* gdbcore.h (struct regcache): Add forward declaration.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
6aba47ca 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
76a9d10f 4 Free Software Foundation, Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9This file is part of GDB.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
197e01b6
EZ
23Foundation, Inc., 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA. */
29134980
OF
25
26#include "defs.h"
27#include "frame.h"
2e4b5889
OF
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "dwarf2-frame.h"
29134980
OF
32#include "symtab.h"
33#include "inferior.h"
34#include "gdbtypes.h"
35#include "gdbcore.h"
36#include "gdbcmd.h"
37#include "target.h"
38#include "value.h"
39#include "opcode/cris.h"
40#include "arch-utils.h"
41#include "regcache.h"
36482093 42#include "gdb_assert.h"
29134980
OF
43
44/* To get entry_point_address. */
9ab9195f 45#include "objfiles.h"
29134980 46
a5f6c8f5 47#include "solib.h" /* Support for shared libraries. */
76a9d10f 48#include "solib-svr4.h"
9bbe19fb 49#include "gdb_string.h"
a89aa300 50#include "dis-asm.h"
dbbff683 51
29134980
OF
52enum cris_num_regs
53{
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
55 NUM_FREGS = 0,
56
57 /* There are 16 general registers. */
58 NUM_GENREGS = 16,
59
60 /* There are 16 special registers. */
c600d464
OF
61 NUM_SPECREGS = 16,
62
63 /* CRISv32 has a pseudo PC register, not noted here. */
64
65 /* CRISv32 has 16 support registers. */
66 NUM_SUPPREGS = 16
29134980
OF
67};
68
69/* Register numbers of various important registers.
2e4b5889 70 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
81
29134980
OF
82enum cris_regnums
83{
84 /* Enums with respect to the general registers, valid for all
c600d464 85 CRIS versions. The frame pointer is always in R8. */
2e4b5889 86 CRIS_FP_REGNUM = 8,
c600d464 87 /* ABI related registers. */
29134980
OF
88 STR_REGNUM = 9,
89 RET_REGNUM = 10,
90 ARG1_REGNUM = 10,
91 ARG2_REGNUM = 11,
92 ARG3_REGNUM = 12,
93 ARG4_REGNUM = 13,
94
c600d464 95 /* Registers which happen to be common. */
29134980 96 VR_REGNUM = 17,
c600d464
OF
97 MOF_REGNUM = 23,
98 SRP_REGNUM = 27,
99
100 /* CRISv10 et. al. specific registers. */
101 P0_REGNUM = 16,
29134980
OF
102 P4_REGNUM = 20,
103 CCR_REGNUM = 21,
29134980
OF
104 P8_REGNUM = 24,
105 IBR_REGNUM = 25,
106 IRP_REGNUM = 26,
29134980 107 BAR_REGNUM = 28,
2a9ecef2 108 DCCR_REGNUM = 29,
29134980 109 BRP_REGNUM = 30,
c600d464
OF
110 USP_REGNUM = 31,
111
112 /* CRISv32 specific registers. */
113 ACR_REGNUM = 15,
114 BZ_REGNUM = 16,
115 PID_REGNUM = 18,
116 SRS_REGNUM = 19,
117 WZ_REGNUM = 20,
118 EXS_REGNUM = 21,
119 EDA_REGNUM = 22,
120 DZ_REGNUM = 24,
121 EBP_REGNUM = 25,
122 ERP_REGNUM = 26,
123 NRP_REGNUM = 28,
124 CCS_REGNUM = 29,
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 SPC_REGNUM = 31,
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
128
129 S0_REGNUM = 33,
130 S1_REGNUM = 34,
131 S2_REGNUM = 35,
132 S3_REGNUM = 36,
133 S4_REGNUM = 37,
134 S5_REGNUM = 38,
135 S6_REGNUM = 39,
136 S7_REGNUM = 40,
137 S8_REGNUM = 41,
138 S9_REGNUM = 42,
139 S10_REGNUM = 43,
140 S11_REGNUM = 44,
141 S12_REGNUM = 45,
142 S13_REGNUM = 46,
143 S14_REGNUM = 47,
144 S15_REGNUM = 48,
29134980
OF
145};
146
147extern const struct cris_spec_reg cris_spec_regs[];
148
149/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
150 register names and sizes. */
151static int usr_cmd_cris_version;
29134980
OF
152
153/* Indicates whether to trust the above variable. */
154static int usr_cmd_cris_version_valid = 0;
155
41922353
OF
156static const char cris_mode_normal[] = "normal";
157static const char cris_mode_guru[] = "guru";
0e6bdb31
OF
158static const char *cris_modes[] = {
159 cris_mode_normal,
160 cris_mode_guru,
161 0
162};
163
164/* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166static const char *usr_cmd_cris_mode = cris_mode_normal;
167
a5f6c8f5
OF
168/* Whether to make use of Dwarf-2 CFI (default on). */
169static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 170
29134980
OF
171/* CRIS architecture specific information. */
172struct gdbarch_tdep
173{
0e6bdb31
OF
174 int cris_version;
175 const char *cris_mode;
a5f6c8f5 176 int cris_dwarf2_cfi;
29134980
OF
177};
178
179/* Functions for accessing target dependent data. */
180
181static int
182cris_version (void)
183{
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
185}
186
0e6bdb31
OF
187static const char *
188cris_mode (void)
189{
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
191}
192
a5f6c8f5
OF
193/* Sigtramp identification code copied from i386-linux-tdep.c. */
194
195#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196#define SIGTRAMP_OFFSET0 0
197#define SIGTRAMP_INSN1 0xe93d /* break 13 */
198#define SIGTRAMP_OFFSET1 4
199
200static const unsigned short sigtramp_code[] =
201{
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
204};
205
206#define SIGTRAMP_LEN (sizeof sigtramp_code)
207
208/* Note: same length as normal sigtramp code. */
209
210static const unsigned short rt_sigtramp_code[] =
29134980 211{
a5f6c8f5
OF
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
214};
215
216/* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
218
219static CORE_ADDR
220cris_sigtramp_start (struct frame_info *next_frame)
221{
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
e2a2a3e8 223 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5
OF
224
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
226 return 0;
227
e2a2a3e8 228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 229 {
e2a2a3e8 230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
231 return 0;
232
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
235 return 0;
236 }
237
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
239 return 0;
240
241 return pc;
242}
243
244/* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
246
247static CORE_ADDR
248cris_rt_sigtramp_start (struct frame_info *next_frame)
249{
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
e2a2a3e8 251 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5
OF
252
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
254 return 0;
255
e2a2a3e8 256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 257 {
e2a2a3e8 258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
259 return 0;
260
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
263 return 0;
264 }
265
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
267 return 0;
268
269 return pc;
270}
271
272/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
274
275static CORE_ADDR
276cris_sigcontext_addr (struct frame_info *next_frame)
277{
278 CORE_ADDR pc;
279 CORE_ADDR sp;
280 char buf[4];
281
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
284
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
287 if (pc)
288 {
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
291 it already. */
292 return sp;
293 }
294
295 pc = cris_rt_sigtramp_start (next_frame);
296 if (pc)
297 {
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
300 Magic digging:
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
303 return (sp + 156);
304 }
305
8a3fe4f8 306 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 307 return 0;
29134980
OF
308}
309
2e4b5889 310struct cris_unwind_cache
29134980 311{
2e4b5889
OF
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
314 CORE_ADDR prev_sp;
315 /* The frame's base, optionally used by the high-level debug info. */
316 CORE_ADDR base;
317 int size;
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
320 pointer). */
321 LONGEST sp_offset;
322 LONGEST r8_offset;
323 int uses_frame;
324
325 /* From old frame_extra_info struct. */
29134980
OF
326 CORE_ADDR return_pc;
327 int leaf_function;
2e4b5889
OF
328
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
29134980
OF
331};
332
a5f6c8f5
OF
333static struct cris_unwind_cache *
334cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
335 void **this_cache)
336{
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
339 CORE_ADDR pc;
340 CORE_ADDR sp;
341 CORE_ADDR addr;
342 char buf[4];
343 int i;
344
345 if ((*this_cache))
346 return (*this_cache);
347
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351
352 /* Zero all fields. */
353 info->prev_sp = 0;
354 info->base = 0;
355 info->size = 0;
356 info->sp_offset = 0;
357 info->r8_offset = 0;
358 info->uses_frame = 0;
359 info->return_pc = 0;
360 info->leaf_function = 0;
361
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
364
365 addr = cris_sigcontext_addr (next_frame);
366
367 /* Layout of the sigcontext struct:
368 struct sigcontext {
369 struct pt_regs regs;
370 unsigned long oldmask;
371 unsigned long usp;
372 }; */
373
c600d464
OF
374 if (tdep->cris_version == 10)
375 {
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 struct pt_regs. */
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
390 }
391 else
392 {
393 /* CRISv32. */
394 /* R0 to R13 are stored in order at offset (1 * 4) in
395 struct pt_regs. */
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
413
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
419 }
a5f6c8f5
OF
420
421 return info;
422}
423
424static void
425cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
427{
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
431}
432
433/* Forward declaration. */
434
435static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 439 int *realnump, gdb_byte *bufferp);
a5f6c8f5
OF
440static void
441cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 void **this_cache,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 445 int *realnump, gdb_byte *valuep)
a5f6c8f5
OF
446{
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
451}
452
453static const struct frame_unwind cris_sigtramp_frame_unwind =
454{
455 SIGTRAMP_FRAME,
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
458};
459
460static const struct frame_unwind *
461cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462{
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
466
467 return NULL;
468}
469
c600d464
OF
470int
471crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
473{
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 ULONGEST erp;
476 int ret = 0;
477 char buf[4];
478
0e6bdb31
OF
479 if (cris_mode () == cris_mode_guru)
480 {
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
482 }
483 else
484 {
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
486 }
487
c600d464
OF
488 erp = extract_unsigned_integer (buf, 4);
489
490 if (erp & 0x1)
491 {
492 /* In delay slot - check if there's a breakpoint at the preceding
493 instruction. */
494 if (breakpoint_here_p (erp & ~0x1))
495 ret = 1;
496 }
497 return ret;
498}
499
500/* Hardware watchpoint support. */
501
502/* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
504
505int
506cris_can_use_hardware_watchpoint (int type, int count, int other)
507{
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511
512 if (tdep->cris_version != 32)
513 return 0;
514 else
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
519}
520
521/* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
523
524int
525cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
526{
527 return 1;
528}
529
530/* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
532 zero. */
533
534CORE_ADDR
535cris_stopped_data_address (void)
536{
537 CORE_ADDR eda;
538 eda = read_register (EDA_REGNUM);
539 return eda;
540}
541
29134980 542/* The instruction environment needed to find single-step breakpoints. */
c600d464 543
29134980
OF
544typedef
545struct instruction_environment
546{
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
552 int branch_found;
553 int prefix_found;
554 int invalid;
555 int slot_needed;
556 int delay_slot_pc_active;
557 int xflag_found;
558 int disable_interrupt;
559} inst_env_type;
560
29134980
OF
561/* Machine-dependencies in CRIS for opcodes. */
562
563/* Instruction sizes. */
564enum cris_instruction_sizes
565{
566 INST_BYTE_SIZE = 0,
567 INST_WORD_SIZE = 1,
568 INST_DWORD_SIZE = 2
569};
570
571/* Addressing modes. */
572enum cris_addressing_modes
573{
574 REGISTER_MODE = 1,
575 INDIRECT_MODE = 2,
576 AUTOINC_MODE = 3
577};
578
579/* Prefix addressing modes. */
580enum cris_prefix_addressing_modes
581{
582 PREFIX_INDEX_MODE = 2,
583 PREFIX_ASSIGN_MODE = 3,
584
585 /* Handle immediate byte offset addressing mode prefix format. */
586 PREFIX_OFFSET_MODE = 2
587};
588
589/* Masks for opcodes. */
590enum cris_opcode_masks
591{
592 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
593 SIGNED_EXTEND_BIT_MASK = 0x2,
594 SIGNED_BYTE_MASK = 0x80,
595 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
596 SIGNED_WORD_MASK = 0x8000,
597 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
598 SIGNED_DWORD_MASK = 0x80000000,
599 SIGNED_QUICK_VALUE_MASK = 0x20,
600 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
601};
602
603/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
604 Bit 15 - 12 Operand2
605 11 - 10 Mode
606 9 - 6 Opcode
607 5 - 4 Size
608 3 - 0 Operand1 */
609
610static int
611cris_get_operand2 (unsigned short insn)
612{
613 return ((insn & 0xF000) >> 12);
614}
615
616static int
617cris_get_mode (unsigned short insn)
618{
619 return ((insn & 0x0C00) >> 10);
620}
621
622static int
623cris_get_opcode (unsigned short insn)
624{
625 return ((insn & 0x03C0) >> 6);
626}
627
628static int
629cris_get_size (unsigned short insn)
630{
631 return ((insn & 0x0030) >> 4);
632}
633
634static int
635cris_get_operand1 (unsigned short insn)
636{
637 return (insn & 0x000F);
638}
639
640/* Additional functions in order to handle opcodes. */
641
29134980
OF
642static int
643cris_get_quick_value (unsigned short insn)
644{
645 return (insn & 0x003F);
646}
647
648static int
649cris_get_bdap_quick_offset (unsigned short insn)
650{
651 return (insn & 0x00FF);
652}
653
654static int
655cris_get_branch_short_offset (unsigned short insn)
656{
657 return (insn & 0x00FF);
658}
659
660static int
661cris_get_asr_shift_steps (unsigned long value)
662{
663 return (value & 0x3F);
664}
665
29134980
OF
666static int
667cris_get_clear_size (unsigned short insn)
668{
669 return ((insn) & 0xC000);
670}
671
672static int
673cris_is_signed_extend_bit_on (unsigned short insn)
674{
675 return (((insn) & 0x20) == 0x20);
676}
677
678static int
679cris_is_xflag_bit_on (unsigned short insn)
680{
681 return (((insn) & 0x1000) == 0x1000);
682}
683
684static void
685cris_set_size_to_dword (unsigned short *insn)
686{
687 *insn &= 0xFFCF;
688 *insn |= 0x20;
689}
690
8535cb38 691static signed char
29134980
OF
692cris_get_signed_offset (unsigned short insn)
693{
8535cb38 694 return ((signed char) (insn & 0x00FF));
29134980
OF
695}
696
697/* Calls an op function given the op-type, working on the insn and the
698 inst_env. */
699static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
700
29134980
OF
701static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
702 struct gdbarch_list *);
703
29134980
OF
704static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
705
a5f6c8f5
OF
706static void set_cris_version (char *ignore_args, int from_tty,
707 struct cmd_list_element *c);
29134980 708
0e6bdb31
OF
709static void set_cris_mode (char *ignore_args, int from_tty,
710 struct cmd_list_element *c);
711
a5f6c8f5
OF
712static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
713 struct cmd_list_element *c);
29134980 714
2e4b5889
OF
715static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
716 struct frame_info *next_frame,
717 struct cris_unwind_cache *info);
718
5114e29d
OF
719static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
720 struct frame_info *next_frame,
721 struct cris_unwind_cache *info);
722
2e4b5889
OF
723static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
724 struct frame_info *next_frame);
725
726static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
727 struct frame_info *next_frame);
728
729/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
730 order. The below implements a FILO (stack) to do this.
731 Copied from d10v-tdep.c. */
2e4b5889
OF
732
733struct stack_item
734{
735 int len;
736 struct stack_item *prev;
737 void *data;
738};
739
740static struct stack_item *
741push_stack_item (struct stack_item *prev, void *contents, int len)
742{
743 struct stack_item *si;
744 si = xmalloc (sizeof (struct stack_item));
745 si->data = xmalloc (len);
746 si->len = len;
747 si->prev = prev;
748 memcpy (si->data, contents, len);
749 return si;
750}
751
752static struct stack_item *
753pop_stack_item (struct stack_item *si)
754{
755 struct stack_item *dead = si;
756 si = si->prev;
757 xfree (dead->data);
758 xfree (dead);
759 return si;
760}
761
762/* Put here the code to store, into fi->saved_regs, the addresses of
763 the saved registers of frame described by FRAME_INFO. This
764 includes special registers such as pc and fp saved in special ways
765 in the stack frame. sp is even more special: the address we return
a5f6c8f5 766 for it IS the sp for the next frame. */
2e4b5889
OF
767
768struct cris_unwind_cache *
769cris_frame_unwind_cache (struct frame_info *next_frame,
770 void **this_prologue_cache)
771{
772 CORE_ADDR pc;
773 struct cris_unwind_cache *info;
774 int i;
775
776 if ((*this_prologue_cache))
777 return (*this_prologue_cache);
778
779 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
780 (*this_prologue_cache) = info;
781 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
782
783 /* Zero all fields. */
784 info->prev_sp = 0;
785 info->base = 0;
786 info->size = 0;
787 info->sp_offset = 0;
788 info->r8_offset = 0;
789 info->uses_frame = 0;
790 info->return_pc = 0;
791 info->leaf_function = 0;
792
793 /* Prologue analysis does the rest... */
5114e29d 794 if (cris_version () == 32)
93d42b30
DJ
795 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
796 next_frame, info);
5114e29d 797 else
93d42b30
DJ
798 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
799 next_frame, info);
2e4b5889
OF
800
801 return info;
802}
803
804/* Given a GDB frame, determine the address of the calling function's
805 frame. This will be used to create a new GDB frame struct. */
806
807static void
808cris_frame_this_id (struct frame_info *next_frame,
809 void **this_prologue_cache,
810 struct frame_id *this_id)
811{
812 struct cris_unwind_cache *info
813 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
814 CORE_ADDR base;
815 CORE_ADDR func;
816 struct frame_id id;
817
818 /* The FUNC is easy. */
93d42b30 819 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2e4b5889
OF
820
821 /* Hopefully the prologue analysis either correctly determined the
822 frame's base (which is the SP from the previous frame), or set
823 that base to "NULL". */
824 base = info->prev_sp;
825 if (base == 0)
826 return;
827
828 id = frame_id_build (base, func);
829
830 (*this_id) = id;
831}
832
833static void
834cris_frame_prev_register (struct frame_info *next_frame,
835 void **this_prologue_cache,
836 int regnum, int *optimizedp,
837 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 838 int *realnump, gdb_byte *bufferp)
2e4b5889
OF
839{
840 struct cris_unwind_cache *info
841 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
842 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
843 optimizedp, lvalp, addrp, realnump, bufferp);
2e4b5889
OF
844}
845
846/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
847 dummy frame. The frame ID's base needs to match the TOS value
848 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
849 breakpoint. */
850
851static struct frame_id
852cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
853{
854 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
855 frame_pc_unwind (next_frame));
856}
857
858static CORE_ADDR
859cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
860{
861 /* Align to the size of an instruction (so that they can safely be
862 pushed onto the stack). */
863 return sp & ~3;
864}
865
866static CORE_ADDR
867cris_push_dummy_code (struct gdbarch *gdbarch,
868 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
869 struct value **args, int nargs,
870 struct type *value_type,
871 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
872{
873 /* Allocate space sufficient for a breakpoint. */
874 sp = (sp - 4) & ~3;
875 /* Store the address of that breakpoint */
876 *bp_addr = sp;
877 /* CRIS always starts the call at the callee's entry point. */
878 *real_pc = funaddr;
879 return sp;
880}
881
882static CORE_ADDR
7d9b040b 883cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
884 struct regcache *regcache, CORE_ADDR bp_addr,
885 int nargs, struct value **args, CORE_ADDR sp,
886 int struct_return, CORE_ADDR struct_addr)
887{
888 int stack_alloc;
889 int stack_offset;
890 int argreg;
891 int argnum;
892
893 CORE_ADDR regval;
894
895 /* The function's arguments and memory allocated by gdb for the arguments to
896 point at reside in separate areas on the stack.
897 Both frame pointers grow toward higher addresses. */
898 CORE_ADDR fp_arg;
899 CORE_ADDR fp_mem;
900
901 struct stack_item *si = NULL;
902
a5f6c8f5 903 /* Push the return address. */
2e4b5889
OF
904 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
905
906 /* Are we returning a value using a structure return or a normal value
907 return? struct_addr is the address of the reserved space for the return
908 structure to be written on the stack. */
909 if (struct_return)
910 {
911 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
912 }
913
914 /* Now load as many as possible of the first arguments into registers,
915 and push the rest onto the stack. */
916 argreg = ARG1_REGNUM;
917 stack_offset = 0;
918
919 for (argnum = 0; argnum < nargs; argnum++)
920 {
921 int len;
922 char *val;
923 int reg_demand;
924 int i;
925
4991999e 926 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 927 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
928
929 /* How may registers worth of storage do we need for this argument? */
930 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
931
932 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
933 {
934 /* Data passed by value. Fits in available register(s). */
935 for (i = 0; i < reg_demand; i++)
936 {
937 regcache_cooked_write_unsigned (regcache, argreg,
938 *(unsigned long *) val);
939 argreg++;
940 val += 4;
941 }
942 }
943 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
944 {
945 /* Data passed by value. Does not fit in available register(s).
946 Use the register(s) first, then the stack. */
947 for (i = 0; i < reg_demand; i++)
948 {
949 if (argreg <= ARG4_REGNUM)
950 {
951 regcache_cooked_write_unsigned (regcache, argreg,
952 *(unsigned long *) val);
953 argreg++;
954 val += 4;
955 }
956 else
957 {
958 /* Push item for later so that pushed arguments
959 come in the right order. */
960 si = push_stack_item (si, val, 4);
961 val += 4;
962 }
963 }
964 }
965 else if (len > (2 * 4))
966 {
967 /* FIXME */
e2e0b3e5 968 internal_error (__FILE__, __LINE__, _("We don't do this"));
2e4b5889
OF
969 }
970 else
971 {
972 /* Data passed by value. No available registers. Put it on
973 the stack. */
974 si = push_stack_item (si, val, len);
975 }
976 }
977
978 while (si)
979 {
980 /* fp_arg must be word-aligned (i.e., don't += len) to match
981 the function prologue. */
982 sp = (sp - si->len) & ~3;
983 write_memory (sp, si->data, si->len);
984 si = pop_stack_item (si);
985 }
986
987 /* Finally, update the SP register. */
988 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
989
990 return sp;
991}
992
e2a2a3e8
OF
993static const struct frame_unwind cris_frame_unwind =
994{
2e4b5889
OF
995 NORMAL_FRAME,
996 cris_frame_this_id,
997 cris_frame_prev_register
998};
999
1000const struct frame_unwind *
1001cris_frame_sniffer (struct frame_info *next_frame)
1002{
1003 return &cris_frame_unwind;
1004}
1005
1006static CORE_ADDR
1007cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1008{
1009 struct cris_unwind_cache *info
1010 = cris_frame_unwind_cache (next_frame, this_cache);
1011 return info->base;
1012}
1013
e2a2a3e8
OF
1014static const struct frame_base cris_frame_base =
1015{
2e4b5889
OF
1016 &cris_frame_unwind,
1017 cris_frame_base_address,
1018 cris_frame_base_address,
1019 cris_frame_base_address
1020};
1021
29134980
OF
1022/* Frames information. The definition of the struct frame_info is
1023
1024 CORE_ADDR frame
1025 CORE_ADDR pc
5a203e44 1026 enum frame_type type;
29134980
OF
1027 CORE_ADDR return_pc
1028 int leaf_function
1029
1030 If the compilation option -fno-omit-frame-pointer is present the
1031 variable frame will be set to the content of R8 which is the frame
1032 pointer register.
1033
1034 The variable pc contains the address where execution is performed
1035 in the present frame. The innermost frame contains the current content
1036 of the register PC. All other frames contain the content of the
1037 register PC in the next frame.
1038
5a203e44
AC
1039 The variable `type' indicates the frame's type: normal, SIGTRAMP
1040 (associated with a signal handler), dummy (associated with a dummy
1041 frame).
29134980
OF
1042
1043 The variable return_pc contains the address where execution should be
1044 resumed when the present frame has finished, the return address.
1045
1046 The variable leaf_function is 1 if the return address is in the register
1047 SRP, and 0 if it is on the stack.
1048
1049 Prologue instructions C-code.
1050 The prologue may consist of (-fno-omit-frame-pointer)
1051 1) 2)
1052 push srp
1053 push r8 push r8
1054 move.d sp,r8 move.d sp,r8
1055 subq X,sp subq X,sp
1056 movem rY,[sp] movem rY,[sp]
1057 move.S rZ,[r8-U] move.S rZ,[r8-U]
1058
1059 where 1 is a non-terminal function, and 2 is a leaf-function.
1060
1061 Note that this assumption is extremely brittle, and will break at the
1062 slightest change in GCC's prologue.
1063
1064 If local variables are declared or register contents are saved on stack
1065 the subq-instruction will be present with X as the number of bytes
1066 needed for storage. The reshuffle with respect to r8 may be performed
1067 with any size S (b, w, d) and any of the general registers Z={0..13}.
1068 The offset U should be representable by a signed 8-bit value in all cases.
1069 Thus, the prefix word is assumed to be immediate byte offset mode followed
1070 by another word containing the instruction.
1071
1072 Degenerate cases:
1073 3)
1074 push r8
1075 move.d sp,r8
1076 move.d r8,sp
1077 pop r8
1078
1079 Prologue instructions C++-code.
1080 Case 1) and 2) in the C-code may be followed by
1081
1082 move.d r10,rS ; this
1083 move.d r11,rT ; P1
1084 move.d r12,rU ; P2
1085 move.d r13,rV ; P3
1086 move.S [r8+U],rZ ; P4
1087
1088 if any of the call parameters are stored. The host expects these
1089 instructions to be executed in order to get the call parameters right. */
1090
1091/* Examine the prologue of a function. The variable ip is the address of
1092 the first instruction of the prologue. The variable limit is the address
1093 of the first instruction after the prologue. The variable fi contains the
1094 information in struct frame_info. The variable frameless_p controls whether
1095 the entire prologue is examined (0) or just enough instructions to
1096 determine that it is a prologue (1). */
1097
a78f21af 1098static CORE_ADDR
2e4b5889
OF
1099cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1100 struct cris_unwind_cache *info)
29134980
OF
1101{
1102 /* Present instruction. */
1103 unsigned short insn;
1104
1105 /* Next instruction, lookahead. */
1106 unsigned short insn_next;
1107 int regno;
1108
1109 /* Is there a push fp? */
1110 int have_fp;
1111
1112 /* Number of byte on stack used for local variables and movem. */
1113 int val;
1114
1115 /* Highest register number in a movem. */
1116 int regsave;
1117
1118 /* move.d r<source_register>,rS */
1119 short source_register;
1120
2e4b5889
OF
1121 /* Scan limit. */
1122 int limit;
29134980 1123
2e4b5889
OF
1124 /* This frame is with respect to a leaf until a push srp is found. */
1125 if (info)
1126 {
1127 info->leaf_function = 1;
1128 }
29134980
OF
1129
1130 /* Assume nothing on stack. */
1131 val = 0;
1132 regsave = -1;
1133
2e4b5889
OF
1134 /* If we were called without a next_frame, that means we were called
1135 from cris_skip_prologue which already tried to find the end of the
1136 prologue through the symbol information. 64 instructions past current
1137 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1138 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
29134980 1139
29134980 1140 /* Find the prologue instructions. */
a5f6c8f5 1141 while (pc > 0 && pc < limit)
29134980 1142 {
2e4b5889
OF
1143 insn = read_memory_unsigned_integer (pc, 2);
1144 pc += 2;
29134980
OF
1145 if (insn == 0xE1FC)
1146 {
1147 /* push <reg> 32 bit instruction */
2e4b5889
OF
1148 insn_next = read_memory_unsigned_integer (pc, 2);
1149 pc += 2;
29134980 1150 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1151 if (info)
1152 {
1153 info->sp_offset += 4;
1154 }
dbbff683
OF
1155 /* This check, meant to recognize srp, used to be regno ==
1156 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1157 if (insn_next == 0xBE7E)
29134980 1158 {
2e4b5889
OF
1159 if (info)
1160 {
1161 info->leaf_function = 0;
1162 }
29134980 1163 }
b4206d25
OF
1164 else if (insn_next == 0x8FEE)
1165 {
1166 /* push $r8 */
1167 if (info)
1168 {
1169 info->r8_offset = info->sp_offset;
1170 }
1171 }
29134980
OF
1172 }
1173 else if (insn == 0x866E)
1174 {
1175 /* move.d sp,r8 */
2e4b5889
OF
1176 if (info)
1177 {
1178 info->uses_frame = 1;
2e4b5889 1179 }
29134980
OF
1180 continue;
1181 }
1182 else if (cris_get_operand2 (insn) == SP_REGNUM
1183 && cris_get_mode (insn) == 0x0000
1184 && cris_get_opcode (insn) == 0x000A)
1185 {
1186 /* subq <val>,sp */
2e4b5889
OF
1187 if (info)
1188 {
1189 info->sp_offset += cris_get_quick_value (insn);
1190 }
29134980
OF
1191 }
1192 else if (cris_get_mode (insn) == 0x0002
1193 && cris_get_opcode (insn) == 0x000F
1194 && cris_get_size (insn) == 0x0003
1195 && cris_get_operand1 (insn) == SP_REGNUM)
1196 {
1197 /* movem r<regsave>,[sp] */
29134980
OF
1198 regsave = cris_get_operand2 (insn);
1199 }
1200 else if (cris_get_operand2 (insn) == SP_REGNUM
1201 && ((insn & 0x0F00) >> 8) == 0x0001
1202 && (cris_get_signed_offset (insn) < 0))
1203 {
1204 /* Immediate byte offset addressing prefix word with sp as base
1205 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1206 is between 64 and 128.
1207 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1208 if (info)
1209 {
1210 info->sp_offset += -cris_get_signed_offset (insn);
1211 }
1212 insn_next = read_memory_unsigned_integer (pc, 2);
1213 pc += 2;
29134980
OF
1214 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1215 && cris_get_opcode (insn_next) == 0x000F
1216 && cris_get_size (insn_next) == 0x0003
1217 && cris_get_operand1 (insn_next) == SP_REGNUM)
1218 {
29134980
OF
1219 regsave = cris_get_operand2 (insn_next);
1220 }
1221 else
1222 {
1223 /* The prologue ended before the limit was reached. */
2e4b5889 1224 pc -= 4;
29134980
OF
1225 break;
1226 }
1227 }
1228 else if (cris_get_mode (insn) == 0x0001
1229 && cris_get_opcode (insn) == 0x0009
1230 && cris_get_size (insn) == 0x0002)
1231 {
1232 /* move.d r<10..13>,r<0..15> */
29134980 1233 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1234
1235 /* FIXME? In the glibc solibs, the prologue might contain something
1236 like (this example taken from relocate_doit):
1237 move.d $pc,$r0
1238 sub.d 0xfffef426,$r0
1239 which isn't covered by the source_register check below. Question
1240 is whether to add a check for this combo, or make better use of
1241 the limit variable instead. */
29134980
OF
1242 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1243 {
1244 /* The prologue ended before the limit was reached. */
2e4b5889 1245 pc -= 2;
29134980
OF
1246 break;
1247 }
1248 }
2e4b5889 1249 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1250 /* The size is a fixed-size. */
1251 && ((insn & 0x0F00) >> 8) == 0x0001
1252 /* A negative offset. */
1253 && (cris_get_signed_offset (insn) < 0))
1254 {
1255 /* move.S rZ,[r8-U] (?) */
2e4b5889
OF
1256 insn_next = read_memory_unsigned_integer (pc, 2);
1257 pc += 2;
29134980
OF
1258 regno = cris_get_operand2 (insn_next);
1259 if ((regno >= 0 && regno < SP_REGNUM)
1260 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1261 && cris_get_opcode (insn_next) == 0x000F)
1262 {
1263 /* move.S rZ,[r8-U] */
1264 continue;
1265 }
1266 else
1267 {
1268 /* The prologue ended before the limit was reached. */
2e4b5889 1269 pc -= 4;
29134980
OF
1270 break;
1271 }
1272 }
2e4b5889 1273 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1274 /* The size is a fixed-size. */
1275 && ((insn & 0x0F00) >> 8) == 0x0001
1276 /* A positive offset. */
1277 && (cris_get_signed_offset (insn) > 0))
1278 {
1279 /* move.S [r8+U],rZ (?) */
2e4b5889
OF
1280 insn_next = read_memory_unsigned_integer (pc, 2);
1281 pc += 2;
29134980
OF
1282 regno = cris_get_operand2 (insn_next);
1283 if ((regno >= 0 && regno < SP_REGNUM)
1284 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1285 && cris_get_opcode (insn_next) == 0x0009
1286 && cris_get_operand1 (insn_next) == regno)
1287 {
1288 /* move.S [r8+U],rZ */
1289 continue;
1290 }
1291 else
1292 {
1293 /* The prologue ended before the limit was reached. */
2e4b5889 1294 pc -= 4;
29134980
OF
1295 break;
1296 }
1297 }
1298 else
1299 {
1300 /* The prologue ended before the limit was reached. */
2e4b5889 1301 pc -= 2;
29134980
OF
1302 break;
1303 }
1304 }
29134980 1305
2e4b5889
OF
1306 /* We only want to know the end of the prologue when next_frame and info
1307 are NULL (called from cris_skip_prologue i.e.). */
1308 if (next_frame == NULL && info == NULL)
1309 {
1310 return pc;
1311 }
29134980 1312
2e4b5889
OF
1313 info->size = info->sp_offset;
1314
1315 /* Compute the previous frame's stack pointer (which is also the
1316 frame's ID's stack address), and this frame's base pointer. */
1317 if (info->uses_frame)
29134980 1318 {
2e4b5889
OF
1319 ULONGEST this_base;
1320 /* The SP was moved to the FP. This indicates that a new frame
1321 was created. Get THIS frame's FP value by unwinding it from
1322 the next frame. */
1323 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1324 &this_base);
1325 info->base = this_base;
b4206d25
OF
1326 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1327
2e4b5889
OF
1328 /* The FP points at the last saved register. Adjust the FP back
1329 to before the first saved register giving the SP. */
1330 info->prev_sp = info->base + info->r8_offset;
1331 }
1332 else
1333 {
1334 ULONGEST this_base;
1335 /* Assume that the FP is this frame's SP but with that pushed
1336 stack space added back. */
1337 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1338 info->base = this_base;
1339 info->prev_sp = info->base + info->size;
1340 }
29134980 1341
2e4b5889
OF
1342 /* Calculate the addresses for the saved registers on the stack. */
1343 /* FIXME: The address calculation should really be done on the fly while
1344 we're analyzing the prologue (we only hold one regsave value as it is
1345 now). */
1346 val = info->sp_offset;
1347
1348 for (regno = regsave; regno >= 0; regno--)
1349 {
1350 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1351 val -= 4;
1352 }
1353
1354 /* The previous frame's SP needed to be computed. Save the computed
1355 value. */
1356 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1357
1358 if (!info->leaf_function)
1359 {
b4206d25
OF
1360 /* SRP saved on the stack. But where? */
1361 if (info->r8_offset == 0)
1362 {
1363 /* R8 not pushed yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base;
1365 }
1366 else
1367 {
1368 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1369 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1370 }
29134980 1371 }
2e4b5889
OF
1372
1373 /* The PC is found in SRP (the actual register or located on the stack). */
1374 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1375
1376 return pc;
29134980
OF
1377}
1378
5114e29d
OF
1379static CORE_ADDR
1380crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1381 struct cris_unwind_cache *info)
1382{
1383 ULONGEST this_base;
1384
1385 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1386 meant to be a full-fledged prologue scanner. It is only needed for
1387 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1388
1389 * PLT stubs (library calls)
1390 * call dummys
1391 * signal trampolines
1392
1393 For those cases, it is assumed that there is no actual prologue; that
1394 the stack pointer is not adjusted, and (as a consequence) the return
1395 address is not pushed onto the stack. */
1396
1397 /* We only want to know the end of the prologue when next_frame and info
1398 are NULL (called from cris_skip_prologue i.e.). */
1399 if (next_frame == NULL && info == NULL)
1400 {
1401 return pc;
1402 }
1403
1404 /* The SP is assumed to be unaltered. */
1405 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1406 info->base = this_base;
1407 info->prev_sp = this_base;
1408
1409 /* The PC is assumed to be found in SRP. */
1410 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1411
1412 return pc;
1413}
1414
29134980
OF
1415/* Advance pc beyond any function entry prologue instructions at pc
1416 to reach some "real" code. */
1417
29134980
OF
1418/* Given a PC value corresponding to the start of a function, return the PC
1419 of the first instruction after the function prologue. */
1420
a78f21af 1421static CORE_ADDR
2e4b5889 1422cris_skip_prologue (CORE_ADDR pc)
29134980 1423{
2e4b5889
OF
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
29134980
OF
1426 CORE_ADDR pc_after_prologue;
1427
2e4b5889
OF
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1431 {
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1434 return sal.end;
1435 }
29134980 1436
5114e29d
OF
1437 if (cris_version () == 32)
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1439 else
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1441
29134980
OF
1442 return pc_after_prologue;
1443}
1444
2e4b5889
OF
1445static CORE_ADDR
1446cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1447{
1448 ULONGEST pc;
1449 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1450 return pc;
1451}
1452
1453static CORE_ADDR
1454cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1455{
1456 ULONGEST sp;
1457 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1458 return sp;
1459}
1460
29134980
OF
1461/* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1466
a78f21af 1467static const unsigned char *
29134980
OF
1468cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1469{
0e6bdb31
OF
1470 static unsigned char break8_insn[] = {0x38, 0xe9};
1471 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1472 *lenptr = 2;
1473
0e6bdb31
OF
1474 if (cris_mode () == cris_mode_guru)
1475 return break15_insn;
1476 else
1477 return break8_insn;
29134980
OF
1478}
1479
29134980
OF
1480/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1481 0 otherwise. */
1482
a78f21af 1483static int
29134980
OF
1484cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1485{
1486 int version = cris_version ();
1487
1488 switch (spec_reg.applicable_version)
1489 {
1490 case cris_ver_version_all:
1491 return 1;
1492 case cris_ver_warning:
1493 /* Indeterminate/obsolete. */
1494 return 0;
29134980
OF
1495 case cris_ver_v0_3:
1496 return (version >= 0 && version <= 3);
1497 case cris_ver_v3p:
1498 return (version >= 3);
1499 case cris_ver_v8:
1500 return (version == 8 || version == 9);
1501 case cris_ver_v8p:
1502 return (version >= 8);
c600d464
OF
1503 case cris_ver_v0_10:
1504 return (version >= 0 && version <= 10);
1505 case cris_ver_v3_10:
1506 return (version >= 3 && version <= 10);
1507 case cris_ver_v8_10:
1508 return (version >= 8 && version <= 10);
1509 case cris_ver_v10:
1510 return (version == 10);
29134980
OF
1511 case cris_ver_v10p:
1512 return (version >= 10);
c600d464
OF
1513 case cris_ver_v32p:
1514 return (version >= 32);
29134980
OF
1515 default:
1516 /* Invalid cris version. */
1517 return 0;
1518 }
1519}
1520
1d94326f
AC
1521/* Returns the register size in unit byte. Returns 0 for an unimplemented
1522 register, -1 for an invalid register. */
1523
1524static int
1525cris_register_size (int regno)
1526{
c600d464 1527 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1d94326f
AC
1528 int i;
1529 int spec_regno;
1530
1531 if (regno >= 0 && regno < NUM_GENREGS)
1532 {
1533 /* General registers (R0 - R15) are 32 bits. */
1534 return 4;
1535 }
c600d464 1536 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1537 {
1538 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1539 Adjust regno accordingly. */
1540 spec_regno = regno - NUM_GENREGS;
1541
c600d464 1542 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1543 {
1544 if (cris_spec_regs[i].number == spec_regno
1545 && cris_spec_reg_applicable (cris_spec_regs[i]))
1546 /* Go with the first applicable register. */
1547 return cris_spec_regs[i].reg_size;
1548 }
1549 /* Special register not applicable to this CRIS version. */
1550 return 0;
1551 }
c600d464 1552 else if (regno >= PC_REGNUM && regno < NUM_REGS)
1d94326f 1553 {
c600d464
OF
1554 /* This will apply to CRISv32 only where there are additional registers
1555 after the special registers (pseudo PC and support registers). */
1556 return 4;
1d94326f 1557 }
c600d464
OF
1558
1559
1560 return -1;
1d94326f
AC
1561}
1562
29134980
OF
1563/* Nonzero if regno should not be fetched from the target. This is the case
1564 for unimplemented (size 0) and non-existant registers. */
1565
a78f21af 1566static int
29134980
OF
1567cris_cannot_fetch_register (int regno)
1568{
1569 return ((regno < 0 || regno >= NUM_REGS)
1570 || (cris_register_size (regno) == 0));
1571}
1572
1573/* Nonzero if regno should not be written to the target, for various
1574 reasons. */
1575
a78f21af 1576static int
29134980
OF
1577cris_cannot_store_register (int regno)
1578{
1579 /* There are three kinds of registers we refuse to write to.
1580 1. Those that not implemented.
1581 2. Those that are read-only (depends on the processor mode).
1582 3. Those registers to which a write has no effect.
1583 */
1584
1585 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1586 /* Not implemented. */
1587 return 1;
1588
1589 else if (regno == VR_REGNUM)
1590 /* Read-only. */
1591 return 1;
1592
1593 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1594 /* Writing has no effect. */
1595 return 1;
1596
a5f6c8f5
OF
1597 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1598 agent decide whether they are writable. */
29134980
OF
1599
1600 return 0;
1601}
1602
c600d464
OF
1603/* Nonzero if regno should not be fetched from the target. This is the case
1604 for unimplemented (size 0) and non-existant registers. */
1605
1606static int
1607crisv32_cannot_fetch_register (int regno)
1608{
1609 return ((regno < 0 || regno >= NUM_REGS)
1610 || (cris_register_size (regno) == 0));
1611}
1612
1613/* Nonzero if regno should not be written to the target, for various
1614 reasons. */
1615
1616static int
1617crisv32_cannot_store_register (int regno)
1618{
1619 /* There are three kinds of registers we refuse to write to.
1620 1. Those that not implemented.
1621 2. Those that are read-only (depends on the processor mode).
1622 3. Those registers to which a write has no effect.
1623 */
1624
1625 if (regno < 0 || regno >= NUM_REGS || cris_register_size (regno) == 0)
1626 /* Not implemented. */
1627 return 1;
1628
1629 else if (regno == VR_REGNUM)
1630 /* Read-only. */
1631 return 1;
1632
1633 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1634 /* Writing has no effect. */
1635 return 1;
1636
1637 /* Many special registers are read-only in user mode. Let the debug
1638 agent decide whether they are writable. */
1639
1640 return 0;
1641}
1642
29134980
OF
1643/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1644 of data in register regno. */
1645
a78f21af 1646static struct type *
c1d546cd 1647cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1648{
a5f6c8f5
OF
1649 if (regno == PC_REGNUM)
1650 return builtin_type_void_func_ptr;
1651 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1652 return builtin_type_void_data_ptr;
1653 else if ((regno >= 0 && regno < SP_REGNUM)
1654 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1655 /* Note: R8 taken care of previous clause. */
1656 return builtin_type_uint32;
1657 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1658 return builtin_type_uint16;
1659 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1660 return builtin_type_uint8;
29134980 1661 else
a5f6c8f5
OF
1662 /* Invalid (unimplemented) register. */
1663 return builtin_type_int0;
29134980
OF
1664}
1665
c600d464
OF
1666static struct type *
1667crisv32_register_type (struct gdbarch *gdbarch, int regno)
1668{
1669 if (regno == PC_REGNUM)
1670 return builtin_type_void_func_ptr;
1671 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1672 return builtin_type_void_data_ptr;
1673 else if ((regno >= 0 && regno <= ACR_REGNUM)
1674 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1675 || (regno == PID_REGNUM)
1676 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1677 /* Note: R8 and SP taken care of by previous clause. */
1678 return builtin_type_uint32;
1679 else if (regno == WZ_REGNUM)
1680 return builtin_type_uint16;
1681 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1682 return builtin_type_uint8;
1683 else
1684 {
1685 /* Invalid (unimplemented) register. Should not happen as there are
1686 no unimplemented CRISv32 registers. */
8a3fe4f8 1687 warning (_("crisv32_register_type: unknown regno %d"), regno);
c600d464
OF
1688 return builtin_type_int0;
1689 }
1690}
1691
2e4b5889
OF
1692/* Stores a function return value of type type, where valbuf is the address
1693 of the value to be stored. */
29134980 1694
2e4b5889 1695/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1696
2e4b5889
OF
1697static void
1698cris_store_return_value (struct type *type, struct regcache *regcache,
1699 const void *valbuf)
29134980 1700{
2e4b5889
OF
1701 ULONGEST val;
1702 int len = TYPE_LENGTH (type);
29134980 1703
2e4b5889 1704 if (len <= 4)
29134980 1705 {
2e4b5889
OF
1706 /* Put the return value in R10. */
1707 val = extract_unsigned_integer (valbuf, len);
1708 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1709 }
2e4b5889 1710 else if (len <= 8)
29134980 1711 {
2e4b5889
OF
1712 /* Put the return value in R10 and R11. */
1713 val = extract_unsigned_integer (valbuf, 4);
1714 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1715 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1716 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1717 }
2e4b5889 1718 else
8a3fe4f8 1719 error (_("cris_store_return_value: type length too large."));
29134980
OF
1720}
1721
2e4b5889
OF
1722/* Return the name of register regno as a string. Return NULL for an invalid or
1723 unimplemented register. */
29134980 1724
c600d464
OF
1725static const char *
1726cris_special_register_name (int regno)
1727{
1728 int spec_regno;
1729 int i;
1730
1731 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1732 Adjust regno accordingly. */
1733 spec_regno = regno - NUM_GENREGS;
1734
1735 /* Assume nothing about the layout of the cris_spec_regs struct
1736 when searching. */
1737 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1738 {
1739 if (cris_spec_regs[i].number == spec_regno
1740 && cris_spec_reg_applicable (cris_spec_regs[i]))
1741 /* Go with the first applicable register. */
1742 return cris_spec_regs[i].name;
1743 }
1744 /* Special register not applicable to this CRIS version. */
1745 return NULL;
1746}
1747
2e4b5889
OF
1748static const char *
1749cris_register_name (int regno)
1750{
1751 static char *cris_genreg_names[] =
1752 { "r0", "r1", "r2", "r3", \
1753 "r4", "r5", "r6", "r7", \
1754 "r8", "r9", "r10", "r11", \
1755 "r12", "r13", "sp", "pc" };
29134980 1756
2e4b5889 1757 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1758 {
2e4b5889
OF
1759 /* General register. */
1760 return cris_genreg_names[regno];
29134980 1761 }
2e4b5889 1762 else if (regno >= NUM_GENREGS && regno < NUM_REGS)
29134980 1763 {
c600d464
OF
1764 return cris_special_register_name (regno);
1765 }
1766 else
1767 {
1768 /* Invalid register. */
2e4b5889
OF
1769 return NULL;
1770 }
c600d464
OF
1771}
1772
1773static const char *
1774crisv32_register_name (int regno)
1775{
1776 static char *crisv32_genreg_names[] =
1777 { "r0", "r1", "r2", "r3", \
1778 "r4", "r5", "r6", "r7", \
1779 "r8", "r9", "r10", "r11", \
1780 "r12", "r13", "sp", "acr"
1781 };
1782
1783 static char *crisv32_sreg_names[] =
1784 { "s0", "s1", "s2", "s3", \
1785 "s4", "s5", "s6", "s7", \
1786 "s8", "s9", "s10", "s11", \
1787 "s12", "s13", "s14", "s15"
1788 };
1789
1790 if (regno >= 0 && regno < NUM_GENREGS)
1791 {
1792 /* General register. */
1793 return crisv32_genreg_names[regno];
1794 }
1795 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1796 {
1797 return cris_special_register_name (regno);
1798 }
1799 else if (regno == PC_REGNUM)
1800 {
1801 return "pc";
1802 }
1803 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1804 {
1805 return crisv32_sreg_names[regno - S0_REGNUM];
1806 }
2e4b5889
OF
1807 else
1808 {
1809 /* Invalid register. */
1810 return NULL;
29134980 1811 }
29134980
OF
1812}
1813
a5f6c8f5
OF
1814/* Convert DWARF register number REG to the appropriate register
1815 number used by GDB. */
1816
2e4b5889 1817static int
a5f6c8f5 1818cris_dwarf2_reg_to_regnum (int reg)
29134980 1819{
a5f6c8f5
OF
1820 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1821 numbering, MOF is 18).
1822 Adapted from gcc/config/cris/cris.h. */
1823 static int cris_dwarf_regmap[] = {
1824 0, 1, 2, 3,
1825 4, 5, 6, 7,
1826 8, 9, 10, 11,
1827 12, 13, 14, 15,
1828 27, -1, -1, -1,
1829 -1, -1, -1, 23,
1830 -1, -1, -1, 27,
1831 -1, -1, -1, -1
1832 };
1833 int regnum = -1;
1834
1835 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1836 regnum = cris_dwarf_regmap[reg];
1837
1838 if (regnum == -1)
8a3fe4f8 1839 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1840
1841 return regnum;
1842}
1843
1844/* DWARF-2 frame support. */
1845
1846static void
1847cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
1848 struct dwarf2_frame_state_reg *reg,
1849 struct frame_info *next_frame)
a5f6c8f5
OF
1850{
1851 /* The return address column. */
1852 if (regnum == PC_REGNUM)
1853 reg->how = DWARF2_FRAME_REG_RA;
1854
1855 /* The call frame address. */
1856 else if (regnum == SP_REGNUM)
1857 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1858}
1859
2e4b5889
OF
1860/* Extract from an array regbuf containing the raw register state a function
1861 return value of type type, and copy that, in virtual format, into
1862 valbuf. */
1863
1864/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1865
2e4b5889
OF
1866static void
1867cris_extract_return_value (struct type *type, struct regcache *regcache,
1868 void *valbuf)
29134980 1869{
2e4b5889
OF
1870 ULONGEST val;
1871 int len = TYPE_LENGTH (type);
29134980 1872
2e4b5889 1873 if (len <= 4)
29134980 1874 {
2e4b5889
OF
1875 /* Get the return value from R10. */
1876 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1877 store_unsigned_integer (valbuf, len, val);
29134980 1878 }
2e4b5889 1879 else if (len <= 8)
29134980 1880 {
2e4b5889
OF
1881 /* Get the return value from R10 and R11. */
1882 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1883 store_unsigned_integer (valbuf, 4, val);
1884 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1885 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
29134980 1886 }
2e4b5889 1887 else
8a3fe4f8 1888 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1889}
1890
b4206d25
OF
1891/* Handle the CRIS return value convention. */
1892
1893static enum return_value_convention
1894cris_return_value (struct gdbarch *gdbarch, struct type *type,
e2a2a3e8
OF
1895 struct regcache *regcache, gdb_byte *readbuf,
1896 const gdb_byte *writebuf)
b4206d25
OF
1897{
1898 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1899 || TYPE_CODE (type) == TYPE_CODE_UNION
1900 || TYPE_LENGTH (type) > 8)
1901 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1902 goes on the stack. */
1903 return RETURN_VALUE_STRUCT_CONVENTION;
1904
1905 if (readbuf)
1906 cris_extract_return_value (type, regcache, readbuf);
1907 if (writebuf)
1908 cris_store_return_value (type, regcache, writebuf);
1909
1910 return RETURN_VALUE_REGISTER_CONVENTION;
1911}
1912
2e4b5889
OF
1913/* Returns 1 if the given type will be passed by pointer rather than
1914 directly. */
1915
1916/* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1917 by value. */
1918
1919static int
1920cris_reg_struct_has_addr (int gcc_p, struct type *type)
1921{
1922 return (TYPE_LENGTH (type) > 8);
29134980
OF
1923}
1924
1925/* Calculates a value that measures how good inst_args constraints an
1926 instruction. It stems from cris_constraint, found in cris-dis.c. */
1927
1928static int
1929constraint (unsigned int insn, const signed char *inst_args,
1930 inst_env_type *inst_env)
1931{
1932 int retval = 0;
1933 int tmp, i;
1934
1935 const char *s = inst_args;
1936
1937 for (; *s; s++)
1938 switch (*s)
1939 {
1940 case 'm':
1941 if ((insn & 0x30) == 0x30)
1942 return -1;
1943 break;
1944
1945 case 'S':
1946 /* A prefix operand. */
1947 if (inst_env->prefix_found)
1948 break;
1949 else
1950 return -1;
1951
1952 case 'B':
1953 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1954 valid "push" size. In case of special register, it may be != 4. */
1955 if (inst_env->prefix_found)
1956 break;
1957 else
1958 return -1;
1959
1960 case 'D':
1961 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1962 if (!retval)
1963 return -1;
1964 else
1965 retval += 4;
1966 break;
1967
1968 case 'P':
1969 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1970
1971 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1972 {
1973 /* Since we match four bits, we will give a value of
1974 4 - 1 = 3 in a match. If there is a corresponding
1975 exact match of a special register in another pattern, it
1976 will get a value of 4, which will be higher. This should
1977 be correct in that an exact pattern would match better that
1978 a general pattern.
1979 Note that there is a reason for not returning zero; the
1980 pattern for "clear" is partly matched in the bit-pattern
1981 (the two lower bits must be zero), while the bit-pattern
1982 for a move from a special register is matched in the
1983 register constraint.
1984 This also means we will will have a race condition if
1985 there is a partly match in three bits in the bit pattern. */
1986 if (tmp == cris_spec_regs[i].number)
1987 {
1988 retval += 3;
1989 break;
1990 }
1991 }
1992
1993 if (cris_spec_regs[i].name == NULL)
29134980
OF
1994 return -1;
1995 break;
1996 }
1997 return retval;
1998}
1999
2000/* Returns the number of bits set in the variable value. */
2001
2002static int
2003number_of_bits (unsigned int value)
2004{
2005 int number_of_bits = 0;
2006
2007 while (value != 0)
2008 {
2009 number_of_bits += 1;
2010 value &= (value - 1);
2011 }
2012 return number_of_bits;
2013}
2014
2015/* Finds the address that should contain the single step breakpoint(s).
2016 It stems from code in cris-dis.c. */
2017
2018static int
2019find_cris_op (unsigned short insn, inst_env_type *inst_env)
2020{
2021 int i;
2022 int max_level_of_match = -1;
2023 int max_matched = -1;
2024 int level_of_match;
2025
2026 for (i = 0; cris_opcodes[i].name != NULL; i++)
2027 {
2028 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
2029 && ((cris_opcodes[i].lose & insn) == 0)
2030 /* Only CRISv10 instructions, please. */
2031 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
2032 {
2033 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2034 if (level_of_match >= 0)
2035 {
2036 level_of_match +=
2037 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2038 if (level_of_match > max_level_of_match)
2039 {
2040 max_matched = i;
2041 max_level_of_match = level_of_match;
2042 if (level_of_match == 16)
2043 {
2044 /* All bits matched, cannot find better. */
2045 break;
2046 }
2047 }
2048 }
2049 }
2050 }
2051 return max_matched;
2052}
2053
2054/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2055 actually an internal error. */
2056
2057static int
2058find_step_target (inst_env_type *inst_env)
2059{
2060 int i;
2061 int offset;
2062 unsigned short insn;
2063
2064 /* Create a local register image and set the initial state. */
2065 for (i = 0; i < NUM_GENREGS; i++)
2066 {
2067 inst_env->reg[i] = (unsigned long) read_register (i);
2068 }
2069 offset = NUM_GENREGS;
2070 for (i = 0; i < NUM_SPECREGS; i++)
2071 {
2072 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2073 }
2074 inst_env->branch_found = 0;
2075 inst_env->slot_needed = 0;
2076 inst_env->delay_slot_pc_active = 0;
2077 inst_env->prefix_found = 0;
2078 inst_env->invalid = 0;
2079 inst_env->xflag_found = 0;
2080 inst_env->disable_interrupt = 0;
2081
2082 /* Look for a step target. */
2083 do
2084 {
2085 /* Read an instruction from the client. */
2086 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2087
2088 /* If the instruction is not in a delay slot the new content of the
2089 PC is [PC] + 2. If the instruction is in a delay slot it is not
2090 that simple. Since a instruction in a delay slot cannot change
2091 the content of the PC, it does not matter what value PC will have.
2092 Just make sure it is a valid instruction. */
2093 if (!inst_env->delay_slot_pc_active)
2094 {
2095 inst_env->reg[PC_REGNUM] += 2;
2096 }
2097 else
2098 {
2099 inst_env->delay_slot_pc_active = 0;
2100 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2101 }
2102 /* Analyse the present instruction. */
2103 i = find_cris_op (insn, inst_env);
2104 if (i == -1)
2105 {
2106 inst_env->invalid = 1;
2107 }
2108 else
2109 {
2110 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2111 }
2112 } while (!inst_env->invalid
2113 && (inst_env->prefix_found || inst_env->xflag_found
2114 || inst_env->slot_needed));
2115 return i;
2116}
2117
2118/* There is no hardware single-step support. The function find_step_target
2119 digs through the opcodes in order to find all possible targets.
2120 Either one ordinary target or two targets for branches may be found. */
2121
e6590a1b 2122static int
e0cd558a 2123cris_software_single_step (struct regcache *regcache)
29134980
OF
2124{
2125 inst_env_type inst_env;
8181d85f 2126
e0cd558a
UW
2127 /* Analyse the present instruction environment and insert
2128 breakpoints. */
2129 int status = find_step_target (&inst_env);
2130 if (status == -1)
29134980 2131 {
e0cd558a
UW
2132 /* Could not find a target. Things are likely to go downhill
2133 from here. */
2134 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2135 }
2136 else
e0cd558a
UW
2137 {
2138 /* Insert at most two breakpoints. One for the next PC content
2139 and possibly another one for a branch, jump, etc. */
2140 CORE_ADDR next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2141 insert_single_step_breakpoint (next_pc);
2142 if (inst_env.branch_found
2143 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2144 {
2145 CORE_ADDR branch_target_address
2146 = (CORE_ADDR) inst_env.branch_break_address;
2147 insert_single_step_breakpoint (branch_target_address);
2148 }
2149 }
e6590a1b
UW
2150
2151 return 1;
29134980
OF
2152}
2153
2154/* Calculates the prefix value for quick offset addressing mode. */
2155
a78f21af 2156static void
29134980
OF
2157quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2158{
2159 /* It's invalid to be in a delay slot. You can't have a prefix to this
2160 instruction (not 100% sure). */
2161 if (inst_env->slot_needed || inst_env->prefix_found)
2162 {
2163 inst_env->invalid = 1;
2164 return;
2165 }
2166
2167 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2168 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2169
2170 /* A prefix doesn't change the xflag_found. But the rest of the flags
2171 need updating. */
2172 inst_env->slot_needed = 0;
2173 inst_env->prefix_found = 1;
2174}
2175
2176/* Updates the autoincrement register. The size of the increment is derived
2177 from the size of the operation. The PC is always kept aligned on even
2178 word addresses. */
2179
a78f21af 2180static void
29134980
OF
2181process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2182{
2183 if (size == INST_BYTE_SIZE)
2184 {
2185 inst_env->reg[cris_get_operand1 (inst)] += 1;
2186
2187 /* The PC must be word aligned, so increase the PC with one
2188 word even if the size is byte. */
2189 if (cris_get_operand1 (inst) == REG_PC)
2190 {
2191 inst_env->reg[REG_PC] += 1;
2192 }
2193 }
2194 else if (size == INST_WORD_SIZE)
2195 {
2196 inst_env->reg[cris_get_operand1 (inst)] += 2;
2197 }
2198 else if (size == INST_DWORD_SIZE)
2199 {
2200 inst_env->reg[cris_get_operand1 (inst)] += 4;
2201 }
2202 else
2203 {
2204 /* Invalid size. */
2205 inst_env->invalid = 1;
2206 }
2207}
2208
2a9ecef2
OF
2209/* Just a forward declaration. */
2210
a78f21af
AC
2211static unsigned long get_data_from_address (unsigned short *inst,
2212 CORE_ADDR address);
2a9ecef2 2213
29134980
OF
2214/* Calculates the prefix value for the general case of offset addressing
2215 mode. */
2216
a78f21af 2217static void
29134980
OF
2218bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2219{
2220
2221 long offset;
2222
2223 /* It's invalid to be in a delay slot. */
2224 if (inst_env->slot_needed || inst_env->prefix_found)
2225 {
2226 inst_env->invalid = 1;
2227 return;
2228 }
2229
fa4e4598
OF
2230 /* The calculation of prefix_value used to be after process_autoincrement,
2231 but that fails for an instruction such as jsr [$r0+12] which is encoded
2232 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2233 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2234 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2235
2236 /* The offset is an indirection of the contents of the operand1 register. */
2237 inst_env->prefix_value +=
2a9ecef2
OF
2238 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2239
fa4e4598
OF
2240 if (cris_get_mode (inst) == AUTOINC_MODE)
2241 {
2242 process_autoincrement (cris_get_size (inst), inst, inst_env);
2243 }
2244
29134980
OF
2245 /* A prefix doesn't change the xflag_found. But the rest of the flags
2246 need updating. */
2247 inst_env->slot_needed = 0;
2248 inst_env->prefix_found = 1;
2249}
2250
2251/* Calculates the prefix value for the index addressing mode. */
2252
a78f21af 2253static void
29134980
OF
2254biap_prefix (unsigned short inst, inst_env_type *inst_env)
2255{
2256 /* It's invalid to be in a delay slot. I can't see that it's possible to
2257 have a prefix to this instruction. So I will treat this as invalid. */
2258 if (inst_env->slot_needed || inst_env->prefix_found)
2259 {
2260 inst_env->invalid = 1;
2261 return;
2262 }
2263
2264 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2265
2266 /* The offset is the operand2 value shifted the size of the instruction
2267 to the left. */
2268 inst_env->prefix_value +=
2269 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2270
2271 /* If the PC is operand1 (base) the address used is the address after
2272 the main instruction, i.e. address + 2 (the PC is already compensated
2273 for the prefix operation). */
2274 if (cris_get_operand1 (inst) == REG_PC)
2275 {
2276 inst_env->prefix_value += 2;
2277 }
2278
2279 /* A prefix doesn't change the xflag_found. But the rest of the flags
2280 need updating. */
2281 inst_env->slot_needed = 0;
2282 inst_env->xflag_found = 0;
2283 inst_env->prefix_found = 1;
2284}
2285
2286/* Calculates the prefix value for the double indirect addressing mode. */
2287
a78f21af 2288static void
29134980
OF
2289dip_prefix (unsigned short inst, inst_env_type *inst_env)
2290{
2291
2292 CORE_ADDR address;
2293
2294 /* It's invalid to be in a delay slot. */
2295 if (inst_env->slot_needed || inst_env->prefix_found)
2296 {
2297 inst_env->invalid = 1;
2298 return;
2299 }
2300
2301 /* The prefix value is one dereference of the contents of the operand1
2302 register. */
2303 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2304 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2305
2306 /* Check if the mode is autoincrement. */
2307 if (cris_get_mode (inst) == AUTOINC_MODE)
2308 {
2309 inst_env->reg[cris_get_operand1 (inst)] += 4;
2310 }
2311
2312 /* A prefix doesn't change the xflag_found. But the rest of the flags
2313 need updating. */
2314 inst_env->slot_needed = 0;
2315 inst_env->xflag_found = 0;
2316 inst_env->prefix_found = 1;
2317}
2318
2319/* Finds the destination for a branch with 8-bits offset. */
2320
a78f21af 2321static void
29134980
OF
2322eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2323{
2324
2325 short offset;
2326
2327 /* If we have a prefix or are in a delay slot it's bad. */
2328 if (inst_env->slot_needed || inst_env->prefix_found)
2329 {
2330 inst_env->invalid = 1;
2331 return;
2332 }
2333
2334 /* We have a branch, find out where the branch will land. */
2335 offset = cris_get_branch_short_offset (inst);
2336
2337 /* Check if the offset is signed. */
2338 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2339 {
2340 offset |= 0xFF00;
2341 }
2342
2343 /* The offset ends with the sign bit, set it to zero. The address
2344 should always be word aligned. */
2345 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2346
2347 inst_env->branch_found = 1;
2348 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2349
2350 inst_env->slot_needed = 1;
2351 inst_env->prefix_found = 0;
2352 inst_env->xflag_found = 0;
2353 inst_env->disable_interrupt = 1;
2354}
2355
2356/* Finds the destination for a branch with 16-bits offset. */
2357
a78f21af 2358static void
29134980
OF
2359sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2360{
2361 short offset;
2362
2363 /* If we have a prefix or is in a delay slot it's bad. */
2364 if (inst_env->slot_needed || inst_env->prefix_found)
2365 {
2366 inst_env->invalid = 1;
2367 return;
2368 }
2369
2370 /* We have a branch, find out the offset for the branch. */
2371 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2372
2373 /* The instruction is one word longer than normal, so add one word
2374 to the PC. */
2375 inst_env->reg[REG_PC] += 2;
2376
2377 inst_env->branch_found = 1;
2378 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2379
2380
2381 inst_env->slot_needed = 1;
2382 inst_env->prefix_found = 0;
2383 inst_env->xflag_found = 0;
2384 inst_env->disable_interrupt = 1;
2385}
2386
2387/* Handles the ABS instruction. */
2388
a78f21af 2389static void
29134980
OF
2390abs_op (unsigned short inst, inst_env_type *inst_env)
2391{
2392
2393 long value;
2394
2395 /* ABS can't have a prefix, so it's bad if it does. */
2396 if (inst_env->prefix_found)
2397 {
2398 inst_env->invalid = 1;
2399 return;
2400 }
2401
2402 /* Check if the operation affects the PC. */
2403 if (cris_get_operand2 (inst) == REG_PC)
2404 {
2405
2406 /* It's invalid to change to the PC if we are in a delay slot. */
2407 if (inst_env->slot_needed)
2408 {
2409 inst_env->invalid = 1;
2410 return;
2411 }
2412
2413 value = (long) inst_env->reg[REG_PC];
2414
2415 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2416 if (value != SIGNED_DWORD_MASK)
2417 {
2418 value = -value;
2419 inst_env->reg[REG_PC] = (long) value;
2420 }
2421 }
2422
2423 inst_env->slot_needed = 0;
2424 inst_env->prefix_found = 0;
2425 inst_env->xflag_found = 0;
2426 inst_env->disable_interrupt = 0;
2427}
2428
2429/* Handles the ADDI instruction. */
2430
a78f21af 2431static void
29134980
OF
2432addi_op (unsigned short inst, inst_env_type *inst_env)
2433{
2434 /* It's invalid to have the PC as base register. And ADDI can't have
2435 a prefix. */
2436 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2437 {
2438 inst_env->invalid = 1;
2439 return;
2440 }
2441
2442 inst_env->slot_needed = 0;
2443 inst_env->prefix_found = 0;
2444 inst_env->xflag_found = 0;
2445 inst_env->disable_interrupt = 0;
2446}
2447
2448/* Handles the ASR instruction. */
2449
a78f21af 2450static void
29134980
OF
2451asr_op (unsigned short inst, inst_env_type *inst_env)
2452{
2453 int shift_steps;
2454 unsigned long value;
2455 unsigned long signed_extend_mask = 0;
2456
2457 /* ASR can't have a prefix, so check that it doesn't. */
2458 if (inst_env->prefix_found)
2459 {
2460 inst_env->invalid = 1;
2461 return;
2462 }
2463
2464 /* Check if the PC is the target register. */
2465 if (cris_get_operand2 (inst) == REG_PC)
2466 {
2467 /* It's invalid to change the PC in a delay slot. */
2468 if (inst_env->slot_needed)
2469 {
2470 inst_env->invalid = 1;
2471 return;
2472 }
2473 /* Get the number of bits to shift. */
2474 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2475 value = inst_env->reg[REG_PC];
2476
2477 /* Find out how many bits the operation should apply to. */
2478 if (cris_get_size (inst) == INST_BYTE_SIZE)
2479 {
2480 if (value & SIGNED_BYTE_MASK)
2481 {
2482 signed_extend_mask = 0xFF;
2483 signed_extend_mask = signed_extend_mask >> shift_steps;
2484 signed_extend_mask = ~signed_extend_mask;
2485 }
2486 value = value >> shift_steps;
2487 value |= signed_extend_mask;
2488 value &= 0xFF;
2489 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2490 inst_env->reg[REG_PC] |= value;
2491 }
2492 else if (cris_get_size (inst) == INST_WORD_SIZE)
2493 {
2494 if (value & SIGNED_WORD_MASK)
2495 {
2496 signed_extend_mask = 0xFFFF;
2497 signed_extend_mask = signed_extend_mask >> shift_steps;
2498 signed_extend_mask = ~signed_extend_mask;
2499 }
2500 value = value >> shift_steps;
2501 value |= signed_extend_mask;
2502 value &= 0xFFFF;
2503 inst_env->reg[REG_PC] &= 0xFFFF0000;
2504 inst_env->reg[REG_PC] |= value;
2505 }
2506 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2507 {
2508 if (value & SIGNED_DWORD_MASK)
2509 {
2510 signed_extend_mask = 0xFFFFFFFF;
2511 signed_extend_mask = signed_extend_mask >> shift_steps;
2512 signed_extend_mask = ~signed_extend_mask;
2513 }
2514 value = value >> shift_steps;
2515 value |= signed_extend_mask;
2516 inst_env->reg[REG_PC] = value;
2517 }
2518 }
2519 inst_env->slot_needed = 0;
2520 inst_env->prefix_found = 0;
2521 inst_env->xflag_found = 0;
2522 inst_env->disable_interrupt = 0;
2523}
2524
2525/* Handles the ASRQ instruction. */
2526
a78f21af 2527static void
29134980
OF
2528asrq_op (unsigned short inst, inst_env_type *inst_env)
2529{
2530
2531 int shift_steps;
2532 unsigned long value;
2533 unsigned long signed_extend_mask = 0;
2534
2535 /* ASRQ can't have a prefix, so check that it doesn't. */
2536 if (inst_env->prefix_found)
2537 {
2538 inst_env->invalid = 1;
2539 return;
2540 }
2541
2542 /* Check if the PC is the target register. */
2543 if (cris_get_operand2 (inst) == REG_PC)
2544 {
2545
2546 /* It's invalid to change the PC in a delay slot. */
2547 if (inst_env->slot_needed)
2548 {
2549 inst_env->invalid = 1;
2550 return;
2551 }
2552 /* The shift size is given as a 5 bit quick value, i.e. we don't
2553 want the the sign bit of the quick value. */
2554 shift_steps = cris_get_asr_shift_steps (inst);
2555 value = inst_env->reg[REG_PC];
2556 if (value & SIGNED_DWORD_MASK)
2557 {
2558 signed_extend_mask = 0xFFFFFFFF;
2559 signed_extend_mask = signed_extend_mask >> shift_steps;
2560 signed_extend_mask = ~signed_extend_mask;
2561 }
2562 value = value >> shift_steps;
2563 value |= signed_extend_mask;
2564 inst_env->reg[REG_PC] = value;
2565 }
2566 inst_env->slot_needed = 0;
2567 inst_env->prefix_found = 0;
2568 inst_env->xflag_found = 0;
2569 inst_env->disable_interrupt = 0;
2570}
2571
2572/* Handles the AX, EI and SETF instruction. */
2573
a78f21af 2574static void
29134980
OF
2575ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2576{
2577 if (inst_env->prefix_found)
2578 {
2579 inst_env->invalid = 1;
2580 return;
2581 }
2582 /* Check if the instruction is setting the X flag. */
2583 if (cris_is_xflag_bit_on (inst))
2584 {
2585 inst_env->xflag_found = 1;
2586 }
2587 else
2588 {
2589 inst_env->xflag_found = 0;
2590 }
2591 inst_env->slot_needed = 0;
2592 inst_env->prefix_found = 0;
2593 inst_env->disable_interrupt = 1;
2594}
2595
2596/* Checks if the instruction is in assign mode. If so, it updates the assign
2597 register. Note that check_assign assumes that the caller has checked that
2598 there is a prefix to this instruction. The mode check depends on this. */
2599
a78f21af 2600static void
29134980
OF
2601check_assign (unsigned short inst, inst_env_type *inst_env)
2602{
2603 /* Check if it's an assign addressing mode. */
2604 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2605 {
2606 /* Assign the prefix value to operand 1. */
2607 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2608 }
2609}
2610
2611/* Handles the 2-operand BOUND instruction. */
2612
a78f21af 2613static void
29134980
OF
2614two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2615{
2616 /* It's invalid to have the PC as the index operand. */
2617 if (cris_get_operand2 (inst) == REG_PC)
2618 {
2619 inst_env->invalid = 1;
2620 return;
2621 }
2622 /* Check if we have a prefix. */
2623 if (inst_env->prefix_found)
2624 {
2625 check_assign (inst, inst_env);
2626 }
2627 /* Check if this is an autoincrement mode. */
2628 else if (cris_get_mode (inst) == AUTOINC_MODE)
2629 {
2630 /* It's invalid to change the PC in a delay slot. */
2631 if (inst_env->slot_needed)
2632 {
2633 inst_env->invalid = 1;
2634 return;
2635 }
2636 process_autoincrement (cris_get_size (inst), inst, inst_env);
2637 }
2638 inst_env->slot_needed = 0;
2639 inst_env->prefix_found = 0;
2640 inst_env->xflag_found = 0;
2641 inst_env->disable_interrupt = 0;
2642}
2643
2644/* Handles the 3-operand BOUND instruction. */
2645
a78f21af 2646static void
29134980
OF
2647three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2648{
2649 /* It's an error if we haven't got a prefix. And it's also an error
2650 if the PC is the destination register. */
2651 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2652 {
2653 inst_env->invalid = 1;
2654 return;
2655 }
2656 inst_env->slot_needed = 0;
2657 inst_env->prefix_found = 0;
2658 inst_env->xflag_found = 0;
2659 inst_env->disable_interrupt = 0;
2660}
2661
2662/* Clears the status flags in inst_env. */
2663
a78f21af 2664static void
29134980
OF
2665btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2666{
2667 /* It's an error if we have got a prefix. */
2668 if (inst_env->prefix_found)
2669 {
2670 inst_env->invalid = 1;
2671 return;
2672 }
2673
2674 inst_env->slot_needed = 0;
2675 inst_env->prefix_found = 0;
2676 inst_env->xflag_found = 0;
2677 inst_env->disable_interrupt = 0;
2678}
2679
2680/* Clears the status flags in inst_env. */
2681
a78f21af 2682static void
29134980
OF
2683clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2684{
2685 /* It's an error if we have got a prefix. */
2686 if (inst_env->prefix_found)
2687 {
2688 inst_env->invalid = 1;
2689 return;
2690 }
2691
2692 inst_env->slot_needed = 0;
2693 inst_env->prefix_found = 0;
2694 inst_env->xflag_found = 0;
2695 inst_env->disable_interrupt = 1;
2696}
2697
2698/* Handles the CLEAR instruction if it's in register mode. */
2699
a78f21af 2700static void
29134980
OF
2701reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2702{
2703 /* Check if the target is the PC. */
2704 if (cris_get_operand2 (inst) == REG_PC)
2705 {
2706 /* The instruction will clear the instruction's size bits. */
2707 int clear_size = cris_get_clear_size (inst);
2708 if (clear_size == INST_BYTE_SIZE)
2709 {
2710 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2711 }
2712 if (clear_size == INST_WORD_SIZE)
2713 {
2714 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2715 }
2716 if (clear_size == INST_DWORD_SIZE)
2717 {
2718 inst_env->delay_slot_pc = 0x0;
2719 }
2720 /* The jump will be delayed with one delay slot. So we need a delay
2721 slot. */
2722 inst_env->slot_needed = 1;
2723 inst_env->delay_slot_pc_active = 1;
2724 }
2725 else
2726 {
2727 /* The PC will not change => no delay slot. */
2728 inst_env->slot_needed = 0;
2729 }
2730 inst_env->prefix_found = 0;
2731 inst_env->xflag_found = 0;
2732 inst_env->disable_interrupt = 0;
2733}
2734
2735/* Handles the TEST instruction if it's in register mode. */
2736
a78f21af 2737static void
29134980
OF
2738reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2739{
2740 /* It's an error if we have got a prefix. */
2741 if (inst_env->prefix_found)
2742 {
2743 inst_env->invalid = 1;
2744 return;
2745 }
2746 inst_env->slot_needed = 0;
2747 inst_env->prefix_found = 0;
2748 inst_env->xflag_found = 0;
2749 inst_env->disable_interrupt = 0;
2750
2751}
2752
2753/* Handles the CLEAR and TEST instruction if the instruction isn't
2754 in register mode. */
2755
a78f21af 2756static void
29134980
OF
2757none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2758{
2759 /* Check if we are in a prefix mode. */
2760 if (inst_env->prefix_found)
2761 {
2762 /* The only way the PC can change is if this instruction is in
2763 assign addressing mode. */
2764 check_assign (inst, inst_env);
2765 }
2766 /* Indirect mode can't change the PC so just check if the mode is
2767 autoincrement. */
2768 else if (cris_get_mode (inst) == AUTOINC_MODE)
2769 {
2770 process_autoincrement (cris_get_size (inst), inst, inst_env);
2771 }
2772 inst_env->slot_needed = 0;
2773 inst_env->prefix_found = 0;
2774 inst_env->xflag_found = 0;
2775 inst_env->disable_interrupt = 0;
2776}
2777
2778/* Checks that the PC isn't the destination register or the instructions has
2779 a prefix. */
2780
a78f21af 2781static void
29134980
OF
2782dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2783{
2784 /* It's invalid to have the PC as the destination. The instruction can't
2785 have a prefix. */
2786 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2787 {
2788 inst_env->invalid = 1;
2789 return;
2790 }
2791
2792 inst_env->slot_needed = 0;
2793 inst_env->prefix_found = 0;
2794 inst_env->xflag_found = 0;
2795 inst_env->disable_interrupt = 0;
2796}
2797
2798/* Checks that the instruction doesn't have a prefix. */
2799
a78f21af 2800static void
29134980
OF
2801break_op (unsigned short inst, inst_env_type *inst_env)
2802{
2803 /* The instruction can't have a prefix. */
2804 if (inst_env->prefix_found)
2805 {
2806 inst_env->invalid = 1;
2807 return;
2808 }
2809
2810 inst_env->slot_needed = 0;
2811 inst_env->prefix_found = 0;
2812 inst_env->xflag_found = 0;
2813 inst_env->disable_interrupt = 1;
2814}
2815
2816/* Checks that the PC isn't the destination register and that the instruction
2817 doesn't have a prefix. */
2818
a78f21af 2819static void
29134980
OF
2820scc_op (unsigned short inst, inst_env_type *inst_env)
2821{
2822 /* It's invalid to have the PC as the destination. The instruction can't
2823 have a prefix. */
2824 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2825 {
2826 inst_env->invalid = 1;
2827 return;
2828 }
2829
2830 inst_env->slot_needed = 0;
2831 inst_env->prefix_found = 0;
2832 inst_env->xflag_found = 0;
2833 inst_env->disable_interrupt = 1;
2834}
2835
2836/* Handles the register mode JUMP instruction. */
2837
a78f21af 2838static void
29134980
OF
2839reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2840{
2841 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2842 you can't have a prefix. */
2843 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2844 {
2845 inst_env->invalid = 1;
2846 return;
2847 }
2848
2849 /* Just change the PC. */
2850 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2851 inst_env->slot_needed = 0;
2852 inst_env->prefix_found = 0;
2853 inst_env->xflag_found = 0;
2854 inst_env->disable_interrupt = 1;
2855}
2856
2857/* Handles the JUMP instruction for all modes except register. */
2858
a78f21af
AC
2859static void
2860none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2861{
2862 unsigned long newpc;
2863 CORE_ADDR address;
2864
2865 /* It's invalid to do a JUMP in a delay slot. */
2866 if (inst_env->slot_needed)
2867 {
2868 inst_env->invalid = 1;
2869 }
2870 else
2871 {
2872 /* Check if we have a prefix. */
2873 if (inst_env->prefix_found)
2874 {
2875 check_assign (inst, inst_env);
2876
2877 /* Get the new value for the the PC. */
2878 newpc =
2879 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2880 4);
2881 }
2882 else
2883 {
2884 /* Get the new value for the PC. */
2885 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2886 newpc = read_memory_unsigned_integer (address, 4);
2887
2888 /* Check if we should increment a register. */
2889 if (cris_get_mode (inst) == AUTOINC_MODE)
2890 {
2891 inst_env->reg[cris_get_operand1 (inst)] += 4;
2892 }
2893 }
2894 inst_env->reg[REG_PC] = newpc;
2895 }
2896 inst_env->slot_needed = 0;
2897 inst_env->prefix_found = 0;
2898 inst_env->xflag_found = 0;
2899 inst_env->disable_interrupt = 1;
2900}
2901
2902/* Handles moves to special registers (aka P-register) for all modes. */
2903
a78f21af 2904static void
29134980
OF
2905move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2906{
2907 if (inst_env->prefix_found)
2908 {
2909 /* The instruction has a prefix that means we are only interested if
2910 the instruction is in assign mode. */
2911 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2912 {
2913 /* The prefix handles the problem if we are in a delay slot. */
2914 if (cris_get_operand1 (inst) == REG_PC)
2915 {
2916 /* Just take care of the assign. */
2917 check_assign (inst, inst_env);
2918 }
2919 }
2920 }
2921 else if (cris_get_mode (inst) == AUTOINC_MODE)
2922 {
2923 /* The instruction doesn't have a prefix, the only case left that we
2924 are interested in is the autoincrement mode. */
2925 if (cris_get_operand1 (inst) == REG_PC)
2926 {
2927 /* If the PC is to be incremented it's invalid to be in a
2928 delay slot. */
2929 if (inst_env->slot_needed)
2930 {
2931 inst_env->invalid = 1;
2932 return;
2933 }
2a9ecef2
OF
2934
2935 /* The increment depends on the size of the special register. */
2936 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2937 {
2938 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2939 }
2a9ecef2 2940 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2941 {
2942 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2943 }
2944 else
2945 {
2946 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2947 }
2948 }
2949 }
2950 inst_env->slot_needed = 0;
2951 inst_env->prefix_found = 0;
2952 inst_env->xflag_found = 0;
2953 inst_env->disable_interrupt = 1;
2954}
2955
2956/* Handles moves from special registers (aka P-register) for all modes
2957 except register. */
2958
a78f21af 2959static void
29134980
OF
2960none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2961{
2962 if (inst_env->prefix_found)
2963 {
2964 /* The instruction has a prefix that means we are only interested if
2965 the instruction is in assign mode. */
2966 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2967 {
2968 /* The prefix handles the problem if we are in a delay slot. */
2969 if (cris_get_operand1 (inst) == REG_PC)
2970 {
2971 /* Just take care of the assign. */
2972 check_assign (inst, inst_env);
2973 }
2974 }
2975 }
2976 /* The instruction doesn't have a prefix, the only case left that we
2977 are interested in is the autoincrement mode. */
2978 else if (cris_get_mode (inst) == AUTOINC_MODE)
2979 {
2980 if (cris_get_operand1 (inst) == REG_PC)
2981 {
2982 /* If the PC is to be incremented it's invalid to be in a
2983 delay slot. */
2984 if (inst_env->slot_needed)
2985 {
2986 inst_env->invalid = 1;
2987 return;
2988 }
2a9ecef2
OF
2989
2990 /* The increment depends on the size of the special register. */
2991 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2992 {
2993 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2994 }
2a9ecef2 2995 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2996 {
2997 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2998 }
2999 else
3000 {
3001 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3002 }
3003 }
3004 }
3005 inst_env->slot_needed = 0;
3006 inst_env->prefix_found = 0;
3007 inst_env->xflag_found = 0;
3008 inst_env->disable_interrupt = 1;
3009}
3010
3011/* Handles moves from special registers (aka P-register) when the mode
3012 is register. */
3013
a78f21af 3014static void
29134980
OF
3015reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3016{
3017 /* Register mode move from special register can't have a prefix. */
3018 if (inst_env->prefix_found)
3019 {
3020 inst_env->invalid = 1;
3021 return;
3022 }
3023
3024 if (cris_get_operand1 (inst) == REG_PC)
3025 {
3026 /* It's invalid to change the PC in a delay slot. */
3027 if (inst_env->slot_needed)
3028 {
3029 inst_env->invalid = 1;
3030 return;
3031 }
3032 /* The destination is the PC, the jump will have a delay slot. */
3033 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3034 inst_env->slot_needed = 1;
3035 inst_env->delay_slot_pc_active = 1;
3036 }
3037 else
3038 {
3039 /* If the destination isn't PC, there will be no jump. */
3040 inst_env->slot_needed = 0;
3041 }
3042 inst_env->prefix_found = 0;
3043 inst_env->xflag_found = 0;
3044 inst_env->disable_interrupt = 1;
3045}
3046
3047/* Handles the MOVEM from memory to general register instruction. */
3048
a78f21af 3049static void
29134980
OF
3050move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3051{
3052 if (inst_env->prefix_found)
3053 {
3054 /* The prefix handles the problem if we are in a delay slot. Is the
3055 MOVEM instruction going to change the PC? */
3056 if (cris_get_operand2 (inst) >= REG_PC)
3057 {
3058 inst_env->reg[REG_PC] =
3059 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3060 }
3061 /* The assign value is the value after the increment. Normally, the
3062 assign value is the value before the increment. */
3063 if ((cris_get_operand1 (inst) == REG_PC)
3064 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3065 {
3066 inst_env->reg[REG_PC] = inst_env->prefix_value;
3067 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3068 }
3069 }
3070 else
3071 {
3072 /* Is the MOVEM instruction going to change the PC? */
3073 if (cris_get_operand2 (inst) == REG_PC)
3074 {
3075 /* It's invalid to change the PC in a delay slot. */
3076 if (inst_env->slot_needed)
3077 {
3078 inst_env->invalid = 1;
3079 return;
3080 }
3081 inst_env->reg[REG_PC] =
3082 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3083 4);
3084 }
3085 /* The increment is not depending on the size, instead it's depending
3086 on the number of registers loaded from memory. */
3087 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3088 {
3089 /* It's invalid to change the PC in a delay slot. */
3090 if (inst_env->slot_needed)
3091 {
3092 inst_env->invalid = 1;
3093 return;
3094 }
3095 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3096 }
3097 }
3098 inst_env->slot_needed = 0;
3099 inst_env->prefix_found = 0;
3100 inst_env->xflag_found = 0;
3101 inst_env->disable_interrupt = 0;
3102}
3103
3104/* Handles the MOVEM to memory from general register instruction. */
3105
a78f21af 3106static void
29134980
OF
3107move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3108{
3109 if (inst_env->prefix_found)
3110 {
3111 /* The assign value is the value after the increment. Normally, the
3112 assign value is the value before the increment. */
3113 if ((cris_get_operand1 (inst) == REG_PC) &&
3114 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3115 {
3116 /* The prefix handles the problem if we are in a delay slot. */
3117 inst_env->reg[REG_PC] = inst_env->prefix_value;
3118 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3119 }
3120 }
3121 else
3122 {
3123 /* The increment is not depending on the size, instead it's depending
3124 on the number of registers loaded to memory. */
3125 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3126 {
3127 /* It's invalid to change the PC in a delay slot. */
3128 if (inst_env->slot_needed)
3129 {
3130 inst_env->invalid = 1;
3131 return;
3132 }
3133 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3134 }
3135 }
3136 inst_env->slot_needed = 0;
3137 inst_env->prefix_found = 0;
3138 inst_env->xflag_found = 0;
3139 inst_env->disable_interrupt = 0;
3140}
3141
29134980
OF
3142/* Handles the intructions that's not yet implemented, by setting
3143 inst_env->invalid to true. */
3144
a78f21af 3145static void
29134980
OF
3146not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3147{
3148 inst_env->invalid = 1;
3149}
3150
3151/* Handles the XOR instruction. */
3152
a78f21af 3153static void
29134980
OF
3154xor_op (unsigned short inst, inst_env_type *inst_env)
3155{
3156 /* XOR can't have a prefix. */
3157 if (inst_env->prefix_found)
3158 {
3159 inst_env->invalid = 1;
3160 return;
3161 }
3162
3163 /* Check if the PC is the target. */
3164 if (cris_get_operand2 (inst) == REG_PC)
3165 {
3166 /* It's invalid to change the PC in a delay slot. */
3167 if (inst_env->slot_needed)
3168 {
3169 inst_env->invalid = 1;
3170 return;
3171 }
3172 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3173 }
3174 inst_env->slot_needed = 0;
3175 inst_env->prefix_found = 0;
3176 inst_env->xflag_found = 0;
3177 inst_env->disable_interrupt = 0;
3178}
3179
3180/* Handles the MULS instruction. */
3181
a78f21af 3182static void
29134980
OF
3183muls_op (unsigned short inst, inst_env_type *inst_env)
3184{
3185 /* MULS/U can't have a prefix. */
3186 if (inst_env->prefix_found)
3187 {
3188 inst_env->invalid = 1;
3189 return;
3190 }
3191
3192 /* Consider it invalid if the PC is the target. */
3193 if (cris_get_operand2 (inst) == REG_PC)
3194 {
3195 inst_env->invalid = 1;
3196 return;
3197 }
3198 inst_env->slot_needed = 0;
3199 inst_env->prefix_found = 0;
3200 inst_env->xflag_found = 0;
3201 inst_env->disable_interrupt = 0;
3202}
3203
3204/* Handles the MULU instruction. */
3205
a78f21af 3206static void
29134980
OF
3207mulu_op (unsigned short inst, inst_env_type *inst_env)
3208{
3209 /* MULS/U can't have a prefix. */
3210 if (inst_env->prefix_found)
3211 {
3212 inst_env->invalid = 1;
3213 return;
3214 }
3215
3216 /* Consider it invalid if the PC is the target. */
3217 if (cris_get_operand2 (inst) == REG_PC)
3218 {
3219 inst_env->invalid = 1;
3220 return;
3221 }
3222 inst_env->slot_needed = 0;
3223 inst_env->prefix_found = 0;
3224 inst_env->xflag_found = 0;
3225 inst_env->disable_interrupt = 0;
3226}
3227
3228/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3229 The MOVE instruction is the move from source to register. */
3230
a78f21af 3231static void
29134980
OF
3232add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3233 unsigned long source1, unsigned long source2)
3234{
3235 unsigned long pc_mask;
3236 unsigned long operation_mask;
3237
3238 /* Find out how many bits the operation should apply to. */
3239 if (cris_get_size (inst) == INST_BYTE_SIZE)
3240 {
3241 pc_mask = 0xFFFFFF00;
3242 operation_mask = 0xFF;
3243 }
3244 else if (cris_get_size (inst) == INST_WORD_SIZE)
3245 {
3246 pc_mask = 0xFFFF0000;
3247 operation_mask = 0xFFFF;
3248 }
3249 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3250 {
3251 pc_mask = 0x0;
3252 operation_mask = 0xFFFFFFFF;
3253 }
3254 else
3255 {
3256 /* The size is out of range. */
3257 inst_env->invalid = 1;
3258 return;
3259 }
3260
3261 /* The instruction just works on uw_operation_mask bits. */
3262 source2 &= operation_mask;
3263 source1 &= operation_mask;
3264
3265 /* Now calculate the result. The opcode's 3 first bits separates
3266 the different actions. */
3267 switch (cris_get_opcode (inst) & 7)
3268 {
3269 case 0: /* add */
3270 source1 += source2;
3271 break;
3272
3273 case 1: /* move */
3274 source1 = source2;
3275 break;
3276
3277 case 2: /* subtract */
3278 source1 -= source2;
3279 break;
3280
3281 case 3: /* compare */
3282 break;
3283
3284 case 4: /* and */
3285 source1 &= source2;
3286 break;
3287
3288 case 5: /* or */
3289 source1 |= source2;
3290 break;
3291
3292 default:
3293 inst_env->invalid = 1;
3294 return;
3295
3296 break;
3297 }
3298
3299 /* Make sure that the result doesn't contain more than the instruction
3300 size bits. */
3301 source2 &= operation_mask;
3302
3303 /* Calculate the new breakpoint address. */
3304 inst_env->reg[REG_PC] &= pc_mask;
3305 inst_env->reg[REG_PC] |= source1;
3306
3307}
3308
3309/* Extends the value from either byte or word size to a dword. If the mode
3310 is zero extend then the value is extended with zero. If instead the mode
3311 is signed extend the sign bit of the value is taken into consideration. */
3312
a78f21af 3313static unsigned long
29134980
OF
3314do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3315{
3316 /* The size can be either byte or word, check which one it is.
3317 Don't check the highest bit, it's indicating if it's a zero
3318 or sign extend. */
3319 if (cris_get_size (*inst) & INST_WORD_SIZE)
3320 {
3321 /* Word size. */
3322 value &= 0xFFFF;
3323
3324 /* Check if the instruction is signed extend. If so, check if value has
3325 the sign bit on. */
3326 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3327 {
3328 value |= SIGNED_WORD_EXTEND_MASK;
3329 }
3330 }
3331 else
3332 {
3333 /* Byte size. */
3334 value &= 0xFF;
3335
3336 /* Check if the instruction is signed extend. If so, check if value has
3337 the sign bit on. */
3338 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3339 {
3340 value |= SIGNED_BYTE_EXTEND_MASK;
3341 }
3342 }
3343 /* The size should now be dword. */
3344 cris_set_size_to_dword (inst);
3345 return value;
3346}
3347
3348/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3349 instruction. The MOVE instruction is the move from source to register. */
3350
a78f21af 3351static void
29134980
OF
3352reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3353 inst_env_type *inst_env)
3354{
3355 unsigned long operand1;
3356 unsigned long operand2;
3357
3358 /* It's invalid to have a prefix to the instruction. This is a register
3359 mode instruction and can't have a prefix. */
3360 if (inst_env->prefix_found)
3361 {
3362 inst_env->invalid = 1;
3363 return;
3364 }
3365 /* Check if the instruction has PC as its target. */
3366 if (cris_get_operand2 (inst) == REG_PC)
3367 {
3368 if (inst_env->slot_needed)
3369 {
3370 inst_env->invalid = 1;
3371 return;
3372 }
3373 /* The instruction has the PC as its target register. */
7ab98e9e 3374 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3375 operand2 = inst_env->reg[REG_PC];
3376
3377 /* Check if it's a extend, signed or zero instruction. */
3378 if (cris_get_opcode (inst) < 4)
3379 {
3380 operand1 = do_sign_or_zero_extend (operand1, &inst);
3381 }
3382 /* Calculate the PC value after the instruction, i.e. where the
3383 breakpoint should be. The order of the udw_operands is vital. */
3384 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3385 }
3386 inst_env->slot_needed = 0;
3387 inst_env->prefix_found = 0;
3388 inst_env->xflag_found = 0;
3389 inst_env->disable_interrupt = 0;
3390}
3391
3392/* Returns the data contained at address. The size of the data is derived from
3393 the size of the operation. If the instruction is a zero or signed
3394 extend instruction, the size field is changed in instruction. */
3395
a78f21af 3396static unsigned long
29134980
OF
3397get_data_from_address (unsigned short *inst, CORE_ADDR address)
3398{
3399 int size = cris_get_size (*inst);
3400 unsigned long value;
3401
3402 /* If it's an extend instruction we don't want the signed extend bit,
3403 because it influences the size. */
3404 if (cris_get_opcode (*inst) < 4)
3405 {
3406 size &= ~SIGNED_EXTEND_BIT_MASK;
3407 }
3408 /* Is there a need for checking the size? Size should contain the number of
3409 bytes to read. */
3410 size = 1 << size;
3411 value = read_memory_unsigned_integer (address, size);
3412
3413 /* Check if it's an extend, signed or zero instruction. */
3414 if (cris_get_opcode (*inst) < 4)
3415 {
3416 value = do_sign_or_zero_extend (value, inst);
3417 }
3418 return value;
3419}
3420
3421/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3422 instructions. The MOVE instruction is the move from source to register. */
3423
a78f21af 3424static void
29134980
OF
3425handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3426 inst_env_type *inst_env)
3427{
3428 unsigned long operand2;
3429 unsigned long operand3;
3430
3431 check_assign (inst, inst_env);
3432 if (cris_get_operand2 (inst) == REG_PC)
3433 {
3434 operand2 = inst_env->reg[REG_PC];
3435
3436 /* Get the value of the third operand. */
3437 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3438
3439 /* Calculate the PC value after the instruction, i.e. where the
3440 breakpoint should be. The order of the udw_operands is vital. */
3441 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3442 }
3443 inst_env->slot_needed = 0;
3444 inst_env->prefix_found = 0;
3445 inst_env->xflag_found = 0;
3446 inst_env->disable_interrupt = 0;
3447}
3448
3449/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3450 OR instructions. Note that for this to work as expected, the calling
3451 function must have made sure that there is a prefix to this instruction. */
3452
a78f21af 3453static void
29134980
OF
3454three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3455 inst_env_type *inst_env)
3456{
3457 unsigned long operand2;
3458 unsigned long operand3;
3459
3460 if (cris_get_operand1 (inst) == REG_PC)
3461 {
3462 /* The PC will be changed by the instruction. */
3463 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3464
3465 /* Get the value of the third operand. */
3466 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3467
3468 /* Calculate the PC value after the instruction, i.e. where the
3469 breakpoint should be. */
3470 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3471 }
3472 inst_env->slot_needed = 0;
3473 inst_env->prefix_found = 0;
3474 inst_env->xflag_found = 0;
3475 inst_env->disable_interrupt = 0;
3476}
3477
3478/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3479 instructions. The MOVE instruction is the move from source to register. */
3480
a78f21af 3481static void
29134980
OF
3482handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3483 inst_env_type *inst_env)
3484{
3485 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3486 {
3487 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3488 SUB, AND or OR something weird is going on (if everything works these
3489 instructions should end up in the three operand version). */
3490 inst_env->invalid = 1;
3491 return;
3492 }
3493 else
3494 {
3495 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3496 so use it. */
3497 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3498 }
3499 inst_env->slot_needed = 0;
3500 inst_env->prefix_found = 0;
3501 inst_env->xflag_found = 0;
3502 inst_env->disable_interrupt = 0;
3503}
3504
3505/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3506 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3507 source to register. */
3508
a78f21af 3509static void
29134980
OF
3510handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3511 inst_env_type *inst_env)
3512{
3513 unsigned long operand1;
3514 unsigned long operand2;
3515 unsigned long operand3;
3516 int size;
3517
3518 /* The instruction is either an indirect or autoincrement addressing mode.
3519 Check if the destination register is the PC. */
3520 if (cris_get_operand2 (inst) == REG_PC)
3521 {
3522 /* Must be done here, get_data_from_address may change the size
3523 field. */
3524 size = cris_get_size (inst);
3525 operand2 = inst_env->reg[REG_PC];
3526
3527 /* Get the value of the third operand, i.e. the indirect operand. */
3528 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3529 operand3 = get_data_from_address (&inst, operand1);
3530
3531 /* Calculate the PC value after the instruction, i.e. where the
3532 breakpoint should be. The order of the udw_operands is vital. */
3533 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3534 }
3535 /* If this is an autoincrement addressing mode, check if the increment
3536 changes the PC. */
3537 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3538 {
3539 /* Get the size field. */
3540 size = cris_get_size (inst);
3541
3542 /* If it's an extend instruction we don't want the signed extend bit,
3543 because it influences the size. */
3544 if (cris_get_opcode (inst) < 4)
3545 {
3546 size &= ~SIGNED_EXTEND_BIT_MASK;
3547 }
3548 process_autoincrement (size, inst, inst_env);
3549 }
3550 inst_env->slot_needed = 0;
3551 inst_env->prefix_found = 0;
3552 inst_env->xflag_found = 0;
3553 inst_env->disable_interrupt = 0;
3554}
3555
3556/* Handles the two-operand addressing mode, all modes except register, for
3557 the ADD, SUB CMP, AND and OR instruction. */
3558
a78f21af 3559static void
29134980
OF
3560none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3561 inst_env_type *inst_env)
3562{
3563 if (inst_env->prefix_found)
3564 {
3565 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3566 {
3567 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3568 }
3569 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3570 {
3571 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3572 }
3573 else
3574 {
3575 /* The mode is invalid for a prefixed base instruction. */
3576 inst_env->invalid = 1;
3577 return;
3578 }
3579 }
3580 else
3581 {
3582 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3583 }
3584}
3585
3586/* Handles the quick addressing mode for the ADD and SUB instruction. */
3587
a78f21af 3588static void
29134980
OF
3589quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3590{
3591 unsigned long operand1;
3592 unsigned long operand2;
3593
3594 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3595 instruction and can't have a prefix. */
3596 if (inst_env->prefix_found)
3597 {
3598 inst_env->invalid = 1;
3599 return;
3600 }
3601
3602 /* Check if the instruction has PC as its target. */
3603 if (cris_get_operand2 (inst) == REG_PC)
3604 {
3605 if (inst_env->slot_needed)
3606 {
3607 inst_env->invalid = 1;
3608 return;
3609 }
3610 operand1 = cris_get_quick_value (inst);
3611 operand2 = inst_env->reg[REG_PC];
3612
3613 /* The size should now be dword. */
3614 cris_set_size_to_dword (&inst);
3615
3616 /* Calculate the PC value after the instruction, i.e. where the
3617 breakpoint should be. */
3618 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3619 }
3620 inst_env->slot_needed = 0;
3621 inst_env->prefix_found = 0;
3622 inst_env->xflag_found = 0;
3623 inst_env->disable_interrupt = 0;
3624}
3625
3626/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3627
a78f21af 3628static void
29134980
OF
3629quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3630{
3631 unsigned long operand1;
3632 unsigned long operand2;
3633
3634 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3635 instruction and can't have a prefix. */
3636 if (inst_env->prefix_found)
3637 {
3638 inst_env->invalid = 1;
3639 return;
3640 }
3641 /* Check if the instruction has PC as its target. */
3642 if (cris_get_operand2 (inst) == REG_PC)
3643 {
3644 if (inst_env->slot_needed)
3645 {
3646 inst_env->invalid = 1;
3647 return;
3648 }
3649 /* The instruction has the PC as its target register. */
3650 operand1 = cris_get_quick_value (inst);
3651 operand2 = inst_env->reg[REG_PC];
3652
3653 /* The quick value is signed, so check if we must do a signed extend. */
3654 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3655 {
3656 /* sign extend */
3657 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3658 }
3659 /* The size should now be dword. */
3660 cris_set_size_to_dword (&inst);
3661
3662 /* Calculate the PC value after the instruction, i.e. where the
3663 breakpoint should be. */
3664 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3665 }
3666 inst_env->slot_needed = 0;
3667 inst_env->prefix_found = 0;
3668 inst_env->xflag_found = 0;
3669 inst_env->disable_interrupt = 0;
3670}
3671
3672/* Translate op_type to a function and call it. */
3673
a78f21af
AC
3674static void
3675cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3676 inst_env_type *inst_env)
29134980
OF
3677{
3678 switch (op_type)
3679 {
3680 case cris_not_implemented_op:
3681 not_implemented_op (inst, inst_env);
3682 break;
3683
3684 case cris_abs_op:
3685 abs_op (inst, inst_env);
3686 break;
3687
3688 case cris_addi_op:
3689 addi_op (inst, inst_env);
3690 break;
3691
3692 case cris_asr_op:
3693 asr_op (inst, inst_env);
3694 break;
3695
3696 case cris_asrq_op:
3697 asrq_op (inst, inst_env);
3698 break;
3699
3700 case cris_ax_ei_setf_op:
3701 ax_ei_setf_op (inst, inst_env);
3702 break;
3703
3704 case cris_bdap_prefix:
3705 bdap_prefix (inst, inst_env);
3706 break;
3707
3708 case cris_biap_prefix:
3709 biap_prefix (inst, inst_env);
3710 break;
3711
3712 case cris_break_op:
3713 break_op (inst, inst_env);
3714 break;
3715
3716 case cris_btst_nop_op:
3717 btst_nop_op (inst, inst_env);
3718 break;
3719
3720 case cris_clearf_di_op:
3721 clearf_di_op (inst, inst_env);
3722 break;
3723
3724 case cris_dip_prefix:
3725 dip_prefix (inst, inst_env);
3726 break;
3727
3728 case cris_dstep_logshift_mstep_neg_not_op:
3729 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3730 break;
3731
3732 case cris_eight_bit_offset_branch_op:
3733 eight_bit_offset_branch_op (inst, inst_env);
3734 break;
3735
3736 case cris_move_mem_to_reg_movem_op:
3737 move_mem_to_reg_movem_op (inst, inst_env);
3738 break;
3739
3740 case cris_move_reg_to_mem_movem_op:
3741 move_reg_to_mem_movem_op (inst, inst_env);
3742 break;
3743
3744 case cris_move_to_preg_op:
3745 move_to_preg_op (inst, inst_env);
3746 break;
3747
3748 case cris_muls_op:
3749 muls_op (inst, inst_env);
3750 break;
3751
3752 case cris_mulu_op:
3753 mulu_op (inst, inst_env);
3754 break;
3755
3756 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3757 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3758 break;
3759
3760 case cris_none_reg_mode_clear_test_op:
3761 none_reg_mode_clear_test_op (inst, inst_env);
3762 break;
3763
3764 case cris_none_reg_mode_jump_op:
3765 none_reg_mode_jump_op (inst, inst_env);
3766 break;
3767
3768 case cris_none_reg_mode_move_from_preg_op:
3769 none_reg_mode_move_from_preg_op (inst, inst_env);
3770 break;
3771
3772 case cris_quick_mode_add_sub_op:
3773 quick_mode_add_sub_op (inst, inst_env);
3774 break;
3775
3776 case cris_quick_mode_and_cmp_move_or_op:
3777 quick_mode_and_cmp_move_or_op (inst, inst_env);
3778 break;
3779
3780 case cris_quick_mode_bdap_prefix:
3781 quick_mode_bdap_prefix (inst, inst_env);
3782 break;
3783
3784 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3785 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3786 break;
3787
3788 case cris_reg_mode_clear_op:
3789 reg_mode_clear_op (inst, inst_env);
3790 break;
3791
3792 case cris_reg_mode_jump_op:
3793 reg_mode_jump_op (inst, inst_env);
3794 break;
3795
3796 case cris_reg_mode_move_from_preg_op:
3797 reg_mode_move_from_preg_op (inst, inst_env);
3798 break;
3799
3800 case cris_reg_mode_test_op:
3801 reg_mode_test_op (inst, inst_env);
3802 break;
3803
3804 case cris_scc_op:
3805 scc_op (inst, inst_env);
3806 break;
3807
3808 case cris_sixteen_bit_offset_branch_op:
3809 sixteen_bit_offset_branch_op (inst, inst_env);
3810 break;
3811
3812 case cris_three_operand_add_sub_cmp_and_or_op:
3813 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3814 break;
3815
3816 case cris_three_operand_bound_op:
3817 three_operand_bound_op (inst, inst_env);
3818 break;
3819
3820 case cris_two_operand_bound_op:
3821 two_operand_bound_op (inst, inst_env);
3822 break;
3823
3824 case cris_xor_op:
3825 xor_op (inst, inst_env);
3826 break;
3827 }
3828}
3829
3830/* This wrapper is to avoid cris_get_assembler being called before
3831 exec_bfd has been set. */
3832
3833static int
a89aa300 3834cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3835{
a89aa300 3836 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3837 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3838 disassembler, even when there is no BFD. Does something like
3839 "gdb; target remote; disassmeble *0x123" work? */
3840 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3841 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3842 gdb_assert (print_insn != NULL);
3843 return print_insn (addr, info);
29134980
OF
3844}
3845
dbbff683
OF
3846/* Copied from <asm/elf.h>. */
3847typedef unsigned long elf_greg_t;
3848
3849/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3850#define CRISV10_ELF_NGREG 35
3851typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3852
3853#define CRISV32_ELF_NGREG 32
3854typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3855
3856/* Unpack an elf_gregset_t into GDB's register cache. */
3857
a78f21af 3858static void
c6b4e5a2 3859cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
dbbff683 3860{
c600d464 3861 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
dbbff683
OF
3862 int i;
3863 elf_greg_t *regp = *gregsetp;
3864 static char zerobuf[4] = {0};
3865
3866 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3867 knows about the actual size of each register so that's no problem. */
3868 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3869 {
c6b4e5a2 3870 regcache_raw_supply (regcache, i, (char *)&regp[i]);
dbbff683 3871 }
c600d464
OF
3872
3873 if (tdep->cris_version == 32)
3874 {
3875 /* Needed to set pseudo-register PC for CRISv32. */
3876 /* FIXME: If ERP is in a delay slot at this point then the PC will
3877 be wrong. Issue a warning to alert the user. */
c6b4e5a2 3878 regcache_raw_supply (regcache, PC_REGNUM,
c600d464
OF
3879 (char *)&regp[ERP_REGNUM]);
3880
3881 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3882 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3883 }
dbbff683
OF
3884}
3885
3886/* Use a local version of this function to get the correct types for
3887 regsets, until multi-arch core support is ready. */
3888
3889static void
9eefc95f
UW
3890fetch_core_registers (struct regcache *regcache,
3891 char *core_reg_sect, unsigned core_reg_size,
dbbff683
OF
3892 int which, CORE_ADDR reg_addr)
3893{
3894 elf_gregset_t gregset;
3895
3896 switch (which)
3897 {
3898 case 0:
c600d464
OF
3899 if (core_reg_size != sizeof (elf_gregset_t)
3900 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3901 {
8a3fe4f8 3902 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3903 }
3904 else
3905 {
3906 memcpy (&gregset, core_reg_sect, sizeof (gregset));
9eefc95f 3907 cris_supply_gregset (regcache, &gregset);
dbbff683
OF
3908 }
3909
3910 default:
3911 /* We've covered all the kinds of registers we know about here,
3912 so this must be something we wouldn't know what to do with
3913 anyway. Just ignore it. */
3914 break;
3915 }
3916}
3917
3918static struct core_fns cris_elf_core_fns =
3919{
3920 bfd_target_elf_flavour, /* core_flavour */
3921 default_check_format, /* check_format */
3922 default_core_sniffer, /* core_sniffer */
3923 fetch_core_registers, /* core_read_registers */
3924 NULL /* next */
3925};
3926
a78f21af
AC
3927extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3928
29134980
OF
3929void
3930_initialize_cris_tdep (void)
3931{
a5f6c8f5
OF
3932 static struct cmd_list_element *cris_set_cmdlist;
3933 static struct cmd_list_element *cris_show_cmdlist;
3934
29134980
OF
3935 struct cmd_list_element *c;
3936
3937 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3938
29134980 3939 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3940 add_setshow_uinteger_cmd ("cris-version", class_support,
3941 &usr_cmd_cris_version,
7915a72c
AC
3942 _("Set the current CRIS version."),
3943 _("Show the current CRIS version."),
bdd56253
OF
3944 _("\
3945Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3946Defaults to 10. "),
2c5b56ce 3947 set_cris_version,
7915a72c 3948 NULL, /* FIXME: i18n: Current CRIS version is %s. */
a5f6c8f5 3949 &setlist, &showlist);
0e6bdb31
OF
3950
3951 add_setshow_enum_cmd ("cris-mode", class_support,
3952 cris_modes, &usr_cmd_cris_mode,
3953 _("Set the current CRIS mode."),
3954 _("Show the current CRIS mode."),
bdd56253
OF
3955 _("\
3956Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3957Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3958 set_cris_mode,
3959 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3960 &setlist, &showlist);
dbbff683 3961
a5f6c8f5
OF
3962 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3963 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3964 _("Set the usage of Dwarf-2 CFI for CRIS."),
3965 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3966 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3967 set_cris_dwarf2_cfi,
7915a72c 3968 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3969 &setlist, &showlist);
3970
52bd1401 3971 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3972}
3973
3974/* Prints out all target specific values. */
3975
3976static void
3977cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3978{
3979 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3980 if (tdep != NULL)
3981 {
3982 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3983 tdep->cris_version);
0e6bdb31
OF
3984 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3985 tdep->cris_mode);
a5f6c8f5
OF
3986 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3987 tdep->cris_dwarf2_cfi);
29134980
OF
3988 }
3989}
3990
3991static void
a5f6c8f5
OF
3992set_cris_version (char *ignore_args, int from_tty,
3993 struct cmd_list_element *c)
29134980
OF
3994{
3995 struct gdbarch_info info;
3996
a5f6c8f5 3997 usr_cmd_cris_version_valid = 1;
29134980 3998
a5f6c8f5
OF
3999 /* Update the current architecture, if needed. */
4000 gdbarch_info_init (&info);
4001 if (!gdbarch_update_p (info))
4002 internal_error (__FILE__, __LINE__,
e2e0b3e5 4003 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4004}
4005
0e6bdb31
OF
4006static void
4007set_cris_mode (char *ignore_args, int from_tty,
4008 struct cmd_list_element *c)
4009{
4010 struct gdbarch_info info;
4011
4012 /* Update the current architecture, if needed. */
4013 gdbarch_info_init (&info);
4014 if (!gdbarch_update_p (info))
4015 internal_error (__FILE__, __LINE__,
4016 "cris_gdbarch_update: failed to update architecture.");
4017}
4018
29134980 4019static void
a5f6c8f5
OF
4020set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4021 struct cmd_list_element *c)
29134980
OF
4022{
4023 struct gdbarch_info info;
a5f6c8f5
OF
4024
4025 /* Update the current architecture, if needed. */
4026 gdbarch_info_init (&info);
4027 if (!gdbarch_update_p (info))
4028 internal_error (__FILE__, __LINE__,
e2e0b3e5 4029 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4030}
4031
29134980
OF
4032static struct gdbarch *
4033cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4034{
4035 struct gdbarch *gdbarch;
4036 struct gdbarch_tdep *tdep;
4037 int cris_version;
29134980
OF
4038
4039 if (usr_cmd_cris_version_valid)
4040 {
4041 /* Trust the user's CRIS version setting. */
4042 cris_version = usr_cmd_cris_version;
4043 }
c600d464
OF
4044 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4045 {
4046 cris_version = 32;
4047 }
29134980
OF
4048 else
4049 {
4050 /* Assume it's CRIS version 10. */
4051 cris_version = 10;
4052 }
4053
29134980
OF
4054 /* Make the current settings visible to the user. */
4055 usr_cmd_cris_version = cris_version;
29134980 4056
0e6bdb31 4057 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4058 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4059 arches != NULL;
4060 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4061 {
a5f6c8f5
OF
4062 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4063 == usr_cmd_cris_version)
0e6bdb31
OF
4064 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4065 == usr_cmd_cris_mode)
a5f6c8f5
OF
4066 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4067 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4068 return arches->gdbarch;
4069 }
4070
4071 /* No matching architecture was found. Create a new one. */
4072 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4073 gdbarch = gdbarch_alloc (&info, tdep);
4074
a5f6c8f5 4075 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4076 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4077 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4078
4079 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4080 switch (info.byte_order)
4081 {
778eb05e 4082 case BFD_ENDIAN_LITTLE:
29134980
OF
4083 /* Ok. */
4084 break;
4085
d7449b42 4086 case BFD_ENDIAN_BIG:
e2e0b3e5 4087 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4088 break;
4089
4090 default:
e2e0b3e5 4091 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4092 }
4093
b4206d25 4094 set_gdbarch_return_value (gdbarch, cris_return_value);
2e4b5889
OF
4095 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4096 cris_reg_struct_has_addr);
b5622e8d 4097 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
29134980 4098
29134980 4099 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4100
4101 /* Length of ordinary registers used in push_word and a few other
4102 places. register_size() is the real way to know how big a
4103 register is. */
a5f6c8f5 4104
2e4b5889
OF
4105 set_gdbarch_double_bit (gdbarch, 64);
4106 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4107 which means we have to set this explicitly. */
c600d464 4108 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4109
29134980
OF
4110 /* The total amount of space needed to store (in an array called registers)
4111 GDB's copy of the machine's register state. Note: We can not use
4112 cris_register_size at this point, since it relies on current_gdbarch
4113 being set. */
4114 switch (tdep->cris_version)
4115 {
4116 case 0:
4117 case 1:
4118 case 2:
4119 case 3:
29134980
OF
4120 case 8:
4121 case 9:
a5f6c8f5
OF
4122 /* Old versions; not supported. */
4123 internal_error (__FILE__, __LINE__,
e2e0b3e5 4124 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4125 break;
4126
4127 case 10:
4128 case 11:
4129 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4130 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4131 set_gdbarch_pc_regnum (gdbarch, 15);
4132 set_gdbarch_register_type (gdbarch, cris_register_type);
4133 /* There are 32 registers (some of which may not be implemented). */
4134 set_gdbarch_num_regs (gdbarch, 32);
4135 set_gdbarch_register_name (gdbarch, cris_register_name);
4136 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4137 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4138
4139 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4140 break;
4141
4142 case 32:
4143 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4144 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4145 and pseudo-register PC (32 bits). */
4146 set_gdbarch_pc_regnum (gdbarch, 32);
4147 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4148 /* 32 registers + pseudo-register PC + 16 support registers. */
4149 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4150 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4151
4152 set_gdbarch_cannot_store_register
4153 (gdbarch, crisv32_cannot_store_register);
4154 set_gdbarch_cannot_fetch_register
4155 (gdbarch, crisv32_cannot_fetch_register);
4156
4157 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4158
4159 set_gdbarch_single_step_through_delay
4160 (gdbarch, crisv32_single_step_through_delay);
4161
29134980
OF
4162 break;
4163
4164 default:
c600d464 4165 internal_error (__FILE__, __LINE__,
e2e0b3e5 4166 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4167 }
4168
c600d464
OF
4169 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4170 have the same ABI). */
2e4b5889
OF
4171 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4172 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4173 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4174 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4175
4176 /* The stack grows downward. */
4177 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4178
4179 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4180
2e4b5889
OF
4181 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4182 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4183 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4184
a5f6c8f5
OF
4185 if (tdep->cris_dwarf2_cfi == 1)
4186 {
4187 /* Hook in the Dwarf-2 frame sniffer. */
4188 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4189 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4190 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4191 }
4192
0e6bdb31
OF
4193 if (tdep->cris_mode != cris_mode_guru)
4194 {
4195 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4196 }
a5f6c8f5 4197
2e4b5889
OF
4198 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4199 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4200
76a9d10f
MK
4201 set_solib_svr4_fetch_link_map_offsets
4202 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
dbbff683 4203
36482093
AC
4204 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4205 disassembler, even when there is no BFD. Does something like
4206 "gdb; target remote; disassmeble *0x123" work? */
4207 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4208
29134980
OF
4209 return gdbarch;
4210}
This page took 0.751606 seconds and 4 git commands to generate.