gdb/
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
7b6bb8da
JB
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
a9762ec7 9 This file is part of GDB.
29134980 10
a9762ec7
JB
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
29134980 15
a9762ec7
JB
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
29134980 20
a9762ec7
JB
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29134980
OF
23
24#include "defs.h"
25#include "frame.h"
2e4b5889
OF
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "trad-frame.h"
29#include "dwarf2-frame.h"
29134980
OF
30#include "symtab.h"
31#include "inferior.h"
32#include "gdbtypes.h"
33#include "gdbcore.h"
34#include "gdbcmd.h"
35#include "target.h"
36#include "value.h"
37#include "opcode/cris.h"
38#include "arch-utils.h"
39#include "regcache.h"
36482093 40#include "gdb_assert.h"
29134980 41
9ab9195f 42#include "objfiles.h"
29134980 43
a5f6c8f5 44#include "solib.h" /* Support for shared libraries. */
76a9d10f 45#include "solib-svr4.h"
9bbe19fb 46#include "gdb_string.h"
a89aa300 47#include "dis-asm.h"
dbbff683 48
29134980
OF
49enum cris_num_regs
50{
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
c600d464
OF
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
29134980
OF
64};
65
66/* Register numbers of various important registers.
2e4b5889 67 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
0963b4bd 73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
3e8c568d
UW
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
29134980
OF
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
29134980
OF
79enum cris_regnums
80{
81 /* Enums with respect to the general registers, valid for all
c600d464 82 CRIS versions. The frame pointer is always in R8. */
2e4b5889 83 CRIS_FP_REGNUM = 8,
c600d464 84 /* ABI related registers. */
29134980
OF
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
c600d464 92 /* Registers which happen to be common. */
29134980 93 VR_REGNUM = 17,
c600d464
OF
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
0963b4bd 97 /* CRISv10 et al. specific registers. */
c600d464 98 P0_REGNUM = 16,
29134980
OF
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
29134980
OF
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
29134980 104 BAR_REGNUM = 28,
2a9ecef2 105 DCCR_REGNUM = 29,
29134980 106 BRP_REGNUM = 30,
c600d464
OF
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
29134980
OF
142};
143
144extern const struct cris_spec_reg cris_spec_regs[];
145
146/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
147 register names and sizes. */
148static int usr_cmd_cris_version;
29134980
OF
149
150/* Indicates whether to trust the above variable. */
151static int usr_cmd_cris_version_valid = 0;
152
41922353
OF
153static const char cris_mode_normal[] = "normal";
154static const char cris_mode_guru[] = "guru";
0e6bdb31
OF
155static const char *cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159};
160
161/* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163static const char *usr_cmd_cris_mode = cris_mode_normal;
164
a5f6c8f5
OF
165/* Whether to make use of Dwarf-2 CFI (default on). */
166static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 167
29134980
OF
168/* CRIS architecture specific information. */
169struct gdbarch_tdep
170{
0e6bdb31
OF
171 int cris_version;
172 const char *cris_mode;
a5f6c8f5 173 int cris_dwarf2_cfi;
29134980
OF
174};
175
a5f6c8f5
OF
176/* Sigtramp identification code copied from i386-linux-tdep.c. */
177
178#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179#define SIGTRAMP_OFFSET0 0
180#define SIGTRAMP_INSN1 0xe93d /* break 13 */
181#define SIGTRAMP_OFFSET1 4
182
183static const unsigned short sigtramp_code[] =
184{
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
187};
188
189#define SIGTRAMP_LEN (sizeof sigtramp_code)
190
191/* Note: same length as normal sigtramp code. */
192
193static const unsigned short rt_sigtramp_code[] =
29134980 194{
a5f6c8f5
OF
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
197};
198
199/* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
201
202static CORE_ADDR
94afd7a6 203cris_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 204{
94afd7a6 205 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 206 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 207
94afd7a6 208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
209 return 0;
210
e2a2a3e8 211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 212 {
e2a2a3e8 213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
214 return 0;
215
216 pc -= SIGTRAMP_OFFSET1;
94afd7a6 217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
218 return 0;
219 }
220
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225}
226
227/* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
229
230static CORE_ADDR
94afd7a6 231cris_rt_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 232{
94afd7a6 233 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 234 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 235
94afd7a6 236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
237 return 0;
238
e2a2a3e8 239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 240 {
e2a2a3e8 241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
242 return 0;
243
244 pc -= SIGTRAMP_OFFSET1;
94afd7a6 245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
246 return 0;
247 }
248
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
250 return 0;
251
252 return pc;
253}
254
94afd7a6
UW
255/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
a5f6c8f5
OF
257
258static CORE_ADDR
94afd7a6 259cris_sigcontext_addr (struct frame_info *this_frame)
a5f6c8f5 260{
e17a4113
UW
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
263 CORE_ADDR pc;
264 CORE_ADDR sp;
265 char buf[4];
266
e17a4113
UW
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5
OF
269
270 /* Look for normal sigtramp frame first. */
94afd7a6 271 pc = cris_sigtramp_start (this_frame);
a5f6c8f5
OF
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
94afd7a6 280 pc = cris_rt_sigtramp_start (this_frame);
a5f6c8f5
OF
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
8a3fe4f8 291 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 292 return 0;
29134980
OF
293}
294
2e4b5889 295struct cris_unwind_cache
29134980 296{
2e4b5889
OF
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
29134980
OF
311 CORE_ADDR return_pc;
312 int leaf_function;
2e4b5889
OF
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
29134980
OF
316};
317
a5f6c8f5 318static struct cris_unwind_cache *
94afd7a6 319cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a5f6c8f5
OF
320 void **this_cache)
321{
94afd7a6 322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7fbe2eba 323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
325 struct cris_unwind_cache *info;
326 CORE_ADDR pc;
327 CORE_ADDR sp;
328 CORE_ADDR addr;
329 char buf[4];
330 int i;
331
332 if ((*this_cache))
333 return (*this_cache);
334
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
94afd7a6 337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a5f6c8f5
OF
338
339 /* Zero all fields. */
340 info->prev_sp = 0;
341 info->base = 0;
342 info->size = 0;
343 info->sp_offset = 0;
344 info->r8_offset = 0;
345 info->uses_frame = 0;
346 info->return_pc = 0;
347 info->leaf_function = 0;
348
94afd7a6 349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
e17a4113 350 info->base = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5 351
94afd7a6 352 addr = cris_sigcontext_addr (this_frame);
a5f6c8f5
OF
353
354 /* Layout of the sigcontext struct:
355 struct sigcontext {
356 struct pt_regs regs;
357 unsigned long oldmask;
358 unsigned long usp;
359 }; */
360
c600d464
OF
361 if (tdep->cris_version == 10)
362 {
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
364 struct pt_regs. */
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
367
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
7fbe2eba 375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 376 = info->saved_regs[IRP_REGNUM];
7fbe2eba 377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
c600d464
OF
378 }
379 else
380 {
381 /* CRISv32. */
382 /* R0 to R13 are stored in order at offset (1 * 4) in
383 struct pt_regs. */
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
386
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
396
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
0963b4bd 400 the signal is received while in a delay slot.
c600d464
OF
401
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
7fbe2eba 404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 405 = info->saved_regs[ERP_REGNUM];
c600d464 406
7fbe2eba 407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
3e8c568d 408 = addr + (25 * 4);
c600d464 409 }
a5f6c8f5
OF
410
411 return info;
412}
413
414static void
94afd7a6 415cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
a5f6c8f5
OF
416 struct frame_id *this_id)
417{
418 struct cris_unwind_cache *cache =
94afd7a6
UW
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
a5f6c8f5
OF
421}
422
423/* Forward declaration. */
424
94afd7a6
UW
425static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427static struct value *
428cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
a5f6c8f5
OF
430{
431 /* Make sure we've initialized the cache. */
94afd7a6
UW
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
434}
435
436static int
437cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
439 void **this_cache)
440{
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
443 return 1;
444
445 return 0;
a5f6c8f5
OF
446}
447
448static const struct frame_unwind cris_sigtramp_frame_unwind =
449{
450 SIGTRAMP_FRAME,
8fbca658 451 default_frame_unwind_stop_reason,
a5f6c8f5 452 cris_sigtramp_frame_this_id,
94afd7a6
UW
453 cris_sigtramp_frame_prev_register,
454 NULL,
455 cris_sigtramp_frame_sniffer
a5f6c8f5
OF
456};
457
63807e1d 458static int
c600d464
OF
459crisv32_single_step_through_delay (struct gdbarch *gdbarch,
460 struct frame_info *this_frame)
461{
7fbe2eba 462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c600d464
OF
463 ULONGEST erp;
464 int ret = 0;
c600d464 465
35488783 466 if (tdep->cris_mode == cris_mode_guru)
395f2fc2 467 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
0e6bdb31 468 else
395f2fc2 469 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
c600d464
OF
470
471 if (erp & 0x1)
472 {
473 /* In delay slot - check if there's a breakpoint at the preceding
474 instruction. */
6c95b8df 475 if (breakpoint_here_p (get_frame_address_space (this_frame), erp & ~0x1))
c600d464
OF
476 ret = 1;
477 }
478 return ret;
479}
480
481/* Hardware watchpoint support. */
482
483/* We support 6 hardware data watchpoints, but cannot trigger on execute
484 (any combination of read/write is fine). */
485
486int
487cris_can_use_hardware_watchpoint (int type, int count, int other)
488{
1cf3db46 489 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
c600d464
OF
490
491 /* No bookkeeping is done here; it is handled by the remote debug agent. */
492
493 if (tdep->cris_version != 32)
494 return 0;
495 else
496 /* CRISv32: Six data watchpoints, one for instructions. */
497 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
498 || type == bp_hardware_watchpoint) && count <= 6)
499 || (type == bp_hardware_breakpoint && count <= 1));
500}
501
502/* The CRISv32 hardware data watchpoints work by specifying ranges,
503 which have no alignment or length restrictions. */
504
505int
506cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
507{
508 return 1;
509}
510
511/* If the inferior has some watchpoint that triggered, return the
512 address associated with that watchpoint. Otherwise, return
513 zero. */
514
515CORE_ADDR
516cris_stopped_data_address (void)
517{
518 CORE_ADDR eda;
1b5a9a8f 519 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
c600d464
OF
520 return eda;
521}
522
29134980 523/* The instruction environment needed to find single-step breakpoints. */
c600d464 524
29134980
OF
525typedef
526struct instruction_environment
527{
528 unsigned long reg[NUM_GENREGS];
529 unsigned long preg[NUM_SPECREGS];
530 unsigned long branch_break_address;
531 unsigned long delay_slot_pc;
532 unsigned long prefix_value;
533 int branch_found;
534 int prefix_found;
535 int invalid;
536 int slot_needed;
537 int delay_slot_pc_active;
538 int xflag_found;
539 int disable_interrupt;
e17a4113 540 int byte_order;
29134980
OF
541} inst_env_type;
542
29134980
OF
543/* Machine-dependencies in CRIS for opcodes. */
544
545/* Instruction sizes. */
546enum cris_instruction_sizes
547{
548 INST_BYTE_SIZE = 0,
549 INST_WORD_SIZE = 1,
550 INST_DWORD_SIZE = 2
551};
552
553/* Addressing modes. */
554enum cris_addressing_modes
555{
556 REGISTER_MODE = 1,
557 INDIRECT_MODE = 2,
558 AUTOINC_MODE = 3
559};
560
561/* Prefix addressing modes. */
562enum cris_prefix_addressing_modes
563{
564 PREFIX_INDEX_MODE = 2,
565 PREFIX_ASSIGN_MODE = 3,
566
567 /* Handle immediate byte offset addressing mode prefix format. */
568 PREFIX_OFFSET_MODE = 2
569};
570
571/* Masks for opcodes. */
572enum cris_opcode_masks
573{
574 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
575 SIGNED_EXTEND_BIT_MASK = 0x2,
576 SIGNED_BYTE_MASK = 0x80,
577 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
578 SIGNED_WORD_MASK = 0x8000,
579 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
580 SIGNED_DWORD_MASK = 0x80000000,
581 SIGNED_QUICK_VALUE_MASK = 0x20,
582 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
583};
584
585/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
586 Bit 15 - 12 Operand2
587 11 - 10 Mode
588 9 - 6 Opcode
589 5 - 4 Size
590 3 - 0 Operand1 */
591
592static int
593cris_get_operand2 (unsigned short insn)
594{
595 return ((insn & 0xF000) >> 12);
596}
597
598static int
599cris_get_mode (unsigned short insn)
600{
601 return ((insn & 0x0C00) >> 10);
602}
603
604static int
605cris_get_opcode (unsigned short insn)
606{
607 return ((insn & 0x03C0) >> 6);
608}
609
610static int
611cris_get_size (unsigned short insn)
612{
613 return ((insn & 0x0030) >> 4);
614}
615
616static int
617cris_get_operand1 (unsigned short insn)
618{
619 return (insn & 0x000F);
620}
621
622/* Additional functions in order to handle opcodes. */
623
29134980
OF
624static int
625cris_get_quick_value (unsigned short insn)
626{
627 return (insn & 0x003F);
628}
629
630static int
631cris_get_bdap_quick_offset (unsigned short insn)
632{
633 return (insn & 0x00FF);
634}
635
636static int
637cris_get_branch_short_offset (unsigned short insn)
638{
639 return (insn & 0x00FF);
640}
641
642static int
643cris_get_asr_shift_steps (unsigned long value)
644{
645 return (value & 0x3F);
646}
647
29134980
OF
648static int
649cris_get_clear_size (unsigned short insn)
650{
651 return ((insn) & 0xC000);
652}
653
654static int
655cris_is_signed_extend_bit_on (unsigned short insn)
656{
657 return (((insn) & 0x20) == 0x20);
658}
659
660static int
661cris_is_xflag_bit_on (unsigned short insn)
662{
663 return (((insn) & 0x1000) == 0x1000);
664}
665
666static void
667cris_set_size_to_dword (unsigned short *insn)
668{
669 *insn &= 0xFFCF;
670 *insn |= 0x20;
671}
672
8535cb38 673static signed char
29134980
OF
674cris_get_signed_offset (unsigned short insn)
675{
8535cb38 676 return ((signed char) (insn & 0x00FF));
29134980
OF
677}
678
679/* Calls an op function given the op-type, working on the insn and the
680 inst_env. */
be8626e0
MD
681static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
682 inst_env_type *);
29134980 683
29134980
OF
684static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
685 struct gdbarch_list *);
686
29134980
OF
687static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
688
a5f6c8f5
OF
689static void set_cris_version (char *ignore_args, int from_tty,
690 struct cmd_list_element *c);
29134980 691
0e6bdb31
OF
692static void set_cris_mode (char *ignore_args, int from_tty,
693 struct cmd_list_element *c);
694
a5f6c8f5
OF
695static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
696 struct cmd_list_element *c);
29134980 697
2e4b5889 698static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
94afd7a6 699 struct frame_info *this_frame,
2e4b5889
OF
700 struct cris_unwind_cache *info);
701
5114e29d 702static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
94afd7a6 703 struct frame_info *this_frame,
5114e29d
OF
704 struct cris_unwind_cache *info);
705
2e4b5889
OF
706static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
707 struct frame_info *next_frame);
708
709static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
710 struct frame_info *next_frame);
711
712/* When arguments must be pushed onto the stack, they go on in reverse
0963b4bd 713 order. The below implements a FILO (stack) to do this.
a5f6c8f5 714 Copied from d10v-tdep.c. */
2e4b5889
OF
715
716struct stack_item
717{
718 int len;
719 struct stack_item *prev;
720 void *data;
721};
722
723static struct stack_item *
724push_stack_item (struct stack_item *prev, void *contents, int len)
725{
726 struct stack_item *si;
727 si = xmalloc (sizeof (struct stack_item));
728 si->data = xmalloc (len);
729 si->len = len;
730 si->prev = prev;
731 memcpy (si->data, contents, len);
732 return si;
733}
734
735static struct stack_item *
736pop_stack_item (struct stack_item *si)
737{
738 struct stack_item *dead = si;
739 si = si->prev;
740 xfree (dead->data);
741 xfree (dead);
742 return si;
743}
744
745/* Put here the code to store, into fi->saved_regs, the addresses of
746 the saved registers of frame described by FRAME_INFO. This
747 includes special registers such as pc and fp saved in special ways
748 in the stack frame. sp is even more special: the address we return
a5f6c8f5 749 for it IS the sp for the next frame. */
2e4b5889 750
63807e1d 751static struct cris_unwind_cache *
94afd7a6 752cris_frame_unwind_cache (struct frame_info *this_frame,
2e4b5889
OF
753 void **this_prologue_cache)
754{
35488783
UW
755 struct gdbarch *gdbarch = get_frame_arch (this_frame);
756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
757 CORE_ADDR pc;
758 struct cris_unwind_cache *info;
759 int i;
760
761 if ((*this_prologue_cache))
762 return (*this_prologue_cache);
763
764 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
765 (*this_prologue_cache) = info;
94afd7a6 766 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2e4b5889
OF
767
768 /* Zero all fields. */
769 info->prev_sp = 0;
770 info->base = 0;
771 info->size = 0;
772 info->sp_offset = 0;
773 info->r8_offset = 0;
774 info->uses_frame = 0;
775 info->return_pc = 0;
776 info->leaf_function = 0;
777
778 /* Prologue analysis does the rest... */
35488783 779 if (tdep->cris_version == 32)
94afd7a6 780 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
5114e29d 781 else
94afd7a6 782 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
2e4b5889
OF
783
784 return info;
785}
786
787/* Given a GDB frame, determine the address of the calling function's
788 frame. This will be used to create a new GDB frame struct. */
789
790static void
94afd7a6 791cris_frame_this_id (struct frame_info *this_frame,
2e4b5889
OF
792 void **this_prologue_cache,
793 struct frame_id *this_id)
794{
795 struct cris_unwind_cache *info
94afd7a6 796 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
2e4b5889
OF
797 CORE_ADDR base;
798 CORE_ADDR func;
799 struct frame_id id;
800
801 /* The FUNC is easy. */
94afd7a6 802 func = get_frame_func (this_frame);
2e4b5889
OF
803
804 /* Hopefully the prologue analysis either correctly determined the
805 frame's base (which is the SP from the previous frame), or set
806 that base to "NULL". */
807 base = info->prev_sp;
808 if (base == 0)
809 return;
810
811 id = frame_id_build (base, func);
812
813 (*this_id) = id;
814}
815
94afd7a6
UW
816static struct value *
817cris_frame_prev_register (struct frame_info *this_frame,
818 void **this_prologue_cache, int regnum)
2e4b5889
OF
819{
820 struct cris_unwind_cache *info
94afd7a6
UW
821 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
822 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2e4b5889
OF
823}
824
94afd7a6
UW
825/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
826 frame. The frame ID's base needs to match the TOS value saved by
827 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
2e4b5889
OF
828
829static struct frame_id
94afd7a6 830cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2e4b5889 831{
94afd7a6
UW
832 CORE_ADDR sp;
833 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
834 return frame_id_build (sp, get_frame_pc (this_frame));
2e4b5889
OF
835}
836
837static CORE_ADDR
838cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
839{
840 /* Align to the size of an instruction (so that they can safely be
841 pushed onto the stack). */
842 return sp & ~3;
843}
844
845static CORE_ADDR
846cris_push_dummy_code (struct gdbarch *gdbarch,
82585c72 847 CORE_ADDR sp, CORE_ADDR funaddr,
2e4b5889
OF
848 struct value **args, int nargs,
849 struct type *value_type,
e4fd649a
UW
850 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
851 struct regcache *regcache)
2e4b5889
OF
852{
853 /* Allocate space sufficient for a breakpoint. */
854 sp = (sp - 4) & ~3;
855 /* Store the address of that breakpoint */
856 *bp_addr = sp;
857 /* CRIS always starts the call at the callee's entry point. */
858 *real_pc = funaddr;
859 return sp;
860}
861
862static CORE_ADDR
7d9b040b 863cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
864 struct regcache *regcache, CORE_ADDR bp_addr,
865 int nargs, struct value **args, CORE_ADDR sp,
866 int struct_return, CORE_ADDR struct_addr)
867{
e17a4113 868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
869 int stack_alloc;
870 int stack_offset;
871 int argreg;
872 int argnum;
873
874 CORE_ADDR regval;
875
876 /* The function's arguments and memory allocated by gdb for the arguments to
877 point at reside in separate areas on the stack.
878 Both frame pointers grow toward higher addresses. */
879 CORE_ADDR fp_arg;
880 CORE_ADDR fp_mem;
881
882 struct stack_item *si = NULL;
883
a5f6c8f5 884 /* Push the return address. */
2e4b5889
OF
885 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
886
887 /* Are we returning a value using a structure return or a normal value
888 return? struct_addr is the address of the reserved space for the return
889 structure to be written on the stack. */
890 if (struct_return)
891 {
892 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
893 }
894
895 /* Now load as many as possible of the first arguments into registers,
896 and push the rest onto the stack. */
897 argreg = ARG1_REGNUM;
898 stack_offset = 0;
899
900 for (argnum = 0; argnum < nargs; argnum++)
901 {
902 int len;
903 char *val;
904 int reg_demand;
905 int i;
906
4991999e 907 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 908 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
909
910 /* How may registers worth of storage do we need for this argument? */
911 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
912
913 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
914 {
915 /* Data passed by value. Fits in available register(s). */
916 for (i = 0; i < reg_demand; i++)
917 {
f6e56ab3 918 regcache_cooked_write (regcache, argreg, val);
2e4b5889
OF
919 argreg++;
920 val += 4;
921 }
922 }
923 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
924 {
925 /* Data passed by value. Does not fit in available register(s).
926 Use the register(s) first, then the stack. */
927 for (i = 0; i < reg_demand; i++)
928 {
929 if (argreg <= ARG4_REGNUM)
930 {
f6e56ab3 931 regcache_cooked_write (regcache, argreg, val);
2e4b5889
OF
932 argreg++;
933 val += 4;
934 }
935 else
936 {
937 /* Push item for later so that pushed arguments
938 come in the right order. */
939 si = push_stack_item (si, val, 4);
940 val += 4;
941 }
942 }
943 }
944 else if (len > (2 * 4))
945 {
f6e56ab3
UW
946 /* Data passed by reference. Push copy of data onto stack
947 and pass pointer to this copy as argument. */
948 sp = (sp - len) & ~3;
949 write_memory (sp, val, len);
950
951 if (argreg <= ARG4_REGNUM)
952 {
953 regcache_cooked_write_unsigned (regcache, argreg, sp);
954 argreg++;
955 }
956 else
957 {
958 gdb_byte buf[4];
e17a4113 959 store_unsigned_integer (buf, 4, byte_order, sp);
f6e56ab3
UW
960 si = push_stack_item (si, buf, 4);
961 }
2e4b5889
OF
962 }
963 else
964 {
965 /* Data passed by value. No available registers. Put it on
966 the stack. */
967 si = push_stack_item (si, val, len);
968 }
969 }
970
971 while (si)
972 {
973 /* fp_arg must be word-aligned (i.e., don't += len) to match
974 the function prologue. */
975 sp = (sp - si->len) & ~3;
976 write_memory (sp, si->data, si->len);
977 si = pop_stack_item (si);
978 }
979
980 /* Finally, update the SP register. */
7fbe2eba 981 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
2e4b5889
OF
982
983 return sp;
984}
985
e2a2a3e8
OF
986static const struct frame_unwind cris_frame_unwind =
987{
2e4b5889 988 NORMAL_FRAME,
8fbca658 989 default_frame_unwind_stop_reason,
2e4b5889 990 cris_frame_this_id,
94afd7a6
UW
991 cris_frame_prev_register,
992 NULL,
993 default_frame_sniffer
2e4b5889
OF
994};
995
2e4b5889 996static CORE_ADDR
94afd7a6 997cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
2e4b5889
OF
998{
999 struct cris_unwind_cache *info
94afd7a6 1000 = cris_frame_unwind_cache (this_frame, this_cache);
2e4b5889
OF
1001 return info->base;
1002}
1003
e2a2a3e8
OF
1004static const struct frame_base cris_frame_base =
1005{
2e4b5889
OF
1006 &cris_frame_unwind,
1007 cris_frame_base_address,
1008 cris_frame_base_address,
1009 cris_frame_base_address
1010};
1011
29134980
OF
1012/* Frames information. The definition of the struct frame_info is
1013
1014 CORE_ADDR frame
1015 CORE_ADDR pc
5a203e44 1016 enum frame_type type;
29134980
OF
1017 CORE_ADDR return_pc
1018 int leaf_function
1019
1020 If the compilation option -fno-omit-frame-pointer is present the
1021 variable frame will be set to the content of R8 which is the frame
1022 pointer register.
1023
1024 The variable pc contains the address where execution is performed
1025 in the present frame. The innermost frame contains the current content
1026 of the register PC. All other frames contain the content of the
1027 register PC in the next frame.
1028
5a203e44
AC
1029 The variable `type' indicates the frame's type: normal, SIGTRAMP
1030 (associated with a signal handler), dummy (associated with a dummy
1031 frame).
29134980
OF
1032
1033 The variable return_pc contains the address where execution should be
1034 resumed when the present frame has finished, the return address.
1035
1036 The variable leaf_function is 1 if the return address is in the register
1037 SRP, and 0 if it is on the stack.
1038
1039 Prologue instructions C-code.
1040 The prologue may consist of (-fno-omit-frame-pointer)
1041 1) 2)
1042 push srp
1043 push r8 push r8
1044 move.d sp,r8 move.d sp,r8
1045 subq X,sp subq X,sp
1046 movem rY,[sp] movem rY,[sp]
1047 move.S rZ,[r8-U] move.S rZ,[r8-U]
1048
1049 where 1 is a non-terminal function, and 2 is a leaf-function.
1050
1051 Note that this assumption is extremely brittle, and will break at the
1052 slightest change in GCC's prologue.
1053
1054 If local variables are declared or register contents are saved on stack
1055 the subq-instruction will be present with X as the number of bytes
1056 needed for storage. The reshuffle with respect to r8 may be performed
1057 with any size S (b, w, d) and any of the general registers Z={0..13}.
0963b4bd 1058 The offset U should be representable by a signed 8-bit value in all cases.
29134980
OF
1059 Thus, the prefix word is assumed to be immediate byte offset mode followed
1060 by another word containing the instruction.
1061
1062 Degenerate cases:
1063 3)
1064 push r8
1065 move.d sp,r8
1066 move.d r8,sp
1067 pop r8
1068
1069 Prologue instructions C++-code.
1070 Case 1) and 2) in the C-code may be followed by
1071
1072 move.d r10,rS ; this
1073 move.d r11,rT ; P1
1074 move.d r12,rU ; P2
1075 move.d r13,rV ; P3
1076 move.S [r8+U],rZ ; P4
1077
0963b4bd 1078 if any of the call parameters are stored. The host expects these
29134980
OF
1079 instructions to be executed in order to get the call parameters right. */
1080
1081/* Examine the prologue of a function. The variable ip is the address of
1082 the first instruction of the prologue. The variable limit is the address
1083 of the first instruction after the prologue. The variable fi contains the
1084 information in struct frame_info. The variable frameless_p controls whether
1085 the entire prologue is examined (0) or just enough instructions to
1086 determine that it is a prologue (1). */
1087
a78f21af 1088static CORE_ADDR
94afd7a6 1089cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
2e4b5889 1090 struct cris_unwind_cache *info)
29134980 1091{
94afd7a6 1092 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1093 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1094
29134980
OF
1095 /* Present instruction. */
1096 unsigned short insn;
1097
1098 /* Next instruction, lookahead. */
1099 unsigned short insn_next;
1100 int regno;
1101
1102 /* Is there a push fp? */
1103 int have_fp;
1104
1105 /* Number of byte on stack used for local variables and movem. */
1106 int val;
1107
1108 /* Highest register number in a movem. */
1109 int regsave;
1110
1111 /* move.d r<source_register>,rS */
1112 short source_register;
1113
2e4b5889
OF
1114 /* Scan limit. */
1115 int limit;
29134980 1116
2e4b5889
OF
1117 /* This frame is with respect to a leaf until a push srp is found. */
1118 if (info)
1119 {
1120 info->leaf_function = 1;
1121 }
29134980
OF
1122
1123 /* Assume nothing on stack. */
1124 val = 0;
1125 regsave = -1;
1126
94afd7a6 1127 /* If we were called without a this_frame, that means we were called
2e4b5889
OF
1128 from cris_skip_prologue which already tried to find the end of the
1129 prologue through the symbol information. 64 instructions past current
1130 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
94afd7a6 1131 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
29134980 1132
29134980 1133 /* Find the prologue instructions. */
a5f6c8f5 1134 while (pc > 0 && pc < limit)
29134980 1135 {
e17a4113 1136 insn = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1137 pc += 2;
29134980
OF
1138 if (insn == 0xE1FC)
1139 {
0963b4bd 1140 /* push <reg> 32 bit instruction. */
e17a4113 1141 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1142 pc += 2;
29134980 1143 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1144 if (info)
1145 {
1146 info->sp_offset += 4;
1147 }
dbbff683
OF
1148 /* This check, meant to recognize srp, used to be regno ==
1149 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1150 if (insn_next == 0xBE7E)
29134980 1151 {
2e4b5889
OF
1152 if (info)
1153 {
1154 info->leaf_function = 0;
1155 }
29134980 1156 }
b4206d25
OF
1157 else if (insn_next == 0x8FEE)
1158 {
1159 /* push $r8 */
1160 if (info)
1161 {
1162 info->r8_offset = info->sp_offset;
1163 }
1164 }
29134980
OF
1165 }
1166 else if (insn == 0x866E)
1167 {
1168 /* move.d sp,r8 */
2e4b5889
OF
1169 if (info)
1170 {
1171 info->uses_frame = 1;
2e4b5889 1172 }
29134980
OF
1173 continue;
1174 }
7fbe2eba 1175 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1176 && cris_get_mode (insn) == 0x0000
1177 && cris_get_opcode (insn) == 0x000A)
1178 {
1179 /* subq <val>,sp */
2e4b5889
OF
1180 if (info)
1181 {
1182 info->sp_offset += cris_get_quick_value (insn);
1183 }
29134980
OF
1184 }
1185 else if (cris_get_mode (insn) == 0x0002
1186 && cris_get_opcode (insn) == 0x000F
1187 && cris_get_size (insn) == 0x0003
7fbe2eba 1188 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
29134980
OF
1189 {
1190 /* movem r<regsave>,[sp] */
29134980
OF
1191 regsave = cris_get_operand2 (insn);
1192 }
7fbe2eba 1193 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1194 && ((insn & 0x0F00) >> 8) == 0x0001
1195 && (cris_get_signed_offset (insn) < 0))
1196 {
1197 /* Immediate byte offset addressing prefix word with sp as base
1198 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1199 is between 64 and 128.
1200 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1201 if (info)
1202 {
1203 info->sp_offset += -cris_get_signed_offset (insn);
1204 }
e17a4113 1205 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1206 pc += 2;
29134980
OF
1207 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1208 && cris_get_opcode (insn_next) == 0x000F
1209 && cris_get_size (insn_next) == 0x0003
3e8c568d 1210 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
7fbe2eba 1211 (gdbarch))
29134980 1212 {
29134980
OF
1213 regsave = cris_get_operand2 (insn_next);
1214 }
1215 else
1216 {
1217 /* The prologue ended before the limit was reached. */
2e4b5889 1218 pc -= 4;
29134980
OF
1219 break;
1220 }
1221 }
1222 else if (cris_get_mode (insn) == 0x0001
1223 && cris_get_opcode (insn) == 0x0009
1224 && cris_get_size (insn) == 0x0002)
1225 {
1226 /* move.d r<10..13>,r<0..15> */
29134980 1227 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1228
1229 /* FIXME? In the glibc solibs, the prologue might contain something
1230 like (this example taken from relocate_doit):
1231 move.d $pc,$r0
1232 sub.d 0xfffef426,$r0
1233 which isn't covered by the source_register check below. Question
1234 is whether to add a check for this combo, or make better use of
1235 the limit variable instead. */
29134980
OF
1236 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1237 {
1238 /* The prologue ended before the limit was reached. */
2e4b5889 1239 pc -= 2;
29134980
OF
1240 break;
1241 }
1242 }
2e4b5889 1243 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1244 /* The size is a fixed-size. */
1245 && ((insn & 0x0F00) >> 8) == 0x0001
1246 /* A negative offset. */
1247 && (cris_get_signed_offset (insn) < 0))
1248 {
1249 /* move.S rZ,[r8-U] (?) */
e17a4113 1250 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1251 pc += 2;
29134980 1252 regno = cris_get_operand2 (insn_next);
7fbe2eba 1253 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1254 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1255 && cris_get_opcode (insn_next) == 0x000F)
1256 {
1257 /* move.S rZ,[r8-U] */
1258 continue;
1259 }
1260 else
1261 {
1262 /* The prologue ended before the limit was reached. */
2e4b5889 1263 pc -= 4;
29134980
OF
1264 break;
1265 }
1266 }
2e4b5889 1267 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1268 /* The size is a fixed-size. */
1269 && ((insn & 0x0F00) >> 8) == 0x0001
1270 /* A positive offset. */
1271 && (cris_get_signed_offset (insn) > 0))
1272 {
1273 /* move.S [r8+U],rZ (?) */
e17a4113 1274 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1275 pc += 2;
29134980 1276 regno = cris_get_operand2 (insn_next);
7fbe2eba 1277 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1278 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1279 && cris_get_opcode (insn_next) == 0x0009
1280 && cris_get_operand1 (insn_next) == regno)
1281 {
1282 /* move.S [r8+U],rZ */
1283 continue;
1284 }
1285 else
1286 {
1287 /* The prologue ended before the limit was reached. */
2e4b5889 1288 pc -= 4;
29134980
OF
1289 break;
1290 }
1291 }
1292 else
1293 {
1294 /* The prologue ended before the limit was reached. */
2e4b5889 1295 pc -= 2;
29134980
OF
1296 break;
1297 }
1298 }
29134980 1299
94afd7a6 1300 /* We only want to know the end of the prologue when this_frame and info
2e4b5889 1301 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1302 if (this_frame == NULL && info == NULL)
2e4b5889
OF
1303 {
1304 return pc;
1305 }
29134980 1306
2e4b5889
OF
1307 info->size = info->sp_offset;
1308
1309 /* Compute the previous frame's stack pointer (which is also the
1310 frame's ID's stack address), and this frame's base pointer. */
1311 if (info->uses_frame)
29134980 1312 {
2e4b5889
OF
1313 ULONGEST this_base;
1314 /* The SP was moved to the FP. This indicates that a new frame
1315 was created. Get THIS frame's FP value by unwinding it from
1316 the next frame. */
94afd7a6 1317 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
2e4b5889 1318 info->base = this_base;
b4206d25
OF
1319 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1320
2e4b5889
OF
1321 /* The FP points at the last saved register. Adjust the FP back
1322 to before the first saved register giving the SP. */
1323 info->prev_sp = info->base + info->r8_offset;
1324 }
1325 else
1326 {
1327 ULONGEST this_base;
1328 /* Assume that the FP is this frame's SP but with that pushed
1329 stack space added back. */
94afd7a6
UW
1330 this_base = get_frame_register_unsigned (this_frame,
1331 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1332 info->base = this_base;
1333 info->prev_sp = info->base + info->size;
1334 }
29134980 1335
2e4b5889
OF
1336 /* Calculate the addresses for the saved registers on the stack. */
1337 /* FIXME: The address calculation should really be done on the fly while
1338 we're analyzing the prologue (we only hold one regsave value as it is
1339 now). */
1340 val = info->sp_offset;
1341
1342 for (regno = regsave; regno >= 0; regno--)
1343 {
1344 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1345 val -= 4;
1346 }
1347
1348 /* The previous frame's SP needed to be computed. Save the computed
1349 value. */
3e8c568d 1350 trad_frame_set_value (info->saved_regs,
7fbe2eba 1351 gdbarch_sp_regnum (gdbarch), info->prev_sp);
2e4b5889
OF
1352
1353 if (!info->leaf_function)
1354 {
b4206d25
OF
1355 /* SRP saved on the stack. But where? */
1356 if (info->r8_offset == 0)
1357 {
1358 /* R8 not pushed yet. */
1359 info->saved_regs[SRP_REGNUM].addr = info->base;
1360 }
1361 else
1362 {
1363 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1365 }
29134980 1366 }
2e4b5889
OF
1367
1368 /* The PC is found in SRP (the actual register or located on the stack). */
7fbe2eba 1369 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1370 = info->saved_regs[SRP_REGNUM];
2e4b5889
OF
1371
1372 return pc;
29134980
OF
1373}
1374
5114e29d 1375static CORE_ADDR
94afd7a6 1376crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
5114e29d
OF
1377 struct cris_unwind_cache *info)
1378{
94afd7a6 1379 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5114e29d
OF
1380 ULONGEST this_base;
1381
1382 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1383 meant to be a full-fledged prologue scanner. It is only needed for
1384 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1385
1386 * PLT stubs (library calls)
1387 * call dummys
1388 * signal trampolines
1389
1390 For those cases, it is assumed that there is no actual prologue; that
1391 the stack pointer is not adjusted, and (as a consequence) the return
1392 address is not pushed onto the stack. */
1393
94afd7a6 1394 /* We only want to know the end of the prologue when this_frame and info
5114e29d 1395 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1396 if (this_frame == NULL && info == NULL)
5114e29d
OF
1397 {
1398 return pc;
1399 }
1400
1401 /* The SP is assumed to be unaltered. */
94afd7a6
UW
1402 this_base = get_frame_register_unsigned (this_frame,
1403 gdbarch_sp_regnum (gdbarch));
5114e29d
OF
1404 info->base = this_base;
1405 info->prev_sp = this_base;
1406
1407 /* The PC is assumed to be found in SRP. */
7fbe2eba 1408 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1409 = info->saved_regs[SRP_REGNUM];
5114e29d
OF
1410
1411 return pc;
1412}
1413
29134980
OF
1414/* Advance pc beyond any function entry prologue instructions at pc
1415 to reach some "real" code. */
1416
29134980
OF
1417/* Given a PC value corresponding to the start of a function, return the PC
1418 of the first instruction after the function prologue. */
1419
a78f21af 1420static CORE_ADDR
6093d2eb 1421cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
29134980 1422{
35488783 1423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
29134980
OF
1426 CORE_ADDR pc_after_prologue;
1427
2e4b5889
OF
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1431 {
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1434 return sal.end;
1435 }
29134980 1436
35488783 1437 if (tdep->cris_version == 32)
5114e29d
OF
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1439 else
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1441
29134980
OF
1442 return pc_after_prologue;
1443}
1444
2e4b5889
OF
1445static CORE_ADDR
1446cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1447{
1448 ULONGEST pc;
11411de3
DJ
1449 pc = frame_unwind_register_unsigned (next_frame,
1450 gdbarch_pc_regnum (gdbarch));
2e4b5889
OF
1451 return pc;
1452}
1453
1454static CORE_ADDR
1455cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1456{
1457 ULONGEST sp;
11411de3
DJ
1458 sp = frame_unwind_register_unsigned (next_frame,
1459 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1460 return sp;
1461}
1462
29134980
OF
1463/* Use the program counter to determine the contents and size of a breakpoint
1464 instruction. It returns a pointer to a string of bytes that encode a
1465 breakpoint instruction, stores the length of the string to *lenptr, and
1466 adjusts pcptr (if necessary) to point to the actual memory location where
1467 the breakpoint should be inserted. */
1468
a78f21af 1469static const unsigned char *
0963b4bd
MS
1470cris_breakpoint_from_pc (struct gdbarch *gdbarch,
1471 CORE_ADDR *pcptr, int *lenptr)
29134980 1472{
35488783 1473 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
0e6bdb31
OF
1474 static unsigned char break8_insn[] = {0x38, 0xe9};
1475 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1476 *lenptr = 2;
1477
35488783 1478 if (tdep->cris_mode == cris_mode_guru)
0e6bdb31
OF
1479 return break15_insn;
1480 else
1481 return break8_insn;
29134980
OF
1482}
1483
29134980
OF
1484/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1485 0 otherwise. */
1486
a78f21af 1487static int
35488783
UW
1488cris_spec_reg_applicable (struct gdbarch *gdbarch,
1489 struct cris_spec_reg spec_reg)
29134980 1490{
35488783
UW
1491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1492 int version = tdep->cris_version;
29134980
OF
1493
1494 switch (spec_reg.applicable_version)
1495 {
1496 case cris_ver_version_all:
1497 return 1;
1498 case cris_ver_warning:
1499 /* Indeterminate/obsolete. */
1500 return 0;
29134980
OF
1501 case cris_ver_v0_3:
1502 return (version >= 0 && version <= 3);
1503 case cris_ver_v3p:
1504 return (version >= 3);
1505 case cris_ver_v8:
1506 return (version == 8 || version == 9);
1507 case cris_ver_v8p:
1508 return (version >= 8);
c600d464
OF
1509 case cris_ver_v0_10:
1510 return (version >= 0 && version <= 10);
1511 case cris_ver_v3_10:
1512 return (version >= 3 && version <= 10);
1513 case cris_ver_v8_10:
1514 return (version >= 8 && version <= 10);
1515 case cris_ver_v10:
1516 return (version == 10);
29134980
OF
1517 case cris_ver_v10p:
1518 return (version >= 10);
c600d464
OF
1519 case cris_ver_v32p:
1520 return (version >= 32);
29134980
OF
1521 default:
1522 /* Invalid cris version. */
1523 return 0;
1524 }
1525}
1526
1d94326f
AC
1527/* Returns the register size in unit byte. Returns 0 for an unimplemented
1528 register, -1 for an invalid register. */
1529
1530static int
be8626e0 1531cris_register_size (struct gdbarch *gdbarch, int regno)
1d94326f 1532{
be8626e0 1533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1d94326f
AC
1534 int i;
1535 int spec_regno;
1536
1537 if (regno >= 0 && regno < NUM_GENREGS)
1538 {
1539 /* General registers (R0 - R15) are 32 bits. */
1540 return 4;
1541 }
c600d464 1542 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1543 {
1544 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1545 Adjust regno accordingly. */
1546 spec_regno = regno - NUM_GENREGS;
1547
c600d464 1548 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1549 {
1550 if (cris_spec_regs[i].number == spec_regno
35488783 1551 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1d94326f
AC
1552 /* Go with the first applicable register. */
1553 return cris_spec_regs[i].reg_size;
1554 }
1555 /* Special register not applicable to this CRIS version. */
1556 return 0;
1557 }
be8626e0
MD
1558 else if (regno >= gdbarch_pc_regnum (gdbarch)
1559 && regno < gdbarch_num_regs (gdbarch))
1d94326f 1560 {
c600d464
OF
1561 /* This will apply to CRISv32 only where there are additional registers
1562 after the special registers (pseudo PC and support registers). */
1563 return 4;
1d94326f 1564 }
c600d464
OF
1565
1566
1567 return -1;
1d94326f
AC
1568}
1569
29134980
OF
1570/* Nonzero if regno should not be fetched from the target. This is the case
1571 for unimplemented (size 0) and non-existant registers. */
1572
a78f21af 1573static int
64a3914f 1574cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
29134980 1575{
64a3914f 1576 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1577 || (cris_register_size (gdbarch, regno) == 0));
29134980
OF
1578}
1579
1580/* Nonzero if regno should not be written to the target, for various
1581 reasons. */
1582
a78f21af 1583static int
64a3914f 1584cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
29134980
OF
1585{
1586 /* There are three kinds of registers we refuse to write to.
1587 1. Those that not implemented.
1588 2. Those that are read-only (depends on the processor mode).
0963b4bd 1589 3. Those registers to which a write has no effect. */
29134980 1590
f57d151a 1591 if (regno < 0
64a3914f 1592 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1593 || cris_register_size (gdbarch, regno) == 0)
29134980
OF
1594 /* Not implemented. */
1595 return 1;
1596
1597 else if (regno == VR_REGNUM)
1598 /* Read-only. */
1599 return 1;
1600
1601 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1602 /* Writing has no effect. */
1603 return 1;
1604
a5f6c8f5
OF
1605 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1606 agent decide whether they are writable. */
29134980
OF
1607
1608 return 0;
1609}
1610
c600d464
OF
1611/* Nonzero if regno should not be fetched from the target. This is the case
1612 for unimplemented (size 0) and non-existant registers. */
1613
1614static int
64a3914f 1615crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
c600d464 1616{
64a3914f 1617 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1618 || (cris_register_size (gdbarch, regno) == 0));
c600d464
OF
1619}
1620
1621/* Nonzero if regno should not be written to the target, for various
1622 reasons. */
1623
1624static int
64a3914f 1625crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
c600d464
OF
1626{
1627 /* There are three kinds of registers we refuse to write to.
1628 1. Those that not implemented.
1629 2. Those that are read-only (depends on the processor mode).
0963b4bd 1630 3. Those registers to which a write has no effect. */
c600d464 1631
f57d151a 1632 if (regno < 0
64a3914f 1633 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1634 || cris_register_size (gdbarch, regno) == 0)
c600d464
OF
1635 /* Not implemented. */
1636 return 1;
1637
1638 else if (regno == VR_REGNUM)
1639 /* Read-only. */
1640 return 1;
1641
1642 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1643 /* Writing has no effect. */
1644 return 1;
1645
1646 /* Many special registers are read-only in user mode. Let the debug
1647 agent decide whether they are writable. */
1648
1649 return 0;
1650}
1651
29134980
OF
1652/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1653 of data in register regno. */
1654
a78f21af 1655static struct type *
c1d546cd 1656cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1657{
7fbe2eba 1658 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1659 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1660 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1661 || regno == CRIS_FP_REGNUM)
0dfff4cb 1662 return builtin_type (gdbarch)->builtin_data_ptr;
7fbe2eba 1663 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
a5f6c8f5
OF
1664 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1665 /* Note: R8 taken care of previous clause. */
df4df182 1666 return builtin_type (gdbarch)->builtin_uint32;
a5f6c8f5 1667 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
df4df182 1668 return builtin_type (gdbarch)->builtin_uint16;
a5f6c8f5 1669 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
df4df182 1670 return builtin_type (gdbarch)->builtin_uint8;
29134980 1671 else
a5f6c8f5 1672 /* Invalid (unimplemented) register. */
df4df182 1673 return builtin_type (gdbarch)->builtin_int0;
29134980
OF
1674}
1675
c600d464
OF
1676static struct type *
1677crisv32_register_type (struct gdbarch *gdbarch, int regno)
1678{
7fbe2eba 1679 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1680 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1681 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1682 || regno == CRIS_FP_REGNUM)
0dfff4cb 1683 return builtin_type (gdbarch)->builtin_data_ptr;
c600d464
OF
1684 else if ((regno >= 0 && regno <= ACR_REGNUM)
1685 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1686 || (regno == PID_REGNUM)
1687 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1688 /* Note: R8 and SP taken care of by previous clause. */
df4df182 1689 return builtin_type (gdbarch)->builtin_uint32;
c600d464 1690 else if (regno == WZ_REGNUM)
df4df182 1691 return builtin_type (gdbarch)->builtin_uint16;
c600d464 1692 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
df4df182 1693 return builtin_type (gdbarch)->builtin_uint8;
c600d464
OF
1694 else
1695 {
1696 /* Invalid (unimplemented) register. Should not happen as there are
1697 no unimplemented CRISv32 registers. */
8a3fe4f8 1698 warning (_("crisv32_register_type: unknown regno %d"), regno);
df4df182 1699 return builtin_type (gdbarch)->builtin_int0;
c600d464
OF
1700 }
1701}
1702
2e4b5889
OF
1703/* Stores a function return value of type type, where valbuf is the address
1704 of the value to be stored. */
29134980 1705
2e4b5889 1706/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1707
2e4b5889
OF
1708static void
1709cris_store_return_value (struct type *type, struct regcache *regcache,
1710 const void *valbuf)
29134980 1711{
e17a4113
UW
1712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1713 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
1714 ULONGEST val;
1715 int len = TYPE_LENGTH (type);
29134980 1716
2e4b5889 1717 if (len <= 4)
29134980 1718 {
2e4b5889 1719 /* Put the return value in R10. */
e17a4113 1720 val = extract_unsigned_integer (valbuf, len, byte_order);
2e4b5889 1721 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1722 }
2e4b5889 1723 else if (len <= 8)
29134980 1724 {
2e4b5889 1725 /* Put the return value in R10 and R11. */
e17a4113 1726 val = extract_unsigned_integer (valbuf, 4, byte_order);
2e4b5889 1727 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
e17a4113 1728 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
2e4b5889 1729 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1730 }
2e4b5889 1731 else
8a3fe4f8 1732 error (_("cris_store_return_value: type length too large."));
29134980
OF
1733}
1734
0963b4bd
MS
1735/* Return the name of register regno as a string. Return NULL for an
1736 invalid or unimplemented register. */
29134980 1737
c600d464 1738static const char *
35488783 1739cris_special_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1740{
1741 int spec_regno;
1742 int i;
1743
1744 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1745 Adjust regno accordingly. */
1746 spec_regno = regno - NUM_GENREGS;
1747
1748 /* Assume nothing about the layout of the cris_spec_regs struct
1749 when searching. */
1750 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1751 {
1752 if (cris_spec_regs[i].number == spec_regno
35488783 1753 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
c600d464
OF
1754 /* Go with the first applicable register. */
1755 return cris_spec_regs[i].name;
1756 }
1757 /* Special register not applicable to this CRIS version. */
1758 return NULL;
1759}
1760
2e4b5889 1761static const char *
d93859e2 1762cris_register_name (struct gdbarch *gdbarch, int regno)
2e4b5889
OF
1763{
1764 static char *cris_genreg_names[] =
1765 { "r0", "r1", "r2", "r3", \
1766 "r4", "r5", "r6", "r7", \
1767 "r8", "r9", "r10", "r11", \
1768 "r12", "r13", "sp", "pc" };
29134980 1769
2e4b5889 1770 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1771 {
2e4b5889
OF
1772 /* General register. */
1773 return cris_genreg_names[regno];
29134980 1774 }
d93859e2 1775 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
29134980 1776 {
35488783 1777 return cris_special_register_name (gdbarch, regno);
c600d464
OF
1778 }
1779 else
1780 {
1781 /* Invalid register. */
2e4b5889
OF
1782 return NULL;
1783 }
c600d464
OF
1784}
1785
1786static const char *
d93859e2 1787crisv32_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1788{
1789 static char *crisv32_genreg_names[] =
1790 { "r0", "r1", "r2", "r3", \
1791 "r4", "r5", "r6", "r7", \
1792 "r8", "r9", "r10", "r11", \
1793 "r12", "r13", "sp", "acr"
1794 };
1795
1796 static char *crisv32_sreg_names[] =
1797 { "s0", "s1", "s2", "s3", \
1798 "s4", "s5", "s6", "s7", \
1799 "s8", "s9", "s10", "s11", \
1800 "s12", "s13", "s14", "s15"
1801 };
1802
1803 if (regno >= 0 && regno < NUM_GENREGS)
1804 {
1805 /* General register. */
1806 return crisv32_genreg_names[regno];
1807 }
1808 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1809 {
35488783 1810 return cris_special_register_name (gdbarch, regno);
c600d464 1811 }
d93859e2 1812 else if (regno == gdbarch_pc_regnum (gdbarch))
c600d464
OF
1813 {
1814 return "pc";
1815 }
1816 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1817 {
1818 return crisv32_sreg_names[regno - S0_REGNUM];
1819 }
2e4b5889
OF
1820 else
1821 {
1822 /* Invalid register. */
1823 return NULL;
29134980 1824 }
29134980
OF
1825}
1826
a5f6c8f5
OF
1827/* Convert DWARF register number REG to the appropriate register
1828 number used by GDB. */
1829
2e4b5889 1830static int
d3f73121 1831cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
29134980 1832{
a5f6c8f5
OF
1833 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1834 numbering, MOF is 18).
1835 Adapted from gcc/config/cris/cris.h. */
1836 static int cris_dwarf_regmap[] = {
1837 0, 1, 2, 3,
1838 4, 5, 6, 7,
1839 8, 9, 10, 11,
1840 12, 13, 14, 15,
1841 27, -1, -1, -1,
1842 -1, -1, -1, 23,
1843 -1, -1, -1, 27,
1844 -1, -1, -1, -1
1845 };
1846 int regnum = -1;
1847
1848 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1849 regnum = cris_dwarf_regmap[reg];
1850
1851 if (regnum == -1)
8a3fe4f8 1852 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1853
1854 return regnum;
1855}
1856
1857/* DWARF-2 frame support. */
1858
1859static void
1860cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1861 struct dwarf2_frame_state_reg *reg,
4a4e5149 1862 struct frame_info *this_frame)
a5f6c8f5
OF
1863{
1864 /* The return address column. */
7fbe2eba 1865 if (regnum == gdbarch_pc_regnum (gdbarch))
a5f6c8f5
OF
1866 reg->how = DWARF2_FRAME_REG_RA;
1867
1868 /* The call frame address. */
7fbe2eba 1869 else if (regnum == gdbarch_sp_regnum (gdbarch))
a5f6c8f5 1870 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1871}
1872
2e4b5889
OF
1873/* Extract from an array regbuf containing the raw register state a function
1874 return value of type type, and copy that, in virtual format, into
1875 valbuf. */
1876
1877/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1878
2e4b5889
OF
1879static void
1880cris_extract_return_value (struct type *type, struct regcache *regcache,
1881 void *valbuf)
29134980 1882{
e17a4113
UW
1883 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1884 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
1885 ULONGEST val;
1886 int len = TYPE_LENGTH (type);
29134980 1887
2e4b5889 1888 if (len <= 4)
29134980 1889 {
2e4b5889
OF
1890 /* Get the return value from R10. */
1891 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1892 store_unsigned_integer (valbuf, len, byte_order, val);
29134980 1893 }
2e4b5889 1894 else if (len <= 8)
29134980 1895 {
2e4b5889
OF
1896 /* Get the return value from R10 and R11. */
1897 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1898 store_unsigned_integer (valbuf, 4, byte_order, val);
2e4b5889 1899 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
e17a4113 1900 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
29134980 1901 }
2e4b5889 1902 else
8a3fe4f8 1903 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1904}
1905
b4206d25
OF
1906/* Handle the CRIS return value convention. */
1907
1908static enum return_value_convention
c055b101
CV
1909cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1910 struct type *type, struct regcache *regcache,
1911 gdb_byte *readbuf, const gdb_byte *writebuf)
b4206d25
OF
1912{
1913 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1914 || TYPE_CODE (type) == TYPE_CODE_UNION
1915 || TYPE_LENGTH (type) > 8)
1916 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1917 goes on the stack. */
1918 return RETURN_VALUE_STRUCT_CONVENTION;
1919
1920 if (readbuf)
1921 cris_extract_return_value (type, regcache, readbuf);
1922 if (writebuf)
1923 cris_store_return_value (type, regcache, writebuf);
1924
1925 return RETURN_VALUE_REGISTER_CONVENTION;
1926}
1927
29134980
OF
1928/* Calculates a value that measures how good inst_args constraints an
1929 instruction. It stems from cris_constraint, found in cris-dis.c. */
1930
1931static int
1932constraint (unsigned int insn, const signed char *inst_args,
1933 inst_env_type *inst_env)
1934{
1935 int retval = 0;
1936 int tmp, i;
1937
1938 const char *s = inst_args;
1939
1940 for (; *s; s++)
1941 switch (*s)
1942 {
1943 case 'm':
1944 if ((insn & 0x30) == 0x30)
1945 return -1;
1946 break;
1947
1948 case 'S':
1949 /* A prefix operand. */
1950 if (inst_env->prefix_found)
1951 break;
1952 else
1953 return -1;
1954
1955 case 'B':
1956 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1957 valid "push" size. In case of special register, it may be != 4. */
1958 if (inst_env->prefix_found)
1959 break;
1960 else
1961 return -1;
1962
1963 case 'D':
1964 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1965 if (!retval)
1966 return -1;
1967 else
1968 retval += 4;
1969 break;
1970
1971 case 'P':
1972 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1973
1974 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1975 {
1976 /* Since we match four bits, we will give a value of
1977 4 - 1 = 3 in a match. If there is a corresponding
1978 exact match of a special register in another pattern, it
1979 will get a value of 4, which will be higher. This should
1980 be correct in that an exact pattern would match better that
1981 a general pattern.
1982 Note that there is a reason for not returning zero; the
1983 pattern for "clear" is partly matched in the bit-pattern
1984 (the two lower bits must be zero), while the bit-pattern
1985 for a move from a special register is matched in the
1986 register constraint.
1987 This also means we will will have a race condition if
1988 there is a partly match in three bits in the bit pattern. */
1989 if (tmp == cris_spec_regs[i].number)
1990 {
1991 retval += 3;
1992 break;
1993 }
1994 }
1995
1996 if (cris_spec_regs[i].name == NULL)
29134980
OF
1997 return -1;
1998 break;
1999 }
2000 return retval;
2001}
2002
2003/* Returns the number of bits set in the variable value. */
2004
2005static int
2006number_of_bits (unsigned int value)
2007{
2008 int number_of_bits = 0;
2009
2010 while (value != 0)
2011 {
2012 number_of_bits += 1;
2013 value &= (value - 1);
2014 }
2015 return number_of_bits;
2016}
2017
2018/* Finds the address that should contain the single step breakpoint(s).
2019 It stems from code in cris-dis.c. */
2020
2021static int
2022find_cris_op (unsigned short insn, inst_env_type *inst_env)
2023{
2024 int i;
2025 int max_level_of_match = -1;
2026 int max_matched = -1;
2027 int level_of_match;
2028
2029 for (i = 0; cris_opcodes[i].name != NULL; i++)
2030 {
2031 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
2032 && ((cris_opcodes[i].lose & insn) == 0)
2033 /* Only CRISv10 instructions, please. */
2034 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
2035 {
2036 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2037 if (level_of_match >= 0)
2038 {
2039 level_of_match +=
2040 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2041 if (level_of_match > max_level_of_match)
2042 {
2043 max_matched = i;
2044 max_level_of_match = level_of_match;
2045 if (level_of_match == 16)
2046 {
2047 /* All bits matched, cannot find better. */
2048 break;
2049 }
2050 }
2051 }
2052 }
2053 }
2054 return max_matched;
2055}
2056
2057/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2058 actually an internal error. */
2059
2060static int
0b1b3e42 2061find_step_target (struct frame_info *frame, inst_env_type *inst_env)
29134980
OF
2062{
2063 int i;
2064 int offset;
2065 unsigned short insn;
7fbe2eba 2066 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2067 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
29134980
OF
2068
2069 /* Create a local register image and set the initial state. */
2070 for (i = 0; i < NUM_GENREGS; i++)
2071 {
0b1b3e42
UW
2072 inst_env->reg[i] =
2073 (unsigned long) get_frame_register_unsigned (frame, i);
29134980
OF
2074 }
2075 offset = NUM_GENREGS;
2076 for (i = 0; i < NUM_SPECREGS; i++)
2077 {
0b1b3e42
UW
2078 inst_env->preg[i] =
2079 (unsigned long) get_frame_register_unsigned (frame, offset + i);
29134980
OF
2080 }
2081 inst_env->branch_found = 0;
2082 inst_env->slot_needed = 0;
2083 inst_env->delay_slot_pc_active = 0;
2084 inst_env->prefix_found = 0;
2085 inst_env->invalid = 0;
2086 inst_env->xflag_found = 0;
2087 inst_env->disable_interrupt = 0;
e17a4113 2088 inst_env->byte_order = byte_order;
29134980
OF
2089
2090 /* Look for a step target. */
2091 do
2092 {
2093 /* Read an instruction from the client. */
3e8c568d 2094 insn = read_memory_unsigned_integer
e17a4113 2095 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
29134980
OF
2096
2097 /* If the instruction is not in a delay slot the new content of the
2098 PC is [PC] + 2. If the instruction is in a delay slot it is not
2099 that simple. Since a instruction in a delay slot cannot change
2100 the content of the PC, it does not matter what value PC will have.
2101 Just make sure it is a valid instruction. */
2102 if (!inst_env->delay_slot_pc_active)
2103 {
7fbe2eba 2104 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
29134980
OF
2105 }
2106 else
2107 {
2108 inst_env->delay_slot_pc_active = 0;
7fbe2eba 2109 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
3e8c568d 2110 = inst_env->delay_slot_pc;
29134980
OF
2111 }
2112 /* Analyse the present instruction. */
2113 i = find_cris_op (insn, inst_env);
2114 if (i == -1)
2115 {
2116 inst_env->invalid = 1;
2117 }
2118 else
2119 {
be8626e0 2120 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
29134980
OF
2121 }
2122 } while (!inst_env->invalid
2123 && (inst_env->prefix_found || inst_env->xflag_found
2124 || inst_env->slot_needed));
2125 return i;
2126}
2127
2128/* There is no hardware single-step support. The function find_step_target
0963b4bd 2129 digs through the opcodes in order to find all possible targets.
29134980
OF
2130 Either one ordinary target or two targets for branches may be found. */
2131
e6590a1b 2132static int
0b1b3e42 2133cris_software_single_step (struct frame_info *frame)
29134980 2134{
a6d9a66e 2135 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 2136 struct address_space *aspace = get_frame_address_space (frame);
29134980 2137 inst_env_type inst_env;
8181d85f 2138
e0cd558a
UW
2139 /* Analyse the present instruction environment and insert
2140 breakpoints. */
0b1b3e42 2141 int status = find_step_target (frame, &inst_env);
e0cd558a 2142 if (status == -1)
29134980 2143 {
e0cd558a
UW
2144 /* Could not find a target. Things are likely to go downhill
2145 from here. */
2146 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2147 }
2148 else
e0cd558a
UW
2149 {
2150 /* Insert at most two breakpoints. One for the next PC content
2151 and possibly another one for a branch, jump, etc. */
a6d9a66e
UW
2152 CORE_ADDR next_pc
2153 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
6c95b8df 2154 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
e0cd558a
UW
2155 if (inst_env.branch_found
2156 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2157 {
2158 CORE_ADDR branch_target_address
2159 = (CORE_ADDR) inst_env.branch_break_address;
6c95b8df
PA
2160 insert_single_step_breakpoint (gdbarch,
2161 aspace, branch_target_address);
e0cd558a
UW
2162 }
2163 }
e6590a1b
UW
2164
2165 return 1;
29134980
OF
2166}
2167
2168/* Calculates the prefix value for quick offset addressing mode. */
2169
a78f21af 2170static void
29134980
OF
2171quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2172{
2173 /* It's invalid to be in a delay slot. You can't have a prefix to this
2174 instruction (not 100% sure). */
2175 if (inst_env->slot_needed || inst_env->prefix_found)
2176 {
2177 inst_env->invalid = 1;
2178 return;
2179 }
2180
2181 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2182 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2183
2184 /* A prefix doesn't change the xflag_found. But the rest of the flags
2185 need updating. */
2186 inst_env->slot_needed = 0;
2187 inst_env->prefix_found = 1;
2188}
2189
2190/* Updates the autoincrement register. The size of the increment is derived
2191 from the size of the operation. The PC is always kept aligned on even
2192 word addresses. */
2193
a78f21af 2194static void
29134980
OF
2195process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2196{
2197 if (size == INST_BYTE_SIZE)
2198 {
2199 inst_env->reg[cris_get_operand1 (inst)] += 1;
2200
2201 /* The PC must be word aligned, so increase the PC with one
2202 word even if the size is byte. */
2203 if (cris_get_operand1 (inst) == REG_PC)
2204 {
2205 inst_env->reg[REG_PC] += 1;
2206 }
2207 }
2208 else if (size == INST_WORD_SIZE)
2209 {
2210 inst_env->reg[cris_get_operand1 (inst)] += 2;
2211 }
2212 else if (size == INST_DWORD_SIZE)
2213 {
2214 inst_env->reg[cris_get_operand1 (inst)] += 4;
2215 }
2216 else
2217 {
2218 /* Invalid size. */
2219 inst_env->invalid = 1;
2220 }
2221}
2222
2a9ecef2
OF
2223/* Just a forward declaration. */
2224
a78f21af 2225static unsigned long get_data_from_address (unsigned short *inst,
e17a4113
UW
2226 CORE_ADDR address,
2227 enum bfd_endian byte_order);
2a9ecef2 2228
29134980
OF
2229/* Calculates the prefix value for the general case of offset addressing
2230 mode. */
2231
a78f21af 2232static void
29134980
OF
2233bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2234{
2235
2236 long offset;
2237
2238 /* It's invalid to be in a delay slot. */
2239 if (inst_env->slot_needed || inst_env->prefix_found)
2240 {
2241 inst_env->invalid = 1;
2242 return;
2243 }
2244
fa4e4598
OF
2245 /* The calculation of prefix_value used to be after process_autoincrement,
2246 but that fails for an instruction such as jsr [$r0+12] which is encoded
2247 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2248 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2249 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2250
2251 /* The offset is an indirection of the contents of the operand1 register. */
2252 inst_env->prefix_value +=
e17a4113
UW
2253 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2254 inst_env->byte_order);
2a9ecef2 2255
fa4e4598
OF
2256 if (cris_get_mode (inst) == AUTOINC_MODE)
2257 {
2258 process_autoincrement (cris_get_size (inst), inst, inst_env);
2259 }
2260
29134980
OF
2261 /* A prefix doesn't change the xflag_found. But the rest of the flags
2262 need updating. */
2263 inst_env->slot_needed = 0;
2264 inst_env->prefix_found = 1;
2265}
2266
2267/* Calculates the prefix value for the index addressing mode. */
2268
a78f21af 2269static void
29134980
OF
2270biap_prefix (unsigned short inst, inst_env_type *inst_env)
2271{
2272 /* It's invalid to be in a delay slot. I can't see that it's possible to
2273 have a prefix to this instruction. So I will treat this as invalid. */
2274 if (inst_env->slot_needed || inst_env->prefix_found)
2275 {
2276 inst_env->invalid = 1;
2277 return;
2278 }
2279
2280 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2281
2282 /* The offset is the operand2 value shifted the size of the instruction
2283 to the left. */
2284 inst_env->prefix_value +=
2285 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2286
2287 /* If the PC is operand1 (base) the address used is the address after
2288 the main instruction, i.e. address + 2 (the PC is already compensated
2289 for the prefix operation). */
2290 if (cris_get_operand1 (inst) == REG_PC)
2291 {
2292 inst_env->prefix_value += 2;
2293 }
2294
2295 /* A prefix doesn't change the xflag_found. But the rest of the flags
2296 need updating. */
2297 inst_env->slot_needed = 0;
2298 inst_env->xflag_found = 0;
2299 inst_env->prefix_found = 1;
2300}
2301
2302/* Calculates the prefix value for the double indirect addressing mode. */
2303
a78f21af 2304static void
29134980
OF
2305dip_prefix (unsigned short inst, inst_env_type *inst_env)
2306{
2307
2308 CORE_ADDR address;
2309
2310 /* It's invalid to be in a delay slot. */
2311 if (inst_env->slot_needed || inst_env->prefix_found)
2312 {
2313 inst_env->invalid = 1;
2314 return;
2315 }
2316
2317 /* The prefix value is one dereference of the contents of the operand1
2318 register. */
2319 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2320 inst_env->prefix_value
2321 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
29134980
OF
2322
2323 /* Check if the mode is autoincrement. */
2324 if (cris_get_mode (inst) == AUTOINC_MODE)
2325 {
2326 inst_env->reg[cris_get_operand1 (inst)] += 4;
2327 }
2328
2329 /* A prefix doesn't change the xflag_found. But the rest of the flags
2330 need updating. */
2331 inst_env->slot_needed = 0;
2332 inst_env->xflag_found = 0;
2333 inst_env->prefix_found = 1;
2334}
2335
2336/* Finds the destination for a branch with 8-bits offset. */
2337
a78f21af 2338static void
29134980
OF
2339eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2340{
2341
2342 short offset;
2343
2344 /* If we have a prefix or are in a delay slot it's bad. */
2345 if (inst_env->slot_needed || inst_env->prefix_found)
2346 {
2347 inst_env->invalid = 1;
2348 return;
2349 }
2350
2351 /* We have a branch, find out where the branch will land. */
2352 offset = cris_get_branch_short_offset (inst);
2353
2354 /* Check if the offset is signed. */
2355 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2356 {
2357 offset |= 0xFF00;
2358 }
2359
2360 /* The offset ends with the sign bit, set it to zero. The address
2361 should always be word aligned. */
2362 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2363
2364 inst_env->branch_found = 1;
2365 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2366
2367 inst_env->slot_needed = 1;
2368 inst_env->prefix_found = 0;
2369 inst_env->xflag_found = 0;
2370 inst_env->disable_interrupt = 1;
2371}
2372
2373/* Finds the destination for a branch with 16-bits offset. */
2374
a78f21af 2375static void
29134980
OF
2376sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2377{
2378 short offset;
2379
2380 /* If we have a prefix or is in a delay slot it's bad. */
2381 if (inst_env->slot_needed || inst_env->prefix_found)
2382 {
2383 inst_env->invalid = 1;
2384 return;
2385 }
2386
2387 /* We have a branch, find out the offset for the branch. */
0963b4bd
MS
2388 offset = read_memory_integer (inst_env->reg[REG_PC], 2,
2389 inst_env->byte_order);
29134980
OF
2390
2391 /* The instruction is one word longer than normal, so add one word
2392 to the PC. */
2393 inst_env->reg[REG_PC] += 2;
2394
2395 inst_env->branch_found = 1;
2396 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2397
2398
2399 inst_env->slot_needed = 1;
2400 inst_env->prefix_found = 0;
2401 inst_env->xflag_found = 0;
2402 inst_env->disable_interrupt = 1;
2403}
2404
2405/* Handles the ABS instruction. */
2406
a78f21af 2407static void
29134980
OF
2408abs_op (unsigned short inst, inst_env_type *inst_env)
2409{
2410
2411 long value;
2412
2413 /* ABS can't have a prefix, so it's bad if it does. */
2414 if (inst_env->prefix_found)
2415 {
2416 inst_env->invalid = 1;
2417 return;
2418 }
2419
2420 /* Check if the operation affects the PC. */
2421 if (cris_get_operand2 (inst) == REG_PC)
2422 {
2423
2424 /* It's invalid to change to the PC if we are in a delay slot. */
2425 if (inst_env->slot_needed)
2426 {
2427 inst_env->invalid = 1;
2428 return;
2429 }
2430
2431 value = (long) inst_env->reg[REG_PC];
2432
2433 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2434 if (value != SIGNED_DWORD_MASK)
2435 {
2436 value = -value;
2437 inst_env->reg[REG_PC] = (long) value;
2438 }
2439 }
2440
2441 inst_env->slot_needed = 0;
2442 inst_env->prefix_found = 0;
2443 inst_env->xflag_found = 0;
2444 inst_env->disable_interrupt = 0;
2445}
2446
2447/* Handles the ADDI instruction. */
2448
a78f21af 2449static void
29134980
OF
2450addi_op (unsigned short inst, inst_env_type *inst_env)
2451{
2452 /* It's invalid to have the PC as base register. And ADDI can't have
2453 a prefix. */
2454 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2455 {
2456 inst_env->invalid = 1;
2457 return;
2458 }
2459
2460 inst_env->slot_needed = 0;
2461 inst_env->prefix_found = 0;
2462 inst_env->xflag_found = 0;
2463 inst_env->disable_interrupt = 0;
2464}
2465
2466/* Handles the ASR instruction. */
2467
a78f21af 2468static void
29134980
OF
2469asr_op (unsigned short inst, inst_env_type *inst_env)
2470{
2471 int shift_steps;
2472 unsigned long value;
2473 unsigned long signed_extend_mask = 0;
2474
2475 /* ASR can't have a prefix, so check that it doesn't. */
2476 if (inst_env->prefix_found)
2477 {
2478 inst_env->invalid = 1;
2479 return;
2480 }
2481
2482 /* Check if the PC is the target register. */
2483 if (cris_get_operand2 (inst) == REG_PC)
2484 {
2485 /* It's invalid to change the PC in a delay slot. */
2486 if (inst_env->slot_needed)
2487 {
2488 inst_env->invalid = 1;
2489 return;
2490 }
2491 /* Get the number of bits to shift. */
0963b4bd
MS
2492 shift_steps
2493 = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
29134980
OF
2494 value = inst_env->reg[REG_PC];
2495
2496 /* Find out how many bits the operation should apply to. */
2497 if (cris_get_size (inst) == INST_BYTE_SIZE)
2498 {
2499 if (value & SIGNED_BYTE_MASK)
2500 {
2501 signed_extend_mask = 0xFF;
2502 signed_extend_mask = signed_extend_mask >> shift_steps;
2503 signed_extend_mask = ~signed_extend_mask;
2504 }
2505 value = value >> shift_steps;
2506 value |= signed_extend_mask;
2507 value &= 0xFF;
2508 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2509 inst_env->reg[REG_PC] |= value;
2510 }
2511 else if (cris_get_size (inst) == INST_WORD_SIZE)
2512 {
2513 if (value & SIGNED_WORD_MASK)
2514 {
2515 signed_extend_mask = 0xFFFF;
2516 signed_extend_mask = signed_extend_mask >> shift_steps;
2517 signed_extend_mask = ~signed_extend_mask;
2518 }
2519 value = value >> shift_steps;
2520 value |= signed_extend_mask;
2521 value &= 0xFFFF;
2522 inst_env->reg[REG_PC] &= 0xFFFF0000;
2523 inst_env->reg[REG_PC] |= value;
2524 }
2525 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2526 {
2527 if (value & SIGNED_DWORD_MASK)
2528 {
2529 signed_extend_mask = 0xFFFFFFFF;
2530 signed_extend_mask = signed_extend_mask >> shift_steps;
2531 signed_extend_mask = ~signed_extend_mask;
2532 }
2533 value = value >> shift_steps;
2534 value |= signed_extend_mask;
2535 inst_env->reg[REG_PC] = value;
2536 }
2537 }
2538 inst_env->slot_needed = 0;
2539 inst_env->prefix_found = 0;
2540 inst_env->xflag_found = 0;
2541 inst_env->disable_interrupt = 0;
2542}
2543
2544/* Handles the ASRQ instruction. */
2545
a78f21af 2546static void
29134980
OF
2547asrq_op (unsigned short inst, inst_env_type *inst_env)
2548{
2549
2550 int shift_steps;
2551 unsigned long value;
2552 unsigned long signed_extend_mask = 0;
2553
2554 /* ASRQ can't have a prefix, so check that it doesn't. */
2555 if (inst_env->prefix_found)
2556 {
2557 inst_env->invalid = 1;
2558 return;
2559 }
2560
2561 /* Check if the PC is the target register. */
2562 if (cris_get_operand2 (inst) == REG_PC)
2563 {
2564
2565 /* It's invalid to change the PC in a delay slot. */
2566 if (inst_env->slot_needed)
2567 {
2568 inst_env->invalid = 1;
2569 return;
2570 }
2571 /* The shift size is given as a 5 bit quick value, i.e. we don't
b021a221 2572 want the sign bit of the quick value. */
29134980
OF
2573 shift_steps = cris_get_asr_shift_steps (inst);
2574 value = inst_env->reg[REG_PC];
2575 if (value & SIGNED_DWORD_MASK)
2576 {
2577 signed_extend_mask = 0xFFFFFFFF;
2578 signed_extend_mask = signed_extend_mask >> shift_steps;
2579 signed_extend_mask = ~signed_extend_mask;
2580 }
2581 value = value >> shift_steps;
2582 value |= signed_extend_mask;
2583 inst_env->reg[REG_PC] = value;
2584 }
2585 inst_env->slot_needed = 0;
2586 inst_env->prefix_found = 0;
2587 inst_env->xflag_found = 0;
2588 inst_env->disable_interrupt = 0;
2589}
2590
2591/* Handles the AX, EI and SETF instruction. */
2592
a78f21af 2593static void
29134980
OF
2594ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2595{
2596 if (inst_env->prefix_found)
2597 {
2598 inst_env->invalid = 1;
2599 return;
2600 }
2601 /* Check if the instruction is setting the X flag. */
2602 if (cris_is_xflag_bit_on (inst))
2603 {
2604 inst_env->xflag_found = 1;
2605 }
2606 else
2607 {
2608 inst_env->xflag_found = 0;
2609 }
2610 inst_env->slot_needed = 0;
2611 inst_env->prefix_found = 0;
2612 inst_env->disable_interrupt = 1;
2613}
2614
2615/* Checks if the instruction is in assign mode. If so, it updates the assign
2616 register. Note that check_assign assumes that the caller has checked that
2617 there is a prefix to this instruction. The mode check depends on this. */
2618
a78f21af 2619static void
29134980
OF
2620check_assign (unsigned short inst, inst_env_type *inst_env)
2621{
2622 /* Check if it's an assign addressing mode. */
2623 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2624 {
2625 /* Assign the prefix value to operand 1. */
2626 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2627 }
2628}
2629
2630/* Handles the 2-operand BOUND instruction. */
2631
a78f21af 2632static void
29134980
OF
2633two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2634{
2635 /* It's invalid to have the PC as the index operand. */
2636 if (cris_get_operand2 (inst) == REG_PC)
2637 {
2638 inst_env->invalid = 1;
2639 return;
2640 }
2641 /* Check if we have a prefix. */
2642 if (inst_env->prefix_found)
2643 {
2644 check_assign (inst, inst_env);
2645 }
2646 /* Check if this is an autoincrement mode. */
2647 else if (cris_get_mode (inst) == AUTOINC_MODE)
2648 {
2649 /* It's invalid to change the PC in a delay slot. */
2650 if (inst_env->slot_needed)
2651 {
2652 inst_env->invalid = 1;
2653 return;
2654 }
2655 process_autoincrement (cris_get_size (inst), inst, inst_env);
2656 }
2657 inst_env->slot_needed = 0;
2658 inst_env->prefix_found = 0;
2659 inst_env->xflag_found = 0;
2660 inst_env->disable_interrupt = 0;
2661}
2662
2663/* Handles the 3-operand BOUND instruction. */
2664
a78f21af 2665static void
29134980
OF
2666three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2667{
2668 /* It's an error if we haven't got a prefix. And it's also an error
2669 if the PC is the destination register. */
2670 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2671 {
2672 inst_env->invalid = 1;
2673 return;
2674 }
2675 inst_env->slot_needed = 0;
2676 inst_env->prefix_found = 0;
2677 inst_env->xflag_found = 0;
2678 inst_env->disable_interrupt = 0;
2679}
2680
2681/* Clears the status flags in inst_env. */
2682
a78f21af 2683static void
29134980
OF
2684btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2685{
2686 /* It's an error if we have got a prefix. */
2687 if (inst_env->prefix_found)
2688 {
2689 inst_env->invalid = 1;
2690 return;
2691 }
2692
2693 inst_env->slot_needed = 0;
2694 inst_env->prefix_found = 0;
2695 inst_env->xflag_found = 0;
2696 inst_env->disable_interrupt = 0;
2697}
2698
2699/* Clears the status flags in inst_env. */
2700
a78f21af 2701static void
29134980
OF
2702clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2703{
2704 /* It's an error if we have got a prefix. */
2705 if (inst_env->prefix_found)
2706 {
2707 inst_env->invalid = 1;
2708 return;
2709 }
2710
2711 inst_env->slot_needed = 0;
2712 inst_env->prefix_found = 0;
2713 inst_env->xflag_found = 0;
2714 inst_env->disable_interrupt = 1;
2715}
2716
2717/* Handles the CLEAR instruction if it's in register mode. */
2718
a78f21af 2719static void
29134980
OF
2720reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2721{
2722 /* Check if the target is the PC. */
2723 if (cris_get_operand2 (inst) == REG_PC)
2724 {
2725 /* The instruction will clear the instruction's size bits. */
2726 int clear_size = cris_get_clear_size (inst);
2727 if (clear_size == INST_BYTE_SIZE)
2728 {
2729 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2730 }
2731 if (clear_size == INST_WORD_SIZE)
2732 {
2733 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2734 }
2735 if (clear_size == INST_DWORD_SIZE)
2736 {
2737 inst_env->delay_slot_pc = 0x0;
2738 }
2739 /* The jump will be delayed with one delay slot. So we need a delay
2740 slot. */
2741 inst_env->slot_needed = 1;
2742 inst_env->delay_slot_pc_active = 1;
2743 }
2744 else
2745 {
2746 /* The PC will not change => no delay slot. */
2747 inst_env->slot_needed = 0;
2748 }
2749 inst_env->prefix_found = 0;
2750 inst_env->xflag_found = 0;
2751 inst_env->disable_interrupt = 0;
2752}
2753
2754/* Handles the TEST instruction if it's in register mode. */
2755
a78f21af 2756static void
29134980
OF
2757reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2758{
2759 /* It's an error if we have got a prefix. */
2760 if (inst_env->prefix_found)
2761 {
2762 inst_env->invalid = 1;
2763 return;
2764 }
2765 inst_env->slot_needed = 0;
2766 inst_env->prefix_found = 0;
2767 inst_env->xflag_found = 0;
2768 inst_env->disable_interrupt = 0;
2769
2770}
2771
2772/* Handles the CLEAR and TEST instruction if the instruction isn't
2773 in register mode. */
2774
a78f21af 2775static void
29134980
OF
2776none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2777{
2778 /* Check if we are in a prefix mode. */
2779 if (inst_env->prefix_found)
2780 {
2781 /* The only way the PC can change is if this instruction is in
2782 assign addressing mode. */
2783 check_assign (inst, inst_env);
2784 }
2785 /* Indirect mode can't change the PC so just check if the mode is
2786 autoincrement. */
2787 else if (cris_get_mode (inst) == AUTOINC_MODE)
2788 {
2789 process_autoincrement (cris_get_size (inst), inst, inst_env);
2790 }
2791 inst_env->slot_needed = 0;
2792 inst_env->prefix_found = 0;
2793 inst_env->xflag_found = 0;
2794 inst_env->disable_interrupt = 0;
2795}
2796
2797/* Checks that the PC isn't the destination register or the instructions has
2798 a prefix. */
2799
a78f21af 2800static void
29134980
OF
2801dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2802{
2803 /* It's invalid to have the PC as the destination. The instruction can't
2804 have a prefix. */
2805 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2806 {
2807 inst_env->invalid = 1;
2808 return;
2809 }
2810
2811 inst_env->slot_needed = 0;
2812 inst_env->prefix_found = 0;
2813 inst_env->xflag_found = 0;
2814 inst_env->disable_interrupt = 0;
2815}
2816
2817/* Checks that the instruction doesn't have a prefix. */
2818
a78f21af 2819static void
29134980
OF
2820break_op (unsigned short inst, inst_env_type *inst_env)
2821{
2822 /* The instruction can't have a prefix. */
2823 if (inst_env->prefix_found)
2824 {
2825 inst_env->invalid = 1;
2826 return;
2827 }
2828
2829 inst_env->slot_needed = 0;
2830 inst_env->prefix_found = 0;
2831 inst_env->xflag_found = 0;
2832 inst_env->disable_interrupt = 1;
2833}
2834
2835/* Checks that the PC isn't the destination register and that the instruction
2836 doesn't have a prefix. */
2837
a78f21af 2838static void
29134980
OF
2839scc_op (unsigned short inst, inst_env_type *inst_env)
2840{
2841 /* It's invalid to have the PC as the destination. The instruction can't
2842 have a prefix. */
2843 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2844 {
2845 inst_env->invalid = 1;
2846 return;
2847 }
2848
2849 inst_env->slot_needed = 0;
2850 inst_env->prefix_found = 0;
2851 inst_env->xflag_found = 0;
2852 inst_env->disable_interrupt = 1;
2853}
2854
2855/* Handles the register mode JUMP instruction. */
2856
a78f21af 2857static void
29134980
OF
2858reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2859{
2860 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2861 you can't have a prefix. */
2862 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2863 {
2864 inst_env->invalid = 1;
2865 return;
2866 }
2867
2868 /* Just change the PC. */
2869 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2870 inst_env->slot_needed = 0;
2871 inst_env->prefix_found = 0;
2872 inst_env->xflag_found = 0;
2873 inst_env->disable_interrupt = 1;
2874}
2875
2876/* Handles the JUMP instruction for all modes except register. */
2877
a78f21af
AC
2878static void
2879none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2880{
2881 unsigned long newpc;
2882 CORE_ADDR address;
2883
2884 /* It's invalid to do a JUMP in a delay slot. */
2885 if (inst_env->slot_needed)
2886 {
2887 inst_env->invalid = 1;
2888 }
2889 else
2890 {
2891 /* Check if we have a prefix. */
2892 if (inst_env->prefix_found)
2893 {
2894 check_assign (inst, inst_env);
2895
b021a221 2896 /* Get the new value for the PC. */
29134980
OF
2897 newpc =
2898 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
e17a4113 2899 4, inst_env->byte_order);
29134980
OF
2900 }
2901 else
2902 {
2903 /* Get the new value for the PC. */
2904 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2905 newpc = read_memory_unsigned_integer (address,
2906 4, inst_env->byte_order);
29134980
OF
2907
2908 /* Check if we should increment a register. */
2909 if (cris_get_mode (inst) == AUTOINC_MODE)
2910 {
2911 inst_env->reg[cris_get_operand1 (inst)] += 4;
2912 }
2913 }
2914 inst_env->reg[REG_PC] = newpc;
2915 }
2916 inst_env->slot_needed = 0;
2917 inst_env->prefix_found = 0;
2918 inst_env->xflag_found = 0;
2919 inst_env->disable_interrupt = 1;
2920}
2921
2922/* Handles moves to special registers (aka P-register) for all modes. */
2923
a78f21af 2924static void
be8626e0
MD
2925move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2926 inst_env_type *inst_env)
29134980
OF
2927{
2928 if (inst_env->prefix_found)
2929 {
2930 /* The instruction has a prefix that means we are only interested if
2931 the instruction is in assign mode. */
2932 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2933 {
2934 /* The prefix handles the problem if we are in a delay slot. */
2935 if (cris_get_operand1 (inst) == REG_PC)
2936 {
2937 /* Just take care of the assign. */
2938 check_assign (inst, inst_env);
2939 }
2940 }
2941 }
2942 else if (cris_get_mode (inst) == AUTOINC_MODE)
2943 {
2944 /* The instruction doesn't have a prefix, the only case left that we
2945 are interested in is the autoincrement mode. */
2946 if (cris_get_operand1 (inst) == REG_PC)
2947 {
2948 /* If the PC is to be incremented it's invalid to be in a
2949 delay slot. */
2950 if (inst_env->slot_needed)
2951 {
2952 inst_env->invalid = 1;
2953 return;
2954 }
2a9ecef2
OF
2955
2956 /* The increment depends on the size of the special register. */
be8626e0 2957 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2958 {
2959 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2960 }
be8626e0 2961 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2962 {
2963 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2964 }
2965 else
2966 {
2967 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2968 }
2969 }
2970 }
2971 inst_env->slot_needed = 0;
2972 inst_env->prefix_found = 0;
2973 inst_env->xflag_found = 0;
2974 inst_env->disable_interrupt = 1;
2975}
2976
2977/* Handles moves from special registers (aka P-register) for all modes
2978 except register. */
2979
a78f21af 2980static void
be8626e0
MD
2981none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2982 inst_env_type *inst_env)
29134980
OF
2983{
2984 if (inst_env->prefix_found)
2985 {
2986 /* The instruction has a prefix that means we are only interested if
2987 the instruction is in assign mode. */
2988 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2989 {
2990 /* The prefix handles the problem if we are in a delay slot. */
2991 if (cris_get_operand1 (inst) == REG_PC)
2992 {
2993 /* Just take care of the assign. */
2994 check_assign (inst, inst_env);
2995 }
2996 }
2997 }
2998 /* The instruction doesn't have a prefix, the only case left that we
2999 are interested in is the autoincrement mode. */
3000 else if (cris_get_mode (inst) == AUTOINC_MODE)
3001 {
3002 if (cris_get_operand1 (inst) == REG_PC)
3003 {
3004 /* If the PC is to be incremented it's invalid to be in a
3005 delay slot. */
3006 if (inst_env->slot_needed)
3007 {
3008 inst_env->invalid = 1;
3009 return;
3010 }
2a9ecef2
OF
3011
3012 /* The increment depends on the size of the special register. */
be8626e0 3013 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
3014 {
3015 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3016 }
be8626e0 3017 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
3018 {
3019 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3020 }
3021 else
3022 {
3023 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3024 }
3025 }
3026 }
3027 inst_env->slot_needed = 0;
3028 inst_env->prefix_found = 0;
3029 inst_env->xflag_found = 0;
3030 inst_env->disable_interrupt = 1;
3031}
3032
3033/* Handles moves from special registers (aka P-register) when the mode
3034 is register. */
3035
a78f21af 3036static void
29134980
OF
3037reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3038{
3039 /* Register mode move from special register can't have a prefix. */
3040 if (inst_env->prefix_found)
3041 {
3042 inst_env->invalid = 1;
3043 return;
3044 }
3045
3046 if (cris_get_operand1 (inst) == REG_PC)
3047 {
3048 /* It's invalid to change the PC in a delay slot. */
3049 if (inst_env->slot_needed)
3050 {
3051 inst_env->invalid = 1;
3052 return;
3053 }
3054 /* The destination is the PC, the jump will have a delay slot. */
3055 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3056 inst_env->slot_needed = 1;
3057 inst_env->delay_slot_pc_active = 1;
3058 }
3059 else
3060 {
3061 /* If the destination isn't PC, there will be no jump. */
3062 inst_env->slot_needed = 0;
3063 }
3064 inst_env->prefix_found = 0;
3065 inst_env->xflag_found = 0;
3066 inst_env->disable_interrupt = 1;
3067}
3068
3069/* Handles the MOVEM from memory to general register instruction. */
3070
a78f21af 3071static void
29134980
OF
3072move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3073{
3074 if (inst_env->prefix_found)
3075 {
3076 /* The prefix handles the problem if we are in a delay slot. Is the
3077 MOVEM instruction going to change the PC? */
3078 if (cris_get_operand2 (inst) >= REG_PC)
3079 {
3080 inst_env->reg[REG_PC] =
e17a4113
UW
3081 read_memory_unsigned_integer (inst_env->prefix_value,
3082 4, inst_env->byte_order);
29134980
OF
3083 }
3084 /* The assign value is the value after the increment. Normally, the
3085 assign value is the value before the increment. */
3086 if ((cris_get_operand1 (inst) == REG_PC)
3087 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3088 {
3089 inst_env->reg[REG_PC] = inst_env->prefix_value;
3090 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3091 }
3092 }
3093 else
3094 {
3095 /* Is the MOVEM instruction going to change the PC? */
3096 if (cris_get_operand2 (inst) == REG_PC)
3097 {
3098 /* It's invalid to change the PC in a delay slot. */
3099 if (inst_env->slot_needed)
3100 {
3101 inst_env->invalid = 1;
3102 return;
3103 }
3104 inst_env->reg[REG_PC] =
3105 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
e17a4113 3106 4, inst_env->byte_order);
29134980
OF
3107 }
3108 /* The increment is not depending on the size, instead it's depending
3109 on the number of registers loaded from memory. */
0963b4bd
MS
3110 if ((cris_get_operand1 (inst) == REG_PC)
3111 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3112 {
3113 /* It's invalid to change the PC in a delay slot. */
3114 if (inst_env->slot_needed)
3115 {
3116 inst_env->invalid = 1;
3117 return;
3118 }
3119 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3120 }
3121 }
3122 inst_env->slot_needed = 0;
3123 inst_env->prefix_found = 0;
3124 inst_env->xflag_found = 0;
3125 inst_env->disable_interrupt = 0;
3126}
3127
3128/* Handles the MOVEM to memory from general register instruction. */
3129
a78f21af 3130static void
29134980
OF
3131move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3132{
3133 if (inst_env->prefix_found)
3134 {
3135 /* The assign value is the value after the increment. Normally, the
3136 assign value is the value before the increment. */
5aafa1cc
PM
3137 if ((cris_get_operand1 (inst) == REG_PC)
3138 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
29134980
OF
3139 {
3140 /* The prefix handles the problem if we are in a delay slot. */
3141 inst_env->reg[REG_PC] = inst_env->prefix_value;
3142 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3143 }
3144 }
3145 else
3146 {
3147 /* The increment is not depending on the size, instead it's depending
3148 on the number of registers loaded to memory. */
0963b4bd
MS
3149 if ((cris_get_operand1 (inst) == REG_PC)
3150 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3151 {
3152 /* It's invalid to change the PC in a delay slot. */
3153 if (inst_env->slot_needed)
3154 {
3155 inst_env->invalid = 1;
3156 return;
3157 }
3158 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3159 }
3160 }
3161 inst_env->slot_needed = 0;
3162 inst_env->prefix_found = 0;
3163 inst_env->xflag_found = 0;
3164 inst_env->disable_interrupt = 0;
3165}
3166
29134980
OF
3167/* Handles the intructions that's not yet implemented, by setting
3168 inst_env->invalid to true. */
3169
a78f21af 3170static void
29134980
OF
3171not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3172{
3173 inst_env->invalid = 1;
3174}
3175
3176/* Handles the XOR instruction. */
3177
a78f21af 3178static void
29134980
OF
3179xor_op (unsigned short inst, inst_env_type *inst_env)
3180{
3181 /* XOR can't have a prefix. */
3182 if (inst_env->prefix_found)
3183 {
3184 inst_env->invalid = 1;
3185 return;
3186 }
3187
3188 /* Check if the PC is the target. */
3189 if (cris_get_operand2 (inst) == REG_PC)
3190 {
3191 /* It's invalid to change the PC in a delay slot. */
3192 if (inst_env->slot_needed)
3193 {
3194 inst_env->invalid = 1;
3195 return;
3196 }
3197 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3198 }
3199 inst_env->slot_needed = 0;
3200 inst_env->prefix_found = 0;
3201 inst_env->xflag_found = 0;
3202 inst_env->disable_interrupt = 0;
3203}
3204
3205/* Handles the MULS instruction. */
3206
a78f21af 3207static void
29134980
OF
3208muls_op (unsigned short inst, inst_env_type *inst_env)
3209{
3210 /* MULS/U can't have a prefix. */
3211 if (inst_env->prefix_found)
3212 {
3213 inst_env->invalid = 1;
3214 return;
3215 }
3216
3217 /* Consider it invalid if the PC is the target. */
3218 if (cris_get_operand2 (inst) == REG_PC)
3219 {
3220 inst_env->invalid = 1;
3221 return;
3222 }
3223 inst_env->slot_needed = 0;
3224 inst_env->prefix_found = 0;
3225 inst_env->xflag_found = 0;
3226 inst_env->disable_interrupt = 0;
3227}
3228
3229/* Handles the MULU instruction. */
3230
a78f21af 3231static void
29134980
OF
3232mulu_op (unsigned short inst, inst_env_type *inst_env)
3233{
3234 /* MULS/U can't have a prefix. */
3235 if (inst_env->prefix_found)
3236 {
3237 inst_env->invalid = 1;
3238 return;
3239 }
3240
3241 /* Consider it invalid if the PC is the target. */
3242 if (cris_get_operand2 (inst) == REG_PC)
3243 {
3244 inst_env->invalid = 1;
3245 return;
3246 }
3247 inst_env->slot_needed = 0;
3248 inst_env->prefix_found = 0;
3249 inst_env->xflag_found = 0;
3250 inst_env->disable_interrupt = 0;
3251}
3252
0963b4bd 3253/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
29134980
OF
3254 The MOVE instruction is the move from source to register. */
3255
a78f21af 3256static void
29134980
OF
3257add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3258 unsigned long source1, unsigned long source2)
3259{
3260 unsigned long pc_mask;
3261 unsigned long operation_mask;
3262
3263 /* Find out how many bits the operation should apply to. */
3264 if (cris_get_size (inst) == INST_BYTE_SIZE)
3265 {
3266 pc_mask = 0xFFFFFF00;
3267 operation_mask = 0xFF;
3268 }
3269 else if (cris_get_size (inst) == INST_WORD_SIZE)
3270 {
3271 pc_mask = 0xFFFF0000;
3272 operation_mask = 0xFFFF;
3273 }
3274 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3275 {
3276 pc_mask = 0x0;
3277 operation_mask = 0xFFFFFFFF;
3278 }
3279 else
3280 {
3281 /* The size is out of range. */
3282 inst_env->invalid = 1;
3283 return;
3284 }
3285
3286 /* The instruction just works on uw_operation_mask bits. */
3287 source2 &= operation_mask;
3288 source1 &= operation_mask;
3289
3290 /* Now calculate the result. The opcode's 3 first bits separates
3291 the different actions. */
3292 switch (cris_get_opcode (inst) & 7)
3293 {
3294 case 0: /* add */
3295 source1 += source2;
3296 break;
3297
3298 case 1: /* move */
3299 source1 = source2;
3300 break;
3301
3302 case 2: /* subtract */
3303 source1 -= source2;
3304 break;
3305
3306 case 3: /* compare */
3307 break;
3308
3309 case 4: /* and */
3310 source1 &= source2;
3311 break;
3312
3313 case 5: /* or */
3314 source1 |= source2;
3315 break;
3316
3317 default:
3318 inst_env->invalid = 1;
3319 return;
3320
3321 break;
3322 }
3323
3324 /* Make sure that the result doesn't contain more than the instruction
3325 size bits. */
3326 source2 &= operation_mask;
3327
3328 /* Calculate the new breakpoint address. */
3329 inst_env->reg[REG_PC] &= pc_mask;
3330 inst_env->reg[REG_PC] |= source1;
3331
3332}
3333
3334/* Extends the value from either byte or word size to a dword. If the mode
3335 is zero extend then the value is extended with zero. If instead the mode
3336 is signed extend the sign bit of the value is taken into consideration. */
3337
a78f21af 3338static unsigned long
29134980
OF
3339do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3340{
3341 /* The size can be either byte or word, check which one it is.
3342 Don't check the highest bit, it's indicating if it's a zero
3343 or sign extend. */
3344 if (cris_get_size (*inst) & INST_WORD_SIZE)
3345 {
3346 /* Word size. */
3347 value &= 0xFFFF;
3348
3349 /* Check if the instruction is signed extend. If so, check if value has
3350 the sign bit on. */
3351 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3352 {
3353 value |= SIGNED_WORD_EXTEND_MASK;
3354 }
3355 }
3356 else
3357 {
3358 /* Byte size. */
3359 value &= 0xFF;
3360
3361 /* Check if the instruction is signed extend. If so, check if value has
3362 the sign bit on. */
3363 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3364 {
3365 value |= SIGNED_BYTE_EXTEND_MASK;
3366 }
3367 }
3368 /* The size should now be dword. */
3369 cris_set_size_to_dword (inst);
3370 return value;
3371}
3372
3373/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3374 instruction. The MOVE instruction is the move from source to register. */
3375
a78f21af 3376static void
29134980
OF
3377reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3378 inst_env_type *inst_env)
3379{
3380 unsigned long operand1;
3381 unsigned long operand2;
3382
3383 /* It's invalid to have a prefix to the instruction. This is a register
3384 mode instruction and can't have a prefix. */
3385 if (inst_env->prefix_found)
3386 {
3387 inst_env->invalid = 1;
3388 return;
3389 }
3390 /* Check if the instruction has PC as its target. */
3391 if (cris_get_operand2 (inst) == REG_PC)
3392 {
3393 if (inst_env->slot_needed)
3394 {
3395 inst_env->invalid = 1;
3396 return;
3397 }
3398 /* The instruction has the PC as its target register. */
7ab98e9e 3399 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3400 operand2 = inst_env->reg[REG_PC];
3401
3402 /* Check if it's a extend, signed or zero instruction. */
3403 if (cris_get_opcode (inst) < 4)
3404 {
3405 operand1 = do_sign_or_zero_extend (operand1, &inst);
3406 }
3407 /* Calculate the PC value after the instruction, i.e. where the
3408 breakpoint should be. The order of the udw_operands is vital. */
3409 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3410 }
3411 inst_env->slot_needed = 0;
3412 inst_env->prefix_found = 0;
3413 inst_env->xflag_found = 0;
3414 inst_env->disable_interrupt = 0;
3415}
3416
3417/* Returns the data contained at address. The size of the data is derived from
3418 the size of the operation. If the instruction is a zero or signed
3419 extend instruction, the size field is changed in instruction. */
3420
a78f21af 3421static unsigned long
0963b4bd
MS
3422get_data_from_address (unsigned short *inst, CORE_ADDR address,
3423 enum bfd_endian byte_order)
29134980
OF
3424{
3425 int size = cris_get_size (*inst);
3426 unsigned long value;
3427
3428 /* If it's an extend instruction we don't want the signed extend bit,
3429 because it influences the size. */
3430 if (cris_get_opcode (*inst) < 4)
3431 {
3432 size &= ~SIGNED_EXTEND_BIT_MASK;
3433 }
3434 /* Is there a need for checking the size? Size should contain the number of
3435 bytes to read. */
3436 size = 1 << size;
e17a4113 3437 value = read_memory_unsigned_integer (address, size, byte_order);
29134980
OF
3438
3439 /* Check if it's an extend, signed or zero instruction. */
3440 if (cris_get_opcode (*inst) < 4)
3441 {
3442 value = do_sign_or_zero_extend (value, inst);
3443 }
3444 return value;
3445}
3446
3447/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3448 instructions. The MOVE instruction is the move from source to register. */
3449
a78f21af 3450static void
29134980
OF
3451handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3452 inst_env_type *inst_env)
3453{
3454 unsigned long operand2;
3455 unsigned long operand3;
3456
3457 check_assign (inst, inst_env);
3458 if (cris_get_operand2 (inst) == REG_PC)
3459 {
3460 operand2 = inst_env->reg[REG_PC];
3461
3462 /* Get the value of the third operand. */
e17a4113
UW
3463 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3464 inst_env->byte_order);
29134980
OF
3465
3466 /* Calculate the PC value after the instruction, i.e. where the
3467 breakpoint should be. The order of the udw_operands is vital. */
3468 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3469 }
3470 inst_env->slot_needed = 0;
3471 inst_env->prefix_found = 0;
3472 inst_env->xflag_found = 0;
3473 inst_env->disable_interrupt = 0;
3474}
3475
3476/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3477 OR instructions. Note that for this to work as expected, the calling
3478 function must have made sure that there is a prefix to this instruction. */
3479
a78f21af 3480static void
29134980
OF
3481three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3482 inst_env_type *inst_env)
3483{
3484 unsigned long operand2;
3485 unsigned long operand3;
3486
3487 if (cris_get_operand1 (inst) == REG_PC)
3488 {
3489 /* The PC will be changed by the instruction. */
3490 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3491
3492 /* Get the value of the third operand. */
e17a4113
UW
3493 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3494 inst_env->byte_order);
29134980
OF
3495
3496 /* Calculate the PC value after the instruction, i.e. where the
3497 breakpoint should be. */
3498 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3499 }
3500 inst_env->slot_needed = 0;
3501 inst_env->prefix_found = 0;
3502 inst_env->xflag_found = 0;
3503 inst_env->disable_interrupt = 0;
3504}
3505
3506/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3507 instructions. The MOVE instruction is the move from source to register. */
3508
a78f21af 3509static void
29134980
OF
3510handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3511 inst_env_type *inst_env)
3512{
3513 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3514 {
3515 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3516 SUB, AND or OR something weird is going on (if everything works these
3517 instructions should end up in the three operand version). */
3518 inst_env->invalid = 1;
3519 return;
3520 }
3521 else
3522 {
3523 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3524 so use it. */
3525 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3526 }
3527 inst_env->slot_needed = 0;
3528 inst_env->prefix_found = 0;
3529 inst_env->xflag_found = 0;
3530 inst_env->disable_interrupt = 0;
3531}
3532
3533/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3534 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3535 source to register. */
3536
a78f21af 3537static void
29134980
OF
3538handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3539 inst_env_type *inst_env)
3540{
3541 unsigned long operand1;
3542 unsigned long operand2;
3543 unsigned long operand3;
3544 int size;
3545
0963b4bd 3546 /* The instruction is either an indirect or autoincrement addressing mode.
29134980
OF
3547 Check if the destination register is the PC. */
3548 if (cris_get_operand2 (inst) == REG_PC)
3549 {
3550 /* Must be done here, get_data_from_address may change the size
3551 field. */
3552 size = cris_get_size (inst);
3553 operand2 = inst_env->reg[REG_PC];
3554
3555 /* Get the value of the third operand, i.e. the indirect operand. */
3556 operand1 = inst_env->reg[cris_get_operand1 (inst)];
e17a4113 3557 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
29134980
OF
3558
3559 /* Calculate the PC value after the instruction, i.e. where the
3560 breakpoint should be. The order of the udw_operands is vital. */
3561 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3562 }
3563 /* If this is an autoincrement addressing mode, check if the increment
3564 changes the PC. */
0963b4bd
MS
3565 if ((cris_get_operand1 (inst) == REG_PC)
3566 && (cris_get_mode (inst) == AUTOINC_MODE))
29134980
OF
3567 {
3568 /* Get the size field. */
3569 size = cris_get_size (inst);
3570
3571 /* If it's an extend instruction we don't want the signed extend bit,
3572 because it influences the size. */
3573 if (cris_get_opcode (inst) < 4)
3574 {
3575 size &= ~SIGNED_EXTEND_BIT_MASK;
3576 }
3577 process_autoincrement (size, inst, inst_env);
3578 }
3579 inst_env->slot_needed = 0;
3580 inst_env->prefix_found = 0;
3581 inst_env->xflag_found = 0;
3582 inst_env->disable_interrupt = 0;
3583}
3584
3585/* Handles the two-operand addressing mode, all modes except register, for
3586 the ADD, SUB CMP, AND and OR instruction. */
3587
a78f21af 3588static void
29134980
OF
3589none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3590 inst_env_type *inst_env)
3591{
3592 if (inst_env->prefix_found)
3593 {
3594 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3595 {
3596 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3597 }
3598 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3599 {
3600 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3601 }
3602 else
3603 {
3604 /* The mode is invalid for a prefixed base instruction. */
3605 inst_env->invalid = 1;
3606 return;
3607 }
3608 }
3609 else
3610 {
3611 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3612 }
3613}
3614
3615/* Handles the quick addressing mode for the ADD and SUB instruction. */
3616
a78f21af 3617static void
29134980
OF
3618quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3619{
3620 unsigned long operand1;
3621 unsigned long operand2;
3622
3623 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3624 instruction and can't have a prefix. */
3625 if (inst_env->prefix_found)
3626 {
3627 inst_env->invalid = 1;
3628 return;
3629 }
3630
3631 /* Check if the instruction has PC as its target. */
3632 if (cris_get_operand2 (inst) == REG_PC)
3633 {
3634 if (inst_env->slot_needed)
3635 {
3636 inst_env->invalid = 1;
3637 return;
3638 }
3639 operand1 = cris_get_quick_value (inst);
3640 operand2 = inst_env->reg[REG_PC];
3641
3642 /* The size should now be dword. */
3643 cris_set_size_to_dword (&inst);
3644
3645 /* Calculate the PC value after the instruction, i.e. where the
3646 breakpoint should be. */
3647 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3648 }
3649 inst_env->slot_needed = 0;
3650 inst_env->prefix_found = 0;
3651 inst_env->xflag_found = 0;
3652 inst_env->disable_interrupt = 0;
3653}
3654
3655/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3656
a78f21af 3657static void
29134980
OF
3658quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3659{
3660 unsigned long operand1;
3661 unsigned long operand2;
3662
3663 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3664 instruction and can't have a prefix. */
3665 if (inst_env->prefix_found)
3666 {
3667 inst_env->invalid = 1;
3668 return;
3669 }
3670 /* Check if the instruction has PC as its target. */
3671 if (cris_get_operand2 (inst) == REG_PC)
3672 {
3673 if (inst_env->slot_needed)
3674 {
3675 inst_env->invalid = 1;
3676 return;
3677 }
3678 /* The instruction has the PC as its target register. */
3679 operand1 = cris_get_quick_value (inst);
3680 operand2 = inst_env->reg[REG_PC];
3681
3682 /* The quick value is signed, so check if we must do a signed extend. */
3683 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3684 {
3685 /* sign extend */
3686 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3687 }
3688 /* The size should now be dword. */
3689 cris_set_size_to_dword (&inst);
3690
3691 /* Calculate the PC value after the instruction, i.e. where the
3692 breakpoint should be. */
3693 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3694 }
3695 inst_env->slot_needed = 0;
3696 inst_env->prefix_found = 0;
3697 inst_env->xflag_found = 0;
3698 inst_env->disable_interrupt = 0;
3699}
3700
3701/* Translate op_type to a function and call it. */
3702
a78f21af 3703static void
be8626e0
MD
3704cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3705 unsigned short inst, inst_env_type *inst_env)
29134980
OF
3706{
3707 switch (op_type)
3708 {
3709 case cris_not_implemented_op:
3710 not_implemented_op (inst, inst_env);
3711 break;
3712
3713 case cris_abs_op:
3714 abs_op (inst, inst_env);
3715 break;
3716
3717 case cris_addi_op:
3718 addi_op (inst, inst_env);
3719 break;
3720
3721 case cris_asr_op:
3722 asr_op (inst, inst_env);
3723 break;
3724
3725 case cris_asrq_op:
3726 asrq_op (inst, inst_env);
3727 break;
3728
3729 case cris_ax_ei_setf_op:
3730 ax_ei_setf_op (inst, inst_env);
3731 break;
3732
3733 case cris_bdap_prefix:
3734 bdap_prefix (inst, inst_env);
3735 break;
3736
3737 case cris_biap_prefix:
3738 biap_prefix (inst, inst_env);
3739 break;
3740
3741 case cris_break_op:
3742 break_op (inst, inst_env);
3743 break;
3744
3745 case cris_btst_nop_op:
3746 btst_nop_op (inst, inst_env);
3747 break;
3748
3749 case cris_clearf_di_op:
3750 clearf_di_op (inst, inst_env);
3751 break;
3752
3753 case cris_dip_prefix:
3754 dip_prefix (inst, inst_env);
3755 break;
3756
3757 case cris_dstep_logshift_mstep_neg_not_op:
3758 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3759 break;
3760
3761 case cris_eight_bit_offset_branch_op:
3762 eight_bit_offset_branch_op (inst, inst_env);
3763 break;
3764
3765 case cris_move_mem_to_reg_movem_op:
3766 move_mem_to_reg_movem_op (inst, inst_env);
3767 break;
3768
3769 case cris_move_reg_to_mem_movem_op:
3770 move_reg_to_mem_movem_op (inst, inst_env);
3771 break;
3772
3773 case cris_move_to_preg_op:
be8626e0 3774 move_to_preg_op (gdbarch, inst, inst_env);
29134980
OF
3775 break;
3776
3777 case cris_muls_op:
3778 muls_op (inst, inst_env);
3779 break;
3780
3781 case cris_mulu_op:
3782 mulu_op (inst, inst_env);
3783 break;
3784
3785 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3786 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3787 break;
3788
3789 case cris_none_reg_mode_clear_test_op:
3790 none_reg_mode_clear_test_op (inst, inst_env);
3791 break;
3792
3793 case cris_none_reg_mode_jump_op:
3794 none_reg_mode_jump_op (inst, inst_env);
3795 break;
3796
3797 case cris_none_reg_mode_move_from_preg_op:
be8626e0 3798 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
29134980
OF
3799 break;
3800
3801 case cris_quick_mode_add_sub_op:
3802 quick_mode_add_sub_op (inst, inst_env);
3803 break;
3804
3805 case cris_quick_mode_and_cmp_move_or_op:
3806 quick_mode_and_cmp_move_or_op (inst, inst_env);
3807 break;
3808
3809 case cris_quick_mode_bdap_prefix:
3810 quick_mode_bdap_prefix (inst, inst_env);
3811 break;
3812
3813 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3814 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3815 break;
3816
3817 case cris_reg_mode_clear_op:
3818 reg_mode_clear_op (inst, inst_env);
3819 break;
3820
3821 case cris_reg_mode_jump_op:
3822 reg_mode_jump_op (inst, inst_env);
3823 break;
3824
3825 case cris_reg_mode_move_from_preg_op:
3826 reg_mode_move_from_preg_op (inst, inst_env);
3827 break;
3828
3829 case cris_reg_mode_test_op:
3830 reg_mode_test_op (inst, inst_env);
3831 break;
3832
3833 case cris_scc_op:
3834 scc_op (inst, inst_env);
3835 break;
3836
3837 case cris_sixteen_bit_offset_branch_op:
3838 sixteen_bit_offset_branch_op (inst, inst_env);
3839 break;
3840
3841 case cris_three_operand_add_sub_cmp_and_or_op:
3842 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3843 break;
3844
3845 case cris_three_operand_bound_op:
3846 three_operand_bound_op (inst, inst_env);
3847 break;
3848
3849 case cris_two_operand_bound_op:
3850 two_operand_bound_op (inst, inst_env);
3851 break;
3852
3853 case cris_xor_op:
3854 xor_op (inst, inst_env);
3855 break;
3856 }
3857}
3858
3859/* This wrapper is to avoid cris_get_assembler being called before
3860 exec_bfd has been set. */
3861
3862static int
a89aa300 3863cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3864{
a89aa300 3865 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3866 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3867 disassembler, even when there is no BFD. Does something like
3868 "gdb; target remote; disassmeble *0x123" work? */
3869 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3870 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3871 gdb_assert (print_insn != NULL);
3872 return print_insn (addr, info);
29134980
OF
3873}
3874
dbbff683
OF
3875/* Copied from <asm/elf.h>. */
3876typedef unsigned long elf_greg_t;
3877
3878/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3879#define CRISV10_ELF_NGREG 35
3880typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3881
3882#define CRISV32_ELF_NGREG 32
3883typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3884
3885/* Unpack an elf_gregset_t into GDB's register cache. */
3886
a78f21af 3887static void
c6b4e5a2 3888cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
dbbff683 3889{
7fbe2eba
UW
3890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
dbbff683
OF
3892 int i;
3893 elf_greg_t *regp = *gregsetp;
3894 static char zerobuf[4] = {0};
3895
3896 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3897 knows about the actual size of each register so that's no problem. */
3898 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3899 {
c6b4e5a2 3900 regcache_raw_supply (regcache, i, (char *)&regp[i]);
dbbff683 3901 }
c600d464
OF
3902
3903 if (tdep->cris_version == 32)
3904 {
3905 /* Needed to set pseudo-register PC for CRISv32. */
3906 /* FIXME: If ERP is in a delay slot at this point then the PC will
3907 be wrong. Issue a warning to alert the user. */
7fbe2eba 3908 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
c600d464
OF
3909 (char *)&regp[ERP_REGNUM]);
3910
3911 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3912 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3913 }
dbbff683
OF
3914}
3915
3916/* Use a local version of this function to get the correct types for
3917 regsets, until multi-arch core support is ready. */
3918
3919static void
9eefc95f
UW
3920fetch_core_registers (struct regcache *regcache,
3921 char *core_reg_sect, unsigned core_reg_size,
dbbff683
OF
3922 int which, CORE_ADDR reg_addr)
3923{
3924 elf_gregset_t gregset;
3925
3926 switch (which)
3927 {
3928 case 0:
c600d464
OF
3929 if (core_reg_size != sizeof (elf_gregset_t)
3930 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3931 {
8a3fe4f8 3932 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3933 }
3934 else
3935 {
3936 memcpy (&gregset, core_reg_sect, sizeof (gregset));
9eefc95f 3937 cris_supply_gregset (regcache, &gregset);
dbbff683
OF
3938 }
3939
3940 default:
3941 /* We've covered all the kinds of registers we know about here,
3942 so this must be something we wouldn't know what to do with
3943 anyway. Just ignore it. */
3944 break;
3945 }
3946}
3947
3948static struct core_fns cris_elf_core_fns =
3949{
3950 bfd_target_elf_flavour, /* core_flavour */
3951 default_check_format, /* check_format */
3952 default_core_sniffer, /* core_sniffer */
3953 fetch_core_registers, /* core_read_registers */
3954 NULL /* next */
3955};
3956
a78f21af
AC
3957extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3958
29134980
OF
3959void
3960_initialize_cris_tdep (void)
3961{
a5f6c8f5
OF
3962 static struct cmd_list_element *cris_set_cmdlist;
3963 static struct cmd_list_element *cris_show_cmdlist;
3964
29134980
OF
3965 struct cmd_list_element *c;
3966
3967 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3968
29134980 3969 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3970 add_setshow_uinteger_cmd ("cris-version", class_support,
3971 &usr_cmd_cris_version,
7915a72c
AC
3972 _("Set the current CRIS version."),
3973 _("Show the current CRIS version."),
bdd56253
OF
3974 _("\
3975Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3976Defaults to 10. "),
2c5b56ce 3977 set_cris_version,
0963b4bd
MS
3978 NULL, /* FIXME: i18n: Current CRIS version
3979 is %s. */
a5f6c8f5 3980 &setlist, &showlist);
0e6bdb31
OF
3981
3982 add_setshow_enum_cmd ("cris-mode", class_support,
3983 cris_modes, &usr_cmd_cris_mode,
3984 _("Set the current CRIS mode."),
3985 _("Show the current CRIS mode."),
bdd56253
OF
3986 _("\
3987Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3988Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3989 set_cris_mode,
3990 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3991 &setlist, &showlist);
dbbff683 3992
a5f6c8f5
OF
3993 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3994 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3995 _("Set the usage of Dwarf-2 CFI for CRIS."),
3996 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3997 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3998 set_cris_dwarf2_cfi,
0963b4bd
MS
3999 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI
4000 for CRIS is %d. */
a5f6c8f5
OF
4001 &setlist, &showlist);
4002
52bd1401 4003 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
4004}
4005
4006/* Prints out all target specific values. */
4007
4008static void
4009cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
4010{
7fbe2eba 4011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
29134980
OF
4012 if (tdep != NULL)
4013 {
4014 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4015 tdep->cris_version);
0e6bdb31
OF
4016 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4017 tdep->cris_mode);
a5f6c8f5
OF
4018 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4019 tdep->cris_dwarf2_cfi);
29134980
OF
4020 }
4021}
4022
4023static void
a5f6c8f5
OF
4024set_cris_version (char *ignore_args, int from_tty,
4025 struct cmd_list_element *c)
29134980
OF
4026{
4027 struct gdbarch_info info;
4028
a5f6c8f5 4029 usr_cmd_cris_version_valid = 1;
29134980 4030
a5f6c8f5
OF
4031 /* Update the current architecture, if needed. */
4032 gdbarch_info_init (&info);
4033 if (!gdbarch_update_p (info))
4034 internal_error (__FILE__, __LINE__,
e2e0b3e5 4035 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4036}
4037
0e6bdb31
OF
4038static void
4039set_cris_mode (char *ignore_args, int from_tty,
4040 struct cmd_list_element *c)
4041{
4042 struct gdbarch_info info;
4043
4044 /* Update the current architecture, if needed. */
4045 gdbarch_info_init (&info);
4046 if (!gdbarch_update_p (info))
4047 internal_error (__FILE__, __LINE__,
4048 "cris_gdbarch_update: failed to update architecture.");
4049}
4050
29134980 4051static void
a5f6c8f5
OF
4052set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4053 struct cmd_list_element *c)
29134980
OF
4054{
4055 struct gdbarch_info info;
a5f6c8f5
OF
4056
4057 /* Update the current architecture, if needed. */
4058 gdbarch_info_init (&info);
4059 if (!gdbarch_update_p (info))
4060 internal_error (__FILE__, __LINE__,
e2e0b3e5 4061 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4062}
4063
29134980
OF
4064static struct gdbarch *
4065cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4066{
4067 struct gdbarch *gdbarch;
4068 struct gdbarch_tdep *tdep;
4069 int cris_version;
29134980
OF
4070
4071 if (usr_cmd_cris_version_valid)
4072 {
4073 /* Trust the user's CRIS version setting. */
4074 cris_version = usr_cmd_cris_version;
4075 }
c600d464
OF
4076 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4077 {
4078 cris_version = 32;
4079 }
29134980
OF
4080 else
4081 {
4082 /* Assume it's CRIS version 10. */
4083 cris_version = 10;
4084 }
4085
29134980
OF
4086 /* Make the current settings visible to the user. */
4087 usr_cmd_cris_version = cris_version;
29134980 4088
0e6bdb31 4089 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4090 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4091 arches != NULL;
4092 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4093 {
a5f6c8f5
OF
4094 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4095 == usr_cmd_cris_version)
0e6bdb31
OF
4096 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4097 == usr_cmd_cris_mode)
a5f6c8f5
OF
4098 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4099 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4100 return arches->gdbarch;
4101 }
4102
4103 /* No matching architecture was found. Create a new one. */
4104 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4105 gdbarch = gdbarch_alloc (&info, tdep);
4106
a5f6c8f5 4107 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4108 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4109 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4110
4111 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4112 switch (info.byte_order)
4113 {
778eb05e 4114 case BFD_ENDIAN_LITTLE:
29134980
OF
4115 /* Ok. */
4116 break;
4117
d7449b42 4118 case BFD_ENDIAN_BIG:
0963b4bd
MS
4119 internal_error (__FILE__, __LINE__,
4120 _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4121 break;
4122
4123 default:
0963b4bd
MS
4124 internal_error (__FILE__, __LINE__,
4125 _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4126 }
4127
b4206d25 4128 set_gdbarch_return_value (gdbarch, cris_return_value);
29134980 4129
29134980 4130 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4131
4132 /* Length of ordinary registers used in push_word and a few other
4133 places. register_size() is the real way to know how big a
4134 register is. */
a5f6c8f5 4135
2e4b5889 4136 set_gdbarch_double_bit (gdbarch, 64);
ea06eb3d 4137 /* The default definition of a long double is 2 * gdbarch_double_bit,
2e4b5889 4138 which means we have to set this explicitly. */
c600d464 4139 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4140
29134980
OF
4141 /* The total amount of space needed to store (in an array called registers)
4142 GDB's copy of the machine's register state. Note: We can not use
d93859e2 4143 cris_register_size at this point, since it relies on gdbarch
29134980
OF
4144 being set. */
4145 switch (tdep->cris_version)
4146 {
4147 case 0:
4148 case 1:
4149 case 2:
4150 case 3:
29134980
OF
4151 case 8:
4152 case 9:
a5f6c8f5
OF
4153 /* Old versions; not supported. */
4154 internal_error (__FILE__, __LINE__,
e2e0b3e5 4155 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4156 break;
4157
4158 case 10:
4159 case 11:
4160 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4161 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4162 set_gdbarch_pc_regnum (gdbarch, 15);
4163 set_gdbarch_register_type (gdbarch, cris_register_type);
4164 /* There are 32 registers (some of which may not be implemented). */
4165 set_gdbarch_num_regs (gdbarch, 32);
4166 set_gdbarch_register_name (gdbarch, cris_register_name);
4167 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4168 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4169
4170 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4171 break;
4172
4173 case 32:
4174 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4175 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4176 and pseudo-register PC (32 bits). */
4177 set_gdbarch_pc_regnum (gdbarch, 32);
4178 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4179 /* 32 registers + pseudo-register PC + 16 support registers. */
4180 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4181 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4182
4183 set_gdbarch_cannot_store_register
4184 (gdbarch, crisv32_cannot_store_register);
4185 set_gdbarch_cannot_fetch_register
4186 (gdbarch, crisv32_cannot_fetch_register);
4187
4188 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4189
4190 set_gdbarch_single_step_through_delay
4191 (gdbarch, crisv32_single_step_through_delay);
4192
29134980
OF
4193 break;
4194
4195 default:
c600d464 4196 internal_error (__FILE__, __LINE__,
e2e0b3e5 4197 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4198 }
4199
c600d464
OF
4200 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4201 have the same ABI). */
2e4b5889
OF
4202 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4203 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4204 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4205 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4206
4207 /* The stack grows downward. */
4208 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4209
4210 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4211
2e4b5889
OF
4212 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4213 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
94afd7a6 4214 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
2e4b5889 4215
a5f6c8f5
OF
4216 if (tdep->cris_dwarf2_cfi == 1)
4217 {
4218 /* Hook in the Dwarf-2 frame sniffer. */
4219 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4220 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
94afd7a6 4221 dwarf2_append_unwinders (gdbarch);
a5f6c8f5
OF
4222 }
4223
0e6bdb31
OF
4224 if (tdep->cris_mode != cris_mode_guru)
4225 {
94afd7a6 4226 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
0e6bdb31 4227 }
a5f6c8f5 4228
94afd7a6 4229 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
2e4b5889 4230 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4231
76a9d10f
MK
4232 set_solib_svr4_fetch_link_map_offsets
4233 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
dbbff683 4234
36482093
AC
4235 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4236 disassembler, even when there is no BFD. Does something like
4237 "gdb; target remote; disassmeble *0x123" work? */
4238 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4239
29134980
OF
4240 return gdbarch;
4241}
This page took 0.985929 seconds and 4 git commands to generate.