
1532 case BINOP_BITWISE_AND:
1533 gen_binop (ax, value, &value1, &value2,
1534 aop_bit_and, aop_bit_and, 0, "bitwise and");
1535 break;
1536
1537 case BINOP_BITWISE_IOR:
1538 gen_binop (ax, value, &value1, &value2,
1539 aop_bit_or, aop_bit_or, 0, "bitwise or");
1540 break;
1541
1542 case BINOP_BITWISE_XOR:
1543 gen_binop (ax, value, &value1, &value2,
1544 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
1545 break;
1546
1547 default:
1548 /* We should only list operators in the outer case statement
c5aa993b 1549 that we actually handle in the inner case statement. */
8e65ff28
AC
1550 internal_error (__FILE__, __LINE__,
1551 "gen_expr: op case sets don't match");
c906108c
SS
1552 }
1553 break;
1554
1555 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1556 for comma. In C, we can do some optimizations here because
1557 we know the left operand is only being evaluated for effect.
1558 However, if the tracing kludge is in effect, then we always
1559 need to evaluate the left hand side fully, so that all the
1560 variables it mentions get traced. */
c906108c
SS
1561 case BINOP_COMMA:
1562 (*pc)++;
1563 gen_expr (pc, ax, &value1);
1564 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1565 in which case we want to emit code to trace it if it's an
1566 lvalue. */
c906108c
SS
1567 gen_traced_pop (ax, &value1);
1568 gen_expr (pc, ax, value);
1569 /* It's the consumer's responsibility to trace the right operand. */
1570 break;
c5aa993b 1571
c906108c
SS
1572 case OP_LONG: /* some integer constant */
1573 {
1574 struct type *type = (*pc)[1].type;
1575 LONGEST k = (*pc)[2].longconst;
1576 (*pc) += 4;
1577 gen_int_literal (ax, value, k, type);
1578 }
c5aa993b 1579 break;
c906108c
SS
1580
1581 case OP_VAR_VALUE:
1582 gen_var_ref (ax, value, (*pc)[2].symbol);
1583 (*pc) += 4;
1584 break;
1585
1586 case OP_REGISTER:
1587 {
1588 int reg = (int) (*pc)[1].longconst;
1589 (*pc) += 3;
1590 value->kind = axs_lvalue_register;
1591 value->u.reg = reg;
1592 value->type = REGISTER_VIRTUAL_TYPE (reg);
1593 }
c5aa993b 1594 break;
c906108c
SS
1595
1596 case OP_INTERNALVAR:
1597 error ("GDB agent expressions cannot use convenience variables.");
1598
c5aa993b 1599 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
1600 case BINOP_REPEAT:
1601 /* Note that gen_repeat handles its own argument evaluation. */
1602 (*pc)++;
1603 gen_repeat (pc, ax, value);
1604 break;
1605
1606 case UNOP_CAST:
1607 {
1608 struct type *type = (*pc)[1].type;
1609 (*pc) += 3;
1610 gen_expr (pc, ax, value);
1611 gen_cast (ax, value, type);
1612 }
c5aa993b 1613 break;
c906108c
SS
1614
1615 case UNOP_MEMVAL:
1616 {
1617 struct type *type = check_typedef ((*pc)[1].type);
1618 (*pc) += 3;
1619 gen_expr (pc, ax, value);
1620 /* I'm not sure I understand UNOP_MEMVAL entirely. I think
1621 it's just a hack for dealing with minsyms; you take some
1622 integer constant, pretend it's the address of an lvalue of
1623 the given type, and dereference it. */
1624 if (value->kind != axs_rvalue)
1625 /* This would be weird. */
8e65ff28
AC
1626 internal_error (__FILE__, __LINE__,
1627 "gen_expr: OP_MEMVAL operand isn't an rvalue???");
c906108c
SS
1628 value->type = type;
1629 value->kind = axs_lvalue_memory;
1630 }
c5aa993b 1631 break;
c906108c
SS
1632
1633 case UNOP_NEG:
1634 (*pc)++;
1635 /* -FOO is equivalent to 0 - FOO. */
1636 gen_int_literal (ax, &value1, (LONGEST) 0, builtin_type_int);
c5aa993b 1637 gen_usual_unary (ax, &value1); /* shouldn't do much */
c906108c
SS
1638 gen_expr (pc, ax, &value2);
1639 gen_usual_unary (ax, &value2);
1640 gen_usual_arithmetic (ax, &value1, &value2);
1641 gen_sub (ax, value, &value1, &value2);
1642 break;
1643
1644 case UNOP_LOGICAL_NOT:
1645 (*pc)++;
1646 gen_expr (pc, ax, value);
1647 gen_logical_not (ax, value);
1648 break;
1649
1650 case UNOP_COMPLEMENT:
1651 (*pc)++;
1652 gen_expr (pc, ax, value);
1653 gen_complement (ax, value);
1654 break;
1655
1656 case UNOP_IND:
1657 (*pc)++;
1658 gen_expr (pc, ax, value);
1659 gen_usual_unary (ax, value);
1660 if (TYPE_CODE (value->type) != TYPE_CODE_PTR)
1661 error ("Argument of unary `*' is not a pointer.");
1662 gen_deref (ax, value);
1663 break;
1664
1665 case UNOP_ADDR:
1666 (*pc)++;
1667 gen_expr (pc, ax, value);
1668 gen_address_of (ax, value);
1669 break;
1670
1671 case UNOP_SIZEOF:
1672 (*pc)++;
1673 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
1674 of the other unary operator functions. This is because we
1675 have to throw away the code we generate. */
c906108c
SS
1676 gen_sizeof (pc, ax, value);
1677 break;
1678
1679 case STRUCTOP_STRUCT:
1680 case STRUCTOP_PTR:
1681 {
1682 int length = (*pc)[1].longconst;
1683 char *name = &(*pc)[2].string;
1684
1685 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
1686 gen_expr (pc, ax, value);
1687 if (op == STRUCTOP_STRUCT)
1688 gen_struct_ref (ax, value, name, ".", "structure or union");
1689 else if (op == STRUCTOP_PTR)
1690 gen_struct_ref (ax, value, name, "->",
1691 "pointer to a structure or union");
1692 else
1693 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 1694 shouldn't mention it, and we shouldn't be here. */
8e65ff28
AC
1695 internal_error (__FILE__, __LINE__,
1696 "gen_expr: unhandled struct case");
c906108c 1697 }
c5aa993b 1698 break;
c906108c
SS
1699
1700 case OP_TYPE:
1701 error ("Attempt to use a type name as an expression.");
1702
1703 default:
1704 error ("Unsupported operator in expression.");
1705 }
1706}
c906108c 1707\f
c5aa993b
JM
1708
1709
c906108c
SS
1710/* Generating bytecode from GDB expressions: driver */
1711
1712/* Given a GDB expression EXPR, produce a string of agent bytecode
1713 which computes its value. Return the agent expression, and set
1714 *VALUE to describe its type, and whether it's an lvalue or rvalue. */
1715struct agent_expr *
fba45db2 1716expr_to_agent (struct expression *expr, struct axs_value *value)
c906108c
SS
1717{
1718 struct cleanup *old_chain = 0;
6426a772 1719 struct agent_expr *ax = new_agent_expr (0);
c906108c
SS
1720 union exp_element *pc;
1721
f23d52e0 1722 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1723
1724 pc = expr->elts;
1725 trace_kludge = 0;
1726 gen_expr (&pc, ax, value);
1727
1728 /* We have successfully built the agent expr, so cancel the cleanup
1729 request. If we add more cleanups that we always want done, this
1730 will have to get more complicated. */
1731 discard_cleanups (old_chain);
1732 return ax;
1733}
1734
1735
6426a772 1736#if 0 /* not used */
c906108c
SS
1737/* Given a GDB expression EXPR denoting an lvalue in memory, produce a
1738 string of agent bytecode which will leave its address and size on
1739 the top of stack. Return the agent expression.
1740
1741 Not sure this function is useful at all. */
1742struct agent_expr *
fba45db2 1743expr_to_address_and_size (struct expression *expr)
c906108c
SS
1744{
1745 struct axs_value value;
1746 struct agent_expr *ax = expr_to_agent (expr, &value);
1747
1748 /* Complain if the result is not a memory lvalue. */
1749 if (value.kind != axs_lvalue_memory)
1750 {
1751 free_agent_expr (ax);
1752 error ("Expression does not denote an object in memory.");
1753 }
1754
1755 /* Push the object's size on the stack. */
1756 ax_const_l (ax, TYPE_LENGTH (value.type));
1757
1758 return ax;
1759}
6426a772 1760#endif
c906108c
SS
1761
1762/* Given a GDB expression EXPR, return bytecode to trace its value.
1763 The result will use the `trace' and `trace_quick' bytecodes to
1764 record the value of all memory touched by the expression. The
1765 caller can then use the ax_reqs function to discover which
1766 registers it relies upon. */
1767struct agent_expr *
fba45db2 1768gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
c906108c
SS
1769{
1770 struct cleanup *old_chain = 0;
1771 struct agent_expr *ax = new_agent_expr (scope);
1772 union exp_element *pc;
1773 struct axs_value value;
1774
f23d52e0 1775 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
1776
1777 pc = expr->elts;
1778 trace_kludge = 1;
1779 gen_expr (&pc, ax, &value);
1780
1781 /* Make sure we record the final object, and get rid of it. */
1782 gen_traced_pop (ax, &value);
1783
1784 /* Oh, and terminate. */
1785 ax_simple (ax, aop_end);
1786
1787 /* We have successfully built the agent expr, so cancel the cleanup
1788 request. If we add more cleanups that we always want done, this
1789 will have to get more complicated. */
1790 discard_cleanups (old_chain);
1791 return ax;
1792}
c5aa993b 1793\f
c906108c
SS
1794
1795
c906108c
SS
1796/* The "agent" command, for testing: compile and disassemble an expression. */
1797
1798static void
fba45db2 1799print_axs_value (struct ui_file *f, struct axs_value *value)
c906108c
SS
1800{
1801 switch (value->kind)
1802 {
1803 case axs_rvalue:
1804 fputs_filtered ("rvalue", f);
1805 break;
1806
1807 case axs_lvalue_memory:
1808 fputs_filtered ("memory lvalue", f);
1809 break;
1810
1811 case axs_lvalue_register:
1812 fprintf_filtered (f, "register %d lvalue", value->u.reg);
1813 break;
1814 }
1815
1816 fputs_filtered (" : ", f);
1817 type_print (value->type, "", f, -1);
1818}
1819
1820
1821static void
fba45db2 1822agent_command (char *exp, int from_tty)
c906108c
SS
1823{
1824 struct cleanup *old_chain = 0;
1825 struct expression *expr;
1826 struct agent_expr *agent;
6426a772 1827 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
1828
1829 /* We don't deal with overlay debugging at the moment. We need to
1830 think more carefully about this. If you copy this code into
1831 another command, change the error message; the user shouldn't
1832 have to know anything about agent expressions. */
1833 if (overlay_debugging)
1834 error ("GDB can't do agent expression translation with overlays.");
1835
1836 if (exp == 0)
1837 error_no_arg ("expression to translate");
c5aa993b 1838
c906108c 1839 expr = parse_expression (exp);
c13c43fd 1840 old_chain = make_cleanup (free_current_contents, &expr);
bdd78e62 1841 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
f23d52e0 1842 make_cleanup_free_agent_expr (agent);
c906108c 1843 ax_print (gdb_stdout, agent);
085dd6e6
JM
1844
1845 /* It would be nice to call ax_reqs here to gather some general info
1846 about the expression, and then print out the result. */
c906108c
SS
1847
1848 do_cleanups (old_chain);
1849 dont_repeat ();
1850}
c906108c 1851\f
c5aa993b 1852
c906108c
SS
1853/* Initialization code. */
1854
a14ed312 1855void _initialize_ax_gdb (void);
c906108c 1856void
fba45db2 1857_initialize_ax_gdb (void)
c906108c 1858{
c906108c
SS
1859 add_cmd ("agent", class_maintenance, agent_command,
1860 "Translate an expression into remote agent bytecode.",
1861 &maintenancelist);
1862}
This page took 0.28008 seconds and 4 git commands to generate.