* config/pa/tm-hppa.h (FRAME_CHAIN_COMBINE): Delete macro.
[deliverable/binutils-gdb.git] / gdb / config / pa / tm-hppa.h
CommitLineData
c906108c 1/* Parameters for execution on any Hewlett-Packard PA-RISC machine.
b6ba6518
KB
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000 Free Software Foundation, Inc.
c906108c
SS
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c 24
f88e2c52
AC
25#include "regcache.h"
26
c906108c
SS
27/* Forward declarations of some types we use in prototypes */
28
c906108c
SS
29struct frame_info;
30struct frame_saved_regs;
31struct value;
32struct type;
33struct inferior_status;
c906108c 34
c906108c
SS
35/* By default assume we don't have to worry about software floating point. */
36#ifndef SOFT_FLOAT
37#define SOFT_FLOAT 0
38#endif
39
40/* Get at various relevent fields of an instruction word. */
41
42#define MASK_5 0x1f
43#define MASK_11 0x7ff
44#define MASK_14 0x3fff
45#define MASK_21 0x1fffff
46
47/* This macro gets bit fields using HP's numbering (MSB = 0) */
48#ifndef GET_FIELD
49#define GET_FIELD(X, FROM, TO) \
50 ((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
51#endif
52
c906108c
SS
53/* On the PA, any pass-by-value structure > 8 bytes is actually
54 passed via a pointer regardless of its type or the compiler
55 used. */
56
57#define REG_STRUCT_HAS_ADDR(gcc_p,type) \
58 (TYPE_LENGTH (type) > 8)
59
60/* Offset from address of function to start of its code.
61 Zero on most machines. */
62
63#define FUNCTION_START_OFFSET 0
c5aa993b 64
c906108c
SS
65/* Advance PC across any function entry prologue instructions
66 to reach some "real" code. */
67
a14ed312 68extern CORE_ADDR hppa_skip_prologue (CORE_ADDR);
b83266a0 69#define SKIP_PROLOGUE(pc) (hppa_skip_prologue (pc))
c906108c
SS
70
71/* If PC is in some function-call trampoline code, return the PC
72 where the function itself actually starts. If not, return NULL. */
73
74#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc, NULL)
a14ed312 75extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
c906108c
SS
76
77/* Return non-zero if we are in an appropriate trampoline. */
78
79#define IN_SOLIB_CALL_TRAMPOLINE(pc, name) \
80 in_solib_call_trampoline (pc, name)
a14ed312 81extern int in_solib_call_trampoline (CORE_ADDR, char *);
c906108c
SS
82
83#define IN_SOLIB_RETURN_TRAMPOLINE(pc, name) \
84 in_solib_return_trampoline (pc, name)
a14ed312 85extern int in_solib_return_trampoline (CORE_ADDR, char *);
c906108c
SS
86
87/* Immediately after a function call, return the saved pc.
88 Can't go through the frames for this because on some machines
89 the new frame is not set up until the new function executes
90 some instructions. */
91
92#undef SAVED_PC_AFTER_CALL
93#define SAVED_PC_AFTER_CALL(frame) saved_pc_after_call (frame)
a14ed312 94extern CORE_ADDR saved_pc_after_call (struct frame_info *);
c906108c
SS
95
96/* Stack grows upward */
97#define INNER_THAN(lhs,rhs) ((lhs) > (rhs))
98
99/* elz: adjust the quantity to the next highest value which is 64-bit aligned.
100 This is used in valops.c, when the sp is adjusted.
c5aa993b 101 On hppa the sp must always be kept 64-bit aligned */
c906108c
SS
102
103#define STACK_ALIGN(arg) ( ((arg)%8) ? (((arg)+7)&-8) : (arg))
0a49d05e 104#define EXTRA_STACK_ALIGNMENT_NEEDED 0
c906108c
SS
105
106/* Sequence of bytes for breakpoint instruction. */
107
108#define BREAKPOINT {0x00, 0x01, 0x00, 0x04}
109#define BREAKPOINT32 0x10004
110
111/* Amount PC must be decremented by after a breakpoint.
112 This is often the number of bytes in BREAKPOINT
113 but not always.
114
115 Not on the PA-RISC */
116
117#define DECR_PC_AFTER_BREAK 0
118
119/* Sometimes we may pluck out a minimal symbol that has a negative
120 address.
121
122 An example of this occurs when an a.out is linked against a foo.sl.
123 The foo.sl defines a global bar(), and the a.out declares a signature
124 for bar(). However, the a.out doesn't directly call bar(), but passes
125 its address in another call.
126
127 If you have this scenario and attempt to "break bar" before running,
128 gdb will find a minimal symbol for bar() in the a.out. But that
129 symbol's address will be negative. What this appears to denote is
130 an index backwards from the base of the procedure linkage table (PLT)
131 into the data linkage table (DLT), the end of which is contiguous
132 with the start of the PLT. This is clearly not a valid address for
133 us to set a breakpoint on.
134
135 Note that one must be careful in how one checks for a negative address.
136 0xc0000000 is a legitimate address of something in a shared text
137 segment, for example. Since I don't know what the possible range
138 is of these "really, truly negative" addresses that come from the
139 minimal symbols, I'm resorting to the gross hack of checking the
140 top byte of the address for all 1's. Sigh.
c5aa993b 141 */
c906108c
SS
142#define PC_REQUIRES_RUN_BEFORE_USE(pc) \
143 (! target_has_stack && (pc & 0xFF000000))
144
c5aa993b 145/* return instruction is bv r0(rp) or bv,n r0(rp) */
c906108c
SS
146
147#define ABOUT_TO_RETURN(pc) ((read_memory_integer (pc, 4) | 0x2) == 0xE840C002)
148
149/* Say how long (ordinary) registers are. This is a piece of bogosity
150 used in push_word and a few other places; REGISTER_RAW_SIZE is the
151 real way to know how big a register is. */
152
153#define REGISTER_SIZE 4
154
155/* Number of machine registers */
156
157#define NUM_REGS 128
158
159/* Initializer for an array of names of registers.
160 There should be NUM_REGS strings in this initializer.
161 They are in rows of eight entries */
162
163#define REGISTER_NAMES \
164 {"flags", "r1", "rp", "r3", "r4", "r5", "r6", "r7", \
165 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
166 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
167 "r24", "r25", "r26", "dp", "ret0", "ret1", "sp", "r31", \
168 "sar", "pcoqh", "pcsqh", "pcoqt", "pcsqt", "eiem", "iir", "isr", \
169 "ior", "ipsw", "goto", "sr4", "sr0", "sr1", "sr2", "sr3", \
170 "sr5", "sr6", "sr7", "cr0", "cr8", "cr9", "ccr", "cr12", \
171 "cr13", "cr24", "cr25", "cr26", "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",\
172 "fpsr", "fpe1", "fpe2", "fpe3", "fpe4", "fpe5", "fpe6", "fpe7", \
173 "fr4", "fr4R", "fr5", "fr5R", "fr6", "fr6R", "fr7", "fr7R", \
174 "fr8", "fr8R", "fr9", "fr9R", "fr10", "fr10R", "fr11", "fr11R", \
175 "fr12", "fr12R", "fr13", "fr13R", "fr14", "fr14R", "fr15", "fr15R", \
176 "fr16", "fr16R", "fr17", "fr17R", "fr18", "fr18R", "fr19", "fr19R", \
177 "fr20", "fr20R", "fr21", "fr21R", "fr22", "fr22R", "fr23", "fr23R", \
178 "fr24", "fr24R", "fr25", "fr25R", "fr26", "fr26R", "fr27", "fr27R", \
179 "fr28", "fr28R", "fr29", "fr29R", "fr30", "fr30R", "fr31", "fr31R"}
180
181/* Register numbers of various important registers.
182 Note that some of these values are "real" register numbers,
183 and correspond to the general registers of the machine,
184 and some are "phony" register numbers which are too large
185 to be actual register numbers as far as the user is concerned
186 but do serve to get the desired values when passed to read_register. */
187
188#define R0_REGNUM 0 /* Doesn't actually exist, used as base for
189 other r registers. */
190#define FLAGS_REGNUM 0 /* Various status flags */
191#define RP_REGNUM 2 /* return pointer */
192#define FP_REGNUM 3 /* Contains address of executing stack */
193 /* frame */
194#define SP_REGNUM 30 /* Contains address of top of stack */
195#define SAR_REGNUM 32 /* Shift Amount Register */
196#define IPSW_REGNUM 41 /* Interrupt Processor Status Word */
197#define PCOQ_HEAD_REGNUM 33 /* instruction offset queue head */
198#define PCSQ_HEAD_REGNUM 34 /* instruction space queue head */
199#define PCOQ_TAIL_REGNUM 35 /* instruction offset queue tail */
200#define PCSQ_TAIL_REGNUM 36 /* instruction space queue tail */
201#define EIEM_REGNUM 37 /* External Interrupt Enable Mask */
202#define IIR_REGNUM 38 /* Interrupt Instruction Register */
203#define IOR_REGNUM 40 /* Interrupt Offset Register */
204#define SR4_REGNUM 43 /* space register 4 */
205#define RCR_REGNUM 51 /* Recover Counter (also known as cr0) */
206#define CCR_REGNUM 54 /* Coprocessor Configuration Register */
207#define TR0_REGNUM 57 /* Temporary Registers (cr24 -> cr31) */
c5aa993b
JM
208#define CR27_REGNUM 60 /* Base register for thread-local storage, cr27 */
209#define FP0_REGNUM 64 /* floating point reg. 0 (fspr) */
c906108c
SS
210#define FP4_REGNUM 72
211
c5aa993b
JM
212#define ARG0_REGNUM 26 /* The first argument of a callee. */
213#define ARG1_REGNUM 25 /* The second argument of a callee. */
214#define ARG2_REGNUM 24 /* The third argument of a callee. */
215#define ARG3_REGNUM 23 /* The fourth argument of a callee. */
c906108c
SS
216
217/* compatibility with the rest of gdb. */
218#define PC_REGNUM PCOQ_HEAD_REGNUM
219#define NPC_REGNUM PCOQ_TAIL_REGNUM
220
221/*
222 * Processor Status Word Masks
223 */
224
c5aa993b
JM
225#define PSW_T 0x01000000 /* Taken Branch Trap Enable */
226#define PSW_H 0x00800000 /* Higher-Privilege Transfer Trap Enable */
227#define PSW_L 0x00400000 /* Lower-Privilege Transfer Trap Enable */
228#define PSW_N 0x00200000 /* PC Queue Front Instruction Nullified */
229#define PSW_X 0x00100000 /* Data Memory Break Disable */
230#define PSW_B 0x00080000 /* Taken Branch in Previous Cycle */
231#define PSW_C 0x00040000 /* Code Address Translation Enable */
232#define PSW_V 0x00020000 /* Divide Step Correction */
233#define PSW_M 0x00010000 /* High-Priority Machine Check Disable */
234#define PSW_CB 0x0000ff00 /* Carry/Borrow Bits */
235#define PSW_R 0x00000010 /* Recovery Counter Enable */
236#define PSW_Q 0x00000008 /* Interruption State Collection Enable */
237#define PSW_P 0x00000004 /* Protection ID Validation Enable */
238#define PSW_D 0x00000002 /* Data Address Translation Enable */
239#define PSW_I 0x00000001 /* External, Power Failure, Low-Priority */
240 /* Machine Check Interruption Enable */
c906108c
SS
241
242/* When fetching register values from an inferior or a core file,
243 clean them up using this macro. BUF is a char pointer to
244 the raw value of the register in the registers[] array. */
245
4ee3352d 246#define DEPRECATED_CLEAN_UP_REGISTER_VALUE(regno, buf) \
c906108c
SS
247 do { \
248 if ((regno) == PCOQ_HEAD_REGNUM || (regno) == PCOQ_TAIL_REGNUM) \
7be570e7 249 (buf)[sizeof(CORE_ADDR) -1] &= ~0x3; \
c906108c
SS
250 } while (0)
251
252/* Define DO_REGISTERS_INFO() to do machine-specific formatting
253 of register dumps. */
254
255#define DO_REGISTERS_INFO(_regnum, fp) pa_do_registers_info (_regnum, fp)
a14ed312 256extern void pa_do_registers_info (int, int);
c906108c
SS
257
258#if 0
259#define STRCAT_REGISTER(regnum, fpregs, stream, precision) pa_do_strcat_registers_info (regnum, fpregs, stream, precision)
d9fcf2fb 260extern void pa_do_strcat_registers_info (int, int, struct ui_file *, enum precision_type);
c906108c
SS
261#endif
262
263/* PA specific macro to see if the current instruction is nullified. */
264#ifndef INSTRUCTION_NULLIFIED
265#define INSTRUCTION_NULLIFIED \
266 (((int)read_register (IPSW_REGNUM) & 0x00200000) && \
267 !((int)read_register (FLAGS_REGNUM) & 0x2))
268#endif
269
270/* Number of bytes of storage in the actual machine representation
271 for register N. On the PA-RISC, all regs are 4 bytes, including
272 the FP registers (they're accessed as two 4 byte halves). */
273
274#define REGISTER_RAW_SIZE(N) 4
275
276/* Total amount of space needed to store our copies of the machine's
277 register state, the array `registers'. */
278#define REGISTER_BYTES (NUM_REGS * 4)
279
280/* Index within `registers' of the first byte of the space for
281 register N. */
282
283#define REGISTER_BYTE(N) (N) * 4
284
285/* Number of bytes of storage in the program's representation
286 for register N. */
287
288#define REGISTER_VIRTUAL_SIZE(N) REGISTER_RAW_SIZE(N)
289
290/* Largest value REGISTER_RAW_SIZE can have. */
291
292#define MAX_REGISTER_RAW_SIZE 4
293
294/* Largest value REGISTER_VIRTUAL_SIZE can have. */
295
296#define MAX_REGISTER_VIRTUAL_SIZE 8
297
298/* Return the GDB type object for the "standard" data type
299 of data in register N. */
300
301#define REGISTER_VIRTUAL_TYPE(N) \
302 ((N) < FP4_REGNUM ? builtin_type_int : builtin_type_float)
303
304/* Store the address of the place in which to copy the structure the
305 subroutine will return. This is called from call_function. */
306
307#define STORE_STRUCT_RETURN(ADDR, SP) {write_register (28, (ADDR)); }
308
309/* Extract from an array REGBUF containing the (raw) register state
310 a function return value of type TYPE, and copy that, in virtual format,
1cdb71fe 311 into VALBUF. */
c906108c
SS
312
313#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
1cdb71fe 314 hppa_extract_return_value (TYPE, REGBUF, VALBUF);
c906108c
SS
315
316 /* elz: decide whether the function returning a value of type type
317 will put it on the stack or in the registers.
318 The pa calling convention says that:
319 register 28 (called ret0 by gdb) contains any ASCII char,
320 and any non_floating point value up to 32-bits.
321 reg 28 and 29 contain non-floating point up tp 64 bits and larger
322 than 32 bits. (higer order word in reg 28).
323 fr4: floating point up to 64 bits
324 sr1: space identifier (32-bit)
325 stack: any lager than 64-bit, with the address in r28
c5aa993b 326 */
c906108c
SS
327extern use_struct_convention_fn hppa_use_struct_convention;
328#define USE_STRUCT_CONVENTION(gcc_p,type) hppa_use_struct_convention (gcc_p,type)
329
330/* Write into appropriate registers a function return value
1cdb71fe 331 of type TYPE, given in virtual format. */
c906108c
SS
332
333#define STORE_RETURN_VALUE(TYPE,VALBUF) \
1cdb71fe 334 hppa_store_return_value (TYPE, VALBUF);
c906108c
SS
335
336/* Extract from an array REGBUF containing the (raw) register state
337 the address in which a function should return its structure value,
338 as a CORE_ADDR (or an expression that can be used as one). */
339
340#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) \
341 (*(int *)((REGBUF) + REGISTER_BYTE (28)))
342
343/* elz: Return a large value, which is stored on the stack at addr.
344 This is defined only for the hppa, at this moment.
345 The above macro EXTRACT_STRUCT_VALUE_ADDRESS is not called anymore,
346 because it assumes that on exit from a called function which returns
347 a large structure on the stack, the address of the ret structure is
348 still in register 28. Unfortunately this register is usually overwritten
349 by the called function itself, on hppa. This is specified in the calling
350 convention doc. As far as I know, the only way to get the return value
351 is to have the caller tell us where it told the callee to put it, rather
352 than have the callee tell us.
c5aa993b 353 */
c906108c
SS
354#define VALUE_RETURNED_FROM_STACK(valtype,addr) \
355 hppa_value_returned_from_stack (valtype, addr)
356
357/*
358 * This macro defines the register numbers (from REGISTER_NAMES) that
359 * are effectively unavailable to the user through ptrace(). It allows
360 * us to include the whole register set in REGISTER_NAMES (inorder to
361 * better support remote debugging). If it is used in
362 * fetch/store_inferior_registers() gdb will not complain about I/O errors
363 * on fetching these registers. If all registers in REGISTER_NAMES
364 * are available, then return false (0).
365 */
366
367#define CANNOT_STORE_REGISTER(regno) \
368 ((regno) == 0) || \
369 ((regno) == PCSQ_HEAD_REGNUM) || \
370 ((regno) >= PCSQ_TAIL_REGNUM && (regno) < IPSW_REGNUM) || \
371 ((regno) > IPSW_REGNUM && (regno) < FP4_REGNUM)
372
373#define INIT_EXTRA_FRAME_INFO(fromleaf, frame) init_extra_frame_info (fromleaf, frame)
a14ed312 374extern void init_extra_frame_info (int, struct frame_info *);
c906108c
SS
375
376/* Describe the pointer in each stack frame to the previous stack frame
377 (its caller). */
378
f208ba17
AC
379/* FRAME_CHAIN takes a frame's nominal address and produces the
380 frame's chain-pointer. */
c906108c
SS
381
382/* In the case of the PA-RISC, the frame's nominal address
383 is the address of a 4-byte word containing the calling frame's
384 address (previous FP). */
385
386#define FRAME_CHAIN(thisframe) frame_chain (thisframe)
a14ed312 387extern CORE_ADDR frame_chain (struct frame_info *);
c906108c 388
a14ed312 389extern int hppa_frame_chain_valid (CORE_ADDR, struct frame_info *);
c906108c
SS
390#define FRAME_CHAIN_VALID(chain, thisframe) hppa_frame_chain_valid (chain, thisframe)
391
c906108c
SS
392/* Define other aspects of the stack frame. */
393
394/* A macro that tells us whether the function invocation represented
395 by FI does not have a frame on the stack associated with it. If it
396 does not, FRAMELESS is set to 1, else 0. */
392a587b
JM
397#define FRAMELESS_FUNCTION_INVOCATION(FI) \
398 (frameless_function_invocation (FI))
a14ed312 399extern int frameless_function_invocation (struct frame_info *);
c906108c 400
a14ed312 401extern CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
c906108c
SS
402#define FRAME_SAVED_PC(FRAME) hppa_frame_saved_pc (FRAME)
403
404#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
405
406#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
407/* Set VAL to the number of args passed to frame described by FI.
408 Can set VAL to -1, meaning no way to tell. */
409
410/* We can't tell how many args there are
411 now that the C compiler delays popping them. */
392a587b 412#define FRAME_NUM_ARGS(fi) (-1)
c906108c
SS
413
414/* Return number of bytes at start of arglist that are not really args. */
415
416#define FRAME_ARGS_SKIP 0
417
418#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
419 hppa_frame_find_saved_regs (frame_info, &frame_saved_regs)
420extern void
a14ed312 421hppa_frame_find_saved_regs (struct frame_info *, struct frame_saved_regs *);
c906108c 422\f
c5aa993b 423
c906108c
SS
424/* Things needed for making the inferior call functions. */
425
426/* Push an empty stack frame, to record the current PC, etc. */
427
7a292a7a 428#define PUSH_DUMMY_FRAME push_dummy_frame (inf_status)
a14ed312 429extern void push_dummy_frame (struct inferior_status *);
c906108c
SS
430
431/* Discard from the stack the innermost frame,
432 restoring all saved registers. */
433#define POP_FRAME hppa_pop_frame ()
a14ed312 434extern void hppa_pop_frame (void);
c906108c
SS
435
436#define INSTRUCTION_SIZE 4
437
438#ifndef PA_LEVEL_0
439
440/* Non-level zero PA's have space registers (but they don't always have
441 floating-point, do they???? */
442
443/* This sequence of words is the instructions
444
c5aa993b
JM
445 ; Call stack frame has already been built by gdb. Since we could be calling
446 ; a varargs function, and we do not have the benefit of a stub to put things in
447 ; the right place, we load the first 4 word of arguments into both the general
448 ; and fp registers.
449 call_dummy
450 ldw -36(sp), arg0
451 ldw -40(sp), arg1
452 ldw -44(sp), arg2
453 ldw -48(sp), arg3
454 ldo -36(sp), r1
455 fldws 0(0, r1), fr4
456 fldds -4(0, r1), fr5
457 fldws -8(0, r1), fr6
458 fldds -12(0, r1), fr7
459 ldil 0, r22 ; FUNC_LDIL_OFFSET must point here
460 ldo 0(r22), r22 ; FUNC_LDO_OFFSET must point here
461 ldsid (0,r22), r4
462 ldil 0, r1 ; SR4EXPORT_LDIL_OFFSET must point here
463 ldo 0(r1), r1 ; SR4EXPORT_LDO_OFFSET must point here
464 ldsid (0,r1), r20
465 combt,=,n r4, r20, text_space ; If target is in data space, do a
466 ble 0(sr5, r22) ; "normal" procedure call
467 copy r31, r2
468 break 4, 8
469 mtsp r21, sr0
470 ble,n 0(sr0, r22)
471 text_space ; Otherwise, go through _sr4export,
472 ble (sr4, r1) ; which will return back here.
473 stw r31,-24(r30)
474 break 4, 8
475 mtsp r21, sr0
476 ble,n 0(sr0, r22)
477 nop ; To avoid kernel bugs
478 nop ; and keep the dummy 8 byte aligned
c906108c
SS
479
480 The dummy decides if the target is in text space or data space. If
481 it's in data space, there's no problem because the target can
482 return back to the dummy. However, if the target is in text space,
483 the dummy calls the secret, undocumented routine _sr4export, which
484 calls a function in text space and can return to any space. Instead
485 of including fake instructions to represent saved registers, we
486 know that the frame is associated with the call dummy and treat it
487 specially.
488
489 The trailing NOPs are needed to avoid a bug in HPUX, BSD and OSF1
490 kernels. If the memory at the location pointed to by the PC is
491 0xffffffff then a ptrace step call will fail (even if the instruction
492 is nullified).
493
494 The code to pop a dummy frame single steps three instructions
495 starting with the last mtsp. This includes the nullified "instruction"
496 following the ble (which is uninitialized junk). If the
497 "instruction" following the last BLE is 0xffffffff, then the ptrace
498 will fail and the dummy frame is not correctly popped.
499
500 By placing a NOP in the delay slot of the BLE instruction we can be
501 sure that we never try to execute a 0xffffffff instruction and
502 avoid the kernel bug. The second NOP is needed to keep the call
503 dummy 8 byte aligned. */
504
505/* Define offsets into the call dummy for the target function address */
506#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
507#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
508
509/* Define offsets into the call dummy for the _sr4export address */
510#define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
511#define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
512
513#define CALL_DUMMY {0x4BDA3FB9, 0x4BD93FB1, 0x4BD83FA9, 0x4BD73FA1,\
514 0x37C13FB9, 0x24201004, 0x2C391005, 0x24311006,\
515 0x2C291007, 0x22C00000, 0x36D60000, 0x02C010A4,\
516 0x20200000, 0x34210000, 0x002010b4, 0x82842022,\
517 0xe6c06000, 0x081f0242, 0x00010004, 0x00151820,\
518 0xe6c00002, 0xe4202000, 0x6bdf3fd1, 0x00010004,\
519 0x00151820, 0xe6c00002, 0x08000240, 0x08000240}
520
521#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 28)
7be570e7 522#define REG_PARM_STACK_SPACE 16
c906108c
SS
523
524#else /* defined PA_LEVEL_0 */
525
526/* This is the call dummy for a level 0 PA. Level 0's don't have space
1faa59a8 527 registers (or floating point?), so we skip all that inter-space call stuff,
c906108c
SS
528 and avoid touching the fp regs.
529
c5aa993b
JM
530 call_dummy
531
532 ldw -36(%sp), %arg0
533 ldw -40(%sp), %arg1
534 ldw -44(%sp), %arg2
535 ldw -48(%sp), %arg3
536 ldil 0, %r31 ; FUNC_LDIL_OFFSET must point here
537 ldo 0(%r31), %r31 ; FUNC_LDO_OFFSET must point here
538 ble 0(%sr0, %r31)
539 copy %r31, %r2
540 break 4, 8
541 nop ; restore_pc_queue expects these
542 bv,n 0(%r22) ; instructions to be here...
543 nop
544 */
c906108c
SS
545
546/* Define offsets into the call dummy for the target function address */
547#define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 4)
548#define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 5)
549
550#define CALL_DUMMY {0x4bda3fb9, 0x4bd93fb1, 0x4bd83fa9, 0x4bd73fa1,\
551 0x23e00000, 0x37ff0000, 0xe7e00000, 0x081f0242,\
552 0x00010004, 0x08000240, 0xeac0c002, 0x08000240}
553
554#define CALL_DUMMY_LENGTH (INSTRUCTION_SIZE * 12)
555
556#endif
557
558#define CALL_DUMMY_START_OFFSET 0
559
560/* If we've reached a trap instruction within the call dummy, then
561 we'll consider that to mean that we've reached the call dummy's
562 end after its successful completion. */
563#define CALL_DUMMY_HAS_COMPLETED(pc, sp, frame_address) \
564 (PC_IN_CALL_DUMMY((pc), (sp), (frame_address)) && \
565 (read_memory_integer((pc), 4) == BREAKPOINT32))
566
567/*
568 * Insert the specified number of args and function address
569 * into a call sequence of the above form stored at DUMMYNAME.
570 *
571 * On the hppa we need to call the stack dummy through $$dyncall.
572 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
573 * real_pc, which is the location where gdb should start up the
574 * inferior to do the function call.
575 */
576
577#define FIX_CALL_DUMMY hppa_fix_call_dummy
578
579extern CORE_ADDR
a14ed312
KB
580hppa_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR, int,
581 struct value **, struct type *, int);
c906108c
SS
582
583#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
392a587b 584 (hppa_push_arguments((nargs), (args), (sp), (struct_return), (struct_addr)))
c906108c 585extern CORE_ADDR
a14ed312 586hppa_push_arguments (int, struct value **, CORE_ADDR, int, CORE_ADDR);
c906108c
SS
587\f
588/* The low two bits of the PC on the PA contain the privilege level. Some
589 genius implementing a (non-GCC) compiler apparently decided this means
590 that "addresses" in a text section therefore include a privilege level,
591 and thus symbol tables should contain these bits. This seems like a
592 bonehead thing to do--anyway, it seems to work for our purposes to just
593 ignore those bits. */
594#define SMASH_TEXT_ADDRESS(addr) ((addr) &= ~0x3)
595
596#define GDB_TARGET_IS_HPPA
597
598#define BELIEVE_PCC_PROMOTION 1
599
600/*
601 * Unwind table and descriptor.
602 */
603
c5aa993b
JM
604struct unwind_table_entry
605 {
7be570e7
JM
606 CORE_ADDR region_start;
607 CORE_ADDR region_end;
c5aa993b
JM
608
609 unsigned int Cannot_unwind:1; /* 0 */
610 unsigned int Millicode:1; /* 1 */
611 unsigned int Millicode_save_sr0:1; /* 2 */
612 unsigned int Region_description:2; /* 3..4 */
613 unsigned int reserved1:1; /* 5 */
614 unsigned int Entry_SR:1; /* 6 */
615 unsigned int Entry_FR:4; /* number saved *//* 7..10 */
616 unsigned int Entry_GR:5; /* number saved *//* 11..15 */
617 unsigned int Args_stored:1; /* 16 */
618 unsigned int Variable_Frame:1; /* 17 */
619 unsigned int Separate_Package_Body:1; /* 18 */
620 unsigned int Frame_Extension_Millicode:1; /* 19 */
621 unsigned int Stack_Overflow_Check:1; /* 20 */
622 unsigned int Two_Instruction_SP_Increment:1; /* 21 */
623 unsigned int Ada_Region:1; /* 22 */
624 unsigned int cxx_info:1; /* 23 */
625 unsigned int cxx_try_catch:1; /* 24 */
626 unsigned int sched_entry_seq:1; /* 25 */
627 unsigned int reserved2:1; /* 26 */
628 unsigned int Save_SP:1; /* 27 */
629 unsigned int Save_RP:1; /* 28 */
630 unsigned int Save_MRP_in_frame:1; /* 29 */
631 unsigned int extn_ptr_defined:1; /* 30 */
632 unsigned int Cleanup_defined:1; /* 31 */
633
634 unsigned int MPE_XL_interrupt_marker:1; /* 0 */
635 unsigned int HP_UX_interrupt_marker:1; /* 1 */
636 unsigned int Large_frame:1; /* 2 */
637 unsigned int Pseudo_SP_Set:1; /* 3 */
638 unsigned int reserved4:1; /* 4 */
639 unsigned int Total_frame_size:27; /* 5..31 */
640
641 /* This is *NOT* part of an actual unwind_descriptor in an object
642 file. It is *ONLY* part of the "internalized" descriptors that
643 we create from those in a file.
c906108c 644 */
c5aa993b
JM
645 struct
646 {
647 unsigned int stub_type:4; /* 0..3 */
648 unsigned int padding:28; /* 4..31 */
649 }
650 stub_unwind;
651 };
c906108c
SS
652
653/* HP linkers also generate unwinds for various linker-generated stubs.
654 GDB reads in the stubs from the $UNWIND_END$ subspace, then
655 "converts" them into normal unwind entries using some of the reserved
656 fields to store the stub type. */
657
658struct stub_unwind_entry
c5aa993b
JM
659 {
660 /* The offset within the executable for the associated stub. */
661 unsigned stub_offset;
c906108c 662
c5aa993b
JM
663 /* The type of stub this unwind entry describes. */
664 char type;
c906108c 665
c5aa993b
JM
666 /* Unknown. Not needed by GDB at this time. */
667 char prs_info;
c906108c 668
c5aa993b
JM
669 /* Length (in instructions) of the associated stub. */
670 short stub_length;
671 };
c906108c
SS
672
673/* Sizes (in bytes) of the native unwind entries. */
674#define UNWIND_ENTRY_SIZE 16
675#define STUB_UNWIND_ENTRY_SIZE 8
676
677/* The gaps represent linker stubs used in MPE and space for future
678 expansion. */
679enum unwind_stub_types
c5aa993b
JM
680 {
681 LONG_BRANCH = 1,
682 PARAMETER_RELOCATION = 2,
683 EXPORT = 10,
684 IMPORT = 11,
685 IMPORT_SHLIB = 12,
686 };
c906108c
SS
687
688/* We use the objfile->obj_private pointer for two things:
c5aa993b 689
c906108c
SS
690 * 1. An unwind table;
691 *
692 * 2. A pointer to any associated shared library object.
693 *
694 * #defines are used to help refer to these objects.
695 */
c5aa993b 696
c906108c 697/* Info about the unwind table associated with an object file.
c5aa993b 698
c906108c
SS
699 * This is hung off of the "objfile->obj_private" pointer, and
700 * is allocated in the objfile's psymbol obstack. This allows
701 * us to have unique unwind info for each executable and shared
702 * library that we are debugging.
703 */
c5aa993b
JM
704struct obj_unwind_info
705 {
706 struct unwind_table_entry *table; /* Pointer to unwind info */
707 struct unwind_table_entry *cache; /* Pointer to last entry we found */
708 int last; /* Index of last entry */
709 };
710
711typedef struct obj_private_struct
712 {
713 struct obj_unwind_info *unwind_info; /* a pointer */
714 struct so_list *so_info; /* a pointer */
53a5351d 715 CORE_ADDR dp;
c5aa993b
JM
716 }
717obj_private_data_t;
c906108c
SS
718
719#if 0
a14ed312
KB
720extern void target_write_pc (CORE_ADDR, int);
721extern CORE_ADDR target_read_pc (int);
722extern CORE_ADDR skip_trampoline_code (CORE_ADDR, char *);
c906108c
SS
723#endif
724
725#define TARGET_READ_PC(pid) target_read_pc (pid)
39f77062 726extern CORE_ADDR target_read_pc (ptid_t);
c906108c
SS
727
728#define TARGET_WRITE_PC(v,pid) target_write_pc (v,pid)
39f77062 729extern void target_write_pc (CORE_ADDR, ptid_t);
c906108c 730
39f77062 731#define TARGET_READ_FP() target_read_fp (PIDGET (inferior_ptid))
a14ed312 732extern CORE_ADDR target_read_fp (int);
c906108c
SS
733
734/* For a number of horrible reasons we may have to adjust the location
735 of variables on the stack. Ugh. */
736#define HPREAD_ADJUST_STACK_ADDRESS(ADDR) hpread_adjust_stack_address(ADDR)
737
a14ed312 738extern int hpread_adjust_stack_address (CORE_ADDR);
c906108c
SS
739
740/* If the current gcc for for this target does not produce correct debugging
741 information for float parameters, both prototyped and unprototyped, then
742 define this macro. This forces gdb to always assume that floats are
743 passed as doubles and then converted in the callee.
744
745 For the pa, it appears that the debug info marks the parameters as
746 floats regardless of whether the function is prototyped, but the actual
747 values are passed as doubles for the non-prototyped case and floats for
748 the prototyped case. Thus we choose to make the non-prototyped case work
749 for C and break the prototyped case, since the non-prototyped case is
750 probably much more common. (FIXME). */
751
b9a8e3bf 752#define COERCE_FLOAT_TO_DOUBLE(formal, actual) (current_language -> la_language == language_c)
c2c6d25f
JM
753
754/* Here's how to step off a permanent breakpoint. */
755#define SKIP_PERMANENT_BREAKPOINT (hppa_skip_permanent_breakpoint)
756extern void hppa_skip_permanent_breakpoint (void);
2df3850c
JM
757
758/* On HP-UX, certain system routines (millicode) have names beginning
759 with $ or $$, e.g. $$dyncall, which handles inter-space procedure
760 calls on PA-RISC. Tell the expression parser to check for those
761 when parsing tokens that begin with "$". */
762#define SYMBOLS_CAN_START_WITH_DOLLAR (1)
This page took 0.225257 seconds and 4 git commands to generate.