import gdb-19990504 snapshot
[deliverable/binutils-gdb.git] / gdb / config / rs6000 / tm-rs6000.h
CommitLineData
c906108c
SS
1/* Parameters for target execution on an RS6000, for GDB, the GNU debugger.
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1997
3 Free Software Foundation, Inc.
4 Contributed by IBM Corporation.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22#ifdef __STDC__ /* Forward decls for prototypes */
23struct frame_info;
24struct type;
25struct value;
26#endif
27
28/* Minimum possible text address in AIX */
29
30#define TEXT_SEGMENT_BASE 0x10000000
31
32/* Load segment of a given pc value. */
33
34#define PC_LOAD_SEGMENT(PC) pc_load_segment_name(PC)
35extern char *pc_load_segment_name PARAMS ((CORE_ADDR));
36
37/* AIX cc seems to get this right. */
38
39#define BELIEVE_PCC_PROMOTION 1
40
41/* return true if a given `pc' value is in `call dummy' function. */
42/* FIXME: This just checks for the end of the stack, which is broken
43 for things like stepping through gcc nested function stubs. */
44#define PC_IN_CALL_DUMMY(STOP_PC, STOP_SP, STOP_FRAME_ADDR) \
45 (STOP_SP < STOP_PC && STOP_PC < STACK_END_ADDR)
46
47#if 0
48extern unsigned int text_start, data_start;
49extern char *corefile;
50#endif
51extern int inferior_pid;
52
53/* We are missing register descriptions in the system header files. Sigh! */
54
55struct regs {
56 int gregs [32]; /* general purpose registers */
57 int pc; /* program conter */
58 int ps; /* processor status, or machine state */
59};
60
61struct fp_status {
62 double fpregs [32]; /* floating GP registers */
63};
64
65
66/* To be used by skip_prologue. */
67
68struct rs6000_framedata {
69 int offset; /* total size of frame --- the distance
70 by which we decrement sp to allocate
71 the frame */
72 int saved_gpr; /* smallest # of saved gpr */
73 int saved_fpr; /* smallest # of saved fpr */
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
79 int lr_offset; /* offset of saved lr */
80 int cr_offset; /* offset of saved cr */
81};
82
83/* Define the byte order of the machine. */
84
85#define TARGET_BYTE_ORDER_DEFAULT BIG_ENDIAN
86
87/* AIX's assembler doesn't grok dollar signs in identifiers.
88 So we use dots instead. This item must be coordinated with G++. */
89#undef CPLUS_MARKER
90#define CPLUS_MARKER '.'
91
92/* Offset from address of function to start of its code.
93 Zero on most machines. */
94
95#define FUNCTION_START_OFFSET 0
96
97/* Advance PC across any function entry prologue instructions
98 to reach some "real" code. */
99
b83266a0
SS
100extern CORE_ADDR rs6000_skip_prologue PARAMS ((CORE_ADDR));
101#define SKIP_PROLOGUE(pc) (rs6000_skip_prologue (pc))
c906108c
SS
102
103extern CORE_ADDR skip_prologue PARAMS((CORE_ADDR, struct rs6000_framedata *));
104
105
106/* If PC is in some function-call trampoline code, return the PC
107 where the function itself actually starts. If not, return NULL. */
108
109#define SKIP_TRAMPOLINE_CODE(pc) skip_trampoline_code (pc)
110extern CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR));
111
112/* Number of trap signals we need to skip over, once the inferior process
113 starts running. */
114
115#define START_INFERIOR_TRAPS_EXPECTED 2
116
117/* AIX has a couple of strange returns from wait(). */
118
119#define CHILD_SPECIAL_WAITSTATUS(ourstatus, hoststatus) ( \
120 /* "stop after load" status. */ \
121 (hoststatus) == 0x57c ? (ourstatus)->kind = TARGET_WAITKIND_LOADED, 1 : \
122 \
123 /* signal 0. I have no idea why wait(2) returns with this status word. */ \
124 /* It looks harmless. */ \
125 (hoststatus) == 0x7f ? (ourstatus)->kind = TARGET_WAITKIND_SPURIOUS, 1 : \
126 \
127 /* A normal waitstatus. Let the usual macros deal with it. */ \
128 0)
129
130/* In xcoff, we cannot process line numbers when we see them. This is
131 mainly because we don't know the boundaries of the include files. So,
132 we postpone that, and then enter and sort(?) the whole line table at
133 once, when we are closing the current symbol table in end_symtab(). */
134
135#define PROCESS_LINENUMBER_HOOK() aix_process_linenos ()
136extern void aix_process_linenos PARAMS ((void));
137
138/* Immediately after a function call, return the saved pc.
139 Can't go through the frames for this because on some machines
140 the new frame is not set up until the new function executes
141 some instructions. */
142
143#define SAVED_PC_AFTER_CALL(frame) read_register (LR_REGNUM)
144
145/* Address of end of stack space. */
146
147#define STACK_END_ADDR 0x2ff80000
148
149/* Stack grows downward. */
150
151#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))
152
153/* This is how arguments pushed onto stack or passed in registers.
154 Stack must be aligned on 64-bit boundaries when synthesizing
155 function calls. We don't need STACK_ALIGN, PUSH_ARGUMENTS will
156 handle it. */
157
158#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
159 sp = push_arguments((nargs), (args), (sp), (struct_return), (struct_addr))
160extern CORE_ADDR push_arguments PARAMS ((int, struct value **, CORE_ADDR,
161 int, CORE_ADDR));
162
163/* BREAKPOINT_FROM_PC uses the program counter value to determine the
164 breakpoint that should be used */
165extern breakpoint_from_pc_fn rs6000_breakpoint_from_pc;
166#define BREAKPOINT_FROM_PC(pcptr, lenptr) rs6000_breakpoint_from_pc (pcptr, lenptr)
167
168/* Amount PC must be decremented by after a breakpoint.
169 This is often the number of bytes in BREAKPOINT
170 but not always. */
171
172#define DECR_PC_AFTER_BREAK 0
173
174/* Say how long (ordinary) registers are. This is a piece of bogosity
175 used in push_word and a few other places; REGISTER_RAW_SIZE is the
176 real way to know how big a register is. */
177#define REGISTER_SIZE 4
178
179
180/* Return the name of register number REG. This may return "" to
181 indicate a register number that's not used on this variant.
182 (Register numbers may be sparse for consistency between variants.) */
183#define REGISTER_NAME(reg) (rs6000_register_name(reg))
184extern char *rs6000_register_name (int reg);
185
186/* Number of machine registers */
187#define NUM_REGS 183
188
189/* Register numbers of various important registers.
190 Note that some of these values are "real" register numbers,
191 and correspond to the general registers of the machine,
192 and some are "phony" register numbers which are too large
193 to be actual register numbers as far as the user is concerned
194 but do serve to get the desired values when passed to read_register. */
195
196#define FP_REGNUM 1 /* Contains address of executing stack frame */
197#define SP_REGNUM 1 /* Contains address of top of stack */
198#define TOC_REGNUM 2 /* TOC register */
199#define FP0_REGNUM 32 /* Floating point register 0 */
200#define GP0_REGNUM 0 /* GPR register 0 */
201#define FP0_REGNUM 32 /* FPR (Floating point) register 0 */
202#define FPLAST_REGNUM 63 /* Last floating point register */
203
204/* Special purpose registers... */
205/* P.S. keep these in the same order as in /usr/mstsave.h `mstsave'
206 structure, for easier processing */
207
208#define PC_REGNUM 64 /* Program counter (instruction address %iar)*/
209#define PS_REGNUM 65 /* Processor (or machine) status (%msr) */
210#define CR_REGNUM 66 /* Condition register */
211#define LR_REGNUM 67 /* Link register */
212#define CTR_REGNUM 68 /* Count register */
213#define XER_REGNUM 69 /* Fixed point exception registers */
214#define MQ_REGNUM 70 /* Multiply/quotient register */
215
216/* These #defines are used to parse core files and talk to ptrace, so they
217 must remain fixed. */
218#define FIRST_UISA_SP_REGNUM 64 /* first special register number */
219#define LAST_UISA_SP_REGNUM 70 /* last special register number */
220
221/* This is the offset in REG_NAMES at which the `set processor'
222 command starts plugging in its names. */
223#define FIRST_VARIANT_REGISTER 66
224
225/* Total amount of space needed to store our copies of the machine's
226 register state, the array `registers'.
227 32 4-byte gpr's
228 32 8-byte fpr's
229 7 4-byte UISA special purpose registers,
230 16 4-byte segment registers,
231 32 4-byte standard OEA special-purpose registers,
232 and up to 64 4-byte non-standard OEA special purpose regs.
233 total: (+ (* 32 4) (* 32 8) (* 7 4) (* 16 4) (* 32 4) (* 64 4)) 860 bytes
234 Keep some extra space for now, in case to add more. */
235#define REGISTER_BYTES 880
236
237
238/* Index within `registers' of the first byte of the space for
239 register N. */
240
241#define REGISTER_BYTE(N) \
242 ( \
243 ((N) > FPLAST_REGNUM) ? ((((N) - FPLAST_REGNUM -1) * 4) + 384)\
244 :((N) >= FP0_REGNUM) ? ((((N) - FP0_REGNUM) * 8) + 128) \
245 :((N) * 4) )
246
247/* Number of bytes of storage in the actual machine representation
248 for register N. */
249/* Note that the unsigned cast here forces the result of the
250 subtraction to very high positive values if N < FP0_REGNUM */
251
252#define REGISTER_RAW_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
253
254/* Number of bytes of storage in the program's representation
255 for register N. On the RS6000, all regs are 4 bytes
256 except the floating point regs which are 8-byte doubles. */
257
258#define REGISTER_VIRTUAL_SIZE(N) (((unsigned)(N) - FP0_REGNUM) < 32 ? 8 : 4)
259
260/* Largest value REGISTER_RAW_SIZE can have. */
261
262#define MAX_REGISTER_RAW_SIZE 8
263
264/* Largest value REGISTER_VIRTUAL_SIZE can have. */
265
266#define MAX_REGISTER_VIRTUAL_SIZE 8
267
268/* convert a dbx stab register number (from `r' declaration) to a gdb REGNUM */
269
270#define STAB_REG_TO_REGNUM(value) (value)
271
272/* Nonzero if register N requires conversion
273 from raw format to virtual format.
274 The register format for rs6000 floating point registers is always
275 double, we need a conversion if the memory format is float. */
276
277#define REGISTER_CONVERTIBLE(N) ((N) >= FP0_REGNUM && (N) <= FPLAST_REGNUM)
278
279/* Convert data from raw format for register REGNUM in buffer FROM
280 to virtual format with type TYPE in buffer TO. */
281
282#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,TYPE,FROM,TO) \
283{ \
284 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
285 { \
286 double val = extract_floating ((FROM), REGISTER_RAW_SIZE (REGNUM)); \
287 store_floating ((TO), TYPE_LENGTH (TYPE), val); \
288 } \
289 else \
290 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
291}
292
293/* Convert data from virtual format with type TYPE in buffer FROM
294 to raw format for register REGNUM in buffer TO. */
295
296#define REGISTER_CONVERT_TO_RAW(TYPE,REGNUM,FROM,TO) \
297{ \
298 if (TYPE_LENGTH (TYPE) != REGISTER_RAW_SIZE (REGNUM)) \
299 { \
300 double val = extract_floating ((FROM), TYPE_LENGTH (TYPE)); \
301 store_floating ((TO), REGISTER_RAW_SIZE (REGNUM), val); \
302 } \
303 else \
304 memcpy ((TO), (FROM), REGISTER_RAW_SIZE (REGNUM)); \
305}
306
307/* Return the GDB type object for the "standard" data type
308 of data in register N. */
309
310#define REGISTER_VIRTUAL_TYPE(N) \
311 (((unsigned)(N) - FP0_REGNUM) < 32 ? builtin_type_double : builtin_type_int)
312
313/* Store the address of the place in which to copy the structure the
314 subroutine will return. This is called from call_function. */
315/* in RS6000, struct return addresses are passed as an extra parameter in r3.
316 In function return, callee is not responsible of returning this address back.
317 Since gdb needs to find it, we will store in a designated variable
318 `rs6000_struct_return_address'. */
319
320extern CORE_ADDR rs6000_struct_return_address;
321
322#define STORE_STRUCT_RETURN(ADDR, SP) \
323 { write_register (3, (ADDR)); \
324 rs6000_struct_return_address = (ADDR); }
325
326/* Extract from an array REGBUF containing the (raw) register state
327 a function return value of type TYPE, and copy that, in virtual format,
328 into VALBUF. */
329
330/* #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
331 memcpy (VALBUF, REGBUF, TYPE_LENGTH (TYPE)) */
332
333#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
334 extract_return_value(TYPE,REGBUF,VALBUF)
335extern void extract_return_value PARAMS ((struct type *, char [], char *));
336
337/* Write into appropriate registers a function return value
338 of type TYPE, given in virtual format. */
339
340#define STORE_RETURN_VALUE(TYPE,VALBUF) \
341 { \
342 if (TYPE_CODE (TYPE) == TYPE_CODE_FLT) \
343 \
344 /* Floating point values are returned starting from FPR1 and up. \
345 Say a double_double_double type could be returned in \
346 FPR1/FPR2/FPR3 triple. */ \
347 \
348 write_register_bytes (REGISTER_BYTE (FP0_REGNUM+1), (VALBUF), \
349 TYPE_LENGTH (TYPE)); \
350 else \
351 /* Everything else is returned in GPR3 and up. */ \
352 write_register_bytes (REGISTER_BYTE (GP0_REGNUM+3), (VALBUF), \
353 TYPE_LENGTH (TYPE)); \
354 }
355
356
357/* Extract from an array REGBUF containing the (raw) register state
358 the address in which a function should return its structure value,
359 as a CORE_ADDR (or an expression that can be used as one). */
360
361#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) rs6000_struct_return_address
362\f
363/* Describe the pointer in each stack frame to the previous stack frame
364 (its caller). */
365
366/* FRAME_CHAIN takes a frame's nominal address
367 and produces the frame's chain-pointer. */
368
369/* In the case of the RS6000, the frame's nominal address
370 is the address of a 4-byte word containing the calling frame's address. */
371
372#define FRAME_CHAIN(thisframe) rs6000_frame_chain (thisframe)
373CORE_ADDR rs6000_frame_chain PARAMS ((struct frame_info *));
374
375/* Define other aspects of the stack frame. */
376
377/* A macro that tells us whether the function invocation represented
378 by FI does not have a frame on the stack associated with it. If it
379 does not, FRAMELESS is set to 1, else 0. */
380
381#define FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) \
382 FRAMELESS = frameless_function_invocation (FI)
383
384extern int frameless_function_invocation PARAMS((struct frame_info *));
385
386#define INIT_FRAME_PC_FIRST(fromleaf, prev) \
387 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
388 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
389#define INIT_FRAME_PC(fromleaf, prev) /* nothing */
390extern void rs6000_init_extra_frame_info (int fromleaf, struct frame_info *);
391#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) rs6000_init_extra_frame_info (fromleaf, fi)
392
393/* If the kernel has to deliver a signal, it pushes a sigcontext
394 structure on the stack and then calls the signal handler, passing
395 the address of the sigcontext in an argument register. Usually
396 the signal handler doesn't save this register, so we have to
397 access the sigcontext structure via an offset from the signal handler
398 frame.
399 The following constants were determined by experimentation on AIX 3.2. */
400#define SIG_FRAME_PC_OFFSET 96
401#define SIG_FRAME_LR_OFFSET 108
402#define SIG_FRAME_FP_OFFSET 284
403
404/* Default offset from SP where the LR is stored */
405#define DEFAULT_LR_SAVE 8
406
407/* Return saved PC from a frame */
408#define FRAME_SAVED_PC(FRAME) frame_saved_pc (FRAME)
409
410extern unsigned long frame_saved_pc PARAMS ((struct frame_info *));
411
412extern CORE_ADDR rs6000_frame_args_address PARAMS ((struct frame_info *));
413#define FRAME_ARGS_ADDRESS(FI) rs6000_frame_args_address (FI)
414
415#define FRAME_LOCALS_ADDRESS(FI) FRAME_ARGS_ADDRESS(FI)
416
417
418/* Set VAL to the number of args passed to frame described by FI.
419 Can set VAL to -1, meaning no way to tell. */
420
421/* We can't tell how many args there are
422 now that the C compiler delays popping them. */
423
424#define FRAME_NUM_ARGS(val,fi) (val = -1)
425
426/* Return number of bytes at start of arglist that are not really args. */
427
428#define FRAME_ARGS_SKIP 8 /* Not sure on this. FIXMEmgo */
429
430/* Put here the code to store, into a struct frame_saved_regs,
431 the addresses of the saved registers of frame described by FRAME_INFO.
432 This includes special registers such as pc and fp saved in special
433 ways in the stack frame. sp is even more special:
434 the address we return for it IS the sp for the next frame. */
435/* In the following implementation for RS6000, we did *not* save sp. I am
436 not sure if it will be needed. The following macro takes care of gpr's
437 and fpr's only. */
438
439extern void rs6000_frame_init_saved_regs PARAMS ((struct frame_info *));
440#define FRAME_INIT_SAVED_REGS(FI) rs6000_frame_init_saved_regs (FI)
441
442/* Things needed for making the inferior call functions. */
443
444/* Push an empty stack frame, to record the current PC, etc. */
445/* Change these names into rs6k_{push, pop}_frame(). FIXMEmgo. */
446
447#define PUSH_DUMMY_FRAME push_dummy_frame ()
448extern void push_dummy_frame PARAMS ((void));
449
450/* Discard from the stack the innermost frame,
451 restoring all saved registers. */
452
453#define POP_FRAME pop_frame ()
454extern void pop_frame PARAMS ((void));
455
456/* This sequence of words is the instructions:
457
458 mflr r0 // 0x7c0802a6
459 // save fpr's
460 stfd r?, num(r1) // 0xd8010000 there should be 32 of this??
461 // save gpr's
462 stm r0, num(r1) // 0xbc010000
463 stu r1, num(r1) // 0x94210000
464
465 // the function we want to branch might be in a different load
466 // segment. reset the toc register. Note that the actual toc address
467 // will be fix by fix_call_dummy () along with function address.
468
469 st r2, 0x14(r1) // 0x90410014 save toc register
470 liu r2, 0x1234 // 0x3c401234 reset a new toc value 0x12345678
471 oril r2, r2,0x5678 // 0x60425678
472
473 // load absolute address 0x12345678 to r0
474 liu r0, 0x1234 // 0x3c001234
475 oril r0, r0,0x5678 // 0x60005678
476 mtctr r0 // 0x7c0903a6 ctr <- r0
477 bctrl // 0x4e800421 jump subroutine 0x12345678 (%ctr)
478 cror 0xf, 0xf, 0xf // 0x4def7b82
479 brpt // 0x7d821008, breakpoint
480 cror 0xf, 0xf, 0xf // 0x4def7b82 (for 8 byte alignment)
481
482
483 We actually start executing by saving the toc register first, since the pushing
484 of the registers is done by PUSH_DUMMY_FRAME. If this were real code,
485 the arguments for the function called by the `bctrl' would be pushed
486 between the `stu' and the `bctrl', and we could allow it to execute through.
487 But the arguments have to be pushed by GDB after the PUSH_DUMMY_FRAME is done,
488 and we cannot allow to push the registers again.
489*/
490
491#define CALL_DUMMY {0x7c0802a6, 0xd8010000, 0xbc010000, 0x94210000, \
492 0x90410014, 0x3c401234, 0x60425678, \
493 0x3c001234, 0x60005678, 0x7c0903a6, 0x4e800421, \
494 0x4def7b82, 0x7d821008, 0x4def7b82 }
495
496
497/* keep this as multiple of 8 (%sp requires 8 byte alignment) */
498#define CALL_DUMMY_LENGTH 56
499
500#define CALL_DUMMY_START_OFFSET 16
501
502/* Insert the specified number of args and function address into a
503 call sequence of the above form stored at DUMMYNAME. */
504
505#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
506 rs6000_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)
507extern void rs6000_fix_call_dummy PARAMS ((char *, CORE_ADDR, CORE_ADDR,
508 int, struct value **,
509 struct type *, int));
510
511/* Hook in rs6000-tdep.c for determining the TOC address when
512 calling functions in the inferior. */
513extern CORE_ADDR (*find_toc_address_hook) PARAMS ((CORE_ADDR));
514
515/* xcoffread.c provides a function to determine the TOC offset
516 for a given object file.
517 It is used under native AIX configurations for determining the
518 TOC address when calling functions in the inferior. */
519#ifdef __STDC__
520struct objfile;
521#endif
522extern CORE_ADDR get_toc_offset PARAMS ((struct objfile *));
523
524/* Usually a function pointer's representation is simply the address
525 of the function. On the RS/6000 however, a function pointer is
526 represented by a pointer to a TOC entry. This TOC entry contains
527 three words, the first word is the address of the function, the
528 second word is the TOC pointer (r2), and the third word is the
529 static chain value. Throughout GDB it is currently assumed that a
530 function pointer contains the address of the function, which is not
531 easy to fix. In addition, the conversion of a function address to
532 a function pointer would require allocation of a TOC entry in the
533 inferior's memory space, with all its drawbacks. To be able to
534 call C++ virtual methods in the inferior (which are called via
535 function pointers), find_function_addr uses this macro to get the
536 function address from a function pointer. */
537
538#define CONVERT_FROM_FUNC_PTR_ADDR(ADDR) \
539 (is_magic_function_pointer (ADDR) ? read_memory_integer (ADDR, 4) : (ADDR))
540extern int is_magic_function_pointer PARAMS ((CORE_ADDR));
541
542/* Flag for machine-specific stuff in shared files. FIXME */
543#define IBM6000_TARGET
544
545/* RS6000/AIX does not support PT_STEP. Has to be simulated. */
546
547#define SOFTWARE_SINGLE_STEP_P 1
548extern void rs6000_software_single_step PARAMS ((unsigned int, int));
549#define SOFTWARE_SINGLE_STEP(sig,bp_p) rs6000_software_single_step (sig, bp_p)
550
551/* If the current gcc for for this target does not produce correct debugging
552 information for float parameters, both prototyped and unprototyped, then
553 define this macro. This forces gdb to always assume that floats are
554 passed as doubles and then converted in the callee.
555
556 For the PowerPC, it appears that the debug info marks the parameters as
557 floats regardless of whether the function is prototyped, but the actual
558 values are always passed in as doubles. Thus by setting this to 1, both
559 types of calls will work. */
560
561#define COERCE_FLOAT_TO_DOUBLE 1
This page took 0.045722 seconds and 4 git commands to generate.