2002-05-13 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for Mitsubishi D10V, for GDB.
349c5d5f
AC
2
3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
4 Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Contributed by Martin Hunt, hunt@cygnus.com */
24
25#include "defs.h"
26#include "frame.h"
27#include "obstack.h"
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "gdb_string.h"
33#include "value.h"
34#include "inferior.h"
c5aa993b 35#include "dis-asm.h"
c906108c
SS
36#include "symfile.h"
37#include "objfiles.h"
104c1213 38#include "language.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
c906108c 41
f0d4cc9e 42#include "floatformat.h"
4ce44c66
JM
43#include "sim-d10v.h"
44
cce74817 45struct frame_extra_info
c5aa993b
JM
46 {
47 CORE_ADDR return_pc;
48 int frameless;
49 int size;
50 };
cce74817 51
4ce44c66
JM
52struct gdbarch_tdep
53 {
54 int a0_regnum;
55 int nr_dmap_regs;
56 unsigned long (*dmap_register) (int nr);
57 unsigned long (*imap_register) (int nr);
4ce44c66
JM
58 };
59
60/* These are the addresses the D10V-EVA board maps data and
61 instruction memory to. */
cce74817 62
cff3e48b 63#define DMEM_START 0x2000000
cce74817 64#define IMEM_START 0x1000000
494e8a93 65#define STACK_START 0x200bffe
cce74817 66
4ce44c66
JM
67/* d10v register names. */
68
69enum
70 {
71 R0_REGNUM = 0,
72 LR_REGNUM = 13,
73 PSW_REGNUM = 16,
74 NR_IMAP_REGS = 2,
75 NR_A_REGS = 2
76 };
77#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
78#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
79
80/* d10v calling convention. */
cce74817
JM
81
82#define ARG1_REGNUM R0_REGNUM
83#define ARGN_REGNUM 3
84#define RET1_REGNUM R0_REGNUM
85
392a587b
JM
86/* Local functions */
87
a14ed312 88extern void _initialize_d10v_tdep (void);
392a587b 89
a14ed312 90static void d10v_eva_prepare_to_trace (void);
392a587b 91
a14ed312 92static void d10v_eva_get_trace_data (void);
c906108c 93
a14ed312
KB
94static int prologue_find_regs (unsigned short op, struct frame_info *fi,
95 CORE_ADDR addr);
cce74817 96
f5e1cf12 97static void d10v_frame_init_saved_regs (struct frame_info *);
cce74817 98
a14ed312 99static void do_d10v_pop_frame (struct frame_info *fi);
cce74817 100
f5e1cf12 101static int
72623009 102d10v_frame_chain_valid (CORE_ADDR chain, struct frame_info *frame)
c906108c 103{
02da6206
JSC
104 return ((chain) != 0 && (frame) != 0
105 && (frame)->pc > IMEM_START
106 && !inside_entry_file (FRAME_SAVED_PC (frame)));
c906108c
SS
107}
108
23964bcd 109static CORE_ADDR
489137c0
AC
110d10v_stack_align (CORE_ADDR len)
111{
112 return (len + 1) & ~1;
113}
c906108c
SS
114
115/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
116 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
117 and TYPE is the type (which is known to be struct, union or array).
118
119 The d10v returns anything less than 8 bytes in size in
120 registers. */
121
f5e1cf12 122static int
fba45db2 123d10v_use_struct_convention (int gcc_p, struct type *type)
c906108c 124{
02da6206
JSC
125 long alignment;
126 int i;
127 /* The d10v only passes a struct in a register when that structure
128 has an alignment that matches the size of a register. */
129 /* If the structure doesn't fit in 4 registers, put it on the
130 stack. */
131 if (TYPE_LENGTH (type) > 8)
132 return 1;
133 /* If the struct contains only one field, don't put it on the stack
134 - gcc can fit it in one or more registers. */
135 if (TYPE_NFIELDS (type) == 1)
136 return 0;
137 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
138 for (i = 1; i < TYPE_NFIELDS (type); i++)
139 {
140 /* If the alignment changes, just assume it goes on the
141 stack. */
142 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
143 return 1;
144 }
145 /* If the alignment is suitable for the d10v's 16 bit registers,
146 don't put it on the stack. */
147 if (alignment == 2 || alignment == 4)
148 return 0;
149 return 1;
c906108c
SS
150}
151
152
f4f9705a 153static const unsigned char *
fba45db2 154d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
392a587b 155{
c5aa993b
JM
156 static unsigned char breakpoint[] =
157 {0x2f, 0x90, 0x5e, 0x00};
392a587b
JM
158 *lenptr = sizeof (breakpoint);
159 return breakpoint;
160}
161
4ce44c66
JM
162/* Map the REG_NR onto an ascii name. Return NULL or an empty string
163 when the reg_nr isn't valid. */
164
165enum ts2_regnums
166 {
167 TS2_IMAP0_REGNUM = 32,
168 TS2_DMAP_REGNUM = 34,
169 TS2_NR_DMAP_REGS = 1,
170 TS2_A0_REGNUM = 35
171 };
172
173static char *
174d10v_ts2_register_name (int reg_nr)
392a587b 175{
c5aa993b
JM
176 static char *register_names[] =
177 {
178 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
179 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
180 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
181 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
182 "imap0", "imap1", "dmap", "a0", "a1"
392a587b
JM
183 };
184 if (reg_nr < 0)
185 return NULL;
186 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
187 return NULL;
c5aa993b 188 return register_names[reg_nr];
392a587b
JM
189}
190
4ce44c66
JM
191enum ts3_regnums
192 {
193 TS3_IMAP0_REGNUM = 36,
194 TS3_DMAP0_REGNUM = 38,
195 TS3_NR_DMAP_REGS = 4,
196 TS3_A0_REGNUM = 32
197 };
198
199static char *
200d10v_ts3_register_name (int reg_nr)
201{
202 static char *register_names[] =
203 {
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
206 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
207 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
208 "a0", "a1",
209 "spi", "spu",
210 "imap0", "imap1",
211 "dmap0", "dmap1", "dmap2", "dmap3"
212 };
213 if (reg_nr < 0)
214 return NULL;
215 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
216 return NULL;
217 return register_names[reg_nr];
218}
219
bf93dfed
JB
220/* Access the DMAP/IMAP registers in a target independent way.
221
222 Divide the D10V's 64k data space into four 16k segments:
223 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
224 0xc000 -- 0xffff.
225
226 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
227 0x7fff) always map to the on-chip data RAM, and the fourth always
228 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
229 unified memory or instruction memory, under the control of the
230 single DMAP register.
231
232 On the TS3, there are four DMAP registers, each of which controls
233 one of the segments. */
4ce44c66
JM
234
235static unsigned long
236d10v_ts2_dmap_register (int reg_nr)
237{
238 switch (reg_nr)
239 {
240 case 0:
241 case 1:
242 return 0x2000;
243 case 2:
244 return read_register (TS2_DMAP_REGNUM);
245 default:
246 return 0;
247 }
248}
249
250static unsigned long
251d10v_ts3_dmap_register (int reg_nr)
252{
253 return read_register (TS3_DMAP0_REGNUM + reg_nr);
254}
255
256static unsigned long
257d10v_dmap_register (int reg_nr)
258{
259 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
260}
261
262static unsigned long
263d10v_ts2_imap_register (int reg_nr)
264{
265 return read_register (TS2_IMAP0_REGNUM + reg_nr);
266}
267
268static unsigned long
269d10v_ts3_imap_register (int reg_nr)
270{
271 return read_register (TS3_IMAP0_REGNUM + reg_nr);
272}
273
274static unsigned long
275d10v_imap_register (int reg_nr)
276{
277 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
278}
279
280/* MAP GDB's internal register numbering (determined by the layout fo
281 the REGISTER_BYTE array) onto the simulator's register
282 numbering. */
283
284static int
285d10v_ts2_register_sim_regno (int nr)
286{
287 if (nr >= TS2_IMAP0_REGNUM
288 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
289 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
290 if (nr == TS2_DMAP_REGNUM)
291 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
292 if (nr >= TS2_A0_REGNUM
293 && nr < TS2_A0_REGNUM + NR_A_REGS)
294 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
295 return nr;
296}
297
298static int
299d10v_ts3_register_sim_regno (int nr)
300{
301 if (nr >= TS3_IMAP0_REGNUM
302 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
303 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
304 if (nr >= TS3_DMAP0_REGNUM
305 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
306 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
307 if (nr >= TS3_A0_REGNUM
308 && nr < TS3_A0_REGNUM + NR_A_REGS)
309 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
310 return nr;
311}
312
392a587b
JM
313/* Index within `registers' of the first byte of the space for
314 register REG_NR. */
315
f5e1cf12 316static int
fba45db2 317d10v_register_byte (int reg_nr)
392a587b 318{
4ce44c66 319 if (reg_nr < A0_REGNUM)
392a587b 320 return (reg_nr * 2);
4ce44c66
JM
321 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
322 return (A0_REGNUM * 2
323 + (reg_nr - A0_REGNUM) * 8);
324 else
325 return (A0_REGNUM * 2
326 + NR_A_REGS * 8
327 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
392a587b
JM
328}
329
330/* Number of bytes of storage in the actual machine representation for
331 register REG_NR. */
332
f5e1cf12 333static int
fba45db2 334d10v_register_raw_size (int reg_nr)
392a587b 335{
4ce44c66
JM
336 if (reg_nr < A0_REGNUM)
337 return 2;
338 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
392a587b
JM
339 return 8;
340 else
341 return 2;
342}
343
392a587b
JM
344/* Return the GDB type object for the "standard" data type
345 of data in register N. */
346
f5e1cf12 347static struct type *
fba45db2 348d10v_register_virtual_type (int reg_nr)
392a587b 349{
75af7f68
JB
350 if (reg_nr == PC_REGNUM)
351 return builtin_type_void_func_ptr;
352 else if (reg_nr >= A0_REGNUM
4ce44c66
JM
353 && reg_nr < (A0_REGNUM + NR_A_REGS))
354 return builtin_type_int64;
392a587b 355 else
4ce44c66 356 return builtin_type_int16;
392a587b
JM
357}
358
f5e1cf12 359static int
fba45db2 360d10v_daddr_p (CORE_ADDR x)
392a587b
JM
361{
362 return (((x) & 0x3000000) == DMEM_START);
363}
364
f5e1cf12 365static int
fba45db2 366d10v_iaddr_p (CORE_ADDR x)
392a587b
JM
367{
368 return (((x) & 0x3000000) == IMEM_START);
369}
370
169a7369
MS
371static CORE_ADDR
372d10v_make_daddr (CORE_ADDR x)
373{
374 return ((x) | DMEM_START);
375}
376
377static CORE_ADDR
378d10v_make_iaddr (CORE_ADDR x)
379{
380 if (d10v_iaddr_p (x))
381 return x; /* Idempotency -- x is already in the IMEM space. */
382 else
383 return (((x) << 2) | IMEM_START);
384}
392a587b 385
f5e1cf12 386static CORE_ADDR
fba45db2 387d10v_convert_iaddr_to_raw (CORE_ADDR x)
392a587b
JM
388{
389 return (((x) >> 2) & 0xffff);
390}
391
f5e1cf12 392static CORE_ADDR
fba45db2 393d10v_convert_daddr_to_raw (CORE_ADDR x)
392a587b
JM
394{
395 return ((x) & 0xffff);
396}
397
75af7f68
JB
398static void
399d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
400{
401 /* Is it a code address? */
402 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
403 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
404 {
75af7f68
JB
405 store_unsigned_integer (buf, TYPE_LENGTH (type),
406 d10v_convert_iaddr_to_raw (addr));
407 }
408 else
409 {
410 /* Strip off any upper segment bits. */
411 store_unsigned_integer (buf, TYPE_LENGTH (type),
412 d10v_convert_daddr_to_raw (addr));
413 }
414}
415
416static CORE_ADDR
417d10v_pointer_to_address (struct type *type, void *buf)
418{
419 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
420
421 /* Is it a code address? */
422 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
74a9bb82
FF
423 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
424 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
75af7f68
JB
425 return d10v_make_iaddr (addr);
426 else
427 return d10v_make_daddr (addr);
428}
429
fc0c74b1
AC
430static CORE_ADDR
431d10v_integer_to_address (struct type *type, void *buf)
432{
433 LONGEST val;
434 val = unpack_long (type, buf);
435 if (TYPE_CODE (type) == TYPE_CODE_INT
436 && TYPE_LENGTH (type) <= TYPE_LENGTH (builtin_type_void_data_ptr))
437 /* Convert small integers that would would be directly copied into
438 a pointer variable into an address pointing into data space. */
439 return d10v_make_daddr (val & 0xffff);
440 else
441 /* The value is too large to fit in a pointer. Assume this was
442 intentional and that the user in fact specified a raw address. */
443 return val;
444}
75af7f68 445
392a587b
JM
446/* Store the address of the place in which to copy the structure the
447 subroutine will return. This is called from call_function.
448
449 We store structs through a pointer passed in the first Argument
450 register. */
451
f5e1cf12 452static void
fba45db2 453d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
392a587b
JM
454{
455 write_register (ARG1_REGNUM, (addr));
456}
457
458/* Write into appropriate registers a function return value
459 of type TYPE, given in virtual format.
460
461 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
462
f5e1cf12 463static void
fba45db2 464d10v_store_return_value (struct type *type, char *valbuf)
392a587b
JM
465{
466 write_register_bytes (REGISTER_BYTE (RET1_REGNUM),
467 valbuf,
468 TYPE_LENGTH (type));
469}
470
471/* Extract from an array REGBUF containing the (raw) register state
472 the address in which a function should return its structure value,
473 as a CORE_ADDR (or an expression that can be used as one). */
474
f5e1cf12 475static CORE_ADDR
fba45db2 476d10v_extract_struct_value_address (char *regbuf)
392a587b
JM
477{
478 return (extract_address ((regbuf) + REGISTER_BYTE (ARG1_REGNUM),
479 REGISTER_RAW_SIZE (ARG1_REGNUM))
480 | DMEM_START);
481}
482
f5e1cf12 483static CORE_ADDR
fba45db2 484d10v_frame_saved_pc (struct frame_info *frame)
392a587b 485{
cce74817 486 return ((frame)->extra_info->return_pc);
392a587b
JM
487}
488
392a587b
JM
489/* Immediately after a function call, return the saved pc. We can't
490 use frame->return_pc beause that is determined by reading R13 off
491 the stack and that may not be written yet. */
492
f5e1cf12 493static CORE_ADDR
fba45db2 494d10v_saved_pc_after_call (struct frame_info *frame)
392a587b 495{
c5aa993b 496 return ((read_register (LR_REGNUM) << 2)
392a587b
JM
497 | IMEM_START);
498}
499
c906108c
SS
500/* Discard from the stack the innermost frame, restoring all saved
501 registers. */
502
f5e1cf12 503static void
fba45db2 504d10v_pop_frame (void)
cce74817
JM
505{
506 generic_pop_current_frame (do_d10v_pop_frame);
507}
508
509static void
fba45db2 510do_d10v_pop_frame (struct frame_info *fi)
c906108c
SS
511{
512 CORE_ADDR fp;
513 int regnum;
c906108c
SS
514 char raw_buffer[8];
515
cce74817 516 fp = FRAME_FP (fi);
c906108c
SS
517 /* fill out fsr with the address of where each */
518 /* register was stored in the frame */
cce74817 519 d10v_frame_init_saved_regs (fi);
c5aa993b 520
c906108c 521 /* now update the current registers with the old values */
4ce44c66 522 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
c906108c 523 {
cce74817 524 if (fi->saved_regs[regnum])
c906108c 525 {
c5aa993b
JM
526 read_memory (fi->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
527 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, REGISTER_RAW_SIZE (regnum));
c906108c
SS
528 }
529 }
530 for (regnum = 0; regnum < SP_REGNUM; regnum++)
531 {
cce74817 532 if (fi->saved_regs[regnum])
c906108c 533 {
c5aa993b 534 write_register (regnum, read_memory_unsigned_integer (fi->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
c906108c
SS
535 }
536 }
cce74817 537 if (fi->saved_regs[PSW_REGNUM])
c906108c 538 {
c5aa993b 539 write_register (PSW_REGNUM, read_memory_unsigned_integer (fi->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
c906108c
SS
540 }
541
542 write_register (PC_REGNUM, read_register (LR_REGNUM));
cce74817 543 write_register (SP_REGNUM, fp + fi->extra_info->size);
c906108c
SS
544 target_store_registers (-1);
545 flush_cached_frames ();
546}
547
c5aa993b 548static int
fba45db2 549check_prologue (unsigned short op)
c906108c
SS
550{
551 /* st rn, @-sp */
552 if ((op & 0x7E1F) == 0x6C1F)
553 return 1;
554
555 /* st2w rn, @-sp */
556 if ((op & 0x7E3F) == 0x6E1F)
557 return 1;
558
559 /* subi sp, n */
560 if ((op & 0x7FE1) == 0x01E1)
561 return 1;
562
563 /* mv r11, sp */
564 if (op == 0x417E)
565 return 1;
566
567 /* nop */
568 if (op == 0x5E00)
569 return 1;
570
571 /* st rn, @sp */
572 if ((op & 0x7E1F) == 0x681E)
573 return 1;
574
575 /* st2w rn, @sp */
c5aa993b
JM
576 if ((op & 0x7E3F) == 0x3A1E)
577 return 1;
c906108c
SS
578
579 return 0;
580}
581
f5e1cf12 582static CORE_ADDR
fba45db2 583d10v_skip_prologue (CORE_ADDR pc)
c906108c
SS
584{
585 unsigned long op;
586 unsigned short op1, op2;
587 CORE_ADDR func_addr, func_end;
588 struct symtab_and_line sal;
589
590 /* If we have line debugging information, then the end of the */
591 /* prologue should the first assembly instruction of the first source line */
592 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
593 {
594 sal = find_pc_line (func_addr, 0);
c5aa993b 595 if (sal.end && sal.end < func_end)
c906108c
SS
596 return sal.end;
597 }
c5aa993b
JM
598
599 if (target_read_memory (pc, (char *) &op, 4))
c906108c
SS
600 return pc; /* Can't access it -- assume no prologue. */
601
602 while (1)
603 {
c5aa993b 604 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
605 if ((op & 0xC0000000) == 0xC0000000)
606 {
607 /* long instruction */
c5aa993b
JM
608 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
609 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
610 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
c906108c
SS
611 break;
612 }
613 else
614 {
615 /* short instructions */
616 if ((op & 0xC0000000) == 0x80000000)
617 {
618 op2 = (op & 0x3FFF8000) >> 15;
619 op1 = op & 0x7FFF;
c5aa993b
JM
620 }
621 else
c906108c
SS
622 {
623 op1 = (op & 0x3FFF8000) >> 15;
624 op2 = op & 0x7FFF;
625 }
c5aa993b 626 if (check_prologue (op1))
c906108c 627 {
c5aa993b 628 if (!check_prologue (op2))
c906108c
SS
629 {
630 /* if the previous opcode was really part of the prologue */
631 /* and not just a NOP, then we want to break after both instructions */
632 if (op1 != 0x5E00)
633 pc += 4;
634 break;
635 }
636 }
637 else
638 break;
639 }
640 pc += 4;
641 }
642 return pc;
643}
644
645/* Given a GDB frame, determine the address of the calling function's frame.
646 This will be used to create a new GDB frame struct, and then
647 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
c5aa993b 648 */
c906108c 649
f5e1cf12 650static CORE_ADDR
fba45db2 651d10v_frame_chain (struct frame_info *fi)
c906108c 652{
cce74817 653 d10v_frame_init_saved_regs (fi);
c906108c 654
cce74817
JM
655 if (fi->extra_info->return_pc == IMEM_START
656 || inside_entry_file (fi->extra_info->return_pc))
c5aa993b 657 return (CORE_ADDR) 0;
c906108c 658
cce74817 659 if (!fi->saved_regs[FP_REGNUM])
c906108c 660 {
cce74817
JM
661 if (!fi->saved_regs[SP_REGNUM]
662 || fi->saved_regs[SP_REGNUM] == STACK_START)
c5aa993b
JM
663 return (CORE_ADDR) 0;
664
cce74817 665 return fi->saved_regs[SP_REGNUM];
c906108c
SS
666 }
667
c5aa993b
JM
668 if (!read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
669 REGISTER_RAW_SIZE (FP_REGNUM)))
670 return (CORE_ADDR) 0;
c906108c 671
7b570125 672 return d10v_make_daddr (read_memory_unsigned_integer (fi->saved_regs[FP_REGNUM],
c5aa993b
JM
673 REGISTER_RAW_SIZE (FP_REGNUM)));
674}
c906108c
SS
675
676static int next_addr, uses_frame;
677
c5aa993b 678static int
fba45db2 679prologue_find_regs (unsigned short op, struct frame_info *fi, CORE_ADDR addr)
c906108c
SS
680{
681 int n;
682
683 /* st rn, @-sp */
684 if ((op & 0x7E1F) == 0x6C1F)
685 {
686 n = (op & 0x1E0) >> 5;
687 next_addr -= 2;
cce74817 688 fi->saved_regs[n] = next_addr;
c906108c
SS
689 return 1;
690 }
691
692 /* st2w rn, @-sp */
693 else if ((op & 0x7E3F) == 0x6E1F)
694 {
695 n = (op & 0x1E0) >> 5;
696 next_addr -= 4;
cce74817 697 fi->saved_regs[n] = next_addr;
c5aa993b 698 fi->saved_regs[n + 1] = next_addr + 2;
c906108c
SS
699 return 1;
700 }
701
702 /* subi sp, n */
703 if ((op & 0x7FE1) == 0x01E1)
704 {
705 n = (op & 0x1E) >> 1;
706 if (n == 0)
707 n = 16;
708 next_addr -= n;
709 return 1;
710 }
711
712 /* mv r11, sp */
713 if (op == 0x417E)
714 {
715 uses_frame = 1;
716 return 1;
717 }
718
719 /* nop */
720 if (op == 0x5E00)
721 return 1;
722
723 /* st rn, @sp */
724 if ((op & 0x7E1F) == 0x681E)
725 {
726 n = (op & 0x1E0) >> 5;
cce74817 727 fi->saved_regs[n] = next_addr;
c906108c
SS
728 return 1;
729 }
730
731 /* st2w rn, @sp */
732 if ((op & 0x7E3F) == 0x3A1E)
733 {
734 n = (op & 0x1E0) >> 5;
cce74817 735 fi->saved_regs[n] = next_addr;
c5aa993b 736 fi->saved_regs[n + 1] = next_addr + 2;
c906108c
SS
737 return 1;
738 }
739
740 return 0;
741}
742
cce74817
JM
743/* Put here the code to store, into fi->saved_regs, the addresses of
744 the saved registers of frame described by FRAME_INFO. This
745 includes special registers such as pc and fp saved in special ways
746 in the stack frame. sp is even more special: the address we return
747 for it IS the sp for the next frame. */
748
f5e1cf12 749static void
fba45db2 750d10v_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
751{
752 CORE_ADDR fp, pc;
753 unsigned long op;
754 unsigned short op1, op2;
755 int i;
756
757 fp = fi->frame;
cce74817 758 memset (fi->saved_regs, 0, SIZEOF_FRAME_SAVED_REGS);
c906108c
SS
759 next_addr = 0;
760
761 pc = get_pc_function_start (fi->pc);
762
763 uses_frame = 0;
764 while (1)
765 {
c5aa993b 766 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
767 if ((op & 0xC0000000) == 0xC0000000)
768 {
769 /* long instruction */
770 if ((op & 0x3FFF0000) == 0x01FF0000)
771 {
772 /* add3 sp,sp,n */
773 short n = op & 0xFFFF;
774 next_addr += n;
775 }
776 else if ((op & 0x3F0F0000) == 0x340F0000)
777 {
778 /* st rn, @(offset,sp) */
779 short offset = op & 0xFFFF;
780 short n = (op >> 20) & 0xF;
cce74817 781 fi->saved_regs[n] = next_addr + offset;
c906108c
SS
782 }
783 else if ((op & 0x3F1F0000) == 0x350F0000)
784 {
785 /* st2w rn, @(offset,sp) */
786 short offset = op & 0xFFFF;
787 short n = (op >> 20) & 0xF;
cce74817 788 fi->saved_regs[n] = next_addr + offset;
c5aa993b 789 fi->saved_regs[n + 1] = next_addr + offset + 2;
c906108c
SS
790 }
791 else
792 break;
793 }
794 else
795 {
796 /* short instructions */
797 if ((op & 0xC0000000) == 0x80000000)
798 {
799 op2 = (op & 0x3FFF8000) >> 15;
800 op1 = op & 0x7FFF;
c5aa993b
JM
801 }
802 else
c906108c
SS
803 {
804 op1 = (op & 0x3FFF8000) >> 15;
805 op2 = op & 0x7FFF;
806 }
c5aa993b 807 if (!prologue_find_regs (op1, fi, pc) || !prologue_find_regs (op2, fi, pc))
c906108c
SS
808 break;
809 }
810 pc += 4;
811 }
c5aa993b 812
cce74817 813 fi->extra_info->size = -next_addr;
c906108c
SS
814
815 if (!(fp & 0xffff))
7b570125 816 fp = d10v_make_daddr (read_register (SP_REGNUM));
c906108c 817
c5aa993b 818 for (i = 0; i < NUM_REGS - 1; i++)
cce74817 819 if (fi->saved_regs[i])
c906108c 820 {
c5aa993b 821 fi->saved_regs[i] = fp - (next_addr - fi->saved_regs[i]);
c906108c
SS
822 }
823
cce74817 824 if (fi->saved_regs[LR_REGNUM])
c906108c 825 {
cce74817 826 CORE_ADDR return_pc = read_memory_unsigned_integer (fi->saved_regs[LR_REGNUM], REGISTER_RAW_SIZE (LR_REGNUM));
7b570125 827 fi->extra_info->return_pc = d10v_make_iaddr (return_pc);
c906108c
SS
828 }
829 else
830 {
7b570125 831 fi->extra_info->return_pc = d10v_make_iaddr (read_register (LR_REGNUM));
c906108c 832 }
c5aa993b 833
c906108c 834 /* th SP is not normally (ever?) saved, but check anyway */
cce74817 835 if (!fi->saved_regs[SP_REGNUM])
c906108c
SS
836 {
837 /* if the FP was saved, that means the current FP is valid, */
838 /* otherwise, it isn't being used, so we use the SP instead */
839 if (uses_frame)
c5aa993b 840 fi->saved_regs[SP_REGNUM] = read_register (FP_REGNUM) + fi->extra_info->size;
c906108c
SS
841 else
842 {
cce74817
JM
843 fi->saved_regs[SP_REGNUM] = fp + fi->extra_info->size;
844 fi->extra_info->frameless = 1;
845 fi->saved_regs[FP_REGNUM] = 0;
c906108c
SS
846 }
847 }
848}
849
f5e1cf12 850static void
fba45db2 851d10v_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 852{
cce74817
JM
853 fi->extra_info = (struct frame_extra_info *)
854 frame_obstack_alloc (sizeof (struct frame_extra_info));
855 frame_saved_regs_zalloc (fi);
856
857 fi->extra_info->frameless = 0;
858 fi->extra_info->size = 0;
859 fi->extra_info->return_pc = 0;
c906108c
SS
860
861 /* The call dummy doesn't save any registers on the stack, so we can
862 return now. */
863 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
864 {
865 return;
866 }
867 else
868 {
cce74817 869 d10v_frame_init_saved_regs (fi);
c906108c
SS
870 }
871}
872
873static void
fba45db2 874show_regs (char *args, int from_tty)
c906108c
SS
875{
876 int a;
d4f3574e
SS
877 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
878 (long) read_register (PC_REGNUM),
7b570125 879 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
d4f3574e
SS
880 (long) read_register (PSW_REGNUM),
881 (long) read_register (24),
882 (long) read_register (25),
883 (long) read_register (23));
884 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
885 (long) read_register (0),
886 (long) read_register (1),
887 (long) read_register (2),
888 (long) read_register (3),
889 (long) read_register (4),
890 (long) read_register (5),
891 (long) read_register (6),
892 (long) read_register (7));
893 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
894 (long) read_register (8),
895 (long) read_register (9),
896 (long) read_register (10),
897 (long) read_register (11),
898 (long) read_register (12),
899 (long) read_register (13),
900 (long) read_register (14),
901 (long) read_register (15));
4ce44c66
JM
902 for (a = 0; a < NR_IMAP_REGS; a++)
903 {
904 if (a > 0)
905 printf_filtered (" ");
906 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
907 }
908 if (NR_DMAP_REGS == 1)
909 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
910 else
911 {
912 for (a = 0; a < NR_DMAP_REGS; a++)
913 {
914 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
915 }
916 printf_filtered ("\n");
917 }
918 printf_filtered ("A0-A%d", NR_A_REGS - 1);
919 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
c906108c
SS
920 {
921 char num[MAX_REGISTER_RAW_SIZE];
922 int i;
923 printf_filtered (" ");
c5aa993b 924 read_register_gen (a, (char *) &num);
c906108c
SS
925 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
926 {
927 printf_filtered ("%02x", (num[i] & 0xff));
928 }
929 }
930 printf_filtered ("\n");
931}
932
f5e1cf12 933static CORE_ADDR
39f77062 934d10v_read_pc (ptid_t ptid)
c906108c 935{
39f77062 936 ptid_t save_ptid;
c906108c
SS
937 CORE_ADDR pc;
938 CORE_ADDR retval;
939
39f77062
KB
940 save_ptid = inferior_ptid;
941 inferior_ptid = ptid;
c906108c 942 pc = (int) read_register (PC_REGNUM);
39f77062 943 inferior_ptid = save_ptid;
7b570125 944 retval = d10v_make_iaddr (pc);
c906108c
SS
945 return retval;
946}
947
f5e1cf12 948static void
39f77062 949d10v_write_pc (CORE_ADDR val, ptid_t ptid)
c906108c 950{
39f77062 951 ptid_t save_ptid;
c906108c 952
39f77062
KB
953 save_ptid = inferior_ptid;
954 inferior_ptid = ptid;
7b570125 955 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
39f77062 956 inferior_ptid = save_ptid;
c906108c
SS
957}
958
f5e1cf12 959static CORE_ADDR
fba45db2 960d10v_read_sp (void)
c906108c 961{
7b570125 962 return (d10v_make_daddr (read_register (SP_REGNUM)));
c906108c
SS
963}
964
f5e1cf12 965static void
fba45db2 966d10v_write_sp (CORE_ADDR val)
c906108c 967{
7b570125 968 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
c906108c
SS
969}
970
f5e1cf12 971static CORE_ADDR
fba45db2 972d10v_read_fp (void)
c906108c 973{
7b570125 974 return (d10v_make_daddr (read_register (FP_REGNUM)));
c906108c
SS
975}
976
977/* Function: push_return_address (pc)
978 Set up the return address for the inferior function call.
979 Needed for targets where we don't actually execute a JSR/BSR instruction */
c5aa993b 980
f5e1cf12 981static CORE_ADDR
fba45db2 982d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 983{
7b570125 984 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
c906108c
SS
985 return sp;
986}
c5aa993b 987
c906108c 988
7a292a7a
SS
989/* When arguments must be pushed onto the stack, they go on in reverse
990 order. The below implements a FILO (stack) to do this. */
991
992struct stack_item
993{
994 int len;
995 struct stack_item *prev;
996 void *data;
997};
998
a14ed312
KB
999static struct stack_item *push_stack_item (struct stack_item *prev,
1000 void *contents, int len);
7a292a7a 1001static struct stack_item *
fba45db2 1002push_stack_item (struct stack_item *prev, void *contents, int len)
7a292a7a
SS
1003{
1004 struct stack_item *si;
1005 si = xmalloc (sizeof (struct stack_item));
1006 si->data = xmalloc (len);
1007 si->len = len;
1008 si->prev = prev;
1009 memcpy (si->data, contents, len);
1010 return si;
1011}
1012
a14ed312 1013static struct stack_item *pop_stack_item (struct stack_item *si);
7a292a7a 1014static struct stack_item *
fba45db2 1015pop_stack_item (struct stack_item *si)
7a292a7a
SS
1016{
1017 struct stack_item *dead = si;
1018 si = si->prev;
b8c9b27d
KB
1019 xfree (dead->data);
1020 xfree (dead);
7a292a7a
SS
1021 return si;
1022}
1023
1024
f5e1cf12 1025static CORE_ADDR
ea7c478f 1026d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 1027 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1028{
1029 int i;
1030 int regnum = ARG1_REGNUM;
7a292a7a 1031 struct stack_item *si = NULL;
c5aa993b 1032
c906108c
SS
1033 /* Fill in registers and arg lists */
1034 for (i = 0; i < nargs; i++)
1035 {
ea7c478f 1036 struct value *arg = args[i];
c906108c
SS
1037 struct type *type = check_typedef (VALUE_TYPE (arg));
1038 char *contents = VALUE_CONTENTS (arg);
1039 int len = TYPE_LENGTH (type);
0004e5a2 1040 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
c906108c
SS
1041 {
1042 int aligned_regnum = (regnum + 1) & ~1;
1043 if (len <= 2 && regnum <= ARGN_REGNUM)
1044 /* fits in a single register, do not align */
1045 {
1046 long val = extract_unsigned_integer (contents, len);
1047 write_register (regnum++, val);
1048 }
1049 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1050 /* value fits in remaining registers, store keeping left
c5aa993b 1051 aligned */
c906108c
SS
1052 {
1053 int b;
1054 regnum = aligned_regnum;
1055 for (b = 0; b < (len & ~1); b += 2)
1056 {
1057 long val = extract_unsigned_integer (&contents[b], 2);
1058 write_register (regnum++, val);
1059 }
1060 if (b < len)
1061 {
1062 long val = extract_unsigned_integer (&contents[b], 1);
1063 write_register (regnum++, (val << 8));
1064 }
1065 }
1066 else
1067 {
7a292a7a 1068 /* arg will go onto stack */
c5aa993b 1069 regnum = ARGN_REGNUM + 1;
7a292a7a 1070 si = push_stack_item (si, contents, len);
c906108c
SS
1071 }
1072 }
1073 }
7a292a7a
SS
1074
1075 while (si)
1076 {
1077 sp = (sp - si->len) & ~1;
1078 write_memory (sp, si->data, si->len);
1079 si = pop_stack_item (si);
1080 }
c5aa993b 1081
c906108c
SS
1082 return sp;
1083}
1084
1085
1086/* Given a return value in `regbuf' with a type `valtype',
1087 extract and copy its value into `valbuf'. */
1088
f5e1cf12 1089static void
72623009
KB
1090d10v_extract_return_value (struct type *type, char regbuf[REGISTER_BYTES],
1091 char *valbuf)
c906108c
SS
1092{
1093 int len;
0004e5a2 1094 /* printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type), TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM, (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM))); */
c906108c
SS
1095 {
1096 len = TYPE_LENGTH (type);
1097 if (len == 1)
1098 {
1099 unsigned short c = extract_unsigned_integer (regbuf + REGISTER_BYTE (RET1_REGNUM), REGISTER_RAW_SIZE (RET1_REGNUM));
1100 store_unsigned_integer (valbuf, 1, c);
1101 }
1102 else if ((len & 1) == 0)
1103 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM), len);
1104 else
1105 {
1106 /* For return values of odd size, the first byte is in the
c5aa993b
JM
1107 least significant part of the first register. The
1108 remaining bytes in remaining registers. Interestingly,
1109 when such values are passed in, the last byte is in the
1110 most significant byte of that same register - wierd. */
c906108c
SS
1111 memcpy (valbuf, regbuf + REGISTER_BYTE (RET1_REGNUM) + 1, len);
1112 }
1113 }
1114}
1115
c2c6d25f
JM
1116/* Translate a GDB virtual ADDR/LEN into a format the remote target
1117 understands. Returns number of bytes that can be transfered
4ce44c66
JM
1118 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1119 (segmentation fault). Since the simulator knows all about how the
1120 VM system works, we just call that to do the translation. */
c2c6d25f 1121
4ce44c66 1122static void
c2c6d25f
JM
1123remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1124 CORE_ADDR *targ_addr, int *targ_len)
1125{
4ce44c66
JM
1126 long out_addr;
1127 long out_len;
1128 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1129 &out_addr,
1130 d10v_dmap_register,
1131 d10v_imap_register);
1132 *targ_addr = out_addr;
1133 *targ_len = out_len;
c2c6d25f
JM
1134}
1135
4ce44c66 1136
c906108c
SS
1137/* The following code implements access to, and display of, the D10V's
1138 instruction trace buffer. The buffer consists of 64K or more
1139 4-byte words of data, of which each words includes an 8-bit count,
1140 an 8-bit segment number, and a 16-bit instruction address.
1141
1142 In theory, the trace buffer is continuously capturing instruction
1143 data that the CPU presents on its "debug bus", but in practice, the
1144 ROMified GDB stub only enables tracing when it continues or steps
1145 the program, and stops tracing when the program stops; so it
1146 actually works for GDB to read the buffer counter out of memory and
1147 then read each trace word. The counter records where the tracing
1148 stops, but there is no record of where it started, so we remember
1149 the PC when we resumed and then search backwards in the trace
1150 buffer for a word that includes that address. This is not perfect,
1151 because you will miss trace data if the resumption PC is the target
1152 of a branch. (The value of the buffer counter is semi-random, any
1153 trace data from a previous program stop is gone.) */
1154
1155/* The address of the last word recorded in the trace buffer. */
1156
1157#define DBBC_ADDR (0xd80000)
1158
1159/* The base of the trace buffer, at least for the "Board_0". */
1160
1161#define TRACE_BUFFER_BASE (0xf40000)
1162
a14ed312 1163static void trace_command (char *, int);
c906108c 1164
a14ed312 1165static void untrace_command (char *, int);
c906108c 1166
a14ed312 1167static void trace_info (char *, int);
c906108c 1168
a14ed312 1169static void tdisassemble_command (char *, int);
c906108c 1170
a14ed312 1171static void display_trace (int, int);
c906108c
SS
1172
1173/* True when instruction traces are being collected. */
1174
1175static int tracing;
1176
1177/* Remembered PC. */
1178
1179static CORE_ADDR last_pc;
1180
1181/* True when trace output should be displayed whenever program stops. */
1182
1183static int trace_display;
1184
1185/* True when trace listing should include source lines. */
1186
1187static int default_trace_show_source = 1;
1188
c5aa993b
JM
1189struct trace_buffer
1190 {
1191 int size;
1192 short *counts;
1193 CORE_ADDR *addrs;
1194 }
1195trace_data;
c906108c
SS
1196
1197static void
fba45db2 1198trace_command (char *args, int from_tty)
c906108c
SS
1199{
1200 /* Clear the host-side trace buffer, allocating space if needed. */
1201 trace_data.size = 0;
1202 if (trace_data.counts == NULL)
c5aa993b 1203 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
c906108c 1204 if (trace_data.addrs == NULL)
c5aa993b 1205 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
c906108c
SS
1206
1207 tracing = 1;
1208
1209 printf_filtered ("Tracing is now on.\n");
1210}
1211
1212static void
fba45db2 1213untrace_command (char *args, int from_tty)
c906108c
SS
1214{
1215 tracing = 0;
1216
1217 printf_filtered ("Tracing is now off.\n");
1218}
1219
1220static void
fba45db2 1221trace_info (char *args, int from_tty)
c906108c
SS
1222{
1223 int i;
1224
1225 if (trace_data.size)
1226 {
1227 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1228
1229 for (i = 0; i < trace_data.size; ++i)
1230 {
d4f3574e
SS
1231 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1232 i,
1233 trace_data.counts[i],
c906108c 1234 (trace_data.counts[i] == 1 ? "" : "s"),
d4f3574e 1235 paddr_nz (trace_data.addrs[i]));
c906108c
SS
1236 }
1237 }
1238 else
1239 printf_filtered ("No entries in trace buffer.\n");
1240
1241 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1242}
1243
1244/* Print the instruction at address MEMADDR in debugged memory,
1245 on STREAM. Returns length of the instruction, in bytes. */
1246
1247static int
fba45db2 1248print_insn (CORE_ADDR memaddr, struct ui_file *stream)
c906108c
SS
1249{
1250 /* If there's no disassembler, something is very wrong. */
1251 if (tm_print_insn == NULL)
8e65ff28
AC
1252 internal_error (__FILE__, __LINE__,
1253 "print_insn: no disassembler");
c906108c 1254
d7449b42 1255 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1256 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1257 else
1258 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
2bf0cb65 1259 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
c906108c
SS
1260}
1261
392a587b 1262static void
fba45db2 1263d10v_eva_prepare_to_trace (void)
c906108c
SS
1264{
1265 if (!tracing)
1266 return;
1267
1268 last_pc = read_register (PC_REGNUM);
1269}
1270
1271/* Collect trace data from the target board and format it into a form
1272 more useful for display. */
1273
392a587b 1274static void
fba45db2 1275d10v_eva_get_trace_data (void)
c906108c
SS
1276{
1277 int count, i, j, oldsize;
1278 int trace_addr, trace_seg, trace_cnt, next_cnt;
1279 unsigned int last_trace, trace_word, next_word;
1280 unsigned int *tmpspace;
1281
1282 if (!tracing)
1283 return;
1284
c5aa993b 1285 tmpspace = xmalloc (65536 * sizeof (unsigned int));
c906108c
SS
1286
1287 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1288
1289 /* Collect buffer contents from the target, stopping when we reach
1290 the word recorded when execution resumed. */
1291
1292 count = 0;
1293 while (last_trace > 0)
1294 {
1295 QUIT;
1296 trace_word =
1297 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1298 trace_addr = trace_word & 0xffff;
1299 last_trace -= 4;
1300 /* Ignore an apparently nonsensical entry. */
1301 if (trace_addr == 0xffd5)
1302 continue;
1303 tmpspace[count++] = trace_word;
1304 if (trace_addr == last_pc)
1305 break;
1306 if (count > 65535)
1307 break;
1308 }
1309
1310 /* Move the data to the host-side trace buffer, adjusting counts to
1311 include the last instruction executed and transforming the address
1312 into something that GDB likes. */
1313
1314 for (i = 0; i < count; ++i)
1315 {
1316 trace_word = tmpspace[i];
1317 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1318 trace_addr = trace_word & 0xffff;
1319 next_cnt = (next_word >> 24) & 0xff;
1320 j = trace_data.size + count - i - 1;
1321 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1322 trace_data.counts[j] = next_cnt + 1;
1323 }
1324
1325 oldsize = trace_data.size;
1326 trace_data.size += count;
1327
b8c9b27d 1328 xfree (tmpspace);
c906108c
SS
1329
1330 if (trace_display)
1331 display_trace (oldsize, trace_data.size);
1332}
1333
1334static void
fba45db2 1335tdisassemble_command (char *arg, int from_tty)
c906108c
SS
1336{
1337 int i, count;
1338 CORE_ADDR low, high;
1339 char *space_index;
1340
1341 if (!arg)
1342 {
1343 low = 0;
1344 high = trace_data.size;
1345 }
1346 else if (!(space_index = (char *) strchr (arg, ' ')))
1347 {
1348 low = parse_and_eval_address (arg);
1349 high = low + 5;
1350 }
1351 else
1352 {
1353 /* Two arguments. */
1354 *space_index = '\0';
1355 low = parse_and_eval_address (arg);
1356 high = parse_and_eval_address (space_index + 1);
1357 if (high < low)
1358 high = low;
1359 }
1360
d4f3574e 1361 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
c906108c
SS
1362
1363 display_trace (low, high);
1364
1365 printf_filtered ("End of trace dump.\n");
1366 gdb_flush (gdb_stdout);
1367}
1368
1369static void
fba45db2 1370display_trace (int low, int high)
c906108c
SS
1371{
1372 int i, count, trace_show_source, first, suppress;
1373 CORE_ADDR next_address;
1374
1375 trace_show_source = default_trace_show_source;
c5aa993b 1376 if (!have_full_symbols () && !have_partial_symbols ())
c906108c
SS
1377 {
1378 trace_show_source = 0;
1379 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1380 printf_filtered ("Trace will not display any source.\n");
1381 }
1382
1383 first = 1;
1384 suppress = 0;
1385 for (i = low; i < high; ++i)
1386 {
1387 next_address = trace_data.addrs[i];
c5aa993b 1388 count = trace_data.counts[i];
c906108c
SS
1389 while (count-- > 0)
1390 {
1391 QUIT;
1392 if (trace_show_source)
1393 {
1394 struct symtab_and_line sal, sal_prev;
1395
1396 sal_prev = find_pc_line (next_address - 4, 0);
1397 sal = find_pc_line (next_address, 0);
1398
1399 if (sal.symtab)
1400 {
1401 if (first || sal.line != sal_prev.line)
1402 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1403 suppress = 0;
1404 }
1405 else
1406 {
1407 if (!suppress)
1408 /* FIXME-32x64--assumes sal.pc fits in long. */
1409 printf_filtered ("No source file for address %s.\n",
c5aa993b 1410 local_hex_string ((unsigned long) sal.pc));
c906108c
SS
1411 suppress = 1;
1412 }
1413 }
1414 first = 0;
1415 print_address (next_address, gdb_stdout);
1416 printf_filtered (":");
1417 printf_filtered ("\t");
1418 wrap_here (" ");
1419 next_address = next_address + print_insn (next_address, gdb_stdout);
1420 printf_filtered ("\n");
1421 gdb_flush (gdb_stdout);
1422 }
1423 }
1424}
1425
ac9a91a7 1426
0f71a2f6 1427static gdbarch_init_ftype d10v_gdbarch_init;
4ce44c66 1428
0f71a2f6 1429static struct gdbarch *
fba45db2 1430d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
0f71a2f6 1431{
c5aa993b
JM
1432 static LONGEST d10v_call_dummy_words[] =
1433 {0};
0f71a2f6 1434 struct gdbarch *gdbarch;
4ce44c66
JM
1435 int d10v_num_regs;
1436 struct gdbarch_tdep *tdep;
1437 gdbarch_register_name_ftype *d10v_register_name;
7c7651b2 1438 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
0f71a2f6 1439
4ce44c66
JM
1440 /* Find a candidate among the list of pre-declared architectures. */
1441 arches = gdbarch_list_lookup_by_info (arches, &info);
0f71a2f6
JM
1442 if (arches != NULL)
1443 return arches->gdbarch;
4ce44c66
JM
1444
1445 /* None found, create a new architecture from the information
1446 provided. */
1447 tdep = XMALLOC (struct gdbarch_tdep);
1448 gdbarch = gdbarch_alloc (&info, tdep);
1449
1450 switch (info.bfd_arch_info->mach)
1451 {
1452 case bfd_mach_d10v_ts2:
1453 d10v_num_regs = 37;
1454 d10v_register_name = d10v_ts2_register_name;
7c7651b2 1455 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
4ce44c66
JM
1456 tdep->a0_regnum = TS2_A0_REGNUM;
1457 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
4ce44c66
JM
1458 tdep->dmap_register = d10v_ts2_dmap_register;
1459 tdep->imap_register = d10v_ts2_imap_register;
1460 break;
1461 default:
1462 case bfd_mach_d10v_ts3:
1463 d10v_num_regs = 42;
1464 d10v_register_name = d10v_ts3_register_name;
7c7651b2 1465 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
4ce44c66
JM
1466 tdep->a0_regnum = TS3_A0_REGNUM;
1467 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
4ce44c66
JM
1468 tdep->dmap_register = d10v_ts3_dmap_register;
1469 tdep->imap_register = d10v_ts3_imap_register;
1470 break;
1471 }
0f71a2f6
JM
1472
1473 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1474 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1475 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
0f71a2f6
JM
1476 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1477 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1478
1479 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1480 set_gdbarch_sp_regnum (gdbarch, 15);
1481 set_gdbarch_fp_regnum (gdbarch, 11);
1482 set_gdbarch_pc_regnum (gdbarch, 18);
1483 set_gdbarch_register_name (gdbarch, d10v_register_name);
1484 set_gdbarch_register_size (gdbarch, 2);
1485 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1486 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1487 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1488 set_gdbarch_max_register_raw_size (gdbarch, 8);
b2e75d78 1489 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
0f71a2f6
JM
1490 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1491 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1492
75af7f68
JB
1493 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1494 set_gdbarch_addr_bit (gdbarch, 32);
1495 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1496 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
fc0c74b1 1497 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
0f71a2f6
JM
1498 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1499 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1500 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
02da6206 1501 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1502 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1503 double'' is 64 bits. */
0f71a2f6
JM
1504 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1505 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1506 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1507 switch (info.byte_order)
1508 {
d7449b42 1509 case BFD_ENDIAN_BIG:
f0d4cc9e
AC
1510 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1511 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1512 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1513 break;
778eb05e 1514 case BFD_ENDIAN_LITTLE:
f0d4cc9e
AC
1515 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1516 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1517 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1518 break;
1519 default:
8e65ff28
AC
1520 internal_error (__FILE__, __LINE__,
1521 "d10v_gdbarch_init: bad byte order for float format");
f0d4cc9e 1522 }
0f71a2f6
JM
1523
1524 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1525 set_gdbarch_call_dummy_length (gdbarch, 0);
1526 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1527 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1528 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1529 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1530 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1531 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1532 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1533 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1534 set_gdbarch_call_dummy_p (gdbarch, 1);
1535 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1536 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1537 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1538
0f71a2f6
JM
1539 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
1540 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1541 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1542 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1543
0f71a2f6
JM
1544 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
1545 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1546 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
1547 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1548
1549 set_gdbarch_frame_init_saved_regs (gdbarch, d10v_frame_init_saved_regs);
1550 set_gdbarch_init_extra_frame_info (gdbarch, d10v_init_extra_frame_info);
1551
1552 set_gdbarch_pop_frame (gdbarch, d10v_pop_frame);
1553
1554 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1555 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1556 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1557 set_gdbarch_function_start_offset (gdbarch, 0);
1558 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1559
1560 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1561
1562 set_gdbarch_frame_args_skip (gdbarch, 0);
1563 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
1564 set_gdbarch_frame_chain (gdbarch, d10v_frame_chain);
1565 set_gdbarch_frame_chain_valid (gdbarch, d10v_frame_chain_valid);
1566 set_gdbarch_frame_saved_pc (gdbarch, d10v_frame_saved_pc);
c347ee3e
MS
1567 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1568 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
0f71a2f6
JM
1569 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1570 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
23964bcd 1571 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
0f71a2f6 1572
7c7651b2 1573 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
0a49d05e 1574 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
7c7651b2 1575
0f71a2f6
JM
1576 return gdbarch;
1577}
1578
1579
507f3c78
KB
1580extern void (*target_resume_hook) (void);
1581extern void (*target_wait_loop_hook) (void);
c906108c
SS
1582
1583void
fba45db2 1584_initialize_d10v_tdep (void)
c906108c 1585{
0f71a2f6
JM
1586 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1587
c906108c
SS
1588 tm_print_insn = print_insn_d10v;
1589
1590 target_resume_hook = d10v_eva_prepare_to_trace;
1591 target_wait_loop_hook = d10v_eva_get_trace_data;
1592
1593 add_com ("regs", class_vars, show_regs, "Print all registers");
1594
cff3e48b 1595 add_com ("itrace", class_support, trace_command,
c906108c
SS
1596 "Enable tracing of instruction execution.");
1597
cff3e48b 1598 add_com ("iuntrace", class_support, untrace_command,
c906108c
SS
1599 "Disable tracing of instruction execution.");
1600
cff3e48b 1601 add_com ("itdisassemble", class_vars, tdisassemble_command,
c906108c
SS
1602 "Disassemble the trace buffer.\n\
1603Two optional arguments specify a range of trace buffer entries\n\
1604as reported by info trace (NOT addresses!).");
1605
cff3e48b 1606 add_info ("itrace", trace_info,
c906108c
SS
1607 "Display info about the trace data buffer.");
1608
cff3e48b 1609 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
c5aa993b
JM
1610 var_integer, (char *) &trace_display,
1611 "Set automatic display of trace.\n", &setlist),
c906108c 1612 &showlist);
cff3e48b 1613 add_show_from_set (add_set_cmd ("itracesource", no_class,
c5aa993b
JM
1614 var_integer, (char *) &default_trace_show_source,
1615 "Set display of source code with trace.\n", &setlist),
c906108c
SS
1616 &showlist);
1617
c5aa993b 1618}
This page took 0.240455 seconds and 4 git commands to generate.