Replace free() with xfree().
[deliverable/binutils-gdb.git] / gdb / blockframe.c
CommitLineData
c906108c
SS
1/* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 87, 88, 89, 91, 94, 95, 96, 97, 1998
c5aa993b 4 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "bfd.h"
26#include "symfile.h"
27#include "objfiles.h"
28#include "frame.h"
29#include "gdbcore.h"
30#include "value.h" /* for read_register */
31#include "target.h" /* for target_has_stack */
32#include "inferior.h" /* for read_pc */
33#include "annotate.h"
34
35/* Prototypes for exported functions. */
36
53a5351d 37void _initialize_blockframe (void);
c906108c
SS
38
39/* A default FRAME_CHAIN_VALID, in the form that is suitable for most
40 targets. If FRAME_CHAIN_VALID returns zero it means that the given
41 frame is the outermost one and has no caller. */
42
43int
fba45db2 44file_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
45{
46 return ((chain) != 0
c4093a6a 47 && !inside_entry_file (FRAME_SAVED_PC (thisframe)));
c906108c
SS
48}
49
50/* Use the alternate method of avoiding running up off the end of the
51 frame chain or following frames back into the startup code. See
52 the comments in objfiles.h. */
c5aa993b 53
c906108c 54int
fba45db2 55func_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
56{
57 return ((chain) != 0
c4093a6a
JM
58 && !inside_main_func ((thisframe)->pc)
59 && !inside_entry_func ((thisframe)->pc));
c906108c
SS
60}
61
62/* A very simple method of determining a valid frame */
c5aa993b 63
c906108c 64int
fba45db2 65nonnull_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
c906108c
SS
66{
67 return ((chain) != 0);
68}
69
70/* Is ADDR inside the startup file? Note that if your machine
71 has a way to detect the bottom of the stack, there is no need
72 to call this function from FRAME_CHAIN_VALID; the reason for
73 doing so is that some machines have no way of detecting bottom
74 of stack.
75
76 A PC of zero is always considered to be the bottom of the stack. */
77
78int
fba45db2 79inside_entry_file (CORE_ADDR addr)
c906108c
SS
80{
81 if (addr == 0)
82 return 1;
83 if (symfile_objfile == 0)
84 return 0;
7a292a7a
SS
85 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
86 {
87 /* Do not stop backtracing if the pc is in the call dummy
c5aa993b 88 at the entry point. */
7a292a7a 89 /* FIXME: Won't always work with zeros for the last two arguments */
c5aa993b 90 if (PC_IN_CALL_DUMMY (addr, 0, 0))
7a292a7a
SS
91 return 0;
92 }
c5aa993b
JM
93 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
94 addr < symfile_objfile->ei.entry_file_highpc);
c906108c
SS
95}
96
97/* Test a specified PC value to see if it is in the range of addresses
98 that correspond to the main() function. See comments above for why
99 we might want to do this.
100
101 Typically called from FRAME_CHAIN_VALID.
102
103 A PC of zero is always considered to be the bottom of the stack. */
104
105int
fba45db2 106inside_main_func (CORE_ADDR pc)
c906108c
SS
107{
108 if (pc == 0)
109 return 1;
110 if (symfile_objfile == 0)
111 return 0;
112
113 /* If the addr range is not set up at symbol reading time, set it up now.
114 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
115 it is unable to set it up and symbol reading time. */
116
c5aa993b
JM
117 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
118 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
c906108c
SS
119 {
120 struct symbol *mainsym;
121
122 mainsym = lookup_symbol ("main", NULL, VAR_NAMESPACE, NULL, NULL);
c5aa993b
JM
123 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
124 {
125 symfile_objfile->ei.main_func_lowpc =
c906108c 126 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
c5aa993b 127 symfile_objfile->ei.main_func_highpc =
c906108c 128 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
c5aa993b 129 }
c906108c 130 }
c5aa993b
JM
131 return (symfile_objfile->ei.main_func_lowpc <= pc &&
132 symfile_objfile->ei.main_func_highpc > pc);
c906108c
SS
133}
134
135/* Test a specified PC value to see if it is in the range of addresses
136 that correspond to the process entry point function. See comments
137 in objfiles.h for why we might want to do this.
138
139 Typically called from FRAME_CHAIN_VALID.
140
141 A PC of zero is always considered to be the bottom of the stack. */
142
143int
fba45db2 144inside_entry_func (CORE_ADDR pc)
c906108c
SS
145{
146 if (pc == 0)
147 return 1;
148 if (symfile_objfile == 0)
149 return 0;
7a292a7a
SS
150 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
151 {
152 /* Do not stop backtracing if the pc is in the call dummy
c5aa993b 153 at the entry point. */
7a292a7a
SS
154 /* FIXME: Won't always work with zeros for the last two arguments */
155 if (PC_IN_CALL_DUMMY (pc, 0, 0))
156 return 0;
157 }
c5aa993b
JM
158 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
159 symfile_objfile->ei.entry_func_highpc > pc);
c906108c
SS
160}
161
162/* Info about the innermost stack frame (contents of FP register) */
163
164static struct frame_info *current_frame;
165
166/* Cache for frame addresses already read by gdb. Valid only while
167 inferior is stopped. Control variables for the frame cache should
168 be local to this module. */
169
170static struct obstack frame_cache_obstack;
171
172void *
fba45db2 173frame_obstack_alloc (unsigned long size)
c906108c
SS
174{
175 return obstack_alloc (&frame_cache_obstack, size);
176}
177
178void
fba45db2 179frame_saved_regs_zalloc (struct frame_info *fi)
c906108c 180{
c5aa993b 181 fi->saved_regs = (CORE_ADDR *)
c906108c
SS
182 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
183 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
184}
185
186
187/* Return the innermost (currently executing) stack frame. */
188
189struct frame_info *
fba45db2 190get_current_frame (void)
c906108c
SS
191{
192 if (current_frame == NULL)
193 {
194 if (target_has_stack)
195 current_frame = create_new_frame (read_fp (), read_pc ());
196 else
197 error ("No stack.");
198 }
199 return current_frame;
200}
201
202void
fba45db2 203set_current_frame (struct frame_info *frame)
c906108c
SS
204{
205 current_frame = frame;
206}
207
208/* Create an arbitrary (i.e. address specified by user) or innermost frame.
209 Always returns a non-NULL value. */
210
211struct frame_info *
fba45db2 212create_new_frame (CORE_ADDR addr, CORE_ADDR pc)
c906108c
SS
213{
214 struct frame_info *fi;
215 char *name;
216
217 fi = (struct frame_info *)
218 obstack_alloc (&frame_cache_obstack,
219 sizeof (struct frame_info));
220
221 /* Arbitrary frame */
222 fi->saved_regs = NULL;
223 fi->next = NULL;
224 fi->prev = NULL;
225 fi->frame = addr;
226 fi->pc = pc;
c5aa993b 227 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
228 fi->signal_handler_caller = IN_SIGTRAMP (fi->pc, name);
229
230#ifdef INIT_EXTRA_FRAME_INFO
231 INIT_EXTRA_FRAME_INFO (0, fi);
232#endif
233
234 return fi;
235}
236
c906108c
SS
237/* Return the frame that FRAME calls (NULL if FRAME is the innermost
238 frame). */
239
240struct frame_info *
fba45db2 241get_next_frame (struct frame_info *frame)
c906108c
SS
242{
243 return frame->next;
244}
245
246/* Flush the entire frame cache. */
247
248void
fba45db2 249flush_cached_frames (void)
c906108c
SS
250{
251 /* Since we can't really be sure what the first object allocated was */
252 obstack_free (&frame_cache_obstack, 0);
253 obstack_init (&frame_cache_obstack);
254
c5aa993b 255 current_frame = NULL; /* Invalidate cache */
c906108c
SS
256 select_frame (NULL, -1);
257 annotate_frames_invalid ();
258}
259
260/* Flush the frame cache, and start a new one if necessary. */
261
262void
fba45db2 263reinit_frame_cache (void)
c906108c
SS
264{
265 flush_cached_frames ();
266
267 /* FIXME: The inferior_pid test is wrong if there is a corefile. */
268 if (inferior_pid != 0)
269 {
270 select_frame (get_current_frame (), 0);
271 }
272}
273
c906108c
SS
274/* Return nonzero if the function for this frame lacks a prologue. Many
275 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
276 function. */
277
278int
fba45db2 279frameless_look_for_prologue (struct frame_info *frame)
c906108c
SS
280{
281 CORE_ADDR func_start, after_prologue;
53a5351d 282
c906108c
SS
283 func_start = get_pc_function_start (frame->pc);
284 if (func_start)
285 {
286 func_start += FUNCTION_START_OFFSET;
53a5351d
JM
287 /* This is faster, since only care whether there *is* a
288 prologue, not how long it is. */
dad41f9a 289 return PROLOGUE_FRAMELESS_P (func_start);
c906108c
SS
290 }
291 else if (frame->pc == 0)
53a5351d
JM
292 /* A frame with a zero PC is usually created by dereferencing a
293 NULL function pointer, normally causing an immediate core dump
294 of the inferior. Mark function as frameless, as the inferior
295 has no chance of setting up a stack frame. */
c906108c
SS
296 return 1;
297 else
298 /* If we can't find the start of the function, we don't really
299 know whether the function is frameless, but we should be able
300 to get a reasonable (i.e. best we can do under the
301 circumstances) backtrace by saying that it isn't. */
302 return 0;
303}
304
305/* Default a few macros that people seldom redefine. */
306
307#if !defined (INIT_FRAME_PC)
308#define INIT_FRAME_PC(fromleaf, prev) \
309 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
310 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
311#endif
312
313#ifndef FRAME_CHAIN_COMBINE
314#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
315#endif
316
317/* Return a structure containing various interesting information
318 about the frame that called NEXT_FRAME. Returns NULL
319 if there is no such frame. */
320
321struct frame_info *
fba45db2 322get_prev_frame (struct frame_info *next_frame)
c906108c
SS
323{
324 CORE_ADDR address = 0;
325 struct frame_info *prev;
326 int fromleaf = 0;
327 char *name;
328
329 /* If the requested entry is in the cache, return it.
330 Otherwise, figure out what the address should be for the entry
331 we're about to add to the cache. */
332
333 if (!next_frame)
334 {
335#if 0
336 /* This screws value_of_variable, which just wants a nice clean
c5aa993b
JM
337 NULL return from block_innermost_frame if there are no frames.
338 I don't think I've ever seen this message happen otherwise.
339 And returning NULL here is a perfectly legitimate thing to do. */
c906108c
SS
340 if (!current_frame)
341 {
342 error ("You haven't set up a process's stack to examine.");
343 }
344#endif
345
346 return current_frame;
347 }
348
349 /* If we have the prev one, return it */
350 if (next_frame->prev)
351 return next_frame->prev;
352
353 /* On some machines it is possible to call a function without
354 setting up a stack frame for it. On these machines, we
355 define this macro to take two args; a frameinfo pointer
356 identifying a frame and a variable to set or clear if it is
357 or isn't leafless. */
392a587b 358
c906108c
SS
359 /* Still don't want to worry about this except on the innermost
360 frame. This macro will set FROMLEAF if NEXT_FRAME is a
361 frameless function invocation. */
362 if (!(next_frame->next))
363 {
392a587b 364 fromleaf = FRAMELESS_FUNCTION_INVOCATION (next_frame);
c906108c
SS
365 if (fromleaf)
366 address = FRAME_FP (next_frame);
367 }
c906108c
SS
368
369 if (!fromleaf)
370 {
371 /* Two macros defined in tm.h specify the machine-dependent
c5aa993b
JM
372 actions to be performed here.
373 First, get the frame's chain-pointer.
374 If that is zero, the frame is the outermost frame or a leaf
375 called by the outermost frame. This means that if start
376 calls main without a frame, we'll return 0 (which is fine
377 anyway).
378
379 Nope; there's a problem. This also returns when the current
380 routine is a leaf of main. This is unacceptable. We move
381 this to after the ffi test; I'd rather have backtraces from
382 start go curfluy than have an abort called from main not show
383 main. */
c906108c
SS
384 address = FRAME_CHAIN (next_frame);
385 if (!FRAME_CHAIN_VALID (address, next_frame))
386 return 0;
387 address = FRAME_CHAIN_COMBINE (address, next_frame);
388 }
389 if (address == 0)
390 return 0;
391
392 prev = (struct frame_info *)
393 obstack_alloc (&frame_cache_obstack,
394 sizeof (struct frame_info));
395
bb30608f 396 /* Zero all fields by default. */
0c8053b6 397 memset (prev, 0, sizeof (struct frame_info));
bb30608f 398
c906108c
SS
399 if (next_frame)
400 next_frame->prev = prev;
401 prev->next = next_frame;
c906108c 402 prev->frame = address;
c906108c
SS
403
404/* This change should not be needed, FIXME! We should
405 determine whether any targets *need* INIT_FRAME_PC to happen
406 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
407 express what goes on here.
408
c5aa993b
JM
409 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
410 (where the PC is already set up) and here (where it isn't).
411 INIT_FRAME_PC is only called from here, always after
412 INIT_EXTRA_FRAME_INFO.
413
c906108c
SS
414 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
415 value (which hasn't been set yet). Some other machines appear to
416 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
417
418 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
419 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
420
421 Assuming that some machines need INIT_FRAME_PC after
422 INIT_EXTRA_FRAME_INFO, one possible scheme:
423
424 SETUP_INNERMOST_FRAME()
c5aa993b
JM
425 Default version is just create_new_frame (read_fp ()),
426 read_pc ()). Machines with extra frame info would do that (or the
427 local equivalent) and then set the extra fields.
c906108c 428 SETUP_ARBITRARY_FRAME(argc, argv)
c5aa993b
JM
429 Only change here is that create_new_frame would no longer init extra
430 frame info; SETUP_ARBITRARY_FRAME would have to do that.
c906108c 431 INIT_PREV_FRAME(fromleaf, prev)
c5aa993b
JM
432 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
433 also return a flag saying whether to keep the new frame, or
434 whether to discard it, because on some machines (e.g. mips) it
435 is really awkward to have FRAME_CHAIN_VALID called *before*
436 INIT_EXTRA_FRAME_INFO (there is no good way to get information
437 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
c906108c 438 std_frame_pc(fromleaf, prev)
c5aa993b
JM
439 This is the default setting for INIT_PREV_FRAME. It just does what
440 the default INIT_FRAME_PC does. Some machines will call it from
441 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
442 Some machines won't use it.
c906108c
SS
443 kingdon@cygnus.com, 13Apr93, 31Jan94, 14Dec94. */
444
445#ifdef INIT_FRAME_PC_FIRST
446 INIT_FRAME_PC_FIRST (fromleaf, prev);
447#endif
448
449#ifdef INIT_EXTRA_FRAME_INFO
c5aa993b 450 INIT_EXTRA_FRAME_INFO (fromleaf, prev);
c906108c
SS
451#endif
452
453 /* This entry is in the frame queue now, which is good since
454 FRAME_SAVED_PC may use that queue to figure out its value
455 (see tm-sparc.h). We want the pc saved in the inferior frame. */
c5aa993b 456 INIT_FRAME_PC (fromleaf, prev);
c906108c
SS
457
458 /* If ->frame and ->pc are unchanged, we are in the process of getting
459 ourselves into an infinite backtrace. Some architectures check this
460 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
461 this can't be an architecture-independent check. */
462 if (next_frame != NULL)
463 {
464 if (prev->frame == next_frame->frame
465 && prev->pc == next_frame->pc)
466 {
467 next_frame->prev = NULL;
468 obstack_free (&frame_cache_obstack, prev);
469 return NULL;
470 }
471 }
472
473 find_pc_partial_function (prev->pc, &name,
c5aa993b 474 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
c906108c
SS
475 if (IN_SIGTRAMP (prev->pc, name))
476 prev->signal_handler_caller = 1;
477
478 return prev;
479}
480
481CORE_ADDR
fba45db2 482get_frame_pc (struct frame_info *frame)
c906108c
SS
483{
484 return frame->pc;
485}
486
487
488#ifdef FRAME_FIND_SAVED_REGS
489/* XXX - deprecated. This is a compatibility function for targets
490 that do not yet implement FRAME_INIT_SAVED_REGS. */
491/* Find the addresses in which registers are saved in FRAME. */
492
493void
fba45db2
KB
494get_frame_saved_regs (struct frame_info *frame,
495 struct frame_saved_regs *saved_regs_addr)
c906108c
SS
496{
497 if (frame->saved_regs == NULL)
498 {
c5aa993b 499 frame->saved_regs = (CORE_ADDR *)
c906108c
SS
500 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
501 }
502 if (saved_regs_addr == NULL)
503 {
504 struct frame_saved_regs saved_regs;
505 FRAME_FIND_SAVED_REGS (frame, saved_regs);
506 memcpy (frame->saved_regs, &saved_regs, SIZEOF_FRAME_SAVED_REGS);
507 }
508 else
509 {
510 FRAME_FIND_SAVED_REGS (frame, *saved_regs_addr);
511 memcpy (frame->saved_regs, saved_regs_addr, SIZEOF_FRAME_SAVED_REGS);
512 }
513}
514#endif
515
516/* Return the innermost lexical block in execution
517 in a specified stack frame. The frame address is assumed valid. */
518
519struct block *
fba45db2 520get_frame_block (struct frame_info *frame)
c906108c
SS
521{
522 CORE_ADDR pc;
523
524 pc = frame->pc;
525 if (frame->next != 0 && frame->next->signal_handler_caller == 0)
526 /* We are not in the innermost frame and we were not interrupted
527 by a signal. We need to subtract one to get the correct block,
528 in case the call instruction was the last instruction of the block.
529 If there are any machines on which the saved pc does not point to
530 after the call insn, we probably want to make frame->pc point after
531 the call insn anyway. */
532 --pc;
533 return block_for_pc (pc);
534}
535
536struct block *
fba45db2 537get_current_block (void)
c906108c
SS
538{
539 return block_for_pc (read_pc ());
540}
541
542CORE_ADDR
fba45db2 543get_pc_function_start (CORE_ADDR pc)
c906108c
SS
544{
545 register struct block *bl;
546 register struct symbol *symbol;
547 register struct minimal_symbol *msymbol;
548 CORE_ADDR fstart;
549
550 if ((bl = block_for_pc (pc)) != NULL &&
551 (symbol = block_function (bl)) != NULL)
552 {
553 bl = SYMBOL_BLOCK_VALUE (symbol);
554 fstart = BLOCK_START (bl);
555 }
556 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
557 {
558 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
559 }
560 else
561 {
562 fstart = 0;
563 }
564 return (fstart);
565}
566
567/* Return the symbol for the function executing in frame FRAME. */
568
569struct symbol *
fba45db2 570get_frame_function (struct frame_info *frame)
c906108c
SS
571{
572 register struct block *bl = get_frame_block (frame);
573 if (bl == 0)
574 return 0;
575 return block_function (bl);
576}
577\f
578
579/* Return the blockvector immediately containing the innermost lexical block
580 containing the specified pc value and section, or 0 if there is none.
581 PINDEX is a pointer to the index value of the block. If PINDEX
582 is NULL, we don't pass this information back to the caller. */
583
584struct blockvector *
fba45db2
KB
585blockvector_for_pc_sect (register CORE_ADDR pc, struct sec *section,
586 int *pindex, struct symtab *symtab)
c906108c
SS
587{
588 register struct block *b;
589 register int bot, top, half;
590 struct blockvector *bl;
591
c5aa993b 592 if (symtab == 0) /* if no symtab specified by caller */
c906108c
SS
593 {
594 /* First search all symtabs for one whose file contains our pc */
595 if ((symtab = find_pc_sect_symtab (pc, section)) == 0)
596 return 0;
597 }
598
599 bl = BLOCKVECTOR (symtab);
600 b = BLOCKVECTOR_BLOCK (bl, 0);
601
602 /* Then search that symtab for the smallest block that wins. */
603 /* Use binary search to find the last block that starts before PC. */
604
605 bot = 0;
606 top = BLOCKVECTOR_NBLOCKS (bl);
607
608 while (top - bot > 1)
609 {
610 half = (top - bot + 1) >> 1;
611 b = BLOCKVECTOR_BLOCK (bl, bot + half);
612 if (BLOCK_START (b) <= pc)
613 bot += half;
614 else
615 top = bot + half;
616 }
617
618 /* Now search backward for a block that ends after PC. */
619
620 while (bot >= 0)
621 {
622 b = BLOCKVECTOR_BLOCK (bl, bot);
43e526b9 623 if (BLOCK_END (b) > pc)
c906108c
SS
624 {
625 if (pindex)
626 *pindex = bot;
627 return bl;
628 }
629 bot--;
630 }
631 return 0;
632}
633
634/* Return the blockvector immediately containing the innermost lexical block
635 containing the specified pc value, or 0 if there is none.
636 Backward compatibility, no section. */
637
638struct blockvector *
fba45db2 639blockvector_for_pc (register CORE_ADDR pc, int *pindex)
c906108c
SS
640{
641 return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
642 pindex, NULL);
643}
644
645/* Return the innermost lexical block containing the specified pc value
646 in the specified section, or 0 if there is none. */
647
648struct block *
fba45db2 649block_for_pc_sect (register CORE_ADDR pc, struct sec *section)
c906108c
SS
650{
651 register struct blockvector *bl;
652 int index;
653
654 bl = blockvector_for_pc_sect (pc, section, &index, NULL);
655 if (bl)
656 return BLOCKVECTOR_BLOCK (bl, index);
657 return 0;
658}
659
660/* Return the innermost lexical block containing the specified pc value,
661 or 0 if there is none. Backward compatibility, no section. */
662
663struct block *
fba45db2 664block_for_pc (register CORE_ADDR pc)
c906108c
SS
665{
666 return block_for_pc_sect (pc, find_pc_mapped_section (pc));
667}
668
669/* Return the function containing pc value PC in section SECTION.
670 Returns 0 if function is not known. */
671
672struct symbol *
fba45db2 673find_pc_sect_function (CORE_ADDR pc, struct sec *section)
c906108c
SS
674{
675 register struct block *b = block_for_pc_sect (pc, section);
676 if (b == 0)
677 return 0;
678 return block_function (b);
679}
680
681/* Return the function containing pc value PC.
682 Returns 0 if function is not known. Backward compatibility, no section */
683
684struct symbol *
fba45db2 685find_pc_function (CORE_ADDR pc)
c906108c
SS
686{
687 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
688}
689
690/* These variables are used to cache the most recent result
691 * of find_pc_partial_function. */
692
c5aa993b
JM
693static CORE_ADDR cache_pc_function_low = 0;
694static CORE_ADDR cache_pc_function_high = 0;
695static char *cache_pc_function_name = 0;
c906108c
SS
696static struct sec *cache_pc_function_section = NULL;
697
698/* Clear cache, e.g. when symbol table is discarded. */
699
700void
fba45db2 701clear_pc_function_cache (void)
c906108c
SS
702{
703 cache_pc_function_low = 0;
704 cache_pc_function_high = 0;
c5aa993b 705 cache_pc_function_name = (char *) 0;
c906108c
SS
706 cache_pc_function_section = NULL;
707}
708
709/* Finds the "function" (text symbol) that is smaller than PC but
710 greatest of all of the potential text symbols in SECTION. Sets
711 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
712 If ENDADDR is non-null, then set *ENDADDR to be the end of the
713 function (exclusive), but passing ENDADDR as non-null means that
714 the function might cause symbols to be read. This function either
715 succeeds or fails (not halfway succeeds). If it succeeds, it sets
716 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
717 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
718 returns 0. */
719
720int
fba45db2
KB
721find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
722 CORE_ADDR *address, CORE_ADDR *endaddr)
c906108c
SS
723{
724 struct partial_symtab *pst;
c5aa993b 725 struct symbol *f;
c906108c
SS
726 struct minimal_symbol *msymbol;
727 struct partial_symbol *psb;
c5aa993b 728 struct obj_section *osect;
c906108c
SS
729 int i;
730 CORE_ADDR mapped_pc;
731
732 mapped_pc = overlay_mapped_address (pc, section);
733
c5aa993b 734 if (mapped_pc >= cache_pc_function_low &&
c906108c
SS
735 mapped_pc < cache_pc_function_high &&
736 section == cache_pc_function_section)
737 goto return_cached_value;
738
739 /* If sigtramp is in the u area, it counts as a function (especially
740 important for step_1). */
741#if defined SIGTRAMP_START
c5aa993b 742 if (IN_SIGTRAMP (mapped_pc, (char *) NULL))
c906108c 743 {
c5aa993b
JM
744 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
745 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
746 cache_pc_function_name = "<sigtramp>";
c906108c
SS
747 cache_pc_function_section = section;
748 goto return_cached_value;
749 }
750#endif
751
752 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
753 pst = find_pc_sect_psymtab (mapped_pc, section);
754 if (pst)
755 {
756 /* Need to read the symbols to get a good value for the end address. */
757 if (endaddr != NULL && !pst->readin)
758 {
759 /* Need to get the terminal in case symbol-reading produces
760 output. */
761 target_terminal_ours_for_output ();
762 PSYMTAB_TO_SYMTAB (pst);
763 }
764
765 if (pst->readin)
766 {
767 /* Checking whether the msymbol has a larger value is for the
768 "pathological" case mentioned in print_frame_info. */
769 f = find_pc_sect_function (mapped_pc, section);
770 if (f != NULL
771 && (msymbol == NULL
772 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
773 >= SYMBOL_VALUE_ADDRESS (msymbol))))
774 {
c5aa993b
JM
775 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
776 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
777 cache_pc_function_name = SYMBOL_NAME (f);
c906108c
SS
778 cache_pc_function_section = section;
779 goto return_cached_value;
780 }
781 }
782 else
783 {
784 /* Now that static symbols go in the minimal symbol table, perhaps
785 we could just ignore the partial symbols. But at least for now
786 we use the partial or minimal symbol, whichever is larger. */
787 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
788
789 if (psb
790 && (msymbol == NULL ||
791 (SYMBOL_VALUE_ADDRESS (psb)
792 >= SYMBOL_VALUE_ADDRESS (msymbol))))
793 {
794 /* This case isn't being cached currently. */
795 if (address)
796 *address = SYMBOL_VALUE_ADDRESS (psb);
797 if (name)
798 *name = SYMBOL_NAME (psb);
799 /* endaddr non-NULL can't happen here. */
800 return 1;
801 }
802 }
803 }
804
805 /* Not in the normal symbol tables, see if the pc is in a known section.
806 If it's not, then give up. This ensures that anything beyond the end
807 of the text seg doesn't appear to be part of the last function in the
808 text segment. */
809
810 osect = find_pc_sect_section (mapped_pc, section);
811
812 if (!osect)
813 msymbol = NULL;
814
815 /* Must be in the minimal symbol table. */
816 if (msymbol == NULL)
817 {
818 /* No available symbol. */
819 if (name != NULL)
820 *name = 0;
821 if (address != NULL)
822 *address = 0;
823 if (endaddr != NULL)
824 *endaddr = 0;
825 return 0;
826 }
827
c5aa993b
JM
828 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
829 cache_pc_function_name = SYMBOL_NAME (msymbol);
c906108c
SS
830 cache_pc_function_section = section;
831
832 /* Use the lesser of the next minimal symbol in the same section, or
833 the end of the section, as the end of the function. */
c5aa993b 834
c906108c
SS
835 /* Step over other symbols at this same address, and symbols in
836 other sections, to find the next symbol in this section with
837 a different address. */
838
c5aa993b 839 for (i = 1; SYMBOL_NAME (msymbol + i) != NULL; i++)
c906108c 840 {
c5aa993b
JM
841 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
842 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
c906108c
SS
843 break;
844 }
845
846 if (SYMBOL_NAME (msymbol + i) != NULL
847 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
848 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
849 else
850 /* We got the start address from the last msymbol in the objfile.
851 So the end address is the end of the section. */
852 cache_pc_function_high = osect->endaddr;
853
c5aa993b 854return_cached_value:
c906108c
SS
855
856 if (address)
857 {
858 if (pc_in_unmapped_range (pc, section))
c5aa993b 859 *address = overlay_unmapped_address (cache_pc_function_low, section);
c906108c 860 else
c5aa993b 861 *address = cache_pc_function_low;
c906108c 862 }
c5aa993b 863
c906108c
SS
864 if (name)
865 *name = cache_pc_function_name;
866
867 if (endaddr)
868 {
869 if (pc_in_unmapped_range (pc, section))
c5aa993b 870 {
c906108c
SS
871 /* Because the high address is actually beyond the end of
872 the function (and therefore possibly beyond the end of
873 the overlay), we must actually convert (high - 1)
874 and then add one to that. */
875
c5aa993b 876 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
c906108c 877 section);
c5aa993b 878 }
c906108c 879 else
c5aa993b 880 *endaddr = cache_pc_function_high;
c906108c
SS
881 }
882
883 return 1;
884}
885
886/* Backward compatibility, no section argument */
887
888int
fba45db2
KB
889find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
890 CORE_ADDR *endaddr)
c906108c 891{
c5aa993b 892 asection *section;
c906108c
SS
893
894 section = find_pc_overlay (pc);
895 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
896}
897
898/* Return the innermost stack frame executing inside of BLOCK,
899 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
900
901struct frame_info *
fba45db2 902block_innermost_frame (struct block *block)
c906108c
SS
903{
904 struct frame_info *frame;
905 register CORE_ADDR start;
906 register CORE_ADDR end;
907
908 if (block == NULL)
909 return NULL;
910
911 start = BLOCK_START (block);
912 end = BLOCK_END (block);
913
914 frame = NULL;
915 while (1)
916 {
917 frame = get_prev_frame (frame);
918 if (frame == NULL)
919 return NULL;
920 if (frame->pc >= start && frame->pc < end)
921 return frame;
922 }
923}
924
925/* Return the full FRAME which corresponds to the given CORE_ADDR
926 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
927
928struct frame_info *
fba45db2 929find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
c906108c
SS
930{
931 struct frame_info *frame = NULL;
932
c5aa993b 933 if (frame_addr == (CORE_ADDR) 0)
c906108c
SS
934 return NULL;
935
936 while (1)
937 {
938 frame = get_prev_frame (frame);
939 if (frame == NULL)
940 return NULL;
941 if (FRAME_FP (frame) == frame_addr)
942 return frame;
943 }
944}
945
946#ifdef SIGCONTEXT_PC_OFFSET
947/* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
948
949CORE_ADDR
fba45db2 950sigtramp_saved_pc (struct frame_info *frame)
c906108c
SS
951{
952 CORE_ADDR sigcontext_addr;
35fc8285 953 char *buf;
c906108c
SS
954 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
955 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
956
35fc8285 957 buf = alloca (ptrbytes);
c906108c
SS
958 /* Get sigcontext address, it is the third parameter on the stack. */
959 if (frame->next)
960 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
961 + FRAME_ARGS_SKIP
962 + sigcontext_offs,
963 ptrbytes);
964 else
965 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
c5aa993b 966 + sigcontext_offs,
c906108c
SS
967 ptrbytes);
968
969 /* Don't cause a memory_error when accessing sigcontext in case the stack
970 layout has changed or the stack is corrupt. */
971 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
972 return extract_unsigned_integer (buf, ptrbytes);
973}
974#endif /* SIGCONTEXT_PC_OFFSET */
975
7a292a7a
SS
976
977/* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
978 below is for infrun.c, which may give the macro a pc without that
979 subtracted out. */
980
981extern CORE_ADDR text_end;
982
983int
fba45db2
KB
984pc_in_call_dummy_before_text_end (CORE_ADDR pc, CORE_ADDR sp,
985 CORE_ADDR frame_address)
7a292a7a
SS
986{
987 return ((pc) >= text_end - CALL_DUMMY_LENGTH
988 && (pc) <= text_end + DECR_PC_AFTER_BREAK);
989}
990
991int
fba45db2
KB
992pc_in_call_dummy_after_text_end (CORE_ADDR pc, CORE_ADDR sp,
993 CORE_ADDR frame_address)
7a292a7a
SS
994{
995 return ((pc) >= text_end
996 && (pc) <= text_end + CALL_DUMMY_LENGTH + DECR_PC_AFTER_BREAK);
997}
998
999/* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
1000 top of the stack frame which we are checking, where "bottom" and
1001 "top" refer to some section of memory which contains the code for
1002 the call dummy. Calls to this macro assume that the contents of
1003 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
1004 are the things to pass.
1005
1006 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
1007 have that meaning, but the 29k doesn't use ON_STACK. This could be
1008 fixed by generalizing this scheme, perhaps by passing in a frame
1009 and adding a few fields, at least on machines which need them for
1010 PC_IN_CALL_DUMMY.
1011
1012 Something simpler, like checking for the stack segment, doesn't work,
1013 since various programs (threads implementations, gcc nested function
1014 stubs, etc) may either allocate stack frames in another segment, or
1015 allocate other kinds of code on the stack. */
1016
1017int
fba45db2 1018pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR frame_address)
7a292a7a
SS
1019{
1020 return (INNER_THAN ((sp), (pc))
1021 && (frame_address != 0)
1022 && INNER_THAN ((pc), (frame_address)));
1023}
1024
1025int
fba45db2
KB
1026pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
1027 CORE_ADDR frame_address)
7a292a7a
SS
1028{
1029 return ((pc) >= CALL_DUMMY_ADDRESS ()
1030 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
1031}
1032
c906108c
SS
1033
1034/*
1035 * GENERIC DUMMY FRAMES
1036 *
1037 * The following code serves to maintain the dummy stack frames for
1038 * inferior function calls (ie. when gdb calls into the inferior via
1039 * call_function_by_hand). This code saves the machine state before
b7d6b182 1040 * the call in host memory, so we must maintain an independent stack
c906108c
SS
1041 * and keep it consistant etc. I am attempting to make this code
1042 * generic enough to be used by many targets.
1043 *
1044 * The cheapest and most generic way to do CALL_DUMMY on a new target
1045 * is probably to define CALL_DUMMY to be empty, CALL_DUMMY_LENGTH to
1046 * zero, and CALL_DUMMY_LOCATION to AT_ENTRY. Then you must remember
1047 * to define PUSH_RETURN_ADDRESS, because no call instruction will be
1048 * being executed by the target. Also FRAME_CHAIN_VALID as
c4093a6a 1049 * generic_{file,func}_frame_chain_valid and FIX_CALL_DUMMY as
cce74817 1050 * generic_fix_call_dummy. */
c906108c 1051
7a292a7a
SS
1052/* Dummy frame. This saves the processor state just prior to setting
1053 up the inferior function call. Older targets save the registers
72229eb7 1054 on the target stack (but that really slows down function calls). */
7a292a7a
SS
1055
1056struct dummy_frame
1057{
1058 struct dummy_frame *next;
1059
1060 CORE_ADDR pc;
1061 CORE_ADDR fp;
1062 CORE_ADDR sp;
43ff13b4 1063 CORE_ADDR top;
7a292a7a
SS
1064 char *registers;
1065};
1066
c906108c
SS
1067static struct dummy_frame *dummy_frame_stack = NULL;
1068
1069/* Function: find_dummy_frame(pc, fp, sp)
1070 Search the stack of dummy frames for one matching the given PC, FP and SP.
1071 This is the work-horse for pc_in_call_dummy and read_register_dummy */
1072
c5aa993b 1073char *
fba45db2 1074generic_find_dummy_frame (CORE_ADDR pc, CORE_ADDR fp)
c906108c 1075{
c5aa993b 1076 struct dummy_frame *dummyframe;
c906108c
SS
1077
1078 if (pc != entry_point_address ())
1079 return 0;
1080
1081 for (dummyframe = dummy_frame_stack; dummyframe != NULL;
1082 dummyframe = dummyframe->next)
43ff13b4
JM
1083 if (fp == dummyframe->fp
1084 || fp == dummyframe->sp
1085 || fp == dummyframe->top)
c906108c 1086 /* The frame in question lies between the saved fp and sp, inclusive */
7a292a7a 1087 return dummyframe->registers;
c906108c
SS
1088
1089 return 0;
1090}
1091
1092/* Function: pc_in_call_dummy (pc, fp)
1093 Return true if this is a dummy frame created by gdb for an inferior call */
1094
1095int
fba45db2 1096generic_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
c906108c
SS
1097{
1098 /* if find_dummy_frame succeeds, then PC is in a call dummy */
7a292a7a
SS
1099 /* Note: SP and not FP is passed on. */
1100 return (generic_find_dummy_frame (pc, sp) != 0);
c906108c
SS
1101}
1102
1103/* Function: read_register_dummy
1104 Find a saved register from before GDB calls a function in the inferior */
1105
1106CORE_ADDR
fba45db2 1107generic_read_register_dummy (CORE_ADDR pc, CORE_ADDR fp, int regno)
c906108c
SS
1108{
1109 char *dummy_regs = generic_find_dummy_frame (pc, fp);
1110
1111 if (dummy_regs)
1112 return extract_address (&dummy_regs[REGISTER_BYTE (regno)],
c5aa993b 1113 REGISTER_RAW_SIZE (regno));
c906108c
SS
1114 else
1115 return 0;
1116}
1117
1118/* Save all the registers on the dummy frame stack. Most ports save the
1119 registers on the target stack. This results in lots of unnecessary memory
1120 references, which are slow when debugging via a serial line. Instead, we
1121 save all the registers internally, and never write them to the stack. The
1122 registers get restored when the called function returns to the entry point,
1123 where a breakpoint is laying in wait. */
1124
1125void
fba45db2 1126generic_push_dummy_frame (void)
c906108c
SS
1127{
1128 struct dummy_frame *dummy_frame;
1129 CORE_ADDR fp = (get_current_frame ())->frame;
1130
1131 /* check to see if there are stale dummy frames,
1132 perhaps left over from when a longjump took us out of a
1133 function that was called by the debugger */
1134
1135 dummy_frame = dummy_frame_stack;
1136 while (dummy_frame)
1137 if (INNER_THAN (dummy_frame->fp, fp)) /* stale -- destroy! */
1138 {
1139 dummy_frame_stack = dummy_frame->next;
b8c9b27d
KB
1140 xfree (dummy_frame->registers);
1141 xfree (dummy_frame);
c906108c
SS
1142 dummy_frame = dummy_frame_stack;
1143 }
1144 else
1145 dummy_frame = dummy_frame->next;
1146
1147 dummy_frame = xmalloc (sizeof (struct dummy_frame));
7a292a7a
SS
1148 dummy_frame->registers = xmalloc (REGISTER_BYTES);
1149
4478b372
JB
1150 dummy_frame->pc = read_pc ();
1151 dummy_frame->sp = read_sp ();
c5aa993b
JM
1152 dummy_frame->top = dummy_frame->sp;
1153 dummy_frame->fp = fp;
7a292a7a 1154 read_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
c906108c
SS
1155 dummy_frame->next = dummy_frame_stack;
1156 dummy_frame_stack = dummy_frame;
1157}
1158
43ff13b4 1159void
fba45db2 1160generic_save_dummy_frame_tos (CORE_ADDR sp)
43ff13b4
JM
1161{
1162 dummy_frame_stack->top = sp;
1163}
1164
ed9a39eb 1165/* Restore the machine state from either the saved dummy stack or a
c906108c
SS
1166 real stack frame. */
1167
1168void
ed9a39eb 1169generic_pop_current_frame (void (*popper) (struct frame_info * frame))
c906108c
SS
1170{
1171 struct frame_info *frame = get_current_frame ();
ed9a39eb 1172
c5aa993b 1173 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c
SS
1174 generic_pop_dummy_frame ();
1175 else
ed9a39eb 1176 (*popper) (frame);
c906108c
SS
1177}
1178
1179/* Function: pop_dummy_frame
1180 Restore the machine state from a saved dummy stack frame. */
1181
1182void
fba45db2 1183generic_pop_dummy_frame (void)
c906108c
SS
1184{
1185 struct dummy_frame *dummy_frame = dummy_frame_stack;
1186
1187 /* FIXME: what if the first frame isn't the right one, eg..
1188 because one call-by-hand function has done a longjmp into another one? */
1189
1190 if (!dummy_frame)
1191 error ("Can't pop dummy frame!");
1192 dummy_frame_stack = dummy_frame->next;
7a292a7a 1193 write_register_bytes (0, dummy_frame->registers, REGISTER_BYTES);
c906108c 1194 flush_cached_frames ();
7a292a7a 1195
b8c9b27d
KB
1196 xfree (dummy_frame->registers);
1197 xfree (dummy_frame);
c906108c
SS
1198}
1199
1200/* Function: frame_chain_valid
1201 Returns true for a user frame or a call_function_by_hand dummy frame,
1202 and false for the CRT0 start-up frame. Purpose is to terminate backtrace */
c5aa993b 1203
c906108c 1204int
fba45db2 1205generic_file_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
c906108c 1206{
c5aa993b
JM
1207 if (PC_IN_CALL_DUMMY (FRAME_SAVED_PC (fi), fp, fp))
1208 return 1; /* don't prune CALL_DUMMY frames */
1209 else /* fall back to default algorithm (see frame.h) */
c906108c
SS
1210 return (fp != 0
1211 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
c5aa993b 1212 && !inside_entry_file (FRAME_SAVED_PC (fi)));
c906108c 1213}
c5aa993b 1214
c4093a6a 1215int
fba45db2 1216generic_func_frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
c4093a6a
JM
1217{
1218 if (PC_IN_CALL_DUMMY ((fi)->pc, fp, fp))
1219 return 1; /* don't prune CALL_DUMMY frames */
1220 else /* fall back to default algorithm (see frame.h) */
1221 return (fp != 0
1222 && (INNER_THAN (fi->frame, fp) || fi->frame == fp)
1223 && !inside_main_func ((fi)->pc)
1224 && !inside_entry_func ((fi)->pc));
1225}
1226
cce74817
JM
1227/* Function: fix_call_dummy
1228 Stub function. Generic dumy frames typically do not need to fix
1229 the frame being created */
1230
1231void
fba45db2
KB
1232generic_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1233 struct value **args, struct type *type, int gcc_p)
cce74817
JM
1234{
1235 return;
1236}
1237
c906108c
SS
1238/* Function: get_saved_register
1239 Find register number REGNUM relative to FRAME and put its (raw,
1240 target format) contents in *RAW_BUFFER.
1241
1242 Set *OPTIMIZED if the variable was optimized out (and thus can't be
1243 fetched). Note that this is never set to anything other than zero
1244 in this implementation.
1245
1246 Set *LVAL to lval_memory, lval_register, or not_lval, depending on
1247 whether the value was fetched from memory, from a register, or in a
1248 strange and non-modifiable way (e.g. a frame pointer which was
1249 calculated rather than fetched). We will use not_lval for values
1250 fetched from generic dummy frames.
1251
1252 Set *ADDRP to the address, either in memory on as a REGISTER_BYTE
1253 offset into the registers array. If the value is stored in a dummy
1254 frame, set *ADDRP to zero.
1255
1256 To use this implementation, define a function called
1257 "get_saved_register" in your target code, which simply passes all
1258 of its arguments to this function.
1259
1260 The argument RAW_BUFFER must point to aligned memory. */
1261
1262void
fba45db2
KB
1263generic_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
1264 struct frame_info *frame, int regnum,
1265 enum lval_type *lval)
c906108c
SS
1266{
1267 if (!target_has_registers)
1268 error ("No registers.");
1269
1270 /* Normal systems don't optimize out things with register numbers. */
1271 if (optimized != NULL)
1272 *optimized = 0;
1273
c5aa993b 1274 if (addrp) /* default assumption: not found in memory */
c906108c
SS
1275 *addrp = 0;
1276
1277 /* Note: since the current frame's registers could only have been
1278 saved by frames INTERIOR TO the current frame, we skip examining
1279 the current frame itself: otherwise, we would be getting the
1280 previous frame's registers which were saved by the current frame. */
1281
1282 while (frame && ((frame = frame->next) != NULL))
1283 {
1284 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1285 {
c5aa993b 1286 if (lval) /* found it in a CALL_DUMMY frame */
c906108c
SS
1287 *lval = not_lval;
1288 if (raw_buffer)
c5aa993b
JM
1289 memcpy (raw_buffer,
1290 generic_find_dummy_frame (frame->pc, frame->frame) +
c906108c
SS
1291 REGISTER_BYTE (regnum),
1292 REGISTER_RAW_SIZE (regnum));
c5aa993b 1293 return;
c906108c
SS
1294 }
1295
1296 FRAME_INIT_SAVED_REGS (frame);
1297 if (frame->saved_regs != NULL
1298 && frame->saved_regs[regnum] != 0)
1299 {
c5aa993b 1300 if (lval) /* found it saved on the stack */
c906108c
SS
1301 *lval = lval_memory;
1302 if (regnum == SP_REGNUM)
1303 {
c5aa993b
JM
1304 if (raw_buffer) /* SP register treated specially */
1305 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
c906108c
SS
1306 frame->saved_regs[regnum]);
1307 }
1308 else
1309 {
c5aa993b 1310 if (addrp) /* any other register */
c906108c
SS
1311 *addrp = frame->saved_regs[regnum];
1312 if (raw_buffer)
c5aa993b 1313 read_memory (frame->saved_regs[regnum], raw_buffer,
c906108c
SS
1314 REGISTER_RAW_SIZE (regnum));
1315 }
1316 return;
1317 }
1318 }
1319
1320 /* If we get thru the loop to this point, it means the register was
1321 not saved in any frame. Return the actual live-register value. */
1322
c5aa993b 1323 if (lval) /* found it in a live register */
c906108c
SS
1324 *lval = lval_register;
1325 if (addrp)
1326 *addrp = REGISTER_BYTE (regnum);
1327 if (raw_buffer)
1328 read_register_gen (regnum, raw_buffer);
1329}
c906108c
SS
1330
1331void
53a5351d 1332_initialize_blockframe (void)
c906108c
SS
1333{
1334 obstack_init (&frame_cache_obstack);
1335}
This page took 0.142785 seconds and 4 git commands to generate.