Commit | Line | Data |
---|---|---|
69517000 AC |
1 | /* Caching code for GDB, the GNU debugger. |
2 | ||
3 | Copyright 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2003 Free | |
4 | Software Foundation, Inc. | |
c906108c SS |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
c5aa993b JM |
20 | Foundation, Inc., 59 Temple Place - Suite 330, |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "dcache.h" | |
25 | #include "gdbcmd.h" | |
26 | #include "gdb_string.h" | |
27 | #include "gdbcore.h" | |
4930751a | 28 | #include "target.h" |
c906108c | 29 | |
29e57380 C |
30 | /* The data cache could lead to incorrect results because it doesn't |
31 | know about volatile variables, thus making it impossible to debug | |
32 | functions which use memory mapped I/O devices. Set the nocache | |
33 | memory region attribute in those cases. | |
c906108c SS |
34 | |
35 | In general the dcache speeds up performance, some speed improvement | |
36 | comes from the actual caching mechanism, but the major gain is in | |
37 | the reduction of the remote protocol overhead; instead of reading | |
38 | or writing a large area of memory in 4 byte requests, the cache | |
39 | bundles up the requests into 32 byte (actually LINE_SIZE) chunks. | |
40 | Reducing the overhead to an eighth of what it was. This is very | |
41 | obvious when displaying a large amount of data, | |
42 | ||
43 | eg, x/200x 0 | |
44 | ||
45 | caching | no yes | |
46 | ---------------------------- | |
47 | first time | 4 sec 2 sec improvement due to chunking | |
48 | second time | 4 sec 0 sec improvement due to caching | |
49 | ||
50 | The cache structure is unusual, we keep a number of cache blocks | |
51 | (DCACHE_SIZE) and each one caches a LINE_SIZEed area of memory. | |
52 | Within each line we remember the address of the line (always a | |
53 | multiple of the LINE_SIZE) and a vector of bytes over the range. | |
54 | There's another vector which contains the state of the bytes. | |
55 | ||
56 | ENTRY_BAD means that the byte is just plain wrong, and has no | |
57 | correspondence with anything else (as it would when the cache is | |
58 | turned on, but nothing has been done to it. | |
59 | ||
60 | ENTRY_DIRTY means that the byte has some data in it which should be | |
61 | written out to the remote target one day, but contains correct | |
29e57380 C |
62 | data. |
63 | ||
64 | ENTRY_OK means that the data is the same in the cache as it is in | |
65 | remote memory. | |
c906108c SS |
66 | |
67 | ||
68 | The ENTRY_DIRTY state is necessary because GDB likes to write large | |
69 | lumps of memory in small bits. If the caching mechanism didn't | |
70 | maintain the DIRTY information, then something like a two byte | |
71 | write would mean that the entire cache line would have to be read, | |
72 | the two bytes modified and then written out again. The alternative | |
73 | would be to not read in the cache line in the first place, and just | |
74 | write the two bytes directly into target memory. The trouble with | |
75 | that is that it really nails performance, because of the remote | |
76 | protocol overhead. This way, all those little writes are bundled | |
77 | up into an entire cache line write in one go, without having to | |
78 | read the cache line in the first place. | |
29e57380 | 79 | */ |
c906108c | 80 | |
29e57380 | 81 | /* NOTE: Interaction of dcache and memory region attributes |
c906108c | 82 | |
29e57380 C |
83 | As there is no requirement that memory region attributes be aligned |
84 | to or be a multiple of the dcache page size, dcache_read_line() and | |
85 | dcache_write_line() must break up the page by memory region. If a | |
86 | chunk does not have the cache attribute set, an invalid memory type | |
87 | is set, etc., then the chunk is skipped. Those chunks are handled | |
88 | in target_xfer_memory() (or target_xfer_memory_partial()). | |
c906108c | 89 | |
29e57380 C |
90 | This doesn't occur very often. The most common occurance is when |
91 | the last bit of the .text segment and the first bit of the .data | |
92 | segment fall within the same dcache page with a ro/cacheable memory | |
93 | region defined for the .text segment and a rw/non-cacheable memory | |
94 | region defined for the .data segment. */ | |
c906108c SS |
95 | |
96 | /* This value regulates the number of cache blocks stored. | |
97 | Smaller values reduce the time spent searching for a cache | |
98 | line, and reduce memory requirements, but increase the risk | |
99 | of a line not being in memory */ | |
100 | ||
c5aa993b | 101 | #define DCACHE_SIZE 64 |
c906108c SS |
102 | |
103 | /* This value regulates the size of a cache line. Smaller values | |
104 | reduce the time taken to read a single byte, but reduce overall | |
105 | throughput. */ | |
106 | ||
c5aa993b | 107 | #define LINE_SIZE_POWER (5) |
c906108c SS |
108 | #define LINE_SIZE (1 << LINE_SIZE_POWER) |
109 | ||
110 | /* Each cache block holds LINE_SIZE bytes of data | |
111 | starting at a multiple-of-LINE_SIZE address. */ | |
112 | ||
c5aa993b | 113 | #define LINE_SIZE_MASK ((LINE_SIZE - 1)) |
c906108c SS |
114 | #define XFORM(x) ((x) & LINE_SIZE_MASK) |
115 | #define MASK(x) ((x) & ~LINE_SIZE_MASK) | |
116 | ||
117 | ||
c5aa993b JM |
118 | #define ENTRY_BAD 0 /* data at this byte is wrong */ |
119 | #define ENTRY_DIRTY 1 /* data at this byte needs to be written back */ | |
120 | #define ENTRY_OK 2 /* data at this byte is same as in memory */ | |
c906108c SS |
121 | |
122 | ||
123 | struct dcache_block | |
c5aa993b JM |
124 | { |
125 | struct dcache_block *p; /* next in list */ | |
126 | CORE_ADDR addr; /* Address for which data is recorded. */ | |
127 | char data[LINE_SIZE]; /* bytes at given address */ | |
128 | unsigned char state[LINE_SIZE]; /* what state the data is in */ | |
c906108c | 129 | |
c5aa993b JM |
130 | /* whether anything in state is dirty - used to speed up the |
131 | dirty scan. */ | |
132 | int anydirty; | |
c906108c | 133 | |
c5aa993b JM |
134 | int refs; |
135 | }; | |
c906108c SS |
136 | |
137 | ||
29e57380 C |
138 | /* FIXME: dcache_struct used to have a cache_has_stuff field that was |
139 | used to record whether the cache had been accessed. This was used | |
140 | to invalidate the cache whenever caching was (re-)enabled (if the | |
141 | cache was disabled and later re-enabled, it could contain stale | |
142 | data). This was not needed because the cache is write through and | |
143 | the code that enables, disables, and deletes memory region all | |
144 | invalidate the cache. | |
145 | ||
146 | This is overkill, since it also invalidates cache lines from | |
147 | unrelated regions. One way this could be addressed by adding a | |
148 | new function that takes an address and a length and invalidates | |
149 | only those cache lines that match. */ | |
150 | ||
c5aa993b JM |
151 | struct dcache_struct |
152 | { | |
c5aa993b JM |
153 | /* free list */ |
154 | struct dcache_block *free_head; | |
155 | struct dcache_block *free_tail; | |
c906108c | 156 | |
c5aa993b JM |
157 | /* in use list */ |
158 | struct dcache_block *valid_head; | |
159 | struct dcache_block *valid_tail; | |
c906108c | 160 | |
c5aa993b JM |
161 | /* The cache itself. */ |
162 | struct dcache_block *the_cache; | |
c5aa993b | 163 | }; |
c906108c | 164 | |
8edbea78 | 165 | static int dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr); |
c906108c | 166 | |
8edbea78 | 167 | static int dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr); |
c906108c | 168 | |
8edbea78 | 169 | static struct dcache_block *dcache_hit (DCACHE *dcache, CORE_ADDR addr); |
c906108c | 170 | |
8edbea78 | 171 | static int dcache_write_line (DCACHE *dcache, struct dcache_block *db); |
c906108c | 172 | |
8edbea78 | 173 | static int dcache_read_line (DCACHE *dcache, struct dcache_block *db); |
c906108c | 174 | |
8edbea78 C |
175 | static struct dcache_block *dcache_alloc (DCACHE *dcache, CORE_ADDR addr); |
176 | ||
177 | static int dcache_writeback (DCACHE *dcache); | |
c906108c | 178 | |
a14ed312 | 179 | static void dcache_info (char *exp, int tty); |
c906108c | 180 | |
a14ed312 | 181 | void _initialize_dcache (void); |
c906108c | 182 | |
917317f4 | 183 | static int dcache_enabled_p = 0; |
c906108c | 184 | |
c5aa993b | 185 | DCACHE *last_cache; /* Used by info dcache */ |
c906108c SS |
186 | |
187 | ||
188 | /* Free all the data cache blocks, thus discarding all cached data. */ | |
189 | ||
190 | void | |
4930751a | 191 | dcache_invalidate (DCACHE *dcache) |
c906108c SS |
192 | { |
193 | int i; | |
194 | dcache->valid_head = 0; | |
195 | dcache->valid_tail = 0; | |
196 | ||
197 | dcache->free_head = 0; | |
198 | dcache->free_tail = 0; | |
199 | ||
200 | for (i = 0; i < DCACHE_SIZE; i++) | |
201 | { | |
202 | struct dcache_block *db = dcache->the_cache + i; | |
203 | ||
204 | if (!dcache->free_head) | |
205 | dcache->free_head = db; | |
206 | else | |
207 | dcache->free_tail->p = db; | |
208 | dcache->free_tail = db; | |
209 | db->p = 0; | |
210 | } | |
211 | ||
c906108c SS |
212 | return; |
213 | } | |
214 | ||
215 | /* If addr is present in the dcache, return the address of the block | |
216 | containing it. */ | |
217 | ||
218 | static struct dcache_block * | |
fba45db2 | 219 | dcache_hit (DCACHE *dcache, CORE_ADDR addr) |
c906108c | 220 | { |
52f0bd74 | 221 | struct dcache_block *db; |
c906108c SS |
222 | |
223 | /* Search all cache blocks for one that is at this address. */ | |
224 | db = dcache->valid_head; | |
225 | ||
226 | while (db) | |
227 | { | |
c5aa993b | 228 | if (MASK (addr) == db->addr) |
c906108c SS |
229 | { |
230 | db->refs++; | |
231 | return db; | |
232 | } | |
233 | db = db->p; | |
234 | } | |
235 | ||
236 | return NULL; | |
237 | } | |
238 | ||
239 | /* Make sure that anything in this line which needs to | |
240 | be written is. */ | |
241 | ||
242 | static int | |
aa1ee363 | 243 | dcache_write_line (DCACHE *dcache, struct dcache_block *db) |
c906108c | 244 | { |
29e57380 C |
245 | CORE_ADDR memaddr; |
246 | char *myaddr; | |
247 | int len; | |
248 | int res; | |
249 | int reg_len; | |
250 | struct mem_region *region; | |
8edbea78 | 251 | |
29e57380 C |
252 | if (!db->anydirty) |
253 | return 1; | |
254 | ||
255 | len = LINE_SIZE; | |
256 | memaddr = db->addr; | |
257 | myaddr = db->data; | |
258 | ||
259 | while (len > 0) | |
c906108c | 260 | { |
29e57380 C |
261 | int s; |
262 | int e; | |
263 | int dirty_len; | |
264 | ||
265 | region = lookup_mem_region(memaddr); | |
266 | if (memaddr + len < region->hi) | |
267 | reg_len = len; | |
268 | else | |
269 | reg_len = region->hi - memaddr; | |
270 | ||
271 | if (!region->attrib.cache || region->attrib.mode == MEM_RO) | |
272 | { | |
273 | memaddr += reg_len; | |
274 | myaddr += reg_len; | |
275 | len -= reg_len; | |
276 | continue; | |
277 | } | |
278 | ||
279 | while (reg_len > 0) | |
c906108c | 280 | { |
29e57380 | 281 | s = XFORM(memaddr); |
c839c4db | 282 | while (reg_len > 0) { |
29e57380 C |
283 | if (db->state[s] == ENTRY_DIRTY) |
284 | break; | |
285 | s++; | |
286 | reg_len--; | |
c839c4db C |
287 | |
288 | memaddr++; | |
289 | myaddr++; | |
290 | len--; | |
291 | } | |
29e57380 C |
292 | |
293 | e = s; | |
c839c4db | 294 | while (reg_len > 0) { |
29e57380 C |
295 | if (db->state[e] != ENTRY_DIRTY) |
296 | break; | |
297 | e++; | |
298 | reg_len--; | |
c839c4db | 299 | } |
29e57380 C |
300 | |
301 | dirty_len = e - s; | |
302 | while (dirty_len > 0) | |
c906108c | 303 | { |
29e57380 C |
304 | res = do_xfer_memory(memaddr, myaddr, dirty_len, 1, |
305 | ®ion->attrib); | |
306 | if (res <= 0) | |
307 | return 0; | |
308 | ||
f4d650ec | 309 | memset (&db->state[XFORM(memaddr)], ENTRY_OK, res); |
29e57380 C |
310 | memaddr += res; |
311 | myaddr += res; | |
c839c4db | 312 | len -= res; |
29e57380 | 313 | dirty_len -= res; |
c906108c SS |
314 | } |
315 | } | |
c906108c | 316 | } |
29e57380 C |
317 | |
318 | db->anydirty = 0; | |
c906108c SS |
319 | return 1; |
320 | } | |
321 | ||
8edbea78 C |
322 | /* Read cache line */ |
323 | static int | |
324 | dcache_read_line (DCACHE *dcache, struct dcache_block *db) | |
325 | { | |
326 | CORE_ADDR memaddr; | |
327 | char *myaddr; | |
328 | int len; | |
329 | int res; | |
29e57380 C |
330 | int reg_len; |
331 | struct mem_region *region; | |
8edbea78 C |
332 | |
333 | /* If there are any dirty bytes in the line, it must be written | |
334 | before a new line can be read */ | |
335 | if (db->anydirty) | |
336 | { | |
337 | if (!dcache_write_line (dcache, db)) | |
338 | return 0; | |
339 | } | |
340 | ||
341 | len = LINE_SIZE; | |
342 | memaddr = db->addr; | |
343 | myaddr = db->data; | |
344 | ||
345 | while (len > 0) | |
346 | { | |
29e57380 C |
347 | region = lookup_mem_region(memaddr); |
348 | if (memaddr + len < region->hi) | |
349 | reg_len = len; | |
350 | else | |
351 | reg_len = region->hi - memaddr; | |
352 | ||
353 | if (!region->attrib.cache || region->attrib.mode == MEM_WO) | |
354 | { | |
355 | memaddr += reg_len; | |
356 | myaddr += reg_len; | |
357 | len -= reg_len; | |
358 | continue; | |
359 | } | |
360 | ||
361 | while (reg_len > 0) | |
362 | { | |
363 | res = do_xfer_memory (memaddr, myaddr, reg_len, 0, | |
364 | ®ion->attrib); | |
365 | if (res <= 0) | |
366 | return 0; | |
8edbea78 | 367 | |
29e57380 C |
368 | memaddr += res; |
369 | myaddr += res; | |
370 | len -= res; | |
371 | reg_len -= res; | |
372 | } | |
8edbea78 C |
373 | } |
374 | ||
375 | memset (db->state, ENTRY_OK, sizeof (db->data)); | |
376 | db->anydirty = 0; | |
377 | ||
378 | return 1; | |
379 | } | |
380 | ||
c906108c | 381 | /* Get a free cache block, put or keep it on the valid list, |
f1d7622b | 382 | and return its address. */ |
c906108c SS |
383 | |
384 | static struct dcache_block * | |
f1d7622b | 385 | dcache_alloc (DCACHE *dcache, CORE_ADDR addr) |
c906108c | 386 | { |
52f0bd74 | 387 | struct dcache_block *db; |
c906108c | 388 | |
c906108c SS |
389 | /* Take something from the free list */ |
390 | db = dcache->free_head; | |
391 | if (db) | |
392 | { | |
393 | dcache->free_head = db->p; | |
394 | } | |
395 | else | |
396 | { | |
397 | /* Nothing left on free list, so grab one from the valid list */ | |
398 | db = dcache->valid_head; | |
c906108c | 399 | |
8edbea78 C |
400 | if (!dcache_write_line (dcache, db)) |
401 | return NULL; | |
402 | ||
403 | dcache->valid_head = db->p; | |
c906108c SS |
404 | } |
405 | ||
f1d7622b C |
406 | db->addr = MASK(addr); |
407 | db->refs = 0; | |
408 | db->anydirty = 0; | |
409 | memset (db->state, ENTRY_BAD, sizeof (db->data)); | |
410 | ||
c906108c SS |
411 | /* append this line to end of valid list */ |
412 | if (!dcache->valid_head) | |
413 | dcache->valid_head = db; | |
414 | else | |
415 | dcache->valid_tail->p = db; | |
416 | dcache->valid_tail = db; | |
417 | db->p = 0; | |
418 | ||
419 | return db; | |
420 | } | |
421 | ||
29e57380 | 422 | /* Writeback any dirty lines. */ |
c906108c | 423 | static int |
fba45db2 | 424 | dcache_writeback (DCACHE *dcache) |
c906108c SS |
425 | { |
426 | struct dcache_block *db; | |
427 | ||
428 | db = dcache->valid_head; | |
429 | ||
430 | while (db) | |
431 | { | |
432 | if (!dcache_write_line (dcache, db)) | |
433 | return 0; | |
434 | db = db->p; | |
435 | } | |
436 | return 1; | |
437 | } | |
438 | ||
439 | ||
8edbea78 C |
440 | /* Using the data cache DCACHE return the contents of the byte at |
441 | address ADDR in the remote machine. | |
442 | ||
443 | Returns 0 on error. */ | |
444 | ||
445 | static int | |
446 | dcache_peek_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr) | |
447 | { | |
52f0bd74 | 448 | struct dcache_block *db = dcache_hit (dcache, addr); |
8edbea78 C |
449 | |
450 | if (!db) | |
451 | { | |
452 | db = dcache_alloc (dcache, addr); | |
453 | if (!db) | |
454 | return 0; | |
455 | } | |
456 | ||
457 | if (db->state[XFORM (addr)] == ENTRY_BAD) | |
458 | { | |
459 | if (!dcache_read_line(dcache, db)) | |
460 | return 0; | |
461 | } | |
462 | ||
463 | *ptr = db->data[XFORM (addr)]; | |
464 | return 1; | |
465 | } | |
466 | ||
467 | ||
c906108c SS |
468 | /* Write the byte at PTR into ADDR in the data cache. |
469 | Return zero on write error. | |
470 | */ | |
471 | ||
472 | static int | |
fba45db2 | 473 | dcache_poke_byte (DCACHE *dcache, CORE_ADDR addr, char *ptr) |
c906108c | 474 | { |
52f0bd74 | 475 | struct dcache_block *db = dcache_hit (dcache, addr); |
c906108c SS |
476 | |
477 | if (!db) | |
478 | { | |
f1d7622b | 479 | db = dcache_alloc (dcache, addr); |
8edbea78 C |
480 | if (!db) |
481 | return 0; | |
c906108c SS |
482 | } |
483 | ||
484 | db->data[XFORM (addr)] = *ptr; | |
485 | db->state[XFORM (addr)] = ENTRY_DIRTY; | |
486 | db->anydirty = 1; | |
487 | return 1; | |
488 | } | |
489 | ||
c906108c SS |
490 | /* Initialize the data cache. */ |
491 | DCACHE * | |
4930751a | 492 | dcache_init (void) |
c906108c SS |
493 | { |
494 | int csize = sizeof (struct dcache_block) * DCACHE_SIZE; | |
495 | DCACHE *dcache; | |
496 | ||
497 | dcache = (DCACHE *) xmalloc (sizeof (*dcache)); | |
c906108c SS |
498 | |
499 | dcache->the_cache = (struct dcache_block *) xmalloc (csize); | |
500 | memset (dcache->the_cache, 0, csize); | |
501 | ||
4930751a | 502 | dcache_invalidate (dcache); |
c906108c SS |
503 | |
504 | last_cache = dcache; | |
505 | return dcache; | |
506 | } | |
507 | ||
e99586d5 C |
508 | /* Free a data cache */ |
509 | void | |
510 | dcache_free (DCACHE *dcache) | |
511 | { | |
512 | if (last_cache == dcache) | |
513 | last_cache = NULL; | |
514 | ||
b8c9b27d KB |
515 | xfree (dcache->the_cache); |
516 | xfree (dcache); | |
e99586d5 C |
517 | } |
518 | ||
c906108c SS |
519 | /* Read or write LEN bytes from inferior memory at MEMADDR, transferring |
520 | to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is | |
521 | nonzero. | |
522 | ||
523 | Returns length of data written or read; 0 for error. | |
524 | ||
525 | This routine is indended to be called by remote_xfer_ functions. */ | |
526 | ||
527 | int | |
fba45db2 KB |
528 | dcache_xfer_memory (DCACHE *dcache, CORE_ADDR memaddr, char *myaddr, int len, |
529 | int should_write) | |
c906108c SS |
530 | { |
531 | int i; | |
29e57380 C |
532 | int (*xfunc) (DCACHE *dcache, CORE_ADDR addr, char *ptr); |
533 | xfunc = should_write ? dcache_poke_byte : dcache_peek_byte; | |
c906108c | 534 | |
29e57380 | 535 | for (i = 0; i < len; i++) |
c906108c | 536 | { |
29e57380 C |
537 | if (!xfunc (dcache, memaddr + i, myaddr + i)) |
538 | return 0; | |
c906108c | 539 | } |
c906108c | 540 | |
29e57380 C |
541 | /* FIXME: There may be some benefit from moving the cache writeback |
542 | to a higher layer, as it could occur after a sequence of smaller | |
543 | writes have been completed (as when a stack frame is constructed | |
544 | for an inferior function call). Note that only moving it up one | |
545 | level to target_xfer_memory() (also target_xfer_memory_partial()) | |
546 | is not sufficent, since we want to coalesce memory transfers that | |
547 | are "logically" connected but not actually a single call to one | |
548 | of the memory transfer functions. */ | |
549 | ||
550 | if (should_write) | |
551 | dcache_writeback (dcache); | |
552 | ||
c906108c SS |
553 | return len; |
554 | } | |
555 | ||
c5aa993b | 556 | static void |
fba45db2 | 557 | dcache_info (char *exp, int tty) |
c906108c SS |
558 | { |
559 | struct dcache_block *p; | |
560 | ||
29e57380 | 561 | printf_filtered ("Dcache line width %d, depth %d\n", |
c906108c SS |
562 | LINE_SIZE, DCACHE_SIZE); |
563 | ||
5e2039ea | 564 | if (last_cache) |
c906108c | 565 | { |
5e2039ea C |
566 | printf_filtered ("Cache state:\n"); |
567 | ||
568 | for (p = last_cache->valid_head; p; p = p->p) | |
569 | { | |
570 | int j; | |
571 | printf_filtered ("Line at %s, referenced %d times\n", | |
572 | paddr (p->addr), p->refs); | |
c906108c | 573 | |
5e2039ea C |
574 | for (j = 0; j < LINE_SIZE; j++) |
575 | printf_filtered ("%02x", p->data[j] & 0xFF); | |
576 | printf_filtered ("\n"); | |
c906108c | 577 | |
5e2039ea | 578 | for (j = 0; j < LINE_SIZE; j++) |
8edbea78 | 579 | printf_filtered ("%2x", p->state[j]); |
5e2039ea C |
580 | printf_filtered ("\n"); |
581 | } | |
c906108c SS |
582 | } |
583 | } | |
584 | ||
585 | void | |
fba45db2 | 586 | _initialize_dcache (void) |
c906108c SS |
587 | { |
588 | add_show_from_set | |
589 | (add_set_cmd ("remotecache", class_support, var_boolean, | |
917317f4 | 590 | (char *) &dcache_enabled_p, |
c906108c SS |
591 | "\ |
592 | Set cache use for remote targets.\n\ | |
593 | When on, use data caching for remote targets. For many remote targets\n\ | |
594 | this option can offer better throughput for reading target memory.\n\ | |
595 | Unfortunately, gdb does not currently know anything about volatile\n\ | |
596 | registers and thus data caching will produce incorrect results with\n\ | |
917317f4 | 597 | volatile registers are in use. By default, this option is off.", |
c906108c SS |
598 | &setlist), |
599 | &showlist); | |
600 | ||
601 | add_info ("dcache", dcache_info, | |
602 | "Print information on the dcache performance."); | |
603 | ||
604 | } |