2003-03-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for Mitsubishi D10V, for GDB.
349c5d5f 2
51603483 3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
349c5d5f 4 Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Contributed by Martin Hunt, hunt@cygnus.com */
24
25#include "defs.h"
26#include "frame.h"
7f6104a9 27#include "frame-unwind.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "gdb_string.h"
33#include "value.h"
34#include "inferior.h"
c5aa993b 35#include "dis-asm.h"
c906108c
SS
36#include "symfile.h"
37#include "objfiles.h"
104c1213 38#include "language.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
c906108c 41
f0d4cc9e 42#include "floatformat.h"
b91b96f4 43#include "gdb/sim-d10v.h"
8238d0bf 44#include "sim-regno.h"
4ce44c66 45
fa1fd571
AC
46#include "gdb_assert.h"
47
cce74817 48struct frame_extra_info
c5aa993b
JM
49 {
50 CORE_ADDR return_pc;
51 int frameless;
52 int size;
53 };
cce74817 54
4ce44c66
JM
55struct gdbarch_tdep
56 {
57 int a0_regnum;
58 int nr_dmap_regs;
59 unsigned long (*dmap_register) (int nr);
60 unsigned long (*imap_register) (int nr);
4ce44c66
JM
61 };
62
63/* These are the addresses the D10V-EVA board maps data and
64 instruction memory to. */
cce74817 65
78eac43e
MS
66enum memspace {
67 DMEM_START = 0x2000000,
68 IMEM_START = 0x1000000,
69 STACK_START = 0x200bffe
70};
cce74817 71
4ce44c66
JM
72/* d10v register names. */
73
74enum
75 {
76 R0_REGNUM = 0,
78eac43e
MS
77 R3_REGNUM = 3,
78 _FP_REGNUM = 11,
4ce44c66 79 LR_REGNUM = 13,
78eac43e 80 _SP_REGNUM = 15,
4ce44c66 81 PSW_REGNUM = 16,
78eac43e 82 _PC_REGNUM = 18,
4ce44c66 83 NR_IMAP_REGS = 2,
78eac43e
MS
84 NR_A_REGS = 2,
85 TS2_NUM_REGS = 37,
86 TS3_NUM_REGS = 42,
87 /* d10v calling convention. */
88 ARG1_REGNUM = R0_REGNUM,
89 ARGN_REGNUM = R3_REGNUM,
90 RET1_REGNUM = R0_REGNUM,
4ce44c66 91 };
78eac43e 92
4ce44c66
JM
93#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
94#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
95
392a587b
JM
96/* Local functions */
97
a14ed312 98extern void _initialize_d10v_tdep (void);
392a587b 99
095a4c96
EZ
100static CORE_ADDR d10v_read_sp (void);
101
102static CORE_ADDR d10v_read_fp (void);
103
a14ed312 104static void d10v_eva_prepare_to_trace (void);
392a587b 105
a14ed312 106static void d10v_eva_get_trace_data (void);
c906108c 107
23964bcd 108static CORE_ADDR
489137c0
AC
109d10v_stack_align (CORE_ADDR len)
110{
111 return (len + 1) & ~1;
112}
c906108c
SS
113
114/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
115 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
116 and TYPE is the type (which is known to be struct, union or array).
117
118 The d10v returns anything less than 8 bytes in size in
119 registers. */
120
f5e1cf12 121static int
fba45db2 122d10v_use_struct_convention (int gcc_p, struct type *type)
c906108c 123{
02da6206
JSC
124 long alignment;
125 int i;
126 /* The d10v only passes a struct in a register when that structure
127 has an alignment that matches the size of a register. */
128 /* If the structure doesn't fit in 4 registers, put it on the
129 stack. */
130 if (TYPE_LENGTH (type) > 8)
131 return 1;
132 /* If the struct contains only one field, don't put it on the stack
133 - gcc can fit it in one or more registers. */
134 if (TYPE_NFIELDS (type) == 1)
135 return 0;
136 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
137 for (i = 1; i < TYPE_NFIELDS (type); i++)
138 {
139 /* If the alignment changes, just assume it goes on the
140 stack. */
141 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
142 return 1;
143 }
144 /* If the alignment is suitable for the d10v's 16 bit registers,
145 don't put it on the stack. */
146 if (alignment == 2 || alignment == 4)
147 return 0;
148 return 1;
c906108c
SS
149}
150
151
f4f9705a 152static const unsigned char *
fba45db2 153d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
392a587b 154{
c5aa993b
JM
155 static unsigned char breakpoint[] =
156 {0x2f, 0x90, 0x5e, 0x00};
392a587b
JM
157 *lenptr = sizeof (breakpoint);
158 return breakpoint;
159}
160
4ce44c66
JM
161/* Map the REG_NR onto an ascii name. Return NULL or an empty string
162 when the reg_nr isn't valid. */
163
164enum ts2_regnums
165 {
166 TS2_IMAP0_REGNUM = 32,
167 TS2_DMAP_REGNUM = 34,
168 TS2_NR_DMAP_REGS = 1,
169 TS2_A0_REGNUM = 35
170 };
171
fa88f677 172static const char *
4ce44c66 173d10v_ts2_register_name (int reg_nr)
392a587b 174{
c5aa993b
JM
175 static char *register_names[] =
176 {
177 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
178 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
179 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
180 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
181 "imap0", "imap1", "dmap", "a0", "a1"
392a587b
JM
182 };
183 if (reg_nr < 0)
184 return NULL;
185 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
186 return NULL;
c5aa993b 187 return register_names[reg_nr];
392a587b
JM
188}
189
4ce44c66
JM
190enum ts3_regnums
191 {
192 TS3_IMAP0_REGNUM = 36,
193 TS3_DMAP0_REGNUM = 38,
194 TS3_NR_DMAP_REGS = 4,
195 TS3_A0_REGNUM = 32
196 };
197
fa88f677 198static const char *
4ce44c66
JM
199d10v_ts3_register_name (int reg_nr)
200{
201 static char *register_names[] =
202 {
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
206 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
207 "a0", "a1",
208 "spi", "spu",
209 "imap0", "imap1",
210 "dmap0", "dmap1", "dmap2", "dmap3"
211 };
212 if (reg_nr < 0)
213 return NULL;
214 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
215 return NULL;
216 return register_names[reg_nr];
217}
218
bf93dfed
JB
219/* Access the DMAP/IMAP registers in a target independent way.
220
221 Divide the D10V's 64k data space into four 16k segments:
222 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
223 0xc000 -- 0xffff.
224
225 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
226 0x7fff) always map to the on-chip data RAM, and the fourth always
227 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
228 unified memory or instruction memory, under the control of the
229 single DMAP register.
230
231 On the TS3, there are four DMAP registers, each of which controls
232 one of the segments. */
4ce44c66
JM
233
234static unsigned long
235d10v_ts2_dmap_register (int reg_nr)
236{
237 switch (reg_nr)
238 {
239 case 0:
240 case 1:
241 return 0x2000;
242 case 2:
243 return read_register (TS2_DMAP_REGNUM);
244 default:
245 return 0;
246 }
247}
248
249static unsigned long
250d10v_ts3_dmap_register (int reg_nr)
251{
252 return read_register (TS3_DMAP0_REGNUM + reg_nr);
253}
254
255static unsigned long
256d10v_dmap_register (int reg_nr)
257{
258 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
259}
260
261static unsigned long
262d10v_ts2_imap_register (int reg_nr)
263{
264 return read_register (TS2_IMAP0_REGNUM + reg_nr);
265}
266
267static unsigned long
268d10v_ts3_imap_register (int reg_nr)
269{
270 return read_register (TS3_IMAP0_REGNUM + reg_nr);
271}
272
273static unsigned long
274d10v_imap_register (int reg_nr)
275{
276 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
277}
278
279/* MAP GDB's internal register numbering (determined by the layout fo
280 the REGISTER_BYTE array) onto the simulator's register
281 numbering. */
282
283static int
284d10v_ts2_register_sim_regno (int nr)
285{
8238d0bf
AC
286 if (legacy_register_sim_regno (nr) < 0)
287 return legacy_register_sim_regno (nr);
4ce44c66
JM
288 if (nr >= TS2_IMAP0_REGNUM
289 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
290 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
291 if (nr == TS2_DMAP_REGNUM)
292 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
293 if (nr >= TS2_A0_REGNUM
294 && nr < TS2_A0_REGNUM + NR_A_REGS)
295 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
296 return nr;
297}
298
299static int
300d10v_ts3_register_sim_regno (int nr)
301{
8238d0bf
AC
302 if (legacy_register_sim_regno (nr) < 0)
303 return legacy_register_sim_regno (nr);
4ce44c66
JM
304 if (nr >= TS3_IMAP0_REGNUM
305 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
306 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
307 if (nr >= TS3_DMAP0_REGNUM
308 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
309 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
310 if (nr >= TS3_A0_REGNUM
311 && nr < TS3_A0_REGNUM + NR_A_REGS)
312 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
313 return nr;
314}
315
392a587b
JM
316/* Index within `registers' of the first byte of the space for
317 register REG_NR. */
318
f5e1cf12 319static int
fba45db2 320d10v_register_byte (int reg_nr)
392a587b 321{
4ce44c66 322 if (reg_nr < A0_REGNUM)
392a587b 323 return (reg_nr * 2);
4ce44c66
JM
324 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
325 return (A0_REGNUM * 2
326 + (reg_nr - A0_REGNUM) * 8);
327 else
328 return (A0_REGNUM * 2
329 + NR_A_REGS * 8
330 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
392a587b
JM
331}
332
333/* Number of bytes of storage in the actual machine representation for
334 register REG_NR. */
335
f5e1cf12 336static int
fba45db2 337d10v_register_raw_size (int reg_nr)
392a587b 338{
4ce44c66
JM
339 if (reg_nr < A0_REGNUM)
340 return 2;
341 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
392a587b
JM
342 return 8;
343 else
344 return 2;
345}
346
392a587b
JM
347/* Return the GDB type object for the "standard" data type
348 of data in register N. */
349
f5e1cf12 350static struct type *
35cac7cf 351d10v_register_type (struct gdbarch *gdbarch, int reg_nr)
392a587b 352{
75af7f68
JB
353 if (reg_nr == PC_REGNUM)
354 return builtin_type_void_func_ptr;
095a4c96
EZ
355 if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
356 return builtin_type_void_data_ptr;
75af7f68 357 else if (reg_nr >= A0_REGNUM
4ce44c66
JM
358 && reg_nr < (A0_REGNUM + NR_A_REGS))
359 return builtin_type_int64;
392a587b 360 else
4ce44c66 361 return builtin_type_int16;
392a587b
JM
362}
363
f5e1cf12 364static int
fba45db2 365d10v_daddr_p (CORE_ADDR x)
392a587b
JM
366{
367 return (((x) & 0x3000000) == DMEM_START);
368}
369
f5e1cf12 370static int
fba45db2 371d10v_iaddr_p (CORE_ADDR x)
392a587b
JM
372{
373 return (((x) & 0x3000000) == IMEM_START);
374}
375
169a7369
MS
376static CORE_ADDR
377d10v_make_daddr (CORE_ADDR x)
378{
379 return ((x) | DMEM_START);
380}
381
382static CORE_ADDR
383d10v_make_iaddr (CORE_ADDR x)
384{
385 if (d10v_iaddr_p (x))
386 return x; /* Idempotency -- x is already in the IMEM space. */
387 else
388 return (((x) << 2) | IMEM_START);
389}
392a587b 390
f5e1cf12 391static CORE_ADDR
fba45db2 392d10v_convert_iaddr_to_raw (CORE_ADDR x)
392a587b
JM
393{
394 return (((x) >> 2) & 0xffff);
395}
396
f5e1cf12 397static CORE_ADDR
fba45db2 398d10v_convert_daddr_to_raw (CORE_ADDR x)
392a587b
JM
399{
400 return ((x) & 0xffff);
401}
402
75af7f68
JB
403static void
404d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
405{
406 /* Is it a code address? */
407 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
408 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
409 {
75af7f68
JB
410 store_unsigned_integer (buf, TYPE_LENGTH (type),
411 d10v_convert_iaddr_to_raw (addr));
412 }
413 else
414 {
415 /* Strip off any upper segment bits. */
416 store_unsigned_integer (buf, TYPE_LENGTH (type),
417 d10v_convert_daddr_to_raw (addr));
418 }
419}
420
421static CORE_ADDR
66140c26 422d10v_pointer_to_address (struct type *type, const void *buf)
75af7f68
JB
423{
424 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
425
426 /* Is it a code address? */
427 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
74a9bb82
FF
428 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
429 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
75af7f68
JB
430 return d10v_make_iaddr (addr);
431 else
432 return d10v_make_daddr (addr);
433}
434
095a4c96
EZ
435/* Don't do anything if we have an integer, this way users can type 'x
436 <addr>' w/o having gdb outsmart them. The internal gdb conversions
437 to the correct space are taken care of in the pointer_to_address
438 function. If we don't do this, 'x $fp' wouldn't work. */
fc0c74b1
AC
439static CORE_ADDR
440d10v_integer_to_address (struct type *type, void *buf)
441{
442 LONGEST val;
443 val = unpack_long (type, buf);
095a4c96 444 return val;
fc0c74b1 445}
75af7f68 446
392a587b
JM
447/* Store the address of the place in which to copy the structure the
448 subroutine will return. This is called from call_function.
449
450 We store structs through a pointer passed in the first Argument
451 register. */
452
f5e1cf12 453static void
fba45db2 454d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
392a587b
JM
455{
456 write_register (ARG1_REGNUM, (addr));
457}
458
459/* Write into appropriate registers a function return value
460 of type TYPE, given in virtual format.
461
462 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
463
f5e1cf12 464static void
fa1fd571
AC
465d10v_store_return_value (struct type *type, struct regcache *regcache,
466 const void *valbuf)
392a587b 467{
fa1fd571
AC
468 /* Only char return values need to be shifted right within the first
469 regnum. */
3d79a47c
MS
470 if (TYPE_LENGTH (type) == 1
471 && TYPE_CODE (type) == TYPE_CODE_INT)
472 {
fa1fd571
AC
473 bfd_byte tmp[2];
474 tmp[1] = *(bfd_byte *)valbuf;
475 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
3d79a47c
MS
476 }
477 else
fa1fd571
AC
478 {
479 int reg;
480 /* A structure is never more than 8 bytes long. See
481 use_struct_convention(). */
482 gdb_assert (TYPE_LENGTH (type) <= 8);
483 /* Write out most registers, stop loop before trying to write
484 out any dangling byte at the end of the buffer. */
485 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
486 {
487 regcache_cooked_write (regcache, RET1_REGNUM + reg,
488 (bfd_byte *) valbuf + reg * 2);
489 }
490 /* Write out any dangling byte at the end of the buffer. */
491 if ((reg * 2) + 1 == TYPE_LENGTH (type))
492 regcache_cooked_write_part (regcache, reg, 0, 1,
493 (bfd_byte *) valbuf + reg * 2);
494 }
392a587b
JM
495}
496
497/* Extract from an array REGBUF containing the (raw) register state
498 the address in which a function should return its structure value,
499 as a CORE_ADDR (or an expression that can be used as one). */
500
f5e1cf12 501static CORE_ADDR
fa1fd571 502d10v_extract_struct_value_address (struct regcache *regcache)
392a587b 503{
fa1fd571
AC
504 ULONGEST addr;
505 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
506 return (addr | DMEM_START);
392a587b
JM
507}
508
392a587b
JM
509/* Immediately after a function call, return the saved pc. We can't
510 use frame->return_pc beause that is determined by reading R13 off
511 the stack and that may not be written yet. */
512
f5e1cf12 513static CORE_ADDR
fba45db2 514d10v_saved_pc_after_call (struct frame_info *frame)
392a587b 515{
c5aa993b 516 return ((read_register (LR_REGNUM) << 2)
392a587b
JM
517 | IMEM_START);
518}
519
c5aa993b 520static int
fba45db2 521check_prologue (unsigned short op)
c906108c
SS
522{
523 /* st rn, @-sp */
524 if ((op & 0x7E1F) == 0x6C1F)
525 return 1;
526
527 /* st2w rn, @-sp */
528 if ((op & 0x7E3F) == 0x6E1F)
529 return 1;
530
531 /* subi sp, n */
532 if ((op & 0x7FE1) == 0x01E1)
533 return 1;
534
535 /* mv r11, sp */
536 if (op == 0x417E)
537 return 1;
538
539 /* nop */
540 if (op == 0x5E00)
541 return 1;
542
543 /* st rn, @sp */
544 if ((op & 0x7E1F) == 0x681E)
545 return 1;
546
547 /* st2w rn, @sp */
c5aa993b
JM
548 if ((op & 0x7E3F) == 0x3A1E)
549 return 1;
c906108c
SS
550
551 return 0;
552}
553
f5e1cf12 554static CORE_ADDR
fba45db2 555d10v_skip_prologue (CORE_ADDR pc)
c906108c
SS
556{
557 unsigned long op;
558 unsigned short op1, op2;
559 CORE_ADDR func_addr, func_end;
560 struct symtab_and_line sal;
561
562 /* If we have line debugging information, then the end of the */
563 /* prologue should the first assembly instruction of the first source line */
564 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
565 {
566 sal = find_pc_line (func_addr, 0);
c5aa993b 567 if (sal.end && sal.end < func_end)
c906108c
SS
568 return sal.end;
569 }
c5aa993b
JM
570
571 if (target_read_memory (pc, (char *) &op, 4))
c906108c
SS
572 return pc; /* Can't access it -- assume no prologue. */
573
574 while (1)
575 {
c5aa993b 576 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
577 if ((op & 0xC0000000) == 0xC0000000)
578 {
579 /* long instruction */
c5aa993b
JM
580 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
581 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
582 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
c906108c
SS
583 break;
584 }
585 else
586 {
587 /* short instructions */
588 if ((op & 0xC0000000) == 0x80000000)
589 {
590 op2 = (op & 0x3FFF8000) >> 15;
591 op1 = op & 0x7FFF;
c5aa993b
JM
592 }
593 else
c906108c
SS
594 {
595 op1 = (op & 0x3FFF8000) >> 15;
596 op2 = op & 0x7FFF;
597 }
c5aa993b 598 if (check_prologue (op1))
c906108c 599 {
c5aa993b 600 if (!check_prologue (op2))
c906108c
SS
601 {
602 /* if the previous opcode was really part of the prologue */
603 /* and not just a NOP, then we want to break after both instructions */
604 if (op1 != 0x5E00)
605 pc += 4;
606 break;
607 }
608 }
609 else
610 break;
611 }
612 pc += 4;
613 }
614 return pc;
615}
616
7f6104a9 617struct d10v_unwind_cache
c906108c 618{
7f6104a9
AC
619 CORE_ADDR return_pc;
620 int frameless;
621 int size;
622 CORE_ADDR *saved_regs;
623 CORE_ADDR next_addr;
624 int uses_frame;
625 void **regs;
626};
c906108c 627
c5aa993b 628static int
7f6104a9
AC
629prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
630 CORE_ADDR addr)
c906108c
SS
631{
632 int n;
633
634 /* st rn, @-sp */
635 if ((op & 0x7E1F) == 0x6C1F)
636 {
637 n = (op & 0x1E0) >> 5;
7f6104a9
AC
638 info->next_addr -= 2;
639 info->saved_regs[n] = info->next_addr;
c906108c
SS
640 return 1;
641 }
642
643 /* st2w rn, @-sp */
644 else if ((op & 0x7E3F) == 0x6E1F)
645 {
646 n = (op & 0x1E0) >> 5;
7f6104a9
AC
647 info->next_addr -= 4;
648 info->saved_regs[n] = info->next_addr;
649 info->saved_regs[n + 1] = info->next_addr + 2;
c906108c
SS
650 return 1;
651 }
652
653 /* subi sp, n */
654 if ((op & 0x7FE1) == 0x01E1)
655 {
656 n = (op & 0x1E) >> 1;
657 if (n == 0)
658 n = 16;
7f6104a9 659 info->next_addr -= n;
c906108c
SS
660 return 1;
661 }
662
663 /* mv r11, sp */
664 if (op == 0x417E)
665 {
7f6104a9 666 info->uses_frame = 1;
c906108c
SS
667 return 1;
668 }
669
670 /* nop */
671 if (op == 0x5E00)
672 return 1;
673
674 /* st rn, @sp */
675 if ((op & 0x7E1F) == 0x681E)
676 {
677 n = (op & 0x1E0) >> 5;
7f6104a9 678 info->saved_regs[n] = info->next_addr;
c906108c
SS
679 return 1;
680 }
681
682 /* st2w rn, @sp */
683 if ((op & 0x7E3F) == 0x3A1E)
684 {
685 n = (op & 0x1E0) >> 5;
7f6104a9
AC
686 info->saved_regs[n] = info->next_addr;
687 info->saved_regs[n + 1] = info->next_addr + 2;
c906108c
SS
688 return 1;
689 }
690
691 return 0;
692}
693
cce74817
JM
694/* Put here the code to store, into fi->saved_regs, the addresses of
695 the saved registers of frame described by FRAME_INFO. This
696 includes special registers such as pc and fp saved in special ways
697 in the stack frame. sp is even more special: the address we return
698 for it IS the sp for the next frame. */
699
7f6104a9
AC
700struct d10v_unwind_cache *
701d10v_frame_unwind_cache (struct frame_info *fi,
702 void **cache)
c906108c
SS
703{
704 CORE_ADDR fp, pc;
705 unsigned long op;
706 unsigned short op1, op2;
707 int i;
7f6104a9
AC
708 struct d10v_unwind_cache *info;
709
710 if ((*cache))
711 return (*cache);
712
713 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
714 (*cache) = info;
715 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
716
717 info->frameless = 0;
718 info->size = 0;
719 info->return_pc = 0;
c906108c 720
1e2330ba 721 fp = get_frame_base (fi);
7f6104a9 722 info->next_addr = 0;
c906108c 723
50abf9e5 724 pc = get_pc_function_start (get_frame_pc (fi));
c906108c 725
7f6104a9 726 info->uses_frame = 0;
c906108c
SS
727 while (1)
728 {
c5aa993b 729 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
730 if ((op & 0xC0000000) == 0xC0000000)
731 {
732 /* long instruction */
733 if ((op & 0x3FFF0000) == 0x01FF0000)
734 {
735 /* add3 sp,sp,n */
736 short n = op & 0xFFFF;
7f6104a9 737 info->next_addr += n;
c906108c
SS
738 }
739 else if ((op & 0x3F0F0000) == 0x340F0000)
740 {
741 /* st rn, @(offset,sp) */
742 short offset = op & 0xFFFF;
743 short n = (op >> 20) & 0xF;
7f6104a9 744 info->saved_regs[n] = info->next_addr + offset;
c906108c
SS
745 }
746 else if ((op & 0x3F1F0000) == 0x350F0000)
747 {
748 /* st2w rn, @(offset,sp) */
749 short offset = op & 0xFFFF;
750 short n = (op >> 20) & 0xF;
7f6104a9
AC
751 info->saved_regs[n] = info->next_addr + offset;
752 info->saved_regs[n + 1] = info->next_addr + offset + 2;
c906108c
SS
753 }
754 else
755 break;
756 }
757 else
758 {
759 /* short instructions */
760 if ((op & 0xC0000000) == 0x80000000)
761 {
762 op2 = (op & 0x3FFF8000) >> 15;
763 op1 = op & 0x7FFF;
c5aa993b
JM
764 }
765 else
c906108c
SS
766 {
767 op1 = (op & 0x3FFF8000) >> 15;
768 op2 = op & 0x7FFF;
769 }
7f6104a9
AC
770 if (!prologue_find_regs (info, op1, pc)
771 || !prologue_find_regs (info, op2, pc))
c906108c
SS
772 break;
773 }
774 pc += 4;
775 }
c5aa993b 776
7f6104a9 777 info->size = -info->next_addr;
c906108c
SS
778
779 if (!(fp & 0xffff))
095a4c96 780 fp = d10v_read_sp ();
c906108c 781
c5aa993b 782 for (i = 0; i < NUM_REGS - 1; i++)
7f6104a9 783 if (info->saved_regs[i])
c906108c 784 {
7f6104a9 785 info->saved_regs[i] = fp - (info->next_addr - info->saved_regs[i]);
c906108c
SS
786 }
787
7f6104a9 788 if (info->saved_regs[LR_REGNUM])
c906108c 789 {
78eac43e 790 CORE_ADDR return_pc
7f6104a9 791 = read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
08a617da 792 register_size (current_gdbarch, LR_REGNUM));
7f6104a9 793 info->return_pc = d10v_make_iaddr (return_pc);
c906108c
SS
794 }
795 else
796 {
7f6104a9
AC
797 ULONGEST return_pc;
798 frame_read_unsigned_register (fi, LR_REGNUM, &return_pc);
799 info->return_pc = d10v_make_iaddr (return_pc);
c906108c 800 }
c5aa993b 801
78eac43e 802 /* The SP is not normally (ever?) saved, but check anyway */
7f6104a9 803 if (!info->saved_regs[SP_REGNUM])
c906108c
SS
804 {
805 /* if the FP was saved, that means the current FP is valid, */
806 /* otherwise, it isn't being used, so we use the SP instead */
7f6104a9
AC
807 if (info->uses_frame)
808 info->saved_regs[SP_REGNUM]
809 = d10v_read_fp () + info->size;
c906108c
SS
810 else
811 {
7f6104a9
AC
812 info->saved_regs[SP_REGNUM] = fp + info->size;
813 info->frameless = 1;
814 info->saved_regs[FP_REGNUM] = 0;
c906108c
SS
815 }
816 }
c906108c 817
7f6104a9 818 return info;
c906108c
SS
819}
820
821static void
5f601589
AC
822d10v_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
823 struct frame_info *frame, int regnum, int all)
c906108c 824{
5f601589 825 if (regnum >= 0)
4ce44c66 826 {
5f601589
AC
827 default_print_registers_info (gdbarch, file, frame, regnum, all);
828 return;
4ce44c66 829 }
5f601589
AC
830
831 {
832 ULONGEST pc, psw, rpt_s, rpt_e, rpt_c;
833 frame_read_unsigned_register (frame, PC_REGNUM, &pc);
834 frame_read_unsigned_register (frame, PSW_REGNUM, &psw);
835 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_s", -1), &rpt_s);
836 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_e", -1), &rpt_e);
837 frame_read_unsigned_register (frame, frame_map_name_to_regnum ("rpt_c", -1), &rpt_c);
838 fprintf_filtered (file, "PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
839 (long) pc, (long) d10v_make_iaddr (pc), (long) psw,
840 (long) rpt_s, (long) rpt_e, (long) rpt_c);
841 }
842
843 {
844 int group;
845 for (group = 0; group < 16; group += 8)
846 {
847 int r;
848 fprintf_filtered (file, "R%d-R%-2d", group, group + 7);
849 for (r = group; r < group + 8; r++)
850 {
851 ULONGEST tmp;
852 frame_read_unsigned_register (frame, r, &tmp);
853 fprintf_filtered (file, " %04lx", (long) tmp);
854 }
855 fprintf_filtered (file, "\n");
856 }
857 }
858
859 /* Note: The IMAP/DMAP registers don't participate in function
860 calls. Don't bother trying to unwind them. */
861
6789195b 862 {
5f601589
AC
863 int a;
864 for (a = 0; a < NR_IMAP_REGS; a++)
865 {
866 if (a > 0)
867 fprintf_filtered (file, " ");
868 fprintf_filtered (file, "IMAP%d %04lx", a, d10v_imap_register (a));
869 }
870 if (NR_DMAP_REGS == 1)
871 /* Registers DMAP0 and DMAP1 are constant. Just return dmap2. */
872 fprintf_filtered (file, " DMAP %04lx\n", d10v_dmap_register (2));
873 else
874 {
875 for (a = 0; a < NR_DMAP_REGS; a++)
876 {
877 fprintf_filtered (file, " DMAP%d %04lx", a, d10v_dmap_register (a));
878 }
879 fprintf_filtered (file, "\n");
880 }
881 }
882
883 {
884 char *num = alloca (max_register_size (gdbarch));
885 int a;
886 fprintf_filtered (file, "A0-A%d", NR_A_REGS - 1);
6789195b
AC
887 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
888 {
889 int i;
5f601589
AC
890 fprintf_filtered (file, " ");
891 frame_register_read (frame, a, num);
08a617da 892 for (i = 0; i < max_register_size (current_gdbarch); i++)
6789195b 893 {
5f601589 894 fprintf_filtered (file, "%02x", (num[i] & 0xff));
6789195b
AC
895 }
896 }
897 }
5f601589
AC
898 fprintf_filtered (file, "\n");
899}
900
901static void
902show_regs (char *args, int from_tty)
903{
904 d10v_print_registers_info (current_gdbarch, gdb_stdout,
905 get_current_frame (), -1, 1);
c906108c
SS
906}
907
f5e1cf12 908static CORE_ADDR
39f77062 909d10v_read_pc (ptid_t ptid)
c906108c 910{
39f77062 911 ptid_t save_ptid;
c906108c
SS
912 CORE_ADDR pc;
913 CORE_ADDR retval;
914
39f77062
KB
915 save_ptid = inferior_ptid;
916 inferior_ptid = ptid;
c906108c 917 pc = (int) read_register (PC_REGNUM);
39f77062 918 inferior_ptid = save_ptid;
7b570125 919 retval = d10v_make_iaddr (pc);
c906108c
SS
920 return retval;
921}
922
f5e1cf12 923static void
39f77062 924d10v_write_pc (CORE_ADDR val, ptid_t ptid)
c906108c 925{
39f77062 926 ptid_t save_ptid;
c906108c 927
39f77062
KB
928 save_ptid = inferior_ptid;
929 inferior_ptid = ptid;
7b570125 930 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
39f77062 931 inferior_ptid = save_ptid;
c906108c
SS
932}
933
f5e1cf12 934static CORE_ADDR
fba45db2 935d10v_read_sp (void)
c906108c 936{
7b570125 937 return (d10v_make_daddr (read_register (SP_REGNUM)));
c906108c
SS
938}
939
f5e1cf12 940static void
fba45db2 941d10v_write_sp (CORE_ADDR val)
c906108c 942{
7b570125 943 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
c906108c
SS
944}
945
f5e1cf12 946static CORE_ADDR
fba45db2 947d10v_read_fp (void)
c906108c 948{
7b570125 949 return (d10v_make_daddr (read_register (FP_REGNUM)));
c906108c
SS
950}
951
952/* Function: push_return_address (pc)
953 Set up the return address for the inferior function call.
954 Needed for targets where we don't actually execute a JSR/BSR instruction */
c5aa993b 955
f5e1cf12 956static CORE_ADDR
fba45db2 957d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 958{
7b570125 959 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
c906108c
SS
960 return sp;
961}
c5aa993b 962
c906108c 963
7a292a7a
SS
964/* When arguments must be pushed onto the stack, they go on in reverse
965 order. The below implements a FILO (stack) to do this. */
966
967struct stack_item
968{
969 int len;
970 struct stack_item *prev;
971 void *data;
972};
973
a14ed312
KB
974static struct stack_item *push_stack_item (struct stack_item *prev,
975 void *contents, int len);
7a292a7a 976static struct stack_item *
fba45db2 977push_stack_item (struct stack_item *prev, void *contents, int len)
7a292a7a
SS
978{
979 struct stack_item *si;
980 si = xmalloc (sizeof (struct stack_item));
981 si->data = xmalloc (len);
982 si->len = len;
983 si->prev = prev;
984 memcpy (si->data, contents, len);
985 return si;
986}
987
a14ed312 988static struct stack_item *pop_stack_item (struct stack_item *si);
7a292a7a 989static struct stack_item *
fba45db2 990pop_stack_item (struct stack_item *si)
7a292a7a
SS
991{
992 struct stack_item *dead = si;
993 si = si->prev;
b8c9b27d
KB
994 xfree (dead->data);
995 xfree (dead);
7a292a7a
SS
996 return si;
997}
998
999
f5e1cf12 1000static CORE_ADDR
ea7c478f 1001d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1002 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1003{
1004 int i;
1005 int regnum = ARG1_REGNUM;
7a292a7a 1006 struct stack_item *si = NULL;
7bd91a28
MS
1007 long val;
1008
1009 /* If struct_return is true, then the struct return address will
1010 consume one argument-passing register. No need to actually
1011 write the value to the register -- that's done by
1012 d10v_store_struct_return(). */
1013
1014 if (struct_return)
1015 regnum++;
c5aa993b 1016
c906108c
SS
1017 /* Fill in registers and arg lists */
1018 for (i = 0; i < nargs; i++)
1019 {
ea7c478f 1020 struct value *arg = args[i];
c906108c
SS
1021 struct type *type = check_typedef (VALUE_TYPE (arg));
1022 char *contents = VALUE_CONTENTS (arg);
1023 int len = TYPE_LENGTH (type);
7bd91a28
MS
1024 int aligned_regnum = (regnum + 1) & ~1;
1025
8b279e7a 1026 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
7bd91a28
MS
1027 if (len <= 2 && regnum <= ARGN_REGNUM)
1028 /* fits in a single register, do not align */
1029 {
1030 val = extract_unsigned_integer (contents, len);
1031 write_register (regnum++, val);
1032 }
1033 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1034 /* value fits in remaining registers, store keeping left
1035 aligned */
c906108c 1036 {
7bd91a28
MS
1037 int b;
1038 regnum = aligned_regnum;
1039 for (b = 0; b < (len & ~1); b += 2)
c906108c 1040 {
7bd91a28 1041 val = extract_unsigned_integer (&contents[b], 2);
c906108c
SS
1042 write_register (regnum++, val);
1043 }
7bd91a28 1044 if (b < len)
c906108c 1045 {
7bd91a28
MS
1046 val = extract_unsigned_integer (&contents[b], 1);
1047 write_register (regnum++, (val << 8));
c906108c
SS
1048 }
1049 }
7bd91a28
MS
1050 else
1051 {
1052 /* arg will go onto stack */
1053 regnum = ARGN_REGNUM + 1;
1054 si = push_stack_item (si, contents, len);
1055 }
c906108c 1056 }
7a292a7a
SS
1057
1058 while (si)
1059 {
1060 sp = (sp - si->len) & ~1;
1061 write_memory (sp, si->data, si->len);
1062 si = pop_stack_item (si);
1063 }
c5aa993b 1064
c906108c
SS
1065 return sp;
1066}
1067
1068
1069/* Given a return value in `regbuf' with a type `valtype',
1070 extract and copy its value into `valbuf'. */
1071
f5e1cf12 1072static void
fa1fd571
AC
1073d10v_extract_return_value (struct type *type, struct regcache *regcache,
1074 void *valbuf)
c906108c
SS
1075{
1076 int len;
3d79a47c
MS
1077#if 0
1078 printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
1079 TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
1080 (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
08a617da 1081 register_size (current_gdbarch, RET1_REGNUM)));
3d79a47c 1082#endif
fa1fd571 1083 if (TYPE_LENGTH (type) == 1)
c906108c 1084 {
fa1fd571
AC
1085 ULONGEST c;
1086 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
3d79a47c
MS
1087 store_unsigned_integer (valbuf, 1, c);
1088 }
3d79a47c
MS
1089 else
1090 {
1091 /* For return values of odd size, the first byte is in the
1092 least significant part of the first register. The
fa1fd571
AC
1093 remaining bytes in remaining registers. Interestingly, when
1094 such values are passed in, the last byte is in the most
1095 significant byte of that same register - wierd. */
1096 int reg = RET1_REGNUM;
1097 int off = 0;
1098 if (TYPE_LENGTH (type) & 1)
1099 {
1100 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1101 (bfd_byte *)valbuf + off);
1102 off++;
1103 reg++;
1104 }
1105 /* Transfer the remaining registers. */
1106 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1107 {
1108 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1109 (bfd_byte *) valbuf + off);
1110 }
c906108c
SS
1111 }
1112}
1113
c2c6d25f
JM
1114/* Translate a GDB virtual ADDR/LEN into a format the remote target
1115 understands. Returns number of bytes that can be transfered
4ce44c66
JM
1116 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1117 (segmentation fault). Since the simulator knows all about how the
1118 VM system works, we just call that to do the translation. */
c2c6d25f 1119
4ce44c66 1120static void
c2c6d25f
JM
1121remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1122 CORE_ADDR *targ_addr, int *targ_len)
1123{
4ce44c66
JM
1124 long out_addr;
1125 long out_len;
1126 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1127 &out_addr,
1128 d10v_dmap_register,
1129 d10v_imap_register);
1130 *targ_addr = out_addr;
1131 *targ_len = out_len;
c2c6d25f
JM
1132}
1133
4ce44c66 1134
c906108c
SS
1135/* The following code implements access to, and display of, the D10V's
1136 instruction trace buffer. The buffer consists of 64K or more
1137 4-byte words of data, of which each words includes an 8-bit count,
1138 an 8-bit segment number, and a 16-bit instruction address.
1139
1140 In theory, the trace buffer is continuously capturing instruction
1141 data that the CPU presents on its "debug bus", but in practice, the
1142 ROMified GDB stub only enables tracing when it continues or steps
1143 the program, and stops tracing when the program stops; so it
1144 actually works for GDB to read the buffer counter out of memory and
1145 then read each trace word. The counter records where the tracing
1146 stops, but there is no record of where it started, so we remember
1147 the PC when we resumed and then search backwards in the trace
1148 buffer for a word that includes that address. This is not perfect,
1149 because you will miss trace data if the resumption PC is the target
1150 of a branch. (The value of the buffer counter is semi-random, any
1151 trace data from a previous program stop is gone.) */
1152
1153/* The address of the last word recorded in the trace buffer. */
1154
1155#define DBBC_ADDR (0xd80000)
1156
1157/* The base of the trace buffer, at least for the "Board_0". */
1158
1159#define TRACE_BUFFER_BASE (0xf40000)
1160
a14ed312 1161static void trace_command (char *, int);
c906108c 1162
a14ed312 1163static void untrace_command (char *, int);
c906108c 1164
a14ed312 1165static void trace_info (char *, int);
c906108c 1166
a14ed312 1167static void tdisassemble_command (char *, int);
c906108c 1168
a14ed312 1169static void display_trace (int, int);
c906108c
SS
1170
1171/* True when instruction traces are being collected. */
1172
1173static int tracing;
1174
1175/* Remembered PC. */
1176
1177static CORE_ADDR last_pc;
1178
1179/* True when trace output should be displayed whenever program stops. */
1180
1181static int trace_display;
1182
1183/* True when trace listing should include source lines. */
1184
1185static int default_trace_show_source = 1;
1186
c5aa993b
JM
1187struct trace_buffer
1188 {
1189 int size;
1190 short *counts;
1191 CORE_ADDR *addrs;
1192 }
1193trace_data;
c906108c
SS
1194
1195static void
fba45db2 1196trace_command (char *args, int from_tty)
c906108c
SS
1197{
1198 /* Clear the host-side trace buffer, allocating space if needed. */
1199 trace_data.size = 0;
1200 if (trace_data.counts == NULL)
c5aa993b 1201 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
c906108c 1202 if (trace_data.addrs == NULL)
c5aa993b 1203 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
c906108c
SS
1204
1205 tracing = 1;
1206
1207 printf_filtered ("Tracing is now on.\n");
1208}
1209
1210static void
fba45db2 1211untrace_command (char *args, int from_tty)
c906108c
SS
1212{
1213 tracing = 0;
1214
1215 printf_filtered ("Tracing is now off.\n");
1216}
1217
1218static void
fba45db2 1219trace_info (char *args, int from_tty)
c906108c
SS
1220{
1221 int i;
1222
1223 if (trace_data.size)
1224 {
1225 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1226
1227 for (i = 0; i < trace_data.size; ++i)
1228 {
d4f3574e
SS
1229 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1230 i,
1231 trace_data.counts[i],
c906108c 1232 (trace_data.counts[i] == 1 ? "" : "s"),
d4f3574e 1233 paddr_nz (trace_data.addrs[i]));
c906108c
SS
1234 }
1235 }
1236 else
1237 printf_filtered ("No entries in trace buffer.\n");
1238
1239 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1240}
1241
1242/* Print the instruction at address MEMADDR in debugged memory,
1243 on STREAM. Returns length of the instruction, in bytes. */
1244
1245static int
fba45db2 1246print_insn (CORE_ADDR memaddr, struct ui_file *stream)
c906108c
SS
1247{
1248 /* If there's no disassembler, something is very wrong. */
1249 if (tm_print_insn == NULL)
8e65ff28
AC
1250 internal_error (__FILE__, __LINE__,
1251 "print_insn: no disassembler");
c906108c 1252
d7449b42 1253 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1254 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1255 else
1256 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
2bf0cb65 1257 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
c906108c
SS
1258}
1259
392a587b 1260static void
fba45db2 1261d10v_eva_prepare_to_trace (void)
c906108c
SS
1262{
1263 if (!tracing)
1264 return;
1265
1266 last_pc = read_register (PC_REGNUM);
1267}
1268
1269/* Collect trace data from the target board and format it into a form
1270 more useful for display. */
1271
392a587b 1272static void
fba45db2 1273d10v_eva_get_trace_data (void)
c906108c
SS
1274{
1275 int count, i, j, oldsize;
1276 int trace_addr, trace_seg, trace_cnt, next_cnt;
1277 unsigned int last_trace, trace_word, next_word;
1278 unsigned int *tmpspace;
1279
1280 if (!tracing)
1281 return;
1282
c5aa993b 1283 tmpspace = xmalloc (65536 * sizeof (unsigned int));
c906108c
SS
1284
1285 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1286
1287 /* Collect buffer contents from the target, stopping when we reach
1288 the word recorded when execution resumed. */
1289
1290 count = 0;
1291 while (last_trace > 0)
1292 {
1293 QUIT;
1294 trace_word =
1295 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1296 trace_addr = trace_word & 0xffff;
1297 last_trace -= 4;
1298 /* Ignore an apparently nonsensical entry. */
1299 if (trace_addr == 0xffd5)
1300 continue;
1301 tmpspace[count++] = trace_word;
1302 if (trace_addr == last_pc)
1303 break;
1304 if (count > 65535)
1305 break;
1306 }
1307
1308 /* Move the data to the host-side trace buffer, adjusting counts to
1309 include the last instruction executed and transforming the address
1310 into something that GDB likes. */
1311
1312 for (i = 0; i < count; ++i)
1313 {
1314 trace_word = tmpspace[i];
1315 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1316 trace_addr = trace_word & 0xffff;
1317 next_cnt = (next_word >> 24) & 0xff;
1318 j = trace_data.size + count - i - 1;
1319 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1320 trace_data.counts[j] = next_cnt + 1;
1321 }
1322
1323 oldsize = trace_data.size;
1324 trace_data.size += count;
1325
b8c9b27d 1326 xfree (tmpspace);
c906108c
SS
1327
1328 if (trace_display)
1329 display_trace (oldsize, trace_data.size);
1330}
1331
1332static void
fba45db2 1333tdisassemble_command (char *arg, int from_tty)
c906108c
SS
1334{
1335 int i, count;
1336 CORE_ADDR low, high;
1337 char *space_index;
1338
1339 if (!arg)
1340 {
1341 low = 0;
1342 high = trace_data.size;
1343 }
1344 else if (!(space_index = (char *) strchr (arg, ' ')))
1345 {
1346 low = parse_and_eval_address (arg);
1347 high = low + 5;
1348 }
1349 else
1350 {
1351 /* Two arguments. */
1352 *space_index = '\0';
1353 low = parse_and_eval_address (arg);
1354 high = parse_and_eval_address (space_index + 1);
1355 if (high < low)
1356 high = low;
1357 }
1358
d4f3574e 1359 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
c906108c
SS
1360
1361 display_trace (low, high);
1362
1363 printf_filtered ("End of trace dump.\n");
1364 gdb_flush (gdb_stdout);
1365}
1366
1367static void
fba45db2 1368display_trace (int low, int high)
c906108c
SS
1369{
1370 int i, count, trace_show_source, first, suppress;
1371 CORE_ADDR next_address;
1372
1373 trace_show_source = default_trace_show_source;
c5aa993b 1374 if (!have_full_symbols () && !have_partial_symbols ())
c906108c
SS
1375 {
1376 trace_show_source = 0;
1377 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1378 printf_filtered ("Trace will not display any source.\n");
1379 }
1380
1381 first = 1;
1382 suppress = 0;
1383 for (i = low; i < high; ++i)
1384 {
1385 next_address = trace_data.addrs[i];
c5aa993b 1386 count = trace_data.counts[i];
c906108c
SS
1387 while (count-- > 0)
1388 {
1389 QUIT;
1390 if (trace_show_source)
1391 {
1392 struct symtab_and_line sal, sal_prev;
1393
1394 sal_prev = find_pc_line (next_address - 4, 0);
1395 sal = find_pc_line (next_address, 0);
1396
1397 if (sal.symtab)
1398 {
1399 if (first || sal.line != sal_prev.line)
1400 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1401 suppress = 0;
1402 }
1403 else
1404 {
1405 if (!suppress)
1406 /* FIXME-32x64--assumes sal.pc fits in long. */
1407 printf_filtered ("No source file for address %s.\n",
c5aa993b 1408 local_hex_string ((unsigned long) sal.pc));
c906108c
SS
1409 suppress = 1;
1410 }
1411 }
1412 first = 0;
1413 print_address (next_address, gdb_stdout);
1414 printf_filtered (":");
1415 printf_filtered ("\t");
1416 wrap_here (" ");
1417 next_address = next_address + print_insn (next_address, gdb_stdout);
1418 printf_filtered ("\n");
1419 gdb_flush (gdb_stdout);
1420 }
1421 }
1422}
1423
ac9a91a7 1424
7f6104a9
AC
1425static CORE_ADDR
1426d10v_frame_pc_unwind (struct frame_info *frame,
1427 void **cache)
1428{
1429 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1430 return info->return_pc;
1431}
1432
1433/* Given a GDB frame, determine the address of the calling function's
1434 frame. This will be used to create a new GDB frame struct. */
1435
1436static void
1437d10v_frame_id_unwind (struct frame_info *frame,
1438 void **cache,
1439 struct frame_id *id)
1440{
1441 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1442 CORE_ADDR addr;
1443
1444 /* Start with a NULL frame ID. */
1445 (*id) = null_frame_id;
1446
1447 if (info->return_pc == IMEM_START
1448 || info->return_pc <= IMEM_START
1449 || inside_entry_file (info->return_pc))
1450 {
1451 /* This is meant to halt the backtrace at "_start".
1452 Make sure we don't halt it at a generic dummy frame. */
1453 return;
1454 }
1455
1456 if (!info->saved_regs[FP_REGNUM])
1457 {
1458 if (!info->saved_regs[SP_REGNUM]
1459 || info->saved_regs[SP_REGNUM] == STACK_START)
1460 return;
1461
1462 id->base = info->saved_regs[SP_REGNUM];
1463 id->pc = info->return_pc;
1464 }
1465
1466 addr = read_memory_unsigned_integer (info->saved_regs[FP_REGNUM],
08a617da 1467 register_size (current_gdbarch, FP_REGNUM));
7f6104a9
AC
1468 if (addr == 0)
1469 return;
1470
1471 id->base = d10v_make_daddr (addr);
1472 id->pc = info->return_pc;
1473}
1474
1475static void
1476saved_regs_unwinder (struct frame_info *frame,
1477 CORE_ADDR *saved_regs,
1478 int regnum, int *optimizedp,
1479 enum lval_type *lvalp, CORE_ADDR *addrp,
1480 int *realnump, void *bufferp)
1481{
1482 /* If we're using generic dummy frames, we'd better not be in a call
1483 dummy. (generic_call_dummy_register_unwind ought to have been called
1484 instead.) */
1485 gdb_assert (!(DEPRECATED_USE_GENERIC_DUMMY_FRAMES
1486 && (get_frame_type (frame) == DUMMY_FRAME)));
1487
1488 if (saved_regs[regnum] != 0)
1489 {
1490 if (regnum == SP_REGNUM)
1491 {
1492 /* SP register treated specially. */
1493 *optimizedp = 0;
1494 *lvalp = not_lval;
1495 *addrp = 0;
1496 *realnump = -1;
1497 if (bufferp != NULL)
08a617da 1498 store_address (bufferp, register_size (current_gdbarch, regnum),
7f6104a9
AC
1499 saved_regs[regnum]);
1500 }
1501 else
1502 {
1503 /* Any other register is saved in memory, fetch it but cache
1504 a local copy of its value. */
1505 *optimizedp = 0;
1506 *lvalp = lval_memory;
1507 *addrp = saved_regs[regnum];
1508 *realnump = -1;
1509 if (bufferp != NULL)
1510 {
1511 /* Read the value in from memory. */
1512 read_memory (saved_regs[regnum], bufferp,
08a617da 1513 register_size (current_gdbarch, regnum));
7f6104a9
AC
1514 }
1515 }
1516 return;
1517 }
1518
1519 /* No luck, assume this and the next frame have the same register
1520 value. If a value is needed, pass the request on down the chain;
1521 otherwise just return an indication that the value is in the same
1522 register as the next frame. */
1523 frame_register (frame, regnum, optimizedp, lvalp, addrp,
1524 realnump, bufferp);
1525}
1526
1527
1528static void
1529d10v_frame_register_unwind (struct frame_info *frame,
1530 void **cache,
1531 int regnum, int *optimizedp,
1532 enum lval_type *lvalp, CORE_ADDR *addrp,
1533 int *realnump, void *bufferp)
1534{
1535 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1536 saved_regs_unwinder (frame, info->saved_regs, regnum, optimizedp,
1537 lvalp, addrp, realnump, bufferp);
1538}
1539
1540
1541static void
1542d10v_frame_pop (struct frame_info *fi, void **unwind_cache,
1543 struct regcache *regcache)
1544{
1545 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (fi, unwind_cache);
1546 CORE_ADDR fp;
1547 int regnum;
1548 char raw_buffer[8];
1549
1550 fp = get_frame_base (fi);
1551
1552 /* now update the current registers with the old values */
1553 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
1554 {
5b181d62
AC
1555 frame_unwind_register (fi, regnum, raw_buffer);
1556 regcache_cooked_write (regcache, regnum, raw_buffer);
7f6104a9
AC
1557 }
1558 for (regnum = 0; regnum < SP_REGNUM; regnum++)
1559 {
5b181d62
AC
1560 frame_unwind_register (fi, regnum, raw_buffer);
1561 regcache_cooked_write (regcache, regnum, raw_buffer);
7f6104a9 1562 }
5b181d62
AC
1563 frame_unwind_register (fi, PSW_REGNUM, raw_buffer);
1564 regcache_cooked_write (regcache, PSW_REGNUM, raw_buffer);
1565
1566 frame_unwind_register (fi, LR_REGNUM, raw_buffer);
1567 regcache_cooked_write (regcache, PC_REGNUM, raw_buffer);
1568
08a617da
AC
1569 store_unsigned_integer (raw_buffer,
1570 register_size (current_gdbarch, SP_REGNUM),
5b181d62
AC
1571 fp + info->size);
1572 regcache_cooked_write (regcache, SP_REGNUM, raw_buffer);
7f6104a9 1573
7f6104a9
AC
1574 target_store_registers (-1);
1575 flush_cached_frames ();
1576}
1577
1578static struct frame_unwind d10v_frame_unwind = {
1579 d10v_frame_pop,
1580 d10v_frame_pc_unwind,
1581 d10v_frame_id_unwind,
1582 d10v_frame_register_unwind
1583};
1584
1585const struct frame_unwind *
1586d10v_frame_p (CORE_ADDR pc)
1587{
1588 return &d10v_frame_unwind;
1589}
1590
0f71a2f6 1591static gdbarch_init_ftype d10v_gdbarch_init;
4ce44c66 1592
0f71a2f6 1593static struct gdbarch *
fba45db2 1594d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
0f71a2f6 1595{
c5aa993b
JM
1596 static LONGEST d10v_call_dummy_words[] =
1597 {0};
0f71a2f6 1598 struct gdbarch *gdbarch;
4ce44c66
JM
1599 int d10v_num_regs;
1600 struct gdbarch_tdep *tdep;
1601 gdbarch_register_name_ftype *d10v_register_name;
7c7651b2 1602 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
0f71a2f6 1603
4ce44c66
JM
1604 /* Find a candidate among the list of pre-declared architectures. */
1605 arches = gdbarch_list_lookup_by_info (arches, &info);
0f71a2f6
JM
1606 if (arches != NULL)
1607 return arches->gdbarch;
4ce44c66
JM
1608
1609 /* None found, create a new architecture from the information
1610 provided. */
1611 tdep = XMALLOC (struct gdbarch_tdep);
1612 gdbarch = gdbarch_alloc (&info, tdep);
1613
1614 switch (info.bfd_arch_info->mach)
1615 {
1616 case bfd_mach_d10v_ts2:
1617 d10v_num_regs = 37;
1618 d10v_register_name = d10v_ts2_register_name;
7c7651b2 1619 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
4ce44c66
JM
1620 tdep->a0_regnum = TS2_A0_REGNUM;
1621 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
4ce44c66
JM
1622 tdep->dmap_register = d10v_ts2_dmap_register;
1623 tdep->imap_register = d10v_ts2_imap_register;
1624 break;
1625 default:
1626 case bfd_mach_d10v_ts3:
1627 d10v_num_regs = 42;
1628 d10v_register_name = d10v_ts3_register_name;
7c7651b2 1629 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
4ce44c66
JM
1630 tdep->a0_regnum = TS3_A0_REGNUM;
1631 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
4ce44c66
JM
1632 tdep->dmap_register = d10v_ts3_dmap_register;
1633 tdep->imap_register = d10v_ts3_imap_register;
1634 break;
1635 }
0f71a2f6
JM
1636
1637 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1638 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1639 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
0f71a2f6
JM
1640 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1641 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1642
1643 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1644 set_gdbarch_sp_regnum (gdbarch, 15);
1645 set_gdbarch_fp_regnum (gdbarch, 11);
1646 set_gdbarch_pc_regnum (gdbarch, 18);
1647 set_gdbarch_register_name (gdbarch, d10v_register_name);
1648 set_gdbarch_register_size (gdbarch, 2);
1649 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1650 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1651 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1652 set_gdbarch_max_register_raw_size (gdbarch, 8);
8b279e7a 1653 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
0f71a2f6 1654 set_gdbarch_max_register_virtual_size (gdbarch, 8);
35cac7cf 1655 set_gdbarch_register_type (gdbarch, d10v_register_type);
0f71a2f6 1656
75af7f68
JB
1657 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1658 set_gdbarch_addr_bit (gdbarch, 32);
1659 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1660 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
fc0c74b1 1661 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
0f71a2f6
JM
1662 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1663 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1664 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
02da6206 1665 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1666 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1667 double'' is 64 bits. */
0f71a2f6
JM
1668 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1669 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1670 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1671 switch (info.byte_order)
1672 {
d7449b42 1673 case BFD_ENDIAN_BIG:
f0d4cc9e
AC
1674 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1675 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1676 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1677 break;
778eb05e 1678 case BFD_ENDIAN_LITTLE:
f0d4cc9e
AC
1679 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1680 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1681 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1682 break;
1683 default:
8e65ff28
AC
1684 internal_error (__FILE__, __LINE__,
1685 "d10v_gdbarch_init: bad byte order for float format");
f0d4cc9e 1686 }
0f71a2f6 1687
0f71a2f6 1688 set_gdbarch_call_dummy_length (gdbarch, 0);
0f71a2f6
JM
1689 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1690 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1691 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1692 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
0f71a2f6
JM
1693 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1694 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1695 set_gdbarch_call_dummy_p (gdbarch, 1);
1696 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
0f71a2f6
JM
1697 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1698
fa1fd571 1699 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
0f71a2f6 1700 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
0f71a2f6
JM
1701 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1702
0f71a2f6 1703 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
fa1fd571
AC
1704 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1705 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
0f71a2f6
JM
1706 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1707
0f71a2f6
JM
1708 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1709 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1710 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1711 set_gdbarch_function_start_offset (gdbarch, 0);
1712 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1713
1714 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1715
1716 set_gdbarch_frame_args_skip (gdbarch, 0);
1717 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
f4ded5b1 1718
0f71a2f6
JM
1719 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1720 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
23964bcd 1721 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
0f71a2f6 1722
7c7651b2 1723 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
0a49d05e 1724 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
7c7651b2 1725
5f601589
AC
1726 set_gdbarch_print_registers_info (gdbarch, d10v_print_registers_info);
1727
7f6104a9
AC
1728 frame_unwind_append_predicate (gdbarch, d10v_frame_p);
1729
0f71a2f6
JM
1730 return gdbarch;
1731}
1732
1733
507f3c78
KB
1734extern void (*target_resume_hook) (void);
1735extern void (*target_wait_loop_hook) (void);
c906108c
SS
1736
1737void
fba45db2 1738_initialize_d10v_tdep (void)
c906108c 1739{
0f71a2f6
JM
1740 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1741
c906108c
SS
1742 tm_print_insn = print_insn_d10v;
1743
1744 target_resume_hook = d10v_eva_prepare_to_trace;
1745 target_wait_loop_hook = d10v_eva_get_trace_data;
1746
5f601589
AC
1747 deprecate_cmd (add_com ("regs", class_vars, show_regs, "Print all registers"),
1748 "info registers");
c906108c 1749
cff3e48b 1750 add_com ("itrace", class_support, trace_command,
c906108c
SS
1751 "Enable tracing of instruction execution.");
1752
cff3e48b 1753 add_com ("iuntrace", class_support, untrace_command,
c906108c
SS
1754 "Disable tracing of instruction execution.");
1755
cff3e48b 1756 add_com ("itdisassemble", class_vars, tdisassemble_command,
c906108c
SS
1757 "Disassemble the trace buffer.\n\
1758Two optional arguments specify a range of trace buffer entries\n\
1759as reported by info trace (NOT addresses!).");
1760
cff3e48b 1761 add_info ("itrace", trace_info,
c906108c
SS
1762 "Display info about the trace data buffer.");
1763
cff3e48b 1764 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
c5aa993b
JM
1765 var_integer, (char *) &trace_display,
1766 "Set automatic display of trace.\n", &setlist),
c906108c 1767 &showlist);
cff3e48b 1768 add_show_from_set (add_set_cmd ("itracesource", no_class,
c5aa993b
JM
1769 var_integer, (char *) &default_trace_show_source,
1770 "Set display of source code with trace.\n", &setlist),
c906108c
SS
1771 &showlist);
1772
c5aa993b 1773}
This page took 0.323551 seconds and 4 git commands to generate.