Phase 1 of the ptid_t changes.
[deliverable/binutils-gdb.git] / gdb / config / sparc / tm-sp64.h
CommitLineData
c906108c
SS
1/* Target machine sub-parameters for SPARC64, for GDB, the GNU debugger.
2 This is included by other tm-*.h files to define SPARC64 cpu-related info.
b6ba6518
KB
3 Copyright 1994, 1995, 1996, 1998, 1999, 2000
4 Free Software Foundation, Inc.
c906108c
SS
5 This is (obviously) based on the SPARC Vn (n<9) port.
6 Contributed by Doug Evans (dje@cygnus.com).
7 Further modified by Bob Manson (manson@cygnus.com).
8
c5aa993b 9 This file is part of GDB.
c906108c 10
c5aa993b
JM
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
c906108c 15
c5aa993b
JM
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
c906108c 20
c5aa993b
JM
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
c906108c 25
64c4637f 26#define GDB_MULTI_ARCH GDB_MULTI_ARCH_PARTIAL
c906108c 27
5af923b0
MS
28#ifndef GDB_TARGET_IS_SPARC64
29#define GDB_TARGET_IS_SPARC64 1
30#endif
31
32#include "sparc/tm-sparc.h"
c906108c
SS
33
34/* Eeeew. Ok, we have to assume (for now) that the processor really is
35 in sparc64 mode. While this is the same instruction sequence as
36 on the Sparc, the stack frames are offset by +2047 (and the arguments
37 are 8 bytes instead of 4). */
38/* Instructions are:
39 std %f10, [ %fp + 0x7a7 ]
40 std %f8, [ %fp + 0x79f ]
41 std %f6, [ %fp + 0x797 ]
42 std %f4, [ %fp + 0x78f ]
43 std %f2, [ %fp + 0x787 ]
44 std %f0, [ %fp + 0x77f ]
45 std %g6, [ %fp + 0x777 ]
46 std %g4, [ %fp + 0x76f ]
47 std %g2, [ %fp + 0x767 ]
48 std %g0, [ %fp + 0x75f ]
49 std %fp, [ %fp + 0x757 ]
50 std %i4, [ %fp + 0x74f ]
51 std %i2, [ %fp + 0x747 ]
52 std %i0, [ %fp + 0x73f ]
53 nop
54 nop
55 nop
56 nop
57 rd %tbr, %o0
58 st %o0, [ %fp + 0x72b ]
59 rd %tpc, %o0
60 st %o0, [ %fp + 0x727 ]
61 rd %psr, %o0
62 st %o0, [ %fp + 0x723 ]
63 rd %y, %o0
64 st %o0, [ %fp + 0x71f ]
65 ldx [ %sp + 0x8a7 ], %o5
66 ldx [ %sp + 0x89f ], %o4
67 ldx [ %sp + 0x897 ], %o3
68 ldx [ %sp + 0x88f ], %o2
69 ldx [ %sp + 0x887 ], %o1
70 call %g0
71 ldx [ %sp + 0x87f ], %o0
72 nop
73 ta 1
74 nop
75 nop
c5aa993b 76 */
c906108c 77
5af923b0
MS
78#if !defined (GDB_MULTI_ARCH) || (GDB_MULTI_ARCH == 0)
79/*
80 * The following defines must go away for MULTI_ARCH.
81 */
82
83#ifndef DO_CALL_DUMMY_ON_STACK
84
85/*
86 * These defines will suffice for the AT_ENTRY_POINT call dummy method.
87 */
88
89#undef CALL_DUMMY
90#define CALL_DUMMY {0}
91#undef CALL_DUMMY_LENGTH
92#define CALL_DUMMY_LENGTH 0
93#undef CALL_DUMMY_CALL_OFFSET
94#define CALL_DUMMY_CALL_OFFSET 0
95#undef CALL_DUMMY_START_OFFSET
96#define CALL_DUMMY_START_OFFSET 0
97#undef CALL_DUMMY_BREAKPOINT_OFFSET
98#define CALL_DUMMY_BREAKPOINT_OFFSET 0
99#undef CALL_DUMMY_BREAKPOINT_OFFSET_P
100#define CALL_DUMMY_BREAKPOINT_OFFSET_P 1
101#undef CALL_DUMMY_LOCATION
102#define CALL_DUMMY_LOCATION AT_ENTRY_POINT
103#undef CALL_DUMMY_STACK_ADJUST
104#define CALL_DUMMY_STACK_ADJUST 128
105#undef SIZEOF_CALL_DUMMY_WORDS
106#define SIZEOF_CALL_DUMMY_WORDS 0
107#undef CALL_DUMMY_ADDRESS
108#define CALL_DUMMY_ADDRESS() entry_point_address()
109#undef FIX_CALL_DUMMY
110#define FIX_CALL_DUMMY(DUMMYNAME, PC, FUN, NARGS, ARGS, TYPE, GCC_P)
111#undef PUSH_RETURN_ADDRESS
112#define PUSH_RETURN_ADDRESS(PC, SP) sparc_at_entry_push_return_address (PC, SP)
113extern CORE_ADDR
114sparc_at_entry_push_return_address (CORE_ADDR pc, CORE_ADDR sp);
115
116#undef STORE_STRUCT_RETURN
117#define STORE_STRUCT_RETURN(ADDR, SP) \
118 sparc_at_entry_store_struct_return (ADDR, SP)
119extern void
120sparc_at_entry_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
121
122
123#else
124/*
125 * Old call dummy method, with CALL_DUMMY on the stack.
126 */
127
128#undef CALL_DUMMY
c906108c
SS
129#define CALL_DUMMY { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,\
130 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,\
131 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,\
132 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,\
133 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,\
134 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,\
135 0xf03fa73f01000000LL, 0x0100000001000000LL,\
136 0x0100000091580000LL, 0xd027a72b93500000LL,\
137 0xd027a72791480000LL, 0xd027a72391400000LL,\
138 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,\
139 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,\
140 0x0100000091d02001LL, 0x0100000001000000LL }
141
142
143/* 128 is to reserve space to write the %i/%l registers that will be restored
144 when we resume. */
5af923b0 145#undef CALL_DUMMY_STACK_ADJUST
c906108c
SS
146#define CALL_DUMMY_STACK_ADJUST 128
147
5af923b0
MS
148/* Size of the call dummy in bytes. */
149#undef CALL_DUMMY_LENGTH
c906108c
SS
150#define CALL_DUMMY_LENGTH 192
151
5af923b0
MS
152/* Offset within CALL_DUMMY of the 'call' instruction. */
153#undef CALL_DUMMY_START_OFFSET
c906108c
SS
154#define CALL_DUMMY_START_OFFSET 148
155
5af923b0
MS
156/* Offset within CALL_DUMMY of the 'call' instruction. */
157#undef CALL_DUMMY_CALL_OFFSET
c906108c
SS
158#define CALL_DUMMY_CALL_OFFSET (CALL_DUMMY_START_OFFSET + (5 * 4))
159
5af923b0
MS
160/* Offset within CALL_DUMMY of the 'ta 1' instruction. */
161#undef CALL_DUMMY_BREAKPOINT_OFFSET
c906108c
SS
162#define CALL_DUMMY_BREAKPOINT_OFFSET (CALL_DUMMY_START_OFFSET + (8 * 4))
163
5af923b0
MS
164/* Let's GDB know that it can make a call_dummy breakpoint. */
165#undef CALL_DUMMY_BREAKPOINT_OFFSET_P
166#define CALL_DUMMY_BREAKPOINT_OFFSET_P 1
167
168/* Call dummy will be located on the stack. */
169#undef CALL_DUMMY_LOCATION
170#define CALL_DUMMY_LOCATION ON_STACK
171
172/* Insert the function address into the call dummy. */
173#undef FIX_CALL_DUMMY
174#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
175 sparc_fix_call_dummy (dummyname, pc, fun, type, gcc_p)
a14ed312
KB
176void sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
177 struct type *value_type, int using_gcc);
5af923b0
MS
178
179
180/* The remainder of these will accept the default definition. */
181#undef SIZEOF_CALL_DUMMY_WORDS
182#undef PUSH_RETURN_ADDRESS
183#undef CALL_DUMMY_ADDRESS
184#undef STORE_STRUCT_RETURN
185
186#endif
187
188/* Does the specified function use the "struct returning" convention
189 or the "value returning" convention? The "value returning" convention
190 almost invariably returns the entire value in registers. The
191 "struct returning" convention often returns the entire value in
192 memory, and passes a pointer (out of or into the function) saying
193 where the value (is or should go).
194
195 Since this sometimes depends on whether it was compiled with GCC,
196 this is also an argument. This is used in call_function to build a
197 stack, and in value_being_returned to print return values.
198
199 On Sparc64, we only pass pointers to structs if they're larger then
200 32 bytes. Otherwise they're stored in %o0-%o3 (floating-point
201 values go into %fp0-%fp3). */
202
203#undef USE_STRUCT_CONVENTION
204#define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH (type) > 32)
205
a14ed312
KB
206CORE_ADDR sparc64_push_arguments (int,
207 struct value **, CORE_ADDR, int, CORE_ADDR);
5af923b0
MS
208#undef PUSH_ARGUMENTS
209#define PUSH_ARGUMENTS(A,B,C,D,E) \
210 (sparc64_push_arguments ((A), (B), (C), (D), (E)))
211
212/* Store the address of the place in which to copy the structure the
213 subroutine will return. This is called from call_function. */
214/* FIXME: V9 uses %o0 for this. */
215
216#undef STORE_STRUCT_RETURN
217#define STORE_STRUCT_RETURN(ADDR, SP) \
218 { target_write_memory ((SP)+(16*8), (char *)&(ADDR), 8); }
c906108c
SS
219
220/* Stack must be aligned on 128-bit boundaries when synthesizing
221 function calls. */
222
223#undef STACK_ALIGN
224#define STACK_ALIGN(ADDR) (((ADDR) + 15 ) & -16)
225
c906108c
SS
226/* Initializer for an array of names of registers.
227 There should be NUM_REGS strings in this initializer. */
228/* Some of these registers are only accessible from priviledged mode.
229 They are here for kernel debuggers, etc. */
230/* FIXME: icc and xcc are currently considered separate registers.
231 This may have to change and consider them as just one (ccr).
232 Let's postpone this as long as we can. It's nice to be able to set
233 them individually. */
234/* FIXME: fcc0-3 are currently separate, even though they are also part of
235 fsr. May have to remove them but let's postpone this as long as
236 possible. It's nice to be able to set them individually. */
237/* FIXME: Whether to include f33, f35, etc. here is not clear.
238 There are advantages and disadvantages. */
239
240#undef REGISTER_NAMES
241#define REGISTER_NAMES \
242{ "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
243 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", \
244 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", \
245 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", \
246 \
247 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
248 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
249 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
250 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
251 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", \
252 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", \
253 \
254 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", \
255 "ver", "tick", "pil", "pstate", \
256 "tstate", "tba", "tl", "tt", "tpc", "tnpc", "wstate", \
257 "cwp", "cansave", "canrestore", "cleanwin", "otherwin", \
258 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", \
259 "asr22", "asr23", "asr24", "asr25", "asr26", "asr27", \
260 "asr28", "asr29", "asr30", "asr31", \
261 /* These are here at the end to simplify removing them if we have to. */ \
262 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" \
263}
264
5af923b0
MS
265#undef REG_STRUCT_HAS_ADDR
266#define REG_STRUCT_HAS_ADDR(gcc_p,type) (TYPE_LENGTH (type) > 32)
267
268extern CORE_ADDR sparc64_read_sp ();
269extern CORE_ADDR sparc64_read_fp ();
a14ed312
KB
270extern void sparc64_write_sp (CORE_ADDR);
271extern void sparc64_write_fp (CORE_ADDR);
5af923b0
MS
272
273#define TARGET_READ_SP() (sparc64_read_sp ())
274#define TARGET_READ_FP() (sparc64_read_fp ())
275#define TARGET_WRITE_SP(X) (sparc64_write_sp (X))
276#define TARGET_WRITE_FP(X) (sparc64_write_fp (X))
277
278#undef EXTRACT_RETURN_VALUE
279#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
280 sp64_extract_return_value(TYPE, REGBUF, VALBUF, 0)
a14ed312 281extern void sp64_extract_return_value (struct type *, char[], char *, int);
5af923b0 282
c906108c
SS
283/* Register numbers of various important registers.
284 Note that some of these values are "real" register numbers,
285 and correspond to the general registers of the machine,
286 and some are "phony" register numbers which are too large
287 to be actual register numbers as far as the user is concerned
288 but do serve to get the desired values when passed to read_register. */
289
5af923b0
MS
290#if 0 /* defined in tm-sparc.h, replicated
291 for doc purposes */
c5aa993b 292#define G0_REGNUM 0 /* %g0 */
c906108c
SS
293#define G1_REGNUM 1 /* %g1 */
294#define O0_REGNUM 8 /* %o0 */
295#define SP_REGNUM 14 /* Contains address of top of stack, \
296 which is also the bottom of the frame. */
297#define RP_REGNUM 15 /* Contains return address value, *before* \
298 any windows get switched. */
299#define O7_REGNUM 15 /* Last local reg not saved on stack frame */
300#define L0_REGNUM 16 /* First local reg that's saved on stack frame
301 rather than in machine registers */
302#define I0_REGNUM 24 /* %i0 */
303#define FP_REGNUM 30 /* Contains address of executing stack frame */
304#define I7_REGNUM 31 /* Last local reg saved on stack frame */
305#define FP0_REGNUM 32 /* Floating point register 0 */
306#endif
307
5af923b0 308/*#define FP_MAX_REGNUM 80*/ /* 1 + last fp reg number */
c906108c
SS
309
310/* #undef v8 misc. regs */
311
312#undef Y_REGNUM
313#undef PS_REGNUM
314#undef WIM_REGNUM
315#undef TBR_REGNUM
316#undef PC_REGNUM
317#undef NPC_REGNUM
318#undef FPS_REGNUM
319#undef CPS_REGNUM
320
321/* v9 misc. and priv. regs */
322
5af923b0
MS
323#define C0_REGNUM 80 /* Start of control registers */
324
c5aa993b
JM
325#define PC_REGNUM (C0_REGNUM + 0) /* Current PC */
326#define NPC_REGNUM (C0_REGNUM + 1) /* Next PC */
327#define CCR_REGNUM (C0_REGNUM + 2) /* Condition Code Register (%xcc,%icc) */
328#define FSR_REGNUM (C0_REGNUM + 3) /* Floating Point State */
329#define FPRS_REGNUM (C0_REGNUM + 4) /* Floating Point Registers State */
330#define Y_REGNUM (C0_REGNUM + 5) /* Temp register for multiplication, etc. */
331#define ASI_REGNUM (C0_REGNUM + 6) /* Alternate Space Identifier */
332#define VER_REGNUM (C0_REGNUM + 7) /* Version register */
333#define TICK_REGNUM (C0_REGNUM + 8) /* Tick register */
334#define PIL_REGNUM (C0_REGNUM + 9) /* Processor Interrupt Level */
335#define PSTATE_REGNUM (C0_REGNUM + 10) /* Processor State */
336#define TSTATE_REGNUM (C0_REGNUM + 11) /* Trap State */
337#define TBA_REGNUM (C0_REGNUM + 12) /* Trap Base Address */
338#define TL_REGNUM (C0_REGNUM + 13) /* Trap Level */
339#define TT_REGNUM (C0_REGNUM + 14) /* Trap Type */
340#define TPC_REGNUM (C0_REGNUM + 15) /* Trap pc */
341#define TNPC_REGNUM (C0_REGNUM + 16) /* Trap npc */
342#define WSTATE_REGNUM (C0_REGNUM + 17) /* Window State */
343#define CWP_REGNUM (C0_REGNUM + 18) /* Current Window Pointer */
c906108c
SS
344#define CANSAVE_REGNUM (C0_REGNUM + 19) /* Savable Windows */
345#define CANRESTORE_REGNUM (C0_REGNUM + 20) /* Restorable Windows */
346#define CLEANWIN_REGNUM (C0_REGNUM + 21) /* Clean Windows */
347#define OTHERWIN_REGNUM (C0_REGNUM + 22) /* Other Windows */
348#define ASR_REGNUM(n) (C0_REGNUM+(23-16)+(n)) /* Ancillary State Register
349 (n = 16...31) */
c5aa993b
JM
350#define ICC_REGNUM (C0_REGNUM + 39) /* 32 bit condition codes */
351#define XCC_REGNUM (C0_REGNUM + 40) /* 64 bit condition codes */
352#define FCC0_REGNUM (C0_REGNUM + 41) /* fp cc reg 0 */
353#define FCC1_REGNUM (C0_REGNUM + 42) /* fp cc reg 1 */
354#define FCC2_REGNUM (C0_REGNUM + 43) /* fp cc reg 2 */
355#define FCC3_REGNUM (C0_REGNUM + 44) /* fp cc reg 3 */
c906108c 356
5af923b0
MS
357/* Number of machine registers. */
358
359#undef NUM_REGS
360#define NUM_REGS 125
361
c906108c
SS
362/* Total amount of space needed to store our copies of the machine's
363 register state, the array `registers'.
364 Some of the registers aren't 64 bits, but it's a lot simpler just to assume
365 they all are (since most of them are). */
366#undef REGISTER_BYTES
367#define REGISTER_BYTES (32*8+32*8+45*8)
368
369/* Index within `registers' of the first byte of the space for
370 register N. */
371#undef REGISTER_BYTE
372#define REGISTER_BYTE(N) \
373 ((N) < 32 ? (N)*8 \
374 : (N) < 64 ? 32*8 + ((N)-32)*4 \
375 : (N) < C0_REGNUM ? 32*8 + 32*4 + ((N)-64)*8 \
376 : 64*8 + ((N)-C0_REGNUM)*8)
377
378/* Say how long (ordinary) registers are. This is a piece of bogosity
379 used in push_word and a few other places; REGISTER_RAW_SIZE is the
380 real way to know how big a register is. */
381
382#undef REGISTER_SIZE
383#define REGISTER_SIZE 8
384
385/* Number of bytes of storage in the actual machine representation
386 for register N. */
387
388#undef REGISTER_RAW_SIZE
389#define REGISTER_RAW_SIZE(N) \
390 ((N) < 32 ? 8 : (N) < 64 ? 4 : 8)
391
392/* Number of bytes of storage in the program's representation
393 for register N. */
394
395#undef REGISTER_VIRTUAL_SIZE
396#define REGISTER_VIRTUAL_SIZE(N) \
397 ((N) < 32 ? 8 : (N) < 64 ? 4 : 8)
398
399/* Largest value REGISTER_RAW_SIZE can have. */
400/* tm-sparc.h defines this as 8, but play it safe. */
401
402#undef MAX_REGISTER_RAW_SIZE
403#define MAX_REGISTER_RAW_SIZE 8
404
405/* Largest value REGISTER_VIRTUAL_SIZE can have. */
406/* tm-sparc.h defines this as 8, but play it safe. */
407
408#undef MAX_REGISTER_VIRTUAL_SIZE
409#define MAX_REGISTER_VIRTUAL_SIZE 8
410
411/* Return the GDB type object for the "standard" data type
412 of data in register N. */
413
414#undef REGISTER_VIRTUAL_TYPE
415#define REGISTER_VIRTUAL_TYPE(N) \
416 ((N) < 32 ? builtin_type_long_long \
417 : (N) < 64 ? builtin_type_float \
418 : (N) < 80 ? builtin_type_double \
419 : builtin_type_long_long)
420
421/* We use to support both 32 bit and 64 bit pointers.
422 We can't anymore because TARGET_PTR_BIT must now be a constant. */
423#undef TARGET_PTR_BIT
424#define TARGET_PTR_BIT 64
425
426/* Longs are 64 bits. */
427#undef TARGET_LONG_BIT
428#define TARGET_LONG_BIT 64
429
430#undef TARGET_LONG_LONG_BIT
431#define TARGET_LONG_LONG_BIT 64
432
c906108c
SS
433/* Return number of bytes at start of arglist that are not really args. */
434
435#undef FRAME_ARGS_SKIP
436#define FRAME_ARGS_SKIP 136
5af923b0
MS
437
438#endif /* GDB_MULTI_ARCH */
c906108c
SS
439\f
440/* Offsets into jmp_buf.
441 FIXME: This was borrowed from the v8 stuff and will probably have to change
442 for v9. */
443
444#define JB_ELEMENT_SIZE 8 /* Size of each element in jmp_buf */
445
446#define JB_ONSSTACK 0
447#define JB_SIGMASK 1
448#define JB_SP 2
449#define JB_PC 3
450#define JB_NPC 4
451#define JB_PSR 5
452#define JB_G1 6
453#define JB_O0 7
454#define JB_WBCNT 8
455
5af923b0
MS
456/* Figure out where the longjmp will land. We expect that we have
457 just entered longjmp and haven't yet setup the stack frame, so the
458 args are still in the output regs. %o0 (O0_REGNUM) points at the
459 jmp_buf structure from which we extract the pc (JB_PC) that we will
460 land at. The pc is copied into ADDR. This routine returns true on
461 success */
c906108c 462
a14ed312 463extern int get_longjmp_target (CORE_ADDR *);
c906108c
SS
464
465#define GET_LONGJMP_TARGET(ADDR) get_longjmp_target(ADDR)
466
c906108c
SS
467#undef TM_PRINT_INSN_MACH
468#define TM_PRINT_INSN_MACH bfd_mach_sparc_v9a
469
This page took 0.13086 seconds and 4 git commands to generate.