2007-05-31 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / cris-tdep.c
CommitLineData
29134980 1/* Target dependent code for CRIS, for GDB, the GNU debugger.
6b4d5c91 2
6aba47ca 3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007
76a9d10f 4 Free Software Foundation, Inc.
6b4d5c91 5
29134980
OF
6 Contributed by Axis Communications AB.
7 Written by Hendrik Ruijter, Stefan Andersson, and Orjan Friberg.
8
9This file is part of GDB.
10
11This program is free software; you can redistribute it and/or modify
12it under the terms of the GNU General Public License as published by
13the Free Software Foundation; either version 2 of the License, or
14(at your option) any later version.
15
16This program is distributed in the hope that it will be useful,
17but WITHOUT ANY WARRANTY; without even the implied warranty of
18MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19GNU General Public License for more details.
20
21You should have received a copy of the GNU General Public License
22along with this program; if not, write to the Free Software
197e01b6
EZ
23Foundation, Inc., 51 Franklin Street, Fifth Floor,
24Boston, MA 02110-1301, USA. */
29134980
OF
25
26#include "defs.h"
27#include "frame.h"
2e4b5889
OF
28#include "frame-unwind.h"
29#include "frame-base.h"
30#include "trad-frame.h"
31#include "dwarf2-frame.h"
29134980
OF
32#include "symtab.h"
33#include "inferior.h"
34#include "gdbtypes.h"
35#include "gdbcore.h"
36#include "gdbcmd.h"
37#include "target.h"
38#include "value.h"
39#include "opcode/cris.h"
40#include "arch-utils.h"
41#include "regcache.h"
36482093 42#include "gdb_assert.h"
29134980
OF
43
44/* To get entry_point_address. */
9ab9195f 45#include "objfiles.h"
29134980 46
a5f6c8f5 47#include "solib.h" /* Support for shared libraries. */
76a9d10f 48#include "solib-svr4.h"
9bbe19fb 49#include "gdb_string.h"
a89aa300 50#include "dis-asm.h"
dbbff683 51
29134980
OF
52enum cris_num_regs
53{
54 /* There are no floating point registers. Used in gdbserver low-linux.c. */
55 NUM_FREGS = 0,
56
57 /* There are 16 general registers. */
58 NUM_GENREGS = 16,
59
60 /* There are 16 special registers. */
c600d464
OF
61 NUM_SPECREGS = 16,
62
63 /* CRISv32 has a pseudo PC register, not noted here. */
64
65 /* CRISv32 has 16 support registers. */
66 NUM_SUPPREGS = 16
29134980
OF
67};
68
69/* Register numbers of various important registers.
2e4b5889 70 CRIS_FP_REGNUM Contains address of executing stack frame.
29134980
OF
71 STR_REGNUM Contains the address of structure return values.
72 RET_REGNUM Contains the return value when shorter than or equal to 32 bits
73 ARG1_REGNUM Contains the first parameter to a function.
74 ARG2_REGNUM Contains the second parameter to a function.
75 ARG3_REGNUM Contains the third parameter to a function.
76 ARG4_REGNUM Contains the fourth parameter to a function. Rest on stack.
77 SP_REGNUM Contains address of top of stack.
78 PC_REGNUM Contains address of next instruction.
79 SRP_REGNUM Subroutine return pointer register.
80 BRP_REGNUM Breakpoint return pointer register. */
81
29134980
OF
82enum cris_regnums
83{
84 /* Enums with respect to the general registers, valid for all
c600d464 85 CRIS versions. The frame pointer is always in R8. */
2e4b5889 86 CRIS_FP_REGNUM = 8,
c600d464 87 /* ABI related registers. */
29134980
OF
88 STR_REGNUM = 9,
89 RET_REGNUM = 10,
90 ARG1_REGNUM = 10,
91 ARG2_REGNUM = 11,
92 ARG3_REGNUM = 12,
93 ARG4_REGNUM = 13,
94
c600d464 95 /* Registers which happen to be common. */
29134980 96 VR_REGNUM = 17,
c600d464
OF
97 MOF_REGNUM = 23,
98 SRP_REGNUM = 27,
99
100 /* CRISv10 et. al. specific registers. */
101 P0_REGNUM = 16,
29134980
OF
102 P4_REGNUM = 20,
103 CCR_REGNUM = 21,
29134980
OF
104 P8_REGNUM = 24,
105 IBR_REGNUM = 25,
106 IRP_REGNUM = 26,
29134980 107 BAR_REGNUM = 28,
2a9ecef2 108 DCCR_REGNUM = 29,
29134980 109 BRP_REGNUM = 30,
c600d464
OF
110 USP_REGNUM = 31,
111
112 /* CRISv32 specific registers. */
113 ACR_REGNUM = 15,
114 BZ_REGNUM = 16,
115 PID_REGNUM = 18,
116 SRS_REGNUM = 19,
117 WZ_REGNUM = 20,
118 EXS_REGNUM = 21,
119 EDA_REGNUM = 22,
120 DZ_REGNUM = 24,
121 EBP_REGNUM = 25,
122 ERP_REGNUM = 26,
123 NRP_REGNUM = 28,
124 CCS_REGNUM = 29,
125 CRISV32USP_REGNUM = 30, /* Shares name but not number with CRISv10. */
126 SPC_REGNUM = 31,
127 CRISV32PC_REGNUM = 32, /* Shares name but not number with CRISv10. */
128
129 S0_REGNUM = 33,
130 S1_REGNUM = 34,
131 S2_REGNUM = 35,
132 S3_REGNUM = 36,
133 S4_REGNUM = 37,
134 S5_REGNUM = 38,
135 S6_REGNUM = 39,
136 S7_REGNUM = 40,
137 S8_REGNUM = 41,
138 S9_REGNUM = 42,
139 S10_REGNUM = 43,
140 S11_REGNUM = 44,
141 S12_REGNUM = 45,
142 S13_REGNUM = 46,
143 S14_REGNUM = 47,
144 S15_REGNUM = 48,
29134980
OF
145};
146
147extern const struct cris_spec_reg cris_spec_regs[];
148
149/* CRIS version, set via the user command 'set cris-version'. Affects
0e6bdb31
OF
150 register names and sizes. */
151static int usr_cmd_cris_version;
29134980
OF
152
153/* Indicates whether to trust the above variable. */
154static int usr_cmd_cris_version_valid = 0;
155
41922353
OF
156static const char cris_mode_normal[] = "normal";
157static const char cris_mode_guru[] = "guru";
0e6bdb31
OF
158static const char *cris_modes[] = {
159 cris_mode_normal,
160 cris_mode_guru,
161 0
162};
163
164/* CRIS mode, set via the user command 'set cris-mode'. Affects
165 type of break instruction among other things. */
166static const char *usr_cmd_cris_mode = cris_mode_normal;
167
a5f6c8f5
OF
168/* Whether to make use of Dwarf-2 CFI (default on). */
169static int usr_cmd_cris_dwarf2_cfi = 1;
29134980 170
29134980
OF
171/* CRIS architecture specific information. */
172struct gdbarch_tdep
173{
0e6bdb31
OF
174 int cris_version;
175 const char *cris_mode;
a5f6c8f5 176 int cris_dwarf2_cfi;
29134980
OF
177};
178
179/* Functions for accessing target dependent data. */
180
181static int
182cris_version (void)
183{
184 return (gdbarch_tdep (current_gdbarch)->cris_version);
185}
186
0e6bdb31
OF
187static const char *
188cris_mode (void)
189{
190 return (gdbarch_tdep (current_gdbarch)->cris_mode);
191}
192
a5f6c8f5
OF
193/* Sigtramp identification code copied from i386-linux-tdep.c. */
194
195#define SIGTRAMP_INSN0 0x9c5f /* movu.w 0xXX, $r9 */
196#define SIGTRAMP_OFFSET0 0
197#define SIGTRAMP_INSN1 0xe93d /* break 13 */
198#define SIGTRAMP_OFFSET1 4
199
200static const unsigned short sigtramp_code[] =
201{
202 SIGTRAMP_INSN0, 0x0077, /* movu.w $0x77, $r9 */
203 SIGTRAMP_INSN1 /* break 13 */
204};
205
206#define SIGTRAMP_LEN (sizeof sigtramp_code)
207
208/* Note: same length as normal sigtramp code. */
209
210static const unsigned short rt_sigtramp_code[] =
29134980 211{
a5f6c8f5
OF
212 SIGTRAMP_INSN0, 0x00ad, /* movu.w $0xad, $r9 */
213 SIGTRAMP_INSN1 /* break 13 */
214};
215
216/* If PC is in a sigtramp routine, return the address of the start of
217 the routine. Otherwise, return 0. */
218
219static CORE_ADDR
220cris_sigtramp_start (struct frame_info *next_frame)
221{
222 CORE_ADDR pc = frame_pc_unwind (next_frame);
e2a2a3e8 223 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5
OF
224
225 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
226 return 0;
227
e2a2a3e8 228 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 229 {
e2a2a3e8 230 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
231 return 0;
232
233 pc -= SIGTRAMP_OFFSET1;
234 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
235 return 0;
236 }
237
238 if (memcmp (buf, sigtramp_code, SIGTRAMP_LEN) != 0)
239 return 0;
240
241 return pc;
242}
243
244/* If PC is in a RT sigtramp routine, return the address of the start of
245 the routine. Otherwise, return 0. */
246
247static CORE_ADDR
248cris_rt_sigtramp_start (struct frame_info *next_frame)
249{
250 CORE_ADDR pc = frame_pc_unwind (next_frame);
e2a2a3e8 251 gdb_byte buf[SIGTRAMP_LEN];
a5f6c8f5
OF
252
253 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
254 return 0;
255
e2a2a3e8 256 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN0)
a5f6c8f5 257 {
e2a2a3e8 258 if (((buf[1] << 8) + buf[0]) != SIGTRAMP_INSN1)
a5f6c8f5
OF
259 return 0;
260
261 pc -= SIGTRAMP_OFFSET1;
262 if (!safe_frame_unwind_memory (next_frame, pc, buf, SIGTRAMP_LEN))
263 return 0;
264 }
265
266 if (memcmp (buf, rt_sigtramp_code, SIGTRAMP_LEN) != 0)
267 return 0;
268
269 return pc;
270}
271
272/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
273 routine, return the address of the associated sigcontext structure. */
274
275static CORE_ADDR
276cris_sigcontext_addr (struct frame_info *next_frame)
277{
278 CORE_ADDR pc;
279 CORE_ADDR sp;
280 char buf[4];
281
282 frame_unwind_register (next_frame, SP_REGNUM, buf);
283 sp = extract_unsigned_integer (buf, 4);
284
285 /* Look for normal sigtramp frame first. */
286 pc = cris_sigtramp_start (next_frame);
287 if (pc)
288 {
289 /* struct signal_frame (arch/cris/kernel/signal.c) contains
290 struct sigcontext as its first member, meaning the SP points to
291 it already. */
292 return sp;
293 }
294
295 pc = cris_rt_sigtramp_start (next_frame);
296 if (pc)
297 {
298 /* struct rt_signal_frame (arch/cris/kernel/signal.c) contains
299 a struct ucontext, which in turn contains a struct sigcontext.
300 Magic digging:
301 4 + 4 + 128 to struct ucontext, then
302 4 + 4 + 12 to struct sigcontext. */
303 return (sp + 156);
304 }
305
8a3fe4f8 306 error (_("Couldn't recognize signal trampoline."));
a5f6c8f5 307 return 0;
29134980
OF
308}
309
2e4b5889 310struct cris_unwind_cache
29134980 311{
2e4b5889
OF
312 /* The previous frame's inner most stack address. Used as this
313 frame ID's stack_addr. */
314 CORE_ADDR prev_sp;
315 /* The frame's base, optionally used by the high-level debug info. */
316 CORE_ADDR base;
317 int size;
318 /* How far the SP and r8 (FP) have been offset from the start of
319 the stack frame (as defined by the previous frame's stack
320 pointer). */
321 LONGEST sp_offset;
322 LONGEST r8_offset;
323 int uses_frame;
324
325 /* From old frame_extra_info struct. */
29134980
OF
326 CORE_ADDR return_pc;
327 int leaf_function;
2e4b5889
OF
328
329 /* Table indicating the location of each and every register. */
330 struct trad_frame_saved_reg *saved_regs;
29134980
OF
331};
332
a5f6c8f5
OF
333static struct cris_unwind_cache *
334cris_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
335 void **this_cache)
336{
337 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
338 struct cris_unwind_cache *info;
339 CORE_ADDR pc;
340 CORE_ADDR sp;
341 CORE_ADDR addr;
342 char buf[4];
343 int i;
344
345 if ((*this_cache))
346 return (*this_cache);
347
348 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
349 (*this_cache) = info;
350 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
351
352 /* Zero all fields. */
353 info->prev_sp = 0;
354 info->base = 0;
355 info->size = 0;
356 info->sp_offset = 0;
357 info->r8_offset = 0;
358 info->uses_frame = 0;
359 info->return_pc = 0;
360 info->leaf_function = 0;
361
362 frame_unwind_register (next_frame, SP_REGNUM, buf);
363 info->base = extract_unsigned_integer (buf, 4);
364
365 addr = cris_sigcontext_addr (next_frame);
366
367 /* Layout of the sigcontext struct:
368 struct sigcontext {
369 struct pt_regs regs;
370 unsigned long oldmask;
371 unsigned long usp;
372 }; */
373
c600d464
OF
374 if (tdep->cris_version == 10)
375 {
376 /* R0 to R13 are stored in reverse order at offset (2 * 4) in
377 struct pt_regs. */
378 for (i = 0; i <= 13; i++)
379 info->saved_regs[i].addr = addr + ((15 - i) * 4);
380
381 info->saved_regs[MOF_REGNUM].addr = addr + (16 * 4);
382 info->saved_regs[DCCR_REGNUM].addr = addr + (17 * 4);
383 info->saved_regs[SRP_REGNUM].addr = addr + (18 * 4);
384 /* Note: IRP is off by 2 at this point. There's no point in correcting
385 it though since that will mean that the backtrace will show a PC
386 different from what is shown when stopped. */
387 info->saved_regs[IRP_REGNUM].addr = addr + (19 * 4);
388 info->saved_regs[PC_REGNUM] = info->saved_regs[IRP_REGNUM];
389 info->saved_regs[SP_REGNUM].addr = addr + (24 * 4);
390 }
391 else
392 {
393 /* CRISv32. */
394 /* R0 to R13 are stored in order at offset (1 * 4) in
395 struct pt_regs. */
396 for (i = 0; i <= 13; i++)
397 info->saved_regs[i].addr = addr + ((i + 1) * 4);
398
399 info->saved_regs[ACR_REGNUM].addr = addr + (15 * 4);
400 info->saved_regs[SRS_REGNUM].addr = addr + (16 * 4);
401 info->saved_regs[MOF_REGNUM].addr = addr + (17 * 4);
402 info->saved_regs[SPC_REGNUM].addr = addr + (18 * 4);
403 info->saved_regs[CCS_REGNUM].addr = addr + (19 * 4);
404 info->saved_regs[SRP_REGNUM].addr = addr + (20 * 4);
405 info->saved_regs[ERP_REGNUM].addr = addr + (21 * 4);
406 info->saved_regs[EXS_REGNUM].addr = addr + (22 * 4);
407 info->saved_regs[EDA_REGNUM].addr = addr + (23 * 4);
408
409 /* FIXME: If ERP is in a delay slot at this point then the PC will
410 be wrong at this point. This problem manifests itself in the
411 sigaltstack.exp test case, which occasionally generates FAILs when
412 the signal is received while in a delay slot.
413
414 This could be solved by a couple of read_memory_unsigned_integer and a
415 trad_frame_set_value. */
416 info->saved_regs[PC_REGNUM] = info->saved_regs[ERP_REGNUM];
417
418 info->saved_regs[SP_REGNUM].addr = addr + (25 * 4);
419 }
a5f6c8f5
OF
420
421 return info;
422}
423
424static void
425cris_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
426 struct frame_id *this_id)
427{
428 struct cris_unwind_cache *cache =
429 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
430 (*this_id) = frame_id_build (cache->base, frame_pc_unwind (next_frame));
431}
432
433/* Forward declaration. */
434
435static void cris_frame_prev_register (struct frame_info *next_frame,
436 void **this_prologue_cache,
437 int regnum, int *optimizedp,
438 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 439 int *realnump, gdb_byte *bufferp);
a5f6c8f5
OF
440static void
441cris_sigtramp_frame_prev_register (struct frame_info *next_frame,
442 void **this_cache,
443 int regnum, int *optimizedp,
444 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 445 int *realnump, gdb_byte *valuep)
a5f6c8f5
OF
446{
447 /* Make sure we've initialized the cache. */
448 cris_sigtramp_frame_unwind_cache (next_frame, this_cache);
449 cris_frame_prev_register (next_frame, this_cache, regnum,
450 optimizedp, lvalp, addrp, realnump, valuep);
451}
452
453static const struct frame_unwind cris_sigtramp_frame_unwind =
454{
455 SIGTRAMP_FRAME,
456 cris_sigtramp_frame_this_id,
457 cris_sigtramp_frame_prev_register
458};
459
460static const struct frame_unwind *
461cris_sigtramp_frame_sniffer (struct frame_info *next_frame)
462{
463 if (cris_sigtramp_start (next_frame)
464 || cris_rt_sigtramp_start (next_frame))
465 return &cris_sigtramp_frame_unwind;
466
467 return NULL;
468}
469
c600d464
OF
470int
471crisv32_single_step_through_delay (struct gdbarch *gdbarch,
472 struct frame_info *this_frame)
473{
474 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
475 ULONGEST erp;
476 int ret = 0;
477 char buf[4];
478
0e6bdb31
OF
479 if (cris_mode () == cris_mode_guru)
480 {
481 frame_unwind_register (this_frame, NRP_REGNUM, buf);
482 }
483 else
484 {
485 frame_unwind_register (this_frame, ERP_REGNUM, buf);
486 }
487
c600d464
OF
488 erp = extract_unsigned_integer (buf, 4);
489
490 if (erp & 0x1)
491 {
492 /* In delay slot - check if there's a breakpoint at the preceding
493 instruction. */
494 if (breakpoint_here_p (erp & ~0x1))
495 ret = 1;
496 }
497 return ret;
498}
499
500/* Hardware watchpoint support. */
501
502/* We support 6 hardware data watchpoints, but cannot trigger on execute
503 (any combination of read/write is fine). */
504
505int
506cris_can_use_hardware_watchpoint (int type, int count, int other)
507{
508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
509
510 /* No bookkeeping is done here; it is handled by the remote debug agent. */
511
512 if (tdep->cris_version != 32)
513 return 0;
514 else
515 /* CRISv32: Six data watchpoints, one for instructions. */
516 return (((type == bp_read_watchpoint || type == bp_access_watchpoint
517 || type == bp_hardware_watchpoint) && count <= 6)
518 || (type == bp_hardware_breakpoint && count <= 1));
519}
520
521/* The CRISv32 hardware data watchpoints work by specifying ranges,
522 which have no alignment or length restrictions. */
523
524int
525cris_region_ok_for_watchpoint (CORE_ADDR addr, int len)
526{
527 return 1;
528}
529
530/* If the inferior has some watchpoint that triggered, return the
531 address associated with that watchpoint. Otherwise, return
532 zero. */
533
534CORE_ADDR
535cris_stopped_data_address (void)
536{
537 CORE_ADDR eda;
538 eda = read_register (EDA_REGNUM);
539 return eda;
540}
541
29134980 542/* The instruction environment needed to find single-step breakpoints. */
c600d464 543
29134980
OF
544typedef
545struct instruction_environment
546{
547 unsigned long reg[NUM_GENREGS];
548 unsigned long preg[NUM_SPECREGS];
549 unsigned long branch_break_address;
550 unsigned long delay_slot_pc;
551 unsigned long prefix_value;
552 int branch_found;
553 int prefix_found;
554 int invalid;
555 int slot_needed;
556 int delay_slot_pc_active;
557 int xflag_found;
558 int disable_interrupt;
559} inst_env_type;
560
29134980
OF
561/* Machine-dependencies in CRIS for opcodes. */
562
563/* Instruction sizes. */
564enum cris_instruction_sizes
565{
566 INST_BYTE_SIZE = 0,
567 INST_WORD_SIZE = 1,
568 INST_DWORD_SIZE = 2
569};
570
571/* Addressing modes. */
572enum cris_addressing_modes
573{
574 REGISTER_MODE = 1,
575 INDIRECT_MODE = 2,
576 AUTOINC_MODE = 3
577};
578
579/* Prefix addressing modes. */
580enum cris_prefix_addressing_modes
581{
582 PREFIX_INDEX_MODE = 2,
583 PREFIX_ASSIGN_MODE = 3,
584
585 /* Handle immediate byte offset addressing mode prefix format. */
586 PREFIX_OFFSET_MODE = 2
587};
588
589/* Masks for opcodes. */
590enum cris_opcode_masks
591{
592 BRANCH_SIGNED_SHORT_OFFSET_MASK = 0x1,
593 SIGNED_EXTEND_BIT_MASK = 0x2,
594 SIGNED_BYTE_MASK = 0x80,
595 SIGNED_BYTE_EXTEND_MASK = 0xFFFFFF00,
596 SIGNED_WORD_MASK = 0x8000,
597 SIGNED_WORD_EXTEND_MASK = 0xFFFF0000,
598 SIGNED_DWORD_MASK = 0x80000000,
599 SIGNED_QUICK_VALUE_MASK = 0x20,
600 SIGNED_QUICK_VALUE_EXTEND_MASK = 0xFFFFFFC0
601};
602
603/* Functions for opcodes. The general form of the ETRAX 16-bit instruction:
604 Bit 15 - 12 Operand2
605 11 - 10 Mode
606 9 - 6 Opcode
607 5 - 4 Size
608 3 - 0 Operand1 */
609
610static int
611cris_get_operand2 (unsigned short insn)
612{
613 return ((insn & 0xF000) >> 12);
614}
615
616static int
617cris_get_mode (unsigned short insn)
618{
619 return ((insn & 0x0C00) >> 10);
620}
621
622static int
623cris_get_opcode (unsigned short insn)
624{
625 return ((insn & 0x03C0) >> 6);
626}
627
628static int
629cris_get_size (unsigned short insn)
630{
631 return ((insn & 0x0030) >> 4);
632}
633
634static int
635cris_get_operand1 (unsigned short insn)
636{
637 return (insn & 0x000F);
638}
639
640/* Additional functions in order to handle opcodes. */
641
29134980
OF
642static int
643cris_get_quick_value (unsigned short insn)
644{
645 return (insn & 0x003F);
646}
647
648static int
649cris_get_bdap_quick_offset (unsigned short insn)
650{
651 return (insn & 0x00FF);
652}
653
654static int
655cris_get_branch_short_offset (unsigned short insn)
656{
657 return (insn & 0x00FF);
658}
659
660static int
661cris_get_asr_shift_steps (unsigned long value)
662{
663 return (value & 0x3F);
664}
665
29134980
OF
666static int
667cris_get_clear_size (unsigned short insn)
668{
669 return ((insn) & 0xC000);
670}
671
672static int
673cris_is_signed_extend_bit_on (unsigned short insn)
674{
675 return (((insn) & 0x20) == 0x20);
676}
677
678static int
679cris_is_xflag_bit_on (unsigned short insn)
680{
681 return (((insn) & 0x1000) == 0x1000);
682}
683
684static void
685cris_set_size_to_dword (unsigned short *insn)
686{
687 *insn &= 0xFFCF;
688 *insn |= 0x20;
689}
690
8535cb38 691static signed char
29134980
OF
692cris_get_signed_offset (unsigned short insn)
693{
8535cb38 694 return ((signed char) (insn & 0x00FF));
29134980
OF
695}
696
697/* Calls an op function given the op-type, working on the insn and the
698 inst_env. */
699static void cris_gdb_func (enum cris_op_type, unsigned short, inst_env_type *);
700
29134980
OF
701static struct gdbarch *cris_gdbarch_init (struct gdbarch_info,
702 struct gdbarch_list *);
703
29134980
OF
704static void cris_dump_tdep (struct gdbarch *, struct ui_file *);
705
a5f6c8f5
OF
706static void set_cris_version (char *ignore_args, int from_tty,
707 struct cmd_list_element *c);
29134980 708
0e6bdb31
OF
709static void set_cris_mode (char *ignore_args, int from_tty,
710 struct cmd_list_element *c);
711
a5f6c8f5
OF
712static void set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
713 struct cmd_list_element *c);
29134980 714
2e4b5889
OF
715static CORE_ADDR cris_scan_prologue (CORE_ADDR pc,
716 struct frame_info *next_frame,
717 struct cris_unwind_cache *info);
718
5114e29d
OF
719static CORE_ADDR crisv32_scan_prologue (CORE_ADDR pc,
720 struct frame_info *next_frame,
721 struct cris_unwind_cache *info);
722
2e4b5889
OF
723static CORE_ADDR cris_unwind_pc (struct gdbarch *gdbarch,
724 struct frame_info *next_frame);
725
726static CORE_ADDR cris_unwind_sp (struct gdbarch *gdbarch,
727 struct frame_info *next_frame);
728
729/* When arguments must be pushed onto the stack, they go on in reverse
a5f6c8f5
OF
730 order. The below implements a FILO (stack) to do this.
731 Copied from d10v-tdep.c. */
2e4b5889
OF
732
733struct stack_item
734{
735 int len;
736 struct stack_item *prev;
737 void *data;
738};
739
740static struct stack_item *
741push_stack_item (struct stack_item *prev, void *contents, int len)
742{
743 struct stack_item *si;
744 si = xmalloc (sizeof (struct stack_item));
745 si->data = xmalloc (len);
746 si->len = len;
747 si->prev = prev;
748 memcpy (si->data, contents, len);
749 return si;
750}
751
752static struct stack_item *
753pop_stack_item (struct stack_item *si)
754{
755 struct stack_item *dead = si;
756 si = si->prev;
757 xfree (dead->data);
758 xfree (dead);
759 return si;
760}
761
762/* Put here the code to store, into fi->saved_regs, the addresses of
763 the saved registers of frame described by FRAME_INFO. This
764 includes special registers such as pc and fp saved in special ways
765 in the stack frame. sp is even more special: the address we return
a5f6c8f5 766 for it IS the sp for the next frame. */
2e4b5889
OF
767
768struct cris_unwind_cache *
769cris_frame_unwind_cache (struct frame_info *next_frame,
770 void **this_prologue_cache)
771{
772 CORE_ADDR pc;
773 struct cris_unwind_cache *info;
774 int i;
775
776 if ((*this_prologue_cache))
777 return (*this_prologue_cache);
778
779 info = FRAME_OBSTACK_ZALLOC (struct cris_unwind_cache);
780 (*this_prologue_cache) = info;
781 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
782
783 /* Zero all fields. */
784 info->prev_sp = 0;
785 info->base = 0;
786 info->size = 0;
787 info->sp_offset = 0;
788 info->r8_offset = 0;
789 info->uses_frame = 0;
790 info->return_pc = 0;
791 info->leaf_function = 0;
792
793 /* Prologue analysis does the rest... */
5114e29d 794 if (cris_version () == 32)
93d42b30
DJ
795 crisv32_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
796 next_frame, info);
5114e29d 797 else
93d42b30
DJ
798 cris_scan_prologue (frame_func_unwind (next_frame, NORMAL_FRAME),
799 next_frame, info);
2e4b5889
OF
800
801 return info;
802}
803
804/* Given a GDB frame, determine the address of the calling function's
805 frame. This will be used to create a new GDB frame struct. */
806
807static void
808cris_frame_this_id (struct frame_info *next_frame,
809 void **this_prologue_cache,
810 struct frame_id *this_id)
811{
812 struct cris_unwind_cache *info
813 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
814 CORE_ADDR base;
815 CORE_ADDR func;
816 struct frame_id id;
817
818 /* The FUNC is easy. */
93d42b30 819 func = frame_func_unwind (next_frame, NORMAL_FRAME);
2e4b5889
OF
820
821 /* Hopefully the prologue analysis either correctly determined the
822 frame's base (which is the SP from the previous frame), or set
823 that base to "NULL". */
824 base = info->prev_sp;
825 if (base == 0)
826 return;
827
828 id = frame_id_build (base, func);
829
830 (*this_id) = id;
831}
832
833static void
834cris_frame_prev_register (struct frame_info *next_frame,
835 void **this_prologue_cache,
836 int regnum, int *optimizedp,
837 enum lval_type *lvalp, CORE_ADDR *addrp,
e2a2a3e8 838 int *realnump, gdb_byte *bufferp)
2e4b5889
OF
839{
840 struct cris_unwind_cache *info
841 = cris_frame_unwind_cache (next_frame, this_prologue_cache);
1f67027d
AC
842 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
843 optimizedp, lvalp, addrp, realnump, bufferp);
2e4b5889
OF
844}
845
846/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
847 dummy frame. The frame ID's base needs to match the TOS value
848 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
849 breakpoint. */
850
851static struct frame_id
852cris_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
853{
854 return frame_id_build (cris_unwind_sp (gdbarch, next_frame),
855 frame_pc_unwind (next_frame));
856}
857
858static CORE_ADDR
859cris_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
860{
861 /* Align to the size of an instruction (so that they can safely be
862 pushed onto the stack). */
863 return sp & ~3;
864}
865
866static CORE_ADDR
867cris_push_dummy_code (struct gdbarch *gdbarch,
868 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
869 struct value **args, int nargs,
870 struct type *value_type,
871 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
872{
873 /* Allocate space sufficient for a breakpoint. */
874 sp = (sp - 4) & ~3;
875 /* Store the address of that breakpoint */
876 *bp_addr = sp;
877 /* CRIS always starts the call at the callee's entry point. */
878 *real_pc = funaddr;
879 return sp;
880}
881
882static CORE_ADDR
7d9b040b 883cris_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2e4b5889
OF
884 struct regcache *regcache, CORE_ADDR bp_addr,
885 int nargs, struct value **args, CORE_ADDR sp,
886 int struct_return, CORE_ADDR struct_addr)
887{
888 int stack_alloc;
889 int stack_offset;
890 int argreg;
891 int argnum;
892
893 CORE_ADDR regval;
894
895 /* The function's arguments and memory allocated by gdb for the arguments to
896 point at reside in separate areas on the stack.
897 Both frame pointers grow toward higher addresses. */
898 CORE_ADDR fp_arg;
899 CORE_ADDR fp_mem;
900
901 struct stack_item *si = NULL;
902
a5f6c8f5 903 /* Push the return address. */
2e4b5889
OF
904 regcache_cooked_write_unsigned (regcache, SRP_REGNUM, bp_addr);
905
906 /* Are we returning a value using a structure return or a normal value
907 return? struct_addr is the address of the reserved space for the return
908 structure to be written on the stack. */
909 if (struct_return)
910 {
911 regcache_cooked_write_unsigned (regcache, STR_REGNUM, struct_addr);
912 }
913
914 /* Now load as many as possible of the first arguments into registers,
915 and push the rest onto the stack. */
916 argreg = ARG1_REGNUM;
917 stack_offset = 0;
918
919 for (argnum = 0; argnum < nargs; argnum++)
920 {
921 int len;
922 char *val;
923 int reg_demand;
924 int i;
925
4991999e 926 len = TYPE_LENGTH (value_type (args[argnum]));
0fd88904 927 val = (char *) value_contents (args[argnum]);
2e4b5889
OF
928
929 /* How may registers worth of storage do we need for this argument? */
930 reg_demand = (len / 4) + (len % 4 != 0 ? 1 : 0);
931
932 if (len <= (2 * 4) && (argreg + reg_demand - 1 <= ARG4_REGNUM))
933 {
934 /* Data passed by value. Fits in available register(s). */
935 for (i = 0; i < reg_demand; i++)
936 {
937 regcache_cooked_write_unsigned (regcache, argreg,
938 *(unsigned long *) val);
939 argreg++;
940 val += 4;
941 }
942 }
943 else if (len <= (2 * 4) && argreg <= ARG4_REGNUM)
944 {
945 /* Data passed by value. Does not fit in available register(s).
946 Use the register(s) first, then the stack. */
947 for (i = 0; i < reg_demand; i++)
948 {
949 if (argreg <= ARG4_REGNUM)
950 {
951 regcache_cooked_write_unsigned (regcache, argreg,
952 *(unsigned long *) val);
953 argreg++;
954 val += 4;
955 }
956 else
957 {
958 /* Push item for later so that pushed arguments
959 come in the right order. */
960 si = push_stack_item (si, val, 4);
961 val += 4;
962 }
963 }
964 }
965 else if (len > (2 * 4))
966 {
967 /* FIXME */
e2e0b3e5 968 internal_error (__FILE__, __LINE__, _("We don't do this"));
2e4b5889
OF
969 }
970 else
971 {
972 /* Data passed by value. No available registers. Put it on
973 the stack. */
974 si = push_stack_item (si, val, len);
975 }
976 }
977
978 while (si)
979 {
980 /* fp_arg must be word-aligned (i.e., don't += len) to match
981 the function prologue. */
982 sp = (sp - si->len) & ~3;
983 write_memory (sp, si->data, si->len);
984 si = pop_stack_item (si);
985 }
986
987 /* Finally, update the SP register. */
988 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
989
990 return sp;
991}
992
e2a2a3e8
OF
993static const struct frame_unwind cris_frame_unwind =
994{
2e4b5889
OF
995 NORMAL_FRAME,
996 cris_frame_this_id,
997 cris_frame_prev_register
998};
999
1000const struct frame_unwind *
1001cris_frame_sniffer (struct frame_info *next_frame)
1002{
1003 return &cris_frame_unwind;
1004}
1005
1006static CORE_ADDR
1007cris_frame_base_address (struct frame_info *next_frame, void **this_cache)
1008{
1009 struct cris_unwind_cache *info
1010 = cris_frame_unwind_cache (next_frame, this_cache);
1011 return info->base;
1012}
1013
e2a2a3e8
OF
1014static const struct frame_base cris_frame_base =
1015{
2e4b5889
OF
1016 &cris_frame_unwind,
1017 cris_frame_base_address,
1018 cris_frame_base_address,
1019 cris_frame_base_address
1020};
1021
29134980
OF
1022/* Frames information. The definition of the struct frame_info is
1023
1024 CORE_ADDR frame
1025 CORE_ADDR pc
5a203e44 1026 enum frame_type type;
29134980
OF
1027 CORE_ADDR return_pc
1028 int leaf_function
1029
1030 If the compilation option -fno-omit-frame-pointer is present the
1031 variable frame will be set to the content of R8 which is the frame
1032 pointer register.
1033
1034 The variable pc contains the address where execution is performed
1035 in the present frame. The innermost frame contains the current content
1036 of the register PC. All other frames contain the content of the
1037 register PC in the next frame.
1038
5a203e44
AC
1039 The variable `type' indicates the frame's type: normal, SIGTRAMP
1040 (associated with a signal handler), dummy (associated with a dummy
1041 frame).
29134980
OF
1042
1043 The variable return_pc contains the address where execution should be
1044 resumed when the present frame has finished, the return address.
1045
1046 The variable leaf_function is 1 if the return address is in the register
1047 SRP, and 0 if it is on the stack.
1048
1049 Prologue instructions C-code.
1050 The prologue may consist of (-fno-omit-frame-pointer)
1051 1) 2)
1052 push srp
1053 push r8 push r8
1054 move.d sp,r8 move.d sp,r8
1055 subq X,sp subq X,sp
1056 movem rY,[sp] movem rY,[sp]
1057 move.S rZ,[r8-U] move.S rZ,[r8-U]
1058
1059 where 1 is a non-terminal function, and 2 is a leaf-function.
1060
1061 Note that this assumption is extremely brittle, and will break at the
1062 slightest change in GCC's prologue.
1063
1064 If local variables are declared or register contents are saved on stack
1065 the subq-instruction will be present with X as the number of bytes
1066 needed for storage. The reshuffle with respect to r8 may be performed
1067 with any size S (b, w, d) and any of the general registers Z={0..13}.
1068 The offset U should be representable by a signed 8-bit value in all cases.
1069 Thus, the prefix word is assumed to be immediate byte offset mode followed
1070 by another word containing the instruction.
1071
1072 Degenerate cases:
1073 3)
1074 push r8
1075 move.d sp,r8
1076 move.d r8,sp
1077 pop r8
1078
1079 Prologue instructions C++-code.
1080 Case 1) and 2) in the C-code may be followed by
1081
1082 move.d r10,rS ; this
1083 move.d r11,rT ; P1
1084 move.d r12,rU ; P2
1085 move.d r13,rV ; P3
1086 move.S [r8+U],rZ ; P4
1087
1088 if any of the call parameters are stored. The host expects these
1089 instructions to be executed in order to get the call parameters right. */
1090
1091/* Examine the prologue of a function. The variable ip is the address of
1092 the first instruction of the prologue. The variable limit is the address
1093 of the first instruction after the prologue. The variable fi contains the
1094 information in struct frame_info. The variable frameless_p controls whether
1095 the entire prologue is examined (0) or just enough instructions to
1096 determine that it is a prologue (1). */
1097
a78f21af 1098static CORE_ADDR
2e4b5889
OF
1099cris_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1100 struct cris_unwind_cache *info)
29134980
OF
1101{
1102 /* Present instruction. */
1103 unsigned short insn;
1104
1105 /* Next instruction, lookahead. */
1106 unsigned short insn_next;
1107 int regno;
1108
1109 /* Is there a push fp? */
1110 int have_fp;
1111
1112 /* Number of byte on stack used for local variables and movem. */
1113 int val;
1114
1115 /* Highest register number in a movem. */
1116 int regsave;
1117
1118 /* move.d r<source_register>,rS */
1119 short source_register;
1120
2e4b5889
OF
1121 /* Scan limit. */
1122 int limit;
29134980 1123
2e4b5889
OF
1124 /* This frame is with respect to a leaf until a push srp is found. */
1125 if (info)
1126 {
1127 info->leaf_function = 1;
1128 }
29134980
OF
1129
1130 /* Assume nothing on stack. */
1131 val = 0;
1132 regsave = -1;
1133
2e4b5889
OF
1134 /* If we were called without a next_frame, that means we were called
1135 from cris_skip_prologue which already tried to find the end of the
1136 prologue through the symbol information. 64 instructions past current
1137 pc is arbitrarily chosen, but at least it means we'll stop eventually. */
1138 limit = next_frame ? frame_pc_unwind (next_frame) : pc + 64;
29134980 1139
29134980 1140 /* Find the prologue instructions. */
a5f6c8f5 1141 while (pc > 0 && pc < limit)
29134980 1142 {
2e4b5889
OF
1143 insn = read_memory_unsigned_integer (pc, 2);
1144 pc += 2;
29134980
OF
1145 if (insn == 0xE1FC)
1146 {
1147 /* push <reg> 32 bit instruction */
2e4b5889
OF
1148 insn_next = read_memory_unsigned_integer (pc, 2);
1149 pc += 2;
29134980 1150 regno = cris_get_operand2 (insn_next);
2e4b5889
OF
1151 if (info)
1152 {
1153 info->sp_offset += 4;
1154 }
dbbff683
OF
1155 /* This check, meant to recognize srp, used to be regno ==
1156 (SRP_REGNUM - NUM_GENREGS), but that covers r11 also. */
1157 if (insn_next == 0xBE7E)
29134980 1158 {
2e4b5889
OF
1159 if (info)
1160 {
1161 info->leaf_function = 0;
1162 }
29134980 1163 }
b4206d25
OF
1164 else if (insn_next == 0x8FEE)
1165 {
1166 /* push $r8 */
1167 if (info)
1168 {
1169 info->r8_offset = info->sp_offset;
1170 }
1171 }
29134980
OF
1172 }
1173 else if (insn == 0x866E)
1174 {
1175 /* move.d sp,r8 */
2e4b5889
OF
1176 if (info)
1177 {
1178 info->uses_frame = 1;
2e4b5889 1179 }
29134980
OF
1180 continue;
1181 }
1182 else if (cris_get_operand2 (insn) == SP_REGNUM
1183 && cris_get_mode (insn) == 0x0000
1184 && cris_get_opcode (insn) == 0x000A)
1185 {
1186 /* subq <val>,sp */
2e4b5889
OF
1187 if (info)
1188 {
1189 info->sp_offset += cris_get_quick_value (insn);
1190 }
29134980
OF
1191 }
1192 else if (cris_get_mode (insn) == 0x0002
1193 && cris_get_opcode (insn) == 0x000F
1194 && cris_get_size (insn) == 0x0003
1195 && cris_get_operand1 (insn) == SP_REGNUM)
1196 {
1197 /* movem r<regsave>,[sp] */
29134980
OF
1198 regsave = cris_get_operand2 (insn);
1199 }
1200 else if (cris_get_operand2 (insn) == SP_REGNUM
1201 && ((insn & 0x0F00) >> 8) == 0x0001
1202 && (cris_get_signed_offset (insn) < 0))
1203 {
1204 /* Immediate byte offset addressing prefix word with sp as base
1205 register. Used for CRIS v8 i.e. ETRAX 100 and newer if <val>
1206 is between 64 and 128.
1207 movem r<regsave>,[sp=sp-<val>] */
2e4b5889
OF
1208 if (info)
1209 {
1210 info->sp_offset += -cris_get_signed_offset (insn);
1211 }
1212 insn_next = read_memory_unsigned_integer (pc, 2);
1213 pc += 2;
29134980
OF
1214 if (cris_get_mode (insn_next) == PREFIX_ASSIGN_MODE
1215 && cris_get_opcode (insn_next) == 0x000F
1216 && cris_get_size (insn_next) == 0x0003
1217 && cris_get_operand1 (insn_next) == SP_REGNUM)
1218 {
29134980
OF
1219 regsave = cris_get_operand2 (insn_next);
1220 }
1221 else
1222 {
1223 /* The prologue ended before the limit was reached. */
2e4b5889 1224 pc -= 4;
29134980
OF
1225 break;
1226 }
1227 }
1228 else if (cris_get_mode (insn) == 0x0001
1229 && cris_get_opcode (insn) == 0x0009
1230 && cris_get_size (insn) == 0x0002)
1231 {
1232 /* move.d r<10..13>,r<0..15> */
29134980 1233 source_register = cris_get_operand1 (insn);
2a9ecef2
OF
1234
1235 /* FIXME? In the glibc solibs, the prologue might contain something
1236 like (this example taken from relocate_doit):
1237 move.d $pc,$r0
1238 sub.d 0xfffef426,$r0
1239 which isn't covered by the source_register check below. Question
1240 is whether to add a check for this combo, or make better use of
1241 the limit variable instead. */
29134980
OF
1242 if (source_register < ARG1_REGNUM || source_register > ARG4_REGNUM)
1243 {
1244 /* The prologue ended before the limit was reached. */
2e4b5889 1245 pc -= 2;
29134980
OF
1246 break;
1247 }
1248 }
2e4b5889 1249 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1250 /* The size is a fixed-size. */
1251 && ((insn & 0x0F00) >> 8) == 0x0001
1252 /* A negative offset. */
1253 && (cris_get_signed_offset (insn) < 0))
1254 {
1255 /* move.S rZ,[r8-U] (?) */
2e4b5889
OF
1256 insn_next = read_memory_unsigned_integer (pc, 2);
1257 pc += 2;
29134980
OF
1258 regno = cris_get_operand2 (insn_next);
1259 if ((regno >= 0 && regno < SP_REGNUM)
1260 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1261 && cris_get_opcode (insn_next) == 0x000F)
1262 {
1263 /* move.S rZ,[r8-U] */
1264 continue;
1265 }
1266 else
1267 {
1268 /* The prologue ended before the limit was reached. */
2e4b5889 1269 pc -= 4;
29134980
OF
1270 break;
1271 }
1272 }
2e4b5889 1273 else if (cris_get_operand2 (insn) == CRIS_FP_REGNUM
29134980
OF
1274 /* The size is a fixed-size. */
1275 && ((insn & 0x0F00) >> 8) == 0x0001
1276 /* A positive offset. */
1277 && (cris_get_signed_offset (insn) > 0))
1278 {
1279 /* move.S [r8+U],rZ (?) */
2e4b5889
OF
1280 insn_next = read_memory_unsigned_integer (pc, 2);
1281 pc += 2;
29134980
OF
1282 regno = cris_get_operand2 (insn_next);
1283 if ((regno >= 0 && regno < SP_REGNUM)
1284 && cris_get_mode (insn_next) == PREFIX_OFFSET_MODE
1285 && cris_get_opcode (insn_next) == 0x0009
1286 && cris_get_operand1 (insn_next) == regno)
1287 {
1288 /* move.S [r8+U],rZ */
1289 continue;
1290 }
1291 else
1292 {
1293 /* The prologue ended before the limit was reached. */
2e4b5889 1294 pc -= 4;
29134980
OF
1295 break;
1296 }
1297 }
1298 else
1299 {
1300 /* The prologue ended before the limit was reached. */
2e4b5889 1301 pc -= 2;
29134980
OF
1302 break;
1303 }
1304 }
29134980 1305
2e4b5889
OF
1306 /* We only want to know the end of the prologue when next_frame and info
1307 are NULL (called from cris_skip_prologue i.e.). */
1308 if (next_frame == NULL && info == NULL)
1309 {
1310 return pc;
1311 }
29134980 1312
2e4b5889
OF
1313 info->size = info->sp_offset;
1314
1315 /* Compute the previous frame's stack pointer (which is also the
1316 frame's ID's stack address), and this frame's base pointer. */
1317 if (info->uses_frame)
29134980 1318 {
2e4b5889
OF
1319 ULONGEST this_base;
1320 /* The SP was moved to the FP. This indicates that a new frame
1321 was created. Get THIS frame's FP value by unwinding it from
1322 the next frame. */
1323 frame_unwind_unsigned_register (next_frame, CRIS_FP_REGNUM,
1324 &this_base);
1325 info->base = this_base;
b4206d25
OF
1326 info->saved_regs[CRIS_FP_REGNUM].addr = info->base;
1327
2e4b5889
OF
1328 /* The FP points at the last saved register. Adjust the FP back
1329 to before the first saved register giving the SP. */
1330 info->prev_sp = info->base + info->r8_offset;
1331 }
1332 else
1333 {
1334 ULONGEST this_base;
1335 /* Assume that the FP is this frame's SP but with that pushed
1336 stack space added back. */
1337 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1338 info->base = this_base;
1339 info->prev_sp = info->base + info->size;
1340 }
29134980 1341
2e4b5889
OF
1342 /* Calculate the addresses for the saved registers on the stack. */
1343 /* FIXME: The address calculation should really be done on the fly while
1344 we're analyzing the prologue (we only hold one regsave value as it is
1345 now). */
1346 val = info->sp_offset;
1347
1348 for (regno = regsave; regno >= 0; regno--)
1349 {
1350 info->saved_regs[regno].addr = info->base + info->r8_offset - val;
1351 val -= 4;
1352 }
1353
1354 /* The previous frame's SP needed to be computed. Save the computed
1355 value. */
1356 trad_frame_set_value (info->saved_regs, SP_REGNUM, info->prev_sp);
1357
1358 if (!info->leaf_function)
1359 {
b4206d25
OF
1360 /* SRP saved on the stack. But where? */
1361 if (info->r8_offset == 0)
1362 {
1363 /* R8 not pushed yet. */
1364 info->saved_regs[SRP_REGNUM].addr = info->base;
1365 }
1366 else
1367 {
1368 /* R8 pushed, but SP may or may not be moved to R8 yet. */
1369 info->saved_regs[SRP_REGNUM].addr = info->base + 4;
1370 }
29134980 1371 }
2e4b5889
OF
1372
1373 /* The PC is found in SRP (the actual register or located on the stack). */
1374 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1375
1376 return pc;
29134980
OF
1377}
1378
5114e29d
OF
1379static CORE_ADDR
1380crisv32_scan_prologue (CORE_ADDR pc, struct frame_info *next_frame,
1381 struct cris_unwind_cache *info)
1382{
1383 ULONGEST this_base;
1384
1385 /* Unlike the CRISv10 prologue scanner (cris_scan_prologue), this is not
1386 meant to be a full-fledged prologue scanner. It is only needed for
1387 the cases where we end up in code always lacking DWARF-2 CFI, notably:
1388
1389 * PLT stubs (library calls)
1390 * call dummys
1391 * signal trampolines
1392
1393 For those cases, it is assumed that there is no actual prologue; that
1394 the stack pointer is not adjusted, and (as a consequence) the return
1395 address is not pushed onto the stack. */
1396
1397 /* We only want to know the end of the prologue when next_frame and info
1398 are NULL (called from cris_skip_prologue i.e.). */
1399 if (next_frame == NULL && info == NULL)
1400 {
1401 return pc;
1402 }
1403
1404 /* The SP is assumed to be unaltered. */
1405 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &this_base);
1406 info->base = this_base;
1407 info->prev_sp = this_base;
1408
1409 /* The PC is assumed to be found in SRP. */
1410 info->saved_regs[PC_REGNUM] = info->saved_regs[SRP_REGNUM];
1411
1412 return pc;
1413}
1414
29134980
OF
1415/* Advance pc beyond any function entry prologue instructions at pc
1416 to reach some "real" code. */
1417
29134980
OF
1418/* Given a PC value corresponding to the start of a function, return the PC
1419 of the first instruction after the function prologue. */
1420
a78f21af 1421static CORE_ADDR
2e4b5889 1422cris_skip_prologue (CORE_ADDR pc)
29134980 1423{
2e4b5889
OF
1424 CORE_ADDR func_addr, func_end;
1425 struct symtab_and_line sal;
29134980
OF
1426 CORE_ADDR pc_after_prologue;
1427
2e4b5889
OF
1428 /* If we have line debugging information, then the end of the prologue
1429 should the first assembly instruction of the first source line. */
1430 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1431 {
1432 sal = find_pc_line (func_addr, 0);
1433 if (sal.end > 0 && sal.end < func_end)
1434 return sal.end;
1435 }
29134980 1436
5114e29d
OF
1437 if (cris_version () == 32)
1438 pc_after_prologue = crisv32_scan_prologue (pc, NULL, NULL);
1439 else
1440 pc_after_prologue = cris_scan_prologue (pc, NULL, NULL);
1441
29134980
OF
1442 return pc_after_prologue;
1443}
1444
2e4b5889
OF
1445static CORE_ADDR
1446cris_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1447{
1448 ULONGEST pc;
1449 frame_unwind_unsigned_register (next_frame, PC_REGNUM, &pc);
1450 return pc;
1451}
1452
1453static CORE_ADDR
1454cris_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1455{
1456 ULONGEST sp;
1457 frame_unwind_unsigned_register (next_frame, SP_REGNUM, &sp);
1458 return sp;
1459}
1460
29134980
OF
1461/* Use the program counter to determine the contents and size of a breakpoint
1462 instruction. It returns a pointer to a string of bytes that encode a
1463 breakpoint instruction, stores the length of the string to *lenptr, and
1464 adjusts pcptr (if necessary) to point to the actual memory location where
1465 the breakpoint should be inserted. */
1466
a78f21af 1467static const unsigned char *
29134980
OF
1468cris_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1469{
0e6bdb31
OF
1470 static unsigned char break8_insn[] = {0x38, 0xe9};
1471 static unsigned char break15_insn[] = {0x3f, 0xe9};
29134980
OF
1472 *lenptr = 2;
1473
0e6bdb31
OF
1474 if (cris_mode () == cris_mode_guru)
1475 return break15_insn;
1476 else
1477 return break8_insn;
29134980
OF
1478}
1479
29134980
OF
1480/* Returns 1 if spec_reg is applicable to the current gdbarch's CRIS version,
1481 0 otherwise. */
1482
a78f21af 1483static int
29134980
OF
1484cris_spec_reg_applicable (struct cris_spec_reg spec_reg)
1485{
1486 int version = cris_version ();
1487
1488 switch (spec_reg.applicable_version)
1489 {
1490 case cris_ver_version_all:
1491 return 1;
1492 case cris_ver_warning:
1493 /* Indeterminate/obsolete. */
1494 return 0;
29134980
OF
1495 case cris_ver_v0_3:
1496 return (version >= 0 && version <= 3);
1497 case cris_ver_v3p:
1498 return (version >= 3);
1499 case cris_ver_v8:
1500 return (version == 8 || version == 9);
1501 case cris_ver_v8p:
1502 return (version >= 8);
c600d464
OF
1503 case cris_ver_v0_10:
1504 return (version >= 0 && version <= 10);
1505 case cris_ver_v3_10:
1506 return (version >= 3 && version <= 10);
1507 case cris_ver_v8_10:
1508 return (version >= 8 && version <= 10);
1509 case cris_ver_v10:
1510 return (version == 10);
29134980
OF
1511 case cris_ver_v10p:
1512 return (version >= 10);
c600d464
OF
1513 case cris_ver_v32p:
1514 return (version >= 32);
29134980
OF
1515 default:
1516 /* Invalid cris version. */
1517 return 0;
1518 }
1519}
1520
1d94326f
AC
1521/* Returns the register size in unit byte. Returns 0 for an unimplemented
1522 register, -1 for an invalid register. */
1523
1524static int
1525cris_register_size (int regno)
1526{
c600d464 1527 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1d94326f
AC
1528 int i;
1529 int spec_regno;
1530
1531 if (regno >= 0 && regno < NUM_GENREGS)
1532 {
1533 /* General registers (R0 - R15) are 32 bits. */
1534 return 4;
1535 }
c600d464 1536 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1d94326f
AC
1537 {
1538 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1539 Adjust regno accordingly. */
1540 spec_regno = regno - NUM_GENREGS;
1541
c600d464 1542 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1d94326f
AC
1543 {
1544 if (cris_spec_regs[i].number == spec_regno
1545 && cris_spec_reg_applicable (cris_spec_regs[i]))
1546 /* Go with the first applicable register. */
1547 return cris_spec_regs[i].reg_size;
1548 }
1549 /* Special register not applicable to this CRIS version. */
1550 return 0;
1551 }
f57d151a 1552 else if (regno >= PC_REGNUM && regno < gdbarch_num_regs (current_gdbarch))
1d94326f 1553 {
c600d464
OF
1554 /* This will apply to CRISv32 only where there are additional registers
1555 after the special registers (pseudo PC and support registers). */
1556 return 4;
1d94326f 1557 }
c600d464
OF
1558
1559
1560 return -1;
1d94326f
AC
1561}
1562
29134980
OF
1563/* Nonzero if regno should not be fetched from the target. This is the case
1564 for unimplemented (size 0) and non-existant registers. */
1565
a78f21af 1566static int
29134980
OF
1567cris_cannot_fetch_register (int regno)
1568{
f57d151a 1569 return ((regno < 0 || regno >= gdbarch_num_regs (current_gdbarch))
29134980
OF
1570 || (cris_register_size (regno) == 0));
1571}
1572
1573/* Nonzero if regno should not be written to the target, for various
1574 reasons. */
1575
a78f21af 1576static int
29134980
OF
1577cris_cannot_store_register (int regno)
1578{
1579 /* There are three kinds of registers we refuse to write to.
1580 1. Those that not implemented.
1581 2. Those that are read-only (depends on the processor mode).
1582 3. Those registers to which a write has no effect.
1583 */
1584
f57d151a
UW
1585 if (regno < 0
1586 || regno >= gdbarch_num_regs (current_gdbarch)
1587 || cris_register_size (regno) == 0)
29134980
OF
1588 /* Not implemented. */
1589 return 1;
1590
1591 else if (regno == VR_REGNUM)
1592 /* Read-only. */
1593 return 1;
1594
1595 else if (regno == P0_REGNUM || regno == P4_REGNUM || regno == P8_REGNUM)
1596 /* Writing has no effect. */
1597 return 1;
1598
a5f6c8f5
OF
1599 /* IBR, BAR, BRP and IRP are read-only in user mode. Let the debug
1600 agent decide whether they are writable. */
29134980
OF
1601
1602 return 0;
1603}
1604
c600d464
OF
1605/* Nonzero if regno should not be fetched from the target. This is the case
1606 for unimplemented (size 0) and non-existant registers. */
1607
1608static int
1609crisv32_cannot_fetch_register (int regno)
1610{
f57d151a 1611 return ((regno < 0 || regno >= gdbarch_num_regs (current_gdbarch))
c600d464
OF
1612 || (cris_register_size (regno) == 0));
1613}
1614
1615/* Nonzero if regno should not be written to the target, for various
1616 reasons. */
1617
1618static int
1619crisv32_cannot_store_register (int regno)
1620{
1621 /* There are three kinds of registers we refuse to write to.
1622 1. Those that not implemented.
1623 2. Those that are read-only (depends on the processor mode).
1624 3. Those registers to which a write has no effect.
1625 */
1626
f57d151a
UW
1627 if (regno < 0
1628 || regno >= gdbarch_num_regs (current_gdbarch)
1629 || cris_register_size (regno) == 0)
c600d464
OF
1630 /* Not implemented. */
1631 return 1;
1632
1633 else if (regno == VR_REGNUM)
1634 /* Read-only. */
1635 return 1;
1636
1637 else if (regno == BZ_REGNUM || regno == WZ_REGNUM || regno == DZ_REGNUM)
1638 /* Writing has no effect. */
1639 return 1;
1640
1641 /* Many special registers are read-only in user mode. Let the debug
1642 agent decide whether they are writable. */
1643
1644 return 0;
1645}
1646
29134980
OF
1647/* Return the GDB type (defined in gdbtypes.c) for the "standard" data type
1648 of data in register regno. */
1649
a78f21af 1650static struct type *
c1d546cd 1651cris_register_type (struct gdbarch *gdbarch, int regno)
29134980 1652{
a5f6c8f5
OF
1653 if (regno == PC_REGNUM)
1654 return builtin_type_void_func_ptr;
1655 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1656 return builtin_type_void_data_ptr;
1657 else if ((regno >= 0 && regno < SP_REGNUM)
1658 || (regno >= MOF_REGNUM && regno <= USP_REGNUM))
1659 /* Note: R8 taken care of previous clause. */
1660 return builtin_type_uint32;
1661 else if (regno >= P4_REGNUM && regno <= CCR_REGNUM)
1662 return builtin_type_uint16;
1663 else if (regno >= P0_REGNUM && regno <= VR_REGNUM)
1664 return builtin_type_uint8;
29134980 1665 else
a5f6c8f5
OF
1666 /* Invalid (unimplemented) register. */
1667 return builtin_type_int0;
29134980
OF
1668}
1669
c600d464
OF
1670static struct type *
1671crisv32_register_type (struct gdbarch *gdbarch, int regno)
1672{
1673 if (regno == PC_REGNUM)
1674 return builtin_type_void_func_ptr;
1675 else if (regno == SP_REGNUM || regno == CRIS_FP_REGNUM)
1676 return builtin_type_void_data_ptr;
1677 else if ((regno >= 0 && regno <= ACR_REGNUM)
1678 || (regno >= EXS_REGNUM && regno <= SPC_REGNUM)
1679 || (regno == PID_REGNUM)
1680 || (regno >= S0_REGNUM && regno <= S15_REGNUM))
1681 /* Note: R8 and SP taken care of by previous clause. */
1682 return builtin_type_uint32;
1683 else if (regno == WZ_REGNUM)
1684 return builtin_type_uint16;
1685 else if (regno == BZ_REGNUM || regno == VR_REGNUM || regno == SRS_REGNUM)
1686 return builtin_type_uint8;
1687 else
1688 {
1689 /* Invalid (unimplemented) register. Should not happen as there are
1690 no unimplemented CRISv32 registers. */
8a3fe4f8 1691 warning (_("crisv32_register_type: unknown regno %d"), regno);
c600d464
OF
1692 return builtin_type_int0;
1693 }
1694}
1695
2e4b5889
OF
1696/* Stores a function return value of type type, where valbuf is the address
1697 of the value to be stored. */
29134980 1698
2e4b5889 1699/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1700
2e4b5889
OF
1701static void
1702cris_store_return_value (struct type *type, struct regcache *regcache,
1703 const void *valbuf)
29134980 1704{
2e4b5889
OF
1705 ULONGEST val;
1706 int len = TYPE_LENGTH (type);
29134980 1707
2e4b5889 1708 if (len <= 4)
29134980 1709 {
2e4b5889
OF
1710 /* Put the return value in R10. */
1711 val = extract_unsigned_integer (valbuf, len);
1712 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
29134980 1713 }
2e4b5889 1714 else if (len <= 8)
29134980 1715 {
2e4b5889
OF
1716 /* Put the return value in R10 and R11. */
1717 val = extract_unsigned_integer (valbuf, 4);
1718 regcache_cooked_write_unsigned (regcache, ARG1_REGNUM, val);
1719 val = extract_unsigned_integer ((char *)valbuf + 4, len - 4);
1720 regcache_cooked_write_unsigned (regcache, ARG2_REGNUM, val);
29134980 1721 }
2e4b5889 1722 else
8a3fe4f8 1723 error (_("cris_store_return_value: type length too large."));
29134980
OF
1724}
1725
2e4b5889
OF
1726/* Return the name of register regno as a string. Return NULL for an invalid or
1727 unimplemented register. */
29134980 1728
c600d464
OF
1729static const char *
1730cris_special_register_name (int regno)
1731{
1732 int spec_regno;
1733 int i;
1734
1735 /* Special register (R16 - R31). cris_spec_regs is zero-based.
1736 Adjust regno accordingly. */
1737 spec_regno = regno - NUM_GENREGS;
1738
1739 /* Assume nothing about the layout of the cris_spec_regs struct
1740 when searching. */
1741 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1742 {
1743 if (cris_spec_regs[i].number == spec_regno
1744 && cris_spec_reg_applicable (cris_spec_regs[i]))
1745 /* Go with the first applicable register. */
1746 return cris_spec_regs[i].name;
1747 }
1748 /* Special register not applicable to this CRIS version. */
1749 return NULL;
1750}
1751
2e4b5889
OF
1752static const char *
1753cris_register_name (int regno)
1754{
1755 static char *cris_genreg_names[] =
1756 { "r0", "r1", "r2", "r3", \
1757 "r4", "r5", "r6", "r7", \
1758 "r8", "r9", "r10", "r11", \
1759 "r12", "r13", "sp", "pc" };
29134980 1760
2e4b5889 1761 if (regno >= 0 && regno < NUM_GENREGS)
29134980 1762 {
2e4b5889
OF
1763 /* General register. */
1764 return cris_genreg_names[regno];
29134980 1765 }
f57d151a 1766 else if (regno >= NUM_GENREGS && regno < gdbarch_num_regs (current_gdbarch))
29134980 1767 {
c600d464
OF
1768 return cris_special_register_name (regno);
1769 }
1770 else
1771 {
1772 /* Invalid register. */
2e4b5889
OF
1773 return NULL;
1774 }
c600d464
OF
1775}
1776
1777static const char *
1778crisv32_register_name (int regno)
1779{
1780 static char *crisv32_genreg_names[] =
1781 { "r0", "r1", "r2", "r3", \
1782 "r4", "r5", "r6", "r7", \
1783 "r8", "r9", "r10", "r11", \
1784 "r12", "r13", "sp", "acr"
1785 };
1786
1787 static char *crisv32_sreg_names[] =
1788 { "s0", "s1", "s2", "s3", \
1789 "s4", "s5", "s6", "s7", \
1790 "s8", "s9", "s10", "s11", \
1791 "s12", "s13", "s14", "s15"
1792 };
1793
1794 if (regno >= 0 && regno < NUM_GENREGS)
1795 {
1796 /* General register. */
1797 return crisv32_genreg_names[regno];
1798 }
1799 else if (regno >= NUM_GENREGS && regno < (NUM_GENREGS + NUM_SPECREGS))
1800 {
1801 return cris_special_register_name (regno);
1802 }
1803 else if (regno == PC_REGNUM)
1804 {
1805 return "pc";
1806 }
1807 else if (regno >= S0_REGNUM && regno <= S15_REGNUM)
1808 {
1809 return crisv32_sreg_names[regno - S0_REGNUM];
1810 }
2e4b5889
OF
1811 else
1812 {
1813 /* Invalid register. */
1814 return NULL;
29134980 1815 }
29134980
OF
1816}
1817
a5f6c8f5
OF
1818/* Convert DWARF register number REG to the appropriate register
1819 number used by GDB. */
1820
2e4b5889 1821static int
a5f6c8f5 1822cris_dwarf2_reg_to_regnum (int reg)
29134980 1823{
a5f6c8f5
OF
1824 /* We need to re-map a couple of registers (SRP is 16 in Dwarf-2 register
1825 numbering, MOF is 18).
1826 Adapted from gcc/config/cris/cris.h. */
1827 static int cris_dwarf_regmap[] = {
1828 0, 1, 2, 3,
1829 4, 5, 6, 7,
1830 8, 9, 10, 11,
1831 12, 13, 14, 15,
1832 27, -1, -1, -1,
1833 -1, -1, -1, 23,
1834 -1, -1, -1, 27,
1835 -1, -1, -1, -1
1836 };
1837 int regnum = -1;
1838
1839 if (reg >= 0 && reg < ARRAY_SIZE (cris_dwarf_regmap))
1840 regnum = cris_dwarf_regmap[reg];
1841
1842 if (regnum == -1)
8a3fe4f8 1843 warning (_("Unmapped DWARF Register #%d encountered."), reg);
a5f6c8f5
OF
1844
1845 return regnum;
1846}
1847
1848/* DWARF-2 frame support. */
1849
1850static void
1851cris_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1
DM
1852 struct dwarf2_frame_state_reg *reg,
1853 struct frame_info *next_frame)
a5f6c8f5
OF
1854{
1855 /* The return address column. */
1856 if (regnum == PC_REGNUM)
1857 reg->how = DWARF2_FRAME_REG_RA;
1858
1859 /* The call frame address. */
1860 else if (regnum == SP_REGNUM)
1861 reg->how = DWARF2_FRAME_REG_CFA;
29134980
OF
1862}
1863
2e4b5889
OF
1864/* Extract from an array regbuf containing the raw register state a function
1865 return value of type type, and copy that, in virtual format, into
1866 valbuf. */
1867
1868/* In the CRIS ABI, R10 and R11 are used to store return values. */
29134980 1869
2e4b5889
OF
1870static void
1871cris_extract_return_value (struct type *type, struct regcache *regcache,
1872 void *valbuf)
29134980 1873{
2e4b5889
OF
1874 ULONGEST val;
1875 int len = TYPE_LENGTH (type);
29134980 1876
2e4b5889 1877 if (len <= 4)
29134980 1878 {
2e4b5889
OF
1879 /* Get the return value from R10. */
1880 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1881 store_unsigned_integer (valbuf, len, val);
29134980 1882 }
2e4b5889 1883 else if (len <= 8)
29134980 1884 {
2e4b5889
OF
1885 /* Get the return value from R10 and R11. */
1886 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &val);
1887 store_unsigned_integer (valbuf, 4, val);
1888 regcache_cooked_read_unsigned (regcache, ARG2_REGNUM, &val);
1889 store_unsigned_integer ((char *)valbuf + 4, len - 4, val);
29134980 1890 }
2e4b5889 1891 else
8a3fe4f8 1892 error (_("cris_extract_return_value: type length too large"));
2e4b5889
OF
1893}
1894
b4206d25
OF
1895/* Handle the CRIS return value convention. */
1896
1897static enum return_value_convention
1898cris_return_value (struct gdbarch *gdbarch, struct type *type,
e2a2a3e8
OF
1899 struct regcache *regcache, gdb_byte *readbuf,
1900 const gdb_byte *writebuf)
b4206d25
OF
1901{
1902 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1903 || TYPE_CODE (type) == TYPE_CODE_UNION
1904 || TYPE_LENGTH (type) > 8)
1905 /* Structs, unions, and anything larger than 8 bytes (2 registers)
1906 goes on the stack. */
1907 return RETURN_VALUE_STRUCT_CONVENTION;
1908
1909 if (readbuf)
1910 cris_extract_return_value (type, regcache, readbuf);
1911 if (writebuf)
1912 cris_store_return_value (type, regcache, writebuf);
1913
1914 return RETURN_VALUE_REGISTER_CONVENTION;
1915}
1916
2e4b5889
OF
1917/* Returns 1 if the given type will be passed by pointer rather than
1918 directly. */
1919
1920/* In the CRIS ABI, arguments shorter than or equal to 64 bits are passed
1921 by value. */
1922
1923static int
1924cris_reg_struct_has_addr (int gcc_p, struct type *type)
1925{
1926 return (TYPE_LENGTH (type) > 8);
29134980
OF
1927}
1928
1929/* Calculates a value that measures how good inst_args constraints an
1930 instruction. It stems from cris_constraint, found in cris-dis.c. */
1931
1932static int
1933constraint (unsigned int insn, const signed char *inst_args,
1934 inst_env_type *inst_env)
1935{
1936 int retval = 0;
1937 int tmp, i;
1938
1939 const char *s = inst_args;
1940
1941 for (; *s; s++)
1942 switch (*s)
1943 {
1944 case 'm':
1945 if ((insn & 0x30) == 0x30)
1946 return -1;
1947 break;
1948
1949 case 'S':
1950 /* A prefix operand. */
1951 if (inst_env->prefix_found)
1952 break;
1953 else
1954 return -1;
1955
1956 case 'B':
1957 /* A "push" prefix. (This check was REMOVED by san 970921.) Check for
1958 valid "push" size. In case of special register, it may be != 4. */
1959 if (inst_env->prefix_found)
1960 break;
1961 else
1962 return -1;
1963
1964 case 'D':
1965 retval = (((insn >> 0xC) & 0xF) == (insn & 0xF));
1966 if (!retval)
1967 return -1;
1968 else
1969 retval += 4;
1970 break;
1971
1972 case 'P':
1973 tmp = (insn >> 0xC) & 0xF;
fa4e4598
OF
1974
1975 for (i = 0; cris_spec_regs[i].name != NULL; i++)
1976 {
1977 /* Since we match four bits, we will give a value of
1978 4 - 1 = 3 in a match. If there is a corresponding
1979 exact match of a special register in another pattern, it
1980 will get a value of 4, which will be higher. This should
1981 be correct in that an exact pattern would match better that
1982 a general pattern.
1983 Note that there is a reason for not returning zero; the
1984 pattern for "clear" is partly matched in the bit-pattern
1985 (the two lower bits must be zero), while the bit-pattern
1986 for a move from a special register is matched in the
1987 register constraint.
1988 This also means we will will have a race condition if
1989 there is a partly match in three bits in the bit pattern. */
1990 if (tmp == cris_spec_regs[i].number)
1991 {
1992 retval += 3;
1993 break;
1994 }
1995 }
1996
1997 if (cris_spec_regs[i].name == NULL)
29134980
OF
1998 return -1;
1999 break;
2000 }
2001 return retval;
2002}
2003
2004/* Returns the number of bits set in the variable value. */
2005
2006static int
2007number_of_bits (unsigned int value)
2008{
2009 int number_of_bits = 0;
2010
2011 while (value != 0)
2012 {
2013 number_of_bits += 1;
2014 value &= (value - 1);
2015 }
2016 return number_of_bits;
2017}
2018
2019/* Finds the address that should contain the single step breakpoint(s).
2020 It stems from code in cris-dis.c. */
2021
2022static int
2023find_cris_op (unsigned short insn, inst_env_type *inst_env)
2024{
2025 int i;
2026 int max_level_of_match = -1;
2027 int max_matched = -1;
2028 int level_of_match;
2029
2030 for (i = 0; cris_opcodes[i].name != NULL; i++)
2031 {
2032 if (((cris_opcodes[i].match & insn) == cris_opcodes[i].match)
c600d464
OF
2033 && ((cris_opcodes[i].lose & insn) == 0)
2034 /* Only CRISv10 instructions, please. */
2035 && (cris_opcodes[i].applicable_version != cris_ver_v32p))
29134980
OF
2036 {
2037 level_of_match = constraint (insn, cris_opcodes[i].args, inst_env);
2038 if (level_of_match >= 0)
2039 {
2040 level_of_match +=
2041 number_of_bits (cris_opcodes[i].match | cris_opcodes[i].lose);
2042 if (level_of_match > max_level_of_match)
2043 {
2044 max_matched = i;
2045 max_level_of_match = level_of_match;
2046 if (level_of_match == 16)
2047 {
2048 /* All bits matched, cannot find better. */
2049 break;
2050 }
2051 }
2052 }
2053 }
2054 }
2055 return max_matched;
2056}
2057
2058/* Attempts to find single-step breakpoints. Returns -1 on failure which is
2059 actually an internal error. */
2060
2061static int
2062find_step_target (inst_env_type *inst_env)
2063{
2064 int i;
2065 int offset;
2066 unsigned short insn;
2067
2068 /* Create a local register image and set the initial state. */
2069 for (i = 0; i < NUM_GENREGS; i++)
2070 {
2071 inst_env->reg[i] = (unsigned long) read_register (i);
2072 }
2073 offset = NUM_GENREGS;
2074 for (i = 0; i < NUM_SPECREGS; i++)
2075 {
2076 inst_env->preg[i] = (unsigned long) read_register (offset + i);
2077 }
2078 inst_env->branch_found = 0;
2079 inst_env->slot_needed = 0;
2080 inst_env->delay_slot_pc_active = 0;
2081 inst_env->prefix_found = 0;
2082 inst_env->invalid = 0;
2083 inst_env->xflag_found = 0;
2084 inst_env->disable_interrupt = 0;
2085
2086 /* Look for a step target. */
2087 do
2088 {
2089 /* Read an instruction from the client. */
2090 insn = read_memory_unsigned_integer (inst_env->reg[PC_REGNUM], 2);
2091
2092 /* If the instruction is not in a delay slot the new content of the
2093 PC is [PC] + 2. If the instruction is in a delay slot it is not
2094 that simple. Since a instruction in a delay slot cannot change
2095 the content of the PC, it does not matter what value PC will have.
2096 Just make sure it is a valid instruction. */
2097 if (!inst_env->delay_slot_pc_active)
2098 {
2099 inst_env->reg[PC_REGNUM] += 2;
2100 }
2101 else
2102 {
2103 inst_env->delay_slot_pc_active = 0;
2104 inst_env->reg[PC_REGNUM] = inst_env->delay_slot_pc;
2105 }
2106 /* Analyse the present instruction. */
2107 i = find_cris_op (insn, inst_env);
2108 if (i == -1)
2109 {
2110 inst_env->invalid = 1;
2111 }
2112 else
2113 {
2114 cris_gdb_func (cris_opcodes[i].op, insn, inst_env);
2115 }
2116 } while (!inst_env->invalid
2117 && (inst_env->prefix_found || inst_env->xflag_found
2118 || inst_env->slot_needed));
2119 return i;
2120}
2121
2122/* There is no hardware single-step support. The function find_step_target
2123 digs through the opcodes in order to find all possible targets.
2124 Either one ordinary target or two targets for branches may be found. */
2125
e6590a1b 2126static int
e0cd558a 2127cris_software_single_step (struct regcache *regcache)
29134980
OF
2128{
2129 inst_env_type inst_env;
8181d85f 2130
e0cd558a
UW
2131 /* Analyse the present instruction environment and insert
2132 breakpoints. */
2133 int status = find_step_target (&inst_env);
2134 if (status == -1)
29134980 2135 {
e0cd558a
UW
2136 /* Could not find a target. Things are likely to go downhill
2137 from here. */
2138 warning (_("CRIS software single step could not find a step target."));
29134980
OF
2139 }
2140 else
e0cd558a
UW
2141 {
2142 /* Insert at most two breakpoints. One for the next PC content
2143 and possibly another one for a branch, jump, etc. */
2144 CORE_ADDR next_pc = (CORE_ADDR) inst_env.reg[PC_REGNUM];
2145 insert_single_step_breakpoint (next_pc);
2146 if (inst_env.branch_found
2147 && (CORE_ADDR) inst_env.branch_break_address != next_pc)
2148 {
2149 CORE_ADDR branch_target_address
2150 = (CORE_ADDR) inst_env.branch_break_address;
2151 insert_single_step_breakpoint (branch_target_address);
2152 }
2153 }
e6590a1b
UW
2154
2155 return 1;
29134980
OF
2156}
2157
2158/* Calculates the prefix value for quick offset addressing mode. */
2159
a78f21af 2160static void
29134980
OF
2161quick_mode_bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2162{
2163 /* It's invalid to be in a delay slot. You can't have a prefix to this
2164 instruction (not 100% sure). */
2165 if (inst_env->slot_needed || inst_env->prefix_found)
2166 {
2167 inst_env->invalid = 1;
2168 return;
2169 }
2170
2171 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2172 inst_env->prefix_value += cris_get_bdap_quick_offset (inst);
2173
2174 /* A prefix doesn't change the xflag_found. But the rest of the flags
2175 need updating. */
2176 inst_env->slot_needed = 0;
2177 inst_env->prefix_found = 1;
2178}
2179
2180/* Updates the autoincrement register. The size of the increment is derived
2181 from the size of the operation. The PC is always kept aligned on even
2182 word addresses. */
2183
a78f21af 2184static void
29134980
OF
2185process_autoincrement (int size, unsigned short inst, inst_env_type *inst_env)
2186{
2187 if (size == INST_BYTE_SIZE)
2188 {
2189 inst_env->reg[cris_get_operand1 (inst)] += 1;
2190
2191 /* The PC must be word aligned, so increase the PC with one
2192 word even if the size is byte. */
2193 if (cris_get_operand1 (inst) == REG_PC)
2194 {
2195 inst_env->reg[REG_PC] += 1;
2196 }
2197 }
2198 else if (size == INST_WORD_SIZE)
2199 {
2200 inst_env->reg[cris_get_operand1 (inst)] += 2;
2201 }
2202 else if (size == INST_DWORD_SIZE)
2203 {
2204 inst_env->reg[cris_get_operand1 (inst)] += 4;
2205 }
2206 else
2207 {
2208 /* Invalid size. */
2209 inst_env->invalid = 1;
2210 }
2211}
2212
2a9ecef2
OF
2213/* Just a forward declaration. */
2214
a78f21af
AC
2215static unsigned long get_data_from_address (unsigned short *inst,
2216 CORE_ADDR address);
2a9ecef2 2217
29134980
OF
2218/* Calculates the prefix value for the general case of offset addressing
2219 mode. */
2220
a78f21af 2221static void
29134980
OF
2222bdap_prefix (unsigned short inst, inst_env_type *inst_env)
2223{
2224
2225 long offset;
2226
2227 /* It's invalid to be in a delay slot. */
2228 if (inst_env->slot_needed || inst_env->prefix_found)
2229 {
2230 inst_env->invalid = 1;
2231 return;
2232 }
2233
fa4e4598
OF
2234 /* The calculation of prefix_value used to be after process_autoincrement,
2235 but that fails for an instruction such as jsr [$r0+12] which is encoded
2236 as 5f0d 0c00 30b9 when compiled with -fpic. Since PC is operand1 it
2237 mustn't be incremented until we have read it and what it points at. */
29134980
OF
2238 inst_env->prefix_value = inst_env->reg[cris_get_operand2 (inst)];
2239
2240 /* The offset is an indirection of the contents of the operand1 register. */
2241 inst_env->prefix_value +=
2a9ecef2
OF
2242 get_data_from_address (&inst, inst_env->reg[cris_get_operand1 (inst)]);
2243
fa4e4598
OF
2244 if (cris_get_mode (inst) == AUTOINC_MODE)
2245 {
2246 process_autoincrement (cris_get_size (inst), inst, inst_env);
2247 }
2248
29134980
OF
2249 /* A prefix doesn't change the xflag_found. But the rest of the flags
2250 need updating. */
2251 inst_env->slot_needed = 0;
2252 inst_env->prefix_found = 1;
2253}
2254
2255/* Calculates the prefix value for the index addressing mode. */
2256
a78f21af 2257static void
29134980
OF
2258biap_prefix (unsigned short inst, inst_env_type *inst_env)
2259{
2260 /* It's invalid to be in a delay slot. I can't see that it's possible to
2261 have a prefix to this instruction. So I will treat this as invalid. */
2262 if (inst_env->slot_needed || inst_env->prefix_found)
2263 {
2264 inst_env->invalid = 1;
2265 return;
2266 }
2267
2268 inst_env->prefix_value = inst_env->reg[cris_get_operand1 (inst)];
2269
2270 /* The offset is the operand2 value shifted the size of the instruction
2271 to the left. */
2272 inst_env->prefix_value +=
2273 inst_env->reg[cris_get_operand2 (inst)] << cris_get_size (inst);
2274
2275 /* If the PC is operand1 (base) the address used is the address after
2276 the main instruction, i.e. address + 2 (the PC is already compensated
2277 for the prefix operation). */
2278 if (cris_get_operand1 (inst) == REG_PC)
2279 {
2280 inst_env->prefix_value += 2;
2281 }
2282
2283 /* A prefix doesn't change the xflag_found. But the rest of the flags
2284 need updating. */
2285 inst_env->slot_needed = 0;
2286 inst_env->xflag_found = 0;
2287 inst_env->prefix_found = 1;
2288}
2289
2290/* Calculates the prefix value for the double indirect addressing mode. */
2291
a78f21af 2292static void
29134980
OF
2293dip_prefix (unsigned short inst, inst_env_type *inst_env)
2294{
2295
2296 CORE_ADDR address;
2297
2298 /* It's invalid to be in a delay slot. */
2299 if (inst_env->slot_needed || inst_env->prefix_found)
2300 {
2301 inst_env->invalid = 1;
2302 return;
2303 }
2304
2305 /* The prefix value is one dereference of the contents of the operand1
2306 register. */
2307 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2308 inst_env->prefix_value = read_memory_unsigned_integer (address, 4);
2309
2310 /* Check if the mode is autoincrement. */
2311 if (cris_get_mode (inst) == AUTOINC_MODE)
2312 {
2313 inst_env->reg[cris_get_operand1 (inst)] += 4;
2314 }
2315
2316 /* A prefix doesn't change the xflag_found. But the rest of the flags
2317 need updating. */
2318 inst_env->slot_needed = 0;
2319 inst_env->xflag_found = 0;
2320 inst_env->prefix_found = 1;
2321}
2322
2323/* Finds the destination for a branch with 8-bits offset. */
2324
a78f21af 2325static void
29134980
OF
2326eight_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2327{
2328
2329 short offset;
2330
2331 /* If we have a prefix or are in a delay slot it's bad. */
2332 if (inst_env->slot_needed || inst_env->prefix_found)
2333 {
2334 inst_env->invalid = 1;
2335 return;
2336 }
2337
2338 /* We have a branch, find out where the branch will land. */
2339 offset = cris_get_branch_short_offset (inst);
2340
2341 /* Check if the offset is signed. */
2342 if (offset & BRANCH_SIGNED_SHORT_OFFSET_MASK)
2343 {
2344 offset |= 0xFF00;
2345 }
2346
2347 /* The offset ends with the sign bit, set it to zero. The address
2348 should always be word aligned. */
2349 offset &= ~BRANCH_SIGNED_SHORT_OFFSET_MASK;
2350
2351 inst_env->branch_found = 1;
2352 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2353
2354 inst_env->slot_needed = 1;
2355 inst_env->prefix_found = 0;
2356 inst_env->xflag_found = 0;
2357 inst_env->disable_interrupt = 1;
2358}
2359
2360/* Finds the destination for a branch with 16-bits offset. */
2361
a78f21af 2362static void
29134980
OF
2363sixteen_bit_offset_branch_op (unsigned short inst, inst_env_type *inst_env)
2364{
2365 short offset;
2366
2367 /* If we have a prefix or is in a delay slot it's bad. */
2368 if (inst_env->slot_needed || inst_env->prefix_found)
2369 {
2370 inst_env->invalid = 1;
2371 return;
2372 }
2373
2374 /* We have a branch, find out the offset for the branch. */
2375 offset = read_memory_integer (inst_env->reg[REG_PC], 2);
2376
2377 /* The instruction is one word longer than normal, so add one word
2378 to the PC. */
2379 inst_env->reg[REG_PC] += 2;
2380
2381 inst_env->branch_found = 1;
2382 inst_env->branch_break_address = inst_env->reg[REG_PC] + offset;
2383
2384
2385 inst_env->slot_needed = 1;
2386 inst_env->prefix_found = 0;
2387 inst_env->xflag_found = 0;
2388 inst_env->disable_interrupt = 1;
2389}
2390
2391/* Handles the ABS instruction. */
2392
a78f21af 2393static void
29134980
OF
2394abs_op (unsigned short inst, inst_env_type *inst_env)
2395{
2396
2397 long value;
2398
2399 /* ABS can't have a prefix, so it's bad if it does. */
2400 if (inst_env->prefix_found)
2401 {
2402 inst_env->invalid = 1;
2403 return;
2404 }
2405
2406 /* Check if the operation affects the PC. */
2407 if (cris_get_operand2 (inst) == REG_PC)
2408 {
2409
2410 /* It's invalid to change to the PC if we are in a delay slot. */
2411 if (inst_env->slot_needed)
2412 {
2413 inst_env->invalid = 1;
2414 return;
2415 }
2416
2417 value = (long) inst_env->reg[REG_PC];
2418
2419 /* The value of abs (SIGNED_DWORD_MASK) is SIGNED_DWORD_MASK. */
2420 if (value != SIGNED_DWORD_MASK)
2421 {
2422 value = -value;
2423 inst_env->reg[REG_PC] = (long) value;
2424 }
2425 }
2426
2427 inst_env->slot_needed = 0;
2428 inst_env->prefix_found = 0;
2429 inst_env->xflag_found = 0;
2430 inst_env->disable_interrupt = 0;
2431}
2432
2433/* Handles the ADDI instruction. */
2434
a78f21af 2435static void
29134980
OF
2436addi_op (unsigned short inst, inst_env_type *inst_env)
2437{
2438 /* It's invalid to have the PC as base register. And ADDI can't have
2439 a prefix. */
2440 if (inst_env->prefix_found || (cris_get_operand1 (inst) == REG_PC))
2441 {
2442 inst_env->invalid = 1;
2443 return;
2444 }
2445
2446 inst_env->slot_needed = 0;
2447 inst_env->prefix_found = 0;
2448 inst_env->xflag_found = 0;
2449 inst_env->disable_interrupt = 0;
2450}
2451
2452/* Handles the ASR instruction. */
2453
a78f21af 2454static void
29134980
OF
2455asr_op (unsigned short inst, inst_env_type *inst_env)
2456{
2457 int shift_steps;
2458 unsigned long value;
2459 unsigned long signed_extend_mask = 0;
2460
2461 /* ASR can't have a prefix, so check that it doesn't. */
2462 if (inst_env->prefix_found)
2463 {
2464 inst_env->invalid = 1;
2465 return;
2466 }
2467
2468 /* Check if the PC is the target register. */
2469 if (cris_get_operand2 (inst) == REG_PC)
2470 {
2471 /* It's invalid to change the PC in a delay slot. */
2472 if (inst_env->slot_needed)
2473 {
2474 inst_env->invalid = 1;
2475 return;
2476 }
2477 /* Get the number of bits to shift. */
2478 shift_steps = cris_get_asr_shift_steps (inst_env->reg[cris_get_operand1 (inst)]);
2479 value = inst_env->reg[REG_PC];
2480
2481 /* Find out how many bits the operation should apply to. */
2482 if (cris_get_size (inst) == INST_BYTE_SIZE)
2483 {
2484 if (value & SIGNED_BYTE_MASK)
2485 {
2486 signed_extend_mask = 0xFF;
2487 signed_extend_mask = signed_extend_mask >> shift_steps;
2488 signed_extend_mask = ~signed_extend_mask;
2489 }
2490 value = value >> shift_steps;
2491 value |= signed_extend_mask;
2492 value &= 0xFF;
2493 inst_env->reg[REG_PC] &= 0xFFFFFF00;
2494 inst_env->reg[REG_PC] |= value;
2495 }
2496 else if (cris_get_size (inst) == INST_WORD_SIZE)
2497 {
2498 if (value & SIGNED_WORD_MASK)
2499 {
2500 signed_extend_mask = 0xFFFF;
2501 signed_extend_mask = signed_extend_mask >> shift_steps;
2502 signed_extend_mask = ~signed_extend_mask;
2503 }
2504 value = value >> shift_steps;
2505 value |= signed_extend_mask;
2506 value &= 0xFFFF;
2507 inst_env->reg[REG_PC] &= 0xFFFF0000;
2508 inst_env->reg[REG_PC] |= value;
2509 }
2510 else if (cris_get_size (inst) == INST_DWORD_SIZE)
2511 {
2512 if (value & SIGNED_DWORD_MASK)
2513 {
2514 signed_extend_mask = 0xFFFFFFFF;
2515 signed_extend_mask = signed_extend_mask >> shift_steps;
2516 signed_extend_mask = ~signed_extend_mask;
2517 }
2518 value = value >> shift_steps;
2519 value |= signed_extend_mask;
2520 inst_env->reg[REG_PC] = value;
2521 }
2522 }
2523 inst_env->slot_needed = 0;
2524 inst_env->prefix_found = 0;
2525 inst_env->xflag_found = 0;
2526 inst_env->disable_interrupt = 0;
2527}
2528
2529/* Handles the ASRQ instruction. */
2530
a78f21af 2531static void
29134980
OF
2532asrq_op (unsigned short inst, inst_env_type *inst_env)
2533{
2534
2535 int shift_steps;
2536 unsigned long value;
2537 unsigned long signed_extend_mask = 0;
2538
2539 /* ASRQ can't have a prefix, so check that it doesn't. */
2540 if (inst_env->prefix_found)
2541 {
2542 inst_env->invalid = 1;
2543 return;
2544 }
2545
2546 /* Check if the PC is the target register. */
2547 if (cris_get_operand2 (inst) == REG_PC)
2548 {
2549
2550 /* It's invalid to change the PC in a delay slot. */
2551 if (inst_env->slot_needed)
2552 {
2553 inst_env->invalid = 1;
2554 return;
2555 }
2556 /* The shift size is given as a 5 bit quick value, i.e. we don't
2557 want the the sign bit of the quick value. */
2558 shift_steps = cris_get_asr_shift_steps (inst);
2559 value = inst_env->reg[REG_PC];
2560 if (value & SIGNED_DWORD_MASK)
2561 {
2562 signed_extend_mask = 0xFFFFFFFF;
2563 signed_extend_mask = signed_extend_mask >> shift_steps;
2564 signed_extend_mask = ~signed_extend_mask;
2565 }
2566 value = value >> shift_steps;
2567 value |= signed_extend_mask;
2568 inst_env->reg[REG_PC] = value;
2569 }
2570 inst_env->slot_needed = 0;
2571 inst_env->prefix_found = 0;
2572 inst_env->xflag_found = 0;
2573 inst_env->disable_interrupt = 0;
2574}
2575
2576/* Handles the AX, EI and SETF instruction. */
2577
a78f21af 2578static void
29134980
OF
2579ax_ei_setf_op (unsigned short inst, inst_env_type *inst_env)
2580{
2581 if (inst_env->prefix_found)
2582 {
2583 inst_env->invalid = 1;
2584 return;
2585 }
2586 /* Check if the instruction is setting the X flag. */
2587 if (cris_is_xflag_bit_on (inst))
2588 {
2589 inst_env->xflag_found = 1;
2590 }
2591 else
2592 {
2593 inst_env->xflag_found = 0;
2594 }
2595 inst_env->slot_needed = 0;
2596 inst_env->prefix_found = 0;
2597 inst_env->disable_interrupt = 1;
2598}
2599
2600/* Checks if the instruction is in assign mode. If so, it updates the assign
2601 register. Note that check_assign assumes that the caller has checked that
2602 there is a prefix to this instruction. The mode check depends on this. */
2603
a78f21af 2604static void
29134980
OF
2605check_assign (unsigned short inst, inst_env_type *inst_env)
2606{
2607 /* Check if it's an assign addressing mode. */
2608 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2609 {
2610 /* Assign the prefix value to operand 1. */
2611 inst_env->reg[cris_get_operand1 (inst)] = inst_env->prefix_value;
2612 }
2613}
2614
2615/* Handles the 2-operand BOUND instruction. */
2616
a78f21af 2617static void
29134980
OF
2618two_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2619{
2620 /* It's invalid to have the PC as the index operand. */
2621 if (cris_get_operand2 (inst) == REG_PC)
2622 {
2623 inst_env->invalid = 1;
2624 return;
2625 }
2626 /* Check if we have a prefix. */
2627 if (inst_env->prefix_found)
2628 {
2629 check_assign (inst, inst_env);
2630 }
2631 /* Check if this is an autoincrement mode. */
2632 else if (cris_get_mode (inst) == AUTOINC_MODE)
2633 {
2634 /* It's invalid to change the PC in a delay slot. */
2635 if (inst_env->slot_needed)
2636 {
2637 inst_env->invalid = 1;
2638 return;
2639 }
2640 process_autoincrement (cris_get_size (inst), inst, inst_env);
2641 }
2642 inst_env->slot_needed = 0;
2643 inst_env->prefix_found = 0;
2644 inst_env->xflag_found = 0;
2645 inst_env->disable_interrupt = 0;
2646}
2647
2648/* Handles the 3-operand BOUND instruction. */
2649
a78f21af 2650static void
29134980
OF
2651three_operand_bound_op (unsigned short inst, inst_env_type *inst_env)
2652{
2653 /* It's an error if we haven't got a prefix. And it's also an error
2654 if the PC is the destination register. */
2655 if ((!inst_env->prefix_found) || (cris_get_operand1 (inst) == REG_PC))
2656 {
2657 inst_env->invalid = 1;
2658 return;
2659 }
2660 inst_env->slot_needed = 0;
2661 inst_env->prefix_found = 0;
2662 inst_env->xflag_found = 0;
2663 inst_env->disable_interrupt = 0;
2664}
2665
2666/* Clears the status flags in inst_env. */
2667
a78f21af 2668static void
29134980
OF
2669btst_nop_op (unsigned short inst, inst_env_type *inst_env)
2670{
2671 /* It's an error if we have got a prefix. */
2672 if (inst_env->prefix_found)
2673 {
2674 inst_env->invalid = 1;
2675 return;
2676 }
2677
2678 inst_env->slot_needed = 0;
2679 inst_env->prefix_found = 0;
2680 inst_env->xflag_found = 0;
2681 inst_env->disable_interrupt = 0;
2682}
2683
2684/* Clears the status flags in inst_env. */
2685
a78f21af 2686static void
29134980
OF
2687clearf_di_op (unsigned short inst, inst_env_type *inst_env)
2688{
2689 /* It's an error if we have got a prefix. */
2690 if (inst_env->prefix_found)
2691 {
2692 inst_env->invalid = 1;
2693 return;
2694 }
2695
2696 inst_env->slot_needed = 0;
2697 inst_env->prefix_found = 0;
2698 inst_env->xflag_found = 0;
2699 inst_env->disable_interrupt = 1;
2700}
2701
2702/* Handles the CLEAR instruction if it's in register mode. */
2703
a78f21af 2704static void
29134980
OF
2705reg_mode_clear_op (unsigned short inst, inst_env_type *inst_env)
2706{
2707 /* Check if the target is the PC. */
2708 if (cris_get_operand2 (inst) == REG_PC)
2709 {
2710 /* The instruction will clear the instruction's size bits. */
2711 int clear_size = cris_get_clear_size (inst);
2712 if (clear_size == INST_BYTE_SIZE)
2713 {
2714 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFFFF00;
2715 }
2716 if (clear_size == INST_WORD_SIZE)
2717 {
2718 inst_env->delay_slot_pc = inst_env->reg[REG_PC] & 0xFFFF0000;
2719 }
2720 if (clear_size == INST_DWORD_SIZE)
2721 {
2722 inst_env->delay_slot_pc = 0x0;
2723 }
2724 /* The jump will be delayed with one delay slot. So we need a delay
2725 slot. */
2726 inst_env->slot_needed = 1;
2727 inst_env->delay_slot_pc_active = 1;
2728 }
2729 else
2730 {
2731 /* The PC will not change => no delay slot. */
2732 inst_env->slot_needed = 0;
2733 }
2734 inst_env->prefix_found = 0;
2735 inst_env->xflag_found = 0;
2736 inst_env->disable_interrupt = 0;
2737}
2738
2739/* Handles the TEST instruction if it's in register mode. */
2740
a78f21af 2741static void
29134980
OF
2742reg_mode_test_op (unsigned short inst, inst_env_type *inst_env)
2743{
2744 /* It's an error if we have got a prefix. */
2745 if (inst_env->prefix_found)
2746 {
2747 inst_env->invalid = 1;
2748 return;
2749 }
2750 inst_env->slot_needed = 0;
2751 inst_env->prefix_found = 0;
2752 inst_env->xflag_found = 0;
2753 inst_env->disable_interrupt = 0;
2754
2755}
2756
2757/* Handles the CLEAR and TEST instruction if the instruction isn't
2758 in register mode. */
2759
a78f21af 2760static void
29134980
OF
2761none_reg_mode_clear_test_op (unsigned short inst, inst_env_type *inst_env)
2762{
2763 /* Check if we are in a prefix mode. */
2764 if (inst_env->prefix_found)
2765 {
2766 /* The only way the PC can change is if this instruction is in
2767 assign addressing mode. */
2768 check_assign (inst, inst_env);
2769 }
2770 /* Indirect mode can't change the PC so just check if the mode is
2771 autoincrement. */
2772 else if (cris_get_mode (inst) == AUTOINC_MODE)
2773 {
2774 process_autoincrement (cris_get_size (inst), inst, inst_env);
2775 }
2776 inst_env->slot_needed = 0;
2777 inst_env->prefix_found = 0;
2778 inst_env->xflag_found = 0;
2779 inst_env->disable_interrupt = 0;
2780}
2781
2782/* Checks that the PC isn't the destination register or the instructions has
2783 a prefix. */
2784
a78f21af 2785static void
29134980
OF
2786dstep_logshift_mstep_neg_not_op (unsigned short inst, inst_env_type *inst_env)
2787{
2788 /* It's invalid to have the PC as the destination. The instruction can't
2789 have a prefix. */
2790 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2791 {
2792 inst_env->invalid = 1;
2793 return;
2794 }
2795
2796 inst_env->slot_needed = 0;
2797 inst_env->prefix_found = 0;
2798 inst_env->xflag_found = 0;
2799 inst_env->disable_interrupt = 0;
2800}
2801
2802/* Checks that the instruction doesn't have a prefix. */
2803
a78f21af 2804static void
29134980
OF
2805break_op (unsigned short inst, inst_env_type *inst_env)
2806{
2807 /* The instruction can't have a prefix. */
2808 if (inst_env->prefix_found)
2809 {
2810 inst_env->invalid = 1;
2811 return;
2812 }
2813
2814 inst_env->slot_needed = 0;
2815 inst_env->prefix_found = 0;
2816 inst_env->xflag_found = 0;
2817 inst_env->disable_interrupt = 1;
2818}
2819
2820/* Checks that the PC isn't the destination register and that the instruction
2821 doesn't have a prefix. */
2822
a78f21af 2823static void
29134980
OF
2824scc_op (unsigned short inst, inst_env_type *inst_env)
2825{
2826 /* It's invalid to have the PC as the destination. The instruction can't
2827 have a prefix. */
2828 if ((cris_get_operand2 (inst) == REG_PC) || inst_env->prefix_found)
2829 {
2830 inst_env->invalid = 1;
2831 return;
2832 }
2833
2834 inst_env->slot_needed = 0;
2835 inst_env->prefix_found = 0;
2836 inst_env->xflag_found = 0;
2837 inst_env->disable_interrupt = 1;
2838}
2839
2840/* Handles the register mode JUMP instruction. */
2841
a78f21af 2842static void
29134980
OF
2843reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
2844{
2845 /* It's invalid to do a JUMP in a delay slot. The mode is register, so
2846 you can't have a prefix. */
2847 if ((inst_env->slot_needed) || (inst_env->prefix_found))
2848 {
2849 inst_env->invalid = 1;
2850 return;
2851 }
2852
2853 /* Just change the PC. */
2854 inst_env->reg[REG_PC] = inst_env->reg[cris_get_operand1 (inst)];
2855 inst_env->slot_needed = 0;
2856 inst_env->prefix_found = 0;
2857 inst_env->xflag_found = 0;
2858 inst_env->disable_interrupt = 1;
2859}
2860
2861/* Handles the JUMP instruction for all modes except register. */
2862
a78f21af
AC
2863static void
2864none_reg_mode_jump_op (unsigned short inst, inst_env_type *inst_env)
29134980
OF
2865{
2866 unsigned long newpc;
2867 CORE_ADDR address;
2868
2869 /* It's invalid to do a JUMP in a delay slot. */
2870 if (inst_env->slot_needed)
2871 {
2872 inst_env->invalid = 1;
2873 }
2874 else
2875 {
2876 /* Check if we have a prefix. */
2877 if (inst_env->prefix_found)
2878 {
2879 check_assign (inst, inst_env);
2880
2881 /* Get the new value for the the PC. */
2882 newpc =
2883 read_memory_unsigned_integer ((CORE_ADDR) inst_env->prefix_value,
2884 4);
2885 }
2886 else
2887 {
2888 /* Get the new value for the PC. */
2889 address = (CORE_ADDR) inst_env->reg[cris_get_operand1 (inst)];
2890 newpc = read_memory_unsigned_integer (address, 4);
2891
2892 /* Check if we should increment a register. */
2893 if (cris_get_mode (inst) == AUTOINC_MODE)
2894 {
2895 inst_env->reg[cris_get_operand1 (inst)] += 4;
2896 }
2897 }
2898 inst_env->reg[REG_PC] = newpc;
2899 }
2900 inst_env->slot_needed = 0;
2901 inst_env->prefix_found = 0;
2902 inst_env->xflag_found = 0;
2903 inst_env->disable_interrupt = 1;
2904}
2905
2906/* Handles moves to special registers (aka P-register) for all modes. */
2907
a78f21af 2908static void
29134980
OF
2909move_to_preg_op (unsigned short inst, inst_env_type *inst_env)
2910{
2911 if (inst_env->prefix_found)
2912 {
2913 /* The instruction has a prefix that means we are only interested if
2914 the instruction is in assign mode. */
2915 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2916 {
2917 /* The prefix handles the problem if we are in a delay slot. */
2918 if (cris_get_operand1 (inst) == REG_PC)
2919 {
2920 /* Just take care of the assign. */
2921 check_assign (inst, inst_env);
2922 }
2923 }
2924 }
2925 else if (cris_get_mode (inst) == AUTOINC_MODE)
2926 {
2927 /* The instruction doesn't have a prefix, the only case left that we
2928 are interested in is the autoincrement mode. */
2929 if (cris_get_operand1 (inst) == REG_PC)
2930 {
2931 /* If the PC is to be incremented it's invalid to be in a
2932 delay slot. */
2933 if (inst_env->slot_needed)
2934 {
2935 inst_env->invalid = 1;
2936 return;
2937 }
2a9ecef2
OF
2938
2939 /* The increment depends on the size of the special register. */
2940 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2941 {
2942 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2943 }
2a9ecef2 2944 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
2945 {
2946 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
2947 }
2948 else
2949 {
2950 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
2951 }
2952 }
2953 }
2954 inst_env->slot_needed = 0;
2955 inst_env->prefix_found = 0;
2956 inst_env->xflag_found = 0;
2957 inst_env->disable_interrupt = 1;
2958}
2959
2960/* Handles moves from special registers (aka P-register) for all modes
2961 except register. */
2962
a78f21af 2963static void
29134980
OF
2964none_reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
2965{
2966 if (inst_env->prefix_found)
2967 {
2968 /* The instruction has a prefix that means we are only interested if
2969 the instruction is in assign mode. */
2970 if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
2971 {
2972 /* The prefix handles the problem if we are in a delay slot. */
2973 if (cris_get_operand1 (inst) == REG_PC)
2974 {
2975 /* Just take care of the assign. */
2976 check_assign (inst, inst_env);
2977 }
2978 }
2979 }
2980 /* The instruction doesn't have a prefix, the only case left that we
2981 are interested in is the autoincrement mode. */
2982 else if (cris_get_mode (inst) == AUTOINC_MODE)
2983 {
2984 if (cris_get_operand1 (inst) == REG_PC)
2985 {
2986 /* If the PC is to be incremented it's invalid to be in a
2987 delay slot. */
2988 if (inst_env->slot_needed)
2989 {
2990 inst_env->invalid = 1;
2991 return;
2992 }
2a9ecef2
OF
2993
2994 /* The increment depends on the size of the special register. */
2995 if (cris_register_size (cris_get_operand2 (inst)) == 1)
29134980
OF
2996 {
2997 process_autoincrement (INST_BYTE_SIZE, inst, inst_env);
2998 }
2a9ecef2 2999 else if (cris_register_size (cris_get_operand2 (inst)) == 2)
29134980
OF
3000 {
3001 process_autoincrement (INST_WORD_SIZE, inst, inst_env);
3002 }
3003 else
3004 {
3005 process_autoincrement (INST_DWORD_SIZE, inst, inst_env);
3006 }
3007 }
3008 }
3009 inst_env->slot_needed = 0;
3010 inst_env->prefix_found = 0;
3011 inst_env->xflag_found = 0;
3012 inst_env->disable_interrupt = 1;
3013}
3014
3015/* Handles moves from special registers (aka P-register) when the mode
3016 is register. */
3017
a78f21af 3018static void
29134980
OF
3019reg_mode_move_from_preg_op (unsigned short inst, inst_env_type *inst_env)
3020{
3021 /* Register mode move from special register can't have a prefix. */
3022 if (inst_env->prefix_found)
3023 {
3024 inst_env->invalid = 1;
3025 return;
3026 }
3027
3028 if (cris_get_operand1 (inst) == REG_PC)
3029 {
3030 /* It's invalid to change the PC in a delay slot. */
3031 if (inst_env->slot_needed)
3032 {
3033 inst_env->invalid = 1;
3034 return;
3035 }
3036 /* The destination is the PC, the jump will have a delay slot. */
3037 inst_env->delay_slot_pc = inst_env->preg[cris_get_operand2 (inst)];
3038 inst_env->slot_needed = 1;
3039 inst_env->delay_slot_pc_active = 1;
3040 }
3041 else
3042 {
3043 /* If the destination isn't PC, there will be no jump. */
3044 inst_env->slot_needed = 0;
3045 }
3046 inst_env->prefix_found = 0;
3047 inst_env->xflag_found = 0;
3048 inst_env->disable_interrupt = 1;
3049}
3050
3051/* Handles the MOVEM from memory to general register instruction. */
3052
a78f21af 3053static void
29134980
OF
3054move_mem_to_reg_movem_op (unsigned short inst, inst_env_type *inst_env)
3055{
3056 if (inst_env->prefix_found)
3057 {
3058 /* The prefix handles the problem if we are in a delay slot. Is the
3059 MOVEM instruction going to change the PC? */
3060 if (cris_get_operand2 (inst) >= REG_PC)
3061 {
3062 inst_env->reg[REG_PC] =
3063 read_memory_unsigned_integer (inst_env->prefix_value, 4);
3064 }
3065 /* The assign value is the value after the increment. Normally, the
3066 assign value is the value before the increment. */
3067 if ((cris_get_operand1 (inst) == REG_PC)
3068 && (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3069 {
3070 inst_env->reg[REG_PC] = inst_env->prefix_value;
3071 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3072 }
3073 }
3074 else
3075 {
3076 /* Is the MOVEM instruction going to change the PC? */
3077 if (cris_get_operand2 (inst) == REG_PC)
3078 {
3079 /* It's invalid to change the PC in a delay slot. */
3080 if (inst_env->slot_needed)
3081 {
3082 inst_env->invalid = 1;
3083 return;
3084 }
3085 inst_env->reg[REG_PC] =
3086 read_memory_unsigned_integer (inst_env->reg[cris_get_operand1 (inst)],
3087 4);
3088 }
3089 /* The increment is not depending on the size, instead it's depending
3090 on the number of registers loaded from memory. */
3091 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3092 {
3093 /* It's invalid to change the PC in a delay slot. */
3094 if (inst_env->slot_needed)
3095 {
3096 inst_env->invalid = 1;
3097 return;
3098 }
3099 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3100 }
3101 }
3102 inst_env->slot_needed = 0;
3103 inst_env->prefix_found = 0;
3104 inst_env->xflag_found = 0;
3105 inst_env->disable_interrupt = 0;
3106}
3107
3108/* Handles the MOVEM to memory from general register instruction. */
3109
a78f21af 3110static void
29134980
OF
3111move_reg_to_mem_movem_op (unsigned short inst, inst_env_type *inst_env)
3112{
3113 if (inst_env->prefix_found)
3114 {
3115 /* The assign value is the value after the increment. Normally, the
3116 assign value is the value before the increment. */
3117 if ((cris_get_operand1 (inst) == REG_PC) &&
3118 (cris_get_mode (inst) == PREFIX_ASSIGN_MODE))
3119 {
3120 /* The prefix handles the problem if we are in a delay slot. */
3121 inst_env->reg[REG_PC] = inst_env->prefix_value;
3122 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3123 }
3124 }
3125 else
3126 {
3127 /* The increment is not depending on the size, instead it's depending
3128 on the number of registers loaded to memory. */
3129 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3130 {
3131 /* It's invalid to change the PC in a delay slot. */
3132 if (inst_env->slot_needed)
3133 {
3134 inst_env->invalid = 1;
3135 return;
3136 }
3137 inst_env->reg[REG_PC] += 4 * (cris_get_operand2 (inst) + 1);
3138 }
3139 }
3140 inst_env->slot_needed = 0;
3141 inst_env->prefix_found = 0;
3142 inst_env->xflag_found = 0;
3143 inst_env->disable_interrupt = 0;
3144}
3145
29134980
OF
3146/* Handles the intructions that's not yet implemented, by setting
3147 inst_env->invalid to true. */
3148
a78f21af 3149static void
29134980
OF
3150not_implemented_op (unsigned short inst, inst_env_type *inst_env)
3151{
3152 inst_env->invalid = 1;
3153}
3154
3155/* Handles the XOR instruction. */
3156
a78f21af 3157static void
29134980
OF
3158xor_op (unsigned short inst, inst_env_type *inst_env)
3159{
3160 /* XOR can't have a prefix. */
3161 if (inst_env->prefix_found)
3162 {
3163 inst_env->invalid = 1;
3164 return;
3165 }
3166
3167 /* Check if the PC is the target. */
3168 if (cris_get_operand2 (inst) == REG_PC)
3169 {
3170 /* It's invalid to change the PC in a delay slot. */
3171 if (inst_env->slot_needed)
3172 {
3173 inst_env->invalid = 1;
3174 return;
3175 }
3176 inst_env->reg[REG_PC] ^= inst_env->reg[cris_get_operand1 (inst)];
3177 }
3178 inst_env->slot_needed = 0;
3179 inst_env->prefix_found = 0;
3180 inst_env->xflag_found = 0;
3181 inst_env->disable_interrupt = 0;
3182}
3183
3184/* Handles the MULS instruction. */
3185
a78f21af 3186static void
29134980
OF
3187muls_op (unsigned short inst, inst_env_type *inst_env)
3188{
3189 /* MULS/U can't have a prefix. */
3190 if (inst_env->prefix_found)
3191 {
3192 inst_env->invalid = 1;
3193 return;
3194 }
3195
3196 /* Consider it invalid if the PC is the target. */
3197 if (cris_get_operand2 (inst) == REG_PC)
3198 {
3199 inst_env->invalid = 1;
3200 return;
3201 }
3202 inst_env->slot_needed = 0;
3203 inst_env->prefix_found = 0;
3204 inst_env->xflag_found = 0;
3205 inst_env->disable_interrupt = 0;
3206}
3207
3208/* Handles the MULU instruction. */
3209
a78f21af 3210static void
29134980
OF
3211mulu_op (unsigned short inst, inst_env_type *inst_env)
3212{
3213 /* MULS/U can't have a prefix. */
3214 if (inst_env->prefix_found)
3215 {
3216 inst_env->invalid = 1;
3217 return;
3218 }
3219
3220 /* Consider it invalid if the PC is the target. */
3221 if (cris_get_operand2 (inst) == REG_PC)
3222 {
3223 inst_env->invalid = 1;
3224 return;
3225 }
3226 inst_env->slot_needed = 0;
3227 inst_env->prefix_found = 0;
3228 inst_env->xflag_found = 0;
3229 inst_env->disable_interrupt = 0;
3230}
3231
3232/* Calculate the result of the instruction for ADD, SUB, CMP AND, OR and MOVE.
3233 The MOVE instruction is the move from source to register. */
3234
a78f21af 3235static void
29134980
OF
3236add_sub_cmp_and_or_move_action (unsigned short inst, inst_env_type *inst_env,
3237 unsigned long source1, unsigned long source2)
3238{
3239 unsigned long pc_mask;
3240 unsigned long operation_mask;
3241
3242 /* Find out how many bits the operation should apply to. */
3243 if (cris_get_size (inst) == INST_BYTE_SIZE)
3244 {
3245 pc_mask = 0xFFFFFF00;
3246 operation_mask = 0xFF;
3247 }
3248 else if (cris_get_size (inst) == INST_WORD_SIZE)
3249 {
3250 pc_mask = 0xFFFF0000;
3251 operation_mask = 0xFFFF;
3252 }
3253 else if (cris_get_size (inst) == INST_DWORD_SIZE)
3254 {
3255 pc_mask = 0x0;
3256 operation_mask = 0xFFFFFFFF;
3257 }
3258 else
3259 {
3260 /* The size is out of range. */
3261 inst_env->invalid = 1;
3262 return;
3263 }
3264
3265 /* The instruction just works on uw_operation_mask bits. */
3266 source2 &= operation_mask;
3267 source1 &= operation_mask;
3268
3269 /* Now calculate the result. The opcode's 3 first bits separates
3270 the different actions. */
3271 switch (cris_get_opcode (inst) & 7)
3272 {
3273 case 0: /* add */
3274 source1 += source2;
3275 break;
3276
3277 case 1: /* move */
3278 source1 = source2;
3279 break;
3280
3281 case 2: /* subtract */
3282 source1 -= source2;
3283 break;
3284
3285 case 3: /* compare */
3286 break;
3287
3288 case 4: /* and */
3289 source1 &= source2;
3290 break;
3291
3292 case 5: /* or */
3293 source1 |= source2;
3294 break;
3295
3296 default:
3297 inst_env->invalid = 1;
3298 return;
3299
3300 break;
3301 }
3302
3303 /* Make sure that the result doesn't contain more than the instruction
3304 size bits. */
3305 source2 &= operation_mask;
3306
3307 /* Calculate the new breakpoint address. */
3308 inst_env->reg[REG_PC] &= pc_mask;
3309 inst_env->reg[REG_PC] |= source1;
3310
3311}
3312
3313/* Extends the value from either byte or word size to a dword. If the mode
3314 is zero extend then the value is extended with zero. If instead the mode
3315 is signed extend the sign bit of the value is taken into consideration. */
3316
a78f21af 3317static unsigned long
29134980
OF
3318do_sign_or_zero_extend (unsigned long value, unsigned short *inst)
3319{
3320 /* The size can be either byte or word, check which one it is.
3321 Don't check the highest bit, it's indicating if it's a zero
3322 or sign extend. */
3323 if (cris_get_size (*inst) & INST_WORD_SIZE)
3324 {
3325 /* Word size. */
3326 value &= 0xFFFF;
3327
3328 /* Check if the instruction is signed extend. If so, check if value has
3329 the sign bit on. */
3330 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_WORD_MASK))
3331 {
3332 value |= SIGNED_WORD_EXTEND_MASK;
3333 }
3334 }
3335 else
3336 {
3337 /* Byte size. */
3338 value &= 0xFF;
3339
3340 /* Check if the instruction is signed extend. If so, check if value has
3341 the sign bit on. */
3342 if (cris_is_signed_extend_bit_on (*inst) && (value & SIGNED_BYTE_MASK))
3343 {
3344 value |= SIGNED_BYTE_EXTEND_MASK;
3345 }
3346 }
3347 /* The size should now be dword. */
3348 cris_set_size_to_dword (inst);
3349 return value;
3350}
3351
3352/* Handles the register mode for the ADD, SUB, CMP, AND, OR and MOVE
3353 instruction. The MOVE instruction is the move from source to register. */
3354
a78f21af 3355static void
29134980
OF
3356reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3357 inst_env_type *inst_env)
3358{
3359 unsigned long operand1;
3360 unsigned long operand2;
3361
3362 /* It's invalid to have a prefix to the instruction. This is a register
3363 mode instruction and can't have a prefix. */
3364 if (inst_env->prefix_found)
3365 {
3366 inst_env->invalid = 1;
3367 return;
3368 }
3369 /* Check if the instruction has PC as its target. */
3370 if (cris_get_operand2 (inst) == REG_PC)
3371 {
3372 if (inst_env->slot_needed)
3373 {
3374 inst_env->invalid = 1;
3375 return;
3376 }
3377 /* The instruction has the PC as its target register. */
7ab98e9e 3378 operand1 = inst_env->reg[cris_get_operand1 (inst)];
29134980
OF
3379 operand2 = inst_env->reg[REG_PC];
3380
3381 /* Check if it's a extend, signed or zero instruction. */
3382 if (cris_get_opcode (inst) < 4)
3383 {
3384 operand1 = do_sign_or_zero_extend (operand1, &inst);
3385 }
3386 /* Calculate the PC value after the instruction, i.e. where the
3387 breakpoint should be. The order of the udw_operands is vital. */
3388 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3389 }
3390 inst_env->slot_needed = 0;
3391 inst_env->prefix_found = 0;
3392 inst_env->xflag_found = 0;
3393 inst_env->disable_interrupt = 0;
3394}
3395
3396/* Returns the data contained at address. The size of the data is derived from
3397 the size of the operation. If the instruction is a zero or signed
3398 extend instruction, the size field is changed in instruction. */
3399
a78f21af 3400static unsigned long
29134980
OF
3401get_data_from_address (unsigned short *inst, CORE_ADDR address)
3402{
3403 int size = cris_get_size (*inst);
3404 unsigned long value;
3405
3406 /* If it's an extend instruction we don't want the signed extend bit,
3407 because it influences the size. */
3408 if (cris_get_opcode (*inst) < 4)
3409 {
3410 size &= ~SIGNED_EXTEND_BIT_MASK;
3411 }
3412 /* Is there a need for checking the size? Size should contain the number of
3413 bytes to read. */
3414 size = 1 << size;
3415 value = read_memory_unsigned_integer (address, size);
3416
3417 /* Check if it's an extend, signed or zero instruction. */
3418 if (cris_get_opcode (*inst) < 4)
3419 {
3420 value = do_sign_or_zero_extend (value, inst);
3421 }
3422 return value;
3423}
3424
3425/* Handles the assign addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3426 instructions. The MOVE instruction is the move from source to register. */
3427
a78f21af 3428static void
29134980
OF
3429handle_prefix_assign_mode_for_aritm_op (unsigned short inst,
3430 inst_env_type *inst_env)
3431{
3432 unsigned long operand2;
3433 unsigned long operand3;
3434
3435 check_assign (inst, inst_env);
3436 if (cris_get_operand2 (inst) == REG_PC)
3437 {
3438 operand2 = inst_env->reg[REG_PC];
3439
3440 /* Get the value of the third operand. */
3441 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3442
3443 /* Calculate the PC value after the instruction, i.e. where the
3444 breakpoint should be. The order of the udw_operands is vital. */
3445 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3446 }
3447 inst_env->slot_needed = 0;
3448 inst_env->prefix_found = 0;
3449 inst_env->xflag_found = 0;
3450 inst_env->disable_interrupt = 0;
3451}
3452
3453/* Handles the three-operand addressing mode for the ADD, SUB, CMP, AND and
3454 OR instructions. Note that for this to work as expected, the calling
3455 function must have made sure that there is a prefix to this instruction. */
3456
a78f21af 3457static void
29134980
OF
3458three_operand_add_sub_cmp_and_or_op (unsigned short inst,
3459 inst_env_type *inst_env)
3460{
3461 unsigned long operand2;
3462 unsigned long operand3;
3463
3464 if (cris_get_operand1 (inst) == REG_PC)
3465 {
3466 /* The PC will be changed by the instruction. */
3467 operand2 = inst_env->reg[cris_get_operand2 (inst)];
3468
3469 /* Get the value of the third operand. */
3470 operand3 = get_data_from_address (&inst, inst_env->prefix_value);
3471
3472 /* Calculate the PC value after the instruction, i.e. where the
3473 breakpoint should be. */
3474 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3475 }
3476 inst_env->slot_needed = 0;
3477 inst_env->prefix_found = 0;
3478 inst_env->xflag_found = 0;
3479 inst_env->disable_interrupt = 0;
3480}
3481
3482/* Handles the index addresing mode for the ADD, SUB, CMP, AND, OR and MOVE
3483 instructions. The MOVE instruction is the move from source to register. */
3484
a78f21af 3485static void
29134980
OF
3486handle_prefix_index_mode_for_aritm_op (unsigned short inst,
3487 inst_env_type *inst_env)
3488{
3489 if (cris_get_operand1 (inst) != cris_get_operand2 (inst))
3490 {
3491 /* If the instruction is MOVE it's invalid. If the instruction is ADD,
3492 SUB, AND or OR something weird is going on (if everything works these
3493 instructions should end up in the three operand version). */
3494 inst_env->invalid = 1;
3495 return;
3496 }
3497 else
3498 {
3499 /* three_operand_add_sub_cmp_and_or does the same as we should do here
3500 so use it. */
3501 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3502 }
3503 inst_env->slot_needed = 0;
3504 inst_env->prefix_found = 0;
3505 inst_env->xflag_found = 0;
3506 inst_env->disable_interrupt = 0;
3507}
3508
3509/* Handles the autoincrement and indirect addresing mode for the ADD, SUB,
3510 CMP, AND OR and MOVE instruction. The MOVE instruction is the move from
3511 source to register. */
3512
a78f21af 3513static void
29134980
OF
3514handle_inc_and_index_mode_for_aritm_op (unsigned short inst,
3515 inst_env_type *inst_env)
3516{
3517 unsigned long operand1;
3518 unsigned long operand2;
3519 unsigned long operand3;
3520 int size;
3521
3522 /* The instruction is either an indirect or autoincrement addressing mode.
3523 Check if the destination register is the PC. */
3524 if (cris_get_operand2 (inst) == REG_PC)
3525 {
3526 /* Must be done here, get_data_from_address may change the size
3527 field. */
3528 size = cris_get_size (inst);
3529 operand2 = inst_env->reg[REG_PC];
3530
3531 /* Get the value of the third operand, i.e. the indirect operand. */
3532 operand1 = inst_env->reg[cris_get_operand1 (inst)];
3533 operand3 = get_data_from_address (&inst, operand1);
3534
3535 /* Calculate the PC value after the instruction, i.e. where the
3536 breakpoint should be. The order of the udw_operands is vital. */
3537 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand3);
3538 }
3539 /* If this is an autoincrement addressing mode, check if the increment
3540 changes the PC. */
3541 if ((cris_get_operand1 (inst) == REG_PC) && (cris_get_mode (inst) == AUTOINC_MODE))
3542 {
3543 /* Get the size field. */
3544 size = cris_get_size (inst);
3545
3546 /* If it's an extend instruction we don't want the signed extend bit,
3547 because it influences the size. */
3548 if (cris_get_opcode (inst) < 4)
3549 {
3550 size &= ~SIGNED_EXTEND_BIT_MASK;
3551 }
3552 process_autoincrement (size, inst, inst_env);
3553 }
3554 inst_env->slot_needed = 0;
3555 inst_env->prefix_found = 0;
3556 inst_env->xflag_found = 0;
3557 inst_env->disable_interrupt = 0;
3558}
3559
3560/* Handles the two-operand addressing mode, all modes except register, for
3561 the ADD, SUB CMP, AND and OR instruction. */
3562
a78f21af 3563static void
29134980
OF
3564none_reg_mode_add_sub_cmp_and_or_move_op (unsigned short inst,
3565 inst_env_type *inst_env)
3566{
3567 if (inst_env->prefix_found)
3568 {
3569 if (cris_get_mode (inst) == PREFIX_INDEX_MODE)
3570 {
3571 handle_prefix_index_mode_for_aritm_op (inst, inst_env);
3572 }
3573 else if (cris_get_mode (inst) == PREFIX_ASSIGN_MODE)
3574 {
3575 handle_prefix_assign_mode_for_aritm_op (inst, inst_env);
3576 }
3577 else
3578 {
3579 /* The mode is invalid for a prefixed base instruction. */
3580 inst_env->invalid = 1;
3581 return;
3582 }
3583 }
3584 else
3585 {
3586 handle_inc_and_index_mode_for_aritm_op (inst, inst_env);
3587 }
3588}
3589
3590/* Handles the quick addressing mode for the ADD and SUB instruction. */
3591
a78f21af 3592static void
29134980
OF
3593quick_mode_add_sub_op (unsigned short inst, inst_env_type *inst_env)
3594{
3595 unsigned long operand1;
3596 unsigned long operand2;
3597
3598 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3599 instruction and can't have a prefix. */
3600 if (inst_env->prefix_found)
3601 {
3602 inst_env->invalid = 1;
3603 return;
3604 }
3605
3606 /* Check if the instruction has PC as its target. */
3607 if (cris_get_operand2 (inst) == REG_PC)
3608 {
3609 if (inst_env->slot_needed)
3610 {
3611 inst_env->invalid = 1;
3612 return;
3613 }
3614 operand1 = cris_get_quick_value (inst);
3615 operand2 = inst_env->reg[REG_PC];
3616
3617 /* The size should now be dword. */
3618 cris_set_size_to_dword (&inst);
3619
3620 /* Calculate the PC value after the instruction, i.e. where the
3621 breakpoint should be. */
3622 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3623 }
3624 inst_env->slot_needed = 0;
3625 inst_env->prefix_found = 0;
3626 inst_env->xflag_found = 0;
3627 inst_env->disable_interrupt = 0;
3628}
3629
3630/* Handles the quick addressing mode for the CMP, AND and OR instruction. */
3631
a78f21af 3632static void
29134980
OF
3633quick_mode_and_cmp_move_or_op (unsigned short inst, inst_env_type *inst_env)
3634{
3635 unsigned long operand1;
3636 unsigned long operand2;
3637
3638 /* It's a bad idea to be in a prefix instruction now. This is a quick mode
3639 instruction and can't have a prefix. */
3640 if (inst_env->prefix_found)
3641 {
3642 inst_env->invalid = 1;
3643 return;
3644 }
3645 /* Check if the instruction has PC as its target. */
3646 if (cris_get_operand2 (inst) == REG_PC)
3647 {
3648 if (inst_env->slot_needed)
3649 {
3650 inst_env->invalid = 1;
3651 return;
3652 }
3653 /* The instruction has the PC as its target register. */
3654 operand1 = cris_get_quick_value (inst);
3655 operand2 = inst_env->reg[REG_PC];
3656
3657 /* The quick value is signed, so check if we must do a signed extend. */
3658 if (operand1 & SIGNED_QUICK_VALUE_MASK)
3659 {
3660 /* sign extend */
3661 operand1 |= SIGNED_QUICK_VALUE_EXTEND_MASK;
3662 }
3663 /* The size should now be dword. */
3664 cris_set_size_to_dword (&inst);
3665
3666 /* Calculate the PC value after the instruction, i.e. where the
3667 breakpoint should be. */
3668 add_sub_cmp_and_or_move_action (inst, inst_env, operand2, operand1);
3669 }
3670 inst_env->slot_needed = 0;
3671 inst_env->prefix_found = 0;
3672 inst_env->xflag_found = 0;
3673 inst_env->disable_interrupt = 0;
3674}
3675
3676/* Translate op_type to a function and call it. */
3677
a78f21af
AC
3678static void
3679cris_gdb_func (enum cris_op_type op_type, unsigned short inst,
3680 inst_env_type *inst_env)
29134980
OF
3681{
3682 switch (op_type)
3683 {
3684 case cris_not_implemented_op:
3685 not_implemented_op (inst, inst_env);
3686 break;
3687
3688 case cris_abs_op:
3689 abs_op (inst, inst_env);
3690 break;
3691
3692 case cris_addi_op:
3693 addi_op (inst, inst_env);
3694 break;
3695
3696 case cris_asr_op:
3697 asr_op (inst, inst_env);
3698 break;
3699
3700 case cris_asrq_op:
3701 asrq_op (inst, inst_env);
3702 break;
3703
3704 case cris_ax_ei_setf_op:
3705 ax_ei_setf_op (inst, inst_env);
3706 break;
3707
3708 case cris_bdap_prefix:
3709 bdap_prefix (inst, inst_env);
3710 break;
3711
3712 case cris_biap_prefix:
3713 biap_prefix (inst, inst_env);
3714 break;
3715
3716 case cris_break_op:
3717 break_op (inst, inst_env);
3718 break;
3719
3720 case cris_btst_nop_op:
3721 btst_nop_op (inst, inst_env);
3722 break;
3723
3724 case cris_clearf_di_op:
3725 clearf_di_op (inst, inst_env);
3726 break;
3727
3728 case cris_dip_prefix:
3729 dip_prefix (inst, inst_env);
3730 break;
3731
3732 case cris_dstep_logshift_mstep_neg_not_op:
3733 dstep_logshift_mstep_neg_not_op (inst, inst_env);
3734 break;
3735
3736 case cris_eight_bit_offset_branch_op:
3737 eight_bit_offset_branch_op (inst, inst_env);
3738 break;
3739
3740 case cris_move_mem_to_reg_movem_op:
3741 move_mem_to_reg_movem_op (inst, inst_env);
3742 break;
3743
3744 case cris_move_reg_to_mem_movem_op:
3745 move_reg_to_mem_movem_op (inst, inst_env);
3746 break;
3747
3748 case cris_move_to_preg_op:
3749 move_to_preg_op (inst, inst_env);
3750 break;
3751
3752 case cris_muls_op:
3753 muls_op (inst, inst_env);
3754 break;
3755
3756 case cris_mulu_op:
3757 mulu_op (inst, inst_env);
3758 break;
3759
3760 case cris_none_reg_mode_add_sub_cmp_and_or_move_op:
3761 none_reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3762 break;
3763
3764 case cris_none_reg_mode_clear_test_op:
3765 none_reg_mode_clear_test_op (inst, inst_env);
3766 break;
3767
3768 case cris_none_reg_mode_jump_op:
3769 none_reg_mode_jump_op (inst, inst_env);
3770 break;
3771
3772 case cris_none_reg_mode_move_from_preg_op:
3773 none_reg_mode_move_from_preg_op (inst, inst_env);
3774 break;
3775
3776 case cris_quick_mode_add_sub_op:
3777 quick_mode_add_sub_op (inst, inst_env);
3778 break;
3779
3780 case cris_quick_mode_and_cmp_move_or_op:
3781 quick_mode_and_cmp_move_or_op (inst, inst_env);
3782 break;
3783
3784 case cris_quick_mode_bdap_prefix:
3785 quick_mode_bdap_prefix (inst, inst_env);
3786 break;
3787
3788 case cris_reg_mode_add_sub_cmp_and_or_move_op:
3789 reg_mode_add_sub_cmp_and_or_move_op (inst, inst_env);
3790 break;
3791
3792 case cris_reg_mode_clear_op:
3793 reg_mode_clear_op (inst, inst_env);
3794 break;
3795
3796 case cris_reg_mode_jump_op:
3797 reg_mode_jump_op (inst, inst_env);
3798 break;
3799
3800 case cris_reg_mode_move_from_preg_op:
3801 reg_mode_move_from_preg_op (inst, inst_env);
3802 break;
3803
3804 case cris_reg_mode_test_op:
3805 reg_mode_test_op (inst, inst_env);
3806 break;
3807
3808 case cris_scc_op:
3809 scc_op (inst, inst_env);
3810 break;
3811
3812 case cris_sixteen_bit_offset_branch_op:
3813 sixteen_bit_offset_branch_op (inst, inst_env);
3814 break;
3815
3816 case cris_three_operand_add_sub_cmp_and_or_op:
3817 three_operand_add_sub_cmp_and_or_op (inst, inst_env);
3818 break;
3819
3820 case cris_three_operand_bound_op:
3821 three_operand_bound_op (inst, inst_env);
3822 break;
3823
3824 case cris_two_operand_bound_op:
3825 two_operand_bound_op (inst, inst_env);
3826 break;
3827
3828 case cris_xor_op:
3829 xor_op (inst, inst_env);
3830 break;
3831 }
3832}
3833
3834/* This wrapper is to avoid cris_get_assembler being called before
3835 exec_bfd has been set. */
3836
3837static int
a89aa300 3838cris_delayed_get_disassembler (bfd_vma addr, struct disassemble_info *info)
29134980 3839{
a89aa300 3840 int (*print_insn) (bfd_vma addr, struct disassemble_info *info);
36482093
AC
3841 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
3842 disassembler, even when there is no BFD. Does something like
3843 "gdb; target remote; disassmeble *0x123" work? */
3844 gdb_assert (exec_bfd != NULL);
a5f6c8f5 3845 print_insn = cris_get_disassembler (exec_bfd);
36482093
AC
3846 gdb_assert (print_insn != NULL);
3847 return print_insn (addr, info);
29134980
OF
3848}
3849
dbbff683
OF
3850/* Copied from <asm/elf.h>. */
3851typedef unsigned long elf_greg_t;
3852
3853/* Same as user_regs_struct struct in <asm/user.h>. */
c600d464
OF
3854#define CRISV10_ELF_NGREG 35
3855typedef elf_greg_t elf_gregset_t[CRISV10_ELF_NGREG];
3856
3857#define CRISV32_ELF_NGREG 32
3858typedef elf_greg_t crisv32_elf_gregset_t[CRISV32_ELF_NGREG];
dbbff683
OF
3859
3860/* Unpack an elf_gregset_t into GDB's register cache. */
3861
a78f21af 3862static void
c6b4e5a2 3863cris_supply_gregset (struct regcache *regcache, elf_gregset_t *gregsetp)
dbbff683 3864{
c600d464 3865 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
dbbff683
OF
3866 int i;
3867 elf_greg_t *regp = *gregsetp;
3868 static char zerobuf[4] = {0};
3869
3870 /* The kernel dumps all 32 registers as unsigned longs, but supply_register
3871 knows about the actual size of each register so that's no problem. */
3872 for (i = 0; i < NUM_GENREGS + NUM_SPECREGS; i++)
3873 {
c6b4e5a2 3874 regcache_raw_supply (regcache, i, (char *)&regp[i]);
dbbff683 3875 }
c600d464
OF
3876
3877 if (tdep->cris_version == 32)
3878 {
3879 /* Needed to set pseudo-register PC for CRISv32. */
3880 /* FIXME: If ERP is in a delay slot at this point then the PC will
3881 be wrong. Issue a warning to alert the user. */
c6b4e5a2 3882 regcache_raw_supply (regcache, PC_REGNUM,
c600d464
OF
3883 (char *)&regp[ERP_REGNUM]);
3884
3885 if (*(char *)&regp[ERP_REGNUM] & 0x1)
3886 fprintf_unfiltered (gdb_stderr, "Warning: PC in delay slot\n");
3887 }
dbbff683
OF
3888}
3889
3890/* Use a local version of this function to get the correct types for
3891 regsets, until multi-arch core support is ready. */
3892
3893static void
9eefc95f
UW
3894fetch_core_registers (struct regcache *regcache,
3895 char *core_reg_sect, unsigned core_reg_size,
dbbff683
OF
3896 int which, CORE_ADDR reg_addr)
3897{
3898 elf_gregset_t gregset;
3899
3900 switch (which)
3901 {
3902 case 0:
c600d464
OF
3903 if (core_reg_size != sizeof (elf_gregset_t)
3904 && core_reg_size != sizeof (crisv32_elf_gregset_t))
dbbff683 3905 {
8a3fe4f8 3906 warning (_("wrong size gregset struct in core file"));
dbbff683
OF
3907 }
3908 else
3909 {
3910 memcpy (&gregset, core_reg_sect, sizeof (gregset));
9eefc95f 3911 cris_supply_gregset (regcache, &gregset);
dbbff683
OF
3912 }
3913
3914 default:
3915 /* We've covered all the kinds of registers we know about here,
3916 so this must be something we wouldn't know what to do with
3917 anyway. Just ignore it. */
3918 break;
3919 }
3920}
3921
3922static struct core_fns cris_elf_core_fns =
3923{
3924 bfd_target_elf_flavour, /* core_flavour */
3925 default_check_format, /* check_format */
3926 default_core_sniffer, /* core_sniffer */
3927 fetch_core_registers, /* core_read_registers */
3928 NULL /* next */
3929};
3930
a78f21af
AC
3931extern initialize_file_ftype _initialize_cris_tdep; /* -Wmissing-prototypes */
3932
29134980
OF
3933void
3934_initialize_cris_tdep (void)
3935{
a5f6c8f5
OF
3936 static struct cmd_list_element *cris_set_cmdlist;
3937 static struct cmd_list_element *cris_show_cmdlist;
3938
29134980
OF
3939 struct cmd_list_element *c;
3940
3941 gdbarch_register (bfd_arch_cris, cris_gdbarch_init, cris_dump_tdep);
3942
29134980 3943 /* CRIS-specific user-commands. */
a5f6c8f5
OF
3944 add_setshow_uinteger_cmd ("cris-version", class_support,
3945 &usr_cmd_cris_version,
7915a72c
AC
3946 _("Set the current CRIS version."),
3947 _("Show the current CRIS version."),
bdd56253
OF
3948 _("\
3949Set to 10 for CRISv10 or 32 for CRISv32 if autodetection fails.\n\
3950Defaults to 10. "),
2c5b56ce 3951 set_cris_version,
7915a72c 3952 NULL, /* FIXME: i18n: Current CRIS version is %s. */
a5f6c8f5 3953 &setlist, &showlist);
0e6bdb31
OF
3954
3955 add_setshow_enum_cmd ("cris-mode", class_support,
3956 cris_modes, &usr_cmd_cris_mode,
3957 _("Set the current CRIS mode."),
3958 _("Show the current CRIS mode."),
bdd56253
OF
3959 _("\
3960Set to CRIS_MODE_GURU when debugging in guru mode.\n\
3961Makes GDB use the NRP register instead of the ERP register in certain cases."),
0e6bdb31
OF
3962 set_cris_mode,
3963 NULL, /* FIXME: i18n: Current CRIS version is %s. */
3964 &setlist, &showlist);
dbbff683 3965
a5f6c8f5
OF
3966 add_setshow_boolean_cmd ("cris-dwarf2-cfi", class_support,
3967 &usr_cmd_cris_dwarf2_cfi,
7915a72c
AC
3968 _("Set the usage of Dwarf-2 CFI for CRIS."),
3969 _("Show the usage of Dwarf-2 CFI for CRIS."),
bdd56253 3970 _("Set this to \"off\" if using gcc-cris < R59."),
2c5b56ce 3971 set_cris_dwarf2_cfi,
7915a72c 3972 NULL, /* FIXME: i18n: Usage of Dwarf-2 CFI for CRIS is %d. */
a5f6c8f5
OF
3973 &setlist, &showlist);
3974
52bd1401 3975 deprecated_add_core_fns (&cris_elf_core_fns);
29134980
OF
3976}
3977
3978/* Prints out all target specific values. */
3979
3980static void
3981cris_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3982{
3983 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3984 if (tdep != NULL)
3985 {
3986 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_version = %i\n",
3987 tdep->cris_version);
0e6bdb31
OF
3988 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_mode = %s\n",
3989 tdep->cris_mode);
a5f6c8f5
OF
3990 fprintf_unfiltered (file, "cris_dump_tdep: tdep->cris_dwarf2_cfi = %i\n",
3991 tdep->cris_dwarf2_cfi);
29134980
OF
3992 }
3993}
3994
3995static void
a5f6c8f5
OF
3996set_cris_version (char *ignore_args, int from_tty,
3997 struct cmd_list_element *c)
29134980
OF
3998{
3999 struct gdbarch_info info;
4000
a5f6c8f5 4001 usr_cmd_cris_version_valid = 1;
29134980 4002
a5f6c8f5
OF
4003 /* Update the current architecture, if needed. */
4004 gdbarch_info_init (&info);
4005 if (!gdbarch_update_p (info))
4006 internal_error (__FILE__, __LINE__,
e2e0b3e5 4007 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4008}
4009
0e6bdb31
OF
4010static void
4011set_cris_mode (char *ignore_args, int from_tty,
4012 struct cmd_list_element *c)
4013{
4014 struct gdbarch_info info;
4015
4016 /* Update the current architecture, if needed. */
4017 gdbarch_info_init (&info);
4018 if (!gdbarch_update_p (info))
4019 internal_error (__FILE__, __LINE__,
4020 "cris_gdbarch_update: failed to update architecture.");
4021}
4022
29134980 4023static void
a5f6c8f5
OF
4024set_cris_dwarf2_cfi (char *ignore_args, int from_tty,
4025 struct cmd_list_element *c)
29134980
OF
4026{
4027 struct gdbarch_info info;
a5f6c8f5
OF
4028
4029 /* Update the current architecture, if needed. */
4030 gdbarch_info_init (&info);
4031 if (!gdbarch_update_p (info))
4032 internal_error (__FILE__, __LINE__,
e2e0b3e5 4033 _("cris_gdbarch_update: failed to update architecture."));
29134980
OF
4034}
4035
29134980
OF
4036static struct gdbarch *
4037cris_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4038{
4039 struct gdbarch *gdbarch;
4040 struct gdbarch_tdep *tdep;
4041 int cris_version;
29134980
OF
4042
4043 if (usr_cmd_cris_version_valid)
4044 {
4045 /* Trust the user's CRIS version setting. */
4046 cris_version = usr_cmd_cris_version;
4047 }
c600d464
OF
4048 else if (info.abfd && bfd_get_mach (info.abfd) == bfd_mach_cris_v32)
4049 {
4050 cris_version = 32;
4051 }
29134980
OF
4052 else
4053 {
4054 /* Assume it's CRIS version 10. */
4055 cris_version = 10;
4056 }
4057
29134980
OF
4058 /* Make the current settings visible to the user. */
4059 usr_cmd_cris_version = cris_version;
29134980 4060
0e6bdb31 4061 /* Find a candidate among the list of pre-declared architectures. */
29134980
OF
4062 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4063 arches != NULL;
4064 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4065 {
a5f6c8f5
OF
4066 if ((gdbarch_tdep (arches->gdbarch)->cris_version
4067 == usr_cmd_cris_version)
0e6bdb31
OF
4068 && (gdbarch_tdep (arches->gdbarch)->cris_mode
4069 == usr_cmd_cris_mode)
a5f6c8f5
OF
4070 && (gdbarch_tdep (arches->gdbarch)->cris_dwarf2_cfi
4071 == usr_cmd_cris_dwarf2_cfi))
29134980
OF
4072 return arches->gdbarch;
4073 }
4074
4075 /* No matching architecture was found. Create a new one. */
4076 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4077 gdbarch = gdbarch_alloc (&info, tdep);
4078
a5f6c8f5 4079 tdep->cris_version = usr_cmd_cris_version;
0e6bdb31 4080 tdep->cris_mode = usr_cmd_cris_mode;
a5f6c8f5 4081 tdep->cris_dwarf2_cfi = usr_cmd_cris_dwarf2_cfi;
29134980
OF
4082
4083 /* INIT shall ensure that the INFO.BYTE_ORDER is non-zero. */
4084 switch (info.byte_order)
4085 {
778eb05e 4086 case BFD_ENDIAN_LITTLE:
29134980
OF
4087 /* Ok. */
4088 break;
4089
d7449b42 4090 case BFD_ENDIAN_BIG:
e2e0b3e5 4091 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: big endian byte order in info"));
29134980
OF
4092 break;
4093
4094 default:
e2e0b3e5 4095 internal_error (__FILE__, __LINE__, _("cris_gdbarch_init: unknown byte order in info"));
29134980
OF
4096 }
4097
b4206d25 4098 set_gdbarch_return_value (gdbarch, cris_return_value);
2e4b5889
OF
4099 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch,
4100 cris_reg_struct_has_addr);
b5622e8d 4101 set_gdbarch_deprecated_use_struct_convention (gdbarch, always_use_struct_convention);
29134980 4102
29134980 4103 set_gdbarch_sp_regnum (gdbarch, 14);
c600d464
OF
4104
4105 /* Length of ordinary registers used in push_word and a few other
4106 places. register_size() is the real way to know how big a
4107 register is. */
a5f6c8f5 4108
2e4b5889
OF
4109 set_gdbarch_double_bit (gdbarch, 64);
4110 /* The default definition of a long double is 2 * TARGET_DOUBLE_BIT,
4111 which means we have to set this explicitly. */
c600d464 4112 set_gdbarch_long_double_bit (gdbarch, 64);
29134980 4113
29134980
OF
4114 /* The total amount of space needed to store (in an array called registers)
4115 GDB's copy of the machine's register state. Note: We can not use
4116 cris_register_size at this point, since it relies on current_gdbarch
4117 being set. */
4118 switch (tdep->cris_version)
4119 {
4120 case 0:
4121 case 1:
4122 case 2:
4123 case 3:
29134980
OF
4124 case 8:
4125 case 9:
a5f6c8f5
OF
4126 /* Old versions; not supported. */
4127 internal_error (__FILE__, __LINE__,
e2e0b3e5 4128 _("cris_gdbarch_init: unsupported CRIS version"));
29134980
OF
4129 break;
4130
4131 case 10:
4132 case 11:
4133 /* CRIS v10 and v11, a.k.a. ETRAX 100LX. In addition to ETRAX 100,
4134 P7 (32 bits), and P15 (32 bits) have been implemented. */
c600d464
OF
4135 set_gdbarch_pc_regnum (gdbarch, 15);
4136 set_gdbarch_register_type (gdbarch, cris_register_type);
4137 /* There are 32 registers (some of which may not be implemented). */
4138 set_gdbarch_num_regs (gdbarch, 32);
4139 set_gdbarch_register_name (gdbarch, cris_register_name);
4140 set_gdbarch_cannot_store_register (gdbarch, cris_cannot_store_register);
4141 set_gdbarch_cannot_fetch_register (gdbarch, cris_cannot_fetch_register);
4142
4143 set_gdbarch_software_single_step (gdbarch, cris_software_single_step);
4144 break;
4145
4146 case 32:
4147 /* CRIS v32. General registers R0 - R15 (32 bits), special registers
4148 P0 - P15 (32 bits) except P0, P1, P3 (8 bits) and P4 (16 bits)
4149 and pseudo-register PC (32 bits). */
4150 set_gdbarch_pc_regnum (gdbarch, 32);
4151 set_gdbarch_register_type (gdbarch, crisv32_register_type);
4152 /* 32 registers + pseudo-register PC + 16 support registers. */
4153 set_gdbarch_num_regs (gdbarch, 32 + 1 + 16);
4154 set_gdbarch_register_name (gdbarch, crisv32_register_name);
4155
4156 set_gdbarch_cannot_store_register
4157 (gdbarch, crisv32_cannot_store_register);
4158 set_gdbarch_cannot_fetch_register
4159 (gdbarch, crisv32_cannot_fetch_register);
4160
4161 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
4162
4163 set_gdbarch_single_step_through_delay
4164 (gdbarch, crisv32_single_step_through_delay);
4165
29134980
OF
4166 break;
4167
4168 default:
c600d464 4169 internal_error (__FILE__, __LINE__,
e2e0b3e5 4170 _("cris_gdbarch_init: unknown CRIS version"));
29134980
OF
4171 }
4172
c600d464
OF
4173 /* Dummy frame functions (shared between CRISv10 and CRISv32 since they
4174 have the same ABI). */
2e4b5889
OF
4175 set_gdbarch_push_dummy_code (gdbarch, cris_push_dummy_code);
4176 set_gdbarch_push_dummy_call (gdbarch, cris_push_dummy_call);
4177 set_gdbarch_frame_align (gdbarch, cris_frame_align);
29134980 4178 set_gdbarch_skip_prologue (gdbarch, cris_skip_prologue);
29134980
OF
4179
4180 /* The stack grows downward. */
4181 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4182
4183 set_gdbarch_breakpoint_from_pc (gdbarch, cris_breakpoint_from_pc);
4184
2e4b5889
OF
4185 set_gdbarch_unwind_pc (gdbarch, cris_unwind_pc);
4186 set_gdbarch_unwind_sp (gdbarch, cris_unwind_sp);
4187 set_gdbarch_unwind_dummy_id (gdbarch, cris_unwind_dummy_id);
4188
a5f6c8f5
OF
4189 if (tdep->cris_dwarf2_cfi == 1)
4190 {
4191 /* Hook in the Dwarf-2 frame sniffer. */
4192 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, cris_dwarf2_reg_to_regnum);
4193 dwarf2_frame_set_init_reg (gdbarch, cris_dwarf2_frame_init_reg);
4194 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
4195 }
4196
0e6bdb31
OF
4197 if (tdep->cris_mode != cris_mode_guru)
4198 {
4199 frame_unwind_append_sniffer (gdbarch, cris_sigtramp_frame_sniffer);
4200 }
a5f6c8f5 4201
2e4b5889
OF
4202 frame_unwind_append_sniffer (gdbarch, cris_frame_sniffer);
4203 frame_base_set_default (gdbarch, &cris_frame_base);
6c0e89ed 4204
76a9d10f
MK
4205 set_solib_svr4_fetch_link_map_offsets
4206 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
dbbff683 4207
36482093
AC
4208 /* FIXME: cagney/2003-08-27: It should be possible to select a CRIS
4209 disassembler, even when there is no BFD. Does something like
4210 "gdb; target remote; disassmeble *0x123" work? */
4211 set_gdbarch_print_insn (gdbarch, cris_delayed_get_disassembler);
4212
29134980
OF
4213 return gdbarch;
4214}
This page took 0.645474 seconds and 4 git commands to generate.