Tweak last patch.
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
0fb0cc75 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
76a9d10f 4 Free Software Foundation, Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
a9762ec7 9 This file is part of GDB.
29134980 10
a9762ec7
JB
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
29134980 15
a9762ec7
JB
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
29134980 20
a9762ec7
JB
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
29134980
OF
23
24#include "defs.h"
25#include "frame.h"
2e4b5889
OF
26#include "frame-unwind.h"
27#include "frame-base.h"
28#include "trad-frame.h"
29#include "dwarf2-frame.h"
29134980
OF
30#include "symtab.h"
31#include "inferior.h"
32#include "gdbtypes.h"
33#include "gdbcore.h"
34#include "gdbcmd.h"
35#include "target.h"
36#include "value.h"
37#include "opcode/cris.h"
38#include "arch-utils.h"
39#include "regcache.h"
36482093 40#include "gdb_assert.h"
29134980 41
9ab9195f 42#include "objfiles.h"
29134980 43
a5f6c8f5 44#include "solib.h" /* Support for shared libraries. */
76a9d10f 45#include "solib-svr4.h"
9bbe19fb 46#include "gdb_string.h"
a89aa300 47#include "dis-asm.h"
dbbff683 48
29134980
OF
49enum cris_num_regs
50{
51 /* There are no floating point registers. Used in gdbserver low-linux.c. */
52 NUM_FREGS = 0,
53
54 /* There are 16 general registers. */
55 NUM_GENREGS = 16,
56
57 /* There are 16 special registers. */
c600d464
OF
58 NUM_SPECREGS = 16,
59
60 /* CRISv32 has a pseudo PC register, not noted here. */
61
62 /* CRISv32 has 16 support registers. */
63 NUM_SUPPREGS = 16
29134980
OF
64};
65
66/* Register numbers of various important registers.
2e4b5889 67 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
68 STR_REGNUM Contains the address of structure return values.
69 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
70 ARG1_REGNUM Contains the first parameter to a function.
71 ARG2_REGNUM Contains the second parameter to a function.
72 ARG3_REGNUM Contains the third parameter to a function.
73 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
3e8c568d
UW
74 gdbarch_sp_regnum Contains address of top of stack.
75 gdbarch_pc_regnum Contains address of next instruction.
29134980
OF
76 SRP_REGNUM Subroutine return pointer register.
77 BRP_REGNUM Breakpoint return pointer register. */
78
29134980
OF
79enum cris_regnums
80{
81 /* Enums with respect to the general registers, valid for all
c600d464 82 CRIS versions. The frame pointer is always in R8. */
2e4b5889 83 CRIS_FP_REGNUM = 8,
c600d464 84 /* ABI related registers. */
29134980
OF
85 STR_REGNUM = 9,
86 RET_REGNUM = 10,
87 ARG1_REGNUM = 10,
88 ARG2_REGNUM = 11,
89 ARG3_REGNUM = 12,
90 ARG4_REGNUM = 13,
91
c600d464 92 /* Registers which happen to be common. */
29134980 93 VR_REGNUM = 17,
c600d464
OF
94 MOF_REGNUM = 23,
95 SRP_REGNUM = 27,
96
97 /* CRISv10 et. al. specific registers. */
98 P0_REGNUM = 16,
29134980
OF
99 P4_REGNUM = 20,
100 CCR_REGNUM = 21,
29134980
OF
101 P8_REGNUM = 24,
102 IBR_REGNUM = 25,
103 IRP_REGNUM = 26,
29134980 104 BAR_REGNUM = 28,
2a9ecef2 105 DCCR_REGNUM = 29,
29134980 106 BRP_REGNUM = 30,
c600d464
OF
107 USP_REGNUM = 31,
108
109 /* CRISv32 specific registers. */
110 ACR_REGNUM = 15,
111 BZ_REGNUM = 16,
112 PID_REGNUM = 18,
113 SRS_REGNUM = 19,
114 WZ_REGNUM = 20,
115 EXS_REGNUM = 21,
116 EDA_REGNUM = 22,
117 DZ_REGNUM = 24,
118 EBP_REGNUM = 25,
119 ERP_REGNUM = 26,
120 NRP_REGNUM = 28,
121 CCS_REGNUM = 29,
122 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
123 SPC_REGNUM = 31,
124 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
125
126 S0_REGNUM = 33,
127 S1_REGNUM = 34,
128 S2_REGNUM = 35,
129 S3_REGNUM = 36,
130 S4_REGNUM = 37,
131 S5_REGNUM = 38,
132 S6_REGNUM = 39,
133 S7_REGNUM = 40,
134 S8_REGNUM = 41,
135 S9_REGNUM = 42,
136 S10_REGNUM = 43,
137 S11_REGNUM = 44,
138 S12_REGNUM = 45,
139 S13_REGNUM = 46,
140 S14_REGNUM = 47,
141 S15_REGNUM = 48,
29134980
OF
142};
143
144extern const struct cris_spec_reg cris_spec_regs[];
145
146/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
147 register names and sizes. */
148static int usr_cmd_cris_version;
29134980
OF
149
150/* Indicates whether to trust the above variable. */
151static int usr_cmd_cris_version_valid = 0;
152
41922353
OF
153static const char cris_mode_normal[] = "normal";
154static const char cris_mode_guru[] = "guru";
0e6bdb31
OF
155static const char *cris_modes[] = {
156 cris_mode_normal,
157 cris_mode_guru,
158 0
159};
160
161/* CRIS mode, set via the user command 'set cris-mode'. Affects
162 type of break instruction among other things. */
163static const char *usr_cmd_cris_mode = cris_mode_normal;
164
a5f6c8f5
OF
165/* Whether to make use of Dwarf-2 CFI (default on). */
166static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 167
29134980
OF
168/* CRIS architecture specific information. */
169struct gdbarch_tdep
170{
0e6bdb31
OF
171 int cris_version;
172 const char *cris_mode;
a5f6c8f5 173 int cris_dwarf2_cfi;
29134980
OF
174};
175
a5f6c8f5
OF
176/* Sigtramp identification code copied from i386-linux-tdep.c. */
177
178#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
179#define SIGTRAMP_OFFSET0 0
180#define SIGTRAMP_INSN1 0xe93d /* break 13 */
181#define SIGTRAMP_OFFSET1 4
182
183static const unsigned short sigtramp_code[] =
184{
185 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
186 SIGTRAMP_INSN1 /* break 13 */
187};
188
189#define SIGTRAMP_LEN (sizeof sigtramp_code)
190
191/* Note: same length as normal sigtramp code. */
192
193static const unsigned short rt_sigtramp_code[] =
29134980 194{
a5f6c8f5
OF
195 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
196 SIGTRAMP_INSN1 /* break 13 */
197};
198
199/* If PC is in a sigtramp routine, return the address of the start of
200 the routine. Otherwise, return 0. */
201
202static CORE_ADDR
94afd7a6 203cris_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 204{
94afd7a6 205 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 206 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 207
94afd7a6 208 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
209 return 0;
210
e2a2a3e8 211 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 212 {
e2a2a3e8 213 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
214 return 0;
215
216 pc -= SIGTRAMP_OFFSET1;
94afd7a6 217 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
218 return 0;
219 }
220
221 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
222 return 0;
223
224 return pc;
225}
226
227/* If PC is in a RT sigtramp routine, return the address of the start of
228 the routine. Otherwise, return 0. */
229
230static CORE_ADDR
94afd7a6 231cris_rt_sigtramp_start (struct frame_info *this_frame)
a5f6c8f5 232{
94afd7a6 233 CORE_ADDR pc = get_frame_pc (this_frame);
e2a2a3e8 234 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5 235
94afd7a6 236 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
237 return 0;
238
e2a2a3e8 239 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 240 {
e2a2a3e8 241 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
242 return 0;
243
244 pc -= SIGTRAMP_OFFSET1;
94afd7a6 245 if (!safe_frame_unwind_memory (this_frame, pc, buf, SIGTRAMP_LEN))
a5f6c8f5
OF
246 return 0;
247 }
248
249 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
250 return 0;
251
252 return pc;
253}
254
94afd7a6
UW
255/* Assuming THIS_FRAME is a frame for a GNU/Linux sigtramp routine,
256 return the address of the associated sigcontext structure. */
a5f6c8f5
OF
257
258static CORE_ADDR
94afd7a6 259cris_sigcontext_addr (struct frame_info *this_frame)
a5f6c8f5 260{
e17a4113
UW
261 struct gdbarch *gdbarch = get_frame_arch (this_frame);
262 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
263 CORE_ADDR pc;
264 CORE_ADDR sp;
265 char buf[4];
266
e17a4113
UW
267 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
268 sp = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5
OF
269
270 /* Look for normal sigtramp frame first. */
94afd7a6 271 pc = cris_sigtramp_start (this_frame);
a5f6c8f5
OF
272 if (pc)
273 {
274 /* struct signal_frame (arch/cris/kernel/signal.c) contains
275 struct sigcontext as its first member, meaning the SP points to
276 it already. */
277 return sp;
278 }
279
94afd7a6 280 pc = cris_rt_sigtramp_start (this_frame);
a5f6c8f5
OF
281 if (pc)
282 {
283 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
284 a struct ucontext, which in turn contains a struct sigcontext.
285 Magic digging:
286 4 + 4 + 128 to struct ucontext, then
287 4 + 4 + 12 to struct sigcontext. */
288 return (sp + 156);
289 }
290
8a3fe4f8 291 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 292 return 0;
29134980
OF
293}
294
2e4b5889 295struct cris_unwind_cache
29134980 296{
2e4b5889
OF
297 /* The previous frame's inner most stack address. Used as this
298 frame ID's stack_addr. */
299 CORE_ADDR prev_sp;
300 /* The frame's base, optionally used by the high-level debug info. */
301 CORE_ADDR base;
302 int size;
303 /* How far the SP and r8 (FP) have been offset from the start of
304 the stack frame (as defined by the previous frame's stack
305 pointer). */
306 LONGEST sp_offset;
307 LONGEST r8_offset;
308 int uses_frame;
309
310 /* From old frame_extra_info struct. */
29134980
OF
311 CORE_ADDR return_pc;
312 int leaf_function;
2e4b5889
OF
313
314 /* Table indicating the location of each and every register. */
315 struct trad_frame_saved_reg *saved_regs;
29134980
OF
316};
317
a5f6c8f5 318static struct cris_unwind_cache *
94afd7a6 319cris_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a5f6c8f5
OF
320 void **this_cache)
321{
94afd7a6 322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7fbe2eba 323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 324 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a5f6c8f5
OF
325 struct cris_unwind_cache *info;
326 CORE_ADDR pc;
327 CORE_ADDR sp;
328 CORE_ADDR addr;
329 char buf[4];
330 int i;
331
332 if ((*this_cache))
333 return (*this_cache);
334
335 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
336 (*this_cache) = info;
94afd7a6 337 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a5f6c8f5
OF
338
339 /* Zero all fields. */
340 info->prev_sp = 0;
341 info->base = 0;
342 info->size = 0;
343 info->sp_offset = 0;
344 info->r8_offset = 0;
345 info->uses_frame = 0;
346 info->return_pc = 0;
347 info->leaf_function = 0;
348
94afd7a6 349 get_frame_register (this_frame, gdbarch_sp_regnum (gdbarch), buf);
e17a4113 350 info->base = extract_unsigned_integer (buf, 4, byte_order);
a5f6c8f5 351
94afd7a6 352 addr = cris_sigcontext_addr (this_frame);
a5f6c8f5
OF
353
354 /* Layout of the sigcontext struct:
355 struct sigcontext {
356 struct pt_regs regs;
357 unsigned long oldmask;
358 unsigned long usp;
359 }; */
360
c600d464
OF
361 if (tdep->cris_version == 10)
362 {
363 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
364 struct pt_regs. */
365 for (i = 0; i <= 13; i++)
366 info->saved_regs[i].addr = addr + ((15 - i) * 4);
367
368 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
369 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
370 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
371 /* Note: IRP is off by 2 at this point. There's no point in correcting
372 it though since that will mean that the backtrace will show a PC
373 different from what is shown when stopped. */
374 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
7fbe2eba 375 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 376 = info->saved_regs[IRP_REGNUM];
7fbe2eba 377 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr = addr + (24 * 4);
c600d464
OF
378 }
379 else
380 {
381 /* CRISv32. */
382 /* R0 to R13 are stored in order at offset (1 * 4) in
383 struct pt_regs. */
384 for (i = 0; i <= 13; i++)
385 info->saved_regs[i].addr = addr + ((i + 1) * 4);
386
387 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
388 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
389 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
390 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
391 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
392 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
393 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
394 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
395 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
396
397 /* FIXME: If ERP is in a delay slot at this point then the PC will
398 be wrong at this point. This problem manifests itself in the
399 sigaltstack.exp test case, which occasionally generates FAILs when
400 the signal is received while in a delay slot.
401
402 This could be solved by a couple of read_memory_unsigned_integer and a
403 trad_frame_set_value. */
7fbe2eba 404 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 405 = info->saved_regs[ERP_REGNUM];
c600d464 406
7fbe2eba 407 info->saved_regs[gdbarch_sp_regnum (gdbarch)].addr
3e8c568d 408 = addr + (25 * 4);
c600d464 409 }
a5f6c8f5
OF
410
411 return info;
412}
413
414static void
94afd7a6 415cris_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
a5f6c8f5
OF
416 struct frame_id *this_id)
417{
418 struct cris_unwind_cache *cache =
94afd7a6
UW
419 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
420 (*this_id) = frame_id_build (cache->base, get_frame_pc (this_frame));
a5f6c8f5
OF
421}
422
423/* Forward declaration. */
424
94afd7a6
UW
425static struct value *cris_frame_prev_register (struct frame_info *this_frame,
426 void **this_cache, int regnum);
427static struct value *
428cris_sigtramp_frame_prev_register (struct frame_info *this_frame,
429 void **this_cache, int regnum)
a5f6c8f5
OF
430{
431 /* Make sure we've initialized the cache. */
94afd7a6
UW
432 cris_sigtramp_frame_unwind_cache (this_frame, this_cache);
433 return cris_frame_prev_register (this_frame, this_cache, regnum);
434}
435
436static int
437cris_sigtramp_frame_sniffer (const struct frame_unwind *self,
438 struct frame_info *this_frame,
439 void **this_cache)
440{
441 if (cris_sigtramp_start (this_frame)
442 || cris_rt_sigtramp_start (this_frame))
443 return 1;
444
445 return 0;
a5f6c8f5
OF
446}
447
448static const struct frame_unwind cris_sigtramp_frame_unwind =
449{
450 SIGTRAMP_FRAME,
451 cris_sigtramp_frame_this_id,
94afd7a6
UW
452 cris_sigtramp_frame_prev_register,
453 NULL,
454 cris_sigtramp_frame_sniffer
a5f6c8f5
OF
455};
456
63807e1d 457static int
c600d464
OF
458crisv32_single_step_through_delay (struct gdbarch *gdbarch,
459 struct frame_info *this_frame)
460{
7fbe2eba 461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c600d464
OF
462 ULONGEST erp;
463 int ret = 0;
c600d464 464
35488783 465 if (tdep->cris_mode == cris_mode_guru)
395f2fc2 466 erp = get_frame_register_unsigned (this_frame, NRP_REGNUM);
0e6bdb31 467 else
395f2fc2 468 erp = get_frame_register_unsigned (this_frame, ERP_REGNUM);
c600d464
OF
469
470 if (erp & 0x1)
471 {
472 /* In delay slot - check if there's a breakpoint at the preceding
473 instruction. */
474 if (breakpoint_here_p (erp & ~0x1))
475 ret = 1;
476 }
477 return ret;
478}
479
480/* Hardware watchpoint support. */
481
482/* We support 6 hardware data watchpoints, but cannot trigger on execute
483 (any combination of read/write is fine). */
484
485int
486cris_can_use_hardware_watchpoint (int type, int count, int other)
487{
1cf3db46 488 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch);
c600d464
OF
489
490 /* No bookkeeping is done here; it is handled by the remote debug agent. */
491
492 if (tdep->cris_version != 32)
493 return 0;
494 else
495 /* CRISv32: Six data watchpoints, one for instructions. */
496 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
497 || type == bp_hardware_watchpoint) && count <= 6)
498 || (type == bp_hardware_breakpoint && count <= 1));
499}
500
501/* The CRISv32 hardware data watchpoints work by specifying ranges,
502 which have no alignment or length restrictions. */
503
504int
505cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
506{
507 return 1;
508}
509
510/* If the inferior has some watchpoint that triggered, return the
511 address associated with that watchpoint. Otherwise, return
512 zero. */
513
514CORE_ADDR
515cris_stopped_data_address (void)
516{
517 CORE_ADDR eda;
1b5a9a8f 518 eda = get_frame_register_unsigned (get_current_frame (), EDA_REGNUM);
c600d464
OF
519 return eda;
520}
521
29134980 522/* The instruction environment needed to find single-step breakpoints. */
c600d464 523
29134980
OF
524typedef
525struct instruction_environment
526{
527 unsigned long reg[NUM_GENREGS];
528 unsigned long preg[NUM_SPECREGS];
529 unsigned long branch_break_address;
530 unsigned long delay_slot_pc;
531 unsigned long prefix_value;
532 int branch_found;
533 int prefix_found;
534 int invalid;
535 int slot_needed;
536 int delay_slot_pc_active;
537 int xflag_found;
538 int disable_interrupt;
e17a4113 539 int byte_order;
29134980
OF
540} inst_env_type;
541
29134980
OF
542/* Machine-dependencies in CRIS for opcodes. */
543
544/* Instruction sizes. */
545enum cris_instruction_sizes
546{
547 INST_BYTE_SIZE = 0,
548 INST_WORD_SIZE = 1,
549 INST_DWORD_SIZE = 2
550};
551
552/* Addressing modes. */
553enum cris_addressing_modes
554{
555 REGISTER_MODE = 1,
556 INDIRECT_MODE = 2,
557 AUTOINC_MODE = 3
558};
559
560/* Prefix addressing modes. */
561enum cris_prefix_addressing_modes
562{
563 PREFIX_INDEX_MODE = 2,
564 PREFIX_ASSIGN_MODE = 3,
565
566 /* Handle immediate byte offset addressing mode prefix format. */
567 PREFIX_OFFSET_MODE = 2
568};
569
570/* Masks for opcodes. */
571enum cris_opcode_masks
572{
573 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
574 SIGNED_EXTEND_BIT_MASK = 0x2,
575 SIGNED_BYTE_MASK = 0x80,
576 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
577 SIGNED_WORD_MASK = 0x8000,
578 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
579 SIGNED_DWORD_MASK = 0x80000000,
580 SIGNED_QUICK_VALUE_MASK = 0x20,
581 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
582};
583
584/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
585 Bit 15 - 12 Operand2
586 11 - 10 Mode
587 9 - 6 Opcode
588 5 - 4 Size
589 3 - 0 Operand1 */
590
591static int
592cris_get_operand2 (unsigned short insn)
593{
594 return ((insn & 0xF000) >> 12);
595}
596
597static int
598cris_get_mode (unsigned short insn)
599{
600 return ((insn & 0x0C00) >> 10);
601}
602
603static int
604cris_get_opcode (unsigned short insn)
605{
606 return ((insn & 0x03C0) >> 6);
607}
608
609static int
610cris_get_size (unsigned short insn)
611{
612 return ((insn & 0x0030) >> 4);
613}
614
615static int
616cris_get_operand1 (unsigned short insn)
617{
618 return (insn & 0x000F);
619}
620
621/* Additional functions in order to handle opcodes. */
622
29134980
OF
623static int
624cris_get_quick_value (unsigned short insn)
625{
626 return (insn & 0x003F);
627}
628
629static int
630cris_get_bdap_quick_offset (unsigned short insn)
631{
632 return (insn & 0x00FF);
633}
634
635static int
636cris_get_branch_short_offset (unsigned short insn)
637{
638 return (insn & 0x00FF);
639}
640
641static int
642cris_get_asr_shift_steps (unsigned long value)
643{
644 return (value & 0x3F);
645}
646
29134980
OF
647static int
648cris_get_clear_size (unsigned short insn)
649{
650 return ((insn) & 0xC000);
651}
652
653static int
654cris_is_signed_extend_bit_on (unsigned short insn)
655{
656 return (((insn) & 0x20) == 0x20);
657}
658
659static int
660cris_is_xflag_bit_on (unsigned short insn)
661{
662 return (((insn) & 0x1000) == 0x1000);
663}
664
665static void
666cris_set_size_to_dword (unsigned short *insn)
667{
668 *insn &= 0xFFCF;
669 *insn |= 0x20;
670}
671
8535cb38 672static signed char
29134980
OF
673cris_get_signed_offset (unsigned short insn)
674{
8535cb38 675 return ((signed char) (insn & 0x00FF));
29134980
OF
676}
677
678/* Calls an op function given the op-type, working on the insn and the
679 inst_env. */
be8626e0
MD
680static void cris_gdb_func (struct gdbarch *, enum cris_op_type, unsigned short,
681 inst_env_type *);
29134980 682
29134980
OF
683static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
684 struct gdbarch_list *);
685
29134980
OF
686static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
687
a5f6c8f5
OF
688static void set_cris_version (char *ignore_args, int from_tty,
689 struct cmd_list_element *c);
29134980 690
0e6bdb31
OF
691static void set_cris_mode (char *ignore_args, int from_tty,
692 struct cmd_list_element *c);
693
a5f6c8f5
OF
694static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
695 struct cmd_list_element *c);
29134980 696
2e4b5889 697static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
94afd7a6 698 struct frame_info *this_frame,
2e4b5889
OF
699 struct cris_unwind_cache *info);
700
5114e29d 701static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
94afd7a6 702 struct frame_info *this_frame,
5114e29d
OF
703 struct cris_unwind_cache *info);
704
2e4b5889
OF
705static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
706 struct frame_info *next_frame);
707
708static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
709 struct frame_info *next_frame);
710
711/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
712 order. The below implements a FILO (stack) to do this.
713 Copied from d10v-tdep.c. */
2e4b5889
OF
714
715struct stack_item
716{
717 int len;
718 struct stack_item *prev;
719 void *data;
720};
721
722static struct stack_item *
723push_stack_item (struct stack_item *prev, void *contents, int len)
724{
725 struct stack_item *si;
726 si = xmalloc (sizeof (struct stack_item));
727 si->data = xmalloc (len);
728 si->len = len;
729 si->prev = prev;
730 memcpy (si->data, contents, len);
731 return si;
732}
733
734static struct stack_item *
735pop_stack_item (struct stack_item *si)
736{
737 struct stack_item *dead = si;
738 si = si->prev;
739 xfree (dead->data);
740 xfree (dead);
741 return si;
742}
743
744/* Put here the code to store, into fi->saved_regs, the addresses of
745 the saved registers of frame described by FRAME_INFO. This
746 includes special registers such as pc and fp saved in special ways
747 in the stack frame. sp is even more special: the address we return
a5f6c8f5 748 for it IS the sp for the next frame. */
2e4b5889 749
63807e1d 750static struct cris_unwind_cache *
94afd7a6 751cris_frame_unwind_cache (struct frame_info *this_frame,
2e4b5889
OF
752 void **this_prologue_cache)
753{
35488783
UW
754 struct gdbarch *gdbarch = get_frame_arch (this_frame);
755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
756 CORE_ADDR pc;
757 struct cris_unwind_cache *info;
758 int i;
759
760 if ((*this_prologue_cache))
761 return (*this_prologue_cache);
762
763 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
764 (*this_prologue_cache) = info;
94afd7a6 765 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2e4b5889
OF
766
767 /* Zero all fields. */
768 info->prev_sp = 0;
769 info->base = 0;
770 info->size = 0;
771 info->sp_offset = 0;
772 info->r8_offset = 0;
773 info->uses_frame = 0;
774 info->return_pc = 0;
775 info->leaf_function = 0;
776
777 /* Prologue analysis does the rest... */
35488783 778 if (tdep->cris_version == 32)
94afd7a6 779 crisv32_scan_prologue (get_frame_func (this_frame), this_frame, info);
5114e29d 780 else
94afd7a6 781 cris_scan_prologue (get_frame_func (this_frame), this_frame, info);
2e4b5889
OF
782
783 return info;
784}
785
786/* Given a GDB frame, determine the address of the calling function's
787 frame. This will be used to create a new GDB frame struct. */
788
789static void
94afd7a6 790cris_frame_this_id (struct frame_info *this_frame,
2e4b5889
OF
791 void **this_prologue_cache,
792 struct frame_id *this_id)
793{
794 struct cris_unwind_cache *info
94afd7a6 795 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
2e4b5889
OF
796 CORE_ADDR base;
797 CORE_ADDR func;
798 struct frame_id id;
799
800 /* The FUNC is easy. */
94afd7a6 801 func = get_frame_func (this_frame);
2e4b5889
OF
802
803 /* Hopefully the prologue analysis either correctly determined the
804 frame's base (which is the SP from the previous frame), or set
805 that base to "NULL". */
806 base = info->prev_sp;
807 if (base == 0)
808 return;
809
810 id = frame_id_build (base, func);
811
812 (*this_id) = id;
813}
814
94afd7a6
UW
815static struct value *
816cris_frame_prev_register (struct frame_info *this_frame,
817 void **this_prologue_cache, int regnum)
2e4b5889
OF
818{
819 struct cris_unwind_cache *info
94afd7a6
UW
820 = cris_frame_unwind_cache (this_frame, this_prologue_cache);
821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2e4b5889
OF
822}
823
94afd7a6
UW
824/* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
825 frame. The frame ID's base needs to match the TOS value saved by
826 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
2e4b5889
OF
827
828static struct frame_id
94afd7a6 829cris_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2e4b5889 830{
94afd7a6
UW
831 CORE_ADDR sp;
832 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
833 return frame_id_build (sp, get_frame_pc (this_frame));
2e4b5889
OF
834}
835
836static CORE_ADDR
837cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
838{
839 /* Align to the size of an instruction (so that they can safely be
840 pushed onto the stack). */
841 return sp & ~3;
842}
843
844static CORE_ADDR
845cris_push_dummy_code (struct gdbarch *gdbarch,
82585c72 846 CORE_ADDR sp, CORE_ADDR funaddr,
2e4b5889
OF
847 struct value **args, int nargs,
848 struct type *value_type,
e4fd649a
UW
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
2e4b5889
OF
851{
852 /* Allocate space sufficient for a breakpoint. */
853 sp = (sp - 4) & ~3;
854 /* Store the address of that breakpoint */
855 *bp_addr = sp;
856 /* CRIS always starts the call at the callee's entry point. */
857 *real_pc = funaddr;
858 return sp;
859}
860
861static CORE_ADDR
7d9b040b 862cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
863 struct regcache *regcache, CORE_ADDR bp_addr,
864 int nargs, struct value **args, CORE_ADDR sp,
865 int struct_return, CORE_ADDR struct_addr)
866{
e17a4113 867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
868 int stack_alloc;
869 int stack_offset;
870 int argreg;
871 int argnum;
872
873 CORE_ADDR regval;
874
875 /* The function's arguments and memory allocated by gdb for the arguments to
876 point at reside in separate areas on the stack.
877 Both frame pointers grow toward higher addresses. */
878 CORE_ADDR fp_arg;
879 CORE_ADDR fp_mem;
880
881 struct stack_item *si = NULL;
882
a5f6c8f5 883 /* Push the return address. */
2e4b5889
OF
884 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
885
886 /* Are we returning a value using a structure return or a normal value
887 return? struct_addr is the address of the reserved space for the return
888 structure to be written on the stack. */
889 if (struct_return)
890 {
891 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
892 }
893
894 /* Now load as many as possible of the first arguments into registers,
895 and push the rest onto the stack. */
896 argreg = ARG1_REGNUM;
897 stack_offset = 0;
898
899 for (argnum = 0; argnum < nargs; argnum++)
900 {
901 int len;
902 char *val;
903 int reg_demand;
904 int i;
905
4991999e 906 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 907 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
908
909 /* How may registers worth of storage do we need for this argument? */
910 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
911
912 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
913 {
914 /* Data passed by value. Fits in available register(s). */
915 for (i = 0; i < reg_demand; i++)
916 {
f6e56ab3 917 regcache_cooked_write (regcache, argreg, val);
2e4b5889
OF
918 argreg++;
919 val += 4;
920 }
921 }
922 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
923 {
924 /* Data passed by value. Does not fit in available register(s).
925 Use the register(s) first, then the stack. */
926 for (i = 0; i < reg_demand; i++)
927 {
928 if (argreg <= ARG4_REGNUM)
929 {
f6e56ab3 930 regcache_cooked_write (regcache, argreg, val);
2e4b5889
OF
931 argreg++;
932 val += 4;
933 }
934 else
935 {
936 /* Push item for later so that pushed arguments
937 come in the right order. */
938 si = push_stack_item (si, val, 4);
939 val += 4;
940 }
941 }
942 }
943 else if (len > (2 * 4))
944 {
f6e56ab3
UW
945 /* Data passed by reference. Push copy of data onto stack
946 and pass pointer to this copy as argument. */
947 sp = (sp - len) & ~3;
948 write_memory (sp, val, len);
949
950 if (argreg <= ARG4_REGNUM)
951 {
952 regcache_cooked_write_unsigned (regcache, argreg, sp);
953 argreg++;
954 }
955 else
956 {
957 gdb_byte buf[4];
e17a4113 958 store_unsigned_integer (buf, 4, byte_order, sp);
f6e56ab3
UW
959 si = push_stack_item (si, buf, 4);
960 }
2e4b5889
OF
961 }
962 else
963 {
964 /* Data passed by value. No available registers. Put it on
965 the stack. */
966 si = push_stack_item (si, val, len);
967 }
968 }
969
970 while (si)
971 {
972 /* fp_arg must be word-aligned (i.e., don't += len) to match
973 the function prologue. */
974 sp = (sp - si->len) & ~3;
975 write_memory (sp, si->data, si->len);
976 si = pop_stack_item (si);
977 }
978
979 /* Finally, update the SP register. */
7fbe2eba 980 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
2e4b5889
OF
981
982 return sp;
983}
984
e2a2a3e8
OF
985static const struct frame_unwind cris_frame_unwind =
986{
2e4b5889
OF
987 NORMAL_FRAME,
988 cris_frame_this_id,
94afd7a6
UW
989 cris_frame_prev_register,
990 NULL,
991 default_frame_sniffer
2e4b5889
OF
992};
993
2e4b5889 994static CORE_ADDR
94afd7a6 995cris_frame_base_address (struct frame_info *this_frame, void **this_cache)
2e4b5889
OF
996{
997 struct cris_unwind_cache *info
94afd7a6 998 = cris_frame_unwind_cache (this_frame, this_cache);
2e4b5889
OF
999 return info->base;
1000}
1001
e2a2a3e8
OF
1002static const struct frame_base cris_frame_base =
1003{
2e4b5889
OF
1004 &cris_frame_unwind,
1005 cris_frame_base_address,
1006 cris_frame_base_address,
1007 cris_frame_base_address
1008};
1009
29134980
OF
1010/* Frames information. The definition of the struct frame_info is
1011
1012 CORE_ADDR frame
1013 CORE_ADDR pc
5a203e44 1014 enum frame_type type;
29134980
OF
1015 CORE_ADDR return_pc
1016 int leaf_function
1017
1018 If the compilation option -fno-omit-frame-pointer is present the
1019 variable frame will be set to the content of R8 which is the frame
1020 pointer register.
1021
1022 The variable pc contains the address where execution is performed
1023 in the present frame. The innermost frame contains the current content
1024 of the register PC. All other frames contain the content of the
1025 register PC in the next frame.
1026
5a203e44
AC
1027 The variable `type' indicates the frame's type: normal, SIGTRAMP
1028 (associated with a signal handler), dummy (associated with a dummy
1029 frame).
29134980
OF
1030
1031 The variable return_pc contains the address where execution should be
1032 resumed when the present frame has finished, the return address.
1033
1034 The variable leaf_function is 1 if the return address is in the register
1035 SRP, and 0 if it is on the stack.
1036
1037 Prologue instructions C-code.
1038 The prologue may consist of (-fno-omit-frame-pointer)
1039 1) 2)
1040 push srp
1041 push r8 push r8
1042 move.d sp,r8 move.d sp,r8
1043 subq X,sp subq X,sp
1044 movem rY,[sp] movem rY,[sp]
1045 move.S rZ,[r8-U] move.S rZ,[r8-U]
1046
1047 where 1 is a non-terminal function, and 2 is a leaf-function.
1048
1049 Note that this assumption is extremely brittle, and will break at the
1050 slightest change in GCC's prologue.
1051
1052 If local variables are declared or register contents are saved on stack
1053 the subq-instruction will be present with X as the number of bytes
1054 needed for storage. The reshuffle with respect to r8 may be performed
1055 with any size S (b, w, d) and any of the general registers Z={0..13}.
1056 The offset U should be representable by a signed 8-bit value in all cases.
1057 Thus, the prefix word is assumed to be immediate byte offset mode followed
1058 by another word containing the instruction.
1059
1060 Degenerate cases:
1061 3)
1062 push r8
1063 move.d sp,r8
1064 move.d r8,sp
1065 pop r8
1066
1067 Prologue instructions C++-code.
1068 Case 1) and 2) in the C-code may be followed by
1069
1070 move.d r10,rS ; this
1071 move.d r11,rT ; P1
1072 move.d r12,rU ; P2
1073 move.d r13,rV ; P3
1074 move.S [r8+U],rZ ; P4
1075
1076 if any of the call parameters are stored. The host expects these
1077 instructions to be executed in order to get the call parameters right. */
1078
1079/* Examine the prologue of a function. The variable ip is the address of
1080 the first instruction of the prologue. The variable limit is the address
1081 of the first instruction after the prologue. The variable fi contains the
1082 information in struct frame_info. The variable frameless_p controls whether
1083 the entire prologue is examined (0) or just enough instructions to
1084 determine that it is a prologue (1). */
1085
a78f21af 1086static CORE_ADDR
94afd7a6 1087cris_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
2e4b5889 1088 struct cris_unwind_cache *info)
29134980 1089{
94afd7a6 1090 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113
UW
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092
29134980
OF
1093 /* Present instruction. */
1094 unsigned short insn;
1095
1096 /* Next instruction, lookahead. */
1097 unsigned short insn_next;
1098 int regno;
1099
1100 /* Is there a push fp? */
1101 int have_fp;
1102
1103 /* Number of byte on stack used for local variables and movem. */
1104 int val;
1105
1106 /* Highest register number in a movem. */
1107 int regsave;
1108
1109 /* move.d r<source_register>,rS */
1110 short source_register;
1111
2e4b5889
OF
1112 /* Scan limit. */
1113 int limit;
29134980 1114
2e4b5889
OF
1115 /* This frame is with respect to a leaf until a push srp is found. */
1116 if (info)
1117 {
1118 info->leaf_function = 1;
1119 }
29134980
OF
1120
1121 /* Assume nothing on stack. */
1122 val = 0;
1123 regsave = -1;
1124
94afd7a6 1125 /* If we were called without a this_frame, that means we were called
2e4b5889
OF
1126 from cris_skip_prologue which already tried to find the end of the
1127 prologue through the symbol information. 64 instructions past current
1128 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
94afd7a6 1129 limit = this_frame ? get_frame_pc (this_frame) : pc + 64;
29134980 1130
29134980 1131 /* Find the prologue instructions. */
a5f6c8f5 1132 while (pc > 0 && pc < limit)
29134980 1133 {
e17a4113 1134 insn = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1135 pc += 2;
29134980
OF
1136 if (insn == 0xE1FC)
1137 {
1138 /* push <reg> 32 bit instruction */
e17a4113 1139 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1140 pc += 2;
29134980 1141 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1142 if (info)
1143 {
1144 info->sp_offset += 4;
1145 }
dbbff683
OF
1146 /* This check, meant to recognize srp, used to be regno ==
1147 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1148 if (insn_next == 0xBE7E)
29134980 1149 {
2e4b5889
OF
1150 if (info)
1151 {
1152 info->leaf_function = 0;
1153 }
29134980 1154 }
b4206d25
OF
1155 else if (insn_next == 0x8FEE)
1156 {
1157 /* push $r8 */
1158 if (info)
1159 {
1160 info->r8_offset = info->sp_offset;
1161 }
1162 }
29134980
OF
1163 }
1164 else if (insn == 0x866E)
1165 {
1166 /* move.d sp,r8 */
2e4b5889
OF
1167 if (info)
1168 {
1169 info->uses_frame = 1;
2e4b5889 1170 }
29134980
OF
1171 continue;
1172 }
7fbe2eba 1173 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1174 && cris_get_mode (insn) == 0x0000
1175 && cris_get_opcode (insn) == 0x000A)
1176 {
1177 /* subq <val>,sp */
2e4b5889
OF
1178 if (info)
1179 {
1180 info->sp_offset += cris_get_quick_value (insn);
1181 }
29134980
OF
1182 }
1183 else if (cris_get_mode (insn) == 0x0002
1184 && cris_get_opcode (insn) == 0x000F
1185 && cris_get_size (insn) == 0x0003
7fbe2eba 1186 && cris_get_operand1 (insn) == gdbarch_sp_regnum (gdbarch))
29134980
OF
1187 {
1188 /* movem r<regsave>,[sp] */
29134980
OF
1189 regsave = cris_get_operand2 (insn);
1190 }
7fbe2eba 1191 else if (cris_get_operand2 (insn) == gdbarch_sp_regnum (gdbarch)
29134980
OF
1192 && ((insn & 0x0F00) >> 8) == 0x0001
1193 && (cris_get_signed_offset (insn) < 0))
1194 {
1195 /* Immediate byte offset addressing prefix word with sp as base
1196 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1197 is between 64 and 128.
1198 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1199 if (info)
1200 {
1201 info->sp_offset += -cris_get_signed_offset (insn);
1202 }
e17a4113 1203 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1204 pc += 2;
29134980
OF
1205 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1206 && cris_get_opcode (insn_next) == 0x000F
1207 && cris_get_size (insn_next) == 0x0003
3e8c568d 1208 && cris_get_operand1 (insn_next) == gdbarch_sp_regnum
7fbe2eba 1209 (gdbarch))
29134980 1210 {
29134980
OF
1211 regsave = cris_get_operand2 (insn_next);
1212 }
1213 else
1214 {
1215 /* The prologue ended before the limit was reached. */
2e4b5889 1216 pc -= 4;
29134980
OF
1217 break;
1218 }
1219 }
1220 else if (cris_get_mode (insn) == 0x0001
1221 && cris_get_opcode (insn) == 0x0009
1222 && cris_get_size (insn) == 0x0002)
1223 {
1224 /* move.d r<10..13>,r<0..15> */
29134980 1225 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1226
1227 /* FIXME? In the glibc solibs, the prologue might contain something
1228 like (this example taken from relocate_doit):
1229 move.d $pc,$r0
1230 sub.d 0xfffef426,$r0
1231 which isn't covered by the source_register check below. Question
1232 is whether to add a check for this combo, or make better use of
1233 the limit variable instead. */
29134980
OF
1234 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1235 {
1236 /* The prologue ended before the limit was reached. */
2e4b5889 1237 pc -= 2;
29134980
OF
1238 break;
1239 }
1240 }
2e4b5889 1241 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1242 /* The size is a fixed-size. */
1243 && ((insn & 0x0F00) >> 8) == 0x0001
1244 /* A negative offset. */
1245 && (cris_get_signed_offset (insn) < 0))
1246 {
1247 /* move.S rZ,[r8-U] (?) */
e17a4113 1248 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1249 pc += 2;
29134980 1250 regno = cris_get_operand2 (insn_next);
7fbe2eba 1251 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1252 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1253 && cris_get_opcode (insn_next) == 0x000F)
1254 {
1255 /* move.S rZ,[r8-U] */
1256 continue;
1257 }
1258 else
1259 {
1260 /* The prologue ended before the limit was reached. */
2e4b5889 1261 pc -= 4;
29134980
OF
1262 break;
1263 }
1264 }
2e4b5889 1265 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1266 /* The size is a fixed-size. */
1267 && ((insn & 0x0F00) >> 8) == 0x0001
1268 /* A positive offset. */
1269 && (cris_get_signed_offset (insn) > 0))
1270 {
1271 /* move.S [r8+U],rZ (?) */
e17a4113 1272 insn_next = read_memory_unsigned_integer (pc, 2, byte_order);
2e4b5889 1273 pc += 2;
29134980 1274 regno = cris_get_operand2 (insn_next);
7fbe2eba 1275 if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
29134980
OF
1276 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1277 && cris_get_opcode (insn_next) == 0x0009
1278 && cris_get_operand1 (insn_next) == regno)
1279 {
1280 /* move.S [r8+U],rZ */
1281 continue;
1282 }
1283 else
1284 {
1285 /* The prologue ended before the limit was reached. */
2e4b5889 1286 pc -= 4;
29134980
OF
1287 break;
1288 }
1289 }
1290 else
1291 {
1292 /* The prologue ended before the limit was reached. */
2e4b5889 1293 pc -= 2;
29134980
OF
1294 break;
1295 }
1296 }
29134980 1297
94afd7a6 1298 /* We only want to know the end of the prologue when this_frame and info
2e4b5889 1299 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1300 if (this_frame == NULL && info == NULL)
2e4b5889
OF
1301 {
1302 return pc;
1303 }
29134980 1304
2e4b5889
OF
1305 info->size = info->sp_offset;
1306
1307 /* Compute the previous frame's stack pointer (which is also the
1308 frame's ID's stack address), and this frame's base pointer. */
1309 if (info->uses_frame)
29134980 1310 {
2e4b5889
OF
1311 ULONGEST this_base;
1312 /* The SP was moved to the FP. This indicates that a new frame
1313 was created. Get THIS frame's FP value by unwinding it from
1314 the next frame. */
94afd7a6 1315 this_base = get_frame_register_unsigned (this_frame, CRIS_FP_REGNUM);
2e4b5889 1316 info->base = this_base;
b4206d25
OF
1317 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1318
2e4b5889
OF
1319 /* The FP points at the last saved register. Adjust the FP back
1320 to before the first saved register giving the SP. */
1321 info->prev_sp = info->base + info->r8_offset;
1322 }
1323 else
1324 {
1325 ULONGEST this_base;
1326 /* Assume that the FP is this frame's SP but with that pushed
1327 stack space added back. */
94afd7a6
UW
1328 this_base = get_frame_register_unsigned (this_frame,
1329 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1330 info->base = this_base;
1331 info->prev_sp = info->base + info->size;
1332 }
29134980 1333
2e4b5889
OF
1334 /* Calculate the addresses for the saved registers on the stack. */
1335 /* FIXME: The address calculation should really be done on the fly while
1336 we're analyzing the prologue (we only hold one regsave value as it is
1337 now). */
1338 val = info->sp_offset;
1339
1340 for (regno = regsave; regno >= 0; regno--)
1341 {
1342 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1343 val -= 4;
1344 }
1345
1346 /* The previous frame's SP needed to be computed. Save the computed
1347 value. */
3e8c568d 1348 trad_frame_set_value (info->saved_regs,
7fbe2eba 1349 gdbarch_sp_regnum (gdbarch), info->prev_sp);
2e4b5889
OF
1350
1351 if (!info->leaf_function)
1352 {
b4206d25
OF
1353 /* SRP saved on the stack. But where? */
1354 if (info->r8_offset == 0)
1355 {
1356 /* R8 not pushed yet. */
1357 info->saved_regs[SRP_REGNUM].addr = info->base;
1358 }
1359 else
1360 {
1361 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1362 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1363 }
29134980 1364 }
2e4b5889
OF
1365
1366 /* The PC is found in SRP (the actual register or located on the stack). */
7fbe2eba 1367 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1368 = info->saved_regs[SRP_REGNUM];
2e4b5889
OF
1369
1370 return pc;
29134980
OF
1371}
1372
5114e29d 1373static CORE_ADDR
94afd7a6 1374crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *this_frame,
5114e29d
OF
1375 struct cris_unwind_cache *info)
1376{
94afd7a6 1377 struct gdbarch *gdbarch = get_frame_arch (this_frame);
5114e29d
OF
1378 ULONGEST this_base;
1379
1380 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1381 meant to be a full-fledged prologue scanner. It is only needed for
1382 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1383
1384 * PLT stubs (library calls)
1385 * call dummys
1386 * signal trampolines
1387
1388 For those cases, it is assumed that there is no actual prologue; that
1389 the stack pointer is not adjusted, and (as a consequence) the return
1390 address is not pushed onto the stack. */
1391
94afd7a6 1392 /* We only want to know the end of the prologue when this_frame and info
5114e29d 1393 are NULL (called from cris_skip_prologue i.e.). */
94afd7a6 1394 if (this_frame == NULL && info == NULL)
5114e29d
OF
1395 {
1396 return pc;
1397 }
1398
1399 /* The SP is assumed to be unaltered. */
94afd7a6
UW
1400 this_base = get_frame_register_unsigned (this_frame,
1401 gdbarch_sp_regnum (gdbarch));
5114e29d
OF
1402 info->base = this_base;
1403 info->prev_sp = this_base;
1404
1405 /* The PC is assumed to be found in SRP. */
7fbe2eba 1406 info->saved_regs[gdbarch_pc_regnum (gdbarch)]
3e8c568d 1407 = info->saved_regs[SRP_REGNUM];
5114e29d
OF
1408
1409 return pc;
1410}
1411
29134980
OF
1412/* Advance pc beyond any function entry prologue instructions at pc
1413 to reach some "real" code. */
1414
29134980
OF
1415/* Given a PC value corresponding to the start of a function, return the PC
1416 of the first instruction after the function prologue. */
1417
a78f21af 1418static CORE_ADDR
6093d2eb 1419cris_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
29134980 1420{
35488783 1421 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2e4b5889
OF
1422 CORE_ADDR func_addr, func_end;
1423 struct symtab_and_line sal;
29134980
OF
1424 CORE_ADDR pc_after_prologue;
1425
2e4b5889
OF
1426 /* If we have line debugging information, then the end of the prologue
1427 should the first assembly instruction of the first source line. */
1428 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1429 {
1430 sal = find_pc_line (func_addr, 0);
1431 if (sal.end > 0 && sal.end < func_end)
1432 return sal.end;
1433 }
29134980 1434
35488783 1435 if (tdep->cris_version == 32)
5114e29d
OF
1436 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1437 else
1438 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1439
29134980
OF
1440 return pc_after_prologue;
1441}
1442
2e4b5889
OF
1443static CORE_ADDR
1444cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1445{
1446 ULONGEST pc;
11411de3
DJ
1447 pc = frame_unwind_register_unsigned (next_frame,
1448 gdbarch_pc_regnum (gdbarch));
2e4b5889
OF
1449 return pc;
1450}
1451
1452static CORE_ADDR
1453cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1454{
1455 ULONGEST sp;
11411de3
DJ
1456 sp = frame_unwind_register_unsigned (next_frame,
1457 gdbarch_sp_regnum (gdbarch));
2e4b5889
OF
1458 return sp;
1459}
1460
29134980
OF
1461/* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1466
a78f21af 1467static const unsigned char *
67d57894 1468cris_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
29134980 1469{
35488783 1470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
0e6bdb31
OF
1471 static unsigned char break8_insn[] = {0x38, 0xe9};
1472 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1473 *lenptr = 2;
1474
35488783 1475 if (tdep->cris_mode == cris_mode_guru)
0e6bdb31
OF
1476 return break15_insn;
1477 else
1478 return break8_insn;
29134980
OF
1479}
1480
29134980
OF
1481/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1482 0 otherwise. */
1483
a78f21af 1484static int
35488783
UW
1485cris_spec_reg_applicable (struct gdbarch *gdbarch,
1486 struct cris_spec_reg spec_reg)
29134980 1487{
35488783
UW
1488 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1489 int version = tdep->cris_version;
29134980
OF
1490
1491 switch (spec_reg.applicable_version)
1492 {
1493 case cris_ver_version_all:
1494 return 1;
1495 case cris_ver_warning:
1496 /* Indeterminate/obsolete. */
1497 return 0;
29134980
OF
1498 case cris_ver_v0_3:
1499 return (version >= 0 && version <= 3);
1500 case cris_ver_v3p:
1501 return (version >= 3);
1502 case cris_ver_v8:
1503 return (version == 8 || version == 9);
1504 case cris_ver_v8p:
1505 return (version >= 8);
c600d464
OF
1506 case cris_ver_v0_10:
1507 return (version >= 0 && version <= 10);
1508 case cris_ver_v3_10:
1509 return (version >= 3 && version <= 10);
1510 case cris_ver_v8_10:
1511 return (version >= 8 && version <= 10);
1512 case cris_ver_v10:
1513 return (version == 10);
29134980
OF
1514 case cris_ver_v10p:
1515 return (version >= 10);
c600d464
OF
1516 case cris_ver_v32p:
1517 return (version >= 32);
29134980
OF
1518 default:
1519 /* Invalid cris version. */
1520 return 0;
1521 }
1522}
1523
1d94326f
AC
1524/* Returns the register size in unit byte. Returns 0 for an unimplemented
1525 register, -1 for an invalid register. */
1526
1527static int
be8626e0 1528cris_register_size (struct gdbarch *gdbarch, int regno)
1d94326f 1529{
be8626e0 1530 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1d94326f
AC
1531 int i;
1532 int spec_regno;
1533
1534 if (regno >= 0 && regno < NUM_GENREGS)
1535 {
1536 /* General registers (R0 - R15) are 32 bits. */
1537 return 4;
1538 }
c600d464 1539 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1540 {
1541 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1542 Adjust regno accordingly. */
1543 spec_regno = regno - NUM_GENREGS;
1544
c600d464 1545 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1546 {
1547 if (cris_spec_regs[i].number == spec_regno
35488783 1548 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
1d94326f
AC
1549 /* Go with the first applicable register. */
1550 return cris_spec_regs[i].reg_size;
1551 }
1552 /* Special register not applicable to this CRIS version. */
1553 return 0;
1554 }
be8626e0
MD
1555 else if (regno >= gdbarch_pc_regnum (gdbarch)
1556 && regno < gdbarch_num_regs (gdbarch))
1d94326f 1557 {
c600d464
OF
1558 /* This will apply to CRISv32 only where there are additional registers
1559 after the special registers (pseudo PC and support registers). */
1560 return 4;
1d94326f 1561 }
c600d464
OF
1562
1563
1564 return -1;
1d94326f
AC
1565}
1566
29134980
OF
1567/* Nonzero if regno should not be fetched from the target. This is the case
1568 for unimplemented (size 0) and non-existant registers. */
1569
a78f21af 1570static int
64a3914f 1571cris_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
29134980 1572{
64a3914f 1573 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1574 || (cris_register_size (gdbarch, regno) == 0));
29134980
OF
1575}
1576
1577/* Nonzero if regno should not be written to the target, for various
1578 reasons. */
1579
a78f21af 1580static int
64a3914f 1581cris_cannot_store_register (struct gdbarch *gdbarch, int regno)
29134980
OF
1582{
1583 /* There are three kinds of registers we refuse to write to.
1584 1. Those that not implemented.
1585 2. Those that are read-only (depends on the processor mode).
1586 3. Those registers to which a write has no effect.
1587 */
1588
f57d151a 1589 if (regno < 0
64a3914f 1590 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1591 || cris_register_size (gdbarch, regno) == 0)
29134980
OF
1592 /* Not implemented. */
1593 return 1;
1594
1595 else if (regno == VR_REGNUM)
1596 /* Read-only. */
1597 return 1;
1598
1599 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1600 /* Writing has no effect. */
1601 return 1;
1602
a5f6c8f5
OF
1603 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1604 agent decide whether they are writable. */
29134980
OF
1605
1606 return 0;
1607}
1608
c600d464
OF
1609/* Nonzero if regno should not be fetched from the target. This is the case
1610 for unimplemented (size 0) and non-existant registers. */
1611
1612static int
64a3914f 1613crisv32_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
c600d464 1614{
64a3914f 1615 return ((regno < 0 || regno >= gdbarch_num_regs (gdbarch))
be8626e0 1616 || (cris_register_size (gdbarch, regno) == 0));
c600d464
OF
1617}
1618
1619/* Nonzero if regno should not be written to the target, for various
1620 reasons. */
1621
1622static int
64a3914f 1623crisv32_cannot_store_register (struct gdbarch *gdbarch, int regno)
c600d464
OF
1624{
1625 /* There are three kinds of registers we refuse to write to.
1626 1. Those that not implemented.
1627 2. Those that are read-only (depends on the processor mode).
1628 3. Those registers to which a write has no effect.
1629 */
1630
f57d151a 1631 if (regno < 0
64a3914f 1632 || regno >= gdbarch_num_regs (gdbarch)
be8626e0 1633 || cris_register_size (gdbarch, regno) == 0)
c600d464
OF
1634 /* Not implemented. */
1635 return 1;
1636
1637 else if (regno == VR_REGNUM)
1638 /* Read-only. */
1639 return 1;
1640
1641 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1642 /* Writing has no effect. */
1643 return 1;
1644
1645 /* Many special registers are read-only in user mode. Let the debug
1646 agent decide whether they are writable. */
1647
1648 return 0;
1649}
1650
29134980
OF
1651/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1652 of data in register regno. */
1653
a78f21af 1654static struct type *
c1d546cd 1655cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1656{
7fbe2eba 1657 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1658 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1659 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1660 || regno == CRIS_FP_REGNUM)
0dfff4cb 1661 return builtin_type (gdbarch)->builtin_data_ptr;
7fbe2eba 1662 else if ((regno >= 0 && regno < gdbarch_sp_regnum (gdbarch))
a5f6c8f5
OF
1663 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1664 /* Note: R8 taken care of previous clause. */
df4df182 1665 return builtin_type (gdbarch)->builtin_uint32;
a5f6c8f5 1666 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
df4df182 1667 return builtin_type (gdbarch)->builtin_uint16;
a5f6c8f5 1668 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
df4df182 1669 return builtin_type (gdbarch)->builtin_uint8;
29134980 1670 else
a5f6c8f5 1671 /* Invalid (unimplemented) register. */
df4df182 1672 return builtin_type (gdbarch)->builtin_int0;
29134980
OF
1673}
1674
c600d464
OF
1675static struct type *
1676crisv32_register_type (struct gdbarch *gdbarch, int regno)
1677{
7fbe2eba 1678 if (regno == gdbarch_pc_regnum (gdbarch))
0dfff4cb 1679 return builtin_type (gdbarch)->builtin_func_ptr;
7fbe2eba 1680 else if (regno == gdbarch_sp_regnum (gdbarch)
3e8c568d 1681 || regno == CRIS_FP_REGNUM)
0dfff4cb 1682 return builtin_type (gdbarch)->builtin_data_ptr;
c600d464
OF
1683 else if ((regno >= 0 && regno <= ACR_REGNUM)
1684 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1685 || (regno == PID_REGNUM)
1686 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1687 /* Note: R8 and SP taken care of by previous clause. */
df4df182 1688 return builtin_type (gdbarch)->builtin_uint32;
c600d464 1689 else if (regno == WZ_REGNUM)
df4df182 1690 return builtin_type (gdbarch)->builtin_uint16;
c600d464 1691 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
df4df182 1692 return builtin_type (gdbarch)->builtin_uint8;
c600d464
OF
1693 else
1694 {
1695 /* Invalid (unimplemented) register. Should not happen as there are
1696 no unimplemented CRISv32 registers. */
8a3fe4f8 1697 warning (_("crisv32_register_type: unknown regno %d"), regno);
df4df182 1698 return builtin_type (gdbarch)->builtin_int0;
c600d464
OF
1699 }
1700}
1701
2e4b5889
OF
1702/* Stores a function return value of type type, where valbuf is the address
1703 of the value to be stored. */
29134980 1704
2e4b5889 1705/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1706
2e4b5889
OF
1707static void
1708cris_store_return_value (struct type *type, struct regcache *regcache,
1709 const void *valbuf)
29134980 1710{
e17a4113
UW
1711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
1713 ULONGEST val;
1714 int len = TYPE_LENGTH (type);
29134980 1715
2e4b5889 1716 if (len <= 4)
29134980 1717 {
2e4b5889 1718 /* Put the return value in R10. */
e17a4113 1719 val = extract_unsigned_integer (valbuf, len, byte_order);
2e4b5889 1720 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1721 }
2e4b5889 1722 else if (len <= 8)
29134980 1723 {
2e4b5889 1724 /* Put the return value in R10 and R11. */
e17a4113 1725 val = extract_unsigned_integer (valbuf, 4, byte_order);
2e4b5889 1726 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
e17a4113 1727 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order);
2e4b5889 1728 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1729 }
2e4b5889 1730 else
8a3fe4f8 1731 error (_("cris_store_return_value: type length too large."));
29134980
OF
1732}
1733
2e4b5889
OF
1734/* Return the name of register regno as a string. Return NULL for an invalid or
1735 unimplemented register. */
29134980 1736
c600d464 1737static const char *
35488783 1738cris_special_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1739{
1740 int spec_regno;
1741 int i;
1742
1743 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1744 Adjust regno accordingly. */
1745 spec_regno = regno - NUM_GENREGS;
1746
1747 /* Assume nothing about the layout of the cris_spec_regs struct
1748 when searching. */
1749 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1750 {
1751 if (cris_spec_regs[i].number == spec_regno
35488783 1752 && cris_spec_reg_applicable (gdbarch, cris_spec_regs[i]))
c600d464
OF
1753 /* Go with the first applicable register. */
1754 return cris_spec_regs[i].name;
1755 }
1756 /* Special register not applicable to this CRIS version. */
1757 return NULL;
1758}
1759
2e4b5889 1760static const char *
d93859e2 1761cris_register_name (struct gdbarch *gdbarch, int regno)
2e4b5889
OF
1762{
1763 static char *cris_genreg_names[] =
1764 { "r0", "r1", "r2", "r3", \
1765 "r4", "r5", "r6", "r7", \
1766 "r8", "r9", "r10", "r11", \
1767 "r12", "r13", "sp", "pc" };
29134980 1768
2e4b5889 1769 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1770 {
2e4b5889
OF
1771 /* General register. */
1772 return cris_genreg_names[regno];
29134980 1773 }
d93859e2 1774 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (gdbarch))
29134980 1775 {
35488783 1776 return cris_special_register_name (gdbarch, regno);
c600d464
OF
1777 }
1778 else
1779 {
1780 /* Invalid register. */
2e4b5889
OF
1781 return NULL;
1782 }
c600d464
OF
1783}
1784
1785static const char *
d93859e2 1786crisv32_register_name (struct gdbarch *gdbarch, int regno)
c600d464
OF
1787{
1788 static char *crisv32_genreg_names[] =
1789 { "r0", "r1", "r2", "r3", \
1790 "r4", "r5", "r6", "r7", \
1791 "r8", "r9", "r10", "r11", \
1792 "r12", "r13", "sp", "acr"
1793 };
1794
1795 static char *crisv32_sreg_names[] =
1796 { "s0", "s1", "s2", "s3", \
1797 "s4", "s5", "s6", "s7", \
1798 "s8", "s9", "s10", "s11", \
1799 "s12", "s13", "s14", "s15"
1800 };
1801
1802 if (regno >= 0 && regno < NUM_GENREGS)
1803 {
1804 /* General register. */
1805 return crisv32_genreg_names[regno];
1806 }
1807 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1808 {
35488783 1809 return cris_special_register_name (gdbarch, regno);
c600d464 1810 }
d93859e2 1811 else if (regno == gdbarch_pc_regnum (gdbarch))
c600d464
OF
1812 {
1813 return "pc";
1814 }
1815 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1816 {
1817 return crisv32_sreg_names[regno - S0_REGNUM];
1818 }
2e4b5889
OF
1819 else
1820 {
1821 /* Invalid register. */
1822 return NULL;
29134980 1823 }
29134980
OF
1824}
1825
a5f6c8f5
OF
1826/* Convert DWARF register number REG to the appropriate register
1827 number used by GDB. */
1828
2e4b5889 1829static int
d3f73121 1830cris_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
29134980 1831{
a5f6c8f5
OF
1832 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1833 numbering, MOF is 18).
1834 Adapted from gcc/config/cris/cris.h. */
1835 static int cris_dwarf_regmap[] = {
1836 0, 1, 2, 3,
1837 4, 5, 6, 7,
1838 8, 9, 10, 11,
1839 12, 13, 14, 15,
1840 27, -1, -1, -1,
1841 -1, -1, -1, 23,
1842 -1, -1, -1, 27,
1843 -1, -1, -1, -1
1844 };
1845 int regnum = -1;
1846
1847 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1848 regnum = cris_dwarf_regmap[reg];
1849
1850 if (regnum == -1)
8a3fe4f8 1851 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1852
1853 return regnum;
1854}
1855
1856/* DWARF-2 frame support. */
1857
1858static void
1859cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1860 struct dwarf2_frame_state_reg *reg,
4a4e5149 1861 struct frame_info *this_frame)
a5f6c8f5
OF
1862{
1863 /* The return address column. */
7fbe2eba 1864 if (regnum == gdbarch_pc_regnum (gdbarch))
a5f6c8f5
OF
1865 reg->how = DWARF2_FRAME_REG_RA;
1866
1867 /* The call frame address. */
7fbe2eba 1868 else if (regnum == gdbarch_sp_regnum (gdbarch))
a5f6c8f5 1869 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1870}
1871
2e4b5889
OF
1872/* Extract from an array regbuf containing the raw register state a function
1873 return value of type type, and copy that, in virtual format, into
1874 valbuf. */
1875
1876/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1877
2e4b5889
OF
1878static void
1879cris_extract_return_value (struct type *type, struct regcache *regcache,
1880 void *valbuf)
29134980 1881{
e17a4113
UW
1882 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2e4b5889
OF
1884 ULONGEST val;
1885 int len = TYPE_LENGTH (type);
29134980 1886
2e4b5889 1887 if (len <= 4)
29134980 1888 {
2e4b5889
OF
1889 /* Get the return value from R10. */
1890 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1891 store_unsigned_integer (valbuf, len, byte_order, val);
29134980 1892 }
2e4b5889 1893 else if (len <= 8)
29134980 1894 {
2e4b5889
OF
1895 /* Get the return value from R10 and R11. */
1896 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
e17a4113 1897 store_unsigned_integer (valbuf, 4, byte_order, val);
2e4b5889 1898 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
e17a4113 1899 store_unsigned_integer ((char *)valbuf + 4, len - 4, byte_order, val);
29134980 1900 }
2e4b5889 1901 else
8a3fe4f8 1902 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1903}
1904
b4206d25
OF
1905/* Handle the CRIS return value convention. */
1906
1907static enum return_value_convention
c055b101
CV
1908cris_return_value (struct gdbarch *gdbarch, struct type *func_type,
1909 struct type *type, struct regcache *regcache,
1910 gdb_byte *readbuf, const gdb_byte *writebuf)
b4206d25
OF
1911{
1912 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1913 || TYPE_CODE (type) == TYPE_CODE_UNION
1914 || TYPE_LENGTH (type) > 8)
1915 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1916 goes on the stack. */
1917 return RETURN_VALUE_STRUCT_CONVENTION;
1918
1919 if (readbuf)
1920 cris_extract_return_value (type, regcache, readbuf);
1921 if (writebuf)
1922 cris_store_return_value (type, regcache, writebuf);
1923
1924 return RETURN_VALUE_REGISTER_CONVENTION;
1925}
1926
29134980
OF
1927/* Calculates a value that measures how good inst_args constraints an
1928 instruction. It stems from cris_constraint, found in cris-dis.c. */
1929
1930static int
1931constraint (unsigned int insn, const signed char *inst_args,
1932 inst_env_type *inst_env)
1933{
1934 int retval = 0;
1935 int tmp, i;
1936
1937 const char *s = inst_args;
1938
1939 for (; *s; s++)
1940 switch (*s)
1941 {
1942 case 'm':
1943 if ((insn & 0x30) == 0x30)
1944 return -1;
1945 break;
1946
1947 case 'S':
1948 /* A prefix operand. */
1949 if (inst_env->prefix_found)
1950 break;
1951 else
1952 return -1;
1953
1954 case 'B':
1955 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1956 valid "push" size. In case of special register, it may be != 4. */
1957 if (inst_env->prefix_found)
1958 break;
1959 else
1960 return -1;
1961
1962 case 'D':
1963 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1964 if (!retval)
1965 return -1;
1966 else
1967 retval += 4;
1968 break;
1969
1970 case 'P':
1971 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1972
1973 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1974 {
1975 /* Since we match four bits, we will give a value of
1976 4 - 1 = 3 in a match. If there is a corresponding
1977 exact match of a special register in another pattern, it
1978 will get a value of 4, which will be higher. This should
1979 be correct in that an exact pattern would match better that
1980 a general pattern.
1981 Note that there is a reason for not returning zero; the
1982 pattern for "clear" is partly matched in the bit-pattern
1983 (the two lower bits must be zero), while the bit-pattern
1984 for a move from a special register is matched in the
1985 register constraint.
1986 This also means we will will have a race condition if
1987 there is a partly match in three bits in the bit pattern. */
1988 if (tmp == cris_spec_regs[i].number)
1989 {
1990 retval += 3;
1991 break;
1992 }
1993 }
1994
1995 if (cris_spec_regs[i].name == NULL)
29134980
OF
1996 return -1;
1997 break;
1998 }
1999 return retval;
2000}
2001
2002/* Returns the number of bits set in the variable value. */
2003
2004static int
2005number_of_bits (unsigned int value)
2006{
2007 int number_of_bits = 0;
2008
2009 while (value != 0)
2010 {
2011 number_of_bits += 1;
2012 value &= (value - 1);
2013 }
2014 return number_of_bits;
2015}
2016
2017/* Finds the address that should contain the single step breakpoint(s).
2018 It stems from code in cris-dis.c. */
2019
2020static int
2021find_cris_op (unsigned short insn, inst_env_type *inst_env)
2022{
2023 int i;
2024 int max_level_of_match = -1;
2025 int max_matched = -1;
2026 int level_of_match;
2027
2028 for (i = 0; cris_opcodes[i].name != NULL; i++)
2029 {
2030 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
2031 && ((cris_opcodes[i].lose & insn) == 0)
2032 /* Only CRISv10 instructions, please. */
2033 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
2034 {
2035 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2036 if (level_of_match >= 0)
2037 {
2038 level_of_match +=
2039 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2040 if (level_of_match > max_level_of_match)
2041 {
2042 max_matched = i;
2043 max_level_of_match = level_of_match;
2044 if (level_of_match == 16)
2045 {
2046 /* All bits matched, cannot find better. */
2047 break;
2048 }
2049 }
2050 }
2051 }
2052 }
2053 return max_matched;
2054}
2055
2056/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2057 actually an internal error. */
2058
2059static int
0b1b3e42 2060find_step_target (struct frame_info *frame, inst_env_type *inst_env)
29134980
OF
2061{
2062 int i;
2063 int offset;
2064 unsigned short insn;
7fbe2eba 2065 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2066 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
29134980
OF
2067
2068 /* Create a local register image and set the initial state. */
2069 for (i = 0; i < NUM_GENREGS; i++)
2070 {
0b1b3e42
UW
2071 inst_env->reg[i] =
2072 (unsigned long) get_frame_register_unsigned (frame, i);
29134980
OF
2073 }
2074 offset = NUM_GENREGS;
2075 for (i = 0; i < NUM_SPECREGS; i++)
2076 {
0b1b3e42
UW
2077 inst_env->preg[i] =
2078 (unsigned long) get_frame_register_unsigned (frame, offset + i);
29134980
OF
2079 }
2080 inst_env->branch_found = 0;
2081 inst_env->slot_needed = 0;
2082 inst_env->delay_slot_pc_active = 0;
2083 inst_env->prefix_found = 0;
2084 inst_env->invalid = 0;
2085 inst_env->xflag_found = 0;
2086 inst_env->disable_interrupt = 0;
e17a4113 2087 inst_env->byte_order = byte_order;
29134980
OF
2088
2089 /* Look for a step target. */
2090 do
2091 {
2092 /* Read an instruction from the client. */
3e8c568d 2093 insn = read_memory_unsigned_integer
e17a4113 2094 (inst_env->reg[gdbarch_pc_regnum (gdbarch)], 2, byte_order);
29134980
OF
2095
2096 /* If the instruction is not in a delay slot the new content of the
2097 PC is [PC] + 2. If the instruction is in a delay slot it is not
2098 that simple. Since a instruction in a delay slot cannot change
2099 the content of the PC, it does not matter what value PC will have.
2100 Just make sure it is a valid instruction. */
2101 if (!inst_env->delay_slot_pc_active)
2102 {
7fbe2eba 2103 inst_env->reg[gdbarch_pc_regnum (gdbarch)] += 2;
29134980
OF
2104 }
2105 else
2106 {
2107 inst_env->delay_slot_pc_active = 0;
7fbe2eba 2108 inst_env->reg[gdbarch_pc_regnum (gdbarch)]
3e8c568d 2109 = inst_env->delay_slot_pc;
29134980
OF
2110 }
2111 /* Analyse the present instruction. */
2112 i = find_cris_op (insn, inst_env);
2113 if (i == -1)
2114 {
2115 inst_env->invalid = 1;
2116 }
2117 else
2118 {
be8626e0 2119 cris_gdb_func (gdbarch, cris_opcodes[i].op, insn, inst_env);
29134980
OF
2120 }
2121 } while (!inst_env->invalid
2122 && (inst_env->prefix_found || inst_env->xflag_found
2123 || inst_env->slot_needed));
2124 return i;
2125}
2126
2127/* There is no hardware single-step support. The function find_step_target
2128 digs through the opcodes in order to find all possible targets.
2129 Either one ordinary target or two targets for branches may be found. */
2130
e6590a1b 2131static int
0b1b3e42 2132cris_software_single_step (struct frame_info *frame)
29134980 2133{
a6d9a66e 2134 struct gdbarch *gdbarch = get_frame_arch (frame);
29134980 2135 inst_env_type inst_env;
8181d85f 2136
e0cd558a
UW
2137 /* Analyse the present instruction environment and insert
2138 breakpoints. */
0b1b3e42 2139 int status = find_step_target (frame, &inst_env);
e0cd558a 2140 if (status == -1)
29134980 2141 {
e0cd558a
UW
2142 /* Could not find a target. Things are likely to go downhill
2143 from here. */
2144 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2145 }
2146 else
e0cd558a
UW
2147 {
2148 /* Insert at most two breakpoints. One for the next PC content
2149 and possibly another one for a branch, jump, etc. */
a6d9a66e
UW
2150 CORE_ADDR next_pc
2151 = (CORE_ADDR) inst_env.reg[gdbarch_pc_regnum (gdbarch)];
2152 insert_single_step_breakpoint (gdbarch, next_pc);
e0cd558a
UW
2153 if (inst_env.branch_found
2154 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2155 {
2156 CORE_ADDR branch_target_address
2157 = (CORE_ADDR) inst_env.branch_break_address;
a6d9a66e 2158 insert_single_step_breakpoint (gdbarch, branch_target_address);
e0cd558a
UW
2159 }
2160 }
e6590a1b
UW
2161
2162 return 1;
29134980
OF
2163}
2164
2165/* Calculates the prefix value for quick offset addressing mode. */
2166
a78f21af 2167static void
29134980
OF
2168quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2169{
2170 /* It's invalid to be in a delay slot. You can't have a prefix to this
2171 instruction (not 100% sure). */
2172 if (inst_env->slot_needed || inst_env->prefix_found)
2173 {
2174 inst_env->invalid = 1;
2175 return;
2176 }
2177
2178 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2179 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2180
2181 /* A prefix doesn't change the xflag_found. But the rest of the flags
2182 need updating. */
2183 inst_env->slot_needed = 0;
2184 inst_env->prefix_found = 1;
2185}
2186
2187/* Updates the autoincrement register. The size of the increment is derived
2188 from the size of the operation. The PC is always kept aligned on even
2189 word addresses. */
2190
a78f21af 2191static void
29134980
OF
2192process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2193{
2194 if (size == INST_BYTE_SIZE)
2195 {
2196 inst_env->reg[cris_get_operand1 (inst)] += 1;
2197
2198 /* The PC must be word aligned, so increase the PC with one
2199 word even if the size is byte. */
2200 if (cris_get_operand1 (inst) == REG_PC)
2201 {
2202 inst_env->reg[REG_PC] += 1;
2203 }
2204 }
2205 else if (size == INST_WORD_SIZE)
2206 {
2207 inst_env->reg[cris_get_operand1 (inst)] += 2;
2208 }
2209 else if (size == INST_DWORD_SIZE)
2210 {
2211 inst_env->reg[cris_get_operand1 (inst)] += 4;
2212 }
2213 else
2214 {
2215 /* Invalid size. */
2216 inst_env->invalid = 1;
2217 }
2218}
2219
2a9ecef2
OF
2220/* Just a forward declaration. */
2221
a78f21af 2222static unsigned long get_data_from_address (unsigned short *inst,
e17a4113
UW
2223 CORE_ADDR address,
2224 enum bfd_endian byte_order);
2a9ecef2 2225
29134980
OF
2226/* Calculates the prefix value for the general case of offset addressing
2227 mode. */
2228
a78f21af 2229static void
29134980
OF
2230bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2231{
2232
2233 long offset;
2234
2235 /* It's invalid to be in a delay slot. */
2236 if (inst_env->slot_needed || inst_env->prefix_found)
2237 {
2238 inst_env->invalid = 1;
2239 return;
2240 }
2241
fa4e4598
OF
2242 /* The calculation of prefix_value used to be after process_autoincrement,
2243 but that fails for an instruction such as jsr [$r0+12] which is encoded
2244 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2245 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2246 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2247
2248 /* The offset is an indirection of the contents of the operand1 register. */
2249 inst_env->prefix_value +=
e17a4113
UW
2250 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)],
2251 inst_env->byte_order);
2a9ecef2 2252
fa4e4598
OF
2253 if (cris_get_mode (inst) == AUTOINC_MODE)
2254 {
2255 process_autoincrement (cris_get_size (inst), inst, inst_env);
2256 }
2257
29134980
OF
2258 /* A prefix doesn't change the xflag_found. But the rest of the flags
2259 need updating. */
2260 inst_env->slot_needed = 0;
2261 inst_env->prefix_found = 1;
2262}
2263
2264/* Calculates the prefix value for the index addressing mode. */
2265
a78f21af 2266static void
29134980
OF
2267biap_prefix (unsigned short inst, inst_env_type *inst_env)
2268{
2269 /* It's invalid to be in a delay slot. I can't see that it's possible to
2270 have a prefix to this instruction. So I will treat this as invalid. */
2271 if (inst_env->slot_needed || inst_env->prefix_found)
2272 {
2273 inst_env->invalid = 1;
2274 return;
2275 }
2276
2277 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2278
2279 /* The offset is the operand2 value shifted the size of the instruction
2280 to the left. */
2281 inst_env->prefix_value +=
2282 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2283
2284 /* If the PC is operand1 (base) the address used is the address after
2285 the main instruction, i.e. address + 2 (the PC is already compensated
2286 for the prefix operation). */
2287 if (cris_get_operand1 (inst) == REG_PC)
2288 {
2289 inst_env->prefix_value += 2;
2290 }
2291
2292 /* A prefix doesn't change the xflag_found. But the rest of the flags
2293 need updating. */
2294 inst_env->slot_needed = 0;
2295 inst_env->xflag_found = 0;
2296 inst_env->prefix_found = 1;
2297}
2298
2299/* Calculates the prefix value for the double indirect addressing mode. */
2300
a78f21af 2301static void
29134980
OF
2302dip_prefix (unsigned short inst, inst_env_type *inst_env)
2303{
2304
2305 CORE_ADDR address;
2306
2307 /* It's invalid to be in a delay slot. */
2308 if (inst_env->slot_needed || inst_env->prefix_found)
2309 {
2310 inst_env->invalid = 1;
2311 return;
2312 }
2313
2314 /* The prefix value is one dereference of the contents of the operand1
2315 register. */
2316 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2317 inst_env->prefix_value
2318 = read_memory_unsigned_integer (address, 4, inst_env->byte_order);
29134980
OF
2319
2320 /* Check if the mode is autoincrement. */
2321 if (cris_get_mode (inst) == AUTOINC_MODE)
2322 {
2323 inst_env->reg[cris_get_operand1 (inst)] += 4;
2324 }
2325
2326 /* A prefix doesn't change the xflag_found. But the rest of the flags
2327 need updating. */
2328 inst_env->slot_needed = 0;
2329 inst_env->xflag_found = 0;
2330 inst_env->prefix_found = 1;
2331}
2332
2333/* Finds the destination for a branch with 8-bits offset. */
2334
a78f21af 2335static void
29134980
OF
2336eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2337{
2338
2339 short offset;
2340
2341 /* If we have a prefix or are in a delay slot it's bad. */
2342 if (inst_env->slot_needed || inst_env->prefix_found)
2343 {
2344 inst_env->invalid = 1;
2345 return;
2346 }
2347
2348 /* We have a branch, find out where the branch will land. */
2349 offset = cris_get_branch_short_offset (inst);
2350
2351 /* Check if the offset is signed. */
2352 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2353 {
2354 offset |= 0xFF00;
2355 }
2356
2357 /* The offset ends with the sign bit, set it to zero. The address
2358 should always be word aligned. */
2359 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2360
2361 inst_env->branch_found = 1;
2362 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2363
2364 inst_env->slot_needed = 1;
2365 inst_env->prefix_found = 0;
2366 inst_env->xflag_found = 0;
2367 inst_env->disable_interrupt = 1;
2368}
2369
2370/* Finds the destination for a branch with 16-bits offset. */
2371
a78f21af 2372static void
29134980
OF
2373sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2374{
2375 short offset;
2376
2377 /* If we have a prefix or is in a delay slot it's bad. */
2378 if (inst_env->slot_needed || inst_env->prefix_found)
2379 {
2380 inst_env->invalid = 1;
2381 return;
2382 }
2383
2384 /* We have a branch, find out the offset for the branch. */
e17a4113 2385 offset = read_memory_integer (inst_env->reg[REG_PC], 2, inst_env->byte_order);
29134980
OF
2386
2387 /* The instruction is one word longer than normal, so add one word
2388 to the PC. */
2389 inst_env->reg[REG_PC] += 2;
2390
2391 inst_env->branch_found = 1;
2392 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2393
2394
2395 inst_env->slot_needed = 1;
2396 inst_env->prefix_found = 0;
2397 inst_env->xflag_found = 0;
2398 inst_env->disable_interrupt = 1;
2399}
2400
2401/* Handles the ABS instruction. */
2402
a78f21af 2403static void
29134980
OF
2404abs_op (unsigned short inst, inst_env_type *inst_env)
2405{
2406
2407 long value;
2408
2409 /* ABS can't have a prefix, so it's bad if it does. */
2410 if (inst_env->prefix_found)
2411 {
2412 inst_env->invalid = 1;
2413 return;
2414 }
2415
2416 /* Check if the operation affects the PC. */
2417 if (cris_get_operand2 (inst) == REG_PC)
2418 {
2419
2420 /* It's invalid to change to the PC if we are in a delay slot. */
2421 if (inst_env->slot_needed)
2422 {
2423 inst_env->invalid = 1;
2424 return;
2425 }
2426
2427 value = (long) inst_env->reg[REG_PC];
2428
2429 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2430 if (value != SIGNED_DWORD_MASK)
2431 {
2432 value = -value;
2433 inst_env->reg[REG_PC] = (long) value;
2434 }
2435 }
2436
2437 inst_env->slot_needed = 0;
2438 inst_env->prefix_found = 0;
2439 inst_env->xflag_found = 0;
2440 inst_env->disable_interrupt = 0;
2441}
2442
2443/* Handles the ADDI instruction. */
2444
a78f21af 2445static void
29134980
OF
2446addi_op (unsigned short inst, inst_env_type *inst_env)
2447{
2448 /* It's invalid to have the PC as base register. And ADDI can't have
2449 a prefix. */
2450 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2451 {
2452 inst_env->invalid = 1;
2453 return;
2454 }
2455
2456 inst_env->slot_needed = 0;
2457 inst_env->prefix_found = 0;
2458 inst_env->xflag_found = 0;
2459 inst_env->disable_interrupt = 0;
2460}
2461
2462/* Handles the ASR instruction. */
2463
a78f21af 2464static void
29134980
OF
2465asr_op (unsigned short inst, inst_env_type *inst_env)
2466{
2467 int shift_steps;
2468 unsigned long value;
2469 unsigned long signed_extend_mask = 0;
2470
2471 /* ASR can't have a prefix, so check that it doesn't. */
2472 if (inst_env->prefix_found)
2473 {
2474 inst_env->invalid = 1;
2475 return;
2476 }
2477
2478 /* Check if the PC is the target register. */
2479 if (cris_get_operand2 (inst) == REG_PC)
2480 {
2481 /* It's invalid to change the PC in a delay slot. */
2482 if (inst_env->slot_needed)
2483 {
2484 inst_env->invalid = 1;
2485 return;
2486 }
2487 /* Get the number of bits to shift. */
2488 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2489 value = inst_env->reg[REG_PC];
2490
2491 /* Find out how many bits the operation should apply to. */
2492 if (cris_get_size (inst) == INST_BYTE_SIZE)
2493 {
2494 if (value & SIGNED_BYTE_MASK)
2495 {
2496 signed_extend_mask = 0xFF;
2497 signed_extend_mask = signed_extend_mask >> shift_steps;
2498 signed_extend_mask = ~signed_extend_mask;
2499 }
2500 value = value >> shift_steps;
2501 value |= signed_extend_mask;
2502 value &= 0xFF;
2503 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2504 inst_env->reg[REG_PC] |= value;
2505 }
2506 else if (cris_get_size (inst) == INST_WORD_SIZE)
2507 {
2508 if (value & SIGNED_WORD_MASK)
2509 {
2510 signed_extend_mask = 0xFFFF;
2511 signed_extend_mask = signed_extend_mask >> shift_steps;
2512 signed_extend_mask = ~signed_extend_mask;
2513 }
2514 value = value >> shift_steps;
2515 value |= signed_extend_mask;
2516 value &= 0xFFFF;
2517 inst_env->reg[REG_PC] &= 0xFFFF0000;
2518 inst_env->reg[REG_PC] |= value;
2519 }
2520 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2521 {
2522 if (value & SIGNED_DWORD_MASK)
2523 {
2524 signed_extend_mask = 0xFFFFFFFF;
2525 signed_extend_mask = signed_extend_mask >> shift_steps;
2526 signed_extend_mask = ~signed_extend_mask;
2527 }
2528 value = value >> shift_steps;
2529 value |= signed_extend_mask;
2530 inst_env->reg[REG_PC] = value;
2531 }
2532 }
2533 inst_env->slot_needed = 0;
2534 inst_env->prefix_found = 0;
2535 inst_env->xflag_found = 0;
2536 inst_env->disable_interrupt = 0;
2537}
2538
2539/* Handles the ASRQ instruction. */
2540
a78f21af 2541static void
29134980
OF
2542asrq_op (unsigned short inst, inst_env_type *inst_env)
2543{
2544
2545 int shift_steps;
2546 unsigned long value;
2547 unsigned long signed_extend_mask = 0;
2548
2549 /* ASRQ can't have a prefix, so check that it doesn't. */
2550 if (inst_env->prefix_found)
2551 {
2552 inst_env->invalid = 1;
2553 return;
2554 }
2555
2556 /* Check if the PC is the target register. */
2557 if (cris_get_operand2 (inst) == REG_PC)
2558 {
2559
2560 /* It's invalid to change the PC in a delay slot. */
2561 if (inst_env->slot_needed)
2562 {
2563 inst_env->invalid = 1;
2564 return;
2565 }
2566 /* The shift size is given as a 5 bit quick value, i.e. we don't
2567 want the the sign bit of the quick value. */
2568 shift_steps = cris_get_asr_shift_steps (inst);
2569 value = inst_env->reg[REG_PC];
2570 if (value & SIGNED_DWORD_MASK)
2571 {
2572 signed_extend_mask = 0xFFFFFFFF;
2573 signed_extend_mask = signed_extend_mask >> shift_steps;
2574 signed_extend_mask = ~signed_extend_mask;
2575 }
2576 value = value >> shift_steps;
2577 value |= signed_extend_mask;
2578 inst_env->reg[REG_PC] = value;
2579 }
2580 inst_env->slot_needed = 0;
2581 inst_env->prefix_found = 0;
2582 inst_env->xflag_found = 0;
2583 inst_env->disable_interrupt = 0;
2584}
2585
2586/* Handles the AX, EI and SETF instruction. */
2587
a78f21af 2588static void
29134980
OF
2589ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2590{
2591 if (inst_env->prefix_found)
2592 {
2593 inst_env->invalid = 1;
2594 return;
2595 }
2596 /* Check if the instruction is setting the X flag. */
2597 if (cris_is_xflag_bit_on (inst))
2598 {
2599 inst_env->xflag_found = 1;
2600 }
2601 else
2602 {
2603 inst_env->xflag_found = 0;
2604 }
2605 inst_env->slot_needed = 0;
2606 inst_env->prefix_found = 0;
2607 inst_env->disable_interrupt = 1;
2608}
2609
2610/* Checks if the instruction is in assign mode. If so, it updates the assign
2611 register. Note that check_assign assumes that the caller has checked that
2612 there is a prefix to this instruction. The mode check depends on this. */
2613
a78f21af 2614static void
29134980
OF
2615check_assign (unsigned short inst, inst_env_type *inst_env)
2616{
2617 /* Check if it's an assign addressing mode. */
2618 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2619 {
2620 /* Assign the prefix value to operand 1. */
2621 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2622 }
2623}
2624
2625/* Handles the 2-operand BOUND instruction. */
2626
a78f21af 2627static void
29134980
OF
2628two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2629{
2630 /* It's invalid to have the PC as the index operand. */
2631 if (cris_get_operand2 (inst) == REG_PC)
2632 {
2633 inst_env->invalid = 1;
2634 return;
2635 }
2636 /* Check if we have a prefix. */
2637 if (inst_env->prefix_found)
2638 {
2639 check_assign (inst, inst_env);
2640 }
2641 /* Check if this is an autoincrement mode. */
2642 else if (cris_get_mode (inst) == AUTOINC_MODE)
2643 {
2644 /* It's invalid to change the PC in a delay slot. */
2645 if (inst_env->slot_needed)
2646 {
2647 inst_env->invalid = 1;
2648 return;
2649 }
2650 process_autoincrement (cris_get_size (inst), inst, inst_env);
2651 }
2652 inst_env->slot_needed = 0;
2653 inst_env->prefix_found = 0;
2654 inst_env->xflag_found = 0;
2655 inst_env->disable_interrupt = 0;
2656}
2657
2658/* Handles the 3-operand BOUND instruction. */
2659
a78f21af 2660static void
29134980
OF
2661three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2662{
2663 /* It's an error if we haven't got a prefix. And it's also an error
2664 if the PC is the destination register. */
2665 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2666 {
2667 inst_env->invalid = 1;
2668 return;
2669 }
2670 inst_env->slot_needed = 0;
2671 inst_env->prefix_found = 0;
2672 inst_env->xflag_found = 0;
2673 inst_env->disable_interrupt = 0;
2674}
2675
2676/* Clears the status flags in inst_env. */
2677
a78f21af 2678static void
29134980
OF
2679btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2680{
2681 /* It's an error if we have got a prefix. */
2682 if (inst_env->prefix_found)
2683 {
2684 inst_env->invalid = 1;
2685 return;
2686 }
2687
2688 inst_env->slot_needed = 0;
2689 inst_env->prefix_found = 0;
2690 inst_env->xflag_found = 0;
2691 inst_env->disable_interrupt = 0;
2692}
2693
2694/* Clears the status flags in inst_env. */
2695
a78f21af 2696static void
29134980
OF
2697clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2698{
2699 /* It's an error if we have got a prefix. */
2700 if (inst_env->prefix_found)
2701 {
2702 inst_env->invalid = 1;
2703 return;
2704 }
2705
2706 inst_env->slot_needed = 0;
2707 inst_env->prefix_found = 0;
2708 inst_env->xflag_found = 0;
2709 inst_env->disable_interrupt = 1;
2710}
2711
2712/* Handles the CLEAR instruction if it's in register mode. */
2713
a78f21af 2714static void
29134980
OF
2715reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2716{
2717 /* Check if the target is the PC. */
2718 if (cris_get_operand2 (inst) == REG_PC)
2719 {
2720 /* The instruction will clear the instruction's size bits. */
2721 int clear_size = cris_get_clear_size (inst);
2722 if (clear_size == INST_BYTE_SIZE)
2723 {
2724 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2725 }
2726 if (clear_size == INST_WORD_SIZE)
2727 {
2728 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2729 }
2730 if (clear_size == INST_DWORD_SIZE)
2731 {
2732 inst_env->delay_slot_pc = 0x0;
2733 }
2734 /* The jump will be delayed with one delay slot. So we need a delay
2735 slot. */
2736 inst_env->slot_needed = 1;
2737 inst_env->delay_slot_pc_active = 1;
2738 }
2739 else
2740 {
2741 /* The PC will not change => no delay slot. */
2742 inst_env->slot_needed = 0;
2743 }
2744 inst_env->prefix_found = 0;
2745 inst_env->xflag_found = 0;
2746 inst_env->disable_interrupt = 0;
2747}
2748
2749/* Handles the TEST instruction if it's in register mode. */
2750
a78f21af 2751static void
29134980
OF
2752reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2753{
2754 /* It's an error if we have got a prefix. */
2755 if (inst_env->prefix_found)
2756 {
2757 inst_env->invalid = 1;
2758 return;
2759 }
2760 inst_env->slot_needed = 0;
2761 inst_env->prefix_found = 0;
2762 inst_env->xflag_found = 0;
2763 inst_env->disable_interrupt = 0;
2764
2765}
2766
2767/* Handles the CLEAR and TEST instruction if the instruction isn't
2768 in register mode. */
2769
a78f21af 2770static void
29134980
OF
2771none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2772{
2773 /* Check if we are in a prefix mode. */
2774 if (inst_env->prefix_found)
2775 {
2776 /* The only way the PC can change is if this instruction is in
2777 assign addressing mode. */
2778 check_assign (inst, inst_env);
2779 }
2780 /* Indirect mode can't change the PC so just check if the mode is
2781 autoincrement. */
2782 else if (cris_get_mode (inst) == AUTOINC_MODE)
2783 {
2784 process_autoincrement (cris_get_size (inst), inst, inst_env);
2785 }
2786 inst_env->slot_needed = 0;
2787 inst_env->prefix_found = 0;
2788 inst_env->xflag_found = 0;
2789 inst_env->disable_interrupt = 0;
2790}
2791
2792/* Checks that the PC isn't the destination register or the instructions has
2793 a prefix. */
2794
a78f21af 2795static void
29134980
OF
2796dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2797{
2798 /* It's invalid to have the PC as the destination. The instruction can't
2799 have a prefix. */
2800 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2801 {
2802 inst_env->invalid = 1;
2803 return;
2804 }
2805
2806 inst_env->slot_needed = 0;
2807 inst_env->prefix_found = 0;
2808 inst_env->xflag_found = 0;
2809 inst_env->disable_interrupt = 0;
2810}
2811
2812/* Checks that the instruction doesn't have a prefix. */
2813
a78f21af 2814static void
29134980
OF
2815break_op (unsigned short inst, inst_env_type *inst_env)
2816{
2817 /* The instruction can't have a prefix. */
2818 if (inst_env->prefix_found)
2819 {
2820 inst_env->invalid = 1;
2821 return;
2822 }
2823
2824 inst_env->slot_needed = 0;
2825 inst_env->prefix_found = 0;
2826 inst_env->xflag_found = 0;
2827 inst_env->disable_interrupt = 1;
2828}
2829
2830/* Checks that the PC isn't the destination register and that the instruction
2831 doesn't have a prefix. */
2832
a78f21af 2833static void
29134980
OF
2834scc_op (unsigned short inst, inst_env_type *inst_env)
2835{
2836 /* It's invalid to have the PC as the destination. The instruction can't
2837 have a prefix. */
2838 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2839 {
2840 inst_env->invalid = 1;
2841 return;
2842 }
2843
2844 inst_env->slot_needed = 0;
2845 inst_env->prefix_found = 0;
2846 inst_env->xflag_found = 0;
2847 inst_env->disable_interrupt = 1;
2848}
2849
2850/* Handles the register mode JUMP instruction. */
2851
a78f21af 2852static void
29134980
OF
2853reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2854{
2855 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2856 you can't have a prefix. */
2857 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2858 {
2859 inst_env->invalid = 1;
2860 return;
2861 }
2862
2863 /* Just change the PC. */
2864 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2865 inst_env->slot_needed = 0;
2866 inst_env->prefix_found = 0;
2867 inst_env->xflag_found = 0;
2868 inst_env->disable_interrupt = 1;
2869}
2870
2871/* Handles the JUMP instruction for all modes except register. */
2872
a78f21af
AC
2873static void
2874none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2875{
2876 unsigned long newpc;
2877 CORE_ADDR address;
2878
2879 /* It's invalid to do a JUMP in a delay slot. */
2880 if (inst_env->slot_needed)
2881 {
2882 inst_env->invalid = 1;
2883 }
2884 else
2885 {
2886 /* Check if we have a prefix. */
2887 if (inst_env->prefix_found)
2888 {
2889 check_assign (inst, inst_env);
2890
2891 /* Get the new value for the the PC. */
2892 newpc =
2893 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
e17a4113 2894 4, inst_env->byte_order);
29134980
OF
2895 }
2896 else
2897 {
2898 /* Get the new value for the PC. */
2899 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
e17a4113
UW
2900 newpc = read_memory_unsigned_integer (address,
2901 4, inst_env->byte_order);
29134980
OF
2902
2903 /* Check if we should increment a register. */
2904 if (cris_get_mode (inst) == AUTOINC_MODE)
2905 {
2906 inst_env->reg[cris_get_operand1 (inst)] += 4;
2907 }
2908 }
2909 inst_env->reg[REG_PC] = newpc;
2910 }
2911 inst_env->slot_needed = 0;
2912 inst_env->prefix_found = 0;
2913 inst_env->xflag_found = 0;
2914 inst_env->disable_interrupt = 1;
2915}
2916
2917/* Handles moves to special registers (aka P-register) for all modes. */
2918
a78f21af 2919static void
be8626e0
MD
2920move_to_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2921 inst_env_type *inst_env)
29134980
OF
2922{
2923 if (inst_env->prefix_found)
2924 {
2925 /* The instruction has a prefix that means we are only interested if
2926 the instruction is in assign mode. */
2927 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2928 {
2929 /* The prefix handles the problem if we are in a delay slot. */
2930 if (cris_get_operand1 (inst) == REG_PC)
2931 {
2932 /* Just take care of the assign. */
2933 check_assign (inst, inst_env);
2934 }
2935 }
2936 }
2937 else if (cris_get_mode (inst) == AUTOINC_MODE)
2938 {
2939 /* The instruction doesn't have a prefix, the only case left that we
2940 are interested in is the autoincrement mode. */
2941 if (cris_get_operand1 (inst) == REG_PC)
2942 {
2943 /* If the PC is to be incremented it's invalid to be in a
2944 delay slot. */
2945 if (inst_env->slot_needed)
2946 {
2947 inst_env->invalid = 1;
2948 return;
2949 }
2a9ecef2
OF
2950
2951 /* The increment depends on the size of the special register. */
be8626e0 2952 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
2953 {
2954 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2955 }
be8626e0 2956 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
2957 {
2958 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2959 }
2960 else
2961 {
2962 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2963 }
2964 }
2965 }
2966 inst_env->slot_needed = 0;
2967 inst_env->prefix_found = 0;
2968 inst_env->xflag_found = 0;
2969 inst_env->disable_interrupt = 1;
2970}
2971
2972/* Handles moves from special registers (aka P-register) for all modes
2973 except register. */
2974
a78f21af 2975static void
be8626e0
MD
2976none_reg_mode_move_from_preg_op (struct gdbarch *gdbarch, unsigned short inst,
2977 inst_env_type *inst_env)
29134980
OF
2978{
2979 if (inst_env->prefix_found)
2980 {
2981 /* The instruction has a prefix that means we are only interested if
2982 the instruction is in assign mode. */
2983 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2984 {
2985 /* The prefix handles the problem if we are in a delay slot. */
2986 if (cris_get_operand1 (inst) == REG_PC)
2987 {
2988 /* Just take care of the assign. */
2989 check_assign (inst, inst_env);
2990 }
2991 }
2992 }
2993 /* The instruction doesn't have a prefix, the only case left that we
2994 are interested in is the autoincrement mode. */
2995 else if (cris_get_mode (inst) == AUTOINC_MODE)
2996 {
2997 if (cris_get_operand1 (inst) == REG_PC)
2998 {
2999 /* If the PC is to be incremented it's invalid to be in a
3000 delay slot. */
3001 if (inst_env->slot_needed)
3002 {
3003 inst_env->invalid = 1;
3004 return;
3005 }
2a9ecef2
OF
3006
3007 /* The increment depends on the size of the special register. */
be8626e0 3008 if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 1)
29134980
OF
3009 {
3010 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
3011 }
be8626e0 3012 else if (cris_register_size (gdbarch, cris_get_operand2 (inst)) == 2)
29134980
OF
3013 {
3014 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3015 }
3016 else
3017 {
3018 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3019 }
3020 }
3021 }
3022 inst_env->slot_needed = 0;
3023 inst_env->prefix_found = 0;
3024 inst_env->xflag_found = 0;
3025 inst_env->disable_interrupt = 1;
3026}
3027
3028/* Handles moves from special registers (aka P-register) when the mode
3029 is register. */
3030
a78f21af 3031static void
29134980
OF
3032reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3033{
3034 /* Register mode move from special register can't have a prefix. */
3035 if (inst_env->prefix_found)
3036 {
3037 inst_env->invalid = 1;
3038 return;
3039 }
3040
3041 if (cris_get_operand1 (inst) == REG_PC)
3042 {
3043 /* It's invalid to change the PC in a delay slot. */
3044 if (inst_env->slot_needed)
3045 {
3046 inst_env->invalid = 1;
3047 return;
3048 }
3049 /* The destination is the PC, the jump will have a delay slot. */
3050 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3051 inst_env->slot_needed = 1;
3052 inst_env->delay_slot_pc_active = 1;
3053 }
3054 else
3055 {
3056 /* If the destination isn't PC, there will be no jump. */
3057 inst_env->slot_needed = 0;
3058 }
3059 inst_env->prefix_found = 0;
3060 inst_env->xflag_found = 0;
3061 inst_env->disable_interrupt = 1;
3062}
3063
3064/* Handles the MOVEM from memory to general register instruction. */
3065
a78f21af 3066static void
29134980
OF
3067move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3068{
3069 if (inst_env->prefix_found)
3070 {
3071 /* The prefix handles the problem if we are in a delay slot. Is the
3072 MOVEM instruction going to change the PC? */
3073 if (cris_get_operand2 (inst) >= REG_PC)
3074 {
3075 inst_env->reg[REG_PC] =
e17a4113
UW
3076 read_memory_unsigned_integer (inst_env->prefix_value,
3077 4, inst_env->byte_order);
29134980
OF
3078 }
3079 /* The assign value is the value after the increment. Normally, the
3080 assign value is the value before the increment. */
3081 if ((cris_get_operand1 (inst) == REG_PC)
3082 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3083 {
3084 inst_env->reg[REG_PC] = inst_env->prefix_value;
3085 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3086 }
3087 }
3088 else
3089 {
3090 /* Is the MOVEM instruction going to change the PC? */
3091 if (cris_get_operand2 (inst) == REG_PC)
3092 {
3093 /* It's invalid to change the PC in a delay slot. */
3094 if (inst_env->slot_needed)
3095 {
3096 inst_env->invalid = 1;
3097 return;
3098 }
3099 inst_env->reg[REG_PC] =
3100 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
e17a4113 3101 4, inst_env->byte_order);
29134980
OF
3102 }
3103 /* The increment is not depending on the size, instead it's depending
3104 on the number of registers loaded from memory. */
3105 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3106 {
3107 /* It's invalid to change the PC in a delay slot. */
3108 if (inst_env->slot_needed)
3109 {
3110 inst_env->invalid = 1;
3111 return;
3112 }
3113 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3114 }
3115 }
3116 inst_env->slot_needed = 0;
3117 inst_env->prefix_found = 0;
3118 inst_env->xflag_found = 0;
3119 inst_env->disable_interrupt = 0;
3120}
3121
3122/* Handles the MOVEM to memory from general register instruction. */
3123
a78f21af 3124static void
29134980
OF
3125move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3126{
3127 if (inst_env->prefix_found)
3128 {
3129 /* The assign value is the value after the increment. Normally, the
3130 assign value is the value before the increment. */
3131 if ((cris_get_operand1 (inst) == REG_PC) &&
3132 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3133 {
3134 /* The prefix handles the problem if we are in a delay slot. */
3135 inst_env->reg[REG_PC] = inst_env->prefix_value;
3136 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3137 }
3138 }
3139 else
3140 {
3141 /* The increment is not depending on the size, instead it's depending
3142 on the number of registers loaded to memory. */
3143 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3144 {
3145 /* It's invalid to change the PC in a delay slot. */
3146 if (inst_env->slot_needed)
3147 {
3148 inst_env->invalid = 1;
3149 return;
3150 }
3151 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3152 }
3153 }
3154 inst_env->slot_needed = 0;
3155 inst_env->prefix_found = 0;
3156 inst_env->xflag_found = 0;
3157 inst_env->disable_interrupt = 0;
3158}
3159
29134980
OF
3160/* Handles the intructions that's not yet implemented, by setting
3161 inst_env->invalid to true. */
3162
a78f21af 3163static void
29134980
OF
3164not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3165{
3166 inst_env->invalid = 1;
3167}
3168
3169/* Handles the XOR instruction. */
3170
a78f21af 3171static void
29134980
OF
3172xor_op (unsigned short inst, inst_env_type *inst_env)
3173{
3174 /* XOR can't have a prefix. */
3175 if (inst_env->prefix_found)
3176 {
3177 inst_env->invalid = 1;
3178 return;
3179 }
3180
3181 /* Check if the PC is the target. */
3182 if (cris_get_operand2 (inst) == REG_PC)
3183 {
3184 /* It's invalid to change the PC in a delay slot. */
3185 if (inst_env->slot_needed)
3186 {
3187 inst_env->invalid = 1;
3188 return;
3189 }
3190 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3191 }
3192 inst_env->slot_needed = 0;
3193 inst_env->prefix_found = 0;
3194 inst_env->xflag_found = 0;
3195 inst_env->disable_interrupt = 0;
3196}
3197
3198/* Handles the MULS instruction. */
3199
a78f21af 3200static void
29134980
OF
3201muls_op (unsigned short inst, inst_env_type *inst_env)
3202{
3203 /* MULS/U can't have a prefix. */
3204 if (inst_env->prefix_found)
3205 {
3206 inst_env->invalid = 1;
3207 return;
3208 }
3209
3210 /* Consider it invalid if the PC is the target. */
3211 if (cris_get_operand2 (inst) == REG_PC)
3212 {
3213 inst_env->invalid = 1;
3214 return;
3215 }
3216 inst_env->slot_needed = 0;
3217 inst_env->prefix_found = 0;
3218 inst_env->xflag_found = 0;
3219 inst_env->disable_interrupt = 0;
3220}
3221
3222/* Handles the MULU instruction. */
3223
a78f21af 3224static void
29134980
OF
3225mulu_op (unsigned short inst, inst_env_type *inst_env)
3226{
3227 /* MULS/U can't have a prefix. */
3228 if (inst_env->prefix_found)
3229 {
3230 inst_env->invalid = 1;
3231 return;
3232 }
3233
3234 /* Consider it invalid if the PC is the target. */
3235 if (cris_get_operand2 (inst) == REG_PC)
3236 {
3237 inst_env->invalid = 1;
3238 return;
3239 }
3240 inst_env->slot_needed = 0;
3241 inst_env->prefix_found = 0;
3242 inst_env->xflag_found = 0;
3243 inst_env->disable_interrupt = 0;
3244}
3245
3246/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3247 The MOVE instruction is the move from source to register. */
3248
a78f21af 3249static void
29134980
OF
3250add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3251 unsigned long source1, unsigned long source2)
3252{
3253 unsigned long pc_mask;
3254 unsigned long operation_mask;
3255
3256 /* Find out how many bits the operation should apply to. */
3257 if (cris_get_size (inst) == INST_BYTE_SIZE)
3258 {
3259 pc_mask = 0xFFFFFF00;
3260 operation_mask = 0xFF;
3261 }
3262 else if (cris_get_size (inst) == INST_WORD_SIZE)
3263 {
3264 pc_mask = 0xFFFF0000;
3265 operation_mask = 0xFFFF;
3266 }
3267 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3268 {
3269 pc_mask = 0x0;
3270 operation_mask = 0xFFFFFFFF;
3271 }
3272 else
3273 {
3274 /* The size is out of range. */
3275 inst_env->invalid = 1;
3276 return;
3277 }
3278
3279 /* The instruction just works on uw_operation_mask bits. */
3280 source2 &= operation_mask;
3281 source1 &= operation_mask;
3282
3283 /* Now calculate the result. The opcode's 3 first bits separates
3284 the different actions. */
3285 switch (cris_get_opcode (inst) & 7)
3286 {
3287 case 0: /* add */
3288 source1 += source2;
3289 break;
3290
3291 case 1: /* move */
3292 source1 = source2;
3293 break;
3294
3295 case 2: /* subtract */
3296 source1 -= source2;
3297 break;
3298
3299 case 3: /* compare */
3300 break;
3301
3302 case 4: /* and */
3303 source1 &= source2;
3304 break;
3305
3306 case 5: /* or */
3307 source1 |= source2;
3308 break;
3309
3310 default:
3311 inst_env->invalid = 1;
3312 return;
3313
3314 break;
3315 }
3316
3317 /* Make sure that the result doesn't contain more than the instruction
3318 size bits. */
3319 source2 &= operation_mask;
3320
3321 /* Calculate the new breakpoint address. */
3322 inst_env->reg[REG_PC] &= pc_mask;
3323 inst_env->reg[REG_PC] |= source1;
3324
3325}
3326
3327/* Extends the value from either byte or word size to a dword. If the mode
3328 is zero extend then the value is extended with zero. If instead the mode
3329 is signed extend the sign bit of the value is taken into consideration. */
3330
a78f21af 3331static unsigned long
29134980
OF
3332do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3333{
3334 /* The size can be either byte or word, check which one it is.
3335 Don't check the highest bit, it's indicating if it's a zero
3336 or sign extend. */
3337 if (cris_get_size (*inst) & INST_WORD_SIZE)
3338 {
3339 /* Word size. */
3340 value &= 0xFFFF;
3341
3342 /* Check if the instruction is signed extend. If so, check if value has
3343 the sign bit on. */
3344 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3345 {
3346 value |= SIGNED_WORD_EXTEND_MASK;
3347 }
3348 }
3349 else
3350 {
3351 /* Byte size. */
3352 value &= 0xFF;
3353
3354 /* Check if the instruction is signed extend. If so, check if value has
3355 the sign bit on. */
3356 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3357 {
3358 value |= SIGNED_BYTE_EXTEND_MASK;
3359 }
3360 }
3361 /* The size should now be dword. */
3362 cris_set_size_to_dword (inst);
3363 return value;
3364}
3365
3366/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3367 instruction. The MOVE instruction is the move from source to register. */
3368
a78f21af 3369static void
29134980
OF
3370reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3371 inst_env_type *inst_env)
3372{
3373 unsigned long operand1;
3374 unsigned long operand2;
3375
3376 /* It's invalid to have a prefix to the instruction. This is a register
3377 mode instruction and can't have a prefix. */
3378 if (inst_env->prefix_found)
3379 {
3380 inst_env->invalid = 1;
3381 return;
3382 }
3383 /* Check if the instruction has PC as its target. */
3384 if (cris_get_operand2 (inst) == REG_PC)
3385 {
3386 if (inst_env->slot_needed)
3387 {
3388 inst_env->invalid = 1;
3389 return;
3390 }
3391 /* The instruction has the PC as its target register. */
7ab98e9e 3392 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3393 operand2 = inst_env->reg[REG_PC];
3394
3395 /* Check if it's a extend, signed or zero instruction. */
3396 if (cris_get_opcode (inst) < 4)
3397 {
3398 operand1 = do_sign_or_zero_extend (operand1, &inst);
3399 }
3400 /* Calculate the PC value after the instruction, i.e. where the
3401 breakpoint should be. The order of the udw_operands is vital. */
3402 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3403 }
3404 inst_env->slot_needed = 0;
3405 inst_env->prefix_found = 0;
3406 inst_env->xflag_found = 0;
3407 inst_env->disable_interrupt = 0;
3408}
3409
3410/* Returns the data contained at address. The size of the data is derived from
3411 the size of the operation. If the instruction is a zero or signed
3412 extend instruction, the size field is changed in instruction. */
3413
a78f21af 3414static unsigned long
e17a4113 3415get_data_from_address (unsigned short *inst, CORE_ADDR address, enum bfd_endian byte_order)
29134980
OF
3416{
3417 int size = cris_get_size (*inst);
3418 unsigned long value;
3419
3420 /* If it's an extend instruction we don't want the signed extend bit,
3421 because it influences the size. */
3422 if (cris_get_opcode (*inst) < 4)
3423 {
3424 size &= ~SIGNED_EXTEND_BIT_MASK;
3425 }
3426 /* Is there a need for checking the size? Size should contain the number of
3427 bytes to read. */
3428 size = 1 << size;
e17a4113 3429 value = read_memory_unsigned_integer (address, size, byte_order);
29134980
OF
3430
3431 /* Check if it's an extend, signed or zero instruction. */
3432 if (cris_get_opcode (*inst) < 4)
3433 {
3434 value = do_sign_or_zero_extend (value, inst);
3435 }
3436 return value;
3437}
3438
3439/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3440 instructions. The MOVE instruction is the move from source to register. */
3441
a78f21af 3442static void
29134980
OF
3443handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3444 inst_env_type *inst_env)
3445{
3446 unsigned long operand2;
3447 unsigned long operand3;
3448
3449 check_assign (inst, inst_env);
3450 if (cris_get_operand2 (inst) == REG_PC)
3451 {
3452 operand2 = inst_env->reg[REG_PC];
3453
3454 /* Get the value of the third operand. */
e17a4113
UW
3455 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3456 inst_env->byte_order);
29134980
OF
3457
3458 /* Calculate the PC value after the instruction, i.e. where the
3459 breakpoint should be. The order of the udw_operands is vital. */
3460 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3461 }
3462 inst_env->slot_needed = 0;
3463 inst_env->prefix_found = 0;
3464 inst_env->xflag_found = 0;
3465 inst_env->disable_interrupt = 0;
3466}
3467
3468/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3469 OR instructions. Note that for this to work as expected, the calling
3470 function must have made sure that there is a prefix to this instruction. */
3471
a78f21af 3472static void
29134980
OF
3473three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3474 inst_env_type *inst_env)
3475{
3476 unsigned long operand2;
3477 unsigned long operand3;
3478
3479 if (cris_get_operand1 (inst) == REG_PC)
3480 {
3481 /* The PC will be changed by the instruction. */
3482 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3483
3484 /* Get the value of the third operand. */
e17a4113
UW
3485 operand3 = get_data_from_address (&inst, inst_env->prefix_value,
3486 inst_env->byte_order);
29134980
OF
3487
3488 /* Calculate the PC value after the instruction, i.e. where the
3489 breakpoint should be. */
3490 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3491 }
3492 inst_env->slot_needed = 0;
3493 inst_env->prefix_found = 0;
3494 inst_env->xflag_found = 0;
3495 inst_env->disable_interrupt = 0;
3496}
3497
3498/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3499 instructions. The MOVE instruction is the move from source to register. */
3500
a78f21af 3501static void
29134980
OF
3502handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3503 inst_env_type *inst_env)
3504{
3505 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3506 {
3507 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3508 SUB, AND or OR something weird is going on (if everything works these
3509 instructions should end up in the three operand version). */
3510 inst_env->invalid = 1;
3511 return;
3512 }
3513 else
3514 {
3515 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3516 so use it. */
3517 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3518 }
3519 inst_env->slot_needed = 0;
3520 inst_env->prefix_found = 0;
3521 inst_env->xflag_found = 0;
3522 inst_env->disable_interrupt = 0;
3523}
3524
3525/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3526 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3527 source to register. */
3528
a78f21af 3529static void
29134980
OF
3530handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3531 inst_env_type *inst_env)
3532{
3533 unsigned long operand1;
3534 unsigned long operand2;
3535 unsigned long operand3;
3536 int size;
3537
3538 /* The instruction is either an indirect or autoincrement addressing mode.
3539 Check if the destination register is the PC. */
3540 if (cris_get_operand2 (inst) == REG_PC)
3541 {
3542 /* Must be done here, get_data_from_address may change the size
3543 field. */
3544 size = cris_get_size (inst);
3545 operand2 = inst_env->reg[REG_PC];
3546
3547 /* Get the value of the third operand, i.e. the indirect operand. */
3548 operand1 = inst_env->reg[cris_get_operand1 (inst)];
e17a4113 3549 operand3 = get_data_from_address (&inst, operand1, inst_env->byte_order);
29134980
OF
3550
3551 /* Calculate the PC value after the instruction, i.e. where the
3552 breakpoint should be. The order of the udw_operands is vital. */
3553 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3554 }
3555 /* If this is an autoincrement addressing mode, check if the increment
3556 changes the PC. */
3557 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3558 {
3559 /* Get the size field. */
3560 size = cris_get_size (inst);
3561
3562 /* If it's an extend instruction we don't want the signed extend bit,
3563 because it influences the size. */
3564 if (cris_get_opcode (inst) < 4)
3565 {
3566 size &= ~SIGNED_EXTEND_BIT_MASK;
3567 }
3568 process_autoincrement (size, inst, inst_env);
3569 }
3570 inst_env->slot_needed = 0;
3571 inst_env->prefix_found = 0;
3572 inst_env->xflag_found = 0;
3573 inst_env->disable_interrupt = 0;
3574}
3575
3576/* Handles the two-operand addressing mode, all modes except register, for
3577 the ADD, SUB CMP, AND and OR instruction. */
3578
a78f21af 3579static void
29134980
OF
3580none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3581 inst_env_type *inst_env)
3582{
3583 if (inst_env->prefix_found)
3584 {
3585 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3586 {
3587 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3588 }
3589 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3590 {
3591 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3592 }
3593 else
3594 {
3595 /* The mode is invalid for a prefixed base instruction. */
3596 inst_env->invalid = 1;
3597 return;
3598 }
3599 }
3600 else
3601 {
3602 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3603 }
3604}
3605
3606/* Handles the quick addressing mode for the ADD and SUB instruction. */
3607
a78f21af 3608static void
29134980
OF
3609quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3610{
3611 unsigned long operand1;
3612 unsigned long operand2;
3613
3614 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3615 instruction and can't have a prefix. */
3616 if (inst_env->prefix_found)
3617 {
3618 inst_env->invalid = 1;
3619 return;
3620 }
3621
3622 /* Check if the instruction has PC as its target. */
3623 if (cris_get_operand2 (inst) == REG_PC)
3624 {
3625 if (inst_env->slot_needed)
3626 {
3627 inst_env->invalid = 1;
3628 return;
3629 }
3630 operand1 = cris_get_quick_value (inst);
3631 operand2 = inst_env->reg[REG_PC];
3632
3633 /* The size should now be dword. */
3634 cris_set_size_to_dword (&inst);
3635
3636 /* Calculate the PC value after the instruction, i.e. where the
3637 breakpoint should be. */
3638 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3639 }
3640 inst_env->slot_needed = 0;
3641 inst_env->prefix_found = 0;
3642 inst_env->xflag_found = 0;
3643 inst_env->disable_interrupt = 0;
3644}
3645
3646/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3647
a78f21af 3648static void
29134980
OF
3649quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3650{
3651 unsigned long operand1;
3652 unsigned long operand2;
3653
3654 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3655 instruction and can't have a prefix. */
3656 if (inst_env->prefix_found)
3657 {
3658 inst_env->invalid = 1;
3659 return;
3660 }
3661 /* Check if the instruction has PC as its target. */
3662 if (cris_get_operand2 (inst) == REG_PC)
3663 {
3664 if (inst_env->slot_needed)
3665 {
3666 inst_env->invalid = 1;
3667 return;
3668 }
3669 /* The instruction has the PC as its target register. */
3670 operand1 = cris_get_quick_value (inst);
3671 operand2 = inst_env->reg[REG_PC];
3672
3673 /* The quick value is signed, so check if we must do a signed extend. */
3674 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3675 {
3676 /* sign extend */
3677 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3678 }
3679 /* The size should now be dword. */
3680 cris_set_size_to_dword (&inst);
3681
3682 /* Calculate the PC value after the instruction, i.e. where the
3683 breakpoint should be. */
3684 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3685 }
3686 inst_env->slot_needed = 0;
3687 inst_env->prefix_found = 0;
3688 inst_env->xflag_found = 0;
3689 inst_env->disable_interrupt = 0;
3690}
3691
3692/* Translate op_type to a function and call it. */
3693
a78f21af 3694static void
be8626e0
MD
3695cris_gdb_func (struct gdbarch *gdbarch, enum cris_op_type op_type,
3696 unsigned short inst, inst_env_type *inst_env)
29134980
OF
3697{
3698 switch (op_type)
3699 {
3700 case cris_not_implemented_op:
3701 not_implemented_op (inst, inst_env);
3702 break;
3703
3704 case cris_abs_op:
3705 abs_op (inst, inst_env);
3706 break;
3707
3708 case cris_addi_op:
3709 addi_op (inst, inst_env);
3710 break;
3711
3712 case cris_asr_op:
3713 asr_op (inst, inst_env);
3714 break;
3715
3716 case cris_asrq_op:
3717 asrq_op (inst, inst_env);
3718 break;
3719
3720 case cris_ax_ei_setf_op:
3721 ax_ei_setf_op (inst, inst_env);
3722 break;
3723
3724 case cris_bdap_prefix:
3725 bdap_prefix (inst, inst_env);
3726 break;
3727
3728 case cris_biap_prefix:
3729 biap_prefix (inst, inst_env);
3730 break;
3731
3732 case cris_break_op:
3733 break_op (inst, inst_env);
3734 break;
3735
3736 case cris_btst_nop_op:
3737 btst_nop_op (inst, inst_env);
3738 break;
3739
3740 case cris_clearf_di_op:
3741 clearf_di_op (inst, inst_env);
3742 break;
3743
3744 case cris_dip_prefix:
3745 dip_prefix (inst, inst_env);
3746 break;
3747
3748 case cris_dstep_logshift_mstep_neg_not_op:
3749 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3750 break;
3751
3752 case cris_eight_bit_offset_branch_op:
3753 eight_bit_offset_branch_op (inst, inst_env);
3754 break;
3755
3756 case cris_move_mem_to_reg_movem_op:
3757 move_mem_to_reg_movem_op (inst, inst_env);
3758 break;
3759
3760 case cris_move_reg_to_mem_movem_op:
3761 move_reg_to_mem_movem_op (inst, inst_env);
3762 break;
3763
3764 case cris_move_to_preg_op:
be8626e0 3765 move_to_preg_op (gdbarch, inst, inst_env);
29134980
OF
3766 break;
3767
3768 case cris_muls_op:
3769 muls_op (inst, inst_env);
3770 break;
3771
3772 case cris_mulu_op:
3773 mulu_op (inst, inst_env);
3774 break;
3775
3776 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3777 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3778 break;
3779
3780 case cris_none_reg_mode_clear_test_op:
3781 none_reg_mode_clear_test_op (inst, inst_env);
3782 break;
3783
3784 case cris_none_reg_mode_jump_op:
3785 none_reg_mode_jump_op (inst, inst_env);
3786 break;
3787
3788 case cris_none_reg_mode_move_from_preg_op:
be8626e0 3789 none_reg_mode_move_from_preg_op (gdbarch, inst, inst_env);
29134980
OF
3790 break;
3791
3792 case cris_quick_mode_add_sub_op:
3793 quick_mode_add_sub_op (inst, inst_env);
3794 break;
3795
3796 case cris_quick_mode_and_cmp_move_or_op:
3797 quick_mode_and_cmp_move_or_op (inst, inst_env);
3798 break;
3799
3800 case cris_quick_mode_bdap_prefix:
3801 quick_mode_bdap_prefix (inst, inst_env);
3802 break;
3803
3804 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3805 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3806 break;
3807
3808 case cris_reg_mode_clear_op:
3809 reg_mode_clear_op (inst, inst_env);
3810 break;
3811
3812 case cris_reg_mode_jump_op:
3813 reg_mode_jump_op (inst, inst_env);
3814 break;
3815
3816 case cris_reg_mode_move_from_preg_op:
3817 reg_mode_move_from_preg_op (inst, inst_env);
3818 break;
3819
3820 case cris_reg_mode_test_op:
3821 reg_mode_test_op (inst, inst_env);
3822 break;
3823
3824 case cris_scc_op:
3825 scc_op (inst, inst_env);
3826 break;
3827
3828 case cris_sixteen_bit_offset_branch_op:
3829 sixteen_bit_offset_branch_op (inst, inst_env);
3830 break;
3831
3832 case cris_three_operand_add_sub_cmp_and_or_op:
3833 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3834 break;
3835
3836 case cris_three_operand_bound_op:
3837 three_operand_bound_op (inst, inst_env);
3838 break;
3839
3840 case cris_two_operand_bound_op:
3841 two_operand_bound_op (inst, inst_env);
3842 break;
3843
3844 case cris_xor_op:
3845 xor_op (inst, inst_env);
3846 break;
3847 }
3848}
3849
3850/* This wrapper is to avoid cris_get_assembler being called before
3851 exec_bfd has been set. */
3852
3853static int
a89aa300 3854cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3855{
a89aa300 3856 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3857 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3858 disassembler, even when there is no BFD. Does something like
3859 "gdb; target remote; disassmeble *0x123" work? */
3860 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3861 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3862 gdb_assert (print_insn != NULL);
3863 return print_insn (addr, info);
29134980
OF
3864}
3865
dbbff683
OF
3866/* Copied from <asm/elf.h>. */
3867typedef unsigned long elf_greg_t;
3868
3869/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3870#define CRISV10_ELF_NGREG 35
3871typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3872
3873#define CRISV32_ELF_NGREG 32
3874typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3875
3876/* Unpack an elf_gregset_t into GDB's register cache. */
3877
a78f21af 3878static void
c6b4e5a2 3879cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
dbbff683 3880{
7fbe2eba
UW
3881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
dbbff683
OF
3883 int i;
3884 elf_greg_t *regp = *gregsetp;
3885 static char zerobuf[4] = {0};
3886
3887 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3888 knows about the actual size of each register so that's no problem. */
3889 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3890 {
c6b4e5a2 3891 regcache_raw_supply (regcache, i, (char *)&regp[i]);
dbbff683 3892 }
c600d464
OF
3893
3894 if (tdep->cris_version == 32)
3895 {
3896 /* Needed to set pseudo-register PC for CRISv32. */
3897 /* FIXME: If ERP is in a delay slot at this point then the PC will
3898 be wrong. Issue a warning to alert the user. */
7fbe2eba 3899 regcache_raw_supply (regcache, gdbarch_pc_regnum (gdbarch),
c600d464
OF
3900 (char *)&regp[ERP_REGNUM]);
3901
3902 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3903 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3904 }
dbbff683
OF
3905}
3906
3907/* Use a local version of this function to get the correct types for
3908 regsets, until multi-arch core support is ready. */
3909
3910static void
9eefc95f
UW
3911fetch_core_registers (struct regcache *regcache,
3912 char *core_reg_sect, unsigned core_reg_size,
dbbff683
OF
3913 int which, CORE_ADDR reg_addr)
3914{
3915 elf_gregset_t gregset;
3916
3917 switch (which)
3918 {
3919 case 0:
c600d464
OF
3920 if (core_reg_size != sizeof (elf_gregset_t)
3921 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3922 {
8a3fe4f8 3923 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3924 }
3925 else
3926 {
3927 memcpy (&gregset, core_reg_sect, sizeof (gregset));
9eefc95f 3928 cris_supply_gregset (regcache, &gregset);
dbbff683
OF
3929 }
3930
3931 default:
3932 /* We've covered all the kinds of registers we know about here,
3933 so this must be something we wouldn't know what to do with
3934 anyway. Just ignore it. */
3935 break;
3936 }
3937}
3938
3939static struct core_fns cris_elf_core_fns =
3940{
3941 bfd_target_elf_flavour, /* core_flavour */
3942 default_check_format, /* check_format */
3943 default_core_sniffer, /* core_sniffer */
3944 fetch_core_registers, /* core_read_registers */
3945 NULL /* next */
3946};
3947
a78f21af
AC
3948extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3949
29134980
OF
3950void
3951_initialize_cris_tdep (void)
3952{
a5f6c8f5
OF
3953 static struct cmd_list_element *cris_set_cmdlist;
3954 static struct cmd_list_element *cris_show_cmdlist;
3955
29134980
OF
3956 struct cmd_list_element *c;
3957
3958 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3959
29134980 3960 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3961 add_setshow_uinteger_cmd ("cris-version", class_support,
3962 &usr_cmd_cris_version,
7915a72c
AC
3963 _("Set the current CRIS version."),
3964 _("Show the current CRIS version."),
bdd56253
OF
3965 _("\
3966Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3967Defaults to 10. "),
2c5b56ce 3968 set_cris_version,
7915a72c 3969 NULL, /* FIXME: i18n: Current CRIS version is %s. */
a5f6c8f5 3970 &setlist, &showlist);
0e6bdb31
OF
3971
3972 add_setshow_enum_cmd ("cris-mode", class_support,
3973 cris_modes, &usr_cmd_cris_mode,
3974 _("Set the current CRIS mode."),
3975 _("Show the current CRIS mode."),
bdd56253
OF
3976 _("\
3977Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3978Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3979 set_cris_mode,
3980 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3981 &setlist, &showlist);
dbbff683 3982
a5f6c8f5
OF
3983 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3984 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3985 _("Set the usage of Dwarf-2 CFI for CRIS."),
3986 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3987 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3988 set_cris_dwarf2_cfi,
7915a72c 3989 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3990 &setlist, &showlist);
3991
52bd1401 3992 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3993}
3994
3995/* Prints out all target specific values. */
3996
3997static void
3998cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3999{
7fbe2eba 4000 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
29134980
OF
4001 if (tdep != NULL)
4002 {
4003 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
4004 tdep->cris_version);
0e6bdb31
OF
4005 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
4006 tdep->cris_mode);
a5f6c8f5
OF
4007 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
4008 tdep->cris_dwarf2_cfi);
29134980
OF
4009 }
4010}
4011
4012static void
a5f6c8f5
OF
4013set_cris_version (char *ignore_args, int from_tty,
4014 struct cmd_list_element *c)
29134980
OF
4015{
4016 struct gdbarch_info info;
4017
a5f6c8f5 4018 usr_cmd_cris_version_valid = 1;
29134980 4019
a5f6c8f5
OF
4020 /* Update the current architecture, if needed. */
4021 gdbarch_info_init (&info);
4022 if (!gdbarch_update_p (info))
4023 internal_error (__FILE__, __LINE__,
e2e0b3e5 4024 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4025}
4026
0e6bdb31
OF
4027static void
4028set_cris_mode (char *ignore_args, int from_tty,
4029 struct cmd_list_element *c)
4030{
4031 struct gdbarch_info info;
4032
4033 /* Update the current architecture, if needed. */
4034 gdbarch_info_init (&info);
4035 if (!gdbarch_update_p (info))
4036 internal_error (__FILE__, __LINE__,
4037 "cris_gdbarch_update: failed to update architecture.");
4038}
4039
29134980 4040static void
a5f6c8f5
OF
4041set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4042 struct cmd_list_element *c)
29134980
OF
4043{
4044 struct gdbarch_info info;
a5f6c8f5
OF
4045
4046 /* Update the current architecture, if needed. */
4047 gdbarch_info_init (&info);
4048 if (!gdbarch_update_p (info))
4049 internal_error (__FILE__, __LINE__,
e2e0b3e5 4050 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4051}
4052
29134980
OF
4053static struct gdbarch *
4054cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4055{
4056 struct gdbarch *gdbarch;
4057 struct gdbarch_tdep *tdep;
4058 int cris_version;
29134980
OF
4059
4060 if (usr_cmd_cris_version_valid)
4061 {
4062 /* Trust the user's CRIS version setting. */
4063 cris_version = usr_cmd_cris_version;
4064 }
c600d464
OF
4065 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4066 {
4067 cris_version = 32;
4068 }
29134980
OF
4069 else
4070 {
4071 /* Assume it's CRIS version 10. */
4072 cris_version = 10;
4073 }
4074
29134980
OF
4075 /* Make the current settings visible to the user. */
4076 usr_cmd_cris_version = cris_version;
29134980 4077
0e6bdb31 4078 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4079 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4080 arches != NULL;
4081 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4082 {
a5f6c8f5
OF
4083 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4084 == usr_cmd_cris_version)
0e6bdb31
OF
4085 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4086 == usr_cmd_cris_mode)
a5f6c8f5
OF
4087 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4088 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4089 return arches->gdbarch;
4090 }
4091
4092 /* No matching architecture was found. Create a new one. */
4093 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4094 gdbarch = gdbarch_alloc (&info, tdep);
4095
a5f6c8f5 4096 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4097 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4098 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4099
4100 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4101 switch (info.byte_order)
4102 {
778eb05e 4103 case BFD_ENDIAN_LITTLE:
29134980
OF
4104 /* Ok. */
4105 break;
4106
d7449b42 4107 case BFD_ENDIAN_BIG:
e2e0b3e5 4108 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4109 break;
4110
4111 default:
e2e0b3e5 4112 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4113 }
4114
b4206d25 4115 set_gdbarch_return_value (gdbarch, cris_return_value);
29134980 4116
29134980 4117 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4118
4119 /* Length of ordinary registers used in push_word and a few other
4120 places. register_size() is the real way to know how big a
4121 register is. */
a5f6c8f5 4122
2e4b5889 4123 set_gdbarch_double_bit (gdbarch, 64);
ea06eb3d 4124 /* The default definition of a long double is 2 * gdbarch_double_bit,
2e4b5889 4125 which means we have to set this explicitly. */
c600d464 4126 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4127
29134980
OF
4128 /* The total amount of space needed to store (in an array called registers)
4129 GDB's copy of the machine's register state. Note: We can not use
d93859e2 4130 cris_register_size at this point, since it relies on gdbarch
29134980
OF
4131 being set. */
4132 switch (tdep->cris_version)
4133 {
4134 case 0:
4135 case 1:
4136 case 2:
4137 case 3:
29134980
OF
4138 case 8:
4139 case 9:
a5f6c8f5
OF
4140 /* Old versions; not supported. */
4141 internal_error (__FILE__, __LINE__,
e2e0b3e5 4142 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4143 break;
4144
4145 case 10:
4146 case 11:
4147 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4148 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4149 set_gdbarch_pc_regnum (gdbarch, 15);
4150 set_gdbarch_register_type (gdbarch, cris_register_type);
4151 /* There are 32 registers (some of which may not be implemented). */
4152 set_gdbarch_num_regs (gdbarch, 32);
4153 set_gdbarch_register_name (gdbarch, cris_register_name);
4154 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4155 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4156
4157 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4158 break;
4159
4160 case 32:
4161 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4162 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4163 and pseudo-register PC (32 bits). */
4164 set_gdbarch_pc_regnum (gdbarch, 32);
4165 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4166 /* 32 registers + pseudo-register PC + 16 support registers. */
4167 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4168 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4169
4170 set_gdbarch_cannot_store_register
4171 (gdbarch, crisv32_cannot_store_register);
4172 set_gdbarch_cannot_fetch_register
4173 (gdbarch, crisv32_cannot_fetch_register);
4174
4175 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4176
4177 set_gdbarch_single_step_through_delay
4178 (gdbarch, crisv32_single_step_through_delay);
4179
29134980
OF
4180 break;
4181
4182 default:
c600d464 4183 internal_error (__FILE__, __LINE__,
e2e0b3e5 4184 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4185 }
4186
c600d464
OF
4187 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4188 have the same ABI). */
2e4b5889
OF
4189 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4190 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4191 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4192 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4193
4194 /* The stack grows downward. */
4195 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4196
4197 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4198
2e4b5889
OF
4199 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4200 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
94afd7a6 4201 set_gdbarch_dummy_id (gdbarch, cris_dummy_id);
2e4b5889 4202
a5f6c8f5
OF
4203 if (tdep->cris_dwarf2_cfi == 1)
4204 {
4205 /* Hook in the Dwarf-2 frame sniffer. */
4206 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4207 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
94afd7a6 4208 dwarf2_append_unwinders (gdbarch);
a5f6c8f5
OF
4209 }
4210
0e6bdb31
OF
4211 if (tdep->cris_mode != cris_mode_guru)
4212 {
94afd7a6 4213 frame_unwind_append_unwinder (gdbarch, &cris_sigtramp_frame_unwind);
0e6bdb31 4214 }
a5f6c8f5 4215
94afd7a6 4216 frame_unwind_append_unwinder (gdbarch, &cris_frame_unwind);
2e4b5889 4217 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4218
76a9d10f
MK
4219 set_solib_svr4_fetch_link_map_offsets
4220 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
dbbff683 4221
36482093
AC
4222 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4223 disassembler, even when there is no BFD. Does something like
4224 "gdb; target remote; disassmeble *0x123" work? */
4225 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4226
29134980
OF
4227 return gdbarch;
4228}
This page took 0.812641 seconds and 4 git commands to generate.