Add target-side support for dynamic printf.
[deliverable/binutils-gdb.git] / gdb / ax-gdb.c
CommitLineData
1bac305b
AC
1/* GDB-specific functions for operating on agent expressions.
2
0b302171
JB
3 Copyright (C) 1998-2001, 2003, 2007-2012 Free Software Foundation,
4 Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 20
c906108c
SS
21#include "defs.h"
22#include "symtab.h"
23#include "symfile.h"
24#include "gdbtypes.h"
b97aedf3 25#include "language.h"
c906108c
SS
26#include "value.h"
27#include "expression.h"
28#include "command.h"
29#include "gdbcmd.h"
30#include "frame.h"
31#include "target.h"
32#include "ax.h"
33#include "ax-gdb.h"
309367d4 34#include "gdb_string.h"
fe898f56 35#include "block.h"
7b83296f 36#include "regcache.h"
029a67e4 37#include "user-regs.h"
f7c79c41 38#include "language.h"
6c228b9c 39#include "dictionary.h"
00bf0b85 40#include "breakpoint.h"
f61e138d 41#include "tracepoint.h"
b6e7192f 42#include "cp-support.h"
6710bf39 43#include "arch-utils.h"
d3ce09f5 44#include "cli/cli-utils.h"
c906108c 45
3065dfb6
SS
46#include "valprint.h"
47#include "c-lang.h"
48
d3ce09f5
SS
49#include "format.h"
50
6426a772
JM
51/* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
55 code.
c906108c
SS
56
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
63 strings.
64
c5aa993b
JM
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
66\f
c906108c
SS
67
68
0e2de366 69/* Prototypes for local functions. */
c906108c
SS
70
71/* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
c5aa993b 75
a14ed312
KB
76static struct value *const_var_ref (struct symbol *var);
77static struct value *const_expr (union exp_element **pc);
78static struct value *maybe_const_expr (union exp_element **pc);
79
3e43a32a
MS
80static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
81 struct axs_value *);
a14ed312
KB
82
83static void gen_sign_extend (struct agent_expr *, struct type *);
84static void gen_extend (struct agent_expr *, struct type *);
85static void gen_fetch (struct agent_expr *, struct type *);
86static void gen_left_shift (struct agent_expr *, int);
87
88
f7c79c41
UW
89static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
90static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
a14ed312
KB
91static void gen_offset (struct agent_expr *ax, int offset);
92static void gen_sym_offset (struct agent_expr *, struct symbol *);
f7c79c41 93static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
a14ed312
KB
94 struct axs_value *value, struct symbol *var);
95
96
97static void gen_int_literal (struct agent_expr *ax,
98 struct axs_value *value,
99 LONGEST k, struct type *type);
100
f7c79c41
UW
101static void gen_usual_unary (struct expression *exp, struct agent_expr *ax,
102 struct axs_value *value);
a14ed312
KB
103static int type_wider_than (struct type *type1, struct type *type2);
104static struct type *max_type (struct type *type1, struct type *type2);
105static void gen_conversion (struct agent_expr *ax,
106 struct type *from, struct type *to);
107static int is_nontrivial_conversion (struct type *from, struct type *to);
f7c79c41
UW
108static void gen_usual_arithmetic (struct expression *exp,
109 struct agent_expr *ax,
a14ed312
KB
110 struct axs_value *value1,
111 struct axs_value *value2);
f7c79c41
UW
112static void gen_integral_promotions (struct expression *exp,
113 struct agent_expr *ax,
a14ed312
KB
114 struct axs_value *value);
115static void gen_cast (struct agent_expr *ax,
116 struct axs_value *value, struct type *type);
117static void gen_scale (struct agent_expr *ax,
118 enum agent_op op, struct type *type);
f7c79c41
UW
119static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
120 struct axs_value *value1, struct axs_value *value2);
121static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
122 struct axs_value *value1, struct axs_value *value2);
123static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
124 struct axs_value *value1, struct axs_value *value2,
125 struct type *result_type);
a14ed312
KB
126static void gen_binop (struct agent_expr *ax,
127 struct axs_value *value,
128 struct axs_value *value1,
129 struct axs_value *value2,
130 enum agent_op op,
131 enum agent_op op_unsigned, int may_carry, char *name);
f7c79c41
UW
132static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
133 struct type *result_type);
a14ed312
KB
134static void gen_complement (struct agent_expr *ax, struct axs_value *value);
135static void gen_deref (struct agent_expr *, struct axs_value *);
136static void gen_address_of (struct agent_expr *, struct axs_value *);
505e835d 137static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
a14ed312
KB
138 struct axs_value *value,
139 struct type *type, int start, int end);
b6e7192f
SS
140static void gen_primitive_field (struct expression *exp,
141 struct agent_expr *ax,
142 struct axs_value *value,
143 int offset, int fieldno, struct type *type);
144static int gen_struct_ref_recursive (struct expression *exp,
145 struct agent_expr *ax,
146 struct axs_value *value,
147 char *field, int offset,
148 struct type *type);
505e835d 149static void gen_struct_ref (struct expression *exp, struct agent_expr *ax,
a14ed312
KB
150 struct axs_value *value,
151 char *field,
152 char *operator_name, char *operand_name);
400c6af0 153static void gen_static_field (struct gdbarch *gdbarch,
b6e7192f
SS
154 struct agent_expr *ax, struct axs_value *value,
155 struct type *type, int fieldno);
f7c79c41 156static void gen_repeat (struct expression *exp, union exp_element **pc,
a14ed312 157 struct agent_expr *ax, struct axs_value *value);
f7c79c41
UW
158static void gen_sizeof (struct expression *exp, union exp_element **pc,
159 struct agent_expr *ax, struct axs_value *value,
160 struct type *size_type);
f61e138d
SS
161static void gen_expr_binop_rest (struct expression *exp,
162 enum exp_opcode op, union exp_element **pc,
163 struct agent_expr *ax,
164 struct axs_value *value,
165 struct axs_value *value1,
166 struct axs_value *value2);
c5aa993b 167
a14ed312 168static void agent_command (char *exp, int from_tty);
c906108c 169\f
c5aa993b 170
c906108c
SS
171/* Detecting constant expressions. */
172
173/* If the variable reference at *PC is a constant, return its value.
174 Otherwise, return zero.
175
176 Hey, Wally! How can a variable reference be a constant?
177
178 Well, Beav, this function really handles the OP_VAR_VALUE operator,
179 not specifically variable references. GDB uses OP_VAR_VALUE to
180 refer to any kind of symbolic reference: function names, enum
181 elements, and goto labels are all handled through the OP_VAR_VALUE
182 operator, even though they're constants. It makes sense given the
183 situation.
184
185 Gee, Wally, don'cha wonder sometimes if data representations that
186 subvert commonly accepted definitions of terms in favor of heavily
187 context-specific interpretations are really just a tool of the
188 programming hegemony to preserve their power and exclude the
189 proletariat? */
190
191static struct value *
fba45db2 192const_var_ref (struct symbol *var)
c906108c
SS
193{
194 struct type *type = SYMBOL_TYPE (var);
195
196 switch (SYMBOL_CLASS (var))
197 {
198 case LOC_CONST:
199 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
200
201 case LOC_LABEL:
4478b372 202 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
c906108c
SS
203
204 default:
205 return 0;
206 }
207}
208
209
210/* If the expression starting at *PC has a constant value, return it.
211 Otherwise, return zero. If we return a value, then *PC will be
212 advanced to the end of it. If we return zero, *PC could be
213 anywhere. */
214static struct value *
fba45db2 215const_expr (union exp_element **pc)
c906108c
SS
216{
217 enum exp_opcode op = (*pc)->opcode;
218 struct value *v1;
219
220 switch (op)
221 {
222 case OP_LONG:
223 {
224 struct type *type = (*pc)[1].type;
225 LONGEST k = (*pc)[2].longconst;
5b4ee69b 226
c906108c
SS
227 (*pc) += 4;
228 return value_from_longest (type, k);
229 }
230
231 case OP_VAR_VALUE:
232 {
233 struct value *v = const_var_ref ((*pc)[2].symbol);
5b4ee69b 234
c906108c
SS
235 (*pc) += 4;
236 return v;
237 }
238
c5aa993b 239 /* We could add more operators in here. */
c906108c
SS
240
241 case UNOP_NEG:
242 (*pc)++;
243 v1 = const_expr (pc);
244 if (v1)
245 return value_neg (v1);
246 else
247 return 0;
248
249 default:
250 return 0;
251 }
252}
253
254
255/* Like const_expr, but guarantee also that *PC is undisturbed if the
256 expression is not constant. */
257static struct value *
fba45db2 258maybe_const_expr (union exp_element **pc)
c906108c
SS
259{
260 union exp_element *tentative_pc = *pc;
261 struct value *v = const_expr (&tentative_pc);
262
263 /* If we got a value, then update the real PC. */
264 if (v)
265 *pc = tentative_pc;
c5aa993b 266
c906108c
SS
267 return v;
268}
c906108c 269\f
c5aa993b 270
c906108c
SS
271/* Generating bytecode from GDB expressions: general assumptions */
272
273/* Here are a few general assumptions made throughout the code; if you
274 want to make a change that contradicts one of these, then you'd
275 better scan things pretty thoroughly.
276
277 - We assume that all values occupy one stack element. For example,
c5aa993b
JM
278 sometimes we'll swap to get at the left argument to a binary
279 operator. If we decide that void values should occupy no stack
280 elements, or that synthetic arrays (whose size is determined at
281 run time, created by the `@' operator) should occupy two stack
282 elements (address and length), then this will cause trouble.
c906108c
SS
283
284 - We assume the stack elements are infinitely wide, and that we
c5aa993b
JM
285 don't have to worry what happens if the user requests an
286 operation that is wider than the actual interpreter's stack.
287 That is, it's up to the interpreter to handle directly all the
288 integer widths the user has access to. (Woe betide the language
289 with bignums!)
c906108c
SS
290
291 - We don't support side effects. Thus, we don't have to worry about
c5aa993b 292 GCC's generalized lvalues, function calls, etc.
c906108c
SS
293
294 - We don't support floating point. Many places where we switch on
c5aa993b
JM
295 some type don't bother to include cases for floating point; there
296 may be even more subtle ways this assumption exists. For
297 example, the arguments to % must be integers.
c906108c
SS
298
299 - We assume all subexpressions have a static, unchanging type. If
c5aa993b
JM
300 we tried to support convenience variables, this would be a
301 problem.
c906108c
SS
302
303 - All values on the stack should always be fully zero- or
c5aa993b
JM
304 sign-extended.
305
306 (I wasn't sure whether to choose this or its opposite --- that
307 only addresses are assumed extended --- but it turns out that
308 neither convention completely eliminates spurious extend
309 operations (if everything is always extended, then you have to
310 extend after add, because it could overflow; if nothing is
311 extended, then you end up producing extends whenever you change
312 sizes), and this is simpler.) */
c906108c 313\f
c5aa993b 314
c906108c
SS
315/* Generating bytecode from GDB expressions: the `trace' kludge */
316
317/* The compiler in this file is a general-purpose mechanism for
318 translating GDB expressions into bytecode. One ought to be able to
319 find a million and one uses for it.
320
321 However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake
322 of expediency. Let he who is without sin cast the first stone.
323
324 For the data tracing facility, we need to insert `trace' bytecodes
325 before each data fetch; this records all the memory that the
326 expression touches in the course of evaluation, so that memory will
327 be available when the user later tries to evaluate the expression
328 in GDB.
329
330 This should be done (I think) in a post-processing pass, that walks
331 an arbitrary agent expression and inserts `trace' operations at the
332 appropriate points. But it's much faster to just hack them
333 directly into the code. And since we're in a crunch, that's what
334 I've done.
335
336 Setting the flag trace_kludge to non-zero enables the code that
337 emits the trace bytecodes at the appropriate points. */
08922a10 338int trace_kludge;
c906108c 339
3065dfb6
SS
340/* Inspired by trace_kludge, this indicates that pointers to chars
341 should get an added tracenz bytecode to record nonzero bytes, up to
342 a length that is the value of trace_string_kludge. */
343int trace_string_kludge;
344
400c6af0
SS
345/* Scan for all static fields in the given class, including any base
346 classes, and generate tracing bytecodes for each. */
347
348static void
349gen_trace_static_fields (struct gdbarch *gdbarch,
350 struct agent_expr *ax,
351 struct type *type)
352{
353 int i, nbases = TYPE_N_BASECLASSES (type);
354 struct axs_value value;
355
356 CHECK_TYPEDEF (type);
357
358 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
359 {
360 if (field_is_static (&TYPE_FIELD (type, i)))
361 {
362 gen_static_field (gdbarch, ax, &value, type, i);
363 if (value.optimized_out)
364 continue;
365 switch (value.kind)
366 {
367 case axs_lvalue_memory:
368 {
369 int length = TYPE_LENGTH (check_typedef (value.type));
370
371 ax_const_l (ax, length);
372 ax_simple (ax, aop_trace);
373 }
374 break;
375
376 case axs_lvalue_register:
35c9c7ba
SS
377 /* We don't actually need the register's value to be pushed,
378 just note that we need it to be collected. */
379 ax_reg_mask (ax, value.u.reg);
400c6af0
SS
380
381 default:
382 break;
383 }
384 }
385 }
386
387 /* Now scan through base classes recursively. */
388 for (i = 0; i < nbases; i++)
389 {
390 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
391
392 gen_trace_static_fields (gdbarch, ax, basetype);
393 }
394}
395
c906108c
SS
396/* Trace the lvalue on the stack, if it needs it. In either case, pop
397 the value. Useful on the left side of a comma, and at the end of
398 an expression being used for tracing. */
399static void
400c6af0
SS
400gen_traced_pop (struct gdbarch *gdbarch,
401 struct agent_expr *ax, struct axs_value *value)
c906108c 402{
3065dfb6
SS
403 int string_trace = 0;
404 if (trace_string_kludge
405 && TYPE_CODE (value->type) == TYPE_CODE_PTR
406 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
407 's'))
408 string_trace = 1;
409
c906108c
SS
410 if (trace_kludge)
411 switch (value->kind)
412 {
413 case axs_rvalue:
3065dfb6
SS
414 if (string_trace)
415 {
416 ax_const_l (ax, trace_string_kludge);
417 ax_simple (ax, aop_tracenz);
418 }
419 else
420 /* We don't trace rvalues, just the lvalues necessary to
421 produce them. So just dispose of this value. */
422 ax_simple (ax, aop_pop);
c906108c
SS
423 break;
424
425 case axs_lvalue_memory:
426 {
648027cc 427 int length = TYPE_LENGTH (check_typedef (value->type));
c906108c 428
3065dfb6
SS
429 if (string_trace)
430 ax_simple (ax, aop_dup);
431
c906108c
SS
432 /* There's no point in trying to use a trace_quick bytecode
433 here, since "trace_quick SIZE pop" is three bytes, whereas
434 "const8 SIZE trace" is also three bytes, does the same
435 thing, and the simplest code which generates that will also
436 work correctly for objects with large sizes. */
437 ax_const_l (ax, length);
438 ax_simple (ax, aop_trace);
3065dfb6
SS
439
440 if (string_trace)
441 {
442 ax_simple (ax, aop_ref32);
443 ax_const_l (ax, trace_string_kludge);
444 ax_simple (ax, aop_tracenz);
445 }
c906108c 446 }
c5aa993b 447 break;
c906108c
SS
448
449 case axs_lvalue_register:
35c9c7ba
SS
450 /* We don't actually need the register's value to be on the
451 stack, and the target will get heartburn if the register is
452 larger than will fit in a stack, so just mark it for
453 collection and be done with it. */
454 ax_reg_mask (ax, value->u.reg);
3065dfb6
SS
455
456 /* But if the register points to a string, assume the value
457 will fit on the stack and push it anyway. */
458 if (string_trace)
459 {
460 ax_reg (ax, value->u.reg);
461 ax_const_l (ax, trace_string_kludge);
462 ax_simple (ax, aop_tracenz);
463 }
c906108c
SS
464 break;
465 }
466 else
467 /* If we're not tracing, just pop the value. */
468 ax_simple (ax, aop_pop);
400c6af0
SS
469
470 /* To trace C++ classes with static fields stored elsewhere. */
471 if (trace_kludge
472 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
473 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
474 gen_trace_static_fields (gdbarch, ax, value->type);
c906108c 475}
c5aa993b 476\f
c906108c
SS
477
478
c906108c
SS
479/* Generating bytecode from GDB expressions: helper functions */
480
481/* Assume that the lower bits of the top of the stack is a value of
482 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
483static void
fba45db2 484gen_sign_extend (struct agent_expr *ax, struct type *type)
c906108c
SS
485{
486 /* Do we need to sign-extend this? */
c5aa993b 487 if (!TYPE_UNSIGNED (type))
0004e5a2 488 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
c906108c
SS
489}
490
491
492/* Assume the lower bits of the top of the stack hold a value of type
493 TYPE, and the upper bits are garbage. Sign-extend or truncate as
494 needed. */
495static void
fba45db2 496gen_extend (struct agent_expr *ax, struct type *type)
c906108c 497{
0004e5a2 498 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5b4ee69b 499
c906108c
SS
500 /* I just had to. */
501 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
502}
503
504
505/* Assume that the top of the stack contains a value of type "pointer
506 to TYPE"; generate code to fetch its value. Note that TYPE is the
507 target type, not the pointer type. */
508static void
fba45db2 509gen_fetch (struct agent_expr *ax, struct type *type)
c906108c
SS
510{
511 if (trace_kludge)
512 {
513 /* Record the area of memory we're about to fetch. */
514 ax_trace_quick (ax, TYPE_LENGTH (type));
515 }
516
af381b8c
JB
517 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
518 type = TYPE_TARGET_TYPE (type);
519
0004e5a2 520 switch (TYPE_CODE (type))
c906108c
SS
521 {
522 case TYPE_CODE_PTR:
b97aedf3 523 case TYPE_CODE_REF:
c906108c
SS
524 case TYPE_CODE_ENUM:
525 case TYPE_CODE_INT:
526 case TYPE_CODE_CHAR:
3b11a015 527 case TYPE_CODE_BOOL:
c906108c
SS
528 /* It's a scalar value, so we know how to dereference it. How
529 many bytes long is it? */
0004e5a2 530 switch (TYPE_LENGTH (type))
c906108c 531 {
c5aa993b
JM
532 case 8 / TARGET_CHAR_BIT:
533 ax_simple (ax, aop_ref8);
534 break;
535 case 16 / TARGET_CHAR_BIT:
536 ax_simple (ax, aop_ref16);
537 break;
538 case 32 / TARGET_CHAR_BIT:
539 ax_simple (ax, aop_ref32);
540 break;
541 case 64 / TARGET_CHAR_BIT:
542 ax_simple (ax, aop_ref64);
543 break;
c906108c
SS
544
545 /* Either our caller shouldn't have asked us to dereference
546 that pointer (other code's fault), or we're not
547 implementing something we should be (this code's fault).
548 In any case, it's a bug the user shouldn't see. */
549 default:
8e65ff28 550 internal_error (__FILE__, __LINE__,
3d263c1d 551 _("gen_fetch: strange size"));
c906108c
SS
552 }
553
554 gen_sign_extend (ax, type);
555 break;
556
557 default:
52323be9
LM
558 /* Our caller requested us to dereference a pointer from an unsupported
559 type. Error out and give callers a chance to handle the failure
560 gracefully. */
561 error (_("gen_fetch: Unsupported type code `%s'."),
562 TYPE_NAME (type));
c906108c
SS
563 }
564}
565
566
567/* Generate code to left shift the top of the stack by DISTANCE bits, or
568 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
569 unsigned (logical) right shifts. */
570static void
fba45db2 571gen_left_shift (struct agent_expr *ax, int distance)
c906108c
SS
572{
573 if (distance > 0)
574 {
575 ax_const_l (ax, distance);
576 ax_simple (ax, aop_lsh);
577 }
578 else if (distance < 0)
579 {
580 ax_const_l (ax, -distance);
581 ax_simple (ax, aop_rsh_unsigned);
582 }
583}
c5aa993b 584\f
c906108c
SS
585
586
c906108c
SS
587/* Generating bytecode from GDB expressions: symbol references */
588
589/* Generate code to push the base address of the argument portion of
590 the top stack frame. */
591static void
f7c79c41 592gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
c906108c 593{
39d4ef09
AC
594 int frame_reg;
595 LONGEST frame_offset;
c906108c 596
f7c79c41 597 gdbarch_virtual_frame_pointer (gdbarch,
c7bb205c 598 ax->scope, &frame_reg, &frame_offset);
c5aa993b 599 ax_reg (ax, frame_reg);
c906108c
SS
600 gen_offset (ax, frame_offset);
601}
602
603
604/* Generate code to push the base address of the locals portion of the
605 top stack frame. */
606static void
f7c79c41 607gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
c906108c 608{
39d4ef09
AC
609 int frame_reg;
610 LONGEST frame_offset;
c906108c 611
f7c79c41 612 gdbarch_virtual_frame_pointer (gdbarch,
c7bb205c 613 ax->scope, &frame_reg, &frame_offset);
c5aa993b 614 ax_reg (ax, frame_reg);
c906108c
SS
615 gen_offset (ax, frame_offset);
616}
617
618
619/* Generate code to add OFFSET to the top of the stack. Try to
620 generate short and readable code. We use this for getting to
621 variables on the stack, and structure members. If we were
622 programming in ML, it would be clearer why these are the same
623 thing. */
624static void
fba45db2 625gen_offset (struct agent_expr *ax, int offset)
c906108c
SS
626{
627 /* It would suffice to simply push the offset and add it, but this
628 makes it easier to read positive and negative offsets in the
629 bytecode. */
630 if (offset > 0)
631 {
632 ax_const_l (ax, offset);
633 ax_simple (ax, aop_add);
634 }
635 else if (offset < 0)
636 {
637 ax_const_l (ax, -offset);
638 ax_simple (ax, aop_sub);
639 }
640}
641
642
643/* In many cases, a symbol's value is the offset from some other
644 address (stack frame, base register, etc.) Generate code to add
645 VAR's value to the top of the stack. */
646static void
fba45db2 647gen_sym_offset (struct agent_expr *ax, struct symbol *var)
c906108c
SS
648{
649 gen_offset (ax, SYMBOL_VALUE (var));
650}
651
652
653/* Generate code for a variable reference to AX. The variable is the
654 symbol VAR. Set VALUE to describe the result. */
655
656static void
f7c79c41
UW
657gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
658 struct axs_value *value, struct symbol *var)
c906108c 659{
0e2de366 660 /* Dereference any typedefs. */
c906108c 661 value->type = check_typedef (SYMBOL_TYPE (var));
400c6af0 662 value->optimized_out = 0;
c906108c
SS
663
664 /* I'm imitating the code in read_var_value. */
665 switch (SYMBOL_CLASS (var))
666 {
667 case LOC_CONST: /* A constant, like an enum value. */
668 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
669 value->kind = axs_rvalue;
670 break;
671
672 case LOC_LABEL: /* A goto label, being used as a value. */
673 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
674 value->kind = axs_rvalue;
675 break;
676
677 case LOC_CONST_BYTES:
8e65ff28 678 internal_error (__FILE__, __LINE__,
3e43a32a
MS
679 _("gen_var_ref: LOC_CONST_BYTES "
680 "symbols are not supported"));
c906108c
SS
681
682 /* Variable at a fixed location in memory. Easy. */
683 case LOC_STATIC:
684 /* Push the address of the variable. */
685 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
686 value->kind = axs_lvalue_memory;
687 break;
688
689 case LOC_ARG: /* var lives in argument area of frame */
f7c79c41 690 gen_frame_args_address (gdbarch, ax);
c906108c
SS
691 gen_sym_offset (ax, var);
692 value->kind = axs_lvalue_memory;
693 break;
694
695 case LOC_REF_ARG: /* As above, but the frame slot really
696 holds the address of the variable. */
f7c79c41 697 gen_frame_args_address (gdbarch, ax);
c906108c
SS
698 gen_sym_offset (ax, var);
699 /* Don't assume any particular pointer size. */
f7c79c41 700 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
c906108c
SS
701 value->kind = axs_lvalue_memory;
702 break;
703
704 case LOC_LOCAL: /* var lives in locals area of frame */
f7c79c41 705 gen_frame_locals_address (gdbarch, ax);
c906108c
SS
706 gen_sym_offset (ax, var);
707 value->kind = axs_lvalue_memory;
708 break;
709
c906108c 710 case LOC_TYPEDEF:
3d263c1d 711 error (_("Cannot compute value of typedef `%s'."),
de5ad195 712 SYMBOL_PRINT_NAME (var));
c906108c
SS
713 break;
714
715 case LOC_BLOCK:
716 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
717 value->kind = axs_rvalue;
718 break;
719
720 case LOC_REGISTER:
c906108c
SS
721 /* Don't generate any code at all; in the process of treating
722 this as an lvalue or rvalue, the caller will generate the
723 right code. */
724 value->kind = axs_lvalue_register;
768a979c 725 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
c906108c
SS
726 break;
727
728 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
2a2d4dc3
AS
729 register, not on the stack. Simpler than LOC_REGISTER
730 because it's just like any other case where the thing
731 has a real address. */
c906108c 732 case LOC_REGPARM_ADDR:
768a979c 733 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
c906108c
SS
734 value->kind = axs_lvalue_memory;
735 break;
736
737 case LOC_UNRESOLVED:
738 {
c5aa993b 739 struct minimal_symbol *msym
3567439c 740 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
5b4ee69b 741
c5aa993b 742 if (!msym)
3d263c1d 743 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
c5aa993b 744
c906108c
SS
745 /* Push the address of the variable. */
746 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym));
747 value->kind = axs_lvalue_memory;
748 }
c5aa993b 749 break;
c906108c 750
a55cc764 751 case LOC_COMPUTED:
a67af2b9 752 /* FIXME: cagney/2004-01-26: It should be possible to
768a979c 753 unconditionally call the SYMBOL_COMPUTED_OPS method when available.
d3efc286 754 Unfortunately DWARF 2 stores the frame-base (instead of the
a67af2b9
AC
755 function) location in a function's symbol. Oops! For the
756 moment enable this when/where applicable. */
505e835d 757 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
a55cc764
DJ
758 break;
759
c906108c 760 case LOC_OPTIMIZED_OUT:
400c6af0
SS
761 /* Flag this, but don't say anything; leave it up to callers to
762 warn the user. */
763 value->optimized_out = 1;
c906108c
SS
764 break;
765
766 default:
3d263c1d 767 error (_("Cannot find value of botched symbol `%s'."),
de5ad195 768 SYMBOL_PRINT_NAME (var));
c906108c
SS
769 break;
770 }
771}
c5aa993b 772\f
c906108c
SS
773
774
c906108c
SS
775/* Generating bytecode from GDB expressions: literals */
776
777static void
fba45db2
KB
778gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
779 struct type *type)
c906108c
SS
780{
781 ax_const_l (ax, k);
782 value->kind = axs_rvalue;
648027cc 783 value->type = check_typedef (type);
c906108c 784}
c5aa993b 785\f
c906108c
SS
786
787
c906108c
SS
788/* Generating bytecode from GDB expressions: unary conversions, casts */
789
790/* Take what's on the top of the stack (as described by VALUE), and
791 try to make an rvalue out of it. Signal an error if we can't do
792 that. */
55aa24fb 793void
fba45db2 794require_rvalue (struct agent_expr *ax, struct axs_value *value)
c906108c 795{
3a96536b
SS
796 /* Only deal with scalars, structs and such may be too large
797 to fit in a stack entry. */
798 value->type = check_typedef (value->type);
799 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
800 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
801 || TYPE_CODE (value->type) == TYPE_CODE_UNION
802 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1c40aa62 803 error (_("Value not scalar: cannot be an rvalue."));
3a96536b 804
c906108c
SS
805 switch (value->kind)
806 {
807 case axs_rvalue:
808 /* It's already an rvalue. */
809 break;
810
811 case axs_lvalue_memory:
812 /* The top of stack is the address of the object. Dereference. */
813 gen_fetch (ax, value->type);
814 break;
815
816 case axs_lvalue_register:
817 /* There's nothing on the stack, but value->u.reg is the
818 register number containing the value.
819
c5aa993b
JM
820 When we add floating-point support, this is going to have to
821 change. What about SPARC register pairs, for example? */
c906108c
SS
822 ax_reg (ax, value->u.reg);
823 gen_extend (ax, value->type);
824 break;
825 }
826
827 value->kind = axs_rvalue;
828}
829
830
831/* Assume the top of the stack is described by VALUE, and perform the
832 usual unary conversions. This is motivated by ANSI 6.2.2, but of
833 course GDB expressions are not ANSI; they're the mishmash union of
834 a bunch of languages. Rah.
835
836 NOTE! This function promises to produce an rvalue only when the
837 incoming value is of an appropriate type. In other words, the
838 consumer of the value this function produces may assume the value
839 is an rvalue only after checking its type.
840
841 The immediate issue is that if the user tries to use a structure or
842 union as an operand of, say, the `+' operator, we don't want to try
843 to convert that structure to an rvalue; require_rvalue will bomb on
844 structs and unions. Rather, we want to simply pass the struct
845 lvalue through unchanged, and let `+' raise an error. */
846
847static void
f7c79c41
UW
848gen_usual_unary (struct expression *exp, struct agent_expr *ax,
849 struct axs_value *value)
c906108c
SS
850{
851 /* We don't have to generate any code for the usual integral
852 conversions, since values are always represented as full-width on
853 the stack. Should we tweak the type? */
854
855 /* Some types require special handling. */
0004e5a2 856 switch (TYPE_CODE (value->type))
c906108c
SS
857 {
858 /* Functions get converted to a pointer to the function. */
859 case TYPE_CODE_FUNC:
860 value->type = lookup_pointer_type (value->type);
861 value->kind = axs_rvalue; /* Should always be true, but just in case. */
862 break;
863
864 /* Arrays get converted to a pointer to their first element, and
c5aa993b 865 are no longer an lvalue. */
c906108c
SS
866 case TYPE_CODE_ARRAY:
867 {
868 struct type *elements = TYPE_TARGET_TYPE (value->type);
5b4ee69b 869
c906108c
SS
870 value->type = lookup_pointer_type (elements);
871 value->kind = axs_rvalue;
872 /* We don't need to generate any code; the address of the array
873 is also the address of its first element. */
874 }
c5aa993b 875 break;
c906108c 876
c5aa993b
JM
877 /* Don't try to convert structures and unions to rvalues. Let the
878 consumer signal an error. */
c906108c
SS
879 case TYPE_CODE_STRUCT:
880 case TYPE_CODE_UNION:
881 return;
c906108c
SS
882 }
883
884 /* If the value is an lvalue, dereference it. */
885 require_rvalue (ax, value);
886}
887
888
889/* Return non-zero iff the type TYPE1 is considered "wider" than the
890 type TYPE2, according to the rules described in gen_usual_arithmetic. */
891static int
fba45db2 892type_wider_than (struct type *type1, struct type *type2)
c906108c
SS
893{
894 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
895 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
896 && TYPE_UNSIGNED (type1)
c5aa993b 897 && !TYPE_UNSIGNED (type2)));
c906108c
SS
898}
899
900
901/* Return the "wider" of the two types TYPE1 and TYPE2. */
902static struct type *
fba45db2 903max_type (struct type *type1, struct type *type2)
c906108c
SS
904{
905 return type_wider_than (type1, type2) ? type1 : type2;
906}
907
908
909/* Generate code to convert a scalar value of type FROM to type TO. */
910static void
fba45db2 911gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
c906108c
SS
912{
913 /* Perhaps there is a more graceful way to state these rules. */
914
915 /* If we're converting to a narrower type, then we need to clear out
916 the upper bits. */
917 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
918 gen_extend (ax, from);
919
920 /* If the two values have equal width, but different signednesses,
921 then we need to extend. */
922 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
923 {
924 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
925 gen_extend (ax, to);
926 }
927
928 /* If we're converting to a wider type, and becoming unsigned, then
929 we need to zero out any possible sign bits. */
930 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
931 {
932 if (TYPE_UNSIGNED (to))
933 gen_extend (ax, to);
934 }
935}
936
937
938/* Return non-zero iff the type FROM will require any bytecodes to be
939 emitted to be converted to the type TO. */
940static int
fba45db2 941is_nontrivial_conversion (struct type *from, struct type *to)
c906108c 942{
35c9c7ba 943 struct agent_expr *ax = new_agent_expr (NULL, 0);
c906108c
SS
944 int nontrivial;
945
946 /* Actually generate the code, and see if anything came out. At the
947 moment, it would be trivial to replicate the code in
948 gen_conversion here, but in the future, when we're supporting
949 floating point and the like, it may not be. Doing things this
950 way allows this function to be independent of the logic in
951 gen_conversion. */
952 gen_conversion (ax, from, to);
953 nontrivial = ax->len > 0;
954 free_agent_expr (ax);
955 return nontrivial;
956}
957
958
959/* Generate code to perform the "usual arithmetic conversions" (ANSI C
960 6.2.1.5) for the two operands of an arithmetic operator. This
961 effectively finds a "least upper bound" type for the two arguments,
962 and promotes each argument to that type. *VALUE1 and *VALUE2
963 describe the values as they are passed in, and as they are left. */
964static void
f7c79c41
UW
965gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax,
966 struct axs_value *value1, struct axs_value *value2)
c906108c
SS
967{
968 /* Do the usual binary conversions. */
969 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
970 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
971 {
972 /* The ANSI integral promotions seem to work this way: Order the
c5aa993b
JM
973 integer types by size, and then by signedness: an n-bit
974 unsigned type is considered "wider" than an n-bit signed
975 type. Promote to the "wider" of the two types, and always
976 promote at least to int. */
f7c79c41 977 struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int,
c906108c
SS
978 max_type (value1->type, value2->type));
979
980 /* Deal with value2, on the top of the stack. */
981 gen_conversion (ax, value2->type, target);
982
983 /* Deal with value1, not on the top of the stack. Don't
984 generate the `swap' instructions if we're not actually going
985 to do anything. */
986 if (is_nontrivial_conversion (value1->type, target))
987 {
988 ax_simple (ax, aop_swap);
989 gen_conversion (ax, value1->type, target);
990 ax_simple (ax, aop_swap);
991 }
992
648027cc 993 value1->type = value2->type = check_typedef (target);
c906108c
SS
994 }
995}
996
997
998/* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
999 the value on the top of the stack, as described by VALUE. Assume
1000 the value has integral type. */
1001static void
f7c79c41
UW
1002gen_integral_promotions (struct expression *exp, struct agent_expr *ax,
1003 struct axs_value *value)
c906108c 1004{
f7c79c41
UW
1005 const struct builtin_type *builtin = builtin_type (exp->gdbarch);
1006
1007 if (!type_wider_than (value->type, builtin->builtin_int))
c906108c 1008 {
f7c79c41
UW
1009 gen_conversion (ax, value->type, builtin->builtin_int);
1010 value->type = builtin->builtin_int;
c906108c 1011 }
f7c79c41 1012 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
c906108c 1013 {
f7c79c41
UW
1014 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
1015 value->type = builtin->builtin_unsigned_int;
c906108c
SS
1016 }
1017}
1018
1019
1020/* Generate code for a cast to TYPE. */
1021static void
fba45db2 1022gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
c906108c
SS
1023{
1024 /* GCC does allow casts to yield lvalues, so this should be fixed
1025 before merging these changes into the trunk. */
1026 require_rvalue (ax, value);
0e2de366 1027 /* Dereference typedefs. */
c906108c
SS
1028 type = check_typedef (type);
1029
0004e5a2 1030 switch (TYPE_CODE (type))
c906108c
SS
1031 {
1032 case TYPE_CODE_PTR:
b97aedf3 1033 case TYPE_CODE_REF:
c906108c
SS
1034 /* It's implementation-defined, and I'll bet this is what GCC
1035 does. */
1036 break;
1037
1038 case TYPE_CODE_ARRAY:
1039 case TYPE_CODE_STRUCT:
1040 case TYPE_CODE_UNION:
1041 case TYPE_CODE_FUNC:
3d263c1d 1042 error (_("Invalid type cast: intended type must be scalar."));
c906108c
SS
1043
1044 case TYPE_CODE_ENUM:
3b11a015 1045 case TYPE_CODE_BOOL:
c906108c
SS
1046 /* We don't have to worry about the size of the value, because
1047 all our integral values are fully sign-extended, and when
1048 casting pointers we can do anything we like. Is there any
74b35824
JB
1049 way for us to know what GCC actually does with a cast like
1050 this? */
c906108c 1051 break;
c5aa993b 1052
c906108c
SS
1053 case TYPE_CODE_INT:
1054 gen_conversion (ax, value->type, type);
1055 break;
1056
1057 case TYPE_CODE_VOID:
1058 /* We could pop the value, and rely on everyone else to check
c5aa993b
JM
1059 the type and notice that this value doesn't occupy a stack
1060 slot. But for now, leave the value on the stack, and
1061 preserve the "value == stack element" assumption. */
c906108c
SS
1062 break;
1063
1064 default:
3d263c1d 1065 error (_("Casts to requested type are not yet implemented."));
c906108c
SS
1066 }
1067
1068 value->type = type;
1069}
c5aa993b 1070\f
c906108c
SS
1071
1072
c906108c
SS
1073/* Generating bytecode from GDB expressions: arithmetic */
1074
1075/* Scale the integer on the top of the stack by the size of the target
1076 of the pointer type TYPE. */
1077static void
fba45db2 1078gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
c906108c
SS
1079{
1080 struct type *element = TYPE_TARGET_TYPE (type);
1081
0004e5a2 1082 if (TYPE_LENGTH (element) != 1)
c906108c 1083 {
0004e5a2 1084 ax_const_l (ax, TYPE_LENGTH (element));
c906108c
SS
1085 ax_simple (ax, op);
1086 }
1087}
1088
1089
f7c79c41 1090/* Generate code for pointer arithmetic PTR + INT. */
c906108c 1091static void
f7c79c41
UW
1092gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1093 struct axs_value *value1, struct axs_value *value2)
c906108c 1094{
b97aedf3 1095 gdb_assert (pointer_type (value1->type));
f7c79c41 1096 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 1097
f7c79c41
UW
1098 gen_scale (ax, aop_mul, value1->type);
1099 ax_simple (ax, aop_add);
1100 gen_extend (ax, value1->type); /* Catch overflow. */
1101 value->type = value1->type;
1102 value->kind = axs_rvalue;
1103}
c906108c 1104
c906108c 1105
f7c79c41
UW
1106/* Generate code for pointer arithmetic PTR - INT. */
1107static void
1108gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1109 struct axs_value *value1, struct axs_value *value2)
1110{
b97aedf3 1111 gdb_assert (pointer_type (value1->type));
f7c79c41 1112 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
c906108c 1113
f7c79c41
UW
1114 gen_scale (ax, aop_mul, value1->type);
1115 ax_simple (ax, aop_sub);
1116 gen_extend (ax, value1->type); /* Catch overflow. */
1117 value->type = value1->type;
c906108c
SS
1118 value->kind = axs_rvalue;
1119}
1120
1121
f7c79c41 1122/* Generate code for pointer arithmetic PTR - PTR. */
c906108c 1123static void
f7c79c41
UW
1124gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1125 struct axs_value *value1, struct axs_value *value2,
1126 struct type *result_type)
c906108c 1127{
b97aedf3
SS
1128 gdb_assert (pointer_type (value1->type));
1129 gdb_assert (pointer_type (value2->type));
c906108c 1130
f7c79c41
UW
1131 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1132 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
ac74f770
MS
1133 error (_("\
1134First argument of `-' is a pointer, but second argument is neither\n\
1135an integer nor a pointer of the same type."));
c906108c 1136
f7c79c41
UW
1137 ax_simple (ax, aop_sub);
1138 gen_scale (ax, aop_div_unsigned, value1->type);
1139 value->type = result_type;
c906108c
SS
1140 value->kind = axs_rvalue;
1141}
1142
3b11a015
SS
1143static void
1144gen_equal (struct agent_expr *ax, struct axs_value *value,
1145 struct axs_value *value1, struct axs_value *value2,
1146 struct type *result_type)
1147{
1148 if (pointer_type (value1->type) || pointer_type (value2->type))
1149 ax_simple (ax, aop_equal);
1150 else
1151 gen_binop (ax, value, value1, value2,
1152 aop_equal, aop_equal, 0, "equal");
1153 value->type = result_type;
1154 value->kind = axs_rvalue;
1155}
1156
1157static void
1158gen_less (struct agent_expr *ax, struct axs_value *value,
1159 struct axs_value *value1, struct axs_value *value2,
1160 struct type *result_type)
1161{
1162 if (pointer_type (value1->type) || pointer_type (value2->type))
1163 ax_simple (ax, aop_less_unsigned);
1164 else
1165 gen_binop (ax, value, value1, value2,
1166 aop_less_signed, aop_less_unsigned, 0, "less than");
1167 value->type = result_type;
1168 value->kind = axs_rvalue;
1169}
f7c79c41 1170
c906108c
SS
1171/* Generate code for a binary operator that doesn't do pointer magic.
1172 We set VALUE to describe the result value; we assume VALUE1 and
1173 VALUE2 describe the two operands, and that they've undergone the
1174 usual binary conversions. MAY_CARRY should be non-zero iff the
1175 result needs to be extended. NAME is the English name of the
1176 operator, used in error messages */
1177static void
fba45db2 1178gen_binop (struct agent_expr *ax, struct axs_value *value,
3e43a32a
MS
1179 struct axs_value *value1, struct axs_value *value2,
1180 enum agent_op op, enum agent_op op_unsigned,
1181 int may_carry, char *name)
c906108c
SS
1182{
1183 /* We only handle INT op INT. */
0004e5a2
DJ
1184 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1185 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
3d263c1d 1186 error (_("Invalid combination of types in %s."), name);
c5aa993b 1187
c906108c
SS
1188 ax_simple (ax,
1189 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1190 if (may_carry)
c5aa993b 1191 gen_extend (ax, value1->type); /* catch overflow */
c906108c
SS
1192 value->type = value1->type;
1193 value->kind = axs_rvalue;
1194}
1195
1196
1197static void
f7c79c41
UW
1198gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1199 struct type *result_type)
c906108c
SS
1200{
1201 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1202 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
3d263c1d 1203 error (_("Invalid type of operand to `!'."));
c906108c 1204
c906108c 1205 ax_simple (ax, aop_log_not);
f7c79c41 1206 value->type = result_type;
c906108c
SS
1207}
1208
1209
1210static void
fba45db2 1211gen_complement (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1212{
1213 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
3d263c1d 1214 error (_("Invalid type of operand to `~'."));
c906108c 1215
c906108c
SS
1216 ax_simple (ax, aop_bit_not);
1217 gen_extend (ax, value->type);
1218}
c5aa993b 1219\f
c906108c
SS
1220
1221
c906108c
SS
1222/* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1223
1224/* Dereference the value on the top of the stack. */
1225static void
fba45db2 1226gen_deref (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1227{
1228 /* The caller should check the type, because several operators use
1229 this, and we don't know what error message to generate. */
b97aedf3 1230 if (!pointer_type (value->type))
8e65ff28 1231 internal_error (__FILE__, __LINE__,
3d263c1d 1232 _("gen_deref: expected a pointer"));
c906108c
SS
1233
1234 /* We've got an rvalue now, which is a pointer. We want to yield an
1235 lvalue, whose address is exactly that pointer. So we don't
1236 actually emit any code; we just change the type from "Pointer to
1237 T" to "T", and mark the value as an lvalue in memory. Leave it
1238 to the consumer to actually dereference it. */
1239 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
b1028c8e
PA
1240 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1241 error (_("Attempt to dereference a generic pointer."));
0004e5a2 1242 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1243 ? axs_rvalue : axs_lvalue_memory);
1244}
1245
1246
1247/* Produce the address of the lvalue on the top of the stack. */
1248static void
fba45db2 1249gen_address_of (struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1250{
1251 /* Special case for taking the address of a function. The ANSI
1252 standard describes this as a special case, too, so this
1253 arrangement is not without motivation. */
0004e5a2 1254 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
c906108c
SS
1255 /* The value's already an rvalue on the stack, so we just need to
1256 change the type. */
1257 value->type = lookup_pointer_type (value->type);
1258 else
1259 switch (value->kind)
1260 {
1261 case axs_rvalue:
3d263c1d 1262 error (_("Operand of `&' is an rvalue, which has no address."));
c906108c
SS
1263
1264 case axs_lvalue_register:
3d263c1d 1265 error (_("Operand of `&' is in a register, and has no address."));
c906108c
SS
1266
1267 case axs_lvalue_memory:
1268 value->kind = axs_rvalue;
1269 value->type = lookup_pointer_type (value->type);
1270 break;
1271 }
1272}
1273
c906108c
SS
1274/* Generate code to push the value of a bitfield of a structure whose
1275 address is on the top of the stack. START and END give the
1276 starting and one-past-ending *bit* numbers of the field within the
1277 structure. */
1278static void
505e835d
UW
1279gen_bitfield_ref (struct expression *exp, struct agent_expr *ax,
1280 struct axs_value *value, struct type *type,
1281 int start, int end)
c906108c
SS
1282{
1283 /* Note that ops[i] fetches 8 << i bits. */
1284 static enum agent_op ops[]
5b4ee69b 1285 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
c906108c
SS
1286 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1287
1288 /* We don't want to touch any byte that the bitfield doesn't
1289 actually occupy; we shouldn't make any accesses we're not
1290 explicitly permitted to. We rely here on the fact that the
1291 bytecode `ref' operators work on unaligned addresses.
1292
1293 It takes some fancy footwork to get the stack to work the way
1294 we'd like. Say we're retrieving a bitfield that requires three
1295 fetches. Initially, the stack just contains the address:
c5aa993b 1296 addr
c906108c 1297 For the first fetch, we duplicate the address
c5aa993b 1298 addr addr
c906108c
SS
1299 then add the byte offset, do the fetch, and shift and mask as
1300 needed, yielding a fragment of the value, properly aligned for
1301 the final bitwise or:
c5aa993b 1302 addr frag1
c906108c 1303 then we swap, and repeat the process:
c5aa993b
JM
1304 frag1 addr --- address on top
1305 frag1 addr addr --- duplicate it
1306 frag1 addr frag2 --- get second fragment
1307 frag1 frag2 addr --- swap again
1308 frag1 frag2 frag3 --- get third fragment
c906108c
SS
1309 Notice that, since the third fragment is the last one, we don't
1310 bother duplicating the address this time. Now we have all the
1311 fragments on the stack, and we can simply `or' them together,
1312 yielding the final value of the bitfield. */
1313
1314 /* The first and one-after-last bits in the field, but rounded down
1315 and up to byte boundaries. */
1316 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
c5aa993b
JM
1317 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1318 / TARGET_CHAR_BIT)
1319 * TARGET_CHAR_BIT);
c906108c
SS
1320
1321 /* current bit offset within the structure */
1322 int offset;
1323
1324 /* The index in ops of the opcode we're considering. */
1325 int op;
1326
1327 /* The number of fragments we generated in the process. Probably
1328 equal to the number of `one' bits in bytesize, but who cares? */
1329 int fragment_count;
1330
0e2de366 1331 /* Dereference any typedefs. */
c906108c
SS
1332 type = check_typedef (type);
1333
1334 /* Can we fetch the number of bits requested at all? */
1335 if ((end - start) > ((1 << num_ops) * 8))
8e65ff28 1336 internal_error (__FILE__, __LINE__,
3d263c1d 1337 _("gen_bitfield_ref: bitfield too wide"));
c906108c
SS
1338
1339 /* Note that we know here that we only need to try each opcode once.
1340 That may not be true on machines with weird byte sizes. */
1341 offset = bound_start;
1342 fragment_count = 0;
1343 for (op = num_ops - 1; op >= 0; op--)
1344 {
1345 /* number of bits that ops[op] would fetch */
1346 int op_size = 8 << op;
1347
1348 /* The stack at this point, from bottom to top, contains zero or
c5aa993b
JM
1349 more fragments, then the address. */
1350
c906108c
SS
1351 /* Does this fetch fit within the bitfield? */
1352 if (offset + op_size <= bound_end)
1353 {
1354 /* Is this the last fragment? */
1355 int last_frag = (offset + op_size == bound_end);
1356
c5aa993b
JM
1357 if (!last_frag)
1358 ax_simple (ax, aop_dup); /* keep a copy of the address */
1359
c906108c
SS
1360 /* Add the offset. */
1361 gen_offset (ax, offset / TARGET_CHAR_BIT);
1362
1363 if (trace_kludge)
1364 {
1365 /* Record the area of memory we're about to fetch. */
1366 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1367 }
1368
1369 /* Perform the fetch. */
1370 ax_simple (ax, ops[op]);
c5aa993b
JM
1371
1372 /* Shift the bits we have to their proper position.
c906108c
SS
1373 gen_left_shift will generate right shifts when the operand
1374 is negative.
1375
c5aa993b
JM
1376 A big-endian field diagram to ponder:
1377 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1378 +------++------++------++------++------++------++------++------+
1379 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1380 ^ ^ ^ ^
1381 bit number 16 32 48 53
c906108c
SS
1382 These are bit numbers as supplied by GDB. Note that the
1383 bit numbers run from right to left once you've fetched the
1384 value!
1385
c5aa993b
JM
1386 A little-endian field diagram to ponder:
1387 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1388 +------++------++------++------++------++------++------++------+
1389 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1390 ^ ^ ^ ^ ^
1391 bit number 48 32 16 4 0
1392
1393 In both cases, the most significant end is on the left
1394 (i.e. normal numeric writing order), which means that you
1395 don't go crazy thinking about `left' and `right' shifts.
1396
1397 We don't have to worry about masking yet:
1398 - If they contain garbage off the least significant end, then we
1399 must be looking at the low end of the field, and the right
1400 shift will wipe them out.
1401 - If they contain garbage off the most significant end, then we
1402 must be looking at the most significant end of the word, and
1403 the sign/zero extension will wipe them out.
1404 - If we're in the interior of the word, then there is no garbage
1405 on either end, because the ref operators zero-extend. */
505e835d 1406 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
c906108c 1407 gen_left_shift (ax, end - (offset + op_size));
c5aa993b 1408 else
c906108c
SS
1409 gen_left_shift (ax, offset - start);
1410
c5aa993b 1411 if (!last_frag)
c906108c
SS
1412 /* Bring the copy of the address up to the top. */
1413 ax_simple (ax, aop_swap);
1414
1415 offset += op_size;
1416 fragment_count++;
1417 }
1418 }
1419
1420 /* Generate enough bitwise `or' operations to combine all the
1421 fragments we left on the stack. */
1422 while (fragment_count-- > 1)
1423 ax_simple (ax, aop_bit_or);
1424
1425 /* Sign- or zero-extend the value as appropriate. */
1426 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1427
1428 /* This is *not* an lvalue. Ugh. */
1429 value->kind = axs_rvalue;
1430 value->type = type;
1431}
1432
b6e7192f
SS
1433/* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1434 is an accumulated offset (in bytes), will be nonzero for objects
1435 embedded in other objects, like C++ base classes. Behavior should
1436 generally follow value_primitive_field. */
1437
1438static void
1439gen_primitive_field (struct expression *exp,
1440 struct agent_expr *ax, struct axs_value *value,
1441 int offset, int fieldno, struct type *type)
1442{
1443 /* Is this a bitfield? */
1444 if (TYPE_FIELD_PACKED (type, fieldno))
1445 gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno),
1446 (offset * TARGET_CHAR_BIT
1447 + TYPE_FIELD_BITPOS (type, fieldno)),
1448 (offset * TARGET_CHAR_BIT
1449 + TYPE_FIELD_BITPOS (type, fieldno)
1450 + TYPE_FIELD_BITSIZE (type, fieldno)));
1451 else
1452 {
1453 gen_offset (ax, offset
1454 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1455 value->kind = axs_lvalue_memory;
1456 value->type = TYPE_FIELD_TYPE (type, fieldno);
1457 }
1458}
1459
1460/* Search for the given field in either the given type or one of its
1461 base classes. Return 1 if found, 0 if not. */
1462
1463static int
1464gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax,
1465 struct axs_value *value,
1466 char *field, int offset, struct type *type)
1467{
1468 int i, rslt;
1469 int nbases = TYPE_N_BASECLASSES (type);
1470
1471 CHECK_TYPEDEF (type);
1472
1473 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1474 {
0d5cff50 1475 const char *this_name = TYPE_FIELD_NAME (type, i);
b6e7192f
SS
1476
1477 if (this_name)
1478 {
1479 if (strcmp (field, this_name) == 0)
1480 {
1481 /* Note that bytecodes for the struct's base (aka
1482 "this") will have been generated already, which will
1483 be unnecessary but not harmful if the static field is
1484 being handled as a global. */
1485 if (field_is_static (&TYPE_FIELD (type, i)))
1486 {
400c6af0
SS
1487 gen_static_field (exp->gdbarch, ax, value, type, i);
1488 if (value->optimized_out)
3e43a32a
MS
1489 error (_("static field `%s' has been "
1490 "optimized out, cannot use"),
400c6af0 1491 field);
b6e7192f
SS
1492 return 1;
1493 }
1494
1495 gen_primitive_field (exp, ax, value, offset, i, type);
1496 return 1;
1497 }
1498#if 0 /* is this right? */
1499 if (this_name[0] == '\0')
1500 internal_error (__FILE__, __LINE__,
1501 _("find_field: anonymous unions not supported"));
1502#endif
1503 }
1504 }
1505
1506 /* Now scan through base classes recursively. */
1507 for (i = 0; i < nbases; i++)
1508 {
1509 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1510
1511 rslt = gen_struct_ref_recursive (exp, ax, value, field,
3e43a32a
MS
1512 offset + TYPE_BASECLASS_BITPOS (type, i)
1513 / TARGET_CHAR_BIT,
b6e7192f
SS
1514 basetype);
1515 if (rslt)
1516 return 1;
1517 }
1518
1519 /* Not found anywhere, flag so caller can complain. */
1520 return 0;
1521}
c906108c
SS
1522
1523/* Generate code to reference the member named FIELD of a structure or
1524 union. The top of the stack, as described by VALUE, should have
1525 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1526 the operator being compiled, and OPERAND_NAME is the kind of thing
1527 it operates on; we use them in error messages. */
1528static void
505e835d
UW
1529gen_struct_ref (struct expression *exp, struct agent_expr *ax,
1530 struct axs_value *value, char *field,
fba45db2 1531 char *operator_name, char *operand_name)
c906108c
SS
1532{
1533 struct type *type;
b6e7192f 1534 int found;
c906108c
SS
1535
1536 /* Follow pointers until we reach a non-pointer. These aren't the C
1537 semantics, but they're what the normal GDB evaluator does, so we
1538 should at least be consistent. */
b97aedf3 1539 while (pointer_type (value->type))
c906108c 1540 {
f7c79c41 1541 require_rvalue (ax, value);
c906108c
SS
1542 gen_deref (ax, value);
1543 }
e8860ec2 1544 type = check_typedef (value->type);
c906108c
SS
1545
1546 /* This must yield a structure or a union. */
1547 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1548 && TYPE_CODE (type) != TYPE_CODE_UNION)
3d263c1d 1549 error (_("The left operand of `%s' is not a %s."),
c906108c
SS
1550 operator_name, operand_name);
1551
1552 /* And it must be in memory; we don't deal with structure rvalues,
1553 or structures living in registers. */
1554 if (value->kind != axs_lvalue_memory)
3d263c1d 1555 error (_("Structure does not live in memory."));
c906108c 1556
b6e7192f
SS
1557 /* Search through fields and base classes recursively. */
1558 found = gen_struct_ref_recursive (exp, ax, value, field, 0, type);
1559
1560 if (!found)
1561 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1562 field, TYPE_TAG_NAME (type));
1563}
c5aa993b 1564
b6e7192f
SS
1565static int
1566gen_namespace_elt (struct expression *exp,
1567 struct agent_expr *ax, struct axs_value *value,
1568 const struct type *curtype, char *name);
1569static int
1570gen_maybe_namespace_elt (struct expression *exp,
1571 struct agent_expr *ax, struct axs_value *value,
1572 const struct type *curtype, char *name);
1573
1574static void
400c6af0 1575gen_static_field (struct gdbarch *gdbarch,
b6e7192f
SS
1576 struct agent_expr *ax, struct axs_value *value,
1577 struct type *type, int fieldno)
1578{
1579 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1580 {
b6e7192f 1581 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c 1582 value->kind = axs_lvalue_memory;
b6e7192f 1583 value->type = TYPE_FIELD_TYPE (type, fieldno);
400c6af0 1584 value->optimized_out = 0;
b6e7192f
SS
1585 }
1586 else
1587 {
ff355380 1588 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
b6e7192f 1589 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
b6e7192f 1590
400c6af0
SS
1591 if (sym)
1592 {
1593 gen_var_ref (gdbarch, ax, value, sym);
1594
1595 /* Don't error if the value was optimized out, we may be
1596 scanning all static fields and just want to pass over this
1597 and continue with the rest. */
1598 }
1599 else
1600 {
1601 /* Silently assume this was optimized out; class printing
1602 will let the user know why the data is missing. */
1603 value->optimized_out = 1;
1604 }
b6e7192f
SS
1605 }
1606}
1607
1608static int
1609gen_struct_elt_for_reference (struct expression *exp,
1610 struct agent_expr *ax, struct axs_value *value,
1611 struct type *type, char *fieldname)
1612{
1613 struct type *t = type;
1614 int i;
b6e7192f
SS
1615
1616 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1617 && TYPE_CODE (t) != TYPE_CODE_UNION)
1618 internal_error (__FILE__, __LINE__,
1619 _("non-aggregate type to gen_struct_elt_for_reference"));
1620
1621 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1622 {
0d5cff50 1623 const char *t_field_name = TYPE_FIELD_NAME (t, i);
b6e7192f
SS
1624
1625 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1626 {
1627 if (field_is_static (&TYPE_FIELD (t, i)))
1628 {
400c6af0
SS
1629 gen_static_field (exp->gdbarch, ax, value, t, i);
1630 if (value->optimized_out)
3e43a32a
MS
1631 error (_("static field `%s' has been "
1632 "optimized out, cannot use"),
400c6af0 1633 fieldname);
b6e7192f
SS
1634 return 1;
1635 }
1636 if (TYPE_FIELD_PACKED (t, i))
1637 error (_("pointers to bitfield members not allowed"));
1638
1639 /* FIXME we need a way to do "want_address" equivalent */
1640
1641 error (_("Cannot reference non-static field \"%s\""), fieldname);
1642 }
c906108c 1643 }
b6e7192f
SS
1644
1645 /* FIXME add other scoped-reference cases here */
1646
1647 /* Do a last-ditch lookup. */
1648 return gen_maybe_namespace_elt (exp, ax, value, type, fieldname);
c906108c
SS
1649}
1650
b6e7192f
SS
1651/* C++: Return the member NAME of the namespace given by the type
1652 CURTYPE. */
1653
1654static int
1655gen_namespace_elt (struct expression *exp,
1656 struct agent_expr *ax, struct axs_value *value,
1657 const struct type *curtype, char *name)
1658{
1659 int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name);
1660
1661 if (!found)
1662 error (_("No symbol \"%s\" in namespace \"%s\"."),
1663 name, TYPE_TAG_NAME (curtype));
1664
1665 return found;
1666}
1667
1668/* A helper function used by value_namespace_elt and
1669 value_struct_elt_for_reference. It looks up NAME inside the
1670 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1671 is a class and NAME refers to a type in CURTYPE itself (as opposed
1672 to, say, some base class of CURTYPE). */
1673
1674static int
1675gen_maybe_namespace_elt (struct expression *exp,
1676 struct agent_expr *ax, struct axs_value *value,
1677 const struct type *curtype, char *name)
1678{
1679 const char *namespace_name = TYPE_TAG_NAME (curtype);
1680 struct symbol *sym;
1681
1682 sym = cp_lookup_symbol_namespace (namespace_name, name,
1683 block_for_pc (ax->scope),
ac0cd78b 1684 VAR_DOMAIN);
b6e7192f
SS
1685
1686 if (sym == NULL)
1687 return 0;
1688
1689 gen_var_ref (exp->gdbarch, ax, value, sym);
1690
400c6af0
SS
1691 if (value->optimized_out)
1692 error (_("`%s' has been optimized out, cannot use"),
1693 SYMBOL_PRINT_NAME (sym));
1694
b6e7192f
SS
1695 return 1;
1696}
1697
1698
1699static int
1700gen_aggregate_elt_ref (struct expression *exp,
1701 struct agent_expr *ax, struct axs_value *value,
1702 struct type *type, char *field,
1703 char *operator_name, char *operand_name)
1704{
1705 switch (TYPE_CODE (type))
1706 {
1707 case TYPE_CODE_STRUCT:
1708 case TYPE_CODE_UNION:
1709 return gen_struct_elt_for_reference (exp, ax, value, type, field);
1710 break;
1711 case TYPE_CODE_NAMESPACE:
1712 return gen_namespace_elt (exp, ax, value, type, field);
1713 break;
1714 default:
1715 internal_error (__FILE__, __LINE__,
1716 _("non-aggregate type in gen_aggregate_elt_ref"));
1717 }
1718
1719 return 0;
1720}
c906108c 1721
0e2de366 1722/* Generate code for GDB's magical `repeat' operator.
c906108c
SS
1723 LVALUE @ INT creates an array INT elements long, and whose elements
1724 have the same type as LVALUE, located in memory so that LVALUE is
1725 its first element. For example, argv[0]@argc gives you the array
1726 of command-line arguments.
1727
1728 Unfortunately, because we have to know the types before we actually
1729 have a value for the expression, we can't implement this perfectly
1730 without changing the type system, having values that occupy two
1731 stack slots, doing weird things with sizeof, etc. So we require
1732 the right operand to be a constant expression. */
1733static void
f7c79c41
UW
1734gen_repeat (struct expression *exp, union exp_element **pc,
1735 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1736{
1737 struct axs_value value1;
5b4ee69b 1738
c906108c
SS
1739 /* We don't want to turn this into an rvalue, so no conversions
1740 here. */
f7c79c41 1741 gen_expr (exp, pc, ax, &value1);
c906108c 1742 if (value1.kind != axs_lvalue_memory)
3d263c1d 1743 error (_("Left operand of `@' must be an object in memory."));
c906108c
SS
1744
1745 /* Evaluate the length; it had better be a constant. */
1746 {
1747 struct value *v = const_expr (pc);
1748 int length;
1749
c5aa993b 1750 if (!v)
3e43a32a
MS
1751 error (_("Right operand of `@' must be a "
1752 "constant, in agent expressions."));
04624583 1753 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
3d263c1d 1754 error (_("Right operand of `@' must be an integer."));
c906108c
SS
1755 length = value_as_long (v);
1756 if (length <= 0)
3d263c1d 1757 error (_("Right operand of `@' must be positive."));
c906108c
SS
1758
1759 /* The top of the stack is already the address of the object, so
1760 all we need to do is frob the type of the lvalue. */
1761 {
1762 /* FIXME-type-allocation: need a way to free this type when we are
c5aa993b 1763 done with it. */
e3506a9f
UW
1764 struct type *array
1765 = lookup_array_range_type (value1.type, 0, length - 1);
c906108c
SS
1766
1767 value->kind = axs_lvalue_memory;
1768 value->type = array;
1769 }
1770 }
1771}
1772
1773
1774/* Emit code for the `sizeof' operator.
1775 *PC should point at the start of the operand expression; we advance it
1776 to the first instruction after the operand. */
1777static void
f7c79c41
UW
1778gen_sizeof (struct expression *exp, union exp_element **pc,
1779 struct agent_expr *ax, struct axs_value *value,
1780 struct type *size_type)
c906108c
SS
1781{
1782 /* We don't care about the value of the operand expression; we only
1783 care about its type. However, in the current arrangement, the
1784 only way to find an expression's type is to generate code for it.
1785 So we generate code for the operand, and then throw it away,
1786 replacing it with code that simply pushes its size. */
1787 int start = ax->len;
5b4ee69b 1788
f7c79c41 1789 gen_expr (exp, pc, ax, value);
c906108c
SS
1790
1791 /* Throw away the code we just generated. */
1792 ax->len = start;
c5aa993b 1793
c906108c
SS
1794 ax_const_l (ax, TYPE_LENGTH (value->type));
1795 value->kind = axs_rvalue;
f7c79c41 1796 value->type = size_type;
c906108c 1797}
c906108c 1798\f
c5aa993b 1799
c906108c
SS
1800/* Generating bytecode from GDB expressions: general recursive thingy */
1801
3d263c1d 1802/* XXX: i18n */
c906108c
SS
1803/* A gen_expr function written by a Gen-X'er guy.
1804 Append code for the subexpression of EXPR starting at *POS_P to AX. */
55aa24fb 1805void
f7c79c41
UW
1806gen_expr (struct expression *exp, union exp_element **pc,
1807 struct agent_expr *ax, struct axs_value *value)
c906108c
SS
1808{
1809 /* Used to hold the descriptions of operand expressions. */
09d559e4 1810 struct axs_value value1, value2, value3;
f61e138d 1811 enum exp_opcode op = (*pc)[0].opcode, op2;
09d559e4 1812 int if1, go1, if2, go2, end;
3b11a015 1813 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
c906108c
SS
1814
1815 /* If we're looking at a constant expression, just push its value. */
1816 {
1817 struct value *v = maybe_const_expr (pc);
c5aa993b 1818
c906108c
SS
1819 if (v)
1820 {
1821 ax_const_l (ax, value_as_long (v));
1822 value->kind = axs_rvalue;
df407dfe 1823 value->type = check_typedef (value_type (v));
c906108c
SS
1824 return;
1825 }
1826 }
1827
1828 /* Otherwise, go ahead and generate code for it. */
1829 switch (op)
1830 {
1831 /* Binary arithmetic operators. */
1832 case BINOP_ADD:
1833 case BINOP_SUB:
1834 case BINOP_MUL:
1835 case BINOP_DIV:
1836 case BINOP_REM:
948103cf
SS
1837 case BINOP_LSH:
1838 case BINOP_RSH:
c906108c
SS
1839 case BINOP_SUBSCRIPT:
1840 case BINOP_BITWISE_AND:
1841 case BINOP_BITWISE_IOR:
1842 case BINOP_BITWISE_XOR:
782b2b07
SS
1843 case BINOP_EQUAL:
1844 case BINOP_NOTEQUAL:
1845 case BINOP_LESS:
1846 case BINOP_GTR:
1847 case BINOP_LEQ:
1848 case BINOP_GEQ:
c906108c 1849 (*pc)++;
f7c79c41
UW
1850 gen_expr (exp, pc, ax, &value1);
1851 gen_usual_unary (exp, ax, &value1);
f61e138d
SS
1852 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1853 break;
1854
09d559e4
SS
1855 case BINOP_LOGICAL_AND:
1856 (*pc)++;
1857 /* Generate the obvious sequence of tests and jumps. */
1858 gen_expr (exp, pc, ax, &value1);
1859 gen_usual_unary (exp, ax, &value1);
1860 if1 = ax_goto (ax, aop_if_goto);
1861 go1 = ax_goto (ax, aop_goto);
1862 ax_label (ax, if1, ax->len);
1863 gen_expr (exp, pc, ax, &value2);
1864 gen_usual_unary (exp, ax, &value2);
1865 if2 = ax_goto (ax, aop_if_goto);
1866 go2 = ax_goto (ax, aop_goto);
1867 ax_label (ax, if2, ax->len);
1868 ax_const_l (ax, 1);
1869 end = ax_goto (ax, aop_goto);
1870 ax_label (ax, go1, ax->len);
1871 ax_label (ax, go2, ax->len);
1872 ax_const_l (ax, 0);
1873 ax_label (ax, end, ax->len);
1874 value->kind = axs_rvalue;
3b11a015 1875 value->type = int_type;
09d559e4
SS
1876 break;
1877
1878 case BINOP_LOGICAL_OR:
1879 (*pc)++;
1880 /* Generate the obvious sequence of tests and jumps. */
1881 gen_expr (exp, pc, ax, &value1);
1882 gen_usual_unary (exp, ax, &value1);
1883 if1 = ax_goto (ax, aop_if_goto);
1884 gen_expr (exp, pc, ax, &value2);
1885 gen_usual_unary (exp, ax, &value2);
1886 if2 = ax_goto (ax, aop_if_goto);
1887 ax_const_l (ax, 0);
1888 end = ax_goto (ax, aop_goto);
1889 ax_label (ax, if1, ax->len);
1890 ax_label (ax, if2, ax->len);
1891 ax_const_l (ax, 1);
1892 ax_label (ax, end, ax->len);
1893 value->kind = axs_rvalue;
3b11a015 1894 value->type = int_type;
09d559e4
SS
1895 break;
1896
1897 case TERNOP_COND:
1898 (*pc)++;
1899 gen_expr (exp, pc, ax, &value1);
1900 gen_usual_unary (exp, ax, &value1);
1901 /* For (A ? B : C), it's easiest to generate subexpression
1902 bytecodes in order, but if_goto jumps on true, so we invert
1903 the sense of A. Then we can do B by dropping through, and
1904 jump to do C. */
3b11a015 1905 gen_logical_not (ax, &value1, int_type);
09d559e4
SS
1906 if1 = ax_goto (ax, aop_if_goto);
1907 gen_expr (exp, pc, ax, &value2);
1908 gen_usual_unary (exp, ax, &value2);
1909 end = ax_goto (ax, aop_goto);
1910 ax_label (ax, if1, ax->len);
1911 gen_expr (exp, pc, ax, &value3);
1912 gen_usual_unary (exp, ax, &value3);
1913 ax_label (ax, end, ax->len);
1914 /* This is arbitary - what if B and C are incompatible types? */
1915 value->type = value2.type;
1916 value->kind = value2.kind;
1917 break;
1918
f61e138d
SS
1919 case BINOP_ASSIGN:
1920 (*pc)++;
1921 if ((*pc)[0].opcode == OP_INTERNALVAR)
c906108c 1922 {
f61e138d
SS
1923 char *name = internalvar_name ((*pc)[1].internalvar);
1924 struct trace_state_variable *tsv;
5b4ee69b 1925
f61e138d
SS
1926 (*pc) += 3;
1927 gen_expr (exp, pc, ax, value);
1928 tsv = find_trace_state_variable (name);
1929 if (tsv)
f7c79c41 1930 {
f61e138d
SS
1931 ax_tsv (ax, aop_setv, tsv->number);
1932 if (trace_kludge)
1933 ax_tsv (ax, aop_tracev, tsv->number);
f7c79c41 1934 }
f7c79c41 1935 else
3e43a32a
MS
1936 error (_("$%s is not a trace state variable, "
1937 "may not assign to it"), name);
f61e138d
SS
1938 }
1939 else
1940 error (_("May only assign to trace state variables"));
1941 break;
782b2b07 1942
f61e138d
SS
1943 case BINOP_ASSIGN_MODIFY:
1944 (*pc)++;
1945 op2 = (*pc)[0].opcode;
1946 (*pc)++;
1947 (*pc)++;
1948 if ((*pc)[0].opcode == OP_INTERNALVAR)
1949 {
1950 char *name = internalvar_name ((*pc)[1].internalvar);
1951 struct trace_state_variable *tsv;
5b4ee69b 1952
f61e138d
SS
1953 (*pc) += 3;
1954 tsv = find_trace_state_variable (name);
1955 if (tsv)
1956 {
1957 /* The tsv will be the left half of the binary operation. */
1958 ax_tsv (ax, aop_getv, tsv->number);
1959 if (trace_kludge)
1960 ax_tsv (ax, aop_tracev, tsv->number);
1961 /* Trace state variables are always 64-bit integers. */
1962 value1.kind = axs_rvalue;
1963 value1.type = builtin_type (exp->gdbarch)->builtin_long_long;
1964 /* Now do right half of expression. */
1965 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1966 /* We have a result of the binary op, set the tsv. */
1967 ax_tsv (ax, aop_setv, tsv->number);
1968 if (trace_kludge)
1969 ax_tsv (ax, aop_tracev, tsv->number);
1970 }
1971 else
3e43a32a
MS
1972 error (_("$%s is not a trace state variable, "
1973 "may not assign to it"), name);
c906108c 1974 }
f61e138d
SS
1975 else
1976 error (_("May only assign to trace state variables"));
c906108c
SS
1977 break;
1978
1979 /* Note that we need to be a little subtle about generating code
c5aa993b
JM
1980 for comma. In C, we can do some optimizations here because
1981 we know the left operand is only being evaluated for effect.
1982 However, if the tracing kludge is in effect, then we always
1983 need to evaluate the left hand side fully, so that all the
1984 variables it mentions get traced. */
c906108c
SS
1985 case BINOP_COMMA:
1986 (*pc)++;
f7c79c41 1987 gen_expr (exp, pc, ax, &value1);
c906108c 1988 /* Don't just dispose of the left operand. We might be tracing,
c5aa993b
JM
1989 in which case we want to emit code to trace it if it's an
1990 lvalue. */
400c6af0 1991 gen_traced_pop (exp->gdbarch, ax, &value1);
f7c79c41 1992 gen_expr (exp, pc, ax, value);
c906108c
SS
1993 /* It's the consumer's responsibility to trace the right operand. */
1994 break;
c5aa993b 1995
c906108c
SS
1996 case OP_LONG: /* some integer constant */
1997 {
1998 struct type *type = (*pc)[1].type;
1999 LONGEST k = (*pc)[2].longconst;
5b4ee69b 2000
c906108c
SS
2001 (*pc) += 4;
2002 gen_int_literal (ax, value, k, type);
2003 }
c5aa993b 2004 break;
c906108c
SS
2005
2006 case OP_VAR_VALUE:
f7c79c41 2007 gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol);
400c6af0
SS
2008
2009 if (value->optimized_out)
2010 error (_("`%s' has been optimized out, cannot use"),
2011 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
2012
c906108c
SS
2013 (*pc) += 4;
2014 break;
2015
2016 case OP_REGISTER:
2017 {
67f3407f
DJ
2018 const char *name = &(*pc)[2].string;
2019 int reg;
5b4ee69b 2020
67f3407f 2021 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
f7c79c41 2022 reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name));
67f3407f
DJ
2023 if (reg == -1)
2024 internal_error (__FILE__, __LINE__,
2025 _("Register $%s not available"), name);
6ab12e0f
PA
2026 /* No support for tracing user registers yet. */
2027 if (reg >= gdbarch_num_regs (exp->gdbarch)
2028 + gdbarch_num_pseudo_regs (exp->gdbarch))
abc1f4cd
HZ
2029 error (_("'%s' is a user-register; "
2030 "GDB cannot yet trace user-register contents."),
6ab12e0f 2031 name);
c906108c
SS
2032 value->kind = axs_lvalue_register;
2033 value->u.reg = reg;
f7c79c41 2034 value->type = register_type (exp->gdbarch, reg);
c906108c 2035 }
c5aa993b 2036 break;
c906108c
SS
2037
2038 case OP_INTERNALVAR:
f61e138d 2039 {
22d2b532
SDJ
2040 struct internalvar *var = (*pc)[1].internalvar;
2041 const char *name = internalvar_name (var);
f61e138d 2042 struct trace_state_variable *tsv;
5b4ee69b 2043
f61e138d
SS
2044 (*pc) += 3;
2045 tsv = find_trace_state_variable (name);
2046 if (tsv)
2047 {
2048 ax_tsv (ax, aop_getv, tsv->number);
2049 if (trace_kludge)
2050 ax_tsv (ax, aop_tracev, tsv->number);
2051 /* Trace state variables are always 64-bit integers. */
2052 value->kind = axs_rvalue;
2053 value->type = builtin_type (exp->gdbarch)->builtin_long_long;
2054 }
22d2b532 2055 else if (! compile_internalvar_to_ax (var, ax, value))
3e43a32a
MS
2056 error (_("$%s is not a trace state variable; GDB agent "
2057 "expressions cannot use convenience variables."), name);
f61e138d
SS
2058 }
2059 break;
c906108c 2060
c5aa993b 2061 /* Weirdo operator: see comments for gen_repeat for details. */
c906108c
SS
2062 case BINOP_REPEAT:
2063 /* Note that gen_repeat handles its own argument evaluation. */
2064 (*pc)++;
f7c79c41 2065 gen_repeat (exp, pc, ax, value);
c906108c
SS
2066 break;
2067
2068 case UNOP_CAST:
2069 {
2070 struct type *type = (*pc)[1].type;
5b4ee69b 2071
c906108c 2072 (*pc) += 3;
f7c79c41 2073 gen_expr (exp, pc, ax, value);
c906108c
SS
2074 gen_cast (ax, value, type);
2075 }
c5aa993b 2076 break;
c906108c
SS
2077
2078 case UNOP_MEMVAL:
2079 {
2080 struct type *type = check_typedef ((*pc)[1].type);
5b4ee69b 2081
c906108c 2082 (*pc) += 3;
f7c79c41 2083 gen_expr (exp, pc, ax, value);
a0c78a73
PA
2084
2085 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2086 already have the right value on the stack. For
2087 axs_lvalue_register, we must convert. */
2088 if (value->kind == axs_lvalue_register)
2089 require_rvalue (ax, value);
2090
c906108c
SS
2091 value->type = type;
2092 value->kind = axs_lvalue_memory;
2093 }
c5aa993b 2094 break;
c906108c 2095
36e9969c
NS
2096 case UNOP_PLUS:
2097 (*pc)++;
0e2de366 2098 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
f7c79c41
UW
2099 gen_expr (exp, pc, ax, value);
2100 gen_usual_unary (exp, ax, value);
36e9969c
NS
2101 break;
2102
c906108c
SS
2103 case UNOP_NEG:
2104 (*pc)++;
2105 /* -FOO is equivalent to 0 - FOO. */
22601c15
UW
2106 gen_int_literal (ax, &value1, 0,
2107 builtin_type (exp->gdbarch)->builtin_int);
f7c79c41
UW
2108 gen_usual_unary (exp, ax, &value1); /* shouldn't do much */
2109 gen_expr (exp, pc, ax, &value2);
2110 gen_usual_unary (exp, ax, &value2);
2111 gen_usual_arithmetic (exp, ax, &value1, &value2);
2112 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
c906108c
SS
2113 break;
2114
2115 case UNOP_LOGICAL_NOT:
2116 (*pc)++;
f7c79c41
UW
2117 gen_expr (exp, pc, ax, value);
2118 gen_usual_unary (exp, ax, value);
3b11a015 2119 gen_logical_not (ax, value, int_type);
c906108c
SS
2120 break;
2121
2122 case UNOP_COMPLEMENT:
2123 (*pc)++;
f7c79c41
UW
2124 gen_expr (exp, pc, ax, value);
2125 gen_usual_unary (exp, ax, value);
2126 gen_integral_promotions (exp, ax, value);
c906108c
SS
2127 gen_complement (ax, value);
2128 break;
2129
2130 case UNOP_IND:
2131 (*pc)++;
f7c79c41
UW
2132 gen_expr (exp, pc, ax, value);
2133 gen_usual_unary (exp, ax, value);
b97aedf3 2134 if (!pointer_type (value->type))
3d263c1d 2135 error (_("Argument of unary `*' is not a pointer."));
c906108c
SS
2136 gen_deref (ax, value);
2137 break;
2138
2139 case UNOP_ADDR:
2140 (*pc)++;
f7c79c41 2141 gen_expr (exp, pc, ax, value);
c906108c
SS
2142 gen_address_of (ax, value);
2143 break;
2144
2145 case UNOP_SIZEOF:
2146 (*pc)++;
2147 /* Notice that gen_sizeof handles its own operand, unlike most
c5aa993b
JM
2148 of the other unary operator functions. This is because we
2149 have to throw away the code we generate. */
f7c79c41
UW
2150 gen_sizeof (exp, pc, ax, value,
2151 builtin_type (exp->gdbarch)->builtin_int);
c906108c
SS
2152 break;
2153
2154 case STRUCTOP_STRUCT:
2155 case STRUCTOP_PTR:
2156 {
2157 int length = (*pc)[1].longconst;
2158 char *name = &(*pc)[2].string;
2159
2160 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
f7c79c41 2161 gen_expr (exp, pc, ax, value);
c906108c 2162 if (op == STRUCTOP_STRUCT)
505e835d 2163 gen_struct_ref (exp, ax, value, name, ".", "structure or union");
c906108c 2164 else if (op == STRUCTOP_PTR)
505e835d 2165 gen_struct_ref (exp, ax, value, name, "->",
c906108c
SS
2166 "pointer to a structure or union");
2167 else
2168 /* If this `if' chain doesn't handle it, then the case list
c5aa993b 2169 shouldn't mention it, and we shouldn't be here. */
8e65ff28 2170 internal_error (__FILE__, __LINE__,
3d263c1d 2171 _("gen_expr: unhandled struct case"));
c906108c 2172 }
c5aa993b 2173 break;
c906108c 2174
6c228b9c
SS
2175 case OP_THIS:
2176 {
66a17cb6 2177 struct symbol *sym, *func;
6c228b9c 2178 struct block *b;
66a17cb6 2179 const struct language_defn *lang;
6c228b9c 2180
66a17cb6
TT
2181 b = block_for_pc (ax->scope);
2182 func = block_linkage_function (b);
2183 lang = language_def (SYMBOL_LANGUAGE (func));
6c228b9c 2184
66a17cb6 2185 sym = lookup_language_this (lang, b);
6c228b9c 2186 if (!sym)
66a17cb6 2187 error (_("no `%s' found"), lang->la_name_of_this);
6c228b9c
SS
2188
2189 gen_var_ref (exp->gdbarch, ax, value, sym);
400c6af0
SS
2190
2191 if (value->optimized_out)
2192 error (_("`%s' has been optimized out, cannot use"),
2193 SYMBOL_PRINT_NAME (sym));
2194
6c228b9c
SS
2195 (*pc) += 2;
2196 }
2197 break;
2198
b6e7192f
SS
2199 case OP_SCOPE:
2200 {
2201 struct type *type = (*pc)[1].type;
2202 int length = longest_to_int ((*pc)[2].longconst);
2203 char *name = &(*pc)[3].string;
2204 int found;
2205
2206 found = gen_aggregate_elt_ref (exp, ax, value, type, name,
2207 "?", "??");
2208 if (!found)
2209 error (_("There is no field named %s"), name);
2210 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2211 }
2212 break;
2213
c906108c 2214 case OP_TYPE:
3d263c1d 2215 error (_("Attempt to use a type name as an expression."));
c906108c
SS
2216
2217 default:
b6e7192f 2218 error (_("Unsupported operator %s (%d) in expression."),
bd0b9f9e 2219 op_name (exp, op), op);
c906108c
SS
2220 }
2221}
f61e138d
SS
2222
2223/* This handles the middle-to-right-side of code generation for binary
2224 expressions, which is shared between regular binary operations and
2225 assign-modify (+= and friends) expressions. */
2226
2227static void
2228gen_expr_binop_rest (struct expression *exp,
2229 enum exp_opcode op, union exp_element **pc,
2230 struct agent_expr *ax, struct axs_value *value,
2231 struct axs_value *value1, struct axs_value *value2)
2232{
3b11a015
SS
2233 struct type *int_type = builtin_type (exp->gdbarch)->builtin_int;
2234
f61e138d
SS
2235 gen_expr (exp, pc, ax, value2);
2236 gen_usual_unary (exp, ax, value2);
2237 gen_usual_arithmetic (exp, ax, value1, value2);
2238 switch (op)
2239 {
2240 case BINOP_ADD:
2241 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
b97aedf3 2242 && pointer_type (value2->type))
f61e138d
SS
2243 {
2244 /* Swap the values and proceed normally. */
2245 ax_simple (ax, aop_swap);
2246 gen_ptradd (ax, value, value2, value1);
2247 }
b97aedf3 2248 else if (pointer_type (value1->type)
f61e138d
SS
2249 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2250 gen_ptradd (ax, value, value1, value2);
2251 else
2252 gen_binop (ax, value, value1, value2,
2253 aop_add, aop_add, 1, "addition");
2254 break;
2255 case BINOP_SUB:
b97aedf3 2256 if (pointer_type (value1->type)
f61e138d
SS
2257 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2258 gen_ptrsub (ax,value, value1, value2);
b97aedf3
SS
2259 else if (pointer_type (value1->type)
2260 && pointer_type (value2->type))
f61e138d
SS
2261 /* FIXME --- result type should be ptrdiff_t */
2262 gen_ptrdiff (ax, value, value1, value2,
2263 builtin_type (exp->gdbarch)->builtin_long);
2264 else
2265 gen_binop (ax, value, value1, value2,
2266 aop_sub, aop_sub, 1, "subtraction");
2267 break;
2268 case BINOP_MUL:
2269 gen_binop (ax, value, value1, value2,
2270 aop_mul, aop_mul, 1, "multiplication");
2271 break;
2272 case BINOP_DIV:
2273 gen_binop (ax, value, value1, value2,
2274 aop_div_signed, aop_div_unsigned, 1, "division");
2275 break;
2276 case BINOP_REM:
2277 gen_binop (ax, value, value1, value2,
2278 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2279 break;
948103cf
SS
2280 case BINOP_LSH:
2281 gen_binop (ax, value, value1, value2,
2282 aop_lsh, aop_lsh, 1, "left shift");
2283 break;
2284 case BINOP_RSH:
2285 gen_binop (ax, value, value1, value2,
2286 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2287 break;
f61e138d 2288 case BINOP_SUBSCRIPT:
be636754
PA
2289 {
2290 struct type *type;
2291
2292 if (binop_types_user_defined_p (op, value1->type, value2->type))
2293 {
3e43a32a
MS
2294 error (_("cannot subscript requested type: "
2295 "cannot call user defined functions"));
be636754
PA
2296 }
2297 else
2298 {
2299 /* If the user attempts to subscript something that is not
2300 an array or pointer type (like a plain int variable for
2301 example), then report this as an error. */
2302 type = check_typedef (value1->type);
2303 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2304 && TYPE_CODE (type) != TYPE_CODE_PTR)
2305 {
2306 if (TYPE_NAME (type))
2307 error (_("cannot subscript something of type `%s'"),
2308 TYPE_NAME (type));
2309 else
2310 error (_("cannot subscript requested type"));
2311 }
2312 }
2313
5d5b640e 2314 if (!is_integral_type (value2->type))
3e43a32a
MS
2315 error (_("Argument to arithmetic operation "
2316 "not a number or boolean."));
5d5b640e 2317
be636754
PA
2318 gen_ptradd (ax, value, value1, value2);
2319 gen_deref (ax, value);
2320 break;
2321 }
f61e138d
SS
2322 case BINOP_BITWISE_AND:
2323 gen_binop (ax, value, value1, value2,
2324 aop_bit_and, aop_bit_and, 0, "bitwise and");
2325 break;
2326
2327 case BINOP_BITWISE_IOR:
2328 gen_binop (ax, value, value1, value2,
2329 aop_bit_or, aop_bit_or, 0, "bitwise or");
2330 break;
2331
2332 case BINOP_BITWISE_XOR:
2333 gen_binop (ax, value, value1, value2,
2334 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2335 break;
2336
2337 case BINOP_EQUAL:
3b11a015 2338 gen_equal (ax, value, value1, value2, int_type);
f61e138d
SS
2339 break;
2340
2341 case BINOP_NOTEQUAL:
3b11a015
SS
2342 gen_equal (ax, value, value1, value2, int_type);
2343 gen_logical_not (ax, value, int_type);
f61e138d
SS
2344 break;
2345
2346 case BINOP_LESS:
3b11a015 2347 gen_less (ax, value, value1, value2, int_type);
f61e138d
SS
2348 break;
2349
2350 case BINOP_GTR:
2351 ax_simple (ax, aop_swap);
3b11a015 2352 gen_less (ax, value, value1, value2, int_type);
f61e138d
SS
2353 break;
2354
2355 case BINOP_LEQ:
2356 ax_simple (ax, aop_swap);
3b11a015
SS
2357 gen_less (ax, value, value1, value2, int_type);
2358 gen_logical_not (ax, value, int_type);
f61e138d
SS
2359 break;
2360
2361 case BINOP_GEQ:
3b11a015
SS
2362 gen_less (ax, value, value1, value2, int_type);
2363 gen_logical_not (ax, value, int_type);
f61e138d
SS
2364 break;
2365
2366 default:
2367 /* We should only list operators in the outer case statement
2368 that we actually handle in the inner case statement. */
2369 internal_error (__FILE__, __LINE__,
2370 _("gen_expr: op case sets don't match"));
2371 }
2372}
c906108c 2373\f
c5aa993b 2374
0936ad1d
SS
2375/* Given a single variable and a scope, generate bytecodes to trace
2376 its value. This is for use in situations where we have only a
2377 variable's name, and no parsed expression; for instance, when the
2378 name comes from a list of local variables of a function. */
2379
2380struct agent_expr *
400c6af0
SS
2381gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2382 struct symbol *var)
0936ad1d
SS
2383{
2384 struct cleanup *old_chain = 0;
35c9c7ba 2385 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
0936ad1d
SS
2386 struct axs_value value;
2387
2388 old_chain = make_cleanup_free_agent_expr (ax);
2389
2390 trace_kludge = 1;
400c6af0
SS
2391 gen_var_ref (gdbarch, ax, &value, var);
2392
2393 /* If there is no actual variable to trace, flag it by returning
2394 an empty agent expression. */
2395 if (value.optimized_out)
2396 {
2397 do_cleanups (old_chain);
2398 return NULL;
2399 }
0936ad1d
SS
2400
2401 /* Make sure we record the final object, and get rid of it. */
400c6af0 2402 gen_traced_pop (gdbarch, ax, &value);
0936ad1d
SS
2403
2404 /* Oh, and terminate. */
2405 ax_simple (ax, aop_end);
2406
2407 /* We have successfully built the agent expr, so cancel the cleanup
2408 request. If we add more cleanups that we always want done, this
2409 will have to get more complicated. */
2410 discard_cleanups (old_chain);
2411 return ax;
2412}
c5aa993b 2413
c906108c
SS
2414/* Generating bytecode from GDB expressions: driver */
2415
c906108c
SS
2416/* Given a GDB expression EXPR, return bytecode to trace its value.
2417 The result will use the `trace' and `trace_quick' bytecodes to
2418 record the value of all memory touched by the expression. The
2419 caller can then use the ax_reqs function to discover which
2420 registers it relies upon. */
2421struct agent_expr *
fba45db2 2422gen_trace_for_expr (CORE_ADDR scope, struct expression *expr)
c906108c
SS
2423{
2424 struct cleanup *old_chain = 0;
35c9c7ba 2425 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
c906108c
SS
2426 union exp_element *pc;
2427 struct axs_value value;
2428
f23d52e0 2429 old_chain = make_cleanup_free_agent_expr (ax);
c906108c
SS
2430
2431 pc = expr->elts;
2432 trace_kludge = 1;
35c9c7ba 2433 value.optimized_out = 0;
f7c79c41 2434 gen_expr (expr, &pc, ax, &value);
c906108c
SS
2435
2436 /* Make sure we record the final object, and get rid of it. */
400c6af0 2437 gen_traced_pop (expr->gdbarch, ax, &value);
c906108c
SS
2438
2439 /* Oh, and terminate. */
2440 ax_simple (ax, aop_end);
2441
2442 /* We have successfully built the agent expr, so cancel the cleanup
2443 request. If we add more cleanups that we always want done, this
2444 will have to get more complicated. */
2445 discard_cleanups (old_chain);
2446 return ax;
2447}
c906108c 2448
782b2b07
SS
2449/* Given a GDB expression EXPR, return a bytecode sequence that will
2450 evaluate and return a result. The bytecodes will do a direct
2451 evaluation, using the current data on the target, rather than
2452 recording blocks of memory and registers for later use, as
2453 gen_trace_for_expr does. The generated bytecode sequence leaves
2454 the result of expression evaluation on the top of the stack. */
2455
2456struct agent_expr *
2457gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2458{
2459 struct cleanup *old_chain = 0;
35c9c7ba 2460 struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope);
782b2b07
SS
2461 union exp_element *pc;
2462 struct axs_value value;
2463
2464 old_chain = make_cleanup_free_agent_expr (ax);
2465
2466 pc = expr->elts;
2467 trace_kludge = 0;
35c9c7ba 2468 value.optimized_out = 0;
782b2b07
SS
2469 gen_expr (expr, &pc, ax, &value);
2470
35c9c7ba
SS
2471 require_rvalue (ax, &value);
2472
782b2b07
SS
2473 /* Oh, and terminate. */
2474 ax_simple (ax, aop_end);
2475
2476 /* We have successfully built the agent expr, so cancel the cleanup
2477 request. If we add more cleanups that we always want done, this
2478 will have to get more complicated. */
2479 discard_cleanups (old_chain);
2480 return ax;
2481}
2482
6710bf39
SS
2483struct agent_expr *
2484gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch)
2485{
2486 struct cleanup *old_chain = 0;
2487 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2488 struct axs_value value;
2489
2490 old_chain = make_cleanup_free_agent_expr (ax);
2491
2492 trace_kludge = 1;
2493
2494 gdbarch_gen_return_address (gdbarch, ax, &value, scope);
2495
2496 /* Make sure we record the final object, and get rid of it. */
2497 gen_traced_pop (gdbarch, ax, &value);
2498
2499 /* Oh, and terminate. */
2500 ax_simple (ax, aop_end);
2501
2502 /* We have successfully built the agent expr, so cancel the cleanup
2503 request. If we add more cleanups that we always want done, this
2504 will have to get more complicated. */
2505 discard_cleanups (old_chain);
2506 return ax;
2507}
2508
d3ce09f5
SS
2509/* Given a collection of printf-style arguments, generate code to
2510 evaluate the arguments and pass everything to a special
2511 bytecode. */
2512
2513struct agent_expr *
2514gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2515 CORE_ADDR function, LONGEST channel,
2516 char *format, int fmtlen,
2517 struct format_piece *frags,
2518 int nargs, struct expression **exprs)
2519{
2520 struct expression *expr;
2521 struct cleanup *old_chain = 0;
2522 struct agent_expr *ax = new_agent_expr (gdbarch, scope);
2523 union exp_element *pc;
2524 struct axs_value value;
2525 int i, tem, bot, fr, flen;
2526 char *fmt;
2527
2528 old_chain = make_cleanup_free_agent_expr (ax);
2529
2530 /* Evaluate and push the args on the stack in reverse order,
2531 for simplicity of collecting them on the target side. */
2532 for (tem = nargs - 1; tem >= 0; --tem)
2533 {
2534 pc = exprs[tem]->elts;
2535 /* We're computing values, not doing side effects. */
2536 trace_kludge = 0;
2537 value.optimized_out = 0;
2538 gen_expr (exprs[tem], &pc, ax, &value);
2539 require_rvalue (ax, &value);
2540 }
2541
2542 /* Push function and channel. */
2543 ax_const_l (ax, channel);
2544 ax_const_l (ax, function);
2545
2546 /* Issue the printf bytecode proper. */
2547 ax_simple (ax, aop_printf);
2548 ax_simple (ax, nargs);
2549 ax_string (ax, format, fmtlen);
2550
2551 /* And terminate. */
2552 ax_simple (ax, aop_end);
2553
2554 /* We have successfully built the agent expr, so cancel the cleanup
2555 request. If we add more cleanups that we always want done, this
2556 will have to get more complicated. */
2557 discard_cleanups (old_chain);
2558
2559 return ax;
2560}
2561
c906108c 2562static void
fba45db2 2563agent_command (char *exp, int from_tty)
c906108c
SS
2564{
2565 struct cleanup *old_chain = 0;
2566 struct expression *expr;
2567 struct agent_expr *agent;
6426a772 2568 struct frame_info *fi = get_current_frame (); /* need current scope */
c906108c
SS
2569
2570 /* We don't deal with overlay debugging at the moment. We need to
2571 think more carefully about this. If you copy this code into
2572 another command, change the error message; the user shouldn't
2573 have to know anything about agent expressions. */
2574 if (overlay_debugging)
3d263c1d 2575 error (_("GDB can't do agent expression translation with overlays."));
c906108c
SS
2576
2577 if (exp == 0)
3d263c1d 2578 error_no_arg (_("expression to translate"));
c5aa993b 2579
3065dfb6
SS
2580 trace_string_kludge = 0;
2581 if (*exp == '/')
2582 exp = decode_agent_options (exp);
2583
6710bf39
SS
2584 /* Recognize the return address collection directive specially. Note
2585 that it is not really an expression of any sort. */
2586 if (strcmp (exp, "$_ret") == 0)
2587 {
2588 agent = gen_trace_for_return_address (get_frame_pc (fi),
2589 get_current_arch ());
2590 old_chain = make_cleanup_free_agent_expr (agent);
2591 }
2592 else
2593 {
2594 expr = parse_expression (exp);
2595 old_chain = make_cleanup (free_current_contents, &expr);
2596 agent = gen_trace_for_expr (get_frame_pc (fi), expr);
2597 make_cleanup_free_agent_expr (agent);
2598 }
2599
35c9c7ba 2600 ax_reqs (agent);
c906108c 2601 ax_print (gdb_stdout, agent);
085dd6e6
JM
2602
2603 /* It would be nice to call ax_reqs here to gather some general info
2604 about the expression, and then print out the result. */
c906108c
SS
2605
2606 do_cleanups (old_chain);
2607 dont_repeat ();
2608}
782b2b07
SS
2609
2610/* Parse the given expression, compile it into an agent expression
2611 that does direct evaluation, and display the resulting
2612 expression. */
2613
2614static void
2615agent_eval_command (char *exp, int from_tty)
2616{
2617 struct cleanup *old_chain = 0;
2618 struct expression *expr;
2619 struct agent_expr *agent;
2620 struct frame_info *fi = get_current_frame (); /* need current scope */
2621
2622 /* We don't deal with overlay debugging at the moment. We need to
2623 think more carefully about this. If you copy this code into
2624 another command, change the error message; the user shouldn't
2625 have to know anything about agent expressions. */
2626 if (overlay_debugging)
2627 error (_("GDB can't do agent expression translation with overlays."));
2628
2629 if (exp == 0)
2630 error_no_arg (_("expression to translate"));
2631
2632 expr = parse_expression (exp);
2633 old_chain = make_cleanup (free_current_contents, &expr);
2634 agent = gen_eval_for_expr (get_frame_pc (fi), expr);
2635 make_cleanup_free_agent_expr (agent);
35c9c7ba 2636 ax_reqs (agent);
782b2b07
SS
2637 ax_print (gdb_stdout, agent);
2638
2639 /* It would be nice to call ax_reqs here to gather some general info
2640 about the expression, and then print out the result. */
2641
2642 do_cleanups (old_chain);
2643 dont_repeat ();
2644}
d3ce09f5
SS
2645/* Parse the given expression, compile it into an agent expression
2646 that does a printf, and display the resulting expression. */
2647
2648static void
2649maint_agent_printf_command (char *exp, int from_tty)
2650{
2651 struct cleanup *old_chain = 0;
2652 struct expression *expr;
2653 struct expression *argvec[100];
2654 struct agent_expr *agent;
2655 struct frame_info *fi = get_current_frame (); /* need current scope */
2656 char *cmdrest;
2657 char *format_start, *format_end;
2658 struct format_piece *fpieces;
2659 int nargs;
2660
2661 /* We don't deal with overlay debugging at the moment. We need to
2662 think more carefully about this. If you copy this code into
2663 another command, change the error message; the user shouldn't
2664 have to know anything about agent expressions. */
2665 if (overlay_debugging)
2666 error (_("GDB can't do agent expression translation with overlays."));
2667
2668 if (exp == 0)
2669 error_no_arg (_("expression to translate"));
2670
2671 cmdrest = exp;
2672
2673 cmdrest = skip_spaces (cmdrest);
2674
2675 if (*cmdrest++ != '"')
2676 error (_("Must start with a format string."));
2677
2678 format_start = cmdrest;
2679
2680 fpieces = parse_format_string (&cmdrest);
2681
2682 old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces);
2683
2684 format_end = cmdrest;
2685
2686 if (*cmdrest++ != '"')
2687 error (_("Bad format string, non-terminated '\"'."));
2688
2689 cmdrest = skip_spaces (cmdrest);
2690
2691 if (*cmdrest != ',' && *cmdrest != 0)
2692 error (_("Invalid argument syntax"));
2693
2694 if (*cmdrest == ',')
2695 cmdrest++;
2696 cmdrest = skip_spaces (cmdrest);
2697
2698 nargs = 0;
2699 while (*cmdrest != '\0')
2700 {
2701 char *cmd1;
2702
2703 cmd1 = cmdrest;
2704 expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2705 argvec[nargs] = expr;
2706 ++nargs;
2707 cmdrest = cmd1;
2708 if (*cmdrest == ',')
2709 ++cmdrest;
2710 /* else complain? */
2711 }
2712
2713
2714 agent = gen_printf (get_frame_pc (fi), get_current_arch (), 0, 0,
2715 format_start, format_end - format_start,
2716 fpieces, nargs, argvec);
2717 make_cleanup_free_agent_expr (agent);
2718 ax_reqs (agent);
2719 ax_print (gdb_stdout, agent);
2720
2721 /* It would be nice to call ax_reqs here to gather some general info
2722 about the expression, and then print out the result. */
2723
2724 do_cleanups (old_chain);
2725 dont_repeat ();
2726}
c906108c 2727\f
c5aa993b 2728
c906108c
SS
2729/* Initialization code. */
2730
a14ed312 2731void _initialize_ax_gdb (void);
c906108c 2732void
fba45db2 2733_initialize_ax_gdb (void)
c906108c 2734{
c906108c 2735 add_cmd ("agent", class_maintenance, agent_command,
3e43a32a
MS
2736 _("Translate an expression into "
2737 "remote agent bytecode for tracing."),
782b2b07
SS
2738 &maintenancelist);
2739
2740 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
3e43a32a
MS
2741 _("Translate an expression into remote "
2742 "agent bytecode for evaluation."),
c906108c 2743 &maintenancelist);
d3ce09f5
SS
2744
2745 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2746 _("Translate an expression into remote "
2747 "agent bytecode for evaluation and display the bytecodes."),
2748 &maintenancelist);
c906108c 2749}
This page took 0.869841 seconds and 4 git commands to generate.