2003-02-25 David Carlton <carlton@math.stanford.edu>
[deliverable/binutils-gdb.git] / gdb / blockframe.c
CommitLineData
7cc19214
AC
1/* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
51603483 5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
7cc19214 6 Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "frame.h"
31#include "gdbcore.h"
32#include "value.h" /* for read_register */
33#include "target.h" /* for target_has_stack */
34#include "inferior.h" /* for read_pc */
35#include "annotate.h"
4e052eda 36#include "regcache.h"
4f460812 37#include "gdb_assert.h"
9c1412c1 38#include "dummy-frame.h"
51603483
DJ
39#include "command.h"
40#include "gdbcmd.h"
fe898f56 41#include "block.h"
c906108c 42
51603483 43/* Prototypes for exported functions. */
c5aa993b 44
51603483 45void _initialize_blockframe (void);
c906108c
SS
46
47/* Is ADDR inside the startup file? Note that if your machine
48 has a way to detect the bottom of the stack, there is no need
49 to call this function from FRAME_CHAIN_VALID; the reason for
50 doing so is that some machines have no way of detecting bottom
51 of stack.
52
53 A PC of zero is always considered to be the bottom of the stack. */
54
55int
fba45db2 56inside_entry_file (CORE_ADDR addr)
c906108c
SS
57{
58 if (addr == 0)
59 return 1;
60 if (symfile_objfile == 0)
61 return 0;
7a292a7a
SS
62 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
63 {
64 /* Do not stop backtracing if the pc is in the call dummy
c5aa993b 65 at the entry point. */
7a292a7a 66 /* FIXME: Won't always work with zeros for the last two arguments */
ae45cd16 67 if (DEPRECATED_PC_IN_CALL_DUMMY (addr, 0, 0))
7a292a7a
SS
68 return 0;
69 }
c5aa993b
JM
70 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
71 addr < symfile_objfile->ei.entry_file_highpc);
c906108c
SS
72}
73
74/* Test a specified PC value to see if it is in the range of addresses
75 that correspond to the main() function. See comments above for why
76 we might want to do this.
77
78 Typically called from FRAME_CHAIN_VALID.
79
80 A PC of zero is always considered to be the bottom of the stack. */
81
82int
fba45db2 83inside_main_func (CORE_ADDR pc)
c906108c
SS
84{
85 if (pc == 0)
86 return 1;
87 if (symfile_objfile == 0)
88 return 0;
89
90 /* If the addr range is not set up at symbol reading time, set it up now.
91 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
92 it is unable to set it up and symbol reading time. */
93
c5aa993b
JM
94 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
95 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
c906108c
SS
96 {
97 struct symbol *mainsym;
98
51cc5b07 99 mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
c5aa993b
JM
100 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
101 {
102 symfile_objfile->ei.main_func_lowpc =
c906108c 103 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
c5aa993b 104 symfile_objfile->ei.main_func_highpc =
c906108c 105 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
c5aa993b 106 }
c906108c 107 }
c5aa993b
JM
108 return (symfile_objfile->ei.main_func_lowpc <= pc &&
109 symfile_objfile->ei.main_func_highpc > pc);
c906108c
SS
110}
111
112/* Test a specified PC value to see if it is in the range of addresses
113 that correspond to the process entry point function. See comments
114 in objfiles.h for why we might want to do this.
115
116 Typically called from FRAME_CHAIN_VALID.
117
118 A PC of zero is always considered to be the bottom of the stack. */
119
120int
fba45db2 121inside_entry_func (CORE_ADDR pc)
c906108c
SS
122{
123 if (pc == 0)
124 return 1;
125 if (symfile_objfile == 0)
126 return 0;
7a292a7a
SS
127 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
128 {
129 /* Do not stop backtracing if the pc is in the call dummy
c5aa993b 130 at the entry point. */
7a292a7a 131 /* FIXME: Won't always work with zeros for the last two arguments */
ae45cd16 132 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
7a292a7a
SS
133 return 0;
134 }
c5aa993b
JM
135 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
136 symfile_objfile->ei.entry_func_highpc > pc);
c906108c
SS
137}
138
c906108c
SS
139/* Return nonzero if the function for this frame lacks a prologue. Many
140 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
141 function. */
142
143int
fba45db2 144frameless_look_for_prologue (struct frame_info *frame)
c906108c
SS
145{
146 CORE_ADDR func_start, after_prologue;
53a5351d 147
bdd78e62 148 func_start = get_pc_function_start (get_frame_pc (frame));
c906108c
SS
149 if (func_start)
150 {
151 func_start += FUNCTION_START_OFFSET;
53a5351d
JM
152 /* This is faster, since only care whether there *is* a
153 prologue, not how long it is. */
dad41f9a 154 return PROLOGUE_FRAMELESS_P (func_start);
c906108c 155 }
bdd78e62 156 else if (get_frame_pc (frame) == 0)
53a5351d
JM
157 /* A frame with a zero PC is usually created by dereferencing a
158 NULL function pointer, normally causing an immediate core dump
159 of the inferior. Mark function as frameless, as the inferior
160 has no chance of setting up a stack frame. */
c906108c
SS
161 return 1;
162 else
163 /* If we can't find the start of the function, we don't really
164 know whether the function is frameless, but we should be able
165 to get a reasonable (i.e. best we can do under the
166 circumstances) backtrace by saying that it isn't. */
167 return 0;
168}
169
42f99ac2
JB
170/* return the address of the PC for the given FRAME, ie the current PC value
171 if FRAME is the innermost frame, or the address adjusted to point to the
172 call instruction if not. */
173
174CORE_ADDR
175frame_address_in_block (struct frame_info *frame)
176{
bdd78e62 177 CORE_ADDR pc = get_frame_pc (frame);
42f99ac2
JB
178
179 /* If we are not in the innermost frame, and we are not interrupted
180 by a signal, frame->pc points to the instruction following the
181 call. As a consequence, we need to get the address of the previous
182 instruction. Unfortunately, this is not straightforward to do, so
183 we just use the address minus one, which is a good enough
184 approximation. */
5a203e44
AC
185 /* FIXME: cagney/2002-11-10: Should this instead test for
186 NORMAL_FRAME? A dummy frame (in fact all the abnormal frames)
187 save the PC value in the block. */
75e3c1f9
AC
188 if (get_next_frame (frame) != 0
189 && get_frame_type (get_next_frame (frame)) != SIGTRAMP_FRAME)
42f99ac2
JB
190 --pc;
191
192 return pc;
193}
c906108c 194
c906108c 195/* Return the innermost lexical block in execution
ae767bfb
JB
196 in a specified stack frame. The frame address is assumed valid.
197
198 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
199 address we used to choose the block. We use this to find a source
200 line, to decide which macro definitions are in scope.
201
202 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
203 PC, and may not really be a valid PC at all. For example, in the
204 caller of a function declared to never return, the code at the
205 return address will never be reached, so the call instruction may
206 be the very last instruction in the block. So the address we use
207 to choose the block is actually one byte before the return address
208 --- hopefully pointing us at the call instruction, or its delay
209 slot instruction. */
c906108c
SS
210
211struct block *
ae767bfb 212get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
c906108c 213{
42f99ac2 214 const CORE_ADDR pc = frame_address_in_block (frame);
ae767bfb
JB
215
216 if (addr_in_block)
217 *addr_in_block = pc;
218
c906108c
SS
219 return block_for_pc (pc);
220}
221
c906108c 222CORE_ADDR
fba45db2 223get_pc_function_start (CORE_ADDR pc)
c906108c
SS
224{
225 register struct block *bl;
226 register struct symbol *symbol;
227 register struct minimal_symbol *msymbol;
228 CORE_ADDR fstart;
229
230 if ((bl = block_for_pc (pc)) != NULL &&
231 (symbol = block_function (bl)) != NULL)
232 {
233 bl = SYMBOL_BLOCK_VALUE (symbol);
234 fstart = BLOCK_START (bl);
235 }
236 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
237 {
238 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
28a93f5a
PM
239 if (!find_pc_section (fstart))
240 return 0;
c906108c
SS
241 }
242 else
243 {
244 fstart = 0;
245 }
246 return (fstart);
247}
248
249/* Return the symbol for the function executing in frame FRAME. */
250
251struct symbol *
fba45db2 252get_frame_function (struct frame_info *frame)
c906108c 253{
ae767bfb 254 register struct block *bl = get_frame_block (frame, 0);
c906108c
SS
255 if (bl == 0)
256 return 0;
257 return block_function (bl);
258}
259\f
260
c906108c
SS
261/* Return the function containing pc value PC in section SECTION.
262 Returns 0 if function is not known. */
263
264struct symbol *
fba45db2 265find_pc_sect_function (CORE_ADDR pc, struct sec *section)
c906108c
SS
266{
267 register struct block *b = block_for_pc_sect (pc, section);
268 if (b == 0)
269 return 0;
270 return block_function (b);
271}
272
273/* Return the function containing pc value PC.
274 Returns 0 if function is not known. Backward compatibility, no section */
275
276struct symbol *
fba45db2 277find_pc_function (CORE_ADDR pc)
c906108c
SS
278{
279 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
280}
281
282/* These variables are used to cache the most recent result
283 * of find_pc_partial_function. */
284
c5aa993b
JM
285static CORE_ADDR cache_pc_function_low = 0;
286static CORE_ADDR cache_pc_function_high = 0;
287static char *cache_pc_function_name = 0;
c906108c
SS
288static struct sec *cache_pc_function_section = NULL;
289
290/* Clear cache, e.g. when symbol table is discarded. */
291
292void
fba45db2 293clear_pc_function_cache (void)
c906108c
SS
294{
295 cache_pc_function_low = 0;
296 cache_pc_function_high = 0;
c5aa993b 297 cache_pc_function_name = (char *) 0;
c906108c
SS
298 cache_pc_function_section = NULL;
299}
300
301/* Finds the "function" (text symbol) that is smaller than PC but
302 greatest of all of the potential text symbols in SECTION. Sets
303 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
304 If ENDADDR is non-null, then set *ENDADDR to be the end of the
305 function (exclusive), but passing ENDADDR as non-null means that
306 the function might cause symbols to be read. This function either
307 succeeds or fails (not halfway succeeds). If it succeeds, it sets
308 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
309 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
310 returns 0. */
311
312int
fba45db2
KB
313find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
314 CORE_ADDR *address, CORE_ADDR *endaddr)
c906108c
SS
315{
316 struct partial_symtab *pst;
c5aa993b 317 struct symbol *f;
c906108c
SS
318 struct minimal_symbol *msymbol;
319 struct partial_symbol *psb;
c5aa993b 320 struct obj_section *osect;
c906108c
SS
321 int i;
322 CORE_ADDR mapped_pc;
323
324 mapped_pc = overlay_mapped_address (pc, section);
325
247055de
MK
326 if (mapped_pc >= cache_pc_function_low
327 && mapped_pc < cache_pc_function_high
328 && section == cache_pc_function_section)
c906108c
SS
329 goto return_cached_value;
330
331 /* If sigtramp is in the u area, it counts as a function (especially
332 important for step_1). */
43156d82 333 if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
c906108c 334 {
c5aa993b
JM
335 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
336 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
337 cache_pc_function_name = "<sigtramp>";
c906108c
SS
338 cache_pc_function_section = section;
339 goto return_cached_value;
340 }
c906108c
SS
341
342 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
343 pst = find_pc_sect_psymtab (mapped_pc, section);
344 if (pst)
345 {
346 /* Need to read the symbols to get a good value for the end address. */
347 if (endaddr != NULL && !pst->readin)
348 {
349 /* Need to get the terminal in case symbol-reading produces
350 output. */
351 target_terminal_ours_for_output ();
352 PSYMTAB_TO_SYMTAB (pst);
353 }
354
355 if (pst->readin)
356 {
357 /* Checking whether the msymbol has a larger value is for the
358 "pathological" case mentioned in print_frame_info. */
359 f = find_pc_sect_function (mapped_pc, section);
360 if (f != NULL
361 && (msymbol == NULL
362 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
363 >= SYMBOL_VALUE_ADDRESS (msymbol))))
364 {
c5aa993b
JM
365 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
366 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
22abf04a 367 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
c906108c
SS
368 cache_pc_function_section = section;
369 goto return_cached_value;
370 }
371 }
372 else
373 {
374 /* Now that static symbols go in the minimal symbol table, perhaps
375 we could just ignore the partial symbols. But at least for now
376 we use the partial or minimal symbol, whichever is larger. */
377 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
378
379 if (psb
380 && (msymbol == NULL ||
381 (SYMBOL_VALUE_ADDRESS (psb)
382 >= SYMBOL_VALUE_ADDRESS (msymbol))))
383 {
384 /* This case isn't being cached currently. */
385 if (address)
386 *address = SYMBOL_VALUE_ADDRESS (psb);
387 if (name)
22abf04a 388 *name = DEPRECATED_SYMBOL_NAME (psb);
c906108c
SS
389 /* endaddr non-NULL can't happen here. */
390 return 1;
391 }
392 }
393 }
394
395 /* Not in the normal symbol tables, see if the pc is in a known section.
396 If it's not, then give up. This ensures that anything beyond the end
397 of the text seg doesn't appear to be part of the last function in the
398 text segment. */
399
400 osect = find_pc_sect_section (mapped_pc, section);
401
402 if (!osect)
403 msymbol = NULL;
404
405 /* Must be in the minimal symbol table. */
406 if (msymbol == NULL)
407 {
408 /* No available symbol. */
409 if (name != NULL)
410 *name = 0;
411 if (address != NULL)
412 *address = 0;
413 if (endaddr != NULL)
414 *endaddr = 0;
415 return 0;
416 }
417
c5aa993b 418 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
22abf04a 419 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
c906108c
SS
420 cache_pc_function_section = section;
421
422 /* Use the lesser of the next minimal symbol in the same section, or
423 the end of the section, as the end of the function. */
c5aa993b 424
c906108c
SS
425 /* Step over other symbols at this same address, and symbols in
426 other sections, to find the next symbol in this section with
427 a different address. */
428
22abf04a 429 for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
c906108c 430 {
c5aa993b 431 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
247055de 432 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
c906108c
SS
433 break;
434 }
435
22abf04a 436 if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
c906108c
SS
437 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
438 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
439 else
440 /* We got the start address from the last msymbol in the objfile.
441 So the end address is the end of the section. */
442 cache_pc_function_high = osect->endaddr;
443
247055de 444 return_cached_value:
c906108c
SS
445
446 if (address)
447 {
448 if (pc_in_unmapped_range (pc, section))
c5aa993b 449 *address = overlay_unmapped_address (cache_pc_function_low, section);
c906108c 450 else
c5aa993b 451 *address = cache_pc_function_low;
c906108c 452 }
c5aa993b 453
c906108c
SS
454 if (name)
455 *name = cache_pc_function_name;
456
457 if (endaddr)
458 {
459 if (pc_in_unmapped_range (pc, section))
c5aa993b 460 {
c906108c
SS
461 /* Because the high address is actually beyond the end of
462 the function (and therefore possibly beyond the end of
247055de
MK
463 the overlay), we must actually convert (high - 1) and
464 then add one to that. */
c906108c 465
c5aa993b 466 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
c906108c 467 section);
c5aa993b 468 }
c906108c 469 else
c5aa993b 470 *endaddr = cache_pc_function_high;
c906108c
SS
471 }
472
473 return 1;
474}
475
247055de 476/* Backward compatibility, no section argument. */
c906108c
SS
477
478int
fba45db2
KB
479find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
480 CORE_ADDR *endaddr)
c906108c 481{
c5aa993b 482 asection *section;
c906108c
SS
483
484 section = find_pc_overlay (pc);
485 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
486}
487
488/* Return the innermost stack frame executing inside of BLOCK,
489 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
490
491struct frame_info *
fba45db2 492block_innermost_frame (struct block *block)
c906108c
SS
493{
494 struct frame_info *frame;
495 register CORE_ADDR start;
496 register CORE_ADDR end;
42f99ac2 497 CORE_ADDR calling_pc;
c906108c
SS
498
499 if (block == NULL)
500 return NULL;
501
502 start = BLOCK_START (block);
503 end = BLOCK_END (block);
504
505 frame = NULL;
506 while (1)
507 {
508 frame = get_prev_frame (frame);
509 if (frame == NULL)
510 return NULL;
42f99ac2
JB
511 calling_pc = frame_address_in_block (frame);
512 if (calling_pc >= start && calling_pc < end)
c906108c
SS
513 return frame;
514 }
515}
516
7a292a7a
SS
517/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
518 below is for infrun.c, which may give the macro a pc without that
519 subtracted out. */
520
7a292a7a
SS
521/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
522 top of the stack frame which we are checking, where "bottom" and
523 "top" refer to some section of memory which contains the code for
524 the call dummy. Calls to this macro assume that the contents of
525 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
526 are the things to pass.
527
528 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
529 have that meaning, but the 29k doesn't use ON_STACK. This could be
530 fixed by generalizing this scheme, perhaps by passing in a frame
531 and adding a few fields, at least on machines which need them for
ae45cd16 532 DEPRECATED_PC_IN_CALL_DUMMY.
7a292a7a
SS
533
534 Something simpler, like checking for the stack segment, doesn't work,
535 since various programs (threads implementations, gcc nested function
536 stubs, etc) may either allocate stack frames in another segment, or
537 allocate other kinds of code on the stack. */
538
539int
b4b88177
AC
540deprecated_pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp,
541 CORE_ADDR frame_address)
7a292a7a
SS
542{
543 return (INNER_THAN ((sp), (pc))
544 && (frame_address != 0)
545 && INNER_THAN ((pc), (frame_address)));
546}
547
548int
b4b88177
AC
549deprecated_pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
550 CORE_ADDR frame_address)
7a292a7a
SS
551{
552 return ((pc) >= CALL_DUMMY_ADDRESS ()
553 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
554}
555
c906108c
SS
556/* Function: frame_chain_valid
557 Returns true for a user frame or a call_function_by_hand dummy frame,
51603483 558 and false for the CRT0 start-up frame. Purpose is to terminate backtrace. */
c5aa993b 559
c906108c 560int
51603483 561frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
c906108c 562{
51603483
DJ
563 /* Don't prune CALL_DUMMY frames. */
564 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES
565 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
566 return 1;
567
568 /* If the new frame pointer is zero, then it isn't valid. */
569 if (fp == 0)
570 return 0;
571
572 /* If the new frame would be inside (younger than) the previous frame,
573 then it isn't valid. */
574 if (INNER_THAN (fp, get_frame_base (fi)))
575 return 0;
576
577 /* If we're already inside the entry function for the main objfile, then it
578 isn't valid. */
579 if (inside_entry_func (get_frame_pc (fi)))
580 return 0;
581
582 /* If we're inside the entry file, it isn't valid. */
583 /* NOTE/drow 2002-12-25: should there be a way to disable this check? It
584 assumes a single small entry file, and the way some debug readers (e.g.
585 dbxread) figure out which object is the entry file is somewhat hokey. */
586 if (inside_entry_file (frame_pc_unwind (fi)))
587 return 0;
588
51603483
DJ
589 /* If the architecture has a custom FRAME_CHAIN_VALID, call it now. */
590 if (FRAME_CHAIN_VALID_P ())
591 return FRAME_CHAIN_VALID (fp, fi);
592
593 return 1;
c906108c 594}
This page took 0.237636 seconds and 4 git commands to generate.