* dlltool.c (add_stdcall_underscore): New flag.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
76a9d10f
MK
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9This file is part of GDB.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
197e01b6
EZ
23Foundation, Inc., 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA. */
29134980
OF
25
26#include "defs.h"
27#include "frame.h"
2e4b5889
OF
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "dwarf2-frame.h"
29134980
OF
32#include "symtab.h"
33#include "inferior.h"
34#include "gdbtypes.h"
35#include "gdbcore.h"
36#include "gdbcmd.h"
37#include "target.h"
38#include "value.h"
39#include "opcode/cris.h"
40#include "arch-utils.h"
41#include "regcache.h"
36482093 42#include "gdb_assert.h"
29134980
OF
43
44/* To get entry_point_address. */
9ab9195f 45#include "objfiles.h"
29134980 46
a5f6c8f5 47#include "solib.h" /* Support for shared libraries. */
76a9d10f 48#include "solib-svr4.h"
9bbe19fb 49#include "gdb_string.h"
a89aa300 50#include "dis-asm.h"
dbbff683 51
29134980
OF
52enum cris_num_regs
53{
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
55 NUM_FREGS = 0,
56
57 /* There are 16 general registers. */
58 NUM_GENREGS = 16,
59
60 /* There are 16 special registers. */
c600d464
OF
61 NUM_SPECREGS = 16,
62
63 /* CRISv32 has a pseudo PC register, not noted here. */
64
65 /* CRISv32 has 16 support registers. */
66 NUM_SUPPREGS = 16
29134980
OF
67};
68
69/* Register numbers of various important registers.
2e4b5889 70 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
81
29134980
OF
82enum cris_regnums
83{
84 /* Enums with respect to the general registers, valid for all
c600d464 85 CRIS versions. The frame pointer is always in R8. */
2e4b5889 86 CRIS_FP_REGNUM = 8,
c600d464 87 /* ABI related registers. */
29134980
OF
88 STR_REGNUM = 9,
89 RET_REGNUM = 10,
90 ARG1_REGNUM = 10,
91 ARG2_REGNUM = 11,
92 ARG3_REGNUM = 12,
93 ARG4_REGNUM = 13,
94
c600d464 95 /* Registers which happen to be common. */
29134980 96 VR_REGNUM = 17,
c600d464
OF
97 MOF_REGNUM = 23,
98 SRP_REGNUM = 27,
99
100 /* CRISv10 et. al. specific registers. */
101 P0_REGNUM = 16,
29134980
OF
102 P4_REGNUM = 20,
103 CCR_REGNUM = 21,
29134980
OF
104 P8_REGNUM = 24,
105 IBR_REGNUM = 25,
106 IRP_REGNUM = 26,
29134980 107 BAR_REGNUM = 28,
2a9ecef2 108 DCCR_REGNUM = 29,
29134980 109 BRP_REGNUM = 30,
c600d464
OF
110 USP_REGNUM = 31,
111
112 /* CRISv32 specific registers. */
113 ACR_REGNUM = 15,
114 BZ_REGNUM = 16,
115 PID_REGNUM = 18,
116 SRS_REGNUM = 19,
117 WZ_REGNUM = 20,
118 EXS_REGNUM = 21,
119 EDA_REGNUM = 22,
120 DZ_REGNUM = 24,
121 EBP_REGNUM = 25,
122 ERP_REGNUM = 26,
123 NRP_REGNUM = 28,
124 CCS_REGNUM = 29,
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 SPC_REGNUM = 31,
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
128
129 S0_REGNUM = 33,
130 S1_REGNUM = 34,
131 S2_REGNUM = 35,
132 S3_REGNUM = 36,
133 S4_REGNUM = 37,
134 S5_REGNUM = 38,
135 S6_REGNUM = 39,
136 S7_REGNUM = 40,
137 S8_REGNUM = 41,
138 S9_REGNUM = 42,
139 S10_REGNUM = 43,
140 S11_REGNUM = 44,
141 S12_REGNUM = 45,
142 S13_REGNUM = 46,
143 S14_REGNUM = 47,
144 S15_REGNUM = 48,
29134980
OF
145};
146
147extern const struct cris_spec_reg cris_spec_regs[];
148
149/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
150 register names and sizes. */
151static int usr_cmd_cris_version;
29134980
OF
152
153/* Indicates whether to trust the above variable. */
154static int usr_cmd_cris_version_valid = 0;
155
41922353
OF
156static const char cris_mode_normal[] = "normal";
157static const char cris_mode_guru[] = "guru";
0e6bdb31
OF
158static const char *cris_modes[] = {
159 cris_mode_normal,
160 cris_mode_guru,
161 0
162};
163
164/* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166static const char *usr_cmd_cris_mode = cris_mode_normal;
167
a5f6c8f5
OF
168/* Whether to make use of Dwarf-2 CFI (default on). */
169static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 170
29134980
OF
171/* CRIS architecture specific information. */
172struct gdbarch_tdep
173{
0e6bdb31
OF
174 int cris_version;
175 const char *cris_mode;
a5f6c8f5 176 int cris_dwarf2_cfi;
29134980
OF
177};
178
179/* Functions for accessing target dependent data. */
180
181static int
182cris_version (void)
183{
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
185}
186
0e6bdb31
OF
187static const char *
188cris_mode (void)
189{
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
191}
192
a5f6c8f5
OF
193/* Sigtramp identification code copied from i386-linux-tdep.c. */
194
195#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196#define SIGTRAMP_OFFSET0 0
197#define SIGTRAMP_INSN1 0xe93d /* break 13 */
198#define SIGTRAMP_OFFSET1 4
199
200static const unsigned short sigtramp_code[] =
201{
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
204};
205
206#define SIGTRAMP_LEN (sizeof sigtramp_code)
207
208/* Note: same length as normal sigtramp code. */
209
210static const unsigned short rt_sigtramp_code[] =
29134980 211{
a5f6c8f5
OF
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
214};
215
216/* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
218
219static CORE_ADDR
220cris_sigtramp_start (struct frame_info *next_frame)
221{
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
e2a2a3e8 223 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5
OF
224
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
226 return 0;
227
e2a2a3e8 228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 229 {
e2a2a3e8 230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
231 return 0;
232
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
235 return 0;
236 }
237
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
239 return 0;
240
241 return pc;
242}
243
244/* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
246
247static CORE_ADDR
248cris_rt_sigtramp_start (struct frame_info *next_frame)
249{
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
e2a2a3e8 251 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5
OF
252
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
254 return 0;
255
e2a2a3e8 256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 257 {
e2a2a3e8 258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
259 return 0;
260
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
263 return 0;
264 }
265
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
267 return 0;
268
269 return pc;
270}
271
272/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
274
275static CORE_ADDR
276cris_sigcontext_addr (struct frame_info *next_frame)
277{
278 CORE_ADDR pc;
279 CORE_ADDR sp;
280 char buf[4];
281
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
284
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
287 if (pc)
288 {
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
291 it already. */
292 return sp;
293 }
294
295 pc = cris_rt_sigtramp_start (next_frame);
296 if (pc)
297 {
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
300 Magic digging:
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
303 return (sp + 156);
304 }
305
8a3fe4f8 306 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 307 return 0;
29134980
OF
308}
309
2e4b5889 310struct cris_unwind_cache
29134980 311{
2e4b5889
OF
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
314 CORE_ADDR prev_sp;
315 /* The frame's base, optionally used by the high-level debug info. */
316 CORE_ADDR base;
317 int size;
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
320 pointer). */
321 LONGEST sp_offset;
322 LONGEST r8_offset;
323 int uses_frame;
324
325 /* From old frame_extra_info struct. */
29134980
OF
326 CORE_ADDR return_pc;
327 int leaf_function;
2e4b5889
OF
328
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
29134980
OF
331};
332
a5f6c8f5
OF
333static struct cris_unwind_cache *
334cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
335 void **this_cache)
336{
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
339 CORE_ADDR pc;
340 CORE_ADDR sp;
341 CORE_ADDR addr;
342 char buf[4];
343 int i;
344
345 if ((*this_cache))
346 return (*this_cache);
347
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351
352 /* Zero all fields. */
353 info->prev_sp = 0;
354 info->base = 0;
355 info->size = 0;
356 info->sp_offset = 0;
357 info->r8_offset = 0;
358 info->uses_frame = 0;
359 info->return_pc = 0;
360 info->leaf_function = 0;
361
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
364
365 addr = cris_sigcontext_addr (next_frame);
366
367 /* Layout of the sigcontext struct:
368 struct sigcontext {
369 struct pt_regs regs;
370 unsigned long oldmask;
371 unsigned long usp;
372 }; */
373
c600d464
OF
374 if (tdep->cris_version == 10)
375 {
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 struct pt_regs. */
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
390 }
391 else
392 {
393 /* CRISv32. */
394 /* R0 to R13 are stored in order at offset (1 * 4) in
395 struct pt_regs. */
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
413
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
419 }
a5f6c8f5
OF
420
421 return info;
422}
423
424static void
425cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
427{
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
431}
432
433/* Forward declaration. */
434
435static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 439 int *realnump, gdb_byte *bufferp);
a5f6c8f5
OF
440static void
441cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 void **this_cache,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 445 int *realnump, gdb_byte *valuep)
a5f6c8f5
OF
446{
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
451}
452
453static const struct frame_unwind cris_sigtramp_frame_unwind =
454{
455 SIGTRAMP_FRAME,
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
458};
459
460static const struct frame_unwind *
461cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462{
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
466
467 return NULL;
468}
469
c600d464
OF
470int
471crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
473{
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 ULONGEST erp;
476 int ret = 0;
477 char buf[4];
478
0e6bdb31
OF
479 if (cris_mode () == cris_mode_guru)
480 {
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
482 }
483 else
484 {
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
486 }
487
c600d464
OF
488 erp = extract_unsigned_integer (buf, 4);
489
490 if (erp & 0x1)
491 {
492 /* In delay slot - check if there's a breakpoint at the preceding
493 instruction. */
494 if (breakpoint_here_p (erp & ~0x1))
495 ret = 1;
496 }
497 return ret;
498}
499
500/* Hardware watchpoint support. */
501
502/* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
504
505int
506cris_can_use_hardware_watchpoint (int type, int count, int other)
507{
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511
512 if (tdep->cris_version != 32)
513 return 0;
514 else
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
519}
520
521/* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
523
524int
525cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
526{
527 return 1;
528}
529
530/* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
532 zero. */
533
534CORE_ADDR
535cris_stopped_data_address (void)
536{
537 CORE_ADDR eda;
538 eda = read_register (EDA_REGNUM);
539 return eda;
540}
541
29134980 542/* The instruction environment needed to find single-step breakpoints. */
c600d464 543
29134980
OF
544typedef
545struct instruction_environment
546{
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
552 int branch_found;
553 int prefix_found;
554 int invalid;
555 int slot_needed;
556 int delay_slot_pc_active;
557 int xflag_found;
558 int disable_interrupt;
559} inst_env_type;
560
561/* Save old breakpoints in order to restore the state before a single_step.
562 At most, two breakpoints will have to be remembered. */
563typedef
564char binsn_quantum[BREAKPOINT_MAX];
565static binsn_quantum break_mem[2];
566static CORE_ADDR next_pc = 0;
567static CORE_ADDR branch_target_address = 0;
568static unsigned char branch_break_inserted = 0;
569
570/* Machine-dependencies in CRIS for opcodes. */
571
572/* Instruction sizes. */
573enum cris_instruction_sizes
574{
575 INST_BYTE_SIZE = 0,
576 INST_WORD_SIZE = 1,
577 INST_DWORD_SIZE = 2
578};
579
580/* Addressing modes. */
581enum cris_addressing_modes
582{
583 REGISTER_MODE = 1,
584 INDIRECT_MODE = 2,
585 AUTOINC_MODE = 3
586};
587
588/* Prefix addressing modes. */
589enum cris_prefix_addressing_modes
590{
591 PREFIX_INDEX_MODE = 2,
592 PREFIX_ASSIGN_MODE = 3,
593
594 /* Handle immediate byte offset addressing mode prefix format. */
595 PREFIX_OFFSET_MODE = 2
596};
597
598/* Masks for opcodes. */
599enum cris_opcode_masks
600{
601 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
602 SIGNED_EXTEND_BIT_MASK = 0x2,
603 SIGNED_BYTE_MASK = 0x80,
604 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
605 SIGNED_WORD_MASK = 0x8000,
606 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
607 SIGNED_DWORD_MASK = 0x80000000,
608 SIGNED_QUICK_VALUE_MASK = 0x20,
609 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
610};
611
612/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
613 Bit 15 - 12 Operand2
614 11 - 10 Mode
615 9 - 6 Opcode
616 5 - 4 Size
617 3 - 0 Operand1 */
618
619static int
620cris_get_operand2 (unsigned short insn)
621{
622 return ((insn & 0xF000) >> 12);
623}
624
625static int
626cris_get_mode (unsigned short insn)
627{
628 return ((insn & 0x0C00) >> 10);
629}
630
631static int
632cris_get_opcode (unsigned short insn)
633{
634 return ((insn & 0x03C0) >> 6);
635}
636
637static int
638cris_get_size (unsigned short insn)
639{
640 return ((insn & 0x0030) >> 4);
641}
642
643static int
644cris_get_operand1 (unsigned short insn)
645{
646 return (insn & 0x000F);
647}
648
649/* Additional functions in order to handle opcodes. */
650
29134980
OF
651static int
652cris_get_quick_value (unsigned short insn)
653{
654 return (insn & 0x003F);
655}
656
657static int
658cris_get_bdap_quick_offset (unsigned short insn)
659{
660 return (insn & 0x00FF);
661}
662
663static int
664cris_get_branch_short_offset (unsigned short insn)
665{
666 return (insn & 0x00FF);
667}
668
669static int
670cris_get_asr_shift_steps (unsigned long value)
671{
672 return (value & 0x3F);
673}
674
29134980
OF
675static int
676cris_get_clear_size (unsigned short insn)
677{
678 return ((insn) & 0xC000);
679}
680
681static int
682cris_is_signed_extend_bit_on (unsigned short insn)
683{
684 return (((insn) & 0x20) == 0x20);
685}
686
687static int
688cris_is_xflag_bit_on (unsigned short insn)
689{
690 return (((insn) & 0x1000) == 0x1000);
691}
692
693static void
694cris_set_size_to_dword (unsigned short *insn)
695{
696 *insn &= 0xFFCF;
697 *insn |= 0x20;
698}
699
8535cb38 700static signed char
29134980
OF
701cris_get_signed_offset (unsigned short insn)
702{
8535cb38 703 return ((signed char) (insn & 0x00FF));
29134980
OF
704}
705
706/* Calls an op function given the op-type, working on the insn and the
707 inst_env. */
708static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
709
29134980
OF
710static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
711 struct gdbarch_list *);
712
29134980
OF
713static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
714
a5f6c8f5
OF
715static void set_cris_version (char *ignore_args, int from_tty,
716 struct cmd_list_element *c);
29134980 717
0e6bdb31
OF
718static void set_cris_mode (char *ignore_args, int from_tty,
719 struct cmd_list_element *c);
720
a5f6c8f5
OF
721static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
722 struct cmd_list_element *c);
29134980 723
2e4b5889
OF
724static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
725 struct frame_info *next_frame,
726 struct cris_unwind_cache *info);
727
5114e29d
OF
728static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
729 struct frame_info *next_frame,
730 struct cris_unwind_cache *info);
731
2e4b5889
OF
732static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
733 struct frame_info *next_frame);
734
735static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
736 struct frame_info *next_frame);
737
738/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
739 order. The below implements a FILO (stack) to do this.
740 Copied from d10v-tdep.c. */
2e4b5889
OF
741
742struct stack_item
743{
744 int len;
745 struct stack_item *prev;
746 void *data;
747};
748
749static struct stack_item *
750push_stack_item (struct stack_item *prev, void *contents, int len)
751{
752 struct stack_item *si;
753 si = xmalloc (sizeof (struct stack_item));
754 si->data = xmalloc (len);
755 si->len = len;
756 si->prev = prev;
757 memcpy (si->data, contents, len);
758 return si;
759}
760
761static struct stack_item *
762pop_stack_item (struct stack_item *si)
763{
764 struct stack_item *dead = si;
765 si = si->prev;
766 xfree (dead->data);
767 xfree (dead);
768 return si;
769}
770
771/* Put here the code to store, into fi->saved_regs, the addresses of
772 the saved registers of frame described by FRAME_INFO. This
773 includes special registers such as pc and fp saved in special ways
774 in the stack frame. sp is even more special: the address we return
a5f6c8f5 775 for it IS the sp for the next frame. */
2e4b5889
OF
776
777struct cris_unwind_cache *
778cris_frame_unwind_cache (struct frame_info *next_frame,
779 void **this_prologue_cache)
780{
781 CORE_ADDR pc;
782 struct cris_unwind_cache *info;
783 int i;
784
785 if ((*this_prologue_cache))
786 return (*this_prologue_cache);
787
788 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
789 (*this_prologue_cache) = info;
790 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
791
792 /* Zero all fields. */
793 info->prev_sp = 0;
794 info->base = 0;
795 info->size = 0;
796 info->sp_offset = 0;
797 info->r8_offset = 0;
798 info->uses_frame = 0;
799 info->return_pc = 0;
800 info->leaf_function = 0;
801
802 /* Prologue analysis does the rest... */
5114e29d
OF
803 if (cris_version () == 32)
804 crisv32_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
805 else
806 cris_scan_prologue (frame_func_unwind (next_frame), next_frame, info);
2e4b5889
OF
807
808 return info;
809}
810
811/* Given a GDB frame, determine the address of the calling function's
812 frame. This will be used to create a new GDB frame struct. */
813
814static void
815cris_frame_this_id (struct frame_info *next_frame,
816 void **this_prologue_cache,
817 struct frame_id *this_id)
818{
819 struct cris_unwind_cache *info
820 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
821 CORE_ADDR base;
822 CORE_ADDR func;
823 struct frame_id id;
824
825 /* The FUNC is easy. */
826 func = frame_func_unwind (next_frame);
827
828 /* Hopefully the prologue analysis either correctly determined the
829 frame's base (which is the SP from the previous frame), or set
830 that base to "NULL". */
831 base = info->prev_sp;
832 if (base == 0)
833 return;
834
835 id = frame_id_build (base, func);
836
837 (*this_id) = id;
838}
839
840static void
841cris_frame_prev_register (struct frame_info *next_frame,
842 void **this_prologue_cache,
843 int regnum, int *optimizedp,
844 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 845 int *realnump, gdb_byte *bufferp)
2e4b5889
OF
846{
847 struct cris_unwind_cache *info
848 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
849 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
850 optimizedp, lvalp, addrp, realnump, bufferp);
2e4b5889
OF
851}
852
853/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
854 dummy frame. The frame ID's base needs to match the TOS value
855 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
856 breakpoint. */
857
858static struct frame_id
859cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
860{
861 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
862 frame_pc_unwind (next_frame));
863}
864
865static CORE_ADDR
866cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
867{
868 /* Align to the size of an instruction (so that they can safely be
869 pushed onto the stack). */
870 return sp & ~3;
871}
872
873static CORE_ADDR
874cris_push_dummy_code (struct gdbarch *gdbarch,
875 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
876 struct value **args, int nargs,
877 struct type *value_type,
878 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
879{
880 /* Allocate space sufficient for a breakpoint. */
881 sp = (sp - 4) & ~3;
882 /* Store the address of that breakpoint */
883 *bp_addr = sp;
884 /* CRIS always starts the call at the callee's entry point. */
885 *real_pc = funaddr;
886 return sp;
887}
888
889static CORE_ADDR
7d9b040b 890cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
891 struct regcache *regcache, CORE_ADDR bp_addr,
892 int nargs, struct value **args, CORE_ADDR sp,
893 int struct_return, CORE_ADDR struct_addr)
894{
895 int stack_alloc;
896 int stack_offset;
897 int argreg;
898 int argnum;
899
900 CORE_ADDR regval;
901
902 /* The function's arguments and memory allocated by gdb for the arguments to
903 point at reside in separate areas on the stack.
904 Both frame pointers grow toward higher addresses. */
905 CORE_ADDR fp_arg;
906 CORE_ADDR fp_mem;
907
908 struct stack_item *si = NULL;
909
a5f6c8f5 910 /* Push the return address. */
2e4b5889
OF
911 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
912
913 /* Are we returning a value using a structure return or a normal value
914 return? struct_addr is the address of the reserved space for the return
915 structure to be written on the stack. */
916 if (struct_return)
917 {
918 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
919 }
920
921 /* Now load as many as possible of the first arguments into registers,
922 and push the rest onto the stack. */
923 argreg = ARG1_REGNUM;
924 stack_offset = 0;
925
926 for (argnum = 0; argnum < nargs; argnum++)
927 {
928 int len;
929 char *val;
930 int reg_demand;
931 int i;
932
4991999e 933 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 934 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
935
936 /* How may registers worth of storage do we need for this argument? */
937 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
938
939 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
940 {
941 /* Data passed by value. Fits in available register(s). */
942 for (i = 0; i < reg_demand; i++)
943 {
944 regcache_cooked_write_unsigned (regcache, argreg,
945 *(unsigned long *) val);
946 argreg++;
947 val += 4;
948 }
949 }
950 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
951 {
952 /* Data passed by value. Does not fit in available register(s).
953 Use the register(s) first, then the stack. */
954 for (i = 0; i < reg_demand; i++)
955 {
956 if (argreg <= ARG4_REGNUM)
957 {
958 regcache_cooked_write_unsigned (regcache, argreg,
959 *(unsigned long *) val);
960 argreg++;
961 val += 4;
962 }
963 else
964 {
965 /* Push item for later so that pushed arguments
966 come in the right order. */
967 si = push_stack_item (si, val, 4);
968 val += 4;
969 }
970 }
971 }
972 else if (len > (2 * 4))
973 {
974 /* FIXME */
e2e0b3e5 975 internal_error (__FILE__, __LINE__, _("We don't do this"));
2e4b5889
OF
976 }
977 else
978 {
979 /* Data passed by value. No available registers. Put it on
980 the stack. */
981 si = push_stack_item (si, val, len);
982 }
983 }
984
985 while (si)
986 {
987 /* fp_arg must be word-aligned (i.e., don't += len) to match
988 the function prologue. */
989 sp = (sp - si->len) & ~3;
990 write_memory (sp, si->data, si->len);
991 si = pop_stack_item (si);
992 }
993
994 /* Finally, update the SP register. */
995 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
996
997 return sp;
998}
999
e2a2a3e8
OF
1000static const struct frame_unwind cris_frame_unwind =
1001{
2e4b5889
OF
1002 NORMAL_FRAME,
1003 cris_frame_this_id,
1004 cris_frame_prev_register
1005};
1006
1007const struct frame_unwind *
1008cris_frame_sniffer (struct frame_info *next_frame)
1009{
1010 return &cris_frame_unwind;
1011}
1012
1013static CORE_ADDR
1014cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1015{
1016 struct cris_unwind_cache *info
1017 = cris_frame_unwind_cache (next_frame, this_cache);
1018 return info->base;
1019}
1020
e2a2a3e8
OF
1021static const struct frame_base cris_frame_base =
1022{
2e4b5889
OF
1023 &cris_frame_unwind,
1024 cris_frame_base_address,
1025 cris_frame_base_address,
1026 cris_frame_base_address
1027};
1028
29134980
OF
1029/* Frames information. The definition of the struct frame_info is
1030
1031 CORE_ADDR frame
1032 CORE_ADDR pc
5a203e44 1033 enum frame_type type;
29134980
OF
1034 CORE_ADDR return_pc
1035 int leaf_function
1036
1037 If the compilation option -fno-omit-frame-pointer is present the
1038 variable frame will be set to the content of R8 which is the frame
1039 pointer register.
1040
1041 The variable pc contains the address where execution is performed
1042 in the present frame. The innermost frame contains the current content
1043 of the register PC. All other frames contain the content of the
1044 register PC in the next frame.
1045
5a203e44
AC
1046 The variable `type' indicates the frame's type: normal, SIGTRAMP
1047 (associated with a signal handler), dummy (associated with a dummy
1048 frame).
29134980
OF
1049
1050 The variable return_pc contains the address where execution should be
1051 resumed when the present frame has finished, the return address.
1052
1053 The variable leaf_function is 1 if the return address is in the register
1054 SRP, and 0 if it is on the stack.
1055
1056 Prologue instructions C-code.
1057 The prologue may consist of (-fno-omit-frame-pointer)
1058 1) 2)
1059 push srp
1060 push r8 push r8
1061 move.d sp,r8 move.d sp,r8
1062 subq X,sp subq X,sp
1063 movem rY,[sp] movem rY,[sp]
1064 move.S rZ,[r8-U] move.S rZ,[r8-U]
1065
1066 where 1 is a non-terminal function, and 2 is a leaf-function.
1067
1068 Note that this assumption is extremely brittle, and will break at the
1069 slightest change in GCC's prologue.
1070
1071 If local variables are declared or register contents are saved on stack
1072 the subq-instruction will be present with X as the number of bytes
1073 needed for storage. The reshuffle with respect to r8 may be performed
1074 with any size S (b, w, d) and any of the general registers Z={0..13}.
1075 The offset U should be representable by a signed 8-bit value in all cases.
1076 Thus, the prefix word is assumed to be immediate byte offset mode followed
1077 by another word containing the instruction.
1078
1079 Degenerate cases:
1080 3)
1081 push r8
1082 move.d sp,r8
1083 move.d r8,sp
1084 pop r8
1085
1086 Prologue instructions C++-code.
1087 Case 1) and 2) in the C-code may be followed by
1088
1089 move.d r10,rS ; this
1090 move.d r11,rT ; P1
1091 move.d r12,rU ; P2
1092 move.d r13,rV ; P3
1093 move.S [r8+U],rZ ; P4
1094
1095 if any of the call parameters are stored. The host expects these
1096 instructions to be executed in order to get the call parameters right. */
1097
1098/* Examine the prologue of a function. The variable ip is the address of
1099 the first instruction of the prologue. The variable limit is the address
1100 of the first instruction after the prologue. The variable fi contains the
1101 information in struct frame_info. The variable frameless_p controls whether
1102 the entire prologue is examined (0) or just enough instructions to
1103 determine that it is a prologue (1). */
1104
a78f21af 1105static CORE_ADDR
2e4b5889
OF
1106cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1107 struct cris_unwind_cache *info)
29134980
OF
1108{
1109 /* Present instruction. */
1110 unsigned short insn;
1111
1112 /* Next instruction, lookahead. */
1113 unsigned short insn_next;
1114 int regno;
1115
1116 /* Is there a push fp? */
1117 int have_fp;
1118
1119 /* Number of byte on stack used for local variables and movem. */
1120 int val;
1121
1122 /* Highest register number in a movem. */
1123 int regsave;
1124
1125 /* move.d r<source_register>,rS */
1126 short source_register;
1127
2e4b5889
OF
1128 /* Scan limit. */
1129 int limit;
29134980 1130
2e4b5889
OF
1131 /* This frame is with respect to a leaf until a push srp is found. */
1132 if (info)
1133 {
1134 info->leaf_function = 1;
1135 }
29134980
OF
1136
1137 /* Assume nothing on stack. */
1138 val = 0;
1139 regsave = -1;
1140
2e4b5889
OF
1141 /* If we were called without a next_frame, that means we were called
1142 from cris_skip_prologue which already tried to find the end of the
1143 prologue through the symbol information. 64 instructions past current
1144 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1145 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
29134980 1146
29134980 1147 /* Find the prologue instructions. */
a5f6c8f5 1148 while (pc > 0 && pc < limit)
29134980 1149 {
2e4b5889
OF
1150 insn = read_memory_unsigned_integer (pc, 2);
1151 pc += 2;
29134980
OF
1152 if (insn == 0xE1FC)
1153 {
1154 /* push <reg> 32 bit instruction */
2e4b5889
OF
1155 insn_next = read_memory_unsigned_integer (pc, 2);
1156 pc += 2;
29134980 1157 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1158 if (info)
1159 {
1160 info->sp_offset += 4;
1161 }
dbbff683
OF
1162 /* This check, meant to recognize srp, used to be regno ==
1163 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1164 if (insn_next == 0xBE7E)
29134980 1165 {
2e4b5889
OF
1166 if (info)
1167 {
1168 info->leaf_function = 0;
1169 }
29134980 1170 }
b4206d25
OF
1171 else if (insn_next == 0x8FEE)
1172 {
1173 /* push $r8 */
1174 if (info)
1175 {
1176 info->r8_offset = info->sp_offset;
1177 }
1178 }
29134980
OF
1179 }
1180 else if (insn == 0x866E)
1181 {
1182 /* move.d sp,r8 */
2e4b5889
OF
1183 if (info)
1184 {
1185 info->uses_frame = 1;
2e4b5889 1186 }
29134980
OF
1187 continue;
1188 }
1189 else if (cris_get_operand2 (insn) == SP_REGNUM
1190 && cris_get_mode (insn) == 0x0000
1191 && cris_get_opcode (insn) == 0x000A)
1192 {
1193 /* subq <val>,sp */
2e4b5889
OF
1194 if (info)
1195 {
1196 info->sp_offset += cris_get_quick_value (insn);
1197 }
29134980
OF
1198 }
1199 else if (cris_get_mode (insn) == 0x0002
1200 && cris_get_opcode (insn) == 0x000F
1201 && cris_get_size (insn) == 0x0003
1202 && cris_get_operand1 (insn) == SP_REGNUM)
1203 {
1204 /* movem r<regsave>,[sp] */
29134980
OF
1205 regsave = cris_get_operand2 (insn);
1206 }
1207 else if (cris_get_operand2 (insn) == SP_REGNUM
1208 && ((insn & 0x0F00) >> 8) == 0x0001
1209 && (cris_get_signed_offset (insn) < 0))
1210 {
1211 /* Immediate byte offset addressing prefix word with sp as base
1212 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1213 is between 64 and 128.
1214 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1215 if (info)
1216 {
1217 info->sp_offset += -cris_get_signed_offset (insn);
1218 }
1219 insn_next = read_memory_unsigned_integer (pc, 2);
1220 pc += 2;
29134980
OF
1221 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1222 && cris_get_opcode (insn_next) == 0x000F
1223 && cris_get_size (insn_next) == 0x0003
1224 && cris_get_operand1 (insn_next) == SP_REGNUM)
1225 {
29134980
OF
1226 regsave = cris_get_operand2 (insn_next);
1227 }
1228 else
1229 {
1230 /* The prologue ended before the limit was reached. */
2e4b5889 1231 pc -= 4;
29134980
OF
1232 break;
1233 }
1234 }
1235 else if (cris_get_mode (insn) == 0x0001
1236 && cris_get_opcode (insn) == 0x0009
1237 && cris_get_size (insn) == 0x0002)
1238 {
1239 /* move.d r<10..13>,r<0..15> */
29134980 1240 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1241
1242 /* FIXME? In the glibc solibs, the prologue might contain something
1243 like (this example taken from relocate_doit):
1244 move.d $pc,$r0
1245 sub.d 0xfffef426,$r0
1246 which isn't covered by the source_register check below. Question
1247 is whether to add a check for this combo, or make better use of
1248 the limit variable instead. */
29134980
OF
1249 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1250 {
1251 /* The prologue ended before the limit was reached. */
2e4b5889 1252 pc -= 2;
29134980
OF
1253 break;
1254 }
1255 }
2e4b5889 1256 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1257 /* The size is a fixed-size. */
1258 && ((insn & 0x0F00) >> 8) == 0x0001
1259 /* A negative offset. */
1260 && (cris_get_signed_offset (insn) < 0))
1261 {
1262 /* move.S rZ,[r8-U] (?) */
2e4b5889
OF
1263 insn_next = read_memory_unsigned_integer (pc, 2);
1264 pc += 2;
29134980
OF
1265 regno = cris_get_operand2 (insn_next);
1266 if ((regno >= 0 && regno < SP_REGNUM)
1267 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1268 && cris_get_opcode (insn_next) == 0x000F)
1269 {
1270 /* move.S rZ,[r8-U] */
1271 continue;
1272 }
1273 else
1274 {
1275 /* The prologue ended before the limit was reached. */
2e4b5889 1276 pc -= 4;
29134980
OF
1277 break;
1278 }
1279 }
2e4b5889 1280 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1281 /* The size is a fixed-size. */
1282 && ((insn & 0x0F00) >> 8) == 0x0001
1283 /* A positive offset. */
1284 && (cris_get_signed_offset (insn) > 0))
1285 {
1286 /* move.S [r8+U],rZ (?) */
2e4b5889
OF
1287 insn_next = read_memory_unsigned_integer (pc, 2);
1288 pc += 2;
29134980
OF
1289 regno = cris_get_operand2 (insn_next);
1290 if ((regno >= 0 && regno < SP_REGNUM)
1291 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1292 && cris_get_opcode (insn_next) == 0x0009
1293 && cris_get_operand1 (insn_next) == regno)
1294 {
1295 /* move.S [r8+U],rZ */
1296 continue;
1297 }
1298 else
1299 {
1300 /* The prologue ended before the limit was reached. */
2e4b5889 1301 pc -= 4;
29134980
OF
1302 break;
1303 }
1304 }
1305 else
1306 {
1307 /* The prologue ended before the limit was reached. */
2e4b5889 1308 pc -= 2;
29134980
OF
1309 break;
1310 }
1311 }
29134980 1312
2e4b5889
OF
1313 /* We only want to know the end of the prologue when next_frame and info
1314 are NULL (called from cris_skip_prologue i.e.). */
1315 if (next_frame == NULL && info == NULL)
1316 {
1317 return pc;
1318 }
29134980 1319
2e4b5889
OF
1320 info->size = info->sp_offset;
1321
1322 /* Compute the previous frame's stack pointer (which is also the
1323 frame's ID's stack address), and this frame's base pointer. */
1324 if (info->uses_frame)
29134980 1325 {
2e4b5889
OF
1326 ULONGEST this_base;
1327 /* The SP was moved to the FP. This indicates that a new frame
1328 was created. Get THIS frame's FP value by unwinding it from
1329 the next frame. */
1330 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1331 &this_base);
1332 info->base = this_base;
b4206d25
OF
1333 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1334
2e4b5889
OF
1335 /* The FP points at the last saved register. Adjust the FP back
1336 to before the first saved register giving the SP. */
1337 info->prev_sp = info->base + info->r8_offset;
1338 }
1339 else
1340 {
1341 ULONGEST this_base;
1342 /* Assume that the FP is this frame's SP but with that pushed
1343 stack space added back. */
1344 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1345 info->base = this_base;
1346 info->prev_sp = info->base + info->size;
1347 }
29134980 1348
2e4b5889
OF
1349 /* Calculate the addresses for the saved registers on the stack. */
1350 /* FIXME: The address calculation should really be done on the fly while
1351 we're analyzing the prologue (we only hold one regsave value as it is
1352 now). */
1353 val = info->sp_offset;
1354
1355 for (regno = regsave; regno >= 0; regno--)
1356 {
1357 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1358 val -= 4;
1359 }
1360
1361 /* The previous frame's SP needed to be computed. Save the computed
1362 value. */
1363 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1364
1365 if (!info->leaf_function)
1366 {
b4206d25
OF
1367 /* SRP saved on the stack. But where? */
1368 if (info->r8_offset == 0)
1369 {
1370 /* R8 not pushed yet. */
1371 info->saved_regs[SRP_REGNUM].addr = info->base;
1372 }
1373 else
1374 {
1375 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1376 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1377 }
29134980 1378 }
2e4b5889
OF
1379
1380 /* The PC is found in SRP (the actual register or located on the stack). */
1381 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1382
1383 return pc;
29134980
OF
1384}
1385
5114e29d
OF
1386static CORE_ADDR
1387crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1388 struct cris_unwind_cache *info)
1389{
1390 ULONGEST this_base;
1391
1392 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1393 meant to be a full-fledged prologue scanner. It is only needed for
1394 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1395
1396 * PLT stubs (library calls)
1397 * call dummys
1398 * signal trampolines
1399
1400 For those cases, it is assumed that there is no actual prologue; that
1401 the stack pointer is not adjusted, and (as a consequence) the return
1402 address is not pushed onto the stack. */
1403
1404 /* We only want to know the end of the prologue when next_frame and info
1405 are NULL (called from cris_skip_prologue i.e.). */
1406 if (next_frame == NULL && info == NULL)
1407 {
1408 return pc;
1409 }
1410
1411 /* The SP is assumed to be unaltered. */
1412 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1413 info->base = this_base;
1414 info->prev_sp = this_base;
1415
1416 /* The PC is assumed to be found in SRP. */
1417 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1418
1419 return pc;
1420}
1421
29134980
OF
1422/* Advance pc beyond any function entry prologue instructions at pc
1423 to reach some "real" code. */
1424
29134980
OF
1425/* Given a PC value corresponding to the start of a function, return the PC
1426 of the first instruction after the function prologue. */
1427
a78f21af 1428static CORE_ADDR
2e4b5889 1429cris_skip_prologue (CORE_ADDR pc)
29134980 1430{
2e4b5889
OF
1431 CORE_ADDR func_addr, func_end;
1432 struct symtab_and_line sal;
29134980
OF
1433 CORE_ADDR pc_after_prologue;
1434
2e4b5889
OF
1435 /* If we have line debugging information, then the end of the prologue
1436 should the first assembly instruction of the first source line. */
1437 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1438 {
1439 sal = find_pc_line (func_addr, 0);
1440 if (sal.end > 0 && sal.end < func_end)
1441 return sal.end;
1442 }
29134980 1443
5114e29d
OF
1444 if (cris_version () == 32)
1445 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1446 else
1447 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1448
29134980
OF
1449 return pc_after_prologue;
1450}
1451
2e4b5889
OF
1452static CORE_ADDR
1453cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1454{
1455 ULONGEST pc;
1456 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1457 return pc;
1458}
1459
1460static CORE_ADDR
1461cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1462{
1463 ULONGEST sp;
1464 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1465 return sp;
1466}
1467
29134980
OF
1468/* Use the program counter to determine the contents and size of a breakpoint
1469 instruction. It returns a pointer to a string of bytes that encode a
1470 breakpoint instruction, stores the length of the string to *lenptr, and
1471 adjusts pcptr (if necessary) to point to the actual memory location where
1472 the breakpoint should be inserted. */
1473
a78f21af 1474static const unsigned char *
29134980
OF
1475cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1476{
0e6bdb31
OF
1477 static unsigned char break8_insn[] = {0x38, 0xe9};
1478 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1479 *lenptr = 2;
1480
0e6bdb31
OF
1481 if (cris_mode () == cris_mode_guru)
1482 return break15_insn;
1483 else
1484 return break8_insn;
29134980
OF
1485}
1486
29134980
OF
1487/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1488 0 otherwise. */
1489
a78f21af 1490static int
29134980
OF
1491cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1492{
1493 int version = cris_version ();
1494
1495 switch (spec_reg.applicable_version)
1496 {
1497 case cris_ver_version_all:
1498 return 1;
1499 case cris_ver_warning:
1500 /* Indeterminate/obsolete. */
1501 return 0;
29134980
OF
1502 case cris_ver_v0_3:
1503 return (version >= 0 && version <= 3);
1504 case cris_ver_v3p:
1505 return (version >= 3);
1506 case cris_ver_v8:
1507 return (version == 8 || version == 9);
1508 case cris_ver_v8p:
1509 return (version >= 8);
c600d464
OF
1510 case cris_ver_v0_10:
1511 return (version >= 0 && version <= 10);
1512 case cris_ver_v3_10:
1513 return (version >= 3 && version <= 10);
1514 case cris_ver_v8_10:
1515 return (version >= 8 && version <= 10);
1516 case cris_ver_v10:
1517 return (version == 10);
29134980
OF
1518 case cris_ver_v10p:
1519 return (version >= 10);
c600d464
OF
1520 case cris_ver_v32p:
1521 return (version >= 32);
29134980
OF
1522 default:
1523 /* Invalid cris version. */
1524 return 0;
1525 }
1526}
1527
1d94326f
AC
1528/* Returns the register size in unit byte. Returns 0 for an unimplemented
1529 register, -1 for an invalid register. */
1530
1531static int
1532cris_register_size (int regno)
1533{
c600d464 1534 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1d94326f
AC
1535 int i;
1536 int spec_regno;
1537
1538 if (regno >= 0 && regno < NUM_GENREGS)
1539 {
1540 /* General registers (R0 - R15) are 32 bits. */
1541 return 4;
1542 }
c600d464 1543 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1544 {
1545 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1546 Adjust regno accordingly. */
1547 spec_regno = regno - NUM_GENREGS;
1548
c600d464 1549 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1550 {
1551 if (cris_spec_regs[i].number == spec_regno
1552 && cris_spec_reg_applicable (cris_spec_regs[i]))
1553 /* Go with the first applicable register. */
1554 return cris_spec_regs[i].reg_size;
1555 }
1556 /* Special register not applicable to this CRIS version. */
1557 return 0;
1558 }
c600d464 1559 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1d94326f 1560 {
c600d464
OF
1561 /* This will apply to CRISv32 only where there are additional registers
1562 after the special registers (pseudo PC and support registers). */
1563 return 4;
1d94326f 1564 }
c600d464
OF
1565
1566
1567 return -1;
1d94326f
AC
1568}
1569
29134980
OF
1570/* Nonzero if regno should not be fetched from the target. This is the case
1571 for unimplemented (size 0) and non-existant registers. */
1572
a78f21af 1573static int
29134980
OF
1574cris_cannot_fetch_register (int regno)
1575{
1576 return ((regno < 0 || regno >= NUM_REGS)
1577 || (cris_register_size (regno) == 0));
1578}
1579
1580/* Nonzero if regno should not be written to the target, for various
1581 reasons. */
1582
a78f21af 1583static int
29134980
OF
1584cris_cannot_store_register (int regno)
1585{
1586 /* There are three kinds of registers we refuse to write to.
1587 1. Those that not implemented.
1588 2. Those that are read-only (depends on the processor mode).
1589 3. Those registers to which a write has no effect.
1590 */
1591
1592 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1593 /* Not implemented. */
1594 return 1;
1595
1596 else if (regno == VR_REGNUM)
1597 /* Read-only. */
1598 return 1;
1599
1600 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1601 /* Writing has no effect. */
1602 return 1;
1603
a5f6c8f5
OF
1604 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1605 agent decide whether they are writable. */
29134980
OF
1606
1607 return 0;
1608}
1609
c600d464
OF
1610/* Nonzero if regno should not be fetched from the target. This is the case
1611 for unimplemented (size 0) and non-existant registers. */
1612
1613static int
1614crisv32_cannot_fetch_register (int regno)
1615{
1616 return ((regno < 0 || regno >= NUM_REGS)
1617 || (cris_register_size (regno) == 0));
1618}
1619
1620/* Nonzero if regno should not be written to the target, for various
1621 reasons. */
1622
1623static int
1624crisv32_cannot_store_register (int regno)
1625{
1626 /* There are three kinds of registers we refuse to write to.
1627 1. Those that not implemented.
1628 2. Those that are read-only (depends on the processor mode).
1629 3. Those registers to which a write has no effect.
1630 */
1631
1632 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1633 /* Not implemented. */
1634 return 1;
1635
1636 else if (regno == VR_REGNUM)
1637 /* Read-only. */
1638 return 1;
1639
1640 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1641 /* Writing has no effect. */
1642 return 1;
1643
1644 /* Many special registers are read-only in user mode. Let the debug
1645 agent decide whether they are writable. */
1646
1647 return 0;
1648}
1649
29134980
OF
1650/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1651 of data in register regno. */
1652
a78f21af 1653static struct type *
c1d546cd 1654cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1655{
a5f6c8f5
OF
1656 if (regno == PC_REGNUM)
1657 return builtin_type_void_func_ptr;
1658 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1659 return builtin_type_void_data_ptr;
1660 else if ((regno >= 0 && regno < SP_REGNUM)
1661 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1662 /* Note: R8 taken care of previous clause. */
1663 return builtin_type_uint32;
1664 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1665 return builtin_type_uint16;
1666 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1667 return builtin_type_uint8;
29134980 1668 else
a5f6c8f5
OF
1669 /* Invalid (unimplemented) register. */
1670 return builtin_type_int0;
29134980
OF
1671}
1672
c600d464
OF
1673static struct type *
1674crisv32_register_type (struct gdbarch *gdbarch, int regno)
1675{
1676 if (regno == PC_REGNUM)
1677 return builtin_type_void_func_ptr;
1678 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1679 return builtin_type_void_data_ptr;
1680 else if ((regno >= 0 && regno <= ACR_REGNUM)
1681 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1682 || (regno == PID_REGNUM)
1683 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1684 /* Note: R8 and SP taken care of by previous clause. */
1685 return builtin_type_uint32;
1686 else if (regno == WZ_REGNUM)
1687 return builtin_type_uint16;
1688 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1689 return builtin_type_uint8;
1690 else
1691 {
1692 /* Invalid (unimplemented) register. Should not happen as there are
1693 no unimplemented CRISv32 registers. */
8a3fe4f8 1694 warning (_("crisv32_register_type: unknown regno %d"), regno);
c600d464
OF
1695 return builtin_type_int0;
1696 }
1697}
1698
2e4b5889
OF
1699/* Stores a function return value of type type, where valbuf is the address
1700 of the value to be stored. */
29134980 1701
2e4b5889 1702/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1703
2e4b5889
OF
1704static void
1705cris_store_return_value (struct type *type, struct regcache *regcache,
1706 const void *valbuf)
29134980 1707{
2e4b5889
OF
1708 ULONGEST val;
1709 int len = TYPE_LENGTH (type);
29134980 1710
2e4b5889 1711 if (len <= 4)
29134980 1712 {
2e4b5889
OF
1713 /* Put the return value in R10. */
1714 val = extract_unsigned_integer (valbuf, len);
1715 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1716 }
2e4b5889 1717 else if (len <= 8)
29134980 1718 {
2e4b5889
OF
1719 /* Put the return value in R10 and R11. */
1720 val = extract_unsigned_integer (valbuf, 4);
1721 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1722 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1723 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1724 }
2e4b5889 1725 else
8a3fe4f8 1726 error (_("cris_store_return_value: type length too large."));
29134980
OF
1727}
1728
2e4b5889
OF
1729/* Return the name of register regno as a string. Return NULL for an invalid or
1730 unimplemented register. */
29134980 1731
c600d464
OF
1732static const char *
1733cris_special_register_name (int regno)
1734{
1735 int spec_regno;
1736 int i;
1737
1738 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1739 Adjust regno accordingly. */
1740 spec_regno = regno - NUM_GENREGS;
1741
1742 /* Assume nothing about the layout of the cris_spec_regs struct
1743 when searching. */
1744 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1745 {
1746 if (cris_spec_regs[i].number == spec_regno
1747 && cris_spec_reg_applicable (cris_spec_regs[i]))
1748 /* Go with the first applicable register. */
1749 return cris_spec_regs[i].name;
1750 }
1751 /* Special register not applicable to this CRIS version. */
1752 return NULL;
1753}
1754
2e4b5889
OF
1755static const char *
1756cris_register_name (int regno)
1757{
1758 static char *cris_genreg_names[] =
1759 { "r0", "r1", "r2", "r3", \
1760 "r4", "r5", "r6", "r7", \
1761 "r8", "r9", "r10", "r11", \
1762 "r12", "r13", "sp", "pc" };
29134980 1763
2e4b5889 1764 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1765 {
2e4b5889
OF
1766 /* General register. */
1767 return cris_genreg_names[regno];
29134980 1768 }
2e4b5889 1769 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
29134980 1770 {
c600d464
OF
1771 return cris_special_register_name (regno);
1772 }
1773 else
1774 {
1775 /* Invalid register. */
2e4b5889
OF
1776 return NULL;
1777 }
c600d464
OF
1778}
1779
1780static const char *
1781crisv32_register_name (int regno)
1782{
1783 static char *crisv32_genreg_names[] =
1784 { "r0", "r1", "r2", "r3", \
1785 "r4", "r5", "r6", "r7", \
1786 "r8", "r9", "r10", "r11", \
1787 "r12", "r13", "sp", "acr"
1788 };
1789
1790 static char *crisv32_sreg_names[] =
1791 { "s0", "s1", "s2", "s3", \
1792 "s4", "s5", "s6", "s7", \
1793 "s8", "s9", "s10", "s11", \
1794 "s12", "s13", "s14", "s15"
1795 };
1796
1797 if (regno >= 0 && regno < NUM_GENREGS)
1798 {
1799 /* General register. */
1800 return crisv32_genreg_names[regno];
1801 }
1802 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1803 {
1804 return cris_special_register_name (regno);
1805 }
1806 else if (regno == PC_REGNUM)
1807 {
1808 return "pc";
1809 }
1810 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1811 {
1812 return crisv32_sreg_names[regno - S0_REGNUM];
1813 }
2e4b5889
OF
1814 else
1815 {
1816 /* Invalid register. */
1817 return NULL;
29134980 1818 }
29134980
OF
1819}
1820
a5f6c8f5
OF
1821/* Convert DWARF register number REG to the appropriate register
1822 number used by GDB. */
1823
2e4b5889 1824static int
a5f6c8f5 1825cris_dwarf2_reg_to_regnum (int reg)
29134980 1826{
a5f6c8f5
OF
1827 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1828 numbering, MOF is 18).
1829 Adapted from gcc/config/cris/cris.h. */
1830 static int cris_dwarf_regmap[] = {
1831 0, 1, 2, 3,
1832 4, 5, 6, 7,
1833 8, 9, 10, 11,
1834 12, 13, 14, 15,
1835 27, -1, -1, -1,
1836 -1, -1, -1, 23,
1837 -1, -1, -1, 27,
1838 -1, -1, -1, -1
1839 };
1840 int regnum = -1;
1841
1842 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1843 regnum = cris_dwarf_regmap[reg];
1844
1845 if (regnum == -1)
8a3fe4f8 1846 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1847
1848 return regnum;
1849}
1850
1851/* DWARF-2 frame support. */
1852
1853static void
1854cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1855 struct dwarf2_frame_state_reg *reg)
1856{
1857 /* The return address column. */
1858 if (regnum == PC_REGNUM)
1859 reg->how = DWARF2_FRAME_REG_RA;
1860
1861 /* The call frame address. */
1862 else if (regnum == SP_REGNUM)
1863 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1864}
1865
2e4b5889
OF
1866/* Extract from an array regbuf containing the raw register state a function
1867 return value of type type, and copy that, in virtual format, into
1868 valbuf. */
1869
1870/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1871
2e4b5889
OF
1872static void
1873cris_extract_return_value (struct type *type, struct regcache *regcache,
1874 void *valbuf)
29134980 1875{
2e4b5889
OF
1876 ULONGEST val;
1877 int len = TYPE_LENGTH (type);
29134980 1878
2e4b5889 1879 if (len <= 4)
29134980 1880 {
2e4b5889
OF
1881 /* Get the return value from R10. */
1882 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1883 store_unsigned_integer (valbuf, len, val);
29134980 1884 }
2e4b5889 1885 else if (len <= 8)
29134980 1886 {
2e4b5889
OF
1887 /* Get the return value from R10 and R11. */
1888 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1889 store_unsigned_integer (valbuf, 4, val);
1890 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1891 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
29134980 1892 }
2e4b5889 1893 else
8a3fe4f8 1894 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1895}
1896
b4206d25
OF
1897/* Handle the CRIS return value convention. */
1898
1899static enum return_value_convention
1900cris_return_value (struct gdbarch *gdbarch, struct type *type,
e2a2a3e8
OF
1901 struct regcache *regcache, gdb_byte *readbuf,
1902 const gdb_byte *writebuf)
b4206d25
OF
1903{
1904 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1905 || TYPE_CODE (type) == TYPE_CODE_UNION
1906 || TYPE_LENGTH (type) > 8)
1907 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1908 goes on the stack. */
1909 return RETURN_VALUE_STRUCT_CONVENTION;
1910
1911 if (readbuf)
1912 cris_extract_return_value (type, regcache, readbuf);
1913 if (writebuf)
1914 cris_store_return_value (type, regcache, writebuf);
1915
1916 return RETURN_VALUE_REGISTER_CONVENTION;
1917}
1918
2e4b5889
OF
1919/* Returns 1 if the given type will be passed by pointer rather than
1920 directly. */
1921
1922/* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1923 by value. */
1924
1925static int
1926cris_reg_struct_has_addr (int gcc_p, struct type *type)
1927{
1928 return (TYPE_LENGTH (type) > 8);
29134980
OF
1929}
1930
1931/* Calculates a value that measures how good inst_args constraints an
1932 instruction. It stems from cris_constraint, found in cris-dis.c. */
1933
1934static int
1935constraint (unsigned int insn, const signed char *inst_args,
1936 inst_env_type *inst_env)
1937{
1938 int retval = 0;
1939 int tmp, i;
1940
1941 const char *s = inst_args;
1942
1943 for (; *s; s++)
1944 switch (*s)
1945 {
1946 case 'm':
1947 if ((insn & 0x30) == 0x30)
1948 return -1;
1949 break;
1950
1951 case 'S':
1952 /* A prefix operand. */
1953 if (inst_env->prefix_found)
1954 break;
1955 else
1956 return -1;
1957
1958 case 'B':
1959 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1960 valid "push" size. In case of special register, it may be != 4. */
1961 if (inst_env->prefix_found)
1962 break;
1963 else
1964 return -1;
1965
1966 case 'D':
1967 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1968 if (!retval)
1969 return -1;
1970 else
1971 retval += 4;
1972 break;
1973
1974 case 'P':
1975 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1976
1977 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1978 {
1979 /* Since we match four bits, we will give a value of
1980 4 - 1 = 3 in a match. If there is a corresponding
1981 exact match of a special register in another pattern, it
1982 will get a value of 4, which will be higher. This should
1983 be correct in that an exact pattern would match better that
1984 a general pattern.
1985 Note that there is a reason for not returning zero; the
1986 pattern for "clear" is partly matched in the bit-pattern
1987 (the two lower bits must be zero), while the bit-pattern
1988 for a move from a special register is matched in the
1989 register constraint.
1990 This also means we will will have a race condition if
1991 there is a partly match in three bits in the bit pattern. */
1992 if (tmp == cris_spec_regs[i].number)
1993 {
1994 retval += 3;
1995 break;
1996 }
1997 }
1998
1999 if (cris_spec_regs[i].name == NULL)
29134980
OF
2000 return -1;
2001 break;
2002 }
2003 return retval;
2004}
2005
2006/* Returns the number of bits set in the variable value. */
2007
2008static int
2009number_of_bits (unsigned int value)
2010{
2011 int number_of_bits = 0;
2012
2013 while (value != 0)
2014 {
2015 number_of_bits += 1;
2016 value &= (value - 1);
2017 }
2018 return number_of_bits;
2019}
2020
2021/* Finds the address that should contain the single step breakpoint(s).
2022 It stems from code in cris-dis.c. */
2023
2024static int
2025find_cris_op (unsigned short insn, inst_env_type *inst_env)
2026{
2027 int i;
2028 int max_level_of_match = -1;
2029 int max_matched = -1;
2030 int level_of_match;
2031
2032 for (i = 0; cris_opcodes[i].name != NULL; i++)
2033 {
2034 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
2035 && ((cris_opcodes[i].lose & insn) == 0)
2036 /* Only CRISv10 instructions, please. */
2037 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
2038 {
2039 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2040 if (level_of_match >= 0)
2041 {
2042 level_of_match +=
2043 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2044 if (level_of_match > max_level_of_match)
2045 {
2046 max_matched = i;
2047 max_level_of_match = level_of_match;
2048 if (level_of_match == 16)
2049 {
2050 /* All bits matched, cannot find better. */
2051 break;
2052 }
2053 }
2054 }
2055 }
2056 }
2057 return max_matched;
2058}
2059
2060/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2061 actually an internal error. */
2062
2063static int
2064find_step_target (inst_env_type *inst_env)
2065{
2066 int i;
2067 int offset;
2068 unsigned short insn;
2069
2070 /* Create a local register image and set the initial state. */
2071 for (i = 0; i < NUM_GENREGS; i++)
2072 {
2073 inst_env->reg[i] = (unsigned long) read_register (i);
2074 }
2075 offset = NUM_GENREGS;
2076 for (i = 0; i < NUM_SPECREGS; i++)
2077 {
2078 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2079 }
2080 inst_env->branch_found = 0;
2081 inst_env->slot_needed = 0;
2082 inst_env->delay_slot_pc_active = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->invalid = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
2087
2088 /* Look for a step target. */
2089 do
2090 {
2091 /* Read an instruction from the client. */
2092 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2093
2094 /* If the instruction is not in a delay slot the new content of the
2095 PC is [PC] + 2. If the instruction is in a delay slot it is not
2096 that simple. Since a instruction in a delay slot cannot change
2097 the content of the PC, it does not matter what value PC will have.
2098 Just make sure it is a valid instruction. */
2099 if (!inst_env->delay_slot_pc_active)
2100 {
2101 inst_env->reg[PC_REGNUM] += 2;
2102 }
2103 else
2104 {
2105 inst_env->delay_slot_pc_active = 0;
2106 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2107 }
2108 /* Analyse the present instruction. */
2109 i = find_cris_op (insn, inst_env);
2110 if (i == -1)
2111 {
2112 inst_env->invalid = 1;
2113 }
2114 else
2115 {
2116 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2117 }
2118 } while (!inst_env->invalid
2119 && (inst_env->prefix_found || inst_env->xflag_found
2120 || inst_env->slot_needed));
2121 return i;
2122}
2123
2124/* There is no hardware single-step support. The function find_step_target
2125 digs through the opcodes in order to find all possible targets.
2126 Either one ordinary target or two targets for branches may be found. */
2127
a78f21af 2128static void
29134980
OF
2129cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
2130{
2131 inst_env_type inst_env;
2132
2133 if (insert_breakpoints)
2134 {
2135 /* Analyse the present instruction environment and insert
2136 breakpoints. */
2137 int status = find_step_target (&inst_env);
2138 if (status == -1)
2139 {
c600d464
OF
2140 /* Could not find a target. Things are likely to go downhill
2141 from here. */
8a3fe4f8 2142 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2143 }
2144 else
2145 {
2146 /* Insert at most two breakpoints. One for the next PC content
2147 and possibly another one for a branch, jump, etc. */
2148 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2149 target_insert_breakpoint (next_pc, break_mem[0]);
2150 if (inst_env.branch_found
2151 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2152 {
2153 branch_target_address =
2154 (CORE_ADDR) inst_env.branch_break_address;
2155 target_insert_breakpoint (branch_target_address, break_mem[1]);
2156 branch_break_inserted = 1;
2157 }
2158 }
2159 }
2160 else
2161 {
2162 /* Remove breakpoints. */
2163 target_remove_breakpoint (next_pc, break_mem[0]);
2164 if (branch_break_inserted)
2165 {
2166 target_remove_breakpoint (branch_target_address, break_mem[1]);
2167 branch_break_inserted = 0;
2168 }
2169 }
2170}
2171
2172/* Calculates the prefix value for quick offset addressing mode. */
2173
a78f21af 2174static void
29134980
OF
2175quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2176{
2177 /* It's invalid to be in a delay slot. You can't have a prefix to this
2178 instruction (not 100% sure). */
2179 if (inst_env->slot_needed || inst_env->prefix_found)
2180 {
2181 inst_env->invalid = 1;
2182 return;
2183 }
2184
2185 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2186 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2187
2188 /* A prefix doesn't change the xflag_found. But the rest of the flags
2189 need updating. */
2190 inst_env->slot_needed = 0;
2191 inst_env->prefix_found = 1;
2192}
2193
2194/* Updates the autoincrement register. The size of the increment is derived
2195 from the size of the operation. The PC is always kept aligned on even
2196 word addresses. */
2197
a78f21af 2198static void
29134980
OF
2199process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2200{
2201 if (size == INST_BYTE_SIZE)
2202 {
2203 inst_env->reg[cris_get_operand1 (inst)] += 1;
2204
2205 /* The PC must be word aligned, so increase the PC with one
2206 word even if the size is byte. */
2207 if (cris_get_operand1 (inst) == REG_PC)
2208 {
2209 inst_env->reg[REG_PC] += 1;
2210 }
2211 }
2212 else if (size == INST_WORD_SIZE)
2213 {
2214 inst_env->reg[cris_get_operand1 (inst)] += 2;
2215 }
2216 else if (size == INST_DWORD_SIZE)
2217 {
2218 inst_env->reg[cris_get_operand1 (inst)] += 4;
2219 }
2220 else
2221 {
2222 /* Invalid size. */
2223 inst_env->invalid = 1;
2224 }
2225}
2226
2a9ecef2
OF
2227/* Just a forward declaration. */
2228
a78f21af
AC
2229static unsigned long get_data_from_address (unsigned short *inst,
2230 CORE_ADDR address);
2a9ecef2 2231
29134980
OF
2232/* Calculates the prefix value for the general case of offset addressing
2233 mode. */
2234
a78f21af 2235static void
29134980
OF
2236bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2237{
2238
2239 long offset;
2240
2241 /* It's invalid to be in a delay slot. */
2242 if (inst_env->slot_needed || inst_env->prefix_found)
2243 {
2244 inst_env->invalid = 1;
2245 return;
2246 }
2247
fa4e4598
OF
2248 /* The calculation of prefix_value used to be after process_autoincrement,
2249 but that fails for an instruction such as jsr [$r0+12] which is encoded
2250 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2251 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2252 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2253
2254 /* The offset is an indirection of the contents of the operand1 register. */
2255 inst_env->prefix_value +=
2a9ecef2
OF
2256 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2257
fa4e4598
OF
2258 if (cris_get_mode (inst) == AUTOINC_MODE)
2259 {
2260 process_autoincrement (cris_get_size (inst), inst, inst_env);
2261 }
2262
29134980
OF
2263 /* A prefix doesn't change the xflag_found. But the rest of the flags
2264 need updating. */
2265 inst_env->slot_needed = 0;
2266 inst_env->prefix_found = 1;
2267}
2268
2269/* Calculates the prefix value for the index addressing mode. */
2270
a78f21af 2271static void
29134980
OF
2272biap_prefix (unsigned short inst, inst_env_type *inst_env)
2273{
2274 /* It's invalid to be in a delay slot. I can't see that it's possible to
2275 have a prefix to this instruction. So I will treat this as invalid. */
2276 if (inst_env->slot_needed || inst_env->prefix_found)
2277 {
2278 inst_env->invalid = 1;
2279 return;
2280 }
2281
2282 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2283
2284 /* The offset is the operand2 value shifted the size of the instruction
2285 to the left. */
2286 inst_env->prefix_value +=
2287 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2288
2289 /* If the PC is operand1 (base) the address used is the address after
2290 the main instruction, i.e. address + 2 (the PC is already compensated
2291 for the prefix operation). */
2292 if (cris_get_operand1 (inst) == REG_PC)
2293 {
2294 inst_env->prefix_value += 2;
2295 }
2296
2297 /* A prefix doesn't change the xflag_found. But the rest of the flags
2298 need updating. */
2299 inst_env->slot_needed = 0;
2300 inst_env->xflag_found = 0;
2301 inst_env->prefix_found = 1;
2302}
2303
2304/* Calculates the prefix value for the double indirect addressing mode. */
2305
a78f21af 2306static void
29134980
OF
2307dip_prefix (unsigned short inst, inst_env_type *inst_env)
2308{
2309
2310 CORE_ADDR address;
2311
2312 /* It's invalid to be in a delay slot. */
2313 if (inst_env->slot_needed || inst_env->prefix_found)
2314 {
2315 inst_env->invalid = 1;
2316 return;
2317 }
2318
2319 /* The prefix value is one dereference of the contents of the operand1
2320 register. */
2321 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2322 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2323
2324 /* Check if the mode is autoincrement. */
2325 if (cris_get_mode (inst) == AUTOINC_MODE)
2326 {
2327 inst_env->reg[cris_get_operand1 (inst)] += 4;
2328 }
2329
2330 /* A prefix doesn't change the xflag_found. But the rest of the flags
2331 need updating. */
2332 inst_env->slot_needed = 0;
2333 inst_env->xflag_found = 0;
2334 inst_env->prefix_found = 1;
2335}
2336
2337/* Finds the destination for a branch with 8-bits offset. */
2338
a78f21af 2339static void
29134980
OF
2340eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2341{
2342
2343 short offset;
2344
2345 /* If we have a prefix or are in a delay slot it's bad. */
2346 if (inst_env->slot_needed || inst_env->prefix_found)
2347 {
2348 inst_env->invalid = 1;
2349 return;
2350 }
2351
2352 /* We have a branch, find out where the branch will land. */
2353 offset = cris_get_branch_short_offset (inst);
2354
2355 /* Check if the offset is signed. */
2356 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2357 {
2358 offset |= 0xFF00;
2359 }
2360
2361 /* The offset ends with the sign bit, set it to zero. The address
2362 should always be word aligned. */
2363 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2364
2365 inst_env->branch_found = 1;
2366 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2367
2368 inst_env->slot_needed = 1;
2369 inst_env->prefix_found = 0;
2370 inst_env->xflag_found = 0;
2371 inst_env->disable_interrupt = 1;
2372}
2373
2374/* Finds the destination for a branch with 16-bits offset. */
2375
a78f21af 2376static void
29134980
OF
2377sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2378{
2379 short offset;
2380
2381 /* If we have a prefix or is in a delay slot it's bad. */
2382 if (inst_env->slot_needed || inst_env->prefix_found)
2383 {
2384 inst_env->invalid = 1;
2385 return;
2386 }
2387
2388 /* We have a branch, find out the offset for the branch. */
2389 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2390
2391 /* The instruction is one word longer than normal, so add one word
2392 to the PC. */
2393 inst_env->reg[REG_PC] += 2;
2394
2395 inst_env->branch_found = 1;
2396 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2397
2398
2399 inst_env->slot_needed = 1;
2400 inst_env->prefix_found = 0;
2401 inst_env->xflag_found = 0;
2402 inst_env->disable_interrupt = 1;
2403}
2404
2405/* Handles the ABS instruction. */
2406
a78f21af 2407static void
29134980
OF
2408abs_op (unsigned short inst, inst_env_type *inst_env)
2409{
2410
2411 long value;
2412
2413 /* ABS can't have a prefix, so it's bad if it does. */
2414 if (inst_env->prefix_found)
2415 {
2416 inst_env->invalid = 1;
2417 return;
2418 }
2419
2420 /* Check if the operation affects the PC. */
2421 if (cris_get_operand2 (inst) == REG_PC)
2422 {
2423
2424 /* It's invalid to change to the PC if we are in a delay slot. */
2425 if (inst_env->slot_needed)
2426 {
2427 inst_env->invalid = 1;
2428 return;
2429 }
2430
2431 value = (long) inst_env->reg[REG_PC];
2432
2433 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2434 if (value != SIGNED_DWORD_MASK)
2435 {
2436 value = -value;
2437 inst_env->reg[REG_PC] = (long) value;
2438 }
2439 }
2440
2441 inst_env->slot_needed = 0;
2442 inst_env->prefix_found = 0;
2443 inst_env->xflag_found = 0;
2444 inst_env->disable_interrupt = 0;
2445}
2446
2447/* Handles the ADDI instruction. */
2448
a78f21af 2449static void
29134980
OF
2450addi_op (unsigned short inst, inst_env_type *inst_env)
2451{
2452 /* It's invalid to have the PC as base register. And ADDI can't have
2453 a prefix. */
2454 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2455 {
2456 inst_env->invalid = 1;
2457 return;
2458 }
2459
2460 inst_env->slot_needed = 0;
2461 inst_env->prefix_found = 0;
2462 inst_env->xflag_found = 0;
2463 inst_env->disable_interrupt = 0;
2464}
2465
2466/* Handles the ASR instruction. */
2467
a78f21af 2468static void
29134980
OF
2469asr_op (unsigned short inst, inst_env_type *inst_env)
2470{
2471 int shift_steps;
2472 unsigned long value;
2473 unsigned long signed_extend_mask = 0;
2474
2475 /* ASR can't have a prefix, so check that it doesn't. */
2476 if (inst_env->prefix_found)
2477 {
2478 inst_env->invalid = 1;
2479 return;
2480 }
2481
2482 /* Check if the PC is the target register. */
2483 if (cris_get_operand2 (inst) == REG_PC)
2484 {
2485 /* It's invalid to change the PC in a delay slot. */
2486 if (inst_env->slot_needed)
2487 {
2488 inst_env->invalid = 1;
2489 return;
2490 }
2491 /* Get the number of bits to shift. */
2492 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2493 value = inst_env->reg[REG_PC];
2494
2495 /* Find out how many bits the operation should apply to. */
2496 if (cris_get_size (inst) == INST_BYTE_SIZE)
2497 {
2498 if (value & SIGNED_BYTE_MASK)
2499 {
2500 signed_extend_mask = 0xFF;
2501 signed_extend_mask = signed_extend_mask >> shift_steps;
2502 signed_extend_mask = ~signed_extend_mask;
2503 }
2504 value = value >> shift_steps;
2505 value |= signed_extend_mask;
2506 value &= 0xFF;
2507 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2508 inst_env->reg[REG_PC] |= value;
2509 }
2510 else if (cris_get_size (inst) == INST_WORD_SIZE)
2511 {
2512 if (value & SIGNED_WORD_MASK)
2513 {
2514 signed_extend_mask = 0xFFFF;
2515 signed_extend_mask = signed_extend_mask >> shift_steps;
2516 signed_extend_mask = ~signed_extend_mask;
2517 }
2518 value = value >> shift_steps;
2519 value |= signed_extend_mask;
2520 value &= 0xFFFF;
2521 inst_env->reg[REG_PC] &= 0xFFFF0000;
2522 inst_env->reg[REG_PC] |= value;
2523 }
2524 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2525 {
2526 if (value & SIGNED_DWORD_MASK)
2527 {
2528 signed_extend_mask = 0xFFFFFFFF;
2529 signed_extend_mask = signed_extend_mask >> shift_steps;
2530 signed_extend_mask = ~signed_extend_mask;
2531 }
2532 value = value >> shift_steps;
2533 value |= signed_extend_mask;
2534 inst_env->reg[REG_PC] = value;
2535 }
2536 }
2537 inst_env->slot_needed = 0;
2538 inst_env->prefix_found = 0;
2539 inst_env->xflag_found = 0;
2540 inst_env->disable_interrupt = 0;
2541}
2542
2543/* Handles the ASRQ instruction. */
2544
a78f21af 2545static void
29134980
OF
2546asrq_op (unsigned short inst, inst_env_type *inst_env)
2547{
2548
2549 int shift_steps;
2550 unsigned long value;
2551 unsigned long signed_extend_mask = 0;
2552
2553 /* ASRQ can't have a prefix, so check that it doesn't. */
2554 if (inst_env->prefix_found)
2555 {
2556 inst_env->invalid = 1;
2557 return;
2558 }
2559
2560 /* Check if the PC is the target register. */
2561 if (cris_get_operand2 (inst) == REG_PC)
2562 {
2563
2564 /* It's invalid to change the PC in a delay slot. */
2565 if (inst_env->slot_needed)
2566 {
2567 inst_env->invalid = 1;
2568 return;
2569 }
2570 /* The shift size is given as a 5 bit quick value, i.e. we don't
2571 want the the sign bit of the quick value. */
2572 shift_steps = cris_get_asr_shift_steps (inst);
2573 value = inst_env->reg[REG_PC];
2574 if (value & SIGNED_DWORD_MASK)
2575 {
2576 signed_extend_mask = 0xFFFFFFFF;
2577 signed_extend_mask = signed_extend_mask >> shift_steps;
2578 signed_extend_mask = ~signed_extend_mask;
2579 }
2580 value = value >> shift_steps;
2581 value |= signed_extend_mask;
2582 inst_env->reg[REG_PC] = value;
2583 }
2584 inst_env->slot_needed = 0;
2585 inst_env->prefix_found = 0;
2586 inst_env->xflag_found = 0;
2587 inst_env->disable_interrupt = 0;
2588}
2589
2590/* Handles the AX, EI and SETF instruction. */
2591
a78f21af 2592static void
29134980
OF
2593ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2594{
2595 if (inst_env->prefix_found)
2596 {
2597 inst_env->invalid = 1;
2598 return;
2599 }
2600 /* Check if the instruction is setting the X flag. */
2601 if (cris_is_xflag_bit_on (inst))
2602 {
2603 inst_env->xflag_found = 1;
2604 }
2605 else
2606 {
2607 inst_env->xflag_found = 0;
2608 }
2609 inst_env->slot_needed = 0;
2610 inst_env->prefix_found = 0;
2611 inst_env->disable_interrupt = 1;
2612}
2613
2614/* Checks if the instruction is in assign mode. If so, it updates the assign
2615 register. Note that check_assign assumes that the caller has checked that
2616 there is a prefix to this instruction. The mode check depends on this. */
2617
a78f21af 2618static void
29134980
OF
2619check_assign (unsigned short inst, inst_env_type *inst_env)
2620{
2621 /* Check if it's an assign addressing mode. */
2622 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2623 {
2624 /* Assign the prefix value to operand 1. */
2625 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2626 }
2627}
2628
2629/* Handles the 2-operand BOUND instruction. */
2630
a78f21af 2631static void
29134980
OF
2632two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2633{
2634 /* It's invalid to have the PC as the index operand. */
2635 if (cris_get_operand2 (inst) == REG_PC)
2636 {
2637 inst_env->invalid = 1;
2638 return;
2639 }
2640 /* Check if we have a prefix. */
2641 if (inst_env->prefix_found)
2642 {
2643 check_assign (inst, inst_env);
2644 }
2645 /* Check if this is an autoincrement mode. */
2646 else if (cris_get_mode (inst) == AUTOINC_MODE)
2647 {
2648 /* It's invalid to change the PC in a delay slot. */
2649 if (inst_env->slot_needed)
2650 {
2651 inst_env->invalid = 1;
2652 return;
2653 }
2654 process_autoincrement (cris_get_size (inst), inst, inst_env);
2655 }
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2660}
2661
2662/* Handles the 3-operand BOUND instruction. */
2663
a78f21af 2664static void
29134980
OF
2665three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2666{
2667 /* It's an error if we haven't got a prefix. And it's also an error
2668 if the PC is the destination register. */
2669 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2670 {
2671 inst_env->invalid = 1;
2672 return;
2673 }
2674 inst_env->slot_needed = 0;
2675 inst_env->prefix_found = 0;
2676 inst_env->xflag_found = 0;
2677 inst_env->disable_interrupt = 0;
2678}
2679
2680/* Clears the status flags in inst_env. */
2681
a78f21af 2682static void
29134980
OF
2683btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2684{
2685 /* It's an error if we have got a prefix. */
2686 if (inst_env->prefix_found)
2687 {
2688 inst_env->invalid = 1;
2689 return;
2690 }
2691
2692 inst_env->slot_needed = 0;
2693 inst_env->prefix_found = 0;
2694 inst_env->xflag_found = 0;
2695 inst_env->disable_interrupt = 0;
2696}
2697
2698/* Clears the status flags in inst_env. */
2699
a78f21af 2700static void
29134980
OF
2701clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2702{
2703 /* It's an error if we have got a prefix. */
2704 if (inst_env->prefix_found)
2705 {
2706 inst_env->invalid = 1;
2707 return;
2708 }
2709
2710 inst_env->slot_needed = 0;
2711 inst_env->prefix_found = 0;
2712 inst_env->xflag_found = 0;
2713 inst_env->disable_interrupt = 1;
2714}
2715
2716/* Handles the CLEAR instruction if it's in register mode. */
2717
a78f21af 2718static void
29134980
OF
2719reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2720{
2721 /* Check if the target is the PC. */
2722 if (cris_get_operand2 (inst) == REG_PC)
2723 {
2724 /* The instruction will clear the instruction's size bits. */
2725 int clear_size = cris_get_clear_size (inst);
2726 if (clear_size == INST_BYTE_SIZE)
2727 {
2728 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2729 }
2730 if (clear_size == INST_WORD_SIZE)
2731 {
2732 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2733 }
2734 if (clear_size == INST_DWORD_SIZE)
2735 {
2736 inst_env->delay_slot_pc = 0x0;
2737 }
2738 /* The jump will be delayed with one delay slot. So we need a delay
2739 slot. */
2740 inst_env->slot_needed = 1;
2741 inst_env->delay_slot_pc_active = 1;
2742 }
2743 else
2744 {
2745 /* The PC will not change => no delay slot. */
2746 inst_env->slot_needed = 0;
2747 }
2748 inst_env->prefix_found = 0;
2749 inst_env->xflag_found = 0;
2750 inst_env->disable_interrupt = 0;
2751}
2752
2753/* Handles the TEST instruction if it's in register mode. */
2754
a78f21af 2755static void
29134980
OF
2756reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2757{
2758 /* It's an error if we have got a prefix. */
2759 if (inst_env->prefix_found)
2760 {
2761 inst_env->invalid = 1;
2762 return;
2763 }
2764 inst_env->slot_needed = 0;
2765 inst_env->prefix_found = 0;
2766 inst_env->xflag_found = 0;
2767 inst_env->disable_interrupt = 0;
2768
2769}
2770
2771/* Handles the CLEAR and TEST instruction if the instruction isn't
2772 in register mode. */
2773
a78f21af 2774static void
29134980
OF
2775none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2776{
2777 /* Check if we are in a prefix mode. */
2778 if (inst_env->prefix_found)
2779 {
2780 /* The only way the PC can change is if this instruction is in
2781 assign addressing mode. */
2782 check_assign (inst, inst_env);
2783 }
2784 /* Indirect mode can't change the PC so just check if the mode is
2785 autoincrement. */
2786 else if (cris_get_mode (inst) == AUTOINC_MODE)
2787 {
2788 process_autoincrement (cris_get_size (inst), inst, inst_env);
2789 }
2790 inst_env->slot_needed = 0;
2791 inst_env->prefix_found = 0;
2792 inst_env->xflag_found = 0;
2793 inst_env->disable_interrupt = 0;
2794}
2795
2796/* Checks that the PC isn't the destination register or the instructions has
2797 a prefix. */
2798
a78f21af 2799static void
29134980
OF
2800dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2801{
2802 /* It's invalid to have the PC as the destination. The instruction can't
2803 have a prefix. */
2804 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2805 {
2806 inst_env->invalid = 1;
2807 return;
2808 }
2809
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 0;
2814}
2815
2816/* Checks that the instruction doesn't have a prefix. */
2817
a78f21af 2818static void
29134980
OF
2819break_op (unsigned short inst, inst_env_type *inst_env)
2820{
2821 /* The instruction can't have a prefix. */
2822 if (inst_env->prefix_found)
2823 {
2824 inst_env->invalid = 1;
2825 return;
2826 }
2827
2828 inst_env->slot_needed = 0;
2829 inst_env->prefix_found = 0;
2830 inst_env->xflag_found = 0;
2831 inst_env->disable_interrupt = 1;
2832}
2833
2834/* Checks that the PC isn't the destination register and that the instruction
2835 doesn't have a prefix. */
2836
a78f21af 2837static void
29134980
OF
2838scc_op (unsigned short inst, inst_env_type *inst_env)
2839{
2840 /* It's invalid to have the PC as the destination. The instruction can't
2841 have a prefix. */
2842 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2843 {
2844 inst_env->invalid = 1;
2845 return;
2846 }
2847
2848 inst_env->slot_needed = 0;
2849 inst_env->prefix_found = 0;
2850 inst_env->xflag_found = 0;
2851 inst_env->disable_interrupt = 1;
2852}
2853
2854/* Handles the register mode JUMP instruction. */
2855
a78f21af 2856static void
29134980
OF
2857reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2858{
2859 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2860 you can't have a prefix. */
2861 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2862 {
2863 inst_env->invalid = 1;
2864 return;
2865 }
2866
2867 /* Just change the PC. */
2868 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2869 inst_env->slot_needed = 0;
2870 inst_env->prefix_found = 0;
2871 inst_env->xflag_found = 0;
2872 inst_env->disable_interrupt = 1;
2873}
2874
2875/* Handles the JUMP instruction for all modes except register. */
2876
a78f21af
AC
2877static void
2878none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2879{
2880 unsigned long newpc;
2881 CORE_ADDR address;
2882
2883 /* It's invalid to do a JUMP in a delay slot. */
2884 if (inst_env->slot_needed)
2885 {
2886 inst_env->invalid = 1;
2887 }
2888 else
2889 {
2890 /* Check if we have a prefix. */
2891 if (inst_env->prefix_found)
2892 {
2893 check_assign (inst, inst_env);
2894
2895 /* Get the new value for the the PC. */
2896 newpc =
2897 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2898 4);
2899 }
2900 else
2901 {
2902 /* Get the new value for the PC. */
2903 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2904 newpc = read_memory_unsigned_integer (address, 4);
2905
2906 /* Check if we should increment a register. */
2907 if (cris_get_mode (inst) == AUTOINC_MODE)
2908 {
2909 inst_env->reg[cris_get_operand1 (inst)] += 4;
2910 }
2911 }
2912 inst_env->reg[REG_PC] = newpc;
2913 }
2914 inst_env->slot_needed = 0;
2915 inst_env->prefix_found = 0;
2916 inst_env->xflag_found = 0;
2917 inst_env->disable_interrupt = 1;
2918}
2919
2920/* Handles moves to special registers (aka P-register) for all modes. */
2921
a78f21af 2922static void
29134980
OF
2923move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2924{
2925 if (inst_env->prefix_found)
2926 {
2927 /* The instruction has a prefix that means we are only interested if
2928 the instruction is in assign mode. */
2929 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2930 {
2931 /* The prefix handles the problem if we are in a delay slot. */
2932 if (cris_get_operand1 (inst) == REG_PC)
2933 {
2934 /* Just take care of the assign. */
2935 check_assign (inst, inst_env);
2936 }
2937 }
2938 }
2939 else if (cris_get_mode (inst) == AUTOINC_MODE)
2940 {
2941 /* The instruction doesn't have a prefix, the only case left that we
2942 are interested in is the autoincrement mode. */
2943 if (cris_get_operand1 (inst) == REG_PC)
2944 {
2945 /* If the PC is to be incremented it's invalid to be in a
2946 delay slot. */
2947 if (inst_env->slot_needed)
2948 {
2949 inst_env->invalid = 1;
2950 return;
2951 }
2a9ecef2
OF
2952
2953 /* The increment depends on the size of the special register. */
2954 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2955 {
2956 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2957 }
2a9ecef2 2958 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2959 {
2960 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2961 }
2962 else
2963 {
2964 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2965 }
2966 }
2967 }
2968 inst_env->slot_needed = 0;
2969 inst_env->prefix_found = 0;
2970 inst_env->xflag_found = 0;
2971 inst_env->disable_interrupt = 1;
2972}
2973
2974/* Handles moves from special registers (aka P-register) for all modes
2975 except register. */
2976
a78f21af 2977static void
29134980
OF
2978none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2979{
2980 if (inst_env->prefix_found)
2981 {
2982 /* The instruction has a prefix that means we are only interested if
2983 the instruction is in assign mode. */
2984 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2985 {
2986 /* The prefix handles the problem if we are in a delay slot. */
2987 if (cris_get_operand1 (inst) == REG_PC)
2988 {
2989 /* Just take care of the assign. */
2990 check_assign (inst, inst_env);
2991 }
2992 }
2993 }
2994 /* The instruction doesn't have a prefix, the only case left that we
2995 are interested in is the autoincrement mode. */
2996 else if (cris_get_mode (inst) == AUTOINC_MODE)
2997 {
2998 if (cris_get_operand1 (inst) == REG_PC)
2999 {
3000 /* If the PC is to be incremented it's invalid to be in a
3001 delay slot. */
3002 if (inst_env->slot_needed)
3003 {
3004 inst_env->invalid = 1;
3005 return;
3006 }
2a9ecef2
OF
3007
3008 /* The increment depends on the size of the special register. */
3009 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
3010 {
3011 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3012 }
2a9ecef2 3013 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
3014 {
3015 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3016 }
3017 else
3018 {
3019 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3020 }
3021 }
3022 }
3023 inst_env->slot_needed = 0;
3024 inst_env->prefix_found = 0;
3025 inst_env->xflag_found = 0;
3026 inst_env->disable_interrupt = 1;
3027}
3028
3029/* Handles moves from special registers (aka P-register) when the mode
3030 is register. */
3031
a78f21af 3032static void
29134980
OF
3033reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3034{
3035 /* Register mode move from special register can't have a prefix. */
3036 if (inst_env->prefix_found)
3037 {
3038 inst_env->invalid = 1;
3039 return;
3040 }
3041
3042 if (cris_get_operand1 (inst) == REG_PC)
3043 {
3044 /* It's invalid to change the PC in a delay slot. */
3045 if (inst_env->slot_needed)
3046 {
3047 inst_env->invalid = 1;
3048 return;
3049 }
3050 /* The destination is the PC, the jump will have a delay slot. */
3051 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3052 inst_env->slot_needed = 1;
3053 inst_env->delay_slot_pc_active = 1;
3054 }
3055 else
3056 {
3057 /* If the destination isn't PC, there will be no jump. */
3058 inst_env->slot_needed = 0;
3059 }
3060 inst_env->prefix_found = 0;
3061 inst_env->xflag_found = 0;
3062 inst_env->disable_interrupt = 1;
3063}
3064
3065/* Handles the MOVEM from memory to general register instruction. */
3066
a78f21af 3067static void
29134980
OF
3068move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3069{
3070 if (inst_env->prefix_found)
3071 {
3072 /* The prefix handles the problem if we are in a delay slot. Is the
3073 MOVEM instruction going to change the PC? */
3074 if (cris_get_operand2 (inst) >= REG_PC)
3075 {
3076 inst_env->reg[REG_PC] =
3077 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3078 }
3079 /* The assign value is the value after the increment. Normally, the
3080 assign value is the value before the increment. */
3081 if ((cris_get_operand1 (inst) == REG_PC)
3082 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3083 {
3084 inst_env->reg[REG_PC] = inst_env->prefix_value;
3085 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3086 }
3087 }
3088 else
3089 {
3090 /* Is the MOVEM instruction going to change the PC? */
3091 if (cris_get_operand2 (inst) == REG_PC)
3092 {
3093 /* It's invalid to change the PC in a delay slot. */
3094 if (inst_env->slot_needed)
3095 {
3096 inst_env->invalid = 1;
3097 return;
3098 }
3099 inst_env->reg[REG_PC] =
3100 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3101 4);
3102 }
3103 /* The increment is not depending on the size, instead it's depending
3104 on the number of registers loaded from memory. */
3105 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3106 {
3107 /* It's invalid to change the PC in a delay slot. */
3108 if (inst_env->slot_needed)
3109 {
3110 inst_env->invalid = 1;
3111 return;
3112 }
3113 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3114 }
3115 }
3116 inst_env->slot_needed = 0;
3117 inst_env->prefix_found = 0;
3118 inst_env->xflag_found = 0;
3119 inst_env->disable_interrupt = 0;
3120}
3121
3122/* Handles the MOVEM to memory from general register instruction. */
3123
a78f21af 3124static void
29134980
OF
3125move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3126{
3127 if (inst_env->prefix_found)
3128 {
3129 /* The assign value is the value after the increment. Normally, the
3130 assign value is the value before the increment. */
3131 if ((cris_get_operand1 (inst) == REG_PC) &&
3132 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3133 {
3134 /* The prefix handles the problem if we are in a delay slot. */
3135 inst_env->reg[REG_PC] = inst_env->prefix_value;
3136 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3137 }
3138 }
3139 else
3140 {
3141 /* The increment is not depending on the size, instead it's depending
3142 on the number of registers loaded to memory. */
3143 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3144 {
3145 /* It's invalid to change the PC in a delay slot. */
3146 if (inst_env->slot_needed)
3147 {
3148 inst_env->invalid = 1;
3149 return;
3150 }
3151 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3152 }
3153 }
3154 inst_env->slot_needed = 0;
3155 inst_env->prefix_found = 0;
3156 inst_env->xflag_found = 0;
3157 inst_env->disable_interrupt = 0;
3158}
3159
29134980
OF
3160/* Handles the intructions that's not yet implemented, by setting
3161 inst_env->invalid to true. */
3162
a78f21af 3163static void
29134980
OF
3164not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3165{
3166 inst_env->invalid = 1;
3167}
3168
3169/* Handles the XOR instruction. */
3170
a78f21af 3171static void
29134980
OF
3172xor_op (unsigned short inst, inst_env_type *inst_env)
3173{
3174 /* XOR can't have a prefix. */
3175 if (inst_env->prefix_found)
3176 {
3177 inst_env->invalid = 1;
3178 return;
3179 }
3180
3181 /* Check if the PC is the target. */
3182 if (cris_get_operand2 (inst) == REG_PC)
3183 {
3184 /* It's invalid to change the PC in a delay slot. */
3185 if (inst_env->slot_needed)
3186 {
3187 inst_env->invalid = 1;
3188 return;
3189 }
3190 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3191 }
3192 inst_env->slot_needed = 0;
3193 inst_env->prefix_found = 0;
3194 inst_env->xflag_found = 0;
3195 inst_env->disable_interrupt = 0;
3196}
3197
3198/* Handles the MULS instruction. */
3199
a78f21af 3200static void
29134980
OF
3201muls_op (unsigned short inst, inst_env_type *inst_env)
3202{
3203 /* MULS/U can't have a prefix. */
3204 if (inst_env->prefix_found)
3205 {
3206 inst_env->invalid = 1;
3207 return;
3208 }
3209
3210 /* Consider it invalid if the PC is the target. */
3211 if (cris_get_operand2 (inst) == REG_PC)
3212 {
3213 inst_env->invalid = 1;
3214 return;
3215 }
3216 inst_env->slot_needed = 0;
3217 inst_env->prefix_found = 0;
3218 inst_env->xflag_found = 0;
3219 inst_env->disable_interrupt = 0;
3220}
3221
3222/* Handles the MULU instruction. */
3223
a78f21af 3224static void
29134980
OF
3225mulu_op (unsigned short inst, inst_env_type *inst_env)
3226{
3227 /* MULS/U can't have a prefix. */
3228 if (inst_env->prefix_found)
3229 {
3230 inst_env->invalid = 1;
3231 return;
3232 }
3233
3234 /* Consider it invalid if the PC is the target. */
3235 if (cris_get_operand2 (inst) == REG_PC)
3236 {
3237 inst_env->invalid = 1;
3238 return;
3239 }
3240 inst_env->slot_needed = 0;
3241 inst_env->prefix_found = 0;
3242 inst_env->xflag_found = 0;
3243 inst_env->disable_interrupt = 0;
3244}
3245
3246/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3247 The MOVE instruction is the move from source to register. */
3248
a78f21af 3249static void
29134980
OF
3250add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3251 unsigned long source1, unsigned long source2)
3252{
3253 unsigned long pc_mask;
3254 unsigned long operation_mask;
3255
3256 /* Find out how many bits the operation should apply to. */
3257 if (cris_get_size (inst) == INST_BYTE_SIZE)
3258 {
3259 pc_mask = 0xFFFFFF00;
3260 operation_mask = 0xFF;
3261 }
3262 else if (cris_get_size (inst) == INST_WORD_SIZE)
3263 {
3264 pc_mask = 0xFFFF0000;
3265 operation_mask = 0xFFFF;
3266 }
3267 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3268 {
3269 pc_mask = 0x0;
3270 operation_mask = 0xFFFFFFFF;
3271 }
3272 else
3273 {
3274 /* The size is out of range. */
3275 inst_env->invalid = 1;
3276 return;
3277 }
3278
3279 /* The instruction just works on uw_operation_mask bits. */
3280 source2 &= operation_mask;
3281 source1 &= operation_mask;
3282
3283 /* Now calculate the result. The opcode's 3 first bits separates
3284 the different actions. */
3285 switch (cris_get_opcode (inst) & 7)
3286 {
3287 case 0: /* add */
3288 source1 += source2;
3289 break;
3290
3291 case 1: /* move */
3292 source1 = source2;
3293 break;
3294
3295 case 2: /* subtract */
3296 source1 -= source2;
3297 break;
3298
3299 case 3: /* compare */
3300 break;
3301
3302 case 4: /* and */
3303 source1 &= source2;
3304 break;
3305
3306 case 5: /* or */
3307 source1 |= source2;
3308 break;
3309
3310 default:
3311 inst_env->invalid = 1;
3312 return;
3313
3314 break;
3315 }
3316
3317 /* Make sure that the result doesn't contain more than the instruction
3318 size bits. */
3319 source2 &= operation_mask;
3320
3321 /* Calculate the new breakpoint address. */
3322 inst_env->reg[REG_PC] &= pc_mask;
3323 inst_env->reg[REG_PC] |= source1;
3324
3325}
3326
3327/* Extends the value from either byte or word size to a dword. If the mode
3328 is zero extend then the value is extended with zero. If instead the mode
3329 is signed extend the sign bit of the value is taken into consideration. */
3330
a78f21af 3331static unsigned long
29134980
OF
3332do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3333{
3334 /* The size can be either byte or word, check which one it is.
3335 Don't check the highest bit, it's indicating if it's a zero
3336 or sign extend. */
3337 if (cris_get_size (*inst) & INST_WORD_SIZE)
3338 {
3339 /* Word size. */
3340 value &= 0xFFFF;
3341
3342 /* Check if the instruction is signed extend. If so, check if value has
3343 the sign bit on. */
3344 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3345 {
3346 value |= SIGNED_WORD_EXTEND_MASK;
3347 }
3348 }
3349 else
3350 {
3351 /* Byte size. */
3352 value &= 0xFF;
3353
3354 /* Check if the instruction is signed extend. If so, check if value has
3355 the sign bit on. */
3356 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3357 {
3358 value |= SIGNED_BYTE_EXTEND_MASK;
3359 }
3360 }
3361 /* The size should now be dword. */
3362 cris_set_size_to_dword (inst);
3363 return value;
3364}
3365
3366/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3367 instruction. The MOVE instruction is the move from source to register. */
3368
a78f21af 3369static void
29134980
OF
3370reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3371 inst_env_type *inst_env)
3372{
3373 unsigned long operand1;
3374 unsigned long operand2;
3375
3376 /* It's invalid to have a prefix to the instruction. This is a register
3377 mode instruction and can't have a prefix. */
3378 if (inst_env->prefix_found)
3379 {
3380 inst_env->invalid = 1;
3381 return;
3382 }
3383 /* Check if the instruction has PC as its target. */
3384 if (cris_get_operand2 (inst) == REG_PC)
3385 {
3386 if (inst_env->slot_needed)
3387 {
3388 inst_env->invalid = 1;
3389 return;
3390 }
3391 /* The instruction has the PC as its target register. */
7ab98e9e 3392 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3393 operand2 = inst_env->reg[REG_PC];
3394
3395 /* Check if it's a extend, signed or zero instruction. */
3396 if (cris_get_opcode (inst) < 4)
3397 {
3398 operand1 = do_sign_or_zero_extend (operand1, &inst);
3399 }
3400 /* Calculate the PC value after the instruction, i.e. where the
3401 breakpoint should be. The order of the udw_operands is vital. */
3402 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3403 }
3404 inst_env->slot_needed = 0;
3405 inst_env->prefix_found = 0;
3406 inst_env->xflag_found = 0;
3407 inst_env->disable_interrupt = 0;
3408}
3409
3410/* Returns the data contained at address. The size of the data is derived from
3411 the size of the operation. If the instruction is a zero or signed
3412 extend instruction, the size field is changed in instruction. */
3413
a78f21af 3414static unsigned long
29134980
OF
3415get_data_from_address (unsigned short *inst, CORE_ADDR address)
3416{
3417 int size = cris_get_size (*inst);
3418 unsigned long value;
3419
3420 /* If it's an extend instruction we don't want the signed extend bit,
3421 because it influences the size. */
3422 if (cris_get_opcode (*inst) < 4)
3423 {
3424 size &= ~SIGNED_EXTEND_BIT_MASK;
3425 }
3426 /* Is there a need for checking the size? Size should contain the number of
3427 bytes to read. */
3428 size = 1 << size;
3429 value = read_memory_unsigned_integer (address, size);
3430
3431 /* Check if it's an extend, signed or zero instruction. */
3432 if (cris_get_opcode (*inst) < 4)
3433 {
3434 value = do_sign_or_zero_extend (value, inst);
3435 }
3436 return value;
3437}
3438
3439/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3440 instructions. The MOVE instruction is the move from source to register. */
3441
a78f21af 3442static void
29134980
OF
3443handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3444 inst_env_type *inst_env)
3445{
3446 unsigned long operand2;
3447 unsigned long operand3;
3448
3449 check_assign (inst, inst_env);
3450 if (cris_get_operand2 (inst) == REG_PC)
3451 {
3452 operand2 = inst_env->reg[REG_PC];
3453
3454 /* Get the value of the third operand. */
3455 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3456
3457 /* Calculate the PC value after the instruction, i.e. where the
3458 breakpoint should be. The order of the udw_operands is vital. */
3459 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3460 }
3461 inst_env->slot_needed = 0;
3462 inst_env->prefix_found = 0;
3463 inst_env->xflag_found = 0;
3464 inst_env->disable_interrupt = 0;
3465}
3466
3467/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3468 OR instructions. Note that for this to work as expected, the calling
3469 function must have made sure that there is a prefix to this instruction. */
3470
a78f21af 3471static void
29134980
OF
3472three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3473 inst_env_type *inst_env)
3474{
3475 unsigned long operand2;
3476 unsigned long operand3;
3477
3478 if (cris_get_operand1 (inst) == REG_PC)
3479 {
3480 /* The PC will be changed by the instruction. */
3481 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3482
3483 /* Get the value of the third operand. */
3484 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3485
3486 /* Calculate the PC value after the instruction, i.e. where the
3487 breakpoint should be. */
3488 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3489 }
3490 inst_env->slot_needed = 0;
3491 inst_env->prefix_found = 0;
3492 inst_env->xflag_found = 0;
3493 inst_env->disable_interrupt = 0;
3494}
3495
3496/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3497 instructions. The MOVE instruction is the move from source to register. */
3498
a78f21af 3499static void
29134980
OF
3500handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3501 inst_env_type *inst_env)
3502{
3503 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3504 {
3505 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3506 SUB, AND or OR something weird is going on (if everything works these
3507 instructions should end up in the three operand version). */
3508 inst_env->invalid = 1;
3509 return;
3510 }
3511 else
3512 {
3513 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3514 so use it. */
3515 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3516 }
3517 inst_env->slot_needed = 0;
3518 inst_env->prefix_found = 0;
3519 inst_env->xflag_found = 0;
3520 inst_env->disable_interrupt = 0;
3521}
3522
3523/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3524 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3525 source to register. */
3526
a78f21af 3527static void
29134980
OF
3528handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3529 inst_env_type *inst_env)
3530{
3531 unsigned long operand1;
3532 unsigned long operand2;
3533 unsigned long operand3;
3534 int size;
3535
3536 /* The instruction is either an indirect or autoincrement addressing mode.
3537 Check if the destination register is the PC. */
3538 if (cris_get_operand2 (inst) == REG_PC)
3539 {
3540 /* Must be done here, get_data_from_address may change the size
3541 field. */
3542 size = cris_get_size (inst);
3543 operand2 = inst_env->reg[REG_PC];
3544
3545 /* Get the value of the third operand, i.e. the indirect operand. */
3546 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3547 operand3 = get_data_from_address (&inst, operand1);
3548
3549 /* Calculate the PC value after the instruction, i.e. where the
3550 breakpoint should be. The order of the udw_operands is vital. */
3551 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3552 }
3553 /* If this is an autoincrement addressing mode, check if the increment
3554 changes the PC. */
3555 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3556 {
3557 /* Get the size field. */
3558 size = cris_get_size (inst);
3559
3560 /* If it's an extend instruction we don't want the signed extend bit,
3561 because it influences the size. */
3562 if (cris_get_opcode (inst) < 4)
3563 {
3564 size &= ~SIGNED_EXTEND_BIT_MASK;
3565 }
3566 process_autoincrement (size, inst, inst_env);
3567 }
3568 inst_env->slot_needed = 0;
3569 inst_env->prefix_found = 0;
3570 inst_env->xflag_found = 0;
3571 inst_env->disable_interrupt = 0;
3572}
3573
3574/* Handles the two-operand addressing mode, all modes except register, for
3575 the ADD, SUB CMP, AND and OR instruction. */
3576
a78f21af 3577static void
29134980
OF
3578none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3579 inst_env_type *inst_env)
3580{
3581 if (inst_env->prefix_found)
3582 {
3583 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3584 {
3585 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3586 }
3587 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3588 {
3589 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3590 }
3591 else
3592 {
3593 /* The mode is invalid for a prefixed base instruction. */
3594 inst_env->invalid = 1;
3595 return;
3596 }
3597 }
3598 else
3599 {
3600 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3601 }
3602}
3603
3604/* Handles the quick addressing mode for the ADD and SUB instruction. */
3605
a78f21af 3606static void
29134980
OF
3607quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3608{
3609 unsigned long operand1;
3610 unsigned long operand2;
3611
3612 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3613 instruction and can't have a prefix. */
3614 if (inst_env->prefix_found)
3615 {
3616 inst_env->invalid = 1;
3617 return;
3618 }
3619
3620 /* Check if the instruction has PC as its target. */
3621 if (cris_get_operand2 (inst) == REG_PC)
3622 {
3623 if (inst_env->slot_needed)
3624 {
3625 inst_env->invalid = 1;
3626 return;
3627 }
3628 operand1 = cris_get_quick_value (inst);
3629 operand2 = inst_env->reg[REG_PC];
3630
3631 /* The size should now be dword. */
3632 cris_set_size_to_dword (&inst);
3633
3634 /* Calculate the PC value after the instruction, i.e. where the
3635 breakpoint should be. */
3636 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3637 }
3638 inst_env->slot_needed = 0;
3639 inst_env->prefix_found = 0;
3640 inst_env->xflag_found = 0;
3641 inst_env->disable_interrupt = 0;
3642}
3643
3644/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3645
a78f21af 3646static void
29134980
OF
3647quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3648{
3649 unsigned long operand1;
3650 unsigned long operand2;
3651
3652 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3653 instruction and can't have a prefix. */
3654 if (inst_env->prefix_found)
3655 {
3656 inst_env->invalid = 1;
3657 return;
3658 }
3659 /* Check if the instruction has PC as its target. */
3660 if (cris_get_operand2 (inst) == REG_PC)
3661 {
3662 if (inst_env->slot_needed)
3663 {
3664 inst_env->invalid = 1;
3665 return;
3666 }
3667 /* The instruction has the PC as its target register. */
3668 operand1 = cris_get_quick_value (inst);
3669 operand2 = inst_env->reg[REG_PC];
3670
3671 /* The quick value is signed, so check if we must do a signed extend. */
3672 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3673 {
3674 /* sign extend */
3675 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3676 }
3677 /* The size should now be dword. */
3678 cris_set_size_to_dword (&inst);
3679
3680 /* Calculate the PC value after the instruction, i.e. where the
3681 breakpoint should be. */
3682 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3683 }
3684 inst_env->slot_needed = 0;
3685 inst_env->prefix_found = 0;
3686 inst_env->xflag_found = 0;
3687 inst_env->disable_interrupt = 0;
3688}
3689
3690/* Translate op_type to a function and call it. */
3691
a78f21af
AC
3692static void
3693cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3694 inst_env_type *inst_env)
29134980
OF
3695{
3696 switch (op_type)
3697 {
3698 case cris_not_implemented_op:
3699 not_implemented_op (inst, inst_env);
3700 break;
3701
3702 case cris_abs_op:
3703 abs_op (inst, inst_env);
3704 break;
3705
3706 case cris_addi_op:
3707 addi_op (inst, inst_env);
3708 break;
3709
3710 case cris_asr_op:
3711 asr_op (inst, inst_env);
3712 break;
3713
3714 case cris_asrq_op:
3715 asrq_op (inst, inst_env);
3716 break;
3717
3718 case cris_ax_ei_setf_op:
3719 ax_ei_setf_op (inst, inst_env);
3720 break;
3721
3722 case cris_bdap_prefix:
3723 bdap_prefix (inst, inst_env);
3724 break;
3725
3726 case cris_biap_prefix:
3727 biap_prefix (inst, inst_env);
3728 break;
3729
3730 case cris_break_op:
3731 break_op (inst, inst_env);
3732 break;
3733
3734 case cris_btst_nop_op:
3735 btst_nop_op (inst, inst_env);
3736 break;
3737
3738 case cris_clearf_di_op:
3739 clearf_di_op (inst, inst_env);
3740 break;
3741
3742 case cris_dip_prefix:
3743 dip_prefix (inst, inst_env);
3744 break;
3745
3746 case cris_dstep_logshift_mstep_neg_not_op:
3747 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3748 break;
3749
3750 case cris_eight_bit_offset_branch_op:
3751 eight_bit_offset_branch_op (inst, inst_env);
3752 break;
3753
3754 case cris_move_mem_to_reg_movem_op:
3755 move_mem_to_reg_movem_op (inst, inst_env);
3756 break;
3757
3758 case cris_move_reg_to_mem_movem_op:
3759 move_reg_to_mem_movem_op (inst, inst_env);
3760 break;
3761
3762 case cris_move_to_preg_op:
3763 move_to_preg_op (inst, inst_env);
3764 break;
3765
3766 case cris_muls_op:
3767 muls_op (inst, inst_env);
3768 break;
3769
3770 case cris_mulu_op:
3771 mulu_op (inst, inst_env);
3772 break;
3773
3774 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3775 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3776 break;
3777
3778 case cris_none_reg_mode_clear_test_op:
3779 none_reg_mode_clear_test_op (inst, inst_env);
3780 break;
3781
3782 case cris_none_reg_mode_jump_op:
3783 none_reg_mode_jump_op (inst, inst_env);
3784 break;
3785
3786 case cris_none_reg_mode_move_from_preg_op:
3787 none_reg_mode_move_from_preg_op (inst, inst_env);
3788 break;
3789
3790 case cris_quick_mode_add_sub_op:
3791 quick_mode_add_sub_op (inst, inst_env);
3792 break;
3793
3794 case cris_quick_mode_and_cmp_move_or_op:
3795 quick_mode_and_cmp_move_or_op (inst, inst_env);
3796 break;
3797
3798 case cris_quick_mode_bdap_prefix:
3799 quick_mode_bdap_prefix (inst, inst_env);
3800 break;
3801
3802 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3803 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3804 break;
3805
3806 case cris_reg_mode_clear_op:
3807 reg_mode_clear_op (inst, inst_env);
3808 break;
3809
3810 case cris_reg_mode_jump_op:
3811 reg_mode_jump_op (inst, inst_env);
3812 break;
3813
3814 case cris_reg_mode_move_from_preg_op:
3815 reg_mode_move_from_preg_op (inst, inst_env);
3816 break;
3817
3818 case cris_reg_mode_test_op:
3819 reg_mode_test_op (inst, inst_env);
3820 break;
3821
3822 case cris_scc_op:
3823 scc_op (inst, inst_env);
3824 break;
3825
3826 case cris_sixteen_bit_offset_branch_op:
3827 sixteen_bit_offset_branch_op (inst, inst_env);
3828 break;
3829
3830 case cris_three_operand_add_sub_cmp_and_or_op:
3831 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3832 break;
3833
3834 case cris_three_operand_bound_op:
3835 three_operand_bound_op (inst, inst_env);
3836 break;
3837
3838 case cris_two_operand_bound_op:
3839 two_operand_bound_op (inst, inst_env);
3840 break;
3841
3842 case cris_xor_op:
3843 xor_op (inst, inst_env);
3844 break;
3845 }
3846}
3847
3848/* This wrapper is to avoid cris_get_assembler being called before
3849 exec_bfd has been set. */
3850
3851static int
a89aa300 3852cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3853{
a89aa300 3854 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3855 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3856 disassembler, even when there is no BFD. Does something like
3857 "gdb; target remote; disassmeble *0x123" work? */
3858 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3859 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3860 gdb_assert (print_insn != NULL);
3861 return print_insn (addr, info);
29134980
OF
3862}
3863
dbbff683
OF
3864/* Copied from <asm/elf.h>. */
3865typedef unsigned long elf_greg_t;
3866
3867/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3868#define CRISV10_ELF_NGREG 35
3869typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3870
3871#define CRISV32_ELF_NGREG 32
3872typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3873
3874/* Unpack an elf_gregset_t into GDB's register cache. */
3875
a78f21af 3876static void
dbbff683
OF
3877supply_gregset (elf_gregset_t *gregsetp)
3878{
c600d464 3879 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
dbbff683
OF
3880 int i;
3881 elf_greg_t *regp = *gregsetp;
3882 static char zerobuf[4] = {0};
3883
3884 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3885 knows about the actual size of each register so that's no problem. */
3886 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3887 {
23a6d369 3888 regcache_raw_supply (current_regcache, i, (char *)&regp[i]);
dbbff683 3889 }
c600d464
OF
3890
3891 if (tdep->cris_version == 32)
3892 {
3893 /* Needed to set pseudo-register PC for CRISv32. */
3894 /* FIXME: If ERP is in a delay slot at this point then the PC will
3895 be wrong. Issue a warning to alert the user. */
3896 regcache_raw_supply (current_regcache, PC_REGNUM,
3897 (char *)&regp[ERP_REGNUM]);
3898
3899 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3900 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3901 }
dbbff683
OF
3902}
3903
3904/* Use a local version of this function to get the correct types for
3905 regsets, until multi-arch core support is ready. */
3906
3907static void
3908fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3909 int which, CORE_ADDR reg_addr)
3910{
3911 elf_gregset_t gregset;
3912
3913 switch (which)
3914 {
3915 case 0:
c600d464
OF
3916 if (core_reg_size != sizeof (elf_gregset_t)
3917 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3918 {
8a3fe4f8 3919 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3920 }
3921 else
3922 {
3923 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3924 supply_gregset (&gregset);
3925 }
3926
3927 default:
3928 /* We've covered all the kinds of registers we know about here,
3929 so this must be something we wouldn't know what to do with
3930 anyway. Just ignore it. */
3931 break;
3932 }
3933}
3934
3935static struct core_fns cris_elf_core_fns =
3936{
3937 bfd_target_elf_flavour, /* core_flavour */
3938 default_check_format, /* check_format */
3939 default_core_sniffer, /* core_sniffer */
3940 fetch_core_registers, /* core_read_registers */
3941 NULL /* next */
3942};
3943
a78f21af
AC
3944extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3945
29134980
OF
3946void
3947_initialize_cris_tdep (void)
3948{
a5f6c8f5
OF
3949 static struct cmd_list_element *cris_set_cmdlist;
3950 static struct cmd_list_element *cris_show_cmdlist;
3951
29134980
OF
3952 struct cmd_list_element *c;
3953
3954 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3955
29134980 3956 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3957 add_setshow_uinteger_cmd ("cris-version", class_support,
3958 &usr_cmd_cris_version,
7915a72c
AC
3959 _("Set the current CRIS version."),
3960 _("Show the current CRIS version."),
bdd56253
OF
3961 _("\
3962Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3963Defaults to 10. "),
2c5b56ce 3964 set_cris_version,
7915a72c 3965 NULL, /* FIXME: i18n: Current CRIS version is %s. */
a5f6c8f5 3966 &setlist, &showlist);
0e6bdb31
OF
3967
3968 add_setshow_enum_cmd ("cris-mode", class_support,
3969 cris_modes, &usr_cmd_cris_mode,
3970 _("Set the current CRIS mode."),
3971 _("Show the current CRIS mode."),
bdd56253
OF
3972 _("\
3973Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3974Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3975 set_cris_mode,
3976 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3977 &setlist, &showlist);
dbbff683 3978
a5f6c8f5
OF
3979 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3980 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3981 _("Set the usage of Dwarf-2 CFI for CRIS."),
3982 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3983 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3984 set_cris_dwarf2_cfi,
7915a72c 3985 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3986 &setlist, &showlist);
3987
52bd1401 3988 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3989}
3990
3991/* Prints out all target specific values. */
3992
3993static void
3994cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3995{
3996 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3997 if (tdep != NULL)
3998 {
3999 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4000 tdep->cris_version);
0e6bdb31
OF
4001 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4002 tdep->cris_mode);
a5f6c8f5
OF
4003 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4004 tdep->cris_dwarf2_cfi);
29134980
OF
4005 }
4006}
4007
4008static void
a5f6c8f5
OF
4009set_cris_version (char *ignore_args, int from_tty,
4010 struct cmd_list_element *c)
29134980
OF
4011{
4012 struct gdbarch_info info;
4013
a5f6c8f5 4014 usr_cmd_cris_version_valid = 1;
29134980 4015
a5f6c8f5
OF
4016 /* Update the current architecture, if needed. */
4017 gdbarch_info_init (&info);
4018 if (!gdbarch_update_p (info))
4019 internal_error (__FILE__, __LINE__,
e2e0b3e5 4020 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4021}
4022
0e6bdb31
OF
4023static void
4024set_cris_mode (char *ignore_args, int from_tty,
4025 struct cmd_list_element *c)
4026{
4027 struct gdbarch_info info;
4028
4029 /* Update the current architecture, if needed. */
4030 gdbarch_info_init (&info);
4031 if (!gdbarch_update_p (info))
4032 internal_error (__FILE__, __LINE__,
4033 "cris_gdbarch_update: failed to update architecture.");
4034}
4035
29134980 4036static void
a5f6c8f5
OF
4037set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4038 struct cmd_list_element *c)
29134980
OF
4039{
4040 struct gdbarch_info info;
a5f6c8f5
OF
4041
4042 /* Update the current architecture, if needed. */
4043 gdbarch_info_init (&info);
4044 if (!gdbarch_update_p (info))
4045 internal_error (__FILE__, __LINE__,
e2e0b3e5 4046 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4047}
4048
29134980
OF
4049static struct gdbarch *
4050cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4051{
4052 struct gdbarch *gdbarch;
4053 struct gdbarch_tdep *tdep;
4054 int cris_version;
29134980
OF
4055
4056 if (usr_cmd_cris_version_valid)
4057 {
4058 /* Trust the user's CRIS version setting. */
4059 cris_version = usr_cmd_cris_version;
4060 }
c600d464
OF
4061 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4062 {
4063 cris_version = 32;
4064 }
29134980
OF
4065 else
4066 {
4067 /* Assume it's CRIS version 10. */
4068 cris_version = 10;
4069 }
4070
29134980
OF
4071 /* Make the current settings visible to the user. */
4072 usr_cmd_cris_version = cris_version;
29134980 4073
0e6bdb31 4074 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4075 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4076 arches != NULL;
4077 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4078 {
a5f6c8f5
OF
4079 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4080 == usr_cmd_cris_version)
0e6bdb31
OF
4081 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4082 == usr_cmd_cris_mode)
a5f6c8f5
OF
4083 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4084 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4085 return arches->gdbarch;
4086 }
4087
4088 /* No matching architecture was found. Create a new one. */
4089 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4090 gdbarch = gdbarch_alloc (&info, tdep);
4091
a5f6c8f5 4092 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4093 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4094 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4095
4096 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4097 switch (info.byte_order)
4098 {
778eb05e 4099 case BFD_ENDIAN_LITTLE:
29134980
OF
4100 /* Ok. */
4101 break;
4102
d7449b42 4103 case BFD_ENDIAN_BIG:
e2e0b3e5 4104 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4105 break;
4106
4107 default:
e2e0b3e5 4108 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4109 }
4110
b4206d25 4111 set_gdbarch_return_value (gdbarch, cris_return_value);
2e4b5889
OF
4112 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4113 cris_reg_struct_has_addr);
b5622e8d 4114 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
29134980 4115
29134980 4116 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4117
4118 /* Length of ordinary registers used in push_word and a few other
4119 places. register_size() is the real way to know how big a
4120 register is. */
a5f6c8f5 4121
2e4b5889
OF
4122 set_gdbarch_double_bit (gdbarch, 64);
4123 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4124 which means we have to set this explicitly. */
c600d464 4125 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4126
29134980
OF
4127 /* The total amount of space needed to store (in an array called registers)
4128 GDB's copy of the machine's register state. Note: We can not use
4129 cris_register_size at this point, since it relies on current_gdbarch
4130 being set. */
4131 switch (tdep->cris_version)
4132 {
4133 case 0:
4134 case 1:
4135 case 2:
4136 case 3:
29134980
OF
4137 case 8:
4138 case 9:
a5f6c8f5
OF
4139 /* Old versions; not supported. */
4140 internal_error (__FILE__, __LINE__,
e2e0b3e5 4141 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4142 break;
4143
4144 case 10:
4145 case 11:
4146 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4147 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4148 set_gdbarch_pc_regnum (gdbarch, 15);
4149 set_gdbarch_register_type (gdbarch, cris_register_type);
4150 /* There are 32 registers (some of which may not be implemented). */
4151 set_gdbarch_num_regs (gdbarch, 32);
4152 set_gdbarch_register_name (gdbarch, cris_register_name);
4153 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4154 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4155
4156 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4157 break;
4158
4159 case 32:
4160 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4161 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4162 and pseudo-register PC (32 bits). */
4163 set_gdbarch_pc_regnum (gdbarch, 32);
4164 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4165 /* 32 registers + pseudo-register PC + 16 support registers. */
4166 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4167 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4168
4169 set_gdbarch_cannot_store_register
4170 (gdbarch, crisv32_cannot_store_register);
4171 set_gdbarch_cannot_fetch_register
4172 (gdbarch, crisv32_cannot_fetch_register);
4173
4174 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4175
4176 set_gdbarch_single_step_through_delay
4177 (gdbarch, crisv32_single_step_through_delay);
4178
29134980
OF
4179 break;
4180
4181 default:
c600d464 4182 internal_error (__FILE__, __LINE__,
e2e0b3e5 4183 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4184 }
4185
c600d464
OF
4186 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4187 have the same ABI). */
2e4b5889
OF
4188 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4189 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4190 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4191 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4192
4193 /* The stack grows downward. */
4194 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4195
4196 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4197
2e4b5889
OF
4198 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4199 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4200 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4201
a5f6c8f5
OF
4202 if (tdep->cris_dwarf2_cfi == 1)
4203 {
4204 /* Hook in the Dwarf-2 frame sniffer. */
4205 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4206 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4207 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4208 }
4209
0e6bdb31
OF
4210 if (tdep->cris_mode != cris_mode_guru)
4211 {
4212 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4213 }
a5f6c8f5 4214
2e4b5889
OF
4215 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4216 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4217
76a9d10f
MK
4218 set_solib_svr4_fetch_link_map_offsets
4219 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
dbbff683 4220
36482093
AC
4221 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4222 disassembler, even when there is no BFD. Does something like
4223 "gdb; target remote; disassmeble *0x123" work? */
4224 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4225
29134980
OF
4226 return gdbarch;
4227}
This page took 0.694951 seconds and 4 git commands to generate.