* MAINTAINERS: Remove self from specific maintenance domains
[deliverable/binutils-gdb.git] / gdb / dcache.c
CommitLineData
4930751a 1/* Caching code.
b6ba6518
KB
2 Copyright 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
c906108c
SS
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
c5aa993b
JM
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "dcache.h"
24#include "gdbcmd.h"
25#include "gdb_string.h"
26#include "gdbcore.h"
4930751a 27#include "target.h"
c906108c 28
29e57380
C
29/* The data cache could lead to incorrect results because it doesn't
30 know about volatile variables, thus making it impossible to debug
31 functions which use memory mapped I/O devices. Set the nocache
32 memory region attribute in those cases.
c906108c
SS
33
34 In general the dcache speeds up performance, some speed improvement
35 comes from the actual caching mechanism, but the major gain is in
36 the reduction of the remote protocol overhead; instead of reading
37 or writing a large area of memory in 4 byte requests, the cache
38 bundles up the requests into 32 byte (actually LINE_SIZE) chunks.
39 Reducing the overhead to an eighth of what it was. This is very
40 obvious when displaying a large amount of data,
41
42 eg, x/200x 0
43
44 caching | no yes
45 ----------------------------
46 first time | 4 sec 2 sec improvement due to chunking
47 second time | 4 sec 0 sec improvement due to caching
48
49 The cache structure is unusual, we keep a number of cache blocks
50 (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory.
51 Within each line we remember the address of the line (always a
52 multiple of the LINE_SIZE) and a vector of bytes over the range.
53 There's another vector which contains the state of the bytes.
54
55 ENTRY_BAD means that the byte is just plain wrong, and has no
56 correspondence with anything else (as it would when the cache is
57 turned on, but nothing has been done to it.
58
59 ENTRY_DIRTY means that the byte has some data in it which should be
60 written out to the remote target one day, but contains correct
29e57380
C
61 data.
62
63 ENTRY_OK means that the data is the same in the cache as it is in
64 remote memory.
c906108c
SS
65
66
67 The ENTRY_DIRTY state is necessary because GDB likes to write large
68 lumps of memory in small bits. If the caching mechanism didn't
69 maintain the DIRTY information, then something like a two byte
70 write would mean that the entire cache line would have to be read,
71 the two bytes modified and then written out again. The alternative
72 would be to not read in the cache line in the first place, and just
73 write the two bytes directly into target memory. The trouble with
74 that is that it really nails performance, because of the remote
75 protocol overhead. This way, all those little writes are bundled
76 up into an entire cache line write in one go, without having to
77 read the cache line in the first place.
29e57380 78 */
c906108c 79
29e57380 80/* NOTE: Interaction of dcache and memory region attributes
c906108c 81
29e57380
C
82 As there is no requirement that memory region attributes be aligned
83 to or be a multiple of the dcache page size, dcache_read_line() and
84 dcache_write_line() must break up the page by memory region. If a
85 chunk does not have the cache attribute set, an invalid memory type
86 is set, etc., then the chunk is skipped. Those chunks are handled
87 in target_xfer_memory() (or target_xfer_memory_partial()).
c906108c 88
29e57380
C
89 This doesn't occur very often. The most common occurance is when
90 the last bit of the .text segment and the first bit of the .data
91 segment fall within the same dcache page with a ro/cacheable memory
92 region defined for the .text segment and a rw/non-cacheable memory
93 region defined for the .data segment. */
c906108c
SS
94
95/* This value regulates the number of cache blocks stored.
96 Smaller values reduce the time spent searching for a cache
97 line, and reduce memory requirements, but increase the risk
98 of a line not being in memory */
99
c5aa993b 100#define DCACHE_SIZE 64
c906108c
SS
101
102/* This value regulates the size of a cache line. Smaller values
103 reduce the time taken to read a single byte, but reduce overall
104 throughput. */
105
c5aa993b 106#define LINE_SIZE_POWER (5)
c906108c
SS
107#define LINE_SIZE (1 << LINE_SIZE_POWER)
108
109/* Each cache block holds LINE_SIZE bytes of data
110 starting at a multiple-of-LINE_SIZE address. */
111
c5aa993b 112#define LINE_SIZE_MASK ((LINE_SIZE - 1))
c906108c
SS
113#define XFORM(x) ((x) & LINE_SIZE_MASK)
114#define MASK(x) ((x) & ~LINE_SIZE_MASK)
115
116
c5aa993b
JM
117#define ENTRY_BAD 0 /* data at this byte is wrong */
118#define ENTRY_DIRTY 1 /* data at this byte needs to be written back */
119#define ENTRY_OK 2 /* data at this byte is same as in memory */
c906108c
SS
120
121
122struct dcache_block
c5aa993b
JM
123 {
124 struct dcache_block *p; /* next in list */
125 CORE_ADDR addr; /* Address for which data is recorded. */
126 char data[LINE_SIZE]; /* bytes at given address */
127 unsigned char state[LINE_SIZE]; /* what state the data is in */
c906108c 128
c5aa993b
JM
129 /* whether anything in state is dirty - used to speed up the
130 dirty scan. */
131 int anydirty;
c906108c 132
c5aa993b
JM
133 int refs;
134 };
c906108c
SS
135
136
29e57380
C
137/* FIXME: dcache_struct used to have a cache_has_stuff field that was
138 used to record whether the cache had been accessed. This was used
139 to invalidate the cache whenever caching was (re-)enabled (if the
140 cache was disabled and later re-enabled, it could contain stale
141 data). This was not needed because the cache is write through and
142 the code that enables, disables, and deletes memory region all
143 invalidate the cache.
144
145 This is overkill, since it also invalidates cache lines from
146 unrelated regions. One way this could be addressed by adding a
147 new function that takes an address and a length and invalidates
148 only those cache lines that match. */
149
c5aa993b
JM
150struct dcache_struct
151 {
c5aa993b
JM
152 /* free list */
153 struct dcache_block *free_head;
154 struct dcache_block *free_tail;
c906108c 155
c5aa993b
JM
156 /* in use list */
157 struct dcache_block *valid_head;
158 struct dcache_block *valid_tail;
c906108c 159
c5aa993b
JM
160 /* The cache itself. */
161 struct dcache_block *the_cache;
c5aa993b 162 };
c906108c 163
8edbea78 164static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
c906108c 165
8edbea78 166static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr);
c906108c 167
8edbea78 168static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr);
c906108c 169
8edbea78 170static int dcache_write_line (DCACHE *dcache, struct dcache_block *db);
c906108c 171
8edbea78 172static int dcache_read_line (DCACHE *dcache, struct dcache_block *db);
c906108c 173
8edbea78
C
174static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr);
175
176static int dcache_writeback (DCACHE *dcache);
c906108c 177
a14ed312 178static void dcache_info (char *exp, int tty);
c906108c 179
a14ed312 180void _initialize_dcache (void);
c906108c 181
917317f4 182static int dcache_enabled_p = 0;
c906108c 183
c5aa993b 184DCACHE *last_cache; /* Used by info dcache */
c906108c
SS
185
186
187/* Free all the data cache blocks, thus discarding all cached data. */
188
189void
4930751a 190dcache_invalidate (DCACHE *dcache)
c906108c
SS
191{
192 int i;
193 dcache->valid_head = 0;
194 dcache->valid_tail = 0;
195
196 dcache->free_head = 0;
197 dcache->free_tail = 0;
198
199 for (i = 0; i < DCACHE_SIZE; i++)
200 {
201 struct dcache_block *db = dcache->the_cache + i;
202
203 if (!dcache->free_head)
204 dcache->free_head = db;
205 else
206 dcache->free_tail->p = db;
207 dcache->free_tail = db;
208 db->p = 0;
209 }
210
c906108c
SS
211 return;
212}
213
214/* If addr is present in the dcache, return the address of the block
215 containing it. */
216
217static struct dcache_block *
fba45db2 218dcache_hit (DCACHE *dcache, CORE_ADDR addr)
c906108c
SS
219{
220 register struct dcache_block *db;
221
222 /* Search all cache blocks for one that is at this address. */
223 db = dcache->valid_head;
224
225 while (db)
226 {
c5aa993b 227 if (MASK (addr) == db->addr)
c906108c
SS
228 {
229 db->refs++;
230 return db;
231 }
232 db = db->p;
233 }
234
235 return NULL;
236}
237
238/* Make sure that anything in this line which needs to
239 be written is. */
240
241static int
fba45db2 242dcache_write_line (DCACHE *dcache, register struct dcache_block *db)
c906108c 243{
29e57380
C
244 CORE_ADDR memaddr;
245 char *myaddr;
246 int len;
247 int res;
248 int reg_len;
249 struct mem_region *region;
8edbea78 250
29e57380
C
251 if (!db->anydirty)
252 return 1;
253
254 len = LINE_SIZE;
255 memaddr = db->addr;
256 myaddr = db->data;
257
258 while (len > 0)
c906108c 259 {
29e57380
C
260 int s;
261 int e;
262 int dirty_len;
263
264 region = lookup_mem_region(memaddr);
265 if (memaddr + len < region->hi)
266 reg_len = len;
267 else
268 reg_len = region->hi - memaddr;
269
270 if (!region->attrib.cache || region->attrib.mode == MEM_RO)
271 {
272 memaddr += reg_len;
273 myaddr += reg_len;
274 len -= reg_len;
275 continue;
276 }
277
278 while (reg_len > 0)
c906108c 279 {
29e57380
C
280 s = XFORM(memaddr);
281 do {
282 if (db->state[s] == ENTRY_DIRTY)
283 break;
284 s++;
285 reg_len--;
286 } while (reg_len > 0);
287
288 e = s;
289 do {
290 if (db->state[e] != ENTRY_DIRTY)
291 break;
292 e++;
293 reg_len--;
294 } while (reg_len > 0);
295
296 dirty_len = e - s;
297 while (dirty_len > 0)
c906108c 298 {
29e57380
C
299 res = do_xfer_memory(memaddr, myaddr, dirty_len, 1,
300 &region->attrib);
301 if (res <= 0)
302 return 0;
303
f4d650ec 304 memset (&db->state[XFORM(memaddr)], ENTRY_OK, res);
29e57380
C
305 memaddr += res;
306 myaddr += res;
307 dirty_len -= res;
c906108c
SS
308 }
309 }
c906108c 310 }
29e57380
C
311
312 db->anydirty = 0;
c906108c
SS
313 return 1;
314}
315
8edbea78
C
316/* Read cache line */
317static int
318dcache_read_line (DCACHE *dcache, struct dcache_block *db)
319{
320 CORE_ADDR memaddr;
321 char *myaddr;
322 int len;
323 int res;
29e57380
C
324 int reg_len;
325 struct mem_region *region;
8edbea78
C
326
327 /* If there are any dirty bytes in the line, it must be written
328 before a new line can be read */
329 if (db->anydirty)
330 {
331 if (!dcache_write_line (dcache, db))
332 return 0;
333 }
334
335 len = LINE_SIZE;
336 memaddr = db->addr;
337 myaddr = db->data;
338
339 while (len > 0)
340 {
29e57380
C
341 region = lookup_mem_region(memaddr);
342 if (memaddr + len < region->hi)
343 reg_len = len;
344 else
345 reg_len = region->hi - memaddr;
346
347 if (!region->attrib.cache || region->attrib.mode == MEM_WO)
348 {
349 memaddr += reg_len;
350 myaddr += reg_len;
351 len -= reg_len;
352 continue;
353 }
354
355 while (reg_len > 0)
356 {
357 res = do_xfer_memory (memaddr, myaddr, reg_len, 0,
358 &region->attrib);
359 if (res <= 0)
360 return 0;
8edbea78 361
29e57380
C
362 memaddr += res;
363 myaddr += res;
364 len -= res;
365 reg_len -= res;
366 }
8edbea78
C
367 }
368
369 memset (db->state, ENTRY_OK, sizeof (db->data));
370 db->anydirty = 0;
371
372 return 1;
373}
374
c906108c 375/* Get a free cache block, put or keep it on the valid list,
f1d7622b 376 and return its address. */
c906108c
SS
377
378static struct dcache_block *
f1d7622b 379dcache_alloc (DCACHE *dcache, CORE_ADDR addr)
c906108c
SS
380{
381 register struct dcache_block *db;
382
c906108c
SS
383 /* Take something from the free list */
384 db = dcache->free_head;
385 if (db)
386 {
387 dcache->free_head = db->p;
388 }
389 else
390 {
391 /* Nothing left on free list, so grab one from the valid list */
392 db = dcache->valid_head;
c906108c 393
8edbea78
C
394 if (!dcache_write_line (dcache, db))
395 return NULL;
396
397 dcache->valid_head = db->p;
c906108c
SS
398 }
399
f1d7622b
C
400 db->addr = MASK(addr);
401 db->refs = 0;
402 db->anydirty = 0;
403 memset (db->state, ENTRY_BAD, sizeof (db->data));
404
c906108c
SS
405 /* append this line to end of valid list */
406 if (!dcache->valid_head)
407 dcache->valid_head = db;
408 else
409 dcache->valid_tail->p = db;
410 dcache->valid_tail = db;
411 db->p = 0;
412
413 return db;
414}
415
29e57380 416/* Writeback any dirty lines. */
c906108c 417static int
fba45db2 418dcache_writeback (DCACHE *dcache)
c906108c
SS
419{
420 struct dcache_block *db;
421
422 db = dcache->valid_head;
423
424 while (db)
425 {
426 if (!dcache_write_line (dcache, db))
427 return 0;
428 db = db->p;
429 }
430 return 1;
431}
432
433
8edbea78
C
434/* Using the data cache DCACHE return the contents of the byte at
435 address ADDR in the remote machine.
436
437 Returns 0 on error. */
438
439static int
440dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
441{
442 register struct dcache_block *db = dcache_hit (dcache, addr);
443
444 if (!db)
445 {
446 db = dcache_alloc (dcache, addr);
447 if (!db)
448 return 0;
449 }
450
451 if (db->state[XFORM (addr)] == ENTRY_BAD)
452 {
453 if (!dcache_read_line(dcache, db))
454 return 0;
455 }
456
457 *ptr = db->data[XFORM (addr)];
458 return 1;
459}
460
461
c906108c
SS
462/* Write the byte at PTR into ADDR in the data cache.
463 Return zero on write error.
464 */
465
466static int
fba45db2 467dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr)
c906108c
SS
468{
469 register struct dcache_block *db = dcache_hit (dcache, addr);
470
471 if (!db)
472 {
f1d7622b 473 db = dcache_alloc (dcache, addr);
8edbea78
C
474 if (!db)
475 return 0;
c906108c
SS
476 }
477
478 db->data[XFORM (addr)] = *ptr;
479 db->state[XFORM (addr)] = ENTRY_DIRTY;
480 db->anydirty = 1;
481 return 1;
482}
483
c906108c
SS
484/* Initialize the data cache. */
485DCACHE *
4930751a 486dcache_init (void)
c906108c
SS
487{
488 int csize = sizeof (struct dcache_block) * DCACHE_SIZE;
489 DCACHE *dcache;
490
491 dcache = (DCACHE *) xmalloc (sizeof (*dcache));
c906108c
SS
492
493 dcache->the_cache = (struct dcache_block *) xmalloc (csize);
494 memset (dcache->the_cache, 0, csize);
495
4930751a 496 dcache_invalidate (dcache);
c906108c
SS
497
498 last_cache = dcache;
499 return dcache;
500}
501
e99586d5
C
502/* Free a data cache */
503void
504dcache_free (DCACHE *dcache)
505{
506 if (last_cache == dcache)
507 last_cache = NULL;
508
b8c9b27d
KB
509 xfree (dcache->the_cache);
510 xfree (dcache);
e99586d5
C
511}
512
c906108c
SS
513/* Read or write LEN bytes from inferior memory at MEMADDR, transferring
514 to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
515 nonzero.
516
517 Returns length of data written or read; 0 for error.
518
519 This routine is indended to be called by remote_xfer_ functions. */
520
521int
fba45db2
KB
522dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len,
523 int should_write)
c906108c
SS
524{
525 int i;
29e57380
C
526 int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr);
527 xfunc = should_write ? dcache_poke_byte : dcache_peek_byte;
c906108c 528
29e57380 529 for (i = 0; i < len; i++)
c906108c 530 {
29e57380
C
531 if (!xfunc (dcache, memaddr + i, myaddr + i))
532 return 0;
c906108c 533 }
c906108c 534
29e57380
C
535 /* FIXME: There may be some benefit from moving the cache writeback
536 to a higher layer, as it could occur after a sequence of smaller
537 writes have been completed (as when a stack frame is constructed
538 for an inferior function call). Note that only moving it up one
539 level to target_xfer_memory() (also target_xfer_memory_partial())
540 is not sufficent, since we want to coalesce memory transfers that
541 are "logically" connected but not actually a single call to one
542 of the memory transfer functions. */
543
544 if (should_write)
545 dcache_writeback (dcache);
546
c906108c
SS
547 return len;
548}
549
c5aa993b 550static void
fba45db2 551dcache_info (char *exp, int tty)
c906108c
SS
552{
553 struct dcache_block *p;
554
29e57380 555 printf_filtered ("Dcache line width %d, depth %d\n",
c906108c
SS
556 LINE_SIZE, DCACHE_SIZE);
557
5e2039ea 558 if (last_cache)
c906108c 559 {
5e2039ea
C
560 printf_filtered ("Cache state:\n");
561
562 for (p = last_cache->valid_head; p; p = p->p)
563 {
564 int j;
565 printf_filtered ("Line at %s, referenced %d times\n",
566 paddr (p->addr), p->refs);
c906108c 567
5e2039ea
C
568 for (j = 0; j < LINE_SIZE; j++)
569 printf_filtered ("%02x", p->data[j] & 0xFF);
570 printf_filtered ("\n");
c906108c 571
5e2039ea 572 for (j = 0; j < LINE_SIZE; j++)
8edbea78 573 printf_filtered ("%2x", p->state[j]);
5e2039ea
C
574 printf_filtered ("\n");
575 }
c906108c
SS
576 }
577}
578
579void
fba45db2 580_initialize_dcache (void)
c906108c
SS
581{
582 add_show_from_set
583 (add_set_cmd ("remotecache", class_support, var_boolean,
917317f4 584 (char *) &dcache_enabled_p,
c906108c
SS
585 "\
586Set cache use for remote targets.\n\
587When on, use data caching for remote targets. For many remote targets\n\
588this option can offer better throughput for reading target memory.\n\
589Unfortunately, gdb does not currently know anything about volatile\n\
590registers and thus data caching will produce incorrect results with\n\
917317f4 591volatile registers are in use. By default, this option is off.",
c906108c
SS
592 &setlist),
593 &showlist);
594
595 add_info ("dcache", dcache_info,
596 "Print information on the dcache performance.");
597
598}
This page took 0.107725 seconds and 4 git commands to generate.