Obvious fix: in entries for 1998-02-10 and 1998-02-06,
[deliverable/binutils-gdb.git] / gdb / dcache.c
CommitLineData
4930751a 1/* Caching code.
29e57380 2 Copyright 1992-1993, 1995, 1998-1999, 2000, 2001 Free Software Foundation, Inc.
c906108c
SS
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
c5aa993b
JM
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include "dcache.h"
23#include "gdbcmd.h"
24#include "gdb_string.h"
25#include "gdbcore.h"
4930751a 26#include "target.h"
c906108c 27
29e57380
C
28/* The data cache could lead to incorrect results because it doesn't
29 know about volatile variables, thus making it impossible to debug
30 functions which use memory mapped I/O devices. Set the nocache
31 memory region attribute in those cases.
c906108c
SS
32
33 In general the dcache speeds up performance, some speed improvement
34 comes from the actual caching mechanism, but the major gain is in
35 the reduction of the remote protocol overhead; instead of reading
36 or writing a large area of memory in 4 byte requests, the cache
37 bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
38 Reducing the overhead to an eighth of what it was. This is very
39 obvious when displaying a large amount of data,
40
41 eg, x/200x 0
42
43 caching | no yes
44 ----------------------------
45 first time | 4 sec 2 sec improvement due to chunking
46 second time | 4 sec 0 sec improvement due to caching
47
48 The cache structure is unusual, we keep a number of cache blocks
49 (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
50 Within each line we remember the address of the line (always a
51 multiple of the LINE_SIZE) and a vector of bytes over the range.
52 There's another vector which contains the state of the bytes.
53
54 ENTRY_BAD means that the byte is just plain wrong, and has no
55 correspondence with anything else (as it would when the cache is
56 turned on, but nothing has been done to it.
57
58 ENTRY_DIRTY means that the byte has some data in it which should be
59 written out to the remote target one day, but contains correct
29e57380
C
60 data.
61
62 ENTRY_OK means that the data is the same in the cache as it is in
63 remote memory.
c906108c
SS
64
65
66 The ENTRY_DIRTY state is necessary because GDB likes to write large
67 lumps of memory in small bits. If the caching mechanism didn't
68 maintain the DIRTY information, then something like a two byte
69 write would mean that the entire cache line would have to be read,
70 the two bytes modified and then written out again. The alternative
71 would be to not read in the cache line in the first place, and just
72 write the two bytes directly into target memory. The trouble with
73 that is that it really nails performance, because of the remote
74 protocol overhead. This way, all those little writes are bundled
75 up into an entire cache line write in one go, without having to
76 read the cache line in the first place.
29e57380 77 */
c906108c 78
29e57380 79/* NOTE: Interaction of dcache and memory region attributes
c906108c 80
29e57380
C
81 As there is no requirement that memory region attributes be aligned
82 to or be a multiple of the dcache page size, dcache_read_line() and
83 dcache_write_line() must break up the page by memory region. If a
84 chunk does not have the cache attribute set, an invalid memory type
85 is set, etc., then the chunk is skipped. Those chunks are handled
86 in target_xfer_memory() (or target_xfer_memory_partial()).
c906108c 87
29e57380
C
88 This doesn't occur very often. The most common occurance is when
89 the last bit of the .text segment and the first bit of the .data
90 segment fall within the same dcache page with a ro/cacheable memory
91 region defined for the .text segment and a rw/non-cacheable memory
92 region defined for the .data segment. */
c906108c
SS
93
94/* This value regulates the number of cache blocks stored.
95 Smaller values reduce the time spent searching for a cache
96 line, and reduce memory requirements, but increase the risk
97 of a line not being in memory */
98
c5aa993b 99#define DCACHE_SIZE 64
c906108c
SS
100
101/* This value regulates the size of a cache line. Smaller values
102 reduce the time taken to read a single byte, but reduce overall
103 throughput. */
104
c5aa993b 105#define LINE_SIZE_POWER (5)
c906108c
SS
106#define LINE_SIZE (1 << LINE_SIZE_POWER)
107
108/* Each cache block holds LINE_SIZE bytes of data
109 starting at a multiple-of-LINE_SIZE address. */
110
c5aa993b 111#define LINE_SIZE_MASK ((LINE_SIZE - 1))
c906108c
SS
112#define XFORM(x) ((x) & LINE_SIZE_MASK)
113#define MASK(x) ((x) & ~LINE_SIZE_MASK)
114
115
c5aa993b
JM
116#define ENTRY_BAD 0 /* data at this byte is wrong */
117#define ENTRY_DIRTY 1 /* data at this byte needs to be written back */
118#define ENTRY_OK 2 /* data at this byte is same as in memory */
c906108c
SS
119
120
121struct dcache_block
c5aa993b
JM
122 {
123 struct dcache_block *p; /* next in list */
124 CORE_ADDR addr; /* Address for which data is recorded. */
125 char data[LINE_SIZE]; /* bytes at given address */
126 unsigned char state[LINE_SIZE]; /* what state the data is in */
c906108c 127
c5aa993b
JM
128 /* whether anything in state is dirty - used to speed up the
129 dirty scan. */
130 int anydirty;
c906108c 131
c5aa993b
JM
132 int refs;
133 };
c906108c
SS
134
135
29e57380
C
136/* FIXME: dcache_struct used to have a cache_has_stuff field that was
137 used to record whether the cache had been accessed. This was used
138 to invalidate the cache whenever caching was (re-)enabled (if the
139 cache was disabled and later re-enabled, it could contain stale
140 data). This was not needed because the cache is write through and
141 the code that enables, disables, and deletes memory region all
142 invalidate the cache.
143
144 This is overkill, since it also invalidates cache lines from
145 unrelated regions. One way this could be addressed by adding a
146 new function that takes an address and a length and invalidates
147 only those cache lines that match. */
148
c5aa993b
JM
149struct dcache_struct
150 {
c5aa993b
JM
151 /* free list */
152 struct dcache_block *free_head;
153 struct dcache_block *free_tail;
c906108c 154
c5aa993b
JM
155 /* in use list */
156 struct dcache_block *valid_head;
157 struct dcache_block *valid_tail;
c906108c 158
c5aa993b
JM
159 /* The cache itself. */
160 struct dcache_block *the_cache;
c5aa993b 161 };
c906108c 162
8edbea78 163static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
c906108c 164
8edbea78 165static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
c906108c 166
8edbea78 167static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
c906108c 168
8edbea78 169static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
c906108c 170
8edbea78 171static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
c906108c 172
8edbea78
C
173static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
174
175static int dcache_writeback (DCACHE *dcache);
c906108c 176
a14ed312 177static void dcache_info (char *exp, int tty);
c906108c 178
a14ed312 179void _initialize_dcache (void);
c906108c 180
917317f4 181static int dcache_enabled_p = 0;
c906108c 182
c5aa993b 183DCACHE *last_cache; /* Used by info dcache */
c906108c
SS
184
185
186/* Free all the data cache blocks, thus discarding all cached data. */
187
188void
4930751a 189dcache_invalidate (DCACHE *dcache)
c906108c
SS
190{
191 int i;
192 dcache->valid_head = 0;
193 dcache->valid_tail = 0;
194
195 dcache->free_head = 0;
196 dcache->free_tail = 0;
197
198 for (i = 0; i < DCACHE_SIZE; i++)
199 {
200 struct dcache_block *db = dcache->the_cache + i;
201
202 if (!dcache->free_head)
203 dcache->free_head = db;
204 else
205 dcache->free_tail->p = db;
206 dcache->free_tail = db;
207 db->p = 0;
208 }
209
c906108c
SS
210 return;
211}
212
213/* If addr is present in the dcache, return the address of the block
214 containing it. */
215
216static struct dcache_block *
fba45db2 217dcache_hit (DCACHE *dcache, CORE_ADDR addr)
c906108c
SS
218{
219 register struct dcache_block *db;
220
221 /* Search all cache blocks for one that is at this address. */
222 db = dcache->valid_head;
223
224 while (db)
225 {
c5aa993b 226 if (MASK (addr) == db->addr)
c906108c
SS
227 {
228 db->refs++;
229 return db;
230 }
231 db = db->p;
232 }
233
234 return NULL;
235}
236
237/* Make sure that anything in this line which needs to
238 be written is. */
239
240static int
fba45db2 241dcache_write_line (DCACHE *dcache, register struct dcache_block *db)
c906108c 242{
29e57380
C
243 CORE_ADDR memaddr;
244 char *myaddr;
245 int len;
246 int res;
247 int reg_len;
248 struct mem_region *region;
8edbea78 249
29e57380
C
250 if (!db->anydirty)
251 return 1;
252
253 len = LINE_SIZE;
254 memaddr = db->addr;
255 myaddr = db->data;
256
257 while (len > 0)
c906108c 258 {
29e57380
C
259 int s;
260 int e;
261 int dirty_len;
262
263 region = lookup_mem_region(memaddr);
264 if (memaddr + len < region->hi)
265 reg_len = len;
266 else
267 reg_len = region->hi - memaddr;
268
269 if (!region->attrib.cache || region->attrib.mode == MEM_RO)
270 {
271 memaddr += reg_len;
272 myaddr += reg_len;
273 len -= reg_len;
274 continue;
275 }
276
277 while (reg_len > 0)
c906108c 278 {
29e57380
C
279 s = XFORM(memaddr);
280 do {
281 if (db->state[s] == ENTRY_DIRTY)
282 break;
283 s++;
284 reg_len--;
285 } while (reg_len > 0);
286
287 e = s;
288 do {
289 if (db->state[e] != ENTRY_DIRTY)
290 break;
291 e++;
292 reg_len--;
293 } while (reg_len > 0);
294
295 dirty_len = e - s;
296 while (dirty_len > 0)
c906108c 297 {
29e57380
C
298 res = do_xfer_memory(memaddr, myaddr, dirty_len, 1,
299 &region->attrib);
300 if (res <= 0)
301 return 0;
302
f4d650ec 303 memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
29e57380
C
304 memaddr += res;
305 myaddr += res;
306 dirty_len -= res;
c906108c
SS
307 }
308 }
c906108c 309 }
29e57380
C
310
311 db->anydirty = 0;
c906108c
SS
312 return 1;
313}
314
8edbea78
C
315/* Read cache line */
316static int
317dcache_read_line (DCACHE *dcache, struct dcache_block *db)
318{
319 CORE_ADDR memaddr;
320 char *myaddr;
321 int len;
322 int res;
29e57380
C
323 int reg_len;
324 struct mem_region *region;
8edbea78
C
325
326 /* If there are any dirty bytes in the line, it must be written
327 before a new line can be read */
328 if (db->anydirty)
329 {
330 if (!dcache_write_line (dcache, db))
331 return 0;
332 }
333
334 len = LINE_SIZE;
335 memaddr = db->addr;
336 myaddr = db->data;
337
338 while (len > 0)
339 {
29e57380
C
340 region = lookup_mem_region(memaddr);
341 if (memaddr + len < region->hi)
342 reg_len = len;
343 else
344 reg_len = region->hi - memaddr;
345
346 if (!region->attrib.cache || region->attrib.mode == MEM_WO)
347 {
348 memaddr += reg_len;
349 myaddr += reg_len;
350 len -= reg_len;
351 continue;
352 }
353
354 while (reg_len > 0)
355 {
356 res = do_xfer_memory (memaddr, myaddr, reg_len, 0,
357 &region->attrib);
358 if (res <= 0)
359 return 0;
8edbea78 360
29e57380
C
361 memaddr += res;
362 myaddr += res;
363 len -= res;
364 reg_len -= res;
365 }
8edbea78
C
366 }
367
368 memset (db->state, ENTRY_OK, sizeof (db->data));
369 db->anydirty = 0;
370
371 return 1;
372}
373
c906108c 374/* Get a free cache block, put or keep it on the valid list,
f1d7622b 375 and return its address. */
c906108c
SS
376
377static struct dcache_block *
f1d7622b 378dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
c906108c
SS
379{
380 register struct dcache_block *db;
381
c906108c
SS
382 /* Take something from the free list */
383 db = dcache->free_head;
384 if (db)
385 {
386 dcache->free_head = db->p;
387 }
388 else
389 {
390 /* Nothing left on free list, so grab one from the valid list */
391 db = dcache->valid_head;
c906108c 392
8edbea78
C
393 if (!dcache_write_line (dcache, db))
394 return NULL;
395
396 dcache->valid_head = db->p;
c906108c
SS
397 }
398
f1d7622b
C
399 db->addr = MASK(addr);
400 db->refs = 0;
401 db->anydirty = 0;
402 memset (db->state, ENTRY_BAD, sizeof (db->data));
403
c906108c
SS
404 /* append this line to end of valid list */
405 if (!dcache->valid_head)
406 dcache->valid_head = db;
407 else
408 dcache->valid_tail->p = db;
409 dcache->valid_tail = db;
410 db->p = 0;
411
412 return db;
413}
414
29e57380 415/* Writeback any dirty lines. */
c906108c 416static int
fba45db2 417dcache_writeback (DCACHE *dcache)
c906108c
SS
418{
419 struct dcache_block *db;
420
421 db = dcache->valid_head;
422
423 while (db)
424 {
425 if (!dcache_write_line (dcache, db))
426 return 0;
427 db = db->p;
428 }
429 return 1;
430}
431
432
8edbea78
C
433/* Using the data cache DCACHE return the contents of the byte at
434 address ADDR in the remote machine.
435
436 Returns 0 on error. */
437
438static int
439dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
440{
441 register struct dcache_block *db = dcache_hit (dcache, addr);
442
443 if (!db)
444 {
445 db = dcache_alloc (dcache, addr);
446 if (!db)
447 return 0;
448 }
449
450 if (db->state[XFORM (addr)] == ENTRY_BAD)
451 {
452 if (!dcache_read_line(dcache, db))
453 return 0;
454 }
455
456 *ptr = db->data[XFORM (addr)];
457 return 1;
458}
459
460
c906108c
SS
461/* Write the byte at PTR into ADDR in the data cache.
462 Return zero on write error.
463 */
464
465static int
fba45db2 466dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
c906108c
SS
467{
468 register struct dcache_block *db = dcache_hit (dcache, addr);
469
470 if (!db)
471 {
f1d7622b 472 db = dcache_alloc (dcache, addr);
8edbea78
C
473 if (!db)
474 return 0;
c906108c
SS
475 }
476
477 db->data[XFORM (addr)] = *ptr;
478 db->state[XFORM (addr)] = ENTRY_DIRTY;
479 db->anydirty = 1;
480 return 1;
481}
482
c906108c
SS
483/* Initialize the data cache. */
484DCACHE *
4930751a 485dcache_init (void)
c906108c
SS
486{
487 int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
488 DCACHE *dcache;
489
490 dcache = (DCACHE *) xmalloc (sizeof (*dcache));
c906108c
SS
491
492 dcache->the_cache = (struct dcache_block *) xmalloc (csize);
493 memset (dcache->the_cache, 0, csize);
494
4930751a 495 dcache_invalidate (dcache);
c906108c
SS
496
497 last_cache = dcache;
498 return dcache;
499}
500
e99586d5
C
501/* Free a data cache */
502void
503dcache_free (DCACHE *dcache)
504{
505 if (last_cache == dcache)
506 last_cache = NULL;
507
b8c9b27d
KB
508 xfree (dcache->the_cache);
509 xfree (dcache);
e99586d5
C
510}
511
c906108c
SS
512/* Read or write LEN bytes from inferior memory at MEMADDR, transferring
513 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
514 nonzero.
515
516 Returns length of data written or read; 0 for error.
517
518 This routine is indended to be called by remote_xfer_ functions. */
519
520int
fba45db2
KB
521dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
522 int should_write)
c906108c
SS
523{
524 int i;
29e57380
C
525 int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr);
526 xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
c906108c 527
29e57380 528 for (i = 0; i < len; i++)
c906108c 529 {
29e57380
C
530 if (!xfunc (dcache, memaddr + i, myaddr + i))
531 return 0;
c906108c 532 }
c906108c 533
29e57380
C
534 /* FIXME: There may be some benefit from moving the cache writeback
535 to a higher layer, as it could occur after a sequence of smaller
536 writes have been completed (as when a stack frame is constructed
537 for an inferior function call). Note that only moving it up one
538 level to target_xfer_memory() (also target_xfer_memory_partial())
539 is not sufficent, since we want to coalesce memory transfers that
540 are "logically" connected but not actually a single call to one
541 of the memory transfer functions. */
542
543 if (should_write)
544 dcache_writeback (dcache);
545
c906108c
SS
546 return len;
547}
548
c5aa993b 549static void
fba45db2 550dcache_info (char *exp, int tty)
c906108c
SS
551{
552 struct dcache_block *p;
553
29e57380 554 printf_filtered ("Dcache line width %d, depth %d\n",
c906108c
SS
555 LINE_SIZE, DCACHE_SIZE);
556
5e2039ea 557 if (last_cache)
c906108c 558 {
5e2039ea
C
559 printf_filtered ("Cache state:\n");
560
561 for (p = last_cache->valid_head; p; p = p->p)
562 {
563 int j;
564 printf_filtered ("Line at %s, referenced %d times\n",
565 paddr (p->addr), p->refs);
c906108c 566
5e2039ea
C
567 for (j = 0; j < LINE_SIZE; j++)
568 printf_filtered ("%02x", p->data[j] & 0xFF);
569 printf_filtered ("\n");
c906108c 570
5e2039ea 571 for (j = 0; j < LINE_SIZE; j++)
8edbea78 572 printf_filtered ("%2x", p->state[j]);
5e2039ea
C
573 printf_filtered ("\n");
574 }
c906108c
SS
575 }
576}
577
578void
fba45db2 579_initialize_dcache (void)
c906108c
SS
580{
581 add_show_from_set
582 (add_set_cmd ("remotecache", class_support, var_boolean,
917317f4 583 (char *) &dcache_enabled_p,
c906108c
SS
584 "\
585Set cache use for remote targets.\n\
586When on, use data caching for remote targets. For many remote targets\n\
587this option can offer better throughput for reading target memory.\n\
588Unfortunately, gdb does not currently know anything about volatile\n\
589registers and thus data caching will produce incorrect results with\n\
917317f4 590volatile registers are in use. By default, this option is off.",
c906108c
SS
591 &setlist),
592 &showlist);
593
594 add_info ("dcache", dcache_info,
595 "Print information on the dcache performance.");
596
597}
This page took 0.172868 seconds and 4 git commands to generate.