LITTLE_ENDIAN -> BFD_ENDIAN_LITTLE
[deliverable/binutils-gdb.git] / gdb / config / arm / tm-arm.h
CommitLineData
ed9a39eb 1/* Definitions to target GDB to ARM targets.
b6ba6518
KB
2 Copyright 1986, 1987, 1988, 1989, 1991, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c 21
ed9a39eb
JM
22#ifndef TM_ARM_H
23#define TM_ARM_H
24
f88e2c52 25#include "regcache.h"
9da8e4f8 26#include "floatformat.h"
f88e2c52 27
ed9a39eb 28/* Forward declarations for prototypes. */
c906108c
SS
29struct type;
30struct value;
c906108c 31
ed9a39eb
JM
32/* Target byte order on ARM defaults to selectable, and defaults to
33 little endian. */
134e61c4 34#define TARGET_BYTE_ORDER_SELECTABLE_P 1
778eb05e 35#define TARGET_BYTE_ORDER_DEFAULT BFD_ENDIAN_LITTLE
c906108c 36
ed9a39eb 37/* IEEE format floating point. */
7355ddba 38#define IEEE_FLOAT (1)
ed9a39eb
JM
39#define TARGET_DOUBLE_FORMAT (target_byte_order == BIG_ENDIAN \
40 ? &floatformat_ieee_double_big \
41 : &floatformat_ieee_double_littlebyte_bigword)
c906108c 42
ed9a39eb
JM
43/* When reading symbols, we need to zap the low bit of the address,
44 which may be set to 1 for Thumb functions. */
c906108c
SS
45
46#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x1)
47
48/* Remove useless bits from addresses in a running program. */
49
ed9a39eb 50CORE_ADDR arm_addr_bits_remove (CORE_ADDR);
c906108c 51
ed9a39eb 52#define ADDR_BITS_REMOVE(val) (arm_addr_bits_remove (val))
c906108c 53
ed9a39eb
JM
54/* Offset from address of function to start of its code. Zero on most
55 machines. */
c906108c 56
ed9a39eb 57#define FUNCTION_START_OFFSET 0
c906108c 58
ed9a39eb
JM
59/* Advance PC across any function entry prologue instructions to reach
60 some "real" code. */
c906108c 61
ed9a39eb 62extern CORE_ADDR arm_skip_prologue (CORE_ADDR pc);
c906108c 63
ed9a39eb 64#define SKIP_PROLOGUE(pc) (arm_skip_prologue (pc))
c906108c 65
ed9a39eb
JM
66/* Immediately after a function call, return the saved pc. Can't
67 always go through the frames for this because on some machines the
68 new frame is not set up until the new function executes some
69 instructions. */
c906108c 70
ed9a39eb 71#define SAVED_PC_AFTER_CALL(frame) arm_saved_pc_after_call (frame)
c906108c 72struct frame_info;
ed9a39eb
JM
73extern CORE_ADDR arm_saved_pc_after_call (struct frame_info *);
74
75/* The following define instruction sequences that will cause ARM
76 cpu's to take an undefined instruction trap. These are used to
77 signal a breakpoint to GDB.
78
79 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
80 modes. A different instruction is required for each mode. The ARM
81 cpu's can also be big or little endian. Thus four different
82 instructions are needed to support all cases.
83
84 Note: ARMv4 defines several new instructions that will take the
85 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
86 not in fact add the new instructions. The new undefined
87 instructions in ARMv4 are all instructions that had no defined
88 behaviour in earlier chips. There is no guarantee that they will
89 raise an exception, but may be treated as NOP's. In practice, it
90 may only safe to rely on instructions matching:
91
92 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
93 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
94 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
95
96 Even this may only true if the condition predicate is true. The
97 following use a condition predicate of ALWAYS so it is always TRUE.
98
99 There are other ways of forcing a breakpoint. ARM Linux, RisciX,
100 and I suspect NetBSD will all use a software interrupt rather than
101 an undefined instruction to force a trap. This can be handled by
102 redefining some or all of the following in a target dependent
103 fashion. */
104
105#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
106#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
107#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
108#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
c906108c
SS
109
110/* Stack grows downward. */
111
112#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
113
ed9a39eb
JM
114/* !!!! if we're using RDP, then we're inserting breakpoints and
115 storing their handles instread of what was in memory. It is nice
116 that this is the same size as a handle - otherwise remote-rdp will
c906108c
SS
117 have to change. */
118
ed9a39eb
JM
119/* BREAKPOINT_FROM_PC uses the program counter value to determine
120 whether a 16- or 32-bit breakpoint should be used. It returns a
121 pointer to a string of bytes that encode a breakpoint instruction,
122 stores the length of the string to *lenptr, and adjusts the pc (if
123 necessary) to point to the actual memory location where the
124 breakpoint should be inserted. */
c906108c
SS
125
126extern breakpoint_from_pc_fn arm_breakpoint_from_pc;
127#define BREAKPOINT_FROM_PC(pcptr, lenptr) arm_breakpoint_from_pc (pcptr, lenptr)
128
ed9a39eb
JM
129/* Amount PC must be decremented by after a breakpoint. This is often
130 the number of bytes in BREAKPOINT but not always. */
c906108c
SS
131
132#define DECR_PC_AFTER_BREAK 0
133
ed9a39eb
JM
134/* Code to execute to print interesting information about the floating
135 point processor (if any) or emulator. No need to define if there
136 is nothing to do. */
104c1213
JM
137extern void arm_float_info (void);
138
ed9a39eb 139#define FLOAT_INFO { arm_float_info (); }
c906108c
SS
140
141/* Say how long (ordinary) registers are. This is a piece of bogosity
142 used in push_word and a few other places; REGISTER_RAW_SIZE is the
143 real way to know how big a register is. */
144
ed9a39eb
JM
145#define REGISTER_SIZE 4
146
147/* Say how long FP registers are. Used for documentation purposes and
148 code readability in this header. IEEE extended doubles are 80
149 bits. DWORD aligned they use 96 bits. */
150#define FP_REGISTER_RAW_SIZE 12
151
152/* GCC doesn't support long doubles (extended IEEE values). The FP
153 register virtual size is therefore 64 bits. Used for documentation
154 purposes and code readability in this header. */
155#define FP_REGISTER_VIRTUAL_SIZE 8
156
157/* Status registers are the same size as general purpose registers.
158 Used for documentation purposes and code readability in this
159 header. */
160#define STATUS_REGISTER_SIZE REGISTER_SIZE
161
162/* Number of machine registers. The only define actually required
163 is NUM_REGS. The other definitions are used for documentation
164 purposes and code readability. */
165/* For 26 bit ARM code, a fake copy of the PC is placed in register 25 (PS)
166 (and called PS for processor status) so the status bits can be cleared
167 from the PC (register 15). For 32 bit ARM code, a copy of CPSR is placed
168 in PS. */
169#define NUM_FREGS 8 /* Number of floating point registers. */
170#define NUM_SREGS 2 /* Number of status registers. */
171#define NUM_GREGS 16 /* Number of general purpose registers. */
172#define NUM_REGS (NUM_GREGS + NUM_FREGS + NUM_SREGS)
c906108c
SS
173
174/* An array of names of registers. */
c906108c 175extern char **arm_register_names;
ed9a39eb 176
c906108c
SS
177#define REGISTER_NAME(i) arm_register_names[i]
178
ed9a39eb
JM
179/* Register numbers of various important registers. Note that some of
180 these values are "real" register numbers, and correspond to the
181 general registers of the machine, and some are "phony" register
182 numbers which are too large to be actual register numbers as far as
183 the user is concerned but do serve to get the desired values when
184 passed to read_register. */
c906108c
SS
185
186#define A1_REGNUM 0 /* first integer-like argument */
187#define A4_REGNUM 3 /* last integer-like argument */
188#define AP_REGNUM 11
189#define FP_REGNUM 11 /* Contains address of executing stack frame */
190#define SP_REGNUM 13 /* Contains address of top of stack */
191#define LR_REGNUM 14 /* address to return to from a function call */
192#define PC_REGNUM 15 /* Contains program counter */
193#define F0_REGNUM 16 /* first floating point register */
194#define F3_REGNUM 19 /* last floating point argument register */
195#define F7_REGNUM 23 /* last floating point register */
196#define FPS_REGNUM 24 /* floating point status register */
197#define PS_REGNUM 25 /* Contains processor status */
198
199#define THUMB_FP_REGNUM 7 /* R7 is frame register on Thumb */
200
201#define ARM_NUM_ARG_REGS 4
202#define ARM_LAST_ARG_REGNUM A4_REGNUM
203#define ARM_NUM_FP_ARG_REGS 4
204#define ARM_LAST_FP_ARG_REGNUM F3_REGNUM
205
206/* Instruction condition field values. */
207#define INST_EQ 0x0
208#define INST_NE 0x1
209#define INST_CS 0x2
210#define INST_CC 0x3
211#define INST_MI 0x4
212#define INST_PL 0x5
213#define INST_VS 0x6
214#define INST_VC 0x7
215#define INST_HI 0x8
216#define INST_LS 0x9
217#define INST_GE 0xa
218#define INST_LT 0xb
219#define INST_GT 0xc
220#define INST_LE 0xd
221#define INST_AL 0xe
222#define INST_NV 0xf
223
224#define FLAG_N 0x80000000
225#define FLAG_Z 0x40000000
226#define FLAG_C 0x20000000
227#define FLAG_V 0x10000000
228
229
230
231/* Total amount of space needed to store our copies of the machine's
232 register state, the array `registers'. */
ed9a39eb
JM
233
234#define REGISTER_BYTES ((NUM_GREGS * REGISTER_SIZE) + \
235 (NUM_FREGS * FP_REGISTER_RAW_SIZE) + \
236 (NUM_SREGS * STATUS_REGISTER_SIZE))
c906108c
SS
237
238/* Index within `registers' of the first byte of the space for
239 register N. */
240
ed9a39eb
JM
241#define REGISTER_BYTE(N) \
242 ((N) < F0_REGNUM \
243 ? (N) * REGISTER_SIZE \
244 : ((N) < PS_REGNUM \
245 ? (NUM_GREGS * REGISTER_SIZE + \
246 ((N) - F0_REGNUM) * FP_REGISTER_RAW_SIZE) \
247 : (NUM_GREGS * REGISTER_SIZE + \
248 NUM_FREGS * FP_REGISTER_RAW_SIZE + \
249 ((N) - FPS_REGNUM) * STATUS_REGISTER_SIZE)))
250
251/* Number of bytes of storage in the actual machine representation for
252 register N. All registers are 4 bytes, except fp0 - fp7, which are
253 12 bytes in length. */
254#define REGISTER_RAW_SIZE(N) \
255 ((N) < F0_REGNUM ? REGISTER_SIZE : \
256 (N) < FPS_REGNUM ? FP_REGISTER_RAW_SIZE : STATUS_REGISTER_SIZE)
257
258/* Number of bytes of storage in a program's representation
259 for register N. */
260#define REGISTER_VIRTUAL_SIZE(N) \
261 ((N) < F0_REGNUM ? REGISTER_SIZE : \
262 (N) < FPS_REGNUM ? FP_REGISTER_VIRTUAL_SIZE : STATUS_REGISTER_SIZE)
c906108c
SS
263
264/* Largest value REGISTER_RAW_SIZE can have. */
265
ed9a39eb 266#define MAX_REGISTER_RAW_SIZE FP_REGISTER_RAW_SIZE
c906108c
SS
267
268/* Largest value REGISTER_VIRTUAL_SIZE can have. */
ed9a39eb 269#define MAX_REGISTER_VIRTUAL_SIZE FP_REGISTER_VIRTUAL_SIZE
c906108c 270
ed9a39eb
JM
271/* Return the GDB type object for the "standard" data type of data in
272 register N. */
c906108c 273
032758dc
AC
274extern struct type *arm_register_type (int regnum);
275#define REGISTER_VIRTUAL_TYPE(N) arm_register_type (N)
ed9a39eb 276
c906108c
SS
277/* The system C compiler uses a similar structure return convention to gcc */
278extern use_struct_convention_fn arm_use_struct_convention;
ed9a39eb
JM
279#define USE_STRUCT_CONVENTION(gcc_p, type) \
280 arm_use_struct_convention (gcc_p, type)
c906108c
SS
281
282/* Store the address of the place in which to copy the structure the
283 subroutine will return. This is called from call_function. */
284
285#define STORE_STRUCT_RETURN(ADDR, SP) \
ed9a39eb 286 write_register (A1_REGNUM, (ADDR))
c906108c 287
ed9a39eb
JM
288/* Extract from an array REGBUF containing the (raw) register state a
289 function return value of type TYPE, and copy that, in virtual
290 format, into VALBUF. */
c906108c 291
ed9a39eb 292extern void arm_extract_return_value (struct type *, char[], char *);
c906108c 293#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
ed9a39eb 294 arm_extract_return_value ((TYPE), (REGBUF), (VALBUF))
c906108c 295
ed9a39eb
JM
296/* Write into appropriate registers a function return value of type
297 TYPE, given in virtual format. */
c906108c 298
ed9a39eb 299extern void convert_to_extended (void *dbl, void *ptr);
c906108c
SS
300#define STORE_RETURN_VALUE(TYPE,VALBUF) \
301 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) { \
302 char _buf[MAX_REGISTER_RAW_SIZE]; \
303 convert_to_extended (VALBUF, _buf); \
304 write_register_bytes (REGISTER_BYTE (F0_REGNUM), _buf, MAX_REGISTER_RAW_SIZE); \
305 } else \
306 write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
307
308/* Extract from an array REGBUF containing the (raw) register state
309 the address in which a function should return its structure value,
310 as a CORE_ADDR (or an expression that can be used as one). */
311
7a292a7a 312#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
ed9a39eb 313 (extract_address ((PTR)(REGBUF), REGISTER_RAW_SIZE(0)))
c906108c
SS
314
315/* Specify that for the native compiler variables for a particular
316 lexical context are listed after the beginning LBRAC instead of
317 before in the executables list of symbols. */
318#define VARIABLES_INSIDE_BLOCK(desc, gcc_p) (!(gcc_p))
c906108c 319\f
c5aa993b 320
ed9a39eb
JM
321/* Define other aspects of the stack frame. We keep the offsets of
322 all saved registers, 'cause we need 'em a lot! We also keep the
323 current size of the stack frame, and the offset of the frame
324 pointer from the stack pointer (for frameless functions, and when
325 we're still in the prologue of a function with a frame) */
c906108c
SS
326
327#define EXTRA_FRAME_INFO \
328 struct frame_saved_regs fsr; \
329 int framesize; \
330 int frameoffset; \
331 int framereg;
332
ed9a39eb 333extern void arm_init_extra_frame_info (int fromleaf, struct frame_info * fi);
96baa820 334#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
ed9a39eb 335 arm_init_extra_frame_info ((fromleaf), (fi))
c906108c
SS
336
337/* Return the frame address. On ARM, it is R11; on Thumb it is R7. */
ed9a39eb 338CORE_ADDR arm_target_read_fp (void);
c906108c
SS
339#define TARGET_READ_FP() arm_target_read_fp ()
340
ed9a39eb
JM
341/* Describe the pointer in each stack frame to the previous stack
342 frame (its caller). */
c906108c 343
ed9a39eb
JM
344/* FRAME_CHAIN takes a frame's nominal address and produces the
345 frame's chain-pointer.
c906108c
SS
346
347 However, if FRAME_CHAIN_VALID returns zero,
348 it means the given frame is the outermost one and has no caller. */
349
ed9a39eb
JM
350#define FRAME_CHAIN(thisframe) arm_frame_chain (thisframe)
351extern CORE_ADDR arm_frame_chain (struct frame_info *);
c906108c 352
ed9a39eb
JM
353extern int arm_frame_chain_valid (CORE_ADDR, struct frame_info *);
354#define FRAME_CHAIN_VALID(chain, thisframe) \
355 arm_frame_chain_valid (chain, thisframe)
c906108c
SS
356
357/* Define other aspects of the stack frame. */
358
96baa820
JM
359/* A macro that tells us whether the function invocation represented
360 by FI does not have a frame on the stack associated with it. If it
361 does not, FRAMELESS is set to 1, else 0.
362
ed9a39eb
JM
363 Sometimes we have functions that do a little setup (like saving the
364 vN registers with the stmdb instruction, but DO NOT set up a frame.
96baa820 365 The symbol table will report this as a prologue. However, it is
ed9a39eb 366 important not to try to parse these partial frames as frames, or we
96baa820
JM
367 will get really confused.
368
ed9a39eb
JM
369 So I will demand 3 instructions between the start & end of the
370 prologue before I call it a real prologue, i.e. at least
96baa820
JM
371 mov ip, sp,
372 stmdb sp!, {}
373 sub sp, ip, #4. */
374
104c1213 375extern int arm_frameless_function_invocation (struct frame_info *fi);
96baa820
JM
376#define FRAMELESS_FUNCTION_INVOCATION(FI) \
377(arm_frameless_function_invocation (FI))
ed9a39eb 378
c906108c
SS
379/* Saved Pc. */
380
381#define FRAME_SAVED_PC(FRAME) arm_frame_saved_pc (FRAME)
ed9a39eb 382extern CORE_ADDR arm_frame_saved_pc (struct frame_info *);
c906108c
SS
383
384#define FRAME_ARGS_ADDRESS(fi) (fi->frame)
385
386#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
387
388/* Return number of args passed to a frame.
389 Can return -1, meaning no way to tell. */
390
392a587b 391#define FRAME_NUM_ARGS(fi) (-1)
c906108c 392
ed9a39eb 393/* Return number of bytes at start of arglist that are not really args. */
c906108c
SS
394
395#define FRAME_ARGS_SKIP 0
396
ed9a39eb
JM
397/* Put here the code to store, into a struct frame_saved_regs, the
398 addresses of the saved registers of frame described by FRAME_INFO.
c906108c 399 This includes special registers such as pc and fp saved in special
ed9a39eb
JM
400 ways in the stack frame. sp is even more special: the address we
401 return for it IS the sp for the next frame. */
c906108c
SS
402
403struct frame_saved_regs;
404struct frame_info;
104c1213
JM
405void arm_frame_find_saved_regs (struct frame_info * fi,
406 struct frame_saved_regs * fsr);
c906108c
SS
407
408#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
ed9a39eb 409 arm_frame_find_saved_regs (frame_info, &(frame_saved_regs));
c5aa993b 410
c906108c
SS
411/* Things needed for making the inferior call functions. */
412
413#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
ed9a39eb
JM
414 sp = arm_push_arguments ((nargs), (args), (sp), (struct_return), (struct_addr))
415extern CORE_ADDR arm_push_arguments (int, struct value **, CORE_ADDR, int,
416 CORE_ADDR);
c906108c
SS
417
418/* Push an empty stack frame, to record the current PC, etc. */
419
ed9a39eb 420void arm_push_dummy_frame (void);
c906108c
SS
421
422#define PUSH_DUMMY_FRAME arm_push_dummy_frame ()
423
424/* Discard from the stack the innermost frame, restoring all registers. */
425
ed9a39eb 426void arm_pop_frame (void);
c906108c
SS
427
428#define POP_FRAME arm_pop_frame ()
429
430/* This sequence of words is the instructions
431
c5aa993b
JM
432 mov lr,pc
433 mov pc,r4
434 illegal
c906108c
SS
435
436 Note this is 12 bytes. */
437
ed9a39eb
JM
438#define CALL_DUMMY {0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe}
439#define CALL_DUMMY_START_OFFSET 0 /* Start execution at beginning of dummy */
c906108c
SS
440
441#define CALL_DUMMY_BREAKPOINT_OFFSET arm_call_dummy_breakpoint_offset()
ed9a39eb 442extern int arm_call_dummy_breakpoint_offset (void);
c906108c 443
ed9a39eb
JM
444/* Insert the specified number of args and function address into a
445 call sequence of the above form stored at DUMMYNAME. */
c906108c
SS
446
447#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
ed9a39eb 448 arm_fix_call_dummy ((dummyname), (pc), (fun), (nargs), (args), (type), (gcc_p))
c906108c 449
ed9a39eb
JM
450void arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
451 int nargs, struct value ** args,
452 struct type * type, int gcc_p);
c906108c 453
ed9a39eb 454CORE_ADDR arm_get_next_pc (CORE_ADDR pc);
c906108c 455
ed9a39eb
JM
456/* Macros for setting and testing a bit in a minimal symbol that marks
457 it as Thumb function. The MSB of the minimal symbol's "info" field
458 is used for this purpose. This field is already being used to store
459 the symbol size, so the assumption is that the symbol size cannot
460 exceed 2^31.
c5aa993b 461
c906108c 462 COFF_MAKE_MSYMBOL_SPECIAL
ed9a39eb
JM
463 ELF_MAKE_MSYMBOL_SPECIAL
464
465 These macros test whether the COFF or ELF symbol corresponds to a
466 thumb function, and set a "special" bit in a minimal symbol to
467 indicate that it does.
468
469 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
470 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
471 MSYMBOL_SIZE Returns the size of the minimal symbol,
472 i.e. the "info" field with the "special" bit
473 masked out
474 */
c5aa993b
JM
475
476extern int coff_sym_is_thumb (int val);
ed9a39eb 477
c906108c 478#define MSYMBOL_SET_SPECIAL(msym) \
ed9a39eb 479 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000)
c906108c
SS
480#define MSYMBOL_IS_SPECIAL(msym) \
481 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
482#define MSYMBOL_SIZE(msym) \
483 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
484
ed9a39eb 485/* Thumb symbols are of type STT_LOPROC, (synonymous with STT_ARM_TFUNC) */
c906108c 486#define ELF_MAKE_MSYMBOL_SPECIAL(sym,msym) \
ed9a39eb
JM
487 { if(ELF_ST_TYPE(((elf_symbol_type *)(sym))->internal_elf_sym.st_info) == STT_LOPROC) \
488 MSYMBOL_SET_SPECIAL(msym); }
c5aa993b 489
c906108c
SS
490#define COFF_MAKE_MSYMBOL_SPECIAL(val,msym) \
491 { if(coff_sym_is_thumb(val)) MSYMBOL_SET_SPECIAL(msym); }
492
dfcd3bfb
JM
493/* The first 0x20 bytes are the trap vectors. */
494#define LOWEST_PC 0x20
495
e1d6e81f
SB
496/* Function to determine whether MEMADDR is in a Thumb function. */
497extern int arm_pc_is_thumb (bfd_vma memaddr);
498
499/* Function to determine whether MEMADDR is in a call dummy called from
500 a Thumb function. */
501extern int arm_pc_is_thumb_dummy (bfd_vma memaddr);
502
ed9a39eb 503#endif /* TM_ARM_H */
This page took 0.142129 seconds and 4 git commands to generate.