2003-01-18 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
51603483 2 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
29134980
OF
3 Contributed by Axis Communications AB.
4 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
5
6This file is part of GDB.
7
8This program is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2 of the License, or
11(at your option) any later version.
12
13This program is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with this program; if not, write to the Free Software
20Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22#include "defs.h"
23#include "frame.h"
24#include "symtab.h"
25#include "inferior.h"
26#include "gdbtypes.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "value.h"
31#include "opcode/cris.h"
32#include "arch-utils.h"
33#include "regcache.h"
34
35/* To get entry_point_address. */
36#include "symfile.h"
37
dbbff683
OF
38#include "solib.h" /* Support for shared libraries. */
39#include "solib-svr4.h" /* For struct link_map_offsets. */
9bbe19fb 40#include "gdb_string.h"
dbbff683
OF
41
42
29134980
OF
43enum cris_num_regs
44{
45 /* There are no floating point registers. Used in gdbserver low-linux.c. */
46 NUM_FREGS = 0,
47
48 /* There are 16 general registers. */
49 NUM_GENREGS = 16,
50
51 /* There are 16 special registers. */
52 NUM_SPECREGS = 16
53};
54
55/* Register numbers of various important registers.
56 FP_REGNUM Contains address of executing stack frame.
57 STR_REGNUM Contains the address of structure return values.
58 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
59 ARG1_REGNUM Contains the first parameter to a function.
60 ARG2_REGNUM Contains the second parameter to a function.
61 ARG3_REGNUM Contains the third parameter to a function.
62 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
63 SP_REGNUM Contains address of top of stack.
64 PC_REGNUM Contains address of next instruction.
65 SRP_REGNUM Subroutine return pointer register.
66 BRP_REGNUM Breakpoint return pointer register. */
67
68/* FP_REGNUM = 8, SP_REGNUM = 14, and PC_REGNUM = 15 have been incorporated
69 into the multi-arch framework. */
70
71enum cris_regnums
72{
73 /* Enums with respect to the general registers, valid for all
74 CRIS versions. */
75 STR_REGNUM = 9,
76 RET_REGNUM = 10,
77 ARG1_REGNUM = 10,
78 ARG2_REGNUM = 11,
79 ARG3_REGNUM = 12,
80 ARG4_REGNUM = 13,
81
82 /* Enums with respect to the special registers, some of which may not be
83 applicable to all CRIS versions. */
84 P0_REGNUM = 16,
85 VR_REGNUM = 17,
86 P2_REGNUM = 18,
87 P3_REGNUM = 19,
88 P4_REGNUM = 20,
89 CCR_REGNUM = 21,
90 MOF_REGNUM = 23,
91 P8_REGNUM = 24,
92 IBR_REGNUM = 25,
93 IRP_REGNUM = 26,
94 SRP_REGNUM = 27,
95 BAR_REGNUM = 28,
2a9ecef2 96 DCCR_REGNUM = 29,
29134980
OF
97 BRP_REGNUM = 30,
98 USP_REGNUM = 31
99};
100
101extern const struct cris_spec_reg cris_spec_regs[];
102
103/* CRIS version, set via the user command 'set cris-version'. Affects
104 register names and sizes.*/
105static int usr_cmd_cris_version;
106
107/* Indicates whether to trust the above variable. */
108static int usr_cmd_cris_version_valid = 0;
109
110/* CRIS mode, set via the user command 'set cris-mode'. Affects availability
111 of some registers. */
112static const char *usr_cmd_cris_mode;
113
114/* Indicates whether to trust the above variable. */
115static int usr_cmd_cris_mode_valid = 0;
116
117static const char CRIS_MODE_USER[] = "CRIS_MODE_USER";
118static const char CRIS_MODE_SUPERVISOR[] = "CRIS_MODE_SUPERVISOR";
119static const char *cris_mode_enums[] =
120{
121 CRIS_MODE_USER,
122 CRIS_MODE_SUPERVISOR,
123 0
124};
125
126/* CRIS ABI, set via the user command 'set cris-abi'.
127 There are two flavours:
128 1. Original ABI with 32-bit doubles, where arguments <= 4 bytes are
129 passed by value.
130 2. New ABI with 64-bit doubles, where arguments <= 8 bytes are passed by
131 value. */
132static const char *usr_cmd_cris_abi;
133
134/* Indicates whether to trust the above variable. */
135static int usr_cmd_cris_abi_valid = 0;
136
137/* These variables are strings instead of enums to make them usable as
138 parameters to add_set_enum_cmd. */
139static const char CRIS_ABI_ORIGINAL[] = "CRIS_ABI_ORIGINAL";
140static const char CRIS_ABI_V2[] = "CRIS_ABI_V2";
141static const char CRIS_ABI_SYMBOL[] = ".$CRIS_ABI_V2";
142static const char *cris_abi_enums[] =
143{
144 CRIS_ABI_ORIGINAL,
145 CRIS_ABI_V2,
146 0
147};
148
149/* CRIS architecture specific information. */
150struct gdbarch_tdep
151{
152 int cris_version;
153 const char *cris_mode;
154 const char *cris_abi;
155};
156
157/* Functions for accessing target dependent data. */
158
159static int
160cris_version (void)
161{
162 return (gdbarch_tdep (current_gdbarch)->cris_version);
163}
164
165static const char *
166cris_mode (void)
167{
168 return (gdbarch_tdep (current_gdbarch)->cris_mode);
169}
170
171static const char *
172cris_abi (void)
173{
174 return (gdbarch_tdep (current_gdbarch)->cris_abi);
175}
176
177/* For saving call-clobbered contents in R9 when returning structs. */
178static CORE_ADDR struct_return_address;
179
180struct frame_extra_info
181{
182 CORE_ADDR return_pc;
183 int leaf_function;
184};
185
186/* The instruction environment needed to find single-step breakpoints. */
187typedef
188struct instruction_environment
189{
190 unsigned long reg[NUM_GENREGS];
191 unsigned long preg[NUM_SPECREGS];
192 unsigned long branch_break_address;
193 unsigned long delay_slot_pc;
194 unsigned long prefix_value;
195 int branch_found;
196 int prefix_found;
197 int invalid;
198 int slot_needed;
199 int delay_slot_pc_active;
200 int xflag_found;
201 int disable_interrupt;
202} inst_env_type;
203
204/* Save old breakpoints in order to restore the state before a single_step.
205 At most, two breakpoints will have to be remembered. */
206typedef
207char binsn_quantum[BREAKPOINT_MAX];
208static binsn_quantum break_mem[2];
209static CORE_ADDR next_pc = 0;
210static CORE_ADDR branch_target_address = 0;
211static unsigned char branch_break_inserted = 0;
212
213/* Machine-dependencies in CRIS for opcodes. */
214
215/* Instruction sizes. */
216enum cris_instruction_sizes
217{
218 INST_BYTE_SIZE = 0,
219 INST_WORD_SIZE = 1,
220 INST_DWORD_SIZE = 2
221};
222
223/* Addressing modes. */
224enum cris_addressing_modes
225{
226 REGISTER_MODE = 1,
227 INDIRECT_MODE = 2,
228 AUTOINC_MODE = 3
229};
230
231/* Prefix addressing modes. */
232enum cris_prefix_addressing_modes
233{
234 PREFIX_INDEX_MODE = 2,
235 PREFIX_ASSIGN_MODE = 3,
236
237 /* Handle immediate byte offset addressing mode prefix format. */
238 PREFIX_OFFSET_MODE = 2
239};
240
241/* Masks for opcodes. */
242enum cris_opcode_masks
243{
244 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
245 SIGNED_EXTEND_BIT_MASK = 0x2,
246 SIGNED_BYTE_MASK = 0x80,
247 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
248 SIGNED_WORD_MASK = 0x8000,
249 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
250 SIGNED_DWORD_MASK = 0x80000000,
251 SIGNED_QUICK_VALUE_MASK = 0x20,
252 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
253};
254
255/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
256 Bit 15 - 12 Operand2
257 11 - 10 Mode
258 9 - 6 Opcode
259 5 - 4 Size
260 3 - 0 Operand1 */
261
262static int
263cris_get_operand2 (unsigned short insn)
264{
265 return ((insn & 0xF000) >> 12);
266}
267
268static int
269cris_get_mode (unsigned short insn)
270{
271 return ((insn & 0x0C00) >> 10);
272}
273
274static int
275cris_get_opcode (unsigned short insn)
276{
277 return ((insn & 0x03C0) >> 6);
278}
279
280static int
281cris_get_size (unsigned short insn)
282{
283 return ((insn & 0x0030) >> 4);
284}
285
286static int
287cris_get_operand1 (unsigned short insn)
288{
289 return (insn & 0x000F);
290}
291
292/* Additional functions in order to handle opcodes. */
293
294static int
295cris_get_wide_opcode (unsigned short insn)
296{
297 return ((insn & 0x03E0) >> 5);
298}
299
300static int
301cris_get_short_size (unsigned short insn)
302{
303 return ((insn & 0x0010) >> 4);
304}
305
306static int
307cris_get_quick_value (unsigned short insn)
308{
309 return (insn & 0x003F);
310}
311
312static int
313cris_get_bdap_quick_offset (unsigned short insn)
314{
315 return (insn & 0x00FF);
316}
317
318static int
319cris_get_branch_short_offset (unsigned short insn)
320{
321 return (insn & 0x00FF);
322}
323
324static int
325cris_get_asr_shift_steps (unsigned long value)
326{
327 return (value & 0x3F);
328}
329
330static int
331cris_get_asr_quick_shift_steps (unsigned short insn)
332{
333 return (insn & 0x1F);
334}
335
336static int
337cris_get_clear_size (unsigned short insn)
338{
339 return ((insn) & 0xC000);
340}
341
342static int
343cris_is_signed_extend_bit_on (unsigned short insn)
344{
345 return (((insn) & 0x20) == 0x20);
346}
347
348static int
349cris_is_xflag_bit_on (unsigned short insn)
350{
351 return (((insn) & 0x1000) == 0x1000);
352}
353
354static void
355cris_set_size_to_dword (unsigned short *insn)
356{
357 *insn &= 0xFFCF;
358 *insn |= 0x20;
359}
360
8535cb38 361static signed char
29134980
OF
362cris_get_signed_offset (unsigned short insn)
363{
8535cb38 364 return ((signed char) (insn & 0x00FF));
29134980
OF
365}
366
367/* Calls an op function given the op-type, working on the insn and the
368 inst_env. */
369static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
370
371static CORE_ADDR cris_skip_prologue_main (CORE_ADDR pc, int frameless_p);
372
373static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
374 struct gdbarch_list *);
375
376static int cris_delayed_get_disassembler (bfd_vma, disassemble_info *);
377
378static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
379
380static void cris_version_update (char *ignore_args, int from_tty,
381 struct cmd_list_element *c);
382
383static void cris_mode_update (char *ignore_args, int from_tty,
384 struct cmd_list_element *c);
385
386static void cris_abi_update (char *ignore_args, int from_tty,
387 struct cmd_list_element *c);
388
389static CORE_ADDR bfd_lookup_symbol (bfd *, const char *);
390
391/* Frames information. The definition of the struct frame_info is
392
393 CORE_ADDR frame
394 CORE_ADDR pc
5a203e44 395 enum frame_type type;
29134980
OF
396 CORE_ADDR return_pc
397 int leaf_function
398
399 If the compilation option -fno-omit-frame-pointer is present the
400 variable frame will be set to the content of R8 which is the frame
401 pointer register.
402
403 The variable pc contains the address where execution is performed
404 in the present frame. The innermost frame contains the current content
405 of the register PC. All other frames contain the content of the
406 register PC in the next frame.
407
5a203e44
AC
408 The variable `type' indicates the frame's type: normal, SIGTRAMP
409 (associated with a signal handler), dummy (associated with a dummy
410 frame).
29134980
OF
411
412 The variable return_pc contains the address where execution should be
413 resumed when the present frame has finished, the return address.
414
415 The variable leaf_function is 1 if the return address is in the register
416 SRP, and 0 if it is on the stack.
417
418 Prologue instructions C-code.
419 The prologue may consist of (-fno-omit-frame-pointer)
420 1) 2)
421 push srp
422 push r8 push r8
423 move.d sp,r8 move.d sp,r8
424 subq X,sp subq X,sp
425 movem rY,[sp] movem rY,[sp]
426 move.S rZ,[r8-U] move.S rZ,[r8-U]
427
428 where 1 is a non-terminal function, and 2 is a leaf-function.
429
430 Note that this assumption is extremely brittle, and will break at the
431 slightest change in GCC's prologue.
432
433 If local variables are declared or register contents are saved on stack
434 the subq-instruction will be present with X as the number of bytes
435 needed for storage. The reshuffle with respect to r8 may be performed
436 with any size S (b, w, d) and any of the general registers Z={0..13}.
437 The offset U should be representable by a signed 8-bit value in all cases.
438 Thus, the prefix word is assumed to be immediate byte offset mode followed
439 by another word containing the instruction.
440
441 Degenerate cases:
442 3)
443 push r8
444 move.d sp,r8
445 move.d r8,sp
446 pop r8
447
448 Prologue instructions C++-code.
449 Case 1) and 2) in the C-code may be followed by
450
451 move.d r10,rS ; this
452 move.d r11,rT ; P1
453 move.d r12,rU ; P2
454 move.d r13,rV ; P3
455 move.S [r8+U],rZ ; P4
456
457 if any of the call parameters are stored. The host expects these
458 instructions to be executed in order to get the call parameters right. */
459
460/* Examine the prologue of a function. The variable ip is the address of
461 the first instruction of the prologue. The variable limit is the address
462 of the first instruction after the prologue. The variable fi contains the
463 information in struct frame_info. The variable frameless_p controls whether
464 the entire prologue is examined (0) or just enough instructions to
465 determine that it is a prologue (1). */
466
467CORE_ADDR
468cris_examine (CORE_ADDR ip, CORE_ADDR limit, struct frame_info *fi,
469 int frameless_p)
470{
471 /* Present instruction. */
472 unsigned short insn;
473
474 /* Next instruction, lookahead. */
475 unsigned short insn_next;
476 int regno;
477
478 /* Is there a push fp? */
479 int have_fp;
480
481 /* Number of byte on stack used for local variables and movem. */
482 int val;
483
484 /* Highest register number in a movem. */
485 int regsave;
486
487 /* move.d r<source_register>,rS */
488 short source_register;
489
490 /* This frame is with respect to a leaf until a push srp is found. */
da50a4b7 491 get_frame_extra_info (fi)->leaf_function = 1;
29134980
OF
492
493 /* This frame is without the FP until a push fp is found. */
494 have_fp = 0;
495
496 /* Assume nothing on stack. */
497 val = 0;
498 regsave = -1;
499
500 /* No information about register contents so far. */
501
502 /* We only want to know the end of the prologue when fi->saved_regs == 0.
503 When the saved registers are allocated full information is required. */
b2fb4676 504 if (get_frame_saved_regs (fi))
29134980
OF
505 {
506 for (regno = 0; regno < NUM_REGS; regno++)
b2fb4676 507 get_frame_saved_regs (fi)[regno] = 0;
29134980
OF
508 }
509
510 /* Find the prologue instructions. */
511 do
512 {
513 insn = read_memory_unsigned_integer (ip, sizeof (short));
514 ip += sizeof (short);
515 if (insn == 0xE1FC)
516 {
517 /* push <reg> 32 bit instruction */
518 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
519 ip += sizeof (short);
520 regno = cris_get_operand2 (insn_next);
dbbff683
OF
521
522 /* This check, meant to recognize srp, used to be regno ==
523 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
524 if (insn_next == 0xBE7E)
29134980
OF
525 {
526 if (frameless_p)
527 {
528 return ip;
529 }
da50a4b7 530 get_frame_extra_info (fi)->leaf_function = 0;
29134980
OF
531 }
532 else if (regno == FP_REGNUM)
533 {
534 have_fp = 1;
535 }
536 }
537 else if (insn == 0x866E)
538 {
539 /* move.d sp,r8 */
540 if (frameless_p)
541 {
542 return ip;
543 }
544 continue;
545 }
546 else if (cris_get_operand2 (insn) == SP_REGNUM
547 && cris_get_mode (insn) == 0x0000
548 && cris_get_opcode (insn) == 0x000A)
549 {
550 /* subq <val>,sp */
551 val = cris_get_quick_value (insn);
552 }
553 else if (cris_get_mode (insn) == 0x0002
554 && cris_get_opcode (insn) == 0x000F
555 && cris_get_size (insn) == 0x0003
556 && cris_get_operand1 (insn) == SP_REGNUM)
557 {
558 /* movem r<regsave>,[sp] */
559 if (frameless_p)
560 {
561 return ip;
562 }
563 regsave = cris_get_operand2 (insn);
564 }
565 else if (cris_get_operand2 (insn) == SP_REGNUM
566 && ((insn & 0x0F00) >> 8) == 0x0001
567 && (cris_get_signed_offset (insn) < 0))
568 {
569 /* Immediate byte offset addressing prefix word with sp as base
570 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
571 is between 64 and 128.
572 movem r<regsave>,[sp=sp-<val>] */
573 val = -cris_get_signed_offset (insn);
574 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
575 ip += sizeof (short);
576 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
577 && cris_get_opcode (insn_next) == 0x000F
578 && cris_get_size (insn_next) == 0x0003
579 && cris_get_operand1 (insn_next) == SP_REGNUM)
580 {
581 if (frameless_p)
582 {
583 return ip;
584 }
585 regsave = cris_get_operand2 (insn_next);
586 }
587 else
588 {
589 /* The prologue ended before the limit was reached. */
590 ip -= 2 * sizeof (short);
591 break;
592 }
593 }
594 else if (cris_get_mode (insn) == 0x0001
595 && cris_get_opcode (insn) == 0x0009
596 && cris_get_size (insn) == 0x0002)
597 {
598 /* move.d r<10..13>,r<0..15> */
599 if (frameless_p)
600 {
601 return ip;
602 }
603 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
604
605 /* FIXME? In the glibc solibs, the prologue might contain something
606 like (this example taken from relocate_doit):
607 move.d $pc,$r0
608 sub.d 0xfffef426,$r0
609 which isn't covered by the source_register check below. Question
610 is whether to add a check for this combo, or make better use of
611 the limit variable instead. */
29134980
OF
612 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
613 {
614 /* The prologue ended before the limit was reached. */
615 ip -= sizeof (short);
616 break;
617 }
618 }
619 else if (cris_get_operand2 (insn) == FP_REGNUM
620 /* The size is a fixed-size. */
621 && ((insn & 0x0F00) >> 8) == 0x0001
622 /* A negative offset. */
623 && (cris_get_signed_offset (insn) < 0))
624 {
625 /* move.S rZ,[r8-U] (?) */
626 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
627 ip += sizeof (short);
628 regno = cris_get_operand2 (insn_next);
629 if ((regno >= 0 && regno < SP_REGNUM)
630 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
631 && cris_get_opcode (insn_next) == 0x000F)
632 {
633 /* move.S rZ,[r8-U] */
634 continue;
635 }
636 else
637 {
638 /* The prologue ended before the limit was reached. */
639 ip -= 2 * sizeof (short);
640 break;
641 }
642 }
643 else if (cris_get_operand2 (insn) == FP_REGNUM
644 /* The size is a fixed-size. */
645 && ((insn & 0x0F00) >> 8) == 0x0001
646 /* A positive offset. */
647 && (cris_get_signed_offset (insn) > 0))
648 {
649 /* move.S [r8+U],rZ (?) */
650 insn_next = read_memory_unsigned_integer (ip, sizeof (short));
651 ip += sizeof (short);
652 regno = cris_get_operand2 (insn_next);
653 if ((regno >= 0 && regno < SP_REGNUM)
654 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
655 && cris_get_opcode (insn_next) == 0x0009
656 && cris_get_operand1 (insn_next) == regno)
657 {
658 /* move.S [r8+U],rZ */
659 continue;
660 }
661 else
662 {
663 /* The prologue ended before the limit was reached. */
664 ip -= 2 * sizeof (short);
665 break;
666 }
667 }
668 else
669 {
670 /* The prologue ended before the limit was reached. */
671 ip -= sizeof (short);
672 break;
673 }
674 }
675 while (ip < limit);
676
677 /* We only want to know the end of the prologue when
678 fi->saved_regs == 0. */
b2fb4676 679 if (!get_frame_saved_regs (fi))
29134980
OF
680 return ip;
681
682 if (have_fp)
683 {
b2fb4676 684 get_frame_saved_regs (fi)[FP_REGNUM] = get_frame_base (fi);
29134980
OF
685
686 /* Calculate the addresses. */
687 for (regno = regsave; regno >= 0; regno--)
688 {
b2fb4676 689 get_frame_saved_regs (fi)[regno] = get_frame_base (fi) - val;
29134980
OF
690 val -= 4;
691 }
da50a4b7 692 if (get_frame_extra_info (fi)->leaf_function)
29134980
OF
693 {
694 /* Set the register SP to contain the stack pointer of
695 the caller. */
b2fb4676 696 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 4;
29134980
OF
697 }
698 else
699 {
700 /* Set the register SP to contain the stack pointer of
701 the caller. */
b2fb4676 702 get_frame_saved_regs (fi)[SP_REGNUM] = get_frame_base (fi) + 8;
29134980
OF
703
704 /* Set the register SRP to contain the return address of
705 the caller. */
b2fb4676 706 get_frame_saved_regs (fi)[SRP_REGNUM] = get_frame_base (fi) + 4;
29134980
OF
707 }
708 }
709 return ip;
710}
711
712/* Advance pc beyond any function entry prologue instructions at pc
713 to reach some "real" code. */
714
715CORE_ADDR
716cris_skip_prologue (CORE_ADDR pc)
717{
718 return cris_skip_prologue_main (pc, 0);
719}
720
721/* As cris_skip_prologue, but stops as soon as it knows that the function
722 has a frame. Its result is equal to its input pc if the function is
723 frameless, unequal otherwise. */
724
725CORE_ADDR
726cris_skip_prologue_frameless_p (CORE_ADDR pc)
727{
728 return cris_skip_prologue_main (pc, 1);
729}
730
731/* Given a PC value corresponding to the start of a function, return the PC
732 of the first instruction after the function prologue. */
733
734CORE_ADDR
735cris_skip_prologue_main (CORE_ADDR pc, int frameless_p)
736{
f6c609c4
AC
737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
738 struct frame_info *fi;
29134980
OF
739 struct symtab_and_line sal = find_pc_line (pc, 0);
740 int best_limit;
741 CORE_ADDR pc_after_prologue;
742
f6c609c4
AC
743 /* frame_info now contains dynamic memory. Since fi is a dummy
744 here, I don't bother allocating memory for saved_regs. */
745 fi = deprecated_frame_xmalloc_with_cleanup (0, sizeof (struct frame_extra_info));
29134980
OF
746
747 /* If there is no symbol information then sal.end == 0, and we end up
748 examining only the first instruction in the function prologue.
749 Exaggerating the limit seems to be harmless. */
750 if (sal.end > 0)
751 best_limit = sal.end;
752 else
753 best_limit = pc + 100;
754
f6c609c4
AC
755 pc_after_prologue = cris_examine (pc, best_limit, fi, frameless_p);
756 do_cleanups (old_chain);
29134980
OF
757 return pc_after_prologue;
758}
759
760/* Use the program counter to determine the contents and size of a breakpoint
761 instruction. It returns a pointer to a string of bytes that encode a
762 breakpoint instruction, stores the length of the string to *lenptr, and
763 adjusts pcptr (if necessary) to point to the actual memory location where
764 the breakpoint should be inserted. */
765
5402eed1 766const unsigned char *
29134980
OF
767cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
768{
769 static unsigned char break_insn[] = {0x38, 0xe9};
770 *lenptr = 2;
771
772 return break_insn;
773}
774
775/* Returns the register SRP (subroutine return pointer) which must contain
776 the content of the register PC after a function call. */
777
a208b0cb
AC
778static CORE_ADDR
779cris_saved_pc_after_call (struct frame_info *frame)
29134980
OF
780{
781 return read_register (SRP_REGNUM);
782}
783
784/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
785 0 otherwise. */
786
787int
788cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
789{
790 int version = cris_version ();
791
792 switch (spec_reg.applicable_version)
793 {
794 case cris_ver_version_all:
795 return 1;
796 case cris_ver_warning:
797 /* Indeterminate/obsolete. */
798 return 0;
799 case cris_ver_sim:
800 /* Simulator only. */
801 return 0;
802 case cris_ver_v0_3:
803 return (version >= 0 && version <= 3);
804 case cris_ver_v3p:
805 return (version >= 3);
806 case cris_ver_v8:
807 return (version == 8 || version == 9);
808 case cris_ver_v8p:
809 return (version >= 8);
810 case cris_ver_v10p:
811 return (version >= 10);
812 default:
813 /* Invalid cris version. */
814 return 0;
815 }
816}
817
818/* Returns the register size in unit byte. Returns 0 for an unimplemented
819 register, -1 for an invalid register. */
820
821int
822cris_register_size (int regno)
823{
824 int i;
825 int spec_regno;
826
827 if (regno >= 0 && regno < NUM_GENREGS)
828 {
829 /* General registers (R0 - R15) are 32 bits. */
830 return 4;
831 }
832 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
833 {
834 /* Special register (R16 - R31). cris_spec_regs is zero-based.
835 Adjust regno accordingly. */
836 spec_regno = regno - NUM_GENREGS;
837
838 /* The entries in cris_spec_regs are stored in register number order,
839 which means we can shortcut into the array when searching it. */
840 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
841 {
842 if (cris_spec_regs[i].number == spec_regno
843 && cris_spec_reg_applicable (cris_spec_regs[i]))
844 /* Go with the first applicable register. */
845 return cris_spec_regs[i].reg_size;
846 }
847 /* Special register not applicable to this CRIS version. */
848 return 0;
849 }
850 else
851 {
852 /* Invalid register. */
853 return -1;
854 }
855}
856
857/* Nonzero if regno should not be fetched from the target. This is the case
858 for unimplemented (size 0) and non-existant registers. */
859
860int
861cris_cannot_fetch_register (int regno)
862{
863 return ((regno < 0 || regno >= NUM_REGS)
864 || (cris_register_size (regno) == 0));
865}
866
867/* Nonzero if regno should not be written to the target, for various
868 reasons. */
869
870int
871cris_cannot_store_register (int regno)
872{
873 /* There are three kinds of registers we refuse to write to.
874 1. Those that not implemented.
875 2. Those that are read-only (depends on the processor mode).
876 3. Those registers to which a write has no effect.
877 */
878
879 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
880 /* Not implemented. */
881 return 1;
882
883 else if (regno == VR_REGNUM)
884 /* Read-only. */
885 return 1;
886
887 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
888 /* Writing has no effect. */
889 return 1;
890
891 else if (cris_mode () == CRIS_MODE_USER)
892 {
893 if (regno == IBR_REGNUM || regno == BAR_REGNUM || regno == BRP_REGNUM
894 || regno == IRP_REGNUM)
895 /* Read-only in user mode. */
896 return 1;
897 }
898
899 return 0;
900}
901
902/* Returns the register offset for the first byte of register regno's space
903 in the saved register state. Returns -1 for an invalid or unimplemented
904 register. */
905
906int
907cris_register_offset (int regno)
908{
909 int i;
910 int reg_size;
911 int offset = 0;
912
913 if (regno >= 0 && regno < NUM_REGS)
914 {
915 /* FIXME: The offsets should be cached and calculated only once,
916 when the architecture being debugged has changed. */
917 for (i = 0; i < regno; i++)
918 offset += cris_register_size (i);
919
920 return offset;
921 }
922 else
923 {
924 /* Invalid register. */
925 return -1;
926 }
927}
928
929/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
930 of data in register regno. */
931
932struct type *
933cris_register_virtual_type (int regno)
934{
935 if (regno == SP_REGNUM || regno == PC_REGNUM
936 || (regno > P8_REGNUM && regno < USP_REGNUM))
937 {
938 /* SP, PC, IBR, IRP, SRP, BAR, DCCR, BRP */
939 return lookup_pointer_type (builtin_type_void);
940 }
941 else if (regno == P8_REGNUM || regno == USP_REGNUM
942 || (regno >= 0 && regno < SP_REGNUM))
943 {
944 /* R0 - R13, P8, P15 */
945 return builtin_type_unsigned_long;
946 }
947 else if (regno > P3_REGNUM && regno < P8_REGNUM)
948 {
949 /* P4, CCR, DCR0, DCR1 */
950 return builtin_type_unsigned_short;
951 }
952 else if (regno > PC_REGNUM && regno < P4_REGNUM)
953 {
954 /* P0, P1, P2, P3 */
955 return builtin_type_unsigned_char;
956 }
957 else
958 {
959 /* Invalid register. */
960 return builtin_type_void;
961 }
962}
963
964/* Stores a function return value of type type, where valbuf is the address
965 of the value to be stored. */
966
967/* In the original CRIS ABI, R10 is used to store return values. */
968
969void
970cris_abi_original_store_return_value (struct type *type, char *valbuf)
971{
972 int len = TYPE_LENGTH (type);
973
974 if (len <= REGISTER_SIZE)
73937e03 975 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf, len);
29134980
OF
976 else
977 internal_error (__FILE__, __LINE__, "cris_abi_original_store_return_value: type length too large.");
978}
979
980/* In the CRIS ABI V2, R10 and R11 are used to store return values. */
981
982void
983cris_abi_v2_store_return_value (struct type *type, char *valbuf)
984{
985 int len = TYPE_LENGTH (type);
986
987 if (len <= 2 * REGISTER_SIZE)
988 {
989 /* Note that this works since R10 and R11 are consecutive registers. */
73937e03
AC
990 deprecated_write_register_bytes (REGISTER_BYTE (RET_REGNUM), valbuf,
991 len);
29134980
OF
992 }
993 else
994 internal_error (__FILE__, __LINE__, "cris_abi_v2_store_return_value: type length too large.");
995}
996
997/* Return the name of register regno as a string. Return NULL for an invalid or
998 unimplemented register. */
999
5402eed1 1000const char *
29134980
OF
1001cris_register_name (int regno)
1002{
1003 static char *cris_genreg_names[] =
1004 { "r0", "r1", "r2", "r3", \
1005 "r4", "r5", "r6", "r7", \
1006 "r8", "r9", "r10", "r11", \
1007 "r12", "r13", "sp", "pc" };
1008
1009 int i;
1010 int spec_regno;
1011
1012 if (regno >= 0 && regno < NUM_GENREGS)
1013 {
1014 /* General register. */
1015 return cris_genreg_names[regno];
1016 }
1017 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
1018 {
1019 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1020 Adjust regno accordingly. */
1021 spec_regno = regno - NUM_GENREGS;
1022
1023 /* The entries in cris_spec_regs are stored in register number order,
1024 which means we can shortcut into the array when searching it. */
1025 for (i = spec_regno; cris_spec_regs[i].name != NULL; i++)
1026 {
1027 if (cris_spec_regs[i].number == spec_regno
1028 && cris_spec_reg_applicable (cris_spec_regs[i]))
1029 /* Go with the first applicable register. */
1030 return cris_spec_regs[i].name;
1031 }
1032 /* Special register not applicable to this CRIS version. */
1033 return NULL;
1034 }
1035 else
1036 {
1037 /* Invalid register. */
1038 return NULL;
1039 }
1040}
1041
1042int
1043cris_register_bytes_ok (long bytes)
1044{
1045 return (bytes == REGISTER_BYTES);
1046}
1047
1048/* Extract from an array regbuf containing the raw register state a function
1049 return value of type type, and copy that, in virtual format, into
1050 valbuf. */
1051
1052/* In the original CRIS ABI, R10 is used to return values. */
1053
1054void
1055cris_abi_original_extract_return_value (struct type *type, char *regbuf,
1056 char *valbuf)
1057{
1058 int len = TYPE_LENGTH (type);
1059
1060 if (len <= REGISTER_SIZE)
1061 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1062 else
1063 internal_error (__FILE__, __LINE__, "cris_abi_original_extract_return_value: type length too large");
1064}
1065
1066/* In the CRIS ABI V2, R10 and R11 are used to store return values. */
1067
1068void
1069cris_abi_v2_extract_return_value (struct type *type, char *regbuf,
1070 char *valbuf)
1071{
1072 int len = TYPE_LENGTH (type);
1073
1074 if (len <= 2 * REGISTER_SIZE)
1075 memcpy (valbuf, regbuf + REGISTER_BYTE (RET_REGNUM), len);
1076 else
1077 internal_error (__FILE__, __LINE__, "cris_abi_v2_extract_return_value: type length too large");
1078}
1079
1080/* Store the address of the place in which to copy the structure the
1081 subroutine will return. In the CRIS ABI, R9 is used in order to pass
1082 the address of the allocated area where a structure return value must
1083 be stored. R9 is call-clobbered, which means we must save it here for
1084 later use. */
1085
1086void
1087cris_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1088{
1089 write_register (STR_REGNUM, addr);
1090 struct_return_address = addr;
1091}
1092
1093/* Extract from regbuf the address where a function should return a
1094 structure value. It's not there in the CRIS ABI, so we must do it another
1095 way. */
1096
1097CORE_ADDR
1098cris_extract_struct_value_address (char *regbuf)
1099{
1100 return struct_return_address;
1101}
1102
1103/* Returns 1 if a value of the given type being returned from a function
1104 must have space allocated for it on the stack. gcc_p is true if the
1105 function being considered is known to have been compiled by GCC.
1106 In the CRIS ABI, structure return values are passed to the called
1107 function by reference in register R9 to a caller-allocated area, so
1108 this is always true. */
1109
1110int
1111cris_use_struct_convention (int gcc_p, struct type *type)
1112{
1113 return 1;
1114}
1115
1116/* Returns 1 if the given type will be passed by pointer rather than
1117 directly. */
1118
1119/* In the original CRIS ABI, arguments shorter than or equal to 32 bits are
1120 passed by value. */
1121
1122int
1123cris_abi_original_reg_struct_has_addr (int gcc_p, struct type *type)
1124{
1125 return (TYPE_LENGTH (type) > 4);
1126}
1127
1128/* In the CRIS ABI V2, arguments shorter than or equal to 64 bits are passed
1129 by value. */
1130
1131int
1132cris_abi_v2_reg_struct_has_addr (int gcc_p, struct type *type)
1133{
1134 return (TYPE_LENGTH (type) > 8);
1135}
1136
1137/* Returns 1 if the function invocation represented by fi does not have a
1138 stack frame associated with it. Otherwise return 0. */
1139
1140int
1141cris_frameless_function_invocation (struct frame_info *fi)
1142{
5a203e44 1143 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
29134980
OF
1144 return 0;
1145 else
1146 return frameless_look_for_prologue (fi);
1147}
1148
1149/* See frame.h. Determines the address of all registers in the current stack
1150 frame storing each in frame->saved_regs. Space for frame->saved_regs shall
479ab5a0 1151 be allocated by FRAME_INIT_SAVED_REGS using frame_saved_regs_zalloc. */
29134980
OF
1152
1153void
1154cris_frame_init_saved_regs (struct frame_info *fi)
1155{
1156 CORE_ADDR ip;
1157 struct symtab_and_line sal;
1158 int best_limit;
1e2330ba
AC
1159 char *dummy_regs = deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1160 get_frame_base (fi));
29134980
OF
1161
1162 /* Examine the entire prologue. */
1163 register int frameless_p = 0;
1164
1165 /* Has this frame's registers already been initialized? */
b2fb4676 1166 if (get_frame_saved_regs (fi))
29134980
OF
1167 return;
1168
1169 frame_saved_regs_zalloc (fi);
1170
1171 if (dummy_regs)
1172 {
1173 /* I don't see this ever happening, considering the context in which
1174 cris_frame_init_saved_regs is called (always when we're not in
1175 a dummy frame). */
7b5849cc 1176 memcpy (get_frame_saved_regs (fi), dummy_regs, SIZEOF_FRAME_SAVED_REGS);
29134980
OF
1177 }
1178 else
1179 {
50abf9e5 1180 ip = get_pc_function_start (get_frame_pc (fi));
29134980
OF
1181 sal = find_pc_line (ip, 0);
1182
1183 /* If there is no symbol information then sal.end == 0, and we end up
1184 examining only the first instruction in the function prologue.
1185 Exaggerating the limit seems to be harmless. */
1186 if (sal.end > 0)
1187 best_limit = sal.end;
1188 else
1189 best_limit = ip + 100;
1190
1191 cris_examine (ip, best_limit, fi, frameless_p);
1192 }
1193}
1194
1195/* Initialises the extra frame information at the creation of a new frame.
1196 The inparameter fromleaf is 0 when the call is from create_new_frame.
1197 When the call is from get_prev_frame_info, fromleaf is determined by
1198 cris_frameless_function_invocation. */
1199
1200void
1201cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1202{
11c02a10 1203 if (get_next_frame (fi))
29134980
OF
1204 {
1205 /* Called from get_prev_frame. */
11c02a10 1206 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (get_next_frame (fi)));
29134980
OF
1207 }
1208
a00a19e9 1209 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
29134980 1210
da50a4b7
AC
1211 get_frame_extra_info (fi)->return_pc = 0;
1212 get_frame_extra_info (fi)->leaf_function = 0;
29134980 1213
1e2330ba
AC
1214 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1215 get_frame_base (fi),
1216 get_frame_base (fi)))
29134980
OF
1217 {
1218 /* We need to setup fi->frame here because run_stack_dummy gets it wrong
1219 by assuming it's always FP. */
1e2330ba 1220 deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
da50a4b7 1221 get_frame_extra_info (fi)->return_pc =
1e2330ba
AC
1222 deprecated_read_register_dummy (get_frame_pc (fi),
1223 get_frame_base (fi), PC_REGNUM);
29134980
OF
1224
1225 /* FIXME: Is this necessarily true? */
da50a4b7 1226 get_frame_extra_info (fi)->leaf_function = 0;
29134980
OF
1227 }
1228 else
1229 {
1230 cris_frame_init_saved_regs (fi);
1231
1232 /* Check fromleaf/frameless_function_invocation. (FIXME) */
1233
b2fb4676 1234 if (get_frame_saved_regs (fi)[SRP_REGNUM] != 0)
29134980
OF
1235 {
1236 /* SRP was saved on the stack; non-leaf function. */
da50a4b7 1237 get_frame_extra_info (fi)->return_pc =
b2fb4676 1238 read_memory_integer (get_frame_saved_regs (fi)[SRP_REGNUM],
29134980
OF
1239 REGISTER_RAW_SIZE (SRP_REGNUM));
1240 }
1241 else
1242 {
1243 /* SRP is still in a register; leaf function. */
da50a4b7 1244 get_frame_extra_info (fi)->return_pc = read_register (SRP_REGNUM);
29134980 1245 /* FIXME: Should leaf_function be set to 1 here? */
da50a4b7 1246 get_frame_extra_info (fi)->leaf_function = 1;
29134980
OF
1247 }
1248 }
1249}
1250
1251/* Return the content of the frame pointer in the present frame. In other
1252 words, determine the address of the calling function's frame. */
1253
1254CORE_ADDR
1255cris_frame_chain (struct frame_info *fi)
1256{
1e2330ba
AC
1257 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1258 get_frame_base (fi),
1259 get_frame_base (fi)))
29134980 1260 {
1e2330ba 1261 return get_frame_base (fi);
29134980 1262 }
50abf9e5 1263 else if (!inside_entry_file (get_frame_pc (fi)))
29134980 1264 {
c193f6ac 1265 return read_memory_unsigned_integer (get_frame_base (fi), 4);
29134980
OF
1266 }
1267 else
1268 {
1269 return 0;
1270 }
1271}
1272
1273/* Return the saved PC (which equals the return address) of this frame. */
1274
1275CORE_ADDR
1276cris_frame_saved_pc (struct frame_info *fi)
1277{
da50a4b7 1278 return get_frame_extra_info (fi)->return_pc;
29134980
OF
1279}
1280
29134980
OF
1281/* Setup the function arguments for calling a function in the inferior. */
1282
1283CORE_ADDR
1284cris_abi_original_push_arguments (int nargs, struct value **args,
1285 CORE_ADDR sp, int struct_return,
1286 CORE_ADDR struct_addr)
1287{
1288 int stack_alloc;
1289 int stack_offset;
1290 int argreg;
1291 int argnum;
1292 struct type *type;
1293 int len;
1294 CORE_ADDR regval;
1295 char *val;
1296
1297 /* Data and parameters reside in different areas on the stack.
1298 Both frame pointers grow toward higher addresses. */
1299 CORE_ADDR fp_params;
1300 CORE_ADDR fp_data;
1301
1302 /* Are we returning a value using a structure return or a normal value
1303 return? struct_addr is the address of the reserved space for the return
1304 structure to be written on the stack. */
1305 if (struct_return)
1306 {
1307 write_register (STR_REGNUM, struct_addr);
1308 }
1309
1310 /* Make sure there's space on the stack. Allocate space for data and a
1311 parameter to refer to that data. */
1312 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
1313 stack_alloc += (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + REGISTER_SIZE);
1314 sp -= stack_alloc;
1315 /* We may over-allocate a little here, but that won't hurt anything. */
1316
1317 /* Initialize stack frame pointers. */
1318 fp_params = sp;
1319 fp_data = sp + (nargs * REGISTER_SIZE);
1320
1321 /* Now load as many as possible of the first arguments into
1322 registers, and push the rest onto the stack. */
1323 argreg = ARG1_REGNUM;
1324 stack_offset = 0;
1325
1326 for (argnum = 0; argnum < nargs; argnum++)
1327 {
1328 type = VALUE_TYPE (args[argnum]);
1329 len = TYPE_LENGTH (type);
1330 val = (char *) VALUE_CONTENTS (args[argnum]);
1331
1332 if (len <= REGISTER_SIZE && argreg <= ARG4_REGNUM)
1333 {
1334 /* Data fits in a register; put it in the first available
1335 register. */
1336 write_register (argreg, *(unsigned long *) val);
1337 argreg++;
1338 }
1339 else if (len > REGISTER_SIZE && argreg <= ARG4_REGNUM)
1340 {
1341 /* Data does not fit in register; pass it on the stack and
1342 put its address in the first available register. */
1343 write_memory (fp_data, val, len);
1344 write_register (argreg, fp_data);
1345 fp_data += len;
1346 argreg++;
1347 }
1348 else if (len > REGISTER_SIZE)
1349 {
1350 /* Data does not fit in register; put both data and
1351 parameter on the stack. */
1352 write_memory (fp_data, val, len);
1353 write_memory (fp_params, (char *) (&fp_data), REGISTER_SIZE);
1354 fp_data += len;
1355 fp_params += REGISTER_SIZE;
1356 }
1357 else
1358 {
1359 /* Data fits in a register, but we are out of registers;
1360 put the parameter on the stack. */
1361 write_memory (fp_params, val, REGISTER_SIZE);
1362 fp_params += REGISTER_SIZE;
1363 }
1364 }
1365
1366 return sp;
1367}
1368
1369CORE_ADDR
1370cris_abi_v2_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1371 int struct_return, CORE_ADDR struct_addr)
1372{
1373 int stack_alloc;
1374 int stack_offset;
1375 int argreg;
1376 int argnum;
1377
1378 CORE_ADDR regval;
1379
1380 /* The function's arguments and memory allocated by gdb for the arguments to
1381 point at reside in separate areas on the stack.
1382 Both frame pointers grow toward higher addresses. */
1383 CORE_ADDR fp_arg;
1384 CORE_ADDR fp_mem;
1385
1386 /* Are we returning a value using a structure return or a normal value
1387 return? struct_addr is the address of the reserved space for the return
1388 structure to be written on the stack. */
1389 if (struct_return)
1390 {
1391 write_register (STR_REGNUM, struct_addr);
1392 }
1393
1394 /* Allocate enough to keep things word-aligned on both parts of the
1395 stack. */
1396 stack_alloc = 0;
1397 for (argnum = 0; argnum < nargs; argnum++)
1398 {
1399 int len;
1400 int reg_demand;
1401
1402 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1403 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1404
1405 /* reg_demand * REGISTER_SIZE is the amount of memory we might need to
1406 allocate for this argument. 2 * REGISTER_SIZE is the amount of stack
1407 space we might need to pass the argument itself (either by value or by
1408 reference). */
1409 stack_alloc += (reg_demand * REGISTER_SIZE + 2 * REGISTER_SIZE);
1410 }
1411 sp -= stack_alloc;
1412 /* We may over-allocate a little here, but that won't hurt anything. */
1413
1414 /* Initialize frame pointers. */
1415 fp_arg = sp;
1416 fp_mem = sp + (nargs * (2 * REGISTER_SIZE));
1417
1418 /* Now load as many as possible of the first arguments into registers,
1419 and push the rest onto the stack. */
1420 argreg = ARG1_REGNUM;
1421 stack_offset = 0;
1422
1423 for (argnum = 0; argnum < nargs; argnum++)
1424 {
1425 int len;
1426 char *val;
1427 int reg_demand;
1428 int i;
1429
1430 len = TYPE_LENGTH (VALUE_TYPE (args[argnum]));
1431 val = (char *) VALUE_CONTENTS (args[argnum]);
1432
1433 /* How may registers worth of storage do we need for this argument? */
1434 reg_demand = (len / REGISTER_SIZE) + (len % REGISTER_SIZE != 0 ? 1 : 0);
1435
1436 if (len <= (2 * REGISTER_SIZE)
1437 && (argreg + reg_demand - 1 <= ARG4_REGNUM))
1438 {
1439 /* Data passed by value. Fits in available register(s). */
1440 for (i = 0; i < reg_demand; i++)
1441 {
1442 write_register (argreg, *(unsigned long *) val);
1443 argreg++;
1444 val += REGISTER_SIZE;
1445 }
1446 }
1447 else if (len <= (2 * REGISTER_SIZE) && argreg <= ARG4_REGNUM)
1448 {
1449 /* Data passed by value. Does not fit in available register(s).
1450 Use the register(s) first, then the stack. */
1451 for (i = 0; i < reg_demand; i++)
1452 {
1453 if (argreg <= ARG4_REGNUM)
1454 {
1455 write_register (argreg, *(unsigned long *) val);
1456 argreg++;
1457 val += REGISTER_SIZE;
1458 }
1459 else
1460 {
1461 /* I guess this memory write could write the remaining data
1462 all at once instead of in REGISTER_SIZE chunks. */
1463 write_memory (fp_arg, val, REGISTER_SIZE);
1464 fp_arg += REGISTER_SIZE;
1465 val += REGISTER_SIZE;
1466 }
1467 }
1468 }
1469 else if (len > (2 * REGISTER_SIZE))
1470 {
1471 /* Data passed by reference. Put it on the stack. */
1472 write_memory (fp_mem, val, len);
1473 write_memory (fp_arg, (char *) (&fp_mem), REGISTER_SIZE);
1474
1475 /* fp_mem need not be word-aligned since it's just a chunk of
1476 memory being pointed at. That is, += len would do. */
1477 fp_mem += reg_demand * REGISTER_SIZE;
1478 fp_arg += REGISTER_SIZE;
1479 }
1480 else
1481 {
1482 /* Data passed by value. No available registers. Put it on
1483 the stack. */
1484 write_memory (fp_arg, val, len);
1485
1486 /* fp_arg must be word-aligned (i.e., don't += len) to match
1487 the function prologue. */
1488 fp_arg += reg_demand * REGISTER_SIZE;
1489 }
1490 }
1491
1492 return sp;
1493}
1494
1495/* Never put the return address on the stack. The register SRP is pushed
1496 by the called function unless it is a leaf-function. Due to the BRP
1497 register the PC will change when continue is sent. */
1498
1499CORE_ADDR
1500cris_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1501{
1502 write_register (SRP_REGNUM, CALL_DUMMY_ADDRESS ());
1503 return sp;
1504}
1505
1506/* Restore the machine to the state it had before the current frame
1507 was created. Discard the innermost frame from the stack and restore
1508 all saved registers. */
1509
1510void
5ae5f592 1511cris_pop_frame (void)
29134980
OF
1512{
1513 register struct frame_info *fi = get_current_frame ();
1514 register int regno;
1515 register int stack_offset = 0;
1516
1e2330ba
AC
1517 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
1518 get_frame_base (fi),
1519 get_frame_base (fi)))
29134980
OF
1520 {
1521 /* This happens when we hit a breakpoint set at the entry point,
1522 when returning from a dummy frame. */
1523 generic_pop_dummy_frame ();
1524 }
1525 else
1526 {
1527 cris_frame_init_saved_regs (fi);
1528
1529 /* For each register, the address of where it was saved on entry to
1530 the frame now lies in fi->saved_regs[regno], or zero if it was not
1531 saved. This includes special registers such as PC and FP saved in
1532 special ways in the stack frame. The SP_REGNUM is even more
1533 special, the address here is the SP for the next frame, not the
1534 address where the SP was saved. */
1535
1536 /* Restore general registers R0 - R7. They were pushed on the stack
1537 after SP was saved. */
1538 for (regno = 0; regno < FP_REGNUM; regno++)
1539 {
b2fb4676 1540 if (get_frame_saved_regs (fi)[regno])
29134980
OF
1541 {
1542 write_register (regno,
b2fb4676 1543 read_memory_integer (get_frame_saved_regs (fi)[regno], 4));
29134980
OF
1544 }
1545 }
1546
b2fb4676 1547 if (get_frame_saved_regs (fi)[FP_REGNUM])
29134980
OF
1548 {
1549 /* Pop the frame pointer (R8). It was pushed before SP
1550 was saved. */
1551 write_register (FP_REGNUM,
b2fb4676 1552 read_memory_integer (get_frame_saved_regs (fi)[FP_REGNUM], 4));
29134980
OF
1553 stack_offset += 4;
1554
1555 /* Not a leaf function. */
b2fb4676 1556 if (get_frame_saved_regs (fi)[SRP_REGNUM])
29134980
OF
1557 {
1558 /* SRP was pushed before SP was saved. */
1559 stack_offset += 4;
1560 }
1561
1562 /* Restore the SP and adjust for R8 and (possibly) SRP. */
b2fb4676 1563 write_register (SP_REGNUM, get_frame_saved_regs (fi)[FP_REGNUM] + stack_offset);
29134980
OF
1564 }
1565 else
1566 {
1567 /* Currently, we can't get the correct info into fi->saved_regs
1568 without a frame pointer. */
1569 }
1570
1571 /* Restore the PC. */
da50a4b7 1572 write_register (PC_REGNUM, get_frame_extra_info (fi)->return_pc);
29134980
OF
1573 }
1574 flush_cached_frames ();
1575}
1576
1577/* Calculates a value that measures how good inst_args constraints an
1578 instruction. It stems from cris_constraint, found in cris-dis.c. */
1579
1580static int
1581constraint (unsigned int insn, const signed char *inst_args,
1582 inst_env_type *inst_env)
1583{
1584 int retval = 0;
1585 int tmp, i;
1586
1587 const char *s = inst_args;
1588
1589 for (; *s; s++)
1590 switch (*s)
1591 {
1592 case 'm':
1593 if ((insn & 0x30) == 0x30)
1594 return -1;
1595 break;
1596
1597 case 'S':
1598 /* A prefix operand. */
1599 if (inst_env->prefix_found)
1600 break;
1601 else
1602 return -1;
1603
1604 case 'B':
1605 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1606 valid "push" size. In case of special register, it may be != 4. */
1607 if (inst_env->prefix_found)
1608 break;
1609 else
1610 return -1;
1611
1612 case 'D':
1613 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1614 if (!retval)
1615 return -1;
1616 else
1617 retval += 4;
1618 break;
1619
1620 case 'P':
1621 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1622
1623 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1624 {
1625 /* Since we match four bits, we will give a value of
1626 4 - 1 = 3 in a match. If there is a corresponding
1627 exact match of a special register in another pattern, it
1628 will get a value of 4, which will be higher. This should
1629 be correct in that an exact pattern would match better that
1630 a general pattern.
1631 Note that there is a reason for not returning zero; the
1632 pattern for "clear" is partly matched in the bit-pattern
1633 (the two lower bits must be zero), while the bit-pattern
1634 for a move from a special register is matched in the
1635 register constraint.
1636 This also means we will will have a race condition if
1637 there is a partly match in three bits in the bit pattern. */
1638 if (tmp == cris_spec_regs[i].number)
1639 {
1640 retval += 3;
1641 break;
1642 }
1643 }
1644
1645 if (cris_spec_regs[i].name == NULL)
29134980
OF
1646 return -1;
1647 break;
1648 }
1649 return retval;
1650}
1651
1652/* Returns the number of bits set in the variable value. */
1653
1654static int
1655number_of_bits (unsigned int value)
1656{
1657 int number_of_bits = 0;
1658
1659 while (value != 0)
1660 {
1661 number_of_bits += 1;
1662 value &= (value - 1);
1663 }
1664 return number_of_bits;
1665}
1666
1667/* Finds the address that should contain the single step breakpoint(s).
1668 It stems from code in cris-dis.c. */
1669
1670static int
1671find_cris_op (unsigned short insn, inst_env_type *inst_env)
1672{
1673 int i;
1674 int max_level_of_match = -1;
1675 int max_matched = -1;
1676 int level_of_match;
1677
1678 for (i = 0; cris_opcodes[i].name != NULL; i++)
1679 {
1680 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
1681 && ((cris_opcodes[i].lose & insn) == 0))
1682 {
1683 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
1684 if (level_of_match >= 0)
1685 {
1686 level_of_match +=
1687 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
1688 if (level_of_match > max_level_of_match)
1689 {
1690 max_matched = i;
1691 max_level_of_match = level_of_match;
1692 if (level_of_match == 16)
1693 {
1694 /* All bits matched, cannot find better. */
1695 break;
1696 }
1697 }
1698 }
1699 }
1700 }
1701 return max_matched;
1702}
1703
1704/* Attempts to find single-step breakpoints. Returns -1 on failure which is
1705 actually an internal error. */
1706
1707static int
1708find_step_target (inst_env_type *inst_env)
1709{
1710 int i;
1711 int offset;
1712 unsigned short insn;
1713
1714 /* Create a local register image and set the initial state. */
1715 for (i = 0; i < NUM_GENREGS; i++)
1716 {
1717 inst_env->reg[i] = (unsigned long) read_register (i);
1718 }
1719 offset = NUM_GENREGS;
1720 for (i = 0; i < NUM_SPECREGS; i++)
1721 {
1722 inst_env->preg[i] = (unsigned long) read_register (offset + i);
1723 }
1724 inst_env->branch_found = 0;
1725 inst_env->slot_needed = 0;
1726 inst_env->delay_slot_pc_active = 0;
1727 inst_env->prefix_found = 0;
1728 inst_env->invalid = 0;
1729 inst_env->xflag_found = 0;
1730 inst_env->disable_interrupt = 0;
1731
1732 /* Look for a step target. */
1733 do
1734 {
1735 /* Read an instruction from the client. */
1736 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
1737
1738 /* If the instruction is not in a delay slot the new content of the
1739 PC is [PC] + 2. If the instruction is in a delay slot it is not
1740 that simple. Since a instruction in a delay slot cannot change
1741 the content of the PC, it does not matter what value PC will have.
1742 Just make sure it is a valid instruction. */
1743 if (!inst_env->delay_slot_pc_active)
1744 {
1745 inst_env->reg[PC_REGNUM] += 2;
1746 }
1747 else
1748 {
1749 inst_env->delay_slot_pc_active = 0;
1750 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
1751 }
1752 /* Analyse the present instruction. */
1753 i = find_cris_op (insn, inst_env);
1754 if (i == -1)
1755 {
1756 inst_env->invalid = 1;
1757 }
1758 else
1759 {
1760 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
1761 }
1762 } while (!inst_env->invalid
1763 && (inst_env->prefix_found || inst_env->xflag_found
1764 || inst_env->slot_needed));
1765 return i;
1766}
1767
1768/* There is no hardware single-step support. The function find_step_target
1769 digs through the opcodes in order to find all possible targets.
1770 Either one ordinary target or two targets for branches may be found. */
1771
1772void
1773cris_software_single_step (enum target_signal ignore, int insert_breakpoints)
1774{
1775 inst_env_type inst_env;
1776
1777 if (insert_breakpoints)
1778 {
1779 /* Analyse the present instruction environment and insert
1780 breakpoints. */
1781 int status = find_step_target (&inst_env);
1782 if (status == -1)
1783 {
1784 /* Could not find a target. FIXME: Should do something. */
1785 }
1786 else
1787 {
1788 /* Insert at most two breakpoints. One for the next PC content
1789 and possibly another one for a branch, jump, etc. */
1790 next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
1791 target_insert_breakpoint (next_pc, break_mem[0]);
1792 if (inst_env.branch_found
1793 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
1794 {
1795 branch_target_address =
1796 (CORE_ADDR) inst_env.branch_break_address;
1797 target_insert_breakpoint (branch_target_address, break_mem[1]);
1798 branch_break_inserted = 1;
1799 }
1800 }
1801 }
1802 else
1803 {
1804 /* Remove breakpoints. */
1805 target_remove_breakpoint (next_pc, break_mem[0]);
1806 if (branch_break_inserted)
1807 {
1808 target_remove_breakpoint (branch_target_address, break_mem[1]);
1809 branch_break_inserted = 0;
1810 }
1811 }
1812}
1813
1814/* Calculates the prefix value for quick offset addressing mode. */
1815
1816void
1817quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1818{
1819 /* It's invalid to be in a delay slot. You can't have a prefix to this
1820 instruction (not 100% sure). */
1821 if (inst_env->slot_needed || inst_env->prefix_found)
1822 {
1823 inst_env->invalid = 1;
1824 return;
1825 }
1826
1827 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1828 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
1829
1830 /* A prefix doesn't change the xflag_found. But the rest of the flags
1831 need updating. */
1832 inst_env->slot_needed = 0;
1833 inst_env->prefix_found = 1;
1834}
1835
1836/* Updates the autoincrement register. The size of the increment is derived
1837 from the size of the operation. The PC is always kept aligned on even
1838 word addresses. */
1839
1840void
1841process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
1842{
1843 if (size == INST_BYTE_SIZE)
1844 {
1845 inst_env->reg[cris_get_operand1 (inst)] += 1;
1846
1847 /* The PC must be word aligned, so increase the PC with one
1848 word even if the size is byte. */
1849 if (cris_get_operand1 (inst) == REG_PC)
1850 {
1851 inst_env->reg[REG_PC] += 1;
1852 }
1853 }
1854 else if (size == INST_WORD_SIZE)
1855 {
1856 inst_env->reg[cris_get_operand1 (inst)] += 2;
1857 }
1858 else if (size == INST_DWORD_SIZE)
1859 {
1860 inst_env->reg[cris_get_operand1 (inst)] += 4;
1861 }
1862 else
1863 {
1864 /* Invalid size. */
1865 inst_env->invalid = 1;
1866 }
1867}
1868
2a9ecef2
OF
1869/* Just a forward declaration. */
1870
570b8f7c 1871unsigned long get_data_from_address (unsigned short *inst, CORE_ADDR address);
2a9ecef2 1872
29134980
OF
1873/* Calculates the prefix value for the general case of offset addressing
1874 mode. */
1875
1876void
1877bdap_prefix (unsigned short inst, inst_env_type *inst_env)
1878{
1879
1880 long offset;
1881
1882 /* It's invalid to be in a delay slot. */
1883 if (inst_env->slot_needed || inst_env->prefix_found)
1884 {
1885 inst_env->invalid = 1;
1886 return;
1887 }
1888
fa4e4598
OF
1889 /* The calculation of prefix_value used to be after process_autoincrement,
1890 but that fails for an instruction such as jsr [$r0+12] which is encoded
1891 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
1892 mustn't be incremented until we have read it and what it points at. */
29134980
OF
1893 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
1894
1895 /* The offset is an indirection of the contents of the operand1 register. */
1896 inst_env->prefix_value +=
2a9ecef2
OF
1897 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
1898
fa4e4598
OF
1899 if (cris_get_mode (inst) == AUTOINC_MODE)
1900 {
1901 process_autoincrement (cris_get_size (inst), inst, inst_env);
1902 }
1903
29134980
OF
1904 /* A prefix doesn't change the xflag_found. But the rest of the flags
1905 need updating. */
1906 inst_env->slot_needed = 0;
1907 inst_env->prefix_found = 1;
1908}
1909
1910/* Calculates the prefix value for the index addressing mode. */
1911
1912void
1913biap_prefix (unsigned short inst, inst_env_type *inst_env)
1914{
1915 /* It's invalid to be in a delay slot. I can't see that it's possible to
1916 have a prefix to this instruction. So I will treat this as invalid. */
1917 if (inst_env->slot_needed || inst_env->prefix_found)
1918 {
1919 inst_env->invalid = 1;
1920 return;
1921 }
1922
1923 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
1924
1925 /* The offset is the operand2 value shifted the size of the instruction
1926 to the left. */
1927 inst_env->prefix_value +=
1928 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
1929
1930 /* If the PC is operand1 (base) the address used is the address after
1931 the main instruction, i.e. address + 2 (the PC is already compensated
1932 for the prefix operation). */
1933 if (cris_get_operand1 (inst) == REG_PC)
1934 {
1935 inst_env->prefix_value += 2;
1936 }
1937
1938 /* A prefix doesn't change the xflag_found. But the rest of the flags
1939 need updating. */
1940 inst_env->slot_needed = 0;
1941 inst_env->xflag_found = 0;
1942 inst_env->prefix_found = 1;
1943}
1944
1945/* Calculates the prefix value for the double indirect addressing mode. */
1946
1947void
1948dip_prefix (unsigned short inst, inst_env_type *inst_env)
1949{
1950
1951 CORE_ADDR address;
1952
1953 /* It's invalid to be in a delay slot. */
1954 if (inst_env->slot_needed || inst_env->prefix_found)
1955 {
1956 inst_env->invalid = 1;
1957 return;
1958 }
1959
1960 /* The prefix value is one dereference of the contents of the operand1
1961 register. */
1962 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
1963 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
1964
1965 /* Check if the mode is autoincrement. */
1966 if (cris_get_mode (inst) == AUTOINC_MODE)
1967 {
1968 inst_env->reg[cris_get_operand1 (inst)] += 4;
1969 }
1970
1971 /* A prefix doesn't change the xflag_found. But the rest of the flags
1972 need updating. */
1973 inst_env->slot_needed = 0;
1974 inst_env->xflag_found = 0;
1975 inst_env->prefix_found = 1;
1976}
1977
1978/* Finds the destination for a branch with 8-bits offset. */
1979
1980void
1981eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
1982{
1983
1984 short offset;
1985
1986 /* If we have a prefix or are in a delay slot it's bad. */
1987 if (inst_env->slot_needed || inst_env->prefix_found)
1988 {
1989 inst_env->invalid = 1;
1990 return;
1991 }
1992
1993 /* We have a branch, find out where the branch will land. */
1994 offset = cris_get_branch_short_offset (inst);
1995
1996 /* Check if the offset is signed. */
1997 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
1998 {
1999 offset |= 0xFF00;
2000 }
2001
2002 /* The offset ends with the sign bit, set it to zero. The address
2003 should always be word aligned. */
2004 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2005
2006 inst_env->branch_found = 1;
2007 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2008
2009 inst_env->slot_needed = 1;
2010 inst_env->prefix_found = 0;
2011 inst_env->xflag_found = 0;
2012 inst_env->disable_interrupt = 1;
2013}
2014
2015/* Finds the destination for a branch with 16-bits offset. */
2016
2017void
2018sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2019{
2020 short offset;
2021
2022 /* If we have a prefix or is in a delay slot it's bad. */
2023 if (inst_env->slot_needed || inst_env->prefix_found)
2024 {
2025 inst_env->invalid = 1;
2026 return;
2027 }
2028
2029 /* We have a branch, find out the offset for the branch. */
2030 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2031
2032 /* The instruction is one word longer than normal, so add one word
2033 to the PC. */
2034 inst_env->reg[REG_PC] += 2;
2035
2036 inst_env->branch_found = 1;
2037 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2038
2039
2040 inst_env->slot_needed = 1;
2041 inst_env->prefix_found = 0;
2042 inst_env->xflag_found = 0;
2043 inst_env->disable_interrupt = 1;
2044}
2045
2046/* Handles the ABS instruction. */
2047
2048void
2049abs_op (unsigned short inst, inst_env_type *inst_env)
2050{
2051
2052 long value;
2053
2054 /* ABS can't have a prefix, so it's bad if it does. */
2055 if (inst_env->prefix_found)
2056 {
2057 inst_env->invalid = 1;
2058 return;
2059 }
2060
2061 /* Check if the operation affects the PC. */
2062 if (cris_get_operand2 (inst) == REG_PC)
2063 {
2064
2065 /* It's invalid to change to the PC if we are in a delay slot. */
2066 if (inst_env->slot_needed)
2067 {
2068 inst_env->invalid = 1;
2069 return;
2070 }
2071
2072 value = (long) inst_env->reg[REG_PC];
2073
2074 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2075 if (value != SIGNED_DWORD_MASK)
2076 {
2077 value = -value;
2078 inst_env->reg[REG_PC] = (long) value;
2079 }
2080 }
2081
2082 inst_env->slot_needed = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->xflag_found = 0;
2085 inst_env->disable_interrupt = 0;
2086}
2087
2088/* Handles the ADDI instruction. */
2089
2090void
2091addi_op (unsigned short inst, inst_env_type *inst_env)
2092{
2093 /* It's invalid to have the PC as base register. And ADDI can't have
2094 a prefix. */
2095 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2096 {
2097 inst_env->invalid = 1;
2098 return;
2099 }
2100
2101 inst_env->slot_needed = 0;
2102 inst_env->prefix_found = 0;
2103 inst_env->xflag_found = 0;
2104 inst_env->disable_interrupt = 0;
2105}
2106
2107/* Handles the ASR instruction. */
2108
2109void
2110asr_op (unsigned short inst, inst_env_type *inst_env)
2111{
2112 int shift_steps;
2113 unsigned long value;
2114 unsigned long signed_extend_mask = 0;
2115
2116 /* ASR can't have a prefix, so check that it doesn't. */
2117 if (inst_env->prefix_found)
2118 {
2119 inst_env->invalid = 1;
2120 return;
2121 }
2122
2123 /* Check if the PC is the target register. */
2124 if (cris_get_operand2 (inst) == REG_PC)
2125 {
2126 /* It's invalid to change the PC in a delay slot. */
2127 if (inst_env->slot_needed)
2128 {
2129 inst_env->invalid = 1;
2130 return;
2131 }
2132 /* Get the number of bits to shift. */
2133 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2134 value = inst_env->reg[REG_PC];
2135
2136 /* Find out how many bits the operation should apply to. */
2137 if (cris_get_size (inst) == INST_BYTE_SIZE)
2138 {
2139 if (value & SIGNED_BYTE_MASK)
2140 {
2141 signed_extend_mask = 0xFF;
2142 signed_extend_mask = signed_extend_mask >> shift_steps;
2143 signed_extend_mask = ~signed_extend_mask;
2144 }
2145 value = value >> shift_steps;
2146 value |= signed_extend_mask;
2147 value &= 0xFF;
2148 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2149 inst_env->reg[REG_PC] |= value;
2150 }
2151 else if (cris_get_size (inst) == INST_WORD_SIZE)
2152 {
2153 if (value & SIGNED_WORD_MASK)
2154 {
2155 signed_extend_mask = 0xFFFF;
2156 signed_extend_mask = signed_extend_mask >> shift_steps;
2157 signed_extend_mask = ~signed_extend_mask;
2158 }
2159 value = value >> shift_steps;
2160 value |= signed_extend_mask;
2161 value &= 0xFFFF;
2162 inst_env->reg[REG_PC] &= 0xFFFF0000;
2163 inst_env->reg[REG_PC] |= value;
2164 }
2165 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2166 {
2167 if (value & SIGNED_DWORD_MASK)
2168 {
2169 signed_extend_mask = 0xFFFFFFFF;
2170 signed_extend_mask = signed_extend_mask >> shift_steps;
2171 signed_extend_mask = ~signed_extend_mask;
2172 }
2173 value = value >> shift_steps;
2174 value |= signed_extend_mask;
2175 inst_env->reg[REG_PC] = value;
2176 }
2177 }
2178 inst_env->slot_needed = 0;
2179 inst_env->prefix_found = 0;
2180 inst_env->xflag_found = 0;
2181 inst_env->disable_interrupt = 0;
2182}
2183
2184/* Handles the ASRQ instruction. */
2185
2186void
2187asrq_op (unsigned short inst, inst_env_type *inst_env)
2188{
2189
2190 int shift_steps;
2191 unsigned long value;
2192 unsigned long signed_extend_mask = 0;
2193
2194 /* ASRQ can't have a prefix, so check that it doesn't. */
2195 if (inst_env->prefix_found)
2196 {
2197 inst_env->invalid = 1;
2198 return;
2199 }
2200
2201 /* Check if the PC is the target register. */
2202 if (cris_get_operand2 (inst) == REG_PC)
2203 {
2204
2205 /* It's invalid to change the PC in a delay slot. */
2206 if (inst_env->slot_needed)
2207 {
2208 inst_env->invalid = 1;
2209 return;
2210 }
2211 /* The shift size is given as a 5 bit quick value, i.e. we don't
2212 want the the sign bit of the quick value. */
2213 shift_steps = cris_get_asr_shift_steps (inst);
2214 value = inst_env->reg[REG_PC];
2215 if (value & SIGNED_DWORD_MASK)
2216 {
2217 signed_extend_mask = 0xFFFFFFFF;
2218 signed_extend_mask = signed_extend_mask >> shift_steps;
2219 signed_extend_mask = ~signed_extend_mask;
2220 }
2221 value = value >> shift_steps;
2222 value |= signed_extend_mask;
2223 inst_env->reg[REG_PC] = value;
2224 }
2225 inst_env->slot_needed = 0;
2226 inst_env->prefix_found = 0;
2227 inst_env->xflag_found = 0;
2228 inst_env->disable_interrupt = 0;
2229}
2230
2231/* Handles the AX, EI and SETF instruction. */
2232
2233void
2234ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2235{
2236 if (inst_env->prefix_found)
2237 {
2238 inst_env->invalid = 1;
2239 return;
2240 }
2241 /* Check if the instruction is setting the X flag. */
2242 if (cris_is_xflag_bit_on (inst))
2243 {
2244 inst_env->xflag_found = 1;
2245 }
2246 else
2247 {
2248 inst_env->xflag_found = 0;
2249 }
2250 inst_env->slot_needed = 0;
2251 inst_env->prefix_found = 0;
2252 inst_env->disable_interrupt = 1;
2253}
2254
2255/* Checks if the instruction is in assign mode. If so, it updates the assign
2256 register. Note that check_assign assumes that the caller has checked that
2257 there is a prefix to this instruction. The mode check depends on this. */
2258
2259void
2260check_assign (unsigned short inst, inst_env_type *inst_env)
2261{
2262 /* Check if it's an assign addressing mode. */
2263 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2264 {
2265 /* Assign the prefix value to operand 1. */
2266 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2267 }
2268}
2269
2270/* Handles the 2-operand BOUND instruction. */
2271
2272void
2273two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2274{
2275 /* It's invalid to have the PC as the index operand. */
2276 if (cris_get_operand2 (inst) == REG_PC)
2277 {
2278 inst_env->invalid = 1;
2279 return;
2280 }
2281 /* Check if we have a prefix. */
2282 if (inst_env->prefix_found)
2283 {
2284 check_assign (inst, inst_env);
2285 }
2286 /* Check if this is an autoincrement mode. */
2287 else if (cris_get_mode (inst) == AUTOINC_MODE)
2288 {
2289 /* It's invalid to change the PC in a delay slot. */
2290 if (inst_env->slot_needed)
2291 {
2292 inst_env->invalid = 1;
2293 return;
2294 }
2295 process_autoincrement (cris_get_size (inst), inst, inst_env);
2296 }
2297 inst_env->slot_needed = 0;
2298 inst_env->prefix_found = 0;
2299 inst_env->xflag_found = 0;
2300 inst_env->disable_interrupt = 0;
2301}
2302
2303/* Handles the 3-operand BOUND instruction. */
2304
2305void
2306three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2307{
2308 /* It's an error if we haven't got a prefix. And it's also an error
2309 if the PC is the destination register. */
2310 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2311 {
2312 inst_env->invalid = 1;
2313 return;
2314 }
2315 inst_env->slot_needed = 0;
2316 inst_env->prefix_found = 0;
2317 inst_env->xflag_found = 0;
2318 inst_env->disable_interrupt = 0;
2319}
2320
2321/* Clears the status flags in inst_env. */
2322
2323void
2324btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2325{
2326 /* It's an error if we have got a prefix. */
2327 if (inst_env->prefix_found)
2328 {
2329 inst_env->invalid = 1;
2330 return;
2331 }
2332
2333 inst_env->slot_needed = 0;
2334 inst_env->prefix_found = 0;
2335 inst_env->xflag_found = 0;
2336 inst_env->disable_interrupt = 0;
2337}
2338
2339/* Clears the status flags in inst_env. */
2340
2341void
2342clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2343{
2344 /* It's an error if we have got a prefix. */
2345 if (inst_env->prefix_found)
2346 {
2347 inst_env->invalid = 1;
2348 return;
2349 }
2350
2351 inst_env->slot_needed = 0;
2352 inst_env->prefix_found = 0;
2353 inst_env->xflag_found = 0;
2354 inst_env->disable_interrupt = 1;
2355}
2356
2357/* Handles the CLEAR instruction if it's in register mode. */
2358
2359void
2360reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2361{
2362 /* Check if the target is the PC. */
2363 if (cris_get_operand2 (inst) == REG_PC)
2364 {
2365 /* The instruction will clear the instruction's size bits. */
2366 int clear_size = cris_get_clear_size (inst);
2367 if (clear_size == INST_BYTE_SIZE)
2368 {
2369 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2370 }
2371 if (clear_size == INST_WORD_SIZE)
2372 {
2373 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2374 }
2375 if (clear_size == INST_DWORD_SIZE)
2376 {
2377 inst_env->delay_slot_pc = 0x0;
2378 }
2379 /* The jump will be delayed with one delay slot. So we need a delay
2380 slot. */
2381 inst_env->slot_needed = 1;
2382 inst_env->delay_slot_pc_active = 1;
2383 }
2384 else
2385 {
2386 /* The PC will not change => no delay slot. */
2387 inst_env->slot_needed = 0;
2388 }
2389 inst_env->prefix_found = 0;
2390 inst_env->xflag_found = 0;
2391 inst_env->disable_interrupt = 0;
2392}
2393
2394/* Handles the TEST instruction if it's in register mode. */
2395
2396void
2397reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2398{
2399 /* It's an error if we have got a prefix. */
2400 if (inst_env->prefix_found)
2401 {
2402 inst_env->invalid = 1;
2403 return;
2404 }
2405 inst_env->slot_needed = 0;
2406 inst_env->prefix_found = 0;
2407 inst_env->xflag_found = 0;
2408 inst_env->disable_interrupt = 0;
2409
2410}
2411
2412/* Handles the CLEAR and TEST instruction if the instruction isn't
2413 in register mode. */
2414
2415void
2416none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2417{
2418 /* Check if we are in a prefix mode. */
2419 if (inst_env->prefix_found)
2420 {
2421 /* The only way the PC can change is if this instruction is in
2422 assign addressing mode. */
2423 check_assign (inst, inst_env);
2424 }
2425 /* Indirect mode can't change the PC so just check if the mode is
2426 autoincrement. */
2427 else if (cris_get_mode (inst) == AUTOINC_MODE)
2428 {
2429 process_autoincrement (cris_get_size (inst), inst, inst_env);
2430 }
2431 inst_env->slot_needed = 0;
2432 inst_env->prefix_found = 0;
2433 inst_env->xflag_found = 0;
2434 inst_env->disable_interrupt = 0;
2435}
2436
2437/* Checks that the PC isn't the destination register or the instructions has
2438 a prefix. */
2439
2440void
2441dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2442{
2443 /* It's invalid to have the PC as the destination. The instruction can't
2444 have a prefix. */
2445 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2446 {
2447 inst_env->invalid = 1;
2448 return;
2449 }
2450
2451 inst_env->slot_needed = 0;
2452 inst_env->prefix_found = 0;
2453 inst_env->xflag_found = 0;
2454 inst_env->disable_interrupt = 0;
2455}
2456
2457/* Checks that the instruction doesn't have a prefix. */
2458
2459void
2460break_op (unsigned short inst, inst_env_type *inst_env)
2461{
2462 /* The instruction can't have a prefix. */
2463 if (inst_env->prefix_found)
2464 {
2465 inst_env->invalid = 1;
2466 return;
2467 }
2468
2469 inst_env->slot_needed = 0;
2470 inst_env->prefix_found = 0;
2471 inst_env->xflag_found = 0;
2472 inst_env->disable_interrupt = 1;
2473}
2474
2475/* Checks that the PC isn't the destination register and that the instruction
2476 doesn't have a prefix. */
2477
2478void
2479scc_op (unsigned short inst, inst_env_type *inst_env)
2480{
2481 /* It's invalid to have the PC as the destination. The instruction can't
2482 have a prefix. */
2483 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2484 {
2485 inst_env->invalid = 1;
2486 return;
2487 }
2488
2489 inst_env->slot_needed = 0;
2490 inst_env->prefix_found = 0;
2491 inst_env->xflag_found = 0;
2492 inst_env->disable_interrupt = 1;
2493}
2494
2495/* Handles the register mode JUMP instruction. */
2496
2497void
2498reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2499{
2500 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2501 you can't have a prefix. */
2502 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2503 {
2504 inst_env->invalid = 1;
2505 return;
2506 }
2507
2508 /* Just change the PC. */
2509 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2510 inst_env->slot_needed = 0;
2511 inst_env->prefix_found = 0;
2512 inst_env->xflag_found = 0;
2513 inst_env->disable_interrupt = 1;
2514}
2515
2516/* Handles the JUMP instruction for all modes except register. */
2517
2518void none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2519{
2520 unsigned long newpc;
2521 CORE_ADDR address;
2522
2523 /* It's invalid to do a JUMP in a delay slot. */
2524 if (inst_env->slot_needed)
2525 {
2526 inst_env->invalid = 1;
2527 }
2528 else
2529 {
2530 /* Check if we have a prefix. */
2531 if (inst_env->prefix_found)
2532 {
2533 check_assign (inst, inst_env);
2534
2535 /* Get the new value for the the PC. */
2536 newpc =
2537 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2538 4);
2539 }
2540 else
2541 {
2542 /* Get the new value for the PC. */
2543 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2544 newpc = read_memory_unsigned_integer (address, 4);
2545
2546 /* Check if we should increment a register. */
2547 if (cris_get_mode (inst) == AUTOINC_MODE)
2548 {
2549 inst_env->reg[cris_get_operand1 (inst)] += 4;
2550 }
2551 }
2552 inst_env->reg[REG_PC] = newpc;
2553 }
2554 inst_env->slot_needed = 0;
2555 inst_env->prefix_found = 0;
2556 inst_env->xflag_found = 0;
2557 inst_env->disable_interrupt = 1;
2558}
2559
2560/* Handles moves to special registers (aka P-register) for all modes. */
2561
2562void
2563move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2564{
2565 if (inst_env->prefix_found)
2566 {
2567 /* The instruction has a prefix that means we are only interested if
2568 the instruction is in assign mode. */
2569 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2570 {
2571 /* The prefix handles the problem if we are in a delay slot. */
2572 if (cris_get_operand1 (inst) == REG_PC)
2573 {
2574 /* Just take care of the assign. */
2575 check_assign (inst, inst_env);
2576 }
2577 }
2578 }
2579 else if (cris_get_mode (inst) == AUTOINC_MODE)
2580 {
2581 /* The instruction doesn't have a prefix, the only case left that we
2582 are interested in is the autoincrement mode. */
2583 if (cris_get_operand1 (inst) == REG_PC)
2584 {
2585 /* If the PC is to be incremented it's invalid to be in a
2586 delay slot. */
2587 if (inst_env->slot_needed)
2588 {
2589 inst_env->invalid = 1;
2590 return;
2591 }
2a9ecef2
OF
2592
2593 /* The increment depends on the size of the special register. */
2594 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2595 {
2596 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2597 }
2a9ecef2 2598 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2599 {
2600 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2601 }
2602 else
2603 {
2604 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2605 }
2606 }
2607 }
2608 inst_env->slot_needed = 0;
2609 inst_env->prefix_found = 0;
2610 inst_env->xflag_found = 0;
2611 inst_env->disable_interrupt = 1;
2612}
2613
2614/* Handles moves from special registers (aka P-register) for all modes
2615 except register. */
2616
2617void
2618none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2619{
2620 if (inst_env->prefix_found)
2621 {
2622 /* The instruction has a prefix that means we are only interested if
2623 the instruction is in assign mode. */
2624 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2625 {
2626 /* The prefix handles the problem if we are in a delay slot. */
2627 if (cris_get_operand1 (inst) == REG_PC)
2628 {
2629 /* Just take care of the assign. */
2630 check_assign (inst, inst_env);
2631 }
2632 }
2633 }
2634 /* The instruction doesn't have a prefix, the only case left that we
2635 are interested in is the autoincrement mode. */
2636 else if (cris_get_mode (inst) == AUTOINC_MODE)
2637 {
2638 if (cris_get_operand1 (inst) == REG_PC)
2639 {
2640 /* If the PC is to be incremented it's invalid to be in a
2641 delay slot. */
2642 if (inst_env->slot_needed)
2643 {
2644 inst_env->invalid = 1;
2645 return;
2646 }
2a9ecef2
OF
2647
2648 /* The increment depends on the size of the special register. */
2649 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2650 {
2651 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2652 }
2a9ecef2 2653 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2654 {
2655 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2656 }
2657 else
2658 {
2659 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2660 }
2661 }
2662 }
2663 inst_env->slot_needed = 0;
2664 inst_env->prefix_found = 0;
2665 inst_env->xflag_found = 0;
2666 inst_env->disable_interrupt = 1;
2667}
2668
2669/* Handles moves from special registers (aka P-register) when the mode
2670 is register. */
2671
2672void
2673reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2674{
2675 /* Register mode move from special register can't have a prefix. */
2676 if (inst_env->prefix_found)
2677 {
2678 inst_env->invalid = 1;
2679 return;
2680 }
2681
2682 if (cris_get_operand1 (inst) == REG_PC)
2683 {
2684 /* It's invalid to change the PC in a delay slot. */
2685 if (inst_env->slot_needed)
2686 {
2687 inst_env->invalid = 1;
2688 return;
2689 }
2690 /* The destination is the PC, the jump will have a delay slot. */
2691 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
2692 inst_env->slot_needed = 1;
2693 inst_env->delay_slot_pc_active = 1;
2694 }
2695 else
2696 {
2697 /* If the destination isn't PC, there will be no jump. */
2698 inst_env->slot_needed = 0;
2699 }
2700 inst_env->prefix_found = 0;
2701 inst_env->xflag_found = 0;
2702 inst_env->disable_interrupt = 1;
2703}
2704
2705/* Handles the MOVEM from memory to general register instruction. */
2706
2707void
2708move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
2709{
2710 if (inst_env->prefix_found)
2711 {
2712 /* The prefix handles the problem if we are in a delay slot. Is the
2713 MOVEM instruction going to change the PC? */
2714 if (cris_get_operand2 (inst) >= REG_PC)
2715 {
2716 inst_env->reg[REG_PC] =
2717 read_memory_unsigned_integer (inst_env->prefix_value, 4);
2718 }
2719 /* The assign value is the value after the increment. Normally, the
2720 assign value is the value before the increment. */
2721 if ((cris_get_operand1 (inst) == REG_PC)
2722 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2723 {
2724 inst_env->reg[REG_PC] = inst_env->prefix_value;
2725 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2726 }
2727 }
2728 else
2729 {
2730 /* Is the MOVEM instruction going to change the PC? */
2731 if (cris_get_operand2 (inst) == REG_PC)
2732 {
2733 /* It's invalid to change the PC in a delay slot. */
2734 if (inst_env->slot_needed)
2735 {
2736 inst_env->invalid = 1;
2737 return;
2738 }
2739 inst_env->reg[REG_PC] =
2740 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
2741 4);
2742 }
2743 /* The increment is not depending on the size, instead it's depending
2744 on the number of registers loaded from memory. */
2745 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2746 {
2747 /* It's invalid to change the PC in a delay slot. */
2748 if (inst_env->slot_needed)
2749 {
2750 inst_env->invalid = 1;
2751 return;
2752 }
2753 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2754 }
2755 }
2756 inst_env->slot_needed = 0;
2757 inst_env->prefix_found = 0;
2758 inst_env->xflag_found = 0;
2759 inst_env->disable_interrupt = 0;
2760}
2761
2762/* Handles the MOVEM to memory from general register instruction. */
2763
2764void
2765move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
2766{
2767 if (inst_env->prefix_found)
2768 {
2769 /* The assign value is the value after the increment. Normally, the
2770 assign value is the value before the increment. */
2771 if ((cris_get_operand1 (inst) == REG_PC) &&
2772 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
2773 {
2774 /* The prefix handles the problem if we are in a delay slot. */
2775 inst_env->reg[REG_PC] = inst_env->prefix_value;
2776 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2777 }
2778 }
2779 else
2780 {
2781 /* The increment is not depending on the size, instead it's depending
2782 on the number of registers loaded to memory. */
2783 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
2784 {
2785 /* It's invalid to change the PC in a delay slot. */
2786 if (inst_env->slot_needed)
2787 {
2788 inst_env->invalid = 1;
2789 return;
2790 }
2791 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
2792 }
2793 }
2794 inst_env->slot_needed = 0;
2795 inst_env->prefix_found = 0;
2796 inst_env->xflag_found = 0;
2797 inst_env->disable_interrupt = 0;
2798}
2799
2800/* Handles the pop instruction to a general register.
2801 POP is a assembler macro for MOVE.D [SP+], Rd. */
2802
2803void
2804reg_pop_op (unsigned short inst, inst_env_type *inst_env)
2805{
2806 /* POP can't have a prefix. */
2807 if (inst_env->prefix_found)
2808 {
2809 inst_env->invalid = 1;
2810 return;
2811 }
2812 if (cris_get_operand2 (inst) == REG_PC)
2813 {
2814 /* It's invalid to change the PC in a delay slot. */
2815 if (inst_env->slot_needed)
2816 {
2817 inst_env->invalid = 1;
2818 return;
2819 }
2820 inst_env->reg[REG_PC] =
2821 read_memory_unsigned_integer (inst_env->reg[REG_SP], 4);
2822 }
2823 inst_env->slot_needed = 0;
2824 inst_env->prefix_found = 0;
2825 inst_env->xflag_found = 0;
2826 inst_env->disable_interrupt = 0;
2827}
2828
2829/* Handles moves from register to memory. */
2830
2831void
2832move_reg_to_mem_index_inc_op (unsigned short inst, inst_env_type *inst_env)
2833{
2834 /* Check if we have a prefix. */
2835 if (inst_env->prefix_found)
2836 {
2837 /* The only thing that can change the PC is an assign. */
2838 check_assign (inst, inst_env);
2839 }
2840 else if ((cris_get_operand1 (inst) == REG_PC)
2841 && (cris_get_mode (inst) == AUTOINC_MODE))
2842 {
2843 /* It's invalid to change the PC in a delay slot. */
2844 if (inst_env->slot_needed)
2845 {
2846 inst_env->invalid = 1;
2847 return;
2848 }
2849 process_autoincrement (cris_get_size (inst), inst, inst_env);
2850 }
2851 inst_env->slot_needed = 0;
2852 inst_env->prefix_found = 0;
2853 inst_env->xflag_found = 0;
2854 inst_env->disable_interrupt = 0;
2855}
2856
2857/* Handles the intructions that's not yet implemented, by setting
2858 inst_env->invalid to true. */
2859
2860void
2861not_implemented_op (unsigned short inst, inst_env_type *inst_env)
2862{
2863 inst_env->invalid = 1;
2864}
2865
2866/* Handles the XOR instruction. */
2867
2868void
2869xor_op (unsigned short inst, inst_env_type *inst_env)
2870{
2871 /* XOR can't have a prefix. */
2872 if (inst_env->prefix_found)
2873 {
2874 inst_env->invalid = 1;
2875 return;
2876 }
2877
2878 /* Check if the PC is the target. */
2879 if (cris_get_operand2 (inst) == REG_PC)
2880 {
2881 /* It's invalid to change the PC in a delay slot. */
2882 if (inst_env->slot_needed)
2883 {
2884 inst_env->invalid = 1;
2885 return;
2886 }
2887 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
2888 }
2889 inst_env->slot_needed = 0;
2890 inst_env->prefix_found = 0;
2891 inst_env->xflag_found = 0;
2892 inst_env->disable_interrupt = 0;
2893}
2894
2895/* Handles the MULS instruction. */
2896
2897void
2898muls_op (unsigned short inst, inst_env_type *inst_env)
2899{
2900 /* MULS/U can't have a prefix. */
2901 if (inst_env->prefix_found)
2902 {
2903 inst_env->invalid = 1;
2904 return;
2905 }
2906
2907 /* Consider it invalid if the PC is the target. */
2908 if (cris_get_operand2 (inst) == REG_PC)
2909 {
2910 inst_env->invalid = 1;
2911 return;
2912 }
2913 inst_env->slot_needed = 0;
2914 inst_env->prefix_found = 0;
2915 inst_env->xflag_found = 0;
2916 inst_env->disable_interrupt = 0;
2917}
2918
2919/* Handles the MULU instruction. */
2920
2921void
2922mulu_op (unsigned short inst, inst_env_type *inst_env)
2923{
2924 /* MULS/U can't have a prefix. */
2925 if (inst_env->prefix_found)
2926 {
2927 inst_env->invalid = 1;
2928 return;
2929 }
2930
2931 /* Consider it invalid if the PC is the target. */
2932 if (cris_get_operand2 (inst) == REG_PC)
2933 {
2934 inst_env->invalid = 1;
2935 return;
2936 }
2937 inst_env->slot_needed = 0;
2938 inst_env->prefix_found = 0;
2939 inst_env->xflag_found = 0;
2940 inst_env->disable_interrupt = 0;
2941}
2942
2943/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
2944 The MOVE instruction is the move from source to register. */
2945
2946void
2947add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
2948 unsigned long source1, unsigned long source2)
2949{
2950 unsigned long pc_mask;
2951 unsigned long operation_mask;
2952
2953 /* Find out how many bits the operation should apply to. */
2954 if (cris_get_size (inst) == INST_BYTE_SIZE)
2955 {
2956 pc_mask = 0xFFFFFF00;
2957 operation_mask = 0xFF;
2958 }
2959 else if (cris_get_size (inst) == INST_WORD_SIZE)
2960 {
2961 pc_mask = 0xFFFF0000;
2962 operation_mask = 0xFFFF;
2963 }
2964 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2965 {
2966 pc_mask = 0x0;
2967 operation_mask = 0xFFFFFFFF;
2968 }
2969 else
2970 {
2971 /* The size is out of range. */
2972 inst_env->invalid = 1;
2973 return;
2974 }
2975
2976 /* The instruction just works on uw_operation_mask bits. */
2977 source2 &= operation_mask;
2978 source1 &= operation_mask;
2979
2980 /* Now calculate the result. The opcode's 3 first bits separates
2981 the different actions. */
2982 switch (cris_get_opcode (inst) & 7)
2983 {
2984 case 0: /* add */
2985 source1 += source2;
2986 break;
2987
2988 case 1: /* move */
2989 source1 = source2;
2990 break;
2991
2992 case 2: /* subtract */
2993 source1 -= source2;
2994 break;
2995
2996 case 3: /* compare */
2997 break;
2998
2999 case 4: /* and */
3000 source1 &= source2;
3001 break;
3002
3003 case 5: /* or */
3004 source1 |= source2;
3005 break;
3006
3007 default:
3008 inst_env->invalid = 1;
3009 return;
3010
3011 break;
3012 }
3013
3014 /* Make sure that the result doesn't contain more than the instruction
3015 size bits. */
3016 source2 &= operation_mask;
3017
3018 /* Calculate the new breakpoint address. */
3019 inst_env->reg[REG_PC] &= pc_mask;
3020 inst_env->reg[REG_PC] |= source1;
3021
3022}
3023
3024/* Extends the value from either byte or word size to a dword. If the mode
3025 is zero extend then the value is extended with zero. If instead the mode
3026 is signed extend the sign bit of the value is taken into consideration. */
3027
3028unsigned long
3029do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3030{
3031 /* The size can be either byte or word, check which one it is.
3032 Don't check the highest bit, it's indicating if it's a zero
3033 or sign extend. */
3034 if (cris_get_size (*inst) & INST_WORD_SIZE)
3035 {
3036 /* Word size. */
3037 value &= 0xFFFF;
3038
3039 /* Check if the instruction is signed extend. If so, check if value has
3040 the sign bit on. */
3041 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3042 {
3043 value |= SIGNED_WORD_EXTEND_MASK;
3044 }
3045 }
3046 else
3047 {
3048 /* Byte size. */
3049 value &= 0xFF;
3050
3051 /* Check if the instruction is signed extend. If so, check if value has
3052 the sign bit on. */
3053 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3054 {
3055 value |= SIGNED_BYTE_EXTEND_MASK;
3056 }
3057 }
3058 /* The size should now be dword. */
3059 cris_set_size_to_dword (inst);
3060 return value;
3061}
3062
3063/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3064 instruction. The MOVE instruction is the move from source to register. */
3065
3066void
3067reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3068 inst_env_type *inst_env)
3069{
3070 unsigned long operand1;
3071 unsigned long operand2;
3072
3073 /* It's invalid to have a prefix to the instruction. This is a register
3074 mode instruction and can't have a prefix. */
3075 if (inst_env->prefix_found)
3076 {
3077 inst_env->invalid = 1;
3078 return;
3079 }
3080 /* Check if the instruction has PC as its target. */
3081 if (cris_get_operand2 (inst) == REG_PC)
3082 {
3083 if (inst_env->slot_needed)
3084 {
3085 inst_env->invalid = 1;
3086 return;
3087 }
3088 /* The instruction has the PC as its target register. */
7ab98e9e 3089 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3090 operand2 = inst_env->reg[REG_PC];
3091
3092 /* Check if it's a extend, signed or zero instruction. */
3093 if (cris_get_opcode (inst) < 4)
3094 {
3095 operand1 = do_sign_or_zero_extend (operand1, &inst);
3096 }
3097 /* Calculate the PC value after the instruction, i.e. where the
3098 breakpoint should be. The order of the udw_operands is vital. */
3099 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3100 }
3101 inst_env->slot_needed = 0;
3102 inst_env->prefix_found = 0;
3103 inst_env->xflag_found = 0;
3104 inst_env->disable_interrupt = 0;
3105}
3106
3107/* Returns the data contained at address. The size of the data is derived from
3108 the size of the operation. If the instruction is a zero or signed
3109 extend instruction, the size field is changed in instruction. */
3110
3111unsigned long
3112get_data_from_address (unsigned short *inst, CORE_ADDR address)
3113{
3114 int size = cris_get_size (*inst);
3115 unsigned long value;
3116
3117 /* If it's an extend instruction we don't want the signed extend bit,
3118 because it influences the size. */
3119 if (cris_get_opcode (*inst) < 4)
3120 {
3121 size &= ~SIGNED_EXTEND_BIT_MASK;
3122 }
3123 /* Is there a need for checking the size? Size should contain the number of
3124 bytes to read. */
3125 size = 1 << size;
3126 value = read_memory_unsigned_integer (address, size);
3127
3128 /* Check if it's an extend, signed or zero instruction. */
3129 if (cris_get_opcode (*inst) < 4)
3130 {
3131 value = do_sign_or_zero_extend (value, inst);
3132 }
3133 return value;
3134}
3135
3136/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3137 instructions. The MOVE instruction is the move from source to register. */
3138
3139void
3140handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3141 inst_env_type *inst_env)
3142{
3143 unsigned long operand2;
3144 unsigned long operand3;
3145
3146 check_assign (inst, inst_env);
3147 if (cris_get_operand2 (inst) == REG_PC)
3148 {
3149 operand2 = inst_env->reg[REG_PC];
3150
3151 /* Get the value of the third operand. */
3152 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3153
3154 /* Calculate the PC value after the instruction, i.e. where the
3155 breakpoint should be. The order of the udw_operands is vital. */
3156 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3157 }
3158 inst_env->slot_needed = 0;
3159 inst_env->prefix_found = 0;
3160 inst_env->xflag_found = 0;
3161 inst_env->disable_interrupt = 0;
3162}
3163
3164/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3165 OR instructions. Note that for this to work as expected, the calling
3166 function must have made sure that there is a prefix to this instruction. */
3167
3168void
3169three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3170 inst_env_type *inst_env)
3171{
3172 unsigned long operand2;
3173 unsigned long operand3;
3174
3175 if (cris_get_operand1 (inst) == REG_PC)
3176 {
3177 /* The PC will be changed by the instruction. */
3178 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3179
3180 /* Get the value of the third operand. */
3181 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3182
3183 /* Calculate the PC value after the instruction, i.e. where the
3184 breakpoint should be. */
3185 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3186 }
3187 inst_env->slot_needed = 0;
3188 inst_env->prefix_found = 0;
3189 inst_env->xflag_found = 0;
3190 inst_env->disable_interrupt = 0;
3191}
3192
3193/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3194 instructions. The MOVE instruction is the move from source to register. */
3195
3196void
3197handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3198 inst_env_type *inst_env)
3199{
3200 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3201 {
3202 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3203 SUB, AND or OR something weird is going on (if everything works these
3204 instructions should end up in the three operand version). */
3205 inst_env->invalid = 1;
3206 return;
3207 }
3208 else
3209 {
3210 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3211 so use it. */
3212 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3213 }
3214 inst_env->slot_needed = 0;
3215 inst_env->prefix_found = 0;
3216 inst_env->xflag_found = 0;
3217 inst_env->disable_interrupt = 0;
3218}
3219
3220/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3221 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3222 source to register. */
3223
3224void
3225handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3226 inst_env_type *inst_env)
3227{
3228 unsigned long operand1;
3229 unsigned long operand2;
3230 unsigned long operand3;
3231 int size;
3232
3233 /* The instruction is either an indirect or autoincrement addressing mode.
3234 Check if the destination register is the PC. */
3235 if (cris_get_operand2 (inst) == REG_PC)
3236 {
3237 /* Must be done here, get_data_from_address may change the size
3238 field. */
3239 size = cris_get_size (inst);
3240 operand2 = inst_env->reg[REG_PC];
3241
3242 /* Get the value of the third operand, i.e. the indirect operand. */
3243 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3244 operand3 = get_data_from_address (&inst, operand1);
3245
3246 /* Calculate the PC value after the instruction, i.e. where the
3247 breakpoint should be. The order of the udw_operands is vital. */
3248 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3249 }
3250 /* If this is an autoincrement addressing mode, check if the increment
3251 changes the PC. */
3252 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3253 {
3254 /* Get the size field. */
3255 size = cris_get_size (inst);
3256
3257 /* If it's an extend instruction we don't want the signed extend bit,
3258 because it influences the size. */
3259 if (cris_get_opcode (inst) < 4)
3260 {
3261 size &= ~SIGNED_EXTEND_BIT_MASK;
3262 }
3263 process_autoincrement (size, inst, inst_env);
3264 }
3265 inst_env->slot_needed = 0;
3266 inst_env->prefix_found = 0;
3267 inst_env->xflag_found = 0;
3268 inst_env->disable_interrupt = 0;
3269}
3270
3271/* Handles the two-operand addressing mode, all modes except register, for
3272 the ADD, SUB CMP, AND and OR instruction. */
3273
3274void
3275none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3276 inst_env_type *inst_env)
3277{
3278 if (inst_env->prefix_found)
3279 {
3280 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3281 {
3282 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3283 }
3284 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3285 {
3286 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3287 }
3288 else
3289 {
3290 /* The mode is invalid for a prefixed base instruction. */
3291 inst_env->invalid = 1;
3292 return;
3293 }
3294 }
3295 else
3296 {
3297 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3298 }
3299}
3300
3301/* Handles the quick addressing mode for the ADD and SUB instruction. */
3302
3303void
3304quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3305{
3306 unsigned long operand1;
3307 unsigned long operand2;
3308
3309 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3310 instruction and can't have a prefix. */
3311 if (inst_env->prefix_found)
3312 {
3313 inst_env->invalid = 1;
3314 return;
3315 }
3316
3317 /* Check if the instruction has PC as its target. */
3318 if (cris_get_operand2 (inst) == REG_PC)
3319 {
3320 if (inst_env->slot_needed)
3321 {
3322 inst_env->invalid = 1;
3323 return;
3324 }
3325 operand1 = cris_get_quick_value (inst);
3326 operand2 = inst_env->reg[REG_PC];
3327
3328 /* The size should now be dword. */
3329 cris_set_size_to_dword (&inst);
3330
3331 /* Calculate the PC value after the instruction, i.e. where the
3332 breakpoint should be. */
3333 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3334 }
3335 inst_env->slot_needed = 0;
3336 inst_env->prefix_found = 0;
3337 inst_env->xflag_found = 0;
3338 inst_env->disable_interrupt = 0;
3339}
3340
3341/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3342
3343void
3344quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3345{
3346 unsigned long operand1;
3347 unsigned long operand2;
3348
3349 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3350 instruction and can't have a prefix. */
3351 if (inst_env->prefix_found)
3352 {
3353 inst_env->invalid = 1;
3354 return;
3355 }
3356 /* Check if the instruction has PC as its target. */
3357 if (cris_get_operand2 (inst) == REG_PC)
3358 {
3359 if (inst_env->slot_needed)
3360 {
3361 inst_env->invalid = 1;
3362 return;
3363 }
3364 /* The instruction has the PC as its target register. */
3365 operand1 = cris_get_quick_value (inst);
3366 operand2 = inst_env->reg[REG_PC];
3367
3368 /* The quick value is signed, so check if we must do a signed extend. */
3369 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3370 {
3371 /* sign extend */
3372 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3373 }
3374 /* The size should now be dword. */
3375 cris_set_size_to_dword (&inst);
3376
3377 /* Calculate the PC value after the instruction, i.e. where the
3378 breakpoint should be. */
3379 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3380 }
3381 inst_env->slot_needed = 0;
3382 inst_env->prefix_found = 0;
3383 inst_env->xflag_found = 0;
3384 inst_env->disable_interrupt = 0;
3385}
3386
3387/* Translate op_type to a function and call it. */
3388
3389static void cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3390 inst_env_type *inst_env)
3391{
3392 switch (op_type)
3393 {
3394 case cris_not_implemented_op:
3395 not_implemented_op (inst, inst_env);
3396 break;
3397
3398 case cris_abs_op:
3399 abs_op (inst, inst_env);
3400 break;
3401
3402 case cris_addi_op:
3403 addi_op (inst, inst_env);
3404 break;
3405
3406 case cris_asr_op:
3407 asr_op (inst, inst_env);
3408 break;
3409
3410 case cris_asrq_op:
3411 asrq_op (inst, inst_env);
3412 break;
3413
3414 case cris_ax_ei_setf_op:
3415 ax_ei_setf_op (inst, inst_env);
3416 break;
3417
3418 case cris_bdap_prefix:
3419 bdap_prefix (inst, inst_env);
3420 break;
3421
3422 case cris_biap_prefix:
3423 biap_prefix (inst, inst_env);
3424 break;
3425
3426 case cris_break_op:
3427 break_op (inst, inst_env);
3428 break;
3429
3430 case cris_btst_nop_op:
3431 btst_nop_op (inst, inst_env);
3432 break;
3433
3434 case cris_clearf_di_op:
3435 clearf_di_op (inst, inst_env);
3436 break;
3437
3438 case cris_dip_prefix:
3439 dip_prefix (inst, inst_env);
3440 break;
3441
3442 case cris_dstep_logshift_mstep_neg_not_op:
3443 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3444 break;
3445
3446 case cris_eight_bit_offset_branch_op:
3447 eight_bit_offset_branch_op (inst, inst_env);
3448 break;
3449
3450 case cris_move_mem_to_reg_movem_op:
3451 move_mem_to_reg_movem_op (inst, inst_env);
3452 break;
3453
3454 case cris_move_reg_to_mem_movem_op:
3455 move_reg_to_mem_movem_op (inst, inst_env);
3456 break;
3457
3458 case cris_move_to_preg_op:
3459 move_to_preg_op (inst, inst_env);
3460 break;
3461
3462 case cris_muls_op:
3463 muls_op (inst, inst_env);
3464 break;
3465
3466 case cris_mulu_op:
3467 mulu_op (inst, inst_env);
3468 break;
3469
3470 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3471 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3472 break;
3473
3474 case cris_none_reg_mode_clear_test_op:
3475 none_reg_mode_clear_test_op (inst, inst_env);
3476 break;
3477
3478 case cris_none_reg_mode_jump_op:
3479 none_reg_mode_jump_op (inst, inst_env);
3480 break;
3481
3482 case cris_none_reg_mode_move_from_preg_op:
3483 none_reg_mode_move_from_preg_op (inst, inst_env);
3484 break;
3485
3486 case cris_quick_mode_add_sub_op:
3487 quick_mode_add_sub_op (inst, inst_env);
3488 break;
3489
3490 case cris_quick_mode_and_cmp_move_or_op:
3491 quick_mode_and_cmp_move_or_op (inst, inst_env);
3492 break;
3493
3494 case cris_quick_mode_bdap_prefix:
3495 quick_mode_bdap_prefix (inst, inst_env);
3496 break;
3497
3498 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3499 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3500 break;
3501
3502 case cris_reg_mode_clear_op:
3503 reg_mode_clear_op (inst, inst_env);
3504 break;
3505
3506 case cris_reg_mode_jump_op:
3507 reg_mode_jump_op (inst, inst_env);
3508 break;
3509
3510 case cris_reg_mode_move_from_preg_op:
3511 reg_mode_move_from_preg_op (inst, inst_env);
3512 break;
3513
3514 case cris_reg_mode_test_op:
3515 reg_mode_test_op (inst, inst_env);
3516 break;
3517
3518 case cris_scc_op:
3519 scc_op (inst, inst_env);
3520 break;
3521
3522 case cris_sixteen_bit_offset_branch_op:
3523 sixteen_bit_offset_branch_op (inst, inst_env);
3524 break;
3525
3526 case cris_three_operand_add_sub_cmp_and_or_op:
3527 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3528 break;
3529
3530 case cris_three_operand_bound_op:
3531 three_operand_bound_op (inst, inst_env);
3532 break;
3533
3534 case cris_two_operand_bound_op:
3535 two_operand_bound_op (inst, inst_env);
3536 break;
3537
3538 case cris_xor_op:
3539 xor_op (inst, inst_env);
3540 break;
3541 }
3542}
3543
3544/* This wrapper is to avoid cris_get_assembler being called before
3545 exec_bfd has been set. */
3546
3547static int
3548cris_delayed_get_disassembler (bfd_vma addr, disassemble_info *info)
3549{
3550 tm_print_insn = cris_get_disassembler (exec_bfd);
2bf0cb65 3551 return TARGET_PRINT_INSN (addr, info);
29134980
OF
3552}
3553
dbbff683
OF
3554/* Copied from <asm/elf.h>. */
3555typedef unsigned long elf_greg_t;
3556
3557/* Same as user_regs_struct struct in <asm/user.h>. */
3558typedef elf_greg_t elf_gregset_t[35];
3559
3560/* Unpack an elf_gregset_t into GDB's register cache. */
3561
3562void
3563supply_gregset (elf_gregset_t *gregsetp)
3564{
3565 int i;
3566 elf_greg_t *regp = *gregsetp;
3567 static char zerobuf[4] = {0};
3568
3569 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3570 knows about the actual size of each register so that's no problem. */
3571 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3572 {
3573 supply_register (i, (char *)&regp[i]);
3574 }
3575}
3576
3577/* Use a local version of this function to get the correct types for
3578 regsets, until multi-arch core support is ready. */
3579
3580static void
3581fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
3582 int which, CORE_ADDR reg_addr)
3583{
3584 elf_gregset_t gregset;
3585
3586 switch (which)
3587 {
3588 case 0:
3589 if (core_reg_size != sizeof (gregset))
3590 {
3591 warning ("wrong size gregset struct in core file");
3592 }
3593 else
3594 {
3595 memcpy (&gregset, core_reg_sect, sizeof (gregset));
3596 supply_gregset (&gregset);
3597 }
3598
3599 default:
3600 /* We've covered all the kinds of registers we know about here,
3601 so this must be something we wouldn't know what to do with
3602 anyway. Just ignore it. */
3603 break;
3604 }
3605}
3606
3607static struct core_fns cris_elf_core_fns =
3608{
3609 bfd_target_elf_flavour, /* core_flavour */
3610 default_check_format, /* check_format */
3611 default_core_sniffer, /* core_sniffer */
3612 fetch_core_registers, /* core_read_registers */
3613 NULL /* next */
3614};
3615
3616/* Fetch (and possibly build) an appropriate link_map_offsets
8605d56e
AC
3617 structure for native GNU/Linux CRIS targets using the struct
3618 offsets defined in link.h (but without actual reference to that
3619 file).
dbbff683 3620
8605d56e
AC
3621 This makes it possible to access GNU/Linux CRIS shared libraries
3622 from a GDB that was not built on an GNU/Linux CRIS host (for cross
3623 debugging).
dbbff683
OF
3624
3625 See gdb/solib-svr4.h for an explanation of these fields. */
3626
3627struct link_map_offsets *
3628cris_linux_svr4_fetch_link_map_offsets (void)
3629{
3630 static struct link_map_offsets lmo;
3631 static struct link_map_offsets *lmp = NULL;
3632
3633 if (lmp == NULL)
3634 {
3635 lmp = &lmo;
3636
3637 lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
3638 this is all we need. */
3639 lmo.r_map_offset = 4;
3640 lmo.r_map_size = 4;
3641
3642 lmo.link_map_size = 20;
3643
3644 lmo.l_addr_offset = 0;
3645 lmo.l_addr_size = 4;
3646
3647 lmo.l_name_offset = 4;
3648 lmo.l_name_size = 4;
3649
3650 lmo.l_next_offset = 12;
3651 lmo.l_next_size = 4;
3652
3653 lmo.l_prev_offset = 16;
3654 lmo.l_prev_size = 4;
3655 }
3656
3657 return lmp;
3658}
3659
3660static void
3661cris_fpless_backtrace (char *noargs, int from_tty)
3662{
3663 /* Points at the instruction after the jsr (except when in innermost frame
3664 where it points at the original pc). */
3665 CORE_ADDR pc = 0;
3666
3667 /* Temporary variable, used for parsing from the start of the function that
3668 the pc is in, up to the pc. */
3669 CORE_ADDR tmp_pc = 0;
3670 CORE_ADDR sp = 0;
3671
3672 /* Information about current frame. */
3673 struct symtab_and_line sal;
3674 char* func_name;
3675
3676 /* Present instruction. */
3677 unsigned short insn;
3678
3679 /* Next instruction, lookahead. */
3680 unsigned short insn_next;
3681
3682 /* This is to store the offset between sp at start of function and until we
3683 reach push srp (if any). */
3684 int sp_add_later = 0;
3685 int push_srp_found = 0;
3686
3687 int val = 0;
3688
3689 /* Frame counter. */
3690 int frame = 0;
3691
3692 /* For the innermost frame, we want to look at srp in case it's a leaf
3693 function (since there's no push srp in that case). */
3694 int innermost_frame = 1;
3695
4caf0990
AC
3696 deprecated_read_register_gen (PC_REGNUM, (char *) &pc);
3697 deprecated_read_register_gen (SP_REGNUM, (char *) &sp);
dbbff683
OF
3698
3699 /* We make an explicit return when we can't find an outer frame. */
3700 while (1)
3701 {
3702 /* Get file name and line number. */
3703 sal = find_pc_line (pc, 0);
3704
3705 /* Get function name. */
3706 find_pc_partial_function (pc, &func_name, (CORE_ADDR *) NULL,
3707 (CORE_ADDR *) NULL);
3708
3709 /* Print information about current frame. */
3710 printf_unfiltered ("#%i 0x%08lx in %s", frame++, pc, func_name);
3711 if (sal.symtab)
3712 {
3713 printf_unfiltered (" at %s:%i", sal.symtab->filename, sal.line);
3714 }
3715 printf_unfiltered ("\n");
3716
3717 /* Get the start address of this function. */
3718 tmp_pc = get_pc_function_start (pc);
3719
3720 /* Mini parser, only meant to find push sp and sub ...,sp from the start
3721 of the function, up to the pc. */
3722 while (tmp_pc < pc)
3723 {
3724 insn = read_memory_unsigned_integer (tmp_pc, sizeof (short));
3725 tmp_pc += sizeof (short);
3726 if (insn == 0xE1FC)
3727 {
3728 /* push <reg> 32 bit instruction */
3729 insn_next = read_memory_unsigned_integer (tmp_pc,
3730 sizeof (short));
3731 tmp_pc += sizeof (short);
3732
3733 /* Recognize srp. */
3734 if (insn_next == 0xBE7E)
3735 {
3736 /* For subsequent (not this one though) push or sub which
3737 affects sp, adjust sp immediately. */
3738 push_srp_found = 1;
3739
3740 /* Note: this will break if we ever encounter a
3741 push vr (1 byte) or push ccr (2 bytes). */
3742 sp_add_later += 4;
3743 }
3744 else
3745 {
3746 /* Some other register was pushed. */
3747 if (push_srp_found)
3748 {
3749 sp += 4;
3750 }
3751 else
3752 {
3753 sp_add_later += 4;
3754 }
3755 }
3756 }
3757 else if (cris_get_operand2 (insn) == SP_REGNUM
3758 && cris_get_mode (insn) == 0x0000
3759 && cris_get_opcode (insn) == 0x000A)
3760 {
3761 /* subq <val>,sp */
3762 val = cris_get_quick_value (insn);
3763
3764 if (push_srp_found)
3765 {
3766 sp += val;
3767 }
3768 else
3769 {
3770 sp_add_later += val;
3771 }
3772
3773 }
3774 else if (cris_get_operand2 (insn) == SP_REGNUM
3775 /* Autoincrement addressing mode. */
3776 && cris_get_mode (insn) == 0x0003
3777 /* Opcode. */
3778 && ((insn) & 0x03E0) >> 5 == 0x0004)
3779 {
3780 /* subu <val>,sp */
3781 val = get_data_from_address (&insn, tmp_pc);
3782
3783 if (push_srp_found)
3784 {
3785 sp += val;
3786 }
3787 else
3788 {
3789 sp_add_later += val;
3790 }
3791 }
3792 else if (cris_get_operand2 (insn) == SP_REGNUM
3793 && ((insn & 0x0F00) >> 8) == 0x0001
3794 && (cris_get_signed_offset (insn) < 0))
3795 {
3796 /* Immediate byte offset addressing prefix word with sp as base
3797 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
3798 is between 64 and 128.
3799 movem r<regsave>,[sp=sp-<val>] */
3800 val = -cris_get_signed_offset (insn);
3801 insn_next = read_memory_unsigned_integer (tmp_pc,
3802 sizeof (short));
3803 tmp_pc += sizeof (short);
3804
3805 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
3806 && cris_get_opcode (insn_next) == 0x000F
3807 && cris_get_size (insn_next) == 0x0003
3808 && cris_get_operand1 (insn_next) == SP_REGNUM)
3809 {
3810 if (push_srp_found)
3811 {
3812 sp += val;
3813 }
3814 else
3815 {
3816 sp_add_later += val;
3817 }
3818 }
3819 }
3820 }
3821
3822 if (push_srp_found)
3823 {
3824 /* Reset flag. */
3825 push_srp_found = 0;
3826
3827 /* sp should now point at where srp is stored on the stack. Update
3828 the pc to the srp. */
3829 pc = read_memory_unsigned_integer (sp, 4);
3830 }
3831 else if (innermost_frame)
3832 {
3833 /* We couldn't find a push srp in the prologue, so this must be
3834 a leaf function, and thus we use the srp register directly.
3835 This should happen at most once, for the innermost function. */
4caf0990 3836 deprecated_read_register_gen (SRP_REGNUM, (char *) &pc);
dbbff683
OF
3837 }
3838 else
3839 {
3840 /* Couldn't find an outer frame. */
3841 return;
3842 }
3843
3844 /* Reset flag. (In case the innermost frame wasn't a leaf, we don't
3845 want to look at the srp register later either). */
3846 innermost_frame = 0;
3847
3848 /* Now, add the offset for everything up to, and including push srp,
3849 that was held back during the prologue parsing. */
3850 sp += sp_add_later;
3851 sp_add_later = 0;
3852 }
3853}
3854
29134980
OF
3855void
3856_initialize_cris_tdep (void)
3857{
3858 struct cmd_list_element *c;
3859
3860 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3861
3862 /* Used in disassembly. */
3863 tm_print_insn = cris_delayed_get_disassembler;
3864
3865 /* CRIS-specific user-commands. */
3866 c = add_set_cmd ("cris-version", class_support, var_integer,
3867 (char *) &usr_cmd_cris_version,
3868 "Set the current CRIS version.", &setlist);
9f60d481 3869 set_cmd_sfunc (c, cris_version_update);
29134980
OF
3870 add_show_from_set (c, &showlist);
3871
3872 c = add_set_enum_cmd ("cris-mode", class_support, cris_mode_enums,
3873 &usr_cmd_cris_mode,
3874 "Set the current CRIS mode.", &setlist);
9f60d481 3875 set_cmd_sfunc (c, cris_mode_update);
29134980
OF
3876 add_show_from_set (c, &showlist);
3877
3878 c = add_set_enum_cmd ("cris-abi", class_support, cris_abi_enums,
3879 &usr_cmd_cris_abi,
3880 "Set the current CRIS ABI version.", &setlist);
9f60d481 3881 set_cmd_sfunc (c, cris_abi_update);
29134980 3882 add_show_from_set (c, &showlist);
dbbff683
OF
3883
3884 c = add_cmd ("cris-fpless-backtrace", class_support, cris_fpless_backtrace,
3885 "Display call chain using the subroutine return pointer.\n"
3886 "Note that this displays the address after the jump to the "
3887 "subroutine.", &cmdlist);
3888
3889 add_core_fns (&cris_elf_core_fns);
3890
29134980
OF
3891}
3892
3893/* Prints out all target specific values. */
3894
3895static void
3896cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3897{
3898 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3899 if (tdep != NULL)
3900 {
3901 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3902 tdep->cris_version);
3903 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3904 tdep->cris_mode);
3905 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_abi = %s\n",
3906 tdep->cris_abi);
3907
3908 }
3909}
3910
3911static void
3912cris_version_update (char *ignore_args, int from_tty,
3913 struct cmd_list_element *c)
3914{
3915 struct gdbarch_info info;
3916
1868c04e
AC
3917 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3918 the set command passed as a parameter. The clone operation will
3919 include (BUG?) any ``set'' command callback, if present.
3920 Commands like ``info set'' call all the ``show'' command
3921 callbacks. Unfortunatly, for ``show'' commands cloned from
3922 ``set'', this includes callbacks belonging to ``set'' commands.
3923 Making this worse, this only occures if add_show_from_set() is
3924 called after add_cmd_sfunc() (BUG?). */
3925
29134980 3926 /* From here on, trust the user's CRIS version setting. */
1868c04e 3927 if (cmd_type (c) == set_cmd)
29134980
OF
3928 {
3929 usr_cmd_cris_version_valid = 1;
3930
3931 /* Update the current architecture, if needed. */
fb6ecb0f 3932 gdbarch_info_init (&info);
29134980
OF
3933 if (!gdbarch_update_p (info))
3934 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3935 }
3936}
3937
3938static void
3939cris_mode_update (char *ignore_args, int from_tty,
3940 struct cmd_list_element *c)
3941{
3942 struct gdbarch_info info;
3943
1868c04e
AC
3944 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3945 the set command passed as a parameter. The clone operation will
3946 include (BUG?) any ``set'' command callback, if present.
3947 Commands like ``info set'' call all the ``show'' command
3948 callbacks. Unfortunatly, for ``show'' commands cloned from
3949 ``set'', this includes callbacks belonging to ``set'' commands.
3950 Making this worse, this only occures if add_show_from_set() is
3951 called after add_cmd_sfunc() (BUG?). */
3952
29134980 3953 /* From here on, trust the user's CRIS mode setting. */
1868c04e 3954 if (cmd_type (c) == set_cmd)
29134980
OF
3955 {
3956 usr_cmd_cris_mode_valid = 1;
3957
3958 /* Update the current architecture, if needed. */
fb6ecb0f 3959 gdbarch_info_init (&info);
29134980
OF
3960 if (!gdbarch_update_p (info))
3961 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3962 }
3963}
3964
3965static void
3966cris_abi_update (char *ignore_args, int from_tty,
3967 struct cmd_list_element *c)
3968{
3969 struct gdbarch_info info;
3970
1868c04e
AC
3971 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
3972 the set command passed as a parameter. The clone operation will
3973 include (BUG?) any ``set'' command callback, if present.
3974 Commands like ``info set'' call all the ``show'' command
3975 callbacks. Unfortunatly, for ``show'' commands cloned from
3976 ``set'', this includes callbacks belonging to ``set'' commands.
3977 Making this worse, this only occures if add_show_from_set() is
3978 called after add_cmd_sfunc() (BUG?). */
3979
29134980 3980 /* From here on, trust the user's CRIS ABI setting. */
1868c04e 3981 if (cmd_type (c) == set_cmd)
29134980
OF
3982 {
3983 usr_cmd_cris_abi_valid = 1;
3984
3985 /* Update the current architecture, if needed. */
fb6ecb0f 3986 gdbarch_info_init (&info);
29134980
OF
3987 if (!gdbarch_update_p (info))
3988 internal_error (__FILE__, __LINE__, "cris_gdbarch_update: failed to update architecture.");
3989 }
3990}
3991
3992/* Copied from pa64solib.c, with a couple of minor changes. */
3993
3994static CORE_ADDR
3995bfd_lookup_symbol (bfd *abfd, const char *symname)
3996{
3997 unsigned int storage_needed;
3998 asymbol *sym;
3999 asymbol **symbol_table;
4000 unsigned int number_of_symbols;
4001 unsigned int i;
4002 struct cleanup *back_to;
4003 CORE_ADDR symaddr = 0;
4004
4005 storage_needed = bfd_get_symtab_upper_bound (abfd);
4006
4007 if (storage_needed > 0)
4008 {
4009 symbol_table = (asymbol **) xmalloc (storage_needed);
4efb68b1 4010 back_to = make_cleanup (free, symbol_table);
29134980
OF
4011 number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table);
4012
4013 for (i = 0; i < number_of_symbols; i++)
4014 {
4015 sym = *symbol_table++;
4016 if (!strcmp (sym->name, symname))
4017 {
4018 /* Bfd symbols are section relative. */
4019 symaddr = sym->value + sym->section->vma;
4020 break;
4021 }
4022 }
4023 do_cleanups (back_to);
4024 }
4025 return (symaddr);
4026}
4027
4028static struct gdbarch *
4029cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4030{
4031 struct gdbarch *gdbarch;
4032 struct gdbarch_tdep *tdep;
4033 int cris_version;
4034 const char *cris_mode;
4035 const char *cris_abi;
4036 CORE_ADDR cris_abi_sym = 0;
4037 int register_bytes;
4038
4039 if (usr_cmd_cris_version_valid)
4040 {
4041 /* Trust the user's CRIS version setting. */
4042 cris_version = usr_cmd_cris_version;
4043 }
4044 else
4045 {
4046 /* Assume it's CRIS version 10. */
4047 cris_version = 10;
4048 }
4049
4050 if (usr_cmd_cris_mode_valid)
4051 {
4052 /* Trust the user's CRIS mode setting. */
4053 cris_mode = usr_cmd_cris_mode;
4054 }
4055 else if (cris_version == 10)
4056 {
4057 /* Assume CRIS version 10 is in user mode. */
4058 cris_mode = CRIS_MODE_USER;
4059 }
4060 else
4061 {
4062 /* Strictly speaking, older CRIS version don't have a supervisor mode,
4063 but we regard its only mode as supervisor mode. */
4064 cris_mode = CRIS_MODE_SUPERVISOR;
4065 }
4066
4067 if (usr_cmd_cris_abi_valid)
4068 {
4069 /* Trust the user's ABI setting. */
4070 cris_abi = usr_cmd_cris_abi;
4071 }
4072 else if (info.abfd)
4073 {
4074 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4075 {
4076 /* An elf target uses the new ABI. */
4077 cris_abi = CRIS_ABI_V2;
4078 }
4079 else if (bfd_get_flavour (info.abfd) == bfd_target_aout_flavour)
4080 {
4081 /* An a.out target may use either ABI. Look for hints in the
4082 symbol table. */
4083 cris_abi_sym = bfd_lookup_symbol (info.abfd, CRIS_ABI_SYMBOL);
4084 cris_abi = cris_abi_sym ? CRIS_ABI_V2 : CRIS_ABI_ORIGINAL;
4085 }
4086 else
4087 {
4088 /* Unknown bfd flavour. Assume it's the new ABI. */
4089 cris_abi = CRIS_ABI_V2;
4090 }
4091 }
af566d9f 4092 else if (arches != NULL)
29134980 4093 {
af566d9f
AC
4094 /* No bfd available. Stick with the ABI from the most recently
4095 selected architecture of this same family (the head of arches
4096 always points to this). (This is to avoid changing the ABI
4097 when the user updates the architecture with the 'set
4098 cris-version' command.) */
4099 cris_abi = gdbarch_tdep (arches->gdbarch)->cris_abi;
29134980
OF
4100 }
4101 else
4102 {
af566d9f
AC
4103 /* No bfd, and no previously selected architecture available.
4104 Assume it's the new ABI. */
29134980
OF
4105 cris_abi = CRIS_ABI_V2;
4106 }
4107
4108 /* Make the current settings visible to the user. */
4109 usr_cmd_cris_version = cris_version;
4110 usr_cmd_cris_mode = cris_mode;
4111 usr_cmd_cris_abi = cris_abi;
4112
4113 /* Find a candidate among the list of pre-declared architectures. Both
4114 CRIS version and ABI must match. */
4115 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4116 arches != NULL;
4117 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4118 {
4119 if ((gdbarch_tdep (arches->gdbarch)->cris_version == cris_version)
4120 && (gdbarch_tdep (arches->gdbarch)->cris_mode == cris_mode)
4121 && (gdbarch_tdep (arches->gdbarch)->cris_abi == cris_abi))
4122 return arches->gdbarch;
4123 }
4124
4125 /* No matching architecture was found. Create a new one. */
4126 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4127 gdbarch = gdbarch_alloc (&info, tdep);
4128
a5afb99f
AC
4129 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
4130 ready to unwind the PC first (see frame.c:get_prev_frame()). */
4131 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
4132
29134980
OF
4133 tdep->cris_version = cris_version;
4134 tdep->cris_mode = cris_mode;
4135 tdep->cris_abi = cris_abi;
4136
4137 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4138 switch (info.byte_order)
4139 {
778eb05e 4140 case BFD_ENDIAN_LITTLE:
29134980
OF
4141 /* Ok. */
4142 break;
4143
d7449b42 4144 case BFD_ENDIAN_BIG:
29134980
OF
4145 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: big endian byte order in info");
4146 break;
4147
4148 default:
4149 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown byte order in info");
4150 }
4151
4152 /* Initialize the ABI dependent things. */
4153 if (tdep->cris_abi == CRIS_ABI_ORIGINAL)
4154 {
4155 set_gdbarch_double_bit (gdbarch, 32);
4156 set_gdbarch_push_arguments (gdbarch, cris_abi_original_push_arguments);
ebba8386 4157 set_gdbarch_deprecated_store_return_value (gdbarch,
29134980 4158 cris_abi_original_store_return_value);
26e9b323 4159 set_gdbarch_deprecated_extract_return_value
29134980
OF
4160 (gdbarch, cris_abi_original_extract_return_value);
4161 set_gdbarch_reg_struct_has_addr
4162 (gdbarch, cris_abi_original_reg_struct_has_addr);
4163 }
4164 else if (tdep->cris_abi == CRIS_ABI_V2)
4165 {
4166 set_gdbarch_double_bit (gdbarch, 64);
4167 set_gdbarch_push_arguments (gdbarch, cris_abi_v2_push_arguments);
ebba8386 4168 set_gdbarch_deprecated_store_return_value (gdbarch, cris_abi_v2_store_return_value);
26e9b323
AC
4169 set_gdbarch_deprecated_extract_return_value
4170 (gdbarch, cris_abi_v2_extract_return_value);
29134980
OF
4171 set_gdbarch_reg_struct_has_addr (gdbarch,
4172 cris_abi_v2_reg_struct_has_addr);
4173 }
4174 else
4175 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS ABI");
4176
4177 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4178 which means we have to set this explicitly. */
4179 set_gdbarch_long_double_bit (gdbarch, 64);
4180
29134980
OF
4181 /* There are 32 registers (some of which may not be implemented). */
4182 set_gdbarch_num_regs (gdbarch, 32);
4183 set_gdbarch_sp_regnum (gdbarch, 14);
4184 set_gdbarch_fp_regnum (gdbarch, 8);
4185 set_gdbarch_pc_regnum (gdbarch, 15);
4186
4187 set_gdbarch_register_name (gdbarch, cris_register_name);
4188
4189 /* Length of ordinary registers used in push_word and a few other places.
4190 REGISTER_RAW_SIZE is the real way to know how big a register is. */
4191 set_gdbarch_register_size (gdbarch, 4);
4192
4193 /* NEW */
4194 set_gdbarch_register_bytes_ok (gdbarch, cris_register_bytes_ok);
4195 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4196
4197
4198 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4199 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4200
4201
4202 /* The total amount of space needed to store (in an array called registers)
4203 GDB's copy of the machine's register state. Note: We can not use
4204 cris_register_size at this point, since it relies on current_gdbarch
4205 being set. */
4206 switch (tdep->cris_version)
4207 {
4208 case 0:
4209 case 1:
4210 case 2:
4211 case 3:
4212 /* Support for these may be added later. */
4213 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unsupported CRIS version");
4214 break;
4215
4216 case 8:
4217 case 9:
4218 /* CRIS v8 and v9, a.k.a. ETRAX 100. General registers R0 - R15
4219 (32 bits), special registers P0 - P1 (8 bits), P4 - P5 (16 bits),
4220 and P8 - P14 (32 bits). */
4221 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (7 * 4);
4222 break;
4223
4224 case 10:
4225 case 11:
4226 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4227 P7 (32 bits), and P15 (32 bits) have been implemented. */
4228 register_bytes = (16 * 4) + (2 * 1) + (2 * 2) + (9 * 4);
4229 break;
4230
4231 default:
4232 internal_error (__FILE__, __LINE__, "cris_gdbarch_init: unknown CRIS version");
4233 }
4234
4235 set_gdbarch_register_bytes (gdbarch, register_bytes);
4236
4237 /* Returns the register offset for the first byte of register regno's space
4238 in the saved register state. */
4239 set_gdbarch_register_byte (gdbarch, cris_register_offset);
4240
4241 /* The length of the registers in the actual machine representation. */
4242 set_gdbarch_register_raw_size (gdbarch, cris_register_size);
4243
4244 /* The largest value REGISTER_RAW_SIZE can have. */
4245 set_gdbarch_max_register_raw_size (gdbarch, 32);
4246
4247 /* The length of the registers in the program's representation. */
4248 set_gdbarch_register_virtual_size (gdbarch, cris_register_size);
4249
4250 /* The largest value REGISTER_VIRTUAL_SIZE can have. */
4251 set_gdbarch_max_register_virtual_size (gdbarch, 32);
4252
4253 set_gdbarch_register_virtual_type (gdbarch, cris_register_virtual_type);
4254
4255 /* Use generic dummy frames. */
29134980
OF
4256
4257 /* Where to execute the call in the memory segments. */
29134980
OF
4258 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
4259
4260 /* Start execution at the beginning of dummy. */
4261 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
4262 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
4263
4264 /* Set to 1 since call_dummy_breakpoint_offset was defined. */
4265 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
4266
4267 /* Read all about dummy frames in blockframe.c. */
4268 set_gdbarch_call_dummy_length (gdbarch, 0);
ae45cd16 4269 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
29134980
OF
4270
4271 /* Defined to 1 to indicate that the target supports inferior function
4272 calls. */
4273 set_gdbarch_call_dummy_p (gdbarch, 1);
4274 set_gdbarch_call_dummy_words (gdbarch, 0);
4275 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
4276
4277 /* No stack adjustment needed when peforming an inferior function call. */
4278 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
4279 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
4280
bdcdd535 4281 set_gdbarch_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
29134980
OF
4282
4283 /* No register requires conversion from raw format to virtual format. */
4284 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
4285
4286 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
4287 set_gdbarch_push_return_address (gdbarch, cris_push_return_address);
4288 set_gdbarch_pop_frame (gdbarch, cris_pop_frame);
4289
4290 set_gdbarch_store_struct_return (gdbarch, cris_store_struct_return);
26e9b323
AC
4291 set_gdbarch_deprecated_extract_struct_value_address
4292 (gdbarch, cris_extract_struct_value_address);
29134980
OF
4293 set_gdbarch_use_struct_convention (gdbarch, cris_use_struct_convention);
4294
4295 set_gdbarch_frame_init_saved_regs (gdbarch, cris_frame_init_saved_regs);
4296 set_gdbarch_init_extra_frame_info (gdbarch, cris_init_extra_frame_info);
4297 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
4298 set_gdbarch_prologue_frameless_p (gdbarch, generic_prologue_frameless_p);
4299
4300 /* The stack grows downward. */
4301 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4302
4303 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4304
4305 /* The PC must not be decremented after a breakpoint. (The breakpoint
4306 handler takes care of that.) */
4307 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4308
4309 /* Offset from address of function to start of its code. */
4310 set_gdbarch_function_start_offset (gdbarch, 0);
4311
4312 /* The number of bytes at the start of arglist that are not really args,
4313 0 in the CRIS ABI. */
4314 set_gdbarch_frame_args_skip (gdbarch, 0);
4315 set_gdbarch_frameless_function_invocation
4316 (gdbarch, cris_frameless_function_invocation);
4317 set_gdbarch_frame_chain (gdbarch, cris_frame_chain);
29134980
OF
4318
4319 set_gdbarch_frame_saved_pc (gdbarch, cris_frame_saved_pc);
29134980
OF
4320 set_gdbarch_saved_pc_after_call (gdbarch, cris_saved_pc_after_call);
4321
4322 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
4323
4324 /* No extra stack alignment needed. Set to 1 by default. */
4325 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
4326
4327 /* Helpful for backtracing and returning in a call dummy. */
4328 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
4329
dbbff683
OF
4330 /* Use target_specific function to define link map offsets. */
4331 set_solib_svr4_fetch_link_map_offsets
4332 (gdbarch, cris_linux_svr4_fetch_link_map_offsets);
4333
29134980
OF
4334 return gdbarch;
4335}
This page took 0.315102 seconds and 4 git commands to generate.