AArch64: View the pseudo V registers as vectors
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
42a4f53d 3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
6b4d5c91 4
29134980
OF
5 Contributed by Axis Communications AB.
6 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
7
a9762ec7 8 This file is part of GDB.
29134980 9
a9762ec7
JB
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
29134980 14
a9762ec7
JB
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
29134980 19
a9762ec7
JB
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29134980
OF
22
23#include "defs.h"
24#include "frame.h"
2e4b5889
OF
25#include "frame-unwind.h"
26#include "frame-base.h"
27#include "trad-frame.h"
28#include "dwarf2-frame.h"
29134980
OF
29#include "symtab.h"
30#include "inferior.h"
31#include "gdbtypes.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "target.h"
35#include "value.h"
36#include "opcode/cris.h"
749c8b38 37#include "osabi.h"
29134980
OF
38#include "arch-utils.h"
39#include "regcache.h"
40
9ab9195f 41#include "objfiles.h"
29134980 42
a5f6c8f5 43#include "solib.h" /* Support for shared libraries. */
76a9d10f 44#include "solib-svr4.h"
a89aa300 45#include "dis-asm.h"
dbbff683 46
749c8b38
RW
47#include "cris-tdep.h"
48
29134980
OF
49enum cris_num_regs
50{
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
c600d464
OF
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
29134980
OF
64};
65
66/* Register numbers of various important registers.
2e4b5889 67 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
0963b4bd 73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
3e8c568d
UW
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
29134980
OF
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
29134980
OF
79enum cris_regnums
80{
81 /* Enums with respect to the general registers, valid for all
c600d464 82 CRIS versions. The frame pointer is always in R8. */
2e4b5889 83 CRIS_FP_REGNUM = 8,
c600d464 84 /* ABI related registers. */
29134980
OF
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
c600d464 92 /* Registers which happen to be common. */
29134980 93 VR_REGNUM = 17,
c600d464
OF
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
0963b4bd 97 /* CRISv10 et al. specific registers. */
c600d464 98 P0_REGNUM = 16,
29134980
OF
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
29134980
OF
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
29134980 104 BAR_REGNUM = 28,
2a9ecef2 105 DCCR_REGNUM = 29,
29134980 106 BRP_REGNUM = 30,
c600d464
OF
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
29134980
OF
142};
143
144extern const struct cris_spec_reg cris_spec_regs[];
145
146/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31 147 register names and sizes. */
e4286e57 148static unsigned int usr_cmd_cris_version;
29134980
OF
149
150/* Indicates whether to trust the above variable. */
151static int usr_cmd_cris_version_valid = 0;
152
41922353
OF
153static const char cris_mode_normal[] = "normal";
154static const char cris_mode_guru[] = "guru";
40478521 155static const char *const cris_modes[] = {
0e6bdb31
OF
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159};
160
161/* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163static const char *usr_cmd_cris_mode = cris_mode_normal;
164
a5f6c8f5
OF
165/* Whether to make use of Dwarf-2 CFI (default on). */
166static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 167
a5f6c8f5
OF
168/* Sigtramp identification code copied from i386-linux-tdep.c. */
169
170#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
171#define SIGTRAMP_OFFSET0 0
172#define SIGTRAMP_INSN1 0xe93d /* break 13 */
173#define SIGTRAMP_OFFSET1 4
174
175static const unsigned short sigtramp_code[] =
176{
177 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
178 SIGTRAMP_INSN1 /* break 13 */
179};
180
181#define SIGTRAMP_LEN (sizeof sigtramp_code)
182
183/* Note: same length as normal sigtramp code. */
184
185static const unsigned short rt_sigtramp_code[] =
29134980 186{
a5f6c8f5
OF
187 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
188 SIGTRAMP_INSN1 /* break 13 */
189};
190
191/* If PC is in a sigtramp routine, return the address of the start of
192 the routine. Otherwise, return 0. */
193
194static CORE_ADDR
94afd7a6 195cris_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 196{
94afd7a6 197 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 198 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 199
94afd7a6 200 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
201 return 0;
202
e2a2a3e8 203 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 204 {
e2a2a3e8 205 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
206 return 0;
207
208 pc -= SIGTRAMP_OFFSET1;
94afd7a6 209 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
210 return 0;
211 }
212
213 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
214 return 0;
215
216 return pc;
217}
218
219/* If PC is in a RT sigtramp routine, return the address of the start of
220 the routine. Otherwise, return 0. */
221
222static CORE_ADDR
94afd7a6 223cris_rt_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 224{
94afd7a6 225 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 226 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 227
94afd7a6 228 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
229 return 0;
230
e2a2a3e8 231 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 232 {
e2a2a3e8 233 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
234 return 0;
235
236 pc -= SIGTRAMP_OFFSET1;
94afd7a6 237 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
238 return 0;
239 }
240
241 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
242 return 0;
243
244 return pc;
245}
246
94afd7a6
UW
247/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
248 return the address of the associated sigcontext structure. */
a5f6c8f5
OF
249
250static CORE_ADDR
94afd7a6 251cris_sigcontext_addr (struct frame_info *this_frame)
a5f6c8f5 252{
e17a4113
UW
253 struct gdbarch *gdbarch = get_frame_arch (this_frame);
254 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
255 CORE_ADDR pc;
256 CORE_ADDR sp;
e362b510 257 gdb_byte buf[4];
a5f6c8f5 258
e17a4113
UW
259 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
260 sp = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5
OF
261
262 /* Look for normal sigtramp frame first. */
94afd7a6 263 pc = cris_sigtramp_start (this_frame);
a5f6c8f5
OF
264 if (pc)
265 {
266 /* struct signal_frame (arch/cris/kernel/signal.c) contains
267 struct sigcontext as its first member, meaning the SP points to
268 it already. */
269 return sp;
270 }
271
94afd7a6 272 pc = cris_rt_sigtramp_start (this_frame);
a5f6c8f5
OF
273 if (pc)
274 {
275 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
276 a struct ucontext, which in turn contains a struct sigcontext.
277 Magic digging:
278 4 + 4 + 128 to struct ucontext, then
279 4 + 4 + 12 to struct sigcontext. */
280 return (sp + 156);
281 }
282
8a3fe4f8 283 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 284 return 0;
29134980
OF
285}
286
2e4b5889 287struct cris_unwind_cache
29134980 288{
2e4b5889
OF
289 /* The previous frame's inner most stack address. Used as this
290 frame ID's stack_addr. */
291 CORE_ADDR prev_sp;
292 /* The frame's base, optionally used by the high-level debug info. */
293 CORE_ADDR base;
294 int size;
295 /* How far the SP and r8 (FP) have been offset from the start of
296 the stack frame (as defined by the previous frame's stack
297 pointer). */
298 LONGEST sp_offset;
299 LONGEST r8_offset;
300 int uses_frame;
301
302 /* From old frame_extra_info struct. */
29134980
OF
303 CORE_ADDR return_pc;
304 int leaf_function;
2e4b5889
OF
305
306 /* Table indicating the location of each and every register. */
307 struct trad_frame_saved_reg *saved_regs;
29134980
OF
308};
309
a5f6c8f5 310static struct cris_unwind_cache *
94afd7a6 311cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a5f6c8f5
OF
312 void **this_cache)
313{
94afd7a6 314 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7fbe2eba 315 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5 317 struct cris_unwind_cache *info;
a5f6c8f5 318 CORE_ADDR addr;
e362b510 319 gdb_byte buf[4];
a5f6c8f5
OF
320 int i;
321
322 if ((*this_cache))
9a3c8263 323 return (struct cris_unwind_cache *) (*this_cache);
a5f6c8f5
OF
324
325 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
326 (*this_cache) = info;
94afd7a6 327 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a5f6c8f5
OF
328
329 /* Zero all fields. */
330 info->prev_sp = 0;
331 info->base = 0;
332 info->size = 0;
333 info->sp_offset = 0;
334 info->r8_offset = 0;
335 info->uses_frame = 0;
336 info->return_pc = 0;
337 info->leaf_function = 0;
338
94afd7a6 339 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
e17a4113 340 info->base = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5 341
94afd7a6 342 addr = cris_sigcontext_addr (this_frame);
a5f6c8f5
OF
343
344 /* Layout of the sigcontext struct:
345 struct sigcontext {
346 struct pt_regs regs;
347 unsigned long oldmask;
348 unsigned long usp;
349 }; */
350
c600d464
OF
351 if (tdep->cris_version == 10)
352 {
353 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
354 struct pt_regs. */
355 for (i = 0; i <= 13; i++)
356 info->saved_regs[i].addr = addr + ((15 - i) * 4);
357
358 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
359 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
360 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
361 /* Note: IRP is off by 2 at this point. There's no point in correcting
362 it though since that will mean that the backtrace will show a PC
363 different from what is shown when stopped. */
364 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
7fbe2eba 365 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 366 = info->saved_regs[IRP_REGNUM];
7fbe2eba 367 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
c600d464
OF
368 }
369 else
370 {
371 /* CRISv32. */
372 /* R0 to R13 are stored in order at offset (1 * 4) in
373 struct pt_regs. */
374 for (i = 0; i <= 13; i++)
375 info->saved_regs[i].addr = addr + ((i + 1) * 4);
376
377 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
378 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
379 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
380 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
381 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
382 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
383 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
384 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
385 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
386
387 /* FIXME: If ERP is in a delay slot at this point then the PC will
388 be wrong at this point. This problem manifests itself in the
389 sigaltstack.exp test case, which occasionally generates FAILs when
0963b4bd 390 the signal is received while in a delay slot.
c600d464
OF
391
392 This could be solved by a couple of read_memory_unsigned_integer and a
393 trad_frame_set_value. */
7fbe2eba 394 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 395 = info->saved_regs[ERP_REGNUM];
c600d464 396
7fbe2eba 397 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
3e8c568d 398 = addr + (25 * 4);
c600d464 399 }
a5f6c8f5
OF
400
401 return info;
402}
403
404static void
94afd7a6 405cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
a5f6c8f5
OF
406 struct frame_id *this_id)
407{
408 struct cris_unwind_cache *cache =
94afd7a6
UW
409 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
410 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
a5f6c8f5
OF
411}
412
413/* Forward declaration. */
414
94afd7a6
UW
415static struct value *cris_frame_prev_register (struct frame_info *this_frame,
416 void **this_cache, int regnum);
417static struct value *
418cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
419 void **this_cache, int regnum)
a5f6c8f5
OF
420{
421 /* Make sure we've initialized the cache. */
94afd7a6
UW
422 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
423 return cris_frame_prev_register (this_frame, this_cache, regnum);
424}
425
426static int
427cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
428 struct frame_info *this_frame,
429 void **this_cache)
430{
431 if (cris_sigtramp_start (this_frame)
432 || cris_rt_sigtramp_start (this_frame))
433 return 1;
434
435 return 0;
a5f6c8f5
OF
436}
437
438static const struct frame_unwind cris_sigtramp_frame_unwind =
439{
440 SIGTRAMP_FRAME,
8fbca658 441 default_frame_unwind_stop_reason,
a5f6c8f5 442 cris_sigtramp_frame_this_id,
94afd7a6
UW
443 cris_sigtramp_frame_prev_register,
444 NULL,
445 cris_sigtramp_frame_sniffer
a5f6c8f5
OF
446};
447
63807e1d 448static int
c600d464
OF
449crisv32_single_step_through_delay (struct gdbarch *gdbarch,
450 struct frame_info *this_frame)
451{
7fbe2eba 452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c600d464
OF
453 ULONGEST erp;
454 int ret = 0;
c600d464 455
35488783 456 if (tdep->cris_mode == cris_mode_guru)
395f2fc2 457 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
0e6bdb31 458 else
395f2fc2 459 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
c600d464
OF
460
461 if (erp & 0x1)
462 {
463 /* In delay slot - check if there's a breakpoint at the preceding
464 instruction. */
6c95b8df 465 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
c600d464
OF
466 ret = 1;
467 }
468 return ret;
469}
470
29134980 471/* The instruction environment needed to find single-step breakpoints. */
c600d464 472
29134980
OF
473typedef
474struct instruction_environment
475{
476 unsigned long reg[NUM_GENREGS];
477 unsigned long preg[NUM_SPECREGS];
478 unsigned long branch_break_address;
479 unsigned long delay_slot_pc;
480 unsigned long prefix_value;
481 int branch_found;
482 int prefix_found;
483 int invalid;
484 int slot_needed;
485 int delay_slot_pc_active;
486 int xflag_found;
487 int disable_interrupt;
78c5b882 488 enum bfd_endian byte_order;
29134980
OF
489} inst_env_type;
490
29134980
OF
491/* Machine-dependencies in CRIS for opcodes. */
492
493/* Instruction sizes. */
494enum cris_instruction_sizes
495{
496 INST_BYTE_SIZE = 0,
497 INST_WORD_SIZE = 1,
498 INST_DWORD_SIZE = 2
499};
500
501/* Addressing modes. */
502enum cris_addressing_modes
503{
504 REGISTER_MODE = 1,
505 INDIRECT_MODE = 2,
506 AUTOINC_MODE = 3
507};
508
509/* Prefix addressing modes. */
510enum cris_prefix_addressing_modes
511{
512 PREFIX_INDEX_MODE = 2,
513 PREFIX_ASSIGN_MODE = 3,
514
515 /* Handle immediate byte offset addressing mode prefix format. */
516 PREFIX_OFFSET_MODE = 2
517};
518
519/* Masks for opcodes. */
520enum cris_opcode_masks
521{
522 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
523 SIGNED_EXTEND_BIT_MASK = 0x2,
524 SIGNED_BYTE_MASK = 0x80,
525 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
526 SIGNED_WORD_MASK = 0x8000,
527 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
528 SIGNED_DWORD_MASK = 0x80000000,
529 SIGNED_QUICK_VALUE_MASK = 0x20,
530 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
531};
532
533/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
534 Bit 15 - 12 Operand2
535 11 - 10 Mode
536 9 - 6 Opcode
537 5 - 4 Size
538 3 - 0 Operand1 */
539
540static int
541cris_get_operand2 (unsigned short insn)
542{
543 return ((insn & 0xF000) >> 12);
544}
545
546static int
547cris_get_mode (unsigned short insn)
548{
549 return ((insn & 0x0C00) >> 10);
550}
551
552static int
553cris_get_opcode (unsigned short insn)
554{
555 return ((insn & 0x03C0) >> 6);
556}
557
558static int
559cris_get_size (unsigned short insn)
560{
561 return ((insn & 0x0030) >> 4);
562}
563
564static int
565cris_get_operand1 (unsigned short insn)
566{
567 return (insn & 0x000F);
568}
569
570/* Additional functions in order to handle opcodes. */
571
29134980
OF
572static int
573cris_get_quick_value (unsigned short insn)
574{
575 return (insn & 0x003F);
576}
577
578static int
579cris_get_bdap_quick_offset (unsigned short insn)
580{
581 return (insn & 0x00FF);
582}
583
584static int
585cris_get_branch_short_offset (unsigned short insn)
586{
587 return (insn & 0x00FF);
588}
589
590static int
591cris_get_asr_shift_steps (unsigned long value)
592{
593 return (value & 0x3F);
594}
595
29134980
OF
596static int
597cris_get_clear_size (unsigned short insn)
598{
599 return ((insn) & 0xC000);
600}
601
602static int
603cris_is_signed_extend_bit_on (unsigned short insn)
604{
605 return (((insn) & 0x20) == 0x20);
606}
607
608static int
609cris_is_xflag_bit_on (unsigned short insn)
610{
611 return (((insn) & 0x1000) == 0x1000);
612}
613
614static void
615cris_set_size_to_dword (unsigned short *insn)
616{
617 *insn &= 0xFFCF;
618 *insn |= 0x20;
619}
620
8535cb38 621static signed char
29134980
OF
622cris_get_signed_offset (unsigned short insn)
623{
8535cb38 624 return ((signed char) (insn & 0x00FF));
29134980
OF
625}
626
627/* Calls an op function given the op-type, working on the insn and the
628 inst_env. */
be8626e0
MD
629static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
630 inst_env_type *);
29134980 631
29134980
OF
632static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
633 struct gdbarch_list *);
634
29134980
OF
635static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
636
eb4c3f4a 637static void set_cris_version (const char *ignore_args, int from_tty,
a5f6c8f5 638 struct cmd_list_element *c);
29134980 639
eb4c3f4a 640static void set_cris_mode (const char *ignore_args, int from_tty,
0e6bdb31
OF
641 struct cmd_list_element *c);
642
eb4c3f4a 643static void set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
a5f6c8f5 644 struct cmd_list_element *c);
29134980 645
2e4b5889 646static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
94afd7a6 647 struct frame_info *this_frame,
2e4b5889
OF
648 struct cris_unwind_cache *info);
649
5114e29d 650static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
94afd7a6 651 struct frame_info *this_frame,
5114e29d
OF
652 struct cris_unwind_cache *info);
653
2e4b5889 654/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 655 order. The below implements a FILO (stack) to do this.
a5f6c8f5 656 Copied from d10v-tdep.c. */
2e4b5889
OF
657
658struct stack_item
659{
660 int len;
661 struct stack_item *prev;
7c543f7b 662 gdb_byte *data;
2e4b5889
OF
663};
664
665static struct stack_item *
948f8e3d 666push_stack_item (struct stack_item *prev, const gdb_byte *contents, int len)
2e4b5889 667{
8d749320 668 struct stack_item *si = XNEW (struct stack_item);
7c543f7b 669 si->data = (gdb_byte *) xmalloc (len);
2e4b5889
OF
670 si->len = len;
671 si->prev = prev;
672 memcpy (si->data, contents, len);
673 return si;
674}
675
676static struct stack_item *
677pop_stack_item (struct stack_item *si)
678{
679 struct stack_item *dead = si;
680 si = si->prev;
681 xfree (dead->data);
682 xfree (dead);
683 return si;
684}
685
686/* Put here the code to store, into fi->saved_regs, the addresses of
687 the saved registers of frame described by FRAME_INFO. This
688 includes special registers such as pc and fp saved in special ways
689 in the stack frame. sp is even more special: the address we return
a5f6c8f5 690 for it IS the sp for the next frame. */
2e4b5889 691
63807e1d 692static struct cris_unwind_cache *
94afd7a6 693cris_frame_unwind_cache (struct frame_info *this_frame,
2e4b5889
OF
694 void **this_prologue_cache)
695{
35488783
UW
696 struct gdbarch *gdbarch = get_frame_arch (this_frame);
697 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889 698 struct cris_unwind_cache *info;
2e4b5889
OF
699
700 if ((*this_prologue_cache))
9a3c8263 701 return (struct cris_unwind_cache *) (*this_prologue_cache);
2e4b5889
OF
702
703 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
704 (*this_prologue_cache) = info;
94afd7a6 705 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2e4b5889
OF
706
707 /* Zero all fields. */
708 info->prev_sp = 0;
709 info->base = 0;
710 info->size = 0;
711 info->sp_offset = 0;
712 info->r8_offset = 0;
713 info->uses_frame = 0;
714 info->return_pc = 0;
715 info->leaf_function = 0;
716
717 /* Prologue analysis does the rest... */
35488783 718 if (tdep->cris_version == 32)
94afd7a6 719 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
5114e29d 720 else
94afd7a6 721 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
2e4b5889
OF
722
723 return info;
724}
725
726/* Given a GDB frame, determine the address of the calling function's
727 frame. This will be used to create a new GDB frame struct. */
728
729static void
94afd7a6 730cris_frame_this_id (struct frame_info *this_frame,
2e4b5889
OF
731 void **this_prologue_cache,
732 struct frame_id *this_id)
733{
734 struct cris_unwind_cache *info
94afd7a6 735 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
2e4b5889
OF
736 CORE_ADDR base;
737 CORE_ADDR func;
738 struct frame_id id;
739
740 /* The FUNC is easy. */
94afd7a6 741 func = get_frame_func (this_frame);
2e4b5889
OF
742
743 /* Hopefully the prologue analysis either correctly determined the
744 frame's base (which is the SP from the previous frame), or set
745 that base to "NULL". */
746 base = info->prev_sp;
747 if (base == 0)
748 return;
749
750 id = frame_id_build (base, func);
751
752 (*this_id) = id;
753}
754
94afd7a6
UW
755static struct value *
756cris_frame_prev_register (struct frame_info *this_frame,
757 void **this_prologue_cache, int regnum)
2e4b5889
OF
758{
759 struct cris_unwind_cache *info
94afd7a6
UW
760 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
761 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2e4b5889
OF
762}
763
2e4b5889
OF
764static CORE_ADDR
765cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
766{
767 /* Align to the size of an instruction (so that they can safely be
768 pushed onto the stack). */
769 return sp & ~3;
770}
771
772static CORE_ADDR
773cris_push_dummy_code (struct gdbarch *gdbarch,
82585c72 774 CORE_ADDR sp, CORE_ADDR funaddr,
2e4b5889
OF
775 struct value **args, int nargs,
776 struct type *value_type,
e4fd649a
UW
777 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
778 struct regcache *regcache)
2e4b5889
OF
779{
780 /* Allocate space sufficient for a breakpoint. */
781 sp = (sp - 4) & ~3;
782 /* Store the address of that breakpoint */
783 *bp_addr = sp;
784 /* CRIS always starts the call at the callee's entry point. */
785 *real_pc = funaddr;
786 return sp;
787}
788
789static CORE_ADDR
7d9b040b 790cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
791 struct regcache *regcache, CORE_ADDR bp_addr,
792 int nargs, struct value **args, CORE_ADDR sp,
cf84fa6b
AH
793 function_call_return_method return_method,
794 CORE_ADDR struct_addr)
2e4b5889 795{
e17a4113 796 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
797 int argreg;
798 int argnum;
799
2e4b5889
OF
800 struct stack_item *si = NULL;
801
a5f6c8f5 802 /* Push the return address. */
2e4b5889
OF
803 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
804
805 /* Are we returning a value using a structure return or a normal value
806 return? struct_addr is the address of the reserved space for the return
807 structure to be written on the stack. */
cf84fa6b
AH
808 if (return_method == return_method_struct)
809 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
2e4b5889
OF
810
811 /* Now load as many as possible of the first arguments into registers,
812 and push the rest onto the stack. */
813 argreg = ARG1_REGNUM;
2e4b5889
OF
814
815 for (argnum = 0; argnum < nargs; argnum++)
816 {
817 int len;
948f8e3d 818 const gdb_byte *val;
2e4b5889
OF
819 int reg_demand;
820 int i;
821
4991999e 822 len = TYPE_LENGTH (value_type (args[argnum]));
948f8e3d 823 val = value_contents (args[argnum]);
2e4b5889
OF
824
825 /* How may registers worth of storage do we need for this argument? */
826 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
827
828 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
829 {
830 /* Data passed by value. Fits in available register(s). */
831 for (i = 0; i < reg_demand; i++)
832 {
b66f5587 833 regcache->cooked_write (argreg, val);
2e4b5889
OF
834 argreg++;
835 val += 4;
836 }
837 }
838 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
839 {
840 /* Data passed by value. Does not fit in available register(s).
841 Use the register(s) first, then the stack. */
842 for (i = 0; i < reg_demand; i++)
843 {
844 if (argreg <= ARG4_REGNUM)
845 {
b66f5587 846 regcache->cooked_write (argreg, val);
2e4b5889
OF
847 argreg++;
848 val += 4;
849 }
850 else
851 {
852 /* Push item for later so that pushed arguments
853 come in the right order. */
854 si = push_stack_item (si, val, 4);
855 val += 4;
856 }
857 }
858 }
859 else if (len > (2 * 4))
860 {
f6e56ab3
UW
861 /* Data passed by reference. Push copy of data onto stack
862 and pass pointer to this copy as argument. */
863 sp = (sp - len) & ~3;
864 write_memory (sp, val, len);
865
866 if (argreg <= ARG4_REGNUM)
867 {
868 regcache_cooked_write_unsigned (regcache, argreg, sp);
869 argreg++;
870 }
871 else
872 {
873 gdb_byte buf[4];
e17a4113 874 store_unsigned_integer (buf, 4, byte_order, sp);
f6e56ab3
UW
875 si = push_stack_item (si, buf, 4);
876 }
2e4b5889
OF
877 }
878 else
879 {
880 /* Data passed by value. No available registers. Put it on
881 the stack. */
882 si = push_stack_item (si, val, len);
883 }
884 }
885
886 while (si)
887 {
888 /* fp_arg must be word-aligned (i.e., don't += len) to match
889 the function prologue. */
890 sp = (sp - si->len) & ~3;
891 write_memory (sp, si->data, si->len);
892 si = pop_stack_item (si);
893 }
894
895 /* Finally, update the SP register. */
7fbe2eba 896 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
2e4b5889
OF
897
898 return sp;
899}
900
e2a2a3e8
OF
901static const struct frame_unwind cris_frame_unwind =
902{
2e4b5889 903 NORMAL_FRAME,
8fbca658 904 default_frame_unwind_stop_reason,
2e4b5889 905 cris_frame_this_id,
94afd7a6
UW
906 cris_frame_prev_register,
907 NULL,
908 default_frame_sniffer
2e4b5889
OF
909};
910
2e4b5889 911static CORE_ADDR
94afd7a6 912cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
2e4b5889
OF
913{
914 struct cris_unwind_cache *info
94afd7a6 915 = cris_frame_unwind_cache (this_frame, this_cache);
2e4b5889
OF
916 return info->base;
917}
918
e2a2a3e8
OF
919static const struct frame_base cris_frame_base =
920{
2e4b5889
OF
921 &cris_frame_unwind,
922 cris_frame_base_address,
923 cris_frame_base_address,
924 cris_frame_base_address
925};
926
29134980
OF
927/* Frames information. The definition of the struct frame_info is
928
929 CORE_ADDR frame
930 CORE_ADDR pc
5a203e44 931 enum frame_type type;
29134980
OF
932 CORE_ADDR return_pc
933 int leaf_function
934
935 If the compilation option -fno-omit-frame-pointer is present the
936 variable frame will be set to the content of R8 which is the frame
937 pointer register.
938
939 The variable pc contains the address where execution is performed
940 in the present frame. The innermost frame contains the current content
941 of the register PC. All other frames contain the content of the
942 register PC in the next frame.
943
5a203e44
AC
944 The variable `type' indicates the frame's type: normal, SIGTRAMP
945 (associated with a signal handler), dummy (associated with a dummy
946 frame).
29134980
OF
947
948 The variable return_pc contains the address where execution should be
949 resumed when the present frame has finished, the return address.
950
951 The variable leaf_function is 1 if the return address is in the register
952 SRP, and 0 if it is on the stack.
953
954 Prologue instructions C-code.
955 The prologue may consist of (-fno-omit-frame-pointer)
956 1) 2)
957 push srp
958 push r8 push r8
959 move.d sp,r8 move.d sp,r8
960 subq X,sp subq X,sp
961 movem rY,[sp] movem rY,[sp]
962 move.S rZ,[r8-U] move.S rZ,[r8-U]
963
964 where 1 is a non-terminal function, and 2 is a leaf-function.
965
966 Note that this assumption is extremely brittle, and will break at the
967 slightest change in GCC's prologue.
968
969 If local variables are declared or register contents are saved on stack
970 the subq-instruction will be present with X as the number of bytes
971 needed for storage. The reshuffle with respect to r8 may be performed
972 with any size S (b, w, d) and any of the general registers Z={0..13}.
0963b4bd 973 The offset U should be representable by a signed 8-bit value in all cases.
29134980
OF
974 Thus, the prefix word is assumed to be immediate byte offset mode followed
975 by another word containing the instruction.
976
977 Degenerate cases:
978 3)
979 push r8
980 move.d sp,r8
981 move.d r8,sp
982 pop r8
983
984 Prologue instructions C++-code.
985 Case 1) and 2) in the C-code may be followed by
986
987 move.d r10,rS ; this
988 move.d r11,rT ; P1
989 move.d r12,rU ; P2
990 move.d r13,rV ; P3
991 move.S [r8+U],rZ ; P4
992
0963b4bd 993 if any of the call parameters are stored. The host expects these
29134980
OF
994 instructions to be executed in order to get the call parameters right. */
995
996/* Examine the prologue of a function. The variable ip is the address of
997 the first instruction of the prologue. The variable limit is the address
998 of the first instruction after the prologue. The variable fi contains the
999 information in struct frame_info. The variable frameless_p controls whether
1000 the entire prologue is examined (0) or just enough instructions to
1001 determine that it is a prologue (1). */
1002
a78f21af 1003static CORE_ADDR
94afd7a6 1004cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
2e4b5889 1005 struct cris_unwind_cache *info)
29134980 1006{
94afd7a6 1007 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009
29134980
OF
1010 /* Present instruction. */
1011 unsigned short insn;
1012
1013 /* Next instruction, lookahead. */
1014 unsigned short insn_next;
1015 int regno;
1016
29134980
OF
1017 /* Number of byte on stack used for local variables and movem. */
1018 int val;
1019
1020 /* Highest register number in a movem. */
1021 int regsave;
1022
1023 /* move.d r<source_register>,rS */
1024 short source_register;
1025
2e4b5889
OF
1026 /* Scan limit. */
1027 int limit;
29134980 1028
2e4b5889
OF
1029 /* This frame is with respect to a leaf until a push srp is found. */
1030 if (info)
1031 {
1032 info->leaf_function = 1;
1033 }
29134980
OF
1034
1035 /* Assume nothing on stack. */
1036 val = 0;
1037 regsave = -1;
1038
94afd7a6 1039 /* If we were called without a this_frame, that means we were called
2e4b5889
OF
1040 from cris_skip_prologue which already tried to find the end of the
1041 prologue through the symbol information. 64 instructions past current
1042 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
94afd7a6 1043 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
29134980 1044
29134980 1045 /* Find the prologue instructions. */
a5f6c8f5 1046 while (pc > 0 && pc < limit)
29134980 1047 {
e17a4113 1048 insn = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1049 pc += 2;
29134980
OF
1050 if (insn == 0xE1FC)
1051 {
0963b4bd 1052 /* push <reg> 32 bit instruction. */
e17a4113 1053 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1054 pc += 2;
29134980 1055 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1056 if (info)
1057 {
1058 info->sp_offset += 4;
1059 }
dbbff683
OF
1060 /* This check, meant to recognize srp, used to be regno ==
1061 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1062 if (insn_next == 0xBE7E)
29134980 1063 {
2e4b5889
OF
1064 if (info)
1065 {
1066 info->leaf_function = 0;
1067 }
29134980 1068 }
b4206d25
OF
1069 else if (insn_next == 0x8FEE)
1070 {
1071 /* push $r8 */
1072 if (info)
1073 {
1074 info->r8_offset = info->sp_offset;
1075 }
1076 }
29134980
OF
1077 }
1078 else if (insn == 0x866E)
1079 {
1080 /* move.d sp,r8 */
2e4b5889
OF
1081 if (info)
1082 {
1083 info->uses_frame = 1;
2e4b5889 1084 }
29134980
OF
1085 continue;
1086 }
7fbe2eba 1087 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1088 && cris_get_mode (insn) == 0x0000
1089 && cris_get_opcode (insn) == 0x000A)
1090 {
1091 /* subq <val>,sp */
2e4b5889
OF
1092 if (info)
1093 {
1094 info->sp_offset += cris_get_quick_value (insn);
1095 }
29134980
OF
1096 }
1097 else if (cris_get_mode (insn) == 0x0002
1098 && cris_get_opcode (insn) == 0x000F
1099 && cris_get_size (insn) == 0x0003
7fbe2eba 1100 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
29134980
OF
1101 {
1102 /* movem r<regsave>,[sp] */
29134980
OF
1103 regsave = cris_get_operand2 (insn);
1104 }
7fbe2eba 1105 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1106 && ((insn & 0x0F00) >> 8) == 0x0001
1107 && (cris_get_signed_offset (insn) < 0))
1108 {
1109 /* Immediate byte offset addressing prefix word with sp as base
1110 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1111 is between 64 and 128.
1112 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1113 if (info)
1114 {
1115 info->sp_offset += -cris_get_signed_offset (insn);
1116 }
e17a4113 1117 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1118 pc += 2;
29134980
OF
1119 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1120 && cris_get_opcode (insn_next) == 0x000F
1121 && cris_get_size (insn_next) == 0x0003
3e8c568d 1122 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
7fbe2eba 1123 (gdbarch))
29134980 1124 {
29134980
OF
1125 regsave = cris_get_operand2 (insn_next);
1126 }
1127 else
1128 {
1129 /* The prologue ended before the limit was reached. */
2e4b5889 1130 pc -= 4;
29134980
OF
1131 break;
1132 }
1133 }
1134 else if (cris_get_mode (insn) == 0x0001
1135 && cris_get_opcode (insn) == 0x0009
1136 && cris_get_size (insn) == 0x0002)
1137 {
1138 /* move.d r<10..13>,r<0..15> */
29134980 1139 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1140
1141 /* FIXME? In the glibc solibs, the prologue might contain something
1142 like (this example taken from relocate_doit):
1143 move.d $pc,$r0
1144 sub.d 0xfffef426,$r0
1145 which isn't covered by the source_register check below. Question
1146 is whether to add a check for this combo, or make better use of
1147 the limit variable instead. */
29134980
OF
1148 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1149 {
1150 /* The prologue ended before the limit was reached. */
2e4b5889 1151 pc -= 2;
29134980
OF
1152 break;
1153 }
1154 }
2e4b5889 1155 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1156 /* The size is a fixed-size. */
1157 && ((insn & 0x0F00) >> 8) == 0x0001
1158 /* A negative offset. */
1159 && (cris_get_signed_offset (insn) < 0))
1160 {
1161 /* move.S rZ,[r8-U] (?) */
e17a4113 1162 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1163 pc += 2;
29134980 1164 regno = cris_get_operand2 (insn_next);
7fbe2eba 1165 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1166 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1167 && cris_get_opcode (insn_next) == 0x000F)
1168 {
1169 /* move.S rZ,[r8-U] */
1170 continue;
1171 }
1172 else
1173 {
1174 /* The prologue ended before the limit was reached. */
2e4b5889 1175 pc -= 4;
29134980
OF
1176 break;
1177 }
1178 }
2e4b5889 1179 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1180 /* The size is a fixed-size. */
1181 && ((insn & 0x0F00) >> 8) == 0x0001
1182 /* A positive offset. */
1183 && (cris_get_signed_offset (insn) > 0))
1184 {
1185 /* move.S [r8+U],rZ (?) */
e17a4113 1186 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1187 pc += 2;
29134980 1188 regno = cris_get_operand2 (insn_next);
7fbe2eba 1189 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1190 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1191 && cris_get_opcode (insn_next) == 0x0009
1192 && cris_get_operand1 (insn_next) == regno)
1193 {
1194 /* move.S [r8+U],rZ */
1195 continue;
1196 }
1197 else
1198 {
1199 /* The prologue ended before the limit was reached. */
2e4b5889 1200 pc -= 4;
29134980
OF
1201 break;
1202 }
1203 }
1204 else
1205 {
1206 /* The prologue ended before the limit was reached. */
2e4b5889 1207 pc -= 2;
29134980
OF
1208 break;
1209 }
1210 }
29134980 1211
94afd7a6 1212 /* We only want to know the end of the prologue when this_frame and info
2e4b5889 1213 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1214 if (this_frame == NULL && info == NULL)
2e4b5889
OF
1215 {
1216 return pc;
1217 }
29134980 1218
2e4b5889
OF
1219 info->size = info->sp_offset;
1220
1221 /* Compute the previous frame's stack pointer (which is also the
1222 frame's ID's stack address), and this frame's base pointer. */
1223 if (info->uses_frame)
29134980 1224 {
2e4b5889
OF
1225 ULONGEST this_base;
1226 /* The SP was moved to the FP. This indicates that a new frame
1227 was created. Get THIS frame's FP value by unwinding it from
1228 the next frame. */
94afd7a6 1229 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
2e4b5889 1230 info->base = this_base;
b4206d25
OF
1231 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1232
2e4b5889
OF
1233 /* The FP points at the last saved register. Adjust the FP back
1234 to before the first saved register giving the SP. */
1235 info->prev_sp = info->base + info->r8_offset;
1236 }
1237 else
1238 {
1239 ULONGEST this_base;
1240 /* Assume that the FP is this frame's SP but with that pushed
1241 stack space added back. */
94afd7a6
UW
1242 this_base = get_frame_register_unsigned (this_frame,
1243 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1244 info->base = this_base;
1245 info->prev_sp = info->base + info->size;
1246 }
29134980 1247
2e4b5889
OF
1248 /* Calculate the addresses for the saved registers on the stack. */
1249 /* FIXME: The address calculation should really be done on the fly while
1250 we're analyzing the prologue (we only hold one regsave value as it is
1251 now). */
1252 val = info->sp_offset;
1253
1254 for (regno = regsave; regno >= 0; regno--)
1255 {
1256 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1257 val -= 4;
1258 }
1259
1260 /* The previous frame's SP needed to be computed. Save the computed
1261 value. */
3e8c568d 1262 trad_frame_set_value (info->saved_regs,
7fbe2eba 1263 gdbarch_sp_regnum (gdbarch), info->prev_sp);
2e4b5889
OF
1264
1265 if (!info->leaf_function)
1266 {
b4206d25
OF
1267 /* SRP saved on the stack. But where? */
1268 if (info->r8_offset == 0)
1269 {
1270 /* R8 not pushed yet. */
1271 info->saved_regs[SRP_REGNUM].addr = info->base;
1272 }
1273 else
1274 {
1275 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1276 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1277 }
29134980 1278 }
2e4b5889
OF
1279
1280 /* The PC is found in SRP (the actual register or located on the stack). */
7fbe2eba 1281 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1282 = info->saved_regs[SRP_REGNUM];
2e4b5889
OF
1283
1284 return pc;
29134980
OF
1285}
1286
5114e29d 1287static CORE_ADDR
94afd7a6 1288crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
5114e29d
OF
1289 struct cris_unwind_cache *info)
1290{
94afd7a6 1291 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5114e29d
OF
1292 ULONGEST this_base;
1293
1294 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1295 meant to be a full-fledged prologue scanner. It is only needed for
1296 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1297
1298 * PLT stubs (library calls)
1299 * call dummys
1300 * signal trampolines
1301
1302 For those cases, it is assumed that there is no actual prologue; that
1303 the stack pointer is not adjusted, and (as a consequence) the return
1304 address is not pushed onto the stack. */
1305
94afd7a6 1306 /* We only want to know the end of the prologue when this_frame and info
5114e29d 1307 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1308 if (this_frame == NULL && info == NULL)
5114e29d
OF
1309 {
1310 return pc;
1311 }
1312
1313 /* The SP is assumed to be unaltered. */
94afd7a6
UW
1314 this_base = get_frame_register_unsigned (this_frame,
1315 gdbarch_sp_regnum (gdbarch));
5114e29d
OF
1316 info->base = this_base;
1317 info->prev_sp = this_base;
1318
1319 /* The PC is assumed to be found in SRP. */
7fbe2eba 1320 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1321 = info->saved_regs[SRP_REGNUM];
5114e29d
OF
1322
1323 return pc;
1324}
1325
29134980
OF
1326/* Advance pc beyond any function entry prologue instructions at pc
1327 to reach some "real" code. */
1328
29134980
OF
1329/* Given a PC value corresponding to the start of a function, return the PC
1330 of the first instruction after the function prologue. */
1331
a78f21af 1332static CORE_ADDR
6093d2eb 1333cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
29134980 1334{
35488783 1335 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
1336 CORE_ADDR func_addr, func_end;
1337 struct symtab_and_line sal;
29134980
OF
1338 CORE_ADDR pc_after_prologue;
1339
2e4b5889
OF
1340 /* If we have line debugging information, then the end of the prologue
1341 should the first assembly instruction of the first source line. */
1342 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1343 {
1344 sal = find_pc_line (func_addr, 0);
1345 if (sal.end > 0 && sal.end < func_end)
1346 return sal.end;
1347 }
29134980 1348
35488783 1349 if (tdep->cris_version == 32)
5114e29d
OF
1350 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1351 else
1352 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1353
29134980
OF
1354 return pc_after_prologue;
1355}
1356
cd6c3b4f
YQ
1357/* Implement the breakpoint_kind_from_pc gdbarch method. */
1358
d19280ad
YQ
1359static int
1360cris_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1361{
1362 return 2;
1363}
29134980 1364
cd6c3b4f
YQ
1365/* Implement the sw_breakpoint_from_kind gdbarch method. */
1366
d19280ad
YQ
1367static const gdb_byte *
1368cris_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
29134980 1369{
35488783 1370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
0e6bdb31
OF
1371 static unsigned char break8_insn[] = {0x38, 0xe9};
1372 static unsigned char break15_insn[] = {0x3f, 0xe9};
d19280ad
YQ
1373
1374 *size = kind;
29134980 1375
35488783 1376 if (tdep->cris_mode == cris_mode_guru)
0e6bdb31
OF
1377 return break15_insn;
1378 else
1379 return break8_insn;
29134980
OF
1380}
1381
29134980
OF
1382/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1383 0 otherwise. */
1384
a78f21af 1385static int
35488783
UW
1386cris_spec_reg_applicable (struct gdbarch *gdbarch,
1387 struct cris_spec_reg spec_reg)
29134980 1388{
35488783 1389 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e4286e57 1390 unsigned int version = tdep->cris_version;
29134980
OF
1391
1392 switch (spec_reg.applicable_version)
1393 {
1394 case cris_ver_version_all:
1395 return 1;
1396 case cris_ver_warning:
1397 /* Indeterminate/obsolete. */
1398 return 0;
29134980 1399 case cris_ver_v0_3:
b020ff80 1400 return in_inclusive_range (version, 0U, 3U);
29134980
OF
1401 case cris_ver_v3p:
1402 return (version >= 3);
1403 case cris_ver_v8:
b020ff80 1404 return in_inclusive_range (version, 8U, 9U);
29134980
OF
1405 case cris_ver_v8p:
1406 return (version >= 8);
c600d464 1407 case cris_ver_v0_10:
b020ff80 1408 return in_inclusive_range (version, 0U, 10U);
c600d464 1409 case cris_ver_v3_10:
b020ff80 1410 return in_inclusive_range (version, 3U, 10U);
c600d464 1411 case cris_ver_v8_10:
b020ff80 1412 return in_inclusive_range (version, 8U, 10U);
c600d464
OF
1413 case cris_ver_v10:
1414 return (version == 10);
29134980
OF
1415 case cris_ver_v10p:
1416 return (version >= 10);
c600d464
OF
1417 case cris_ver_v32p:
1418 return (version >= 32);
29134980
OF
1419 default:
1420 /* Invalid cris version. */
1421 return 0;
1422 }
1423}
1424
1d94326f
AC
1425/* Returns the register size in unit byte. Returns 0 for an unimplemented
1426 register, -1 for an invalid register. */
1427
1428static int
be8626e0 1429cris_register_size (struct gdbarch *gdbarch, int regno)
1d94326f
AC
1430{
1431 int i;
1432 int spec_regno;
1433
1434 if (regno >= 0 && regno < NUM_GENREGS)
1435 {
1436 /* General registers (R0 - R15) are 32 bits. */
1437 return 4;
1438 }
c600d464 1439 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1440 {
1441 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1442 Adjust regno accordingly. */
1443 spec_regno = regno - NUM_GENREGS;
1444
c600d464 1445 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1446 {
1447 if (cris_spec_regs[i].number == spec_regno
35488783 1448 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1d94326f
AC
1449 /* Go with the first applicable register. */
1450 return cris_spec_regs[i].reg_size;
1451 }
1452 /* Special register not applicable to this CRIS version. */
1453 return 0;
1454 }
be8626e0
MD
1455 else if (regno >= gdbarch_pc_regnum (gdbarch)
1456 && regno < gdbarch_num_regs (gdbarch))
1d94326f 1457 {
c600d464
OF
1458 /* This will apply to CRISv32 only where there are additional registers
1459 after the special registers (pseudo PC and support registers). */
1460 return 4;
1d94326f 1461 }
c600d464
OF
1462
1463
1464 return -1;
1d94326f
AC
1465}
1466
29134980
OF
1467/* Nonzero if regno should not be fetched from the target. This is the case
1468 for unimplemented (size 0) and non-existant registers. */
1469
a78f21af 1470static int
64a3914f 1471cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
29134980 1472{
64a3914f 1473 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1474 || (cris_register_size (gdbarch, regno) == 0));
29134980
OF
1475}
1476
1477/* Nonzero if regno should not be written to the target, for various
1478 reasons. */
1479
a78f21af 1480static int
64a3914f 1481cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
29134980
OF
1482{
1483 /* There are three kinds of registers we refuse to write to.
1484 1. Those that not implemented.
1485 2. Those that are read-only (depends on the processor mode).
0963b4bd 1486 3. Those registers to which a write has no effect. */
29134980 1487
f57d151a 1488 if (regno < 0
64a3914f 1489 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1490 || cris_register_size (gdbarch, regno) == 0)
29134980
OF
1491 /* Not implemented. */
1492 return 1;
1493
1494 else if (regno == VR_REGNUM)
1495 /* Read-only. */
1496 return 1;
1497
1498 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1499 /* Writing has no effect. */
1500 return 1;
1501
a5f6c8f5
OF
1502 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1503 agent decide whether they are writable. */
29134980
OF
1504
1505 return 0;
1506}
1507
c600d464
OF
1508/* Nonzero if regno should not be fetched from the target. This is the case
1509 for unimplemented (size 0) and non-existant registers. */
1510
1511static int
64a3914f 1512crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
c600d464 1513{
64a3914f 1514 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1515 || (cris_register_size (gdbarch, regno) == 0));
c600d464
OF
1516}
1517
1518/* Nonzero if regno should not be written to the target, for various
1519 reasons. */
1520
1521static int
64a3914f 1522crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
c600d464
OF
1523{
1524 /* There are three kinds of registers we refuse to write to.
1525 1. Those that not implemented.
1526 2. Those that are read-only (depends on the processor mode).
0963b4bd 1527 3. Those registers to which a write has no effect. */
c600d464 1528
f57d151a 1529 if (regno < 0
64a3914f 1530 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1531 || cris_register_size (gdbarch, regno) == 0)
c600d464
OF
1532 /* Not implemented. */
1533 return 1;
1534
1535 else if (regno == VR_REGNUM)
1536 /* Read-only. */
1537 return 1;
1538
1539 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1540 /* Writing has no effect. */
1541 return 1;
1542
1543 /* Many special registers are read-only in user mode. Let the debug
1544 agent decide whether they are writable. */
1545
1546 return 0;
1547}
1548
29134980
OF
1549/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1550 of data in register regno. */
1551
a78f21af 1552static struct type *
c1d546cd 1553cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1554{
7fbe2eba 1555 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1556 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1557 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1558 || regno == CRIS_FP_REGNUM)
0dfff4cb 1559 return builtin_type (gdbarch)->builtin_data_ptr;
7fbe2eba 1560 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
a5f6c8f5
OF
1561 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1562 /* Note: R8 taken care of previous clause. */
df4df182 1563 return builtin_type (gdbarch)->builtin_uint32;
a5f6c8f5 1564 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
df4df182 1565 return builtin_type (gdbarch)->builtin_uint16;
a5f6c8f5 1566 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
df4df182 1567 return builtin_type (gdbarch)->builtin_uint8;
29134980 1568 else
a5f6c8f5 1569 /* Invalid (unimplemented) register. */
df4df182 1570 return builtin_type (gdbarch)->builtin_int0;
29134980
OF
1571}
1572
c600d464
OF
1573static struct type *
1574crisv32_register_type (struct gdbarch *gdbarch, int regno)
1575{
7fbe2eba 1576 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1577 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1578 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1579 || regno == CRIS_FP_REGNUM)
0dfff4cb 1580 return builtin_type (gdbarch)->builtin_data_ptr;
c600d464
OF
1581 else if ((regno >= 0 && regno <= ACR_REGNUM)
1582 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1583 || (regno == PID_REGNUM)
1584 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1585 /* Note: R8 and SP taken care of by previous clause. */
df4df182 1586 return builtin_type (gdbarch)->builtin_uint32;
c600d464 1587 else if (regno == WZ_REGNUM)
df4df182 1588 return builtin_type (gdbarch)->builtin_uint16;
c600d464 1589 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
df4df182 1590 return builtin_type (gdbarch)->builtin_uint8;
c600d464
OF
1591 else
1592 {
1593 /* Invalid (unimplemented) register. Should not happen as there are
1594 no unimplemented CRISv32 registers. */
8a3fe4f8 1595 warning (_("crisv32_register_type: unknown regno %d"), regno);
df4df182 1596 return builtin_type (gdbarch)->builtin_int0;
c600d464
OF
1597 }
1598}
1599
2e4b5889
OF
1600/* Stores a function return value of type type, where valbuf is the address
1601 of the value to be stored. */
29134980 1602
2e4b5889 1603/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1604
2e4b5889
OF
1605static void
1606cris_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1607 const gdb_byte *valbuf)
29134980 1608{
ac7936df 1609 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889 1611 ULONGEST val;
bad43aa5 1612 int len = TYPE_LENGTH (type);
29134980 1613
bad43aa5 1614 if (len <= 4)
29134980 1615 {
2e4b5889 1616 /* Put the return value in R10. */
bad43aa5 1617 val = extract_unsigned_integer (valbuf, len, byte_order);
2e4b5889 1618 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1619 }
bad43aa5 1620 else if (len <= 8)
29134980 1621 {
2e4b5889 1622 /* Put the return value in R10 and R11. */
e17a4113 1623 val = extract_unsigned_integer (valbuf, 4, byte_order);
2e4b5889 1624 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
948f8e3d 1625 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
2e4b5889 1626 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1627 }
2e4b5889 1628 else
8a3fe4f8 1629 error (_("cris_store_return_value: type length too large."));
29134980
OF
1630}
1631
0963b4bd
MS
1632/* Return the name of register regno as a string. Return NULL for an
1633 invalid or unimplemented register. */
29134980 1634
c600d464 1635static const char *
35488783 1636cris_special_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1637{
1638 int spec_regno;
1639 int i;
1640
1641 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1642 Adjust regno accordingly. */
1643 spec_regno = regno - NUM_GENREGS;
1644
1645 /* Assume nothing about the layout of the cris_spec_regs struct
1646 when searching. */
1647 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1648 {
1649 if (cris_spec_regs[i].number == spec_regno
35488783 1650 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
c600d464
OF
1651 /* Go with the first applicable register. */
1652 return cris_spec_regs[i].name;
1653 }
1654 /* Special register not applicable to this CRIS version. */
1655 return NULL;
1656}
1657
2e4b5889 1658static const char *
d93859e2 1659cris_register_name (struct gdbarch *gdbarch, int regno)
2e4b5889 1660{
a121b7c1 1661 static const char *cris_genreg_names[] =
2e4b5889
OF
1662 { "r0", "r1", "r2", "r3", \
1663 "r4", "r5", "r6", "r7", \
1664 "r8", "r9", "r10", "r11", \
1665 "r12", "r13", "sp", "pc" };
29134980 1666
2e4b5889 1667 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1668 {
2e4b5889
OF
1669 /* General register. */
1670 return cris_genreg_names[regno];
29134980 1671 }
d93859e2 1672 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
29134980 1673 {
35488783 1674 return cris_special_register_name (gdbarch, regno);
c600d464
OF
1675 }
1676 else
1677 {
1678 /* Invalid register. */
2e4b5889
OF
1679 return NULL;
1680 }
c600d464
OF
1681}
1682
1683static const char *
d93859e2 1684crisv32_register_name (struct gdbarch *gdbarch, int regno)
c600d464 1685{
a121b7c1 1686 static const char *crisv32_genreg_names[] =
c600d464
OF
1687 { "r0", "r1", "r2", "r3", \
1688 "r4", "r5", "r6", "r7", \
1689 "r8", "r9", "r10", "r11", \
1690 "r12", "r13", "sp", "acr"
1691 };
1692
a121b7c1 1693 static const char *crisv32_sreg_names[] =
c600d464
OF
1694 { "s0", "s1", "s2", "s3", \
1695 "s4", "s5", "s6", "s7", \
1696 "s8", "s9", "s10", "s11", \
1697 "s12", "s13", "s14", "s15"
1698 };
1699
1700 if (regno >= 0 && regno < NUM_GENREGS)
1701 {
1702 /* General register. */
1703 return crisv32_genreg_names[regno];
1704 }
1705 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1706 {
35488783 1707 return cris_special_register_name (gdbarch, regno);
c600d464 1708 }
d93859e2 1709 else if (regno == gdbarch_pc_regnum (gdbarch))
c600d464
OF
1710 {
1711 return "pc";
1712 }
1713 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1714 {
1715 return crisv32_sreg_names[regno - S0_REGNUM];
1716 }
2e4b5889
OF
1717 else
1718 {
1719 /* Invalid register. */
1720 return NULL;
29134980 1721 }
29134980
OF
1722}
1723
a5f6c8f5
OF
1724/* Convert DWARF register number REG to the appropriate register
1725 number used by GDB. */
1726
2e4b5889 1727static int
d3f73121 1728cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
29134980 1729{
a5f6c8f5
OF
1730 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1731 numbering, MOF is 18).
1732 Adapted from gcc/config/cris/cris.h. */
1733 static int cris_dwarf_regmap[] = {
1734 0, 1, 2, 3,
1735 4, 5, 6, 7,
1736 8, 9, 10, 11,
1737 12, 13, 14, 15,
1738 27, -1, -1, -1,
1739 -1, -1, -1, 23,
1740 -1, -1, -1, 27,
1741 -1, -1, -1, -1
1742 };
1743 int regnum = -1;
1744
1745 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1746 regnum = cris_dwarf_regmap[reg];
1747
a5f6c8f5
OF
1748 return regnum;
1749}
1750
1751/* DWARF-2 frame support. */
1752
1753static void
1754cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1755 struct dwarf2_frame_state_reg *reg,
4a4e5149 1756 struct frame_info *this_frame)
a5f6c8f5
OF
1757{
1758 /* The return address column. */
7fbe2eba 1759 if (regnum == gdbarch_pc_regnum (gdbarch))
a5f6c8f5
OF
1760 reg->how = DWARF2_FRAME_REG_RA;
1761
1762 /* The call frame address. */
7fbe2eba 1763 else if (regnum == gdbarch_sp_regnum (gdbarch))
a5f6c8f5 1764 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1765}
1766
2e4b5889
OF
1767/* Extract from an array regbuf containing the raw register state a function
1768 return value of type type, and copy that, in virtual format, into
1769 valbuf. */
1770
1771/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1772
2e4b5889
OF
1773static void
1774cris_extract_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1775 gdb_byte *valbuf)
29134980 1776{
ac7936df 1777 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1778 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889 1779 ULONGEST val;
bad43aa5 1780 int len = TYPE_LENGTH (type);
29134980 1781
bad43aa5 1782 if (len <= 4)
29134980 1783 {
2e4b5889
OF
1784 /* Get the return value from R10. */
1785 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
bad43aa5 1786 store_unsigned_integer (valbuf, len, byte_order, val);
29134980 1787 }
bad43aa5 1788 else if (len <= 8)
29134980 1789 {
2e4b5889
OF
1790 /* Get the return value from R10 and R11. */
1791 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1792 store_unsigned_integer (valbuf, 4, byte_order, val);
2e4b5889 1793 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
948f8e3d 1794 store_unsigned_integer (valbuf + 4, len - 4, byte_order, val);
29134980 1795 }
2e4b5889 1796 else
8a3fe4f8 1797 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1798}
1799
b4206d25
OF
1800/* Handle the CRIS return value convention. */
1801
1802static enum return_value_convention
6a3a010b 1803cris_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
1804 struct type *type, struct regcache *regcache,
1805 gdb_byte *readbuf, const gdb_byte *writebuf)
b4206d25
OF
1806{
1807 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1808 || TYPE_CODE (type) == TYPE_CODE_UNION
1809 || TYPE_LENGTH (type) > 8)
1810 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1811 goes on the stack. */
1812 return RETURN_VALUE_STRUCT_CONVENTION;
1813
1814 if (readbuf)
1815 cris_extract_return_value (type, regcache, readbuf);
1816 if (writebuf)
1817 cris_store_return_value (type, regcache, writebuf);
1818
1819 return RETURN_VALUE_REGISTER_CONVENTION;
1820}
1821
29134980
OF
1822/* Calculates a value that measures how good inst_args constraints an
1823 instruction. It stems from cris_constraint, found in cris-dis.c. */
1824
1825static int
948f8e3d 1826constraint (unsigned int insn, const char *inst_args,
29134980
OF
1827 inst_env_type *inst_env)
1828{
1829 int retval = 0;
1830 int tmp, i;
1831
948f8e3d 1832 const gdb_byte *s = (const gdb_byte *) inst_args;
29134980
OF
1833
1834 for (; *s; s++)
1835 switch (*s)
1836 {
1837 case 'm':
1838 if ((insn & 0x30) == 0x30)
1839 return -1;
1840 break;
1841
1842 case 'S':
1843 /* A prefix operand. */
1844 if (inst_env->prefix_found)
1845 break;
1846 else
1847 return -1;
1848
1849 case 'B':
1850 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1851 valid "push" size. In case of special register, it may be != 4. */
1852 if (inst_env->prefix_found)
1853 break;
1854 else
1855 return -1;
1856
1857 case 'D':
1858 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1859 if (!retval)
1860 return -1;
1861 else
1862 retval += 4;
1863 break;
1864
1865 case 'P':
1866 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1867
1868 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1869 {
1870 /* Since we match four bits, we will give a value of
1871 4 - 1 = 3 in a match. If there is a corresponding
1872 exact match of a special register in another pattern, it
1873 will get a value of 4, which will be higher. This should
1874 be correct in that an exact pattern would match better that
1875 a general pattern.
1876 Note that there is a reason for not returning zero; the
1877 pattern for "clear" is partly matched in the bit-pattern
1878 (the two lower bits must be zero), while the bit-pattern
1879 for a move from a special register is matched in the
1880 register constraint.
1881 This also means we will will have a race condition if
1882 there is a partly match in three bits in the bit pattern. */
1883 if (tmp == cris_spec_regs[i].number)
1884 {
1885 retval += 3;
1886 break;
1887 }
1888 }
1889
1890 if (cris_spec_regs[i].name == NULL)
29134980
OF
1891 return -1;
1892 break;
1893 }
1894 return retval;
1895}
1896
1897/* Returns the number of bits set in the variable value. */
1898
1899static int
1900number_of_bits (unsigned int value)
1901{
1902 int number_of_bits = 0;
1903
1904 while (value != 0)
1905 {
1906 number_of_bits += 1;
1907 value &= (value - 1);
1908 }
1909 return number_of_bits;
1910}
1911
1912/* Finds the address that should contain the single step breakpoint(s).
1913 It stems from code in cris-dis.c. */
1914
1915static int
1916find_cris_op (unsigned short insn, inst_env_type *inst_env)
1917{
1918 int i;
1919 int max_level_of_match = -1;
1920 int max_matched = -1;
1921 int level_of_match;
1922
1923 for (i = 0; cris_opcodes[i].name != NULL; i++)
1924 {
1925 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
1926 && ((cris_opcodes[i].lose & insn) == 0)
1927 /* Only CRISv10 instructions, please. */
1928 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
1929 {
1930 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1931 if (level_of_match >= 0)
1932 {
1933 level_of_match +=
1934 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1935 if (level_of_match > max_level_of_match)
1936 {
1937 max_matched = i;
1938 max_level_of_match = level_of_match;
1939 if (level_of_match == 16)
1940 {
1941 /* All bits matched, cannot find better. */
1942 break;
1943 }
1944 }
1945 }
1946 }
1947 }
1948 return max_matched;
1949}
1950
1951/* Attempts to find single-step breakpoints. Returns -1 on failure which is
1952 actually an internal error. */
1953
1954static int
5b6e2eee 1955find_step_target (struct regcache *regcache, inst_env_type *inst_env)
29134980
OF
1956{
1957 int i;
1958 int offset;
1959 unsigned short insn;
ac7936df 1960 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1961 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
29134980
OF
1962
1963 /* Create a local register image and set the initial state. */
1964 for (i = 0; i < NUM_GENREGS; i++)
1965 {
0b1b3e42 1966 inst_env->reg[i] =
5b6e2eee 1967 (unsigned long) regcache_raw_get_unsigned (regcache, i);
29134980
OF
1968 }
1969 offset = NUM_GENREGS;
1970 for (i = 0; i < NUM_SPECREGS; i++)
1971 {
0b1b3e42 1972 inst_env->preg[i] =
5b6e2eee 1973 (unsigned long) regcache_raw_get_unsigned (regcache, offset + i);
29134980
OF
1974 }
1975 inst_env->branch_found = 0;
1976 inst_env->slot_needed = 0;
1977 inst_env->delay_slot_pc_active = 0;
1978 inst_env->prefix_found = 0;
1979 inst_env->invalid = 0;
1980 inst_env->xflag_found = 0;
1981 inst_env->disable_interrupt = 0;
e17a4113 1982 inst_env->byte_order = byte_order;
29134980
OF
1983
1984 /* Look for a step target. */
1985 do
1986 {
1987 /* Read an instruction from the client. */
3e8c568d 1988 insn = read_memory_unsigned_integer
e17a4113 1989 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
29134980
OF
1990
1991 /* If the instruction is not in a delay slot the new content of the
1992 PC is [PC] + 2. If the instruction is in a delay slot it is not
1993 that simple. Since a instruction in a delay slot cannot change
1994 the content of the PC, it does not matter what value PC will have.
1995 Just make sure it is a valid instruction. */
1996 if (!inst_env->delay_slot_pc_active)
1997 {
7fbe2eba 1998 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
29134980
OF
1999 }
2000 else
2001 {
2002 inst_env->delay_slot_pc_active = 0;
7fbe2eba 2003 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
3e8c568d 2004 = inst_env->delay_slot_pc;
29134980
OF
2005 }
2006 /* Analyse the present instruction. */
2007 i = find_cris_op (insn, inst_env);
2008 if (i == -1)
2009 {
2010 inst_env->invalid = 1;
2011 }
2012 else
2013 {
be8626e0 2014 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
29134980
OF
2015 }
2016 } while (!inst_env->invalid
2017 && (inst_env->prefix_found || inst_env->xflag_found
2018 || inst_env->slot_needed));
2019 return i;
2020}
2021
2022/* There is no hardware single-step support. The function find_step_target
0963b4bd 2023 digs through the opcodes in order to find all possible targets.
29134980
OF
2024 Either one ordinary target or two targets for branches may be found. */
2025
a0ff9e1a 2026static std::vector<CORE_ADDR>
f5ea389a 2027cris_software_single_step (struct regcache *regcache)
29134980 2028{
ac7936df 2029 struct gdbarch *gdbarch = regcache->arch ();
29134980 2030 inst_env_type inst_env;
a0ff9e1a 2031 std::vector<CORE_ADDR> next_pcs;
8181d85f 2032
e0cd558a
UW
2033 /* Analyse the present instruction environment and insert
2034 breakpoints. */
5b6e2eee 2035 int status = find_step_target (regcache, &inst_env);
e0cd558a 2036 if (status == -1)
29134980 2037 {
e0cd558a
UW
2038 /* Could not find a target. Things are likely to go downhill
2039 from here. */
2040 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2041 }
2042 else
e0cd558a
UW
2043 {
2044 /* Insert at most two breakpoints. One for the next PC content
2045 and possibly another one for a branch, jump, etc. */
a6d9a66e
UW
2046 CORE_ADDR next_pc
2047 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
93f9a11f 2048
a0ff9e1a 2049 next_pcs.push_back (next_pc);
e0cd558a
UW
2050 if (inst_env.branch_found
2051 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2052 {
2053 CORE_ADDR branch_target_address
2054 = (CORE_ADDR) inst_env.branch_break_address;
93f9a11f 2055
a0ff9e1a 2056 next_pcs.push_back (branch_target_address);
e0cd558a
UW
2057 }
2058 }
e6590a1b 2059
93f9a11f 2060 return next_pcs;
29134980
OF
2061}
2062
2063/* Calculates the prefix value for quick offset addressing mode. */
2064
a78f21af 2065static void
29134980
OF
2066quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2067{
2068 /* It's invalid to be in a delay slot. You can't have a prefix to this
2069 instruction (not 100% sure). */
2070 if (inst_env->slot_needed || inst_env->prefix_found)
2071 {
2072 inst_env->invalid = 1;
2073 return;
2074 }
2075
2076 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2077 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2078
2079 /* A prefix doesn't change the xflag_found. But the rest of the flags
2080 need updating. */
2081 inst_env->slot_needed = 0;
2082 inst_env->prefix_found = 1;
2083}
2084
2085/* Updates the autoincrement register. The size of the increment is derived
2086 from the size of the operation. The PC is always kept aligned on even
2087 word addresses. */
2088
a78f21af 2089static void
29134980
OF
2090process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2091{
2092 if (size == INST_BYTE_SIZE)
2093 {
2094 inst_env->reg[cris_get_operand1 (inst)] += 1;
2095
2096 /* The PC must be word aligned, so increase the PC with one
2097 word even if the size is byte. */
2098 if (cris_get_operand1 (inst) == REG_PC)
2099 {
2100 inst_env->reg[REG_PC] += 1;
2101 }
2102 }
2103 else if (size == INST_WORD_SIZE)
2104 {
2105 inst_env->reg[cris_get_operand1 (inst)] += 2;
2106 }
2107 else if (size == INST_DWORD_SIZE)
2108 {
2109 inst_env->reg[cris_get_operand1 (inst)] += 4;
2110 }
2111 else
2112 {
2113 /* Invalid size. */
2114 inst_env->invalid = 1;
2115 }
2116}
2117
2a9ecef2
OF
2118/* Just a forward declaration. */
2119
a78f21af 2120static unsigned long get_data_from_address (unsigned short *inst,
e17a4113
UW
2121 CORE_ADDR address,
2122 enum bfd_endian byte_order);
2a9ecef2 2123
29134980
OF
2124/* Calculates the prefix value for the general case of offset addressing
2125 mode. */
2126
a78f21af 2127static void
29134980
OF
2128bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2129{
29134980
OF
2130 /* It's invalid to be in a delay slot. */
2131 if (inst_env->slot_needed || inst_env->prefix_found)
2132 {
2133 inst_env->invalid = 1;
2134 return;
2135 }
2136
fa4e4598
OF
2137 /* The calculation of prefix_value used to be after process_autoincrement,
2138 but that fails for an instruction such as jsr [$r0+12] which is encoded
2139 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2140 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2141 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2142
2143 /* The offset is an indirection of the contents of the operand1 register. */
2144 inst_env->prefix_value +=
e17a4113
UW
2145 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2146 inst_env->byte_order);
2a9ecef2 2147
fa4e4598
OF
2148 if (cris_get_mode (inst) == AUTOINC_MODE)
2149 {
2150 process_autoincrement (cris_get_size (inst), inst, inst_env);
2151 }
2152
29134980
OF
2153 /* A prefix doesn't change the xflag_found. But the rest of the flags
2154 need updating. */
2155 inst_env->slot_needed = 0;
2156 inst_env->prefix_found = 1;
2157}
2158
2159/* Calculates the prefix value for the index addressing mode. */
2160
a78f21af 2161static void
29134980
OF
2162biap_prefix (unsigned short inst, inst_env_type *inst_env)
2163{
2164 /* It's invalid to be in a delay slot. I can't see that it's possible to
2165 have a prefix to this instruction. So I will treat this as invalid. */
2166 if (inst_env->slot_needed || inst_env->prefix_found)
2167 {
2168 inst_env->invalid = 1;
2169 return;
2170 }
2171
2172 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2173
2174 /* The offset is the operand2 value shifted the size of the instruction
2175 to the left. */
2176 inst_env->prefix_value +=
2177 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2178
2179 /* If the PC is operand1 (base) the address used is the address after
2180 the main instruction, i.e. address + 2 (the PC is already compensated
2181 for the prefix operation). */
2182 if (cris_get_operand1 (inst) == REG_PC)
2183 {
2184 inst_env->prefix_value += 2;
2185 }
2186
2187 /* A prefix doesn't change the xflag_found. But the rest of the flags
2188 need updating. */
2189 inst_env->slot_needed = 0;
2190 inst_env->xflag_found = 0;
2191 inst_env->prefix_found = 1;
2192}
2193
2194/* Calculates the prefix value for the double indirect addressing mode. */
2195
a78f21af 2196static void
29134980
OF
2197dip_prefix (unsigned short inst, inst_env_type *inst_env)
2198{
2199
2200 CORE_ADDR address;
2201
2202 /* It's invalid to be in a delay slot. */
2203 if (inst_env->slot_needed || inst_env->prefix_found)
2204 {
2205 inst_env->invalid = 1;
2206 return;
2207 }
2208
2209 /* The prefix value is one dereference of the contents of the operand1
2210 register. */
2211 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2212 inst_env->prefix_value
2213 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
29134980
OF
2214
2215 /* Check if the mode is autoincrement. */
2216 if (cris_get_mode (inst) == AUTOINC_MODE)
2217 {
2218 inst_env->reg[cris_get_operand1 (inst)] += 4;
2219 }
2220
2221 /* A prefix doesn't change the xflag_found. But the rest of the flags
2222 need updating. */
2223 inst_env->slot_needed = 0;
2224 inst_env->xflag_found = 0;
2225 inst_env->prefix_found = 1;
2226}
2227
2228/* Finds the destination for a branch with 8-bits offset. */
2229
a78f21af 2230static void
29134980
OF
2231eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2232{
2233
2234 short offset;
2235
2236 /* If we have a prefix or are in a delay slot it's bad. */
2237 if (inst_env->slot_needed || inst_env->prefix_found)
2238 {
2239 inst_env->invalid = 1;
2240 return;
2241 }
2242
2243 /* We have a branch, find out where the branch will land. */
2244 offset = cris_get_branch_short_offset (inst);
2245
2246 /* Check if the offset is signed. */
2247 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2248 {
2249 offset |= 0xFF00;
2250 }
2251
2252 /* The offset ends with the sign bit, set it to zero. The address
2253 should always be word aligned. */
2254 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2255
2256 inst_env->branch_found = 1;
2257 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2258
2259 inst_env->slot_needed = 1;
2260 inst_env->prefix_found = 0;
2261 inst_env->xflag_found = 0;
2262 inst_env->disable_interrupt = 1;
2263}
2264
2265/* Finds the destination for a branch with 16-bits offset. */
2266
a78f21af 2267static void
29134980
OF
2268sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2269{
2270 short offset;
2271
2272 /* If we have a prefix or is in a delay slot it's bad. */
2273 if (inst_env->slot_needed || inst_env->prefix_found)
2274 {
2275 inst_env->invalid = 1;
2276 return;
2277 }
2278
2279 /* We have a branch, find out the offset for the branch. */
0963b4bd
MS
2280 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2281 inst_env->byte_order);
29134980
OF
2282
2283 /* The instruction is one word longer than normal, so add one word
2284 to the PC. */
2285 inst_env->reg[REG_PC] += 2;
2286
2287 inst_env->branch_found = 1;
2288 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2289
2290
2291 inst_env->slot_needed = 1;
2292 inst_env->prefix_found = 0;
2293 inst_env->xflag_found = 0;
2294 inst_env->disable_interrupt = 1;
2295}
2296
2297/* Handles the ABS instruction. */
2298
a78f21af 2299static void
29134980
OF
2300abs_op (unsigned short inst, inst_env_type *inst_env)
2301{
2302
2303 long value;
2304
2305 /* ABS can't have a prefix, so it's bad if it does. */
2306 if (inst_env->prefix_found)
2307 {
2308 inst_env->invalid = 1;
2309 return;
2310 }
2311
2312 /* Check if the operation affects the PC. */
2313 if (cris_get_operand2 (inst) == REG_PC)
2314 {
2315
2316 /* It's invalid to change to the PC if we are in a delay slot. */
2317 if (inst_env->slot_needed)
2318 {
2319 inst_env->invalid = 1;
2320 return;
2321 }
2322
2323 value = (long) inst_env->reg[REG_PC];
2324
2325 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2326 if (value != SIGNED_DWORD_MASK)
2327 {
2328 value = -value;
2329 inst_env->reg[REG_PC] = (long) value;
2330 }
2331 }
2332
2333 inst_env->slot_needed = 0;
2334 inst_env->prefix_found = 0;
2335 inst_env->xflag_found = 0;
2336 inst_env->disable_interrupt = 0;
2337}
2338
2339/* Handles the ADDI instruction. */
2340
a78f21af 2341static void
29134980
OF
2342addi_op (unsigned short inst, inst_env_type *inst_env)
2343{
2344 /* It's invalid to have the PC as base register. And ADDI can't have
2345 a prefix. */
2346 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2347 {
2348 inst_env->invalid = 1;
2349 return;
2350 }
2351
2352 inst_env->slot_needed = 0;
2353 inst_env->prefix_found = 0;
2354 inst_env->xflag_found = 0;
2355 inst_env->disable_interrupt = 0;
2356}
2357
2358/* Handles the ASR instruction. */
2359
a78f21af 2360static void
29134980
OF
2361asr_op (unsigned short inst, inst_env_type *inst_env)
2362{
2363 int shift_steps;
2364 unsigned long value;
2365 unsigned long signed_extend_mask = 0;
2366
2367 /* ASR can't have a prefix, so check that it doesn't. */
2368 if (inst_env->prefix_found)
2369 {
2370 inst_env->invalid = 1;
2371 return;
2372 }
2373
2374 /* Check if the PC is the target register. */
2375 if (cris_get_operand2 (inst) == REG_PC)
2376 {
2377 /* It's invalid to change the PC in a delay slot. */
2378 if (inst_env->slot_needed)
2379 {
2380 inst_env->invalid = 1;
2381 return;
2382 }
2383 /* Get the number of bits to shift. */
0963b4bd
MS
2384 shift_steps
2385 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
29134980
OF
2386 value = inst_env->reg[REG_PC];
2387
2388 /* Find out how many bits the operation should apply to. */
2389 if (cris_get_size (inst) == INST_BYTE_SIZE)
2390 {
2391 if (value & SIGNED_BYTE_MASK)
2392 {
2393 signed_extend_mask = 0xFF;
2394 signed_extend_mask = signed_extend_mask >> shift_steps;
2395 signed_extend_mask = ~signed_extend_mask;
2396 }
2397 value = value >> shift_steps;
2398 value |= signed_extend_mask;
2399 value &= 0xFF;
2400 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2401 inst_env->reg[REG_PC] |= value;
2402 }
2403 else if (cris_get_size (inst) == INST_WORD_SIZE)
2404 {
2405 if (value & SIGNED_WORD_MASK)
2406 {
2407 signed_extend_mask = 0xFFFF;
2408 signed_extend_mask = signed_extend_mask >> shift_steps;
2409 signed_extend_mask = ~signed_extend_mask;
2410 }
2411 value = value >> shift_steps;
2412 value |= signed_extend_mask;
2413 value &= 0xFFFF;
2414 inst_env->reg[REG_PC] &= 0xFFFF0000;
2415 inst_env->reg[REG_PC] |= value;
2416 }
2417 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2418 {
2419 if (value & SIGNED_DWORD_MASK)
2420 {
2421 signed_extend_mask = 0xFFFFFFFF;
2422 signed_extend_mask = signed_extend_mask >> shift_steps;
2423 signed_extend_mask = ~signed_extend_mask;
2424 }
2425 value = value >> shift_steps;
2426 value |= signed_extend_mask;
2427 inst_env->reg[REG_PC] = value;
2428 }
2429 }
2430 inst_env->slot_needed = 0;
2431 inst_env->prefix_found = 0;
2432 inst_env->xflag_found = 0;
2433 inst_env->disable_interrupt = 0;
2434}
2435
2436/* Handles the ASRQ instruction. */
2437
a78f21af 2438static void
29134980
OF
2439asrq_op (unsigned short inst, inst_env_type *inst_env)
2440{
2441
2442 int shift_steps;
2443 unsigned long value;
2444 unsigned long signed_extend_mask = 0;
2445
2446 /* ASRQ can't have a prefix, so check that it doesn't. */
2447 if (inst_env->prefix_found)
2448 {
2449 inst_env->invalid = 1;
2450 return;
2451 }
2452
2453 /* Check if the PC is the target register. */
2454 if (cris_get_operand2 (inst) == REG_PC)
2455 {
2456
2457 /* It's invalid to change the PC in a delay slot. */
2458 if (inst_env->slot_needed)
2459 {
2460 inst_env->invalid = 1;
2461 return;
2462 }
2463 /* The shift size is given as a 5 bit quick value, i.e. we don't
b021a221 2464 want the sign bit of the quick value. */
29134980
OF
2465 shift_steps = cris_get_asr_shift_steps (inst);
2466 value = inst_env->reg[REG_PC];
2467 if (value & SIGNED_DWORD_MASK)
2468 {
2469 signed_extend_mask = 0xFFFFFFFF;
2470 signed_extend_mask = signed_extend_mask >> shift_steps;
2471 signed_extend_mask = ~signed_extend_mask;
2472 }
2473 value = value >> shift_steps;
2474 value |= signed_extend_mask;
2475 inst_env->reg[REG_PC] = value;
2476 }
2477 inst_env->slot_needed = 0;
2478 inst_env->prefix_found = 0;
2479 inst_env->xflag_found = 0;
2480 inst_env->disable_interrupt = 0;
2481}
2482
2483/* Handles the AX, EI and SETF instruction. */
2484
a78f21af 2485static void
29134980
OF
2486ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2487{
2488 if (inst_env->prefix_found)
2489 {
2490 inst_env->invalid = 1;
2491 return;
2492 }
2493 /* Check if the instruction is setting the X flag. */
2494 if (cris_is_xflag_bit_on (inst))
2495 {
2496 inst_env->xflag_found = 1;
2497 }
2498 else
2499 {
2500 inst_env->xflag_found = 0;
2501 }
2502 inst_env->slot_needed = 0;
2503 inst_env->prefix_found = 0;
2504 inst_env->disable_interrupt = 1;
2505}
2506
2507/* Checks if the instruction is in assign mode. If so, it updates the assign
2508 register. Note that check_assign assumes that the caller has checked that
2509 there is a prefix to this instruction. The mode check depends on this. */
2510
a78f21af 2511static void
29134980
OF
2512check_assign (unsigned short inst, inst_env_type *inst_env)
2513{
2514 /* Check if it's an assign addressing mode. */
2515 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2516 {
2517 /* Assign the prefix value to operand 1. */
2518 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2519 }
2520}
2521
2522/* Handles the 2-operand BOUND instruction. */
2523
a78f21af 2524static void
29134980
OF
2525two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2526{
2527 /* It's invalid to have the PC as the index operand. */
2528 if (cris_get_operand2 (inst) == REG_PC)
2529 {
2530 inst_env->invalid = 1;
2531 return;
2532 }
2533 /* Check if we have a prefix. */
2534 if (inst_env->prefix_found)
2535 {
2536 check_assign (inst, inst_env);
2537 }
2538 /* Check if this is an autoincrement mode. */
2539 else if (cris_get_mode (inst) == AUTOINC_MODE)
2540 {
2541 /* It's invalid to change the PC in a delay slot. */
2542 if (inst_env->slot_needed)
2543 {
2544 inst_env->invalid = 1;
2545 return;
2546 }
2547 process_autoincrement (cris_get_size (inst), inst, inst_env);
2548 }
2549 inst_env->slot_needed = 0;
2550 inst_env->prefix_found = 0;
2551 inst_env->xflag_found = 0;
2552 inst_env->disable_interrupt = 0;
2553}
2554
2555/* Handles the 3-operand BOUND instruction. */
2556
a78f21af 2557static void
29134980
OF
2558three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2559{
2560 /* It's an error if we haven't got a prefix. And it's also an error
2561 if the PC is the destination register. */
2562 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2563 {
2564 inst_env->invalid = 1;
2565 return;
2566 }
2567 inst_env->slot_needed = 0;
2568 inst_env->prefix_found = 0;
2569 inst_env->xflag_found = 0;
2570 inst_env->disable_interrupt = 0;
2571}
2572
2573/* Clears the status flags in inst_env. */
2574
a78f21af 2575static void
29134980
OF
2576btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2577{
2578 /* It's an error if we have got a prefix. */
2579 if (inst_env->prefix_found)
2580 {
2581 inst_env->invalid = 1;
2582 return;
2583 }
2584
2585 inst_env->slot_needed = 0;
2586 inst_env->prefix_found = 0;
2587 inst_env->xflag_found = 0;
2588 inst_env->disable_interrupt = 0;
2589}
2590
2591/* Clears the status flags in inst_env. */
2592
a78f21af 2593static void
29134980
OF
2594clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2595{
2596 /* It's an error if we have got a prefix. */
2597 if (inst_env->prefix_found)
2598 {
2599 inst_env->invalid = 1;
2600 return;
2601 }
2602
2603 inst_env->slot_needed = 0;
2604 inst_env->prefix_found = 0;
2605 inst_env->xflag_found = 0;
2606 inst_env->disable_interrupt = 1;
2607}
2608
2609/* Handles the CLEAR instruction if it's in register mode. */
2610
a78f21af 2611static void
29134980
OF
2612reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2613{
2614 /* Check if the target is the PC. */
2615 if (cris_get_operand2 (inst) == REG_PC)
2616 {
2617 /* The instruction will clear the instruction's size bits. */
2618 int clear_size = cris_get_clear_size (inst);
2619 if (clear_size == INST_BYTE_SIZE)
2620 {
2621 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2622 }
2623 if (clear_size == INST_WORD_SIZE)
2624 {
2625 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2626 }
2627 if (clear_size == INST_DWORD_SIZE)
2628 {
2629 inst_env->delay_slot_pc = 0x0;
2630 }
2631 /* The jump will be delayed with one delay slot. So we need a delay
2632 slot. */
2633 inst_env->slot_needed = 1;
2634 inst_env->delay_slot_pc_active = 1;
2635 }
2636 else
2637 {
2638 /* The PC will not change => no delay slot. */
2639 inst_env->slot_needed = 0;
2640 }
2641 inst_env->prefix_found = 0;
2642 inst_env->xflag_found = 0;
2643 inst_env->disable_interrupt = 0;
2644}
2645
2646/* Handles the TEST instruction if it's in register mode. */
2647
a78f21af 2648static void
29134980
OF
2649reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2650{
2651 /* It's an error if we have got a prefix. */
2652 if (inst_env->prefix_found)
2653 {
2654 inst_env->invalid = 1;
2655 return;
2656 }
2657 inst_env->slot_needed = 0;
2658 inst_env->prefix_found = 0;
2659 inst_env->xflag_found = 0;
2660 inst_env->disable_interrupt = 0;
2661
2662}
2663
2664/* Handles the CLEAR and TEST instruction if the instruction isn't
2665 in register mode. */
2666
a78f21af 2667static void
29134980
OF
2668none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2669{
2670 /* Check if we are in a prefix mode. */
2671 if (inst_env->prefix_found)
2672 {
2673 /* The only way the PC can change is if this instruction is in
2674 assign addressing mode. */
2675 check_assign (inst, inst_env);
2676 }
2677 /* Indirect mode can't change the PC so just check if the mode is
2678 autoincrement. */
2679 else if (cris_get_mode (inst) == AUTOINC_MODE)
2680 {
2681 process_autoincrement (cris_get_size (inst), inst, inst_env);
2682 }
2683 inst_env->slot_needed = 0;
2684 inst_env->prefix_found = 0;
2685 inst_env->xflag_found = 0;
2686 inst_env->disable_interrupt = 0;
2687}
2688
2689/* Checks that the PC isn't the destination register or the instructions has
2690 a prefix. */
2691
a78f21af 2692static void
29134980
OF
2693dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2694{
2695 /* It's invalid to have the PC as the destination. The instruction can't
2696 have a prefix. */
2697 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2698 {
2699 inst_env->invalid = 1;
2700 return;
2701 }
2702
2703 inst_env->slot_needed = 0;
2704 inst_env->prefix_found = 0;
2705 inst_env->xflag_found = 0;
2706 inst_env->disable_interrupt = 0;
2707}
2708
2709/* Checks that the instruction doesn't have a prefix. */
2710
a78f21af 2711static void
29134980
OF
2712break_op (unsigned short inst, inst_env_type *inst_env)
2713{
2714 /* The instruction can't have a prefix. */
2715 if (inst_env->prefix_found)
2716 {
2717 inst_env->invalid = 1;
2718 return;
2719 }
2720
2721 inst_env->slot_needed = 0;
2722 inst_env->prefix_found = 0;
2723 inst_env->xflag_found = 0;
2724 inst_env->disable_interrupt = 1;
2725}
2726
2727/* Checks that the PC isn't the destination register and that the instruction
2728 doesn't have a prefix. */
2729
a78f21af 2730static void
29134980
OF
2731scc_op (unsigned short inst, inst_env_type *inst_env)
2732{
2733 /* It's invalid to have the PC as the destination. The instruction can't
2734 have a prefix. */
2735 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2736 {
2737 inst_env->invalid = 1;
2738 return;
2739 }
2740
2741 inst_env->slot_needed = 0;
2742 inst_env->prefix_found = 0;
2743 inst_env->xflag_found = 0;
2744 inst_env->disable_interrupt = 1;
2745}
2746
2747/* Handles the register mode JUMP instruction. */
2748
a78f21af 2749static void
29134980
OF
2750reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2751{
2752 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2753 you can't have a prefix. */
2754 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2755 {
2756 inst_env->invalid = 1;
2757 return;
2758 }
2759
2760 /* Just change the PC. */
2761 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2762 inst_env->slot_needed = 0;
2763 inst_env->prefix_found = 0;
2764 inst_env->xflag_found = 0;
2765 inst_env->disable_interrupt = 1;
2766}
2767
2768/* Handles the JUMP instruction for all modes except register. */
2769
a78f21af
AC
2770static void
2771none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2772{
2773 unsigned long newpc;
2774 CORE_ADDR address;
2775
2776 /* It's invalid to do a JUMP in a delay slot. */
2777 if (inst_env->slot_needed)
2778 {
2779 inst_env->invalid = 1;
2780 }
2781 else
2782 {
2783 /* Check if we have a prefix. */
2784 if (inst_env->prefix_found)
2785 {
2786 check_assign (inst, inst_env);
2787
b021a221 2788 /* Get the new value for the PC. */
29134980
OF
2789 newpc =
2790 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
e17a4113 2791 4, inst_env->byte_order);
29134980
OF
2792 }
2793 else
2794 {
2795 /* Get the new value for the PC. */
2796 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2797 newpc = read_memory_unsigned_integer (address,
2798 4, inst_env->byte_order);
29134980
OF
2799
2800 /* Check if we should increment a register. */
2801 if (cris_get_mode (inst) == AUTOINC_MODE)
2802 {
2803 inst_env->reg[cris_get_operand1 (inst)] += 4;
2804 }
2805 }
2806 inst_env->reg[REG_PC] = newpc;
2807 }
2808 inst_env->slot_needed = 0;
2809 inst_env->prefix_found = 0;
2810 inst_env->xflag_found = 0;
2811 inst_env->disable_interrupt = 1;
2812}
2813
2814/* Handles moves to special registers (aka P-register) for all modes. */
2815
a78f21af 2816static void
be8626e0
MD
2817move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2818 inst_env_type *inst_env)
29134980
OF
2819{
2820 if (inst_env->prefix_found)
2821 {
2822 /* The instruction has a prefix that means we are only interested if
2823 the instruction is in assign mode. */
2824 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2825 {
2826 /* The prefix handles the problem if we are in a delay slot. */
2827 if (cris_get_operand1 (inst) == REG_PC)
2828 {
2829 /* Just take care of the assign. */
2830 check_assign (inst, inst_env);
2831 }
2832 }
2833 }
2834 else if (cris_get_mode (inst) == AUTOINC_MODE)
2835 {
2836 /* The instruction doesn't have a prefix, the only case left that we
2837 are interested in is the autoincrement mode. */
2838 if (cris_get_operand1 (inst) == REG_PC)
2839 {
2840 /* If the PC is to be incremented it's invalid to be in a
2841 delay slot. */
2842 if (inst_env->slot_needed)
2843 {
2844 inst_env->invalid = 1;
2845 return;
2846 }
2a9ecef2
OF
2847
2848 /* The increment depends on the size of the special register. */
be8626e0 2849 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2850 {
2851 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2852 }
be8626e0 2853 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2854 {
2855 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2856 }
2857 else
2858 {
2859 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2860 }
2861 }
2862 }
2863 inst_env->slot_needed = 0;
2864 inst_env->prefix_found = 0;
2865 inst_env->xflag_found = 0;
2866 inst_env->disable_interrupt = 1;
2867}
2868
2869/* Handles moves from special registers (aka P-register) for all modes
2870 except register. */
2871
a78f21af 2872static void
be8626e0
MD
2873none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2874 inst_env_type *inst_env)
29134980
OF
2875{
2876 if (inst_env->prefix_found)
2877 {
2878 /* The instruction has a prefix that means we are only interested if
2879 the instruction is in assign mode. */
2880 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2881 {
2882 /* The prefix handles the problem if we are in a delay slot. */
2883 if (cris_get_operand1 (inst) == REG_PC)
2884 {
2885 /* Just take care of the assign. */
2886 check_assign (inst, inst_env);
2887 }
2888 }
2889 }
2890 /* The instruction doesn't have a prefix, the only case left that we
2891 are interested in is the autoincrement mode. */
2892 else if (cris_get_mode (inst) == AUTOINC_MODE)
2893 {
2894 if (cris_get_operand1 (inst) == REG_PC)
2895 {
2896 /* If the PC is to be incremented it's invalid to be in a
2897 delay slot. */
2898 if (inst_env->slot_needed)
2899 {
2900 inst_env->invalid = 1;
2901 return;
2902 }
2a9ecef2
OF
2903
2904 /* The increment depends on the size of the special register. */
be8626e0 2905 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2906 {
2907 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2908 }
be8626e0 2909 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2910 {
2911 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2912 }
2913 else
2914 {
2915 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2916 }
2917 }
2918 }
2919 inst_env->slot_needed = 0;
2920 inst_env->prefix_found = 0;
2921 inst_env->xflag_found = 0;
2922 inst_env->disable_interrupt = 1;
2923}
2924
2925/* Handles moves from special registers (aka P-register) when the mode
2926 is register. */
2927
a78f21af 2928static void
29134980
OF
2929reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2930{
2931 /* Register mode move from special register can't have a prefix. */
2932 if (inst_env->prefix_found)
2933 {
2934 inst_env->invalid = 1;
2935 return;
2936 }
2937
2938 if (cris_get_operand1 (inst) == REG_PC)
2939 {
2940 /* It's invalid to change the PC in a delay slot. */
2941 if (inst_env->slot_needed)
2942 {
2943 inst_env->invalid = 1;
2944 return;
2945 }
2946 /* The destination is the PC, the jump will have a delay slot. */
2947 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2948 inst_env->slot_needed = 1;
2949 inst_env->delay_slot_pc_active = 1;
2950 }
2951 else
2952 {
2953 /* If the destination isn't PC, there will be no jump. */
2954 inst_env->slot_needed = 0;
2955 }
2956 inst_env->prefix_found = 0;
2957 inst_env->xflag_found = 0;
2958 inst_env->disable_interrupt = 1;
2959}
2960
2961/* Handles the MOVEM from memory to general register instruction. */
2962
a78f21af 2963static void
29134980
OF
2964move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2965{
2966 if (inst_env->prefix_found)
2967 {
2968 /* The prefix handles the problem if we are in a delay slot. Is the
2969 MOVEM instruction going to change the PC? */
2970 if (cris_get_operand2 (inst) >= REG_PC)
2971 {
2972 inst_env->reg[REG_PC] =
e17a4113
UW
2973 read_memory_unsigned_integer (inst_env->prefix_value,
2974 4, inst_env->byte_order);
29134980
OF
2975 }
2976 /* The assign value is the value after the increment. Normally, the
2977 assign value is the value before the increment. */
2978 if ((cris_get_operand1 (inst) == REG_PC)
2979 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2980 {
2981 inst_env->reg[REG_PC] = inst_env->prefix_value;
2982 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2983 }
2984 }
2985 else
2986 {
2987 /* Is the MOVEM instruction going to change the PC? */
2988 if (cris_get_operand2 (inst) == REG_PC)
2989 {
2990 /* It's invalid to change the PC in a delay slot. */
2991 if (inst_env->slot_needed)
2992 {
2993 inst_env->invalid = 1;
2994 return;
2995 }
2996 inst_env->reg[REG_PC] =
2997 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
e17a4113 2998 4, inst_env->byte_order);
29134980
OF
2999 }
3000 /* The increment is not depending on the size, instead it's depending
3001 on the number of registers loaded from memory. */
0963b4bd
MS
3002 if ((cris_get_operand1 (inst) == REG_PC)
3003 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3004 {
3005 /* It's invalid to change the PC in a delay slot. */
3006 if (inst_env->slot_needed)
3007 {
3008 inst_env->invalid = 1;
3009 return;
3010 }
3011 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3012 }
3013 }
3014 inst_env->slot_needed = 0;
3015 inst_env->prefix_found = 0;
3016 inst_env->xflag_found = 0;
3017 inst_env->disable_interrupt = 0;
3018}
3019
3020/* Handles the MOVEM to memory from general register instruction. */
3021
a78f21af 3022static void
29134980
OF
3023move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3024{
3025 if (inst_env->prefix_found)
3026 {
3027 /* The assign value is the value after the increment. Normally, the
3028 assign value is the value before the increment. */
5aafa1cc
PM
3029 if ((cris_get_operand1 (inst) == REG_PC)
3030 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
29134980
OF
3031 {
3032 /* The prefix handles the problem if we are in a delay slot. */
3033 inst_env->reg[REG_PC] = inst_env->prefix_value;
3034 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3035 }
3036 }
3037 else
3038 {
3039 /* The increment is not depending on the size, instead it's depending
3040 on the number of registers loaded to memory. */
0963b4bd
MS
3041 if ((cris_get_operand1 (inst) == REG_PC)
3042 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3043 {
3044 /* It's invalid to change the PC in a delay slot. */
3045 if (inst_env->slot_needed)
3046 {
3047 inst_env->invalid = 1;
3048 return;
3049 }
3050 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3051 }
3052 }
3053 inst_env->slot_needed = 0;
3054 inst_env->prefix_found = 0;
3055 inst_env->xflag_found = 0;
3056 inst_env->disable_interrupt = 0;
3057}
3058
29134980
OF
3059/* Handles the intructions that's not yet implemented, by setting
3060 inst_env->invalid to true. */
3061
a78f21af 3062static void
29134980
OF
3063not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3064{
3065 inst_env->invalid = 1;
3066}
3067
3068/* Handles the XOR instruction. */
3069
a78f21af 3070static void
29134980
OF
3071xor_op (unsigned short inst, inst_env_type *inst_env)
3072{
3073 /* XOR can't have a prefix. */
3074 if (inst_env->prefix_found)
3075 {
3076 inst_env->invalid = 1;
3077 return;
3078 }
3079
3080 /* Check if the PC is the target. */
3081 if (cris_get_operand2 (inst) == REG_PC)
3082 {
3083 /* It's invalid to change the PC in a delay slot. */
3084 if (inst_env->slot_needed)
3085 {
3086 inst_env->invalid = 1;
3087 return;
3088 }
3089 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3090 }
3091 inst_env->slot_needed = 0;
3092 inst_env->prefix_found = 0;
3093 inst_env->xflag_found = 0;
3094 inst_env->disable_interrupt = 0;
3095}
3096
3097/* Handles the MULS instruction. */
3098
a78f21af 3099static void
29134980
OF
3100muls_op (unsigned short inst, inst_env_type *inst_env)
3101{
3102 /* MULS/U can't have a prefix. */
3103 if (inst_env->prefix_found)
3104 {
3105 inst_env->invalid = 1;
3106 return;
3107 }
3108
3109 /* Consider it invalid if the PC is the target. */
3110 if (cris_get_operand2 (inst) == REG_PC)
3111 {
3112 inst_env->invalid = 1;
3113 return;
3114 }
3115 inst_env->slot_needed = 0;
3116 inst_env->prefix_found = 0;
3117 inst_env->xflag_found = 0;
3118 inst_env->disable_interrupt = 0;
3119}
3120
3121/* Handles the MULU instruction. */
3122
a78f21af 3123static void
29134980
OF
3124mulu_op (unsigned short inst, inst_env_type *inst_env)
3125{
3126 /* MULS/U can't have a prefix. */
3127 if (inst_env->prefix_found)
3128 {
3129 inst_env->invalid = 1;
3130 return;
3131 }
3132
3133 /* Consider it invalid if the PC is the target. */
3134 if (cris_get_operand2 (inst) == REG_PC)
3135 {
3136 inst_env->invalid = 1;
3137 return;
3138 }
3139 inst_env->slot_needed = 0;
3140 inst_env->prefix_found = 0;
3141 inst_env->xflag_found = 0;
3142 inst_env->disable_interrupt = 0;
3143}
3144
0963b4bd 3145/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
29134980
OF
3146 The MOVE instruction is the move from source to register. */
3147
a78f21af 3148static void
29134980
OF
3149add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3150 unsigned long source1, unsigned long source2)
3151{
3152 unsigned long pc_mask;
3153 unsigned long operation_mask;
3154
3155 /* Find out how many bits the operation should apply to. */
3156 if (cris_get_size (inst) == INST_BYTE_SIZE)
3157 {
3158 pc_mask = 0xFFFFFF00;
3159 operation_mask = 0xFF;
3160 }
3161 else if (cris_get_size (inst) == INST_WORD_SIZE)
3162 {
3163 pc_mask = 0xFFFF0000;
3164 operation_mask = 0xFFFF;
3165 }
3166 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3167 {
3168 pc_mask = 0x0;
3169 operation_mask = 0xFFFFFFFF;
3170 }
3171 else
3172 {
3173 /* The size is out of range. */
3174 inst_env->invalid = 1;
3175 return;
3176 }
3177
3178 /* The instruction just works on uw_operation_mask bits. */
3179 source2 &= operation_mask;
3180 source1 &= operation_mask;
3181
3182 /* Now calculate the result. The opcode's 3 first bits separates
3183 the different actions. */
3184 switch (cris_get_opcode (inst) & 7)
3185 {
3186 case 0: /* add */
3187 source1 += source2;
3188 break;
3189
3190 case 1: /* move */
3191 source1 = source2;
3192 break;
3193
3194 case 2: /* subtract */
3195 source1 -= source2;
3196 break;
3197
3198 case 3: /* compare */
3199 break;
3200
3201 case 4: /* and */
3202 source1 &= source2;
3203 break;
3204
3205 case 5: /* or */
3206 source1 |= source2;
3207 break;
3208
3209 default:
3210 inst_env->invalid = 1;
3211 return;
3212
3213 break;
3214 }
3215
3216 /* Make sure that the result doesn't contain more than the instruction
3217 size bits. */
3218 source2 &= operation_mask;
3219
3220 /* Calculate the new breakpoint address. */
3221 inst_env->reg[REG_PC] &= pc_mask;
3222 inst_env->reg[REG_PC] |= source1;
3223
3224}
3225
3226/* Extends the value from either byte or word size to a dword. If the mode
3227 is zero extend then the value is extended with zero. If instead the mode
3228 is signed extend the sign bit of the value is taken into consideration. */
3229
a78f21af 3230static unsigned long
29134980
OF
3231do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3232{
3233 /* The size can be either byte or word, check which one it is.
3234 Don't check the highest bit, it's indicating if it's a zero
3235 or sign extend. */
3236 if (cris_get_size (*inst) & INST_WORD_SIZE)
3237 {
3238 /* Word size. */
3239 value &= 0xFFFF;
3240
3241 /* Check if the instruction is signed extend. If so, check if value has
3242 the sign bit on. */
3243 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3244 {
3245 value |= SIGNED_WORD_EXTEND_MASK;
3246 }
3247 }
3248 else
3249 {
3250 /* Byte size. */
3251 value &= 0xFF;
3252
3253 /* Check if the instruction is signed extend. If so, check if value has
3254 the sign bit on. */
3255 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3256 {
3257 value |= SIGNED_BYTE_EXTEND_MASK;
3258 }
3259 }
3260 /* The size should now be dword. */
3261 cris_set_size_to_dword (inst);
3262 return value;
3263}
3264
3265/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3266 instruction. The MOVE instruction is the move from source to register. */
3267
a78f21af 3268static void
29134980
OF
3269reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3270 inst_env_type *inst_env)
3271{
3272 unsigned long operand1;
3273 unsigned long operand2;
3274
3275 /* It's invalid to have a prefix to the instruction. This is a register
3276 mode instruction and can't have a prefix. */
3277 if (inst_env->prefix_found)
3278 {
3279 inst_env->invalid = 1;
3280 return;
3281 }
3282 /* Check if the instruction has PC as its target. */
3283 if (cris_get_operand2 (inst) == REG_PC)
3284 {
3285 if (inst_env->slot_needed)
3286 {
3287 inst_env->invalid = 1;
3288 return;
3289 }
3290 /* The instruction has the PC as its target register. */
7ab98e9e 3291 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3292 operand2 = inst_env->reg[REG_PC];
3293
3294 /* Check if it's a extend, signed or zero instruction. */
3295 if (cris_get_opcode (inst) < 4)
3296 {
3297 operand1 = do_sign_or_zero_extend (operand1, &inst);
3298 }
3299 /* Calculate the PC value after the instruction, i.e. where the
3300 breakpoint should be. The order of the udw_operands is vital. */
3301 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3302 }
3303 inst_env->slot_needed = 0;
3304 inst_env->prefix_found = 0;
3305 inst_env->xflag_found = 0;
3306 inst_env->disable_interrupt = 0;
3307}
3308
3309/* Returns the data contained at address. The size of the data is derived from
3310 the size of the operation. If the instruction is a zero or signed
3311 extend instruction, the size field is changed in instruction. */
3312
a78f21af 3313static unsigned long
0963b4bd
MS
3314get_data_from_address (unsigned short *inst, CORE_ADDR address,
3315 enum bfd_endian byte_order)
29134980
OF
3316{
3317 int size = cris_get_size (*inst);
3318 unsigned long value;
3319
3320 /* If it's an extend instruction we don't want the signed extend bit,
3321 because it influences the size. */
3322 if (cris_get_opcode (*inst) < 4)
3323 {
3324 size &= ~SIGNED_EXTEND_BIT_MASK;
3325 }
3326 /* Is there a need for checking the size? Size should contain the number of
3327 bytes to read. */
3328 size = 1 << size;
e17a4113 3329 value = read_memory_unsigned_integer (address, size, byte_order);
29134980
OF
3330
3331 /* Check if it's an extend, signed or zero instruction. */
3332 if (cris_get_opcode (*inst) < 4)
3333 {
3334 value = do_sign_or_zero_extend (value, inst);
3335 }
3336 return value;
3337}
3338
3339/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3340 instructions. The MOVE instruction is the move from source to register. */
3341
a78f21af 3342static void
29134980
OF
3343handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3344 inst_env_type *inst_env)
3345{
3346 unsigned long operand2;
3347 unsigned long operand3;
3348
3349 check_assign (inst, inst_env);
3350 if (cris_get_operand2 (inst) == REG_PC)
3351 {
3352 operand2 = inst_env->reg[REG_PC];
3353
3354 /* Get the value of the third operand. */
e17a4113
UW
3355 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3356 inst_env->byte_order);
29134980
OF
3357
3358 /* Calculate the PC value after the instruction, i.e. where the
3359 breakpoint should be. The order of the udw_operands is vital. */
3360 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3361 }
3362 inst_env->slot_needed = 0;
3363 inst_env->prefix_found = 0;
3364 inst_env->xflag_found = 0;
3365 inst_env->disable_interrupt = 0;
3366}
3367
3368/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3369 OR instructions. Note that for this to work as expected, the calling
3370 function must have made sure that there is a prefix to this instruction. */
3371
a78f21af 3372static void
29134980
OF
3373three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3374 inst_env_type *inst_env)
3375{
3376 unsigned long operand2;
3377 unsigned long operand3;
3378
3379 if (cris_get_operand1 (inst) == REG_PC)
3380 {
3381 /* The PC will be changed by the instruction. */
3382 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3383
3384 /* Get the value of the third operand. */
e17a4113
UW
3385 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3386 inst_env->byte_order);
29134980
OF
3387
3388 /* Calculate the PC value after the instruction, i.e. where the
3389 breakpoint should be. */
3390 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3391 }
3392 inst_env->slot_needed = 0;
3393 inst_env->prefix_found = 0;
3394 inst_env->xflag_found = 0;
3395 inst_env->disable_interrupt = 0;
3396}
3397
3398/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3399 instructions. The MOVE instruction is the move from source to register. */
3400
a78f21af 3401static void
29134980
OF
3402handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3403 inst_env_type *inst_env)
3404{
3405 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3406 {
3407 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3408 SUB, AND or OR something weird is going on (if everything works these
3409 instructions should end up in the three operand version). */
3410 inst_env->invalid = 1;
3411 return;
3412 }
3413 else
3414 {
3415 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3416 so use it. */
3417 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3418 }
3419 inst_env->slot_needed = 0;
3420 inst_env->prefix_found = 0;
3421 inst_env->xflag_found = 0;
3422 inst_env->disable_interrupt = 0;
3423}
3424
3425/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3426 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3427 source to register. */
3428
a78f21af 3429static void
29134980
OF
3430handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3431 inst_env_type *inst_env)
3432{
3433 unsigned long operand1;
3434 unsigned long operand2;
3435 unsigned long operand3;
3436 int size;
3437
0963b4bd 3438 /* The instruction is either an indirect or autoincrement addressing mode.
29134980
OF
3439 Check if the destination register is the PC. */
3440 if (cris_get_operand2 (inst) == REG_PC)
3441 {
3442 /* Must be done here, get_data_from_address may change the size
3443 field. */
3444 size = cris_get_size (inst);
3445 operand2 = inst_env->reg[REG_PC];
3446
3447 /* Get the value of the third operand, i.e. the indirect operand. */
3448 operand1 = inst_env->reg[cris_get_operand1 (inst)];
e17a4113 3449 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
29134980
OF
3450
3451 /* Calculate the PC value after the instruction, i.e. where the
3452 breakpoint should be. The order of the udw_operands is vital. */
3453 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3454 }
3455 /* If this is an autoincrement addressing mode, check if the increment
3456 changes the PC. */
0963b4bd
MS
3457 if ((cris_get_operand1 (inst) == REG_PC)
3458 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3459 {
3460 /* Get the size field. */
3461 size = cris_get_size (inst);
3462
3463 /* If it's an extend instruction we don't want the signed extend bit,
3464 because it influences the size. */
3465 if (cris_get_opcode (inst) < 4)
3466 {
3467 size &= ~SIGNED_EXTEND_BIT_MASK;
3468 }
3469 process_autoincrement (size, inst, inst_env);
3470 }
3471 inst_env->slot_needed = 0;
3472 inst_env->prefix_found = 0;
3473 inst_env->xflag_found = 0;
3474 inst_env->disable_interrupt = 0;
3475}
3476
3477/* Handles the two-operand addressing mode, all modes except register, for
3478 the ADD, SUB CMP, AND and OR instruction. */
3479
a78f21af 3480static void
29134980
OF
3481none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3482 inst_env_type *inst_env)
3483{
3484 if (inst_env->prefix_found)
3485 {
3486 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3487 {
3488 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3489 }
3490 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3491 {
3492 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3493 }
3494 else
3495 {
3496 /* The mode is invalid for a prefixed base instruction. */
3497 inst_env->invalid = 1;
3498 return;
3499 }
3500 }
3501 else
3502 {
3503 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3504 }
3505}
3506
3507/* Handles the quick addressing mode for the ADD and SUB instruction. */
3508
a78f21af 3509static void
29134980
OF
3510quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3511{
3512 unsigned long operand1;
3513 unsigned long operand2;
3514
3515 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3516 instruction and can't have a prefix. */
3517 if (inst_env->prefix_found)
3518 {
3519 inst_env->invalid = 1;
3520 return;
3521 }
3522
3523 /* Check if the instruction has PC as its target. */
3524 if (cris_get_operand2 (inst) == REG_PC)
3525 {
3526 if (inst_env->slot_needed)
3527 {
3528 inst_env->invalid = 1;
3529 return;
3530 }
3531 operand1 = cris_get_quick_value (inst);
3532 operand2 = inst_env->reg[REG_PC];
3533
3534 /* The size should now be dword. */
3535 cris_set_size_to_dword (&inst);
3536
3537 /* Calculate the PC value after the instruction, i.e. where the
3538 breakpoint should be. */
3539 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3540 }
3541 inst_env->slot_needed = 0;
3542 inst_env->prefix_found = 0;
3543 inst_env->xflag_found = 0;
3544 inst_env->disable_interrupt = 0;
3545}
3546
3547/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3548
a78f21af 3549static void
29134980
OF
3550quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3551{
3552 unsigned long operand1;
3553 unsigned long operand2;
3554
3555 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3556 instruction and can't have a prefix. */
3557 if (inst_env->prefix_found)
3558 {
3559 inst_env->invalid = 1;
3560 return;
3561 }
3562 /* Check if the instruction has PC as its target. */
3563 if (cris_get_operand2 (inst) == REG_PC)
3564 {
3565 if (inst_env->slot_needed)
3566 {
3567 inst_env->invalid = 1;
3568 return;
3569 }
3570 /* The instruction has the PC as its target register. */
3571 operand1 = cris_get_quick_value (inst);
3572 operand2 = inst_env->reg[REG_PC];
3573
3574 /* The quick value is signed, so check if we must do a signed extend. */
3575 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3576 {
3577 /* sign extend */
3578 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3579 }
3580 /* The size should now be dword. */
3581 cris_set_size_to_dword (&inst);
3582
3583 /* Calculate the PC value after the instruction, i.e. where the
3584 breakpoint should be. */
3585 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3586 }
3587 inst_env->slot_needed = 0;
3588 inst_env->prefix_found = 0;
3589 inst_env->xflag_found = 0;
3590 inst_env->disable_interrupt = 0;
3591}
3592
3593/* Translate op_type to a function and call it. */
3594
a78f21af 3595static void
be8626e0
MD
3596cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3597 unsigned short inst, inst_env_type *inst_env)
29134980
OF
3598{
3599 switch (op_type)
3600 {
3601 case cris_not_implemented_op:
3602 not_implemented_op (inst, inst_env);
3603 break;
3604
3605 case cris_abs_op:
3606 abs_op (inst, inst_env);
3607 break;
3608
3609 case cris_addi_op:
3610 addi_op (inst, inst_env);
3611 break;
3612
3613 case cris_asr_op:
3614 asr_op (inst, inst_env);
3615 break;
3616
3617 case cris_asrq_op:
3618 asrq_op (inst, inst_env);
3619 break;
3620
3621 case cris_ax_ei_setf_op:
3622 ax_ei_setf_op (inst, inst_env);
3623 break;
3624
3625 case cris_bdap_prefix:
3626 bdap_prefix (inst, inst_env);
3627 break;
3628
3629 case cris_biap_prefix:
3630 biap_prefix (inst, inst_env);
3631 break;
3632
3633 case cris_break_op:
3634 break_op (inst, inst_env);
3635 break;
3636
3637 case cris_btst_nop_op:
3638 btst_nop_op (inst, inst_env);
3639 break;
3640
3641 case cris_clearf_di_op:
3642 clearf_di_op (inst, inst_env);
3643 break;
3644
3645 case cris_dip_prefix:
3646 dip_prefix (inst, inst_env);
3647 break;
3648
3649 case cris_dstep_logshift_mstep_neg_not_op:
3650 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3651 break;
3652
3653 case cris_eight_bit_offset_branch_op:
3654 eight_bit_offset_branch_op (inst, inst_env);
3655 break;
3656
3657 case cris_move_mem_to_reg_movem_op:
3658 move_mem_to_reg_movem_op (inst, inst_env);
3659 break;
3660
3661 case cris_move_reg_to_mem_movem_op:
3662 move_reg_to_mem_movem_op (inst, inst_env);
3663 break;
3664
3665 case cris_move_to_preg_op:
be8626e0 3666 move_to_preg_op (gdbarch, inst, inst_env);
29134980
OF
3667 break;
3668
3669 case cris_muls_op:
3670 muls_op (inst, inst_env);
3671 break;
3672
3673 case cris_mulu_op:
3674 mulu_op (inst, inst_env);
3675 break;
3676
3677 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3678 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3679 break;
3680
3681 case cris_none_reg_mode_clear_test_op:
3682 none_reg_mode_clear_test_op (inst, inst_env);
3683 break;
3684
3685 case cris_none_reg_mode_jump_op:
3686 none_reg_mode_jump_op (inst, inst_env);
3687 break;
3688
3689 case cris_none_reg_mode_move_from_preg_op:
be8626e0 3690 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
29134980
OF
3691 break;
3692
3693 case cris_quick_mode_add_sub_op:
3694 quick_mode_add_sub_op (inst, inst_env);
3695 break;
3696
3697 case cris_quick_mode_and_cmp_move_or_op:
3698 quick_mode_and_cmp_move_or_op (inst, inst_env);
3699 break;
3700
3701 case cris_quick_mode_bdap_prefix:
3702 quick_mode_bdap_prefix (inst, inst_env);
3703 break;
3704
3705 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3706 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3707 break;
3708
3709 case cris_reg_mode_clear_op:
3710 reg_mode_clear_op (inst, inst_env);
3711 break;
3712
3713 case cris_reg_mode_jump_op:
3714 reg_mode_jump_op (inst, inst_env);
3715 break;
3716
3717 case cris_reg_mode_move_from_preg_op:
3718 reg_mode_move_from_preg_op (inst, inst_env);
3719 break;
3720
3721 case cris_reg_mode_test_op:
3722 reg_mode_test_op (inst, inst_env);
3723 break;
3724
3725 case cris_scc_op:
3726 scc_op (inst, inst_env);
3727 break;
3728
3729 case cris_sixteen_bit_offset_branch_op:
3730 sixteen_bit_offset_branch_op (inst, inst_env);
3731 break;
3732
3733 case cris_three_operand_add_sub_cmp_and_or_op:
3734 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3735 break;
3736
3737 case cris_three_operand_bound_op:
3738 three_operand_bound_op (inst, inst_env);
3739 break;
3740
3741 case cris_two_operand_bound_op:
3742 two_operand_bound_op (inst, inst_env);
3743 break;
3744
3745 case cris_xor_op:
3746 xor_op (inst, inst_env);
3747 break;
3748 }
3749}
3750
18b3c2f5
RW
3751/* Originally from <asm/elf.h>. */
3752typedef unsigned char cris_elf_greg_t[4];
dbbff683
OF
3753
3754/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464 3755#define CRISV10_ELF_NGREG 35
18b3c2f5 3756typedef cris_elf_greg_t cris_elf_gregset_t[CRISV10_ELF_NGREG];
c600d464
OF
3757
3758#define CRISV32_ELF_NGREG 32
18b3c2f5 3759typedef cris_elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683 3760
18b3c2f5 3761/* Unpack a cris_elf_gregset_t into GDB's register cache. */
dbbff683 3762
a78f21af 3763static void
18b3c2f5 3764cris_supply_gregset (struct regcache *regcache, cris_elf_gregset_t *gregsetp)
dbbff683 3765{
ac7936df 3766 struct gdbarch *gdbarch = regcache->arch ();
7fbe2eba 3767 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
dbbff683 3768 int i;
18b3c2f5 3769 cris_elf_greg_t *regp = *gregsetp;
dbbff683
OF
3770
3771 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3772 knows about the actual size of each register so that's no problem. */
3773 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3774 {
73e1c03f 3775 regcache->raw_supply (i, (char *)&regp[i]);
dbbff683 3776 }
c600d464
OF
3777
3778 if (tdep->cris_version == 32)
3779 {
3780 /* Needed to set pseudo-register PC for CRISv32. */
3781 /* FIXME: If ERP is in a delay slot at this point then the PC will
3782 be wrong. Issue a warning to alert the user. */
73e1c03f
SM
3783 regcache->raw_supply (gdbarch_pc_regnum (gdbarch),
3784 (char *)&regp[ERP_REGNUM]);
c600d464
OF
3785
3786 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3787 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3788 }
dbbff683
OF
3789}
3790
3791/* Use a local version of this function to get the correct types for
3792 regsets, until multi-arch core support is ready. */
3793
3794static void
9eefc95f
UW
3795fetch_core_registers (struct regcache *regcache,
3796 char *core_reg_sect, unsigned core_reg_size,
dbbff683
OF
3797 int which, CORE_ADDR reg_addr)
3798{
18b3c2f5 3799 cris_elf_gregset_t gregset;
dbbff683
OF
3800
3801 switch (which)
3802 {
3803 case 0:
18b3c2f5 3804 if (core_reg_size != sizeof (cris_elf_gregset_t)
c600d464 3805 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3806 {
8a3fe4f8 3807 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3808 }
3809 else
3810 {
3811 memcpy (&gregset, core_reg_sect, sizeof (gregset));
9eefc95f 3812 cris_supply_gregset (regcache, &gregset);
dbbff683
OF
3813 }
3814
3815 default:
3816 /* We've covered all the kinds of registers we know about here,
3817 so this must be something we wouldn't know what to do with
3818 anyway. Just ignore it. */
3819 break;
3820 }
3821}
3822
3823static struct core_fns cris_elf_core_fns =
3824{
3825 bfd_target_elf_flavour, /* core_flavour */
3826 default_check_format, /* check_format */
3827 default_core_sniffer, /* core_sniffer */
3828 fetch_core_registers, /* core_read_registers */
3829 NULL /* next */
3830};
3831
29134980
OF
3832void
3833_initialize_cris_tdep (void)
3834{
29134980
OF
3835 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3836
29134980 3837 /* CRIS-specific user-commands. */
addb4faf
PA
3838 add_setshow_zuinteger_cmd ("cris-version", class_support,
3839 &usr_cmd_cris_version,
3840 _("Set the current CRIS version."),
3841 _("Show the current CRIS version."),
3842 _("\
bdd56253
OF
3843Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3844Defaults to 10. "),
addb4faf
PA
3845 set_cris_version,
3846 NULL, /* FIXME: i18n: Current CRIS version
3847 is %s. */
3848 &setlist, &showlist);
0e6bdb31
OF
3849
3850 add_setshow_enum_cmd ("cris-mode", class_support,
3851 cris_modes, &usr_cmd_cris_mode,
3852 _("Set the current CRIS mode."),
3853 _("Show the current CRIS mode."),
bdd56253
OF
3854 _("\
3855Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3856Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3857 set_cris_mode,
3858 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3859 &setlist, &showlist);
dbbff683 3860
a5f6c8f5
OF
3861 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3862 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3863 _("Set the usage of Dwarf-2 CFI for CRIS."),
3864 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3865 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3866 set_cris_dwarf2_cfi,
0963b4bd
MS
3867 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
3868 for CRIS is %d. */
a5f6c8f5
OF
3869 &setlist, &showlist);
3870
52bd1401 3871 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3872}
3873
3874/* Prints out all target specific values. */
3875
3876static void
3877cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3878{
7fbe2eba 3879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
29134980
OF
3880 if (tdep != NULL)
3881 {
3882 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3883 tdep->cris_version);
0e6bdb31
OF
3884 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3885 tdep->cris_mode);
a5f6c8f5
OF
3886 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3887 tdep->cris_dwarf2_cfi);
29134980
OF
3888 }
3889}
3890
3891static void
eb4c3f4a 3892set_cris_version (const char *ignore_args, int from_tty,
a5f6c8f5 3893 struct cmd_list_element *c)
29134980
OF
3894{
3895 struct gdbarch_info info;
3896
a5f6c8f5 3897 usr_cmd_cris_version_valid = 1;
29134980 3898
a5f6c8f5
OF
3899 /* Update the current architecture, if needed. */
3900 gdbarch_info_init (&info);
3901 if (!gdbarch_update_p (info))
3902 internal_error (__FILE__, __LINE__,
e2e0b3e5 3903 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
3904}
3905
0e6bdb31 3906static void
eb4c3f4a 3907set_cris_mode (const char *ignore_args, int from_tty,
0e6bdb31
OF
3908 struct cmd_list_element *c)
3909{
3910 struct gdbarch_info info;
3911
3912 /* Update the current architecture, if needed. */
3913 gdbarch_info_init (&info);
3914 if (!gdbarch_update_p (info))
3915 internal_error (__FILE__, __LINE__,
3916 "cris_gdbarch_update: failed to update architecture.");
3917}
3918
29134980 3919static void
eb4c3f4a 3920set_cris_dwarf2_cfi (const char *ignore_args, int from_tty,
a5f6c8f5 3921 struct cmd_list_element *c)
29134980
OF
3922{
3923 struct gdbarch_info info;
a5f6c8f5
OF
3924
3925 /* Update the current architecture, if needed. */
3926 gdbarch_info_init (&info);
3927 if (!gdbarch_update_p (info))
3928 internal_error (__FILE__, __LINE__,
e2e0b3e5 3929 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
3930}
3931
29134980
OF
3932static struct gdbarch *
3933cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3934{
3935 struct gdbarch *gdbarch;
3936 struct gdbarch_tdep *tdep;
e4286e57 3937 unsigned int cris_version;
29134980
OF
3938
3939 if (usr_cmd_cris_version_valid)
3940 {
3941 /* Trust the user's CRIS version setting. */
3942 cris_version = usr_cmd_cris_version;
3943 }
c600d464
OF
3944 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
3945 {
3946 cris_version = 32;
3947 }
29134980
OF
3948 else
3949 {
3950 /* Assume it's CRIS version 10. */
3951 cris_version = 10;
3952 }
3953
29134980
OF
3954 /* Make the current settings visible to the user. */
3955 usr_cmd_cris_version = cris_version;
29134980 3956
0e6bdb31 3957 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
3958 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3959 arches != NULL;
3960 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3961 {
a5f6c8f5
OF
3962 if ((gdbarch_tdep (arches->gdbarch)->cris_version
3963 == usr_cmd_cris_version)
0e6bdb31
OF
3964 && (gdbarch_tdep (arches->gdbarch)->cris_mode
3965 == usr_cmd_cris_mode)
a5f6c8f5
OF
3966 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
3967 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
3968 return arches->gdbarch;
3969 }
3970
3971 /* No matching architecture was found. Create a new one. */
cdd238da 3972 tdep = XCNEW (struct gdbarch_tdep);
7cf1de6c 3973 info.byte_order = BFD_ENDIAN_LITTLE;
29134980
OF
3974 gdbarch = gdbarch_alloc (&info, tdep);
3975
a5f6c8f5 3976 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 3977 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 3978 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980 3979
b4206d25 3980 set_gdbarch_return_value (gdbarch, cris_return_value);
29134980 3981 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
3982
3983 /* Length of ordinary registers used in push_word and a few other
3984 places. register_size() is the real way to know how big a
3985 register is. */
a5f6c8f5 3986
2e4b5889 3987 set_gdbarch_double_bit (gdbarch, 64);
ea06eb3d 3988 /* The default definition of a long double is 2 * gdbarch_double_bit,
2e4b5889 3989 which means we have to set this explicitly. */
c600d464 3990 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 3991
29134980
OF
3992 /* The total amount of space needed to store (in an array called registers)
3993 GDB's copy of the machine's register state. Note: We can not use
d93859e2 3994 cris_register_size at this point, since it relies on gdbarch
29134980
OF
3995 being set. */
3996 switch (tdep->cris_version)
3997 {
3998 case 0:
3999 case 1:
4000 case 2:
4001 case 3:
29134980
OF
4002 case 8:
4003 case 9:
a5f6c8f5 4004 /* Old versions; not supported. */
114d7832 4005 return 0;
29134980
OF
4006
4007 case 10:
4008 case 11:
4009 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4010 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4011 set_gdbarch_pc_regnum (gdbarch, 15);
4012 set_gdbarch_register_type (gdbarch, cris_register_type);
4013 /* There are 32 registers (some of which may not be implemented). */
4014 set_gdbarch_num_regs (gdbarch, 32);
4015 set_gdbarch_register_name (gdbarch, cris_register_name);
4016 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4017 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4018
4019 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4020 break;
4021
4022 case 32:
4023 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4024 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4025 and pseudo-register PC (32 bits). */
4026 set_gdbarch_pc_regnum (gdbarch, 32);
4027 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4028 /* 32 registers + pseudo-register PC + 16 support registers. */
4029 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4030 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4031
4032 set_gdbarch_cannot_store_register
4033 (gdbarch, crisv32_cannot_store_register);
4034 set_gdbarch_cannot_fetch_register
4035 (gdbarch, crisv32_cannot_fetch_register);
4036
4037 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4038
4039 set_gdbarch_single_step_through_delay
4040 (gdbarch, crisv32_single_step_through_delay);
4041
29134980
OF
4042 break;
4043
4044 default:
114d7832
PA
4045 /* Unknown version. */
4046 return 0;
29134980
OF
4047 }
4048
c600d464
OF
4049 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4050 have the same ABI). */
2e4b5889
OF
4051 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4052 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4053 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4054 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4055
4056 /* The stack grows downward. */
4057 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4058
04180708
YQ
4059 set_gdbarch_breakpoint_kind_from_pc (gdbarch, cris_breakpoint_kind_from_pc);
4060 set_gdbarch_sw_breakpoint_from_kind (gdbarch, cris_sw_breakpoint_from_kind);
29134980 4061
a5f6c8f5
OF
4062 if (tdep->cris_dwarf2_cfi == 1)
4063 {
4064 /* Hook in the Dwarf-2 frame sniffer. */
4065 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4066 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
94afd7a6 4067 dwarf2_append_unwinders (gdbarch);
a5f6c8f5
OF
4068 }
4069
0e6bdb31
OF
4070 if (tdep->cris_mode != cris_mode_guru)
4071 {
94afd7a6 4072 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
0e6bdb31 4073 }
a5f6c8f5 4074
94afd7a6 4075 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
2e4b5889 4076 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4077
749c8b38
RW
4078 /* Hook in ABI-specific overrides, if they have been registered. */
4079 gdbarch_init_osabi (info, gdbarch);
4080
29134980
OF
4081 return gdbarch;
4082}
This page took 1.578077 seconds and 4 git commands to generate.