* stack.c (print_frame_info): Restore call to annotate_frame_begin
[deliverable/binutils-gdb.git] / gdb / d10v-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for Mitsubishi D10V, for GDB.
349c5d5f 2
51603483 3 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
349c5d5f 4 Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23/* Contributed by Martin Hunt, hunt@cygnus.com */
24
25#include "defs.h"
26#include "frame.h"
7f6104a9 27#include "frame-unwind.h"
c906108c
SS
28#include "symtab.h"
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "gdb_string.h"
33#include "value.h"
34#include "inferior.h"
c5aa993b 35#include "dis-asm.h"
c906108c
SS
36#include "symfile.h"
37#include "objfiles.h"
104c1213 38#include "language.h"
28d069e6 39#include "arch-utils.h"
4e052eda 40#include "regcache.h"
c906108c 41
f0d4cc9e 42#include "floatformat.h"
b91b96f4 43#include "gdb/sim-d10v.h"
8238d0bf 44#include "sim-regno.h"
4ce44c66 45
fa1fd571
AC
46#include "gdb_assert.h"
47
cce74817 48struct frame_extra_info
c5aa993b
JM
49 {
50 CORE_ADDR return_pc;
51 int frameless;
52 int size;
53 };
cce74817 54
4ce44c66
JM
55struct gdbarch_tdep
56 {
57 int a0_regnum;
58 int nr_dmap_regs;
59 unsigned long (*dmap_register) (int nr);
60 unsigned long (*imap_register) (int nr);
4ce44c66
JM
61 };
62
63/* These are the addresses the D10V-EVA board maps data and
64 instruction memory to. */
cce74817 65
78eac43e
MS
66enum memspace {
67 DMEM_START = 0x2000000,
68 IMEM_START = 0x1000000,
69 STACK_START = 0x200bffe
70};
cce74817 71
4ce44c66
JM
72/* d10v register names. */
73
74enum
75 {
76 R0_REGNUM = 0,
78eac43e
MS
77 R3_REGNUM = 3,
78 _FP_REGNUM = 11,
4ce44c66 79 LR_REGNUM = 13,
78eac43e 80 _SP_REGNUM = 15,
4ce44c66 81 PSW_REGNUM = 16,
78eac43e 82 _PC_REGNUM = 18,
4ce44c66 83 NR_IMAP_REGS = 2,
78eac43e
MS
84 NR_A_REGS = 2,
85 TS2_NUM_REGS = 37,
86 TS3_NUM_REGS = 42,
87 /* d10v calling convention. */
88 ARG1_REGNUM = R0_REGNUM,
89 ARGN_REGNUM = R3_REGNUM,
90 RET1_REGNUM = R0_REGNUM,
4ce44c66 91 };
78eac43e 92
4ce44c66
JM
93#define NR_DMAP_REGS (gdbarch_tdep (current_gdbarch)->nr_dmap_regs)
94#define A0_REGNUM (gdbarch_tdep (current_gdbarch)->a0_regnum)
95
392a587b
JM
96/* Local functions */
97
a14ed312 98extern void _initialize_d10v_tdep (void);
392a587b 99
095a4c96
EZ
100static CORE_ADDR d10v_read_sp (void);
101
102static CORE_ADDR d10v_read_fp (void);
103
a14ed312 104static void d10v_eva_prepare_to_trace (void);
392a587b 105
a14ed312 106static void d10v_eva_get_trace_data (void);
c906108c 107
23964bcd 108static CORE_ADDR
489137c0
AC
109d10v_stack_align (CORE_ADDR len)
110{
111 return (len + 1) & ~1;
112}
c906108c
SS
113
114/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
115 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
116 and TYPE is the type (which is known to be struct, union or array).
117
118 The d10v returns anything less than 8 bytes in size in
119 registers. */
120
f5e1cf12 121static int
fba45db2 122d10v_use_struct_convention (int gcc_p, struct type *type)
c906108c 123{
02da6206
JSC
124 long alignment;
125 int i;
126 /* The d10v only passes a struct in a register when that structure
127 has an alignment that matches the size of a register. */
128 /* If the structure doesn't fit in 4 registers, put it on the
129 stack. */
130 if (TYPE_LENGTH (type) > 8)
131 return 1;
132 /* If the struct contains only one field, don't put it on the stack
133 - gcc can fit it in one or more registers. */
134 if (TYPE_NFIELDS (type) == 1)
135 return 0;
136 alignment = TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
137 for (i = 1; i < TYPE_NFIELDS (type); i++)
138 {
139 /* If the alignment changes, just assume it goes on the
140 stack. */
141 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)) != alignment)
142 return 1;
143 }
144 /* If the alignment is suitable for the d10v's 16 bit registers,
145 don't put it on the stack. */
146 if (alignment == 2 || alignment == 4)
147 return 0;
148 return 1;
c906108c
SS
149}
150
151
f4f9705a 152static const unsigned char *
fba45db2 153d10v_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
392a587b 154{
c5aa993b
JM
155 static unsigned char breakpoint[] =
156 {0x2f, 0x90, 0x5e, 0x00};
392a587b
JM
157 *lenptr = sizeof (breakpoint);
158 return breakpoint;
159}
160
4ce44c66
JM
161/* Map the REG_NR onto an ascii name. Return NULL or an empty string
162 when the reg_nr isn't valid. */
163
164enum ts2_regnums
165 {
166 TS2_IMAP0_REGNUM = 32,
167 TS2_DMAP_REGNUM = 34,
168 TS2_NR_DMAP_REGS = 1,
169 TS2_A0_REGNUM = 35
170 };
171
fa88f677 172static const char *
4ce44c66 173d10v_ts2_register_name (int reg_nr)
392a587b 174{
c5aa993b
JM
175 static char *register_names[] =
176 {
177 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
178 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
179 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
180 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
181 "imap0", "imap1", "dmap", "a0", "a1"
392a587b
JM
182 };
183 if (reg_nr < 0)
184 return NULL;
185 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
186 return NULL;
c5aa993b 187 return register_names[reg_nr];
392a587b
JM
188}
189
4ce44c66
JM
190enum ts3_regnums
191 {
192 TS3_IMAP0_REGNUM = 36,
193 TS3_DMAP0_REGNUM = 38,
194 TS3_NR_DMAP_REGS = 4,
195 TS3_A0_REGNUM = 32
196 };
197
fa88f677 198static const char *
4ce44c66
JM
199d10v_ts3_register_name (int reg_nr)
200{
201 static char *register_names[] =
202 {
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 "psw", "bpsw", "pc", "bpc", "cr4", "cr5", "cr6", "rpt_c",
206 "rpt_s", "rpt_e", "mod_s", "mod_e", "cr12", "cr13", "iba", "cr15",
207 "a0", "a1",
208 "spi", "spu",
209 "imap0", "imap1",
210 "dmap0", "dmap1", "dmap2", "dmap3"
211 };
212 if (reg_nr < 0)
213 return NULL;
214 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
215 return NULL;
216 return register_names[reg_nr];
217}
218
bf93dfed
JB
219/* Access the DMAP/IMAP registers in a target independent way.
220
221 Divide the D10V's 64k data space into four 16k segments:
222 0x0000 -- 0x3fff, 0x4000 -- 0x7fff, 0x8000 -- 0xbfff, and
223 0xc000 -- 0xffff.
224
225 On the TS2, the first two segments (0x0000 -- 0x3fff, 0x4000 --
226 0x7fff) always map to the on-chip data RAM, and the fourth always
227 maps to I/O space. The third (0x8000 - 0xbfff) can be mapped into
228 unified memory or instruction memory, under the control of the
229 single DMAP register.
230
231 On the TS3, there are four DMAP registers, each of which controls
232 one of the segments. */
4ce44c66
JM
233
234static unsigned long
235d10v_ts2_dmap_register (int reg_nr)
236{
237 switch (reg_nr)
238 {
239 case 0:
240 case 1:
241 return 0x2000;
242 case 2:
243 return read_register (TS2_DMAP_REGNUM);
244 default:
245 return 0;
246 }
247}
248
249static unsigned long
250d10v_ts3_dmap_register (int reg_nr)
251{
252 return read_register (TS3_DMAP0_REGNUM + reg_nr);
253}
254
255static unsigned long
256d10v_dmap_register (int reg_nr)
257{
258 return gdbarch_tdep (current_gdbarch)->dmap_register (reg_nr);
259}
260
261static unsigned long
262d10v_ts2_imap_register (int reg_nr)
263{
264 return read_register (TS2_IMAP0_REGNUM + reg_nr);
265}
266
267static unsigned long
268d10v_ts3_imap_register (int reg_nr)
269{
270 return read_register (TS3_IMAP0_REGNUM + reg_nr);
271}
272
273static unsigned long
274d10v_imap_register (int reg_nr)
275{
276 return gdbarch_tdep (current_gdbarch)->imap_register (reg_nr);
277}
278
279/* MAP GDB's internal register numbering (determined by the layout fo
280 the REGISTER_BYTE array) onto the simulator's register
281 numbering. */
282
283static int
284d10v_ts2_register_sim_regno (int nr)
285{
8238d0bf
AC
286 if (legacy_register_sim_regno (nr) < 0)
287 return legacy_register_sim_regno (nr);
4ce44c66
JM
288 if (nr >= TS2_IMAP0_REGNUM
289 && nr < TS2_IMAP0_REGNUM + NR_IMAP_REGS)
290 return nr - TS2_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
291 if (nr == TS2_DMAP_REGNUM)
292 return nr - TS2_DMAP_REGNUM + SIM_D10V_TS2_DMAP_REGNUM;
293 if (nr >= TS2_A0_REGNUM
294 && nr < TS2_A0_REGNUM + NR_A_REGS)
295 return nr - TS2_A0_REGNUM + SIM_D10V_A0_REGNUM;
296 return nr;
297}
298
299static int
300d10v_ts3_register_sim_regno (int nr)
301{
8238d0bf
AC
302 if (legacy_register_sim_regno (nr) < 0)
303 return legacy_register_sim_regno (nr);
4ce44c66
JM
304 if (nr >= TS3_IMAP0_REGNUM
305 && nr < TS3_IMAP0_REGNUM + NR_IMAP_REGS)
306 return nr - TS3_IMAP0_REGNUM + SIM_D10V_IMAP0_REGNUM;
307 if (nr >= TS3_DMAP0_REGNUM
308 && nr < TS3_DMAP0_REGNUM + TS3_NR_DMAP_REGS)
309 return nr - TS3_DMAP0_REGNUM + SIM_D10V_DMAP0_REGNUM;
310 if (nr >= TS3_A0_REGNUM
311 && nr < TS3_A0_REGNUM + NR_A_REGS)
312 return nr - TS3_A0_REGNUM + SIM_D10V_A0_REGNUM;
313 return nr;
314}
315
392a587b
JM
316/* Index within `registers' of the first byte of the space for
317 register REG_NR. */
318
f5e1cf12 319static int
fba45db2 320d10v_register_byte (int reg_nr)
392a587b 321{
4ce44c66 322 if (reg_nr < A0_REGNUM)
392a587b 323 return (reg_nr * 2);
4ce44c66
JM
324 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
325 return (A0_REGNUM * 2
326 + (reg_nr - A0_REGNUM) * 8);
327 else
328 return (A0_REGNUM * 2
329 + NR_A_REGS * 8
330 + (reg_nr - A0_REGNUM - NR_A_REGS) * 2);
392a587b
JM
331}
332
333/* Number of bytes of storage in the actual machine representation for
334 register REG_NR. */
335
f5e1cf12 336static int
fba45db2 337d10v_register_raw_size (int reg_nr)
392a587b 338{
4ce44c66
JM
339 if (reg_nr < A0_REGNUM)
340 return 2;
341 else if (reg_nr < (A0_REGNUM + NR_A_REGS))
392a587b
JM
342 return 8;
343 else
344 return 2;
345}
346
392a587b
JM
347/* Return the GDB type object for the "standard" data type
348 of data in register N. */
349
f5e1cf12 350static struct type *
fba45db2 351d10v_register_virtual_type (int reg_nr)
392a587b 352{
75af7f68
JB
353 if (reg_nr == PC_REGNUM)
354 return builtin_type_void_func_ptr;
095a4c96
EZ
355 if (reg_nr == _SP_REGNUM || reg_nr == _FP_REGNUM)
356 return builtin_type_void_data_ptr;
75af7f68 357 else if (reg_nr >= A0_REGNUM
4ce44c66
JM
358 && reg_nr < (A0_REGNUM + NR_A_REGS))
359 return builtin_type_int64;
392a587b 360 else
4ce44c66 361 return builtin_type_int16;
392a587b
JM
362}
363
f5e1cf12 364static int
fba45db2 365d10v_daddr_p (CORE_ADDR x)
392a587b
JM
366{
367 return (((x) & 0x3000000) == DMEM_START);
368}
369
f5e1cf12 370static int
fba45db2 371d10v_iaddr_p (CORE_ADDR x)
392a587b
JM
372{
373 return (((x) & 0x3000000) == IMEM_START);
374}
375
169a7369
MS
376static CORE_ADDR
377d10v_make_daddr (CORE_ADDR x)
378{
379 return ((x) | DMEM_START);
380}
381
382static CORE_ADDR
383d10v_make_iaddr (CORE_ADDR x)
384{
385 if (d10v_iaddr_p (x))
386 return x; /* Idempotency -- x is already in the IMEM space. */
387 else
388 return (((x) << 2) | IMEM_START);
389}
392a587b 390
f5e1cf12 391static CORE_ADDR
fba45db2 392d10v_convert_iaddr_to_raw (CORE_ADDR x)
392a587b
JM
393{
394 return (((x) >> 2) & 0xffff);
395}
396
f5e1cf12 397static CORE_ADDR
fba45db2 398d10v_convert_daddr_to_raw (CORE_ADDR x)
392a587b
JM
399{
400 return ((x) & 0xffff);
401}
402
75af7f68
JB
403static void
404d10v_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr)
405{
406 /* Is it a code address? */
407 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
408 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
409 {
75af7f68
JB
410 store_unsigned_integer (buf, TYPE_LENGTH (type),
411 d10v_convert_iaddr_to_raw (addr));
412 }
413 else
414 {
415 /* Strip off any upper segment bits. */
416 store_unsigned_integer (buf, TYPE_LENGTH (type),
417 d10v_convert_daddr_to_raw (addr));
418 }
419}
420
421static CORE_ADDR
66140c26 422d10v_pointer_to_address (struct type *type, const void *buf)
75af7f68
JB
423{
424 CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type));
425
426 /* Is it a code address? */
427 if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
74a9bb82
FF
428 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
429 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
75af7f68
JB
430 return d10v_make_iaddr (addr);
431 else
432 return d10v_make_daddr (addr);
433}
434
095a4c96
EZ
435/* Don't do anything if we have an integer, this way users can type 'x
436 <addr>' w/o having gdb outsmart them. The internal gdb conversions
437 to the correct space are taken care of in the pointer_to_address
438 function. If we don't do this, 'x $fp' wouldn't work. */
fc0c74b1
AC
439static CORE_ADDR
440d10v_integer_to_address (struct type *type, void *buf)
441{
442 LONGEST val;
443 val = unpack_long (type, buf);
095a4c96 444 return val;
fc0c74b1 445}
75af7f68 446
392a587b
JM
447/* Store the address of the place in which to copy the structure the
448 subroutine will return. This is called from call_function.
449
450 We store structs through a pointer passed in the first Argument
451 register. */
452
f5e1cf12 453static void
fba45db2 454d10v_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
392a587b
JM
455{
456 write_register (ARG1_REGNUM, (addr));
457}
458
459/* Write into appropriate registers a function return value
460 of type TYPE, given in virtual format.
461
462 Things always get returned in RET1_REGNUM, RET2_REGNUM, ... */
463
f5e1cf12 464static void
fa1fd571
AC
465d10v_store_return_value (struct type *type, struct regcache *regcache,
466 const void *valbuf)
392a587b 467{
fa1fd571
AC
468 /* Only char return values need to be shifted right within the first
469 regnum. */
3d79a47c
MS
470 if (TYPE_LENGTH (type) == 1
471 && TYPE_CODE (type) == TYPE_CODE_INT)
472 {
fa1fd571
AC
473 bfd_byte tmp[2];
474 tmp[1] = *(bfd_byte *)valbuf;
475 regcache_cooked_write (regcache, RET1_REGNUM, tmp);
3d79a47c
MS
476 }
477 else
fa1fd571
AC
478 {
479 int reg;
480 /* A structure is never more than 8 bytes long. See
481 use_struct_convention(). */
482 gdb_assert (TYPE_LENGTH (type) <= 8);
483 /* Write out most registers, stop loop before trying to write
484 out any dangling byte at the end of the buffer. */
485 for (reg = 0; (reg * 2) + 1 < TYPE_LENGTH (type); reg++)
486 {
487 regcache_cooked_write (regcache, RET1_REGNUM + reg,
488 (bfd_byte *) valbuf + reg * 2);
489 }
490 /* Write out any dangling byte at the end of the buffer. */
491 if ((reg * 2) + 1 == TYPE_LENGTH (type))
492 regcache_cooked_write_part (regcache, reg, 0, 1,
493 (bfd_byte *) valbuf + reg * 2);
494 }
392a587b
JM
495}
496
497/* Extract from an array REGBUF containing the (raw) register state
498 the address in which a function should return its structure value,
499 as a CORE_ADDR (or an expression that can be used as one). */
500
f5e1cf12 501static CORE_ADDR
fa1fd571 502d10v_extract_struct_value_address (struct regcache *regcache)
392a587b 503{
fa1fd571
AC
504 ULONGEST addr;
505 regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr);
506 return (addr | DMEM_START);
392a587b
JM
507}
508
392a587b
JM
509/* Immediately after a function call, return the saved pc. We can't
510 use frame->return_pc beause that is determined by reading R13 off
511 the stack and that may not be written yet. */
512
f5e1cf12 513static CORE_ADDR
fba45db2 514d10v_saved_pc_after_call (struct frame_info *frame)
392a587b 515{
c5aa993b 516 return ((read_register (LR_REGNUM) << 2)
392a587b
JM
517 | IMEM_START);
518}
519
c5aa993b 520static int
fba45db2 521check_prologue (unsigned short op)
c906108c
SS
522{
523 /* st rn, @-sp */
524 if ((op & 0x7E1F) == 0x6C1F)
525 return 1;
526
527 /* st2w rn, @-sp */
528 if ((op & 0x7E3F) == 0x6E1F)
529 return 1;
530
531 /* subi sp, n */
532 if ((op & 0x7FE1) == 0x01E1)
533 return 1;
534
535 /* mv r11, sp */
536 if (op == 0x417E)
537 return 1;
538
539 /* nop */
540 if (op == 0x5E00)
541 return 1;
542
543 /* st rn, @sp */
544 if ((op & 0x7E1F) == 0x681E)
545 return 1;
546
547 /* st2w rn, @sp */
c5aa993b
JM
548 if ((op & 0x7E3F) == 0x3A1E)
549 return 1;
c906108c
SS
550
551 return 0;
552}
553
f5e1cf12 554static CORE_ADDR
fba45db2 555d10v_skip_prologue (CORE_ADDR pc)
c906108c
SS
556{
557 unsigned long op;
558 unsigned short op1, op2;
559 CORE_ADDR func_addr, func_end;
560 struct symtab_and_line sal;
561
562 /* If we have line debugging information, then the end of the */
563 /* prologue should the first assembly instruction of the first source line */
564 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
565 {
566 sal = find_pc_line (func_addr, 0);
c5aa993b 567 if (sal.end && sal.end < func_end)
c906108c
SS
568 return sal.end;
569 }
c5aa993b
JM
570
571 if (target_read_memory (pc, (char *) &op, 4))
c906108c
SS
572 return pc; /* Can't access it -- assume no prologue. */
573
574 while (1)
575 {
c5aa993b 576 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
577 if ((op & 0xC0000000) == 0xC0000000)
578 {
579 /* long instruction */
c5aa993b
JM
580 if (((op & 0x3FFF0000) != 0x01FF0000) && /* add3 sp,sp,n */
581 ((op & 0x3F0F0000) != 0x340F0000) && /* st rn, @(offset,sp) */
582 ((op & 0x3F1F0000) != 0x350F0000)) /* st2w rn, @(offset,sp) */
c906108c
SS
583 break;
584 }
585 else
586 {
587 /* short instructions */
588 if ((op & 0xC0000000) == 0x80000000)
589 {
590 op2 = (op & 0x3FFF8000) >> 15;
591 op1 = op & 0x7FFF;
c5aa993b
JM
592 }
593 else
c906108c
SS
594 {
595 op1 = (op & 0x3FFF8000) >> 15;
596 op2 = op & 0x7FFF;
597 }
c5aa993b 598 if (check_prologue (op1))
c906108c 599 {
c5aa993b 600 if (!check_prologue (op2))
c906108c
SS
601 {
602 /* if the previous opcode was really part of the prologue */
603 /* and not just a NOP, then we want to break after both instructions */
604 if (op1 != 0x5E00)
605 pc += 4;
606 break;
607 }
608 }
609 else
610 break;
611 }
612 pc += 4;
613 }
614 return pc;
615}
616
7f6104a9 617struct d10v_unwind_cache
c906108c 618{
7f6104a9
AC
619 CORE_ADDR return_pc;
620 int frameless;
621 int size;
622 CORE_ADDR *saved_regs;
623 CORE_ADDR next_addr;
624 int uses_frame;
625 void **regs;
626};
c906108c 627
c5aa993b 628static int
7f6104a9
AC
629prologue_find_regs (struct d10v_unwind_cache *info, unsigned short op,
630 CORE_ADDR addr)
c906108c
SS
631{
632 int n;
633
634 /* st rn, @-sp */
635 if ((op & 0x7E1F) == 0x6C1F)
636 {
637 n = (op & 0x1E0) >> 5;
7f6104a9
AC
638 info->next_addr -= 2;
639 info->saved_regs[n] = info->next_addr;
c906108c
SS
640 return 1;
641 }
642
643 /* st2w rn, @-sp */
644 else if ((op & 0x7E3F) == 0x6E1F)
645 {
646 n = (op & 0x1E0) >> 5;
7f6104a9
AC
647 info->next_addr -= 4;
648 info->saved_regs[n] = info->next_addr;
649 info->saved_regs[n + 1] = info->next_addr + 2;
c906108c
SS
650 return 1;
651 }
652
653 /* subi sp, n */
654 if ((op & 0x7FE1) == 0x01E1)
655 {
656 n = (op & 0x1E) >> 1;
657 if (n == 0)
658 n = 16;
7f6104a9 659 info->next_addr -= n;
c906108c
SS
660 return 1;
661 }
662
663 /* mv r11, sp */
664 if (op == 0x417E)
665 {
7f6104a9 666 info->uses_frame = 1;
c906108c
SS
667 return 1;
668 }
669
670 /* nop */
671 if (op == 0x5E00)
672 return 1;
673
674 /* st rn, @sp */
675 if ((op & 0x7E1F) == 0x681E)
676 {
677 n = (op & 0x1E0) >> 5;
7f6104a9 678 info->saved_regs[n] = info->next_addr;
c906108c
SS
679 return 1;
680 }
681
682 /* st2w rn, @sp */
683 if ((op & 0x7E3F) == 0x3A1E)
684 {
685 n = (op & 0x1E0) >> 5;
7f6104a9
AC
686 info->saved_regs[n] = info->next_addr;
687 info->saved_regs[n + 1] = info->next_addr + 2;
c906108c
SS
688 return 1;
689 }
690
691 return 0;
692}
693
cce74817
JM
694/* Put here the code to store, into fi->saved_regs, the addresses of
695 the saved registers of frame described by FRAME_INFO. This
696 includes special registers such as pc and fp saved in special ways
697 in the stack frame. sp is even more special: the address we return
698 for it IS the sp for the next frame. */
699
7f6104a9
AC
700struct d10v_unwind_cache *
701d10v_frame_unwind_cache (struct frame_info *fi,
702 void **cache)
c906108c
SS
703{
704 CORE_ADDR fp, pc;
705 unsigned long op;
706 unsigned short op1, op2;
707 int i;
7f6104a9
AC
708 struct d10v_unwind_cache *info;
709
710 if ((*cache))
711 return (*cache);
712
713 info = FRAME_OBSTACK_ZALLOC (struct d10v_unwind_cache);
714 (*cache) = info;
715 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
716
717 info->frameless = 0;
718 info->size = 0;
719 info->return_pc = 0;
c906108c 720
1e2330ba 721 fp = get_frame_base (fi);
7f6104a9 722 info->next_addr = 0;
c906108c 723
50abf9e5 724 pc = get_pc_function_start (get_frame_pc (fi));
c906108c 725
7f6104a9 726 info->uses_frame = 0;
c906108c
SS
727 while (1)
728 {
c5aa993b 729 op = (unsigned long) read_memory_integer (pc, 4);
c906108c
SS
730 if ((op & 0xC0000000) == 0xC0000000)
731 {
732 /* long instruction */
733 if ((op & 0x3FFF0000) == 0x01FF0000)
734 {
735 /* add3 sp,sp,n */
736 short n = op & 0xFFFF;
7f6104a9 737 info->next_addr += n;
c906108c
SS
738 }
739 else if ((op & 0x3F0F0000) == 0x340F0000)
740 {
741 /* st rn, @(offset,sp) */
742 short offset = op & 0xFFFF;
743 short n = (op >> 20) & 0xF;
7f6104a9 744 info->saved_regs[n] = info->next_addr + offset;
c906108c
SS
745 }
746 else if ((op & 0x3F1F0000) == 0x350F0000)
747 {
748 /* st2w rn, @(offset,sp) */
749 short offset = op & 0xFFFF;
750 short n = (op >> 20) & 0xF;
7f6104a9
AC
751 info->saved_regs[n] = info->next_addr + offset;
752 info->saved_regs[n + 1] = info->next_addr + offset + 2;
c906108c
SS
753 }
754 else
755 break;
756 }
757 else
758 {
759 /* short instructions */
760 if ((op & 0xC0000000) == 0x80000000)
761 {
762 op2 = (op & 0x3FFF8000) >> 15;
763 op1 = op & 0x7FFF;
c5aa993b
JM
764 }
765 else
c906108c
SS
766 {
767 op1 = (op & 0x3FFF8000) >> 15;
768 op2 = op & 0x7FFF;
769 }
7f6104a9
AC
770 if (!prologue_find_regs (info, op1, pc)
771 || !prologue_find_regs (info, op2, pc))
c906108c
SS
772 break;
773 }
774 pc += 4;
775 }
c5aa993b 776
7f6104a9 777 info->size = -info->next_addr;
c906108c
SS
778
779 if (!(fp & 0xffff))
095a4c96 780 fp = d10v_read_sp ();
c906108c 781
c5aa993b 782 for (i = 0; i < NUM_REGS - 1; i++)
7f6104a9 783 if (info->saved_regs[i])
c906108c 784 {
7f6104a9 785 info->saved_regs[i] = fp - (info->next_addr - info->saved_regs[i]);
c906108c
SS
786 }
787
7f6104a9 788 if (info->saved_regs[LR_REGNUM])
c906108c 789 {
78eac43e 790 CORE_ADDR return_pc
7f6104a9 791 = read_memory_unsigned_integer (info->saved_regs[LR_REGNUM],
78eac43e 792 REGISTER_RAW_SIZE (LR_REGNUM));
7f6104a9 793 info->return_pc = d10v_make_iaddr (return_pc);
c906108c
SS
794 }
795 else
796 {
7f6104a9
AC
797 ULONGEST return_pc;
798 frame_read_unsigned_register (fi, LR_REGNUM, &return_pc);
799 info->return_pc = d10v_make_iaddr (return_pc);
c906108c 800 }
c5aa993b 801
78eac43e 802 /* The SP is not normally (ever?) saved, but check anyway */
7f6104a9 803 if (!info->saved_regs[SP_REGNUM])
c906108c
SS
804 {
805 /* if the FP was saved, that means the current FP is valid, */
806 /* otherwise, it isn't being used, so we use the SP instead */
7f6104a9
AC
807 if (info->uses_frame)
808 info->saved_regs[SP_REGNUM]
809 = d10v_read_fp () + info->size;
c906108c
SS
810 else
811 {
7f6104a9
AC
812 info->saved_regs[SP_REGNUM] = fp + info->size;
813 info->frameless = 1;
814 info->saved_regs[FP_REGNUM] = 0;
c906108c
SS
815 }
816 }
c906108c 817
7f6104a9 818 return info;
c906108c
SS
819}
820
821static void
fba45db2 822show_regs (char *args, int from_tty)
c906108c
SS
823{
824 int a;
d4f3574e
SS
825 printf_filtered ("PC=%04lx (0x%lx) PSW=%04lx RPT_S=%04lx RPT_E=%04lx RPT_C=%04lx\n",
826 (long) read_register (PC_REGNUM),
7b570125 827 (long) d10v_make_iaddr (read_register (PC_REGNUM)),
d4f3574e
SS
828 (long) read_register (PSW_REGNUM),
829 (long) read_register (24),
830 (long) read_register (25),
831 (long) read_register (23));
832 printf_filtered ("R0-R7 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
833 (long) read_register (0),
834 (long) read_register (1),
835 (long) read_register (2),
836 (long) read_register (3),
837 (long) read_register (4),
838 (long) read_register (5),
839 (long) read_register (6),
840 (long) read_register (7));
841 printf_filtered ("R8-R15 %04lx %04lx %04lx %04lx %04lx %04lx %04lx %04lx\n",
842 (long) read_register (8),
843 (long) read_register (9),
844 (long) read_register (10),
845 (long) read_register (11),
846 (long) read_register (12),
847 (long) read_register (13),
848 (long) read_register (14),
849 (long) read_register (15));
4ce44c66
JM
850 for (a = 0; a < NR_IMAP_REGS; a++)
851 {
852 if (a > 0)
853 printf_filtered (" ");
854 printf_filtered ("IMAP%d %04lx", a, d10v_imap_register (a));
855 }
856 if (NR_DMAP_REGS == 1)
857 printf_filtered (" DMAP %04lx\n", d10v_dmap_register (2));
858 else
859 {
860 for (a = 0; a < NR_DMAP_REGS; a++)
861 {
862 printf_filtered (" DMAP%d %04lx", a, d10v_dmap_register (a));
863 }
864 printf_filtered ("\n");
865 }
866 printf_filtered ("A0-A%d", NR_A_REGS - 1);
6789195b
AC
867 {
868 char *num = alloca (max_register_size (current_gdbarch));
869 for (a = A0_REGNUM; a < A0_REGNUM + NR_A_REGS; a++)
870 {
871 int i;
872 printf_filtered (" ");
873 deprecated_read_register_gen (a, (char *) &num);
874 for (i = 0; i < MAX_REGISTER_RAW_SIZE; i++)
875 {
876 printf_filtered ("%02x", (num[i] & 0xff));
877 }
878 }
879 }
c906108c
SS
880 printf_filtered ("\n");
881}
882
f5e1cf12 883static CORE_ADDR
39f77062 884d10v_read_pc (ptid_t ptid)
c906108c 885{
39f77062 886 ptid_t save_ptid;
c906108c
SS
887 CORE_ADDR pc;
888 CORE_ADDR retval;
889
39f77062
KB
890 save_ptid = inferior_ptid;
891 inferior_ptid = ptid;
c906108c 892 pc = (int) read_register (PC_REGNUM);
39f77062 893 inferior_ptid = save_ptid;
7b570125 894 retval = d10v_make_iaddr (pc);
c906108c
SS
895 return retval;
896}
897
f5e1cf12 898static void
39f77062 899d10v_write_pc (CORE_ADDR val, ptid_t ptid)
c906108c 900{
39f77062 901 ptid_t save_ptid;
c906108c 902
39f77062
KB
903 save_ptid = inferior_ptid;
904 inferior_ptid = ptid;
7b570125 905 write_register (PC_REGNUM, d10v_convert_iaddr_to_raw (val));
39f77062 906 inferior_ptid = save_ptid;
c906108c
SS
907}
908
f5e1cf12 909static CORE_ADDR
fba45db2 910d10v_read_sp (void)
c906108c 911{
7b570125 912 return (d10v_make_daddr (read_register (SP_REGNUM)));
c906108c
SS
913}
914
f5e1cf12 915static void
fba45db2 916d10v_write_sp (CORE_ADDR val)
c906108c 917{
7b570125 918 write_register (SP_REGNUM, d10v_convert_daddr_to_raw (val));
c906108c
SS
919}
920
f5e1cf12 921static CORE_ADDR
fba45db2 922d10v_read_fp (void)
c906108c 923{
7b570125 924 return (d10v_make_daddr (read_register (FP_REGNUM)));
c906108c
SS
925}
926
927/* Function: push_return_address (pc)
928 Set up the return address for the inferior function call.
929 Needed for targets where we don't actually execute a JSR/BSR instruction */
c5aa993b 930
f5e1cf12 931static CORE_ADDR
fba45db2 932d10v_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 933{
7b570125 934 write_register (LR_REGNUM, d10v_convert_iaddr_to_raw (CALL_DUMMY_ADDRESS ()));
c906108c
SS
935 return sp;
936}
c5aa993b 937
c906108c 938
7a292a7a
SS
939/* When arguments must be pushed onto the stack, they go on in reverse
940 order. The below implements a FILO (stack) to do this. */
941
942struct stack_item
943{
944 int len;
945 struct stack_item *prev;
946 void *data;
947};
948
a14ed312
KB
949static struct stack_item *push_stack_item (struct stack_item *prev,
950 void *contents, int len);
7a292a7a 951static struct stack_item *
fba45db2 952push_stack_item (struct stack_item *prev, void *contents, int len)
7a292a7a
SS
953{
954 struct stack_item *si;
955 si = xmalloc (sizeof (struct stack_item));
956 si->data = xmalloc (len);
957 si->len = len;
958 si->prev = prev;
959 memcpy (si->data, contents, len);
960 return si;
961}
962
a14ed312 963static struct stack_item *pop_stack_item (struct stack_item *si);
7a292a7a 964static struct stack_item *
fba45db2 965pop_stack_item (struct stack_item *si)
7a292a7a
SS
966{
967 struct stack_item *dead = si;
968 si = si->prev;
b8c9b27d
KB
969 xfree (dead->data);
970 xfree (dead);
7a292a7a
SS
971 return si;
972}
973
974
f5e1cf12 975static CORE_ADDR
ea7c478f 976d10v_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
fba45db2 977 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
978{
979 int i;
980 int regnum = ARG1_REGNUM;
7a292a7a 981 struct stack_item *si = NULL;
7bd91a28
MS
982 long val;
983
984 /* If struct_return is true, then the struct return address will
985 consume one argument-passing register. No need to actually
986 write the value to the register -- that's done by
987 d10v_store_struct_return(). */
988
989 if (struct_return)
990 regnum++;
c5aa993b 991
c906108c
SS
992 /* Fill in registers and arg lists */
993 for (i = 0; i < nargs; i++)
994 {
ea7c478f 995 struct value *arg = args[i];
c906108c
SS
996 struct type *type = check_typedef (VALUE_TYPE (arg));
997 char *contents = VALUE_CONTENTS (arg);
998 int len = TYPE_LENGTH (type);
7bd91a28
MS
999 int aligned_regnum = (regnum + 1) & ~1;
1000
8b279e7a 1001 /* printf ("push: type=%d len=%d\n", TYPE_CODE (type), len); */
7bd91a28
MS
1002 if (len <= 2 && regnum <= ARGN_REGNUM)
1003 /* fits in a single register, do not align */
1004 {
1005 val = extract_unsigned_integer (contents, len);
1006 write_register (regnum++, val);
1007 }
1008 else if (len <= (ARGN_REGNUM - aligned_regnum + 1) * 2)
1009 /* value fits in remaining registers, store keeping left
1010 aligned */
c906108c 1011 {
7bd91a28
MS
1012 int b;
1013 regnum = aligned_regnum;
1014 for (b = 0; b < (len & ~1); b += 2)
c906108c 1015 {
7bd91a28 1016 val = extract_unsigned_integer (&contents[b], 2);
c906108c
SS
1017 write_register (regnum++, val);
1018 }
7bd91a28 1019 if (b < len)
c906108c 1020 {
7bd91a28
MS
1021 val = extract_unsigned_integer (&contents[b], 1);
1022 write_register (regnum++, (val << 8));
c906108c
SS
1023 }
1024 }
7bd91a28
MS
1025 else
1026 {
1027 /* arg will go onto stack */
1028 regnum = ARGN_REGNUM + 1;
1029 si = push_stack_item (si, contents, len);
1030 }
c906108c 1031 }
7a292a7a
SS
1032
1033 while (si)
1034 {
1035 sp = (sp - si->len) & ~1;
1036 write_memory (sp, si->data, si->len);
1037 si = pop_stack_item (si);
1038 }
c5aa993b 1039
c906108c
SS
1040 return sp;
1041}
1042
1043
1044/* Given a return value in `regbuf' with a type `valtype',
1045 extract and copy its value into `valbuf'. */
1046
f5e1cf12 1047static void
fa1fd571
AC
1048d10v_extract_return_value (struct type *type, struct regcache *regcache,
1049 void *valbuf)
c906108c
SS
1050{
1051 int len;
3d79a47c
MS
1052#if 0
1053 printf("RET: TYPE=%d len=%d r%d=0x%x\n", TYPE_CODE (type),
1054 TYPE_LENGTH (type), RET1_REGNUM - R0_REGNUM,
1055 (int) extract_unsigned_integer (regbuf + REGISTER_BYTE(RET1_REGNUM),
1056 REGISTER_RAW_SIZE (RET1_REGNUM)));
1057#endif
fa1fd571 1058 if (TYPE_LENGTH (type) == 1)
c906108c 1059 {
fa1fd571
AC
1060 ULONGEST c;
1061 regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &c);
3d79a47c
MS
1062 store_unsigned_integer (valbuf, 1, c);
1063 }
3d79a47c
MS
1064 else
1065 {
1066 /* For return values of odd size, the first byte is in the
1067 least significant part of the first register. The
fa1fd571
AC
1068 remaining bytes in remaining registers. Interestingly, when
1069 such values are passed in, the last byte is in the most
1070 significant byte of that same register - wierd. */
1071 int reg = RET1_REGNUM;
1072 int off = 0;
1073 if (TYPE_LENGTH (type) & 1)
1074 {
1075 regcache_cooked_read_part (regcache, RET1_REGNUM, 1, 1,
1076 (bfd_byte *)valbuf + off);
1077 off++;
1078 reg++;
1079 }
1080 /* Transfer the remaining registers. */
1081 for (; off < TYPE_LENGTH (type); reg++, off += 2)
1082 {
1083 regcache_cooked_read (regcache, RET1_REGNUM + reg,
1084 (bfd_byte *) valbuf + off);
1085 }
c906108c
SS
1086 }
1087}
1088
c2c6d25f
JM
1089/* Translate a GDB virtual ADDR/LEN into a format the remote target
1090 understands. Returns number of bytes that can be transfered
4ce44c66
JM
1091 starting at TARG_ADDR. Return ZERO if no bytes can be transfered
1092 (segmentation fault). Since the simulator knows all about how the
1093 VM system works, we just call that to do the translation. */
c2c6d25f 1094
4ce44c66 1095static void
c2c6d25f
JM
1096remote_d10v_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes,
1097 CORE_ADDR *targ_addr, int *targ_len)
1098{
4ce44c66
JM
1099 long out_addr;
1100 long out_len;
1101 out_len = sim_d10v_translate_addr (memaddr, nr_bytes,
1102 &out_addr,
1103 d10v_dmap_register,
1104 d10v_imap_register);
1105 *targ_addr = out_addr;
1106 *targ_len = out_len;
c2c6d25f
JM
1107}
1108
4ce44c66 1109
c906108c
SS
1110/* The following code implements access to, and display of, the D10V's
1111 instruction trace buffer. The buffer consists of 64K or more
1112 4-byte words of data, of which each words includes an 8-bit count,
1113 an 8-bit segment number, and a 16-bit instruction address.
1114
1115 In theory, the trace buffer is continuously capturing instruction
1116 data that the CPU presents on its "debug bus", but in practice, the
1117 ROMified GDB stub only enables tracing when it continues or steps
1118 the program, and stops tracing when the program stops; so it
1119 actually works for GDB to read the buffer counter out of memory and
1120 then read each trace word. The counter records where the tracing
1121 stops, but there is no record of where it started, so we remember
1122 the PC when we resumed and then search backwards in the trace
1123 buffer for a word that includes that address. This is not perfect,
1124 because you will miss trace data if the resumption PC is the target
1125 of a branch. (The value of the buffer counter is semi-random, any
1126 trace data from a previous program stop is gone.) */
1127
1128/* The address of the last word recorded in the trace buffer. */
1129
1130#define DBBC_ADDR (0xd80000)
1131
1132/* The base of the trace buffer, at least for the "Board_0". */
1133
1134#define TRACE_BUFFER_BASE (0xf40000)
1135
a14ed312 1136static void trace_command (char *, int);
c906108c 1137
a14ed312 1138static void untrace_command (char *, int);
c906108c 1139
a14ed312 1140static void trace_info (char *, int);
c906108c 1141
a14ed312 1142static void tdisassemble_command (char *, int);
c906108c 1143
a14ed312 1144static void display_trace (int, int);
c906108c
SS
1145
1146/* True when instruction traces are being collected. */
1147
1148static int tracing;
1149
1150/* Remembered PC. */
1151
1152static CORE_ADDR last_pc;
1153
1154/* True when trace output should be displayed whenever program stops. */
1155
1156static int trace_display;
1157
1158/* True when trace listing should include source lines. */
1159
1160static int default_trace_show_source = 1;
1161
c5aa993b
JM
1162struct trace_buffer
1163 {
1164 int size;
1165 short *counts;
1166 CORE_ADDR *addrs;
1167 }
1168trace_data;
c906108c
SS
1169
1170static void
fba45db2 1171trace_command (char *args, int from_tty)
c906108c
SS
1172{
1173 /* Clear the host-side trace buffer, allocating space if needed. */
1174 trace_data.size = 0;
1175 if (trace_data.counts == NULL)
c5aa993b 1176 trace_data.counts = (short *) xmalloc (65536 * sizeof (short));
c906108c 1177 if (trace_data.addrs == NULL)
c5aa993b 1178 trace_data.addrs = (CORE_ADDR *) xmalloc (65536 * sizeof (CORE_ADDR));
c906108c
SS
1179
1180 tracing = 1;
1181
1182 printf_filtered ("Tracing is now on.\n");
1183}
1184
1185static void
fba45db2 1186untrace_command (char *args, int from_tty)
c906108c
SS
1187{
1188 tracing = 0;
1189
1190 printf_filtered ("Tracing is now off.\n");
1191}
1192
1193static void
fba45db2 1194trace_info (char *args, int from_tty)
c906108c
SS
1195{
1196 int i;
1197
1198 if (trace_data.size)
1199 {
1200 printf_filtered ("%d entries in trace buffer:\n", trace_data.size);
1201
1202 for (i = 0; i < trace_data.size; ++i)
1203 {
d4f3574e
SS
1204 printf_filtered ("%d: %d instruction%s at 0x%s\n",
1205 i,
1206 trace_data.counts[i],
c906108c 1207 (trace_data.counts[i] == 1 ? "" : "s"),
d4f3574e 1208 paddr_nz (trace_data.addrs[i]));
c906108c
SS
1209 }
1210 }
1211 else
1212 printf_filtered ("No entries in trace buffer.\n");
1213
1214 printf_filtered ("Tracing is currently %s.\n", (tracing ? "on" : "off"));
1215}
1216
1217/* Print the instruction at address MEMADDR in debugged memory,
1218 on STREAM. Returns length of the instruction, in bytes. */
1219
1220static int
fba45db2 1221print_insn (CORE_ADDR memaddr, struct ui_file *stream)
c906108c
SS
1222{
1223 /* If there's no disassembler, something is very wrong. */
1224 if (tm_print_insn == NULL)
8e65ff28
AC
1225 internal_error (__FILE__, __LINE__,
1226 "print_insn: no disassembler");
c906108c 1227
d7449b42 1228 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
1229 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
1230 else
1231 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
2bf0cb65 1232 return TARGET_PRINT_INSN (memaddr, &tm_print_insn_info);
c906108c
SS
1233}
1234
392a587b 1235static void
fba45db2 1236d10v_eva_prepare_to_trace (void)
c906108c
SS
1237{
1238 if (!tracing)
1239 return;
1240
1241 last_pc = read_register (PC_REGNUM);
1242}
1243
1244/* Collect trace data from the target board and format it into a form
1245 more useful for display. */
1246
392a587b 1247static void
fba45db2 1248d10v_eva_get_trace_data (void)
c906108c
SS
1249{
1250 int count, i, j, oldsize;
1251 int trace_addr, trace_seg, trace_cnt, next_cnt;
1252 unsigned int last_trace, trace_word, next_word;
1253 unsigned int *tmpspace;
1254
1255 if (!tracing)
1256 return;
1257
c5aa993b 1258 tmpspace = xmalloc (65536 * sizeof (unsigned int));
c906108c
SS
1259
1260 last_trace = read_memory_unsigned_integer (DBBC_ADDR, 2) << 2;
1261
1262 /* Collect buffer contents from the target, stopping when we reach
1263 the word recorded when execution resumed. */
1264
1265 count = 0;
1266 while (last_trace > 0)
1267 {
1268 QUIT;
1269 trace_word =
1270 read_memory_unsigned_integer (TRACE_BUFFER_BASE + last_trace, 4);
1271 trace_addr = trace_word & 0xffff;
1272 last_trace -= 4;
1273 /* Ignore an apparently nonsensical entry. */
1274 if (trace_addr == 0xffd5)
1275 continue;
1276 tmpspace[count++] = trace_word;
1277 if (trace_addr == last_pc)
1278 break;
1279 if (count > 65535)
1280 break;
1281 }
1282
1283 /* Move the data to the host-side trace buffer, adjusting counts to
1284 include the last instruction executed and transforming the address
1285 into something that GDB likes. */
1286
1287 for (i = 0; i < count; ++i)
1288 {
1289 trace_word = tmpspace[i];
1290 next_word = ((i == 0) ? 0 : tmpspace[i - 1]);
1291 trace_addr = trace_word & 0xffff;
1292 next_cnt = (next_word >> 24) & 0xff;
1293 j = trace_data.size + count - i - 1;
1294 trace_data.addrs[j] = (trace_addr << 2) + 0x1000000;
1295 trace_data.counts[j] = next_cnt + 1;
1296 }
1297
1298 oldsize = trace_data.size;
1299 trace_data.size += count;
1300
b8c9b27d 1301 xfree (tmpspace);
c906108c
SS
1302
1303 if (trace_display)
1304 display_trace (oldsize, trace_data.size);
1305}
1306
1307static void
fba45db2 1308tdisassemble_command (char *arg, int from_tty)
c906108c
SS
1309{
1310 int i, count;
1311 CORE_ADDR low, high;
1312 char *space_index;
1313
1314 if (!arg)
1315 {
1316 low = 0;
1317 high = trace_data.size;
1318 }
1319 else if (!(space_index = (char *) strchr (arg, ' ')))
1320 {
1321 low = parse_and_eval_address (arg);
1322 high = low + 5;
1323 }
1324 else
1325 {
1326 /* Two arguments. */
1327 *space_index = '\0';
1328 low = parse_and_eval_address (arg);
1329 high = parse_and_eval_address (space_index + 1);
1330 if (high < low)
1331 high = low;
1332 }
1333
d4f3574e 1334 printf_filtered ("Dump of trace from %s to %s:\n", paddr_u (low), paddr_u (high));
c906108c
SS
1335
1336 display_trace (low, high);
1337
1338 printf_filtered ("End of trace dump.\n");
1339 gdb_flush (gdb_stdout);
1340}
1341
1342static void
fba45db2 1343display_trace (int low, int high)
c906108c
SS
1344{
1345 int i, count, trace_show_source, first, suppress;
1346 CORE_ADDR next_address;
1347
1348 trace_show_source = default_trace_show_source;
c5aa993b 1349 if (!have_full_symbols () && !have_partial_symbols ())
c906108c
SS
1350 {
1351 trace_show_source = 0;
1352 printf_filtered ("No symbol table is loaded. Use the \"file\" command.\n");
1353 printf_filtered ("Trace will not display any source.\n");
1354 }
1355
1356 first = 1;
1357 suppress = 0;
1358 for (i = low; i < high; ++i)
1359 {
1360 next_address = trace_data.addrs[i];
c5aa993b 1361 count = trace_data.counts[i];
c906108c
SS
1362 while (count-- > 0)
1363 {
1364 QUIT;
1365 if (trace_show_source)
1366 {
1367 struct symtab_and_line sal, sal_prev;
1368
1369 sal_prev = find_pc_line (next_address - 4, 0);
1370 sal = find_pc_line (next_address, 0);
1371
1372 if (sal.symtab)
1373 {
1374 if (first || sal.line != sal_prev.line)
1375 print_source_lines (sal.symtab, sal.line, sal.line + 1, 0);
1376 suppress = 0;
1377 }
1378 else
1379 {
1380 if (!suppress)
1381 /* FIXME-32x64--assumes sal.pc fits in long. */
1382 printf_filtered ("No source file for address %s.\n",
c5aa993b 1383 local_hex_string ((unsigned long) sal.pc));
c906108c
SS
1384 suppress = 1;
1385 }
1386 }
1387 first = 0;
1388 print_address (next_address, gdb_stdout);
1389 printf_filtered (":");
1390 printf_filtered ("\t");
1391 wrap_here (" ");
1392 next_address = next_address + print_insn (next_address, gdb_stdout);
1393 printf_filtered ("\n");
1394 gdb_flush (gdb_stdout);
1395 }
1396 }
1397}
1398
ac9a91a7 1399
7f6104a9
AC
1400static CORE_ADDR
1401d10v_frame_pc_unwind (struct frame_info *frame,
1402 void **cache)
1403{
1404 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1405 return info->return_pc;
1406}
1407
1408/* Given a GDB frame, determine the address of the calling function's
1409 frame. This will be used to create a new GDB frame struct. */
1410
1411static void
1412d10v_frame_id_unwind (struct frame_info *frame,
1413 void **cache,
1414 struct frame_id *id)
1415{
1416 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1417 CORE_ADDR addr;
1418
1419 /* Start with a NULL frame ID. */
1420 (*id) = null_frame_id;
1421
1422 if (info->return_pc == IMEM_START
1423 || info->return_pc <= IMEM_START
1424 || inside_entry_file (info->return_pc))
1425 {
1426 /* This is meant to halt the backtrace at "_start".
1427 Make sure we don't halt it at a generic dummy frame. */
1428 return;
1429 }
1430
1431 if (!info->saved_regs[FP_REGNUM])
1432 {
1433 if (!info->saved_regs[SP_REGNUM]
1434 || info->saved_regs[SP_REGNUM] == STACK_START)
1435 return;
1436
1437 id->base = info->saved_regs[SP_REGNUM];
1438 id->pc = info->return_pc;
1439 }
1440
1441 addr = read_memory_unsigned_integer (info->saved_regs[FP_REGNUM],
1442 REGISTER_RAW_SIZE (FP_REGNUM));
1443 if (addr == 0)
1444 return;
1445
1446 id->base = d10v_make_daddr (addr);
1447 id->pc = info->return_pc;
1448}
1449
1450static void
1451saved_regs_unwinder (struct frame_info *frame,
1452 CORE_ADDR *saved_regs,
1453 int regnum, int *optimizedp,
1454 enum lval_type *lvalp, CORE_ADDR *addrp,
1455 int *realnump, void *bufferp)
1456{
1457 /* If we're using generic dummy frames, we'd better not be in a call
1458 dummy. (generic_call_dummy_register_unwind ought to have been called
1459 instead.) */
1460 gdb_assert (!(DEPRECATED_USE_GENERIC_DUMMY_FRAMES
1461 && (get_frame_type (frame) == DUMMY_FRAME)));
1462
1463 if (saved_regs[regnum] != 0)
1464 {
1465 if (regnum == SP_REGNUM)
1466 {
1467 /* SP register treated specially. */
1468 *optimizedp = 0;
1469 *lvalp = not_lval;
1470 *addrp = 0;
1471 *realnump = -1;
1472 if (bufferp != NULL)
1473 store_address (bufferp, REGISTER_RAW_SIZE (regnum),
1474 saved_regs[regnum]);
1475 }
1476 else
1477 {
1478 /* Any other register is saved in memory, fetch it but cache
1479 a local copy of its value. */
1480 *optimizedp = 0;
1481 *lvalp = lval_memory;
1482 *addrp = saved_regs[regnum];
1483 *realnump = -1;
1484 if (bufferp != NULL)
1485 {
1486 /* Read the value in from memory. */
1487 read_memory (saved_regs[regnum], bufferp,
1488 REGISTER_RAW_SIZE (regnum));
1489 }
1490 }
1491 return;
1492 }
1493
1494 /* No luck, assume this and the next frame have the same register
1495 value. If a value is needed, pass the request on down the chain;
1496 otherwise just return an indication that the value is in the same
1497 register as the next frame. */
1498 frame_register (frame, regnum, optimizedp, lvalp, addrp,
1499 realnump, bufferp);
1500}
1501
1502
1503static void
1504d10v_frame_register_unwind (struct frame_info *frame,
1505 void **cache,
1506 int regnum, int *optimizedp,
1507 enum lval_type *lvalp, CORE_ADDR *addrp,
1508 int *realnump, void *bufferp)
1509{
1510 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (frame, cache);
1511 saved_regs_unwinder (frame, info->saved_regs, regnum, optimizedp,
1512 lvalp, addrp, realnump, bufferp);
1513}
1514
1515
1516static void
1517d10v_frame_pop (struct frame_info *fi, void **unwind_cache,
1518 struct regcache *regcache)
1519{
1520 struct d10v_unwind_cache *info = d10v_frame_unwind_cache (fi, unwind_cache);
1521 CORE_ADDR fp;
1522 int regnum;
1523 char raw_buffer[8];
1524
1525 fp = get_frame_base (fi);
1526
1527 /* now update the current registers with the old values */
1528 for (regnum = A0_REGNUM; regnum < A0_REGNUM + NR_A_REGS; regnum++)
1529 {
1530 if (info->saved_regs[regnum])
1531 {
1532 read_memory (info->saved_regs[regnum], raw_buffer, REGISTER_RAW_SIZE (regnum));
1533 deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
1534 REGISTER_RAW_SIZE (regnum));
1535 }
1536 }
1537 for (regnum = 0; regnum < SP_REGNUM; regnum++)
1538 {
1539 if (info->saved_regs[regnum])
1540 {
1541 write_register (regnum, read_memory_unsigned_integer (info->saved_regs[regnum], REGISTER_RAW_SIZE (regnum)));
1542 }
1543 }
1544 if (info->saved_regs[PSW_REGNUM])
1545 {
1546 write_register (PSW_REGNUM, read_memory_unsigned_integer (info->saved_regs[PSW_REGNUM], REGISTER_RAW_SIZE (PSW_REGNUM)));
1547 }
1548
1549 write_register (PC_REGNUM, read_register (LR_REGNUM));
1550 write_register (SP_REGNUM, fp + info->size);
1551 target_store_registers (-1);
1552 flush_cached_frames ();
1553}
1554
1555static struct frame_unwind d10v_frame_unwind = {
1556 d10v_frame_pop,
1557 d10v_frame_pc_unwind,
1558 d10v_frame_id_unwind,
1559 d10v_frame_register_unwind
1560};
1561
1562const struct frame_unwind *
1563d10v_frame_p (CORE_ADDR pc)
1564{
1565 return &d10v_frame_unwind;
1566}
1567
0f71a2f6 1568static gdbarch_init_ftype d10v_gdbarch_init;
4ce44c66 1569
0f71a2f6 1570static struct gdbarch *
fba45db2 1571d10v_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
0f71a2f6 1572{
c5aa993b
JM
1573 static LONGEST d10v_call_dummy_words[] =
1574 {0};
0f71a2f6 1575 struct gdbarch *gdbarch;
4ce44c66
JM
1576 int d10v_num_regs;
1577 struct gdbarch_tdep *tdep;
1578 gdbarch_register_name_ftype *d10v_register_name;
7c7651b2 1579 gdbarch_register_sim_regno_ftype *d10v_register_sim_regno;
0f71a2f6 1580
4ce44c66
JM
1581 /* Find a candidate among the list of pre-declared architectures. */
1582 arches = gdbarch_list_lookup_by_info (arches, &info);
0f71a2f6
JM
1583 if (arches != NULL)
1584 return arches->gdbarch;
4ce44c66
JM
1585
1586 /* None found, create a new architecture from the information
1587 provided. */
1588 tdep = XMALLOC (struct gdbarch_tdep);
1589 gdbarch = gdbarch_alloc (&info, tdep);
1590
1591 switch (info.bfd_arch_info->mach)
1592 {
1593 case bfd_mach_d10v_ts2:
1594 d10v_num_regs = 37;
1595 d10v_register_name = d10v_ts2_register_name;
7c7651b2 1596 d10v_register_sim_regno = d10v_ts2_register_sim_regno;
4ce44c66
JM
1597 tdep->a0_regnum = TS2_A0_REGNUM;
1598 tdep->nr_dmap_regs = TS2_NR_DMAP_REGS;
4ce44c66
JM
1599 tdep->dmap_register = d10v_ts2_dmap_register;
1600 tdep->imap_register = d10v_ts2_imap_register;
1601 break;
1602 default:
1603 case bfd_mach_d10v_ts3:
1604 d10v_num_regs = 42;
1605 d10v_register_name = d10v_ts3_register_name;
7c7651b2 1606 d10v_register_sim_regno = d10v_ts3_register_sim_regno;
4ce44c66
JM
1607 tdep->a0_regnum = TS3_A0_REGNUM;
1608 tdep->nr_dmap_regs = TS3_NR_DMAP_REGS;
4ce44c66
JM
1609 tdep->dmap_register = d10v_ts3_dmap_register;
1610 tdep->imap_register = d10v_ts3_imap_register;
1611 break;
1612 }
0f71a2f6
JM
1613
1614 set_gdbarch_read_pc (gdbarch, d10v_read_pc);
1615 set_gdbarch_write_pc (gdbarch, d10v_write_pc);
1616 set_gdbarch_read_fp (gdbarch, d10v_read_fp);
0f71a2f6
JM
1617 set_gdbarch_read_sp (gdbarch, d10v_read_sp);
1618 set_gdbarch_write_sp (gdbarch, d10v_write_sp);
1619
1620 set_gdbarch_num_regs (gdbarch, d10v_num_regs);
1621 set_gdbarch_sp_regnum (gdbarch, 15);
1622 set_gdbarch_fp_regnum (gdbarch, 11);
1623 set_gdbarch_pc_regnum (gdbarch, 18);
1624 set_gdbarch_register_name (gdbarch, d10v_register_name);
1625 set_gdbarch_register_size (gdbarch, 2);
1626 set_gdbarch_register_bytes (gdbarch, (d10v_num_regs - 2) * 2 + 16);
1627 set_gdbarch_register_byte (gdbarch, d10v_register_byte);
1628 set_gdbarch_register_raw_size (gdbarch, d10v_register_raw_size);
1629 set_gdbarch_max_register_raw_size (gdbarch, 8);
8b279e7a 1630 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
0f71a2f6
JM
1631 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1632 set_gdbarch_register_virtual_type (gdbarch, d10v_register_virtual_type);
1633
75af7f68
JB
1634 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1635 set_gdbarch_addr_bit (gdbarch, 32);
1636 set_gdbarch_address_to_pointer (gdbarch, d10v_address_to_pointer);
1637 set_gdbarch_pointer_to_address (gdbarch, d10v_pointer_to_address);
fc0c74b1 1638 set_gdbarch_integer_to_address (gdbarch, d10v_integer_to_address);
0f71a2f6
JM
1639 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1640 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1641 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
02da6206 1642 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1643 /* NOTE: The d10v as a 32 bit ``float'' and ``double''. ``long
1644 double'' is 64 bits. */
0f71a2f6
JM
1645 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1646 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1647 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
f0d4cc9e
AC
1648 switch (info.byte_order)
1649 {
d7449b42 1650 case BFD_ENDIAN_BIG:
f0d4cc9e
AC
1651 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
1652 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_big);
1653 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
1654 break;
778eb05e 1655 case BFD_ENDIAN_LITTLE:
f0d4cc9e
AC
1656 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
1657 set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little);
1658 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_little);
1659 break;
1660 default:
8e65ff28
AC
1661 internal_error (__FILE__, __LINE__,
1662 "d10v_gdbarch_init: bad byte order for float format");
f0d4cc9e 1663 }
0f71a2f6 1664
0f71a2f6 1665 set_gdbarch_call_dummy_length (gdbarch, 0);
0f71a2f6
JM
1666 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1667 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1668 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1669 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
0f71a2f6
JM
1670 set_gdbarch_call_dummy_words (gdbarch, d10v_call_dummy_words);
1671 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (d10v_call_dummy_words));
1672 set_gdbarch_call_dummy_p (gdbarch, 1);
1673 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
0f71a2f6
JM
1674 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1675
fa1fd571 1676 set_gdbarch_extract_return_value (gdbarch, d10v_extract_return_value);
0f71a2f6
JM
1677 set_gdbarch_push_arguments (gdbarch, d10v_push_arguments);
1678 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1679 set_gdbarch_push_return_address (gdbarch, d10v_push_return_address);
1680
0f71a2f6 1681 set_gdbarch_store_struct_return (gdbarch, d10v_store_struct_return);
fa1fd571
AC
1682 set_gdbarch_store_return_value (gdbarch, d10v_store_return_value);
1683 set_gdbarch_extract_struct_value_address (gdbarch, d10v_extract_struct_value_address);
0f71a2f6
JM
1684 set_gdbarch_use_struct_convention (gdbarch, d10v_use_struct_convention);
1685
0f71a2f6
JM
1686 set_gdbarch_skip_prologue (gdbarch, d10v_skip_prologue);
1687 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1688 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1689 set_gdbarch_function_start_offset (gdbarch, 0);
1690 set_gdbarch_breakpoint_from_pc (gdbarch, d10v_breakpoint_from_pc);
1691
1692 set_gdbarch_remote_translate_xfer_address (gdbarch, remote_d10v_translate_xfer_address);
1693
1694 set_gdbarch_frame_args_skip (gdbarch, 0);
1695 set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue);
f4ded5b1 1696
0f71a2f6
JM
1697 set_gdbarch_saved_pc_after_call (gdbarch, d10v_saved_pc_after_call);
1698 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
23964bcd 1699 set_gdbarch_stack_align (gdbarch, d10v_stack_align);
0f71a2f6 1700
7c7651b2 1701 set_gdbarch_register_sim_regno (gdbarch, d10v_register_sim_regno);
0a49d05e 1702 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
7c7651b2 1703
7f6104a9
AC
1704 frame_unwind_append_predicate (gdbarch, d10v_frame_p);
1705
0f71a2f6
JM
1706 return gdbarch;
1707}
1708
1709
507f3c78
KB
1710extern void (*target_resume_hook) (void);
1711extern void (*target_wait_loop_hook) (void);
c906108c
SS
1712
1713void
fba45db2 1714_initialize_d10v_tdep (void)
c906108c 1715{
0f71a2f6
JM
1716 register_gdbarch_init (bfd_arch_d10v, d10v_gdbarch_init);
1717
c906108c
SS
1718 tm_print_insn = print_insn_d10v;
1719
1720 target_resume_hook = d10v_eva_prepare_to_trace;
1721 target_wait_loop_hook = d10v_eva_get_trace_data;
1722
1723 add_com ("regs", class_vars, show_regs, "Print all registers");
1724
cff3e48b 1725 add_com ("itrace", class_support, trace_command,
c906108c
SS
1726 "Enable tracing of instruction execution.");
1727
cff3e48b 1728 add_com ("iuntrace", class_support, untrace_command,
c906108c
SS
1729 "Disable tracing of instruction execution.");
1730
cff3e48b 1731 add_com ("itdisassemble", class_vars, tdisassemble_command,
c906108c
SS
1732 "Disassemble the trace buffer.\n\
1733Two optional arguments specify a range of trace buffer entries\n\
1734as reported by info trace (NOT addresses!).");
1735
cff3e48b 1736 add_info ("itrace", trace_info,
c906108c
SS
1737 "Display info about the trace data buffer.");
1738
cff3e48b 1739 add_show_from_set (add_set_cmd ("itracedisplay", no_class,
c5aa993b
JM
1740 var_integer, (char *) &trace_display,
1741 "Set automatic display of trace.\n", &setlist),
c906108c 1742 &showlist);
cff3e48b 1743 add_show_from_set (add_set_cmd ("itracesource", no_class,
c5aa993b
JM
1744 var_integer, (char *) &default_trace_show_source,
1745 "Set display of source code with trace.\n", &setlist),
c906108c
SS
1746 &showlist);
1747
c5aa993b 1748}
This page took 0.29985 seconds and 4 git commands to generate.