* archive.c (_bfd_write_archive_contents): Fix incorrect use of
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
d4f3574e 2880* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2881* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2882@end menu
2883
6d2ebf8b 2884@node Set Breaks
79a6e687 2885@subsection Setting Breakpoints
c906108c 2886
5d161b24 2887@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2888@c consider in particular declaration with/without initialization.
2889@c
2890@c FIXME 2 is there stuff on this already? break at fun start, already init?
2891
2892@kindex break
41afff9a
EZ
2893@kindex b @r{(@code{break})}
2894@vindex $bpnum@r{, convenience variable}
c906108c
SS
2895@cindex latest breakpoint
2896Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2897@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2898number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2899Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2900convenience variables.
2901
c906108c 2902@table @code
2a25a5ba
EZ
2903@item break @var{location}
2904Set a breakpoint at the given @var{location}, which can specify a
2905function name, a line number, or an address of an instruction.
2906(@xref{Specify Location}, for a list of all the possible ways to
2907specify a @var{location}.) The breakpoint will stop your program just
2908before it executes any of the code in the specified @var{location}.
2909
c906108c 2910When using source languages that permit overloading of symbols, such as
2a25a5ba 2911C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
2912@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
2913that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
2e9132cc
EZ
3075@cindex multiple locations, breakpoints
3076@cindex breakpoints, multiple locations
fcda367b 3077It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3078in your program. Examples of this situation are:
3079
3080@itemize @bullet
fe6fbf8b
VP
3081@item
3082For a C@t{++} constructor, the @value{NGCC} compiler generates several
3083instances of the function body, used in different cases.
3084
3085@item
3086For a C@t{++} template function, a given line in the function can
3087correspond to any number of instantiations.
3088
3089@item
3090For an inlined function, a given source line can correspond to
3091several places where that function is inlined.
fe6fbf8b
VP
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3095the relevant locations@footnote{
3096As of this writing, multiple-location breakpoints work only if there's
3097line number information for all the locations. This means that they
3098will generally not work in system libraries, unless you have debug
3099info with line numbers for them.}.
fe6fbf8b 3100
3b784c4f
EZ
3101A breakpoint with multiple locations is displayed in the breakpoint
3102table using several rows---one header row, followed by one row for
3103each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3104address column. The rows for individual locations contain the actual
3105addresses for locations, and show the functions to which those
3106locations belong. The number column for a location is of the form
fe6fbf8b
VP
3107@var{breakpoint-number}.@var{location-number}.
3108
3109For example:
3b784c4f 3110
fe6fbf8b
VP
3111@smallexample
3112Num Type Disp Enb Address What
31131 breakpoint keep y <MULTIPLE>
3114 stop only if i==1
3115 breakpoint already hit 1 time
31161.1 y 0x080486a2 in void foo<int>() at t.cc:8
31171.2 y 0x080486ca in void foo<double>() at t.cc:8
3118@end smallexample
3119
3120Each location can be individually enabled or disabled by passing
3121@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3122@code{enable} and @code{disable} commands. Note that you cannot
3123delete the individual locations from the list, you can only delete the
16bfc218 3124entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3125the @kbd{delete @var{num}} command, where @var{num} is the number of
3126the parent breakpoint, 1 in the above example). Disabling or enabling
3127the parent breakpoint (@pxref{Disabling}) affects all of the locations
3128that belong to that breakpoint.
fe6fbf8b 3129
2650777c 3130@cindex pending breakpoints
fe6fbf8b 3131It's quite common to have a breakpoint inside a shared library.
3b784c4f 3132Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3133and possibly repeatedly, as the program is executed. To support
3134this use case, @value{GDBN} updates breakpoint locations whenever
3135any shared library is loaded or unloaded. Typically, you would
fcda367b 3136set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3137debugging session, when the library is not loaded, and when the
3138symbols from the library are not available. When you try to set
3139breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3140a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3141is not yet resolved.
3142
3143After the program is run, whenever a new shared library is loaded,
3144@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3145shared library contains the symbol or line referred to by some
3146pending breakpoint, that breakpoint is resolved and becomes an
3147ordinary breakpoint. When a library is unloaded, all breakpoints
3148that refer to its symbols or source lines become pending again.
3149
3150This logic works for breakpoints with multiple locations, too. For
3151example, if you have a breakpoint in a C@t{++} template function, and
3152a newly loaded shared library has an instantiation of that template,
3153a new location is added to the list of locations for the breakpoint.
3154
3155Except for having unresolved address, pending breakpoints do not
3156differ from regular breakpoints. You can set conditions or commands,
3157enable and disable them and perform other breakpoint operations.
3158
3159@value{GDBN} provides some additional commands for controlling what
3160happens when the @samp{break} command cannot resolve breakpoint
3161address specification to an address:
dd79a6cf
JJ
3162
3163@kindex set breakpoint pending
3164@kindex show breakpoint pending
3165@table @code
3166@item set breakpoint pending auto
3167This is the default behavior. When @value{GDBN} cannot find the breakpoint
3168location, it queries you whether a pending breakpoint should be created.
3169
3170@item set breakpoint pending on
3171This indicates that an unrecognized breakpoint location should automatically
3172result in a pending breakpoint being created.
3173
3174@item set breakpoint pending off
3175This indicates that pending breakpoints are not to be created. Any
3176unrecognized breakpoint location results in an error. This setting does
3177not affect any pending breakpoints previously created.
3178
3179@item show breakpoint pending
3180Show the current behavior setting for creating pending breakpoints.
3181@end table
2650777c 3182
fe6fbf8b
VP
3183The settings above only affect the @code{break} command and its
3184variants. Once breakpoint is set, it will be automatically updated
3185as shared libraries are loaded and unloaded.
2650777c 3186
765dc015
VP
3187@cindex automatic hardware breakpoints
3188For some targets, @value{GDBN} can automatically decide if hardware or
3189software breakpoints should be used, depending on whether the
3190breakpoint address is read-only or read-write. This applies to
3191breakpoints set with the @code{break} command as well as to internal
3192breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3193breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3194breakpoints.
3195
3196You can control this automatic behaviour with the following commands::
3197
3198@kindex set breakpoint auto-hw
3199@kindex show breakpoint auto-hw
3200@table @code
3201@item set breakpoint auto-hw on
3202This is the default behavior. When @value{GDBN} sets a breakpoint, it
3203will try to use the target memory map to decide if software or hardware
3204breakpoint must be used.
3205
3206@item set breakpoint auto-hw off
3207This indicates @value{GDBN} should not automatically select breakpoint
3208type. If the target provides a memory map, @value{GDBN} will warn when
3209trying to set software breakpoint at a read-only address.
3210@end table
3211
3212
c906108c
SS
3213@cindex negative breakpoint numbers
3214@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3215@value{GDBN} itself sometimes sets breakpoints in your program for
3216special purposes, such as proper handling of @code{longjmp} (in C
3217programs). These internal breakpoints are assigned negative numbers,
3218starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3219You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3220@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3221
3222
6d2ebf8b 3223@node Set Watchpoints
79a6e687 3224@subsection Setting Watchpoints
c906108c
SS
3225
3226@cindex setting watchpoints
c906108c
SS
3227You can use a watchpoint to stop execution whenever the value of an
3228expression changes, without having to predict a particular place where
fd60e0df
EZ
3229this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3230The expression may be as simple as the value of a single variable, or
3231as complex as many variables combined by operators. Examples include:
3232
3233@itemize @bullet
3234@item
3235A reference to the value of a single variable.
3236
3237@item
3238An address cast to an appropriate data type. For example,
3239@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3240address (assuming an @code{int} occupies 4 bytes).
3241
3242@item
3243An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3244expression can use any operators valid in the program's native
3245language (@pxref{Languages}).
3246@end itemize
c906108c 3247
fa4727a6
DJ
3248You can set a watchpoint on an expression even if the expression can
3249not be evaluated yet. For instance, you can set a watchpoint on
3250@samp{*global_ptr} before @samp{global_ptr} is initialized.
3251@value{GDBN} will stop when your program sets @samp{global_ptr} and
3252the expression produces a valid value. If the expression becomes
3253valid in some other way than changing a variable (e.g.@: if the memory
3254pointed to by @samp{*global_ptr} becomes readable as the result of a
3255@code{malloc} call), @value{GDBN} may not stop until the next time
3256the expression changes.
3257
82f2d802
EZ
3258@cindex software watchpoints
3259@cindex hardware watchpoints
c906108c 3260Depending on your system, watchpoints may be implemented in software or
2df3850c 3261hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3262program and testing the variable's value each time, which is hundreds of
3263times slower than normal execution. (But this may still be worth it, to
3264catch errors where you have no clue what part of your program is the
3265culprit.)
3266
37e4754d 3267On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3268x86-based targets, @value{GDBN} includes support for hardware
3269watchpoints, which do not slow down the running of your program.
c906108c
SS
3270
3271@table @code
3272@kindex watch
d8b2a693 3273@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3274Set a watchpoint for an expression. @value{GDBN} will break when the
3275expression @var{expr} is written into by the program and its value
3276changes. The simplest (and the most popular) use of this command is
3277to watch the value of a single variable:
3278
3279@smallexample
3280(@value{GDBP}) watch foo
3281@end smallexample
c906108c 3282
d8b2a693
JB
3283If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3284clause, @value{GDBN} breaks only when the thread identified by
3285@var{threadnum} changes the value of @var{expr}. If any other threads
3286change the value of @var{expr}, @value{GDBN} will not break. Note
3287that watchpoints restricted to a single thread in this way only work
3288with Hardware Watchpoints.
3289
c906108c 3290@kindex rwatch
d8b2a693 3291@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3292Set a watchpoint that will break when the value of @var{expr} is read
3293by the program.
c906108c
SS
3294
3295@kindex awatch
d8b2a693 3296@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3297Set a watchpoint that will break when @var{expr} is either read from
3298or written into by the program.
c906108c 3299
45ac1734 3300@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3301@item info watchpoints
3302This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3303it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3304@end table
3305
3306@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3307watchpoints execute very quickly, and the debugger reports a change in
3308value at the exact instruction where the change occurs. If @value{GDBN}
3309cannot set a hardware watchpoint, it sets a software watchpoint, which
3310executes more slowly and reports the change in value at the next
82f2d802
EZ
3311@emph{statement}, not the instruction, after the change occurs.
3312
82f2d802
EZ
3313@cindex use only software watchpoints
3314You can force @value{GDBN} to use only software watchpoints with the
3315@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3316zero, @value{GDBN} will never try to use hardware watchpoints, even if
3317the underlying system supports them. (Note that hardware-assisted
3318watchpoints that were set @emph{before} setting
3319@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3320mechanism of watching expression values.)
c906108c 3321
9c16f35a
EZ
3322@table @code
3323@item set can-use-hw-watchpoints
3324@kindex set can-use-hw-watchpoints
3325Set whether or not to use hardware watchpoints.
3326
3327@item show can-use-hw-watchpoints
3328@kindex show can-use-hw-watchpoints
3329Show the current mode of using hardware watchpoints.
3330@end table
3331
3332For remote targets, you can restrict the number of hardware
3333watchpoints @value{GDBN} will use, see @ref{set remote
3334hardware-breakpoint-limit}.
3335
c906108c
SS
3336When you issue the @code{watch} command, @value{GDBN} reports
3337
474c8240 3338@smallexample
c906108c 3339Hardware watchpoint @var{num}: @var{expr}
474c8240 3340@end smallexample
c906108c
SS
3341
3342@noindent
3343if it was able to set a hardware watchpoint.
3344
7be570e7
JM
3345Currently, the @code{awatch} and @code{rwatch} commands can only set
3346hardware watchpoints, because accesses to data that don't change the
3347value of the watched expression cannot be detected without examining
3348every instruction as it is being executed, and @value{GDBN} does not do
3349that currently. If @value{GDBN} finds that it is unable to set a
3350hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3351will print a message like this:
3352
3353@smallexample
3354Expression cannot be implemented with read/access watchpoint.
3355@end smallexample
3356
3357Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3358data type of the watched expression is wider than what a hardware
3359watchpoint on the target machine can handle. For example, some systems
3360can only watch regions that are up to 4 bytes wide; on such systems you
3361cannot set hardware watchpoints for an expression that yields a
3362double-precision floating-point number (which is typically 8 bytes
3363wide). As a work-around, it might be possible to break the large region
3364into a series of smaller ones and watch them with separate watchpoints.
3365
3366If you set too many hardware watchpoints, @value{GDBN} might be unable
3367to insert all of them when you resume the execution of your program.
3368Since the precise number of active watchpoints is unknown until such
3369time as the program is about to be resumed, @value{GDBN} might not be
3370able to warn you about this when you set the watchpoints, and the
3371warning will be printed only when the program is resumed:
3372
3373@smallexample
3374Hardware watchpoint @var{num}: Could not insert watchpoint
3375@end smallexample
3376
3377@noindent
3378If this happens, delete or disable some of the watchpoints.
3379
fd60e0df
EZ
3380Watching complex expressions that reference many variables can also
3381exhaust the resources available for hardware-assisted watchpoints.
3382That's because @value{GDBN} needs to watch every variable in the
3383expression with separately allocated resources.
3384
c906108c 3385If you call a function interactively using @code{print} or @code{call},
2df3850c 3386any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3387kind of breakpoint or the call completes.
3388
7be570e7
JM
3389@value{GDBN} automatically deletes watchpoints that watch local
3390(automatic) variables, or expressions that involve such variables, when
3391they go out of scope, that is, when the execution leaves the block in
3392which these variables were defined. In particular, when the program
3393being debugged terminates, @emph{all} local variables go out of scope,
3394and so only watchpoints that watch global variables remain set. If you
3395rerun the program, you will need to set all such watchpoints again. One
3396way of doing that would be to set a code breakpoint at the entry to the
3397@code{main} function and when it breaks, set all the watchpoints.
3398
c906108c
SS
3399@cindex watchpoints and threads
3400@cindex threads and watchpoints
d983da9c
DJ
3401In multi-threaded programs, watchpoints will detect changes to the
3402watched expression from every thread.
3403
3404@quotation
3405@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3406have only limited usefulness. If @value{GDBN} creates a software
3407watchpoint, it can only watch the value of an expression @emph{in a
3408single thread}. If you are confident that the expression can only
3409change due to the current thread's activity (and if you are also
3410confident that no other thread can become current), then you can use
3411software watchpoints as usual. However, @value{GDBN} may not notice
3412when a non-current thread's activity changes the expression. (Hardware
3413watchpoints, in contrast, watch an expression in all threads.)
c906108c 3414@end quotation
c906108c 3415
501eef12
AC
3416@xref{set remote hardware-watchpoint-limit}.
3417
6d2ebf8b 3418@node Set Catchpoints
79a6e687 3419@subsection Setting Catchpoints
d4f3574e 3420@cindex catchpoints, setting
c906108c
SS
3421@cindex exception handlers
3422@cindex event handling
3423
3424You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3425kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3426shared library. Use the @code{catch} command to set a catchpoint.
3427
3428@table @code
3429@kindex catch
3430@item catch @var{event}
3431Stop when @var{event} occurs. @var{event} can be any of the following:
3432@table @code
3433@item throw
4644b6e3 3434@cindex stop on C@t{++} exceptions
b37052ae 3435The throwing of a C@t{++} exception.
c906108c
SS
3436
3437@item catch
b37052ae 3438The catching of a C@t{++} exception.
c906108c 3439
8936fcda
JB
3440@item exception
3441@cindex Ada exception catching
3442@cindex catch Ada exceptions
3443An Ada exception being raised. If an exception name is specified
3444at the end of the command (eg @code{catch exception Program_Error}),
3445the debugger will stop only when this specific exception is raised.
3446Otherwise, the debugger stops execution when any Ada exception is raised.
3447
3448@item exception unhandled
3449An exception that was raised but is not handled by the program.
3450
3451@item assert
3452A failed Ada assertion.
3453
c906108c 3454@item exec
4644b6e3 3455@cindex break on fork/exec
5ee187d7
DJ
3456A call to @code{exec}. This is currently only available for HP-UX
3457and @sc{gnu}/Linux.
c906108c
SS
3458
3459@item fork
5ee187d7
DJ
3460A call to @code{fork}. This is currently only available for HP-UX
3461and @sc{gnu}/Linux.
c906108c
SS
3462
3463@item vfork
5ee187d7
DJ
3464A call to @code{vfork}. This is currently only available for HP-UX
3465and @sc{gnu}/Linux.
c906108c
SS
3466
3467@item load
3468@itemx load @var{libname}
4644b6e3 3469@cindex break on load/unload of shared library
c906108c
SS
3470The dynamic loading of any shared library, or the loading of the library
3471@var{libname}. This is currently only available for HP-UX.
3472
3473@item unload
3474@itemx unload @var{libname}
c906108c
SS
3475The unloading of any dynamically loaded shared library, or the unloading
3476of the library @var{libname}. This is currently only available for HP-UX.
3477@end table
3478
3479@item tcatch @var{event}
3480Set a catchpoint that is enabled only for one stop. The catchpoint is
3481automatically deleted after the first time the event is caught.
3482
3483@end table
3484
3485Use the @code{info break} command to list the current catchpoints.
3486
b37052ae 3487There are currently some limitations to C@t{++} exception handling
c906108c
SS
3488(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3489
3490@itemize @bullet
3491@item
3492If you call a function interactively, @value{GDBN} normally returns
3493control to you when the function has finished executing. If the call
3494raises an exception, however, the call may bypass the mechanism that
3495returns control to you and cause your program either to abort or to
3496simply continue running until it hits a breakpoint, catches a signal
3497that @value{GDBN} is listening for, or exits. This is the case even if
3498you set a catchpoint for the exception; catchpoints on exceptions are
3499disabled within interactive calls.
3500
3501@item
3502You cannot raise an exception interactively.
3503
3504@item
3505You cannot install an exception handler interactively.
3506@end itemize
3507
3508@cindex raise exceptions
3509Sometimes @code{catch} is not the best way to debug exception handling:
3510if you need to know exactly where an exception is raised, it is better to
3511stop @emph{before} the exception handler is called, since that way you
3512can see the stack before any unwinding takes place. If you set a
3513breakpoint in an exception handler instead, it may not be easy to find
3514out where the exception was raised.
3515
3516To stop just before an exception handler is called, you need some
b37052ae 3517knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3518raised by calling a library function named @code{__raise_exception}
3519which has the following ANSI C interface:
3520
474c8240 3521@smallexample
c906108c 3522 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3523 @var{id} is the exception identifier. */
3524 void __raise_exception (void **addr, void *id);
474c8240 3525@end smallexample
c906108c
SS
3526
3527@noindent
3528To make the debugger catch all exceptions before any stack
3529unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3530(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3531
79a6e687 3532With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3533that depends on the value of @var{id}, you can stop your program when
3534a specific exception is raised. You can use multiple conditional
3535breakpoints to stop your program when any of a number of exceptions are
3536raised.
3537
3538
6d2ebf8b 3539@node Delete Breaks
79a6e687 3540@subsection Deleting Breakpoints
c906108c
SS
3541
3542@cindex clearing breakpoints, watchpoints, catchpoints
3543@cindex deleting breakpoints, watchpoints, catchpoints
3544It is often necessary to eliminate a breakpoint, watchpoint, or
3545catchpoint once it has done its job and you no longer want your program
3546to stop there. This is called @dfn{deleting} the breakpoint. A
3547breakpoint that has been deleted no longer exists; it is forgotten.
3548
3549With the @code{clear} command you can delete breakpoints according to
3550where they are in your program. With the @code{delete} command you can
3551delete individual breakpoints, watchpoints, or catchpoints by specifying
3552their breakpoint numbers.
3553
3554It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3555automatically ignores breakpoints on the first instruction to be executed
3556when you continue execution without changing the execution address.
3557
3558@table @code
3559@kindex clear
3560@item clear
3561Delete any breakpoints at the next instruction to be executed in the
79a6e687 3562selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3563the innermost frame is selected, this is a good way to delete a
3564breakpoint where your program just stopped.
3565
2a25a5ba
EZ
3566@item clear @var{location}
3567Delete any breakpoints set at the specified @var{location}.
3568@xref{Specify Location}, for the various forms of @var{location}; the
3569most useful ones are listed below:
3570
3571@table @code
c906108c
SS
3572@item clear @var{function}
3573@itemx clear @var{filename}:@var{function}
09d4efe1 3574Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3575
3576@item clear @var{linenum}
3577@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3578Delete any breakpoints set at or within the code of the specified
3579@var{linenum} of the specified @var{filename}.
2a25a5ba 3580@end table
c906108c
SS
3581
3582@cindex delete breakpoints
3583@kindex delete
41afff9a 3584@kindex d @r{(@code{delete})}
c5394b80
JM
3585@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3586Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3587ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3588breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3589confirm off}). You can abbreviate this command as @code{d}.
3590@end table
3591
6d2ebf8b 3592@node Disabling
79a6e687 3593@subsection Disabling Breakpoints
c906108c 3594
4644b6e3 3595@cindex enable/disable a breakpoint
c906108c
SS
3596Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3597prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3598it had been deleted, but remembers the information on the breakpoint so
3599that you can @dfn{enable} it again later.
3600
3601You disable and enable breakpoints, watchpoints, and catchpoints with
3602the @code{enable} and @code{disable} commands, optionally specifying one
3603or more breakpoint numbers as arguments. Use @code{info break} or
3604@code{info watch} to print a list of breakpoints, watchpoints, and
3605catchpoints if you do not know which numbers to use.
3606
3b784c4f
EZ
3607Disabling and enabling a breakpoint that has multiple locations
3608affects all of its locations.
3609
c906108c
SS
3610A breakpoint, watchpoint, or catchpoint can have any of four different
3611states of enablement:
3612
3613@itemize @bullet
3614@item
3615Enabled. The breakpoint stops your program. A breakpoint set
3616with the @code{break} command starts out in this state.
3617@item
3618Disabled. The breakpoint has no effect on your program.
3619@item
3620Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3621disabled.
c906108c
SS
3622@item
3623Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3624immediately after it does so it is deleted permanently. A breakpoint
3625set with the @code{tbreak} command starts out in this state.
c906108c
SS
3626@end itemize
3627
3628You can use the following commands to enable or disable breakpoints,
3629watchpoints, and catchpoints:
3630
3631@table @code
c906108c 3632@kindex disable
41afff9a 3633@kindex dis @r{(@code{disable})}
c5394b80 3634@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3635Disable the specified breakpoints---or all breakpoints, if none are
3636listed. A disabled breakpoint has no effect but is not forgotten. All
3637options such as ignore-counts, conditions and commands are remembered in
3638case the breakpoint is enabled again later. You may abbreviate
3639@code{disable} as @code{dis}.
3640
c906108c 3641@kindex enable
c5394b80 3642@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3643Enable the specified breakpoints (or all defined breakpoints). They
3644become effective once again in stopping your program.
3645
c5394b80 3646@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3647Enable the specified breakpoints temporarily. @value{GDBN} disables any
3648of these breakpoints immediately after stopping your program.
3649
c5394b80 3650@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3651Enable the specified breakpoints to work once, then die. @value{GDBN}
3652deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3653Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3654@end table
3655
d4f3574e
SS
3656@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3657@c confusing: tbreak is also initially enabled.
c906108c 3658Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3659,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3660subsequently, they become disabled or enabled only when you use one of
3661the commands above. (The command @code{until} can set and delete a
3662breakpoint of its own, but it does not change the state of your other
3663breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3664Stepping}.)
c906108c 3665
6d2ebf8b 3666@node Conditions
79a6e687 3667@subsection Break Conditions
c906108c
SS
3668@cindex conditional breakpoints
3669@cindex breakpoint conditions
3670
3671@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3672@c in particular for a watchpoint?
c906108c
SS
3673The simplest sort of breakpoint breaks every time your program reaches a
3674specified place. You can also specify a @dfn{condition} for a
3675breakpoint. A condition is just a Boolean expression in your
3676programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3677a condition evaluates the expression each time your program reaches it,
3678and your program stops only if the condition is @emph{true}.
3679
3680This is the converse of using assertions for program validation; in that
3681situation, you want to stop when the assertion is violated---that is,
3682when the condition is false. In C, if you want to test an assertion expressed
3683by the condition @var{assert}, you should set the condition
3684@samp{! @var{assert}} on the appropriate breakpoint.
3685
3686Conditions are also accepted for watchpoints; you may not need them,
3687since a watchpoint is inspecting the value of an expression anyhow---but
3688it might be simpler, say, to just set a watchpoint on a variable name,
3689and specify a condition that tests whether the new value is an interesting
3690one.
3691
3692Break conditions can have side effects, and may even call functions in
3693your program. This can be useful, for example, to activate functions
3694that log program progress, or to use your own print functions to
3695format special data structures. The effects are completely predictable
3696unless there is another enabled breakpoint at the same address. (In
3697that case, @value{GDBN} might see the other breakpoint first and stop your
3698program without checking the condition of this one.) Note that
d4f3574e
SS
3699breakpoint commands are usually more convenient and flexible than break
3700conditions for the
c906108c 3701purpose of performing side effects when a breakpoint is reached
79a6e687 3702(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3703
3704Break conditions can be specified when a breakpoint is set, by using
3705@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3706Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3707with the @code{condition} command.
53a5351d 3708
c906108c
SS
3709You can also use the @code{if} keyword with the @code{watch} command.
3710The @code{catch} command does not recognize the @code{if} keyword;
3711@code{condition} is the only way to impose a further condition on a
3712catchpoint.
c906108c
SS
3713
3714@table @code
3715@kindex condition
3716@item condition @var{bnum} @var{expression}
3717Specify @var{expression} as the break condition for breakpoint,
3718watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3719breakpoint @var{bnum} stops your program only if the value of
3720@var{expression} is true (nonzero, in C). When you use
3721@code{condition}, @value{GDBN} checks @var{expression} immediately for
3722syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3723referents in the context of your breakpoint. If @var{expression} uses
3724symbols not referenced in the context of the breakpoint, @value{GDBN}
3725prints an error message:
3726
474c8240 3727@smallexample
d4f3574e 3728No symbol "foo" in current context.
474c8240 3729@end smallexample
d4f3574e
SS
3730
3731@noindent
c906108c
SS
3732@value{GDBN} does
3733not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3734command (or a command that sets a breakpoint with a condition, like
3735@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3736
3737@item condition @var{bnum}
3738Remove the condition from breakpoint number @var{bnum}. It becomes
3739an ordinary unconditional breakpoint.
3740@end table
3741
3742@cindex ignore count (of breakpoint)
3743A special case of a breakpoint condition is to stop only when the
3744breakpoint has been reached a certain number of times. This is so
3745useful that there is a special way to do it, using the @dfn{ignore
3746count} of the breakpoint. Every breakpoint has an ignore count, which
3747is an integer. Most of the time, the ignore count is zero, and
3748therefore has no effect. But if your program reaches a breakpoint whose
3749ignore count is positive, then instead of stopping, it just decrements
3750the ignore count by one and continues. As a result, if the ignore count
3751value is @var{n}, the breakpoint does not stop the next @var{n} times
3752your program reaches it.
3753
3754@table @code
3755@kindex ignore
3756@item ignore @var{bnum} @var{count}
3757Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3758The next @var{count} times the breakpoint is reached, your program's
3759execution does not stop; other than to decrement the ignore count, @value{GDBN}
3760takes no action.
3761
3762To make the breakpoint stop the next time it is reached, specify
3763a count of zero.
3764
3765When you use @code{continue} to resume execution of your program from a
3766breakpoint, you can specify an ignore count directly as an argument to
3767@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3768Stepping,,Continuing and Stepping}.
c906108c
SS
3769
3770If a breakpoint has a positive ignore count and a condition, the
3771condition is not checked. Once the ignore count reaches zero,
3772@value{GDBN} resumes checking the condition.
3773
3774You could achieve the effect of the ignore count with a condition such
3775as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3776is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3777Variables}.
c906108c
SS
3778@end table
3779
3780Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3781
3782
6d2ebf8b 3783@node Break Commands
79a6e687 3784@subsection Breakpoint Command Lists
c906108c
SS
3785
3786@cindex breakpoint commands
3787You can give any breakpoint (or watchpoint or catchpoint) a series of
3788commands to execute when your program stops due to that breakpoint. For
3789example, you might want to print the values of certain expressions, or
3790enable other breakpoints.
3791
3792@table @code
3793@kindex commands
ca91424e 3794@kindex end@r{ (breakpoint commands)}
c906108c
SS
3795@item commands @r{[}@var{bnum}@r{]}
3796@itemx @dots{} @var{command-list} @dots{}
3797@itemx end
3798Specify a list of commands for breakpoint number @var{bnum}. The commands
3799themselves appear on the following lines. Type a line containing just
3800@code{end} to terminate the commands.
3801
3802To remove all commands from a breakpoint, type @code{commands} and
3803follow it immediately with @code{end}; that is, give no commands.
3804
3805With no @var{bnum} argument, @code{commands} refers to the last
3806breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3807recently encountered).
3808@end table
3809
3810Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3811disabled within a @var{command-list}.
3812
3813You can use breakpoint commands to start your program up again. Simply
3814use the @code{continue} command, or @code{step}, or any other command
3815that resumes execution.
3816
3817Any other commands in the command list, after a command that resumes
3818execution, are ignored. This is because any time you resume execution
3819(even with a simple @code{next} or @code{step}), you may encounter
3820another breakpoint---which could have its own command list, leading to
3821ambiguities about which list to execute.
3822
3823@kindex silent
3824If the first command you specify in a command list is @code{silent}, the
3825usual message about stopping at a breakpoint is not printed. This may
3826be desirable for breakpoints that are to print a specific message and
3827then continue. If none of the remaining commands print anything, you
3828see no sign that the breakpoint was reached. @code{silent} is
3829meaningful only at the beginning of a breakpoint command list.
3830
3831The commands @code{echo}, @code{output}, and @code{printf} allow you to
3832print precisely controlled output, and are often useful in silent
79a6e687 3833breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3834
3835For example, here is how you could use breakpoint commands to print the
3836value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3837
474c8240 3838@smallexample
c906108c
SS
3839break foo if x>0
3840commands
3841silent
3842printf "x is %d\n",x
3843cont
3844end
474c8240 3845@end smallexample
c906108c
SS
3846
3847One application for breakpoint commands is to compensate for one bug so
3848you can test for another. Put a breakpoint just after the erroneous line
3849of code, give it a condition to detect the case in which something
3850erroneous has been done, and give it commands to assign correct values
3851to any variables that need them. End with the @code{continue} command
3852so that your program does not stop, and start with the @code{silent}
3853command so that no output is produced. Here is an example:
3854
474c8240 3855@smallexample
c906108c
SS
3856break 403
3857commands
3858silent
3859set x = y + 4
3860cont
3861end
474c8240 3862@end smallexample
c906108c 3863
c906108c 3864@c @ifclear BARETARGET
6d2ebf8b 3865@node Error in Breakpoints
d4f3574e 3866@subsection ``Cannot insert breakpoints''
c906108c
SS
3867@c
3868@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3869@c
d4f3574e
SS
3870Under some operating systems, breakpoints cannot be used in a program if
3871any other process is running that program. In this situation,
5d161b24 3872attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3873@value{GDBN} to print an error message:
3874
474c8240 3875@smallexample
d4f3574e
SS
3876Cannot insert breakpoints.
3877The same program may be running in another process.
474c8240 3878@end smallexample
d4f3574e
SS
3879
3880When this happens, you have three ways to proceed:
3881
3882@enumerate
3883@item
3884Remove or disable the breakpoints, then continue.
3885
3886@item
5d161b24 3887Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3888name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3889that @value{GDBN} should run your program under that name.
d4f3574e
SS
3890Then start your program again.
3891
3892@item
3893Relink your program so that the text segment is nonsharable, using the
3894linker option @samp{-N}. The operating system limitation may not apply
3895to nonsharable executables.
3896@end enumerate
c906108c
SS
3897@c @end ifclear
3898
d4f3574e
SS
3899A similar message can be printed if you request too many active
3900hardware-assisted breakpoints and watchpoints:
3901
3902@c FIXME: the precise wording of this message may change; the relevant
3903@c source change is not committed yet (Sep 3, 1999).
3904@smallexample
3905Stopped; cannot insert breakpoints.
3906You may have requested too many hardware breakpoints and watchpoints.
3907@end smallexample
3908
3909@noindent
3910This message is printed when you attempt to resume the program, since
3911only then @value{GDBN} knows exactly how many hardware breakpoints and
3912watchpoints it needs to insert.
3913
3914When this message is printed, you need to disable or remove some of the
3915hardware-assisted breakpoints and watchpoints, and then continue.
3916
79a6e687 3917@node Breakpoint-related Warnings
1485d690
KB
3918@subsection ``Breakpoint address adjusted...''
3919@cindex breakpoint address adjusted
3920
3921Some processor architectures place constraints on the addresses at
3922which breakpoints may be placed. For architectures thus constrained,
3923@value{GDBN} will attempt to adjust the breakpoint's address to comply
3924with the constraints dictated by the architecture.
3925
3926One example of such an architecture is the Fujitsu FR-V. The FR-V is
3927a VLIW architecture in which a number of RISC-like instructions may be
3928bundled together for parallel execution. The FR-V architecture
3929constrains the location of a breakpoint instruction within such a
3930bundle to the instruction with the lowest address. @value{GDBN}
3931honors this constraint by adjusting a breakpoint's address to the
3932first in the bundle.
3933
3934It is not uncommon for optimized code to have bundles which contain
3935instructions from different source statements, thus it may happen that
3936a breakpoint's address will be adjusted from one source statement to
3937another. Since this adjustment may significantly alter @value{GDBN}'s
3938breakpoint related behavior from what the user expects, a warning is
3939printed when the breakpoint is first set and also when the breakpoint
3940is hit.
3941
3942A warning like the one below is printed when setting a breakpoint
3943that's been subject to address adjustment:
3944
3945@smallexample
3946warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3947@end smallexample
3948
3949Such warnings are printed both for user settable and @value{GDBN}'s
3950internal breakpoints. If you see one of these warnings, you should
3951verify that a breakpoint set at the adjusted address will have the
3952desired affect. If not, the breakpoint in question may be removed and
b383017d 3953other breakpoints may be set which will have the desired behavior.
1485d690
KB
3954E.g., it may be sufficient to place the breakpoint at a later
3955instruction. A conditional breakpoint may also be useful in some
3956cases to prevent the breakpoint from triggering too often.
3957
3958@value{GDBN} will also issue a warning when stopping at one of these
3959adjusted breakpoints:
3960
3961@smallexample
3962warning: Breakpoint 1 address previously adjusted from 0x00010414
3963to 0x00010410.
3964@end smallexample
3965
3966When this warning is encountered, it may be too late to take remedial
3967action except in cases where the breakpoint is hit earlier or more
3968frequently than expected.
d4f3574e 3969
6d2ebf8b 3970@node Continuing and Stepping
79a6e687 3971@section Continuing and Stepping
c906108c
SS
3972
3973@cindex stepping
3974@cindex continuing
3975@cindex resuming execution
3976@dfn{Continuing} means resuming program execution until your program
3977completes normally. In contrast, @dfn{stepping} means executing just
3978one more ``step'' of your program, where ``step'' may mean either one
3979line of source code, or one machine instruction (depending on what
7a292a7a
SS
3980particular command you use). Either when continuing or when stepping,
3981your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3982it stops due to a signal, you may want to use @code{handle}, or use
3983@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3984
3985@table @code
3986@kindex continue
41afff9a
EZ
3987@kindex c @r{(@code{continue})}
3988@kindex fg @r{(resume foreground execution)}
c906108c
SS
3989@item continue @r{[}@var{ignore-count}@r{]}
3990@itemx c @r{[}@var{ignore-count}@r{]}
3991@itemx fg @r{[}@var{ignore-count}@r{]}
3992Resume program execution, at the address where your program last stopped;
3993any breakpoints set at that address are bypassed. The optional argument
3994@var{ignore-count} allows you to specify a further number of times to
3995ignore a breakpoint at this location; its effect is like that of
79a6e687 3996@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3997
3998The argument @var{ignore-count} is meaningful only when your program
3999stopped due to a breakpoint. At other times, the argument to
4000@code{continue} is ignored.
4001
d4f3574e
SS
4002The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4003debugged program is deemed to be the foreground program) are provided
4004purely for convenience, and have exactly the same behavior as
4005@code{continue}.
c906108c
SS
4006@end table
4007
4008To resume execution at a different place, you can use @code{return}
79a6e687 4009(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4010calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4011Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4012
4013A typical technique for using stepping is to set a breakpoint
79a6e687 4014(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4015beginning of the function or the section of your program where a problem
4016is believed to lie, run your program until it stops at that breakpoint,
4017and then step through the suspect area, examining the variables that are
4018interesting, until you see the problem happen.
4019
4020@table @code
4021@kindex step
41afff9a 4022@kindex s @r{(@code{step})}
c906108c
SS
4023@item step
4024Continue running your program until control reaches a different source
4025line, then stop it and return control to @value{GDBN}. This command is
4026abbreviated @code{s}.
4027
4028@quotation
4029@c "without debugging information" is imprecise; actually "without line
4030@c numbers in the debugging information". (gcc -g1 has debugging info but
4031@c not line numbers). But it seems complex to try to make that
4032@c distinction here.
4033@emph{Warning:} If you use the @code{step} command while control is
4034within a function that was compiled without debugging information,
4035execution proceeds until control reaches a function that does have
4036debugging information. Likewise, it will not step into a function which
4037is compiled without debugging information. To step through functions
4038without debugging information, use the @code{stepi} command, described
4039below.
4040@end quotation
4041
4a92d011
EZ
4042The @code{step} command only stops at the first instruction of a source
4043line. This prevents the multiple stops that could otherwise occur in
4044@code{switch} statements, @code{for} loops, etc. @code{step} continues
4045to stop if a function that has debugging information is called within
4046the line. In other words, @code{step} @emph{steps inside} any functions
4047called within the line.
c906108c 4048
d4f3574e
SS
4049Also, the @code{step} command only enters a function if there is line
4050number information for the function. Otherwise it acts like the
5d161b24 4051@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4052on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4053was any debugging information about the routine.
c906108c
SS
4054
4055@item step @var{count}
4056Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4057breakpoint is reached, or a signal not related to stepping occurs before
4058@var{count} steps, stepping stops right away.
c906108c
SS
4059
4060@kindex next
41afff9a 4061@kindex n @r{(@code{next})}
c906108c
SS
4062@item next @r{[}@var{count}@r{]}
4063Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4064This is similar to @code{step}, but function calls that appear within
4065the line of code are executed without stopping. Execution stops when
4066control reaches a different line of code at the original stack level
4067that was executing when you gave the @code{next} command. This command
4068is abbreviated @code{n}.
c906108c
SS
4069
4070An argument @var{count} is a repeat count, as for @code{step}.
4071
4072
4073@c FIX ME!! Do we delete this, or is there a way it fits in with
4074@c the following paragraph? --- Vctoria
4075@c
4076@c @code{next} within a function that lacks debugging information acts like
4077@c @code{step}, but any function calls appearing within the code of the
4078@c function are executed without stopping.
4079
d4f3574e
SS
4080The @code{next} command only stops at the first instruction of a
4081source line. This prevents multiple stops that could otherwise occur in
4a92d011 4082@code{switch} statements, @code{for} loops, etc.
c906108c 4083
b90a5f51
CF
4084@kindex set step-mode
4085@item set step-mode
4086@cindex functions without line info, and stepping
4087@cindex stepping into functions with no line info
4088@itemx set step-mode on
4a92d011 4089The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4090stop at the first instruction of a function which contains no debug line
4091information rather than stepping over it.
4092
4a92d011
EZ
4093This is useful in cases where you may be interested in inspecting the
4094machine instructions of a function which has no symbolic info and do not
4095want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4096
4097@item set step-mode off
4a92d011 4098Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4099debug information. This is the default.
4100
9c16f35a
EZ
4101@item show step-mode
4102Show whether @value{GDBN} will stop in or step over functions without
4103source line debug information.
4104
c906108c
SS
4105@kindex finish
4106@item finish
4107Continue running until just after function in the selected stack frame
4108returns. Print the returned value (if any).
4109
4110Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4111,Returning from a Function}).
c906108c
SS
4112
4113@kindex until
41afff9a 4114@kindex u @r{(@code{until})}
09d4efe1 4115@cindex run until specified location
c906108c
SS
4116@item until
4117@itemx u
4118Continue running until a source line past the current line, in the
4119current stack frame, is reached. This command is used to avoid single
4120stepping through a loop more than once. It is like the @code{next}
4121command, except that when @code{until} encounters a jump, it
4122automatically continues execution until the program counter is greater
4123than the address of the jump.
4124
4125This means that when you reach the end of a loop after single stepping
4126though it, @code{until} makes your program continue execution until it
4127exits the loop. In contrast, a @code{next} command at the end of a loop
4128simply steps back to the beginning of the loop, which forces you to step
4129through the next iteration.
4130
4131@code{until} always stops your program if it attempts to exit the current
4132stack frame.
4133
4134@code{until} may produce somewhat counterintuitive results if the order
4135of machine code does not match the order of the source lines. For
4136example, in the following excerpt from a debugging session, the @code{f}
4137(@code{frame}) command shows that execution is stopped at line
4138@code{206}; yet when we use @code{until}, we get to line @code{195}:
4139
474c8240 4140@smallexample
c906108c
SS
4141(@value{GDBP}) f
4142#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4143206 expand_input();
4144(@value{GDBP}) until
4145195 for ( ; argc > 0; NEXTARG) @{
474c8240 4146@end smallexample
c906108c
SS
4147
4148This happened because, for execution efficiency, the compiler had
4149generated code for the loop closure test at the end, rather than the
4150start, of the loop---even though the test in a C @code{for}-loop is
4151written before the body of the loop. The @code{until} command appeared
4152to step back to the beginning of the loop when it advanced to this
4153expression; however, it has not really gone to an earlier
4154statement---not in terms of the actual machine code.
4155
4156@code{until} with no argument works by means of single
4157instruction stepping, and hence is slower than @code{until} with an
4158argument.
4159
4160@item until @var{location}
4161@itemx u @var{location}
4162Continue running your program until either the specified location is
4163reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4164the forms described in @ref{Specify Location}.
4165This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4166hence is quicker than @code{until} without an argument. The specified
4167location is actually reached only if it is in the current frame. This
4168implies that @code{until} can be used to skip over recursive function
4169invocations. For instance in the code below, if the current location is
4170line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4171line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4172invocations have returned.
4173
4174@smallexample
417594 int factorial (int value)
417695 @{
417796 if (value > 1) @{
417897 value *= factorial (value - 1);
417998 @}
418099 return (value);
4181100 @}
4182@end smallexample
4183
4184
4185@kindex advance @var{location}
4186@itemx advance @var{location}
09d4efe1 4187Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4188required, which should be of one of the forms described in
4189@ref{Specify Location}.
4190Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4191frame. This command is similar to @code{until}, but @code{advance} will
4192not skip over recursive function calls, and the target location doesn't
4193have to be in the same frame as the current one.
4194
c906108c
SS
4195
4196@kindex stepi
41afff9a 4197@kindex si @r{(@code{stepi})}
c906108c 4198@item stepi
96a2c332 4199@itemx stepi @var{arg}
c906108c
SS
4200@itemx si
4201Execute one machine instruction, then stop and return to the debugger.
4202
4203It is often useful to do @samp{display/i $pc} when stepping by machine
4204instructions. This makes @value{GDBN} automatically display the next
4205instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4206Display,, Automatic Display}.
c906108c
SS
4207
4208An argument is a repeat count, as in @code{step}.
4209
4210@need 750
4211@kindex nexti
41afff9a 4212@kindex ni @r{(@code{nexti})}
c906108c 4213@item nexti
96a2c332 4214@itemx nexti @var{arg}
c906108c
SS
4215@itemx ni
4216Execute one machine instruction, but if it is a function call,
4217proceed until the function returns.
4218
4219An argument is a repeat count, as in @code{next}.
4220@end table
4221
6d2ebf8b 4222@node Signals
c906108c
SS
4223@section Signals
4224@cindex signals
4225
4226A signal is an asynchronous event that can happen in a program. The
4227operating system defines the possible kinds of signals, and gives each
4228kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4229signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4230@code{SIGSEGV} is the signal a program gets from referencing a place in
4231memory far away from all the areas in use; @code{SIGALRM} occurs when
4232the alarm clock timer goes off (which happens only if your program has
4233requested an alarm).
4234
4235@cindex fatal signals
4236Some signals, including @code{SIGALRM}, are a normal part of the
4237functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4238errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4239program has not specified in advance some other way to handle the signal.
4240@code{SIGINT} does not indicate an error in your program, but it is normally
4241fatal so it can carry out the purpose of the interrupt: to kill the program.
4242
4243@value{GDBN} has the ability to detect any occurrence of a signal in your
4244program. You can tell @value{GDBN} in advance what to do for each kind of
4245signal.
4246
4247@cindex handling signals
24f93129
EZ
4248Normally, @value{GDBN} is set up to let the non-erroneous signals like
4249@code{SIGALRM} be silently passed to your program
4250(so as not to interfere with their role in the program's functioning)
c906108c
SS
4251but to stop your program immediately whenever an error signal happens.
4252You can change these settings with the @code{handle} command.
4253
4254@table @code
4255@kindex info signals
09d4efe1 4256@kindex info handle
c906108c 4257@item info signals
96a2c332 4258@itemx info handle
c906108c
SS
4259Print a table of all the kinds of signals and how @value{GDBN} has been told to
4260handle each one. You can use this to see the signal numbers of all
4261the defined types of signals.
4262
45ac1734
EZ
4263@item info signals @var{sig}
4264Similar, but print information only about the specified signal number.
4265
d4f3574e 4266@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4267
4268@kindex handle
45ac1734 4269@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4270Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4271can be the number of a signal or its name (with or without the
24f93129 4272@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4273@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4274known signals. Optional arguments @var{keywords}, described below,
4275say what change to make.
c906108c
SS
4276@end table
4277
4278@c @group
4279The keywords allowed by the @code{handle} command can be abbreviated.
4280Their full names are:
4281
4282@table @code
4283@item nostop
4284@value{GDBN} should not stop your program when this signal happens. It may
4285still print a message telling you that the signal has come in.
4286
4287@item stop
4288@value{GDBN} should stop your program when this signal happens. This implies
4289the @code{print} keyword as well.
4290
4291@item print
4292@value{GDBN} should print a message when this signal happens.
4293
4294@item noprint
4295@value{GDBN} should not mention the occurrence of the signal at all. This
4296implies the @code{nostop} keyword as well.
4297
4298@item pass
5ece1a18 4299@itemx noignore
c906108c
SS
4300@value{GDBN} should allow your program to see this signal; your program
4301can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4302and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4303
4304@item nopass
5ece1a18 4305@itemx ignore
c906108c 4306@value{GDBN} should not allow your program to see this signal.
5ece1a18 4307@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4308@end table
4309@c @end group
4310
d4f3574e
SS
4311When a signal stops your program, the signal is not visible to the
4312program until you
c906108c
SS
4313continue. Your program sees the signal then, if @code{pass} is in
4314effect for the signal in question @emph{at that time}. In other words,
4315after @value{GDBN} reports a signal, you can use the @code{handle}
4316command with @code{pass} or @code{nopass} to control whether your
4317program sees that signal when you continue.
4318
24f93129
EZ
4319The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4320non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4321@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4322erroneous signals.
4323
c906108c
SS
4324You can also use the @code{signal} command to prevent your program from
4325seeing a signal, or cause it to see a signal it normally would not see,
4326or to give it any signal at any time. For example, if your program stopped
4327due to some sort of memory reference error, you might store correct
4328values into the erroneous variables and continue, hoping to see more
4329execution; but your program would probably terminate immediately as
4330a result of the fatal signal once it saw the signal. To prevent this,
4331you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4332Program a Signal}.
c906108c 4333
6d2ebf8b 4334@node Thread Stops
79a6e687 4335@section Stopping and Starting Multi-thread Programs
c906108c
SS
4336
4337When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4338Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4339breakpoints on all threads, or on a particular thread.
4340
4341@table @code
4342@cindex breakpoints and threads
4343@cindex thread breakpoints
4344@kindex break @dots{} thread @var{threadno}
4345@item break @var{linespec} thread @var{threadno}
4346@itemx break @var{linespec} thread @var{threadno} if @dots{}
4347@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4348writing them (@pxref{Specify Location}), but the effect is always to
4349specify some source line.
c906108c
SS
4350
4351Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4352to specify that you only want @value{GDBN} to stop the program when a
4353particular thread reaches this breakpoint. @var{threadno} is one of the
4354numeric thread identifiers assigned by @value{GDBN}, shown in the first
4355column of the @samp{info threads} display.
4356
4357If you do not specify @samp{thread @var{threadno}} when you set a
4358breakpoint, the breakpoint applies to @emph{all} threads of your
4359program.
4360
4361You can use the @code{thread} qualifier on conditional breakpoints as
4362well; in this case, place @samp{thread @var{threadno}} before the
4363breakpoint condition, like this:
4364
4365@smallexample
2df3850c 4366(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4367@end smallexample
4368
4369@end table
4370
4371@cindex stopped threads
4372@cindex threads, stopped
4373Whenever your program stops under @value{GDBN} for any reason,
4374@emph{all} threads of execution stop, not just the current thread. This
4375allows you to examine the overall state of the program, including
4376switching between threads, without worrying that things may change
4377underfoot.
4378
36d86913
MC
4379@cindex thread breakpoints and system calls
4380@cindex system calls and thread breakpoints
4381@cindex premature return from system calls
4382There is an unfortunate side effect. If one thread stops for a
4383breakpoint, or for some other reason, and another thread is blocked in a
4384system call, then the system call may return prematurely. This is a
4385consequence of the interaction between multiple threads and the signals
4386that @value{GDBN} uses to implement breakpoints and other events that
4387stop execution.
4388
4389To handle this problem, your program should check the return value of
4390each system call and react appropriately. This is good programming
4391style anyways.
4392
4393For example, do not write code like this:
4394
4395@smallexample
4396 sleep (10);
4397@end smallexample
4398
4399The call to @code{sleep} will return early if a different thread stops
4400at a breakpoint or for some other reason.
4401
4402Instead, write this:
4403
4404@smallexample
4405 int unslept = 10;
4406 while (unslept > 0)
4407 unslept = sleep (unslept);
4408@end smallexample
4409
4410A system call is allowed to return early, so the system is still
4411conforming to its specification. But @value{GDBN} does cause your
4412multi-threaded program to behave differently than it would without
4413@value{GDBN}.
4414
4415Also, @value{GDBN} uses internal breakpoints in the thread library to
4416monitor certain events such as thread creation and thread destruction.
4417When such an event happens, a system call in another thread may return
4418prematurely, even though your program does not appear to stop.
4419
c906108c
SS
4420@cindex continuing threads
4421@cindex threads, continuing
4422Conversely, whenever you restart the program, @emph{all} threads start
4423executing. @emph{This is true even when single-stepping} with commands
5d161b24 4424like @code{step} or @code{next}.
c906108c
SS
4425
4426In particular, @value{GDBN} cannot single-step all threads in lockstep.
4427Since thread scheduling is up to your debugging target's operating
4428system (not controlled by @value{GDBN}), other threads may
4429execute more than one statement while the current thread completes a
4430single step. Moreover, in general other threads stop in the middle of a
4431statement, rather than at a clean statement boundary, when the program
4432stops.
4433
4434You might even find your program stopped in another thread after
4435continuing or even single-stepping. This happens whenever some other
4436thread runs into a breakpoint, a signal, or an exception before the
4437first thread completes whatever you requested.
4438
4439On some OSes, you can lock the OS scheduler and thus allow only a single
4440thread to run.
4441
4442@table @code
4443@item set scheduler-locking @var{mode}
9c16f35a
EZ
4444@cindex scheduler locking mode
4445@cindex lock scheduler
c906108c
SS
4446Set the scheduler locking mode. If it is @code{off}, then there is no
4447locking and any thread may run at any time. If @code{on}, then only the
4448current thread may run when the inferior is resumed. The @code{step}
4449mode optimizes for single-stepping. It stops other threads from
4450``seizing the prompt'' by preempting the current thread while you are
4451stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4452when you step. They are more likely to run when you @samp{next} over a
c906108c 4453function call, and they are completely free to run when you use commands
d4f3574e 4454like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4455thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4456@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4457
4458@item show scheduler-locking
4459Display the current scheduler locking mode.
4460@end table
4461
c906108c 4462
6d2ebf8b 4463@node Stack
c906108c
SS
4464@chapter Examining the Stack
4465
4466When your program has stopped, the first thing you need to know is where it
4467stopped and how it got there.
4468
4469@cindex call stack
5d161b24
DB
4470Each time your program performs a function call, information about the call
4471is generated.
4472That information includes the location of the call in your program,
4473the arguments of the call,
c906108c 4474and the local variables of the function being called.
5d161b24 4475The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4476The stack frames are allocated in a region of memory called the @dfn{call
4477stack}.
4478
4479When your program stops, the @value{GDBN} commands for examining the
4480stack allow you to see all of this information.
4481
4482@cindex selected frame
4483One of the stack frames is @dfn{selected} by @value{GDBN} and many
4484@value{GDBN} commands refer implicitly to the selected frame. In
4485particular, whenever you ask @value{GDBN} for the value of a variable in
4486your program, the value is found in the selected frame. There are
4487special @value{GDBN} commands to select whichever frame you are
79a6e687 4488interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4489
4490When your program stops, @value{GDBN} automatically selects the
5d161b24 4491currently executing frame and describes it briefly, similar to the
79a6e687 4492@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4493
4494@menu
4495* Frames:: Stack frames
4496* Backtrace:: Backtraces
4497* Selection:: Selecting a frame
4498* Frame Info:: Information on a frame
c906108c
SS
4499
4500@end menu
4501
6d2ebf8b 4502@node Frames
79a6e687 4503@section Stack Frames
c906108c 4504
d4f3574e 4505@cindex frame, definition
c906108c
SS
4506@cindex stack frame
4507The call stack is divided up into contiguous pieces called @dfn{stack
4508frames}, or @dfn{frames} for short; each frame is the data associated
4509with one call to one function. The frame contains the arguments given
4510to the function, the function's local variables, and the address at
4511which the function is executing.
4512
4513@cindex initial frame
4514@cindex outermost frame
4515@cindex innermost frame
4516When your program is started, the stack has only one frame, that of the
4517function @code{main}. This is called the @dfn{initial} frame or the
4518@dfn{outermost} frame. Each time a function is called, a new frame is
4519made. Each time a function returns, the frame for that function invocation
4520is eliminated. If a function is recursive, there can be many frames for
4521the same function. The frame for the function in which execution is
4522actually occurring is called the @dfn{innermost} frame. This is the most
4523recently created of all the stack frames that still exist.
4524
4525@cindex frame pointer
4526Inside your program, stack frames are identified by their addresses. A
4527stack frame consists of many bytes, each of which has its own address; each
4528kind of computer has a convention for choosing one byte whose
4529address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4530in a register called the @dfn{frame pointer register}
4531(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4532
4533@cindex frame number
4534@value{GDBN} assigns numbers to all existing stack frames, starting with
4535zero for the innermost frame, one for the frame that called it,
4536and so on upward. These numbers do not really exist in your program;
4537they are assigned by @value{GDBN} to give you a way of designating stack
4538frames in @value{GDBN} commands.
4539
6d2ebf8b
SS
4540@c The -fomit-frame-pointer below perennially causes hbox overflow
4541@c underflow problems.
c906108c
SS
4542@cindex frameless execution
4543Some compilers provide a way to compile functions so that they operate
e22ea452 4544without stack frames. (For example, the @value{NGCC} option
474c8240 4545@smallexample
6d2ebf8b 4546@samp{-fomit-frame-pointer}
474c8240 4547@end smallexample
6d2ebf8b 4548generates functions without a frame.)
c906108c
SS
4549This is occasionally done with heavily used library functions to save
4550the frame setup time. @value{GDBN} has limited facilities for dealing
4551with these function invocations. If the innermost function invocation
4552has no stack frame, @value{GDBN} nevertheless regards it as though
4553it had a separate frame, which is numbered zero as usual, allowing
4554correct tracing of the function call chain. However, @value{GDBN} has
4555no provision for frameless functions elsewhere in the stack.
4556
4557@table @code
d4f3574e 4558@kindex frame@r{, command}
41afff9a 4559@cindex current stack frame
c906108c 4560@item frame @var{args}
5d161b24 4561The @code{frame} command allows you to move from one stack frame to another,
c906108c 4562and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4563address of the frame or the stack frame number. Without an argument,
4564@code{frame} prints the current stack frame.
c906108c
SS
4565
4566@kindex select-frame
41afff9a 4567@cindex selecting frame silently
c906108c
SS
4568@item select-frame
4569The @code{select-frame} command allows you to move from one stack frame
4570to another without printing the frame. This is the silent version of
4571@code{frame}.
4572@end table
4573
6d2ebf8b 4574@node Backtrace
c906108c
SS
4575@section Backtraces
4576
09d4efe1
EZ
4577@cindex traceback
4578@cindex call stack traces
c906108c
SS
4579A backtrace is a summary of how your program got where it is. It shows one
4580line per frame, for many frames, starting with the currently executing
4581frame (frame zero), followed by its caller (frame one), and on up the
4582stack.
4583
4584@table @code
4585@kindex backtrace
41afff9a 4586@kindex bt @r{(@code{backtrace})}
c906108c
SS
4587@item backtrace
4588@itemx bt
4589Print a backtrace of the entire stack: one line per frame for all
4590frames in the stack.
4591
4592You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4593character, normally @kbd{Ctrl-c}.
c906108c
SS
4594
4595@item backtrace @var{n}
4596@itemx bt @var{n}
4597Similar, but print only the innermost @var{n} frames.
4598
4599@item backtrace -@var{n}
4600@itemx bt -@var{n}
4601Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4602
4603@item backtrace full
0f061b69 4604@itemx bt full
dd74f6ae
NR
4605@itemx bt full @var{n}
4606@itemx bt full -@var{n}
e7109c7e 4607Print the values of the local variables also. @var{n} specifies the
286ba84d 4608number of frames to print, as described above.
c906108c
SS
4609@end table
4610
4611@kindex where
4612@kindex info stack
c906108c
SS
4613The names @code{where} and @code{info stack} (abbreviated @code{info s})
4614are additional aliases for @code{backtrace}.
4615
839c27b7
EZ
4616@cindex multiple threads, backtrace
4617In a multi-threaded program, @value{GDBN} by default shows the
4618backtrace only for the current thread. To display the backtrace for
4619several or all of the threads, use the command @code{thread apply}
4620(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4621apply all backtrace}, @value{GDBN} will display the backtrace for all
4622the threads; this is handy when you debug a core dump of a
4623multi-threaded program.
4624
c906108c
SS
4625Each line in the backtrace shows the frame number and the function name.
4626The program counter value is also shown---unless you use @code{set
4627print address off}. The backtrace also shows the source file name and
4628line number, as well as the arguments to the function. The program
4629counter value is omitted if it is at the beginning of the code for that
4630line number.
4631
4632Here is an example of a backtrace. It was made with the command
4633@samp{bt 3}, so it shows the innermost three frames.
4634
4635@smallexample
4636@group
5d161b24 4637#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4638 at builtin.c:993
4639#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4640#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4641 at macro.c:71
4642(More stack frames follow...)
4643@end group
4644@end smallexample
4645
4646@noindent
4647The display for frame zero does not begin with a program counter
4648value, indicating that your program has stopped at the beginning of the
4649code for line @code{993} of @code{builtin.c}.
4650
18999be5
EZ
4651@cindex value optimized out, in backtrace
4652@cindex function call arguments, optimized out
4653If your program was compiled with optimizations, some compilers will
4654optimize away arguments passed to functions if those arguments are
4655never used after the call. Such optimizations generate code that
4656passes arguments through registers, but doesn't store those arguments
4657in the stack frame. @value{GDBN} has no way of displaying such
4658arguments in stack frames other than the innermost one. Here's what
4659such a backtrace might look like:
4660
4661@smallexample
4662@group
4663#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4664 at builtin.c:993
4665#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4666#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4667 at macro.c:71
4668(More stack frames follow...)
4669@end group
4670@end smallexample
4671
4672@noindent
4673The values of arguments that were not saved in their stack frames are
4674shown as @samp{<value optimized out>}.
4675
4676If you need to display the values of such optimized-out arguments,
4677either deduce that from other variables whose values depend on the one
4678you are interested in, or recompile without optimizations.
4679
a8f24a35
EZ
4680@cindex backtrace beyond @code{main} function
4681@cindex program entry point
4682@cindex startup code, and backtrace
25d29d70
AC
4683Most programs have a standard user entry point---a place where system
4684libraries and startup code transition into user code. For C this is
d416eeec
EZ
4685@code{main}@footnote{
4686Note that embedded programs (the so-called ``free-standing''
4687environment) are not required to have a @code{main} function as the
4688entry point. They could even have multiple entry points.}.
4689When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4690it will terminate the backtrace, to avoid tracing into highly
4691system-specific (and generally uninteresting) code.
4692
4693If you need to examine the startup code, or limit the number of levels
4694in a backtrace, you can change this behavior:
95f90d25
DJ
4695
4696@table @code
25d29d70
AC
4697@item set backtrace past-main
4698@itemx set backtrace past-main on
4644b6e3 4699@kindex set backtrace
25d29d70
AC
4700Backtraces will continue past the user entry point.
4701
4702@item set backtrace past-main off
95f90d25
DJ
4703Backtraces will stop when they encounter the user entry point. This is the
4704default.
4705
25d29d70 4706@item show backtrace past-main
4644b6e3 4707@kindex show backtrace
25d29d70
AC
4708Display the current user entry point backtrace policy.
4709
2315ffec
RC
4710@item set backtrace past-entry
4711@itemx set backtrace past-entry on
a8f24a35 4712Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4713This entry point is encoded by the linker when the application is built,
4714and is likely before the user entry point @code{main} (or equivalent) is called.
4715
4716@item set backtrace past-entry off
d3e8051b 4717Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4718application. This is the default.
4719
4720@item show backtrace past-entry
4721Display the current internal entry point backtrace policy.
4722
25d29d70
AC
4723@item set backtrace limit @var{n}
4724@itemx set backtrace limit 0
4725@cindex backtrace limit
4726Limit the backtrace to @var{n} levels. A value of zero means
4727unlimited.
95f90d25 4728
25d29d70
AC
4729@item show backtrace limit
4730Display the current limit on backtrace levels.
95f90d25
DJ
4731@end table
4732
6d2ebf8b 4733@node Selection
79a6e687 4734@section Selecting a Frame
c906108c
SS
4735
4736Most commands for examining the stack and other data in your program work on
4737whichever stack frame is selected at the moment. Here are the commands for
4738selecting a stack frame; all of them finish by printing a brief description
4739of the stack frame just selected.
4740
4741@table @code
d4f3574e 4742@kindex frame@r{, selecting}
41afff9a 4743@kindex f @r{(@code{frame})}
c906108c
SS
4744@item frame @var{n}
4745@itemx f @var{n}
4746Select frame number @var{n}. Recall that frame zero is the innermost
4747(currently executing) frame, frame one is the frame that called the
4748innermost one, and so on. The highest-numbered frame is the one for
4749@code{main}.
4750
4751@item frame @var{addr}
4752@itemx f @var{addr}
4753Select the frame at address @var{addr}. This is useful mainly if the
4754chaining of stack frames has been damaged by a bug, making it
4755impossible for @value{GDBN} to assign numbers properly to all frames. In
4756addition, this can be useful when your program has multiple stacks and
4757switches between them.
4758
c906108c
SS
4759On the SPARC architecture, @code{frame} needs two addresses to
4760select an arbitrary frame: a frame pointer and a stack pointer.
4761
4762On the MIPS and Alpha architecture, it needs two addresses: a stack
4763pointer and a program counter.
4764
4765On the 29k architecture, it needs three addresses: a register stack
4766pointer, a program counter, and a memory stack pointer.
c906108c
SS
4767
4768@kindex up
4769@item up @var{n}
4770Move @var{n} frames up the stack. For positive numbers @var{n}, this
4771advances toward the outermost frame, to higher frame numbers, to frames
4772that have existed longer. @var{n} defaults to one.
4773
4774@kindex down
41afff9a 4775@kindex do @r{(@code{down})}
c906108c
SS
4776@item down @var{n}
4777Move @var{n} frames down the stack. For positive numbers @var{n}, this
4778advances toward the innermost frame, to lower frame numbers, to frames
4779that were created more recently. @var{n} defaults to one. You may
4780abbreviate @code{down} as @code{do}.
4781@end table
4782
4783All of these commands end by printing two lines of output describing the
4784frame. The first line shows the frame number, the function name, the
4785arguments, and the source file and line number of execution in that
5d161b24 4786frame. The second line shows the text of that source line.
c906108c
SS
4787
4788@need 1000
4789For example:
4790
4791@smallexample
4792@group
4793(@value{GDBP}) up
4794#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4795 at env.c:10
479610 read_input_file (argv[i]);
4797@end group
4798@end smallexample
4799
4800After such a printout, the @code{list} command with no arguments
4801prints ten lines centered on the point of execution in the frame.
87885426
FN
4802You can also edit the program at the point of execution with your favorite
4803editing program by typing @code{edit}.
79a6e687 4804@xref{List, ,Printing Source Lines},
87885426 4805for details.
c906108c
SS
4806
4807@table @code
4808@kindex down-silently
4809@kindex up-silently
4810@item up-silently @var{n}
4811@itemx down-silently @var{n}
4812These two commands are variants of @code{up} and @code{down},
4813respectively; they differ in that they do their work silently, without
4814causing display of the new frame. They are intended primarily for use
4815in @value{GDBN} command scripts, where the output might be unnecessary and
4816distracting.
4817@end table
4818
6d2ebf8b 4819@node Frame Info
79a6e687 4820@section Information About a Frame
c906108c
SS
4821
4822There are several other commands to print information about the selected
4823stack frame.
4824
4825@table @code
4826@item frame
4827@itemx f
4828When used without any argument, this command does not change which
4829frame is selected, but prints a brief description of the currently
4830selected stack frame. It can be abbreviated @code{f}. With an
4831argument, this command is used to select a stack frame.
79a6e687 4832@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4833
4834@kindex info frame
41afff9a 4835@kindex info f @r{(@code{info frame})}
c906108c
SS
4836@item info frame
4837@itemx info f
4838This command prints a verbose description of the selected stack frame,
4839including:
4840
4841@itemize @bullet
5d161b24
DB
4842@item
4843the address of the frame
c906108c
SS
4844@item
4845the address of the next frame down (called by this frame)
4846@item
4847the address of the next frame up (caller of this frame)
4848@item
4849the language in which the source code corresponding to this frame is written
4850@item
4851the address of the frame's arguments
4852@item
d4f3574e
SS
4853the address of the frame's local variables
4854@item
c906108c
SS
4855the program counter saved in it (the address of execution in the caller frame)
4856@item
4857which registers were saved in the frame
4858@end itemize
4859
4860@noindent The verbose description is useful when
4861something has gone wrong that has made the stack format fail to fit
4862the usual conventions.
4863
4864@item info frame @var{addr}
4865@itemx info f @var{addr}
4866Print a verbose description of the frame at address @var{addr}, without
4867selecting that frame. The selected frame remains unchanged by this
4868command. This requires the same kind of address (more than one for some
4869architectures) that you specify in the @code{frame} command.
79a6e687 4870@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4871
4872@kindex info args
4873@item info args
4874Print the arguments of the selected frame, each on a separate line.
4875
4876@item info locals
4877@kindex info locals
4878Print the local variables of the selected frame, each on a separate
4879line. These are all variables (declared either static or automatic)
4880accessible at the point of execution of the selected frame.
4881
c906108c 4882@kindex info catch
d4f3574e
SS
4883@cindex catch exceptions, list active handlers
4884@cindex exception handlers, how to list
c906108c
SS
4885@item info catch
4886Print a list of all the exception handlers that are active in the
4887current stack frame at the current point of execution. To see other
4888exception handlers, visit the associated frame (using the @code{up},
4889@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4890@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4891
c906108c
SS
4892@end table
4893
c906108c 4894
6d2ebf8b 4895@node Source
c906108c
SS
4896@chapter Examining Source Files
4897
4898@value{GDBN} can print parts of your program's source, since the debugging
4899information recorded in the program tells @value{GDBN} what source files were
4900used to build it. When your program stops, @value{GDBN} spontaneously prints
4901the line where it stopped. Likewise, when you select a stack frame
79a6e687 4902(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4903execution in that frame has stopped. You can print other portions of
4904source files by explicit command.
4905
7a292a7a 4906If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4907prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4908@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4909
4910@menu
4911* List:: Printing source lines
2a25a5ba 4912* Specify Location:: How to specify code locations
87885426 4913* Edit:: Editing source files
c906108c 4914* Search:: Searching source files
c906108c
SS
4915* Source Path:: Specifying source directories
4916* Machine Code:: Source and machine code
4917@end menu
4918
6d2ebf8b 4919@node List
79a6e687 4920@section Printing Source Lines
c906108c
SS
4921
4922@kindex list
41afff9a 4923@kindex l @r{(@code{list})}
c906108c 4924To print lines from a source file, use the @code{list} command
5d161b24 4925(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4926There are several ways to specify what part of the file you want to
4927print; see @ref{Specify Location}, for the full list.
c906108c
SS
4928
4929Here are the forms of the @code{list} command most commonly used:
4930
4931@table @code
4932@item list @var{linenum}
4933Print lines centered around line number @var{linenum} in the
4934current source file.
4935
4936@item list @var{function}
4937Print lines centered around the beginning of function
4938@var{function}.
4939
4940@item list
4941Print more lines. If the last lines printed were printed with a
4942@code{list} command, this prints lines following the last lines
4943printed; however, if the last line printed was a solitary line printed
4944as part of displaying a stack frame (@pxref{Stack, ,Examining the
4945Stack}), this prints lines centered around that line.
4946
4947@item list -
4948Print lines just before the lines last printed.
4949@end table
4950
9c16f35a 4951@cindex @code{list}, how many lines to display
c906108c
SS
4952By default, @value{GDBN} prints ten source lines with any of these forms of
4953the @code{list} command. You can change this using @code{set listsize}:
4954
4955@table @code
4956@kindex set listsize
4957@item set listsize @var{count}
4958Make the @code{list} command display @var{count} source lines (unless
4959the @code{list} argument explicitly specifies some other number).
4960
4961@kindex show listsize
4962@item show listsize
4963Display the number of lines that @code{list} prints.
4964@end table
4965
4966Repeating a @code{list} command with @key{RET} discards the argument,
4967so it is equivalent to typing just @code{list}. This is more useful
4968than listing the same lines again. An exception is made for an
4969argument of @samp{-}; that argument is preserved in repetition so that
4970each repetition moves up in the source file.
4971
c906108c
SS
4972In general, the @code{list} command expects you to supply zero, one or two
4973@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4974of writing them (@pxref{Specify Location}), but the effect is always
4975to specify some source line.
4976
c906108c
SS
4977Here is a complete description of the possible arguments for @code{list}:
4978
4979@table @code
4980@item list @var{linespec}
4981Print lines centered around the line specified by @var{linespec}.
4982
4983@item list @var{first},@var{last}
4984Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4985linespecs. When a @code{list} command has two linespecs, and the
4986source file of the second linespec is omitted, this refers to
4987the same source file as the first linespec.
c906108c
SS
4988
4989@item list ,@var{last}
4990Print lines ending with @var{last}.
4991
4992@item list @var{first},
4993Print lines starting with @var{first}.
4994
4995@item list +
4996Print lines just after the lines last printed.
4997
4998@item list -
4999Print lines just before the lines last printed.
5000
5001@item list
5002As described in the preceding table.
5003@end table
5004
2a25a5ba
EZ
5005@node Specify Location
5006@section Specifying a Location
5007@cindex specifying location
5008@cindex linespec
c906108c 5009
2a25a5ba
EZ
5010Several @value{GDBN} commands accept arguments that specify a location
5011of your program's code. Since @value{GDBN} is a source-level
5012debugger, a location usually specifies some line in the source code;
5013for that reason, locations are also known as @dfn{linespecs}.
c906108c 5014
2a25a5ba
EZ
5015Here are all the different ways of specifying a code location that
5016@value{GDBN} understands:
c906108c 5017
2a25a5ba
EZ
5018@table @code
5019@item @var{linenum}
5020Specifies the line number @var{linenum} of the current source file.
c906108c 5021
2a25a5ba
EZ
5022@item -@var{offset}
5023@itemx +@var{offset}
5024Specifies the line @var{offset} lines before or after the @dfn{current
5025line}. For the @code{list} command, the current line is the last one
5026printed; for the breakpoint commands, this is the line at which
5027execution stopped in the currently selected @dfn{stack frame}
5028(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5029used as the second of the two linespecs in a @code{list} command,
5030this specifies the line @var{offset} lines up or down from the first
5031linespec.
5032
5033@item @var{filename}:@var{linenum}
5034Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5035
5036@item @var{function}
5037Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5038For example, in C, this is the line with the open brace.
c906108c
SS
5039
5040@item @var{filename}:@var{function}
2a25a5ba
EZ
5041Specifies the line that begins the body of the function @var{function}
5042in the file @var{filename}. You only need the file name with a
5043function name to avoid ambiguity when there are identically named
5044functions in different source files.
c906108c
SS
5045
5046@item *@var{address}
2a25a5ba
EZ
5047Specifies the program address @var{address}. For line-oriented
5048commands, such as @code{list} and @code{edit}, this specifies a source
5049line that contains @var{address}. For @code{break} and other
5050breakpoint oriented commands, this can be used to set breakpoints in
5051parts of your program which do not have debugging information or
5052source files.
5053
5054Here @var{address} may be any expression valid in the current working
5055language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5056address. In addition, as a convenience, @value{GDBN} extends the
5057semantics of expressions used in locations to cover the situations
5058that frequently happen during debugging. Here are the various forms
5059of @var{address}:
2a25a5ba
EZ
5060
5061@table @code
5062@item @var{expression}
5063Any expression valid in the current working language.
5064
5065@item @var{funcaddr}
5066An address of a function or procedure derived from its name. In C,
5067C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5068simply the function's name @var{function} (and actually a special case
5069of a valid expression). In Pascal and Modula-2, this is
5070@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5071(although the Pascal form also works).
5072
5073This form specifies the address of the function's first instruction,
5074before the stack frame and arguments have been set up.
5075
5076@item '@var{filename}'::@var{funcaddr}
5077Like @var{funcaddr} above, but also specifies the name of the source
5078file explicitly. This is useful if the name of the function does not
5079specify the function unambiguously, e.g., if there are several
5080functions with identical names in different source files.
c906108c
SS
5081@end table
5082
2a25a5ba
EZ
5083@end table
5084
5085
87885426 5086@node Edit
79a6e687 5087@section Editing Source Files
87885426
FN
5088@cindex editing source files
5089
5090@kindex edit
5091@kindex e @r{(@code{edit})}
5092To edit the lines in a source file, use the @code{edit} command.
5093The editing program of your choice
5094is invoked with the current line set to
5095the active line in the program.
5096Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5097want to print if you want to see other parts of the program:
87885426
FN
5098
5099@table @code
2a25a5ba
EZ
5100@item edit @var{location}
5101Edit the source file specified by @code{location}. Editing starts at
5102that @var{location}, e.g., at the specified source line of the
5103specified file. @xref{Specify Location}, for all the possible forms
5104of the @var{location} argument; here are the forms of the @code{edit}
5105command most commonly used:
87885426 5106
2a25a5ba 5107@table @code
87885426
FN
5108@item edit @var{number}
5109Edit the current source file with @var{number} as the active line number.
5110
5111@item edit @var{function}
5112Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5113@end table
87885426 5114
87885426
FN
5115@end table
5116
79a6e687 5117@subsection Choosing your Editor
87885426
FN
5118You can customize @value{GDBN} to use any editor you want
5119@footnote{
5120The only restriction is that your editor (say @code{ex}), recognizes the
5121following command-line syntax:
10998722 5122@smallexample
87885426 5123ex +@var{number} file
10998722 5124@end smallexample
15387254
EZ
5125The optional numeric value +@var{number} specifies the number of the line in
5126the file where to start editing.}.
5127By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5128by setting the environment variable @code{EDITOR} before using
5129@value{GDBN}. For example, to configure @value{GDBN} to use the
5130@code{vi} editor, you could use these commands with the @code{sh} shell:
5131@smallexample
87885426
FN
5132EDITOR=/usr/bin/vi
5133export EDITOR
15387254 5134gdb @dots{}
10998722 5135@end smallexample
87885426 5136or in the @code{csh} shell,
10998722 5137@smallexample
87885426 5138setenv EDITOR /usr/bin/vi
15387254 5139gdb @dots{}
10998722 5140@end smallexample
87885426 5141
6d2ebf8b 5142@node Search
79a6e687 5143@section Searching Source Files
15387254 5144@cindex searching source files
c906108c
SS
5145
5146There are two commands for searching through the current source file for a
5147regular expression.
5148
5149@table @code
5150@kindex search
5151@kindex forward-search
5152@item forward-search @var{regexp}
5153@itemx search @var{regexp}
5154The command @samp{forward-search @var{regexp}} checks each line,
5155starting with the one following the last line listed, for a match for
5d161b24 5156@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5157synonym @samp{search @var{regexp}} or abbreviate the command name as
5158@code{fo}.
5159
09d4efe1 5160@kindex reverse-search
c906108c
SS
5161@item reverse-search @var{regexp}
5162The command @samp{reverse-search @var{regexp}} checks each line, starting
5163with the one before the last line listed and going backward, for a match
5164for @var{regexp}. It lists the line that is found. You can abbreviate
5165this command as @code{rev}.
5166@end table
c906108c 5167
6d2ebf8b 5168@node Source Path
79a6e687 5169@section Specifying Source Directories
c906108c
SS
5170
5171@cindex source path
5172@cindex directories for source files
5173Executable programs sometimes do not record the directories of the source
5174files from which they were compiled, just the names. Even when they do,
5175the directories could be moved between the compilation and your debugging
5176session. @value{GDBN} has a list of directories to search for source files;
5177this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5178it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5179in the list, until it finds a file with the desired name.
5180
5181For example, suppose an executable references the file
5182@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5183@file{/mnt/cross}. The file is first looked up literally; if this
5184fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5185fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5186message is printed. @value{GDBN} does not look up the parts of the
5187source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5188Likewise, the subdirectories of the source path are not searched: if
5189the source path is @file{/mnt/cross}, and the binary refers to
5190@file{foo.c}, @value{GDBN} would not find it under
5191@file{/mnt/cross/usr/src/foo-1.0/lib}.
5192
5193Plain file names, relative file names with leading directories, file
5194names containing dots, etc.@: are all treated as described above; for
5195instance, if the source path is @file{/mnt/cross}, and the source file
5196is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5197@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5198that---@file{/mnt/cross/foo.c}.
5199
5200Note that the executable search path is @emph{not} used to locate the
cd852561 5201source files.
c906108c
SS
5202
5203Whenever you reset or rearrange the source path, @value{GDBN} clears out
5204any information it has cached about where source files are found and where
5205each line is in the file.
5206
5207@kindex directory
5208@kindex dir
d4f3574e
SS
5209When you start @value{GDBN}, its source path includes only @samp{cdir}
5210and @samp{cwd}, in that order.
c906108c
SS
5211To add other directories, use the @code{directory} command.
5212
4b505b12
AS
5213The search path is used to find both program source files and @value{GDBN}
5214script files (read using the @samp{-command} option and @samp{source} command).
5215
30daae6c
JB
5216In addition to the source path, @value{GDBN} provides a set of commands
5217that manage a list of source path substitution rules. A @dfn{substitution
5218rule} specifies how to rewrite source directories stored in the program's
5219debug information in case the sources were moved to a different
5220directory between compilation and debugging. A rule is made of
5221two strings, the first specifying what needs to be rewritten in
5222the path, and the second specifying how it should be rewritten.
5223In @ref{set substitute-path}, we name these two parts @var{from} and
5224@var{to} respectively. @value{GDBN} does a simple string replacement
5225of @var{from} with @var{to} at the start of the directory part of the
5226source file name, and uses that result instead of the original file
5227name to look up the sources.
5228
5229Using the previous example, suppose the @file{foo-1.0} tree has been
5230moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5231@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5232@file{/mnt/cross}. The first lookup will then be
5233@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5234of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5235substitution rule, use the @code{set substitute-path} command
5236(@pxref{set substitute-path}).
5237
5238To avoid unexpected substitution results, a rule is applied only if the
5239@var{from} part of the directory name ends at a directory separator.
5240For instance, a rule substituting @file{/usr/source} into
5241@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5242not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5243is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5244not be applied to @file{/root/usr/source/baz.c} either.
5245
5246In many cases, you can achieve the same result using the @code{directory}
5247command. However, @code{set substitute-path} can be more efficient in
5248the case where the sources are organized in a complex tree with multiple
5249subdirectories. With the @code{directory} command, you need to add each
5250subdirectory of your project. If you moved the entire tree while
5251preserving its internal organization, then @code{set substitute-path}
5252allows you to direct the debugger to all the sources with one single
5253command.
5254
5255@code{set substitute-path} is also more than just a shortcut command.
5256The source path is only used if the file at the original location no
5257longer exists. On the other hand, @code{set substitute-path} modifies
5258the debugger behavior to look at the rewritten location instead. So, if
5259for any reason a source file that is not relevant to your executable is
5260located at the original location, a substitution rule is the only
3f94c067 5261method available to point @value{GDBN} at the new location.
30daae6c 5262
c906108c
SS
5263@table @code
5264@item directory @var{dirname} @dots{}
5265@item dir @var{dirname} @dots{}
5266Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5267directory names may be given to this command, separated by @samp{:}
5268(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5269part of absolute file names) or
c906108c
SS
5270whitespace. You may specify a directory that is already in the source
5271path; this moves it forward, so @value{GDBN} searches it sooner.
5272
5273@kindex cdir
5274@kindex cwd
41afff9a 5275@vindex $cdir@r{, convenience variable}
d3e8051b 5276@vindex $cwd@r{, convenience variable}
c906108c
SS
5277@cindex compilation directory
5278@cindex current directory
5279@cindex working directory
5280@cindex directory, current
5281@cindex directory, compilation
5282You can use the string @samp{$cdir} to refer to the compilation
5283directory (if one is recorded), and @samp{$cwd} to refer to the current
5284working directory. @samp{$cwd} is not the same as @samp{.}---the former
5285tracks the current working directory as it changes during your @value{GDBN}
5286session, while the latter is immediately expanded to the current
5287directory at the time you add an entry to the source path.
5288
5289@item directory
cd852561 5290Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5291
5292@c RET-repeat for @code{directory} is explicitly disabled, but since
5293@c repeating it would be a no-op we do not say that. (thanks to RMS)
5294
5295@item show directories
5296@kindex show directories
5297Print the source path: show which directories it contains.
30daae6c
JB
5298
5299@anchor{set substitute-path}
5300@item set substitute-path @var{from} @var{to}
5301@kindex set substitute-path
5302Define a source path substitution rule, and add it at the end of the
5303current list of existing substitution rules. If a rule with the same
5304@var{from} was already defined, then the old rule is also deleted.
5305
5306For example, if the file @file{/foo/bar/baz.c} was moved to
5307@file{/mnt/cross/baz.c}, then the command
5308
5309@smallexample
5310(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5311@end smallexample
5312
5313@noindent
5314will tell @value{GDBN} to replace @samp{/usr/src} with
5315@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5316@file{baz.c} even though it was moved.
5317
5318In the case when more than one substitution rule have been defined,
5319the rules are evaluated one by one in the order where they have been
5320defined. The first one matching, if any, is selected to perform
5321the substitution.
5322
5323For instance, if we had entered the following commands:
5324
5325@smallexample
5326(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5327(@value{GDBP}) set substitute-path /usr/src /mnt/src
5328@end smallexample
5329
5330@noindent
5331@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5332@file{/mnt/include/defs.h} by using the first rule. However, it would
5333use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5334@file{/mnt/src/lib/foo.c}.
5335
5336
5337@item unset substitute-path [path]
5338@kindex unset substitute-path
5339If a path is specified, search the current list of substitution rules
5340for a rule that would rewrite that path. Delete that rule if found.
5341A warning is emitted by the debugger if no rule could be found.
5342
5343If no path is specified, then all substitution rules are deleted.
5344
5345@item show substitute-path [path]
5346@kindex show substitute-path
5347If a path is specified, then print the source path substitution rule
5348which would rewrite that path, if any.
5349
5350If no path is specified, then print all existing source path substitution
5351rules.
5352
c906108c
SS
5353@end table
5354
5355If your source path is cluttered with directories that are no longer of
5356interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5357versions of source. You can correct the situation as follows:
5358
5359@enumerate
5360@item
cd852561 5361Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5362
5363@item
5364Use @code{directory} with suitable arguments to reinstall the
5365directories you want in the source path. You can add all the
5366directories in one command.
5367@end enumerate
5368
6d2ebf8b 5369@node Machine Code
79a6e687 5370@section Source and Machine Code
15387254 5371@cindex source line and its code address
c906108c
SS
5372
5373You can use the command @code{info line} to map source lines to program
5374addresses (and vice versa), and the command @code{disassemble} to display
5375a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5376mode, the @code{info line} command causes the arrow to point to the
5d161b24 5377line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5378well as hex.
5379
5380@table @code
5381@kindex info line
5382@item info line @var{linespec}
5383Print the starting and ending addresses of the compiled code for
5384source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5385the ways documented in @ref{Specify Location}.
c906108c
SS
5386@end table
5387
5388For example, we can use @code{info line} to discover the location of
5389the object code for the first line of function
5390@code{m4_changequote}:
5391
d4f3574e
SS
5392@c FIXME: I think this example should also show the addresses in
5393@c symbolic form, as they usually would be displayed.
c906108c 5394@smallexample
96a2c332 5395(@value{GDBP}) info line m4_changequote
c906108c
SS
5396Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5397@end smallexample
5398
5399@noindent
15387254 5400@cindex code address and its source line
c906108c
SS
5401We can also inquire (using @code{*@var{addr}} as the form for
5402@var{linespec}) what source line covers a particular address:
5403@smallexample
5404(@value{GDBP}) info line *0x63ff
5405Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5406@end smallexample
5407
5408@cindex @code{$_} and @code{info line}
15387254 5409@cindex @code{x} command, default address
41afff9a 5410@kindex x@r{(examine), and} info line
c906108c
SS
5411After @code{info line}, the default address for the @code{x} command
5412is changed to the starting address of the line, so that @samp{x/i} is
5413sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5414,Examining Memory}). Also, this address is saved as the value of the
c906108c 5415convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5416Variables}).
c906108c
SS
5417
5418@table @code
5419@kindex disassemble
5420@cindex assembly instructions
5421@cindex instructions, assembly
5422@cindex machine instructions
5423@cindex listing machine instructions
5424@item disassemble
5425This specialized command dumps a range of memory as machine
5426instructions. The default memory range is the function surrounding the
5427program counter of the selected frame. A single argument to this
5428command is a program counter value; @value{GDBN} dumps the function
5429surrounding this value. Two arguments specify a range of addresses
5430(first inclusive, second exclusive) to dump.
5431@end table
5432
c906108c
SS
5433The following example shows the disassembly of a range of addresses of
5434HP PA-RISC 2.0 code:
5435
5436@smallexample
5437(@value{GDBP}) disas 0x32c4 0x32e4
5438Dump of assembler code from 0x32c4 to 0x32e4:
54390x32c4 <main+204>: addil 0,dp
54400x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54410x32cc <main+212>: ldil 0x3000,r31
54420x32d0 <main+216>: ble 0x3f8(sr4,r31)
54430x32d4 <main+220>: ldo 0(r31),rp
54440x32d8 <main+224>: addil -0x800,dp
54450x32dc <main+228>: ldo 0x588(r1),r26
54460x32e0 <main+232>: ldil 0x3000,r31
5447End of assembler dump.
5448@end smallexample
c906108c
SS
5449
5450Some architectures have more than one commonly-used set of instruction
5451mnemonics or other syntax.
5452
76d17f34
EZ
5453For programs that were dynamically linked and use shared libraries,
5454instructions that call functions or branch to locations in the shared
5455libraries might show a seemingly bogus location---it's actually a
5456location of the relocation table. On some architectures, @value{GDBN}
5457might be able to resolve these to actual function names.
5458
c906108c 5459@table @code
d4f3574e 5460@kindex set disassembly-flavor
d4f3574e
SS
5461@cindex Intel disassembly flavor
5462@cindex AT&T disassembly flavor
5463@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5464Select the instruction set to use when disassembling the
5465program via the @code{disassemble} or @code{x/i} commands.
5466
5467Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5468can set @var{instruction-set} to either @code{intel} or @code{att}.
5469The default is @code{att}, the AT&T flavor used by default by Unix
5470assemblers for x86-based targets.
9c16f35a
EZ
5471
5472@kindex show disassembly-flavor
5473@item show disassembly-flavor
5474Show the current setting of the disassembly flavor.
c906108c
SS
5475@end table
5476
5477
6d2ebf8b 5478@node Data
c906108c
SS
5479@chapter Examining Data
5480
5481@cindex printing data
5482@cindex examining data
5483@kindex print
5484@kindex inspect
5485@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5486@c document because it is nonstandard... Under Epoch it displays in a
5487@c different window or something like that.
5488The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5489command (abbreviated @code{p}), or its synonym @code{inspect}. It
5490evaluates and prints the value of an expression of the language your
5491program is written in (@pxref{Languages, ,Using @value{GDBN} with
5492Different Languages}).
c906108c
SS
5493
5494@table @code
d4f3574e
SS
5495@item print @var{expr}
5496@itemx print /@var{f} @var{expr}
5497@var{expr} is an expression (in the source language). By default the
5498value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5499you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5500@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5501Formats}.
c906108c
SS
5502
5503@item print
5504@itemx print /@var{f}
15387254 5505@cindex reprint the last value
d4f3574e 5506If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5507@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5508conveniently inspect the same value in an alternative format.
5509@end table
5510
5511A more low-level way of examining data is with the @code{x} command.
5512It examines data in memory at a specified address and prints it in a
79a6e687 5513specified format. @xref{Memory, ,Examining Memory}.
c906108c 5514
7a292a7a 5515If you are interested in information about types, or about how the
d4f3574e
SS
5516fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5517command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5518Table}.
c906108c
SS
5519
5520@menu
5521* Expressions:: Expressions
6ba66d6a 5522* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5523* Variables:: Program variables
5524* Arrays:: Artificial arrays
5525* Output Formats:: Output formats
5526* Memory:: Examining memory
5527* Auto Display:: Automatic display
5528* Print Settings:: Print settings
5529* Value History:: Value history
5530* Convenience Vars:: Convenience variables
5531* Registers:: Registers
c906108c 5532* Floating Point Hardware:: Floating point hardware
53c69bd7 5533* Vector Unit:: Vector Unit
721c2651 5534* OS Information:: Auxiliary data provided by operating system
29e57380 5535* Memory Region Attributes:: Memory region attributes
16d9dec6 5536* Dump/Restore Files:: Copy between memory and a file
384ee23f 5537* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5538* Character Sets:: Debugging programs that use a different
5539 character set than GDB does
09d4efe1 5540* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5541@end menu
5542
6d2ebf8b 5543@node Expressions
c906108c
SS
5544@section Expressions
5545
5546@cindex expressions
5547@code{print} and many other @value{GDBN} commands accept an expression and
5548compute its value. Any kind of constant, variable or operator defined
5549by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5550@value{GDBN}. This includes conditional expressions, function calls,
5551casts, and string constants. It also includes preprocessor macros, if
5552you compiled your program to include this information; see
5553@ref{Compilation}.
c906108c 5554
15387254 5555@cindex arrays in expressions
d4f3574e
SS
5556@value{GDBN} supports array constants in expressions input by
5557the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5558you can use the command @code{print @{1, 2, 3@}} to create an array
5559of three integers. If you pass an array to a function or assign it
5560to a program variable, @value{GDBN} copies the array to memory that
5561is @code{malloc}ed in the target program.
c906108c 5562
c906108c
SS
5563Because C is so widespread, most of the expressions shown in examples in
5564this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5565Languages}, for information on how to use expressions in other
5566languages.
5567
5568In this section, we discuss operators that you can use in @value{GDBN}
5569expressions regardless of your programming language.
5570
15387254 5571@cindex casts, in expressions
c906108c
SS
5572Casts are supported in all languages, not just in C, because it is so
5573useful to cast a number into a pointer in order to examine a structure
5574at that address in memory.
5575@c FIXME: casts supported---Mod2 true?
c906108c
SS
5576
5577@value{GDBN} supports these operators, in addition to those common
5578to programming languages:
5579
5580@table @code
5581@item @@
5582@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5583@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5584
5585@item ::
5586@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5587function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5588
5589@cindex @{@var{type}@}
5590@cindex type casting memory
5591@cindex memory, viewing as typed object
5592@cindex casts, to view memory
5593@item @{@var{type}@} @var{addr}
5594Refers to an object of type @var{type} stored at address @var{addr} in
5595memory. @var{addr} may be any expression whose value is an integer or
5596pointer (but parentheses are required around binary operators, just as in
5597a cast). This construct is allowed regardless of what kind of data is
5598normally supposed to reside at @var{addr}.
5599@end table
5600
6ba66d6a
JB
5601@node Ambiguous Expressions
5602@section Ambiguous Expressions
5603@cindex ambiguous expressions
5604
5605Expressions can sometimes contain some ambiguous elements. For instance,
5606some programming languages (notably Ada, C@t{++} and Objective-C) permit
5607a single function name to be defined several times, for application in
5608different contexts. This is called @dfn{overloading}. Another example
5609involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5610templates and is typically instantiated several times, resulting in
5611the same function name being defined in different contexts.
5612
5613In some cases and depending on the language, it is possible to adjust
5614the expression to remove the ambiguity. For instance in C@t{++}, you
5615can specify the signature of the function you want to break on, as in
5616@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5617qualified name of your function often makes the expression unambiguous
5618as well.
5619
5620When an ambiguity that needs to be resolved is detected, the debugger
5621has the capability to display a menu of numbered choices for each
5622possibility, and then waits for the selection with the prompt @samp{>}.
5623The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5624aborts the current command. If the command in which the expression was
5625used allows more than one choice to be selected, the next option in the
5626menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5627choices.
5628
5629For example, the following session excerpt shows an attempt to set a
5630breakpoint at the overloaded symbol @code{String::after}.
5631We choose three particular definitions of that function name:
5632
5633@c FIXME! This is likely to change to show arg type lists, at least
5634@smallexample
5635@group
5636(@value{GDBP}) b String::after
5637[0] cancel
5638[1] all
5639[2] file:String.cc; line number:867
5640[3] file:String.cc; line number:860
5641[4] file:String.cc; line number:875
5642[5] file:String.cc; line number:853
5643[6] file:String.cc; line number:846
5644[7] file:String.cc; line number:735
5645> 2 4 6
5646Breakpoint 1 at 0xb26c: file String.cc, line 867.
5647Breakpoint 2 at 0xb344: file String.cc, line 875.
5648Breakpoint 3 at 0xafcc: file String.cc, line 846.
5649Multiple breakpoints were set.
5650Use the "delete" command to delete unwanted
5651 breakpoints.
5652(@value{GDBP})
5653@end group
5654@end smallexample
5655
5656@table @code
5657@kindex set multiple-symbols
5658@item set multiple-symbols @var{mode}
5659@cindex multiple-symbols menu
5660
5661This option allows you to adjust the debugger behavior when an expression
5662is ambiguous.
5663
5664By default, @var{mode} is set to @code{all}. If the command with which
5665the expression is used allows more than one choice, then @value{GDBN}
5666automatically selects all possible choices. For instance, inserting
5667a breakpoint on a function using an ambiguous name results in a breakpoint
5668inserted on each possible match. However, if a unique choice must be made,
5669then @value{GDBN} uses the menu to help you disambiguate the expression.
5670For instance, printing the address of an overloaded function will result
5671in the use of the menu.
5672
5673When @var{mode} is set to @code{ask}, the debugger always uses the menu
5674when an ambiguity is detected.
5675
5676Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5677an error due to the ambiguity and the command is aborted.
5678
5679@kindex show multiple-symbols
5680@item show multiple-symbols
5681Show the current value of the @code{multiple-symbols} setting.
5682@end table
5683
6d2ebf8b 5684@node Variables
79a6e687 5685@section Program Variables
c906108c
SS
5686
5687The most common kind of expression to use is the name of a variable
5688in your program.
5689
5690Variables in expressions are understood in the selected stack frame
79a6e687 5691(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5692
5693@itemize @bullet
5694@item
5695global (or file-static)
5696@end itemize
5697
5d161b24 5698@noindent or
c906108c
SS
5699
5700@itemize @bullet
5701@item
5702visible according to the scope rules of the
5703programming language from the point of execution in that frame
5d161b24 5704@end itemize
c906108c
SS
5705
5706@noindent This means that in the function
5707
474c8240 5708@smallexample
c906108c
SS
5709foo (a)
5710 int a;
5711@{
5712 bar (a);
5713 @{
5714 int b = test ();
5715 bar (b);
5716 @}
5717@}
474c8240 5718@end smallexample
c906108c
SS
5719
5720@noindent
5721you can examine and use the variable @code{a} whenever your program is
5722executing within the function @code{foo}, but you can only use or
5723examine the variable @code{b} while your program is executing inside
5724the block where @code{b} is declared.
5725
5726@cindex variable name conflict
5727There is an exception: you can refer to a variable or function whose
5728scope is a single source file even if the current execution point is not
5729in this file. But it is possible to have more than one such variable or
5730function with the same name (in different source files). If that
5731happens, referring to that name has unpredictable effects. If you wish,
5732you can specify a static variable in a particular function or file,
15387254 5733using the colon-colon (@code{::}) notation:
c906108c 5734
d4f3574e 5735@cindex colon-colon, context for variables/functions
12c27660 5736@ifnotinfo
c906108c 5737@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5738@cindex @code{::}, context for variables/functions
12c27660 5739@end ifnotinfo
474c8240 5740@smallexample
c906108c
SS
5741@var{file}::@var{variable}
5742@var{function}::@var{variable}
474c8240 5743@end smallexample
c906108c
SS
5744
5745@noindent
5746Here @var{file} or @var{function} is the name of the context for the
5747static @var{variable}. In the case of file names, you can use quotes to
5748make sure @value{GDBN} parses the file name as a single word---for example,
5749to print a global value of @code{x} defined in @file{f2.c}:
5750
474c8240 5751@smallexample
c906108c 5752(@value{GDBP}) p 'f2.c'::x
474c8240 5753@end smallexample
c906108c 5754
b37052ae 5755@cindex C@t{++} scope resolution
c906108c 5756This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5757use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5758scope resolution operator in @value{GDBN} expressions.
5759@c FIXME: Um, so what happens in one of those rare cases where it's in
5760@c conflict?? --mew
c906108c
SS
5761
5762@cindex wrong values
5763@cindex variable values, wrong
15387254
EZ
5764@cindex function entry/exit, wrong values of variables
5765@cindex optimized code, wrong values of variables
c906108c
SS
5766@quotation
5767@emph{Warning:} Occasionally, a local variable may appear to have the
5768wrong value at certain points in a function---just after entry to a new
5769scope, and just before exit.
5770@end quotation
5771You may see this problem when you are stepping by machine instructions.
5772This is because, on most machines, it takes more than one instruction to
5773set up a stack frame (including local variable definitions); if you are
5774stepping by machine instructions, variables may appear to have the wrong
5775values until the stack frame is completely built. On exit, it usually
5776also takes more than one machine instruction to destroy a stack frame;
5777after you begin stepping through that group of instructions, local
5778variable definitions may be gone.
5779
5780This may also happen when the compiler does significant optimizations.
5781To be sure of always seeing accurate values, turn off all optimization
5782when compiling.
5783
d4f3574e
SS
5784@cindex ``No symbol "foo" in current context''
5785Another possible effect of compiler optimizations is to optimize
5786unused variables out of existence, or assign variables to registers (as
5787opposed to memory addresses). Depending on the support for such cases
5788offered by the debug info format used by the compiler, @value{GDBN}
5789might not be able to display values for such local variables. If that
5790happens, @value{GDBN} will print a message like this:
5791
474c8240 5792@smallexample
d4f3574e 5793No symbol "foo" in current context.
474c8240 5794@end smallexample
d4f3574e
SS
5795
5796To solve such problems, either recompile without optimizations, or use a
5797different debug info format, if the compiler supports several such
15387254 5798formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5799usually supports the @option{-gstabs+} option. @option{-gstabs+}
5800produces debug info in a format that is superior to formats such as
5801COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5802an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5803for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5804Compiler Collection (GCC)}.
79a6e687 5805@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5806that are best suited to C@t{++} programs.
d4f3574e 5807
ab1adacd
EZ
5808If you ask to print an object whose contents are unknown to
5809@value{GDBN}, e.g., because its data type is not completely specified
5810by the debug information, @value{GDBN} will say @samp{<incomplete
5811type>}. @xref{Symbols, incomplete type}, for more about this.
5812
3a60f64e
JK
5813Strings are identified as arrays of @code{char} values without specified
5814signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5815printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5816@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5817defines literal string type @code{"char"} as @code{char} without a sign.
5818For program code
5819
5820@smallexample
5821char var0[] = "A";
5822signed char var1[] = "A";
5823@end smallexample
5824
5825You get during debugging
5826@smallexample
5827(gdb) print var0
5828$1 = "A"
5829(gdb) print var1
5830$2 = @{65 'A', 0 '\0'@}
5831@end smallexample
5832
6d2ebf8b 5833@node Arrays
79a6e687 5834@section Artificial Arrays
c906108c
SS
5835
5836@cindex artificial array
15387254 5837@cindex arrays
41afff9a 5838@kindex @@@r{, referencing memory as an array}
c906108c
SS
5839It is often useful to print out several successive objects of the
5840same type in memory; a section of an array, or an array of
5841dynamically determined size for which only a pointer exists in the
5842program.
5843
5844You can do this by referring to a contiguous span of memory as an
5845@dfn{artificial array}, using the binary operator @samp{@@}. The left
5846operand of @samp{@@} should be the first element of the desired array
5847and be an individual object. The right operand should be the desired length
5848of the array. The result is an array value whose elements are all of
5849the type of the left argument. The first element is actually the left
5850argument; the second element comes from bytes of memory immediately
5851following those that hold the first element, and so on. Here is an
5852example. If a program says
5853
474c8240 5854@smallexample
c906108c 5855int *array = (int *) malloc (len * sizeof (int));
474c8240 5856@end smallexample
c906108c
SS
5857
5858@noindent
5859you can print the contents of @code{array} with
5860
474c8240 5861@smallexample
c906108c 5862p *array@@len
474c8240 5863@end smallexample
c906108c
SS
5864
5865The left operand of @samp{@@} must reside in memory. Array values made
5866with @samp{@@} in this way behave just like other arrays in terms of
5867subscripting, and are coerced to pointers when used in expressions.
5868Artificial arrays most often appear in expressions via the value history
79a6e687 5869(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5870
5871Another way to create an artificial array is to use a cast.
5872This re-interprets a value as if it were an array.
5873The value need not be in memory:
474c8240 5874@smallexample
c906108c
SS
5875(@value{GDBP}) p/x (short[2])0x12345678
5876$1 = @{0x1234, 0x5678@}
474c8240 5877@end smallexample
c906108c
SS
5878
5879As a convenience, if you leave the array length out (as in
c3f6f71d 5880@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5881the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5882@smallexample
c906108c
SS
5883(@value{GDBP}) p/x (short[])0x12345678
5884$2 = @{0x1234, 0x5678@}
474c8240 5885@end smallexample
c906108c
SS
5886
5887Sometimes the artificial array mechanism is not quite enough; in
5888moderately complex data structures, the elements of interest may not
5889actually be adjacent---for example, if you are interested in the values
5890of pointers in an array. One useful work-around in this situation is
5891to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5892Variables}) as a counter in an expression that prints the first
c906108c
SS
5893interesting value, and then repeat that expression via @key{RET}. For
5894instance, suppose you have an array @code{dtab} of pointers to
5895structures, and you are interested in the values of a field @code{fv}
5896in each structure. Here is an example of what you might type:
5897
474c8240 5898@smallexample
c906108c
SS
5899set $i = 0
5900p dtab[$i++]->fv
5901@key{RET}
5902@key{RET}
5903@dots{}
474c8240 5904@end smallexample
c906108c 5905
6d2ebf8b 5906@node Output Formats
79a6e687 5907@section Output Formats
c906108c
SS
5908
5909@cindex formatted output
5910@cindex output formats
5911By default, @value{GDBN} prints a value according to its data type. Sometimes
5912this is not what you want. For example, you might want to print a number
5913in hex, or a pointer in decimal. Or you might want to view data in memory
5914at a certain address as a character string or as an instruction. To do
5915these things, specify an @dfn{output format} when you print a value.
5916
5917The simplest use of output formats is to say how to print a value
5918already computed. This is done by starting the arguments of the
5919@code{print} command with a slash and a format letter. The format
5920letters supported are:
5921
5922@table @code
5923@item x
5924Regard the bits of the value as an integer, and print the integer in
5925hexadecimal.
5926
5927@item d
5928Print as integer in signed decimal.
5929
5930@item u
5931Print as integer in unsigned decimal.
5932
5933@item o
5934Print as integer in octal.
5935
5936@item t
5937Print as integer in binary. The letter @samp{t} stands for ``two''.
5938@footnote{@samp{b} cannot be used because these format letters are also
5939used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5940see @ref{Memory,,Examining Memory}.}
c906108c
SS
5941
5942@item a
5943@cindex unknown address, locating
3d67e040 5944@cindex locate address
c906108c
SS
5945Print as an address, both absolute in hexadecimal and as an offset from
5946the nearest preceding symbol. You can use this format used to discover
5947where (in what function) an unknown address is located:
5948
474c8240 5949@smallexample
c906108c
SS
5950(@value{GDBP}) p/a 0x54320
5951$3 = 0x54320 <_initialize_vx+396>
474c8240 5952@end smallexample
c906108c 5953
3d67e040
EZ
5954@noindent
5955The command @code{info symbol 0x54320} yields similar results.
5956@xref{Symbols, info symbol}.
5957
c906108c 5958@item c
51274035
EZ
5959Regard as an integer and print it as a character constant. This
5960prints both the numerical value and its character representation. The
5961character representation is replaced with the octal escape @samp{\nnn}
5962for characters outside the 7-bit @sc{ascii} range.
c906108c 5963
ea37ba09
DJ
5964Without this format, @value{GDBN} displays @code{char},
5965@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5966constants. Single-byte members of vectors are displayed as integer
5967data.
5968
c906108c
SS
5969@item f
5970Regard the bits of the value as a floating point number and print
5971using typical floating point syntax.
ea37ba09
DJ
5972
5973@item s
5974@cindex printing strings
5975@cindex printing byte arrays
5976Regard as a string, if possible. With this format, pointers to single-byte
5977data are displayed as null-terminated strings and arrays of single-byte data
5978are displayed as fixed-length strings. Other values are displayed in their
5979natural types.
5980
5981Without this format, @value{GDBN} displays pointers to and arrays of
5982@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5983strings. Single-byte members of a vector are displayed as an integer
5984array.
c906108c
SS
5985@end table
5986
5987For example, to print the program counter in hex (@pxref{Registers}), type
5988
474c8240 5989@smallexample
c906108c 5990p/x $pc
474c8240 5991@end smallexample
c906108c
SS
5992
5993@noindent
5994Note that no space is required before the slash; this is because command
5995names in @value{GDBN} cannot contain a slash.
5996
5997To reprint the last value in the value history with a different format,
5998you can use the @code{print} command with just a format and no
5999expression. For example, @samp{p/x} reprints the last value in hex.
6000
6d2ebf8b 6001@node Memory
79a6e687 6002@section Examining Memory
c906108c
SS
6003
6004You can use the command @code{x} (for ``examine'') to examine memory in
6005any of several formats, independently of your program's data types.
6006
6007@cindex examining memory
6008@table @code
41afff9a 6009@kindex x @r{(examine memory)}
c906108c
SS
6010@item x/@var{nfu} @var{addr}
6011@itemx x @var{addr}
6012@itemx x
6013Use the @code{x} command to examine memory.
6014@end table
6015
6016@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6017much memory to display and how to format it; @var{addr} is an
6018expression giving the address where you want to start displaying memory.
6019If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6020Several commands set convenient defaults for @var{addr}.
6021
6022@table @r
6023@item @var{n}, the repeat count
6024The repeat count is a decimal integer; the default is 1. It specifies
6025how much memory (counting by units @var{u}) to display.
6026@c This really is **decimal**; unaffected by 'set radix' as of GDB
6027@c 4.1.2.
6028
6029@item @var{f}, the display format
51274035
EZ
6030The display format is one of the formats used by @code{print}
6031(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6032@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6033The default is @samp{x} (hexadecimal) initially. The default changes
6034each time you use either @code{x} or @code{print}.
c906108c
SS
6035
6036@item @var{u}, the unit size
6037The unit size is any of
6038
6039@table @code
6040@item b
6041Bytes.
6042@item h
6043Halfwords (two bytes).
6044@item w
6045Words (four bytes). This is the initial default.
6046@item g
6047Giant words (eight bytes).
6048@end table
6049
6050Each time you specify a unit size with @code{x}, that size becomes the
6051default unit the next time you use @code{x}. (For the @samp{s} and
6052@samp{i} formats, the unit size is ignored and is normally not written.)
6053
6054@item @var{addr}, starting display address
6055@var{addr} is the address where you want @value{GDBN} to begin displaying
6056memory. The expression need not have a pointer value (though it may);
6057it is always interpreted as an integer address of a byte of memory.
6058@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6059@var{addr} is usually just after the last address examined---but several
6060other commands also set the default address: @code{info breakpoints} (to
6061the address of the last breakpoint listed), @code{info line} (to the
6062starting address of a line), and @code{print} (if you use it to display
6063a value from memory).
6064@end table
6065
6066For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6067(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6068starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6069words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6070@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6071
6072Since the letters indicating unit sizes are all distinct from the
6073letters specifying output formats, you do not have to remember whether
6074unit size or format comes first; either order works. The output
6075specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6076(However, the count @var{n} must come first; @samp{wx4} does not work.)
6077
6078Even though the unit size @var{u} is ignored for the formats @samp{s}
6079and @samp{i}, you might still want to use a count @var{n}; for example,
6080@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6081including any operands. For convenience, especially when used with
6082the @code{display} command, the @samp{i} format also prints branch delay
6083slot instructions, if any, beyond the count specified, which immediately
6084follow the last instruction that is within the count. The command
6085@code{disassemble} gives an alternative way of inspecting machine
6086instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6087
6088All the defaults for the arguments to @code{x} are designed to make it
6089easy to continue scanning memory with minimal specifications each time
6090you use @code{x}. For example, after you have inspected three machine
6091instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6092with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6093the repeat count @var{n} is used again; the other arguments default as
6094for successive uses of @code{x}.
6095
6096@cindex @code{$_}, @code{$__}, and value history
6097The addresses and contents printed by the @code{x} command are not saved
6098in the value history because there is often too much of them and they
6099would get in the way. Instead, @value{GDBN} makes these values available for
6100subsequent use in expressions as values of the convenience variables
6101@code{$_} and @code{$__}. After an @code{x} command, the last address
6102examined is available for use in expressions in the convenience variable
6103@code{$_}. The contents of that address, as examined, are available in
6104the convenience variable @code{$__}.
6105
6106If the @code{x} command has a repeat count, the address and contents saved
6107are from the last memory unit printed; this is not the same as the last
6108address printed if several units were printed on the last line of output.
6109
09d4efe1
EZ
6110@cindex remote memory comparison
6111@cindex verify remote memory image
6112When you are debugging a program running on a remote target machine
ea35711c 6113(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6114remote machine's memory against the executable file you downloaded to
6115the target. The @code{compare-sections} command is provided for such
6116situations.
6117
6118@table @code
6119@kindex compare-sections
6120@item compare-sections @r{[}@var{section-name}@r{]}
6121Compare the data of a loadable section @var{section-name} in the
6122executable file of the program being debugged with the same section in
6123the remote machine's memory, and report any mismatches. With no
6124arguments, compares all loadable sections. This command's
6125availability depends on the target's support for the @code{"qCRC"}
6126remote request.
6127@end table
6128
6d2ebf8b 6129@node Auto Display
79a6e687 6130@section Automatic Display
c906108c
SS
6131@cindex automatic display
6132@cindex display of expressions
6133
6134If you find that you want to print the value of an expression frequently
6135(to see how it changes), you might want to add it to the @dfn{automatic
6136display list} so that @value{GDBN} prints its value each time your program stops.
6137Each expression added to the list is given a number to identify it;
6138to remove an expression from the list, you specify that number.
6139The automatic display looks like this:
6140
474c8240 6141@smallexample
c906108c
SS
61422: foo = 38
61433: bar[5] = (struct hack *) 0x3804
474c8240 6144@end smallexample
c906108c
SS
6145
6146@noindent
6147This display shows item numbers, expressions and their current values. As with
6148displays you request manually using @code{x} or @code{print}, you can
6149specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6150whether to use @code{print} or @code{x} depending your format
6151specification---it uses @code{x} if you specify either the @samp{i}
6152or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6153
6154@table @code
6155@kindex display
d4f3574e
SS
6156@item display @var{expr}
6157Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6158each time your program stops. @xref{Expressions, ,Expressions}.
6159
6160@code{display} does not repeat if you press @key{RET} again after using it.
6161
d4f3574e 6162@item display/@var{fmt} @var{expr}
c906108c 6163For @var{fmt} specifying only a display format and not a size or
d4f3574e 6164count, add the expression @var{expr} to the auto-display list but
c906108c 6165arrange to display it each time in the specified format @var{fmt}.
79a6e687 6166@xref{Output Formats,,Output Formats}.
c906108c
SS
6167
6168@item display/@var{fmt} @var{addr}
6169For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6170number of units, add the expression @var{addr} as a memory address to
6171be examined each time your program stops. Examining means in effect
79a6e687 6172doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6173@end table
6174
6175For example, @samp{display/i $pc} can be helpful, to see the machine
6176instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6177is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6178
6179@table @code
6180@kindex delete display
6181@kindex undisplay
6182@item undisplay @var{dnums}@dots{}
6183@itemx delete display @var{dnums}@dots{}
6184Remove item numbers @var{dnums} from the list of expressions to display.
6185
6186@code{undisplay} does not repeat if you press @key{RET} after using it.
6187(Otherwise you would just get the error @samp{No display number @dots{}}.)
6188
6189@kindex disable display
6190@item disable display @var{dnums}@dots{}
6191Disable the display of item numbers @var{dnums}. A disabled display
6192item is not printed automatically, but is not forgotten. It may be
6193enabled again later.
6194
6195@kindex enable display
6196@item enable display @var{dnums}@dots{}
6197Enable display of item numbers @var{dnums}. It becomes effective once
6198again in auto display of its expression, until you specify otherwise.
6199
6200@item display
6201Display the current values of the expressions on the list, just as is
6202done when your program stops.
6203
6204@kindex info display
6205@item info display
6206Print the list of expressions previously set up to display
6207automatically, each one with its item number, but without showing the
6208values. This includes disabled expressions, which are marked as such.
6209It also includes expressions which would not be displayed right now
6210because they refer to automatic variables not currently available.
6211@end table
6212
15387254 6213@cindex display disabled out of scope
c906108c
SS
6214If a display expression refers to local variables, then it does not make
6215sense outside the lexical context for which it was set up. Such an
6216expression is disabled when execution enters a context where one of its
6217variables is not defined. For example, if you give the command
6218@code{display last_char} while inside a function with an argument
6219@code{last_char}, @value{GDBN} displays this argument while your program
6220continues to stop inside that function. When it stops elsewhere---where
6221there is no variable @code{last_char}---the display is disabled
6222automatically. The next time your program stops where @code{last_char}
6223is meaningful, you can enable the display expression once again.
6224
6d2ebf8b 6225@node Print Settings
79a6e687 6226@section Print Settings
c906108c
SS
6227
6228@cindex format options
6229@cindex print settings
6230@value{GDBN} provides the following ways to control how arrays, structures,
6231and symbols are printed.
6232
6233@noindent
6234These settings are useful for debugging programs in any language:
6235
6236@table @code
4644b6e3 6237@kindex set print
c906108c
SS
6238@item set print address
6239@itemx set print address on
4644b6e3 6240@cindex print/don't print memory addresses
c906108c
SS
6241@value{GDBN} prints memory addresses showing the location of stack
6242traces, structure values, pointer values, breakpoints, and so forth,
6243even when it also displays the contents of those addresses. The default
6244is @code{on}. For example, this is what a stack frame display looks like with
6245@code{set print address on}:
6246
6247@smallexample
6248@group
6249(@value{GDBP}) f
6250#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6251 at input.c:530
6252530 if (lquote != def_lquote)
6253@end group
6254@end smallexample
6255
6256@item set print address off
6257Do not print addresses when displaying their contents. For example,
6258this is the same stack frame displayed with @code{set print address off}:
6259
6260@smallexample
6261@group
6262(@value{GDBP}) set print addr off
6263(@value{GDBP}) f
6264#0 set_quotes (lq="<<", rq=">>") at input.c:530
6265530 if (lquote != def_lquote)
6266@end group
6267@end smallexample
6268
6269You can use @samp{set print address off} to eliminate all machine
6270dependent displays from the @value{GDBN} interface. For example, with
6271@code{print address off}, you should get the same text for backtraces on
6272all machines---whether or not they involve pointer arguments.
6273
4644b6e3 6274@kindex show print
c906108c
SS
6275@item show print address
6276Show whether or not addresses are to be printed.
6277@end table
6278
6279When @value{GDBN} prints a symbolic address, it normally prints the
6280closest earlier symbol plus an offset. If that symbol does not uniquely
6281identify the address (for example, it is a name whose scope is a single
6282source file), you may need to clarify. One way to do this is with
6283@code{info line}, for example @samp{info line *0x4537}. Alternately,
6284you can set @value{GDBN} to print the source file and line number when
6285it prints a symbolic address:
6286
6287@table @code
c906108c 6288@item set print symbol-filename on
9c16f35a
EZ
6289@cindex source file and line of a symbol
6290@cindex symbol, source file and line
c906108c
SS
6291Tell @value{GDBN} to print the source file name and line number of a
6292symbol in the symbolic form of an address.
6293
6294@item set print symbol-filename off
6295Do not print source file name and line number of a symbol. This is the
6296default.
6297
c906108c
SS
6298@item show print symbol-filename
6299Show whether or not @value{GDBN} will print the source file name and
6300line number of a symbol in the symbolic form of an address.
6301@end table
6302
6303Another situation where it is helpful to show symbol filenames and line
6304numbers is when disassembling code; @value{GDBN} shows you the line
6305number and source file that corresponds to each instruction.
6306
6307Also, you may wish to see the symbolic form only if the address being
6308printed is reasonably close to the closest earlier symbol:
6309
6310@table @code
c906108c 6311@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6312@cindex maximum value for offset of closest symbol
c906108c
SS
6313Tell @value{GDBN} to only display the symbolic form of an address if the
6314offset between the closest earlier symbol and the address is less than
5d161b24 6315@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6316to always print the symbolic form of an address if any symbol precedes it.
6317
c906108c
SS
6318@item show print max-symbolic-offset
6319Ask how large the maximum offset is that @value{GDBN} prints in a
6320symbolic address.
6321@end table
6322
6323@cindex wild pointer, interpreting
6324@cindex pointer, finding referent
6325If you have a pointer and you are not sure where it points, try
6326@samp{set print symbol-filename on}. Then you can determine the name
6327and source file location of the variable where it points, using
6328@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6329For example, here @value{GDBN} shows that a variable @code{ptt} points
6330at another variable @code{t}, defined in @file{hi2.c}:
6331
474c8240 6332@smallexample
c906108c
SS
6333(@value{GDBP}) set print symbol-filename on
6334(@value{GDBP}) p/a ptt
6335$4 = 0xe008 <t in hi2.c>
474c8240 6336@end smallexample
c906108c
SS
6337
6338@quotation
6339@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6340does not show the symbol name and filename of the referent, even with
6341the appropriate @code{set print} options turned on.
6342@end quotation
6343
6344Other settings control how different kinds of objects are printed:
6345
6346@table @code
c906108c
SS
6347@item set print array
6348@itemx set print array on
4644b6e3 6349@cindex pretty print arrays
c906108c
SS
6350Pretty print arrays. This format is more convenient to read,
6351but uses more space. The default is off.
6352
6353@item set print array off
6354Return to compressed format for arrays.
6355
c906108c
SS
6356@item show print array
6357Show whether compressed or pretty format is selected for displaying
6358arrays.
6359
3c9c013a
JB
6360@cindex print array indexes
6361@item set print array-indexes
6362@itemx set print array-indexes on
6363Print the index of each element when displaying arrays. May be more
6364convenient to locate a given element in the array or quickly find the
6365index of a given element in that printed array. The default is off.
6366
6367@item set print array-indexes off
6368Stop printing element indexes when displaying arrays.
6369
6370@item show print array-indexes
6371Show whether the index of each element is printed when displaying
6372arrays.
6373
c906108c 6374@item set print elements @var{number-of-elements}
4644b6e3 6375@cindex number of array elements to print
9c16f35a 6376@cindex limit on number of printed array elements
c906108c
SS
6377Set a limit on how many elements of an array @value{GDBN} will print.
6378If @value{GDBN} is printing a large array, it stops printing after it has
6379printed the number of elements set by the @code{set print elements} command.
6380This limit also applies to the display of strings.
d4f3574e 6381When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6382Setting @var{number-of-elements} to zero means that the printing is unlimited.
6383
c906108c
SS
6384@item show print elements
6385Display the number of elements of a large array that @value{GDBN} will print.
6386If the number is 0, then the printing is unlimited.
6387
b4740add
JB
6388@item set print frame-arguments @var{value}
6389@cindex printing frame argument values
6390@cindex print all frame argument values
6391@cindex print frame argument values for scalars only
6392@cindex do not print frame argument values
6393This command allows to control how the values of arguments are printed
6394when the debugger prints a frame (@pxref{Frames}). The possible
6395values are:
6396
6397@table @code
6398@item all
6399The values of all arguments are printed. This is the default.
6400
6401@item scalars
6402Print the value of an argument only if it is a scalar. The value of more
6403complex arguments such as arrays, structures, unions, etc, is replaced
6404by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6405
6406@smallexample
6407#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6408 at frame-args.c:23
6409@end smallexample
6410
6411@item none
6412None of the argument values are printed. Instead, the value of each argument
6413is replaced by @code{@dots{}}. In this case, the example above now becomes:
6414
6415@smallexample
6416#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6417 at frame-args.c:23
6418@end smallexample
6419@end table
6420
6421By default, all argument values are always printed. But this command
6422can be useful in several cases. For instance, it can be used to reduce
6423the amount of information printed in each frame, making the backtrace
6424more readable. Also, this command can be used to improve performance
6425when displaying Ada frames, because the computation of large arguments
6426can sometimes be CPU-intensive, especiallly in large applications.
6427Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6428avoids this computation, thus speeding up the display of each Ada frame.
6429
6430@item show print frame-arguments
6431Show how the value of arguments should be displayed when printing a frame.
6432
9c16f35a
EZ
6433@item set print repeats
6434@cindex repeated array elements
6435Set the threshold for suppressing display of repeated array
d3e8051b 6436elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6437array exceeds the threshold, @value{GDBN} prints the string
6438@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6439identical repetitions, instead of displaying the identical elements
6440themselves. Setting the threshold to zero will cause all elements to
6441be individually printed. The default threshold is 10.
6442
6443@item show print repeats
6444Display the current threshold for printing repeated identical
6445elements.
6446
c906108c 6447@item set print null-stop
4644b6e3 6448@cindex @sc{null} elements in arrays
c906108c 6449Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6450@sc{null} is encountered. This is useful when large arrays actually
c906108c 6451contain only short strings.
d4f3574e 6452The default is off.
c906108c 6453
9c16f35a
EZ
6454@item show print null-stop
6455Show whether @value{GDBN} stops printing an array on the first
6456@sc{null} character.
6457
c906108c 6458@item set print pretty on
9c16f35a
EZ
6459@cindex print structures in indented form
6460@cindex indentation in structure display
5d161b24 6461Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6462per line, like this:
6463
6464@smallexample
6465@group
6466$1 = @{
6467 next = 0x0,
6468 flags = @{
6469 sweet = 1,
6470 sour = 1
6471 @},
6472 meat = 0x54 "Pork"
6473@}
6474@end group
6475@end smallexample
6476
6477@item set print pretty off
6478Cause @value{GDBN} to print structures in a compact format, like this:
6479
6480@smallexample
6481@group
6482$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6483meat = 0x54 "Pork"@}
6484@end group
6485@end smallexample
6486
6487@noindent
6488This is the default format.
6489
c906108c
SS
6490@item show print pretty
6491Show which format @value{GDBN} is using to print structures.
6492
c906108c 6493@item set print sevenbit-strings on
4644b6e3
EZ
6494@cindex eight-bit characters in strings
6495@cindex octal escapes in strings
c906108c
SS
6496Print using only seven-bit characters; if this option is set,
6497@value{GDBN} displays any eight-bit characters (in strings or
6498character values) using the notation @code{\}@var{nnn}. This setting is
6499best if you are working in English (@sc{ascii}) and you use the
6500high-order bit of characters as a marker or ``meta'' bit.
6501
6502@item set print sevenbit-strings off
6503Print full eight-bit characters. This allows the use of more
6504international character sets, and is the default.
6505
c906108c
SS
6506@item show print sevenbit-strings
6507Show whether or not @value{GDBN} is printing only seven-bit characters.
6508
c906108c 6509@item set print union on
4644b6e3 6510@cindex unions in structures, printing
9c16f35a
EZ
6511Tell @value{GDBN} to print unions which are contained in structures
6512and other unions. This is the default setting.
c906108c
SS
6513
6514@item set print union off
9c16f35a
EZ
6515Tell @value{GDBN} not to print unions which are contained in
6516structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6517instead.
c906108c 6518
c906108c
SS
6519@item show print union
6520Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6521structures and other unions.
c906108c
SS
6522
6523For example, given the declarations
6524
6525@smallexample
6526typedef enum @{Tree, Bug@} Species;
6527typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6528typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6529 Bug_forms;
6530
6531struct thing @{
6532 Species it;
6533 union @{
6534 Tree_forms tree;
6535 Bug_forms bug;
6536 @} form;
6537@};
6538
6539struct thing foo = @{Tree, @{Acorn@}@};
6540@end smallexample
6541
6542@noindent
6543with @code{set print union on} in effect @samp{p foo} would print
6544
6545@smallexample
6546$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6547@end smallexample
6548
6549@noindent
6550and with @code{set print union off} in effect it would print
6551
6552@smallexample
6553$1 = @{it = Tree, form = @{...@}@}
6554@end smallexample
9c16f35a
EZ
6555
6556@noindent
6557@code{set print union} affects programs written in C-like languages
6558and in Pascal.
c906108c
SS
6559@end table
6560
c906108c
SS
6561@need 1000
6562@noindent
b37052ae 6563These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6564
6565@table @code
4644b6e3 6566@cindex demangling C@t{++} names
c906108c
SS
6567@item set print demangle
6568@itemx set print demangle on
b37052ae 6569Print C@t{++} names in their source form rather than in the encoded
c906108c 6570(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6571linkage. The default is on.
c906108c 6572
c906108c 6573@item show print demangle
b37052ae 6574Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6575
c906108c
SS
6576@item set print asm-demangle
6577@itemx set print asm-demangle on
b37052ae 6578Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6579in assembler code printouts such as instruction disassemblies.
6580The default is off.
6581
c906108c 6582@item show print asm-demangle
b37052ae 6583Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6584or demangled form.
6585
b37052ae
EZ
6586@cindex C@t{++} symbol decoding style
6587@cindex symbol decoding style, C@t{++}
a8f24a35 6588@kindex set demangle-style
c906108c
SS
6589@item set demangle-style @var{style}
6590Choose among several encoding schemes used by different compilers to
b37052ae 6591represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6592
6593@table @code
6594@item auto
6595Allow @value{GDBN} to choose a decoding style by inspecting your program.
6596
6597@item gnu
b37052ae 6598Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6599This is the default.
c906108c
SS
6600
6601@item hp
b37052ae 6602Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6603
6604@item lucid
b37052ae 6605Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6606
6607@item arm
b37052ae 6608Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6609@strong{Warning:} this setting alone is not sufficient to allow
6610debugging @code{cfront}-generated executables. @value{GDBN} would
6611require further enhancement to permit that.
6612
6613@end table
6614If you omit @var{style}, you will see a list of possible formats.
6615
c906108c 6616@item show demangle-style
b37052ae 6617Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6618
c906108c
SS
6619@item set print object
6620@itemx set print object on
4644b6e3 6621@cindex derived type of an object, printing
9c16f35a 6622@cindex display derived types
c906108c
SS
6623When displaying a pointer to an object, identify the @emph{actual}
6624(derived) type of the object rather than the @emph{declared} type, using
6625the virtual function table.
6626
6627@item set print object off
6628Display only the declared type of objects, without reference to the
6629virtual function table. This is the default setting.
6630
c906108c
SS
6631@item show print object
6632Show whether actual, or declared, object types are displayed.
6633
c906108c
SS
6634@item set print static-members
6635@itemx set print static-members on
4644b6e3 6636@cindex static members of C@t{++} objects
b37052ae 6637Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6638
6639@item set print static-members off
b37052ae 6640Do not print static members when displaying a C@t{++} object.
c906108c 6641
c906108c 6642@item show print static-members
9c16f35a
EZ
6643Show whether C@t{++} static members are printed or not.
6644
6645@item set print pascal_static-members
6646@itemx set print pascal_static-members on
d3e8051b
EZ
6647@cindex static members of Pascal objects
6648@cindex Pascal objects, static members display
9c16f35a
EZ
6649Print static members when displaying a Pascal object. The default is on.
6650
6651@item set print pascal_static-members off
6652Do not print static members when displaying a Pascal object.
6653
6654@item show print pascal_static-members
6655Show whether Pascal static members are printed or not.
c906108c
SS
6656
6657@c These don't work with HP ANSI C++ yet.
c906108c
SS
6658@item set print vtbl
6659@itemx set print vtbl on
4644b6e3 6660@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6661@cindex virtual functions (C@t{++}) display
6662@cindex VTBL display
b37052ae 6663Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6664(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6665ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6666
6667@item set print vtbl off
b37052ae 6668Do not pretty print C@t{++} virtual function tables.
c906108c 6669
c906108c 6670@item show print vtbl
b37052ae 6671Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6672@end table
c906108c 6673
6d2ebf8b 6674@node Value History
79a6e687 6675@section Value History
c906108c
SS
6676
6677@cindex value history
9c16f35a 6678@cindex history of values printed by @value{GDBN}
5d161b24
DB
6679Values printed by the @code{print} command are saved in the @value{GDBN}
6680@dfn{value history}. This allows you to refer to them in other expressions.
6681Values are kept until the symbol table is re-read or discarded
6682(for example with the @code{file} or @code{symbol-file} commands).
6683When the symbol table changes, the value history is discarded,
6684since the values may contain pointers back to the types defined in the
c906108c
SS
6685symbol table.
6686
6687@cindex @code{$}
6688@cindex @code{$$}
6689@cindex history number
6690The values printed are given @dfn{history numbers} by which you can
6691refer to them. These are successive integers starting with one.
6692@code{print} shows you the history number assigned to a value by
6693printing @samp{$@var{num} = } before the value; here @var{num} is the
6694history number.
6695
6696To refer to any previous value, use @samp{$} followed by the value's
6697history number. The way @code{print} labels its output is designed to
6698remind you of this. Just @code{$} refers to the most recent value in
6699the history, and @code{$$} refers to the value before that.
6700@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6701is the value just prior to @code{$$}, @code{$$1} is equivalent to
6702@code{$$}, and @code{$$0} is equivalent to @code{$}.
6703
6704For example, suppose you have just printed a pointer to a structure and
6705want to see the contents of the structure. It suffices to type
6706
474c8240 6707@smallexample
c906108c 6708p *$
474c8240 6709@end smallexample
c906108c
SS
6710
6711If you have a chain of structures where the component @code{next} points
6712to the next one, you can print the contents of the next one with this:
6713
474c8240 6714@smallexample
c906108c 6715p *$.next
474c8240 6716@end smallexample
c906108c
SS
6717
6718@noindent
6719You can print successive links in the chain by repeating this
6720command---which you can do by just typing @key{RET}.
6721
6722Note that the history records values, not expressions. If the value of
6723@code{x} is 4 and you type these commands:
6724
474c8240 6725@smallexample
c906108c
SS
6726print x
6727set x=5
474c8240 6728@end smallexample
c906108c
SS
6729
6730@noindent
6731then the value recorded in the value history by the @code{print} command
6732remains 4 even though the value of @code{x} has changed.
6733
6734@table @code
6735@kindex show values
6736@item show values
6737Print the last ten values in the value history, with their item numbers.
6738This is like @samp{p@ $$9} repeated ten times, except that @code{show
6739values} does not change the history.
6740
6741@item show values @var{n}
6742Print ten history values centered on history item number @var{n}.
6743
6744@item show values +
6745Print ten history values just after the values last printed. If no more
6746values are available, @code{show values +} produces no display.
6747@end table
6748
6749Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6750same effect as @samp{show values +}.
6751
6d2ebf8b 6752@node Convenience Vars
79a6e687 6753@section Convenience Variables
c906108c
SS
6754
6755@cindex convenience variables
9c16f35a 6756@cindex user-defined variables
c906108c
SS
6757@value{GDBN} provides @dfn{convenience variables} that you can use within
6758@value{GDBN} to hold on to a value and refer to it later. These variables
6759exist entirely within @value{GDBN}; they are not part of your program, and
6760setting a convenience variable has no direct effect on further execution
6761of your program. That is why you can use them freely.
6762
6763Convenience variables are prefixed with @samp{$}. Any name preceded by
6764@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6765the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6766(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6767by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6768
6769You can save a value in a convenience variable with an assignment
6770expression, just as you would set a variable in your program.
6771For example:
6772
474c8240 6773@smallexample
c906108c 6774set $foo = *object_ptr
474c8240 6775@end smallexample
c906108c
SS
6776
6777@noindent
6778would save in @code{$foo} the value contained in the object pointed to by
6779@code{object_ptr}.
6780
6781Using a convenience variable for the first time creates it, but its
6782value is @code{void} until you assign a new value. You can alter the
6783value with another assignment at any time.
6784
6785Convenience variables have no fixed types. You can assign a convenience
6786variable any type of value, including structures and arrays, even if
6787that variable already has a value of a different type. The convenience
6788variable, when used as an expression, has the type of its current value.
6789
6790@table @code
6791@kindex show convenience
9c16f35a 6792@cindex show all user variables
c906108c
SS
6793@item show convenience
6794Print a list of convenience variables used so far, and their values.
d4f3574e 6795Abbreviated @code{show conv}.
53e5f3cf
AS
6796
6797@kindex init-if-undefined
6798@cindex convenience variables, initializing
6799@item init-if-undefined $@var{variable} = @var{expression}
6800Set a convenience variable if it has not already been set. This is useful
6801for user-defined commands that keep some state. It is similar, in concept,
6802to using local static variables with initializers in C (except that
6803convenience variables are global). It can also be used to allow users to
6804override default values used in a command script.
6805
6806If the variable is already defined then the expression is not evaluated so
6807any side-effects do not occur.
c906108c
SS
6808@end table
6809
6810One of the ways to use a convenience variable is as a counter to be
6811incremented or a pointer to be advanced. For example, to print
6812a field from successive elements of an array of structures:
6813
474c8240 6814@smallexample
c906108c
SS
6815set $i = 0
6816print bar[$i++]->contents
474c8240 6817@end smallexample
c906108c 6818
d4f3574e
SS
6819@noindent
6820Repeat that command by typing @key{RET}.
c906108c
SS
6821
6822Some convenience variables are created automatically by @value{GDBN} and given
6823values likely to be useful.
6824
6825@table @code
41afff9a 6826@vindex $_@r{, convenience variable}
c906108c
SS
6827@item $_
6828The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6829the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6830commands which provide a default address for @code{x} to examine also
6831set @code{$_} to that address; these commands include @code{info line}
6832and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6833except when set by the @code{x} command, in which case it is a pointer
6834to the type of @code{$__}.
6835
41afff9a 6836@vindex $__@r{, convenience variable}
c906108c
SS
6837@item $__
6838The variable @code{$__} is automatically set by the @code{x} command
6839to the value found in the last address examined. Its type is chosen
6840to match the format in which the data was printed.
6841
6842@item $_exitcode
41afff9a 6843@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6844The variable @code{$_exitcode} is automatically set to the exit code when
6845the program being debugged terminates.
6846@end table
6847
53a5351d
JM
6848On HP-UX systems, if you refer to a function or variable name that
6849begins with a dollar sign, @value{GDBN} searches for a user or system
6850name first, before it searches for a convenience variable.
c906108c 6851
6d2ebf8b 6852@node Registers
c906108c
SS
6853@section Registers
6854
6855@cindex registers
6856You can refer to machine register contents, in expressions, as variables
6857with names starting with @samp{$}. The names of registers are different
6858for each machine; use @code{info registers} to see the names used on
6859your machine.
6860
6861@table @code
6862@kindex info registers
6863@item info registers
6864Print the names and values of all registers except floating-point
c85508ee 6865and vector registers (in the selected stack frame).
c906108c
SS
6866
6867@kindex info all-registers
6868@cindex floating point registers
6869@item info all-registers
6870Print the names and values of all registers, including floating-point
c85508ee 6871and vector registers (in the selected stack frame).
c906108c
SS
6872
6873@item info registers @var{regname} @dots{}
6874Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6875As discussed in detail below, register values are normally relative to
6876the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6877the machine you are using, with or without the initial @samp{$}.
6878@end table
6879
e09f16f9
EZ
6880@cindex stack pointer register
6881@cindex program counter register
6882@cindex process status register
6883@cindex frame pointer register
6884@cindex standard registers
c906108c
SS
6885@value{GDBN} has four ``standard'' register names that are available (in
6886expressions) on most machines---whenever they do not conflict with an
6887architecture's canonical mnemonics for registers. The register names
6888@code{$pc} and @code{$sp} are used for the program counter register and
6889the stack pointer. @code{$fp} is used for a register that contains a
6890pointer to the current stack frame, and @code{$ps} is used for a
6891register that contains the processor status. For example,
6892you could print the program counter in hex with
6893
474c8240 6894@smallexample
c906108c 6895p/x $pc
474c8240 6896@end smallexample
c906108c
SS
6897
6898@noindent
6899or print the instruction to be executed next with
6900
474c8240 6901@smallexample
c906108c 6902x/i $pc
474c8240 6903@end smallexample
c906108c
SS
6904
6905@noindent
6906or add four to the stack pointer@footnote{This is a way of removing
6907one word from the stack, on machines where stacks grow downward in
6908memory (most machines, nowadays). This assumes that the innermost
6909stack frame is selected; setting @code{$sp} is not allowed when other
6910stack frames are selected. To pop entire frames off the stack,
6911regardless of machine architecture, use @code{return};
79a6e687 6912see @ref{Returning, ,Returning from a Function}.} with
c906108c 6913
474c8240 6914@smallexample
c906108c 6915set $sp += 4
474c8240 6916@end smallexample
c906108c
SS
6917
6918Whenever possible, these four standard register names are available on
6919your machine even though the machine has different canonical mnemonics,
6920so long as there is no conflict. The @code{info registers} command
6921shows the canonical names. For example, on the SPARC, @code{info
6922registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6923can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6924is an alias for the @sc{eflags} register.
c906108c
SS
6925
6926@value{GDBN} always considers the contents of an ordinary register as an
6927integer when the register is examined in this way. Some machines have
6928special registers which can hold nothing but floating point; these
6929registers are considered to have floating point values. There is no way
6930to refer to the contents of an ordinary register as floating point value
6931(although you can @emph{print} it as a floating point value with
6932@samp{print/f $@var{regname}}).
6933
6934Some registers have distinct ``raw'' and ``virtual'' data formats. This
6935means that the data format in which the register contents are saved by
6936the operating system is not the same one that your program normally
6937sees. For example, the registers of the 68881 floating point
6938coprocessor are always saved in ``extended'' (raw) format, but all C
6939programs expect to work with ``double'' (virtual) format. In such
5d161b24 6940cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6941that makes sense for your program), but the @code{info registers} command
6942prints the data in both formats.
6943
36b80e65
EZ
6944@cindex SSE registers (x86)
6945@cindex MMX registers (x86)
6946Some machines have special registers whose contents can be interpreted
6947in several different ways. For example, modern x86-based machines
6948have SSE and MMX registers that can hold several values packed
6949together in several different formats. @value{GDBN} refers to such
6950registers in @code{struct} notation:
6951
6952@smallexample
6953(@value{GDBP}) print $xmm1
6954$1 = @{
6955 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6956 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6957 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6958 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6959 v4_int32 = @{0, 20657912, 11, 13@},
6960 v2_int64 = @{88725056443645952, 55834574859@},
6961 uint128 = 0x0000000d0000000b013b36f800000000
6962@}
6963@end smallexample
6964
6965@noindent
6966To set values of such registers, you need to tell @value{GDBN} which
6967view of the register you wish to change, as if you were assigning
6968value to a @code{struct} member:
6969
6970@smallexample
6971 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6972@end smallexample
6973
c906108c 6974Normally, register values are relative to the selected stack frame
79a6e687 6975(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6976value that the register would contain if all stack frames farther in
6977were exited and their saved registers restored. In order to see the
6978true contents of hardware registers, you must select the innermost
6979frame (with @samp{frame 0}).
6980
6981However, @value{GDBN} must deduce where registers are saved, from the machine
6982code generated by your compiler. If some registers are not saved, or if
6983@value{GDBN} is unable to locate the saved registers, the selected stack
6984frame makes no difference.
6985
6d2ebf8b 6986@node Floating Point Hardware
79a6e687 6987@section Floating Point Hardware
c906108c
SS
6988@cindex floating point
6989
6990Depending on the configuration, @value{GDBN} may be able to give
6991you more information about the status of the floating point hardware.
6992
6993@table @code
6994@kindex info float
6995@item info float
6996Display hardware-dependent information about the floating
6997point unit. The exact contents and layout vary depending on the
6998floating point chip. Currently, @samp{info float} is supported on
6999the ARM and x86 machines.
7000@end table
c906108c 7001
e76f1f2e
AC
7002@node Vector Unit
7003@section Vector Unit
7004@cindex vector unit
7005
7006Depending on the configuration, @value{GDBN} may be able to give you
7007more information about the status of the vector unit.
7008
7009@table @code
7010@kindex info vector
7011@item info vector
7012Display information about the vector unit. The exact contents and
7013layout vary depending on the hardware.
7014@end table
7015
721c2651 7016@node OS Information
79a6e687 7017@section Operating System Auxiliary Information
721c2651
EZ
7018@cindex OS information
7019
7020@value{GDBN} provides interfaces to useful OS facilities that can help
7021you debug your program.
7022
7023@cindex @code{ptrace} system call
7024@cindex @code{struct user} contents
7025When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7026machines), it interfaces with the inferior via the @code{ptrace}
7027system call. The operating system creates a special sata structure,
7028called @code{struct user}, for this interface. You can use the
7029command @code{info udot} to display the contents of this data
7030structure.
7031
7032@table @code
7033@item info udot
7034@kindex info udot
7035Display the contents of the @code{struct user} maintained by the OS
7036kernel for the program being debugged. @value{GDBN} displays the
7037contents of @code{struct user} as a list of hex numbers, similar to
7038the @code{examine} command.
7039@end table
7040
b383017d
RM
7041@cindex auxiliary vector
7042@cindex vector, auxiliary
b383017d
RM
7043Some operating systems supply an @dfn{auxiliary vector} to programs at
7044startup. This is akin to the arguments and environment that you
7045specify for a program, but contains a system-dependent variety of
7046binary values that tell system libraries important details about the
7047hardware, operating system, and process. Each value's purpose is
7048identified by an integer tag; the meanings are well-known but system-specific.
7049Depending on the configuration and operating system facilities,
9c16f35a
EZ
7050@value{GDBN} may be able to show you this information. For remote
7051targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7052support of the @samp{qXfer:auxv:read} packet, see
7053@ref{qXfer auxiliary vector read}.
b383017d
RM
7054
7055@table @code
7056@kindex info auxv
7057@item info auxv
7058Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7059live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7060numerically, and also shows names and text descriptions for recognized
7061tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7062pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7063most appropriate form for a recognized tag, and in hexadecimal for
7064an unrecognized tag.
7065@end table
7066
721c2651 7067
29e57380 7068@node Memory Region Attributes
79a6e687 7069@section Memory Region Attributes
29e57380
C
7070@cindex memory region attributes
7071
b383017d 7072@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7073required by regions of your target's memory. @value{GDBN} uses
7074attributes to determine whether to allow certain types of memory
7075accesses; whether to use specific width accesses; and whether to cache
7076target memory. By default the description of memory regions is
7077fetched from the target (if the current target supports this), but the
7078user can override the fetched regions.
29e57380
C
7079
7080Defined memory regions can be individually enabled and disabled. When a
7081memory region is disabled, @value{GDBN} uses the default attributes when
7082accessing memory in that region. Similarly, if no memory regions have
7083been defined, @value{GDBN} uses the default attributes when accessing
7084all memory.
7085
b383017d 7086When a memory region is defined, it is given a number to identify it;
29e57380
C
7087to enable, disable, or remove a memory region, you specify that number.
7088
7089@table @code
7090@kindex mem
bfac230e 7091@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7092Define a memory region bounded by @var{lower} and @var{upper} with
7093attributes @var{attributes}@dots{}, and add it to the list of regions
7094monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7095case: it is treated as the target's maximum memory address.
bfac230e 7096(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7097
fd79ecee
DJ
7098@item mem auto
7099Discard any user changes to the memory regions and use target-supplied
7100regions, if available, or no regions if the target does not support.
7101
29e57380
C
7102@kindex delete mem
7103@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7104Remove memory regions @var{nums}@dots{} from the list of regions
7105monitored by @value{GDBN}.
29e57380
C
7106
7107@kindex disable mem
7108@item disable mem @var{nums}@dots{}
09d4efe1 7109Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7110A disabled memory region is not forgotten.
29e57380
C
7111It may be enabled again later.
7112
7113@kindex enable mem
7114@item enable mem @var{nums}@dots{}
09d4efe1 7115Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7116
7117@kindex info mem
7118@item info mem
7119Print a table of all defined memory regions, with the following columns
09d4efe1 7120for each region:
29e57380
C
7121
7122@table @emph
7123@item Memory Region Number
7124@item Enabled or Disabled.
b383017d 7125Enabled memory regions are marked with @samp{y}.
29e57380
C
7126Disabled memory regions are marked with @samp{n}.
7127
7128@item Lo Address
7129The address defining the inclusive lower bound of the memory region.
7130
7131@item Hi Address
7132The address defining the exclusive upper bound of the memory region.
7133
7134@item Attributes
7135The list of attributes set for this memory region.
7136@end table
7137@end table
7138
7139
7140@subsection Attributes
7141
b383017d 7142@subsubsection Memory Access Mode
29e57380
C
7143The access mode attributes set whether @value{GDBN} may make read or
7144write accesses to a memory region.
7145
7146While these attributes prevent @value{GDBN} from performing invalid
7147memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7148etc.@: from accessing memory.
29e57380
C
7149
7150@table @code
7151@item ro
7152Memory is read only.
7153@item wo
7154Memory is write only.
7155@item rw
6ca652b0 7156Memory is read/write. This is the default.
29e57380
C
7157@end table
7158
7159@subsubsection Memory Access Size
d3e8051b 7160The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7161accesses in the memory region. Often memory mapped device registers
7162require specific sized accesses. If no access size attribute is
7163specified, @value{GDBN} may use accesses of any size.
7164
7165@table @code
7166@item 8
7167Use 8 bit memory accesses.
7168@item 16
7169Use 16 bit memory accesses.
7170@item 32
7171Use 32 bit memory accesses.
7172@item 64
7173Use 64 bit memory accesses.
7174@end table
7175
7176@c @subsubsection Hardware/Software Breakpoints
7177@c The hardware/software breakpoint attributes set whether @value{GDBN}
7178@c will use hardware or software breakpoints for the internal breakpoints
7179@c used by the step, next, finish, until, etc. commands.
7180@c
7181@c @table @code
7182@c @item hwbreak
b383017d 7183@c Always use hardware breakpoints
29e57380
C
7184@c @item swbreak (default)
7185@c @end table
7186
7187@subsubsection Data Cache
7188The data cache attributes set whether @value{GDBN} will cache target
7189memory. While this generally improves performance by reducing debug
7190protocol overhead, it can lead to incorrect results because @value{GDBN}
7191does not know about volatile variables or memory mapped device
7192registers.
7193
7194@table @code
7195@item cache
b383017d 7196Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7197@item nocache
7198Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7199@end table
7200
4b5752d0
VP
7201@subsection Memory Access Checking
7202@value{GDBN} can be instructed to refuse accesses to memory that is
7203not explicitly described. This can be useful if accessing such
7204regions has undesired effects for a specific target, or to provide
7205better error checking. The following commands control this behaviour.
7206
7207@table @code
7208@kindex set mem inaccessible-by-default
7209@item set mem inaccessible-by-default [on|off]
7210If @code{on} is specified, make @value{GDBN} treat memory not
7211explicitly described by the memory ranges as non-existent and refuse accesses
7212to such memory. The checks are only performed if there's at least one
7213memory range defined. If @code{off} is specified, make @value{GDBN}
7214treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7215The default value is @code{on}.
4b5752d0
VP
7216@kindex show mem inaccessible-by-default
7217@item show mem inaccessible-by-default
7218Show the current handling of accesses to unknown memory.
7219@end table
7220
7221
29e57380 7222@c @subsubsection Memory Write Verification
b383017d 7223@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7224@c will re-reads data after each write to verify the write was successful.
7225@c
7226@c @table @code
7227@c @item verify
7228@c @item noverify (default)
7229@c @end table
7230
16d9dec6 7231@node Dump/Restore Files
79a6e687 7232@section Copy Between Memory and a File
16d9dec6
MS
7233@cindex dump/restore files
7234@cindex append data to a file
7235@cindex dump data to a file
7236@cindex restore data from a file
16d9dec6 7237
df5215a6
JB
7238You can use the commands @code{dump}, @code{append}, and
7239@code{restore} to copy data between target memory and a file. The
7240@code{dump} and @code{append} commands write data to a file, and the
7241@code{restore} command reads data from a file back into the inferior's
7242memory. Files may be in binary, Motorola S-record, Intel hex, or
7243Tektronix Hex format; however, @value{GDBN} can only append to binary
7244files.
7245
7246@table @code
7247
7248@kindex dump
7249@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7250@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7251Dump the contents of memory from @var{start_addr} to @var{end_addr},
7252or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7253
df5215a6 7254The @var{format} parameter may be any one of:
16d9dec6 7255@table @code
df5215a6
JB
7256@item binary
7257Raw binary form.
7258@item ihex
7259Intel hex format.
7260@item srec
7261Motorola S-record format.
7262@item tekhex
7263Tektronix Hex format.
7264@end table
7265
7266@value{GDBN} uses the same definitions of these formats as the
7267@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7268@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7269form.
7270
7271@kindex append
7272@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7273@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7274Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7275or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7276(@value{GDBN} can only append data to files in raw binary form.)
7277
7278@kindex restore
7279@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7280Restore the contents of file @var{filename} into memory. The
7281@code{restore} command can automatically recognize any known @sc{bfd}
7282file format, except for raw binary. To restore a raw binary file you
7283must specify the optional keyword @code{binary} after the filename.
16d9dec6 7284
b383017d 7285If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7286contained in the file. Binary files always start at address zero, so
7287they will be restored at address @var{bias}. Other bfd files have
7288a built-in location; they will be restored at offset @var{bias}
7289from that location.
7290
7291If @var{start} and/or @var{end} are non-zero, then only data between
7292file offset @var{start} and file offset @var{end} will be restored.
b383017d 7293These offsets are relative to the addresses in the file, before
16d9dec6
MS
7294the @var{bias} argument is applied.
7295
7296@end table
7297
384ee23f
EZ
7298@node Core File Generation
7299@section How to Produce a Core File from Your Program
7300@cindex dump core from inferior
7301
7302A @dfn{core file} or @dfn{core dump} is a file that records the memory
7303image of a running process and its process status (register values
7304etc.). Its primary use is post-mortem debugging of a program that
7305crashed while it ran outside a debugger. A program that crashes
7306automatically produces a core file, unless this feature is disabled by
7307the user. @xref{Files}, for information on invoking @value{GDBN} in
7308the post-mortem debugging mode.
7309
7310Occasionally, you may wish to produce a core file of the program you
7311are debugging in order to preserve a snapshot of its state.
7312@value{GDBN} has a special command for that.
7313
7314@table @code
7315@kindex gcore
7316@kindex generate-core-file
7317@item generate-core-file [@var{file}]
7318@itemx gcore [@var{file}]
7319Produce a core dump of the inferior process. The optional argument
7320@var{file} specifies the file name where to put the core dump. If not
7321specified, the file name defaults to @file{core.@var{pid}}, where
7322@var{pid} is the inferior process ID.
7323
7324Note that this command is implemented only for some systems (as of
7325this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7326@end table
7327
a0eb71c5
KB
7328@node Character Sets
7329@section Character Sets
7330@cindex character sets
7331@cindex charset
7332@cindex translating between character sets
7333@cindex host character set
7334@cindex target character set
7335
7336If the program you are debugging uses a different character set to
7337represent characters and strings than the one @value{GDBN} uses itself,
7338@value{GDBN} can automatically translate between the character sets for
7339you. The character set @value{GDBN} uses we call the @dfn{host
7340character set}; the one the inferior program uses we call the
7341@dfn{target character set}.
7342
7343For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7344uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7345remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7346running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7347then the host character set is Latin-1, and the target character set is
7348@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7349target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7350@sc{ebcdic} and Latin 1 as you print character or string values, or use
7351character and string literals in expressions.
7352
7353@value{GDBN} has no way to automatically recognize which character set
7354the inferior program uses; you must tell it, using the @code{set
7355target-charset} command, described below.
7356
7357Here are the commands for controlling @value{GDBN}'s character set
7358support:
7359
7360@table @code
7361@item set target-charset @var{charset}
7362@kindex set target-charset
7363Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7364character set names @value{GDBN} recognizes below, but if you type
7365@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7366list the target character sets it supports.
a0eb71c5
KB
7367@end table
7368
7369@table @code
7370@item set host-charset @var{charset}
7371@kindex set host-charset
7372Set the current host character set to @var{charset}.
7373
7374By default, @value{GDBN} uses a host character set appropriate to the
7375system it is running on; you can override that default using the
7376@code{set host-charset} command.
7377
7378@value{GDBN} can only use certain character sets as its host character
7379set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7380indicate which can be host character sets, but if you type
7381@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7382list the host character sets it supports.
a0eb71c5
KB
7383
7384@item set charset @var{charset}
7385@kindex set charset
e33d66ec
EZ
7386Set the current host and target character sets to @var{charset}. As
7387above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7388@value{GDBN} will list the name of the character sets that can be used
7389for both host and target.
7390
a0eb71c5
KB
7391
7392@item show charset
a0eb71c5 7393@kindex show charset
b383017d 7394Show the names of the current host and target charsets.
e33d66ec
EZ
7395
7396@itemx show host-charset
a0eb71c5 7397@kindex show host-charset
b383017d 7398Show the name of the current host charset.
e33d66ec
EZ
7399
7400@itemx show target-charset
a0eb71c5 7401@kindex show target-charset
b383017d 7402Show the name of the current target charset.
a0eb71c5
KB
7403
7404@end table
7405
7406@value{GDBN} currently includes support for the following character
7407sets:
7408
7409@table @code
7410
7411@item ASCII
7412@cindex ASCII character set
7413Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7414character set.
7415
7416@item ISO-8859-1
7417@cindex ISO 8859-1 character set
7418@cindex ISO Latin 1 character set
e33d66ec 7419The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7420characters needed for French, German, and Spanish. @value{GDBN} can use
7421this as its host character set.
7422
7423@item EBCDIC-US
7424@itemx IBM1047
7425@cindex EBCDIC character set
7426@cindex IBM1047 character set
7427Variants of the @sc{ebcdic} character set, used on some of IBM's
7428mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7429@value{GDBN} cannot use these as its host character set.
7430
7431@end table
7432
7433Note that these are all single-byte character sets. More work inside
3f94c067 7434@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7435encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7436
7437Here is an example of @value{GDBN}'s character set support in action.
7438Assume that the following source code has been placed in the file
7439@file{charset-test.c}:
7440
7441@smallexample
7442#include <stdio.h>
7443
7444char ascii_hello[]
7445 = @{72, 101, 108, 108, 111, 44, 32, 119,
7446 111, 114, 108, 100, 33, 10, 0@};
7447char ibm1047_hello[]
7448 = @{200, 133, 147, 147, 150, 107, 64, 166,
7449 150, 153, 147, 132, 90, 37, 0@};
7450
7451main ()
7452@{
7453 printf ("Hello, world!\n");
7454@}
10998722 7455@end smallexample
a0eb71c5
KB
7456
7457In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7458containing the string @samp{Hello, world!} followed by a newline,
7459encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7460
7461We compile the program, and invoke the debugger on it:
7462
7463@smallexample
7464$ gcc -g charset-test.c -o charset-test
7465$ gdb -nw charset-test
7466GNU gdb 2001-12-19-cvs
7467Copyright 2001 Free Software Foundation, Inc.
7468@dots{}
f7dc1244 7469(@value{GDBP})
10998722 7470@end smallexample
a0eb71c5
KB
7471
7472We can use the @code{show charset} command to see what character sets
7473@value{GDBN} is currently using to interpret and display characters and
7474strings:
7475
7476@smallexample
f7dc1244 7477(@value{GDBP}) show charset
e33d66ec 7478The current host and target character set is `ISO-8859-1'.
f7dc1244 7479(@value{GDBP})
10998722 7480@end smallexample
a0eb71c5
KB
7481
7482For the sake of printing this manual, let's use @sc{ascii} as our
7483initial character set:
7484@smallexample
f7dc1244
EZ
7485(@value{GDBP}) set charset ASCII
7486(@value{GDBP}) show charset
e33d66ec 7487The current host and target character set is `ASCII'.
f7dc1244 7488(@value{GDBP})
10998722 7489@end smallexample
a0eb71c5
KB
7490
7491Let's assume that @sc{ascii} is indeed the correct character set for our
7492host system --- in other words, let's assume that if @value{GDBN} prints
7493characters using the @sc{ascii} character set, our terminal will display
7494them properly. Since our current target character set is also
7495@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7496
7497@smallexample
f7dc1244 7498(@value{GDBP}) print ascii_hello
a0eb71c5 7499$1 = 0x401698 "Hello, world!\n"
f7dc1244 7500(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7501$2 = 72 'H'
f7dc1244 7502(@value{GDBP})
10998722 7503@end smallexample
a0eb71c5
KB
7504
7505@value{GDBN} uses the target character set for character and string
7506literals you use in expressions:
7507
7508@smallexample
f7dc1244 7509(@value{GDBP}) print '+'
a0eb71c5 7510$3 = 43 '+'
f7dc1244 7511(@value{GDBP})
10998722 7512@end smallexample
a0eb71c5
KB
7513
7514The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7515character.
7516
7517@value{GDBN} relies on the user to tell it which character set the
7518target program uses. If we print @code{ibm1047_hello} while our target
7519character set is still @sc{ascii}, we get jibberish:
7520
7521@smallexample
f7dc1244 7522(@value{GDBP}) print ibm1047_hello
a0eb71c5 7523$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7524(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7525$5 = 200 '\310'
f7dc1244 7526(@value{GDBP})
10998722 7527@end smallexample
a0eb71c5 7528
e33d66ec 7529If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7530@value{GDBN} tells us the character sets it supports:
7531
7532@smallexample
f7dc1244 7533(@value{GDBP}) set target-charset
b383017d 7534ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7535(@value{GDBP}) set target-charset
10998722 7536@end smallexample
a0eb71c5
KB
7537
7538We can select @sc{ibm1047} as our target character set, and examine the
7539program's strings again. Now the @sc{ascii} string is wrong, but
7540@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7541target character set, @sc{ibm1047}, to the host character set,
7542@sc{ascii}, and they display correctly:
7543
7544@smallexample
f7dc1244
EZ
7545(@value{GDBP}) set target-charset IBM1047
7546(@value{GDBP}) show charset
e33d66ec
EZ
7547The current host character set is `ASCII'.
7548The current target character set is `IBM1047'.
f7dc1244 7549(@value{GDBP}) print ascii_hello
a0eb71c5 7550$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7551(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7552$7 = 72 '\110'
f7dc1244 7553(@value{GDBP}) print ibm1047_hello
a0eb71c5 7554$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7555(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7556$9 = 200 'H'
f7dc1244 7557(@value{GDBP})
10998722 7558@end smallexample
a0eb71c5
KB
7559
7560As above, @value{GDBN} uses the target character set for character and
7561string literals you use in expressions:
7562
7563@smallexample
f7dc1244 7564(@value{GDBP}) print '+'
a0eb71c5 7565$10 = 78 '+'
f7dc1244 7566(@value{GDBP})
10998722 7567@end smallexample
a0eb71c5 7568
e33d66ec 7569The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7570character.
7571
09d4efe1
EZ
7572@node Caching Remote Data
7573@section Caching Data of Remote Targets
7574@cindex caching data of remote targets
7575
7576@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7577remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7578performance, because it reduces the overhead of the remote protocol by
7579bundling memory reads and writes into large chunks. Unfortunately,
7580@value{GDBN} does not currently know anything about volatile
7581registers, and thus data caching will produce incorrect results when
7582volatile registers are in use.
7583
7584@table @code
7585@kindex set remotecache
7586@item set remotecache on
7587@itemx set remotecache off
7588Set caching state for remote targets. When @code{ON}, use data
7589caching. By default, this option is @code{OFF}.
7590
7591@kindex show remotecache
7592@item show remotecache
7593Show the current state of data caching for remote targets.
7594
7595@kindex info dcache
7596@item info dcache
7597Print the information about the data cache performance. The
7598information displayed includes: the dcache width and depth; and for
7599each cache line, how many times it was referenced, and its data and
7600state (dirty, bad, ok, etc.). This command is useful for debugging
7601the data cache operation.
7602@end table
7603
a0eb71c5 7604
e2e0bcd1
JB
7605@node Macros
7606@chapter C Preprocessor Macros
7607
49efadf5 7608Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7609``preprocessor macros'' which expand into strings of tokens.
7610@value{GDBN} can evaluate expressions containing macro invocations, show
7611the result of macro expansion, and show a macro's definition, including
7612where it was defined.
7613
7614You may need to compile your program specially to provide @value{GDBN}
7615with information about preprocessor macros. Most compilers do not
7616include macros in their debugging information, even when you compile
7617with the @option{-g} flag. @xref{Compilation}.
7618
7619A program may define a macro at one point, remove that definition later,
7620and then provide a different definition after that. Thus, at different
7621points in the program, a macro may have different definitions, or have
7622no definition at all. If there is a current stack frame, @value{GDBN}
7623uses the macros in scope at that frame's source code line. Otherwise,
7624@value{GDBN} uses the macros in scope at the current listing location;
7625see @ref{List}.
7626
7627At the moment, @value{GDBN} does not support the @code{##}
7628token-splicing operator, the @code{#} stringification operator, or
7629variable-arity macros.
7630
7631Whenever @value{GDBN} evaluates an expression, it always expands any
7632macro invocations present in the expression. @value{GDBN} also provides
7633the following commands for working with macros explicitly.
7634
7635@table @code
7636
7637@kindex macro expand
7638@cindex macro expansion, showing the results of preprocessor
7639@cindex preprocessor macro expansion, showing the results of
7640@cindex expanding preprocessor macros
7641@item macro expand @var{expression}
7642@itemx macro exp @var{expression}
7643Show the results of expanding all preprocessor macro invocations in
7644@var{expression}. Since @value{GDBN} simply expands macros, but does
7645not parse the result, @var{expression} need not be a valid expression;
7646it can be any string of tokens.
7647
09d4efe1 7648@kindex macro exp1
e2e0bcd1
JB
7649@item macro expand-once @var{expression}
7650@itemx macro exp1 @var{expression}
4644b6e3 7651@cindex expand macro once
e2e0bcd1
JB
7652@i{(This command is not yet implemented.)} Show the results of
7653expanding those preprocessor macro invocations that appear explicitly in
7654@var{expression}. Macro invocations appearing in that expansion are
7655left unchanged. This command allows you to see the effect of a
7656particular macro more clearly, without being confused by further
7657expansions. Since @value{GDBN} simply expands macros, but does not
7658parse the result, @var{expression} need not be a valid expression; it
7659can be any string of tokens.
7660
475b0867 7661@kindex info macro
e2e0bcd1
JB
7662@cindex macro definition, showing
7663@cindex definition, showing a macro's
475b0867 7664@item info macro @var{macro}
e2e0bcd1
JB
7665Show the definition of the macro named @var{macro}, and describe the
7666source location where that definition was established.
7667
7668@kindex macro define
7669@cindex user-defined macros
7670@cindex defining macros interactively
7671@cindex macros, user-defined
7672@item macro define @var{macro} @var{replacement-list}
7673@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7674@i{(This command is not yet implemented.)} Introduce a definition for a
7675preprocessor macro named @var{macro}, invocations of which are replaced
7676by the tokens given in @var{replacement-list}. The first form of this
7677command defines an ``object-like'' macro, which takes no arguments; the
7678second form defines a ``function-like'' macro, which takes the arguments
7679given in @var{arglist}.
7680
7681A definition introduced by this command is in scope in every expression
7682evaluated in @value{GDBN}, until it is removed with the @command{macro
7683undef} command, described below. The definition overrides all
7684definitions for @var{macro} present in the program being debugged, as
7685well as any previous user-supplied definition.
7686
7687@kindex macro undef
7688@item macro undef @var{macro}
7689@i{(This command is not yet implemented.)} Remove any user-supplied
7690definition for the macro named @var{macro}. This command only affects
7691definitions provided with the @command{macro define} command, described
7692above; it cannot remove definitions present in the program being
7693debugged.
7694
09d4efe1
EZ
7695@kindex macro list
7696@item macro list
7697@i{(This command is not yet implemented.)} List all the macros
7698defined using the @code{macro define} command.
e2e0bcd1
JB
7699@end table
7700
7701@cindex macros, example of debugging with
7702Here is a transcript showing the above commands in action. First, we
7703show our source files:
7704
7705@smallexample
7706$ cat sample.c
7707#include <stdio.h>
7708#include "sample.h"
7709
7710#define M 42
7711#define ADD(x) (M + x)
7712
7713main ()
7714@{
7715#define N 28
7716 printf ("Hello, world!\n");
7717#undef N
7718 printf ("We're so creative.\n");
7719#define N 1729
7720 printf ("Goodbye, world!\n");
7721@}
7722$ cat sample.h
7723#define Q <
7724$
7725@end smallexample
7726
7727Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7728We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7729compiler includes information about preprocessor macros in the debugging
7730information.
7731
7732@smallexample
7733$ gcc -gdwarf-2 -g3 sample.c -o sample
7734$
7735@end smallexample
7736
7737Now, we start @value{GDBN} on our sample program:
7738
7739@smallexample
7740$ gdb -nw sample
7741GNU gdb 2002-05-06-cvs
7742Copyright 2002 Free Software Foundation, Inc.
7743GDB is free software, @dots{}
f7dc1244 7744(@value{GDBP})
e2e0bcd1
JB
7745@end smallexample
7746
7747We can expand macros and examine their definitions, even when the
7748program is not running. @value{GDBN} uses the current listing position
7749to decide which macro definitions are in scope:
7750
7751@smallexample
f7dc1244 7752(@value{GDBP}) list main
e2e0bcd1
JB
77533
77544 #define M 42
77555 #define ADD(x) (M + x)
77566
77577 main ()
77588 @{
77599 #define N 28
776010 printf ("Hello, world!\n");
776111 #undef N
776212 printf ("We're so creative.\n");
f7dc1244 7763(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7764Defined at /home/jimb/gdb/macros/play/sample.c:5
7765#define ADD(x) (M + x)
f7dc1244 7766(@value{GDBP}) info macro Q
e2e0bcd1
JB
7767Defined at /home/jimb/gdb/macros/play/sample.h:1
7768 included at /home/jimb/gdb/macros/play/sample.c:2
7769#define Q <
f7dc1244 7770(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7771expands to: (42 + 1)
f7dc1244 7772(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7773expands to: once (M + 1)
f7dc1244 7774(@value{GDBP})
e2e0bcd1
JB
7775@end smallexample
7776
7777In the example above, note that @command{macro expand-once} expands only
7778the macro invocation explicit in the original text --- the invocation of
7779@code{ADD} --- but does not expand the invocation of the macro @code{M},
7780which was introduced by @code{ADD}.
7781
3f94c067
BW
7782Once the program is running, @value{GDBN} uses the macro definitions in
7783force at the source line of the current stack frame:
e2e0bcd1
JB
7784
7785@smallexample
f7dc1244 7786(@value{GDBP}) break main
e2e0bcd1 7787Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7788(@value{GDBP}) run
b383017d 7789Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7790
7791Breakpoint 1, main () at sample.c:10
779210 printf ("Hello, world!\n");
f7dc1244 7793(@value{GDBP})
e2e0bcd1
JB
7794@end smallexample
7795
7796At line 10, the definition of the macro @code{N} at line 9 is in force:
7797
7798@smallexample
f7dc1244 7799(@value{GDBP}) info macro N
e2e0bcd1
JB
7800Defined at /home/jimb/gdb/macros/play/sample.c:9
7801#define N 28
f7dc1244 7802(@value{GDBP}) macro expand N Q M
e2e0bcd1 7803expands to: 28 < 42
f7dc1244 7804(@value{GDBP}) print N Q M
e2e0bcd1 7805$1 = 1
f7dc1244 7806(@value{GDBP})
e2e0bcd1
JB
7807@end smallexample
7808
7809As we step over directives that remove @code{N}'s definition, and then
7810give it a new definition, @value{GDBN} finds the definition (or lack
7811thereof) in force at each point:
7812
7813@smallexample
f7dc1244 7814(@value{GDBP}) next
e2e0bcd1
JB
7815Hello, world!
781612 printf ("We're so creative.\n");
f7dc1244 7817(@value{GDBP}) info macro N
e2e0bcd1
JB
7818The symbol `N' has no definition as a C/C++ preprocessor macro
7819at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7820(@value{GDBP}) next
e2e0bcd1
JB
7821We're so creative.
782214 printf ("Goodbye, world!\n");
f7dc1244 7823(@value{GDBP}) info macro N
e2e0bcd1
JB
7824Defined at /home/jimb/gdb/macros/play/sample.c:13
7825#define N 1729
f7dc1244 7826(@value{GDBP}) macro expand N Q M
e2e0bcd1 7827expands to: 1729 < 42
f7dc1244 7828(@value{GDBP}) print N Q M
e2e0bcd1 7829$2 = 0
f7dc1244 7830(@value{GDBP})
e2e0bcd1
JB
7831@end smallexample
7832
7833
b37052ae
EZ
7834@node Tracepoints
7835@chapter Tracepoints
7836@c This chapter is based on the documentation written by Michael
7837@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7838
7839@cindex tracepoints
7840In some applications, it is not feasible for the debugger to interrupt
7841the program's execution long enough for the developer to learn
7842anything helpful about its behavior. If the program's correctness
7843depends on its real-time behavior, delays introduced by a debugger
7844might cause the program to change its behavior drastically, or perhaps
7845fail, even when the code itself is correct. It is useful to be able
7846to observe the program's behavior without interrupting it.
7847
7848Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7849specify locations in the program, called @dfn{tracepoints}, and
7850arbitrary expressions to evaluate when those tracepoints are reached.
7851Later, using the @code{tfind} command, you can examine the values
7852those expressions had when the program hit the tracepoints. The
7853expressions may also denote objects in memory---structures or arrays,
7854for example---whose values @value{GDBN} should record; while visiting
7855a particular tracepoint, you may inspect those objects as if they were
7856in memory at that moment. However, because @value{GDBN} records these
7857values without interacting with you, it can do so quickly and
7858unobtrusively, hopefully not disturbing the program's behavior.
7859
7860The tracepoint facility is currently available only for remote
9d29849a
JB
7861targets. @xref{Targets}. In addition, your remote target must know
7862how to collect trace data. This functionality is implemented in the
7863remote stub; however, none of the stubs distributed with @value{GDBN}
7864support tracepoints as of this writing. The format of the remote
7865packets used to implement tracepoints are described in @ref{Tracepoint
7866Packets}.
b37052ae
EZ
7867
7868This chapter describes the tracepoint commands and features.
7869
7870@menu
b383017d
RM
7871* Set Tracepoints::
7872* Analyze Collected Data::
7873* Tracepoint Variables::
b37052ae
EZ
7874@end menu
7875
7876@node Set Tracepoints
7877@section Commands to Set Tracepoints
7878
7879Before running such a @dfn{trace experiment}, an arbitrary number of
7880tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7881tracepoint has a number assigned to it by @value{GDBN}. Like with
7882breakpoints, tracepoint numbers are successive integers starting from
7883one. Many of the commands associated with tracepoints take the
7884tracepoint number as their argument, to identify which tracepoint to
7885work on.
7886
7887For each tracepoint, you can specify, in advance, some arbitrary set
7888of data that you want the target to collect in the trace buffer when
7889it hits that tracepoint. The collected data can include registers,
7890local variables, or global data. Later, you can use @value{GDBN}
7891commands to examine the values these data had at the time the
7892tracepoint was hit.
7893
7894This section describes commands to set tracepoints and associated
7895conditions and actions.
7896
7897@menu
b383017d
RM
7898* Create and Delete Tracepoints::
7899* Enable and Disable Tracepoints::
7900* Tracepoint Passcounts::
7901* Tracepoint Actions::
7902* Listing Tracepoints::
79a6e687 7903* Starting and Stopping Trace Experiments::
b37052ae
EZ
7904@end menu
7905
7906@node Create and Delete Tracepoints
7907@subsection Create and Delete Tracepoints
7908
7909@table @code
7910@cindex set tracepoint
7911@kindex trace
7912@item trace
7913The @code{trace} command is very similar to the @code{break} command.
7914Its argument can be a source line, a function name, or an address in
7915the target program. @xref{Set Breaks}. The @code{trace} command
7916defines a tracepoint, which is a point in the target program where the
7917debugger will briefly stop, collect some data, and then allow the
7918program to continue. Setting a tracepoint or changing its commands
7919doesn't take effect until the next @code{tstart} command; thus, you
7920cannot change the tracepoint attributes once a trace experiment is
7921running.
7922
7923Here are some examples of using the @code{trace} command:
7924
7925@smallexample
7926(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7927
7928(@value{GDBP}) @b{trace +2} // 2 lines forward
7929
7930(@value{GDBP}) @b{trace my_function} // first source line of function
7931
7932(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7933
7934(@value{GDBP}) @b{trace *0x2117c4} // an address
7935@end smallexample
7936
7937@noindent
7938You can abbreviate @code{trace} as @code{tr}.
7939
7940@vindex $tpnum
7941@cindex last tracepoint number
7942@cindex recent tracepoint number
7943@cindex tracepoint number
7944The convenience variable @code{$tpnum} records the tracepoint number
7945of the most recently set tracepoint.
7946
7947@kindex delete tracepoint
7948@cindex tracepoint deletion
7949@item delete tracepoint @r{[}@var{num}@r{]}
7950Permanently delete one or more tracepoints. With no argument, the
7951default is to delete all tracepoints.
7952
7953Examples:
7954
7955@smallexample
7956(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7957
7958(@value{GDBP}) @b{delete trace} // remove all tracepoints
7959@end smallexample
7960
7961@noindent
7962You can abbreviate this command as @code{del tr}.
7963@end table
7964
7965@node Enable and Disable Tracepoints
7966@subsection Enable and Disable Tracepoints
7967
7968@table @code
7969@kindex disable tracepoint
7970@item disable tracepoint @r{[}@var{num}@r{]}
7971Disable tracepoint @var{num}, or all tracepoints if no argument
7972@var{num} is given. A disabled tracepoint will have no effect during
7973the next trace experiment, but it is not forgotten. You can re-enable
7974a disabled tracepoint using the @code{enable tracepoint} command.
7975
7976@kindex enable tracepoint
7977@item enable tracepoint @r{[}@var{num}@r{]}
7978Enable tracepoint @var{num}, or all tracepoints. The enabled
7979tracepoints will become effective the next time a trace experiment is
7980run.
7981@end table
7982
7983@node Tracepoint Passcounts
7984@subsection Tracepoint Passcounts
7985
7986@table @code
7987@kindex passcount
7988@cindex tracepoint pass count
7989@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7990Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7991automatically stop a trace experiment. If a tracepoint's passcount is
7992@var{n}, then the trace experiment will be automatically stopped on
7993the @var{n}'th time that tracepoint is hit. If the tracepoint number
7994@var{num} is not specified, the @code{passcount} command sets the
7995passcount of the most recently defined tracepoint. If no passcount is
7996given, the trace experiment will run until stopped explicitly by the
7997user.
7998
7999Examples:
8000
8001@smallexample
b383017d 8002(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8003@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8004
8005(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8006@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8007(@value{GDBP}) @b{trace foo}
8008(@value{GDBP}) @b{pass 3}
8009(@value{GDBP}) @b{trace bar}
8010(@value{GDBP}) @b{pass 2}
8011(@value{GDBP}) @b{trace baz}
8012(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8013@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8014@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8015@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8016@end smallexample
8017@end table
8018
8019@node Tracepoint Actions
8020@subsection Tracepoint Action Lists
8021
8022@table @code
8023@kindex actions
8024@cindex tracepoint actions
8025@item actions @r{[}@var{num}@r{]}
8026This command will prompt for a list of actions to be taken when the
8027tracepoint is hit. If the tracepoint number @var{num} is not
8028specified, this command sets the actions for the one that was most
8029recently defined (so that you can define a tracepoint and then say
8030@code{actions} without bothering about its number). You specify the
8031actions themselves on the following lines, one action at a time, and
8032terminate the actions list with a line containing just @code{end}. So
8033far, the only defined actions are @code{collect} and
8034@code{while-stepping}.
8035
8036@cindex remove actions from a tracepoint
8037To remove all actions from a tracepoint, type @samp{actions @var{num}}
8038and follow it immediately with @samp{end}.
8039
8040@smallexample
8041(@value{GDBP}) @b{collect @var{data}} // collect some data
8042
6826cf00 8043(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8044
6826cf00 8045(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8046@end smallexample
8047
8048In the following example, the action list begins with @code{collect}
8049commands indicating the things to be collected when the tracepoint is
8050hit. Then, in order to single-step and collect additional data
8051following the tracepoint, a @code{while-stepping} command is used,
8052followed by the list of things to be collected while stepping. The
8053@code{while-stepping} command is terminated by its own separate
8054@code{end} command. Lastly, the action list is terminated by an
8055@code{end} command.
8056
8057@smallexample
8058(@value{GDBP}) @b{trace foo}
8059(@value{GDBP}) @b{actions}
8060Enter actions for tracepoint 1, one per line:
8061> collect bar,baz
8062> collect $regs
8063> while-stepping 12
8064 > collect $fp, $sp
8065 > end
8066end
8067@end smallexample
8068
8069@kindex collect @r{(tracepoints)}
8070@item collect @var{expr1}, @var{expr2}, @dots{}
8071Collect values of the given expressions when the tracepoint is hit.
8072This command accepts a comma-separated list of any valid expressions.
8073In addition to global, static, or local variables, the following
8074special arguments are supported:
8075
8076@table @code
8077@item $regs
8078collect all registers
8079
8080@item $args
8081collect all function arguments
8082
8083@item $locals
8084collect all local variables.
8085@end table
8086
8087You can give several consecutive @code{collect} commands, each one
8088with a single argument, or one @code{collect} command with several
8089arguments separated by commas: the effect is the same.
8090
f5c37c66
EZ
8091The command @code{info scope} (@pxref{Symbols, info scope}) is
8092particularly useful for figuring out what data to collect.
8093
b37052ae
EZ
8094@kindex while-stepping @r{(tracepoints)}
8095@item while-stepping @var{n}
8096Perform @var{n} single-step traces after the tracepoint, collecting
8097new data at each step. The @code{while-stepping} command is
8098followed by the list of what to collect while stepping (followed by
8099its own @code{end} command):
8100
8101@smallexample
8102> while-stepping 12
8103 > collect $regs, myglobal
8104 > end
8105>
8106@end smallexample
8107
8108@noindent
8109You may abbreviate @code{while-stepping} as @code{ws} or
8110@code{stepping}.
8111@end table
8112
8113@node Listing Tracepoints
8114@subsection Listing Tracepoints
8115
8116@table @code
8117@kindex info tracepoints
09d4efe1 8118@kindex info tp
b37052ae
EZ
8119@cindex information about tracepoints
8120@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8121Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8122a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8123defined so far. For each tracepoint, the following information is
8124shown:
8125
8126@itemize @bullet
8127@item
8128its number
8129@item
8130whether it is enabled or disabled
8131@item
8132its address
8133@item
8134its passcount as given by the @code{passcount @var{n}} command
8135@item
8136its step count as given by the @code{while-stepping @var{n}} command
8137@item
8138where in the source files is the tracepoint set
8139@item
8140its action list as given by the @code{actions} command
8141@end itemize
8142
8143@smallexample
8144(@value{GDBP}) @b{info trace}
8145Num Enb Address PassC StepC What
81461 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81472 y 0x0020dc64 0 0 in g_test at g_test.c:1375
81483 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8149(@value{GDBP})
8150@end smallexample
8151
8152@noindent
8153This command can be abbreviated @code{info tp}.
8154@end table
8155
79a6e687
BW
8156@node Starting and Stopping Trace Experiments
8157@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8158
8159@table @code
8160@kindex tstart
8161@cindex start a new trace experiment
8162@cindex collected data discarded
8163@item tstart
8164This command takes no arguments. It starts the trace experiment, and
8165begins collecting data. This has the side effect of discarding all
8166the data collected in the trace buffer during the previous trace
8167experiment.
8168
8169@kindex tstop
8170@cindex stop a running trace experiment
8171@item tstop
8172This command takes no arguments. It ends the trace experiment, and
8173stops collecting data.
8174
68c71a2e 8175@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8176automatically if any tracepoint's passcount is reached
8177(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8178
8179@kindex tstatus
8180@cindex status of trace data collection
8181@cindex trace experiment, status of
8182@item tstatus
8183This command displays the status of the current trace data
8184collection.
8185@end table
8186
8187Here is an example of the commands we described so far:
8188
8189@smallexample
8190(@value{GDBP}) @b{trace gdb_c_test}
8191(@value{GDBP}) @b{actions}
8192Enter actions for tracepoint #1, one per line.
8193> collect $regs,$locals,$args
8194> while-stepping 11
8195 > collect $regs
8196 > end
8197> end
8198(@value{GDBP}) @b{tstart}
8199 [time passes @dots{}]
8200(@value{GDBP}) @b{tstop}
8201@end smallexample
8202
8203
8204@node Analyze Collected Data
79a6e687 8205@section Using the Collected Data
b37052ae
EZ
8206
8207After the tracepoint experiment ends, you use @value{GDBN} commands
8208for examining the trace data. The basic idea is that each tracepoint
8209collects a trace @dfn{snapshot} every time it is hit and another
8210snapshot every time it single-steps. All these snapshots are
8211consecutively numbered from zero and go into a buffer, and you can
8212examine them later. The way you examine them is to @dfn{focus} on a
8213specific trace snapshot. When the remote stub is focused on a trace
8214snapshot, it will respond to all @value{GDBN} requests for memory and
8215registers by reading from the buffer which belongs to that snapshot,
8216rather than from @emph{real} memory or registers of the program being
8217debugged. This means that @strong{all} @value{GDBN} commands
8218(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8219behave as if we were currently debugging the program state as it was
8220when the tracepoint occurred. Any requests for data that are not in
8221the buffer will fail.
8222
8223@menu
8224* tfind:: How to select a trace snapshot
8225* tdump:: How to display all data for a snapshot
8226* save-tracepoints:: How to save tracepoints for a future run
8227@end menu
8228
8229@node tfind
8230@subsection @code{tfind @var{n}}
8231
8232@kindex tfind
8233@cindex select trace snapshot
8234@cindex find trace snapshot
8235The basic command for selecting a trace snapshot from the buffer is
8236@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8237counting from zero. If no argument @var{n} is given, the next
8238snapshot is selected.
8239
8240Here are the various forms of using the @code{tfind} command.
8241
8242@table @code
8243@item tfind start
8244Find the first snapshot in the buffer. This is a synonym for
8245@code{tfind 0} (since 0 is the number of the first snapshot).
8246
8247@item tfind none
8248Stop debugging trace snapshots, resume @emph{live} debugging.
8249
8250@item tfind end
8251Same as @samp{tfind none}.
8252
8253@item tfind
8254No argument means find the next trace snapshot.
8255
8256@item tfind -
8257Find the previous trace snapshot before the current one. This permits
8258retracing earlier steps.
8259
8260@item tfind tracepoint @var{num}
8261Find the next snapshot associated with tracepoint @var{num}. Search
8262proceeds forward from the last examined trace snapshot. If no
8263argument @var{num} is given, it means find the next snapshot collected
8264for the same tracepoint as the current snapshot.
8265
8266@item tfind pc @var{addr}
8267Find the next snapshot associated with the value @var{addr} of the
8268program counter. Search proceeds forward from the last examined trace
8269snapshot. If no argument @var{addr} is given, it means find the next
8270snapshot with the same value of PC as the current snapshot.
8271
8272@item tfind outside @var{addr1}, @var{addr2}
8273Find the next snapshot whose PC is outside the given range of
8274addresses.
8275
8276@item tfind range @var{addr1}, @var{addr2}
8277Find the next snapshot whose PC is between @var{addr1} and
8278@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8279
8280@item tfind line @r{[}@var{file}:@r{]}@var{n}
8281Find the next snapshot associated with the source line @var{n}. If
8282the optional argument @var{file} is given, refer to line @var{n} in
8283that source file. Search proceeds forward from the last examined
8284trace snapshot. If no argument @var{n} is given, it means find the
8285next line other than the one currently being examined; thus saying
8286@code{tfind line} repeatedly can appear to have the same effect as
8287stepping from line to line in a @emph{live} debugging session.
8288@end table
8289
8290The default arguments for the @code{tfind} commands are specifically
8291designed to make it easy to scan through the trace buffer. For
8292instance, @code{tfind} with no argument selects the next trace
8293snapshot, and @code{tfind -} with no argument selects the previous
8294trace snapshot. So, by giving one @code{tfind} command, and then
8295simply hitting @key{RET} repeatedly you can examine all the trace
8296snapshots in order. Or, by saying @code{tfind -} and then hitting
8297@key{RET} repeatedly you can examine the snapshots in reverse order.
8298The @code{tfind line} command with no argument selects the snapshot
8299for the next source line executed. The @code{tfind pc} command with
8300no argument selects the next snapshot with the same program counter
8301(PC) as the current frame. The @code{tfind tracepoint} command with
8302no argument selects the next trace snapshot collected by the same
8303tracepoint as the current one.
8304
8305In addition to letting you scan through the trace buffer manually,
8306these commands make it easy to construct @value{GDBN} scripts that
8307scan through the trace buffer and print out whatever collected data
8308you are interested in. Thus, if we want to examine the PC, FP, and SP
8309registers from each trace frame in the buffer, we can say this:
8310
8311@smallexample
8312(@value{GDBP}) @b{tfind start}
8313(@value{GDBP}) @b{while ($trace_frame != -1)}
8314> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8315 $trace_frame, $pc, $sp, $fp
8316> tfind
8317> end
8318
8319Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8320Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8321Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8322Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8323Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8324Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8325Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8326Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8327Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8328Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8329Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8330@end smallexample
8331
8332Or, if we want to examine the variable @code{X} at each source line in
8333the buffer:
8334
8335@smallexample
8336(@value{GDBP}) @b{tfind start}
8337(@value{GDBP}) @b{while ($trace_frame != -1)}
8338> printf "Frame %d, X == %d\n", $trace_frame, X
8339> tfind line
8340> end
8341
8342Frame 0, X = 1
8343Frame 7, X = 2
8344Frame 13, X = 255
8345@end smallexample
8346
8347@node tdump
8348@subsection @code{tdump}
8349@kindex tdump
8350@cindex dump all data collected at tracepoint
8351@cindex tracepoint data, display
8352
8353This command takes no arguments. It prints all the data collected at
8354the current trace snapshot.
8355
8356@smallexample
8357(@value{GDBP}) @b{trace 444}
8358(@value{GDBP}) @b{actions}
8359Enter actions for tracepoint #2, one per line:
8360> collect $regs, $locals, $args, gdb_long_test
8361> end
8362
8363(@value{GDBP}) @b{tstart}
8364
8365(@value{GDBP}) @b{tfind line 444}
8366#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8367at gdb_test.c:444
8368444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8369
8370(@value{GDBP}) @b{tdump}
8371Data collected at tracepoint 2, trace frame 1:
8372d0 0xc4aa0085 -995491707
8373d1 0x18 24
8374d2 0x80 128
8375d3 0x33 51
8376d4 0x71aea3d 119204413
8377d5 0x22 34
8378d6 0xe0 224
8379d7 0x380035 3670069
8380a0 0x19e24a 1696330
8381a1 0x3000668 50333288
8382a2 0x100 256
8383a3 0x322000 3284992
8384a4 0x3000698 50333336
8385a5 0x1ad3cc 1758156
8386fp 0x30bf3c 0x30bf3c
8387sp 0x30bf34 0x30bf34
8388ps 0x0 0
8389pc 0x20b2c8 0x20b2c8
8390fpcontrol 0x0 0
8391fpstatus 0x0 0
8392fpiaddr 0x0 0
8393p = 0x20e5b4 "gdb-test"
8394p1 = (void *) 0x11
8395p2 = (void *) 0x22
8396p3 = (void *) 0x33
8397p4 = (void *) 0x44
8398p5 = (void *) 0x55
8399p6 = (void *) 0x66
8400gdb_long_test = 17 '\021'
8401
8402(@value{GDBP})
8403@end smallexample
8404
8405@node save-tracepoints
8406@subsection @code{save-tracepoints @var{filename}}
8407@kindex save-tracepoints
8408@cindex save tracepoints for future sessions
8409
8410This command saves all current tracepoint definitions together with
8411their actions and passcounts, into a file @file{@var{filename}}
8412suitable for use in a later debugging session. To read the saved
8413tracepoint definitions, use the @code{source} command (@pxref{Command
8414Files}).
8415
8416@node Tracepoint Variables
8417@section Convenience Variables for Tracepoints
8418@cindex tracepoint variables
8419@cindex convenience variables for tracepoints
8420
8421@table @code
8422@vindex $trace_frame
8423@item (int) $trace_frame
8424The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8425snapshot is selected.
8426
8427@vindex $tracepoint
8428@item (int) $tracepoint
8429The tracepoint for the current trace snapshot.
8430
8431@vindex $trace_line
8432@item (int) $trace_line
8433The line number for the current trace snapshot.
8434
8435@vindex $trace_file
8436@item (char []) $trace_file
8437The source file for the current trace snapshot.
8438
8439@vindex $trace_func
8440@item (char []) $trace_func
8441The name of the function containing @code{$tracepoint}.
8442@end table
8443
8444Note: @code{$trace_file} is not suitable for use in @code{printf},
8445use @code{output} instead.
8446
8447Here's a simple example of using these convenience variables for
8448stepping through all the trace snapshots and printing some of their
8449data.
8450
8451@smallexample
8452(@value{GDBP}) @b{tfind start}
8453
8454(@value{GDBP}) @b{while $trace_frame != -1}
8455> output $trace_file
8456> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8457> tfind
8458> end
8459@end smallexample
8460
df0cd8c5
JB
8461@node Overlays
8462@chapter Debugging Programs That Use Overlays
8463@cindex overlays
8464
8465If your program is too large to fit completely in your target system's
8466memory, you can sometimes use @dfn{overlays} to work around this
8467problem. @value{GDBN} provides some support for debugging programs that
8468use overlays.
8469
8470@menu
8471* How Overlays Work:: A general explanation of overlays.
8472* Overlay Commands:: Managing overlays in @value{GDBN}.
8473* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8474 mapped by asking the inferior.
8475* Overlay Sample Program:: A sample program using overlays.
8476@end menu
8477
8478@node How Overlays Work
8479@section How Overlays Work
8480@cindex mapped overlays
8481@cindex unmapped overlays
8482@cindex load address, overlay's
8483@cindex mapped address
8484@cindex overlay area
8485
8486Suppose you have a computer whose instruction address space is only 64
8487kilobytes long, but which has much more memory which can be accessed by
8488other means: special instructions, segment registers, or memory
8489management hardware, for example. Suppose further that you want to
8490adapt a program which is larger than 64 kilobytes to run on this system.
8491
8492One solution is to identify modules of your program which are relatively
8493independent, and need not call each other directly; call these modules
8494@dfn{overlays}. Separate the overlays from the main program, and place
8495their machine code in the larger memory. Place your main program in
8496instruction memory, but leave at least enough space there to hold the
8497largest overlay as well.
8498
8499Now, to call a function located in an overlay, you must first copy that
8500overlay's machine code from the large memory into the space set aside
8501for it in the instruction memory, and then jump to its entry point
8502there.
8503
c928edc0
AC
8504@c NB: In the below the mapped area's size is greater or equal to the
8505@c size of all overlays. This is intentional to remind the developer
8506@c that overlays don't necessarily need to be the same size.
8507
474c8240 8508@smallexample
df0cd8c5 8509@group
c928edc0
AC
8510 Data Instruction Larger
8511Address Space Address Space Address Space
8512+-----------+ +-----------+ +-----------+
8513| | | | | |
8514+-----------+ +-----------+ +-----------+<-- overlay 1
8515| program | | main | .----| overlay 1 | load address
8516| variables | | program | | +-----------+
8517| and heap | | | | | |
8518+-----------+ | | | +-----------+<-- overlay 2
8519| | +-----------+ | | | load address
8520+-----------+ | | | .-| overlay 2 |
8521 | | | | | |
8522 mapped --->+-----------+ | | +-----------+
8523 address | | | | | |
8524 | overlay | <-' | | |
8525 | area | <---' +-----------+<-- overlay 3
8526 | | <---. | | load address
8527 +-----------+ `--| overlay 3 |
8528 | | | |
8529 +-----------+ | |
8530 +-----------+
8531 | |
8532 +-----------+
8533
8534 @anchor{A code overlay}A code overlay
df0cd8c5 8535@end group
474c8240 8536@end smallexample
df0cd8c5 8537
c928edc0
AC
8538The diagram (@pxref{A code overlay}) shows a system with separate data
8539and instruction address spaces. To map an overlay, the program copies
8540its code from the larger address space to the instruction address space.
8541Since the overlays shown here all use the same mapped address, only one
8542may be mapped at a time. For a system with a single address space for
8543data and instructions, the diagram would be similar, except that the
8544program variables and heap would share an address space with the main
8545program and the overlay area.
df0cd8c5
JB
8546
8547An overlay loaded into instruction memory and ready for use is called a
8548@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8549instruction memory. An overlay not present (or only partially present)
8550in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8551is its address in the larger memory. The mapped address is also called
8552the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8553called the @dfn{load memory address}, or @dfn{LMA}.
8554
8555Unfortunately, overlays are not a completely transparent way to adapt a
8556program to limited instruction memory. They introduce a new set of
8557global constraints you must keep in mind as you design your program:
8558
8559@itemize @bullet
8560
8561@item
8562Before calling or returning to a function in an overlay, your program
8563must make sure that overlay is actually mapped. Otherwise, the call or
8564return will transfer control to the right address, but in the wrong
8565overlay, and your program will probably crash.
8566
8567@item
8568If the process of mapping an overlay is expensive on your system, you
8569will need to choose your overlays carefully to minimize their effect on
8570your program's performance.
8571
8572@item
8573The executable file you load onto your system must contain each
8574overlay's instructions, appearing at the overlay's load address, not its
8575mapped address. However, each overlay's instructions must be relocated
8576and its symbols defined as if the overlay were at its mapped address.
8577You can use GNU linker scripts to specify different load and relocation
8578addresses for pieces of your program; see @ref{Overlay Description,,,
8579ld.info, Using ld: the GNU linker}.
8580
8581@item
8582The procedure for loading executable files onto your system must be able
8583to load their contents into the larger address space as well as the
8584instruction and data spaces.
8585
8586@end itemize
8587
8588The overlay system described above is rather simple, and could be
8589improved in many ways:
8590
8591@itemize @bullet
8592
8593@item
8594If your system has suitable bank switch registers or memory management
8595hardware, you could use those facilities to make an overlay's load area
8596contents simply appear at their mapped address in instruction space.
8597This would probably be faster than copying the overlay to its mapped
8598area in the usual way.
8599
8600@item
8601If your overlays are small enough, you could set aside more than one
8602overlay area, and have more than one overlay mapped at a time.
8603
8604@item
8605You can use overlays to manage data, as well as instructions. In
8606general, data overlays are even less transparent to your design than
8607code overlays: whereas code overlays only require care when you call or
8608return to functions, data overlays require care every time you access
8609the data. Also, if you change the contents of a data overlay, you
8610must copy its contents back out to its load address before you can copy a
8611different data overlay into the same mapped area.
8612
8613@end itemize
8614
8615
8616@node Overlay Commands
8617@section Overlay Commands
8618
8619To use @value{GDBN}'s overlay support, each overlay in your program must
8620correspond to a separate section of the executable file. The section's
8621virtual memory address and load memory address must be the overlay's
8622mapped and load addresses. Identifying overlays with sections allows
8623@value{GDBN} to determine the appropriate address of a function or
8624variable, depending on whether the overlay is mapped or not.
8625
8626@value{GDBN}'s overlay commands all start with the word @code{overlay};
8627you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8628
8629@table @code
8630@item overlay off
4644b6e3 8631@kindex overlay
df0cd8c5
JB
8632Disable @value{GDBN}'s overlay support. When overlay support is
8633disabled, @value{GDBN} assumes that all functions and variables are
8634always present at their mapped addresses. By default, @value{GDBN}'s
8635overlay support is disabled.
8636
8637@item overlay manual
df0cd8c5
JB
8638@cindex manual overlay debugging
8639Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8640relies on you to tell it which overlays are mapped, and which are not,
8641using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8642commands described below.
8643
8644@item overlay map-overlay @var{overlay}
8645@itemx overlay map @var{overlay}
df0cd8c5
JB
8646@cindex map an overlay
8647Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8648be the name of the object file section containing the overlay. When an
8649overlay is mapped, @value{GDBN} assumes it can find the overlay's
8650functions and variables at their mapped addresses. @value{GDBN} assumes
8651that any other overlays whose mapped ranges overlap that of
8652@var{overlay} are now unmapped.
8653
8654@item overlay unmap-overlay @var{overlay}
8655@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8656@cindex unmap an overlay
8657Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8658must be the name of the object file section containing the overlay.
8659When an overlay is unmapped, @value{GDBN} assumes it can find the
8660overlay's functions and variables at their load addresses.
8661
8662@item overlay auto
df0cd8c5
JB
8663Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8664consults a data structure the overlay manager maintains in the inferior
8665to see which overlays are mapped. For details, see @ref{Automatic
8666Overlay Debugging}.
8667
8668@item overlay load-target
8669@itemx overlay load
df0cd8c5
JB
8670@cindex reloading the overlay table
8671Re-read the overlay table from the inferior. Normally, @value{GDBN}
8672re-reads the table @value{GDBN} automatically each time the inferior
8673stops, so this command should only be necessary if you have changed the
8674overlay mapping yourself using @value{GDBN}. This command is only
8675useful when using automatic overlay debugging.
8676
8677@item overlay list-overlays
8678@itemx overlay list
8679@cindex listing mapped overlays
8680Display a list of the overlays currently mapped, along with their mapped
8681addresses, load addresses, and sizes.
8682
8683@end table
8684
8685Normally, when @value{GDBN} prints a code address, it includes the name
8686of the function the address falls in:
8687
474c8240 8688@smallexample
f7dc1244 8689(@value{GDBP}) print main
df0cd8c5 8690$3 = @{int ()@} 0x11a0 <main>
474c8240 8691@end smallexample
df0cd8c5
JB
8692@noindent
8693When overlay debugging is enabled, @value{GDBN} recognizes code in
8694unmapped overlays, and prints the names of unmapped functions with
8695asterisks around them. For example, if @code{foo} is a function in an
8696unmapped overlay, @value{GDBN} prints it this way:
8697
474c8240 8698@smallexample
f7dc1244 8699(@value{GDBP}) overlay list
df0cd8c5 8700No sections are mapped.
f7dc1244 8701(@value{GDBP}) print foo
df0cd8c5 8702$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8703@end smallexample
df0cd8c5
JB
8704@noindent
8705When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8706name normally:
8707
474c8240 8708@smallexample
f7dc1244 8709(@value{GDBP}) overlay list
b383017d 8710Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8711 mapped at 0x1016 - 0x104a
f7dc1244 8712(@value{GDBP}) print foo
df0cd8c5 8713$6 = @{int (int)@} 0x1016 <foo>
474c8240 8714@end smallexample
df0cd8c5
JB
8715
8716When overlay debugging is enabled, @value{GDBN} can find the correct
8717address for functions and variables in an overlay, whether or not the
8718overlay is mapped. This allows most @value{GDBN} commands, like
8719@code{break} and @code{disassemble}, to work normally, even on unmapped
8720code. However, @value{GDBN}'s breakpoint support has some limitations:
8721
8722@itemize @bullet
8723@item
8724@cindex breakpoints in overlays
8725@cindex overlays, setting breakpoints in
8726You can set breakpoints in functions in unmapped overlays, as long as
8727@value{GDBN} can write to the overlay at its load address.
8728@item
8729@value{GDBN} can not set hardware or simulator-based breakpoints in
8730unmapped overlays. However, if you set a breakpoint at the end of your
8731overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8732you are using manual overlay management), @value{GDBN} will re-set its
8733breakpoints properly.
8734@end itemize
8735
8736
8737@node Automatic Overlay Debugging
8738@section Automatic Overlay Debugging
8739@cindex automatic overlay debugging
8740
8741@value{GDBN} can automatically track which overlays are mapped and which
8742are not, given some simple co-operation from the overlay manager in the
8743inferior. If you enable automatic overlay debugging with the
8744@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8745looks in the inferior's memory for certain variables describing the
8746current state of the overlays.
8747
8748Here are the variables your overlay manager must define to support
8749@value{GDBN}'s automatic overlay debugging:
8750
8751@table @asis
8752
8753@item @code{_ovly_table}:
8754This variable must be an array of the following structures:
8755
474c8240 8756@smallexample
df0cd8c5
JB
8757struct
8758@{
8759 /* The overlay's mapped address. */
8760 unsigned long vma;
8761
8762 /* The size of the overlay, in bytes. */
8763 unsigned long size;
8764
8765 /* The overlay's load address. */
8766 unsigned long lma;
8767
8768 /* Non-zero if the overlay is currently mapped;
8769 zero otherwise. */
8770 unsigned long mapped;
8771@}
474c8240 8772@end smallexample
df0cd8c5
JB
8773
8774@item @code{_novlys}:
8775This variable must be a four-byte signed integer, holding the total
8776number of elements in @code{_ovly_table}.
8777
8778@end table
8779
8780To decide whether a particular overlay is mapped or not, @value{GDBN}
8781looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8782@code{lma} members equal the VMA and LMA of the overlay's section in the
8783executable file. When @value{GDBN} finds a matching entry, it consults
8784the entry's @code{mapped} member to determine whether the overlay is
8785currently mapped.
8786
81d46470 8787In addition, your overlay manager may define a function called
def71bfa 8788@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8789will silently set a breakpoint there. If the overlay manager then
8790calls this function whenever it has changed the overlay table, this
8791will enable @value{GDBN} to accurately keep track of which overlays
8792are in program memory, and update any breakpoints that may be set
b383017d 8793in overlays. This will allow breakpoints to work even if the
81d46470
MS
8794overlays are kept in ROM or other non-writable memory while they
8795are not being executed.
df0cd8c5
JB
8796
8797@node Overlay Sample Program
8798@section Overlay Sample Program
8799@cindex overlay example program
8800
8801When linking a program which uses overlays, you must place the overlays
8802at their load addresses, while relocating them to run at their mapped
8803addresses. To do this, you must write a linker script (@pxref{Overlay
8804Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8805since linker scripts are specific to a particular host system, target
8806architecture, and target memory layout, this manual cannot provide
8807portable sample code demonstrating @value{GDBN}'s overlay support.
8808
8809However, the @value{GDBN} source distribution does contain an overlaid
8810program, with linker scripts for a few systems, as part of its test
8811suite. The program consists of the following files from
8812@file{gdb/testsuite/gdb.base}:
8813
8814@table @file
8815@item overlays.c
8816The main program file.
8817@item ovlymgr.c
8818A simple overlay manager, used by @file{overlays.c}.
8819@item foo.c
8820@itemx bar.c
8821@itemx baz.c
8822@itemx grbx.c
8823Overlay modules, loaded and used by @file{overlays.c}.
8824@item d10v.ld
8825@itemx m32r.ld
8826Linker scripts for linking the test program on the @code{d10v-elf}
8827and @code{m32r-elf} targets.
8828@end table
8829
8830You can build the test program using the @code{d10v-elf} GCC
8831cross-compiler like this:
8832
474c8240 8833@smallexample
df0cd8c5
JB
8834$ d10v-elf-gcc -g -c overlays.c
8835$ d10v-elf-gcc -g -c ovlymgr.c
8836$ d10v-elf-gcc -g -c foo.c
8837$ d10v-elf-gcc -g -c bar.c
8838$ d10v-elf-gcc -g -c baz.c
8839$ d10v-elf-gcc -g -c grbx.c
8840$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8841 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8842@end smallexample
df0cd8c5
JB
8843
8844The build process is identical for any other architecture, except that
8845you must substitute the appropriate compiler and linker script for the
8846target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8847
8848
6d2ebf8b 8849@node Languages
c906108c
SS
8850@chapter Using @value{GDBN} with Different Languages
8851@cindex languages
8852
c906108c
SS
8853Although programming languages generally have common aspects, they are
8854rarely expressed in the same manner. For instance, in ANSI C,
8855dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8856Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8857represented (and displayed) differently. Hex numbers in C appear as
c906108c 8858@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8859
8860@cindex working language
8861Language-specific information is built into @value{GDBN} for some languages,
8862allowing you to express operations like the above in your program's
8863native language, and allowing @value{GDBN} to output values in a manner
8864consistent with the syntax of your program's native language. The
8865language you use to build expressions is called the @dfn{working
8866language}.
8867
8868@menu
8869* Setting:: Switching between source languages
8870* Show:: Displaying the language
c906108c 8871* Checks:: Type and range checks
79a6e687
BW
8872* Supported Languages:: Supported languages
8873* Unsupported Languages:: Unsupported languages
c906108c
SS
8874@end menu
8875
6d2ebf8b 8876@node Setting
79a6e687 8877@section Switching Between Source Languages
c906108c
SS
8878
8879There are two ways to control the working language---either have @value{GDBN}
8880set it automatically, or select it manually yourself. You can use the
8881@code{set language} command for either purpose. On startup, @value{GDBN}
8882defaults to setting the language automatically. The working language is
8883used to determine how expressions you type are interpreted, how values
8884are printed, etc.
8885
8886In addition to the working language, every source file that
8887@value{GDBN} knows about has its own working language. For some object
8888file formats, the compiler might indicate which language a particular
8889source file is in. However, most of the time @value{GDBN} infers the
8890language from the name of the file. The language of a source file
b37052ae 8891controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8892show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8893set the language of a source file from within @value{GDBN}, but you can
8894set the language associated with a filename extension. @xref{Show, ,
79a6e687 8895Displaying the Language}.
c906108c
SS
8896
8897This is most commonly a problem when you use a program, such
5d161b24 8898as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8899another language. In that case, make the
8900program use @code{#line} directives in its C output; that way
8901@value{GDBN} will know the correct language of the source code of the original
8902program, and will display that source code, not the generated C code.
8903
8904@menu
8905* Filenames:: Filename extensions and languages.
8906* Manually:: Setting the working language manually
8907* Automatically:: Having @value{GDBN} infer the source language
8908@end menu
8909
6d2ebf8b 8910@node Filenames
79a6e687 8911@subsection List of Filename Extensions and Languages
c906108c
SS
8912
8913If a source file name ends in one of the following extensions, then
8914@value{GDBN} infers that its language is the one indicated.
8915
8916@table @file
e07c999f
PH
8917@item .ada
8918@itemx .ads
8919@itemx .adb
8920@itemx .a
8921Ada source file.
c906108c
SS
8922
8923@item .c
8924C source file
8925
8926@item .C
8927@itemx .cc
8928@itemx .cp
8929@itemx .cpp
8930@itemx .cxx
8931@itemx .c++
b37052ae 8932C@t{++} source file
c906108c 8933
b37303ee
AF
8934@item .m
8935Objective-C source file
8936
c906108c
SS
8937@item .f
8938@itemx .F
8939Fortran source file
8940
c906108c
SS
8941@item .mod
8942Modula-2 source file
c906108c
SS
8943
8944@item .s
8945@itemx .S
8946Assembler source file. This actually behaves almost like C, but
8947@value{GDBN} does not skip over function prologues when stepping.
8948@end table
8949
8950In addition, you may set the language associated with a filename
79a6e687 8951extension. @xref{Show, , Displaying the Language}.
c906108c 8952
6d2ebf8b 8953@node Manually
79a6e687 8954@subsection Setting the Working Language
c906108c
SS
8955
8956If you allow @value{GDBN} to set the language automatically,
8957expressions are interpreted the same way in your debugging session and
8958your program.
8959
8960@kindex set language
8961If you wish, you may set the language manually. To do this, issue the
8962command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8963a language, such as
c906108c 8964@code{c} or @code{modula-2}.
c906108c
SS
8965For a list of the supported languages, type @samp{set language}.
8966
c906108c
SS
8967Setting the language manually prevents @value{GDBN} from updating the working
8968language automatically. This can lead to confusion if you try
8969to debug a program when the working language is not the same as the
8970source language, when an expression is acceptable to both
8971languages---but means different things. For instance, if the current
8972source file were written in C, and @value{GDBN} was parsing Modula-2, a
8973command such as:
8974
474c8240 8975@smallexample
c906108c 8976print a = b + c
474c8240 8977@end smallexample
c906108c
SS
8978
8979@noindent
8980might not have the effect you intended. In C, this means to add
8981@code{b} and @code{c} and place the result in @code{a}. The result
8982printed would be the value of @code{a}. In Modula-2, this means to compare
8983@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8984
6d2ebf8b 8985@node Automatically
79a6e687 8986@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8987
8988To have @value{GDBN} set the working language automatically, use
8989@samp{set language local} or @samp{set language auto}. @value{GDBN}
8990then infers the working language. That is, when your program stops in a
8991frame (usually by encountering a breakpoint), @value{GDBN} sets the
8992working language to the language recorded for the function in that
8993frame. If the language for a frame is unknown (that is, if the function
8994or block corresponding to the frame was defined in a source file that
8995does not have a recognized extension), the current working language is
8996not changed, and @value{GDBN} issues a warning.
8997
8998This may not seem necessary for most programs, which are written
8999entirely in one source language. However, program modules and libraries
9000written in one source language can be used by a main program written in
9001a different source language. Using @samp{set language auto} in this
9002case frees you from having to set the working language manually.
9003
6d2ebf8b 9004@node Show
79a6e687 9005@section Displaying the Language
c906108c
SS
9006
9007The following commands help you find out which language is the
9008working language, and also what language source files were written in.
9009
c906108c
SS
9010@table @code
9011@item show language
9c16f35a 9012@kindex show language
c906108c
SS
9013Display the current working language. This is the
9014language you can use with commands such as @code{print} to
9015build and compute expressions that may involve variables in your program.
9016
9017@item info frame
4644b6e3 9018@kindex info frame@r{, show the source language}
5d161b24 9019Display the source language for this frame. This language becomes the
c906108c 9020working language if you use an identifier from this frame.
79a6e687 9021@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9022information listed here.
9023
9024@item info source
4644b6e3 9025@kindex info source@r{, show the source language}
c906108c 9026Display the source language of this source file.
5d161b24 9027@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9028information listed here.
9029@end table
9030
9031In unusual circumstances, you may have source files with extensions
9032not in the standard list. You can then set the extension associated
9033with a language explicitly:
9034
c906108c 9035@table @code
09d4efe1 9036@item set extension-language @var{ext} @var{language}
9c16f35a 9037@kindex set extension-language
09d4efe1
EZ
9038Tell @value{GDBN} that source files with extension @var{ext} are to be
9039assumed as written in the source language @var{language}.
c906108c
SS
9040
9041@item info extensions
9c16f35a 9042@kindex info extensions
c906108c
SS
9043List all the filename extensions and the associated languages.
9044@end table
9045
6d2ebf8b 9046@node Checks
79a6e687 9047@section Type and Range Checking
c906108c
SS
9048
9049@quotation
9050@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9051checking are included, but they do not yet have any effect. This
9052section documents the intended facilities.
9053@end quotation
9054@c FIXME remove warning when type/range code added
9055
9056Some languages are designed to guard you against making seemingly common
9057errors through a series of compile- and run-time checks. These include
9058checking the type of arguments to functions and operators, and making
9059sure mathematical overflows are caught at run time. Checks such as
9060these help to ensure a program's correctness once it has been compiled
9061by eliminating type mismatches, and providing active checks for range
9062errors when your program is running.
9063
9064@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9065Although @value{GDBN} does not check the statements in your program,
9066it can check expressions entered directly into @value{GDBN} for
9067evaluation via the @code{print} command, for example. As with the
9068working language, @value{GDBN} can also decide whether or not to check
9069automatically based on your program's source language.
79a6e687 9070@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9071settings of supported languages.
c906108c
SS
9072
9073@menu
9074* Type Checking:: An overview of type checking
9075* Range Checking:: An overview of range checking
9076@end menu
9077
9078@cindex type checking
9079@cindex checks, type
6d2ebf8b 9080@node Type Checking
79a6e687 9081@subsection An Overview of Type Checking
c906108c
SS
9082
9083Some languages, such as Modula-2, are strongly typed, meaning that the
9084arguments to operators and functions have to be of the correct type,
9085otherwise an error occurs. These checks prevent type mismatch
9086errors from ever causing any run-time problems. For example,
9087
9088@smallexample
90891 + 2 @result{} 3
9090@exdent but
9091@error{} 1 + 2.3
9092@end smallexample
9093
9094The second example fails because the @code{CARDINAL} 1 is not
9095type-compatible with the @code{REAL} 2.3.
9096
5d161b24
DB
9097For the expressions you use in @value{GDBN} commands, you can tell the
9098@value{GDBN} type checker to skip checking;
9099to treat any mismatches as errors and abandon the expression;
9100or to only issue warnings when type mismatches occur,
c906108c
SS
9101but evaluate the expression anyway. When you choose the last of
9102these, @value{GDBN} evaluates expressions like the second example above, but
9103also issues a warning.
9104
5d161b24
DB
9105Even if you turn type checking off, there may be other reasons
9106related to type that prevent @value{GDBN} from evaluating an expression.
9107For instance, @value{GDBN} does not know how to add an @code{int} and
9108a @code{struct foo}. These particular type errors have nothing to do
9109with the language in use, and usually arise from expressions, such as
c906108c
SS
9110the one described above, which make little sense to evaluate anyway.
9111
9112Each language defines to what degree it is strict about type. For
9113instance, both Modula-2 and C require the arguments to arithmetical
9114operators to be numbers. In C, enumerated types and pointers can be
9115represented as numbers, so that they are valid arguments to mathematical
79a6e687 9116operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9117details on specific languages.
9118
9119@value{GDBN} provides some additional commands for controlling the type checker:
9120
c906108c
SS
9121@kindex set check type
9122@kindex show check type
9123@table @code
9124@item set check type auto
9125Set type checking on or off based on the current working language.
79a6e687 9126@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9127each language.
9128
9129@item set check type on
9130@itemx set check type off
9131Set type checking on or off, overriding the default setting for the
9132current working language. Issue a warning if the setting does not
9133match the language default. If any type mismatches occur in
d4f3574e 9134evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9135message and aborts evaluation of the expression.
9136
9137@item set check type warn
9138Cause the type checker to issue warnings, but to always attempt to
9139evaluate the expression. Evaluating the expression may still
9140be impossible for other reasons. For example, @value{GDBN} cannot add
9141numbers and structures.
9142
9143@item show type
5d161b24 9144Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9145is setting it automatically.
9146@end table
9147
9148@cindex range checking
9149@cindex checks, range
6d2ebf8b 9150@node Range Checking
79a6e687 9151@subsection An Overview of Range Checking
c906108c
SS
9152
9153In some languages (such as Modula-2), it is an error to exceed the
9154bounds of a type; this is enforced with run-time checks. Such range
9155checking is meant to ensure program correctness by making sure
9156computations do not overflow, or indices on an array element access do
9157not exceed the bounds of the array.
9158
9159For expressions you use in @value{GDBN} commands, you can tell
9160@value{GDBN} to treat range errors in one of three ways: ignore them,
9161always treat them as errors and abandon the expression, or issue
9162warnings but evaluate the expression anyway.
9163
9164A range error can result from numerical overflow, from exceeding an
9165array index bound, or when you type a constant that is not a member
9166of any type. Some languages, however, do not treat overflows as an
9167error. In many implementations of C, mathematical overflow causes the
9168result to ``wrap around'' to lower values---for example, if @var{m} is
9169the largest integer value, and @var{s} is the smallest, then
9170
474c8240 9171@smallexample
c906108c 9172@var{m} + 1 @result{} @var{s}
474c8240 9173@end smallexample
c906108c
SS
9174
9175This, too, is specific to individual languages, and in some cases
79a6e687
BW
9176specific to individual compilers or machines. @xref{Supported Languages, ,
9177Supported Languages}, for further details on specific languages.
c906108c
SS
9178
9179@value{GDBN} provides some additional commands for controlling the range checker:
9180
c906108c
SS
9181@kindex set check range
9182@kindex show check range
9183@table @code
9184@item set check range auto
9185Set range checking on or off based on the current working language.
79a6e687 9186@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9187each language.
9188
9189@item set check range on
9190@itemx set check range off
9191Set range checking on or off, overriding the default setting for the
9192current working language. A warning is issued if the setting does not
c3f6f71d
JM
9193match the language default. If a range error occurs and range checking is on,
9194then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9195
9196@item set check range warn
9197Output messages when the @value{GDBN} range checker detects a range error,
9198but attempt to evaluate the expression anyway. Evaluating the
9199expression may still be impossible for other reasons, such as accessing
9200memory that the process does not own (a typical example from many Unix
9201systems).
9202
9203@item show range
9204Show the current setting of the range checker, and whether or not it is
9205being set automatically by @value{GDBN}.
9206@end table
c906108c 9207
79a6e687
BW
9208@node Supported Languages
9209@section Supported Languages
c906108c 9210
9c16f35a
EZ
9211@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9212assembly, Modula-2, and Ada.
cce74817 9213@c This is false ...
c906108c
SS
9214Some @value{GDBN} features may be used in expressions regardless of the
9215language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9216and the @samp{@{type@}addr} construct (@pxref{Expressions,
9217,Expressions}) can be used with the constructs of any supported
9218language.
9219
9220The following sections detail to what degree each source language is
9221supported by @value{GDBN}. These sections are not meant to be language
9222tutorials or references, but serve only as a reference guide to what the
9223@value{GDBN} expression parser accepts, and what input and output
9224formats should look like for different languages. There are many good
9225books written on each of these languages; please look to these for a
9226language reference or tutorial.
9227
c906108c 9228@menu
b37303ee 9229* C:: C and C@t{++}
b383017d 9230* Objective-C:: Objective-C
09d4efe1 9231* Fortran:: Fortran
9c16f35a 9232* Pascal:: Pascal
b37303ee 9233* Modula-2:: Modula-2
e07c999f 9234* Ada:: Ada
c906108c
SS
9235@end menu
9236
6d2ebf8b 9237@node C
b37052ae 9238@subsection C and C@t{++}
7a292a7a 9239
b37052ae
EZ
9240@cindex C and C@t{++}
9241@cindex expressions in C or C@t{++}
c906108c 9242
b37052ae 9243Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9244to both languages. Whenever this is the case, we discuss those languages
9245together.
9246
41afff9a
EZ
9247@cindex C@t{++}
9248@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9249@cindex @sc{gnu} C@t{++}
9250The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9251compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9252effectively, you must compile your C@t{++} programs with a supported
9253C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9254compiler (@code{aCC}).
9255
0179ffac
DC
9256For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9257format; if it doesn't work on your system, try the stabs+ debugging
9258format. You can select those formats explicitly with the @code{g++}
9259command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9260@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9261gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9262
c906108c 9263@menu
b37052ae
EZ
9264* C Operators:: C and C@t{++} operators
9265* C Constants:: C and C@t{++} constants
79a6e687 9266* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9267* C Defaults:: Default settings for C and C@t{++}
9268* C Checks:: C and C@t{++} type and range checks
c906108c 9269* Debugging C:: @value{GDBN} and C
79a6e687 9270* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9271* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9272@end menu
c906108c 9273
6d2ebf8b 9274@node C Operators
79a6e687 9275@subsubsection C and C@t{++} Operators
7a292a7a 9276
b37052ae 9277@cindex C and C@t{++} operators
c906108c
SS
9278
9279Operators must be defined on values of specific types. For instance,
9280@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9281often defined on groups of types.
c906108c 9282
b37052ae 9283For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9284
9285@itemize @bullet
53a5351d 9286
c906108c 9287@item
c906108c 9288@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9289specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9290
9291@item
d4f3574e
SS
9292@emph{Floating-point types} include @code{float}, @code{double}, and
9293@code{long double} (if supported by the target platform).
c906108c
SS
9294
9295@item
53a5351d 9296@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9297
9298@item
9299@emph{Scalar types} include all of the above.
53a5351d 9300
c906108c
SS
9301@end itemize
9302
9303@noindent
9304The following operators are supported. They are listed here
9305in order of increasing precedence:
9306
9307@table @code
9308@item ,
9309The comma or sequencing operator. Expressions in a comma-separated list
9310are evaluated from left to right, with the result of the entire
9311expression being the last expression evaluated.
9312
9313@item =
9314Assignment. The value of an assignment expression is the value
9315assigned. Defined on scalar types.
9316
9317@item @var{op}=
9318Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9319and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9320@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9321@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9322@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9323
9324@item ?:
9325The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9326of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9327integral type.
9328
9329@item ||
9330Logical @sc{or}. Defined on integral types.
9331
9332@item &&
9333Logical @sc{and}. Defined on integral types.
9334
9335@item |
9336Bitwise @sc{or}. Defined on integral types.
9337
9338@item ^
9339Bitwise exclusive-@sc{or}. Defined on integral types.
9340
9341@item &
9342Bitwise @sc{and}. Defined on integral types.
9343
9344@item ==@r{, }!=
9345Equality and inequality. Defined on scalar types. The value of these
9346expressions is 0 for false and non-zero for true.
9347
9348@item <@r{, }>@r{, }<=@r{, }>=
9349Less than, greater than, less than or equal, greater than or equal.
9350Defined on scalar types. The value of these expressions is 0 for false
9351and non-zero for true.
9352
9353@item <<@r{, }>>
9354left shift, and right shift. Defined on integral types.
9355
9356@item @@
9357The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9358
9359@item +@r{, }-
9360Addition and subtraction. Defined on integral types, floating-point types and
9361pointer types.
9362
9363@item *@r{, }/@r{, }%
9364Multiplication, division, and modulus. Multiplication and division are
9365defined on integral and floating-point types. Modulus is defined on
9366integral types.
9367
9368@item ++@r{, }--
9369Increment and decrement. When appearing before a variable, the
9370operation is performed before the variable is used in an expression;
9371when appearing after it, the variable's value is used before the
9372operation takes place.
9373
9374@item *
9375Pointer dereferencing. Defined on pointer types. Same precedence as
9376@code{++}.
9377
9378@item &
9379Address operator. Defined on variables. Same precedence as @code{++}.
9380
b37052ae
EZ
9381For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9382allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9383to examine the address
b37052ae 9384where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9385stored.
c906108c
SS
9386
9387@item -
9388Negative. Defined on integral and floating-point types. Same
9389precedence as @code{++}.
9390
9391@item !
9392Logical negation. Defined on integral types. Same precedence as
9393@code{++}.
9394
9395@item ~
9396Bitwise complement operator. Defined on integral types. Same precedence as
9397@code{++}.
9398
9399
9400@item .@r{, }->
9401Structure member, and pointer-to-structure member. For convenience,
9402@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9403pointer based on the stored type information.
9404Defined on @code{struct} and @code{union} data.
9405
c906108c
SS
9406@item .*@r{, }->*
9407Dereferences of pointers to members.
c906108c
SS
9408
9409@item []
9410Array indexing. @code{@var{a}[@var{i}]} is defined as
9411@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9412
9413@item ()
9414Function parameter list. Same precedence as @code{->}.
9415
c906108c 9416@item ::
b37052ae 9417C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9418and @code{class} types.
c906108c
SS
9419
9420@item ::
7a292a7a
SS
9421Doubled colons also represent the @value{GDBN} scope operator
9422(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9423above.
c906108c
SS
9424@end table
9425
c906108c
SS
9426If an operator is redefined in the user code, @value{GDBN} usually
9427attempts to invoke the redefined version instead of using the operator's
9428predefined meaning.
c906108c 9429
6d2ebf8b 9430@node C Constants
79a6e687 9431@subsubsection C and C@t{++} Constants
c906108c 9432
b37052ae 9433@cindex C and C@t{++} constants
c906108c 9434
b37052ae 9435@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9436following ways:
c906108c
SS
9437
9438@itemize @bullet
9439@item
9440Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9441specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9442by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9443@samp{l}, specifying that the constant should be treated as a
9444@code{long} value.
9445
9446@item
9447Floating point constants are a sequence of digits, followed by a decimal
9448point, followed by a sequence of digits, and optionally followed by an
9449exponent. An exponent is of the form:
9450@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9451sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9452A floating-point constant may also end with a letter @samp{f} or
9453@samp{F}, specifying that the constant should be treated as being of
9454the @code{float} (as opposed to the default @code{double}) type; or with
9455a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9456constant.
c906108c
SS
9457
9458@item
9459Enumerated constants consist of enumerated identifiers, or their
9460integral equivalents.
9461
9462@item
9463Character constants are a single character surrounded by single quotes
9464(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9465(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9466be represented by a letter or by @dfn{escape sequences}, which are of
9467the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9468of the character's ordinal value; or of the form @samp{\@var{x}}, where
9469@samp{@var{x}} is a predefined special character---for example,
9470@samp{\n} for newline.
9471
9472@item
96a2c332
SS
9473String constants are a sequence of character constants surrounded by
9474double quotes (@code{"}). Any valid character constant (as described
9475above) may appear. Double quotes within the string must be preceded by
9476a backslash, so for instance @samp{"a\"b'c"} is a string of five
9477characters.
c906108c
SS
9478
9479@item
9480Pointer constants are an integral value. You can also write pointers
9481to constants using the C operator @samp{&}.
9482
9483@item
9484Array constants are comma-separated lists surrounded by braces @samp{@{}
9485and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9486integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9487and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9488@end itemize
9489
79a6e687
BW
9490@node C Plus Plus Expressions
9491@subsubsection C@t{++} Expressions
b37052ae
EZ
9492
9493@cindex expressions in C@t{++}
9494@value{GDBN} expression handling can interpret most C@t{++} expressions.
9495
0179ffac
DC
9496@cindex debugging C@t{++} programs
9497@cindex C@t{++} compilers
9498@cindex debug formats and C@t{++}
9499@cindex @value{NGCC} and C@t{++}
c906108c 9500@quotation
b37052ae 9501@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9502proper compiler and the proper debug format. Currently, @value{GDBN}
9503works best when debugging C@t{++} code that is compiled with
9504@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9505@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9506stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9507stabs+ as their default debug format, so you usually don't need to
9508specify a debug format explicitly. Other compilers and/or debug formats
9509are likely to work badly or not at all when using @value{GDBN} to debug
9510C@t{++} code.
c906108c 9511@end quotation
c906108c
SS
9512
9513@enumerate
9514
9515@cindex member functions
9516@item
9517Member function calls are allowed; you can use expressions like
9518
474c8240 9519@smallexample
c906108c 9520count = aml->GetOriginal(x, y)
474c8240 9521@end smallexample
c906108c 9522
41afff9a 9523@vindex this@r{, inside C@t{++} member functions}
b37052ae 9524@cindex namespace in C@t{++}
c906108c
SS
9525@item
9526While a member function is active (in the selected stack frame), your
9527expressions have the same namespace available as the member function;
9528that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9529pointer @code{this} following the same rules as C@t{++}.
c906108c 9530
c906108c 9531@cindex call overloaded functions
d4f3574e 9532@cindex overloaded functions, calling
b37052ae 9533@cindex type conversions in C@t{++}
c906108c
SS
9534@item
9535You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9536call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9537perform overload resolution involving user-defined type conversions,
9538calls to constructors, or instantiations of templates that do not exist
9539in the program. It also cannot handle ellipsis argument lists or
9540default arguments.
9541
9542It does perform integral conversions and promotions, floating-point
9543promotions, arithmetic conversions, pointer conversions, conversions of
9544class objects to base classes, and standard conversions such as those of
9545functions or arrays to pointers; it requires an exact match on the
9546number of function arguments.
9547
9548Overload resolution is always performed, unless you have specified
79a6e687
BW
9549@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9550,@value{GDBN} Features for C@t{++}}.
c906108c 9551
d4f3574e 9552You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9553explicit function signature to call an overloaded function, as in
9554@smallexample
9555p 'foo(char,int)'('x', 13)
9556@end smallexample
d4f3574e 9557
c906108c 9558The @value{GDBN} command-completion facility can simplify this;
79a6e687 9559see @ref{Completion, ,Command Completion}.
c906108c 9560
c906108c
SS
9561@cindex reference declarations
9562@item
b37052ae
EZ
9563@value{GDBN} understands variables declared as C@t{++} references; you can use
9564them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9565dereferenced.
9566
9567In the parameter list shown when @value{GDBN} displays a frame, the values of
9568reference variables are not displayed (unlike other variables); this
9569avoids clutter, since references are often used for large structures.
9570The @emph{address} of a reference variable is always shown, unless
9571you have specified @samp{set print address off}.
9572
9573@item
b37052ae 9574@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9575expressions can use it just as expressions in your program do. Since
9576one scope may be defined in another, you can use @code{::} repeatedly if
9577necessary, for example in an expression like
9578@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9579resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9580debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9581@end enumerate
9582
b37052ae 9583In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9584calling virtual functions correctly, printing out virtual bases of
9585objects, calling functions in a base subobject, casting objects, and
9586invoking user-defined operators.
c906108c 9587
6d2ebf8b 9588@node C Defaults
79a6e687 9589@subsubsection C and C@t{++} Defaults
7a292a7a 9590
b37052ae 9591@cindex C and C@t{++} defaults
c906108c 9592
c906108c
SS
9593If you allow @value{GDBN} to set type and range checking automatically, they
9594both default to @code{off} whenever the working language changes to
b37052ae 9595C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9596selects the working language.
c906108c
SS
9597
9598If you allow @value{GDBN} to set the language automatically, it
9599recognizes source files whose names end with @file{.c}, @file{.C}, or
9600@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9601these files, it sets the working language to C or C@t{++}.
79a6e687 9602@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9603for further details.
9604
c906108c
SS
9605@c Type checking is (a) primarily motivated by Modula-2, and (b)
9606@c unimplemented. If (b) changes, it might make sense to let this node
9607@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9608
6d2ebf8b 9609@node C Checks
79a6e687 9610@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9611
b37052ae 9612@cindex C and C@t{++} checks
c906108c 9613
b37052ae 9614By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9615is not used. However, if you turn type checking on, @value{GDBN}
9616considers two variables type equivalent if:
9617
9618@itemize @bullet
9619@item
9620The two variables are structured and have the same structure, union, or
9621enumerated tag.
9622
9623@item
9624The two variables have the same type name, or types that have been
9625declared equivalent through @code{typedef}.
9626
9627@ignore
9628@c leaving this out because neither J Gilmore nor R Pesch understand it.
9629@c FIXME--beers?
9630@item
9631The two @code{struct}, @code{union}, or @code{enum} variables are
9632declared in the same declaration. (Note: this may not be true for all C
9633compilers.)
9634@end ignore
9635@end itemize
9636
9637Range checking, if turned on, is done on mathematical operations. Array
9638indices are not checked, since they are often used to index a pointer
9639that is not itself an array.
c906108c 9640
6d2ebf8b 9641@node Debugging C
c906108c 9642@subsubsection @value{GDBN} and C
c906108c
SS
9643
9644The @code{set print union} and @code{show print union} commands apply to
9645the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9646inside a @code{struct} or @code{class} is also printed. Otherwise, it
9647appears as @samp{@{...@}}.
c906108c
SS
9648
9649The @code{@@} operator aids in the debugging of dynamic arrays, formed
9650with pointers and a memory allocation function. @xref{Expressions,
9651,Expressions}.
9652
79a6e687
BW
9653@node Debugging C Plus Plus
9654@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9655
b37052ae 9656@cindex commands for C@t{++}
7a292a7a 9657
b37052ae
EZ
9658Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9659designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9660
9661@table @code
9662@cindex break in overloaded functions
9663@item @r{breakpoint menus}
9664When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9665@value{GDBN} has the capability to display a menu of possible breakpoint
9666locations to help you specify which function definition you want.
9667@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9668
b37052ae 9669@cindex overloading in C@t{++}
c906108c
SS
9670@item rbreak @var{regex}
9671Setting breakpoints using regular expressions is helpful for setting
9672breakpoints on overloaded functions that are not members of any special
9673classes.
79a6e687 9674@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9675
b37052ae 9676@cindex C@t{++} exception handling
c906108c
SS
9677@item catch throw
9678@itemx catch catch
b37052ae 9679Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9680Catchpoints, , Setting Catchpoints}.
c906108c
SS
9681
9682@cindex inheritance
9683@item ptype @var{typename}
9684Print inheritance relationships as well as other information for type
9685@var{typename}.
9686@xref{Symbols, ,Examining the Symbol Table}.
9687
b37052ae 9688@cindex C@t{++} symbol display
c906108c
SS
9689@item set print demangle
9690@itemx show print demangle
9691@itemx set print asm-demangle
9692@itemx show print asm-demangle
b37052ae
EZ
9693Control whether C@t{++} symbols display in their source form, both when
9694displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9695@xref{Print Settings, ,Print Settings}.
c906108c
SS
9696
9697@item set print object
9698@itemx show print object
9699Choose whether to print derived (actual) or declared types of objects.
79a6e687 9700@xref{Print Settings, ,Print Settings}.
c906108c
SS
9701
9702@item set print vtbl
9703@itemx show print vtbl
9704Control the format for printing virtual function tables.
79a6e687 9705@xref{Print Settings, ,Print Settings}.
c906108c 9706(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9707ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9708
9709@kindex set overload-resolution
d4f3574e 9710@cindex overloaded functions, overload resolution
c906108c 9711@item set overload-resolution on
b37052ae 9712Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9713is on. For overloaded functions, @value{GDBN} evaluates the arguments
9714and searches for a function whose signature matches the argument types,
79a6e687
BW
9715using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9716Expressions, ,C@t{++} Expressions}, for details).
9717If it cannot find a match, it emits a message.
c906108c
SS
9718
9719@item set overload-resolution off
b37052ae 9720Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9721overloaded functions that are not class member functions, @value{GDBN}
9722chooses the first function of the specified name that it finds in the
9723symbol table, whether or not its arguments are of the correct type. For
9724overloaded functions that are class member functions, @value{GDBN}
9725searches for a function whose signature @emph{exactly} matches the
9726argument types.
c906108c 9727
9c16f35a
EZ
9728@kindex show overload-resolution
9729@item show overload-resolution
9730Show the current setting of overload resolution.
9731
c906108c
SS
9732@item @r{Overloaded symbol names}
9733You can specify a particular definition of an overloaded symbol, using
b37052ae 9734the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9735@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9736also use the @value{GDBN} command-line word completion facilities to list the
9737available choices, or to finish the type list for you.
79a6e687 9738@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9739@end table
c906108c 9740
febe4383
TJB
9741@node Decimal Floating Point
9742@subsubsection Decimal Floating Point format
9743@cindex decimal floating point format
9744
9745@value{GDBN} can examine, set and perform computations with numbers in
9746decimal floating point format, which in the C language correspond to the
9747@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9748specified by the extension to support decimal floating-point arithmetic.
9749
9750There are two encodings in use, depending on the architecture: BID (Binary
9751Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9752PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9753target.
9754
9755Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9756to manipulate decimal floating point numbers, it is not possible to convert
9757(using a cast, for example) integers wider than 32-bit to decimal float.
9758
9759In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9760point computations, error checking in decimal float operations ignores
9761underflow, overflow and divide by zero exceptions.
9762
4acd40f3
TJB
9763In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9764to inspect @code{_Decimal128} values stored in floating point registers. See
9765@ref{PowerPC,,PowerPC} for more details.
9766
b37303ee
AF
9767@node Objective-C
9768@subsection Objective-C
9769
9770@cindex Objective-C
9771This section provides information about some commands and command
721c2651
EZ
9772options that are useful for debugging Objective-C code. See also
9773@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9774few more commands specific to Objective-C support.
b37303ee
AF
9775
9776@menu
b383017d
RM
9777* Method Names in Commands::
9778* The Print Command with Objective-C::
b37303ee
AF
9779@end menu
9780
c8f4133a 9781@node Method Names in Commands
b37303ee
AF
9782@subsubsection Method Names in Commands
9783
9784The following commands have been extended to accept Objective-C method
9785names as line specifications:
9786
9787@kindex clear@r{, and Objective-C}
9788@kindex break@r{, and Objective-C}
9789@kindex info line@r{, and Objective-C}
9790@kindex jump@r{, and Objective-C}
9791@kindex list@r{, and Objective-C}
9792@itemize
9793@item @code{clear}
9794@item @code{break}
9795@item @code{info line}
9796@item @code{jump}
9797@item @code{list}
9798@end itemize
9799
9800A fully qualified Objective-C method name is specified as
9801
9802@smallexample
9803-[@var{Class} @var{methodName}]
9804@end smallexample
9805
c552b3bb
JM
9806where the minus sign is used to indicate an instance method and a
9807plus sign (not shown) is used to indicate a class method. The class
9808name @var{Class} and method name @var{methodName} are enclosed in
9809brackets, similar to the way messages are specified in Objective-C
9810source code. For example, to set a breakpoint at the @code{create}
9811instance method of class @code{Fruit} in the program currently being
9812debugged, enter:
b37303ee
AF
9813
9814@smallexample
9815break -[Fruit create]
9816@end smallexample
9817
9818To list ten program lines around the @code{initialize} class method,
9819enter:
9820
9821@smallexample
9822list +[NSText initialize]
9823@end smallexample
9824
c552b3bb
JM
9825In the current version of @value{GDBN}, the plus or minus sign is
9826required. In future versions of @value{GDBN}, the plus or minus
9827sign will be optional, but you can use it to narrow the search. It
9828is also possible to specify just a method name:
b37303ee
AF
9829
9830@smallexample
9831break create
9832@end smallexample
9833
9834You must specify the complete method name, including any colons. If
9835your program's source files contain more than one @code{create} method,
9836you'll be presented with a numbered list of classes that implement that
9837method. Indicate your choice by number, or type @samp{0} to exit if
9838none apply.
9839
9840As another example, to clear a breakpoint established at the
9841@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9842
9843@smallexample
9844clear -[NSWindow makeKeyAndOrderFront:]
9845@end smallexample
9846
9847@node The Print Command with Objective-C
9848@subsubsection The Print Command With Objective-C
721c2651 9849@cindex Objective-C, print objects
c552b3bb
JM
9850@kindex print-object
9851@kindex po @r{(@code{print-object})}
b37303ee 9852
c552b3bb 9853The print command has also been extended to accept methods. For example:
b37303ee
AF
9854
9855@smallexample
c552b3bb 9856print -[@var{object} hash]
b37303ee
AF
9857@end smallexample
9858
9859@cindex print an Objective-C object description
c552b3bb
JM
9860@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9861@noindent
9862will tell @value{GDBN} to send the @code{hash} message to @var{object}
9863and print the result. Also, an additional command has been added,
9864@code{print-object} or @code{po} for short, which is meant to print
9865the description of an object. However, this command may only work
9866with certain Objective-C libraries that have a particular hook
9867function, @code{_NSPrintForDebugger}, defined.
b37303ee 9868
09d4efe1
EZ
9869@node Fortran
9870@subsection Fortran
9871@cindex Fortran-specific support in @value{GDBN}
9872
814e32d7
WZ
9873@value{GDBN} can be used to debug programs written in Fortran, but it
9874currently supports only the features of Fortran 77 language.
9875
9876@cindex trailing underscore, in Fortran symbols
9877Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9878among them) append an underscore to the names of variables and
9879functions. When you debug programs compiled by those compilers, you
9880will need to refer to variables and functions with a trailing
9881underscore.
9882
9883@menu
9884* Fortran Operators:: Fortran operators and expressions
9885* Fortran Defaults:: Default settings for Fortran
79a6e687 9886* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9887@end menu
9888
9889@node Fortran Operators
79a6e687 9890@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9891
9892@cindex Fortran operators and expressions
9893
9894Operators must be defined on values of specific types. For instance,
9895@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9896arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9897
9898@table @code
9899@item **
9900The exponentiation operator. It raises the first operand to the power
9901of the second one.
9902
9903@item :
9904The range operator. Normally used in the form of array(low:high) to
9905represent a section of array.
9906@end table
9907
9908@node Fortran Defaults
9909@subsubsection Fortran Defaults
9910
9911@cindex Fortran Defaults
9912
9913Fortran symbols are usually case-insensitive, so @value{GDBN} by
9914default uses case-insensitive matches for Fortran symbols. You can
9915change that with the @samp{set case-insensitive} command, see
9916@ref{Symbols}, for the details.
9917
79a6e687
BW
9918@node Special Fortran Commands
9919@subsubsection Special Fortran Commands
814e32d7
WZ
9920
9921@cindex Special Fortran commands
9922
db2e3e2e
BW
9923@value{GDBN} has some commands to support Fortran-specific features,
9924such as displaying common blocks.
814e32d7 9925
09d4efe1
EZ
9926@table @code
9927@cindex @code{COMMON} blocks, Fortran
9928@kindex info common
9929@item info common @r{[}@var{common-name}@r{]}
9930This command prints the values contained in the Fortran @code{COMMON}
9931block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9932all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9933printed.
9934@end table
9935
9c16f35a
EZ
9936@node Pascal
9937@subsection Pascal
9938
9939@cindex Pascal support in @value{GDBN}, limitations
9940Debugging Pascal programs which use sets, subranges, file variables, or
9941nested functions does not currently work. @value{GDBN} does not support
9942entering expressions, printing values, or similar features using Pascal
9943syntax.
9944
9945The Pascal-specific command @code{set print pascal_static-members}
9946controls whether static members of Pascal objects are displayed.
9947@xref{Print Settings, pascal_static-members}.
9948
09d4efe1 9949@node Modula-2
c906108c 9950@subsection Modula-2
7a292a7a 9951
d4f3574e 9952@cindex Modula-2, @value{GDBN} support
c906108c
SS
9953
9954The extensions made to @value{GDBN} to support Modula-2 only support
9955output from the @sc{gnu} Modula-2 compiler (which is currently being
9956developed). Other Modula-2 compilers are not currently supported, and
9957attempting to debug executables produced by them is most likely
9958to give an error as @value{GDBN} reads in the executable's symbol
9959table.
9960
9961@cindex expressions in Modula-2
9962@menu
9963* M2 Operators:: Built-in operators
9964* Built-In Func/Proc:: Built-in functions and procedures
9965* M2 Constants:: Modula-2 constants
72019c9c 9966* M2 Types:: Modula-2 types
c906108c
SS
9967* M2 Defaults:: Default settings for Modula-2
9968* Deviations:: Deviations from standard Modula-2
9969* M2 Checks:: Modula-2 type and range checks
9970* M2 Scope:: The scope operators @code{::} and @code{.}
9971* GDB/M2:: @value{GDBN} and Modula-2
9972@end menu
9973
6d2ebf8b 9974@node M2 Operators
c906108c
SS
9975@subsubsection Operators
9976@cindex Modula-2 operators
9977
9978Operators must be defined on values of specific types. For instance,
9979@code{+} is defined on numbers, but not on structures. Operators are
9980often defined on groups of types. For the purposes of Modula-2, the
9981following definitions hold:
9982
9983@itemize @bullet
9984
9985@item
9986@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9987their subranges.
9988
9989@item
9990@emph{Character types} consist of @code{CHAR} and its subranges.
9991
9992@item
9993@emph{Floating-point types} consist of @code{REAL}.
9994
9995@item
9996@emph{Pointer types} consist of anything declared as @code{POINTER TO
9997@var{type}}.
9998
9999@item
10000@emph{Scalar types} consist of all of the above.
10001
10002@item
10003@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10004
10005@item
10006@emph{Boolean types} consist of @code{BOOLEAN}.
10007@end itemize
10008
10009@noindent
10010The following operators are supported, and appear in order of
10011increasing precedence:
10012
10013@table @code
10014@item ,
10015Function argument or array index separator.
10016
10017@item :=
10018Assignment. The value of @var{var} @code{:=} @var{value} is
10019@var{value}.
10020
10021@item <@r{, }>
10022Less than, greater than on integral, floating-point, or enumerated
10023types.
10024
10025@item <=@r{, }>=
96a2c332 10026Less than or equal to, greater than or equal to
c906108c
SS
10027on integral, floating-point and enumerated types, or set inclusion on
10028set types. Same precedence as @code{<}.
10029
10030@item =@r{, }<>@r{, }#
10031Equality and two ways of expressing inequality, valid on scalar types.
10032Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10033available for inequality, since @code{#} conflicts with the script
10034comment character.
10035
10036@item IN
10037Set membership. Defined on set types and the types of their members.
10038Same precedence as @code{<}.
10039
10040@item OR
10041Boolean disjunction. Defined on boolean types.
10042
10043@item AND@r{, }&
d4f3574e 10044Boolean conjunction. Defined on boolean types.
c906108c
SS
10045
10046@item @@
10047The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10048
10049@item +@r{, }-
10050Addition and subtraction on integral and floating-point types, or union
10051and difference on set types.
10052
10053@item *
10054Multiplication on integral and floating-point types, or set intersection
10055on set types.
10056
10057@item /
10058Division on floating-point types, or symmetric set difference on set
10059types. Same precedence as @code{*}.
10060
10061@item DIV@r{, }MOD
10062Integer division and remainder. Defined on integral types. Same
10063precedence as @code{*}.
10064
10065@item -
10066Negative. Defined on @code{INTEGER} and @code{REAL} data.
10067
10068@item ^
10069Pointer dereferencing. Defined on pointer types.
10070
10071@item NOT
10072Boolean negation. Defined on boolean types. Same precedence as
10073@code{^}.
10074
10075@item .
10076@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10077precedence as @code{^}.
10078
10079@item []
10080Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10081
10082@item ()
10083Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10084as @code{^}.
10085
10086@item ::@r{, }.
10087@value{GDBN} and Modula-2 scope operators.
10088@end table
10089
10090@quotation
72019c9c 10091@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10092treats the use of the operator @code{IN}, or the use of operators
10093@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10094@code{<=}, and @code{>=} on sets as an error.
10095@end quotation
10096
cb51c4e0 10097
6d2ebf8b 10098@node Built-In Func/Proc
79a6e687 10099@subsubsection Built-in Functions and Procedures
cb51c4e0 10100@cindex Modula-2 built-ins
c906108c
SS
10101
10102Modula-2 also makes available several built-in procedures and functions.
10103In describing these, the following metavariables are used:
10104
10105@table @var
10106
10107@item a
10108represents an @code{ARRAY} variable.
10109
10110@item c
10111represents a @code{CHAR} constant or variable.
10112
10113@item i
10114represents a variable or constant of integral type.
10115
10116@item m
10117represents an identifier that belongs to a set. Generally used in the
10118same function with the metavariable @var{s}. The type of @var{s} should
10119be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10120
10121@item n
10122represents a variable or constant of integral or floating-point type.
10123
10124@item r
10125represents a variable or constant of floating-point type.
10126
10127@item t
10128represents a type.
10129
10130@item v
10131represents a variable.
10132
10133@item x
10134represents a variable or constant of one of many types. See the
10135explanation of the function for details.
10136@end table
10137
10138All Modula-2 built-in procedures also return a result, described below.
10139
10140@table @code
10141@item ABS(@var{n})
10142Returns the absolute value of @var{n}.
10143
10144@item CAP(@var{c})
10145If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10146equivalent, otherwise it returns its argument.
c906108c
SS
10147
10148@item CHR(@var{i})
10149Returns the character whose ordinal value is @var{i}.
10150
10151@item DEC(@var{v})
c3f6f71d 10152Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10153
10154@item DEC(@var{v},@var{i})
10155Decrements the value in the variable @var{v} by @var{i}. Returns the
10156new value.
10157
10158@item EXCL(@var{m},@var{s})
10159Removes the element @var{m} from the set @var{s}. Returns the new
10160set.
10161
10162@item FLOAT(@var{i})
10163Returns the floating point equivalent of the integer @var{i}.
10164
10165@item HIGH(@var{a})
10166Returns the index of the last member of @var{a}.
10167
10168@item INC(@var{v})
c3f6f71d 10169Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10170
10171@item INC(@var{v},@var{i})
10172Increments the value in the variable @var{v} by @var{i}. Returns the
10173new value.
10174
10175@item INCL(@var{m},@var{s})
10176Adds the element @var{m} to the set @var{s} if it is not already
10177there. Returns the new set.
10178
10179@item MAX(@var{t})
10180Returns the maximum value of the type @var{t}.
10181
10182@item MIN(@var{t})
10183Returns the minimum value of the type @var{t}.
10184
10185@item ODD(@var{i})
10186Returns boolean TRUE if @var{i} is an odd number.
10187
10188@item ORD(@var{x})
10189Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10190value of a character is its @sc{ascii} value (on machines supporting the
10191@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10192integral, character and enumerated types.
10193
10194@item SIZE(@var{x})
10195Returns the size of its argument. @var{x} can be a variable or a type.
10196
10197@item TRUNC(@var{r})
10198Returns the integral part of @var{r}.
10199
844781a1
GM
10200@item TSIZE(@var{x})
10201Returns the size of its argument. @var{x} can be a variable or a type.
10202
c906108c
SS
10203@item VAL(@var{t},@var{i})
10204Returns the member of the type @var{t} whose ordinal value is @var{i}.
10205@end table
10206
10207@quotation
10208@emph{Warning:} Sets and their operations are not yet supported, so
10209@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10210an error.
10211@end quotation
10212
10213@cindex Modula-2 constants
6d2ebf8b 10214@node M2 Constants
c906108c
SS
10215@subsubsection Constants
10216
10217@value{GDBN} allows you to express the constants of Modula-2 in the following
10218ways:
10219
10220@itemize @bullet
10221
10222@item
10223Integer constants are simply a sequence of digits. When used in an
10224expression, a constant is interpreted to be type-compatible with the
10225rest of the expression. Hexadecimal integers are specified by a
10226trailing @samp{H}, and octal integers by a trailing @samp{B}.
10227
10228@item
10229Floating point constants appear as a sequence of digits, followed by a
10230decimal point and another sequence of digits. An optional exponent can
10231then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10232@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10233digits of the floating point constant must be valid decimal (base 10)
10234digits.
10235
10236@item
10237Character constants consist of a single character enclosed by a pair of
10238like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10239also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10240followed by a @samp{C}.
10241
10242@item
10243String constants consist of a sequence of characters enclosed by a
10244pair of like quotes, either single (@code{'}) or double (@code{"}).
10245Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10246Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10247sequences.
10248
10249@item
10250Enumerated constants consist of an enumerated identifier.
10251
10252@item
10253Boolean constants consist of the identifiers @code{TRUE} and
10254@code{FALSE}.
10255
10256@item
10257Pointer constants consist of integral values only.
10258
10259@item
10260Set constants are not yet supported.
10261@end itemize
10262
72019c9c
GM
10263@node M2 Types
10264@subsubsection Modula-2 Types
10265@cindex Modula-2 types
10266
10267Currently @value{GDBN} can print the following data types in Modula-2
10268syntax: array types, record types, set types, pointer types, procedure
10269types, enumerated types, subrange types and base types. You can also
10270print the contents of variables declared using these type.
10271This section gives a number of simple source code examples together with
10272sample @value{GDBN} sessions.
10273
10274The first example contains the following section of code:
10275
10276@smallexample
10277VAR
10278 s: SET OF CHAR ;
10279 r: [20..40] ;
10280@end smallexample
10281
10282@noindent
10283and you can request @value{GDBN} to interrogate the type and value of
10284@code{r} and @code{s}.
10285
10286@smallexample
10287(@value{GDBP}) print s
10288@{'A'..'C', 'Z'@}
10289(@value{GDBP}) ptype s
10290SET OF CHAR
10291(@value{GDBP}) print r
1029221
10293(@value{GDBP}) ptype r
10294[20..40]
10295@end smallexample
10296
10297@noindent
10298Likewise if your source code declares @code{s} as:
10299
10300@smallexample
10301VAR
10302 s: SET ['A'..'Z'] ;
10303@end smallexample
10304
10305@noindent
10306then you may query the type of @code{s} by:
10307
10308@smallexample
10309(@value{GDBP}) ptype s
10310type = SET ['A'..'Z']
10311@end smallexample
10312
10313@noindent
10314Note that at present you cannot interactively manipulate set
10315expressions using the debugger.
10316
10317The following example shows how you might declare an array in Modula-2
10318and how you can interact with @value{GDBN} to print its type and contents:
10319
10320@smallexample
10321VAR
10322 s: ARRAY [-10..10] OF CHAR ;
10323@end smallexample
10324
10325@smallexample
10326(@value{GDBP}) ptype s
10327ARRAY [-10..10] OF CHAR
10328@end smallexample
10329
10330Note that the array handling is not yet complete and although the type
10331is printed correctly, expression handling still assumes that all
10332arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10333above.
72019c9c
GM
10334
10335Here are some more type related Modula-2 examples:
10336
10337@smallexample
10338TYPE
10339 colour = (blue, red, yellow, green) ;
10340 t = [blue..yellow] ;
10341VAR
10342 s: t ;
10343BEGIN
10344 s := blue ;
10345@end smallexample
10346
10347@noindent
10348The @value{GDBN} interaction shows how you can query the data type
10349and value of a variable.
10350
10351@smallexample
10352(@value{GDBP}) print s
10353$1 = blue
10354(@value{GDBP}) ptype t
10355type = [blue..yellow]
10356@end smallexample
10357
10358@noindent
10359In this example a Modula-2 array is declared and its contents
10360displayed. Observe that the contents are written in the same way as
10361their @code{C} counterparts.
10362
10363@smallexample
10364VAR
10365 s: ARRAY [1..5] OF CARDINAL ;
10366BEGIN
10367 s[1] := 1 ;
10368@end smallexample
10369
10370@smallexample
10371(@value{GDBP}) print s
10372$1 = @{1, 0, 0, 0, 0@}
10373(@value{GDBP}) ptype s
10374type = ARRAY [1..5] OF CARDINAL
10375@end smallexample
10376
10377The Modula-2 language interface to @value{GDBN} also understands
10378pointer types as shown in this example:
10379
10380@smallexample
10381VAR
10382 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10383BEGIN
10384 NEW(s) ;
10385 s^[1] := 1 ;
10386@end smallexample
10387
10388@noindent
10389and you can request that @value{GDBN} describes the type of @code{s}.
10390
10391@smallexample
10392(@value{GDBP}) ptype s
10393type = POINTER TO ARRAY [1..5] OF CARDINAL
10394@end smallexample
10395
10396@value{GDBN} handles compound types as we can see in this example.
10397Here we combine array types, record types, pointer types and subrange
10398types:
10399
10400@smallexample
10401TYPE
10402 foo = RECORD
10403 f1: CARDINAL ;
10404 f2: CHAR ;
10405 f3: myarray ;
10406 END ;
10407
10408 myarray = ARRAY myrange OF CARDINAL ;
10409 myrange = [-2..2] ;
10410VAR
10411 s: POINTER TO ARRAY myrange OF foo ;
10412@end smallexample
10413
10414@noindent
10415and you can ask @value{GDBN} to describe the type of @code{s} as shown
10416below.
10417
10418@smallexample
10419(@value{GDBP}) ptype s
10420type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10421 f1 : CARDINAL;
10422 f2 : CHAR;
10423 f3 : ARRAY [-2..2] OF CARDINAL;
10424END
10425@end smallexample
10426
6d2ebf8b 10427@node M2 Defaults
79a6e687 10428@subsubsection Modula-2 Defaults
c906108c
SS
10429@cindex Modula-2 defaults
10430
10431If type and range checking are set automatically by @value{GDBN}, they
10432both default to @code{on} whenever the working language changes to
d4f3574e 10433Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10434selected the working language.
10435
10436If you allow @value{GDBN} to set the language automatically, then entering
10437code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10438working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10439Infer the Source Language}, for further details.
c906108c 10440
6d2ebf8b 10441@node Deviations
79a6e687 10442@subsubsection Deviations from Standard Modula-2
c906108c
SS
10443@cindex Modula-2, deviations from
10444
10445A few changes have been made to make Modula-2 programs easier to debug.
10446This is done primarily via loosening its type strictness:
10447
10448@itemize @bullet
10449@item
10450Unlike in standard Modula-2, pointer constants can be formed by
10451integers. This allows you to modify pointer variables during
10452debugging. (In standard Modula-2, the actual address contained in a
10453pointer variable is hidden from you; it can only be modified
10454through direct assignment to another pointer variable or expression that
10455returned a pointer.)
10456
10457@item
10458C escape sequences can be used in strings and characters to represent
10459non-printable characters. @value{GDBN} prints out strings with these
10460escape sequences embedded. Single non-printable characters are
10461printed using the @samp{CHR(@var{nnn})} format.
10462
10463@item
10464The assignment operator (@code{:=}) returns the value of its right-hand
10465argument.
10466
10467@item
10468All built-in procedures both modify @emph{and} return their argument.
10469@end itemize
10470
6d2ebf8b 10471@node M2 Checks
79a6e687 10472@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10473@cindex Modula-2 checks
10474
10475@quotation
10476@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10477range checking.
10478@end quotation
10479@c FIXME remove warning when type/range checks added
10480
10481@value{GDBN} considers two Modula-2 variables type equivalent if:
10482
10483@itemize @bullet
10484@item
10485They are of types that have been declared equivalent via a @code{TYPE
10486@var{t1} = @var{t2}} statement
10487
10488@item
10489They have been declared on the same line. (Note: This is true of the
10490@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10491@end itemize
10492
10493As long as type checking is enabled, any attempt to combine variables
10494whose types are not equivalent is an error.
10495
10496Range checking is done on all mathematical operations, assignment, array
10497index bounds, and all built-in functions and procedures.
10498
6d2ebf8b 10499@node M2 Scope
79a6e687 10500@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10501@cindex scope
41afff9a 10502@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10503@cindex colon, doubled as scope operator
10504@ifinfo
41afff9a 10505@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10506@c Info cannot handle :: but TeX can.
10507@end ifinfo
10508@iftex
41afff9a 10509@vindex ::@r{, in Modula-2}
c906108c
SS
10510@end iftex
10511
10512There are a few subtle differences between the Modula-2 scope operator
10513(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10514similar syntax:
10515
474c8240 10516@smallexample
c906108c
SS
10517
10518@var{module} . @var{id}
10519@var{scope} :: @var{id}
474c8240 10520@end smallexample
c906108c
SS
10521
10522@noindent
10523where @var{scope} is the name of a module or a procedure,
10524@var{module} the name of a module, and @var{id} is any declared
10525identifier within your program, except another module.
10526
10527Using the @code{::} operator makes @value{GDBN} search the scope
10528specified by @var{scope} for the identifier @var{id}. If it is not
10529found in the specified scope, then @value{GDBN} searches all scopes
10530enclosing the one specified by @var{scope}.
10531
10532Using the @code{.} operator makes @value{GDBN} search the current scope for
10533the identifier specified by @var{id} that was imported from the
10534definition module specified by @var{module}. With this operator, it is
10535an error if the identifier @var{id} was not imported from definition
10536module @var{module}, or if @var{id} is not an identifier in
10537@var{module}.
10538
6d2ebf8b 10539@node GDB/M2
c906108c
SS
10540@subsubsection @value{GDBN} and Modula-2
10541
10542Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10543Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10544specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10545@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10546apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10547analogue in Modula-2.
10548
10549The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10550with any language, is not useful with Modula-2. Its
c906108c 10551intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10552created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10553address can be specified by an integral constant, the construct
d4f3574e 10554@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10555
10556@cindex @code{#} in Modula-2
10557In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10558interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10559
e07c999f
PH
10560@node Ada
10561@subsection Ada
10562@cindex Ada
10563
10564The extensions made to @value{GDBN} for Ada only support
10565output from the @sc{gnu} Ada (GNAT) compiler.
10566Other Ada compilers are not currently supported, and
10567attempting to debug executables produced by them is most likely
10568to be difficult.
10569
10570
10571@cindex expressions in Ada
10572@menu
10573* Ada Mode Intro:: General remarks on the Ada syntax
10574 and semantics supported by Ada mode
10575 in @value{GDBN}.
10576* Omissions from Ada:: Restrictions on the Ada expression syntax.
10577* Additions to Ada:: Extensions of the Ada expression syntax.
10578* Stopping Before Main Program:: Debugging the program during elaboration.
10579* Ada Glitches:: Known peculiarities of Ada mode.
10580@end menu
10581
10582@node Ada Mode Intro
10583@subsubsection Introduction
10584@cindex Ada mode, general
10585
10586The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10587syntax, with some extensions.
10588The philosophy behind the design of this subset is
10589
10590@itemize @bullet
10591@item
10592That @value{GDBN} should provide basic literals and access to operations for
10593arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10594leaving more sophisticated computations to subprograms written into the
10595program (which therefore may be called from @value{GDBN}).
10596
10597@item
10598That type safety and strict adherence to Ada language restrictions
10599are not particularly important to the @value{GDBN} user.
10600
10601@item
10602That brevity is important to the @value{GDBN} user.
10603@end itemize
10604
10605Thus, for brevity, the debugger acts as if there were
10606implicit @code{with} and @code{use} clauses in effect for all user-written
10607packages, making it unnecessary to fully qualify most names with
10608their packages, regardless of context. Where this causes ambiguity,
10609@value{GDBN} asks the user's intent.
10610
10611The debugger will start in Ada mode if it detects an Ada main program.
10612As for other languages, it will enter Ada mode when stopped in a program that
10613was translated from an Ada source file.
10614
10615While in Ada mode, you may use `@t{--}' for comments. This is useful
10616mostly for documenting command files. The standard @value{GDBN} comment
10617(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10618middle (to allow based literals).
10619
10620The debugger supports limited overloading. Given a subprogram call in which
10621the function symbol has multiple definitions, it will use the number of
10622actual parameters and some information about their types to attempt to narrow
10623the set of definitions. It also makes very limited use of context, preferring
10624procedures to functions in the context of the @code{call} command, and
10625functions to procedures elsewhere.
10626
10627@node Omissions from Ada
10628@subsubsection Omissions from Ada
10629@cindex Ada, omissions from
10630
10631Here are the notable omissions from the subset:
10632
10633@itemize @bullet
10634@item
10635Only a subset of the attributes are supported:
10636
10637@itemize @minus
10638@item
10639@t{'First}, @t{'Last}, and @t{'Length}
10640 on array objects (not on types and subtypes).
10641
10642@item
10643@t{'Min} and @t{'Max}.
10644
10645@item
10646@t{'Pos} and @t{'Val}.
10647
10648@item
10649@t{'Tag}.
10650
10651@item
10652@t{'Range} on array objects (not subtypes), but only as the right
10653operand of the membership (@code{in}) operator.
10654
10655@item
10656@t{'Access}, @t{'Unchecked_Access}, and
10657@t{'Unrestricted_Access} (a GNAT extension).
10658
10659@item
10660@t{'Address}.
10661@end itemize
10662
10663@item
10664The names in
10665@code{Characters.Latin_1} are not available and
10666concatenation is not implemented. Thus, escape characters in strings are
10667not currently available.
10668
10669@item
10670Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10671equality of representations. They will generally work correctly
10672for strings and arrays whose elements have integer or enumeration types.
10673They may not work correctly for arrays whose element
10674types have user-defined equality, for arrays of real values
10675(in particular, IEEE-conformant floating point, because of negative
10676zeroes and NaNs), and for arrays whose elements contain unused bits with
10677indeterminate values.
10678
10679@item
10680The other component-by-component array operations (@code{and}, @code{or},
10681@code{xor}, @code{not}, and relational tests other than equality)
10682are not implemented.
10683
10684@item
860701dc
PH
10685@cindex array aggregates (Ada)
10686@cindex record aggregates (Ada)
10687@cindex aggregates (Ada)
10688There is limited support for array and record aggregates. They are
10689permitted only on the right sides of assignments, as in these examples:
10690
10691@smallexample
10692set An_Array := (1, 2, 3, 4, 5, 6)
10693set An_Array := (1, others => 0)
10694set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10695set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10696set A_Record := (1, "Peter", True);
10697set A_Record := (Name => "Peter", Id => 1, Alive => True)
10698@end smallexample
10699
10700Changing a
10701discriminant's value by assigning an aggregate has an
10702undefined effect if that discriminant is used within the record.
10703However, you can first modify discriminants by directly assigning to
10704them (which normally would not be allowed in Ada), and then performing an
10705aggregate assignment. For example, given a variable @code{A_Rec}
10706declared to have a type such as:
10707
10708@smallexample
10709type Rec (Len : Small_Integer := 0) is record
10710 Id : Integer;
10711 Vals : IntArray (1 .. Len);
10712end record;
10713@end smallexample
10714
10715you can assign a value with a different size of @code{Vals} with two
10716assignments:
10717
10718@smallexample
10719set A_Rec.Len := 4
10720set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10721@end smallexample
10722
10723As this example also illustrates, @value{GDBN} is very loose about the usual
10724rules concerning aggregates. You may leave out some of the
10725components of an array or record aggregate (such as the @code{Len}
10726component in the assignment to @code{A_Rec} above); they will retain their
10727original values upon assignment. You may freely use dynamic values as
10728indices in component associations. You may even use overlapping or
10729redundant component associations, although which component values are
10730assigned in such cases is not defined.
e07c999f
PH
10731
10732@item
10733Calls to dispatching subprograms are not implemented.
10734
10735@item
10736The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10737than that of real Ada. It makes only limited use of the context in
10738which a subexpression appears to resolve its meaning, and it is much
10739looser in its rules for allowing type matches. As a result, some
10740function calls will be ambiguous, and the user will be asked to choose
10741the proper resolution.
e07c999f
PH
10742
10743@item
10744The @code{new} operator is not implemented.
10745
10746@item
10747Entry calls are not implemented.
10748
10749@item
10750Aside from printing, arithmetic operations on the native VAX floating-point
10751formats are not supported.
10752
10753@item
10754It is not possible to slice a packed array.
10755@end itemize
10756
10757@node Additions to Ada
10758@subsubsection Additions to Ada
10759@cindex Ada, deviations from
10760
10761As it does for other languages, @value{GDBN} makes certain generic
10762extensions to Ada (@pxref{Expressions}):
10763
10764@itemize @bullet
10765@item
ae21e955
BW
10766If the expression @var{E} is a variable residing in memory (typically
10767a local variable or array element) and @var{N} is a positive integer,
10768then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10769@var{N}-1 adjacent variables following it in memory as an array. In
10770Ada, this operator is generally not necessary, since its prime use is
10771in displaying parts of an array, and slicing will usually do this in
10772Ada. However, there are occasional uses when debugging programs in
10773which certain debugging information has been optimized away.
e07c999f
PH
10774
10775@item
ae21e955
BW
10776@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10777appears in function or file @var{B}.'' When @var{B} is a file name,
10778you must typically surround it in single quotes.
e07c999f
PH
10779
10780@item
10781The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10782@var{type} that appears at address @var{addr}.''
10783
10784@item
10785A name starting with @samp{$} is a convenience variable
10786(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10787@end itemize
10788
ae21e955
BW
10789In addition, @value{GDBN} provides a few other shortcuts and outright
10790additions specific to Ada:
e07c999f
PH
10791
10792@itemize @bullet
10793@item
10794The assignment statement is allowed as an expression, returning
10795its right-hand operand as its value. Thus, you may enter
10796
10797@smallexample
10798set x := y + 3
10799print A(tmp := y + 1)
10800@end smallexample
10801
10802@item
10803The semicolon is allowed as an ``operator,'' returning as its value
10804the value of its right-hand operand.
10805This allows, for example,
10806complex conditional breaks:
10807
10808@smallexample
10809break f
10810condition 1 (report(i); k += 1; A(k) > 100)
10811@end smallexample
10812
10813@item
10814Rather than use catenation and symbolic character names to introduce special
10815characters into strings, one may instead use a special bracket notation,
10816which is also used to print strings. A sequence of characters of the form
10817@samp{["@var{XX}"]} within a string or character literal denotes the
10818(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10819sequence of characters @samp{["""]} also denotes a single quotation mark
10820in strings. For example,
10821@smallexample
10822 "One line.["0a"]Next line.["0a"]"
10823@end smallexample
10824@noindent
ae21e955
BW
10825contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10826after each period.
e07c999f
PH
10827
10828@item
10829The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10830@t{'Max} is optional (and is ignored in any case). For example, it is valid
10831to write
10832
10833@smallexample
10834print 'max(x, y)
10835@end smallexample
10836
10837@item
10838When printing arrays, @value{GDBN} uses positional notation when the
10839array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10840For example, a one-dimensional array of three integers with a lower bound
10841of 3 might print as
e07c999f
PH
10842
10843@smallexample
10844(3 => 10, 17, 1)
10845@end smallexample
10846
10847@noindent
10848That is, in contrast to valid Ada, only the first component has a @code{=>}
10849clause.
10850
10851@item
10852You may abbreviate attributes in expressions with any unique,
10853multi-character subsequence of
10854their names (an exact match gets preference).
10855For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10856in place of @t{a'length}.
10857
10858@item
10859@cindex quoting Ada internal identifiers
10860Since Ada is case-insensitive, the debugger normally maps identifiers you type
10861to lower case. The GNAT compiler uses upper-case characters for
10862some of its internal identifiers, which are normally of no interest to users.
10863For the rare occasions when you actually have to look at them,
10864enclose them in angle brackets to avoid the lower-case mapping.
10865For example,
10866@smallexample
10867@value{GDBP} print <JMPBUF_SAVE>[0]
10868@end smallexample
10869
10870@item
10871Printing an object of class-wide type or dereferencing an
10872access-to-class-wide value will display all the components of the object's
10873specific type (as indicated by its run-time tag). Likewise, component
10874selection on such a value will operate on the specific type of the
10875object.
10876
10877@end itemize
10878
10879@node Stopping Before Main Program
10880@subsubsection Stopping at the Very Beginning
10881
10882@cindex breakpointing Ada elaboration code
10883It is sometimes necessary to debug the program during elaboration, and
10884before reaching the main procedure.
10885As defined in the Ada Reference
10886Manual, the elaboration code is invoked from a procedure called
10887@code{adainit}. To run your program up to the beginning of
10888elaboration, simply use the following two commands:
10889@code{tbreak adainit} and @code{run}.
10890
10891@node Ada Glitches
10892@subsubsection Known Peculiarities of Ada Mode
10893@cindex Ada, problems
10894
10895Besides the omissions listed previously (@pxref{Omissions from Ada}),
10896we know of several problems with and limitations of Ada mode in
10897@value{GDBN},
10898some of which will be fixed with planned future releases of the debugger
10899and the GNU Ada compiler.
10900
10901@itemize @bullet
10902@item
10903Currently, the debugger
10904has insufficient information to determine whether certain pointers represent
10905pointers to objects or the objects themselves.
10906Thus, the user may have to tack an extra @code{.all} after an expression
10907to get it printed properly.
10908
10909@item
10910Static constants that the compiler chooses not to materialize as objects in
10911storage are invisible to the debugger.
10912
10913@item
10914Named parameter associations in function argument lists are ignored (the
10915argument lists are treated as positional).
10916
10917@item
10918Many useful library packages are currently invisible to the debugger.
10919
10920@item
10921Fixed-point arithmetic, conversions, input, and output is carried out using
10922floating-point arithmetic, and may give results that only approximate those on
10923the host machine.
10924
10925@item
10926The type of the @t{'Address} attribute may not be @code{System.Address}.
10927
10928@item
10929The GNAT compiler never generates the prefix @code{Standard} for any of
10930the standard symbols defined by the Ada language. @value{GDBN} knows about
10931this: it will strip the prefix from names when you use it, and will never
10932look for a name you have so qualified among local symbols, nor match against
10933symbols in other packages or subprograms. If you have
10934defined entities anywhere in your program other than parameters and
10935local variables whose simple names match names in @code{Standard},
10936GNAT's lack of qualification here can cause confusion. When this happens,
10937you can usually resolve the confusion
10938by qualifying the problematic names with package
10939@code{Standard} explicitly.
10940@end itemize
10941
79a6e687
BW
10942@node Unsupported Languages
10943@section Unsupported Languages
4e562065
JB
10944
10945@cindex unsupported languages
10946@cindex minimal language
10947In addition to the other fully-supported programming languages,
10948@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10949It does not represent a real programming language, but provides a set
10950of capabilities close to what the C or assembly languages provide.
10951This should allow most simple operations to be performed while debugging
10952an application that uses a language currently not supported by @value{GDBN}.
10953
10954If the language is set to @code{auto}, @value{GDBN} will automatically
10955select this language if the current frame corresponds to an unsupported
10956language.
10957
6d2ebf8b 10958@node Symbols
c906108c
SS
10959@chapter Examining the Symbol Table
10960
d4f3574e 10961The commands described in this chapter allow you to inquire about the
c906108c
SS
10962symbols (names of variables, functions and types) defined in your
10963program. This information is inherent in the text of your program and
10964does not change as your program executes. @value{GDBN} finds it in your
10965program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10966(@pxref{File Options, ,Choosing Files}), or by one of the
10967file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10968
10969@cindex symbol names
10970@cindex names of symbols
10971@cindex quoting names
10972Occasionally, you may need to refer to symbols that contain unusual
10973characters, which @value{GDBN} ordinarily treats as word delimiters. The
10974most frequent case is in referring to static variables in other
79a6e687 10975source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10976are recorded in object files as debugging symbols, but @value{GDBN} would
10977ordinarily parse a typical file name, like @file{foo.c}, as the three words
10978@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10979@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10980
474c8240 10981@smallexample
c906108c 10982p 'foo.c'::x
474c8240 10983@end smallexample
c906108c
SS
10984
10985@noindent
10986looks up the value of @code{x} in the scope of the file @file{foo.c}.
10987
10988@table @code
a8f24a35
EZ
10989@cindex case-insensitive symbol names
10990@cindex case sensitivity in symbol names
10991@kindex set case-sensitive
10992@item set case-sensitive on
10993@itemx set case-sensitive off
10994@itemx set case-sensitive auto
10995Normally, when @value{GDBN} looks up symbols, it matches their names
10996with case sensitivity determined by the current source language.
10997Occasionally, you may wish to control that. The command @code{set
10998case-sensitive} lets you do that by specifying @code{on} for
10999case-sensitive matches or @code{off} for case-insensitive ones. If
11000you specify @code{auto}, case sensitivity is reset to the default
11001suitable for the source language. The default is case-sensitive
11002matches for all languages except for Fortran, for which the default is
11003case-insensitive matches.
11004
9c16f35a
EZ
11005@kindex show case-sensitive
11006@item show case-sensitive
a8f24a35
EZ
11007This command shows the current setting of case sensitivity for symbols
11008lookups.
11009
c906108c 11010@kindex info address
b37052ae 11011@cindex address of a symbol
c906108c
SS
11012@item info address @var{symbol}
11013Describe where the data for @var{symbol} is stored. For a register
11014variable, this says which register it is kept in. For a non-register
11015local variable, this prints the stack-frame offset at which the variable
11016is always stored.
11017
11018Note the contrast with @samp{print &@var{symbol}}, which does not work
11019at all for a register variable, and for a stack local variable prints
11020the exact address of the current instantiation of the variable.
11021
3d67e040 11022@kindex info symbol
b37052ae 11023@cindex symbol from address
9c16f35a 11024@cindex closest symbol and offset for an address
3d67e040
EZ
11025@item info symbol @var{addr}
11026Print the name of a symbol which is stored at the address @var{addr}.
11027If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11028nearest symbol and an offset from it:
11029
474c8240 11030@smallexample
3d67e040
EZ
11031(@value{GDBP}) info symbol 0x54320
11032_initialize_vx + 396 in section .text
474c8240 11033@end smallexample
3d67e040
EZ
11034
11035@noindent
11036This is the opposite of the @code{info address} command. You can use
11037it to find out the name of a variable or a function given its address.
11038
c906108c 11039@kindex whatis
62f3a2ba
FF
11040@item whatis [@var{arg}]
11041Print the data type of @var{arg}, which can be either an expression or
11042a data type. With no argument, print the data type of @code{$}, the
11043last value in the value history. If @var{arg} is an expression, it is
11044not actually evaluated, and any side-effecting operations (such as
11045assignments or function calls) inside it do not take place. If
11046@var{arg} is a type name, it may be the name of a type or typedef, or
11047for C code it may have the form @samp{class @var{class-name}},
11048@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11049@samp{enum @var{enum-tag}}.
c906108c
SS
11050@xref{Expressions, ,Expressions}.
11051
c906108c 11052@kindex ptype
62f3a2ba
FF
11053@item ptype [@var{arg}]
11054@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11055detailed description of the type, instead of just the name of the type.
11056@xref{Expressions, ,Expressions}.
c906108c
SS
11057
11058For example, for this variable declaration:
11059
474c8240 11060@smallexample
c906108c 11061struct complex @{double real; double imag;@} v;
474c8240 11062@end smallexample
c906108c
SS
11063
11064@noindent
11065the two commands give this output:
11066
474c8240 11067@smallexample
c906108c
SS
11068@group
11069(@value{GDBP}) whatis v
11070type = struct complex
11071(@value{GDBP}) ptype v
11072type = struct complex @{
11073 double real;
11074 double imag;
11075@}
11076@end group
474c8240 11077@end smallexample
c906108c
SS
11078
11079@noindent
11080As with @code{whatis}, using @code{ptype} without an argument refers to
11081the type of @code{$}, the last value in the value history.
11082
ab1adacd
EZ
11083@cindex incomplete type
11084Sometimes, programs use opaque data types or incomplete specifications
11085of complex data structure. If the debug information included in the
11086program does not allow @value{GDBN} to display a full declaration of
11087the data type, it will say @samp{<incomplete type>}. For example,
11088given these declarations:
11089
11090@smallexample
11091 struct foo;
11092 struct foo *fooptr;
11093@end smallexample
11094
11095@noindent
11096but no definition for @code{struct foo} itself, @value{GDBN} will say:
11097
11098@smallexample
ddb50cd7 11099 (@value{GDBP}) ptype foo
ab1adacd
EZ
11100 $1 = <incomplete type>
11101@end smallexample
11102
11103@noindent
11104``Incomplete type'' is C terminology for data types that are not
11105completely specified.
11106
c906108c
SS
11107@kindex info types
11108@item info types @var{regexp}
11109@itemx info types
09d4efe1
EZ
11110Print a brief description of all types whose names match the regular
11111expression @var{regexp} (or all types in your program, if you supply
11112no argument). Each complete typename is matched as though it were a
11113complete line; thus, @samp{i type value} gives information on all
11114types in your program whose names include the string @code{value}, but
11115@samp{i type ^value$} gives information only on types whose complete
11116name is @code{value}.
c906108c
SS
11117
11118This command differs from @code{ptype} in two ways: first, like
11119@code{whatis}, it does not print a detailed description; second, it
11120lists all source files where a type is defined.
11121
b37052ae
EZ
11122@kindex info scope
11123@cindex local variables
09d4efe1 11124@item info scope @var{location}
b37052ae 11125List all the variables local to a particular scope. This command
09d4efe1
EZ
11126accepts a @var{location} argument---a function name, a source line, or
11127an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11128to the scope defined by that location. (@xref{Specify Location}, for
11129details about supported forms of @var{location}.) For example:
b37052ae
EZ
11130
11131@smallexample
11132(@value{GDBP}) @b{info scope command_line_handler}
11133Scope for command_line_handler:
11134Symbol rl is an argument at stack/frame offset 8, length 4.
11135Symbol linebuffer is in static storage at address 0x150a18, length 4.
11136Symbol linelength is in static storage at address 0x150a1c, length 4.
11137Symbol p is a local variable in register $esi, length 4.
11138Symbol p1 is a local variable in register $ebx, length 4.
11139Symbol nline is a local variable in register $edx, length 4.
11140Symbol repeat is a local variable at frame offset -8, length 4.
11141@end smallexample
11142
f5c37c66
EZ
11143@noindent
11144This command is especially useful for determining what data to collect
11145during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11146collect}.
11147
c906108c
SS
11148@kindex info source
11149@item info source
919d772c
JB
11150Show information about the current source file---that is, the source file for
11151the function containing the current point of execution:
11152@itemize @bullet
11153@item
11154the name of the source file, and the directory containing it,
11155@item
11156the directory it was compiled in,
11157@item
11158its length, in lines,
11159@item
11160which programming language it is written in,
11161@item
11162whether the executable includes debugging information for that file, and
11163if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11164@item
11165whether the debugging information includes information about
11166preprocessor macros.
11167@end itemize
11168
c906108c
SS
11169
11170@kindex info sources
11171@item info sources
11172Print the names of all source files in your program for which there is
11173debugging information, organized into two lists: files whose symbols
11174have already been read, and files whose symbols will be read when needed.
11175
11176@kindex info functions
11177@item info functions
11178Print the names and data types of all defined functions.
11179
11180@item info functions @var{regexp}
11181Print the names and data types of all defined functions
11182whose names contain a match for regular expression @var{regexp}.
11183Thus, @samp{info fun step} finds all functions whose names
11184include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11185start with @code{step}. If a function name contains characters
c1468174 11186that conflict with the regular expression language (e.g.@:
1c5dfdad 11187@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11188
11189@kindex info variables
11190@item info variables
11191Print the names and data types of all variables that are declared
6ca652b0 11192outside of functions (i.e.@: excluding local variables).
c906108c
SS
11193
11194@item info variables @var{regexp}
11195Print the names and data types of all variables (except for local
11196variables) whose names contain a match for regular expression
11197@var{regexp}.
11198
b37303ee 11199@kindex info classes
721c2651 11200@cindex Objective-C, classes and selectors
b37303ee
AF
11201@item info classes
11202@itemx info classes @var{regexp}
11203Display all Objective-C classes in your program, or
11204(with the @var{regexp} argument) all those matching a particular regular
11205expression.
11206
11207@kindex info selectors
11208@item info selectors
11209@itemx info selectors @var{regexp}
11210Display all Objective-C selectors in your program, or
11211(with the @var{regexp} argument) all those matching a particular regular
11212expression.
11213
c906108c
SS
11214@ignore
11215This was never implemented.
11216@kindex info methods
11217@item info methods
11218@itemx info methods @var{regexp}
11219The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11220methods within C@t{++} program, or (with the @var{regexp} argument) a
11221specific set of methods found in the various C@t{++} classes. Many
11222C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11223from the @code{ptype} command can be overwhelming and hard to use. The
11224@code{info-methods} command filters the methods, printing only those
11225which match the regular-expression @var{regexp}.
11226@end ignore
11227
c906108c
SS
11228@cindex reloading symbols
11229Some systems allow individual object files that make up your program to
7a292a7a
SS
11230be replaced without stopping and restarting your program. For example,
11231in VxWorks you can simply recompile a defective object file and keep on
11232running. If you are running on one of these systems, you can allow
11233@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11234
11235@table @code
11236@kindex set symbol-reloading
11237@item set symbol-reloading on
11238Replace symbol definitions for the corresponding source file when an
11239object file with a particular name is seen again.
11240
11241@item set symbol-reloading off
6d2ebf8b
SS
11242Do not replace symbol definitions when encountering object files of the
11243same name more than once. This is the default state; if you are not
11244running on a system that permits automatic relinking of modules, you
11245should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11246may discard symbols when linking large programs, that may contain
11247several modules (from different directories or libraries) with the same
11248name.
c906108c
SS
11249
11250@kindex show symbol-reloading
11251@item show symbol-reloading
11252Show the current @code{on} or @code{off} setting.
11253@end table
c906108c 11254
9c16f35a 11255@cindex opaque data types
c906108c
SS
11256@kindex set opaque-type-resolution
11257@item set opaque-type-resolution on
11258Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11259declared as a pointer to a @code{struct}, @code{class}, or
11260@code{union}---for example, @code{struct MyType *}---that is used in one
11261source file although the full declaration of @code{struct MyType} is in
11262another source file. The default is on.
11263
11264A change in the setting of this subcommand will not take effect until
11265the next time symbols for a file are loaded.
11266
11267@item set opaque-type-resolution off
11268Tell @value{GDBN} not to resolve opaque types. In this case, the type
11269is printed as follows:
11270@smallexample
11271@{<no data fields>@}
11272@end smallexample
11273
11274@kindex show opaque-type-resolution
11275@item show opaque-type-resolution
11276Show whether opaque types are resolved or not.
c906108c
SS
11277
11278@kindex maint print symbols
11279@cindex symbol dump
11280@kindex maint print psymbols
11281@cindex partial symbol dump
11282@item maint print symbols @var{filename}
11283@itemx maint print psymbols @var{filename}
11284@itemx maint print msymbols @var{filename}
11285Write a dump of debugging symbol data into the file @var{filename}.
11286These commands are used to debug the @value{GDBN} symbol-reading code. Only
11287symbols with debugging data are included. If you use @samp{maint print
11288symbols}, @value{GDBN} includes all the symbols for which it has already
11289collected full details: that is, @var{filename} reflects symbols for
11290only those files whose symbols @value{GDBN} has read. You can use the
11291command @code{info sources} to find out which files these are. If you
11292use @samp{maint print psymbols} instead, the dump shows information about
11293symbols that @value{GDBN} only knows partially---that is, symbols defined in
11294files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11295@samp{maint print msymbols} dumps just the minimal symbol information
11296required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11297@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11298@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11299
5e7b2f39
JB
11300@kindex maint info symtabs
11301@kindex maint info psymtabs
44ea7b70
JB
11302@cindex listing @value{GDBN}'s internal symbol tables
11303@cindex symbol tables, listing @value{GDBN}'s internal
11304@cindex full symbol tables, listing @value{GDBN}'s internal
11305@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11306@item maint info symtabs @r{[} @var{regexp} @r{]}
11307@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11308
11309List the @code{struct symtab} or @code{struct partial_symtab}
11310structures whose names match @var{regexp}. If @var{regexp} is not
11311given, list them all. The output includes expressions which you can
11312copy into a @value{GDBN} debugging this one to examine a particular
11313structure in more detail. For example:
11314
11315@smallexample
5e7b2f39 11316(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11317@{ objfile /home/gnu/build/gdb/gdb
11318 ((struct objfile *) 0x82e69d0)
b383017d 11319 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11320 ((struct partial_symtab *) 0x8474b10)
11321 readin no
11322 fullname (null)
11323 text addresses 0x814d3c8 -- 0x8158074
11324 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11325 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11326 dependencies (none)
11327 @}
11328@}
5e7b2f39 11329(@value{GDBP}) maint info symtabs
44ea7b70
JB
11330(@value{GDBP})
11331@end smallexample
11332@noindent
11333We see that there is one partial symbol table whose filename contains
11334the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11335and we see that @value{GDBN} has not read in any symtabs yet at all.
11336If we set a breakpoint on a function, that will cause @value{GDBN} to
11337read the symtab for the compilation unit containing that function:
11338
11339@smallexample
11340(@value{GDBP}) break dwarf2_psymtab_to_symtab
11341Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11342line 1574.
5e7b2f39 11343(@value{GDBP}) maint info symtabs
b383017d 11344@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11345 ((struct objfile *) 0x82e69d0)
b383017d 11346 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11347 ((struct symtab *) 0x86c1f38)
11348 dirname (null)
11349 fullname (null)
11350 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11351 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11352 debugformat DWARF 2
11353 @}
11354@}
b383017d 11355(@value{GDBP})
44ea7b70 11356@end smallexample
c906108c
SS
11357@end table
11358
44ea7b70 11359
6d2ebf8b 11360@node Altering
c906108c
SS
11361@chapter Altering Execution
11362
11363Once you think you have found an error in your program, you might want to
11364find out for certain whether correcting the apparent error would lead to
11365correct results in the rest of the run. You can find the answer by
11366experiment, using the @value{GDBN} features for altering execution of the
11367program.
11368
11369For example, you can store new values into variables or memory
7a292a7a
SS
11370locations, give your program a signal, restart it at a different
11371address, or even return prematurely from a function.
c906108c
SS
11372
11373@menu
11374* Assignment:: Assignment to variables
11375* Jumping:: Continuing at a different address
c906108c 11376* Signaling:: Giving your program a signal
c906108c
SS
11377* Returning:: Returning from a function
11378* Calling:: Calling your program's functions
11379* Patching:: Patching your program
11380@end menu
11381
6d2ebf8b 11382@node Assignment
79a6e687 11383@section Assignment to Variables
c906108c
SS
11384
11385@cindex assignment
11386@cindex setting variables
11387To alter the value of a variable, evaluate an assignment expression.
11388@xref{Expressions, ,Expressions}. For example,
11389
474c8240 11390@smallexample
c906108c 11391print x=4
474c8240 11392@end smallexample
c906108c
SS
11393
11394@noindent
11395stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11396value of the assignment expression (which is 4).
c906108c
SS
11397@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11398information on operators in supported languages.
c906108c
SS
11399
11400@kindex set variable
11401@cindex variables, setting
11402If you are not interested in seeing the value of the assignment, use the
11403@code{set} command instead of the @code{print} command. @code{set} is
11404really the same as @code{print} except that the expression's value is
11405not printed and is not put in the value history (@pxref{Value History,
79a6e687 11406,Value History}). The expression is evaluated only for its effects.
c906108c 11407
c906108c
SS
11408If the beginning of the argument string of the @code{set} command
11409appears identical to a @code{set} subcommand, use the @code{set
11410variable} command instead of just @code{set}. This command is identical
11411to @code{set} except for its lack of subcommands. For example, if your
11412program has a variable @code{width}, you get an error if you try to set
11413a new value with just @samp{set width=13}, because @value{GDBN} has the
11414command @code{set width}:
11415
474c8240 11416@smallexample
c906108c
SS
11417(@value{GDBP}) whatis width
11418type = double
11419(@value{GDBP}) p width
11420$4 = 13
11421(@value{GDBP}) set width=47
11422Invalid syntax in expression.
474c8240 11423@end smallexample
c906108c
SS
11424
11425@noindent
11426The invalid expression, of course, is @samp{=47}. In
11427order to actually set the program's variable @code{width}, use
11428
474c8240 11429@smallexample
c906108c 11430(@value{GDBP}) set var width=47
474c8240 11431@end smallexample
53a5351d 11432
c906108c
SS
11433Because the @code{set} command has many subcommands that can conflict
11434with the names of program variables, it is a good idea to use the
11435@code{set variable} command instead of just @code{set}. For example, if
11436your program has a variable @code{g}, you run into problems if you try
11437to set a new value with just @samp{set g=4}, because @value{GDBN} has
11438the command @code{set gnutarget}, abbreviated @code{set g}:
11439
474c8240 11440@smallexample
c906108c
SS
11441@group
11442(@value{GDBP}) whatis g
11443type = double
11444(@value{GDBP}) p g
11445$1 = 1
11446(@value{GDBP}) set g=4
2df3850c 11447(@value{GDBP}) p g
c906108c
SS
11448$2 = 1
11449(@value{GDBP}) r
11450The program being debugged has been started already.
11451Start it from the beginning? (y or n) y
11452Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11453"/home/smith/cc_progs/a.out": can't open to read symbols:
11454 Invalid bfd target.
c906108c
SS
11455(@value{GDBP}) show g
11456The current BFD target is "=4".
11457@end group
474c8240 11458@end smallexample
c906108c
SS
11459
11460@noindent
11461The program variable @code{g} did not change, and you silently set the
11462@code{gnutarget} to an invalid value. In order to set the variable
11463@code{g}, use
11464
474c8240 11465@smallexample
c906108c 11466(@value{GDBP}) set var g=4
474c8240 11467@end smallexample
c906108c
SS
11468
11469@value{GDBN} allows more implicit conversions in assignments than C; you can
11470freely store an integer value into a pointer variable or vice versa,
11471and you can convert any structure to any other structure that is the
11472same length or shorter.
11473@comment FIXME: how do structs align/pad in these conversions?
11474@comment /doc@cygnus.com 18dec1990
11475
11476To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11477construct to generate a value of specified type at a specified address
11478(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11479to memory location @code{0x83040} as an integer (which implies a certain size
11480and representation in memory), and
11481
474c8240 11482@smallexample
c906108c 11483set @{int@}0x83040 = 4
474c8240 11484@end smallexample
c906108c
SS
11485
11486@noindent
11487stores the value 4 into that memory location.
11488
6d2ebf8b 11489@node Jumping
79a6e687 11490@section Continuing at a Different Address
c906108c
SS
11491
11492Ordinarily, when you continue your program, you do so at the place where
11493it stopped, with the @code{continue} command. You can instead continue at
11494an address of your own choosing, with the following commands:
11495
11496@table @code
11497@kindex jump
11498@item jump @var{linespec}
2a25a5ba
EZ
11499@itemx jump @var{location}
11500Resume execution at line @var{linespec} or at address given by
11501@var{location}. Execution stops again immediately if there is a
11502breakpoint there. @xref{Specify Location}, for a description of the
11503different forms of @var{linespec} and @var{location}. It is common
11504practice to use the @code{tbreak} command in conjunction with
11505@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11506
11507The @code{jump} command does not change the current stack frame, or
11508the stack pointer, or the contents of any memory location or any
11509register other than the program counter. If line @var{linespec} is in
11510a different function from the one currently executing, the results may
11511be bizarre if the two functions expect different patterns of arguments or
11512of local variables. For this reason, the @code{jump} command requests
11513confirmation if the specified line is not in the function currently
11514executing. However, even bizarre results are predictable if you are
11515well acquainted with the machine-language code of your program.
c906108c
SS
11516@end table
11517
c906108c 11518@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11519On many systems, you can get much the same effect as the @code{jump}
11520command by storing a new value into the register @code{$pc}. The
11521difference is that this does not start your program running; it only
11522changes the address of where it @emph{will} run when you continue. For
11523example,
c906108c 11524
474c8240 11525@smallexample
c906108c 11526set $pc = 0x485
474c8240 11527@end smallexample
c906108c
SS
11528
11529@noindent
11530makes the next @code{continue} command or stepping command execute at
11531address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11532@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11533
11534The most common occasion to use the @code{jump} command is to back
11535up---perhaps with more breakpoints set---over a portion of a program
11536that has already executed, in order to examine its execution in more
11537detail.
11538
c906108c 11539@c @group
6d2ebf8b 11540@node Signaling
79a6e687 11541@section Giving your Program a Signal
9c16f35a 11542@cindex deliver a signal to a program
c906108c
SS
11543
11544@table @code
11545@kindex signal
11546@item signal @var{signal}
11547Resume execution where your program stopped, but immediately give it the
11548signal @var{signal}. @var{signal} can be the name or the number of a
11549signal. For example, on many systems @code{signal 2} and @code{signal
11550SIGINT} are both ways of sending an interrupt signal.
11551
11552Alternatively, if @var{signal} is zero, continue execution without
11553giving a signal. This is useful when your program stopped on account of
11554a signal and would ordinary see the signal when resumed with the
11555@code{continue} command; @samp{signal 0} causes it to resume without a
11556signal.
11557
11558@code{signal} does not repeat when you press @key{RET} a second time
11559after executing the command.
11560@end table
11561@c @end group
11562
11563Invoking the @code{signal} command is not the same as invoking the
11564@code{kill} utility from the shell. Sending a signal with @code{kill}
11565causes @value{GDBN} to decide what to do with the signal depending on
11566the signal handling tables (@pxref{Signals}). The @code{signal} command
11567passes the signal directly to your program.
11568
c906108c 11569
6d2ebf8b 11570@node Returning
79a6e687 11571@section Returning from a Function
c906108c
SS
11572
11573@table @code
11574@cindex returning from a function
11575@kindex return
11576@item return
11577@itemx return @var{expression}
11578You can cancel execution of a function call with the @code{return}
11579command. If you give an
11580@var{expression} argument, its value is used as the function's return
11581value.
11582@end table
11583
11584When you use @code{return}, @value{GDBN} discards the selected stack frame
11585(and all frames within it). You can think of this as making the
11586discarded frame return prematurely. If you wish to specify a value to
11587be returned, give that value as the argument to @code{return}.
11588
11589This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11590Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11591innermost remaining frame. That frame becomes selected. The
11592specified value is stored in the registers used for returning values
11593of functions.
11594
11595The @code{return} command does not resume execution; it leaves the
11596program stopped in the state that would exist if the function had just
11597returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11598and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11599selected stack frame returns naturally.
11600
6d2ebf8b 11601@node Calling
79a6e687 11602@section Calling Program Functions
c906108c 11603
f8568604 11604@table @code
c906108c 11605@cindex calling functions
f8568604
EZ
11606@cindex inferior functions, calling
11607@item print @var{expr}
d3e8051b 11608Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11609@var{expr} may include calls to functions in the program being
11610debugged.
11611
c906108c 11612@kindex call
c906108c
SS
11613@item call @var{expr}
11614Evaluate the expression @var{expr} without displaying @code{void}
11615returned values.
c906108c
SS
11616
11617You can use this variant of the @code{print} command if you want to
f8568604
EZ
11618execute a function from your program that does not return anything
11619(a.k.a.@: @dfn{a void function}), but without cluttering the output
11620with @code{void} returned values that @value{GDBN} will otherwise
11621print. If the result is not void, it is printed and saved in the
11622value history.
11623@end table
11624
9c16f35a
EZ
11625It is possible for the function you call via the @code{print} or
11626@code{call} command to generate a signal (e.g., if there's a bug in
11627the function, or if you passed it incorrect arguments). What happens
11628in that case is controlled by the @code{set unwindonsignal} command.
11629
11630@table @code
11631@item set unwindonsignal
11632@kindex set unwindonsignal
11633@cindex unwind stack in called functions
11634@cindex call dummy stack unwinding
11635Set unwinding of the stack if a signal is received while in a function
11636that @value{GDBN} called in the program being debugged. If set to on,
11637@value{GDBN} unwinds the stack it created for the call and restores
11638the context to what it was before the call. If set to off (the
11639default), @value{GDBN} stops in the frame where the signal was
11640received.
11641
11642@item show unwindonsignal
11643@kindex show unwindonsignal
11644Show the current setting of stack unwinding in the functions called by
11645@value{GDBN}.
11646@end table
11647
f8568604
EZ
11648@cindex weak alias functions
11649Sometimes, a function you wish to call is actually a @dfn{weak alias}
11650for another function. In such case, @value{GDBN} might not pick up
11651the type information, including the types of the function arguments,
11652which causes @value{GDBN} to call the inferior function incorrectly.
11653As a result, the called function will function erroneously and may
11654even crash. A solution to that is to use the name of the aliased
11655function instead.
c906108c 11656
6d2ebf8b 11657@node Patching
79a6e687 11658@section Patching Programs
7a292a7a 11659
c906108c
SS
11660@cindex patching binaries
11661@cindex writing into executables
c906108c 11662@cindex writing into corefiles
c906108c 11663
7a292a7a
SS
11664By default, @value{GDBN} opens the file containing your program's
11665executable code (or the corefile) read-only. This prevents accidental
11666alterations to machine code; but it also prevents you from intentionally
11667patching your program's binary.
c906108c
SS
11668
11669If you'd like to be able to patch the binary, you can specify that
11670explicitly with the @code{set write} command. For example, you might
11671want to turn on internal debugging flags, or even to make emergency
11672repairs.
11673
11674@table @code
11675@kindex set write
11676@item set write on
11677@itemx set write off
7a292a7a
SS
11678If you specify @samp{set write on}, @value{GDBN} opens executable and
11679core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11680off} (the default), @value{GDBN} opens them read-only.
11681
11682If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11683@code{exec-file} or @code{core-file} command) after changing @code{set
11684write}, for your new setting to take effect.
c906108c
SS
11685
11686@item show write
11687@kindex show write
7a292a7a
SS
11688Display whether executable files and core files are opened for writing
11689as well as reading.
c906108c
SS
11690@end table
11691
6d2ebf8b 11692@node GDB Files
c906108c
SS
11693@chapter @value{GDBN} Files
11694
7a292a7a
SS
11695@value{GDBN} needs to know the file name of the program to be debugged,
11696both in order to read its symbol table and in order to start your
11697program. To debug a core dump of a previous run, you must also tell
11698@value{GDBN} the name of the core dump file.
c906108c
SS
11699
11700@menu
11701* Files:: Commands to specify files
5b5d99cf 11702* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11703* Symbol Errors:: Errors reading symbol files
11704@end menu
11705
6d2ebf8b 11706@node Files
79a6e687 11707@section Commands to Specify Files
c906108c 11708
7a292a7a 11709@cindex symbol table
c906108c 11710@cindex core dump file
7a292a7a
SS
11711
11712You may want to specify executable and core dump file names. The usual
11713way to do this is at start-up time, using the arguments to
11714@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11715Out of @value{GDBN}}).
c906108c
SS
11716
11717Occasionally it is necessary to change to a different file during a
397ca115
EZ
11718@value{GDBN} session. Or you may run @value{GDBN} and forget to
11719specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11720via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11721Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11722new files are useful.
c906108c
SS
11723
11724@table @code
11725@cindex executable file
11726@kindex file
11727@item file @var{filename}
11728Use @var{filename} as the program to be debugged. It is read for its
11729symbols and for the contents of pure memory. It is also the program
11730executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11731directory and the file is not found in the @value{GDBN} working directory,
11732@value{GDBN} uses the environment variable @code{PATH} as a list of
11733directories to search, just as the shell does when looking for a program
11734to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11735and your program, using the @code{path} command.
11736
fc8be69e
EZ
11737@cindex unlinked object files
11738@cindex patching object files
11739You can load unlinked object @file{.o} files into @value{GDBN} using
11740the @code{file} command. You will not be able to ``run'' an object
11741file, but you can disassemble functions and inspect variables. Also,
11742if the underlying BFD functionality supports it, you could use
11743@kbd{gdb -write} to patch object files using this technique. Note
11744that @value{GDBN} can neither interpret nor modify relocations in this
11745case, so branches and some initialized variables will appear to go to
11746the wrong place. But this feature is still handy from time to time.
11747
c906108c
SS
11748@item file
11749@code{file} with no argument makes @value{GDBN} discard any information it
11750has on both executable file and the symbol table.
11751
11752@kindex exec-file
11753@item exec-file @r{[} @var{filename} @r{]}
11754Specify that the program to be run (but not the symbol table) is found
11755in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11756if necessary to locate your program. Omitting @var{filename} means to
11757discard information on the executable file.
11758
11759@kindex symbol-file
11760@item symbol-file @r{[} @var{filename} @r{]}
11761Read symbol table information from file @var{filename}. @code{PATH} is
11762searched when necessary. Use the @code{file} command to get both symbol
11763table and program to run from the same file.
11764
11765@code{symbol-file} with no argument clears out @value{GDBN} information on your
11766program's symbol table.
11767
ae5a43e0
DJ
11768The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11769some breakpoints and auto-display expressions. This is because they may
11770contain pointers to the internal data recording symbols and data types,
11771which are part of the old symbol table data being discarded inside
11772@value{GDBN}.
c906108c
SS
11773
11774@code{symbol-file} does not repeat if you press @key{RET} again after
11775executing it once.
11776
11777When @value{GDBN} is configured for a particular environment, it
11778understands debugging information in whatever format is the standard
11779generated for that environment; you may use either a @sc{gnu} compiler, or
11780other compilers that adhere to the local conventions.
c906108c 11781Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11782using @code{@value{NGCC}} you can generate debugging information for
c906108c 11783optimized code.
c906108c
SS
11784
11785For most kinds of object files, with the exception of old SVR3 systems
11786using COFF, the @code{symbol-file} command does not normally read the
11787symbol table in full right away. Instead, it scans the symbol table
11788quickly to find which source files and which symbols are present. The
11789details are read later, one source file at a time, as they are needed.
11790
11791The purpose of this two-stage reading strategy is to make @value{GDBN}
11792start up faster. For the most part, it is invisible except for
11793occasional pauses while the symbol table details for a particular source
11794file are being read. (The @code{set verbose} command can turn these
11795pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11796Warnings and Messages}.)
c906108c 11797
c906108c
SS
11798We have not implemented the two-stage strategy for COFF yet. When the
11799symbol table is stored in COFF format, @code{symbol-file} reads the
11800symbol table data in full right away. Note that ``stabs-in-COFF''
11801still does the two-stage strategy, since the debug info is actually
11802in stabs format.
11803
11804@kindex readnow
11805@cindex reading symbols immediately
11806@cindex symbols, reading immediately
a94ab193
EZ
11807@item symbol-file @var{filename} @r{[} -readnow @r{]}
11808@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11809You can override the @value{GDBN} two-stage strategy for reading symbol
11810tables by using the @samp{-readnow} option with any of the commands that
11811load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11812entire symbol table available.
c906108c 11813
c906108c
SS
11814@c FIXME: for now no mention of directories, since this seems to be in
11815@c flux. 13mar1992 status is that in theory GDB would look either in
11816@c current dir or in same dir as myprog; but issues like competing
11817@c GDB's, or clutter in system dirs, mean that in practice right now
11818@c only current dir is used. FFish says maybe a special GDB hierarchy
11819@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11820@c files.
11821
c906108c 11822@kindex core-file
09d4efe1 11823@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11824@itemx core
c906108c
SS
11825Specify the whereabouts of a core dump file to be used as the ``contents
11826of memory''. Traditionally, core files contain only some parts of the
11827address space of the process that generated them; @value{GDBN} can access the
11828executable file itself for other parts.
11829
11830@code{core-file} with no argument specifies that no core file is
11831to be used.
11832
11833Note that the core file is ignored when your program is actually running
7a292a7a
SS
11834under @value{GDBN}. So, if you have been running your program and you
11835wish to debug a core file instead, you must kill the subprocess in which
11836the program is running. To do this, use the @code{kill} command
79a6e687 11837(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11838
c906108c
SS
11839@kindex add-symbol-file
11840@cindex dynamic linking
11841@item add-symbol-file @var{filename} @var{address}
a94ab193 11842@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11843@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11844The @code{add-symbol-file} command reads additional symbol table
11845information from the file @var{filename}. You would use this command
11846when @var{filename} has been dynamically loaded (by some other means)
11847into the program that is running. @var{address} should be the memory
11848address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11849this out for itself. You can additionally specify an arbitrary number
11850of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11851section name and base address for that section. You can specify any
11852@var{address} as an expression.
c906108c
SS
11853
11854The symbol table of the file @var{filename} is added to the symbol table
11855originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11856@code{add-symbol-file} command any number of times; the new symbol data
11857thus read keeps adding to the old. To discard all old symbol data
11858instead, use the @code{symbol-file} command without any arguments.
c906108c 11859
17d9d558
JB
11860@cindex relocatable object files, reading symbols from
11861@cindex object files, relocatable, reading symbols from
11862@cindex reading symbols from relocatable object files
11863@cindex symbols, reading from relocatable object files
11864@cindex @file{.o} files, reading symbols from
11865Although @var{filename} is typically a shared library file, an
11866executable file, or some other object file which has been fully
11867relocated for loading into a process, you can also load symbolic
11868information from relocatable @file{.o} files, as long as:
11869
11870@itemize @bullet
11871@item
11872the file's symbolic information refers only to linker symbols defined in
11873that file, not to symbols defined by other object files,
11874@item
11875every section the file's symbolic information refers to has actually
11876been loaded into the inferior, as it appears in the file, and
11877@item
11878you can determine the address at which every section was loaded, and
11879provide these to the @code{add-symbol-file} command.
11880@end itemize
11881
11882@noindent
11883Some embedded operating systems, like Sun Chorus and VxWorks, can load
11884relocatable files into an already running program; such systems
11885typically make the requirements above easy to meet. However, it's
11886important to recognize that many native systems use complex link
49efadf5 11887procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11888assembly, for example) that make the requirements difficult to meet. In
11889general, one cannot assume that using @code{add-symbol-file} to read a
11890relocatable object file's symbolic information will have the same effect
11891as linking the relocatable object file into the program in the normal
11892way.
11893
c906108c
SS
11894@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11895
c45da7e6
EZ
11896@kindex add-symbol-file-from-memory
11897@cindex @code{syscall DSO}
11898@cindex load symbols from memory
11899@item add-symbol-file-from-memory @var{address}
11900Load symbols from the given @var{address} in a dynamically loaded
11901object file whose image is mapped directly into the inferior's memory.
11902For example, the Linux kernel maps a @code{syscall DSO} into each
11903process's address space; this DSO provides kernel-specific code for
11904some system calls. The argument can be any expression whose
11905evaluation yields the address of the file's shared object file header.
11906For this command to work, you must have used @code{symbol-file} or
11907@code{exec-file} commands in advance.
11908
09d4efe1
EZ
11909@kindex add-shared-symbol-files
11910@kindex assf
11911@item add-shared-symbol-files @var{library-file}
11912@itemx assf @var{library-file}
11913The @code{add-shared-symbol-files} command can currently be used only
11914in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11915alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11916@value{GDBN} automatically looks for shared libraries, however if
11917@value{GDBN} does not find yours, you can invoke
11918@code{add-shared-symbol-files}. It takes one argument: the shared
11919library's file name. @code{assf} is a shorthand alias for
11920@code{add-shared-symbol-files}.
c906108c 11921
c906108c 11922@kindex section
09d4efe1
EZ
11923@item section @var{section} @var{addr}
11924The @code{section} command changes the base address of the named
11925@var{section} of the exec file to @var{addr}. This can be used if the
11926exec file does not contain section addresses, (such as in the
11927@code{a.out} format), or when the addresses specified in the file
11928itself are wrong. Each section must be changed separately. The
11929@code{info files} command, described below, lists all the sections and
11930their addresses.
c906108c
SS
11931
11932@kindex info files
11933@kindex info target
11934@item info files
11935@itemx info target
7a292a7a
SS
11936@code{info files} and @code{info target} are synonymous; both print the
11937current target (@pxref{Targets, ,Specifying a Debugging Target}),
11938including the names of the executable and core dump files currently in
11939use by @value{GDBN}, and the files from which symbols were loaded. The
11940command @code{help target} lists all possible targets rather than
11941current ones.
11942
fe95c787
MS
11943@kindex maint info sections
11944@item maint info sections
11945Another command that can give you extra information about program sections
11946is @code{maint info sections}. In addition to the section information
11947displayed by @code{info files}, this command displays the flags and file
11948offset of each section in the executable and core dump files. In addition,
11949@code{maint info sections} provides the following command options (which
11950may be arbitrarily combined):
11951
11952@table @code
11953@item ALLOBJ
11954Display sections for all loaded object files, including shared libraries.
11955@item @var{sections}
6600abed 11956Display info only for named @var{sections}.
fe95c787
MS
11957@item @var{section-flags}
11958Display info only for sections for which @var{section-flags} are true.
11959The section flags that @value{GDBN} currently knows about are:
11960@table @code
11961@item ALLOC
11962Section will have space allocated in the process when loaded.
11963Set for all sections except those containing debug information.
11964@item LOAD
11965Section will be loaded from the file into the child process memory.
11966Set for pre-initialized code and data, clear for @code{.bss} sections.
11967@item RELOC
11968Section needs to be relocated before loading.
11969@item READONLY
11970Section cannot be modified by the child process.
11971@item CODE
11972Section contains executable code only.
6600abed 11973@item DATA
fe95c787
MS
11974Section contains data only (no executable code).
11975@item ROM
11976Section will reside in ROM.
11977@item CONSTRUCTOR
11978Section contains data for constructor/destructor lists.
11979@item HAS_CONTENTS
11980Section is not empty.
11981@item NEVER_LOAD
11982An instruction to the linker to not output the section.
11983@item COFF_SHARED_LIBRARY
11984A notification to the linker that the section contains
11985COFF shared library information.
11986@item IS_COMMON
11987Section contains common symbols.
11988@end table
11989@end table
6763aef9 11990@kindex set trust-readonly-sections
9c16f35a 11991@cindex read-only sections
6763aef9
MS
11992@item set trust-readonly-sections on
11993Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11994really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11995In that case, @value{GDBN} can fetch values from these sections
11996out of the object file, rather than from the target program.
11997For some targets (notably embedded ones), this can be a significant
11998enhancement to debugging performance.
11999
12000The default is off.
12001
12002@item set trust-readonly-sections off
15110bc3 12003Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12004the contents of the section might change while the program is running,
12005and must therefore be fetched from the target when needed.
9c16f35a
EZ
12006
12007@item show trust-readonly-sections
12008Show the current setting of trusting readonly sections.
c906108c
SS
12009@end table
12010
12011All file-specifying commands allow both absolute and relative file names
12012as arguments. @value{GDBN} always converts the file name to an absolute file
12013name and remembers it that way.
12014
c906108c 12015@cindex shared libraries
9cceb671
DJ
12016@anchor{Shared Libraries}
12017@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12018and IBM RS/6000 AIX shared libraries.
53a5351d 12019
9cceb671
DJ
12020On MS-Windows @value{GDBN} must be linked with the Expat library to support
12021shared libraries. @xref{Expat}.
12022
c906108c
SS
12023@value{GDBN} automatically loads symbol definitions from shared libraries
12024when you use the @code{run} command, or when you examine a core file.
12025(Before you issue the @code{run} command, @value{GDBN} does not understand
12026references to a function in a shared library, however---unless you are
12027debugging a core file).
53a5351d
JM
12028
12029On HP-UX, if the program loads a library explicitly, @value{GDBN}
12030automatically loads the symbols at the time of the @code{shl_load} call.
12031
c906108c
SS
12032@c FIXME: some @value{GDBN} release may permit some refs to undef
12033@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12034@c FIXME...lib; check this from time to time when updating manual
12035
b7209cb4
FF
12036There are times, however, when you may wish to not automatically load
12037symbol definitions from shared libraries, such as when they are
12038particularly large or there are many of them.
12039
12040To control the automatic loading of shared library symbols, use the
12041commands:
12042
12043@table @code
12044@kindex set auto-solib-add
12045@item set auto-solib-add @var{mode}
12046If @var{mode} is @code{on}, symbols from all shared object libraries
12047will be loaded automatically when the inferior begins execution, you
12048attach to an independently started inferior, or when the dynamic linker
12049informs @value{GDBN} that a new library has been loaded. If @var{mode}
12050is @code{off}, symbols must be loaded manually, using the
12051@code{sharedlibrary} command. The default value is @code{on}.
12052
dcaf7c2c
EZ
12053@cindex memory used for symbol tables
12054If your program uses lots of shared libraries with debug info that
12055takes large amounts of memory, you can decrease the @value{GDBN}
12056memory footprint by preventing it from automatically loading the
12057symbols from shared libraries. To that end, type @kbd{set
12058auto-solib-add off} before running the inferior, then load each
12059library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12060@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12061the libraries whose symbols you want to be loaded.
12062
b7209cb4
FF
12063@kindex show auto-solib-add
12064@item show auto-solib-add
12065Display the current autoloading mode.
12066@end table
12067
c45da7e6 12068@cindex load shared library
b7209cb4
FF
12069To explicitly load shared library symbols, use the @code{sharedlibrary}
12070command:
12071
c906108c
SS
12072@table @code
12073@kindex info sharedlibrary
12074@kindex info share
12075@item info share
12076@itemx info sharedlibrary
12077Print the names of the shared libraries which are currently loaded.
12078
12079@kindex sharedlibrary
12080@kindex share
12081@item sharedlibrary @var{regex}
12082@itemx share @var{regex}
c906108c
SS
12083Load shared object library symbols for files matching a
12084Unix regular expression.
12085As with files loaded automatically, it only loads shared libraries
12086required by your program for a core file or after typing @code{run}. If
12087@var{regex} is omitted all shared libraries required by your program are
12088loaded.
c45da7e6
EZ
12089
12090@item nosharedlibrary
12091@kindex nosharedlibrary
12092@cindex unload symbols from shared libraries
12093Unload all shared object library symbols. This discards all symbols
12094that have been loaded from all shared libraries. Symbols from shared
12095libraries that were loaded by explicit user requests are not
12096discarded.
c906108c
SS
12097@end table
12098
721c2651
EZ
12099Sometimes you may wish that @value{GDBN} stops and gives you control
12100when any of shared library events happen. Use the @code{set
12101stop-on-solib-events} command for this:
12102
12103@table @code
12104@item set stop-on-solib-events
12105@kindex set stop-on-solib-events
12106This command controls whether @value{GDBN} should give you control
12107when the dynamic linker notifies it about some shared library event.
12108The most common event of interest is loading or unloading of a new
12109shared library.
12110
12111@item show stop-on-solib-events
12112@kindex show stop-on-solib-events
12113Show whether @value{GDBN} stops and gives you control when shared
12114library events happen.
12115@end table
12116
f5ebfba0
DJ
12117Shared libraries are also supported in many cross or remote debugging
12118configurations. A copy of the target's libraries need to be present on the
12119host system; they need to be the same as the target libraries, although the
12120copies on the target can be stripped as long as the copies on the host are
12121not.
12122
59b7b46f
EZ
12123@cindex where to look for shared libraries
12124For remote debugging, you need to tell @value{GDBN} where the target
12125libraries are, so that it can load the correct copies---otherwise, it
12126may try to load the host's libraries. @value{GDBN} has two variables
12127to specify the search directories for target libraries.
f5ebfba0
DJ
12128
12129@table @code
59b7b46f 12130@cindex prefix for shared library file names
f822c95b 12131@cindex system root, alternate
f5ebfba0 12132@kindex set solib-absolute-prefix
f822c95b
DJ
12133@kindex set sysroot
12134@item set sysroot @var{path}
12135Use @var{path} as the system root for the program being debugged. Any
12136absolute shared library paths will be prefixed with @var{path}; many
12137runtime loaders store the absolute paths to the shared library in the
12138target program's memory. If you use @code{set sysroot} to find shared
12139libraries, they need to be laid out in the same way that they are on
12140the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12141under @var{path}.
12142
12143The @code{set solib-absolute-prefix} command is an alias for @code{set
12144sysroot}.
12145
12146@cindex default system root
59b7b46f 12147@cindex @samp{--with-sysroot}
f822c95b
DJ
12148You can set the default system root by using the configure-time
12149@samp{--with-sysroot} option. If the system root is inside
12150@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12151@samp{--exec-prefix}), then the default system root will be updated
12152automatically if the installed @value{GDBN} is moved to a new
12153location.
12154
12155@kindex show sysroot
12156@item show sysroot
f5ebfba0
DJ
12157Display the current shared library prefix.
12158
12159@kindex set solib-search-path
12160@item set solib-search-path @var{path}
f822c95b
DJ
12161If this variable is set, @var{path} is a colon-separated list of
12162directories to search for shared libraries. @samp{solib-search-path}
12163is used after @samp{sysroot} fails to locate the library, or if the
12164path to the library is relative instead of absolute. If you want to
12165use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12166@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12167finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12168it to a nonexistent directory may interfere with automatic loading
f822c95b 12169of shared library symbols.
f5ebfba0
DJ
12170
12171@kindex show solib-search-path
12172@item show solib-search-path
12173Display the current shared library search path.
12174@end table
12175
5b5d99cf
JB
12176
12177@node Separate Debug Files
12178@section Debugging Information in Separate Files
12179@cindex separate debugging information files
12180@cindex debugging information in separate files
12181@cindex @file{.debug} subdirectories
12182@cindex debugging information directory, global
12183@cindex global debugging information directory
c7e83d54
EZ
12184@cindex build ID, and separate debugging files
12185@cindex @file{.build-id} directory
5b5d99cf
JB
12186
12187@value{GDBN} allows you to put a program's debugging information in a
12188file separate from the executable itself, in a way that allows
12189@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12190Since debugging information can be very large---sometimes larger
12191than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12192information for their executables in separate files, which users can
12193install only when they need to debug a problem.
12194
c7e83d54
EZ
12195@value{GDBN} supports two ways of specifying the separate debug info
12196file:
5b5d99cf
JB
12197
12198@itemize @bullet
12199@item
c7e83d54
EZ
12200The executable contains a @dfn{debug link} that specifies the name of
12201the separate debug info file. The separate debug file's name is
12202usually @file{@var{executable}.debug}, where @var{executable} is the
12203name of the corresponding executable file without leading directories
12204(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12205debug link specifies a CRC32 checksum for the debug file, which
12206@value{GDBN} uses to validate that the executable and the debug file
12207came from the same build.
12208
12209@item
7e27a47a 12210The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12211also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12212only on some operating systems, notably those which use the ELF format
12213for binary files and the @sc{gnu} Binutils.) For more details about
12214this feature, see the description of the @option{--build-id}
12215command-line option in @ref{Options, , Command Line Options, ld.info,
12216The GNU Linker}. The debug info file's name is not specified
12217explicitly by the build ID, but can be computed from the build ID, see
12218below.
d3750b24
JK
12219@end itemize
12220
c7e83d54
EZ
12221Depending on the way the debug info file is specified, @value{GDBN}
12222uses two different methods of looking for the debug file:
d3750b24
JK
12223
12224@itemize @bullet
12225@item
c7e83d54
EZ
12226For the ``debug link'' method, @value{GDBN} looks up the named file in
12227the directory of the executable file, then in a subdirectory of that
12228directory named @file{.debug}, and finally under the global debug
12229directory, in a subdirectory whose name is identical to the leading
12230directories of the executable's absolute file name.
12231
12232@item
83f83d7f 12233For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12234@file{.build-id} subdirectory of the global debug directory for a file
12235named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12236first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12237are the rest of the bit string. (Real build ID strings are 32 or more
12238hex characters, not 10.)
c7e83d54
EZ
12239@end itemize
12240
12241So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12242@file{/usr/bin/ls}, which has a debug link that specifies the
12243file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12244@code{abcdef1234}. If the global debug directory is
12245@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12246debug information files, in the indicated order:
12247
12248@itemize @minus
12249@item
12250@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12251@item
c7e83d54 12252@file{/usr/bin/ls.debug}
5b5d99cf 12253@item
c7e83d54 12254@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12255@item
c7e83d54 12256@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12257@end itemize
5b5d99cf
JB
12258
12259You can set the global debugging info directory's name, and view the
12260name @value{GDBN} is currently using.
12261
12262@table @code
12263
12264@kindex set debug-file-directory
12265@item set debug-file-directory @var{directory}
12266Set the directory which @value{GDBN} searches for separate debugging
12267information files to @var{directory}.
12268
12269@kindex show debug-file-directory
12270@item show debug-file-directory
12271Show the directory @value{GDBN} searches for separate debugging
12272information files.
12273
12274@end table
12275
12276@cindex @code{.gnu_debuglink} sections
c7e83d54 12277@cindex debug link sections
5b5d99cf
JB
12278A debug link is a special section of the executable file named
12279@code{.gnu_debuglink}. The section must contain:
12280
12281@itemize
12282@item
12283A filename, with any leading directory components removed, followed by
12284a zero byte,
12285@item
12286zero to three bytes of padding, as needed to reach the next four-byte
12287boundary within the section, and
12288@item
12289a four-byte CRC checksum, stored in the same endianness used for the
12290executable file itself. The checksum is computed on the debugging
12291information file's full contents by the function given below, passing
12292zero as the @var{crc} argument.
12293@end itemize
12294
12295Any executable file format can carry a debug link, as long as it can
12296contain a section named @code{.gnu_debuglink} with the contents
12297described above.
12298
d3750b24 12299@cindex @code{.note.gnu.build-id} sections
c7e83d54 12300@cindex build ID sections
7e27a47a
EZ
12301The build ID is a special section in the executable file (and in other
12302ELF binary files that @value{GDBN} may consider). This section is
12303often named @code{.note.gnu.build-id}, but that name is not mandatory.
12304It contains unique identification for the built files---the ID remains
12305the same across multiple builds of the same build tree. The default
12306algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12307content for the build ID string. The same section with an identical
12308value is present in the original built binary with symbols, in its
12309stripped variant, and in the separate debugging information file.
d3750b24 12310
5b5d99cf
JB
12311The debugging information file itself should be an ordinary
12312executable, containing a full set of linker symbols, sections, and
12313debugging information. The sections of the debugging information file
c7e83d54
EZ
12314should have the same names, addresses, and sizes as the original file,
12315but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12316in an ordinary executable.
12317
7e27a47a 12318The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12319@samp{objcopy} utility that can produce
12320the separated executable / debugging information file pairs using the
12321following commands:
12322
12323@smallexample
12324@kbd{objcopy --only-keep-debug foo foo.debug}
12325@kbd{strip -g foo}
c7e83d54
EZ
12326@end smallexample
12327
12328@noindent
12329These commands remove the debugging
83f83d7f
JK
12330information from the executable file @file{foo} and place it in the file
12331@file{foo.debug}. You can use the first, second or both methods to link the
12332two files:
12333
12334@itemize @bullet
12335@item
12336The debug link method needs the following additional command to also leave
12337behind a debug link in @file{foo}:
12338
12339@smallexample
12340@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12341@end smallexample
12342
12343Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12344a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12345foo.debug} has the same functionality as the two @code{objcopy} commands and
12346the @code{ln -s} command above, together.
12347
12348@item
12349Build ID gets embedded into the main executable using @code{ld --build-id} or
12350the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12351compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12352utilities (Binutils) package since version 2.18.
83f83d7f
JK
12353@end itemize
12354
12355@noindent
d3750b24 12356
c7e83d54
EZ
12357Since there are many different ways to compute CRC's for the debug
12358link (different polynomials, reversals, byte ordering, etc.), the
12359simplest way to describe the CRC used in @code{.gnu_debuglink}
12360sections is to give the complete code for a function that computes it:
5b5d99cf 12361
4644b6e3 12362@kindex gnu_debuglink_crc32
5b5d99cf
JB
12363@smallexample
12364unsigned long
12365gnu_debuglink_crc32 (unsigned long crc,
12366 unsigned char *buf, size_t len)
12367@{
12368 static const unsigned long crc32_table[256] =
12369 @{
12370 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12371 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12372 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12373 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12374 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12375 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12376 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12377 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12378 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12379 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12380 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12381 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12382 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12383 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12384 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12385 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12386 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12387 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12388 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12389 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12390 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12391 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12392 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12393 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12394 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12395 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12396 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12397 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12398 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12399 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12400 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12401 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12402 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12403 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12404 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12405 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12406 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12407 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12408 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12409 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12410 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12411 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12412 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12413 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12414 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12415 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12416 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12417 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12418 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12419 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12420 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12421 0x2d02ef8d
12422 @};
12423 unsigned char *end;
12424
12425 crc = ~crc & 0xffffffff;
12426 for (end = buf + len; buf < end; ++buf)
12427 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12428 return ~crc & 0xffffffff;
5b5d99cf
JB
12429@}
12430@end smallexample
12431
c7e83d54
EZ
12432@noindent
12433This computation does not apply to the ``build ID'' method.
12434
5b5d99cf 12435
6d2ebf8b 12436@node Symbol Errors
79a6e687 12437@section Errors Reading Symbol Files
c906108c
SS
12438
12439While reading a symbol file, @value{GDBN} occasionally encounters problems,
12440such as symbol types it does not recognize, or known bugs in compiler
12441output. By default, @value{GDBN} does not notify you of such problems, since
12442they are relatively common and primarily of interest to people
12443debugging compilers. If you are interested in seeing information
12444about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12445only one message about each such type of problem, no matter how many
12446times the problem occurs; or you can ask @value{GDBN} to print more messages,
12447to see how many times the problems occur, with the @code{set
79a6e687
BW
12448complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12449Messages}).
c906108c
SS
12450
12451The messages currently printed, and their meanings, include:
12452
12453@table @code
12454@item inner block not inside outer block in @var{symbol}
12455
12456The symbol information shows where symbol scopes begin and end
12457(such as at the start of a function or a block of statements). This
12458error indicates that an inner scope block is not fully contained
12459in its outer scope blocks.
12460
12461@value{GDBN} circumvents the problem by treating the inner block as if it had
12462the same scope as the outer block. In the error message, @var{symbol}
12463may be shown as ``@code{(don't know)}'' if the outer block is not a
12464function.
12465
12466@item block at @var{address} out of order
12467
12468The symbol information for symbol scope blocks should occur in
12469order of increasing addresses. This error indicates that it does not
12470do so.
12471
12472@value{GDBN} does not circumvent this problem, and has trouble
12473locating symbols in the source file whose symbols it is reading. (You
12474can often determine what source file is affected by specifying
79a6e687
BW
12475@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12476Messages}.)
c906108c
SS
12477
12478@item bad block start address patched
12479
12480The symbol information for a symbol scope block has a start address
12481smaller than the address of the preceding source line. This is known
12482to occur in the SunOS 4.1.1 (and earlier) C compiler.
12483
12484@value{GDBN} circumvents the problem by treating the symbol scope block as
12485starting on the previous source line.
12486
12487@item bad string table offset in symbol @var{n}
12488
12489@cindex foo
12490Symbol number @var{n} contains a pointer into the string table which is
12491larger than the size of the string table.
12492
12493@value{GDBN} circumvents the problem by considering the symbol to have the
12494name @code{foo}, which may cause other problems if many symbols end up
12495with this name.
12496
12497@item unknown symbol type @code{0x@var{nn}}
12498
7a292a7a
SS
12499The symbol information contains new data types that @value{GDBN} does
12500not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12501uncomprehended information, in hexadecimal.
c906108c 12502
7a292a7a
SS
12503@value{GDBN} circumvents the error by ignoring this symbol information.
12504This usually allows you to debug your program, though certain symbols
c906108c 12505are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12506debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12507on @code{complain}, then go up to the function @code{read_dbx_symtab}
12508and examine @code{*bufp} to see the symbol.
c906108c
SS
12509
12510@item stub type has NULL name
c906108c 12511
7a292a7a 12512@value{GDBN} could not find the full definition for a struct or class.
c906108c 12513
7a292a7a 12514@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12515The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12516information that recent versions of the compiler should have output for
12517it.
c906108c
SS
12518
12519@item info mismatch between compiler and debugger
12520
12521@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12522
c906108c
SS
12523@end table
12524
6d2ebf8b 12525@node Targets
c906108c 12526@chapter Specifying a Debugging Target
7a292a7a 12527
c906108c 12528@cindex debugging target
c906108c 12529A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12530
12531Often, @value{GDBN} runs in the same host environment as your program;
12532in that case, the debugging target is specified as a side effect when
12533you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12534flexibility---for example, running @value{GDBN} on a physically separate
12535host, or controlling a standalone system over a serial port or a
53a5351d
JM
12536realtime system over a TCP/IP connection---you can use the @code{target}
12537command to specify one of the target types configured for @value{GDBN}
79a6e687 12538(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12539
a8f24a35
EZ
12540@cindex target architecture
12541It is possible to build @value{GDBN} for several different @dfn{target
12542architectures}. When @value{GDBN} is built like that, you can choose
12543one of the available architectures with the @kbd{set architecture}
12544command.
12545
12546@table @code
12547@kindex set architecture
12548@kindex show architecture
12549@item set architecture @var{arch}
12550This command sets the current target architecture to @var{arch}. The
12551value of @var{arch} can be @code{"auto"}, in addition to one of the
12552supported architectures.
12553
12554@item show architecture
12555Show the current target architecture.
9c16f35a
EZ
12556
12557@item set processor
12558@itemx processor
12559@kindex set processor
12560@kindex show processor
12561These are alias commands for, respectively, @code{set architecture}
12562and @code{show architecture}.
a8f24a35
EZ
12563@end table
12564
c906108c
SS
12565@menu
12566* Active Targets:: Active targets
12567* Target Commands:: Commands for managing targets
c906108c 12568* Byte Order:: Choosing target byte order
c906108c
SS
12569@end menu
12570
6d2ebf8b 12571@node Active Targets
79a6e687 12572@section Active Targets
7a292a7a 12573
c906108c
SS
12574@cindex stacking targets
12575@cindex active targets
12576@cindex multiple targets
12577
c906108c 12578There are three classes of targets: processes, core files, and
7a292a7a
SS
12579executable files. @value{GDBN} can work concurrently on up to three
12580active targets, one in each class. This allows you to (for example)
12581start a process and inspect its activity without abandoning your work on
12582a core file.
c906108c
SS
12583
12584For example, if you execute @samp{gdb a.out}, then the executable file
12585@code{a.out} is the only active target. If you designate a core file as
12586well---presumably from a prior run that crashed and coredumped---then
12587@value{GDBN} has two active targets and uses them in tandem, looking
12588first in the corefile target, then in the executable file, to satisfy
12589requests for memory addresses. (Typically, these two classes of target
12590are complementary, since core files contain only a program's
12591read-write memory---variables and so on---plus machine status, while
12592executable files contain only the program text and initialized data.)
c906108c
SS
12593
12594When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12595target as well. When a process target is active, all @value{GDBN}
12596commands requesting memory addresses refer to that target; addresses in
12597an active core file or executable file target are obscured while the
12598process target is active.
c906108c 12599
7a292a7a 12600Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12601core file or executable target (@pxref{Files, ,Commands to Specify
12602Files}). To specify as a target a process that is already running, use
12603the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12604Process}).
c906108c 12605
6d2ebf8b 12606@node Target Commands
79a6e687 12607@section Commands for Managing Targets
c906108c
SS
12608
12609@table @code
12610@item target @var{type} @var{parameters}
7a292a7a
SS
12611Connects the @value{GDBN} host environment to a target machine or
12612process. A target is typically a protocol for talking to debugging
12613facilities. You use the argument @var{type} to specify the type or
12614protocol of the target machine.
c906108c
SS
12615
12616Further @var{parameters} are interpreted by the target protocol, but
12617typically include things like device names or host names to connect
12618with, process numbers, and baud rates.
c906108c
SS
12619
12620The @code{target} command does not repeat if you press @key{RET} again
12621after executing the command.
12622
12623@kindex help target
12624@item help target
12625Displays the names of all targets available. To display targets
12626currently selected, use either @code{info target} or @code{info files}
79a6e687 12627(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12628
12629@item help target @var{name}
12630Describe a particular target, including any parameters necessary to
12631select it.
12632
12633@kindex set gnutarget
12634@item set gnutarget @var{args}
5d161b24 12635@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12636knows whether it is reading an @dfn{executable},
5d161b24
DB
12637a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12638with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12639with @code{gnutarget} the @code{target} refers to a program, not a machine.
12640
d4f3574e 12641@quotation
c906108c
SS
12642@emph{Warning:} To specify a file format with @code{set gnutarget},
12643you must know the actual BFD name.
d4f3574e 12644@end quotation
c906108c 12645
d4f3574e 12646@noindent
79a6e687 12647@xref{Files, , Commands to Specify Files}.
c906108c 12648
5d161b24 12649@kindex show gnutarget
c906108c
SS
12650@item show gnutarget
12651Use the @code{show gnutarget} command to display what file format
12652@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12653@value{GDBN} will determine the file format for each file automatically,
12654and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12655@end table
12656
4644b6e3 12657@cindex common targets
c906108c
SS
12658Here are some common targets (available, or not, depending on the GDB
12659configuration):
c906108c
SS
12660
12661@table @code
4644b6e3 12662@kindex target
c906108c 12663@item target exec @var{program}
4644b6e3 12664@cindex executable file target
c906108c
SS
12665An executable file. @samp{target exec @var{program}} is the same as
12666@samp{exec-file @var{program}}.
12667
c906108c 12668@item target core @var{filename}
4644b6e3 12669@cindex core dump file target
c906108c
SS
12670A core dump file. @samp{target core @var{filename}} is the same as
12671@samp{core-file @var{filename}}.
c906108c 12672
1a10341b 12673@item target remote @var{medium}
4644b6e3 12674@cindex remote target
1a10341b
JB
12675A remote system connected to @value{GDBN} via a serial line or network
12676connection. This command tells @value{GDBN} to use its own remote
12677protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12678
12679For example, if you have a board connected to @file{/dev/ttya} on the
12680machine running @value{GDBN}, you could say:
12681
12682@smallexample
12683target remote /dev/ttya
12684@end smallexample
12685
12686@code{target remote} supports the @code{load} command. This is only
12687useful if you have some other way of getting the stub to the target
12688system, and you can put it somewhere in memory where it won't get
12689clobbered by the download.
c906108c 12690
c906108c 12691@item target sim
4644b6e3 12692@cindex built-in simulator target
2df3850c 12693Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12694In general,
474c8240 12695@smallexample
104c1213
JM
12696 target sim
12697 load
12698 run
474c8240 12699@end smallexample
d4f3574e 12700@noindent
104c1213 12701works; however, you cannot assume that a specific memory map, device
d4f3574e 12702drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12703provide these. For info about any processor-specific simulator details,
12704see the appropriate section in @ref{Embedded Processors, ,Embedded
12705Processors}.
12706
c906108c
SS
12707@end table
12708
104c1213 12709Some configurations may include these targets as well:
c906108c
SS
12710
12711@table @code
12712
c906108c 12713@item target nrom @var{dev}
4644b6e3 12714@cindex NetROM ROM emulator target
c906108c
SS
12715NetROM ROM emulator. This target only supports downloading.
12716
c906108c
SS
12717@end table
12718
5d161b24 12719Different targets are available on different configurations of @value{GDBN};
c906108c 12720your configuration may have more or fewer targets.
c906108c 12721
721c2651
EZ
12722Many remote targets require you to download the executable's code once
12723you've successfully established a connection. You may wish to control
3d00d119
DJ
12724various aspects of this process.
12725
12726@table @code
721c2651
EZ
12727
12728@item set hash
12729@kindex set hash@r{, for remote monitors}
12730@cindex hash mark while downloading
12731This command controls whether a hash mark @samp{#} is displayed while
12732downloading a file to the remote monitor. If on, a hash mark is
12733displayed after each S-record is successfully downloaded to the
12734monitor.
12735
12736@item show hash
12737@kindex show hash@r{, for remote monitors}
12738Show the current status of displaying the hash mark.
12739
12740@item set debug monitor
12741@kindex set debug monitor
12742@cindex display remote monitor communications
12743Enable or disable display of communications messages between
12744@value{GDBN} and the remote monitor.
12745
12746@item show debug monitor
12747@kindex show debug monitor
12748Show the current status of displaying communications between
12749@value{GDBN} and the remote monitor.
a8f24a35 12750@end table
c906108c
SS
12751
12752@table @code
12753
12754@kindex load @var{filename}
12755@item load @var{filename}
8edfe269 12756@anchor{load}
c906108c
SS
12757Depending on what remote debugging facilities are configured into
12758@value{GDBN}, the @code{load} command may be available. Where it exists, it
12759is meant to make @var{filename} (an executable) available for debugging
12760on the remote system---by downloading, or dynamic linking, for example.
12761@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12762the @code{add-symbol-file} command.
12763
12764If your @value{GDBN} does not have a @code{load} command, attempting to
12765execute it gets the error message ``@code{You can't do that when your
12766target is @dots{}}''
c906108c
SS
12767
12768The file is loaded at whatever address is specified in the executable.
12769For some object file formats, you can specify the load address when you
12770link the program; for other formats, like a.out, the object file format
12771specifies a fixed address.
12772@c FIXME! This would be a good place for an xref to the GNU linker doc.
12773
68437a39
DJ
12774Depending on the remote side capabilities, @value{GDBN} may be able to
12775load programs into flash memory.
12776
c906108c
SS
12777@code{load} does not repeat if you press @key{RET} again after using it.
12778@end table
12779
6d2ebf8b 12780@node Byte Order
79a6e687 12781@section Choosing Target Byte Order
7a292a7a 12782
c906108c
SS
12783@cindex choosing target byte order
12784@cindex target byte order
c906108c 12785
172c2a43 12786Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12787offer the ability to run either big-endian or little-endian byte
12788orders. Usually the executable or symbol will include a bit to
12789designate the endian-ness, and you will not need to worry about
12790which to use. However, you may still find it useful to adjust
d4f3574e 12791@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12792
12793@table @code
4644b6e3 12794@kindex set endian
c906108c
SS
12795@item set endian big
12796Instruct @value{GDBN} to assume the target is big-endian.
12797
c906108c
SS
12798@item set endian little
12799Instruct @value{GDBN} to assume the target is little-endian.
12800
c906108c
SS
12801@item set endian auto
12802Instruct @value{GDBN} to use the byte order associated with the
12803executable.
12804
12805@item show endian
12806Display @value{GDBN}'s current idea of the target byte order.
12807
12808@end table
12809
12810Note that these commands merely adjust interpretation of symbolic
12811data on the host, and that they have absolutely no effect on the
12812target system.
12813
ea35711c
DJ
12814
12815@node Remote Debugging
12816@chapter Debugging Remote Programs
c906108c
SS
12817@cindex remote debugging
12818
12819If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12820@value{GDBN} in the usual way, it is often useful to use remote debugging.
12821For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12822or on a small system which does not have a general purpose operating system
12823powerful enough to run a full-featured debugger.
12824
12825Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12826to make this work with particular debugging targets. In addition,
5d161b24 12827@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12828but not specific to any particular target system) which you can use if you
12829write the remote stubs---the code that runs on the remote system to
12830communicate with @value{GDBN}.
12831
12832Other remote targets may be available in your
12833configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12834
6b2f586d 12835@menu
07f31aa6 12836* Connecting:: Connecting to a remote target
a6b151f1 12837* File Transfer:: Sending files to a remote system
6b2f586d 12838* Server:: Using the gdbserver program
79a6e687
BW
12839* Remote Configuration:: Remote configuration
12840* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12841@end menu
12842
07f31aa6 12843@node Connecting
79a6e687 12844@section Connecting to a Remote Target
07f31aa6
DJ
12845
12846On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12847your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12848Start up @value{GDBN} as usual, using the name of the local copy of your
12849program as the first argument.
12850
86941c27
JB
12851@cindex @code{target remote}
12852@value{GDBN} can communicate with the target over a serial line, or
12853over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12854each case, @value{GDBN} uses the same protocol for debugging your
12855program; only the medium carrying the debugging packets varies. The
12856@code{target remote} command establishes a connection to the target.
12857Its arguments indicate which medium to use:
12858
12859@table @code
12860
12861@item target remote @var{serial-device}
07f31aa6 12862@cindex serial line, @code{target remote}
86941c27
JB
12863Use @var{serial-device} to communicate with the target. For example,
12864to use a serial line connected to the device named @file{/dev/ttyb}:
12865
12866@smallexample
12867target remote /dev/ttyb
12868@end smallexample
12869
07f31aa6
DJ
12870If you're using a serial line, you may want to give @value{GDBN} the
12871@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12872(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12873@code{target} command.
07f31aa6 12874
86941c27
JB
12875@item target remote @code{@var{host}:@var{port}}
12876@itemx target remote @code{tcp:@var{host}:@var{port}}
12877@cindex @acronym{TCP} port, @code{target remote}
12878Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12879The @var{host} may be either a host name or a numeric @acronym{IP}
12880address; @var{port} must be a decimal number. The @var{host} could be
12881the target machine itself, if it is directly connected to the net, or
12882it might be a terminal server which in turn has a serial line to the
12883target.
07f31aa6 12884
86941c27
JB
12885For example, to connect to port 2828 on a terminal server named
12886@code{manyfarms}:
07f31aa6
DJ
12887
12888@smallexample
12889target remote manyfarms:2828
12890@end smallexample
12891
86941c27
JB
12892If your remote target is actually running on the same machine as your
12893debugger session (e.g.@: a simulator for your target running on the
12894same host), you can omit the hostname. For example, to connect to
12895port 1234 on your local machine:
07f31aa6
DJ
12896
12897@smallexample
12898target remote :1234
12899@end smallexample
12900@noindent
12901
12902Note that the colon is still required here.
12903
86941c27
JB
12904@item target remote @code{udp:@var{host}:@var{port}}
12905@cindex @acronym{UDP} port, @code{target remote}
12906Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12907connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12908
12909@smallexample
12910target remote udp:manyfarms:2828
12911@end smallexample
12912
86941c27
JB
12913When using a @acronym{UDP} connection for remote debugging, you should
12914keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12915can silently drop packets on busy or unreliable networks, which will
12916cause havoc with your debugging session.
12917
66b8c7f6
JB
12918@item target remote | @var{command}
12919@cindex pipe, @code{target remote} to
12920Run @var{command} in the background and communicate with it using a
12921pipe. The @var{command} is a shell command, to be parsed and expanded
12922by the system's command shell, @code{/bin/sh}; it should expect remote
12923protocol packets on its standard input, and send replies on its
12924standard output. You could use this to run a stand-alone simulator
12925that speaks the remote debugging protocol, to make net connections
12926using programs like @code{ssh}, or for other similar tricks.
12927
12928If @var{command} closes its standard output (perhaps by exiting),
12929@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12930program has already exited, this will have no effect.)
12931
86941c27 12932@end table
07f31aa6 12933
86941c27 12934Once the connection has been established, you can use all the usual
8edfe269
DJ
12935commands to examine and change data. The remote program is already
12936running; you can use @kbd{step} and @kbd{continue}, and you do not
12937need to use @kbd{run}.
07f31aa6
DJ
12938
12939@cindex interrupting remote programs
12940@cindex remote programs, interrupting
12941Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12942interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12943program. This may or may not succeed, depending in part on the hardware
12944and the serial drivers the remote system uses. If you type the
12945interrupt character once again, @value{GDBN} displays this prompt:
12946
12947@smallexample
12948Interrupted while waiting for the program.
12949Give up (and stop debugging it)? (y or n)
12950@end smallexample
12951
12952If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12953(If you decide you want to try again later, you can use @samp{target
12954remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12955goes back to waiting.
12956
12957@table @code
12958@kindex detach (remote)
12959@item detach
12960When you have finished debugging the remote program, you can use the
12961@code{detach} command to release it from @value{GDBN} control.
12962Detaching from the target normally resumes its execution, but the results
12963will depend on your particular remote stub. After the @code{detach}
12964command, @value{GDBN} is free to connect to another target.
12965
12966@kindex disconnect
12967@item disconnect
12968The @code{disconnect} command behaves like @code{detach}, except that
12969the target is generally not resumed. It will wait for @value{GDBN}
12970(this instance or another one) to connect and continue debugging. After
12971the @code{disconnect} command, @value{GDBN} is again free to connect to
12972another target.
09d4efe1
EZ
12973
12974@cindex send command to remote monitor
fad38dfa
EZ
12975@cindex extend @value{GDBN} for remote targets
12976@cindex add new commands for external monitor
09d4efe1
EZ
12977@kindex monitor
12978@item monitor @var{cmd}
fad38dfa
EZ
12979This command allows you to send arbitrary commands directly to the
12980remote monitor. Since @value{GDBN} doesn't care about the commands it
12981sends like this, this command is the way to extend @value{GDBN}---you
12982can add new commands that only the external monitor will understand
12983and implement.
07f31aa6
DJ
12984@end table
12985
a6b151f1
DJ
12986@node File Transfer
12987@section Sending files to a remote system
12988@cindex remote target, file transfer
12989@cindex file transfer
12990@cindex sending files to remote systems
12991
12992Some remote targets offer the ability to transfer files over the same
12993connection used to communicate with @value{GDBN}. This is convenient
12994for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12995running @code{gdbserver} over a network interface. For other targets,
12996e.g.@: embedded devices with only a single serial port, this may be
12997the only way to upload or download files.
12998
12999Not all remote targets support these commands.
13000
13001@table @code
13002@kindex remote put
13003@item remote put @var{hostfile} @var{targetfile}
13004Copy file @var{hostfile} from the host system (the machine running
13005@value{GDBN}) to @var{targetfile} on the target system.
13006
13007@kindex remote get
13008@item remote get @var{targetfile} @var{hostfile}
13009Copy file @var{targetfile} from the target system to @var{hostfile}
13010on the host system.
13011
13012@kindex remote delete
13013@item remote delete @var{targetfile}
13014Delete @var{targetfile} from the target system.
13015
13016@end table
13017
6f05cf9f 13018@node Server
79a6e687 13019@section Using the @code{gdbserver} Program
6f05cf9f
AC
13020
13021@kindex gdbserver
13022@cindex remote connection without stubs
13023@code{gdbserver} is a control program for Unix-like systems, which
13024allows you to connect your program with a remote @value{GDBN} via
13025@code{target remote}---but without linking in the usual debugging stub.
13026
13027@code{gdbserver} is not a complete replacement for the debugging stubs,
13028because it requires essentially the same operating-system facilities
13029that @value{GDBN} itself does. In fact, a system that can run
13030@code{gdbserver} to connect to a remote @value{GDBN} could also run
13031@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13032because it is a much smaller program than @value{GDBN} itself. It is
13033also easier to port than all of @value{GDBN}, so you may be able to get
13034started more quickly on a new system by using @code{gdbserver}.
13035Finally, if you develop code for real-time systems, you may find that
13036the tradeoffs involved in real-time operation make it more convenient to
13037do as much development work as possible on another system, for example
13038by cross-compiling. You can use @code{gdbserver} to make a similar
13039choice for debugging.
13040
13041@value{GDBN} and @code{gdbserver} communicate via either a serial line
13042or a TCP connection, using the standard @value{GDBN} remote serial
13043protocol.
13044
2d717e4f
DJ
13045@quotation
13046@emph{Warning:} @code{gdbserver} does not have any built-in security.
13047Do not run @code{gdbserver} connected to any public network; a
13048@value{GDBN} connection to @code{gdbserver} provides access to the
13049target system with the same privileges as the user running
13050@code{gdbserver}.
13051@end quotation
13052
13053@subsection Running @code{gdbserver}
13054@cindex arguments, to @code{gdbserver}
13055
13056Run @code{gdbserver} on the target system. You need a copy of the
13057program you want to debug, including any libraries it requires.
6f05cf9f
AC
13058@code{gdbserver} does not need your program's symbol table, so you can
13059strip the program if necessary to save space. @value{GDBN} on the host
13060system does all the symbol handling.
13061
13062To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13063the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13064syntax is:
13065
13066@smallexample
13067target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13068@end smallexample
13069
13070@var{comm} is either a device name (to use a serial line) or a TCP
13071hostname and portnumber. For example, to debug Emacs with the argument
13072@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13073@file{/dev/com1}:
13074
13075@smallexample
13076target> gdbserver /dev/com1 emacs foo.txt
13077@end smallexample
13078
13079@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13080with it.
13081
13082To use a TCP connection instead of a serial line:
13083
13084@smallexample
13085target> gdbserver host:2345 emacs foo.txt
13086@end smallexample
13087
13088The only difference from the previous example is the first argument,
13089specifying that you are communicating with the host @value{GDBN} via
13090TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13091expect a TCP connection from machine @samp{host} to local TCP port 2345.
13092(Currently, the @samp{host} part is ignored.) You can choose any number
13093you want for the port number as long as it does not conflict with any
13094TCP ports already in use on the target system (for example, @code{23} is
13095reserved for @code{telnet}).@footnote{If you choose a port number that
13096conflicts with another service, @code{gdbserver} prints an error message
13097and exits.} You must use the same port number with the host @value{GDBN}
13098@code{target remote} command.
13099
2d717e4f
DJ
13100@subsubsection Attaching to a Running Program
13101
56460a61
DJ
13102On some targets, @code{gdbserver} can also attach to running programs.
13103This is accomplished via the @code{--attach} argument. The syntax is:
13104
13105@smallexample
2d717e4f 13106target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13107@end smallexample
13108
13109@var{pid} is the process ID of a currently running process. It isn't necessary
13110to point @code{gdbserver} at a binary for the running process.
13111
b1fe9455
DJ
13112@pindex pidof
13113@cindex attach to a program by name
13114You can debug processes by name instead of process ID if your target has the
13115@code{pidof} utility:
13116
13117@smallexample
2d717e4f 13118target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13119@end smallexample
13120
f822c95b 13121In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13122has multiple threads, most versions of @code{pidof} support the
13123@code{-s} option to only return the first process ID.
13124
2d717e4f
DJ
13125@subsubsection Multi-Process Mode for @code{gdbserver}
13126@cindex gdbserver, multiple processes
13127@cindex multiple processes with gdbserver
13128
13129When you connect to @code{gdbserver} using @code{target remote},
13130@code{gdbserver} debugs the specified program only once. When the
13131program exits, or you detach from it, @value{GDBN} closes the connection
13132and @code{gdbserver} exits.
13133
6e6c6f50 13134If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13135enters multi-process mode. When the debugged program exits, or you
13136detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13137though no program is running. The @code{run} and @code{attach}
13138commands instruct @code{gdbserver} to run or attach to a new program.
13139The @code{run} command uses @code{set remote exec-file} (@pxref{set
13140remote exec-file}) to select the program to run. Command line
13141arguments are supported, except for wildcard expansion and I/O
13142redirection (@pxref{Arguments}).
13143
13144To start @code{gdbserver} without supplying an initial command to run
13145or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13146Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13147the program you want to debug.
13148
13149@code{gdbserver} does not automatically exit in multi-process mode.
13150You can terminate it by using @code{monitor exit}
13151(@pxref{Monitor Commands for gdbserver}).
13152
13153@subsubsection Other Command-Line Arguments for @code{gdbserver}
13154
13155You can include @option{--debug} on the @code{gdbserver} command line.
13156@code{gdbserver} will display extra status information about the debugging
13157process. This option is intended for @code{gdbserver} development and
13158for bug reports to the developers.
13159
ccd213ac
DJ
13160The @option{--wrapper} option specifies a wrapper to launch programs
13161for debugging. The option should be followed by the name of the
13162wrapper, then any command-line arguments to pass to the wrapper, then
13163@kbd{--} indicating the end of the wrapper arguments.
13164
13165@code{gdbserver} runs the specified wrapper program with a combined
13166command line including the wrapper arguments, then the name of the
13167program to debug, then any arguments to the program. The wrapper
13168runs until it executes your program, and then @value{GDBN} gains control.
13169
13170You can use any program that eventually calls @code{execve} with
13171its arguments as a wrapper. Several standard Unix utilities do
13172this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13173with @code{exec "$@@"} will also work.
13174
13175For example, you can use @code{env} to pass an environment variable to
13176the debugged program, without setting the variable in @code{gdbserver}'s
13177environment:
13178
13179@smallexample
13180$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13181@end smallexample
13182
2d717e4f
DJ
13183@subsection Connecting to @code{gdbserver}
13184
13185Run @value{GDBN} on the host system.
13186
13187First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13188your application using the @code{file} command before you connect. Use
13189@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13190was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13191
13192The symbol file and target libraries must exactly match the executable
13193and libraries on the target, with one exception: the files on the host
13194system should not be stripped, even if the files on the target system
13195are. Mismatched or missing files will lead to confusing results
13196during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13197files may also prevent @code{gdbserver} from debugging multi-threaded
13198programs.
13199
79a6e687 13200Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13201For TCP connections, you must start up @code{gdbserver} prior to using
13202the @code{target remote} command. Otherwise you may get an error whose
13203text depends on the host system, but which usually looks something like
2d717e4f 13204@samp{Connection refused}. Don't use the @code{load}
397ca115 13205command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13206already on the target.
07f31aa6 13207
79a6e687 13208@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13209@cindex monitor commands, for @code{gdbserver}
2d717e4f 13210@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13211
13212During a @value{GDBN} session using @code{gdbserver}, you can use the
13213@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13214Here are the available commands.
c74d0ad8
DJ
13215
13216@table @code
13217@item monitor help
13218List the available monitor commands.
13219
13220@item monitor set debug 0
13221@itemx monitor set debug 1
13222Disable or enable general debugging messages.
13223
13224@item monitor set remote-debug 0
13225@itemx monitor set remote-debug 1
13226Disable or enable specific debugging messages associated with the remote
13227protocol (@pxref{Remote Protocol}).
13228
2d717e4f
DJ
13229@item monitor exit
13230Tell gdbserver to exit immediately. This command should be followed by
13231@code{disconnect} to close the debugging session. @code{gdbserver} will
13232detach from any attached processes and kill any processes it created.
13233Use @code{monitor exit} to terminate @code{gdbserver} at the end
13234of a multi-process mode debug session.
13235
c74d0ad8
DJ
13236@end table
13237
79a6e687
BW
13238@node Remote Configuration
13239@section Remote Configuration
501eef12 13240
9c16f35a
EZ
13241@kindex set remote
13242@kindex show remote
13243This section documents the configuration options available when
13244debugging remote programs. For the options related to the File I/O
fc320d37 13245extensions of the remote protocol, see @ref{system,
9c16f35a 13246system-call-allowed}.
501eef12
AC
13247
13248@table @code
9c16f35a 13249@item set remoteaddresssize @var{bits}
d3e8051b 13250@cindex address size for remote targets
9c16f35a
EZ
13251@cindex bits in remote address
13252Set the maximum size of address in a memory packet to the specified
13253number of bits. @value{GDBN} will mask off the address bits above
13254that number, when it passes addresses to the remote target. The
13255default value is the number of bits in the target's address.
13256
13257@item show remoteaddresssize
13258Show the current value of remote address size in bits.
13259
13260@item set remotebaud @var{n}
13261@cindex baud rate for remote targets
13262Set the baud rate for the remote serial I/O to @var{n} baud. The
13263value is used to set the speed of the serial port used for debugging
13264remote targets.
13265
13266@item show remotebaud
13267Show the current speed of the remote connection.
13268
13269@item set remotebreak
13270@cindex interrupt remote programs
13271@cindex BREAK signal instead of Ctrl-C
9a6253be 13272@anchor{set remotebreak}
9c16f35a 13273If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13274when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13275on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13276character instead. The default is off, since most remote systems
13277expect to see @samp{Ctrl-C} as the interrupt signal.
13278
13279@item show remotebreak
13280Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13281interrupt the remote program.
13282
23776285
MR
13283@item set remoteflow on
13284@itemx set remoteflow off
13285@kindex set remoteflow
13286Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13287on the serial port used to communicate to the remote target.
13288
13289@item show remoteflow
13290@kindex show remoteflow
13291Show the current setting of hardware flow control.
13292
9c16f35a
EZ
13293@item set remotelogbase @var{base}
13294Set the base (a.k.a.@: radix) of logging serial protocol
13295communications to @var{base}. Supported values of @var{base} are:
13296@code{ascii}, @code{octal}, and @code{hex}. The default is
13297@code{ascii}.
13298
13299@item show remotelogbase
13300Show the current setting of the radix for logging remote serial
13301protocol.
13302
13303@item set remotelogfile @var{file}
13304@cindex record serial communications on file
13305Record remote serial communications on the named @var{file}. The
13306default is not to record at all.
13307
13308@item show remotelogfile.
13309Show the current setting of the file name on which to record the
13310serial communications.
13311
13312@item set remotetimeout @var{num}
13313@cindex timeout for serial communications
13314@cindex remote timeout
13315Set the timeout limit to wait for the remote target to respond to
13316@var{num} seconds. The default is 2 seconds.
13317
13318@item show remotetimeout
13319Show the current number of seconds to wait for the remote target
13320responses.
13321
13322@cindex limit hardware breakpoints and watchpoints
13323@cindex remote target, limit break- and watchpoints
501eef12
AC
13324@anchor{set remote hardware-watchpoint-limit}
13325@anchor{set remote hardware-breakpoint-limit}
13326@item set remote hardware-watchpoint-limit @var{limit}
13327@itemx set remote hardware-breakpoint-limit @var{limit}
13328Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13329watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13330
13331@item set remote exec-file @var{filename}
13332@itemx show remote exec-file
13333@anchor{set remote exec-file}
13334@cindex executable file, for remote target
13335Select the file used for @code{run} with @code{target
13336extended-remote}. This should be set to a filename valid on the
13337target system. If it is not set, the target will use a default
13338filename (e.g.@: the last program run).
501eef12
AC
13339@end table
13340
427c3a89
DJ
13341@cindex remote packets, enabling and disabling
13342The @value{GDBN} remote protocol autodetects the packets supported by
13343your debugging stub. If you need to override the autodetection, you
13344can use these commands to enable or disable individual packets. Each
13345packet can be set to @samp{on} (the remote target supports this
13346packet), @samp{off} (the remote target does not support this packet),
13347or @samp{auto} (detect remote target support for this packet). They
13348all default to @samp{auto}. For more information about each packet,
13349see @ref{Remote Protocol}.
13350
13351During normal use, you should not have to use any of these commands.
13352If you do, that may be a bug in your remote debugging stub, or a bug
13353in @value{GDBN}. You may want to report the problem to the
13354@value{GDBN} developers.
13355
cfa9d6d9
DJ
13356For each packet @var{name}, the command to enable or disable the
13357packet is @code{set remote @var{name}-packet}. The available settings
13358are:
427c3a89 13359
cfa9d6d9 13360@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13361@item Command Name
13362@tab Remote Packet
13363@tab Related Features
13364
cfa9d6d9 13365@item @code{fetch-register}
427c3a89
DJ
13366@tab @code{p}
13367@tab @code{info registers}
13368
cfa9d6d9 13369@item @code{set-register}
427c3a89
DJ
13370@tab @code{P}
13371@tab @code{set}
13372
cfa9d6d9 13373@item @code{binary-download}
427c3a89
DJ
13374@tab @code{X}
13375@tab @code{load}, @code{set}
13376
cfa9d6d9 13377@item @code{read-aux-vector}
427c3a89
DJ
13378@tab @code{qXfer:auxv:read}
13379@tab @code{info auxv}
13380
cfa9d6d9 13381@item @code{symbol-lookup}
427c3a89
DJ
13382@tab @code{qSymbol}
13383@tab Detecting multiple threads
13384
2d717e4f
DJ
13385@item @code{attach}
13386@tab @code{vAttach}
13387@tab @code{attach}
13388
cfa9d6d9 13389@item @code{verbose-resume}
427c3a89
DJ
13390@tab @code{vCont}
13391@tab Stepping or resuming multiple threads
13392
2d717e4f
DJ
13393@item @code{run}
13394@tab @code{vRun}
13395@tab @code{run}
13396
cfa9d6d9 13397@item @code{software-breakpoint}
427c3a89
DJ
13398@tab @code{Z0}
13399@tab @code{break}
13400
cfa9d6d9 13401@item @code{hardware-breakpoint}
427c3a89
DJ
13402@tab @code{Z1}
13403@tab @code{hbreak}
13404
cfa9d6d9 13405@item @code{write-watchpoint}
427c3a89
DJ
13406@tab @code{Z2}
13407@tab @code{watch}
13408
cfa9d6d9 13409@item @code{read-watchpoint}
427c3a89
DJ
13410@tab @code{Z3}
13411@tab @code{rwatch}
13412
cfa9d6d9 13413@item @code{access-watchpoint}
427c3a89
DJ
13414@tab @code{Z4}
13415@tab @code{awatch}
13416
cfa9d6d9
DJ
13417@item @code{target-features}
13418@tab @code{qXfer:features:read}
13419@tab @code{set architecture}
13420
13421@item @code{library-info}
13422@tab @code{qXfer:libraries:read}
13423@tab @code{info sharedlibrary}
13424
13425@item @code{memory-map}
13426@tab @code{qXfer:memory-map:read}
13427@tab @code{info mem}
13428
13429@item @code{read-spu-object}
13430@tab @code{qXfer:spu:read}
13431@tab @code{info spu}
13432
13433@item @code{write-spu-object}
13434@tab @code{qXfer:spu:write}
13435@tab @code{info spu}
13436
13437@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13438@tab @code{qGetTLSAddr}
13439@tab Displaying @code{__thread} variables
13440
13441@item @code{supported-packets}
13442@tab @code{qSupported}
13443@tab Remote communications parameters
13444
cfa9d6d9 13445@item @code{pass-signals}
89be2091
DJ
13446@tab @code{QPassSignals}
13447@tab @code{handle @var{signal}}
13448
a6b151f1
DJ
13449@item @code{hostio-close-packet}
13450@tab @code{vFile:close}
13451@tab @code{remote get}, @code{remote put}
13452
13453@item @code{hostio-open-packet}
13454@tab @code{vFile:open}
13455@tab @code{remote get}, @code{remote put}
13456
13457@item @code{hostio-pread-packet}
13458@tab @code{vFile:pread}
13459@tab @code{remote get}, @code{remote put}
13460
13461@item @code{hostio-pwrite-packet}
13462@tab @code{vFile:pwrite}
13463@tab @code{remote get}, @code{remote put}
13464
13465@item @code{hostio-unlink-packet}
13466@tab @code{vFile:unlink}
13467@tab @code{remote delete}
427c3a89
DJ
13468@end multitable
13469
79a6e687
BW
13470@node Remote Stub
13471@section Implementing a Remote Stub
7a292a7a 13472
8e04817f
AC
13473@cindex debugging stub, example
13474@cindex remote stub, example
13475@cindex stub example, remote debugging
13476The stub files provided with @value{GDBN} implement the target side of the
13477communication protocol, and the @value{GDBN} side is implemented in the
13478@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13479these subroutines to communicate, and ignore the details. (If you're
13480implementing your own stub file, you can still ignore the details: start
13481with one of the existing stub files. @file{sparc-stub.c} is the best
13482organized, and therefore the easiest to read.)
13483
104c1213
JM
13484@cindex remote serial debugging, overview
13485To debug a program running on another machine (the debugging
13486@dfn{target} machine), you must first arrange for all the usual
13487prerequisites for the program to run by itself. For example, for a C
13488program, you need:
c906108c 13489
104c1213
JM
13490@enumerate
13491@item
13492A startup routine to set up the C runtime environment; these usually
13493have a name like @file{crt0}. The startup routine may be supplied by
13494your hardware supplier, or you may have to write your own.
96baa820 13495
5d161b24 13496@item
d4f3574e 13497A C subroutine library to support your program's
104c1213 13498subroutine calls, notably managing input and output.
96baa820 13499
104c1213
JM
13500@item
13501A way of getting your program to the other machine---for example, a
13502download program. These are often supplied by the hardware
13503manufacturer, but you may have to write your own from hardware
13504documentation.
13505@end enumerate
96baa820 13506
104c1213
JM
13507The next step is to arrange for your program to use a serial port to
13508communicate with the machine where @value{GDBN} is running (the @dfn{host}
13509machine). In general terms, the scheme looks like this:
96baa820 13510
104c1213
JM
13511@table @emph
13512@item On the host,
13513@value{GDBN} already understands how to use this protocol; when everything
13514else is set up, you can simply use the @samp{target remote} command
13515(@pxref{Targets,,Specifying a Debugging Target}).
13516
13517@item On the target,
13518you must link with your program a few special-purpose subroutines that
13519implement the @value{GDBN} remote serial protocol. The file containing these
13520subroutines is called a @dfn{debugging stub}.
13521
13522On certain remote targets, you can use an auxiliary program
13523@code{gdbserver} instead of linking a stub into your program.
79a6e687 13524@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13525@end table
96baa820 13526
104c1213
JM
13527The debugging stub is specific to the architecture of the remote
13528machine; for example, use @file{sparc-stub.c} to debug programs on
13529@sc{sparc} boards.
96baa820 13530
104c1213
JM
13531@cindex remote serial stub list
13532These working remote stubs are distributed with @value{GDBN}:
96baa820 13533
104c1213
JM
13534@table @code
13535
13536@item i386-stub.c
41afff9a 13537@cindex @file{i386-stub.c}
104c1213
JM
13538@cindex Intel
13539@cindex i386
13540For Intel 386 and compatible architectures.
13541
13542@item m68k-stub.c
41afff9a 13543@cindex @file{m68k-stub.c}
104c1213
JM
13544@cindex Motorola 680x0
13545@cindex m680x0
13546For Motorola 680x0 architectures.
13547
13548@item sh-stub.c
41afff9a 13549@cindex @file{sh-stub.c}
172c2a43 13550@cindex Renesas
104c1213 13551@cindex SH
172c2a43 13552For Renesas SH architectures.
104c1213
JM
13553
13554@item sparc-stub.c
41afff9a 13555@cindex @file{sparc-stub.c}
104c1213
JM
13556@cindex Sparc
13557For @sc{sparc} architectures.
13558
13559@item sparcl-stub.c
41afff9a 13560@cindex @file{sparcl-stub.c}
104c1213
JM
13561@cindex Fujitsu
13562@cindex SparcLite
13563For Fujitsu @sc{sparclite} architectures.
13564
13565@end table
13566
13567The @file{README} file in the @value{GDBN} distribution may list other
13568recently added stubs.
13569
13570@menu
13571* Stub Contents:: What the stub can do for you
13572* Bootstrapping:: What you must do for the stub
13573* Debug Session:: Putting it all together
104c1213
JM
13574@end menu
13575
6d2ebf8b 13576@node Stub Contents
79a6e687 13577@subsection What the Stub Can Do for You
104c1213
JM
13578
13579@cindex remote serial stub
13580The debugging stub for your architecture supplies these three
13581subroutines:
13582
13583@table @code
13584@item set_debug_traps
4644b6e3 13585@findex set_debug_traps
104c1213
JM
13586@cindex remote serial stub, initialization
13587This routine arranges for @code{handle_exception} to run when your
13588program stops. You must call this subroutine explicitly near the
13589beginning of your program.
13590
13591@item handle_exception
4644b6e3 13592@findex handle_exception
104c1213
JM
13593@cindex remote serial stub, main routine
13594This is the central workhorse, but your program never calls it
13595explicitly---the setup code arranges for @code{handle_exception} to
13596run when a trap is triggered.
13597
13598@code{handle_exception} takes control when your program stops during
13599execution (for example, on a breakpoint), and mediates communications
13600with @value{GDBN} on the host machine. This is where the communications
13601protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13602representative on the target machine. It begins by sending summary
104c1213
JM
13603information on the state of your program, then continues to execute,
13604retrieving and transmitting any information @value{GDBN} needs, until you
13605execute a @value{GDBN} command that makes your program resume; at that point,
13606@code{handle_exception} returns control to your own code on the target
5d161b24 13607machine.
104c1213
JM
13608
13609@item breakpoint
13610@cindex @code{breakpoint} subroutine, remote
13611Use this auxiliary subroutine to make your program contain a
13612breakpoint. Depending on the particular situation, this may be the only
13613way for @value{GDBN} to get control. For instance, if your target
13614machine has some sort of interrupt button, you won't need to call this;
13615pressing the interrupt button transfers control to
13616@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13617simply receiving characters on the serial port may also trigger a trap;
13618again, in that situation, you don't need to call @code{breakpoint} from
13619your own program---simply running @samp{target remote} from the host
5d161b24 13620@value{GDBN} session gets control.
104c1213
JM
13621
13622Call @code{breakpoint} if none of these is true, or if you simply want
13623to make certain your program stops at a predetermined point for the
13624start of your debugging session.
13625@end table
13626
6d2ebf8b 13627@node Bootstrapping
79a6e687 13628@subsection What You Must Do for the Stub
104c1213
JM
13629
13630@cindex remote stub, support routines
13631The debugging stubs that come with @value{GDBN} are set up for a particular
13632chip architecture, but they have no information about the rest of your
13633debugging target machine.
13634
13635First of all you need to tell the stub how to communicate with the
13636serial port.
13637
13638@table @code
13639@item int getDebugChar()
4644b6e3 13640@findex getDebugChar
104c1213
JM
13641Write this subroutine to read a single character from the serial port.
13642It may be identical to @code{getchar} for your target system; a
13643different name is used to allow you to distinguish the two if you wish.
13644
13645@item void putDebugChar(int)
4644b6e3 13646@findex putDebugChar
104c1213 13647Write this subroutine to write a single character to the serial port.
5d161b24 13648It may be identical to @code{putchar} for your target system; a
104c1213
JM
13649different name is used to allow you to distinguish the two if you wish.
13650@end table
13651
13652@cindex control C, and remote debugging
13653@cindex interrupting remote targets
13654If you want @value{GDBN} to be able to stop your program while it is
13655running, you need to use an interrupt-driven serial driver, and arrange
13656for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13657character). That is the character which @value{GDBN} uses to tell the
13658remote system to stop.
13659
13660Getting the debugging target to return the proper status to @value{GDBN}
13661probably requires changes to the standard stub; one quick and dirty way
13662is to just execute a breakpoint instruction (the ``dirty'' part is that
13663@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13664
13665Other routines you need to supply are:
13666
13667@table @code
13668@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13669@findex exceptionHandler
104c1213
JM
13670Write this function to install @var{exception_address} in the exception
13671handling tables. You need to do this because the stub does not have any
13672way of knowing what the exception handling tables on your target system
13673are like (for example, the processor's table might be in @sc{rom},
13674containing entries which point to a table in @sc{ram}).
13675@var{exception_number} is the exception number which should be changed;
13676its meaning is architecture-dependent (for example, different numbers
13677might represent divide by zero, misaligned access, etc). When this
13678exception occurs, control should be transferred directly to
13679@var{exception_address}, and the processor state (stack, registers,
13680and so on) should be just as it is when a processor exception occurs. So if
13681you want to use a jump instruction to reach @var{exception_address}, it
13682should be a simple jump, not a jump to subroutine.
13683
13684For the 386, @var{exception_address} should be installed as an interrupt
13685gate so that interrupts are masked while the handler runs. The gate
13686should be at privilege level 0 (the most privileged level). The
13687@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13688help from @code{exceptionHandler}.
13689
13690@item void flush_i_cache()
4644b6e3 13691@findex flush_i_cache
d4f3574e 13692On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13693instruction cache, if any, on your target machine. If there is no
13694instruction cache, this subroutine may be a no-op.
13695
13696On target machines that have instruction caches, @value{GDBN} requires this
13697function to make certain that the state of your program is stable.
13698@end table
13699
13700@noindent
13701You must also make sure this library routine is available:
13702
13703@table @code
13704@item void *memset(void *, int, int)
4644b6e3 13705@findex memset
104c1213
JM
13706This is the standard library function @code{memset} that sets an area of
13707memory to a known value. If you have one of the free versions of
13708@code{libc.a}, @code{memset} can be found there; otherwise, you must
13709either obtain it from your hardware manufacturer, or write your own.
13710@end table
13711
13712If you do not use the GNU C compiler, you may need other standard
13713library subroutines as well; this varies from one stub to another,
13714but in general the stubs are likely to use any of the common library
e22ea452 13715subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13716
13717
6d2ebf8b 13718@node Debug Session
79a6e687 13719@subsection Putting it All Together
104c1213
JM
13720
13721@cindex remote serial debugging summary
13722In summary, when your program is ready to debug, you must follow these
13723steps.
13724
13725@enumerate
13726@item
6d2ebf8b 13727Make sure you have defined the supporting low-level routines
79a6e687 13728(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13729@display
13730@code{getDebugChar}, @code{putDebugChar},
13731@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13732@end display
13733
13734@item
13735Insert these lines near the top of your program:
13736
474c8240 13737@smallexample
104c1213
JM
13738set_debug_traps();
13739breakpoint();
474c8240 13740@end smallexample
104c1213
JM
13741
13742@item
13743For the 680x0 stub only, you need to provide a variable called
13744@code{exceptionHook}. Normally you just use:
13745
474c8240 13746@smallexample
104c1213 13747void (*exceptionHook)() = 0;
474c8240 13748@end smallexample
104c1213 13749
d4f3574e 13750@noindent
104c1213 13751but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13752function in your program, that function is called when
104c1213
JM
13753@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13754error). The function indicated by @code{exceptionHook} is called with
13755one parameter: an @code{int} which is the exception number.
13756
13757@item
13758Compile and link together: your program, the @value{GDBN} debugging stub for
13759your target architecture, and the supporting subroutines.
13760
13761@item
13762Make sure you have a serial connection between your target machine and
13763the @value{GDBN} host, and identify the serial port on the host.
13764
13765@item
13766@c The "remote" target now provides a `load' command, so we should
13767@c document that. FIXME.
13768Download your program to your target machine (or get it there by
13769whatever means the manufacturer provides), and start it.
13770
13771@item
07f31aa6 13772Start @value{GDBN} on the host, and connect to the target
79a6e687 13773(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13774
104c1213
JM
13775@end enumerate
13776
8e04817f
AC
13777@node Configurations
13778@chapter Configuration-Specific Information
104c1213 13779
8e04817f
AC
13780While nearly all @value{GDBN} commands are available for all native and
13781cross versions of the debugger, there are some exceptions. This chapter
13782describes things that are only available in certain configurations.
104c1213 13783
8e04817f
AC
13784There are three major categories of configurations: native
13785configurations, where the host and target are the same, embedded
13786operating system configurations, which are usually the same for several
13787different processor architectures, and bare embedded processors, which
13788are quite different from each other.
104c1213 13789
8e04817f
AC
13790@menu
13791* Native::
13792* Embedded OS::
13793* Embedded Processors::
13794* Architectures::
13795@end menu
104c1213 13796
8e04817f
AC
13797@node Native
13798@section Native
104c1213 13799
8e04817f
AC
13800This section describes details specific to particular native
13801configurations.
6cf7e474 13802
8e04817f
AC
13803@menu
13804* HP-UX:: HP-UX
7561d450 13805* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13806* SVR4 Process Information:: SVR4 process information
13807* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13808* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13809* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13810* Neutrino:: Features specific to QNX Neutrino
8e04817f 13811@end menu
6cf7e474 13812
8e04817f
AC
13813@node HP-UX
13814@subsection HP-UX
104c1213 13815
8e04817f
AC
13816On HP-UX systems, if you refer to a function or variable name that
13817begins with a dollar sign, @value{GDBN} searches for a user or system
13818name first, before it searches for a convenience variable.
104c1213 13819
9c16f35a 13820
7561d450
MK
13821@node BSD libkvm Interface
13822@subsection BSD libkvm Interface
13823
13824@cindex libkvm
13825@cindex kernel memory image
13826@cindex kernel crash dump
13827
13828BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13829interface that provides a uniform interface for accessing kernel virtual
13830memory images, including live systems and crash dumps. @value{GDBN}
13831uses this interface to allow you to debug live kernels and kernel crash
13832dumps on many native BSD configurations. This is implemented as a
13833special @code{kvm} debugging target. For debugging a live system, load
13834the currently running kernel into @value{GDBN} and connect to the
13835@code{kvm} target:
13836
13837@smallexample
13838(@value{GDBP}) @b{target kvm}
13839@end smallexample
13840
13841For debugging crash dumps, provide the file name of the crash dump as an
13842argument:
13843
13844@smallexample
13845(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13846@end smallexample
13847
13848Once connected to the @code{kvm} target, the following commands are
13849available:
13850
13851@table @code
13852@kindex kvm
13853@item kvm pcb
721c2651 13854Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13855
13856@item kvm proc
13857Set current context from proc address. This command isn't available on
13858modern FreeBSD systems.
13859@end table
13860
8e04817f 13861@node SVR4 Process Information
79a6e687 13862@subsection SVR4 Process Information
60bf7e09
EZ
13863@cindex /proc
13864@cindex examine process image
13865@cindex process info via @file{/proc}
104c1213 13866
60bf7e09
EZ
13867Many versions of SVR4 and compatible systems provide a facility called
13868@samp{/proc} that can be used to examine the image of a running
13869process using file-system subroutines. If @value{GDBN} is configured
13870for an operating system with this facility, the command @code{info
13871proc} is available to report information about the process running
13872your program, or about any process running on your system. @code{info
13873proc} works only on SVR4 systems that include the @code{procfs} code.
13874This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13875Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13876
8e04817f
AC
13877@table @code
13878@kindex info proc
60bf7e09 13879@cindex process ID
8e04817f 13880@item info proc
60bf7e09
EZ
13881@itemx info proc @var{process-id}
13882Summarize available information about any running process. If a
13883process ID is specified by @var{process-id}, display information about
13884that process; otherwise display information about the program being
13885debugged. The summary includes the debugged process ID, the command
13886line used to invoke it, its current working directory, and its
13887executable file's absolute file name.
13888
13889On some systems, @var{process-id} can be of the form
13890@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13891within a process. If the optional @var{pid} part is missing, it means
13892a thread from the process being debugged (the leading @samp{/} still
13893needs to be present, or else @value{GDBN} will interpret the number as
13894a process ID rather than a thread ID).
6cf7e474 13895
8e04817f 13896@item info proc mappings
60bf7e09
EZ
13897@cindex memory address space mappings
13898Report the memory address space ranges accessible in the program, with
13899information on whether the process has read, write, or execute access
13900rights to each range. On @sc{gnu}/Linux systems, each memory range
13901includes the object file which is mapped to that range, instead of the
13902memory access rights to that range.
13903
13904@item info proc stat
13905@itemx info proc status
13906@cindex process detailed status information
13907These subcommands are specific to @sc{gnu}/Linux systems. They show
13908the process-related information, including the user ID and group ID;
13909how many threads are there in the process; its virtual memory usage;
13910the signals that are pending, blocked, and ignored; its TTY; its
13911consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13912value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13913(type @kbd{man 5 proc} from your shell prompt).
13914
13915@item info proc all
13916Show all the information about the process described under all of the
13917above @code{info proc} subcommands.
13918
8e04817f
AC
13919@ignore
13920@comment These sub-options of 'info proc' were not included when
13921@comment procfs.c was re-written. Keep their descriptions around
13922@comment against the day when someone finds the time to put them back in.
13923@kindex info proc times
13924@item info proc times
13925Starting time, user CPU time, and system CPU time for your program and
13926its children.
6cf7e474 13927
8e04817f
AC
13928@kindex info proc id
13929@item info proc id
13930Report on the process IDs related to your program: its own process ID,
13931the ID of its parent, the process group ID, and the session ID.
8e04817f 13932@end ignore
721c2651
EZ
13933
13934@item set procfs-trace
13935@kindex set procfs-trace
13936@cindex @code{procfs} API calls
13937This command enables and disables tracing of @code{procfs} API calls.
13938
13939@item show procfs-trace
13940@kindex show procfs-trace
13941Show the current state of @code{procfs} API call tracing.
13942
13943@item set procfs-file @var{file}
13944@kindex set procfs-file
13945Tell @value{GDBN} to write @code{procfs} API trace to the named
13946@var{file}. @value{GDBN} appends the trace info to the previous
13947contents of the file. The default is to display the trace on the
13948standard output.
13949
13950@item show procfs-file
13951@kindex show procfs-file
13952Show the file to which @code{procfs} API trace is written.
13953
13954@item proc-trace-entry
13955@itemx proc-trace-exit
13956@itemx proc-untrace-entry
13957@itemx proc-untrace-exit
13958@kindex proc-trace-entry
13959@kindex proc-trace-exit
13960@kindex proc-untrace-entry
13961@kindex proc-untrace-exit
13962These commands enable and disable tracing of entries into and exits
13963from the @code{syscall} interface.
13964
13965@item info pidlist
13966@kindex info pidlist
13967@cindex process list, QNX Neutrino
13968For QNX Neutrino only, this command displays the list of all the
13969processes and all the threads within each process.
13970
13971@item info meminfo
13972@kindex info meminfo
13973@cindex mapinfo list, QNX Neutrino
13974For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13975@end table
104c1213 13976
8e04817f
AC
13977@node DJGPP Native
13978@subsection Features for Debugging @sc{djgpp} Programs
13979@cindex @sc{djgpp} debugging
13980@cindex native @sc{djgpp} debugging
13981@cindex MS-DOS-specific commands
104c1213 13982
514c4d71
EZ
13983@cindex DPMI
13984@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13985MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13986that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13987top of real-mode DOS systems and their emulations.
104c1213 13988
8e04817f
AC
13989@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13990defines a few commands specific to the @sc{djgpp} port. This
13991subsection describes those commands.
104c1213 13992
8e04817f
AC
13993@table @code
13994@kindex info dos
13995@item info dos
13996This is a prefix of @sc{djgpp}-specific commands which print
13997information about the target system and important OS structures.
f1251bdd 13998
8e04817f
AC
13999@kindex sysinfo
14000@cindex MS-DOS system info
14001@cindex free memory information (MS-DOS)
14002@item info dos sysinfo
14003This command displays assorted information about the underlying
14004platform: the CPU type and features, the OS version and flavor, the
14005DPMI version, and the available conventional and DPMI memory.
104c1213 14006
8e04817f
AC
14007@cindex GDT
14008@cindex LDT
14009@cindex IDT
14010@cindex segment descriptor tables
14011@cindex descriptor tables display
14012@item info dos gdt
14013@itemx info dos ldt
14014@itemx info dos idt
14015These 3 commands display entries from, respectively, Global, Local,
14016and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14017tables are data structures which store a descriptor for each segment
14018that is currently in use. The segment's selector is an index into a
14019descriptor table; the table entry for that index holds the
14020descriptor's base address and limit, and its attributes and access
14021rights.
104c1213 14022
8e04817f
AC
14023A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14024segment (used for both data and the stack), and a DOS segment (which
14025allows access to DOS/BIOS data structures and absolute addresses in
14026conventional memory). However, the DPMI host will usually define
14027additional segments in order to support the DPMI environment.
d4f3574e 14028
8e04817f
AC
14029@cindex garbled pointers
14030These commands allow to display entries from the descriptor tables.
14031Without an argument, all entries from the specified table are
14032displayed. An argument, which should be an integer expression, means
14033display a single entry whose index is given by the argument. For
14034example, here's a convenient way to display information about the
14035debugged program's data segment:
104c1213 14036
8e04817f
AC
14037@smallexample
14038@exdent @code{(@value{GDBP}) info dos ldt $ds}
14039@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14040@end smallexample
104c1213 14041
8e04817f
AC
14042@noindent
14043This comes in handy when you want to see whether a pointer is outside
14044the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14045
8e04817f
AC
14046@cindex page tables display (MS-DOS)
14047@item info dos pde
14048@itemx info dos pte
14049These two commands display entries from, respectively, the Page
14050Directory and the Page Tables. Page Directories and Page Tables are
14051data structures which control how virtual memory addresses are mapped
14052into physical addresses. A Page Table includes an entry for every
14053page of memory that is mapped into the program's address space; there
14054may be several Page Tables, each one holding up to 4096 entries. A
14055Page Directory has up to 4096 entries, one each for every Page Table
14056that is currently in use.
104c1213 14057
8e04817f
AC
14058Without an argument, @kbd{info dos pde} displays the entire Page
14059Directory, and @kbd{info dos pte} displays all the entries in all of
14060the Page Tables. An argument, an integer expression, given to the
14061@kbd{info dos pde} command means display only that entry from the Page
14062Directory table. An argument given to the @kbd{info dos pte} command
14063means display entries from a single Page Table, the one pointed to by
14064the specified entry in the Page Directory.
104c1213 14065
8e04817f
AC
14066@cindex direct memory access (DMA) on MS-DOS
14067These commands are useful when your program uses @dfn{DMA} (Direct
14068Memory Access), which needs physical addresses to program the DMA
14069controller.
104c1213 14070
8e04817f 14071These commands are supported only with some DPMI servers.
104c1213 14072
8e04817f
AC
14073@cindex physical address from linear address
14074@item info dos address-pte @var{addr}
14075This command displays the Page Table entry for a specified linear
514c4d71
EZ
14076address. The argument @var{addr} is a linear address which should
14077already have the appropriate segment's base address added to it,
14078because this command accepts addresses which may belong to @emph{any}
14079segment. For example, here's how to display the Page Table entry for
14080the page where a variable @code{i} is stored:
104c1213 14081
b383017d 14082@smallexample
8e04817f
AC
14083@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14084@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14085@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14086@end smallexample
104c1213 14087
8e04817f
AC
14088@noindent
14089This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14090whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14091attributes of that page.
104c1213 14092
8e04817f
AC
14093Note that you must cast the addresses of variables to a @code{char *},
14094since otherwise the value of @code{__djgpp_base_address}, the base
14095address of all variables and functions in a @sc{djgpp} program, will
14096be added using the rules of C pointer arithmetics: if @code{i} is
14097declared an @code{int}, @value{GDBN} will add 4 times the value of
14098@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14099
8e04817f
AC
14100Here's another example, it displays the Page Table entry for the
14101transfer buffer:
104c1213 14102
8e04817f
AC
14103@smallexample
14104@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14105@exdent @code{Page Table entry for address 0x29110:}
14106@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14107@end smallexample
104c1213 14108
8e04817f
AC
14109@noindent
14110(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
141113rd member of the @code{_go32_info_block} structure.) The output
14112clearly shows that this DPMI server maps the addresses in conventional
14113memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14114linear (@code{0x29110}) addresses are identical.
104c1213 14115
8e04817f
AC
14116This command is supported only with some DPMI servers.
14117@end table
104c1213 14118
c45da7e6 14119@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14120In addition to native debugging, the DJGPP port supports remote
14121debugging via a serial data link. The following commands are specific
14122to remote serial debugging in the DJGPP port of @value{GDBN}.
14123
14124@table @code
14125@kindex set com1base
14126@kindex set com1irq
14127@kindex set com2base
14128@kindex set com2irq
14129@kindex set com3base
14130@kindex set com3irq
14131@kindex set com4base
14132@kindex set com4irq
14133@item set com1base @var{addr}
14134This command sets the base I/O port address of the @file{COM1} serial
14135port.
14136
14137@item set com1irq @var{irq}
14138This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14139for the @file{COM1} serial port.
14140
14141There are similar commands @samp{set com2base}, @samp{set com3irq},
14142etc.@: for setting the port address and the @code{IRQ} lines for the
14143other 3 COM ports.
14144
14145@kindex show com1base
14146@kindex show com1irq
14147@kindex show com2base
14148@kindex show com2irq
14149@kindex show com3base
14150@kindex show com3irq
14151@kindex show com4base
14152@kindex show com4irq
14153The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14154display the current settings of the base address and the @code{IRQ}
14155lines used by the COM ports.
c45da7e6
EZ
14156
14157@item info serial
14158@kindex info serial
14159@cindex DOS serial port status
14160This command prints the status of the 4 DOS serial ports. For each
14161port, it prints whether it's active or not, its I/O base address and
14162IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14163counts of various errors encountered so far.
a8f24a35
EZ
14164@end table
14165
14166
78c47bea 14167@node Cygwin Native
79a6e687 14168@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14169@cindex MS Windows debugging
14170@cindex native Cygwin debugging
14171@cindex Cygwin-specific commands
14172
be448670 14173@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14174DLLs with and without symbolic debugging information. There are various
14175additional Cygwin-specific commands, described in this section.
14176Working with DLLs that have no debugging symbols is described in
14177@ref{Non-debug DLL Symbols}.
78c47bea
PM
14178
14179@table @code
14180@kindex info w32
14181@item info w32
db2e3e2e 14182This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14183information about the target system and important OS structures.
14184
14185@item info w32 selector
14186This command displays information returned by
14187the Win32 API @code{GetThreadSelectorEntry} function.
14188It takes an optional argument that is evaluated to
14189a long value to give the information about this given selector.
14190Without argument, this command displays information
d3e8051b 14191about the six segment registers.
78c47bea
PM
14192
14193@kindex info dll
14194@item info dll
db2e3e2e 14195This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14196
14197@kindex dll-symbols
14198@item dll-symbols
14199This command loads symbols from a dll similarly to
14200add-sym command but without the need to specify a base address.
14201
be90c084 14202@kindex set cygwin-exceptions
e16b02ee
EZ
14203@cindex debugging the Cygwin DLL
14204@cindex Cygwin DLL, debugging
be90c084 14205@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14206If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14207happen inside the Cygwin DLL. If @var{mode} is @code{off},
14208@value{GDBN} will delay recognition of exceptions, and may ignore some
14209exceptions which seem to be caused by internal Cygwin DLL
14210``bookkeeping''. This option is meant primarily for debugging the
14211Cygwin DLL itself; the default value is @code{off} to avoid annoying
14212@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14213
14214@kindex show cygwin-exceptions
14215@item show cygwin-exceptions
e16b02ee
EZ
14216Displays whether @value{GDBN} will break on exceptions that happen
14217inside the Cygwin DLL itself.
be90c084 14218
b383017d 14219@kindex set new-console
78c47bea 14220@item set new-console @var{mode}
b383017d 14221If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14222be started in a new console on next start.
14223If @var{mode} is @code{off}i, the debuggee will
14224be started in the same console as the debugger.
14225
14226@kindex show new-console
14227@item show new-console
14228Displays whether a new console is used
14229when the debuggee is started.
14230
14231@kindex set new-group
14232@item set new-group @var{mode}
14233This boolean value controls whether the debuggee should
14234start a new group or stay in the same group as the debugger.
14235This affects the way the Windows OS handles
c8aa23ab 14236@samp{Ctrl-C}.
78c47bea
PM
14237
14238@kindex show new-group
14239@item show new-group
14240Displays current value of new-group boolean.
14241
14242@kindex set debugevents
14243@item set debugevents
219eec71
EZ
14244This boolean value adds debug output concerning kernel events related
14245to the debuggee seen by the debugger. This includes events that
14246signal thread and process creation and exit, DLL loading and
14247unloading, console interrupts, and debugging messages produced by the
14248Windows @code{OutputDebugString} API call.
78c47bea
PM
14249
14250@kindex set debugexec
14251@item set debugexec
b383017d 14252This boolean value adds debug output concerning execute events
219eec71 14253(such as resume thread) seen by the debugger.
78c47bea
PM
14254
14255@kindex set debugexceptions
14256@item set debugexceptions
219eec71
EZ
14257This boolean value adds debug output concerning exceptions in the
14258debuggee seen by the debugger.
78c47bea
PM
14259
14260@kindex set debugmemory
14261@item set debugmemory
219eec71
EZ
14262This boolean value adds debug output concerning debuggee memory reads
14263and writes by the debugger.
78c47bea
PM
14264
14265@kindex set shell
14266@item set shell
14267This boolean values specifies whether the debuggee is called
14268via a shell or directly (default value is on).
14269
14270@kindex show shell
14271@item show shell
14272Displays if the debuggee will be started with a shell.
14273
14274@end table
14275
be448670 14276@menu
79a6e687 14277* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14278@end menu
14279
79a6e687
BW
14280@node Non-debug DLL Symbols
14281@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14282@cindex DLLs with no debugging symbols
14283@cindex Minimal symbols and DLLs
14284
14285Very often on windows, some of the DLLs that your program relies on do
14286not include symbolic debugging information (for example,
db2e3e2e 14287@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14288symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14289information contained in the DLL's export table. This section
be448670
CF
14290describes working with such symbols, known internally to @value{GDBN} as
14291``minimal symbols''.
14292
14293Note that before the debugged program has started execution, no DLLs
db2e3e2e 14294will have been loaded. The easiest way around this problem is simply to
be448670 14295start the program --- either by setting a breakpoint or letting the
db2e3e2e 14296program run once to completion. It is also possible to force
be448670 14297@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14298see the shared library information in @ref{Files}, or the
db2e3e2e 14299@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14300explicitly loading symbols from a DLL with no debugging information will
14301cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14302which may adversely affect symbol lookup performance.
14303
79a6e687 14304@subsubsection DLL Name Prefixes
be448670
CF
14305
14306In keeping with the naming conventions used by the Microsoft debugging
14307tools, DLL export symbols are made available with a prefix based on the
14308DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14309also entered into the symbol table, so @code{CreateFileA} is often
14310sufficient. In some cases there will be name clashes within a program
14311(particularly if the executable itself includes full debugging symbols)
14312necessitating the use of the fully qualified name when referring to the
14313contents of the DLL. Use single-quotes around the name to avoid the
14314exclamation mark (``!'') being interpreted as a language operator.
14315
14316Note that the internal name of the DLL may be all upper-case, even
14317though the file name of the DLL is lower-case, or vice-versa. Since
14318symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14319some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14320@code{info variables} commands or even @code{maint print msymbols}
14321(@pxref{Symbols}). Here's an example:
be448670
CF
14322
14323@smallexample
f7dc1244 14324(@value{GDBP}) info function CreateFileA
be448670
CF
14325All functions matching regular expression "CreateFileA":
14326
14327Non-debugging symbols:
143280x77e885f4 CreateFileA
143290x77e885f4 KERNEL32!CreateFileA
14330@end smallexample
14331
14332@smallexample
f7dc1244 14333(@value{GDBP}) info function !
be448670
CF
14334All functions matching regular expression "!":
14335
14336Non-debugging symbols:
143370x6100114c cygwin1!__assert
143380x61004034 cygwin1!_dll_crt0@@0
143390x61004240 cygwin1!dll_crt0(per_process *)
14340[etc...]
14341@end smallexample
14342
79a6e687 14343@subsubsection Working with Minimal Symbols
be448670
CF
14344
14345Symbols extracted from a DLL's export table do not contain very much
14346type information. All that @value{GDBN} can do is guess whether a symbol
14347refers to a function or variable depending on the linker section that
14348contains the symbol. Also note that the actual contents of the memory
14349contained in a DLL are not available unless the program is running. This
14350means that you cannot examine the contents of a variable or disassemble
14351a function within a DLL without a running program.
14352
14353Variables are generally treated as pointers and dereferenced
14354automatically. For this reason, it is often necessary to prefix a
14355variable name with the address-of operator (``&'') and provide explicit
14356type information in the command. Here's an example of the type of
14357problem:
14358
14359@smallexample
f7dc1244 14360(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14361$1 = 268572168
14362@end smallexample
14363
14364@smallexample
f7dc1244 14365(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
143660x10021610: "\230y\""
14367@end smallexample
14368
14369And two possible solutions:
14370
14371@smallexample
f7dc1244 14372(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14373$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14374@end smallexample
14375
14376@smallexample
f7dc1244 14377(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 143780x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14379(@value{GDBP}) x/x 0x10021608
be448670 143800x10021608: 0x0022fd98
f7dc1244 14381(@value{GDBP}) x/s 0x0022fd98
be448670
CF
143820x22fd98: "/cygdrive/c/mydirectory/myprogram"
14383@end smallexample
14384
14385Setting a break point within a DLL is possible even before the program
14386starts execution. However, under these circumstances, @value{GDBN} can't
14387examine the initial instructions of the function in order to skip the
14388function's frame set-up code. You can work around this by using ``*&''
14389to set the breakpoint at a raw memory address:
14390
14391@smallexample
f7dc1244 14392(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14393Breakpoint 1 at 0x1e04eff0
14394@end smallexample
14395
14396The author of these extensions is not entirely convinced that setting a
14397break point within a shared DLL like @file{kernel32.dll} is completely
14398safe.
14399
14d6dd68 14400@node Hurd Native
79a6e687 14401@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14402@cindex @sc{gnu} Hurd debugging
14403
14404This subsection describes @value{GDBN} commands specific to the
14405@sc{gnu} Hurd native debugging.
14406
14407@table @code
14408@item set signals
14409@itemx set sigs
14410@kindex set signals@r{, Hurd command}
14411@kindex set sigs@r{, Hurd command}
14412This command toggles the state of inferior signal interception by
14413@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14414affected by this command. @code{sigs} is a shorthand alias for
14415@code{signals}.
14416
14417@item show signals
14418@itemx show sigs
14419@kindex show signals@r{, Hurd command}
14420@kindex show sigs@r{, Hurd command}
14421Show the current state of intercepting inferior's signals.
14422
14423@item set signal-thread
14424@itemx set sigthread
14425@kindex set signal-thread
14426@kindex set sigthread
14427This command tells @value{GDBN} which thread is the @code{libc} signal
14428thread. That thread is run when a signal is delivered to a running
14429process. @code{set sigthread} is the shorthand alias of @code{set
14430signal-thread}.
14431
14432@item show signal-thread
14433@itemx show sigthread
14434@kindex show signal-thread
14435@kindex show sigthread
14436These two commands show which thread will run when the inferior is
14437delivered a signal.
14438
14439@item set stopped
14440@kindex set stopped@r{, Hurd command}
14441This commands tells @value{GDBN} that the inferior process is stopped,
14442as with the @code{SIGSTOP} signal. The stopped process can be
14443continued by delivering a signal to it.
14444
14445@item show stopped
14446@kindex show stopped@r{, Hurd command}
14447This command shows whether @value{GDBN} thinks the debuggee is
14448stopped.
14449
14450@item set exceptions
14451@kindex set exceptions@r{, Hurd command}
14452Use this command to turn off trapping of exceptions in the inferior.
14453When exception trapping is off, neither breakpoints nor
14454single-stepping will work. To restore the default, set exception
14455trapping on.
14456
14457@item show exceptions
14458@kindex show exceptions@r{, Hurd command}
14459Show the current state of trapping exceptions in the inferior.
14460
14461@item set task pause
14462@kindex set task@r{, Hurd commands}
14463@cindex task attributes (@sc{gnu} Hurd)
14464@cindex pause current task (@sc{gnu} Hurd)
14465This command toggles task suspension when @value{GDBN} has control.
14466Setting it to on takes effect immediately, and the task is suspended
14467whenever @value{GDBN} gets control. Setting it to off will take
14468effect the next time the inferior is continued. If this option is set
14469to off, you can use @code{set thread default pause on} or @code{set
14470thread pause on} (see below) to pause individual threads.
14471
14472@item show task pause
14473@kindex show task@r{, Hurd commands}
14474Show the current state of task suspension.
14475
14476@item set task detach-suspend-count
14477@cindex task suspend count
14478@cindex detach from task, @sc{gnu} Hurd
14479This command sets the suspend count the task will be left with when
14480@value{GDBN} detaches from it.
14481
14482@item show task detach-suspend-count
14483Show the suspend count the task will be left with when detaching.
14484
14485@item set task exception-port
14486@itemx set task excp
14487@cindex task exception port, @sc{gnu} Hurd
14488This command sets the task exception port to which @value{GDBN} will
14489forward exceptions. The argument should be the value of the @dfn{send
14490rights} of the task. @code{set task excp} is a shorthand alias.
14491
14492@item set noninvasive
14493@cindex noninvasive task options
14494This command switches @value{GDBN} to a mode that is the least
14495invasive as far as interfering with the inferior is concerned. This
14496is the same as using @code{set task pause}, @code{set exceptions}, and
14497@code{set signals} to values opposite to the defaults.
14498
14499@item info send-rights
14500@itemx info receive-rights
14501@itemx info port-rights
14502@itemx info port-sets
14503@itemx info dead-names
14504@itemx info ports
14505@itemx info psets
14506@cindex send rights, @sc{gnu} Hurd
14507@cindex receive rights, @sc{gnu} Hurd
14508@cindex port rights, @sc{gnu} Hurd
14509@cindex port sets, @sc{gnu} Hurd
14510@cindex dead names, @sc{gnu} Hurd
14511These commands display information about, respectively, send rights,
14512receive rights, port rights, port sets, and dead names of a task.
14513There are also shorthand aliases: @code{info ports} for @code{info
14514port-rights} and @code{info psets} for @code{info port-sets}.
14515
14516@item set thread pause
14517@kindex set thread@r{, Hurd command}
14518@cindex thread properties, @sc{gnu} Hurd
14519@cindex pause current thread (@sc{gnu} Hurd)
14520This command toggles current thread suspension when @value{GDBN} has
14521control. Setting it to on takes effect immediately, and the current
14522thread is suspended whenever @value{GDBN} gets control. Setting it to
14523off will take effect the next time the inferior is continued.
14524Normally, this command has no effect, since when @value{GDBN} has
14525control, the whole task is suspended. However, if you used @code{set
14526task pause off} (see above), this command comes in handy to suspend
14527only the current thread.
14528
14529@item show thread pause
14530@kindex show thread@r{, Hurd command}
14531This command shows the state of current thread suspension.
14532
14533@item set thread run
d3e8051b 14534This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14535
14536@item show thread run
14537Show whether the current thread is allowed to run.
14538
14539@item set thread detach-suspend-count
14540@cindex thread suspend count, @sc{gnu} Hurd
14541@cindex detach from thread, @sc{gnu} Hurd
14542This command sets the suspend count @value{GDBN} will leave on a
14543thread when detaching. This number is relative to the suspend count
14544found by @value{GDBN} when it notices the thread; use @code{set thread
14545takeover-suspend-count} to force it to an absolute value.
14546
14547@item show thread detach-suspend-count
14548Show the suspend count @value{GDBN} will leave on the thread when
14549detaching.
14550
14551@item set thread exception-port
14552@itemx set thread excp
14553Set the thread exception port to which to forward exceptions. This
14554overrides the port set by @code{set task exception-port} (see above).
14555@code{set thread excp} is the shorthand alias.
14556
14557@item set thread takeover-suspend-count
14558Normally, @value{GDBN}'s thread suspend counts are relative to the
14559value @value{GDBN} finds when it notices each thread. This command
14560changes the suspend counts to be absolute instead.
14561
14562@item set thread default
14563@itemx show thread default
14564@cindex thread default settings, @sc{gnu} Hurd
14565Each of the above @code{set thread} commands has a @code{set thread
14566default} counterpart (e.g., @code{set thread default pause}, @code{set
14567thread default exception-port}, etc.). The @code{thread default}
14568variety of commands sets the default thread properties for all
14569threads; you can then change the properties of individual threads with
14570the non-default commands.
14571@end table
14572
14573
a64548ea
EZ
14574@node Neutrino
14575@subsection QNX Neutrino
14576@cindex QNX Neutrino
14577
14578@value{GDBN} provides the following commands specific to the QNX
14579Neutrino target:
14580
14581@table @code
14582@item set debug nto-debug
14583@kindex set debug nto-debug
14584When set to on, enables debugging messages specific to the QNX
14585Neutrino support.
14586
14587@item show debug nto-debug
14588@kindex show debug nto-debug
14589Show the current state of QNX Neutrino messages.
14590@end table
14591
14592
8e04817f
AC
14593@node Embedded OS
14594@section Embedded Operating Systems
104c1213 14595
8e04817f
AC
14596This section describes configurations involving the debugging of
14597embedded operating systems that are available for several different
14598architectures.
d4f3574e 14599
8e04817f
AC
14600@menu
14601* VxWorks:: Using @value{GDBN} with VxWorks
14602@end menu
104c1213 14603
8e04817f
AC
14604@value{GDBN} includes the ability to debug programs running on
14605various real-time operating systems.
104c1213 14606
8e04817f
AC
14607@node VxWorks
14608@subsection Using @value{GDBN} with VxWorks
104c1213 14609
8e04817f 14610@cindex VxWorks
104c1213 14611
8e04817f 14612@table @code
104c1213 14613
8e04817f
AC
14614@kindex target vxworks
14615@item target vxworks @var{machinename}
14616A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14617is the target system's machine name or IP address.
104c1213 14618
8e04817f 14619@end table
104c1213 14620
8e04817f
AC
14621On VxWorks, @code{load} links @var{filename} dynamically on the
14622current target system as well as adding its symbols in @value{GDBN}.
104c1213 14623
8e04817f
AC
14624@value{GDBN} enables developers to spawn and debug tasks running on networked
14625VxWorks targets from a Unix host. Already-running tasks spawned from
14626the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14627both the Unix host and on the VxWorks target. The program
14628@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14629installed with the name @code{vxgdb}, to distinguish it from a
14630@value{GDBN} for debugging programs on the host itself.)
104c1213 14631
8e04817f
AC
14632@table @code
14633@item VxWorks-timeout @var{args}
14634@kindex vxworks-timeout
14635All VxWorks-based targets now support the option @code{vxworks-timeout}.
14636This option is set by the user, and @var{args} represents the number of
14637seconds @value{GDBN} waits for responses to rpc's. You might use this if
14638your VxWorks target is a slow software simulator or is on the far side
14639of a thin network line.
14640@end table
104c1213 14641
8e04817f
AC
14642The following information on connecting to VxWorks was current when
14643this manual was produced; newer releases of VxWorks may use revised
14644procedures.
104c1213 14645
4644b6e3 14646@findex INCLUDE_RDB
8e04817f
AC
14647To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14648to include the remote debugging interface routines in the VxWorks
14649library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14650VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14651kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14652source debugging task @code{tRdbTask} when VxWorks is booted. For more
14653information on configuring and remaking VxWorks, see the manufacturer's
14654manual.
14655@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14656
8e04817f
AC
14657Once you have included @file{rdb.a} in your VxWorks system image and set
14658your Unix execution search path to find @value{GDBN}, you are ready to
14659run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14660@code{vxgdb}, depending on your installation).
104c1213 14661
8e04817f 14662@value{GDBN} comes up showing the prompt:
104c1213 14663
474c8240 14664@smallexample
8e04817f 14665(vxgdb)
474c8240 14666@end smallexample
104c1213 14667
8e04817f
AC
14668@menu
14669* VxWorks Connection:: Connecting to VxWorks
14670* VxWorks Download:: VxWorks download
14671* VxWorks Attach:: Running tasks
14672@end menu
104c1213 14673
8e04817f
AC
14674@node VxWorks Connection
14675@subsubsection Connecting to VxWorks
104c1213 14676
8e04817f
AC
14677The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14678network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14679
474c8240 14680@smallexample
8e04817f 14681(vxgdb) target vxworks tt
474c8240 14682@end smallexample
104c1213 14683
8e04817f
AC
14684@need 750
14685@value{GDBN} displays messages like these:
104c1213 14686
8e04817f
AC
14687@smallexample
14688Attaching remote machine across net...
14689Connected to tt.
14690@end smallexample
104c1213 14691
8e04817f
AC
14692@need 1000
14693@value{GDBN} then attempts to read the symbol tables of any object modules
14694loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14695these files by searching the directories listed in the command search
79a6e687 14696path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14697to find an object file, it displays a message such as:
5d161b24 14698
474c8240 14699@smallexample
8e04817f 14700prog.o: No such file or directory.
474c8240 14701@end smallexample
104c1213 14702
8e04817f
AC
14703When this happens, add the appropriate directory to the search path with
14704the @value{GDBN} command @code{path}, and execute the @code{target}
14705command again.
104c1213 14706
8e04817f 14707@node VxWorks Download
79a6e687 14708@subsubsection VxWorks Download
104c1213 14709
8e04817f
AC
14710@cindex download to VxWorks
14711If you have connected to the VxWorks target and you want to debug an
14712object that has not yet been loaded, you can use the @value{GDBN}
14713@code{load} command to download a file from Unix to VxWorks
14714incrementally. The object file given as an argument to the @code{load}
14715command is actually opened twice: first by the VxWorks target in order
14716to download the code, then by @value{GDBN} in order to read the symbol
14717table. This can lead to problems if the current working directories on
14718the two systems differ. If both systems have NFS mounted the same
14719filesystems, you can avoid these problems by using absolute paths.
14720Otherwise, it is simplest to set the working directory on both systems
14721to the directory in which the object file resides, and then to reference
14722the file by its name, without any path. For instance, a program
14723@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14724and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14725program, type this on VxWorks:
104c1213 14726
474c8240 14727@smallexample
8e04817f 14728-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14729@end smallexample
104c1213 14730
8e04817f
AC
14731@noindent
14732Then, in @value{GDBN}, type:
104c1213 14733
474c8240 14734@smallexample
8e04817f
AC
14735(vxgdb) cd @var{hostpath}/vw/demo/rdb
14736(vxgdb) load prog.o
474c8240 14737@end smallexample
104c1213 14738
8e04817f 14739@value{GDBN} displays a response similar to this:
104c1213 14740
8e04817f
AC
14741@smallexample
14742Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14743@end smallexample
104c1213 14744
8e04817f
AC
14745You can also use the @code{load} command to reload an object module
14746after editing and recompiling the corresponding source file. Note that
14747this makes @value{GDBN} delete all currently-defined breakpoints,
14748auto-displays, and convenience variables, and to clear the value
14749history. (This is necessary in order to preserve the integrity of
14750debugger's data structures that reference the target system's symbol
14751table.)
104c1213 14752
8e04817f 14753@node VxWorks Attach
79a6e687 14754@subsubsection Running Tasks
104c1213
JM
14755
14756@cindex running VxWorks tasks
14757You can also attach to an existing task using the @code{attach} command as
14758follows:
14759
474c8240 14760@smallexample
104c1213 14761(vxgdb) attach @var{task}
474c8240 14762@end smallexample
104c1213
JM
14763
14764@noindent
14765where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14766or suspended when you attach to it. Running tasks are suspended at
14767the time of attachment.
14768
6d2ebf8b 14769@node Embedded Processors
104c1213
JM
14770@section Embedded Processors
14771
14772This section goes into details specific to particular embedded
14773configurations.
14774
c45da7e6
EZ
14775@cindex send command to simulator
14776Whenever a specific embedded processor has a simulator, @value{GDBN}
14777allows to send an arbitrary command to the simulator.
14778
14779@table @code
14780@item sim @var{command}
14781@kindex sim@r{, a command}
14782Send an arbitrary @var{command} string to the simulator. Consult the
14783documentation for the specific simulator in use for information about
14784acceptable commands.
14785@end table
14786
7d86b5d5 14787
104c1213 14788@menu
c45da7e6 14789* ARM:: ARM RDI
172c2a43 14790* M32R/D:: Renesas M32R/D
104c1213 14791* M68K:: Motorola M68K
104c1213 14792* MIPS Embedded:: MIPS Embedded
a37295f9 14793* OpenRISC 1000:: OpenRisc 1000
104c1213 14794* PA:: HP PA Embedded
4acd40f3 14795* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14796* Sparclet:: Tsqware Sparclet
14797* Sparclite:: Fujitsu Sparclite
104c1213 14798* Z8000:: Zilog Z8000
a64548ea
EZ
14799* AVR:: Atmel AVR
14800* CRIS:: CRIS
14801* Super-H:: Renesas Super-H
104c1213
JM
14802@end menu
14803
6d2ebf8b 14804@node ARM
104c1213 14805@subsection ARM
c45da7e6 14806@cindex ARM RDI
104c1213
JM
14807
14808@table @code
8e04817f
AC
14809@kindex target rdi
14810@item target rdi @var{dev}
14811ARM Angel monitor, via RDI library interface to ADP protocol. You may
14812use this target to communicate with both boards running the Angel
14813monitor, or with the EmbeddedICE JTAG debug device.
14814
14815@kindex target rdp
14816@item target rdp @var{dev}
14817ARM Demon monitor.
14818
14819@end table
14820
e2f4edfd
EZ
14821@value{GDBN} provides the following ARM-specific commands:
14822
14823@table @code
14824@item set arm disassembler
14825@kindex set arm
14826This commands selects from a list of disassembly styles. The
14827@code{"std"} style is the standard style.
14828
14829@item show arm disassembler
14830@kindex show arm
14831Show the current disassembly style.
14832
14833@item set arm apcs32
14834@cindex ARM 32-bit mode
14835This command toggles ARM operation mode between 32-bit and 26-bit.
14836
14837@item show arm apcs32
14838Display the current usage of the ARM 32-bit mode.
14839
14840@item set arm fpu @var{fputype}
14841This command sets the ARM floating-point unit (FPU) type. The
14842argument @var{fputype} can be one of these:
14843
14844@table @code
14845@item auto
14846Determine the FPU type by querying the OS ABI.
14847@item softfpa
14848Software FPU, with mixed-endian doubles on little-endian ARM
14849processors.
14850@item fpa
14851GCC-compiled FPA co-processor.
14852@item softvfp
14853Software FPU with pure-endian doubles.
14854@item vfp
14855VFP co-processor.
14856@end table
14857
14858@item show arm fpu
14859Show the current type of the FPU.
14860
14861@item set arm abi
14862This command forces @value{GDBN} to use the specified ABI.
14863
14864@item show arm abi
14865Show the currently used ABI.
14866
14867@item set debug arm
14868Toggle whether to display ARM-specific debugging messages from the ARM
14869target support subsystem.
14870
14871@item show debug arm
14872Show whether ARM-specific debugging messages are enabled.
14873@end table
14874
c45da7e6
EZ
14875The following commands are available when an ARM target is debugged
14876using the RDI interface:
14877
14878@table @code
14879@item rdilogfile @r{[}@var{file}@r{]}
14880@kindex rdilogfile
14881@cindex ADP (Angel Debugger Protocol) logging
14882Set the filename for the ADP (Angel Debugger Protocol) packet log.
14883With an argument, sets the log file to the specified @var{file}. With
14884no argument, show the current log file name. The default log file is
14885@file{rdi.log}.
14886
14887@item rdilogenable @r{[}@var{arg}@r{]}
14888@kindex rdilogenable
14889Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14890enables logging, with an argument 0 or @code{"no"} disables it. With
14891no arguments displays the current setting. When logging is enabled,
14892ADP packets exchanged between @value{GDBN} and the RDI target device
14893are logged to a file.
14894
14895@item set rdiromatzero
14896@kindex set rdiromatzero
14897@cindex ROM at zero address, RDI
14898Tell @value{GDBN} whether the target has ROM at address 0. If on,
14899vector catching is disabled, so that zero address can be used. If off
14900(the default), vector catching is enabled. For this command to take
14901effect, it needs to be invoked prior to the @code{target rdi} command.
14902
14903@item show rdiromatzero
14904@kindex show rdiromatzero
14905Show the current setting of ROM at zero address.
14906
14907@item set rdiheartbeat
14908@kindex set rdiheartbeat
14909@cindex RDI heartbeat
14910Enable or disable RDI heartbeat packets. It is not recommended to
14911turn on this option, since it confuses ARM and EPI JTAG interface, as
14912well as the Angel monitor.
14913
14914@item show rdiheartbeat
14915@kindex show rdiheartbeat
14916Show the setting of RDI heartbeat packets.
14917@end table
14918
e2f4edfd 14919
8e04817f 14920@node M32R/D
ba04e063 14921@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14922
14923@table @code
8e04817f
AC
14924@kindex target m32r
14925@item target m32r @var{dev}
172c2a43 14926Renesas M32R/D ROM monitor.
8e04817f 14927
fb3e19c0
KI
14928@kindex target m32rsdi
14929@item target m32rsdi @var{dev}
14930Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14931@end table
14932
14933The following @value{GDBN} commands are specific to the M32R monitor:
14934
14935@table @code
14936@item set download-path @var{path}
14937@kindex set download-path
14938@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14939Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14940
14941@item show download-path
14942@kindex show download-path
14943Show the default path for downloadable @sc{srec} files.
fb3e19c0 14944
721c2651
EZ
14945@item set board-address @var{addr}
14946@kindex set board-address
14947@cindex M32-EVA target board address
14948Set the IP address for the M32R-EVA target board.
14949
14950@item show board-address
14951@kindex show board-address
14952Show the current IP address of the target board.
14953
14954@item set server-address @var{addr}
14955@kindex set server-address
14956@cindex download server address (M32R)
14957Set the IP address for the download server, which is the @value{GDBN}'s
14958host machine.
14959
14960@item show server-address
14961@kindex show server-address
14962Display the IP address of the download server.
14963
14964@item upload @r{[}@var{file}@r{]}
14965@kindex upload@r{, M32R}
14966Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14967upload capability. If no @var{file} argument is given, the current
14968executable file is uploaded.
14969
14970@item tload @r{[}@var{file}@r{]}
14971@kindex tload@r{, M32R}
14972Test the @code{upload} command.
8e04817f
AC
14973@end table
14974
ba04e063
EZ
14975The following commands are available for M32R/SDI:
14976
14977@table @code
14978@item sdireset
14979@kindex sdireset
14980@cindex reset SDI connection, M32R
14981This command resets the SDI connection.
14982
14983@item sdistatus
14984@kindex sdistatus
14985This command shows the SDI connection status.
14986
14987@item debug_chaos
14988@kindex debug_chaos
14989@cindex M32R/Chaos debugging
14990Instructs the remote that M32R/Chaos debugging is to be used.
14991
14992@item use_debug_dma
14993@kindex use_debug_dma
14994Instructs the remote to use the DEBUG_DMA method of accessing memory.
14995
14996@item use_mon_code
14997@kindex use_mon_code
14998Instructs the remote to use the MON_CODE method of accessing memory.
14999
15000@item use_ib_break
15001@kindex use_ib_break
15002Instructs the remote to set breakpoints by IB break.
15003
15004@item use_dbt_break
15005@kindex use_dbt_break
15006Instructs the remote to set breakpoints by DBT.
15007@end table
15008
8e04817f
AC
15009@node M68K
15010@subsection M68k
15011
7ce59000
DJ
15012The Motorola m68k configuration includes ColdFire support, and a
15013target command for the following ROM monitor.
8e04817f
AC
15014
15015@table @code
15016
8e04817f
AC
15017@kindex target dbug
15018@item target dbug @var{dev}
15019dBUG ROM monitor for Motorola ColdFire.
15020
8e04817f
AC
15021@end table
15022
8e04817f
AC
15023@node MIPS Embedded
15024@subsection MIPS Embedded
15025
15026@cindex MIPS boards
15027@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15028MIPS board attached to a serial line. This is available when
15029you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15030
8e04817f
AC
15031@need 1000
15032Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15033
8e04817f
AC
15034@table @code
15035@item target mips @var{port}
15036@kindex target mips @var{port}
15037To run a program on the board, start up @code{@value{GDBP}} with the
15038name of your program as the argument. To connect to the board, use the
15039command @samp{target mips @var{port}}, where @var{port} is the name of
15040the serial port connected to the board. If the program has not already
15041been downloaded to the board, you may use the @code{load} command to
15042download it. You can then use all the usual @value{GDBN} commands.
104c1213 15043
8e04817f
AC
15044For example, this sequence connects to the target board through a serial
15045port, and loads and runs a program called @var{prog} through the
15046debugger:
104c1213 15047
474c8240 15048@smallexample
8e04817f
AC
15049host$ @value{GDBP} @var{prog}
15050@value{GDBN} is free software and @dots{}
15051(@value{GDBP}) target mips /dev/ttyb
15052(@value{GDBP}) load @var{prog}
15053(@value{GDBP}) run
474c8240 15054@end smallexample
104c1213 15055
8e04817f
AC
15056@item target mips @var{hostname}:@var{portnumber}
15057On some @value{GDBN} host configurations, you can specify a TCP
15058connection (for instance, to a serial line managed by a terminal
15059concentrator) instead of a serial port, using the syntax
15060@samp{@var{hostname}:@var{portnumber}}.
104c1213 15061
8e04817f
AC
15062@item target pmon @var{port}
15063@kindex target pmon @var{port}
15064PMON ROM monitor.
104c1213 15065
8e04817f
AC
15066@item target ddb @var{port}
15067@kindex target ddb @var{port}
15068NEC's DDB variant of PMON for Vr4300.
104c1213 15069
8e04817f
AC
15070@item target lsi @var{port}
15071@kindex target lsi @var{port}
15072LSI variant of PMON.
104c1213 15073
8e04817f
AC
15074@kindex target r3900
15075@item target r3900 @var{dev}
15076Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15077
8e04817f
AC
15078@kindex target array
15079@item target array @var{dev}
15080Array Tech LSI33K RAID controller board.
104c1213 15081
8e04817f 15082@end table
104c1213 15083
104c1213 15084
8e04817f
AC
15085@noindent
15086@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15087
8e04817f 15088@table @code
8e04817f
AC
15089@item set mipsfpu double
15090@itemx set mipsfpu single
15091@itemx set mipsfpu none
a64548ea 15092@itemx set mipsfpu auto
8e04817f
AC
15093@itemx show mipsfpu
15094@kindex set mipsfpu
15095@kindex show mipsfpu
15096@cindex MIPS remote floating point
15097@cindex floating point, MIPS remote
15098If your target board does not support the MIPS floating point
15099coprocessor, you should use the command @samp{set mipsfpu none} (if you
15100need this, you may wish to put the command in your @value{GDBN} init
15101file). This tells @value{GDBN} how to find the return value of
15102functions which return floating point values. It also allows
15103@value{GDBN} to avoid saving the floating point registers when calling
15104functions on the board. If you are using a floating point coprocessor
15105with only single precision floating point support, as on the @sc{r4650}
15106processor, use the command @samp{set mipsfpu single}. The default
15107double precision floating point coprocessor may be selected using
15108@samp{set mipsfpu double}.
104c1213 15109
8e04817f
AC
15110In previous versions the only choices were double precision or no
15111floating point, so @samp{set mipsfpu on} will select double precision
15112and @samp{set mipsfpu off} will select no floating point.
104c1213 15113
8e04817f
AC
15114As usual, you can inquire about the @code{mipsfpu} variable with
15115@samp{show mipsfpu}.
104c1213 15116
8e04817f
AC
15117@item set timeout @var{seconds}
15118@itemx set retransmit-timeout @var{seconds}
15119@itemx show timeout
15120@itemx show retransmit-timeout
15121@cindex @code{timeout}, MIPS protocol
15122@cindex @code{retransmit-timeout}, MIPS protocol
15123@kindex set timeout
15124@kindex show timeout
15125@kindex set retransmit-timeout
15126@kindex show retransmit-timeout
15127You can control the timeout used while waiting for a packet, in the MIPS
15128remote protocol, with the @code{set timeout @var{seconds}} command. The
15129default is 5 seconds. Similarly, you can control the timeout used while
15130waiting for an acknowledgement of a packet with the @code{set
15131retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15132You can inspect both values with @code{show timeout} and @code{show
15133retransmit-timeout}. (These commands are @emph{only} available when
15134@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15135
8e04817f
AC
15136The timeout set by @code{set timeout} does not apply when @value{GDBN}
15137is waiting for your program to stop. In that case, @value{GDBN} waits
15138forever because it has no way of knowing how long the program is going
15139to run before stopping.
ba04e063
EZ
15140
15141@item set syn-garbage-limit @var{num}
15142@kindex set syn-garbage-limit@r{, MIPS remote}
15143@cindex synchronize with remote MIPS target
15144Limit the maximum number of characters @value{GDBN} should ignore when
15145it tries to synchronize with the remote target. The default is 10
15146characters. Setting the limit to -1 means there's no limit.
15147
15148@item show syn-garbage-limit
15149@kindex show syn-garbage-limit@r{, MIPS remote}
15150Show the current limit on the number of characters to ignore when
15151trying to synchronize with the remote system.
15152
15153@item set monitor-prompt @var{prompt}
15154@kindex set monitor-prompt@r{, MIPS remote}
15155@cindex remote monitor prompt
15156Tell @value{GDBN} to expect the specified @var{prompt} string from the
15157remote monitor. The default depends on the target:
15158@table @asis
15159@item pmon target
15160@samp{PMON}
15161@item ddb target
15162@samp{NEC010}
15163@item lsi target
15164@samp{PMON>}
15165@end table
15166
15167@item show monitor-prompt
15168@kindex show monitor-prompt@r{, MIPS remote}
15169Show the current strings @value{GDBN} expects as the prompt from the
15170remote monitor.
15171
15172@item set monitor-warnings
15173@kindex set monitor-warnings@r{, MIPS remote}
15174Enable or disable monitor warnings about hardware breakpoints. This
15175has effect only for the @code{lsi} target. When on, @value{GDBN} will
15176display warning messages whose codes are returned by the @code{lsi}
15177PMON monitor for breakpoint commands.
15178
15179@item show monitor-warnings
15180@kindex show monitor-warnings@r{, MIPS remote}
15181Show the current setting of printing monitor warnings.
15182
15183@item pmon @var{command}
15184@kindex pmon@r{, MIPS remote}
15185@cindex send PMON command
15186This command allows sending an arbitrary @var{command} string to the
15187monitor. The monitor must be in debug mode for this to work.
8e04817f 15188@end table
104c1213 15189
a37295f9
MM
15190@node OpenRISC 1000
15191@subsection OpenRISC 1000
15192@cindex OpenRISC 1000
15193
15194@cindex or1k boards
15195See OR1k Architecture document (@uref{www.opencores.org}) for more information
15196about platform and commands.
15197
15198@table @code
15199
15200@kindex target jtag
15201@item target jtag jtag://@var{host}:@var{port}
15202
15203Connects to remote JTAG server.
15204JTAG remote server can be either an or1ksim or JTAG server,
15205connected via parallel port to the board.
15206
15207Example: @code{target jtag jtag://localhost:9999}
15208
15209@kindex or1ksim
15210@item or1ksim @var{command}
15211If connected to @code{or1ksim} OpenRISC 1000 Architectural
15212Simulator, proprietary commands can be executed.
15213
15214@kindex info or1k spr
15215@item info or1k spr
15216Displays spr groups.
15217
15218@item info or1k spr @var{group}
15219@itemx info or1k spr @var{groupno}
15220Displays register names in selected group.
15221
15222@item info or1k spr @var{group} @var{register}
15223@itemx info or1k spr @var{register}
15224@itemx info or1k spr @var{groupno} @var{registerno}
15225@itemx info or1k spr @var{registerno}
15226Shows information about specified spr register.
15227
15228@kindex spr
15229@item spr @var{group} @var{register} @var{value}
15230@itemx spr @var{register @var{value}}
15231@itemx spr @var{groupno} @var{registerno @var{value}}
15232@itemx spr @var{registerno @var{value}}
15233Writes @var{value} to specified spr register.
15234@end table
15235
15236Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15237It is very similar to @value{GDBN} trace, except it does not interfere with normal
15238program execution and is thus much faster. Hardware breakpoints/watchpoint
15239triggers can be set using:
15240@table @code
15241@item $LEA/$LDATA
15242Load effective address/data
15243@item $SEA/$SDATA
15244Store effective address/data
15245@item $AEA/$ADATA
15246Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15247@item $FETCH
15248Fetch data
15249@end table
15250
15251When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15252@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15253
15254@code{htrace} commands:
15255@cindex OpenRISC 1000 htrace
15256@table @code
15257@kindex hwatch
15258@item hwatch @var{conditional}
d3e8051b 15259Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15260or Data. For example:
15261
15262@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15263
15264@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15265
4644b6e3 15266@kindex htrace
a37295f9
MM
15267@item htrace info
15268Display information about current HW trace configuration.
15269
a37295f9
MM
15270@item htrace trigger @var{conditional}
15271Set starting criteria for HW trace.
15272
a37295f9
MM
15273@item htrace qualifier @var{conditional}
15274Set acquisition qualifier for HW trace.
15275
a37295f9
MM
15276@item htrace stop @var{conditional}
15277Set HW trace stopping criteria.
15278
f153cc92 15279@item htrace record [@var{data}]*
a37295f9
MM
15280Selects the data to be recorded, when qualifier is met and HW trace was
15281triggered.
15282
a37295f9 15283@item htrace enable
a37295f9
MM
15284@itemx htrace disable
15285Enables/disables the HW trace.
15286
f153cc92 15287@item htrace rewind [@var{filename}]
a37295f9
MM
15288Clears currently recorded trace data.
15289
15290If filename is specified, new trace file is made and any newly collected data
15291will be written there.
15292
f153cc92 15293@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15294Prints trace buffer, using current record configuration.
15295
a37295f9
MM
15296@item htrace mode continuous
15297Set continuous trace mode.
15298
a37295f9
MM
15299@item htrace mode suspend
15300Set suspend trace mode.
15301
15302@end table
15303
4acd40f3
TJB
15304@node PowerPC Embedded
15305@subsection PowerPC Embedded
104c1213 15306
55eddb0f
DJ
15307@value{GDBN} provides the following PowerPC-specific commands:
15308
104c1213 15309@table @code
55eddb0f
DJ
15310@kindex set powerpc
15311@item set powerpc soft-float
15312@itemx show powerpc soft-float
15313Force @value{GDBN} to use (or not use) a software floating point calling
15314convention. By default, @value{GDBN} selects the calling convention based
15315on the selected architecture and the provided executable file.
15316
15317@item set powerpc vector-abi
15318@itemx show powerpc vector-abi
15319Force @value{GDBN} to use the specified calling convention for vector
15320arguments and return values. The valid options are @samp{auto};
15321@samp{generic}, to avoid vector registers even if they are present;
15322@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15323registers. By default, @value{GDBN} selects the calling convention
15324based on the selected architecture and the provided executable file.
15325
8e04817f
AC
15326@kindex target dink32
15327@item target dink32 @var{dev}
15328DINK32 ROM monitor.
104c1213 15329
8e04817f
AC
15330@kindex target ppcbug
15331@item target ppcbug @var{dev}
15332@kindex target ppcbug1
15333@item target ppcbug1 @var{dev}
15334PPCBUG ROM monitor for PowerPC.
104c1213 15335
8e04817f
AC
15336@kindex target sds
15337@item target sds @var{dev}
15338SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15339@end table
8e04817f 15340
c45da7e6 15341@cindex SDS protocol
d52fb0e9 15342The following commands specific to the SDS protocol are supported
55eddb0f 15343by @value{GDBN}:
c45da7e6
EZ
15344
15345@table @code
15346@item set sdstimeout @var{nsec}
15347@kindex set sdstimeout
15348Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15349default is 2 seconds.
15350
15351@item show sdstimeout
15352@kindex show sdstimeout
15353Show the current value of the SDS timeout.
15354
15355@item sds @var{command}
15356@kindex sds@r{, a command}
15357Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15358@end table
15359
c45da7e6 15360
8e04817f
AC
15361@node PA
15362@subsection HP PA Embedded
104c1213
JM
15363
15364@table @code
15365
8e04817f
AC
15366@kindex target op50n
15367@item target op50n @var{dev}
15368OP50N monitor, running on an OKI HPPA board.
15369
15370@kindex target w89k
15371@item target w89k @var{dev}
15372W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15373
15374@end table
15375
8e04817f
AC
15376@node Sparclet
15377@subsection Tsqware Sparclet
104c1213 15378
8e04817f
AC
15379@cindex Sparclet
15380
15381@value{GDBN} enables developers to debug tasks running on
15382Sparclet targets from a Unix host.
15383@value{GDBN} uses code that runs on
15384both the Unix host and on the Sparclet target. The program
15385@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15386
8e04817f
AC
15387@table @code
15388@item remotetimeout @var{args}
15389@kindex remotetimeout
15390@value{GDBN} supports the option @code{remotetimeout}.
15391This option is set by the user, and @var{args} represents the number of
15392seconds @value{GDBN} waits for responses.
104c1213
JM
15393@end table
15394
8e04817f
AC
15395@cindex compiling, on Sparclet
15396When compiling for debugging, include the options @samp{-g} to get debug
15397information and @samp{-Ttext} to relocate the program to where you wish to
15398load it on the target. You may also want to add the options @samp{-n} or
15399@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15400
474c8240 15401@smallexample
8e04817f 15402sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15403@end smallexample
104c1213 15404
8e04817f 15405You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15406
474c8240 15407@smallexample
8e04817f 15408sparclet-aout-objdump --headers --syms prog
474c8240 15409@end smallexample
104c1213 15410
8e04817f
AC
15411@cindex running, on Sparclet
15412Once you have set
15413your Unix execution search path to find @value{GDBN}, you are ready to
15414run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15415(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15416
8e04817f
AC
15417@value{GDBN} comes up showing the prompt:
15418
474c8240 15419@smallexample
8e04817f 15420(gdbslet)
474c8240 15421@end smallexample
104c1213
JM
15422
15423@menu
8e04817f
AC
15424* Sparclet File:: Setting the file to debug
15425* Sparclet Connection:: Connecting to Sparclet
15426* Sparclet Download:: Sparclet download
15427* Sparclet Execution:: Running and debugging
104c1213
JM
15428@end menu
15429
8e04817f 15430@node Sparclet File
79a6e687 15431@subsubsection Setting File to Debug
104c1213 15432
8e04817f 15433The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15434
474c8240 15435@smallexample
8e04817f 15436(gdbslet) file prog
474c8240 15437@end smallexample
104c1213 15438
8e04817f
AC
15439@need 1000
15440@value{GDBN} then attempts to read the symbol table of @file{prog}.
15441@value{GDBN} locates
15442the file by searching the directories listed in the command search
15443path.
12c27660 15444If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15445files will be searched as well.
15446@value{GDBN} locates
15447the source files by searching the directories listed in the directory search
79a6e687 15448path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15449If it fails
15450to find a file, it displays a message such as:
104c1213 15451
474c8240 15452@smallexample
8e04817f 15453prog: No such file or directory.
474c8240 15454@end smallexample
104c1213 15455
8e04817f
AC
15456When this happens, add the appropriate directories to the search paths with
15457the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15458@code{target} command again.
104c1213 15459
8e04817f
AC
15460@node Sparclet Connection
15461@subsubsection Connecting to Sparclet
104c1213 15462
8e04817f
AC
15463The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15464To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15465
474c8240 15466@smallexample
8e04817f
AC
15467(gdbslet) target sparclet /dev/ttya
15468Remote target sparclet connected to /dev/ttya
15469main () at ../prog.c:3
474c8240 15470@end smallexample
104c1213 15471
8e04817f
AC
15472@need 750
15473@value{GDBN} displays messages like these:
104c1213 15474
474c8240 15475@smallexample
8e04817f 15476Connected to ttya.
474c8240 15477@end smallexample
104c1213 15478
8e04817f 15479@node Sparclet Download
79a6e687 15480@subsubsection Sparclet Download
104c1213 15481
8e04817f
AC
15482@cindex download to Sparclet
15483Once connected to the Sparclet target,
15484you can use the @value{GDBN}
15485@code{load} command to download the file from the host to the target.
15486The file name and load offset should be given as arguments to the @code{load}
15487command.
15488Since the file format is aout, the program must be loaded to the starting
15489address. You can use @code{objdump} to find out what this value is. The load
15490offset is an offset which is added to the VMA (virtual memory address)
15491of each of the file's sections.
15492For instance, if the program
15493@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15494and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15495
474c8240 15496@smallexample
8e04817f
AC
15497(gdbslet) load prog 0x12010000
15498Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15499@end smallexample
104c1213 15500
8e04817f
AC
15501If the code is loaded at a different address then what the program was linked
15502to, you may need to use the @code{section} and @code{add-symbol-file} commands
15503to tell @value{GDBN} where to map the symbol table.
15504
15505@node Sparclet Execution
79a6e687 15506@subsubsection Running and Debugging
8e04817f
AC
15507
15508@cindex running and debugging Sparclet programs
15509You can now begin debugging the task using @value{GDBN}'s execution control
15510commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15511manual for the list of commands.
15512
474c8240 15513@smallexample
8e04817f
AC
15514(gdbslet) b main
15515Breakpoint 1 at 0x12010000: file prog.c, line 3.
15516(gdbslet) run
15517Starting program: prog
15518Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
155193 char *symarg = 0;
15520(gdbslet) step
155214 char *execarg = "hello!";
15522(gdbslet)
474c8240 15523@end smallexample
8e04817f
AC
15524
15525@node Sparclite
15526@subsection Fujitsu Sparclite
104c1213
JM
15527
15528@table @code
15529
8e04817f
AC
15530@kindex target sparclite
15531@item target sparclite @var{dev}
15532Fujitsu sparclite boards, used only for the purpose of loading.
15533You must use an additional command to debug the program.
15534For example: target remote @var{dev} using @value{GDBN} standard
15535remote protocol.
104c1213
JM
15536
15537@end table
15538
8e04817f
AC
15539@node Z8000
15540@subsection Zilog Z8000
104c1213 15541
8e04817f
AC
15542@cindex Z8000
15543@cindex simulator, Z8000
15544@cindex Zilog Z8000 simulator
104c1213 15545
8e04817f
AC
15546When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15547a Z8000 simulator.
15548
15549For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15550unsegmented variant of the Z8000 architecture) or the Z8001 (the
15551segmented variant). The simulator recognizes which architecture is
15552appropriate by inspecting the object code.
104c1213 15553
8e04817f
AC
15554@table @code
15555@item target sim @var{args}
15556@kindex sim
15557@kindex target sim@r{, with Z8000}
15558Debug programs on a simulated CPU. If the simulator supports setup
15559options, specify them via @var{args}.
104c1213
JM
15560@end table
15561
8e04817f
AC
15562@noindent
15563After specifying this target, you can debug programs for the simulated
15564CPU in the same style as programs for your host computer; use the
15565@code{file} command to load a new program image, the @code{run} command
15566to run your program, and so on.
15567
15568As well as making available all the usual machine registers
15569(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15570additional items of information as specially named registers:
104c1213
JM
15571
15572@table @code
15573
8e04817f
AC
15574@item cycles
15575Counts clock-ticks in the simulator.
104c1213 15576
8e04817f
AC
15577@item insts
15578Counts instructions run in the simulator.
104c1213 15579
8e04817f
AC
15580@item time
15581Execution time in 60ths of a second.
104c1213 15582
8e04817f 15583@end table
104c1213 15584
8e04817f
AC
15585You can refer to these values in @value{GDBN} expressions with the usual
15586conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15587conditional breakpoint that suspends only after at least 5000
15588simulated clock ticks.
104c1213 15589
a64548ea
EZ
15590@node AVR
15591@subsection Atmel AVR
15592@cindex AVR
15593
15594When configured for debugging the Atmel AVR, @value{GDBN} supports the
15595following AVR-specific commands:
15596
15597@table @code
15598@item info io_registers
15599@kindex info io_registers@r{, AVR}
15600@cindex I/O registers (Atmel AVR)
15601This command displays information about the AVR I/O registers. For
15602each register, @value{GDBN} prints its number and value.
15603@end table
15604
15605@node CRIS
15606@subsection CRIS
15607@cindex CRIS
15608
15609When configured for debugging CRIS, @value{GDBN} provides the
15610following CRIS-specific commands:
15611
15612@table @code
15613@item set cris-version @var{ver}
15614@cindex CRIS version
e22e55c9
OF
15615Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15616The CRIS version affects register names and sizes. This command is useful in
15617case autodetection of the CRIS version fails.
a64548ea
EZ
15618
15619@item show cris-version
15620Show the current CRIS version.
15621
15622@item set cris-dwarf2-cfi
15623@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15624Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15625Change to @samp{off} when using @code{gcc-cris} whose version is below
15626@code{R59}.
a64548ea
EZ
15627
15628@item show cris-dwarf2-cfi
15629Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15630
15631@item set cris-mode @var{mode}
15632@cindex CRIS mode
15633Set the current CRIS mode to @var{mode}. It should only be changed when
15634debugging in guru mode, in which case it should be set to
15635@samp{guru} (the default is @samp{normal}).
15636
15637@item show cris-mode
15638Show the current CRIS mode.
a64548ea
EZ
15639@end table
15640
15641@node Super-H
15642@subsection Renesas Super-H
15643@cindex Super-H
15644
15645For the Renesas Super-H processor, @value{GDBN} provides these
15646commands:
15647
15648@table @code
15649@item regs
15650@kindex regs@r{, Super-H}
15651Show the values of all Super-H registers.
15652@end table
15653
15654
8e04817f
AC
15655@node Architectures
15656@section Architectures
104c1213 15657
8e04817f
AC
15658This section describes characteristics of architectures that affect
15659all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15660
8e04817f 15661@menu
9c16f35a 15662* i386::
8e04817f
AC
15663* A29K::
15664* Alpha::
15665* MIPS::
a64548ea 15666* HPPA:: HP PA architecture
23d964e7 15667* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15668* PowerPC::
8e04817f 15669@end menu
104c1213 15670
9c16f35a 15671@node i386
db2e3e2e 15672@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15673
15674@table @code
15675@item set struct-convention @var{mode}
15676@kindex set struct-convention
15677@cindex struct return convention
15678@cindex struct/union returned in registers
15679Set the convention used by the inferior to return @code{struct}s and
15680@code{union}s from functions to @var{mode}. Possible values of
15681@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15682default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15683are returned on the stack, while @code{"reg"} means that a
15684@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15685be returned in a register.
15686
15687@item show struct-convention
15688@kindex show struct-convention
15689Show the current setting of the convention to return @code{struct}s
15690from functions.
15691@end table
15692
8e04817f
AC
15693@node A29K
15694@subsection A29K
104c1213
JM
15695
15696@table @code
104c1213 15697
8e04817f
AC
15698@kindex set rstack_high_address
15699@cindex AMD 29K register stack
15700@cindex register stack, AMD29K
15701@item set rstack_high_address @var{address}
15702On AMD 29000 family processors, registers are saved in a separate
15703@dfn{register stack}. There is no way for @value{GDBN} to determine the
15704extent of this stack. Normally, @value{GDBN} just assumes that the
15705stack is ``large enough''. This may result in @value{GDBN} referencing
15706memory locations that do not exist. If necessary, you can get around
15707this problem by specifying the ending address of the register stack with
15708the @code{set rstack_high_address} command. The argument should be an
15709address, which you probably want to precede with @samp{0x} to specify in
15710hexadecimal.
104c1213 15711
8e04817f
AC
15712@kindex show rstack_high_address
15713@item show rstack_high_address
15714Display the current limit of the register stack, on AMD 29000 family
15715processors.
104c1213 15716
8e04817f 15717@end table
104c1213 15718
8e04817f
AC
15719@node Alpha
15720@subsection Alpha
104c1213 15721
8e04817f 15722See the following section.
104c1213 15723
8e04817f
AC
15724@node MIPS
15725@subsection MIPS
104c1213 15726
8e04817f
AC
15727@cindex stack on Alpha
15728@cindex stack on MIPS
15729@cindex Alpha stack
15730@cindex MIPS stack
15731Alpha- and MIPS-based computers use an unusual stack frame, which
15732sometimes requires @value{GDBN} to search backward in the object code to
15733find the beginning of a function.
104c1213 15734
8e04817f
AC
15735@cindex response time, MIPS debugging
15736To improve response time (especially for embedded applications, where
15737@value{GDBN} may be restricted to a slow serial line for this search)
15738you may want to limit the size of this search, using one of these
15739commands:
104c1213 15740
8e04817f
AC
15741@table @code
15742@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15743@item set heuristic-fence-post @var{limit}
15744Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15745search for the beginning of a function. A value of @var{0} (the
15746default) means there is no limit. However, except for @var{0}, the
15747larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15748and therefore the longer it takes to run. You should only need to use
15749this command when debugging a stripped executable.
104c1213 15750
8e04817f
AC
15751@item show heuristic-fence-post
15752Display the current limit.
15753@end table
104c1213
JM
15754
15755@noindent
8e04817f
AC
15756These commands are available @emph{only} when @value{GDBN} is configured
15757for debugging programs on Alpha or MIPS processors.
104c1213 15758
a64548ea
EZ
15759Several MIPS-specific commands are available when debugging MIPS
15760programs:
15761
15762@table @code
a64548ea
EZ
15763@item set mips abi @var{arg}
15764@kindex set mips abi
15765@cindex set ABI for MIPS
15766Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15767values of @var{arg} are:
15768
15769@table @samp
15770@item auto
15771The default ABI associated with the current binary (this is the
15772default).
15773@item o32
15774@item o64
15775@item n32
15776@item n64
15777@item eabi32
15778@item eabi64
15779@item auto
15780@end table
15781
15782@item show mips abi
15783@kindex show mips abi
15784Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15785
15786@item set mipsfpu
15787@itemx show mipsfpu
15788@xref{MIPS Embedded, set mipsfpu}.
15789
15790@item set mips mask-address @var{arg}
15791@kindex set mips mask-address
15792@cindex MIPS addresses, masking
15793This command determines whether the most-significant 32 bits of 64-bit
15794MIPS addresses are masked off. The argument @var{arg} can be
15795@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15796setting, which lets @value{GDBN} determine the correct value.
15797
15798@item show mips mask-address
15799@kindex show mips mask-address
15800Show whether the upper 32 bits of MIPS addresses are masked off or
15801not.
15802
15803@item set remote-mips64-transfers-32bit-regs
15804@kindex set remote-mips64-transfers-32bit-regs
15805This command controls compatibility with 64-bit MIPS targets that
15806transfer data in 32-bit quantities. If you have an old MIPS 64 target
15807that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15808and 64 bits for other registers, set this option to @samp{on}.
15809
15810@item show remote-mips64-transfers-32bit-regs
15811@kindex show remote-mips64-transfers-32bit-regs
15812Show the current setting of compatibility with older MIPS 64 targets.
15813
15814@item set debug mips
15815@kindex set debug mips
15816This command turns on and off debugging messages for the MIPS-specific
15817target code in @value{GDBN}.
15818
15819@item show debug mips
15820@kindex show debug mips
15821Show the current setting of MIPS debugging messages.
15822@end table
15823
15824
15825@node HPPA
15826@subsection HPPA
15827@cindex HPPA support
15828
d3e8051b 15829When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15830following special commands:
15831
15832@table @code
15833@item set debug hppa
15834@kindex set debug hppa
db2e3e2e 15835This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15836messages are to be displayed.
15837
15838@item show debug hppa
15839Show whether HPPA debugging messages are displayed.
15840
15841@item maint print unwind @var{address}
15842@kindex maint print unwind@r{, HPPA}
15843This command displays the contents of the unwind table entry at the
15844given @var{address}.
15845
15846@end table
15847
104c1213 15848
23d964e7
UW
15849@node SPU
15850@subsection Cell Broadband Engine SPU architecture
15851@cindex Cell Broadband Engine
15852@cindex SPU
15853
15854When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15855it provides the following special commands:
15856
15857@table @code
15858@item info spu event
15859@kindex info spu
15860Display SPU event facility status. Shows current event mask
15861and pending event status.
15862
15863@item info spu signal
15864Display SPU signal notification facility status. Shows pending
15865signal-control word and signal notification mode of both signal
15866notification channels.
15867
15868@item info spu mailbox
15869Display SPU mailbox facility status. Shows all pending entries,
15870in order of processing, in each of the SPU Write Outbound,
15871SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15872
15873@item info spu dma
15874Display MFC DMA status. Shows all pending commands in the MFC
15875DMA queue. For each entry, opcode, tag, class IDs, effective
15876and local store addresses and transfer size are shown.
15877
15878@item info spu proxydma
15879Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15880Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15881and local store addresses and transfer size are shown.
15882
15883@end table
15884
4acd40f3
TJB
15885@node PowerPC
15886@subsection PowerPC
15887@cindex PowerPC architecture
15888
15889When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15890pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15891numbers stored in the floating point registers. These values must be stored
15892in two consecutive registers, always starting at an even register like
15893@code{f0} or @code{f2}.
15894
15895The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15896by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15897@code{f2} and @code{f3} for @code{$dl1} and so on.
15898
23d964e7 15899
8e04817f
AC
15900@node Controlling GDB
15901@chapter Controlling @value{GDBN}
15902
15903You can alter the way @value{GDBN} interacts with you by using the
15904@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15905data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15906described here.
15907
15908@menu
15909* Prompt:: Prompt
15910* Editing:: Command editing
d620b259 15911* Command History:: Command history
8e04817f
AC
15912* Screen Size:: Screen size
15913* Numbers:: Numbers
1e698235 15914* ABI:: Configuring the current ABI
8e04817f
AC
15915* Messages/Warnings:: Optional warnings and messages
15916* Debugging Output:: Optional messages about internal happenings
15917@end menu
15918
15919@node Prompt
15920@section Prompt
104c1213 15921
8e04817f 15922@cindex prompt
104c1213 15923
8e04817f
AC
15924@value{GDBN} indicates its readiness to read a command by printing a string
15925called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15926can change the prompt string with the @code{set prompt} command. For
15927instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15928the prompt in one of the @value{GDBN} sessions so that you can always tell
15929which one you are talking to.
104c1213 15930
8e04817f
AC
15931@emph{Note:} @code{set prompt} does not add a space for you after the
15932prompt you set. This allows you to set a prompt which ends in a space
15933or a prompt that does not.
104c1213 15934
8e04817f
AC
15935@table @code
15936@kindex set prompt
15937@item set prompt @var{newprompt}
15938Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15939
8e04817f
AC
15940@kindex show prompt
15941@item show prompt
15942Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15943@end table
15944
8e04817f 15945@node Editing
79a6e687 15946@section Command Editing
8e04817f
AC
15947@cindex readline
15948@cindex command line editing
104c1213 15949
703663ab 15950@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15951@sc{gnu} library provides consistent behavior for programs which provide a
15952command line interface to the user. Advantages are @sc{gnu} Emacs-style
15953or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15954substitution, and a storage and recall of command history across
15955debugging sessions.
104c1213 15956
8e04817f
AC
15957You may control the behavior of command line editing in @value{GDBN} with the
15958command @code{set}.
104c1213 15959
8e04817f
AC
15960@table @code
15961@kindex set editing
15962@cindex editing
15963@item set editing
15964@itemx set editing on
15965Enable command line editing (enabled by default).
104c1213 15966
8e04817f
AC
15967@item set editing off
15968Disable command line editing.
104c1213 15969
8e04817f
AC
15970@kindex show editing
15971@item show editing
15972Show whether command line editing is enabled.
104c1213
JM
15973@end table
15974
703663ab
EZ
15975@xref{Command Line Editing}, for more details about the Readline
15976interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15977encouraged to read that chapter.
15978
d620b259 15979@node Command History
79a6e687 15980@section Command History
703663ab 15981@cindex command history
8e04817f
AC
15982
15983@value{GDBN} can keep track of the commands you type during your
15984debugging sessions, so that you can be certain of precisely what
15985happened. Use these commands to manage the @value{GDBN} command
15986history facility.
104c1213 15987
703663ab
EZ
15988@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15989package, to provide the history facility. @xref{Using History
15990Interactively}, for the detailed description of the History library.
15991
d620b259 15992To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15993the state which is seen by users, prefix it with @samp{server }
15994(@pxref{Server Prefix}). This
d620b259
NR
15995means that this command will not affect the command history, nor will it
15996affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15997pressed on a line by itself.
15998
15999@cindex @code{server}, command prefix
16000The server prefix does not affect the recording of values into the value
16001history; to print a value without recording it into the value history,
16002use the @code{output} command instead of the @code{print} command.
16003
703663ab
EZ
16004Here is the description of @value{GDBN} commands related to command
16005history.
16006
104c1213 16007@table @code
8e04817f
AC
16008@cindex history substitution
16009@cindex history file
16010@kindex set history filename
4644b6e3 16011@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16012@item set history filename @var{fname}
16013Set the name of the @value{GDBN} command history file to @var{fname}.
16014This is the file where @value{GDBN} reads an initial command history
16015list, and where it writes the command history from this session when it
16016exits. You can access this list through history expansion or through
16017the history command editing characters listed below. This file defaults
16018to the value of the environment variable @code{GDBHISTFILE}, or to
16019@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16020is not set.
104c1213 16021
9c16f35a
EZ
16022@cindex save command history
16023@kindex set history save
8e04817f
AC
16024@item set history save
16025@itemx set history save on
16026Record command history in a file, whose name may be specified with the
16027@code{set history filename} command. By default, this option is disabled.
104c1213 16028
8e04817f
AC
16029@item set history save off
16030Stop recording command history in a file.
104c1213 16031
8e04817f 16032@cindex history size
9c16f35a 16033@kindex set history size
6fc08d32 16034@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16035@item set history size @var{size}
16036Set the number of commands which @value{GDBN} keeps in its history list.
16037This defaults to the value of the environment variable
16038@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16039@end table
16040
8e04817f 16041History expansion assigns special meaning to the character @kbd{!}.
703663ab 16042@xref{Event Designators}, for more details.
8e04817f 16043
703663ab 16044@cindex history expansion, turn on/off
8e04817f
AC
16045Since @kbd{!} is also the logical not operator in C, history expansion
16046is off by default. If you decide to enable history expansion with the
16047@code{set history expansion on} command, you may sometimes need to
16048follow @kbd{!} (when it is used as logical not, in an expression) with
16049a space or a tab to prevent it from being expanded. The readline
16050history facilities do not attempt substitution on the strings
16051@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16052
16053The commands to control history expansion are:
104c1213
JM
16054
16055@table @code
8e04817f
AC
16056@item set history expansion on
16057@itemx set history expansion
703663ab 16058@kindex set history expansion
8e04817f 16059Enable history expansion. History expansion is off by default.
104c1213 16060
8e04817f
AC
16061@item set history expansion off
16062Disable history expansion.
104c1213 16063
8e04817f
AC
16064@c @group
16065@kindex show history
16066@item show history
16067@itemx show history filename
16068@itemx show history save
16069@itemx show history size
16070@itemx show history expansion
16071These commands display the state of the @value{GDBN} history parameters.
16072@code{show history} by itself displays all four states.
16073@c @end group
16074@end table
16075
16076@table @code
9c16f35a
EZ
16077@kindex show commands
16078@cindex show last commands
16079@cindex display command history
8e04817f
AC
16080@item show commands
16081Display the last ten commands in the command history.
104c1213 16082
8e04817f
AC
16083@item show commands @var{n}
16084Print ten commands centered on command number @var{n}.
16085
16086@item show commands +
16087Print ten commands just after the commands last printed.
104c1213
JM
16088@end table
16089
8e04817f 16090@node Screen Size
79a6e687 16091@section Screen Size
8e04817f
AC
16092@cindex size of screen
16093@cindex pauses in output
104c1213 16094
8e04817f
AC
16095Certain commands to @value{GDBN} may produce large amounts of
16096information output to the screen. To help you read all of it,
16097@value{GDBN} pauses and asks you for input at the end of each page of
16098output. Type @key{RET} when you want to continue the output, or @kbd{q}
16099to discard the remaining output. Also, the screen width setting
16100determines when to wrap lines of output. Depending on what is being
16101printed, @value{GDBN} tries to break the line at a readable place,
16102rather than simply letting it overflow onto the following line.
16103
16104Normally @value{GDBN} knows the size of the screen from the terminal
16105driver software. For example, on Unix @value{GDBN} uses the termcap data base
16106together with the value of the @code{TERM} environment variable and the
16107@code{stty rows} and @code{stty cols} settings. If this is not correct,
16108you can override it with the @code{set height} and @code{set
16109width} commands:
16110
16111@table @code
16112@kindex set height
16113@kindex set width
16114@kindex show width
16115@kindex show height
16116@item set height @var{lpp}
16117@itemx show height
16118@itemx set width @var{cpl}
16119@itemx show width
16120These @code{set} commands specify a screen height of @var{lpp} lines and
16121a screen width of @var{cpl} characters. The associated @code{show}
16122commands display the current settings.
104c1213 16123
8e04817f
AC
16124If you specify a height of zero lines, @value{GDBN} does not pause during
16125output no matter how long the output is. This is useful if output is to a
16126file or to an editor buffer.
104c1213 16127
8e04817f
AC
16128Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16129from wrapping its output.
9c16f35a
EZ
16130
16131@item set pagination on
16132@itemx set pagination off
16133@kindex set pagination
16134Turn the output pagination on or off; the default is on. Turning
16135pagination off is the alternative to @code{set height 0}.
16136
16137@item show pagination
16138@kindex show pagination
16139Show the current pagination mode.
104c1213
JM
16140@end table
16141
8e04817f
AC
16142@node Numbers
16143@section Numbers
16144@cindex number representation
16145@cindex entering numbers
104c1213 16146
8e04817f
AC
16147You can always enter numbers in octal, decimal, or hexadecimal in
16148@value{GDBN} by the usual conventions: octal numbers begin with
16149@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16150begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16151@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1615210; likewise, the default display for numbers---when no particular
16153format is specified---is base 10. You can change the default base for
16154both input and output with the commands described below.
104c1213 16155
8e04817f
AC
16156@table @code
16157@kindex set input-radix
16158@item set input-radix @var{base}
16159Set the default base for numeric input. Supported choices
16160for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16161specified either unambiguously or using the current input radix; for
8e04817f 16162example, any of
104c1213 16163
8e04817f 16164@smallexample
9c16f35a
EZ
16165set input-radix 012
16166set input-radix 10.
16167set input-radix 0xa
8e04817f 16168@end smallexample
104c1213 16169
8e04817f 16170@noindent
9c16f35a 16171sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16172leaves the input radix unchanged, no matter what it was, since
16173@samp{10}, being without any leading or trailing signs of its base, is
16174interpreted in the current radix. Thus, if the current radix is 16,
16175@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16176change the radix.
104c1213 16177
8e04817f
AC
16178@kindex set output-radix
16179@item set output-radix @var{base}
16180Set the default base for numeric display. Supported choices
16181for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16182specified either unambiguously or using the current input radix.
104c1213 16183
8e04817f
AC
16184@kindex show input-radix
16185@item show input-radix
16186Display the current default base for numeric input.
104c1213 16187
8e04817f
AC
16188@kindex show output-radix
16189@item show output-radix
16190Display the current default base for numeric display.
9c16f35a
EZ
16191
16192@item set radix @r{[}@var{base}@r{]}
16193@itemx show radix
16194@kindex set radix
16195@kindex show radix
16196These commands set and show the default base for both input and output
16197of numbers. @code{set radix} sets the radix of input and output to
16198the same base; without an argument, it resets the radix back to its
16199default value of 10.
16200
8e04817f 16201@end table
104c1213 16202
1e698235 16203@node ABI
79a6e687 16204@section Configuring the Current ABI
1e698235
DJ
16205
16206@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16207application automatically. However, sometimes you need to override its
16208conclusions. Use these commands to manage @value{GDBN}'s view of the
16209current ABI.
16210
98b45e30
DJ
16211@cindex OS ABI
16212@kindex set osabi
b4e9345d 16213@kindex show osabi
98b45e30
DJ
16214
16215One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16216system targets, either via remote debugging or native emulation.
98b45e30
DJ
16217@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16218but you can override its conclusion using the @code{set osabi} command.
16219One example where this is useful is in debugging of binaries which use
16220an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16221not have the same identifying marks that the standard C library for your
16222platform provides.
16223
16224@table @code
16225@item show osabi
16226Show the OS ABI currently in use.
16227
16228@item set osabi
16229With no argument, show the list of registered available OS ABI's.
16230
16231@item set osabi @var{abi}
16232Set the current OS ABI to @var{abi}.
16233@end table
16234
1e698235 16235@cindex float promotion
1e698235
DJ
16236
16237Generally, the way that an argument of type @code{float} is passed to a
16238function depends on whether the function is prototyped. For a prototyped
16239(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16240according to the architecture's convention for @code{float}. For unprototyped
16241(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16242@code{double} and then passed.
16243
16244Unfortunately, some forms of debug information do not reliably indicate whether
16245a function is prototyped. If @value{GDBN} calls a function that is not marked
16246as prototyped, it consults @kbd{set coerce-float-to-double}.
16247
16248@table @code
a8f24a35 16249@kindex set coerce-float-to-double
1e698235
DJ
16250@item set coerce-float-to-double
16251@itemx set coerce-float-to-double on
16252Arguments of type @code{float} will be promoted to @code{double} when passed
16253to an unprototyped function. This is the default setting.
16254
16255@item set coerce-float-to-double off
16256Arguments of type @code{float} will be passed directly to unprototyped
16257functions.
9c16f35a
EZ
16258
16259@kindex show coerce-float-to-double
16260@item show coerce-float-to-double
16261Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16262@end table
16263
f1212245
DJ
16264@kindex set cp-abi
16265@kindex show cp-abi
16266@value{GDBN} needs to know the ABI used for your program's C@t{++}
16267objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16268used to build your application. @value{GDBN} only fully supports
16269programs with a single C@t{++} ABI; if your program contains code using
16270multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16271program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16272Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16273before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16274``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16275use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16276``auto''.
16277
16278@table @code
16279@item show cp-abi
16280Show the C@t{++} ABI currently in use.
16281
16282@item set cp-abi
16283With no argument, show the list of supported C@t{++} ABI's.
16284
16285@item set cp-abi @var{abi}
16286@itemx set cp-abi auto
16287Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16288@end table
16289
8e04817f 16290@node Messages/Warnings
79a6e687 16291@section Optional Warnings and Messages
104c1213 16292
9c16f35a
EZ
16293@cindex verbose operation
16294@cindex optional warnings
8e04817f
AC
16295By default, @value{GDBN} is silent about its inner workings. If you are
16296running on a slow machine, you may want to use the @code{set verbose}
16297command. This makes @value{GDBN} tell you when it does a lengthy
16298internal operation, so you will not think it has crashed.
104c1213 16299
8e04817f
AC
16300Currently, the messages controlled by @code{set verbose} are those
16301which announce that the symbol table for a source file is being read;
79a6e687 16302see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16303
8e04817f
AC
16304@table @code
16305@kindex set verbose
16306@item set verbose on
16307Enables @value{GDBN} output of certain informational messages.
104c1213 16308
8e04817f
AC
16309@item set verbose off
16310Disables @value{GDBN} output of certain informational messages.
104c1213 16311
8e04817f
AC
16312@kindex show verbose
16313@item show verbose
16314Displays whether @code{set verbose} is on or off.
16315@end table
104c1213 16316
8e04817f
AC
16317By default, if @value{GDBN} encounters bugs in the symbol table of an
16318object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16319find this information useful (@pxref{Symbol Errors, ,Errors Reading
16320Symbol Files}).
104c1213 16321
8e04817f 16322@table @code
104c1213 16323
8e04817f
AC
16324@kindex set complaints
16325@item set complaints @var{limit}
16326Permits @value{GDBN} to output @var{limit} complaints about each type of
16327unusual symbols before becoming silent about the problem. Set
16328@var{limit} to zero to suppress all complaints; set it to a large number
16329to prevent complaints from being suppressed.
104c1213 16330
8e04817f
AC
16331@kindex show complaints
16332@item show complaints
16333Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16334
8e04817f 16335@end table
104c1213 16336
8e04817f
AC
16337By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16338lot of stupid questions to confirm certain commands. For example, if
16339you try to run a program which is already running:
104c1213 16340
474c8240 16341@smallexample
8e04817f
AC
16342(@value{GDBP}) run
16343The program being debugged has been started already.
16344Start it from the beginning? (y or n)
474c8240 16345@end smallexample
104c1213 16346
8e04817f
AC
16347If you are willing to unflinchingly face the consequences of your own
16348commands, you can disable this ``feature'':
104c1213 16349
8e04817f 16350@table @code
104c1213 16351
8e04817f
AC
16352@kindex set confirm
16353@cindex flinching
16354@cindex confirmation
16355@cindex stupid questions
16356@item set confirm off
16357Disables confirmation requests.
104c1213 16358
8e04817f
AC
16359@item set confirm on
16360Enables confirmation requests (the default).
104c1213 16361
8e04817f
AC
16362@kindex show confirm
16363@item show confirm
16364Displays state of confirmation requests.
16365
16366@end table
104c1213 16367
16026cd7
AS
16368@cindex command tracing
16369If you need to debug user-defined commands or sourced files you may find it
16370useful to enable @dfn{command tracing}. In this mode each command will be
16371printed as it is executed, prefixed with one or more @samp{+} symbols, the
16372quantity denoting the call depth of each command.
16373
16374@table @code
16375@kindex set trace-commands
16376@cindex command scripts, debugging
16377@item set trace-commands on
16378Enable command tracing.
16379@item set trace-commands off
16380Disable command tracing.
16381@item show trace-commands
16382Display the current state of command tracing.
16383@end table
16384
8e04817f 16385@node Debugging Output
79a6e687 16386@section Optional Messages about Internal Happenings
4644b6e3
EZ
16387@cindex optional debugging messages
16388
da316a69
EZ
16389@value{GDBN} has commands that enable optional debugging messages from
16390various @value{GDBN} subsystems; normally these commands are of
16391interest to @value{GDBN} maintainers, or when reporting a bug. This
16392section documents those commands.
16393
104c1213 16394@table @code
a8f24a35
EZ
16395@kindex set exec-done-display
16396@item set exec-done-display
16397Turns on or off the notification of asynchronous commands'
16398completion. When on, @value{GDBN} will print a message when an
16399asynchronous command finishes its execution. The default is off.
16400@kindex show exec-done-display
16401@item show exec-done-display
16402Displays the current setting of asynchronous command completion
16403notification.
4644b6e3
EZ
16404@kindex set debug
16405@cindex gdbarch debugging info
a8f24a35 16406@cindex architecture debugging info
8e04817f 16407@item set debug arch
a8f24a35 16408Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16409@kindex show debug
8e04817f
AC
16410@item show debug arch
16411Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16412@item set debug aix-thread
16413@cindex AIX threads
16414Display debugging messages about inner workings of the AIX thread
16415module.
16416@item show debug aix-thread
16417Show the current state of AIX thread debugging info display.
8e04817f 16418@item set debug event
4644b6e3 16419@cindex event debugging info
a8f24a35 16420Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16421default is off.
8e04817f
AC
16422@item show debug event
16423Displays the current state of displaying @value{GDBN} event debugging
16424info.
8e04817f 16425@item set debug expression
4644b6e3 16426@cindex expression debugging info
721c2651
EZ
16427Turns on or off display of debugging info about @value{GDBN}
16428expression parsing. The default is off.
8e04817f 16429@item show debug expression
721c2651
EZ
16430Displays the current state of displaying debugging info about
16431@value{GDBN} expression parsing.
7453dc06 16432@item set debug frame
4644b6e3 16433@cindex frame debugging info
7453dc06
AC
16434Turns on or off display of @value{GDBN} frame debugging info. The
16435default is off.
7453dc06
AC
16436@item show debug frame
16437Displays the current state of displaying @value{GDBN} frame debugging
16438info.
30e91e0b
RC
16439@item set debug infrun
16440@cindex inferior debugging info
16441Turns on or off display of @value{GDBN} debugging info for running the inferior.
16442The default is off. @file{infrun.c} contains GDB's runtime state machine used
16443for implementing operations such as single-stepping the inferior.
16444@item show debug infrun
16445Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16446@item set debug lin-lwp
16447@cindex @sc{gnu}/Linux LWP debug messages
16448@cindex Linux lightweight processes
721c2651 16449Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16450@item show debug lin-lwp
16451Show the current state of Linux LWP debugging messages.
b84876c2
PA
16452@item set debug lin-lwp-async
16453@cindex @sc{gnu}/Linux LWP async debug messages
16454@cindex Linux lightweight processes
16455Turns on or off debugging messages from the Linux LWP async debug support.
16456@item show debug lin-lwp-async
16457Show the current state of Linux LWP async debugging messages.
2b4855ab 16458@item set debug observer
4644b6e3 16459@cindex observer debugging info
2b4855ab
AC
16460Turns on or off display of @value{GDBN} observer debugging. This
16461includes info such as the notification of observable events.
2b4855ab
AC
16462@item show debug observer
16463Displays the current state of observer debugging.
8e04817f 16464@item set debug overload
4644b6e3 16465@cindex C@t{++} overload debugging info
8e04817f 16466Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16467info. This includes info such as ranking of functions, etc. The default
8e04817f 16468is off.
8e04817f
AC
16469@item show debug overload
16470Displays the current state of displaying @value{GDBN} C@t{++} overload
16471debugging info.
8e04817f
AC
16472@cindex packets, reporting on stdout
16473@cindex serial connections, debugging
605a56cb
DJ
16474@cindex debug remote protocol
16475@cindex remote protocol debugging
16476@cindex display remote packets
8e04817f
AC
16477@item set debug remote
16478Turns on or off display of reports on all packets sent back and forth across
16479the serial line to the remote machine. The info is printed on the
16480@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16481@item show debug remote
16482Displays the state of display of remote packets.
8e04817f
AC
16483@item set debug serial
16484Turns on or off display of @value{GDBN} serial debugging info. The
16485default is off.
8e04817f
AC
16486@item show debug serial
16487Displays the current state of displaying @value{GDBN} serial debugging
16488info.
c45da7e6
EZ
16489@item set debug solib-frv
16490@cindex FR-V shared-library debugging
16491Turns on or off debugging messages for FR-V shared-library code.
16492@item show debug solib-frv
16493Display the current state of FR-V shared-library code debugging
16494messages.
8e04817f 16495@item set debug target
4644b6e3 16496@cindex target debugging info
8e04817f
AC
16497Turns on or off display of @value{GDBN} target debugging info. This info
16498includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16499default is 0. Set it to 1 to track events, and to 2 to also track the
16500value of large memory transfers. Changes to this flag do not take effect
16501until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16502@item show debug target
16503Displays the current state of displaying @value{GDBN} target debugging
16504info.
75feb17d
DJ
16505@item set debug timestamp
16506@cindex timestampping debugging info
16507Turns on or off display of timestamps with @value{GDBN} debugging info.
16508When enabled, seconds and microseconds are displayed before each debugging
16509message.
16510@item show debug timestamp
16511Displays the current state of displaying timestamps with @value{GDBN}
16512debugging info.
c45da7e6 16513@item set debugvarobj
4644b6e3 16514@cindex variable object debugging info
8e04817f
AC
16515Turns on or off display of @value{GDBN} variable object debugging
16516info. The default is off.
c45da7e6 16517@item show debugvarobj
8e04817f
AC
16518Displays the current state of displaying @value{GDBN} variable object
16519debugging info.
e776119f
DJ
16520@item set debug xml
16521@cindex XML parser debugging
16522Turns on or off debugging messages for built-in XML parsers.
16523@item show debug xml
16524Displays the current state of XML debugging messages.
8e04817f 16525@end table
104c1213 16526
8e04817f
AC
16527@node Sequences
16528@chapter Canned Sequences of Commands
104c1213 16529
8e04817f 16530Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16531Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16532commands for execution as a unit: user-defined commands and command
16533files.
104c1213 16534
8e04817f 16535@menu
fcc73fe3
EZ
16536* Define:: How to define your own commands
16537* Hooks:: Hooks for user-defined commands
16538* Command Files:: How to write scripts of commands to be stored in a file
16539* Output:: Commands for controlled output
8e04817f 16540@end menu
104c1213 16541
8e04817f 16542@node Define
79a6e687 16543@section User-defined Commands
104c1213 16544
8e04817f 16545@cindex user-defined command
fcc73fe3 16546@cindex arguments, to user-defined commands
8e04817f
AC
16547A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16548which you assign a new name as a command. This is done with the
16549@code{define} command. User commands may accept up to 10 arguments
16550separated by whitespace. Arguments are accessed within the user command
c03c782f 16551via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16552
8e04817f
AC
16553@smallexample
16554define adder
16555 print $arg0 + $arg1 + $arg2
c03c782f 16556end
8e04817f 16557@end smallexample
104c1213
JM
16558
16559@noindent
8e04817f 16560To execute the command use:
104c1213 16561
8e04817f
AC
16562@smallexample
16563adder 1 2 3
16564@end smallexample
104c1213 16565
8e04817f
AC
16566@noindent
16567This defines the command @code{adder}, which prints the sum of
16568its three arguments. Note the arguments are text substitutions, so they may
16569reference variables, use complex expressions, or even perform inferior
16570functions calls.
104c1213 16571
fcc73fe3
EZ
16572@cindex argument count in user-defined commands
16573@cindex how many arguments (user-defined commands)
c03c782f
AS
16574In addition, @code{$argc} may be used to find out how many arguments have
16575been passed. This expands to a number in the range 0@dots{}10.
16576
16577@smallexample
16578define adder
16579 if $argc == 2
16580 print $arg0 + $arg1
16581 end
16582 if $argc == 3
16583 print $arg0 + $arg1 + $arg2
16584 end
16585end
16586@end smallexample
16587
104c1213 16588@table @code
104c1213 16589
8e04817f
AC
16590@kindex define
16591@item define @var{commandname}
16592Define a command named @var{commandname}. If there is already a command
16593by that name, you are asked to confirm that you want to redefine it.
104c1213 16594
8e04817f
AC
16595The definition of the command is made up of other @value{GDBN} command lines,
16596which are given following the @code{define} command. The end of these
16597commands is marked by a line containing @code{end}.
104c1213 16598
8e04817f 16599@kindex document
ca91424e 16600@kindex end@r{ (user-defined commands)}
8e04817f
AC
16601@item document @var{commandname}
16602Document the user-defined command @var{commandname}, so that it can be
16603accessed by @code{help}. The command @var{commandname} must already be
16604defined. This command reads lines of documentation just as @code{define}
16605reads the lines of the command definition, ending with @code{end}.
16606After the @code{document} command is finished, @code{help} on command
16607@var{commandname} displays the documentation you have written.
104c1213 16608
8e04817f
AC
16609You may use the @code{document} command again to change the
16610documentation of a command. Redefining the command with @code{define}
16611does not change the documentation.
104c1213 16612
c45da7e6
EZ
16613@kindex dont-repeat
16614@cindex don't repeat command
16615@item dont-repeat
16616Used inside a user-defined command, this tells @value{GDBN} that this
16617command should not be repeated when the user hits @key{RET}
16618(@pxref{Command Syntax, repeat last command}).
16619
8e04817f
AC
16620@kindex help user-defined
16621@item help user-defined
16622List all user-defined commands, with the first line of the documentation
16623(if any) for each.
104c1213 16624
8e04817f
AC
16625@kindex show user
16626@item show user
16627@itemx show user @var{commandname}
16628Display the @value{GDBN} commands used to define @var{commandname} (but
16629not its documentation). If no @var{commandname} is given, display the
16630definitions for all user-defined commands.
104c1213 16631
fcc73fe3 16632@cindex infinite recursion in user-defined commands
20f01a46
DH
16633@kindex show max-user-call-depth
16634@kindex set max-user-call-depth
16635@item show max-user-call-depth
5ca0cb28
DH
16636@itemx set max-user-call-depth
16637The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16638levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16639infinite recursion and aborts the command.
104c1213
JM
16640@end table
16641
fcc73fe3
EZ
16642In addition to the above commands, user-defined commands frequently
16643use control flow commands, described in @ref{Command Files}.
16644
8e04817f
AC
16645When user-defined commands are executed, the
16646commands of the definition are not printed. An error in any command
16647stops execution of the user-defined command.
104c1213 16648
8e04817f
AC
16649If used interactively, commands that would ask for confirmation proceed
16650without asking when used inside a user-defined command. Many @value{GDBN}
16651commands that normally print messages to say what they are doing omit the
16652messages when used in a user-defined command.
104c1213 16653
8e04817f 16654@node Hooks
79a6e687 16655@section User-defined Command Hooks
8e04817f
AC
16656@cindex command hooks
16657@cindex hooks, for commands
16658@cindex hooks, pre-command
104c1213 16659
8e04817f 16660@kindex hook
8e04817f
AC
16661You may define @dfn{hooks}, which are a special kind of user-defined
16662command. Whenever you run the command @samp{foo}, if the user-defined
16663command @samp{hook-foo} exists, it is executed (with no arguments)
16664before that command.
104c1213 16665
8e04817f
AC
16666@cindex hooks, post-command
16667@kindex hookpost
8e04817f
AC
16668A hook may also be defined which is run after the command you executed.
16669Whenever you run the command @samp{foo}, if the user-defined command
16670@samp{hookpost-foo} exists, it is executed (with no arguments) after
16671that command. Post-execution hooks may exist simultaneously with
16672pre-execution hooks, for the same command.
104c1213 16673
8e04817f 16674It is valid for a hook to call the command which it hooks. If this
9f1c6395 16675occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16676
8e04817f
AC
16677@c It would be nice if hookpost could be passed a parameter indicating
16678@c if the command it hooks executed properly or not. FIXME!
104c1213 16679
8e04817f
AC
16680@kindex stop@r{, a pseudo-command}
16681In addition, a pseudo-command, @samp{stop} exists. Defining
16682(@samp{hook-stop}) makes the associated commands execute every time
16683execution stops in your program: before breakpoint commands are run,
16684displays are printed, or the stack frame is printed.
104c1213 16685
8e04817f
AC
16686For example, to ignore @code{SIGALRM} signals while
16687single-stepping, but treat them normally during normal execution,
16688you could define:
104c1213 16689
474c8240 16690@smallexample
8e04817f
AC
16691define hook-stop
16692handle SIGALRM nopass
16693end
104c1213 16694
8e04817f
AC
16695define hook-run
16696handle SIGALRM pass
16697end
104c1213 16698
8e04817f 16699define hook-continue
d3e8051b 16700handle SIGALRM pass
8e04817f 16701end
474c8240 16702@end smallexample
104c1213 16703
d3e8051b 16704As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16705command, and to add extra text to the beginning and end of the message,
8e04817f 16706you could define:
104c1213 16707
474c8240 16708@smallexample
8e04817f
AC
16709define hook-echo
16710echo <<<---
16711end
104c1213 16712
8e04817f
AC
16713define hookpost-echo
16714echo --->>>\n
16715end
104c1213 16716
8e04817f
AC
16717(@value{GDBP}) echo Hello World
16718<<<---Hello World--->>>
16719(@value{GDBP})
104c1213 16720
474c8240 16721@end smallexample
104c1213 16722
8e04817f
AC
16723You can define a hook for any single-word command in @value{GDBN}, but
16724not for command aliases; you should define a hook for the basic command
c1468174 16725name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16726@c FIXME! So how does Joe User discover whether a command is an alias
16727@c or not?
16728If an error occurs during the execution of your hook, execution of
16729@value{GDBN} commands stops and @value{GDBN} issues a prompt
16730(before the command that you actually typed had a chance to run).
104c1213 16731
8e04817f
AC
16732If you try to define a hook which does not match any known command, you
16733get a warning from the @code{define} command.
c906108c 16734
8e04817f 16735@node Command Files
79a6e687 16736@section Command Files
c906108c 16737
8e04817f 16738@cindex command files
fcc73fe3 16739@cindex scripting commands
6fc08d32
EZ
16740A command file for @value{GDBN} is a text file made of lines that are
16741@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16742also be included. An empty line in a command file does nothing; it
16743does not mean to repeat the last command, as it would from the
16744terminal.
c906108c 16745
6fc08d32
EZ
16746You can request the execution of a command file with the @code{source}
16747command:
c906108c 16748
8e04817f
AC
16749@table @code
16750@kindex source
ca91424e 16751@cindex execute commands from a file
16026cd7 16752@item source [@code{-v}] @var{filename}
8e04817f 16753Execute the command file @var{filename}.
c906108c
SS
16754@end table
16755
fcc73fe3
EZ
16756The lines in a command file are generally executed sequentially,
16757unless the order of execution is changed by one of the
16758@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16759printed as they are executed. An error in any command terminates
16760execution of the command file and control is returned to the console.
c906108c 16761
4b505b12
AS
16762@value{GDBN} searches for @var{filename} in the current directory and then
16763on the search path (specified with the @samp{directory} command).
16764
16026cd7
AS
16765If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16766each command as it is executed. The option must be given before
16767@var{filename}, and is interpreted as part of the filename anywhere else.
16768
8e04817f
AC
16769Commands that would ask for confirmation if used interactively proceed
16770without asking when used in a command file. Many @value{GDBN} commands that
16771normally print messages to say what they are doing omit the messages
16772when called from command files.
c906108c 16773
8e04817f
AC
16774@value{GDBN} also accepts command input from standard input. In this
16775mode, normal output goes to standard output and error output goes to
16776standard error. Errors in a command file supplied on standard input do
6fc08d32 16777not terminate execution of the command file---execution continues with
8e04817f 16778the next command.
c906108c 16779
474c8240 16780@smallexample
8e04817f 16781gdb < cmds > log 2>&1
474c8240 16782@end smallexample
c906108c 16783
8e04817f
AC
16784(The syntax above will vary depending on the shell used.) This example
16785will execute commands from the file @file{cmds}. All output and errors
16786would be directed to @file{log}.
c906108c 16787
fcc73fe3
EZ
16788Since commands stored on command files tend to be more general than
16789commands typed interactively, they frequently need to deal with
16790complicated situations, such as different or unexpected values of
16791variables and symbols, changes in how the program being debugged is
16792built, etc. @value{GDBN} provides a set of flow-control commands to
16793deal with these complexities. Using these commands, you can write
16794complex scripts that loop over data structures, execute commands
16795conditionally, etc.
16796
16797@table @code
16798@kindex if
16799@kindex else
16800@item if
16801@itemx else
16802This command allows to include in your script conditionally executed
16803commands. The @code{if} command takes a single argument, which is an
16804expression to evaluate. It is followed by a series of commands that
16805are executed only if the expression is true (its value is nonzero).
16806There can then optionally be an @code{else} line, followed by a series
16807of commands that are only executed if the expression was false. The
16808end of the list is marked by a line containing @code{end}.
16809
16810@kindex while
16811@item while
16812This command allows to write loops. Its syntax is similar to
16813@code{if}: the command takes a single argument, which is an expression
16814to evaluate, and must be followed by the commands to execute, one per
16815line, terminated by an @code{end}. These commands are called the
16816@dfn{body} of the loop. The commands in the body of @code{while} are
16817executed repeatedly as long as the expression evaluates to true.
16818
16819@kindex loop_break
16820@item loop_break
16821This command exits the @code{while} loop in whose body it is included.
16822Execution of the script continues after that @code{while}s @code{end}
16823line.
16824
16825@kindex loop_continue
16826@item loop_continue
16827This command skips the execution of the rest of the body of commands
16828in the @code{while} loop in whose body it is included. Execution
16829branches to the beginning of the @code{while} loop, where it evaluates
16830the controlling expression.
ca91424e
EZ
16831
16832@kindex end@r{ (if/else/while commands)}
16833@item end
16834Terminate the block of commands that are the body of @code{if},
16835@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16836@end table
16837
16838
8e04817f 16839@node Output
79a6e687 16840@section Commands for Controlled Output
c906108c 16841
8e04817f
AC
16842During the execution of a command file or a user-defined command, normal
16843@value{GDBN} output is suppressed; the only output that appears is what is
16844explicitly printed by the commands in the definition. This section
16845describes three commands useful for generating exactly the output you
16846want.
c906108c
SS
16847
16848@table @code
8e04817f
AC
16849@kindex echo
16850@item echo @var{text}
16851@c I do not consider backslash-space a standard C escape sequence
16852@c because it is not in ANSI.
16853Print @var{text}. Nonprinting characters can be included in
16854@var{text} using C escape sequences, such as @samp{\n} to print a
16855newline. @strong{No newline is printed unless you specify one.}
16856In addition to the standard C escape sequences, a backslash followed
16857by a space stands for a space. This is useful for displaying a
16858string with spaces at the beginning or the end, since leading and
16859trailing spaces are otherwise trimmed from all arguments.
16860To print @samp{@w{ }and foo =@w{ }}, use the command
16861@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16862
8e04817f
AC
16863A backslash at the end of @var{text} can be used, as in C, to continue
16864the command onto subsequent lines. For example,
c906108c 16865
474c8240 16866@smallexample
8e04817f
AC
16867echo This is some text\n\
16868which is continued\n\
16869onto several lines.\n
474c8240 16870@end smallexample
c906108c 16871
8e04817f 16872produces the same output as
c906108c 16873
474c8240 16874@smallexample
8e04817f
AC
16875echo This is some text\n
16876echo which is continued\n
16877echo onto several lines.\n
474c8240 16878@end smallexample
c906108c 16879
8e04817f
AC
16880@kindex output
16881@item output @var{expression}
16882Print the value of @var{expression} and nothing but that value: no
16883newlines, no @samp{$@var{nn} = }. The value is not entered in the
16884value history either. @xref{Expressions, ,Expressions}, for more information
16885on expressions.
c906108c 16886
8e04817f
AC
16887@item output/@var{fmt} @var{expression}
16888Print the value of @var{expression} in format @var{fmt}. You can use
16889the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16890Formats}, for more information.
c906108c 16891
8e04817f 16892@kindex printf
82160952
EZ
16893@item printf @var{template}, @var{expressions}@dots{}
16894Print the values of one or more @var{expressions} under the control of
16895the string @var{template}. To print several values, make
16896@var{expressions} be a comma-separated list of individual expressions,
16897which may be either numbers or pointers. Their values are printed as
16898specified by @var{template}, exactly as a C program would do by
16899executing the code below:
c906108c 16900
474c8240 16901@smallexample
82160952 16902printf (@var{template}, @var{expressions}@dots{});
474c8240 16903@end smallexample
c906108c 16904
82160952
EZ
16905As in @code{C} @code{printf}, ordinary characters in @var{template}
16906are printed verbatim, while @dfn{conversion specification} introduced
16907by the @samp{%} character cause subsequent @var{expressions} to be
16908evaluated, their values converted and formatted according to type and
16909style information encoded in the conversion specifications, and then
16910printed.
16911
8e04817f 16912For example, you can print two values in hex like this:
c906108c 16913
8e04817f
AC
16914@smallexample
16915printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16916@end smallexample
c906108c 16917
82160952
EZ
16918@code{printf} supports all the standard @code{C} conversion
16919specifications, including the flags and modifiers between the @samp{%}
16920character and the conversion letter, with the following exceptions:
16921
16922@itemize @bullet
16923@item
16924The argument-ordering modifiers, such as @samp{2$}, are not supported.
16925
16926@item
16927The modifier @samp{*} is not supported for specifying precision or
16928width.
16929
16930@item
16931The @samp{'} flag (for separation of digits into groups according to
16932@code{LC_NUMERIC'}) is not supported.
16933
16934@item
16935The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16936supported.
16937
16938@item
16939The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16940
16941@item
16942The conversion letters @samp{a} and @samp{A} are not supported.
16943@end itemize
16944
16945@noindent
16946Note that the @samp{ll} type modifier is supported only if the
16947underlying @code{C} implementation used to build @value{GDBN} supports
16948the @code{long long int} type, and the @samp{L} type modifier is
16949supported only if @code{long double} type is available.
16950
16951As in @code{C}, @code{printf} supports simple backslash-escape
16952sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16953@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16954single character. Octal and hexadecimal escape sequences are not
16955supported.
1a619819
LM
16956
16957Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16958(@dfn{Decimal Floating Point}) types using the following length modifiers
16959together with a floating point specifier.
1a619819
LM
16960letters:
16961
16962@itemize @bullet
16963@item
16964@samp{H} for printing @code{Decimal32} types.
16965
16966@item
16967@samp{D} for printing @code{Decimal64} types.
16968
16969@item
16970@samp{DD} for printing @code{Decimal128} types.
16971@end itemize
16972
16973If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16974support for the three length modifiers for DFP types, other modifiers
3b784c4f 16975such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16976
16977In case there is no such @code{C} support, no additional modifiers will be
16978available and the value will be printed in the standard way.
16979
16980Here's an example of printing DFP types using the above conversion letters:
16981@smallexample
0aea4bf3 16982printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16983@end smallexample
16984
c906108c
SS
16985@end table
16986
21c294e6
AC
16987@node Interpreters
16988@chapter Command Interpreters
16989@cindex command interpreters
16990
16991@value{GDBN} supports multiple command interpreters, and some command
16992infrastructure to allow users or user interface writers to switch
16993between interpreters or run commands in other interpreters.
16994
16995@value{GDBN} currently supports two command interpreters, the console
16996interpreter (sometimes called the command-line interpreter or @sc{cli})
16997and the machine interface interpreter (or @sc{gdb/mi}). This manual
16998describes both of these interfaces in great detail.
16999
17000By default, @value{GDBN} will start with the console interpreter.
17001However, the user may choose to start @value{GDBN} with another
17002interpreter by specifying the @option{-i} or @option{--interpreter}
17003startup options. Defined interpreters include:
17004
17005@table @code
17006@item console
17007@cindex console interpreter
17008The traditional console or command-line interpreter. This is the most often
17009used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17010@value{GDBN} will use this interpreter.
17011
17012@item mi
17013@cindex mi interpreter
17014The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17015by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17016or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17017Interface}.
17018
17019@item mi2
17020@cindex mi2 interpreter
17021The current @sc{gdb/mi} interface.
17022
17023@item mi1
17024@cindex mi1 interpreter
17025The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17026
17027@end table
17028
17029@cindex invoke another interpreter
17030The interpreter being used by @value{GDBN} may not be dynamically
17031switched at runtime. Although possible, this could lead to a very
17032precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17033enters the command "interpreter-set console" in a console view,
17034@value{GDBN} would switch to using the console interpreter, rendering
17035the IDE inoperable!
17036
17037@kindex interpreter-exec
17038Although you may only choose a single interpreter at startup, you may execute
17039commands in any interpreter from the current interpreter using the appropriate
17040command. If you are running the console interpreter, simply use the
17041@code{interpreter-exec} command:
17042
17043@smallexample
17044interpreter-exec mi "-data-list-register-names"
17045@end smallexample
17046
17047@sc{gdb/mi} has a similar command, although it is only available in versions of
17048@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17049
8e04817f
AC
17050@node TUI
17051@chapter @value{GDBN} Text User Interface
17052@cindex TUI
d0d5df6f 17053@cindex Text User Interface
c906108c 17054
8e04817f
AC
17055@menu
17056* TUI Overview:: TUI overview
17057* TUI Keys:: TUI key bindings
7cf36c78 17058* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17059* TUI Commands:: TUI-specific commands
8e04817f
AC
17060* TUI Configuration:: TUI configuration variables
17061@end menu
c906108c 17062
46ba6afa 17063The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17064interface which uses the @code{curses} library to show the source
17065file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17066commands in separate text windows. The TUI mode is supported only
17067on platforms where a suitable version of the @code{curses} library
17068is available.
d0d5df6f 17069
46ba6afa
BW
17070@pindex @value{GDBTUI}
17071The TUI mode is enabled by default when you invoke @value{GDBN} as
17072either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17073You can also switch in and out of TUI mode while @value{GDBN} runs by
17074using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17075@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17076
8e04817f 17077@node TUI Overview
79a6e687 17078@section TUI Overview
c906108c 17079
46ba6afa 17080In TUI mode, @value{GDBN} can display several text windows:
c906108c 17081
8e04817f
AC
17082@table @emph
17083@item command
17084This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17085prompt and the @value{GDBN} output. The @value{GDBN} input is still
17086managed using readline.
c906108c 17087
8e04817f
AC
17088@item source
17089The source window shows the source file of the program. The current
46ba6afa 17090line and active breakpoints are displayed in this window.
c906108c 17091
8e04817f
AC
17092@item assembly
17093The assembly window shows the disassembly output of the program.
c906108c 17094
8e04817f 17095@item register
46ba6afa
BW
17096This window shows the processor registers. Registers are highlighted
17097when their values change.
c906108c
SS
17098@end table
17099
269c21fe 17100The source and assembly windows show the current program position
46ba6afa
BW
17101by highlighting the current line and marking it with a @samp{>} marker.
17102Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17103indicates the breakpoint type:
17104
17105@table @code
17106@item B
17107Breakpoint which was hit at least once.
17108
17109@item b
17110Breakpoint which was never hit.
17111
17112@item H
17113Hardware breakpoint which was hit at least once.
17114
17115@item h
17116Hardware breakpoint which was never hit.
269c21fe
SC
17117@end table
17118
17119The second marker indicates whether the breakpoint is enabled or not:
17120
17121@table @code
17122@item +
17123Breakpoint is enabled.
17124
17125@item -
17126Breakpoint is disabled.
269c21fe
SC
17127@end table
17128
46ba6afa
BW
17129The source, assembly and register windows are updated when the current
17130thread changes, when the frame changes, or when the program counter
17131changes.
17132
17133These windows are not all visible at the same time. The command
17134window is always visible. The others can be arranged in several
17135layouts:
c906108c 17136
8e04817f
AC
17137@itemize @bullet
17138@item
46ba6afa 17139source only,
2df3850c 17140
8e04817f 17141@item
46ba6afa 17142assembly only,
8e04817f
AC
17143
17144@item
46ba6afa 17145source and assembly,
8e04817f
AC
17146
17147@item
46ba6afa 17148source and registers, or
c906108c 17149
8e04817f 17150@item
46ba6afa 17151assembly and registers.
8e04817f 17152@end itemize
c906108c 17153
46ba6afa 17154A status line above the command window shows the following information:
b7bb15bc
SC
17155
17156@table @emph
17157@item target
46ba6afa 17158Indicates the current @value{GDBN} target.
b7bb15bc
SC
17159(@pxref{Targets, ,Specifying a Debugging Target}).
17160
17161@item process
46ba6afa 17162Gives the current process or thread number.
b7bb15bc
SC
17163When no process is being debugged, this field is set to @code{No process}.
17164
17165@item function
17166Gives the current function name for the selected frame.
17167The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17168When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17169the string @code{??} is displayed.
17170
17171@item line
17172Indicates the current line number for the selected frame.
46ba6afa 17173When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17174
17175@item pc
17176Indicates the current program counter address.
b7bb15bc
SC
17177@end table
17178
8e04817f
AC
17179@node TUI Keys
17180@section TUI Key Bindings
17181@cindex TUI key bindings
c906108c 17182
8e04817f 17183The TUI installs several key bindings in the readline keymaps
46ba6afa 17184(@pxref{Command Line Editing}). The following key bindings
8e04817f 17185are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17186
8e04817f
AC
17187@table @kbd
17188@kindex C-x C-a
17189@item C-x C-a
17190@kindex C-x a
17191@itemx C-x a
17192@kindex C-x A
17193@itemx C-x A
46ba6afa
BW
17194Enter or leave the TUI mode. When leaving the TUI mode,
17195the curses window management stops and @value{GDBN} operates using
17196its standard mode, writing on the terminal directly. When reentering
17197the TUI mode, control is given back to the curses windows.
8e04817f 17198The screen is then refreshed.
c906108c 17199
8e04817f
AC
17200@kindex C-x 1
17201@item C-x 1
17202Use a TUI layout with only one window. The layout will
17203either be @samp{source} or @samp{assembly}. When the TUI mode
17204is not active, it will switch to the TUI mode.
2df3850c 17205
8e04817f 17206Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17207
8e04817f
AC
17208@kindex C-x 2
17209@item C-x 2
17210Use a TUI layout with at least two windows. When the current
46ba6afa 17211layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17212When a new layout is chosen, one window will always be common to the
17213previous layout and the new one.
c906108c 17214
8e04817f 17215Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17216
72ffddc9
SC
17217@kindex C-x o
17218@item C-x o
17219Change the active window. The TUI associates several key bindings
46ba6afa 17220(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17221gives the focus to the next TUI window.
17222
17223Think of it as the Emacs @kbd{C-x o} binding.
17224
7cf36c78
SC
17225@kindex C-x s
17226@item C-x s
46ba6afa
BW
17227Switch in and out of the TUI SingleKey mode that binds single
17228keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17229@end table
17230
46ba6afa 17231The following key bindings only work in the TUI mode:
5d161b24 17232
46ba6afa 17233@table @asis
8e04817f 17234@kindex PgUp
46ba6afa 17235@item @key{PgUp}
8e04817f 17236Scroll the active window one page up.
c906108c 17237
8e04817f 17238@kindex PgDn
46ba6afa 17239@item @key{PgDn}
8e04817f 17240Scroll the active window one page down.
c906108c 17241
8e04817f 17242@kindex Up
46ba6afa 17243@item @key{Up}
8e04817f 17244Scroll the active window one line up.
c906108c 17245
8e04817f 17246@kindex Down
46ba6afa 17247@item @key{Down}
8e04817f 17248Scroll the active window one line down.
c906108c 17249
8e04817f 17250@kindex Left
46ba6afa 17251@item @key{Left}
8e04817f 17252Scroll the active window one column left.
c906108c 17253
8e04817f 17254@kindex Right
46ba6afa 17255@item @key{Right}
8e04817f 17256Scroll the active window one column right.
c906108c 17257
8e04817f 17258@kindex C-L
46ba6afa 17259@item @kbd{C-L}
8e04817f 17260Refresh the screen.
8e04817f 17261@end table
c906108c 17262
46ba6afa
BW
17263Because the arrow keys scroll the active window in the TUI mode, they
17264are not available for their normal use by readline unless the command
17265window has the focus. When another window is active, you must use
17266other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17267and @kbd{C-f} to control the command window.
8e04817f 17268
7cf36c78
SC
17269@node TUI Single Key Mode
17270@section TUI Single Key Mode
17271@cindex TUI single key mode
17272
46ba6afa
BW
17273The TUI also provides a @dfn{SingleKey} mode, which binds several
17274frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17275switch into this mode, where the following key bindings are used:
7cf36c78
SC
17276
17277@table @kbd
17278@kindex c @r{(SingleKey TUI key)}
17279@item c
17280continue
17281
17282@kindex d @r{(SingleKey TUI key)}
17283@item d
17284down
17285
17286@kindex f @r{(SingleKey TUI key)}
17287@item f
17288finish
17289
17290@kindex n @r{(SingleKey TUI key)}
17291@item n
17292next
17293
17294@kindex q @r{(SingleKey TUI key)}
17295@item q
46ba6afa 17296exit the SingleKey mode.
7cf36c78
SC
17297
17298@kindex r @r{(SingleKey TUI key)}
17299@item r
17300run
17301
17302@kindex s @r{(SingleKey TUI key)}
17303@item s
17304step
17305
17306@kindex u @r{(SingleKey TUI key)}
17307@item u
17308up
17309
17310@kindex v @r{(SingleKey TUI key)}
17311@item v
17312info locals
17313
17314@kindex w @r{(SingleKey TUI key)}
17315@item w
17316where
7cf36c78
SC
17317@end table
17318
17319Other keys temporarily switch to the @value{GDBN} command prompt.
17320The key that was pressed is inserted in the editing buffer so that
17321it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17322with the TUI SingleKey mode. Once the command is entered the TUI
17323SingleKey mode is restored. The only way to permanently leave
7f9087cb 17324this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17325
17326
8e04817f 17327@node TUI Commands
db2e3e2e 17328@section TUI-specific Commands
8e04817f
AC
17329@cindex TUI commands
17330
17331The TUI has specific commands to control the text windows.
46ba6afa
BW
17332These commands are always available, even when @value{GDBN} is not in
17333the TUI mode. When @value{GDBN} is in the standard mode, most
17334of these commands will automatically switch to the TUI mode.
c906108c
SS
17335
17336@table @code
3d757584
SC
17337@item info win
17338@kindex info win
17339List and give the size of all displayed windows.
17340
8e04817f 17341@item layout next
4644b6e3 17342@kindex layout
8e04817f 17343Display the next layout.
2df3850c 17344
8e04817f 17345@item layout prev
8e04817f 17346Display the previous layout.
c906108c 17347
8e04817f 17348@item layout src
8e04817f 17349Display the source window only.
c906108c 17350
8e04817f 17351@item layout asm
8e04817f 17352Display the assembly window only.
c906108c 17353
8e04817f 17354@item layout split
8e04817f 17355Display the source and assembly window.
c906108c 17356
8e04817f 17357@item layout regs
8e04817f
AC
17358Display the register window together with the source or assembly window.
17359
46ba6afa 17360@item focus next
8e04817f 17361@kindex focus
46ba6afa
BW
17362Make the next window active for scrolling.
17363
17364@item focus prev
17365Make the previous window active for scrolling.
17366
17367@item focus src
17368Make the source window active for scrolling.
17369
17370@item focus asm
17371Make the assembly window active for scrolling.
17372
17373@item focus regs
17374Make the register window active for scrolling.
17375
17376@item focus cmd
17377Make the command window active for scrolling.
c906108c 17378
8e04817f
AC
17379@item refresh
17380@kindex refresh
7f9087cb 17381Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17382
6a1b180d
SC
17383@item tui reg float
17384@kindex tui reg
17385Show the floating point registers in the register window.
17386
17387@item tui reg general
17388Show the general registers in the register window.
17389
17390@item tui reg next
17391Show the next register group. The list of register groups as well as
17392their order is target specific. The predefined register groups are the
17393following: @code{general}, @code{float}, @code{system}, @code{vector},
17394@code{all}, @code{save}, @code{restore}.
17395
17396@item tui reg system
17397Show the system registers in the register window.
17398
8e04817f
AC
17399@item update
17400@kindex update
17401Update the source window and the current execution point.
c906108c 17402
8e04817f
AC
17403@item winheight @var{name} +@var{count}
17404@itemx winheight @var{name} -@var{count}
17405@kindex winheight
17406Change the height of the window @var{name} by @var{count}
17407lines. Positive counts increase the height, while negative counts
17408decrease it.
2df3850c 17409
46ba6afa
BW
17410@item tabset @var{nchars}
17411@kindex tabset
c45da7e6 17412Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17413@end table
17414
8e04817f 17415@node TUI Configuration
79a6e687 17416@section TUI Configuration Variables
8e04817f 17417@cindex TUI configuration variables
c906108c 17418
46ba6afa 17419Several configuration variables control the appearance of TUI windows.
c906108c 17420
8e04817f
AC
17421@table @code
17422@item set tui border-kind @var{kind}
17423@kindex set tui border-kind
17424Select the border appearance for the source, assembly and register windows.
17425The possible values are the following:
17426@table @code
17427@item space
17428Use a space character to draw the border.
c906108c 17429
8e04817f 17430@item ascii
46ba6afa 17431Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17432
8e04817f
AC
17433@item acs
17434Use the Alternate Character Set to draw the border. The border is
17435drawn using character line graphics if the terminal supports them.
8e04817f 17436@end table
c78b4128 17437
8e04817f
AC
17438@item set tui border-mode @var{mode}
17439@kindex set tui border-mode
46ba6afa
BW
17440@itemx set tui active-border-mode @var{mode}
17441@kindex set tui active-border-mode
17442Select the display attributes for the borders of the inactive windows
17443or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17444@table @code
17445@item normal
17446Use normal attributes to display the border.
c906108c 17447
8e04817f
AC
17448@item standout
17449Use standout mode.
c906108c 17450
8e04817f
AC
17451@item reverse
17452Use reverse video mode.
c906108c 17453
8e04817f
AC
17454@item half
17455Use half bright mode.
c906108c 17456
8e04817f
AC
17457@item half-standout
17458Use half bright and standout mode.
c906108c 17459
8e04817f
AC
17460@item bold
17461Use extra bright or bold mode.
c78b4128 17462
8e04817f
AC
17463@item bold-standout
17464Use extra bright or bold and standout mode.
8e04817f 17465@end table
8e04817f 17466@end table
c78b4128 17467
8e04817f
AC
17468@node Emacs
17469@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17470
8e04817f
AC
17471@cindex Emacs
17472@cindex @sc{gnu} Emacs
17473A special interface allows you to use @sc{gnu} Emacs to view (and
17474edit) the source files for the program you are debugging with
17475@value{GDBN}.
c906108c 17476
8e04817f
AC
17477To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17478executable file you want to debug as an argument. This command starts
17479@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17480created Emacs buffer.
17481@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17482
5e252a2e 17483Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17484things:
c906108c 17485
8e04817f
AC
17486@itemize @bullet
17487@item
5e252a2e
NR
17488All ``terminal'' input and output goes through an Emacs buffer, called
17489the GUD buffer.
c906108c 17490
8e04817f
AC
17491This applies both to @value{GDBN} commands and their output, and to the input
17492and output done by the program you are debugging.
bf0184be 17493
8e04817f
AC
17494This is useful because it means that you can copy the text of previous
17495commands and input them again; you can even use parts of the output
17496in this way.
bf0184be 17497
8e04817f
AC
17498All the facilities of Emacs' Shell mode are available for interacting
17499with your program. In particular, you can send signals the usual
17500way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17501stop.
bf0184be
ND
17502
17503@item
8e04817f 17504@value{GDBN} displays source code through Emacs.
bf0184be 17505
8e04817f
AC
17506Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17507source file for that frame and puts an arrow (@samp{=>}) at the
17508left margin of the current line. Emacs uses a separate buffer for
17509source display, and splits the screen to show both your @value{GDBN} session
17510and the source.
bf0184be 17511
8e04817f
AC
17512Explicit @value{GDBN} @code{list} or search commands still produce output as
17513usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17514@end itemize
17515
17516We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17517a graphical mode, enabled by default, which provides further buffers
17518that can control the execution and describe the state of your program.
17519@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17520
64fabec2
AC
17521If you specify an absolute file name when prompted for the @kbd{M-x
17522gdb} argument, then Emacs sets your current working directory to where
17523your program resides. If you only specify the file name, then Emacs
17524sets your current working directory to to the directory associated
17525with the previous buffer. In this case, @value{GDBN} may find your
17526program by searching your environment's @code{PATH} variable, but on
17527some operating systems it might not find the source. So, although the
17528@value{GDBN} input and output session proceeds normally, the auxiliary
17529buffer does not display the current source and line of execution.
17530
17531The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17532line of the GUD buffer and this serves as a default for the commands
17533that specify files for @value{GDBN} to operate on. @xref{Files,
17534,Commands to Specify Files}.
64fabec2
AC
17535
17536By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17537need to call @value{GDBN} by a different name (for example, if you
17538keep several configurations around, with different names) you can
17539customize the Emacs variable @code{gud-gdb-command-name} to run the
17540one you want.
8e04817f 17541
5e252a2e 17542In the GUD buffer, you can use these special Emacs commands in
8e04817f 17543addition to the standard Shell mode commands:
c906108c 17544
8e04817f
AC
17545@table @kbd
17546@item C-h m
5e252a2e 17547Describe the features of Emacs' GUD Mode.
c906108c 17548
64fabec2 17549@item C-c C-s
8e04817f
AC
17550Execute to another source line, like the @value{GDBN} @code{step} command; also
17551update the display window to show the current file and location.
c906108c 17552
64fabec2 17553@item C-c C-n
8e04817f
AC
17554Execute to next source line in this function, skipping all function
17555calls, like the @value{GDBN} @code{next} command. Then update the display window
17556to show the current file and location.
c906108c 17557
64fabec2 17558@item C-c C-i
8e04817f
AC
17559Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17560display window accordingly.
c906108c 17561
8e04817f
AC
17562@item C-c C-f
17563Execute until exit from the selected stack frame, like the @value{GDBN}
17564@code{finish} command.
c906108c 17565
64fabec2 17566@item C-c C-r
8e04817f
AC
17567Continue execution of your program, like the @value{GDBN} @code{continue}
17568command.
b433d00b 17569
64fabec2 17570@item C-c <
8e04817f
AC
17571Go up the number of frames indicated by the numeric argument
17572(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17573like the @value{GDBN} @code{up} command.
b433d00b 17574
64fabec2 17575@item C-c >
8e04817f
AC
17576Go down the number of frames indicated by the numeric argument, like the
17577@value{GDBN} @code{down} command.
8e04817f 17578@end table
c906108c 17579
7f9087cb 17580In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17581tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17582
5e252a2e
NR
17583In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17584separate frame which shows a backtrace when the GUD buffer is current.
17585Move point to any frame in the stack and type @key{RET} to make it
17586become the current frame and display the associated source in the
17587source buffer. Alternatively, click @kbd{Mouse-2} to make the
17588selected frame become the current one. In graphical mode, the
17589speedbar displays watch expressions.
64fabec2 17590
8e04817f
AC
17591If you accidentally delete the source-display buffer, an easy way to get
17592it back is to type the command @code{f} in the @value{GDBN} buffer, to
17593request a frame display; when you run under Emacs, this recreates
17594the source buffer if necessary to show you the context of the current
17595frame.
c906108c 17596
8e04817f
AC
17597The source files displayed in Emacs are in ordinary Emacs buffers
17598which are visiting the source files in the usual way. You can edit
17599the files with these buffers if you wish; but keep in mind that @value{GDBN}
17600communicates with Emacs in terms of line numbers. If you add or
17601delete lines from the text, the line numbers that @value{GDBN} knows cease
17602to correspond properly with the code.
b383017d 17603
5e252a2e
NR
17604A more detailed description of Emacs' interaction with @value{GDBN} is
17605given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17606Emacs Manual}).
c906108c 17607
8e04817f
AC
17608@c The following dropped because Epoch is nonstandard. Reactivate
17609@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17610@ignore
17611@kindex Emacs Epoch environment
17612@kindex Epoch
17613@kindex inspect
c906108c 17614
8e04817f
AC
17615Version 18 of @sc{gnu} Emacs has a built-in window system
17616called the @code{epoch}
17617environment. Users of this environment can use a new command,
17618@code{inspect} which performs identically to @code{print} except that
17619each value is printed in its own window.
17620@end ignore
c906108c 17621
922fbb7b
AC
17622
17623@node GDB/MI
17624@chapter The @sc{gdb/mi} Interface
17625
17626@unnumberedsec Function and Purpose
17627
17628@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17629@sc{gdb/mi} is a line based machine oriented text interface to
17630@value{GDBN} and is activated by specifying using the
17631@option{--interpreter} command line option (@pxref{Mode Options}). It
17632is specifically intended to support the development of systems which
17633use the debugger as just one small component of a larger system.
922fbb7b
AC
17634
17635This chapter is a specification of the @sc{gdb/mi} interface. It is written
17636in the form of a reference manual.
17637
17638Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17639features described below are incomplete and subject to change
17640(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17641
17642@unnumberedsec Notation and Terminology
17643
17644@cindex notational conventions, for @sc{gdb/mi}
17645This chapter uses the following notation:
17646
17647@itemize @bullet
17648@item
17649@code{|} separates two alternatives.
17650
17651@item
17652@code{[ @var{something} ]} indicates that @var{something} is optional:
17653it may or may not be given.
17654
17655@item
17656@code{( @var{group} )*} means that @var{group} inside the parentheses
17657may repeat zero or more times.
17658
17659@item
17660@code{( @var{group} )+} means that @var{group} inside the parentheses
17661may repeat one or more times.
17662
17663@item
17664@code{"@var{string}"} means a literal @var{string}.
17665@end itemize
17666
17667@ignore
17668@heading Dependencies
17669@end ignore
17670
922fbb7b
AC
17671@menu
17672* GDB/MI Command Syntax::
17673* GDB/MI Compatibility with CLI::
af6eff6f 17674* GDB/MI Development and Front Ends::
922fbb7b 17675* GDB/MI Output Records::
ef21caaf 17676* GDB/MI Simple Examples::
922fbb7b 17677* GDB/MI Command Description Format::
ef21caaf 17678* GDB/MI Breakpoint Commands::
a2c02241
NR
17679* GDB/MI Program Context::
17680* GDB/MI Thread Commands::
17681* GDB/MI Program Execution::
17682* GDB/MI Stack Manipulation::
17683* GDB/MI Variable Objects::
922fbb7b 17684* GDB/MI Data Manipulation::
a2c02241
NR
17685* GDB/MI Tracepoint Commands::
17686* GDB/MI Symbol Query::
351ff01a 17687* GDB/MI File Commands::
922fbb7b
AC
17688@ignore
17689* GDB/MI Kod Commands::
17690* GDB/MI Memory Overlay Commands::
17691* GDB/MI Signal Handling Commands::
17692@end ignore
922fbb7b 17693* GDB/MI Target Manipulation::
a6b151f1 17694* GDB/MI File Transfer Commands::
ef21caaf 17695* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17696@end menu
17697
17698@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17699@node GDB/MI Command Syntax
17700@section @sc{gdb/mi} Command Syntax
17701
17702@menu
17703* GDB/MI Input Syntax::
17704* GDB/MI Output Syntax::
922fbb7b
AC
17705@end menu
17706
17707@node GDB/MI Input Syntax
17708@subsection @sc{gdb/mi} Input Syntax
17709
17710@cindex input syntax for @sc{gdb/mi}
17711@cindex @sc{gdb/mi}, input syntax
17712@table @code
17713@item @var{command} @expansion{}
17714@code{@var{cli-command} | @var{mi-command}}
17715
17716@item @var{cli-command} @expansion{}
17717@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17718@var{cli-command} is any existing @value{GDBN} CLI command.
17719
17720@item @var{mi-command} @expansion{}
17721@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17722@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17723
17724@item @var{token} @expansion{}
17725"any sequence of digits"
17726
17727@item @var{option} @expansion{}
17728@code{"-" @var{parameter} [ " " @var{parameter} ]}
17729
17730@item @var{parameter} @expansion{}
17731@code{@var{non-blank-sequence} | @var{c-string}}
17732
17733@item @var{operation} @expansion{}
17734@emph{any of the operations described in this chapter}
17735
17736@item @var{non-blank-sequence} @expansion{}
17737@emph{anything, provided it doesn't contain special characters such as
17738"-", @var{nl}, """ and of course " "}
17739
17740@item @var{c-string} @expansion{}
17741@code{""" @var{seven-bit-iso-c-string-content} """}
17742
17743@item @var{nl} @expansion{}
17744@code{CR | CR-LF}
17745@end table
17746
17747@noindent
17748Notes:
17749
17750@itemize @bullet
17751@item
17752The CLI commands are still handled by the @sc{mi} interpreter; their
17753output is described below.
17754
17755@item
17756The @code{@var{token}}, when present, is passed back when the command
17757finishes.
17758
17759@item
17760Some @sc{mi} commands accept optional arguments as part of the parameter
17761list. Each option is identified by a leading @samp{-} (dash) and may be
17762followed by an optional argument parameter. Options occur first in the
17763parameter list and can be delimited from normal parameters using
17764@samp{--} (this is useful when some parameters begin with a dash).
17765@end itemize
17766
17767Pragmatics:
17768
17769@itemize @bullet
17770@item
17771We want easy access to the existing CLI syntax (for debugging).
17772
17773@item
17774We want it to be easy to spot a @sc{mi} operation.
17775@end itemize
17776
17777@node GDB/MI Output Syntax
17778@subsection @sc{gdb/mi} Output Syntax
17779
17780@cindex output syntax of @sc{gdb/mi}
17781@cindex @sc{gdb/mi}, output syntax
17782The output from @sc{gdb/mi} consists of zero or more out-of-band records
17783followed, optionally, by a single result record. This result record
17784is for the most recent command. The sequence of output records is
594fe323 17785terminated by @samp{(gdb)}.
922fbb7b
AC
17786
17787If an input command was prefixed with a @code{@var{token}} then the
17788corresponding output for that command will also be prefixed by that same
17789@var{token}.
17790
17791@table @code
17792@item @var{output} @expansion{}
594fe323 17793@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17794
17795@item @var{result-record} @expansion{}
17796@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17797
17798@item @var{out-of-band-record} @expansion{}
17799@code{@var{async-record} | @var{stream-record}}
17800
17801@item @var{async-record} @expansion{}
17802@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17803
17804@item @var{exec-async-output} @expansion{}
17805@code{[ @var{token} ] "*" @var{async-output}}
17806
17807@item @var{status-async-output} @expansion{}
17808@code{[ @var{token} ] "+" @var{async-output}}
17809
17810@item @var{notify-async-output} @expansion{}
17811@code{[ @var{token} ] "=" @var{async-output}}
17812
17813@item @var{async-output} @expansion{}
17814@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17815
17816@item @var{result-class} @expansion{}
17817@code{"done" | "running" | "connected" | "error" | "exit"}
17818
17819@item @var{async-class} @expansion{}
17820@code{"stopped" | @var{others}} (where @var{others} will be added
17821depending on the needs---this is still in development).
17822
17823@item @var{result} @expansion{}
17824@code{ @var{variable} "=" @var{value}}
17825
17826@item @var{variable} @expansion{}
17827@code{ @var{string} }
17828
17829@item @var{value} @expansion{}
17830@code{ @var{const} | @var{tuple} | @var{list} }
17831
17832@item @var{const} @expansion{}
17833@code{@var{c-string}}
17834
17835@item @var{tuple} @expansion{}
17836@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17837
17838@item @var{list} @expansion{}
17839@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17840@var{result} ( "," @var{result} )* "]" }
17841
17842@item @var{stream-record} @expansion{}
17843@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17844
17845@item @var{console-stream-output} @expansion{}
17846@code{"~" @var{c-string}}
17847
17848@item @var{target-stream-output} @expansion{}
17849@code{"@@" @var{c-string}}
17850
17851@item @var{log-stream-output} @expansion{}
17852@code{"&" @var{c-string}}
17853
17854@item @var{nl} @expansion{}
17855@code{CR | CR-LF}
17856
17857@item @var{token} @expansion{}
17858@emph{any sequence of digits}.
17859@end table
17860
17861@noindent
17862Notes:
17863
17864@itemize @bullet
17865@item
17866All output sequences end in a single line containing a period.
17867
17868@item
17869The @code{@var{token}} is from the corresponding request. If an execution
17870command is interrupted by the @samp{-exec-interrupt} command, the
17871@var{token} associated with the @samp{*stopped} message is the one of the
17872original execution command, not the one of the interrupt command.
17873
17874@item
17875@cindex status output in @sc{gdb/mi}
17876@var{status-async-output} contains on-going status information about the
17877progress of a slow operation. It can be discarded. All status output is
17878prefixed by @samp{+}.
17879
17880@item
17881@cindex async output in @sc{gdb/mi}
17882@var{exec-async-output} contains asynchronous state change on the target
17883(stopped, started, disappeared). All async output is prefixed by
17884@samp{*}.
17885
17886@item
17887@cindex notify output in @sc{gdb/mi}
17888@var{notify-async-output} contains supplementary information that the
17889client should handle (e.g., a new breakpoint information). All notify
17890output is prefixed by @samp{=}.
17891
17892@item
17893@cindex console output in @sc{gdb/mi}
17894@var{console-stream-output} is output that should be displayed as is in the
17895console. It is the textual response to a CLI command. All the console
17896output is prefixed by @samp{~}.
17897
17898@item
17899@cindex target output in @sc{gdb/mi}
17900@var{target-stream-output} is the output produced by the target program.
17901All the target output is prefixed by @samp{@@}.
17902
17903@item
17904@cindex log output in @sc{gdb/mi}
17905@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17906instance messages that should be displayed as part of an error log. All
17907the log output is prefixed by @samp{&}.
17908
17909@item
17910@cindex list output in @sc{gdb/mi}
17911New @sc{gdb/mi} commands should only output @var{lists} containing
17912@var{values}.
17913
17914
17915@end itemize
17916
17917@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17918details about the various output records.
17919
922fbb7b
AC
17920@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17921@node GDB/MI Compatibility with CLI
17922@section @sc{gdb/mi} Compatibility with CLI
17923
17924@cindex compatibility, @sc{gdb/mi} and CLI
17925@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17926
a2c02241
NR
17927For the developers convenience CLI commands can be entered directly,
17928but there may be some unexpected behaviour. For example, commands
17929that query the user will behave as if the user replied yes, breakpoint
17930command lists are not executed and some CLI commands, such as
17931@code{if}, @code{when} and @code{define}, prompt for further input with
17932@samp{>}, which is not valid MI output.
ef21caaf
NR
17933
17934This feature may be removed at some stage in the future and it is
a2c02241
NR
17935recommended that front ends use the @code{-interpreter-exec} command
17936(@pxref{-interpreter-exec}).
922fbb7b 17937
af6eff6f
NR
17938@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17939@node GDB/MI Development and Front Ends
17940@section @sc{gdb/mi} Development and Front Ends
17941@cindex @sc{gdb/mi} development
17942
17943The application which takes the MI output and presents the state of the
17944program being debugged to the user is called a @dfn{front end}.
17945
17946Although @sc{gdb/mi} is still incomplete, it is currently being used
17947by a variety of front ends to @value{GDBN}. This makes it difficult
17948to introduce new functionality without breaking existing usage. This
17949section tries to minimize the problems by describing how the protocol
17950might change.
17951
17952Some changes in MI need not break a carefully designed front end, and
17953for these the MI version will remain unchanged. The following is a
17954list of changes that may occur within one level, so front ends should
17955parse MI output in a way that can handle them:
17956
17957@itemize @bullet
17958@item
17959New MI commands may be added.
17960
17961@item
17962New fields may be added to the output of any MI command.
17963
36ece8b3
NR
17964@item
17965The range of values for fields with specified values, e.g.,
9f708cb2 17966@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17967
af6eff6f
NR
17968@c The format of field's content e.g type prefix, may change so parse it
17969@c at your own risk. Yes, in general?
17970
17971@c The order of fields may change? Shouldn't really matter but it might
17972@c resolve inconsistencies.
17973@end itemize
17974
17975If the changes are likely to break front ends, the MI version level
17976will be increased by one. This will allow the front end to parse the
17977output according to the MI version. Apart from mi0, new versions of
17978@value{GDBN} will not support old versions of MI and it will be the
17979responsibility of the front end to work with the new one.
17980
17981@c Starting with mi3, add a new command -mi-version that prints the MI
17982@c version?
17983
17984The best way to avoid unexpected changes in MI that might break your front
17985end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17986follow development on @email{gdb@@sourceware.org} and
17987@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17988@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17989Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17990called Debugger Machine Interface (DMI) that will become a standard
17991for all debuggers, not just @value{GDBN}.
17992@cindex mailing lists
17993
922fbb7b
AC
17994@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17995@node GDB/MI Output Records
17996@section @sc{gdb/mi} Output Records
17997
17998@menu
17999* GDB/MI Result Records::
18000* GDB/MI Stream Records::
18001* GDB/MI Out-of-band Records::
18002@end menu
18003
18004@node GDB/MI Result Records
18005@subsection @sc{gdb/mi} Result Records
18006
18007@cindex result records in @sc{gdb/mi}
18008@cindex @sc{gdb/mi}, result records
18009In addition to a number of out-of-band notifications, the response to a
18010@sc{gdb/mi} command includes one of the following result indications:
18011
18012@table @code
18013@findex ^done
18014@item "^done" [ "," @var{results} ]
18015The synchronous operation was successful, @code{@var{results}} are the return
18016values.
18017
18018@item "^running"
18019@findex ^running
18020@c Is this one correct? Should it be an out-of-band notification?
18021The asynchronous operation was successfully started. The target is
18022running.
18023
ef21caaf
NR
18024@item "^connected"
18025@findex ^connected
3f94c067 18026@value{GDBN} has connected to a remote target.
ef21caaf 18027
922fbb7b
AC
18028@item "^error" "," @var{c-string}
18029@findex ^error
18030The operation failed. The @code{@var{c-string}} contains the corresponding
18031error message.
ef21caaf
NR
18032
18033@item "^exit"
18034@findex ^exit
3f94c067 18035@value{GDBN} has terminated.
ef21caaf 18036
922fbb7b
AC
18037@end table
18038
18039@node GDB/MI Stream Records
18040@subsection @sc{gdb/mi} Stream Records
18041
18042@cindex @sc{gdb/mi}, stream records
18043@cindex stream records in @sc{gdb/mi}
18044@value{GDBN} internally maintains a number of output streams: the console, the
18045target, and the log. The output intended for each of these streams is
18046funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18047
18048Each stream record begins with a unique @dfn{prefix character} which
18049identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18050Syntax}). In addition to the prefix, each stream record contains a
18051@code{@var{string-output}}. This is either raw text (with an implicit new
18052line) or a quoted C string (which does not contain an implicit newline).
18053
18054@table @code
18055@item "~" @var{string-output}
18056The console output stream contains text that should be displayed in the
18057CLI console window. It contains the textual responses to CLI commands.
18058
18059@item "@@" @var{string-output}
18060The target output stream contains any textual output from the running
ef21caaf
NR
18061target. This is only present when GDB's event loop is truly
18062asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18063
18064@item "&" @var{string-output}
18065The log stream contains debugging messages being produced by @value{GDBN}'s
18066internals.
18067@end table
18068
18069@node GDB/MI Out-of-band Records
18070@subsection @sc{gdb/mi} Out-of-band Records
18071
18072@cindex out-of-band records in @sc{gdb/mi}
18073@cindex @sc{gdb/mi}, out-of-band records
18074@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
18075additional changes that have occurred. Those changes can either be a
18076consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
18077target activity (e.g., target stopped).
18078
18079The following is a preliminary list of possible out-of-band records.
034dad6f 18080In particular, the @var{exec-async-output} records.
922fbb7b
AC
18081
18082@table @code
034dad6f
BR
18083@item *stopped,reason="@var{reason}"
18084@end table
18085
18086@var{reason} can be one of the following:
18087
18088@table @code
18089@item breakpoint-hit
18090A breakpoint was reached.
18091@item watchpoint-trigger
18092A watchpoint was triggered.
18093@item read-watchpoint-trigger
18094A read watchpoint was triggered.
18095@item access-watchpoint-trigger
18096An access watchpoint was triggered.
18097@item function-finished
18098An -exec-finish or similar CLI command was accomplished.
18099@item location-reached
18100An -exec-until or similar CLI command was accomplished.
18101@item watchpoint-scope
18102A watchpoint has gone out of scope.
18103@item end-stepping-range
18104An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18105similar CLI command was accomplished.
18106@item exited-signalled
18107The inferior exited because of a signal.
18108@item exited
18109The inferior exited.
18110@item exited-normally
18111The inferior exited normally.
18112@item signal-received
18113A signal was received by the inferior.
922fbb7b
AC
18114@end table
18115
18116
ef21caaf
NR
18117@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18118@node GDB/MI Simple Examples
18119@section Simple Examples of @sc{gdb/mi} Interaction
18120@cindex @sc{gdb/mi}, simple examples
18121
18122This subsection presents several simple examples of interaction using
18123the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18124following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18125the output received from @sc{gdb/mi}.
18126
d3e8051b 18127Note the line breaks shown in the examples are here only for
ef21caaf
NR
18128readability, they don't appear in the real output.
18129
79a6e687 18130@subheading Setting a Breakpoint
ef21caaf
NR
18131
18132Setting a breakpoint generates synchronous output which contains detailed
18133information of the breakpoint.
18134
18135@smallexample
18136-> -break-insert main
18137<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18138 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18139 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18140<- (gdb)
18141@end smallexample
18142
18143@subheading Program Execution
18144
18145Program execution generates asynchronous records and MI gives the
18146reason that execution stopped.
18147
18148@smallexample
18149-> -exec-run
18150<- ^running
18151<- (gdb)
a47ec5fe 18152<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18153 frame=@{addr="0x08048564",func="main",
18154 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18155 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18156<- (gdb)
18157-> -exec-continue
18158<- ^running
18159<- (gdb)
18160<- *stopped,reason="exited-normally"
18161<- (gdb)
18162@end smallexample
18163
3f94c067 18164@subheading Quitting @value{GDBN}
ef21caaf 18165
3f94c067 18166Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18167
18168@smallexample
18169-> (gdb)
18170<- -gdb-exit
18171<- ^exit
18172@end smallexample
18173
a2c02241 18174@subheading A Bad Command
ef21caaf
NR
18175
18176Here's what happens if you pass a non-existent command:
18177
18178@smallexample
18179-> -rubbish
18180<- ^error,msg="Undefined MI command: rubbish"
594fe323 18181<- (gdb)
ef21caaf
NR
18182@end smallexample
18183
18184
922fbb7b
AC
18185@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18186@node GDB/MI Command Description Format
18187@section @sc{gdb/mi} Command Description Format
18188
18189The remaining sections describe blocks of commands. Each block of
18190commands is laid out in a fashion similar to this section.
18191
922fbb7b
AC
18192@subheading Motivation
18193
18194The motivation for this collection of commands.
18195
18196@subheading Introduction
18197
18198A brief introduction to this collection of commands as a whole.
18199
18200@subheading Commands
18201
18202For each command in the block, the following is described:
18203
18204@subsubheading Synopsis
18205
18206@smallexample
18207 -command @var{args}@dots{}
18208@end smallexample
18209
922fbb7b
AC
18210@subsubheading Result
18211
265eeb58 18212@subsubheading @value{GDBN} Command
922fbb7b 18213
265eeb58 18214The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18215
18216@subsubheading Example
18217
ef21caaf
NR
18218Example(s) formatted for readability. Some of the described commands have
18219not been implemented yet and these are labeled N.A.@: (not available).
18220
18221
922fbb7b 18222@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18223@node GDB/MI Breakpoint Commands
18224@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18225
18226@cindex breakpoint commands for @sc{gdb/mi}
18227@cindex @sc{gdb/mi}, breakpoint commands
18228This section documents @sc{gdb/mi} commands for manipulating
18229breakpoints.
18230
18231@subheading The @code{-break-after} Command
18232@findex -break-after
18233
18234@subsubheading Synopsis
18235
18236@smallexample
18237 -break-after @var{number} @var{count}
18238@end smallexample
18239
18240The breakpoint number @var{number} is not in effect until it has been
18241hit @var{count} times. To see how this is reflected in the output of
18242the @samp{-break-list} command, see the description of the
18243@samp{-break-list} command below.
18244
18245@subsubheading @value{GDBN} Command
18246
18247The corresponding @value{GDBN} command is @samp{ignore}.
18248
18249@subsubheading Example
18250
18251@smallexample
594fe323 18252(gdb)
922fbb7b 18253-break-insert main
a47ec5fe
AR
18254^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18255enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18256fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18257(gdb)
922fbb7b
AC
18258-break-after 1 3
18259~
18260^done
594fe323 18261(gdb)
922fbb7b
AC
18262-break-list
18263^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18264hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18265@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18266@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18267@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18268@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18269@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18270body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18271addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18272line="5",times="0",ignore="3"@}]@}
594fe323 18273(gdb)
922fbb7b
AC
18274@end smallexample
18275
18276@ignore
18277@subheading The @code{-break-catch} Command
18278@findex -break-catch
18279
18280@subheading The @code{-break-commands} Command
18281@findex -break-commands
18282@end ignore
18283
18284
18285@subheading The @code{-break-condition} Command
18286@findex -break-condition
18287
18288@subsubheading Synopsis
18289
18290@smallexample
18291 -break-condition @var{number} @var{expr}
18292@end smallexample
18293
18294Breakpoint @var{number} will stop the program only if the condition in
18295@var{expr} is true. The condition becomes part of the
18296@samp{-break-list} output (see the description of the @samp{-break-list}
18297command below).
18298
18299@subsubheading @value{GDBN} Command
18300
18301The corresponding @value{GDBN} command is @samp{condition}.
18302
18303@subsubheading Example
18304
18305@smallexample
594fe323 18306(gdb)
922fbb7b
AC
18307-break-condition 1 1
18308^done
594fe323 18309(gdb)
922fbb7b
AC
18310-break-list
18311^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18312hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18313@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18314@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18315@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18316@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18317@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18318body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18319addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18320line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18321(gdb)
922fbb7b
AC
18322@end smallexample
18323
18324@subheading The @code{-break-delete} Command
18325@findex -break-delete
18326
18327@subsubheading Synopsis
18328
18329@smallexample
18330 -break-delete ( @var{breakpoint} )+
18331@end smallexample
18332
18333Delete the breakpoint(s) whose number(s) are specified in the argument
18334list. This is obviously reflected in the breakpoint list.
18335
79a6e687 18336@subsubheading @value{GDBN} Command
922fbb7b
AC
18337
18338The corresponding @value{GDBN} command is @samp{delete}.
18339
18340@subsubheading Example
18341
18342@smallexample
594fe323 18343(gdb)
922fbb7b
AC
18344-break-delete 1
18345^done
594fe323 18346(gdb)
922fbb7b
AC
18347-break-list
18348^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18349hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18350@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18351@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18352@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18353@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18354@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18355body=[]@}
594fe323 18356(gdb)
922fbb7b
AC
18357@end smallexample
18358
18359@subheading The @code{-break-disable} Command
18360@findex -break-disable
18361
18362@subsubheading Synopsis
18363
18364@smallexample
18365 -break-disable ( @var{breakpoint} )+
18366@end smallexample
18367
18368Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18369break list is now set to @samp{n} for the named @var{breakpoint}(s).
18370
18371@subsubheading @value{GDBN} Command
18372
18373The corresponding @value{GDBN} command is @samp{disable}.
18374
18375@subsubheading Example
18376
18377@smallexample
594fe323 18378(gdb)
922fbb7b
AC
18379-break-disable 2
18380^done
594fe323 18381(gdb)
922fbb7b
AC
18382-break-list
18383^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18384hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18385@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18386@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18387@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18388@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18389@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18390body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18391addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18392line="5",times="0"@}]@}
594fe323 18393(gdb)
922fbb7b
AC
18394@end smallexample
18395
18396@subheading The @code{-break-enable} Command
18397@findex -break-enable
18398
18399@subsubheading Synopsis
18400
18401@smallexample
18402 -break-enable ( @var{breakpoint} )+
18403@end smallexample
18404
18405Enable (previously disabled) @var{breakpoint}(s).
18406
18407@subsubheading @value{GDBN} Command
18408
18409The corresponding @value{GDBN} command is @samp{enable}.
18410
18411@subsubheading Example
18412
18413@smallexample
594fe323 18414(gdb)
922fbb7b
AC
18415-break-enable 2
18416^done
594fe323 18417(gdb)
922fbb7b
AC
18418-break-list
18419^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18420hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18421@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18422@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18423@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18424@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18425@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18426body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18427addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18428line="5",times="0"@}]@}
594fe323 18429(gdb)
922fbb7b
AC
18430@end smallexample
18431
18432@subheading The @code{-break-info} Command
18433@findex -break-info
18434
18435@subsubheading Synopsis
18436
18437@smallexample
18438 -break-info @var{breakpoint}
18439@end smallexample
18440
18441@c REDUNDANT???
18442Get information about a single breakpoint.
18443
79a6e687 18444@subsubheading @value{GDBN} Command
922fbb7b
AC
18445
18446The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18447
18448@subsubheading Example
18449N.A.
18450
18451@subheading The @code{-break-insert} Command
18452@findex -break-insert
18453
18454@subsubheading Synopsis
18455
18456@smallexample
afe8ab22 18457 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18458 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18459 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18460@end smallexample
18461
18462@noindent
afe8ab22 18463If specified, @var{location}, can be one of:
922fbb7b
AC
18464
18465@itemize @bullet
18466@item function
18467@c @item +offset
18468@c @item -offset
18469@c @item linenum
18470@item filename:linenum
18471@item filename:function
18472@item *address
18473@end itemize
18474
18475The possible optional parameters of this command are:
18476
18477@table @samp
18478@item -t
948d5102 18479Insert a temporary breakpoint.
922fbb7b
AC
18480@item -h
18481Insert a hardware breakpoint.
18482@item -c @var{condition}
18483Make the breakpoint conditional on @var{condition}.
18484@item -i @var{ignore-count}
18485Initialize the @var{ignore-count}.
afe8ab22
VP
18486@item -f
18487If @var{location} cannot be parsed (for example if it
18488refers to unknown files or functions), create a pending
18489breakpoint. Without this flag, @value{GDBN} will report
18490an error, and won't create a breakpoint, if @var{location}
18491cannot be parsed.
922fbb7b
AC
18492@end table
18493
18494@subsubheading Result
18495
18496The result is in the form:
18497
18498@smallexample
948d5102
NR
18499^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18500enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18501fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18502times="@var{times}"@}
922fbb7b
AC
18503@end smallexample
18504
18505@noindent
948d5102
NR
18506where @var{number} is the @value{GDBN} number for this breakpoint,
18507@var{funcname} is the name of the function where the breakpoint was
18508inserted, @var{filename} is the name of the source file which contains
18509this function, @var{lineno} is the source line number within that file
18510and @var{times} the number of times that the breakpoint has been hit
18511(always 0 for -break-insert but may be greater for -break-info or -break-list
18512which use the same output).
922fbb7b
AC
18513
18514Note: this format is open to change.
18515@c An out-of-band breakpoint instead of part of the result?
18516
18517@subsubheading @value{GDBN} Command
18518
18519The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18520@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18521
18522@subsubheading Example
18523
18524@smallexample
594fe323 18525(gdb)
922fbb7b 18526-break-insert main
948d5102
NR
18527^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18528fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18529(gdb)
922fbb7b 18530-break-insert -t foo
948d5102
NR
18531^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18532fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18533(gdb)
922fbb7b
AC
18534-break-list
18535^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18536hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18537@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18538@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18539@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18540@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18541@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18542body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18543addr="0x0001072c", func="main",file="recursive2.c",
18544fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18545bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18546addr="0x00010774",func="foo",file="recursive2.c",
18547fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18548(gdb)
922fbb7b
AC
18549-break-insert -r foo.*
18550~int foo(int, int);
948d5102
NR
18551^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18552"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18553(gdb)
922fbb7b
AC
18554@end smallexample
18555
18556@subheading The @code{-break-list} Command
18557@findex -break-list
18558
18559@subsubheading Synopsis
18560
18561@smallexample
18562 -break-list
18563@end smallexample
18564
18565Displays the list of inserted breakpoints, showing the following fields:
18566
18567@table @samp
18568@item Number
18569number of the breakpoint
18570@item Type
18571type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18572@item Disposition
18573should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18574or @samp{nokeep}
18575@item Enabled
18576is the breakpoint enabled or no: @samp{y} or @samp{n}
18577@item Address
18578memory location at which the breakpoint is set
18579@item What
18580logical location of the breakpoint, expressed by function name, file
18581name, line number
18582@item Times
18583number of times the breakpoint has been hit
18584@end table
18585
18586If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18587@code{body} field is an empty list.
18588
18589@subsubheading @value{GDBN} Command
18590
18591The corresponding @value{GDBN} command is @samp{info break}.
18592
18593@subsubheading Example
18594
18595@smallexample
594fe323 18596(gdb)
922fbb7b
AC
18597-break-list
18598^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18599hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18600@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18601@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18602@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18603@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18604@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18605body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18606addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18607bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18608addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18609line="13",times="0"@}]@}
594fe323 18610(gdb)
922fbb7b
AC
18611@end smallexample
18612
18613Here's an example of the result when there are no breakpoints:
18614
18615@smallexample
594fe323 18616(gdb)
922fbb7b
AC
18617-break-list
18618^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18619hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18620@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18621@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18622@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18623@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18624@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18625body=[]@}
594fe323 18626(gdb)
922fbb7b
AC
18627@end smallexample
18628
18629@subheading The @code{-break-watch} Command
18630@findex -break-watch
18631
18632@subsubheading Synopsis
18633
18634@smallexample
18635 -break-watch [ -a | -r ]
18636@end smallexample
18637
18638Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18639@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18640read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18641option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18642trigger only when the memory location is accessed for reading. Without
18643either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18644i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18645@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18646
18647Note that @samp{-break-list} will report a single list of watchpoints and
18648breakpoints inserted.
18649
18650@subsubheading @value{GDBN} Command
18651
18652The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18653@samp{rwatch}.
18654
18655@subsubheading Example
18656
18657Setting a watchpoint on a variable in the @code{main} function:
18658
18659@smallexample
594fe323 18660(gdb)
922fbb7b
AC
18661-break-watch x
18662^done,wpt=@{number="2",exp="x"@}
594fe323 18663(gdb)
922fbb7b
AC
18664-exec-continue
18665^running
0869d01b
NR
18666(gdb)
18667*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18668value=@{old="-268439212",new="55"@},
76ff342d 18669frame=@{func="main",args=[],file="recursive2.c",
948d5102 18670fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18671(gdb)
922fbb7b
AC
18672@end smallexample
18673
18674Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18675the program execution twice: first for the variable changing value, then
18676for the watchpoint going out of scope.
18677
18678@smallexample
594fe323 18679(gdb)
922fbb7b
AC
18680-break-watch C
18681^done,wpt=@{number="5",exp="C"@}
594fe323 18682(gdb)
922fbb7b
AC
18683-exec-continue
18684^running
0869d01b
NR
18685(gdb)
18686*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18687wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18688frame=@{func="callee4",args=[],
76ff342d
DJ
18689file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18690fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18691(gdb)
922fbb7b
AC
18692-exec-continue
18693^running
0869d01b
NR
18694(gdb)
18695*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18696frame=@{func="callee3",args=[@{name="strarg",
18697value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18698file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18699fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18700(gdb)
922fbb7b
AC
18701@end smallexample
18702
18703Listing breakpoints and watchpoints, at different points in the program
18704execution. Note that once the watchpoint goes out of scope, it is
18705deleted.
18706
18707@smallexample
594fe323 18708(gdb)
922fbb7b
AC
18709-break-watch C
18710^done,wpt=@{number="2",exp="C"@}
594fe323 18711(gdb)
922fbb7b
AC
18712-break-list
18713^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18714hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18715@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18716@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18717@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18718@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18719@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18720body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18721addr="0x00010734",func="callee4",
948d5102
NR
18722file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18723fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18724bkpt=@{number="2",type="watchpoint",disp="keep",
18725enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18726(gdb)
922fbb7b
AC
18727-exec-continue
18728^running
0869d01b
NR
18729(gdb)
18730*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18731value=@{old="-276895068",new="3"@},
18732frame=@{func="callee4",args=[],
76ff342d
DJ
18733file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18734fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18735(gdb)
922fbb7b
AC
18736-break-list
18737^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18738hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18739@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18740@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18741@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18742@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18743@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18744body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18745addr="0x00010734",func="callee4",
948d5102
NR
18746file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18747fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18748bkpt=@{number="2",type="watchpoint",disp="keep",
18749enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18750(gdb)
922fbb7b
AC
18751-exec-continue
18752^running
18753^done,reason="watchpoint-scope",wpnum="2",
18754frame=@{func="callee3",args=[@{name="strarg",
18755value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18756file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18757fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18758(gdb)
922fbb7b
AC
18759-break-list
18760^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18761hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18762@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18763@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18764@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18765@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18766@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18767body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18768addr="0x00010734",func="callee4",
948d5102
NR
18769file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18770fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18771times="1"@}]@}
594fe323 18772(gdb)
922fbb7b
AC
18773@end smallexample
18774
18775@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18776@node GDB/MI Program Context
18777@section @sc{gdb/mi} Program Context
922fbb7b 18778
a2c02241
NR
18779@subheading The @code{-exec-arguments} Command
18780@findex -exec-arguments
922fbb7b 18781
922fbb7b
AC
18782
18783@subsubheading Synopsis
18784
18785@smallexample
a2c02241 18786 -exec-arguments @var{args}
922fbb7b
AC
18787@end smallexample
18788
a2c02241
NR
18789Set the inferior program arguments, to be used in the next
18790@samp{-exec-run}.
922fbb7b 18791
a2c02241 18792@subsubheading @value{GDBN} Command
922fbb7b 18793
a2c02241 18794The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18795
a2c02241 18796@subsubheading Example
922fbb7b 18797
a2c02241
NR
18798@c FIXME!
18799Don't have one around.
922fbb7b 18800
a2c02241
NR
18801
18802@subheading The @code{-exec-show-arguments} Command
18803@findex -exec-show-arguments
18804
18805@subsubheading Synopsis
18806
18807@smallexample
18808 -exec-show-arguments
18809@end smallexample
18810
18811Print the arguments of the program.
922fbb7b
AC
18812
18813@subsubheading @value{GDBN} Command
18814
a2c02241 18815The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18816
18817@subsubheading Example
a2c02241 18818N.A.
922fbb7b 18819
922fbb7b 18820
a2c02241
NR
18821@subheading The @code{-environment-cd} Command
18822@findex -environment-cd
922fbb7b 18823
a2c02241 18824@subsubheading Synopsis
922fbb7b
AC
18825
18826@smallexample
a2c02241 18827 -environment-cd @var{pathdir}
922fbb7b
AC
18828@end smallexample
18829
a2c02241 18830Set @value{GDBN}'s working directory.
922fbb7b 18831
a2c02241 18832@subsubheading @value{GDBN} Command
922fbb7b 18833
a2c02241
NR
18834The corresponding @value{GDBN} command is @samp{cd}.
18835
18836@subsubheading Example
922fbb7b
AC
18837
18838@smallexample
594fe323 18839(gdb)
a2c02241
NR
18840-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18841^done
594fe323 18842(gdb)
922fbb7b
AC
18843@end smallexample
18844
18845
a2c02241
NR
18846@subheading The @code{-environment-directory} Command
18847@findex -environment-directory
922fbb7b
AC
18848
18849@subsubheading Synopsis
18850
18851@smallexample
a2c02241 18852 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18853@end smallexample
18854
a2c02241
NR
18855Add directories @var{pathdir} to beginning of search path for source files.
18856If the @samp{-r} option is used, the search path is reset to the default
18857search path. If directories @var{pathdir} are supplied in addition to the
18858@samp{-r} option, the search path is first reset and then addition
18859occurs as normal.
18860Multiple directories may be specified, separated by blanks. Specifying
18861multiple directories in a single command
18862results in the directories added to the beginning of the
18863search path in the same order they were presented in the command.
18864If blanks are needed as
18865part of a directory name, double-quotes should be used around
18866the name. In the command output, the path will show up separated
d3e8051b 18867by the system directory-separator character. The directory-separator
a2c02241
NR
18868character must not be used
18869in any directory name.
18870If no directories are specified, the current search path is displayed.
922fbb7b
AC
18871
18872@subsubheading @value{GDBN} Command
18873
a2c02241 18874The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18875
18876@subsubheading Example
18877
922fbb7b 18878@smallexample
594fe323 18879(gdb)
a2c02241
NR
18880-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18881^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18882(gdb)
a2c02241
NR
18883-environment-directory ""
18884^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18885(gdb)
a2c02241
NR
18886-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18887^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18888(gdb)
a2c02241
NR
18889-environment-directory -r
18890^done,source-path="$cdir:$cwd"
594fe323 18891(gdb)
922fbb7b
AC
18892@end smallexample
18893
18894
a2c02241
NR
18895@subheading The @code{-environment-path} Command
18896@findex -environment-path
922fbb7b
AC
18897
18898@subsubheading Synopsis
18899
18900@smallexample
a2c02241 18901 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18902@end smallexample
18903
a2c02241
NR
18904Add directories @var{pathdir} to beginning of search path for object files.
18905If the @samp{-r} option is used, the search path is reset to the original
18906search path that existed at gdb start-up. If directories @var{pathdir} are
18907supplied in addition to the
18908@samp{-r} option, the search path is first reset and then addition
18909occurs as normal.
18910Multiple directories may be specified, separated by blanks. Specifying
18911multiple directories in a single command
18912results in the directories added to the beginning of the
18913search path in the same order they were presented in the command.
18914If blanks are needed as
18915part of a directory name, double-quotes should be used around
18916the name. In the command output, the path will show up separated
d3e8051b 18917by the system directory-separator character. The directory-separator
a2c02241
NR
18918character must not be used
18919in any directory name.
18920If no directories are specified, the current path is displayed.
18921
922fbb7b
AC
18922
18923@subsubheading @value{GDBN} Command
18924
a2c02241 18925The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18926
18927@subsubheading Example
18928
922fbb7b 18929@smallexample
594fe323 18930(gdb)
a2c02241
NR
18931-environment-path
18932^done,path="/usr/bin"
594fe323 18933(gdb)
a2c02241
NR
18934-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18935^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18936(gdb)
a2c02241
NR
18937-environment-path -r /usr/local/bin
18938^done,path="/usr/local/bin:/usr/bin"
594fe323 18939(gdb)
922fbb7b
AC
18940@end smallexample
18941
18942
a2c02241
NR
18943@subheading The @code{-environment-pwd} Command
18944@findex -environment-pwd
922fbb7b
AC
18945
18946@subsubheading Synopsis
18947
18948@smallexample
a2c02241 18949 -environment-pwd
922fbb7b
AC
18950@end smallexample
18951
a2c02241 18952Show the current working directory.
922fbb7b 18953
79a6e687 18954@subsubheading @value{GDBN} Command
922fbb7b 18955
a2c02241 18956The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18957
18958@subsubheading Example
18959
922fbb7b 18960@smallexample
594fe323 18961(gdb)
a2c02241
NR
18962-environment-pwd
18963^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18964(gdb)
922fbb7b
AC
18965@end smallexample
18966
a2c02241
NR
18967@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18968@node GDB/MI Thread Commands
18969@section @sc{gdb/mi} Thread Commands
18970
18971
18972@subheading The @code{-thread-info} Command
18973@findex -thread-info
922fbb7b
AC
18974
18975@subsubheading Synopsis
18976
18977@smallexample
8e8901c5 18978 -thread-info [ @var{thread-id} ]
922fbb7b
AC
18979@end smallexample
18980
8e8901c5
VP
18981Reports information about either a specific thread, if
18982the @var{thread-id} parameter is present, or about all
18983threads. When printing information about all threads,
18984also reports the current thread.
18985
79a6e687 18986@subsubheading @value{GDBN} Command
922fbb7b 18987
8e8901c5
VP
18988The @samp{info thread} command prints the same information
18989about all threads.
922fbb7b
AC
18990
18991@subsubheading Example
922fbb7b
AC
18992
18993@smallexample
8e8901c5
VP
18994-thread-info
18995^done,threads=[
18996@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
18997 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
18998@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
18999 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19000 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19001current-thread-id="1"
19002(gdb)
922fbb7b
AC
19003@end smallexample
19004
a2c02241
NR
19005@subheading The @code{-thread-list-ids} Command
19006@findex -thread-list-ids
922fbb7b 19007
a2c02241 19008@subsubheading Synopsis
922fbb7b 19009
a2c02241
NR
19010@smallexample
19011 -thread-list-ids
19012@end smallexample
922fbb7b 19013
a2c02241
NR
19014Produces a list of the currently known @value{GDBN} thread ids. At the
19015end of the list it also prints the total number of such threads.
922fbb7b
AC
19016
19017@subsubheading @value{GDBN} Command
19018
a2c02241 19019Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19020
19021@subsubheading Example
19022
a2c02241 19023No threads present, besides the main process:
922fbb7b
AC
19024
19025@smallexample
594fe323 19026(gdb)
a2c02241
NR
19027-thread-list-ids
19028^done,thread-ids=@{@},number-of-threads="0"
594fe323 19029(gdb)
922fbb7b
AC
19030@end smallexample
19031
922fbb7b 19032
a2c02241 19033Several threads:
922fbb7b
AC
19034
19035@smallexample
594fe323 19036(gdb)
a2c02241
NR
19037-thread-list-ids
19038^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19039number-of-threads="3"
594fe323 19040(gdb)
922fbb7b
AC
19041@end smallexample
19042
a2c02241
NR
19043
19044@subheading The @code{-thread-select} Command
19045@findex -thread-select
922fbb7b
AC
19046
19047@subsubheading Synopsis
19048
19049@smallexample
a2c02241 19050 -thread-select @var{threadnum}
922fbb7b
AC
19051@end smallexample
19052
a2c02241
NR
19053Make @var{threadnum} the current thread. It prints the number of the new
19054current thread, and the topmost frame for that thread.
922fbb7b
AC
19055
19056@subsubheading @value{GDBN} Command
19057
a2c02241 19058The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19059
19060@subsubheading Example
922fbb7b
AC
19061
19062@smallexample
594fe323 19063(gdb)
a2c02241
NR
19064-exec-next
19065^running
594fe323 19066(gdb)
a2c02241
NR
19067*stopped,reason="end-stepping-range",thread-id="2",line="187",
19068file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19069(gdb)
a2c02241
NR
19070-thread-list-ids
19071^done,
19072thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19073number-of-threads="3"
594fe323 19074(gdb)
a2c02241
NR
19075-thread-select 3
19076^done,new-thread-id="3",
19077frame=@{level="0",func="vprintf",
19078args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19079@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19080(gdb)
922fbb7b
AC
19081@end smallexample
19082
a2c02241
NR
19083@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19084@node GDB/MI Program Execution
19085@section @sc{gdb/mi} Program Execution
922fbb7b 19086
ef21caaf 19087These are the asynchronous commands which generate the out-of-band
3f94c067 19088record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19089asynchronously with remote targets and this interaction is mimicked in
19090other cases.
922fbb7b 19091
922fbb7b
AC
19092@subheading The @code{-exec-continue} Command
19093@findex -exec-continue
19094
19095@subsubheading Synopsis
19096
19097@smallexample
19098 -exec-continue
19099@end smallexample
19100
ef21caaf
NR
19101Resumes the execution of the inferior program until a breakpoint is
19102encountered, or until the inferior exits.
922fbb7b
AC
19103
19104@subsubheading @value{GDBN} Command
19105
19106The corresponding @value{GDBN} corresponding is @samp{continue}.
19107
19108@subsubheading Example
19109
19110@smallexample
19111-exec-continue
19112^running
594fe323 19113(gdb)
922fbb7b 19114@@Hello world
a47ec5fe
AR
19115*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19116func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19117line="13"@}
594fe323 19118(gdb)
922fbb7b
AC
19119@end smallexample
19120
19121
19122@subheading The @code{-exec-finish} Command
19123@findex -exec-finish
19124
19125@subsubheading Synopsis
19126
19127@smallexample
19128 -exec-finish
19129@end smallexample
19130
ef21caaf
NR
19131Resumes the execution of the inferior program until the current
19132function is exited. Displays the results returned by the function.
922fbb7b
AC
19133
19134@subsubheading @value{GDBN} Command
19135
19136The corresponding @value{GDBN} command is @samp{finish}.
19137
19138@subsubheading Example
19139
19140Function returning @code{void}.
19141
19142@smallexample
19143-exec-finish
19144^running
594fe323 19145(gdb)
922fbb7b
AC
19146@@hello from foo
19147*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19148file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19149(gdb)
922fbb7b
AC
19150@end smallexample
19151
19152Function returning other than @code{void}. The name of the internal
19153@value{GDBN} variable storing the result is printed, together with the
19154value itself.
19155
19156@smallexample
19157-exec-finish
19158^running
594fe323 19159(gdb)
922fbb7b
AC
19160*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19161args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19162file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19163gdb-result-var="$1",return-value="0"
594fe323 19164(gdb)
922fbb7b
AC
19165@end smallexample
19166
19167
19168@subheading The @code{-exec-interrupt} Command
19169@findex -exec-interrupt
19170
19171@subsubheading Synopsis
19172
19173@smallexample
19174 -exec-interrupt
19175@end smallexample
19176
ef21caaf
NR
19177Interrupts the background execution of the target. Note how the token
19178associated with the stop message is the one for the execution command
19179that has been interrupted. The token for the interrupt itself only
19180appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19181interrupt a non-running program, an error message will be printed.
19182
19183@subsubheading @value{GDBN} Command
19184
19185The corresponding @value{GDBN} command is @samp{interrupt}.
19186
19187@subsubheading Example
19188
19189@smallexample
594fe323 19190(gdb)
922fbb7b
AC
19191111-exec-continue
19192111^running
19193
594fe323 19194(gdb)
922fbb7b
AC
19195222-exec-interrupt
19196222^done
594fe323 19197(gdb)
922fbb7b 19198111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19199frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19200fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19201(gdb)
922fbb7b 19202
594fe323 19203(gdb)
922fbb7b
AC
19204-exec-interrupt
19205^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19206(gdb)
922fbb7b
AC
19207@end smallexample
19208
19209
19210@subheading The @code{-exec-next} Command
19211@findex -exec-next
19212
19213@subsubheading Synopsis
19214
19215@smallexample
19216 -exec-next
19217@end smallexample
19218
ef21caaf
NR
19219Resumes execution of the inferior program, stopping when the beginning
19220of the next source line is reached.
922fbb7b
AC
19221
19222@subsubheading @value{GDBN} Command
19223
19224The corresponding @value{GDBN} command is @samp{next}.
19225
19226@subsubheading Example
19227
19228@smallexample
19229-exec-next
19230^running
594fe323 19231(gdb)
922fbb7b 19232*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19233(gdb)
922fbb7b
AC
19234@end smallexample
19235
19236
19237@subheading The @code{-exec-next-instruction} Command
19238@findex -exec-next-instruction
19239
19240@subsubheading Synopsis
19241
19242@smallexample
19243 -exec-next-instruction
19244@end smallexample
19245
ef21caaf
NR
19246Executes one machine instruction. If the instruction is a function
19247call, continues until the function returns. If the program stops at an
19248instruction in the middle of a source line, the address will be
19249printed as well.
922fbb7b
AC
19250
19251@subsubheading @value{GDBN} Command
19252
19253The corresponding @value{GDBN} command is @samp{nexti}.
19254
19255@subsubheading Example
19256
19257@smallexample
594fe323 19258(gdb)
922fbb7b
AC
19259-exec-next-instruction
19260^running
19261
594fe323 19262(gdb)
922fbb7b
AC
19263*stopped,reason="end-stepping-range",
19264addr="0x000100d4",line="5",file="hello.c"
594fe323 19265(gdb)
922fbb7b
AC
19266@end smallexample
19267
19268
19269@subheading The @code{-exec-return} Command
19270@findex -exec-return
19271
19272@subsubheading Synopsis
19273
19274@smallexample
19275 -exec-return
19276@end smallexample
19277
19278Makes current function return immediately. Doesn't execute the inferior.
19279Displays the new current frame.
19280
19281@subsubheading @value{GDBN} Command
19282
19283The corresponding @value{GDBN} command is @samp{return}.
19284
19285@subsubheading Example
19286
19287@smallexample
594fe323 19288(gdb)
922fbb7b
AC
19289200-break-insert callee4
19290200^done,bkpt=@{number="1",addr="0x00010734",
19291file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19292(gdb)
922fbb7b
AC
19293000-exec-run
19294000^running
594fe323 19295(gdb)
a47ec5fe 19296000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19297frame=@{func="callee4",args=[],
76ff342d
DJ
19298file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19299fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19300(gdb)
922fbb7b
AC
19301205-break-delete
19302205^done
594fe323 19303(gdb)
922fbb7b
AC
19304111-exec-return
19305111^done,frame=@{level="0",func="callee3",
19306args=[@{name="strarg",
19307value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19308file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19309fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19310(gdb)
922fbb7b
AC
19311@end smallexample
19312
19313
19314@subheading The @code{-exec-run} Command
19315@findex -exec-run
19316
19317@subsubheading Synopsis
19318
19319@smallexample
19320 -exec-run
19321@end smallexample
19322
ef21caaf
NR
19323Starts execution of the inferior from the beginning. The inferior
19324executes until either a breakpoint is encountered or the program
19325exits. In the latter case the output will include an exit code, if
19326the program has exited exceptionally.
922fbb7b
AC
19327
19328@subsubheading @value{GDBN} Command
19329
19330The corresponding @value{GDBN} command is @samp{run}.
19331
ef21caaf 19332@subsubheading Examples
922fbb7b
AC
19333
19334@smallexample
594fe323 19335(gdb)
922fbb7b
AC
19336-break-insert main
19337^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19338(gdb)
922fbb7b
AC
19339-exec-run
19340^running
594fe323 19341(gdb)
a47ec5fe 19342*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19343frame=@{func="main",args=[],file="recursive2.c",
948d5102 19344fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19345(gdb)
922fbb7b
AC
19346@end smallexample
19347
ef21caaf
NR
19348@noindent
19349Program exited normally:
19350
19351@smallexample
594fe323 19352(gdb)
ef21caaf
NR
19353-exec-run
19354^running
594fe323 19355(gdb)
ef21caaf
NR
19356x = 55
19357*stopped,reason="exited-normally"
594fe323 19358(gdb)
ef21caaf
NR
19359@end smallexample
19360
19361@noindent
19362Program exited exceptionally:
19363
19364@smallexample
594fe323 19365(gdb)
ef21caaf
NR
19366-exec-run
19367^running
594fe323 19368(gdb)
ef21caaf
NR
19369x = 55
19370*stopped,reason="exited",exit-code="01"
594fe323 19371(gdb)
ef21caaf
NR
19372@end smallexample
19373
19374Another way the program can terminate is if it receives a signal such as
19375@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19376
19377@smallexample
594fe323 19378(gdb)
ef21caaf
NR
19379*stopped,reason="exited-signalled",signal-name="SIGINT",
19380signal-meaning="Interrupt"
19381@end smallexample
19382
922fbb7b 19383
a2c02241
NR
19384@c @subheading -exec-signal
19385
19386
19387@subheading The @code{-exec-step} Command
19388@findex -exec-step
922fbb7b
AC
19389
19390@subsubheading Synopsis
19391
19392@smallexample
a2c02241 19393 -exec-step
922fbb7b
AC
19394@end smallexample
19395
a2c02241
NR
19396Resumes execution of the inferior program, stopping when the beginning
19397of the next source line is reached, if the next source line is not a
19398function call. If it is, stop at the first instruction of the called
19399function.
922fbb7b
AC
19400
19401@subsubheading @value{GDBN} Command
19402
a2c02241 19403The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19404
19405@subsubheading Example
19406
19407Stepping into a function:
19408
19409@smallexample
19410-exec-step
19411^running
594fe323 19412(gdb)
922fbb7b
AC
19413*stopped,reason="end-stepping-range",
19414frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19415@{name="b",value="0"@}],file="recursive2.c",
948d5102 19416fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19417(gdb)
922fbb7b
AC
19418@end smallexample
19419
19420Regular stepping:
19421
19422@smallexample
19423-exec-step
19424^running
594fe323 19425(gdb)
922fbb7b 19426*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19427(gdb)
922fbb7b
AC
19428@end smallexample
19429
19430
19431@subheading The @code{-exec-step-instruction} Command
19432@findex -exec-step-instruction
19433
19434@subsubheading Synopsis
19435
19436@smallexample
19437 -exec-step-instruction
19438@end smallexample
19439
ef21caaf
NR
19440Resumes the inferior which executes one machine instruction. The
19441output, once @value{GDBN} has stopped, will vary depending on whether
19442we have stopped in the middle of a source line or not. In the former
19443case, the address at which the program stopped will be printed as
922fbb7b
AC
19444well.
19445
19446@subsubheading @value{GDBN} Command
19447
19448The corresponding @value{GDBN} command is @samp{stepi}.
19449
19450@subsubheading Example
19451
19452@smallexample
594fe323 19453(gdb)
922fbb7b
AC
19454-exec-step-instruction
19455^running
19456
594fe323 19457(gdb)
922fbb7b 19458*stopped,reason="end-stepping-range",
76ff342d 19459frame=@{func="foo",args=[],file="try.c",
948d5102 19460fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19461(gdb)
922fbb7b
AC
19462-exec-step-instruction
19463^running
19464
594fe323 19465(gdb)
922fbb7b 19466*stopped,reason="end-stepping-range",
76ff342d 19467frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19468fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19469(gdb)
922fbb7b
AC
19470@end smallexample
19471
19472
19473@subheading The @code{-exec-until} Command
19474@findex -exec-until
19475
19476@subsubheading Synopsis
19477
19478@smallexample
19479 -exec-until [ @var{location} ]
19480@end smallexample
19481
ef21caaf
NR
19482Executes the inferior until the @var{location} specified in the
19483argument is reached. If there is no argument, the inferior executes
19484until a source line greater than the current one is reached. The
19485reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19486
19487@subsubheading @value{GDBN} Command
19488
19489The corresponding @value{GDBN} command is @samp{until}.
19490
19491@subsubheading Example
19492
19493@smallexample
594fe323 19494(gdb)
922fbb7b
AC
19495-exec-until recursive2.c:6
19496^running
594fe323 19497(gdb)
922fbb7b
AC
19498x = 55
19499*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19500file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19501(gdb)
922fbb7b
AC
19502@end smallexample
19503
19504@ignore
19505@subheading -file-clear
19506Is this going away????
19507@end ignore
19508
351ff01a 19509@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19510@node GDB/MI Stack Manipulation
19511@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19512
922fbb7b 19513
a2c02241
NR
19514@subheading The @code{-stack-info-frame} Command
19515@findex -stack-info-frame
922fbb7b
AC
19516
19517@subsubheading Synopsis
19518
19519@smallexample
a2c02241 19520 -stack-info-frame
922fbb7b
AC
19521@end smallexample
19522
a2c02241 19523Get info on the selected frame.
922fbb7b
AC
19524
19525@subsubheading @value{GDBN} Command
19526
a2c02241
NR
19527The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19528(without arguments).
922fbb7b
AC
19529
19530@subsubheading Example
19531
19532@smallexample
594fe323 19533(gdb)
a2c02241
NR
19534-stack-info-frame
19535^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19536file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19537fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19538(gdb)
922fbb7b
AC
19539@end smallexample
19540
a2c02241
NR
19541@subheading The @code{-stack-info-depth} Command
19542@findex -stack-info-depth
922fbb7b
AC
19543
19544@subsubheading Synopsis
19545
19546@smallexample
a2c02241 19547 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19548@end smallexample
19549
a2c02241
NR
19550Return the depth of the stack. If the integer argument @var{max-depth}
19551is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19552
19553@subsubheading @value{GDBN} Command
19554
a2c02241 19555There's no equivalent @value{GDBN} command.
922fbb7b
AC
19556
19557@subsubheading Example
19558
a2c02241
NR
19559For a stack with frame levels 0 through 11:
19560
922fbb7b 19561@smallexample
594fe323 19562(gdb)
a2c02241
NR
19563-stack-info-depth
19564^done,depth="12"
594fe323 19565(gdb)
a2c02241
NR
19566-stack-info-depth 4
19567^done,depth="4"
594fe323 19568(gdb)
a2c02241
NR
19569-stack-info-depth 12
19570^done,depth="12"
594fe323 19571(gdb)
a2c02241
NR
19572-stack-info-depth 11
19573^done,depth="11"
594fe323 19574(gdb)
a2c02241
NR
19575-stack-info-depth 13
19576^done,depth="12"
594fe323 19577(gdb)
922fbb7b
AC
19578@end smallexample
19579
a2c02241
NR
19580@subheading The @code{-stack-list-arguments} Command
19581@findex -stack-list-arguments
922fbb7b
AC
19582
19583@subsubheading Synopsis
19584
19585@smallexample
a2c02241
NR
19586 -stack-list-arguments @var{show-values}
19587 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19588@end smallexample
19589
a2c02241
NR
19590Display a list of the arguments for the frames between @var{low-frame}
19591and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19592@var{high-frame} are not provided, list the arguments for the whole
19593call stack. If the two arguments are equal, show the single frame
19594at the corresponding level. It is an error if @var{low-frame} is
19595larger than the actual number of frames. On the other hand,
19596@var{high-frame} may be larger than the actual number of frames, in
19597which case only existing frames will be returned.
a2c02241
NR
19598
19599The @var{show-values} argument must have a value of 0 or 1. A value of
196000 means that only the names of the arguments are listed, a value of 1
19601means that both names and values of the arguments are printed.
922fbb7b
AC
19602
19603@subsubheading @value{GDBN} Command
19604
a2c02241
NR
19605@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19606@samp{gdb_get_args} command which partially overlaps with the
19607functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19608
19609@subsubheading Example
922fbb7b 19610
a2c02241 19611@smallexample
594fe323 19612(gdb)
a2c02241
NR
19613-stack-list-frames
19614^done,
19615stack=[
19616frame=@{level="0",addr="0x00010734",func="callee4",
19617file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19618fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19619frame=@{level="1",addr="0x0001076c",func="callee3",
19620file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19621fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19622frame=@{level="2",addr="0x0001078c",func="callee2",
19623file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19624fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19625frame=@{level="3",addr="0x000107b4",func="callee1",
19626file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19627fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19628frame=@{level="4",addr="0x000107e0",func="main",
19629file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19630fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19631(gdb)
a2c02241
NR
19632-stack-list-arguments 0
19633^done,
19634stack-args=[
19635frame=@{level="0",args=[]@},
19636frame=@{level="1",args=[name="strarg"]@},
19637frame=@{level="2",args=[name="intarg",name="strarg"]@},
19638frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19639frame=@{level="4",args=[]@}]
594fe323 19640(gdb)
a2c02241
NR
19641-stack-list-arguments 1
19642^done,
19643stack-args=[
19644frame=@{level="0",args=[]@},
19645frame=@{level="1",
19646 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19647frame=@{level="2",args=[
19648@{name="intarg",value="2"@},
19649@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19650@{frame=@{level="3",args=[
19651@{name="intarg",value="2"@},
19652@{name="strarg",value="0x11940 \"A string argument.\""@},
19653@{name="fltarg",value="3.5"@}]@},
19654frame=@{level="4",args=[]@}]
594fe323 19655(gdb)
a2c02241
NR
19656-stack-list-arguments 0 2 2
19657^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19658(gdb)
a2c02241
NR
19659-stack-list-arguments 1 2 2
19660^done,stack-args=[frame=@{level="2",
19661args=[@{name="intarg",value="2"@},
19662@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19663(gdb)
a2c02241
NR
19664@end smallexample
19665
19666@c @subheading -stack-list-exception-handlers
922fbb7b 19667
a2c02241
NR
19668
19669@subheading The @code{-stack-list-frames} Command
19670@findex -stack-list-frames
1abaf70c
BR
19671
19672@subsubheading Synopsis
19673
19674@smallexample
a2c02241 19675 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19676@end smallexample
19677
a2c02241
NR
19678List the frames currently on the stack. For each frame it displays the
19679following info:
19680
19681@table @samp
19682@item @var{level}
d3e8051b 19683The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19684@item @var{addr}
19685The @code{$pc} value for that frame.
19686@item @var{func}
19687Function name.
19688@item @var{file}
19689File name of the source file where the function lives.
19690@item @var{line}
19691Line number corresponding to the @code{$pc}.
19692@end table
19693
19694If invoked without arguments, this command prints a backtrace for the
19695whole stack. If given two integer arguments, it shows the frames whose
19696levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19697are equal, it shows the single frame at the corresponding level. It is
19698an error if @var{low-frame} is larger than the actual number of
a5451f4e 19699frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19700actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19701
19702@subsubheading @value{GDBN} Command
19703
a2c02241 19704The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19705
19706@subsubheading Example
19707
a2c02241
NR
19708Full stack backtrace:
19709
1abaf70c 19710@smallexample
594fe323 19711(gdb)
a2c02241
NR
19712-stack-list-frames
19713^done,stack=
19714[frame=@{level="0",addr="0x0001076c",func="foo",
19715 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19716frame=@{level="1",addr="0x000107a4",func="foo",
19717 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19718frame=@{level="2",addr="0x000107a4",func="foo",
19719 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19720frame=@{level="3",addr="0x000107a4",func="foo",
19721 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19722frame=@{level="4",addr="0x000107a4",func="foo",
19723 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19724frame=@{level="5",addr="0x000107a4",func="foo",
19725 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19726frame=@{level="6",addr="0x000107a4",func="foo",
19727 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19728frame=@{level="7",addr="0x000107a4",func="foo",
19729 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19730frame=@{level="8",addr="0x000107a4",func="foo",
19731 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19732frame=@{level="9",addr="0x000107a4",func="foo",
19733 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19734frame=@{level="10",addr="0x000107a4",func="foo",
19735 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19736frame=@{level="11",addr="0x00010738",func="main",
19737 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19738(gdb)
1abaf70c
BR
19739@end smallexample
19740
a2c02241 19741Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19742
a2c02241 19743@smallexample
594fe323 19744(gdb)
a2c02241
NR
19745-stack-list-frames 3 5
19746^done,stack=
19747[frame=@{level="3",addr="0x000107a4",func="foo",
19748 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19749frame=@{level="4",addr="0x000107a4",func="foo",
19750 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19751frame=@{level="5",addr="0x000107a4",func="foo",
19752 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19753(gdb)
a2c02241 19754@end smallexample
922fbb7b 19755
a2c02241 19756Show a single frame:
922fbb7b
AC
19757
19758@smallexample
594fe323 19759(gdb)
a2c02241
NR
19760-stack-list-frames 3 3
19761^done,stack=
19762[frame=@{level="3",addr="0x000107a4",func="foo",
19763 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19764(gdb)
922fbb7b
AC
19765@end smallexample
19766
922fbb7b 19767
a2c02241
NR
19768@subheading The @code{-stack-list-locals} Command
19769@findex -stack-list-locals
57c22c6c 19770
a2c02241 19771@subsubheading Synopsis
922fbb7b
AC
19772
19773@smallexample
a2c02241 19774 -stack-list-locals @var{print-values}
922fbb7b
AC
19775@end smallexample
19776
a2c02241
NR
19777Display the local variable names for the selected frame. If
19778@var{print-values} is 0 or @code{--no-values}, print only the names of
19779the variables; if it is 1 or @code{--all-values}, print also their
19780values; and if it is 2 or @code{--simple-values}, print the name,
19781type and value for simple data types and the name and type for arrays,
19782structures and unions. In this last case, a frontend can immediately
19783display the value of simple data types and create variable objects for
d3e8051b 19784other data types when the user wishes to explore their values in
a2c02241 19785more detail.
922fbb7b
AC
19786
19787@subsubheading @value{GDBN} Command
19788
a2c02241 19789@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19790
19791@subsubheading Example
922fbb7b
AC
19792
19793@smallexample
594fe323 19794(gdb)
a2c02241
NR
19795-stack-list-locals 0
19796^done,locals=[name="A",name="B",name="C"]
594fe323 19797(gdb)
a2c02241
NR
19798-stack-list-locals --all-values
19799^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19800 @{name="C",value="@{1, 2, 3@}"@}]
19801-stack-list-locals --simple-values
19802^done,locals=[@{name="A",type="int",value="1"@},
19803 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19804(gdb)
922fbb7b
AC
19805@end smallexample
19806
922fbb7b 19807
a2c02241
NR
19808@subheading The @code{-stack-select-frame} Command
19809@findex -stack-select-frame
922fbb7b
AC
19810
19811@subsubheading Synopsis
19812
19813@smallexample
a2c02241 19814 -stack-select-frame @var{framenum}
922fbb7b
AC
19815@end smallexample
19816
a2c02241
NR
19817Change the selected frame. Select a different frame @var{framenum} on
19818the stack.
922fbb7b
AC
19819
19820@subsubheading @value{GDBN} Command
19821
a2c02241
NR
19822The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19823@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19824
19825@subsubheading Example
19826
19827@smallexample
594fe323 19828(gdb)
a2c02241 19829-stack-select-frame 2
922fbb7b 19830^done
594fe323 19831(gdb)
922fbb7b
AC
19832@end smallexample
19833
19834@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19835@node GDB/MI Variable Objects
19836@section @sc{gdb/mi} Variable Objects
922fbb7b 19837
a1b5960f 19838@ignore
922fbb7b 19839
a2c02241 19840@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19841
a2c02241
NR
19842For the implementation of a variable debugger window (locals, watched
19843expressions, etc.), we are proposing the adaptation of the existing code
19844used by @code{Insight}.
922fbb7b 19845
a2c02241 19846The two main reasons for that are:
922fbb7b 19847
a2c02241
NR
19848@enumerate 1
19849@item
19850It has been proven in practice (it is already on its second generation).
922fbb7b 19851
a2c02241
NR
19852@item
19853It will shorten development time (needless to say how important it is
19854now).
19855@end enumerate
922fbb7b 19856
a2c02241
NR
19857The original interface was designed to be used by Tcl code, so it was
19858slightly changed so it could be used through @sc{gdb/mi}. This section
19859describes the @sc{gdb/mi} operations that will be available and gives some
19860hints about their use.
922fbb7b 19861
a2c02241
NR
19862@emph{Note}: In addition to the set of operations described here, we
19863expect the @sc{gui} implementation of a variable window to require, at
19864least, the following operations:
922fbb7b 19865
a2c02241
NR
19866@itemize @bullet
19867@item @code{-gdb-show} @code{output-radix}
19868@item @code{-stack-list-arguments}
19869@item @code{-stack-list-locals}
19870@item @code{-stack-select-frame}
19871@end itemize
922fbb7b 19872
a1b5960f
VP
19873@end ignore
19874
c8b2f53c 19875@subheading Introduction to Variable Objects
922fbb7b 19876
a2c02241 19877@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19878
19879Variable objects are "object-oriented" MI interface for examining and
19880changing values of expressions. Unlike some other MI interfaces that
19881work with expressions, variable objects are specifically designed for
19882simple and efficient presentation in the frontend. A variable object
19883is identified by string name. When a variable object is created, the
19884frontend specifies the expression for that variable object. The
19885expression can be a simple variable, or it can be an arbitrary complex
19886expression, and can even involve CPU registers. After creating a
19887variable object, the frontend can invoke other variable object
19888operations---for example to obtain or change the value of a variable
19889object, or to change display format.
19890
19891Variable objects have hierarchical tree structure. Any variable object
19892that corresponds to a composite type, such as structure in C, has
19893a number of child variable objects, for example corresponding to each
19894element of a structure. A child variable object can itself have
19895children, recursively. Recursion ends when we reach
25d5ea92
VP
19896leaf variable objects, which always have built-in types. Child variable
19897objects are created only by explicit request, so if a frontend
19898is not interested in the children of a particular variable object, no
19899child will be created.
c8b2f53c
VP
19900
19901For a leaf variable object it is possible to obtain its value as a
19902string, or set the value from a string. String value can be also
19903obtained for a non-leaf variable object, but it's generally a string
19904that only indicates the type of the object, and does not list its
19905contents. Assignment to a non-leaf variable object is not allowed.
19906
19907A frontend does not need to read the values of all variable objects each time
19908the program stops. Instead, MI provides an update command that lists all
19909variable objects whose values has changed since the last update
19910operation. This considerably reduces the amount of data that must
25d5ea92
VP
19911be transferred to the frontend. As noted above, children variable
19912objects are created on demand, and only leaf variable objects have a
19913real value. As result, gdb will read target memory only for leaf
19914variables that frontend has created.
19915
19916The automatic update is not always desirable. For example, a frontend
19917might want to keep a value of some expression for future reference,
19918and never update it. For another example, fetching memory is
19919relatively slow for embedded targets, so a frontend might want
19920to disable automatic update for the variables that are either not
19921visible on the screen, or ``closed''. This is possible using so
19922called ``frozen variable objects''. Such variable objects are never
19923implicitly updated.
922fbb7b 19924
a2c02241
NR
19925The following is the complete set of @sc{gdb/mi} operations defined to
19926access this functionality:
922fbb7b 19927
a2c02241
NR
19928@multitable @columnfractions .4 .6
19929@item @strong{Operation}
19930@tab @strong{Description}
922fbb7b 19931
a2c02241
NR
19932@item @code{-var-create}
19933@tab create a variable object
19934@item @code{-var-delete}
22d8a470 19935@tab delete the variable object and/or its children
a2c02241
NR
19936@item @code{-var-set-format}
19937@tab set the display format of this variable
19938@item @code{-var-show-format}
19939@tab show the display format of this variable
19940@item @code{-var-info-num-children}
19941@tab tells how many children this object has
19942@item @code{-var-list-children}
19943@tab return a list of the object's children
19944@item @code{-var-info-type}
19945@tab show the type of this variable object
19946@item @code{-var-info-expression}
02142340
VP
19947@tab print parent-relative expression that this variable object represents
19948@item @code{-var-info-path-expression}
19949@tab print full expression that this variable object represents
a2c02241
NR
19950@item @code{-var-show-attributes}
19951@tab is this variable editable? does it exist here?
19952@item @code{-var-evaluate-expression}
19953@tab get the value of this variable
19954@item @code{-var-assign}
19955@tab set the value of this variable
19956@item @code{-var-update}
19957@tab update the variable and its children
25d5ea92
VP
19958@item @code{-var-set-frozen}
19959@tab set frozeness attribute
a2c02241 19960@end multitable
922fbb7b 19961
a2c02241
NR
19962In the next subsection we describe each operation in detail and suggest
19963how it can be used.
922fbb7b 19964
a2c02241 19965@subheading Description And Use of Operations on Variable Objects
922fbb7b 19966
a2c02241
NR
19967@subheading The @code{-var-create} Command
19968@findex -var-create
ef21caaf 19969
a2c02241 19970@subsubheading Synopsis
ef21caaf 19971
a2c02241
NR
19972@smallexample
19973 -var-create @{@var{name} | "-"@}
19974 @{@var{frame-addr} | "*"@} @var{expression}
19975@end smallexample
19976
19977This operation creates a variable object, which allows the monitoring of
19978a variable, the result of an expression, a memory cell or a CPU
19979register.
ef21caaf 19980
a2c02241
NR
19981The @var{name} parameter is the string by which the object can be
19982referenced. It must be unique. If @samp{-} is specified, the varobj
19983system will generate a string ``varNNNNNN'' automatically. It will be
19984unique provided that one does not specify @var{name} on that format.
19985The command fails if a duplicate name is found.
ef21caaf 19986
a2c02241
NR
19987The frame under which the expression should be evaluated can be
19988specified by @var{frame-addr}. A @samp{*} indicates that the current
19989frame should be used.
922fbb7b 19990
a2c02241
NR
19991@var{expression} is any expression valid on the current language set (must not
19992begin with a @samp{*}), or one of the following:
922fbb7b 19993
a2c02241
NR
19994@itemize @bullet
19995@item
19996@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19997
a2c02241
NR
19998@item
19999@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20000
a2c02241
NR
20001@item
20002@samp{$@var{regname}} --- a CPU register name
20003@end itemize
922fbb7b 20004
a2c02241 20005@subsubheading Result
922fbb7b 20006
a2c02241
NR
20007This operation returns the name, number of children and the type of the
20008object created. Type is returned as a string as the ones generated by
20009the @value{GDBN} CLI:
922fbb7b
AC
20010
20011@smallexample
a2c02241 20012 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20013@end smallexample
20014
a2c02241
NR
20015
20016@subheading The @code{-var-delete} Command
20017@findex -var-delete
922fbb7b
AC
20018
20019@subsubheading Synopsis
20020
20021@smallexample
22d8a470 20022 -var-delete [ -c ] @var{name}
922fbb7b
AC
20023@end smallexample
20024
a2c02241 20025Deletes a previously created variable object and all of its children.
22d8a470 20026With the @samp{-c} option, just deletes the children.
922fbb7b 20027
a2c02241 20028Returns an error if the object @var{name} is not found.
922fbb7b 20029
922fbb7b 20030
a2c02241
NR
20031@subheading The @code{-var-set-format} Command
20032@findex -var-set-format
922fbb7b 20033
a2c02241 20034@subsubheading Synopsis
922fbb7b
AC
20035
20036@smallexample
a2c02241 20037 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20038@end smallexample
20039
a2c02241
NR
20040Sets the output format for the value of the object @var{name} to be
20041@var{format-spec}.
20042
de051565 20043@anchor{-var-set-format}
a2c02241
NR
20044The syntax for the @var{format-spec} is as follows:
20045
20046@smallexample
20047 @var{format-spec} @expansion{}
20048 @{binary | decimal | hexadecimal | octal | natural@}
20049@end smallexample
20050
c8b2f53c
VP
20051The natural format is the default format choosen automatically
20052based on the variable type (like decimal for an @code{int}, hex
20053for pointers, etc.).
20054
20055For a variable with children, the format is set only on the
20056variable itself, and the children are not affected.
a2c02241
NR
20057
20058@subheading The @code{-var-show-format} Command
20059@findex -var-show-format
922fbb7b
AC
20060
20061@subsubheading Synopsis
20062
20063@smallexample
a2c02241 20064 -var-show-format @var{name}
922fbb7b
AC
20065@end smallexample
20066
a2c02241 20067Returns the format used to display the value of the object @var{name}.
922fbb7b 20068
a2c02241
NR
20069@smallexample
20070 @var{format} @expansion{}
20071 @var{format-spec}
20072@end smallexample
922fbb7b 20073
922fbb7b 20074
a2c02241
NR
20075@subheading The @code{-var-info-num-children} Command
20076@findex -var-info-num-children
20077
20078@subsubheading Synopsis
20079
20080@smallexample
20081 -var-info-num-children @var{name}
20082@end smallexample
20083
20084Returns the number of children of a variable object @var{name}:
20085
20086@smallexample
20087 numchild=@var{n}
20088@end smallexample
20089
20090
20091@subheading The @code{-var-list-children} Command
20092@findex -var-list-children
20093
20094@subsubheading Synopsis
20095
20096@smallexample
20097 -var-list-children [@var{print-values}] @var{name}
20098@end smallexample
20099@anchor{-var-list-children}
20100
20101Return a list of the children of the specified variable object and
20102create variable objects for them, if they do not already exist. With
20103a single argument or if @var{print-values} has a value for of 0 or
20104@code{--no-values}, print only the names of the variables; if
20105@var{print-values} is 1 or @code{--all-values}, also print their
20106values; and if it is 2 or @code{--simple-values} print the name and
20107value for simple data types and just the name for arrays, structures
20108and unions.
922fbb7b
AC
20109
20110@subsubheading Example
20111
20112@smallexample
594fe323 20113(gdb)
a2c02241
NR
20114 -var-list-children n
20115 ^done,numchild=@var{n},children=[@{name=@var{name},
20116 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20117(gdb)
a2c02241
NR
20118 -var-list-children --all-values n
20119 ^done,numchild=@var{n},children=[@{name=@var{name},
20120 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20121@end smallexample
20122
922fbb7b 20123
a2c02241
NR
20124@subheading The @code{-var-info-type} Command
20125@findex -var-info-type
922fbb7b 20126
a2c02241
NR
20127@subsubheading Synopsis
20128
20129@smallexample
20130 -var-info-type @var{name}
20131@end smallexample
20132
20133Returns the type of the specified variable @var{name}. The type is
20134returned as a string in the same format as it is output by the
20135@value{GDBN} CLI:
20136
20137@smallexample
20138 type=@var{typename}
20139@end smallexample
20140
20141
20142@subheading The @code{-var-info-expression} Command
20143@findex -var-info-expression
922fbb7b
AC
20144
20145@subsubheading Synopsis
20146
20147@smallexample
a2c02241 20148 -var-info-expression @var{name}
922fbb7b
AC
20149@end smallexample
20150
02142340
VP
20151Returns a string that is suitable for presenting this
20152variable object in user interface. The string is generally
20153not valid expression in the current language, and cannot be evaluated.
20154
20155For example, if @code{a} is an array, and variable object
20156@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20157
a2c02241 20158@smallexample
02142340
VP
20159(gdb) -var-info-expression A.1
20160^done,lang="C",exp="1"
a2c02241 20161@end smallexample
922fbb7b 20162
a2c02241 20163@noindent
02142340
VP
20164Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20165
20166Note that the output of the @code{-var-list-children} command also
20167includes those expressions, so the @code{-var-info-expression} command
20168is of limited use.
20169
20170@subheading The @code{-var-info-path-expression} Command
20171@findex -var-info-path-expression
20172
20173@subsubheading Synopsis
20174
20175@smallexample
20176 -var-info-path-expression @var{name}
20177@end smallexample
20178
20179Returns an expression that can be evaluated in the current
20180context and will yield the same value that a variable object has.
20181Compare this with the @code{-var-info-expression} command, which
20182result can be used only for UI presentation. Typical use of
20183the @code{-var-info-path-expression} command is creating a
20184watchpoint from a variable object.
20185
20186For example, suppose @code{C} is a C@t{++} class, derived from class
20187@code{Base}, and that the @code{Base} class has a member called
20188@code{m_size}. Assume a variable @code{c} is has the type of
20189@code{C} and a variable object @code{C} was created for variable
20190@code{c}. Then, we'll get this output:
20191@smallexample
20192(gdb) -var-info-path-expression C.Base.public.m_size
20193^done,path_expr=((Base)c).m_size)
20194@end smallexample
922fbb7b 20195
a2c02241
NR
20196@subheading The @code{-var-show-attributes} Command
20197@findex -var-show-attributes
922fbb7b 20198
a2c02241 20199@subsubheading Synopsis
922fbb7b 20200
a2c02241
NR
20201@smallexample
20202 -var-show-attributes @var{name}
20203@end smallexample
922fbb7b 20204
a2c02241 20205List attributes of the specified variable object @var{name}:
922fbb7b
AC
20206
20207@smallexample
a2c02241 20208 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20209@end smallexample
20210
a2c02241
NR
20211@noindent
20212where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20213
20214@subheading The @code{-var-evaluate-expression} Command
20215@findex -var-evaluate-expression
20216
20217@subsubheading Synopsis
20218
20219@smallexample
de051565 20220 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20221@end smallexample
20222
20223Evaluates the expression that is represented by the specified variable
de051565
MK
20224object and returns its value as a string. The format of the string
20225can be specified with the @samp{-f} option. The possible values of
20226this option are the same as for @code{-var-set-format}
20227(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20228the current display format will be used. The current display format
20229can be changed using the @code{-var-set-format} command.
a2c02241
NR
20230
20231@smallexample
20232 value=@var{value}
20233@end smallexample
20234
20235Note that one must invoke @code{-var-list-children} for a variable
20236before the value of a child variable can be evaluated.
20237
20238@subheading The @code{-var-assign} Command
20239@findex -var-assign
20240
20241@subsubheading Synopsis
20242
20243@smallexample
20244 -var-assign @var{name} @var{expression}
20245@end smallexample
20246
20247Assigns the value of @var{expression} to the variable object specified
20248by @var{name}. The object must be @samp{editable}. If the variable's
20249value is altered by the assign, the variable will show up in any
20250subsequent @code{-var-update} list.
20251
20252@subsubheading Example
922fbb7b
AC
20253
20254@smallexample
594fe323 20255(gdb)
a2c02241
NR
20256-var-assign var1 3
20257^done,value="3"
594fe323 20258(gdb)
a2c02241
NR
20259-var-update *
20260^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20261(gdb)
922fbb7b
AC
20262@end smallexample
20263
a2c02241
NR
20264@subheading The @code{-var-update} Command
20265@findex -var-update
20266
20267@subsubheading Synopsis
20268
20269@smallexample
20270 -var-update [@var{print-values}] @{@var{name} | "*"@}
20271@end smallexample
20272
c8b2f53c
VP
20273Reevaluate the expressions corresponding to the variable object
20274@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20275list of variable objects whose values have changed; @var{name} must
20276be a root variable object. Here, ``changed'' means that the result of
20277@code{-var-evaluate-expression} before and after the
20278@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20279object names, all existing variable objects are updated, except
20280for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20281@var{print-values} determines whether both names and values, or just
de051565 20282names are printed. The possible values of this option are the same
36ece8b3
NR
20283as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20284recommended to use the @samp{--all-values} option, to reduce the
20285number of MI commands needed on each program stop.
c8b2f53c 20286
a2c02241
NR
20287
20288@subsubheading Example
922fbb7b
AC
20289
20290@smallexample
594fe323 20291(gdb)
a2c02241
NR
20292-var-assign var1 3
20293^done,value="3"
594fe323 20294(gdb)
a2c02241
NR
20295-var-update --all-values var1
20296^done,changelist=[@{name="var1",value="3",in_scope="true",
20297type_changed="false"@}]
594fe323 20298(gdb)
922fbb7b
AC
20299@end smallexample
20300
9f708cb2 20301@anchor{-var-update}
36ece8b3
NR
20302The field in_scope may take three values:
20303
20304@table @code
20305@item "true"
20306The variable object's current value is valid.
20307
20308@item "false"
20309The variable object does not currently hold a valid value but it may
20310hold one in the future if its associated expression comes back into
20311scope.
20312
20313@item "invalid"
20314The variable object no longer holds a valid value.
20315This can occur when the executable file being debugged has changed,
20316either through recompilation or by using the @value{GDBN} @code{file}
20317command. The front end should normally choose to delete these variable
20318objects.
20319@end table
20320
20321In the future new values may be added to this list so the front should
20322be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20323
25d5ea92
VP
20324@subheading The @code{-var-set-frozen} Command
20325@findex -var-set-frozen
9f708cb2 20326@anchor{-var-set-frozen}
25d5ea92
VP
20327
20328@subsubheading Synopsis
20329
20330@smallexample
9f708cb2 20331 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20332@end smallexample
20333
9f708cb2 20334Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20335@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20336frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20337frozen, then neither itself, nor any of its children, are
9f708cb2 20338implicitly updated by @code{-var-update} of
25d5ea92
VP
20339a parent variable or by @code{-var-update *}. Only
20340@code{-var-update} of the variable itself will update its value and
20341values of its children. After a variable object is unfrozen, it is
20342implicitly updated by all subsequent @code{-var-update} operations.
20343Unfreezing a variable does not update it, only subsequent
20344@code{-var-update} does.
20345
20346@subsubheading Example
20347
20348@smallexample
20349(gdb)
20350-var-set-frozen V 1
20351^done
20352(gdb)
20353@end smallexample
20354
20355
a2c02241
NR
20356@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20357@node GDB/MI Data Manipulation
20358@section @sc{gdb/mi} Data Manipulation
922fbb7b 20359
a2c02241
NR
20360@cindex data manipulation, in @sc{gdb/mi}
20361@cindex @sc{gdb/mi}, data manipulation
20362This section describes the @sc{gdb/mi} commands that manipulate data:
20363examine memory and registers, evaluate expressions, etc.
20364
20365@c REMOVED FROM THE INTERFACE.
20366@c @subheading -data-assign
20367@c Change the value of a program variable. Plenty of side effects.
79a6e687 20368@c @subsubheading GDB Command
a2c02241
NR
20369@c set variable
20370@c @subsubheading Example
20371@c N.A.
20372
20373@subheading The @code{-data-disassemble} Command
20374@findex -data-disassemble
922fbb7b
AC
20375
20376@subsubheading Synopsis
20377
20378@smallexample
a2c02241
NR
20379 -data-disassemble
20380 [ -s @var{start-addr} -e @var{end-addr} ]
20381 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20382 -- @var{mode}
922fbb7b
AC
20383@end smallexample
20384
a2c02241
NR
20385@noindent
20386Where:
20387
20388@table @samp
20389@item @var{start-addr}
20390is the beginning address (or @code{$pc})
20391@item @var{end-addr}
20392is the end address
20393@item @var{filename}
20394is the name of the file to disassemble
20395@item @var{linenum}
20396is the line number to disassemble around
20397@item @var{lines}
d3e8051b 20398is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20399the whole function will be disassembled, in case no @var{end-addr} is
20400specified. If @var{end-addr} is specified as a non-zero value, and
20401@var{lines} is lower than the number of disassembly lines between
20402@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20403displayed; if @var{lines} is higher than the number of lines between
20404@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20405are displayed.
20406@item @var{mode}
20407is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20408disassembly).
20409@end table
20410
20411@subsubheading Result
20412
20413The output for each instruction is composed of four fields:
20414
20415@itemize @bullet
20416@item Address
20417@item Func-name
20418@item Offset
20419@item Instruction
20420@end itemize
20421
20422Note that whatever included in the instruction field, is not manipulated
d3e8051b 20423directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20424
20425@subsubheading @value{GDBN} Command
20426
a2c02241 20427There's no direct mapping from this command to the CLI.
922fbb7b
AC
20428
20429@subsubheading Example
20430
a2c02241
NR
20431Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20432
922fbb7b 20433@smallexample
594fe323 20434(gdb)
a2c02241
NR
20435-data-disassemble -s $pc -e "$pc + 20" -- 0
20436^done,
20437asm_insns=[
20438@{address="0x000107c0",func-name="main",offset="4",
20439inst="mov 2, %o0"@},
20440@{address="0x000107c4",func-name="main",offset="8",
20441inst="sethi %hi(0x11800), %o2"@},
20442@{address="0x000107c8",func-name="main",offset="12",
20443inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20444@{address="0x000107cc",func-name="main",offset="16",
20445inst="sethi %hi(0x11800), %o2"@},
20446@{address="0x000107d0",func-name="main",offset="20",
20447inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20448(gdb)
a2c02241
NR
20449@end smallexample
20450
20451Disassemble the whole @code{main} function. Line 32 is part of
20452@code{main}.
20453
20454@smallexample
20455-data-disassemble -f basics.c -l 32 -- 0
20456^done,asm_insns=[
20457@{address="0x000107bc",func-name="main",offset="0",
20458inst="save %sp, -112, %sp"@},
20459@{address="0x000107c0",func-name="main",offset="4",
20460inst="mov 2, %o0"@},
20461@{address="0x000107c4",func-name="main",offset="8",
20462inst="sethi %hi(0x11800), %o2"@},
20463[@dots{}]
20464@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20465@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20466(gdb)
922fbb7b
AC
20467@end smallexample
20468
a2c02241 20469Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20470
a2c02241 20471@smallexample
594fe323 20472(gdb)
a2c02241
NR
20473-data-disassemble -f basics.c -l 32 -n 3 -- 0
20474^done,asm_insns=[
20475@{address="0x000107bc",func-name="main",offset="0",
20476inst="save %sp, -112, %sp"@},
20477@{address="0x000107c0",func-name="main",offset="4",
20478inst="mov 2, %o0"@},
20479@{address="0x000107c4",func-name="main",offset="8",
20480inst="sethi %hi(0x11800), %o2"@}]
594fe323 20481(gdb)
a2c02241
NR
20482@end smallexample
20483
20484Disassemble 3 instructions from the start of @code{main} in mixed mode:
20485
20486@smallexample
594fe323 20487(gdb)
a2c02241
NR
20488-data-disassemble -f basics.c -l 32 -n 3 -- 1
20489^done,asm_insns=[
20490src_and_asm_line=@{line="31",
20491file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20492 testsuite/gdb.mi/basics.c",line_asm_insn=[
20493@{address="0x000107bc",func-name="main",offset="0",
20494inst="save %sp, -112, %sp"@}]@},
20495src_and_asm_line=@{line="32",
20496file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20497 testsuite/gdb.mi/basics.c",line_asm_insn=[
20498@{address="0x000107c0",func-name="main",offset="4",
20499inst="mov 2, %o0"@},
20500@{address="0x000107c4",func-name="main",offset="8",
20501inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20502(gdb)
a2c02241
NR
20503@end smallexample
20504
20505
20506@subheading The @code{-data-evaluate-expression} Command
20507@findex -data-evaluate-expression
922fbb7b
AC
20508
20509@subsubheading Synopsis
20510
20511@smallexample
a2c02241 20512 -data-evaluate-expression @var{expr}
922fbb7b
AC
20513@end smallexample
20514
a2c02241
NR
20515Evaluate @var{expr} as an expression. The expression could contain an
20516inferior function call. The function call will execute synchronously.
20517If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20518
20519@subsubheading @value{GDBN} Command
20520
a2c02241
NR
20521The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20522@samp{call}. In @code{gdbtk} only, there's a corresponding
20523@samp{gdb_eval} command.
922fbb7b
AC
20524
20525@subsubheading Example
20526
a2c02241
NR
20527In the following example, the numbers that precede the commands are the
20528@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20529Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20530output.
20531
922fbb7b 20532@smallexample
a2c02241
NR
20533211-data-evaluate-expression A
20534211^done,value="1"
594fe323 20535(gdb)
a2c02241
NR
20536311-data-evaluate-expression &A
20537311^done,value="0xefffeb7c"
594fe323 20538(gdb)
a2c02241
NR
20539411-data-evaluate-expression A+3
20540411^done,value="4"
594fe323 20541(gdb)
a2c02241
NR
20542511-data-evaluate-expression "A + 3"
20543511^done,value="4"
594fe323 20544(gdb)
a2c02241 20545@end smallexample
922fbb7b
AC
20546
20547
a2c02241
NR
20548@subheading The @code{-data-list-changed-registers} Command
20549@findex -data-list-changed-registers
922fbb7b
AC
20550
20551@subsubheading Synopsis
20552
20553@smallexample
a2c02241 20554 -data-list-changed-registers
922fbb7b
AC
20555@end smallexample
20556
a2c02241 20557Display a list of the registers that have changed.
922fbb7b
AC
20558
20559@subsubheading @value{GDBN} Command
20560
a2c02241
NR
20561@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20562has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20563
20564@subsubheading Example
922fbb7b 20565
a2c02241 20566On a PPC MBX board:
922fbb7b
AC
20567
20568@smallexample
594fe323 20569(gdb)
a2c02241
NR
20570-exec-continue
20571^running
922fbb7b 20572
594fe323 20573(gdb)
a47ec5fe
AR
20574*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20575func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20576line="5"@}
594fe323 20577(gdb)
a2c02241
NR
20578-data-list-changed-registers
20579^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20580"10","11","13","14","15","16","17","18","19","20","21","22","23",
20581"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20582(gdb)
a2c02241 20583@end smallexample
922fbb7b
AC
20584
20585
a2c02241
NR
20586@subheading The @code{-data-list-register-names} Command
20587@findex -data-list-register-names
922fbb7b
AC
20588
20589@subsubheading Synopsis
20590
20591@smallexample
a2c02241 20592 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20593@end smallexample
20594
a2c02241
NR
20595Show a list of register names for the current target. If no arguments
20596are given, it shows a list of the names of all the registers. If
20597integer numbers are given as arguments, it will print a list of the
20598names of the registers corresponding to the arguments. To ensure
20599consistency between a register name and its number, the output list may
20600include empty register names.
922fbb7b
AC
20601
20602@subsubheading @value{GDBN} Command
20603
a2c02241
NR
20604@value{GDBN} does not have a command which corresponds to
20605@samp{-data-list-register-names}. In @code{gdbtk} there is a
20606corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20607
20608@subsubheading Example
922fbb7b 20609
a2c02241
NR
20610For the PPC MBX board:
20611@smallexample
594fe323 20612(gdb)
a2c02241
NR
20613-data-list-register-names
20614^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20615"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20616"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20617"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20618"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20619"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20620"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20621(gdb)
a2c02241
NR
20622-data-list-register-names 1 2 3
20623^done,register-names=["r1","r2","r3"]
594fe323 20624(gdb)
a2c02241 20625@end smallexample
922fbb7b 20626
a2c02241
NR
20627@subheading The @code{-data-list-register-values} Command
20628@findex -data-list-register-values
922fbb7b
AC
20629
20630@subsubheading Synopsis
20631
20632@smallexample
a2c02241 20633 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20634@end smallexample
20635
a2c02241
NR
20636Display the registers' contents. @var{fmt} is the format according to
20637which the registers' contents are to be returned, followed by an optional
20638list of numbers specifying the registers to display. A missing list of
20639numbers indicates that the contents of all the registers must be returned.
20640
20641Allowed formats for @var{fmt} are:
20642
20643@table @code
20644@item x
20645Hexadecimal
20646@item o
20647Octal
20648@item t
20649Binary
20650@item d
20651Decimal
20652@item r
20653Raw
20654@item N
20655Natural
20656@end table
922fbb7b
AC
20657
20658@subsubheading @value{GDBN} Command
20659
a2c02241
NR
20660The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20661all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20662
20663@subsubheading Example
922fbb7b 20664
a2c02241
NR
20665For a PPC MBX board (note: line breaks are for readability only, they
20666don't appear in the actual output):
20667
20668@smallexample
594fe323 20669(gdb)
a2c02241
NR
20670-data-list-register-values r 64 65
20671^done,register-values=[@{number="64",value="0xfe00a300"@},
20672@{number="65",value="0x00029002"@}]
594fe323 20673(gdb)
a2c02241
NR
20674-data-list-register-values x
20675^done,register-values=[@{number="0",value="0xfe0043c8"@},
20676@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20677@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20678@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20679@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20680@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20681@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20682@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20683@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20684@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20685@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20686@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20687@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20688@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20689@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20690@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20691@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20692@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20693@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20694@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20695@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20696@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20697@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20698@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20699@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20700@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20701@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20702@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20703@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20704@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20705@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20706@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20707@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20708@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20709@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20710@{number="69",value="0x20002b03"@}]
594fe323 20711(gdb)
a2c02241 20712@end smallexample
922fbb7b 20713
a2c02241
NR
20714
20715@subheading The @code{-data-read-memory} Command
20716@findex -data-read-memory
922fbb7b
AC
20717
20718@subsubheading Synopsis
20719
20720@smallexample
a2c02241
NR
20721 -data-read-memory [ -o @var{byte-offset} ]
20722 @var{address} @var{word-format} @var{word-size}
20723 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20724@end smallexample
20725
a2c02241
NR
20726@noindent
20727where:
922fbb7b 20728
a2c02241
NR
20729@table @samp
20730@item @var{address}
20731An expression specifying the address of the first memory word to be
20732read. Complex expressions containing embedded white space should be
20733quoted using the C convention.
922fbb7b 20734
a2c02241
NR
20735@item @var{word-format}
20736The format to be used to print the memory words. The notation is the
20737same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20738,Output Formats}).
922fbb7b 20739
a2c02241
NR
20740@item @var{word-size}
20741The size of each memory word in bytes.
922fbb7b 20742
a2c02241
NR
20743@item @var{nr-rows}
20744The number of rows in the output table.
922fbb7b 20745
a2c02241
NR
20746@item @var{nr-cols}
20747The number of columns in the output table.
922fbb7b 20748
a2c02241
NR
20749@item @var{aschar}
20750If present, indicates that each row should include an @sc{ascii} dump. The
20751value of @var{aschar} is used as a padding character when a byte is not a
20752member of the printable @sc{ascii} character set (printable @sc{ascii}
20753characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20754
a2c02241
NR
20755@item @var{byte-offset}
20756An offset to add to the @var{address} before fetching memory.
20757@end table
922fbb7b 20758
a2c02241
NR
20759This command displays memory contents as a table of @var{nr-rows} by
20760@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20761@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20762(returned as @samp{total-bytes}). Should less than the requested number
20763of bytes be returned by the target, the missing words are identified
20764using @samp{N/A}. The number of bytes read from the target is returned
20765in @samp{nr-bytes} and the starting address used to read memory in
20766@samp{addr}.
20767
20768The address of the next/previous row or page is available in
20769@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20770@samp{prev-page}.
922fbb7b
AC
20771
20772@subsubheading @value{GDBN} Command
20773
a2c02241
NR
20774The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20775@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20776
20777@subsubheading Example
32e7087d 20778
a2c02241
NR
20779Read six bytes of memory starting at @code{bytes+6} but then offset by
20780@code{-6} bytes. Format as three rows of two columns. One byte per
20781word. Display each word in hex.
32e7087d
JB
20782
20783@smallexample
594fe323 20784(gdb)
a2c02241
NR
207859-data-read-memory -o -6 -- bytes+6 x 1 3 2
207869^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20787next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20788prev-page="0x0000138a",memory=[
20789@{addr="0x00001390",data=["0x00","0x01"]@},
20790@{addr="0x00001392",data=["0x02","0x03"]@},
20791@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20792(gdb)
32e7087d
JB
20793@end smallexample
20794
a2c02241
NR
20795Read two bytes of memory starting at address @code{shorts + 64} and
20796display as a single word formatted in decimal.
32e7087d 20797
32e7087d 20798@smallexample
594fe323 20799(gdb)
a2c02241
NR
208005-data-read-memory shorts+64 d 2 1 1
208015^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20802next-row="0x00001512",prev-row="0x0000150e",
20803next-page="0x00001512",prev-page="0x0000150e",memory=[
20804@{addr="0x00001510",data=["128"]@}]
594fe323 20805(gdb)
32e7087d
JB
20806@end smallexample
20807
a2c02241
NR
20808Read thirty two bytes of memory starting at @code{bytes+16} and format
20809as eight rows of four columns. Include a string encoding with @samp{x}
20810used as the non-printable character.
922fbb7b
AC
20811
20812@smallexample
594fe323 20813(gdb)
a2c02241
NR
208144-data-read-memory bytes+16 x 1 8 4 x
208154^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20816next-row="0x000013c0",prev-row="0x0000139c",
20817next-page="0x000013c0",prev-page="0x00001380",memory=[
20818@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20819@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20820@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20821@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20822@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20823@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20824@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20825@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20826(gdb)
922fbb7b
AC
20827@end smallexample
20828
a2c02241
NR
20829@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20830@node GDB/MI Tracepoint Commands
20831@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20832
a2c02241 20833The tracepoint commands are not yet implemented.
922fbb7b 20834
a2c02241 20835@c @subheading -trace-actions
922fbb7b 20836
a2c02241 20837@c @subheading -trace-delete
922fbb7b 20838
a2c02241 20839@c @subheading -trace-disable
922fbb7b 20840
a2c02241 20841@c @subheading -trace-dump
922fbb7b 20842
a2c02241 20843@c @subheading -trace-enable
922fbb7b 20844
a2c02241 20845@c @subheading -trace-exists
922fbb7b 20846
a2c02241 20847@c @subheading -trace-find
922fbb7b 20848
a2c02241 20849@c @subheading -trace-frame-number
922fbb7b 20850
a2c02241 20851@c @subheading -trace-info
922fbb7b 20852
a2c02241 20853@c @subheading -trace-insert
922fbb7b 20854
a2c02241 20855@c @subheading -trace-list
922fbb7b 20856
a2c02241 20857@c @subheading -trace-pass-count
922fbb7b 20858
a2c02241 20859@c @subheading -trace-save
922fbb7b 20860
a2c02241 20861@c @subheading -trace-start
922fbb7b 20862
a2c02241 20863@c @subheading -trace-stop
922fbb7b 20864
922fbb7b 20865
a2c02241
NR
20866@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20867@node GDB/MI Symbol Query
20868@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20869
20870
a2c02241
NR
20871@subheading The @code{-symbol-info-address} Command
20872@findex -symbol-info-address
922fbb7b
AC
20873
20874@subsubheading Synopsis
20875
20876@smallexample
a2c02241 20877 -symbol-info-address @var{symbol}
922fbb7b
AC
20878@end smallexample
20879
a2c02241 20880Describe where @var{symbol} is stored.
922fbb7b
AC
20881
20882@subsubheading @value{GDBN} Command
20883
a2c02241 20884The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20885
20886@subsubheading Example
20887N.A.
20888
20889
a2c02241
NR
20890@subheading The @code{-symbol-info-file} Command
20891@findex -symbol-info-file
922fbb7b
AC
20892
20893@subsubheading Synopsis
20894
20895@smallexample
a2c02241 20896 -symbol-info-file
922fbb7b
AC
20897@end smallexample
20898
a2c02241 20899Show the file for the symbol.
922fbb7b 20900
a2c02241 20901@subsubheading @value{GDBN} Command
922fbb7b 20902
a2c02241
NR
20903There's no equivalent @value{GDBN} command. @code{gdbtk} has
20904@samp{gdb_find_file}.
922fbb7b
AC
20905
20906@subsubheading Example
20907N.A.
20908
20909
a2c02241
NR
20910@subheading The @code{-symbol-info-function} Command
20911@findex -symbol-info-function
922fbb7b
AC
20912
20913@subsubheading Synopsis
20914
20915@smallexample
a2c02241 20916 -symbol-info-function
922fbb7b
AC
20917@end smallexample
20918
a2c02241 20919Show which function the symbol lives in.
922fbb7b
AC
20920
20921@subsubheading @value{GDBN} Command
20922
a2c02241 20923@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20924
20925@subsubheading Example
20926N.A.
20927
20928
a2c02241
NR
20929@subheading The @code{-symbol-info-line} Command
20930@findex -symbol-info-line
922fbb7b
AC
20931
20932@subsubheading Synopsis
20933
20934@smallexample
a2c02241 20935 -symbol-info-line
922fbb7b
AC
20936@end smallexample
20937
a2c02241 20938Show the core addresses of the code for a source line.
922fbb7b 20939
a2c02241 20940@subsubheading @value{GDBN} Command
922fbb7b 20941
a2c02241
NR
20942The corresponding @value{GDBN} command is @samp{info line}.
20943@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20944
20945@subsubheading Example
a2c02241 20946N.A.
922fbb7b
AC
20947
20948
a2c02241
NR
20949@subheading The @code{-symbol-info-symbol} Command
20950@findex -symbol-info-symbol
07f31aa6
DJ
20951
20952@subsubheading Synopsis
20953
a2c02241
NR
20954@smallexample
20955 -symbol-info-symbol @var{addr}
20956@end smallexample
07f31aa6 20957
a2c02241 20958Describe what symbol is at location @var{addr}.
07f31aa6 20959
a2c02241 20960@subsubheading @value{GDBN} Command
07f31aa6 20961
a2c02241 20962The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20963
20964@subsubheading Example
a2c02241 20965N.A.
07f31aa6
DJ
20966
20967
a2c02241
NR
20968@subheading The @code{-symbol-list-functions} Command
20969@findex -symbol-list-functions
922fbb7b
AC
20970
20971@subsubheading Synopsis
20972
20973@smallexample
a2c02241 20974 -symbol-list-functions
922fbb7b
AC
20975@end smallexample
20976
a2c02241 20977List the functions in the executable.
922fbb7b
AC
20978
20979@subsubheading @value{GDBN} Command
20980
a2c02241
NR
20981@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20982@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20983
20984@subsubheading Example
a2c02241 20985N.A.
922fbb7b
AC
20986
20987
a2c02241
NR
20988@subheading The @code{-symbol-list-lines} Command
20989@findex -symbol-list-lines
922fbb7b
AC
20990
20991@subsubheading Synopsis
20992
20993@smallexample
a2c02241 20994 -symbol-list-lines @var{filename}
922fbb7b
AC
20995@end smallexample
20996
a2c02241
NR
20997Print the list of lines that contain code and their associated program
20998addresses for the given source filename. The entries are sorted in
20999ascending PC order.
922fbb7b
AC
21000
21001@subsubheading @value{GDBN} Command
21002
a2c02241 21003There is no corresponding @value{GDBN} command.
922fbb7b
AC
21004
21005@subsubheading Example
a2c02241 21006@smallexample
594fe323 21007(gdb)
a2c02241
NR
21008-symbol-list-lines basics.c
21009^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21010(gdb)
a2c02241 21011@end smallexample
922fbb7b
AC
21012
21013
a2c02241
NR
21014@subheading The @code{-symbol-list-types} Command
21015@findex -symbol-list-types
922fbb7b
AC
21016
21017@subsubheading Synopsis
21018
21019@smallexample
a2c02241 21020 -symbol-list-types
922fbb7b
AC
21021@end smallexample
21022
a2c02241 21023List all the type names.
922fbb7b
AC
21024
21025@subsubheading @value{GDBN} Command
21026
a2c02241
NR
21027The corresponding commands are @samp{info types} in @value{GDBN},
21028@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21029
21030@subsubheading Example
21031N.A.
21032
21033
a2c02241
NR
21034@subheading The @code{-symbol-list-variables} Command
21035@findex -symbol-list-variables
922fbb7b
AC
21036
21037@subsubheading Synopsis
21038
21039@smallexample
a2c02241 21040 -symbol-list-variables
922fbb7b
AC
21041@end smallexample
21042
a2c02241 21043List all the global and static variable names.
922fbb7b
AC
21044
21045@subsubheading @value{GDBN} Command
21046
a2c02241 21047@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21048
21049@subsubheading Example
21050N.A.
21051
21052
a2c02241
NR
21053@subheading The @code{-symbol-locate} Command
21054@findex -symbol-locate
922fbb7b
AC
21055
21056@subsubheading Synopsis
21057
21058@smallexample
a2c02241 21059 -symbol-locate
922fbb7b
AC
21060@end smallexample
21061
922fbb7b
AC
21062@subsubheading @value{GDBN} Command
21063
a2c02241 21064@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21065
21066@subsubheading Example
21067N.A.
21068
21069
a2c02241
NR
21070@subheading The @code{-symbol-type} Command
21071@findex -symbol-type
922fbb7b
AC
21072
21073@subsubheading Synopsis
21074
21075@smallexample
a2c02241 21076 -symbol-type @var{variable}
922fbb7b
AC
21077@end smallexample
21078
a2c02241 21079Show type of @var{variable}.
922fbb7b 21080
a2c02241 21081@subsubheading @value{GDBN} Command
922fbb7b 21082
a2c02241
NR
21083The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21084@samp{gdb_obj_variable}.
21085
21086@subsubheading Example
21087N.A.
21088
21089
21090@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21091@node GDB/MI File Commands
21092@section @sc{gdb/mi} File Commands
21093
21094This section describes the GDB/MI commands to specify executable file names
21095and to read in and obtain symbol table information.
21096
21097@subheading The @code{-file-exec-and-symbols} Command
21098@findex -file-exec-and-symbols
21099
21100@subsubheading Synopsis
922fbb7b
AC
21101
21102@smallexample
a2c02241 21103 -file-exec-and-symbols @var{file}
922fbb7b
AC
21104@end smallexample
21105
a2c02241
NR
21106Specify the executable file to be debugged. This file is the one from
21107which the symbol table is also read. If no file is specified, the
21108command clears the executable and symbol information. If breakpoints
21109are set when using this command with no arguments, @value{GDBN} will produce
21110error messages. Otherwise, no output is produced, except a completion
21111notification.
21112
922fbb7b
AC
21113@subsubheading @value{GDBN} Command
21114
a2c02241 21115The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21116
21117@subsubheading Example
21118
21119@smallexample
594fe323 21120(gdb)
a2c02241
NR
21121-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21122^done
594fe323 21123(gdb)
922fbb7b
AC
21124@end smallexample
21125
922fbb7b 21126
a2c02241
NR
21127@subheading The @code{-file-exec-file} Command
21128@findex -file-exec-file
922fbb7b
AC
21129
21130@subsubheading Synopsis
21131
21132@smallexample
a2c02241 21133 -file-exec-file @var{file}
922fbb7b
AC
21134@end smallexample
21135
a2c02241
NR
21136Specify the executable file to be debugged. Unlike
21137@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21138from this file. If used without argument, @value{GDBN} clears the information
21139about the executable file. No output is produced, except a completion
21140notification.
922fbb7b 21141
a2c02241
NR
21142@subsubheading @value{GDBN} Command
21143
21144The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21145
21146@subsubheading Example
a2c02241
NR
21147
21148@smallexample
594fe323 21149(gdb)
a2c02241
NR
21150-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21151^done
594fe323 21152(gdb)
a2c02241 21153@end smallexample
922fbb7b
AC
21154
21155
a2c02241
NR
21156@subheading The @code{-file-list-exec-sections} Command
21157@findex -file-list-exec-sections
922fbb7b
AC
21158
21159@subsubheading Synopsis
21160
21161@smallexample
a2c02241 21162 -file-list-exec-sections
922fbb7b
AC
21163@end smallexample
21164
a2c02241
NR
21165List the sections of the current executable file.
21166
922fbb7b
AC
21167@subsubheading @value{GDBN} Command
21168
a2c02241
NR
21169The @value{GDBN} command @samp{info file} shows, among the rest, the same
21170information as this command. @code{gdbtk} has a corresponding command
21171@samp{gdb_load_info}.
922fbb7b
AC
21172
21173@subsubheading Example
21174N.A.
21175
21176
a2c02241
NR
21177@subheading The @code{-file-list-exec-source-file} Command
21178@findex -file-list-exec-source-file
922fbb7b
AC
21179
21180@subsubheading Synopsis
21181
21182@smallexample
a2c02241 21183 -file-list-exec-source-file
922fbb7b
AC
21184@end smallexample
21185
a2c02241 21186List the line number, the current source file, and the absolute path
44288b44
NR
21187to the current source file for the current executable. The macro
21188information field has a value of @samp{1} or @samp{0} depending on
21189whether or not the file includes preprocessor macro information.
922fbb7b
AC
21190
21191@subsubheading @value{GDBN} Command
21192
a2c02241 21193The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21194
21195@subsubheading Example
21196
922fbb7b 21197@smallexample
594fe323 21198(gdb)
a2c02241 21199123-file-list-exec-source-file
44288b44 21200123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21201(gdb)
922fbb7b
AC
21202@end smallexample
21203
21204
a2c02241
NR
21205@subheading The @code{-file-list-exec-source-files} Command
21206@findex -file-list-exec-source-files
922fbb7b
AC
21207
21208@subsubheading Synopsis
21209
21210@smallexample
a2c02241 21211 -file-list-exec-source-files
922fbb7b
AC
21212@end smallexample
21213
a2c02241
NR
21214List the source files for the current executable.
21215
3f94c067
BW
21216It will always output the filename, but only when @value{GDBN} can find
21217the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21218
21219@subsubheading @value{GDBN} Command
21220
a2c02241
NR
21221The @value{GDBN} equivalent is @samp{info sources}.
21222@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21223
21224@subsubheading Example
922fbb7b 21225@smallexample
594fe323 21226(gdb)
a2c02241
NR
21227-file-list-exec-source-files
21228^done,files=[
21229@{file=foo.c,fullname=/home/foo.c@},
21230@{file=/home/bar.c,fullname=/home/bar.c@},
21231@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21232(gdb)
922fbb7b
AC
21233@end smallexample
21234
a2c02241
NR
21235@subheading The @code{-file-list-shared-libraries} Command
21236@findex -file-list-shared-libraries
922fbb7b 21237
a2c02241 21238@subsubheading Synopsis
922fbb7b 21239
a2c02241
NR
21240@smallexample
21241 -file-list-shared-libraries
21242@end smallexample
922fbb7b 21243
a2c02241 21244List the shared libraries in the program.
922fbb7b 21245
a2c02241 21246@subsubheading @value{GDBN} Command
922fbb7b 21247
a2c02241 21248The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21249
a2c02241
NR
21250@subsubheading Example
21251N.A.
922fbb7b
AC
21252
21253
a2c02241
NR
21254@subheading The @code{-file-list-symbol-files} Command
21255@findex -file-list-symbol-files
922fbb7b 21256
a2c02241 21257@subsubheading Synopsis
922fbb7b 21258
a2c02241
NR
21259@smallexample
21260 -file-list-symbol-files
21261@end smallexample
922fbb7b 21262
a2c02241 21263List symbol files.
922fbb7b 21264
a2c02241 21265@subsubheading @value{GDBN} Command
922fbb7b 21266
a2c02241 21267The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21268
a2c02241
NR
21269@subsubheading Example
21270N.A.
922fbb7b 21271
922fbb7b 21272
a2c02241
NR
21273@subheading The @code{-file-symbol-file} Command
21274@findex -file-symbol-file
922fbb7b 21275
a2c02241 21276@subsubheading Synopsis
922fbb7b 21277
a2c02241
NR
21278@smallexample
21279 -file-symbol-file @var{file}
21280@end smallexample
922fbb7b 21281
a2c02241
NR
21282Read symbol table info from the specified @var{file} argument. When
21283used without arguments, clears @value{GDBN}'s symbol table info. No output is
21284produced, except for a completion notification.
922fbb7b 21285
a2c02241 21286@subsubheading @value{GDBN} Command
922fbb7b 21287
a2c02241 21288The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21289
a2c02241 21290@subsubheading Example
922fbb7b 21291
a2c02241 21292@smallexample
594fe323 21293(gdb)
a2c02241
NR
21294-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21295^done
594fe323 21296(gdb)
a2c02241 21297@end smallexample
922fbb7b 21298
a2c02241 21299@ignore
a2c02241
NR
21300@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21301@node GDB/MI Memory Overlay Commands
21302@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21303
a2c02241 21304The memory overlay commands are not implemented.
922fbb7b 21305
a2c02241 21306@c @subheading -overlay-auto
922fbb7b 21307
a2c02241 21308@c @subheading -overlay-list-mapping-state
922fbb7b 21309
a2c02241 21310@c @subheading -overlay-list-overlays
922fbb7b 21311
a2c02241 21312@c @subheading -overlay-map
922fbb7b 21313
a2c02241 21314@c @subheading -overlay-off
922fbb7b 21315
a2c02241 21316@c @subheading -overlay-on
922fbb7b 21317
a2c02241 21318@c @subheading -overlay-unmap
922fbb7b 21319
a2c02241
NR
21320@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21321@node GDB/MI Signal Handling Commands
21322@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21323
a2c02241 21324Signal handling commands are not implemented.
922fbb7b 21325
a2c02241 21326@c @subheading -signal-handle
922fbb7b 21327
a2c02241 21328@c @subheading -signal-list-handle-actions
922fbb7b 21329
a2c02241
NR
21330@c @subheading -signal-list-signal-types
21331@end ignore
922fbb7b 21332
922fbb7b 21333
a2c02241
NR
21334@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21335@node GDB/MI Target Manipulation
21336@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21337
21338
a2c02241
NR
21339@subheading The @code{-target-attach} Command
21340@findex -target-attach
922fbb7b
AC
21341
21342@subsubheading Synopsis
21343
21344@smallexample
a2c02241 21345 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21346@end smallexample
21347
a2c02241 21348Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21349
79a6e687 21350@subsubheading @value{GDBN} Command
922fbb7b 21351
a2c02241 21352The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21353
a2c02241
NR
21354@subsubheading Example
21355N.A.
922fbb7b 21356
a2c02241
NR
21357
21358@subheading The @code{-target-compare-sections} Command
21359@findex -target-compare-sections
922fbb7b
AC
21360
21361@subsubheading Synopsis
21362
21363@smallexample
a2c02241 21364 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21365@end smallexample
21366
a2c02241
NR
21367Compare data of section @var{section} on target to the exec file.
21368Without the argument, all sections are compared.
922fbb7b 21369
a2c02241 21370@subsubheading @value{GDBN} Command
922fbb7b 21371
a2c02241 21372The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21373
a2c02241
NR
21374@subsubheading Example
21375N.A.
21376
21377
21378@subheading The @code{-target-detach} Command
21379@findex -target-detach
922fbb7b
AC
21380
21381@subsubheading Synopsis
21382
21383@smallexample
a2c02241 21384 -target-detach
922fbb7b
AC
21385@end smallexample
21386
a2c02241
NR
21387Detach from the remote target which normally resumes its execution.
21388There's no output.
21389
79a6e687 21390@subsubheading @value{GDBN} Command
a2c02241
NR
21391
21392The corresponding @value{GDBN} command is @samp{detach}.
21393
21394@subsubheading Example
922fbb7b
AC
21395
21396@smallexample
594fe323 21397(gdb)
a2c02241
NR
21398-target-detach
21399^done
594fe323 21400(gdb)
922fbb7b
AC
21401@end smallexample
21402
21403
a2c02241
NR
21404@subheading The @code{-target-disconnect} Command
21405@findex -target-disconnect
922fbb7b
AC
21406
21407@subsubheading Synopsis
21408
123dc839 21409@smallexample
a2c02241 21410 -target-disconnect
123dc839 21411@end smallexample
922fbb7b 21412
a2c02241
NR
21413Disconnect from the remote target. There's no output and the target is
21414generally not resumed.
21415
79a6e687 21416@subsubheading @value{GDBN} Command
a2c02241
NR
21417
21418The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21419
21420@subsubheading Example
922fbb7b
AC
21421
21422@smallexample
594fe323 21423(gdb)
a2c02241
NR
21424-target-disconnect
21425^done
594fe323 21426(gdb)
922fbb7b
AC
21427@end smallexample
21428
21429
a2c02241
NR
21430@subheading The @code{-target-download} Command
21431@findex -target-download
922fbb7b
AC
21432
21433@subsubheading Synopsis
21434
21435@smallexample
a2c02241 21436 -target-download
922fbb7b
AC
21437@end smallexample
21438
a2c02241
NR
21439Loads the executable onto the remote target.
21440It prints out an update message every half second, which includes the fields:
21441
21442@table @samp
21443@item section
21444The name of the section.
21445@item section-sent
21446The size of what has been sent so far for that section.
21447@item section-size
21448The size of the section.
21449@item total-sent
21450The total size of what was sent so far (the current and the previous sections).
21451@item total-size
21452The size of the overall executable to download.
21453@end table
21454
21455@noindent
21456Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21457@sc{gdb/mi} Output Syntax}).
21458
21459In addition, it prints the name and size of the sections, as they are
21460downloaded. These messages include the following fields:
21461
21462@table @samp
21463@item section
21464The name of the section.
21465@item section-size
21466The size of the section.
21467@item total-size
21468The size of the overall executable to download.
21469@end table
21470
21471@noindent
21472At the end, a summary is printed.
21473
21474@subsubheading @value{GDBN} Command
21475
21476The corresponding @value{GDBN} command is @samp{load}.
21477
21478@subsubheading Example
21479
21480Note: each status message appears on a single line. Here the messages
21481have been broken down so that they can fit onto a page.
922fbb7b
AC
21482
21483@smallexample
594fe323 21484(gdb)
a2c02241
NR
21485-target-download
21486+download,@{section=".text",section-size="6668",total-size="9880"@}
21487+download,@{section=".text",section-sent="512",section-size="6668",
21488total-sent="512",total-size="9880"@}
21489+download,@{section=".text",section-sent="1024",section-size="6668",
21490total-sent="1024",total-size="9880"@}
21491+download,@{section=".text",section-sent="1536",section-size="6668",
21492total-sent="1536",total-size="9880"@}
21493+download,@{section=".text",section-sent="2048",section-size="6668",
21494total-sent="2048",total-size="9880"@}
21495+download,@{section=".text",section-sent="2560",section-size="6668",
21496total-sent="2560",total-size="9880"@}
21497+download,@{section=".text",section-sent="3072",section-size="6668",
21498total-sent="3072",total-size="9880"@}
21499+download,@{section=".text",section-sent="3584",section-size="6668",
21500total-sent="3584",total-size="9880"@}
21501+download,@{section=".text",section-sent="4096",section-size="6668",
21502total-sent="4096",total-size="9880"@}
21503+download,@{section=".text",section-sent="4608",section-size="6668",
21504total-sent="4608",total-size="9880"@}
21505+download,@{section=".text",section-sent="5120",section-size="6668",
21506total-sent="5120",total-size="9880"@}
21507+download,@{section=".text",section-sent="5632",section-size="6668",
21508total-sent="5632",total-size="9880"@}
21509+download,@{section=".text",section-sent="6144",section-size="6668",
21510total-sent="6144",total-size="9880"@}
21511+download,@{section=".text",section-sent="6656",section-size="6668",
21512total-sent="6656",total-size="9880"@}
21513+download,@{section=".init",section-size="28",total-size="9880"@}
21514+download,@{section=".fini",section-size="28",total-size="9880"@}
21515+download,@{section=".data",section-size="3156",total-size="9880"@}
21516+download,@{section=".data",section-sent="512",section-size="3156",
21517total-sent="7236",total-size="9880"@}
21518+download,@{section=".data",section-sent="1024",section-size="3156",
21519total-sent="7748",total-size="9880"@}
21520+download,@{section=".data",section-sent="1536",section-size="3156",
21521total-sent="8260",total-size="9880"@}
21522+download,@{section=".data",section-sent="2048",section-size="3156",
21523total-sent="8772",total-size="9880"@}
21524+download,@{section=".data",section-sent="2560",section-size="3156",
21525total-sent="9284",total-size="9880"@}
21526+download,@{section=".data",section-sent="3072",section-size="3156",
21527total-sent="9796",total-size="9880"@}
21528^done,address="0x10004",load-size="9880",transfer-rate="6586",
21529write-rate="429"
594fe323 21530(gdb)
922fbb7b
AC
21531@end smallexample
21532
21533
a2c02241
NR
21534@subheading The @code{-target-exec-status} Command
21535@findex -target-exec-status
922fbb7b
AC
21536
21537@subsubheading Synopsis
21538
21539@smallexample
a2c02241 21540 -target-exec-status
922fbb7b
AC
21541@end smallexample
21542
a2c02241
NR
21543Provide information on the state of the target (whether it is running or
21544not, for instance).
922fbb7b 21545
a2c02241 21546@subsubheading @value{GDBN} Command
922fbb7b 21547
a2c02241
NR
21548There's no equivalent @value{GDBN} command.
21549
21550@subsubheading Example
21551N.A.
922fbb7b 21552
a2c02241
NR
21553
21554@subheading The @code{-target-list-available-targets} Command
21555@findex -target-list-available-targets
922fbb7b
AC
21556
21557@subsubheading Synopsis
21558
21559@smallexample
a2c02241 21560 -target-list-available-targets
922fbb7b
AC
21561@end smallexample
21562
a2c02241 21563List the possible targets to connect to.
922fbb7b 21564
a2c02241 21565@subsubheading @value{GDBN} Command
922fbb7b 21566
a2c02241 21567The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21568
a2c02241
NR
21569@subsubheading Example
21570N.A.
21571
21572
21573@subheading The @code{-target-list-current-targets} Command
21574@findex -target-list-current-targets
922fbb7b
AC
21575
21576@subsubheading Synopsis
21577
21578@smallexample
a2c02241 21579 -target-list-current-targets
922fbb7b
AC
21580@end smallexample
21581
a2c02241 21582Describe the current target.
922fbb7b 21583
a2c02241 21584@subsubheading @value{GDBN} Command
922fbb7b 21585
a2c02241
NR
21586The corresponding information is printed by @samp{info file} (among
21587other things).
922fbb7b 21588
a2c02241
NR
21589@subsubheading Example
21590N.A.
21591
21592
21593@subheading The @code{-target-list-parameters} Command
21594@findex -target-list-parameters
922fbb7b
AC
21595
21596@subsubheading Synopsis
21597
21598@smallexample
a2c02241 21599 -target-list-parameters
922fbb7b
AC
21600@end smallexample
21601
a2c02241
NR
21602@c ????
21603
21604@subsubheading @value{GDBN} Command
21605
21606No equivalent.
922fbb7b
AC
21607
21608@subsubheading Example
a2c02241
NR
21609N.A.
21610
21611
21612@subheading The @code{-target-select} Command
21613@findex -target-select
21614
21615@subsubheading Synopsis
922fbb7b
AC
21616
21617@smallexample
a2c02241 21618 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21619@end smallexample
21620
a2c02241 21621Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21622
a2c02241
NR
21623@table @samp
21624@item @var{type}
21625The type of target, for instance @samp{async}, @samp{remote}, etc.
21626@item @var{parameters}
21627Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21628Commands for Managing Targets}, for more details.
a2c02241
NR
21629@end table
21630
21631The output is a connection notification, followed by the address at
21632which the target program is, in the following form:
922fbb7b
AC
21633
21634@smallexample
a2c02241
NR
21635^connected,addr="@var{address}",func="@var{function name}",
21636 args=[@var{arg list}]
922fbb7b
AC
21637@end smallexample
21638
a2c02241
NR
21639@subsubheading @value{GDBN} Command
21640
21641The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21642
21643@subsubheading Example
922fbb7b 21644
265eeb58 21645@smallexample
594fe323 21646(gdb)
a2c02241
NR
21647-target-select async /dev/ttya
21648^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21649(gdb)
265eeb58 21650@end smallexample
ef21caaf 21651
a6b151f1
DJ
21652@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21653@node GDB/MI File Transfer Commands
21654@section @sc{gdb/mi} File Transfer Commands
21655
21656
21657@subheading The @code{-target-file-put} Command
21658@findex -target-file-put
21659
21660@subsubheading Synopsis
21661
21662@smallexample
21663 -target-file-put @var{hostfile} @var{targetfile}
21664@end smallexample
21665
21666Copy file @var{hostfile} from the host system (the machine running
21667@value{GDBN}) to @var{targetfile} on the target system.
21668
21669@subsubheading @value{GDBN} Command
21670
21671The corresponding @value{GDBN} command is @samp{remote put}.
21672
21673@subsubheading Example
21674
21675@smallexample
21676(gdb)
21677-target-file-put localfile remotefile
21678^done
21679(gdb)
21680@end smallexample
21681
21682
21683@subheading The @code{-target-file-put} Command
21684@findex -target-file-get
21685
21686@subsubheading Synopsis
21687
21688@smallexample
21689 -target-file-get @var{targetfile} @var{hostfile}
21690@end smallexample
21691
21692Copy file @var{targetfile} from the target system to @var{hostfile}
21693on the host system.
21694
21695@subsubheading @value{GDBN} Command
21696
21697The corresponding @value{GDBN} command is @samp{remote get}.
21698
21699@subsubheading Example
21700
21701@smallexample
21702(gdb)
21703-target-file-get remotefile localfile
21704^done
21705(gdb)
21706@end smallexample
21707
21708
21709@subheading The @code{-target-file-delete} Command
21710@findex -target-file-delete
21711
21712@subsubheading Synopsis
21713
21714@smallexample
21715 -target-file-delete @var{targetfile}
21716@end smallexample
21717
21718Delete @var{targetfile} from the target system.
21719
21720@subsubheading @value{GDBN} Command
21721
21722The corresponding @value{GDBN} command is @samp{remote delete}.
21723
21724@subsubheading Example
21725
21726@smallexample
21727(gdb)
21728-target-file-delete remotefile
21729^done
21730(gdb)
21731@end smallexample
21732
21733
ef21caaf
NR
21734@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21735@node GDB/MI Miscellaneous Commands
21736@section Miscellaneous @sc{gdb/mi} Commands
21737
21738@c @subheading -gdb-complete
21739
21740@subheading The @code{-gdb-exit} Command
21741@findex -gdb-exit
21742
21743@subsubheading Synopsis
21744
21745@smallexample
21746 -gdb-exit
21747@end smallexample
21748
21749Exit @value{GDBN} immediately.
21750
21751@subsubheading @value{GDBN} Command
21752
21753Approximately corresponds to @samp{quit}.
21754
21755@subsubheading Example
21756
21757@smallexample
594fe323 21758(gdb)
ef21caaf
NR
21759-gdb-exit
21760^exit
21761@end smallexample
21762
a2c02241
NR
21763
21764@subheading The @code{-exec-abort} Command
21765@findex -exec-abort
21766
21767@subsubheading Synopsis
21768
21769@smallexample
21770 -exec-abort
21771@end smallexample
21772
21773Kill the inferior running program.
21774
21775@subsubheading @value{GDBN} Command
21776
21777The corresponding @value{GDBN} command is @samp{kill}.
21778
21779@subsubheading Example
21780N.A.
21781
21782
ef21caaf
NR
21783@subheading The @code{-gdb-set} Command
21784@findex -gdb-set
21785
21786@subsubheading Synopsis
21787
21788@smallexample
21789 -gdb-set
21790@end smallexample
21791
21792Set an internal @value{GDBN} variable.
21793@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21794
21795@subsubheading @value{GDBN} Command
21796
21797The corresponding @value{GDBN} command is @samp{set}.
21798
21799@subsubheading Example
21800
21801@smallexample
594fe323 21802(gdb)
ef21caaf
NR
21803-gdb-set $foo=3
21804^done
594fe323 21805(gdb)
ef21caaf
NR
21806@end smallexample
21807
21808
21809@subheading The @code{-gdb-show} Command
21810@findex -gdb-show
21811
21812@subsubheading Synopsis
21813
21814@smallexample
21815 -gdb-show
21816@end smallexample
21817
21818Show the current value of a @value{GDBN} variable.
21819
79a6e687 21820@subsubheading @value{GDBN} Command
ef21caaf
NR
21821
21822The corresponding @value{GDBN} command is @samp{show}.
21823
21824@subsubheading Example
21825
21826@smallexample
594fe323 21827(gdb)
ef21caaf
NR
21828-gdb-show annotate
21829^done,value="0"
594fe323 21830(gdb)
ef21caaf
NR
21831@end smallexample
21832
21833@c @subheading -gdb-source
21834
21835
21836@subheading The @code{-gdb-version} Command
21837@findex -gdb-version
21838
21839@subsubheading Synopsis
21840
21841@smallexample
21842 -gdb-version
21843@end smallexample
21844
21845Show version information for @value{GDBN}. Used mostly in testing.
21846
21847@subsubheading @value{GDBN} Command
21848
21849The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21850default shows this information when you start an interactive session.
21851
21852@subsubheading Example
21853
21854@c This example modifies the actual output from GDB to avoid overfull
21855@c box in TeX.
21856@smallexample
594fe323 21857(gdb)
ef21caaf
NR
21858-gdb-version
21859~GNU gdb 5.2.1
21860~Copyright 2000 Free Software Foundation, Inc.
21861~GDB is free software, covered by the GNU General Public License, and
21862~you are welcome to change it and/or distribute copies of it under
21863~ certain conditions.
21864~Type "show copying" to see the conditions.
21865~There is absolutely no warranty for GDB. Type "show warranty" for
21866~ details.
21867~This GDB was configured as
21868 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21869^done
594fe323 21870(gdb)
ef21caaf
NR
21871@end smallexample
21872
084344da
VP
21873@subheading The @code{-list-features} Command
21874@findex -list-features
21875
21876Returns a list of particular features of the MI protocol that
21877this version of gdb implements. A feature can be a command,
21878or a new field in an output of some command, or even an
21879important bugfix. While a frontend can sometimes detect presence
21880of a feature at runtime, it is easier to perform detection at debugger
21881startup.
21882
21883The command returns a list of strings, with each string naming an
21884available feature. Each returned string is just a name, it does not
21885have any internal structure. The list of possible feature names
21886is given below.
21887
21888Example output:
21889
21890@smallexample
21891(gdb) -list-features
21892^done,result=["feature1","feature2"]
21893@end smallexample
21894
21895The current list of features is:
21896
21897@itemize @minus
21898@item
21899@samp{frozen-varobjs}---indicates presence of the
21900@code{-var-set-frozen} command, as well as possible presense of the
21901@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21902@item
21903@samp{pending-breakpoints}---indicates presence of the @code{-f}
21904option to the @code{-break-insert} command.
8e8901c5
VP
21905@item
21906@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 21907
084344da
VP
21908@end itemize
21909
ef21caaf
NR
21910@subheading The @code{-interpreter-exec} Command
21911@findex -interpreter-exec
21912
21913@subheading Synopsis
21914
21915@smallexample
21916-interpreter-exec @var{interpreter} @var{command}
21917@end smallexample
a2c02241 21918@anchor{-interpreter-exec}
ef21caaf
NR
21919
21920Execute the specified @var{command} in the given @var{interpreter}.
21921
21922@subheading @value{GDBN} Command
21923
21924The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21925
21926@subheading Example
21927
21928@smallexample
594fe323 21929(gdb)
ef21caaf
NR
21930-interpreter-exec console "break main"
21931&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21932&"During symbol reading, bad structure-type format.\n"
21933~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21934^done
594fe323 21935(gdb)
ef21caaf
NR
21936@end smallexample
21937
21938@subheading The @code{-inferior-tty-set} Command
21939@findex -inferior-tty-set
21940
21941@subheading Synopsis
21942
21943@smallexample
21944-inferior-tty-set /dev/pts/1
21945@end smallexample
21946
21947Set terminal for future runs of the program being debugged.
21948
21949@subheading @value{GDBN} Command
21950
21951The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21952
21953@subheading Example
21954
21955@smallexample
594fe323 21956(gdb)
ef21caaf
NR
21957-inferior-tty-set /dev/pts/1
21958^done
594fe323 21959(gdb)
ef21caaf
NR
21960@end smallexample
21961
21962@subheading The @code{-inferior-tty-show} Command
21963@findex -inferior-tty-show
21964
21965@subheading Synopsis
21966
21967@smallexample
21968-inferior-tty-show
21969@end smallexample
21970
21971Show terminal for future runs of program being debugged.
21972
21973@subheading @value{GDBN} Command
21974
21975The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21976
21977@subheading Example
21978
21979@smallexample
594fe323 21980(gdb)
ef21caaf
NR
21981-inferior-tty-set /dev/pts/1
21982^done
594fe323 21983(gdb)
ef21caaf
NR
21984-inferior-tty-show
21985^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21986(gdb)
ef21caaf 21987@end smallexample
922fbb7b 21988
a4eefcd8
NR
21989@subheading The @code{-enable-timings} Command
21990@findex -enable-timings
21991
21992@subheading Synopsis
21993
21994@smallexample
21995-enable-timings [yes | no]
21996@end smallexample
21997
21998Toggle the printing of the wallclock, user and system times for an MI
21999command as a field in its output. This command is to help frontend
22000developers optimize the performance of their code. No argument is
22001equivalent to @samp{yes}.
22002
22003@subheading @value{GDBN} Command
22004
22005No equivalent.
22006
22007@subheading Example
22008
22009@smallexample
22010(gdb)
22011-enable-timings
22012^done
22013(gdb)
22014-break-insert main
22015^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22016addr="0x080484ed",func="main",file="myprog.c",
22017fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22018time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22019(gdb)
22020-enable-timings no
22021^done
22022(gdb)
22023-exec-run
22024^running
22025(gdb)
a47ec5fe 22026*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22027frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22028@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22029fullname="/home/nickrob/myprog.c",line="73"@}
22030(gdb)
22031@end smallexample
22032
922fbb7b
AC
22033@node Annotations
22034@chapter @value{GDBN} Annotations
22035
086432e2
AC
22036This chapter describes annotations in @value{GDBN}. Annotations were
22037designed to interface @value{GDBN} to graphical user interfaces or other
22038similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22039relatively high level.
22040
d3e8051b 22041The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22042(@pxref{GDB/MI}).
22043
922fbb7b
AC
22044@ignore
22045This is Edition @value{EDITION}, @value{DATE}.
22046@end ignore
22047
22048@menu
22049* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22050* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22051* Prompting:: Annotations marking @value{GDBN}'s need for input.
22052* Errors:: Annotations for error messages.
922fbb7b
AC
22053* Invalidation:: Some annotations describe things now invalid.
22054* Annotations for Running::
22055 Whether the program is running, how it stopped, etc.
22056* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22057@end menu
22058
22059@node Annotations Overview
22060@section What is an Annotation?
22061@cindex annotations
22062
922fbb7b
AC
22063Annotations start with a newline character, two @samp{control-z}
22064characters, and the name of the annotation. If there is no additional
22065information associated with this annotation, the name of the annotation
22066is followed immediately by a newline. If there is additional
22067information, the name of the annotation is followed by a space, the
22068additional information, and a newline. The additional information
22069cannot contain newline characters.
22070
22071Any output not beginning with a newline and two @samp{control-z}
22072characters denotes literal output from @value{GDBN}. Currently there is
22073no need for @value{GDBN} to output a newline followed by two
22074@samp{control-z} characters, but if there was such a need, the
22075annotations could be extended with an @samp{escape} annotation which
22076means those three characters as output.
22077
086432e2
AC
22078The annotation @var{level}, which is specified using the
22079@option{--annotate} command line option (@pxref{Mode Options}), controls
22080how much information @value{GDBN} prints together with its prompt,
22081values of expressions, source lines, and other types of output. Level 0
d3e8051b 22082is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22083subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22084for programs that control @value{GDBN}, and level 2 annotations have
22085been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22086Interface, annotate, GDB's Obsolete Annotations}).
22087
22088@table @code
22089@kindex set annotate
22090@item set annotate @var{level}
e09f16f9 22091The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22092annotations to the specified @var{level}.
9c16f35a
EZ
22093
22094@item show annotate
22095@kindex show annotate
22096Show the current annotation level.
09d4efe1
EZ
22097@end table
22098
22099This chapter describes level 3 annotations.
086432e2 22100
922fbb7b
AC
22101A simple example of starting up @value{GDBN} with annotations is:
22102
22103@smallexample
086432e2
AC
22104$ @kbd{gdb --annotate=3}
22105GNU gdb 6.0
22106Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22107GDB is free software, covered by the GNU General Public License,
22108and you are welcome to change it and/or distribute copies of it
22109under certain conditions.
22110Type "show copying" to see the conditions.
22111There is absolutely no warranty for GDB. Type "show warranty"
22112for details.
086432e2 22113This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22114
22115^Z^Zpre-prompt
f7dc1244 22116(@value{GDBP})
922fbb7b 22117^Z^Zprompt
086432e2 22118@kbd{quit}
922fbb7b
AC
22119
22120^Z^Zpost-prompt
b383017d 22121$
922fbb7b
AC
22122@end smallexample
22123
22124Here @samp{quit} is input to @value{GDBN}; the rest is output from
22125@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22126denotes a @samp{control-z} character) are annotations; the rest is
22127output from @value{GDBN}.
22128
9e6c4bd5
NR
22129@node Server Prefix
22130@section The Server Prefix
22131@cindex server prefix
22132
22133If you prefix a command with @samp{server } then it will not affect
22134the command history, nor will it affect @value{GDBN}'s notion of which
22135command to repeat if @key{RET} is pressed on a line by itself. This
22136means that commands can be run behind a user's back by a front-end in
22137a transparent manner.
22138
22139The server prefix does not affect the recording of values into the value
22140history; to print a value without recording it into the value history,
22141use the @code{output} command instead of the @code{print} command.
22142
922fbb7b
AC
22143@node Prompting
22144@section Annotation for @value{GDBN} Input
22145
22146@cindex annotations for prompts
22147When @value{GDBN} prompts for input, it annotates this fact so it is possible
22148to know when to send output, when the output from a given command is
22149over, etc.
22150
22151Different kinds of input each have a different @dfn{input type}. Each
22152input type has three annotations: a @code{pre-} annotation, which
22153denotes the beginning of any prompt which is being output, a plain
22154annotation, which denotes the end of the prompt, and then a @code{post-}
22155annotation which denotes the end of any echo which may (or may not) be
22156associated with the input. For example, the @code{prompt} input type
22157features the following annotations:
22158
22159@smallexample
22160^Z^Zpre-prompt
22161^Z^Zprompt
22162^Z^Zpost-prompt
22163@end smallexample
22164
22165The input types are
22166
22167@table @code
e5ac9b53
EZ
22168@findex pre-prompt annotation
22169@findex prompt annotation
22170@findex post-prompt annotation
922fbb7b
AC
22171@item prompt
22172When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22173
e5ac9b53
EZ
22174@findex pre-commands annotation
22175@findex commands annotation
22176@findex post-commands annotation
922fbb7b
AC
22177@item commands
22178When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22179command. The annotations are repeated for each command which is input.
22180
e5ac9b53
EZ
22181@findex pre-overload-choice annotation
22182@findex overload-choice annotation
22183@findex post-overload-choice annotation
922fbb7b
AC
22184@item overload-choice
22185When @value{GDBN} wants the user to select between various overloaded functions.
22186
e5ac9b53
EZ
22187@findex pre-query annotation
22188@findex query annotation
22189@findex post-query annotation
922fbb7b
AC
22190@item query
22191When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22192
e5ac9b53
EZ
22193@findex pre-prompt-for-continue annotation
22194@findex prompt-for-continue annotation
22195@findex post-prompt-for-continue annotation
922fbb7b
AC
22196@item prompt-for-continue
22197When @value{GDBN} is asking the user to press return to continue. Note: Don't
22198expect this to work well; instead use @code{set height 0} to disable
22199prompting. This is because the counting of lines is buggy in the
22200presence of annotations.
22201@end table
22202
22203@node Errors
22204@section Errors
22205@cindex annotations for errors, warnings and interrupts
22206
e5ac9b53 22207@findex quit annotation
922fbb7b
AC
22208@smallexample
22209^Z^Zquit
22210@end smallexample
22211
22212This annotation occurs right before @value{GDBN} responds to an interrupt.
22213
e5ac9b53 22214@findex error annotation
922fbb7b
AC
22215@smallexample
22216^Z^Zerror
22217@end smallexample
22218
22219This annotation occurs right before @value{GDBN} responds to an error.
22220
22221Quit and error annotations indicate that any annotations which @value{GDBN} was
22222in the middle of may end abruptly. For example, if a
22223@code{value-history-begin} annotation is followed by a @code{error}, one
22224cannot expect to receive the matching @code{value-history-end}. One
22225cannot expect not to receive it either, however; an error annotation
22226does not necessarily mean that @value{GDBN} is immediately returning all the way
22227to the top level.
22228
e5ac9b53 22229@findex error-begin annotation
922fbb7b
AC
22230A quit or error annotation may be preceded by
22231
22232@smallexample
22233^Z^Zerror-begin
22234@end smallexample
22235
22236Any output between that and the quit or error annotation is the error
22237message.
22238
22239Warning messages are not yet annotated.
22240@c If we want to change that, need to fix warning(), type_error(),
22241@c range_error(), and possibly other places.
22242
922fbb7b
AC
22243@node Invalidation
22244@section Invalidation Notices
22245
22246@cindex annotations for invalidation messages
22247The following annotations say that certain pieces of state may have
22248changed.
22249
22250@table @code
e5ac9b53 22251@findex frames-invalid annotation
922fbb7b
AC
22252@item ^Z^Zframes-invalid
22253
22254The frames (for example, output from the @code{backtrace} command) may
22255have changed.
22256
e5ac9b53 22257@findex breakpoints-invalid annotation
922fbb7b
AC
22258@item ^Z^Zbreakpoints-invalid
22259
22260The breakpoints may have changed. For example, the user just added or
22261deleted a breakpoint.
22262@end table
22263
22264@node Annotations for Running
22265@section Running the Program
22266@cindex annotations for running programs
22267
e5ac9b53
EZ
22268@findex starting annotation
22269@findex stopping annotation
922fbb7b 22270When the program starts executing due to a @value{GDBN} command such as
b383017d 22271@code{step} or @code{continue},
922fbb7b
AC
22272
22273@smallexample
22274^Z^Zstarting
22275@end smallexample
22276
b383017d 22277is output. When the program stops,
922fbb7b
AC
22278
22279@smallexample
22280^Z^Zstopped
22281@end smallexample
22282
22283is output. Before the @code{stopped} annotation, a variety of
22284annotations describe how the program stopped.
22285
22286@table @code
e5ac9b53 22287@findex exited annotation
922fbb7b
AC
22288@item ^Z^Zexited @var{exit-status}
22289The program exited, and @var{exit-status} is the exit status (zero for
22290successful exit, otherwise nonzero).
22291
e5ac9b53
EZ
22292@findex signalled annotation
22293@findex signal-name annotation
22294@findex signal-name-end annotation
22295@findex signal-string annotation
22296@findex signal-string-end annotation
922fbb7b
AC
22297@item ^Z^Zsignalled
22298The program exited with a signal. After the @code{^Z^Zsignalled}, the
22299annotation continues:
22300
22301@smallexample
22302@var{intro-text}
22303^Z^Zsignal-name
22304@var{name}
22305^Z^Zsignal-name-end
22306@var{middle-text}
22307^Z^Zsignal-string
22308@var{string}
22309^Z^Zsignal-string-end
22310@var{end-text}
22311@end smallexample
22312
22313@noindent
22314where @var{name} is the name of the signal, such as @code{SIGILL} or
22315@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22316as @code{Illegal Instruction} or @code{Segmentation fault}.
22317@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22318user's benefit and have no particular format.
22319
e5ac9b53 22320@findex signal annotation
922fbb7b
AC
22321@item ^Z^Zsignal
22322The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22323just saying that the program received the signal, not that it was
22324terminated with it.
22325
e5ac9b53 22326@findex breakpoint annotation
922fbb7b
AC
22327@item ^Z^Zbreakpoint @var{number}
22328The program hit breakpoint number @var{number}.
22329
e5ac9b53 22330@findex watchpoint annotation
922fbb7b
AC
22331@item ^Z^Zwatchpoint @var{number}
22332The program hit watchpoint number @var{number}.
22333@end table
22334
22335@node Source Annotations
22336@section Displaying Source
22337@cindex annotations for source display
22338
e5ac9b53 22339@findex source annotation
922fbb7b
AC
22340The following annotation is used instead of displaying source code:
22341
22342@smallexample
22343^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22344@end smallexample
22345
22346where @var{filename} is an absolute file name indicating which source
22347file, @var{line} is the line number within that file (where 1 is the
22348first line in the file), @var{character} is the character position
22349within the file (where 0 is the first character in the file) (for most
22350debug formats this will necessarily point to the beginning of a line),
22351@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22352line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22353@var{addr} is the address in the target program associated with the
22354source which is being displayed. @var{addr} is in the form @samp{0x}
22355followed by one or more lowercase hex digits (note that this does not
22356depend on the language).
22357
8e04817f
AC
22358@node GDB Bugs
22359@chapter Reporting Bugs in @value{GDBN}
22360@cindex bugs in @value{GDBN}
22361@cindex reporting bugs in @value{GDBN}
c906108c 22362
8e04817f 22363Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22364
8e04817f
AC
22365Reporting a bug may help you by bringing a solution to your problem, or it
22366may not. But in any case the principal function of a bug report is to help
22367the entire community by making the next version of @value{GDBN} work better. Bug
22368reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22369
8e04817f
AC
22370In order for a bug report to serve its purpose, you must include the
22371information that enables us to fix the bug.
c4555f82
SC
22372
22373@menu
8e04817f
AC
22374* Bug Criteria:: Have you found a bug?
22375* Bug Reporting:: How to report bugs
c4555f82
SC
22376@end menu
22377
8e04817f 22378@node Bug Criteria
79a6e687 22379@section Have You Found a Bug?
8e04817f 22380@cindex bug criteria
c4555f82 22381
8e04817f 22382If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22383
22384@itemize @bullet
8e04817f
AC
22385@cindex fatal signal
22386@cindex debugger crash
22387@cindex crash of debugger
c4555f82 22388@item
8e04817f
AC
22389If the debugger gets a fatal signal, for any input whatever, that is a
22390@value{GDBN} bug. Reliable debuggers never crash.
22391
22392@cindex error on valid input
22393@item
22394If @value{GDBN} produces an error message for valid input, that is a
22395bug. (Note that if you're cross debugging, the problem may also be
22396somewhere in the connection to the target.)
c4555f82 22397
8e04817f 22398@cindex invalid input
c4555f82 22399@item
8e04817f
AC
22400If @value{GDBN} does not produce an error message for invalid input,
22401that is a bug. However, you should note that your idea of
22402``invalid input'' might be our idea of ``an extension'' or ``support
22403for traditional practice''.
22404
22405@item
22406If you are an experienced user of debugging tools, your suggestions
22407for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22408@end itemize
22409
8e04817f 22410@node Bug Reporting
79a6e687 22411@section How to Report Bugs
8e04817f
AC
22412@cindex bug reports
22413@cindex @value{GDBN} bugs, reporting
22414
22415A number of companies and individuals offer support for @sc{gnu} products.
22416If you obtained @value{GDBN} from a support organization, we recommend you
22417contact that organization first.
22418
22419You can find contact information for many support companies and
22420individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22421distribution.
22422@c should add a web page ref...
22423
129188f6 22424In any event, we also recommend that you submit bug reports for
d3e8051b 22425@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22426@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22427page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22428be used.
8e04817f
AC
22429
22430@strong{Do not send bug reports to @samp{info-gdb}, or to
22431@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22432not want to receive bug reports. Those that do have arranged to receive
22433@samp{bug-gdb}.
22434
22435The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22436serves as a repeater. The mailing list and the newsgroup carry exactly
22437the same messages. Often people think of posting bug reports to the
22438newsgroup instead of mailing them. This appears to work, but it has one
22439problem which can be crucial: a newsgroup posting often lacks a mail
22440path back to the sender. Thus, if we need to ask for more information,
22441we may be unable to reach you. For this reason, it is better to send
22442bug reports to the mailing list.
c4555f82 22443
8e04817f
AC
22444The fundamental principle of reporting bugs usefully is this:
22445@strong{report all the facts}. If you are not sure whether to state a
22446fact or leave it out, state it!
c4555f82 22447
8e04817f
AC
22448Often people omit facts because they think they know what causes the
22449problem and assume that some details do not matter. Thus, you might
22450assume that the name of the variable you use in an example does not matter.
22451Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22452stray memory reference which happens to fetch from the location where that
22453name is stored in memory; perhaps, if the name were different, the contents
22454of that location would fool the debugger into doing the right thing despite
22455the bug. Play it safe and give a specific, complete example. That is the
22456easiest thing for you to do, and the most helpful.
c4555f82 22457
8e04817f
AC
22458Keep in mind that the purpose of a bug report is to enable us to fix the
22459bug. It may be that the bug has been reported previously, but neither
22460you nor we can know that unless your bug report is complete and
22461self-contained.
c4555f82 22462
8e04817f
AC
22463Sometimes people give a few sketchy facts and ask, ``Does this ring a
22464bell?'' Those bug reports are useless, and we urge everyone to
22465@emph{refuse to respond to them} except to chide the sender to report
22466bugs properly.
22467
22468To enable us to fix the bug, you should include all these things:
c4555f82
SC
22469
22470@itemize @bullet
22471@item
8e04817f
AC
22472The version of @value{GDBN}. @value{GDBN} announces it if you start
22473with no arguments; you can also print it at any time using @code{show
22474version}.
c4555f82 22475
8e04817f
AC
22476Without this, we will not know whether there is any point in looking for
22477the bug in the current version of @value{GDBN}.
c4555f82
SC
22478
22479@item
8e04817f
AC
22480The type of machine you are using, and the operating system name and
22481version number.
c4555f82
SC
22482
22483@item
c1468174 22484What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22485``@value{GCC}--2.8.1''.
c4555f82
SC
22486
22487@item
8e04817f 22488What compiler (and its version) was used to compile the program you are
c1468174 22489debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22490C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22491to get this information; for other compilers, see the documentation for
22492those compilers.
c4555f82 22493
8e04817f
AC
22494@item
22495The command arguments you gave the compiler to compile your example and
22496observe the bug. For example, did you use @samp{-O}? To guarantee
22497you will not omit something important, list them all. A copy of the
22498Makefile (or the output from make) is sufficient.
c4555f82 22499
8e04817f
AC
22500If we were to try to guess the arguments, we would probably guess wrong
22501and then we might not encounter the bug.
c4555f82 22502
8e04817f
AC
22503@item
22504A complete input script, and all necessary source files, that will
22505reproduce the bug.
c4555f82 22506
8e04817f
AC
22507@item
22508A description of what behavior you observe that you believe is
22509incorrect. For example, ``It gets a fatal signal.''
c4555f82 22510
8e04817f
AC
22511Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22512will certainly notice it. But if the bug is incorrect output, we might
22513not notice unless it is glaringly wrong. You might as well not give us
22514a chance to make a mistake.
c4555f82 22515
8e04817f
AC
22516Even if the problem you experience is a fatal signal, you should still
22517say so explicitly. Suppose something strange is going on, such as, your
22518copy of @value{GDBN} is out of synch, or you have encountered a bug in
22519the C library on your system. (This has happened!) Your copy might
22520crash and ours would not. If you told us to expect a crash, then when
22521ours fails to crash, we would know that the bug was not happening for
22522us. If you had not told us to expect a crash, then we would not be able
22523to draw any conclusion from our observations.
c4555f82 22524
e0c07bf0
MC
22525@pindex script
22526@cindex recording a session script
22527To collect all this information, you can use a session recording program
22528such as @command{script}, which is available on many Unix systems.
22529Just run your @value{GDBN} session inside @command{script} and then
22530include the @file{typescript} file with your bug report.
22531
22532Another way to record a @value{GDBN} session is to run @value{GDBN}
22533inside Emacs and then save the entire buffer to a file.
22534
8e04817f
AC
22535@item
22536If you wish to suggest changes to the @value{GDBN} source, send us context
22537diffs. If you even discuss something in the @value{GDBN} source, refer to
22538it by context, not by line number.
c4555f82 22539
8e04817f
AC
22540The line numbers in our development sources will not match those in your
22541sources. Your line numbers would convey no useful information to us.
c4555f82 22542
8e04817f 22543@end itemize
c4555f82 22544
8e04817f 22545Here are some things that are not necessary:
c4555f82 22546
8e04817f
AC
22547@itemize @bullet
22548@item
22549A description of the envelope of the bug.
c4555f82 22550
8e04817f
AC
22551Often people who encounter a bug spend a lot of time investigating
22552which changes to the input file will make the bug go away and which
22553changes will not affect it.
c4555f82 22554
8e04817f
AC
22555This is often time consuming and not very useful, because the way we
22556will find the bug is by running a single example under the debugger
22557with breakpoints, not by pure deduction from a series of examples.
22558We recommend that you save your time for something else.
c4555f82 22559
8e04817f
AC
22560Of course, if you can find a simpler example to report @emph{instead}
22561of the original one, that is a convenience for us. Errors in the
22562output will be easier to spot, running under the debugger will take
22563less time, and so on.
c4555f82 22564
8e04817f
AC
22565However, simplification is not vital; if you do not want to do this,
22566report the bug anyway and send us the entire test case you used.
c4555f82 22567
8e04817f
AC
22568@item
22569A patch for the bug.
c4555f82 22570
8e04817f
AC
22571A patch for the bug does help us if it is a good one. But do not omit
22572the necessary information, such as the test case, on the assumption that
22573a patch is all we need. We might see problems with your patch and decide
22574to fix the problem another way, or we might not understand it at all.
c4555f82 22575
8e04817f
AC
22576Sometimes with a program as complicated as @value{GDBN} it is very hard to
22577construct an example that will make the program follow a certain path
22578through the code. If you do not send us the example, we will not be able
22579to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22580
8e04817f
AC
22581And if we cannot understand what bug you are trying to fix, or why your
22582patch should be an improvement, we will not install it. A test case will
22583help us to understand.
c4555f82 22584
8e04817f
AC
22585@item
22586A guess about what the bug is or what it depends on.
c4555f82 22587
8e04817f
AC
22588Such guesses are usually wrong. Even we cannot guess right about such
22589things without first using the debugger to find the facts.
22590@end itemize
c4555f82 22591
8e04817f
AC
22592@c The readline documentation is distributed with the readline code
22593@c and consists of the two following files:
22594@c rluser.texinfo
22595@c inc-hist.texinfo
22596@c Use -I with makeinfo to point to the appropriate directory,
22597@c environment var TEXINPUTS with TeX.
5bdf8622 22598@include rluser.texi
8e04817f 22599@include inc-hist.texinfo
c4555f82 22600
c4555f82 22601
8e04817f
AC
22602@node Formatting Documentation
22603@appendix Formatting Documentation
c4555f82 22604
8e04817f
AC
22605@cindex @value{GDBN} reference card
22606@cindex reference card
22607The @value{GDBN} 4 release includes an already-formatted reference card, ready
22608for printing with PostScript or Ghostscript, in the @file{gdb}
22609subdirectory of the main source directory@footnote{In
22610@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22611release.}. If you can use PostScript or Ghostscript with your printer,
22612you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22613
8e04817f
AC
22614The release also includes the source for the reference card. You
22615can format it, using @TeX{}, by typing:
c4555f82 22616
474c8240 22617@smallexample
8e04817f 22618make refcard.dvi
474c8240 22619@end smallexample
c4555f82 22620
8e04817f
AC
22621The @value{GDBN} reference card is designed to print in @dfn{landscape}
22622mode on US ``letter'' size paper;
22623that is, on a sheet 11 inches wide by 8.5 inches
22624high. You will need to specify this form of printing as an option to
22625your @sc{dvi} output program.
c4555f82 22626
8e04817f 22627@cindex documentation
c4555f82 22628
8e04817f
AC
22629All the documentation for @value{GDBN} comes as part of the machine-readable
22630distribution. The documentation is written in Texinfo format, which is
22631a documentation system that uses a single source file to produce both
22632on-line information and a printed manual. You can use one of the Info
22633formatting commands to create the on-line version of the documentation
22634and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22635
8e04817f
AC
22636@value{GDBN} includes an already formatted copy of the on-line Info
22637version of this manual in the @file{gdb} subdirectory. The main Info
22638file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22639subordinate files matching @samp{gdb.info*} in the same directory. If
22640necessary, you can print out these files, or read them with any editor;
22641but they are easier to read using the @code{info} subsystem in @sc{gnu}
22642Emacs or the standalone @code{info} program, available as part of the
22643@sc{gnu} Texinfo distribution.
c4555f82 22644
8e04817f
AC
22645If you want to format these Info files yourself, you need one of the
22646Info formatting programs, such as @code{texinfo-format-buffer} or
22647@code{makeinfo}.
c4555f82 22648
8e04817f
AC
22649If you have @code{makeinfo} installed, and are in the top level
22650@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22651version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22652
474c8240 22653@smallexample
8e04817f
AC
22654cd gdb
22655make gdb.info
474c8240 22656@end smallexample
c4555f82 22657
8e04817f
AC
22658If you want to typeset and print copies of this manual, you need @TeX{},
22659a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22660Texinfo definitions file.
c4555f82 22661
8e04817f
AC
22662@TeX{} is a typesetting program; it does not print files directly, but
22663produces output files called @sc{dvi} files. To print a typeset
22664document, you need a program to print @sc{dvi} files. If your system
22665has @TeX{} installed, chances are it has such a program. The precise
22666command to use depends on your system; @kbd{lpr -d} is common; another
22667(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22668require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22669
8e04817f
AC
22670@TeX{} also requires a macro definitions file called
22671@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22672written in Texinfo format. On its own, @TeX{} cannot either read or
22673typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22674and is located in the @file{gdb-@var{version-number}/texinfo}
22675directory.
c4555f82 22676
8e04817f 22677If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22678typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22679subdirectory of the main source directory (for example, to
22680@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22681
474c8240 22682@smallexample
8e04817f 22683make gdb.dvi
474c8240 22684@end smallexample
c4555f82 22685
8e04817f 22686Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22687
8e04817f
AC
22688@node Installing GDB
22689@appendix Installing @value{GDBN}
8e04817f 22690@cindex installation
c4555f82 22691
7fa2210b
DJ
22692@menu
22693* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22694* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22695* Separate Objdir:: Compiling @value{GDBN} in another directory
22696* Config Names:: Specifying names for hosts and targets
22697* Configure Options:: Summary of options for configure
22698@end menu
22699
22700@node Requirements
79a6e687 22701@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22702@cindex building @value{GDBN}, requirements for
22703
22704Building @value{GDBN} requires various tools and packages to be available.
22705Other packages will be used only if they are found.
22706
79a6e687 22707@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22708@table @asis
22709@item ISO C90 compiler
22710@value{GDBN} is written in ISO C90. It should be buildable with any
22711working C90 compiler, e.g.@: GCC.
22712
22713@end table
22714
79a6e687 22715@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22716@table @asis
22717@item Expat
123dc839 22718@anchor{Expat}
7fa2210b
DJ
22719@value{GDBN} can use the Expat XML parsing library. This library may be
22720included with your operating system distribution; if it is not, you
22721can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22722The @file{configure} script will search for this library in several
7fa2210b
DJ
22723standard locations; if it is installed in an unusual path, you can
22724use the @option{--with-libexpat-prefix} option to specify its location.
22725
9cceb671
DJ
22726Expat is used for:
22727
22728@itemize @bullet
22729@item
22730Remote protocol memory maps (@pxref{Memory Map Format})
22731@item
22732Target descriptions (@pxref{Target Descriptions})
22733@item
22734Remote shared library lists (@pxref{Library List Format})
22735@item
22736MS-Windows shared libraries (@pxref{Shared Libraries})
22737@end itemize
7fa2210b 22738
31fffb02
CS
22739@item zlib
22740@cindex compressed debug sections
22741@value{GDBN} will use the @samp{zlib} library, if available, to read
22742compressed debug sections. Some linkers, such as GNU gold, are capable
22743of producing binaries with compressed debug sections. If @value{GDBN}
22744is compiled with @samp{zlib}, it will be able to read the debug
22745information in such binaries.
22746
22747The @samp{zlib} library is likely included with your operating system
22748distribution; if it is not, you can get the latest version from
22749@url{http://zlib.net}.
22750
7fa2210b
DJ
22751@end table
22752
22753@node Running Configure
db2e3e2e 22754@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22755@cindex configuring @value{GDBN}
db2e3e2e 22756@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22757of preparing @value{GDBN} for installation; you can then use @code{make} to
22758build the @code{gdb} program.
22759@iftex
22760@c irrelevant in info file; it's as current as the code it lives with.
22761@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22762look at the @file{README} file in the sources; we may have improved the
22763installation procedures since publishing this manual.}
22764@end iftex
c4555f82 22765
8e04817f
AC
22766The @value{GDBN} distribution includes all the source code you need for
22767@value{GDBN} in a single directory, whose name is usually composed by
22768appending the version number to @samp{gdb}.
c4555f82 22769
8e04817f
AC
22770For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22771@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22772
8e04817f
AC
22773@table @code
22774@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22775script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22776
8e04817f
AC
22777@item gdb-@value{GDBVN}/gdb
22778the source specific to @value{GDBN} itself
c4555f82 22779
8e04817f
AC
22780@item gdb-@value{GDBVN}/bfd
22781source for the Binary File Descriptor library
c906108c 22782
8e04817f
AC
22783@item gdb-@value{GDBVN}/include
22784@sc{gnu} include files
c906108c 22785
8e04817f
AC
22786@item gdb-@value{GDBVN}/libiberty
22787source for the @samp{-liberty} free software library
c906108c 22788
8e04817f
AC
22789@item gdb-@value{GDBVN}/opcodes
22790source for the library of opcode tables and disassemblers
c906108c 22791
8e04817f
AC
22792@item gdb-@value{GDBVN}/readline
22793source for the @sc{gnu} command-line interface
c906108c 22794
8e04817f
AC
22795@item gdb-@value{GDBVN}/glob
22796source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22797
8e04817f
AC
22798@item gdb-@value{GDBVN}/mmalloc
22799source for the @sc{gnu} memory-mapped malloc package
22800@end table
c906108c 22801
db2e3e2e 22802The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22803from the @file{gdb-@var{version-number}} source directory, which in
22804this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22805
8e04817f 22806First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22807if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22808identifier for the platform on which @value{GDBN} will run as an
22809argument.
c906108c 22810
8e04817f 22811For example:
c906108c 22812
474c8240 22813@smallexample
8e04817f
AC
22814cd gdb-@value{GDBVN}
22815./configure @var{host}
22816make
474c8240 22817@end smallexample
c906108c 22818
8e04817f
AC
22819@noindent
22820where @var{host} is an identifier such as @samp{sun4} or
22821@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22822(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22823correct value by examining your system.)
c906108c 22824
8e04817f
AC
22825Running @samp{configure @var{host}} and then running @code{make} builds the
22826@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22827libraries, then @code{gdb} itself. The configured source files, and the
22828binaries, are left in the corresponding source directories.
c906108c 22829
8e04817f 22830@need 750
db2e3e2e 22831@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22832system does not recognize this automatically when you run a different
22833shell, you may need to run @code{sh} on it explicitly:
c906108c 22834
474c8240 22835@smallexample
8e04817f 22836sh configure @var{host}
474c8240 22837@end smallexample
c906108c 22838
db2e3e2e 22839If you run @file{configure} from a directory that contains source
8e04817f 22840directories for multiple libraries or programs, such as the
db2e3e2e
BW
22841@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22842@file{configure}
8e04817f
AC
22843creates configuration files for every directory level underneath (unless
22844you tell it not to, with the @samp{--norecursion} option).
22845
db2e3e2e 22846You should run the @file{configure} script from the top directory in the
94e91d6d 22847source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22848@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22849that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22850if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22851of the @file{gdb-@var{version-number}} directory, you will omit the
22852configuration of @file{bfd}, @file{readline}, and other sibling
22853directories of the @file{gdb} subdirectory. This leads to build errors
22854about missing include files such as @file{bfd/bfd.h}.
c906108c 22855
8e04817f
AC
22856You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22857However, you should make sure that the shell on your path (named by
22858the @samp{SHELL} environment variable) is publicly readable. Remember
22859that @value{GDBN} uses the shell to start your program---some systems refuse to
22860let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22861
8e04817f 22862@node Separate Objdir
79a6e687 22863@section Compiling @value{GDBN} in Another Directory
c906108c 22864
8e04817f
AC
22865If you want to run @value{GDBN} versions for several host or target machines,
22866you need a different @code{gdb} compiled for each combination of
db2e3e2e 22867host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22868allowing you to generate each configuration in a separate subdirectory,
22869rather than in the source directory. If your @code{make} program
22870handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22871@code{make} in each of these directories builds the @code{gdb}
22872program specified there.
c906108c 22873
db2e3e2e 22874To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22875with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22876(You also need to specify a path to find @file{configure}
22877itself from your working directory. If the path to @file{configure}
8e04817f
AC
22878would be the same as the argument to @samp{--srcdir}, you can leave out
22879the @samp{--srcdir} option; it is assumed.)
c906108c 22880
8e04817f
AC
22881For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22882separate directory for a Sun 4 like this:
c906108c 22883
474c8240 22884@smallexample
8e04817f
AC
22885@group
22886cd gdb-@value{GDBVN}
22887mkdir ../gdb-sun4
22888cd ../gdb-sun4
22889../gdb-@value{GDBVN}/configure sun4
22890make
22891@end group
474c8240 22892@end smallexample
c906108c 22893
db2e3e2e 22894When @file{configure} builds a configuration using a remote source
8e04817f
AC
22895directory, it creates a tree for the binaries with the same structure
22896(and using the same names) as the tree under the source directory. In
22897the example, you'd find the Sun 4 library @file{libiberty.a} in the
22898directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22899@file{gdb-sun4/gdb}.
c906108c 22900
94e91d6d
MC
22901Make sure that your path to the @file{configure} script has just one
22902instance of @file{gdb} in it. If your path to @file{configure} looks
22903like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22904one subdirectory of @value{GDBN}, not the whole package. This leads to
22905build errors about missing include files such as @file{bfd/bfd.h}.
22906
8e04817f
AC
22907One popular reason to build several @value{GDBN} configurations in separate
22908directories is to configure @value{GDBN} for cross-compiling (where
22909@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22910programs that run on another machine---the @dfn{target}).
22911You specify a cross-debugging target by
db2e3e2e 22912giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22913
8e04817f
AC
22914When you run @code{make} to build a program or library, you must run
22915it in a configured directory---whatever directory you were in when you
db2e3e2e 22916called @file{configure} (or one of its subdirectories).
c906108c 22917
db2e3e2e 22918The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22919directory also runs recursively. If you type @code{make} in a source
22920directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22921directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22922will build all the required libraries, and then build GDB.
c906108c 22923
8e04817f
AC
22924When you have multiple hosts or targets configured in separate
22925directories, you can run @code{make} on them in parallel (for example,
22926if they are NFS-mounted on each of the hosts); they will not interfere
22927with each other.
c906108c 22928
8e04817f 22929@node Config Names
79a6e687 22930@section Specifying Names for Hosts and Targets
c906108c 22931
db2e3e2e 22932The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22933script are based on a three-part naming scheme, but some short predefined
22934aliases are also supported. The full naming scheme encodes three pieces
22935of information in the following pattern:
c906108c 22936
474c8240 22937@smallexample
8e04817f 22938@var{architecture}-@var{vendor}-@var{os}
474c8240 22939@end smallexample
c906108c 22940
8e04817f
AC
22941For example, you can use the alias @code{sun4} as a @var{host} argument,
22942or as the value for @var{target} in a @code{--target=@var{target}}
22943option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22944
db2e3e2e 22945The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22946any query facility to list all supported host and target names or
db2e3e2e 22947aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22948@code{config.sub} to map abbreviations to full names; you can read the
22949script, if you wish, or you can use it to test your guesses on
22950abbreviations---for example:
c906108c 22951
8e04817f
AC
22952@smallexample
22953% sh config.sub i386-linux
22954i386-pc-linux-gnu
22955% sh config.sub alpha-linux
22956alpha-unknown-linux-gnu
22957% sh config.sub hp9k700
22958hppa1.1-hp-hpux
22959% sh config.sub sun4
22960sparc-sun-sunos4.1.1
22961% sh config.sub sun3
22962m68k-sun-sunos4.1.1
22963% sh config.sub i986v
22964Invalid configuration `i986v': machine `i986v' not recognized
22965@end smallexample
c906108c 22966
8e04817f
AC
22967@noindent
22968@code{config.sub} is also distributed in the @value{GDBN} source
22969directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22970
8e04817f 22971@node Configure Options
db2e3e2e 22972@section @file{configure} Options
c906108c 22973
db2e3e2e
BW
22974Here is a summary of the @file{configure} options and arguments that
22975are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22976several other options not listed here. @inforef{What Configure
db2e3e2e 22977Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22978
474c8240 22979@smallexample
8e04817f
AC
22980configure @r{[}--help@r{]}
22981 @r{[}--prefix=@var{dir}@r{]}
22982 @r{[}--exec-prefix=@var{dir}@r{]}
22983 @r{[}--srcdir=@var{dirname}@r{]}
22984 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22985 @r{[}--target=@var{target}@r{]}
22986 @var{host}
474c8240 22987@end smallexample
c906108c 22988
8e04817f
AC
22989@noindent
22990You may introduce options with a single @samp{-} rather than
22991@samp{--} if you prefer; but you may abbreviate option names if you use
22992@samp{--}.
c906108c 22993
8e04817f
AC
22994@table @code
22995@item --help
db2e3e2e 22996Display a quick summary of how to invoke @file{configure}.
c906108c 22997
8e04817f
AC
22998@item --prefix=@var{dir}
22999Configure the source to install programs and files under directory
23000@file{@var{dir}}.
c906108c 23001
8e04817f
AC
23002@item --exec-prefix=@var{dir}
23003Configure the source to install programs under directory
23004@file{@var{dir}}.
c906108c 23005
8e04817f
AC
23006@c avoid splitting the warning from the explanation:
23007@need 2000
23008@item --srcdir=@var{dirname}
23009@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23010@code{make} that implements the @code{VPATH} feature.}@*
23011Use this option to make configurations in directories separate from the
23012@value{GDBN} source directories. Among other things, you can use this to
23013build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23014directories. @file{configure} writes configuration-specific files in
8e04817f 23015the current directory, but arranges for them to use the source in the
db2e3e2e 23016directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23017the working directory in parallel to the source directories below
23018@var{dirname}.
c906108c 23019
8e04817f 23020@item --norecursion
db2e3e2e 23021Configure only the directory level where @file{configure} is executed; do not
8e04817f 23022propagate configuration to subdirectories.
c906108c 23023
8e04817f
AC
23024@item --target=@var{target}
23025Configure @value{GDBN} for cross-debugging programs running on the specified
23026@var{target}. Without this option, @value{GDBN} is configured to debug
23027programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23028
8e04817f 23029There is no convenient way to generate a list of all available targets.
c906108c 23030
8e04817f
AC
23031@item @var{host} @dots{}
23032Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23033
8e04817f
AC
23034There is no convenient way to generate a list of all available hosts.
23035@end table
c906108c 23036
8e04817f
AC
23037There are many other options available as well, but they are generally
23038needed for special purposes only.
c906108c 23039
8e04817f
AC
23040@node Maintenance Commands
23041@appendix Maintenance Commands
23042@cindex maintenance commands
23043@cindex internal commands
c906108c 23044
8e04817f 23045In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23046includes a number of commands intended for @value{GDBN} developers,
23047that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23048provided here for reference. (For commands that turn on debugging
23049messages, see @ref{Debugging Output}.)
c906108c 23050
8e04817f 23051@table @code
09d4efe1
EZ
23052@kindex maint agent
23053@item maint agent @var{expression}
23054Translate the given @var{expression} into remote agent bytecodes.
23055This command is useful for debugging the Agent Expression mechanism
23056(@pxref{Agent Expressions}).
23057
8e04817f
AC
23058@kindex maint info breakpoints
23059@item @anchor{maint info breakpoints}maint info breakpoints
23060Using the same format as @samp{info breakpoints}, display both the
23061breakpoints you've set explicitly, and those @value{GDBN} is using for
23062internal purposes. Internal breakpoints are shown with negative
23063breakpoint numbers. The type column identifies what kind of breakpoint
23064is shown:
c906108c 23065
8e04817f
AC
23066@table @code
23067@item breakpoint
23068Normal, explicitly set breakpoint.
c906108c 23069
8e04817f
AC
23070@item watchpoint
23071Normal, explicitly set watchpoint.
c906108c 23072
8e04817f
AC
23073@item longjmp
23074Internal breakpoint, used to handle correctly stepping through
23075@code{longjmp} calls.
c906108c 23076
8e04817f
AC
23077@item longjmp resume
23078Internal breakpoint at the target of a @code{longjmp}.
c906108c 23079
8e04817f
AC
23080@item until
23081Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23082
8e04817f
AC
23083@item finish
23084Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23085
8e04817f
AC
23086@item shlib events
23087Shared library events.
c906108c 23088
8e04817f 23089@end table
c906108c 23090
09d4efe1
EZ
23091@kindex maint check-symtabs
23092@item maint check-symtabs
23093Check the consistency of psymtabs and symtabs.
23094
23095@kindex maint cplus first_component
23096@item maint cplus first_component @var{name}
23097Print the first C@t{++} class/namespace component of @var{name}.
23098
23099@kindex maint cplus namespace
23100@item maint cplus namespace
23101Print the list of possible C@t{++} namespaces.
23102
23103@kindex maint demangle
23104@item maint demangle @var{name}
d3e8051b 23105Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23106
23107@kindex maint deprecate
23108@kindex maint undeprecate
23109@cindex deprecated commands
23110@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23111@itemx maint undeprecate @var{command}
23112Deprecate or undeprecate the named @var{command}. Deprecated commands
23113cause @value{GDBN} to issue a warning when you use them. The optional
23114argument @var{replacement} says which newer command should be used in
23115favor of the deprecated one; if it is given, @value{GDBN} will mention
23116the replacement as part of the warning.
23117
23118@kindex maint dump-me
23119@item maint dump-me
721c2651 23120@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23121Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23122This is supported only on systems which support aborting a program
23123with the @code{SIGQUIT} signal.
09d4efe1 23124
8d30a00d
AC
23125@kindex maint internal-error
23126@kindex maint internal-warning
09d4efe1
EZ
23127@item maint internal-error @r{[}@var{message-text}@r{]}
23128@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23129Cause @value{GDBN} to call the internal function @code{internal_error}
23130or @code{internal_warning} and hence behave as though an internal error
23131or internal warning has been detected. In addition to reporting the
23132internal problem, these functions give the user the opportunity to
23133either quit @value{GDBN} or create a core file of the current
23134@value{GDBN} session.
23135
09d4efe1
EZ
23136These commands take an optional parameter @var{message-text} that is
23137used as the text of the error or warning message.
23138
d3e8051b 23139Here's an example of using @code{internal-error}:
09d4efe1 23140
8d30a00d 23141@smallexample
f7dc1244 23142(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23143@dots{}/maint.c:121: internal-error: testing, 1, 2
23144A problem internal to GDB has been detected. Further
23145debugging may prove unreliable.
23146Quit this debugging session? (y or n) @kbd{n}
23147Create a core file? (y or n) @kbd{n}
f7dc1244 23148(@value{GDBP})
8d30a00d
AC
23149@end smallexample
23150
09d4efe1
EZ
23151@kindex maint packet
23152@item maint packet @var{text}
23153If @value{GDBN} is talking to an inferior via the serial protocol,
23154then this command sends the string @var{text} to the inferior, and
23155displays the response packet. @value{GDBN} supplies the initial
23156@samp{$} character, the terminating @samp{#} character, and the
23157checksum.
23158
23159@kindex maint print architecture
23160@item maint print architecture @r{[}@var{file}@r{]}
23161Print the entire architecture configuration. The optional argument
23162@var{file} names the file where the output goes.
8d30a00d 23163
81adfced
DJ
23164@kindex maint print c-tdesc
23165@item maint print c-tdesc
23166Print the current target description (@pxref{Target Descriptions}) as
23167a C source file. The created source file can be used in @value{GDBN}
23168when an XML parser is not available to parse the description.
23169
00905d52
AC
23170@kindex maint print dummy-frames
23171@item maint print dummy-frames
00905d52
AC
23172Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23173
23174@smallexample
f7dc1244 23175(@value{GDBP}) @kbd{b add}
00905d52 23176@dots{}
f7dc1244 23177(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23178Breakpoint 2, add (a=2, b=3) at @dots{}
2317958 return (a + b);
23180The program being debugged stopped while in a function called from GDB.
23181@dots{}
f7dc1244 23182(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
231830x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23184 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23185 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23186(@value{GDBP})
00905d52
AC
23187@end smallexample
23188
23189Takes an optional file parameter.
23190
0680b120
AC
23191@kindex maint print registers
23192@kindex maint print raw-registers
23193@kindex maint print cooked-registers
617073a9 23194@kindex maint print register-groups
09d4efe1
EZ
23195@item maint print registers @r{[}@var{file}@r{]}
23196@itemx maint print raw-registers @r{[}@var{file}@r{]}
23197@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23198@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23199Print @value{GDBN}'s internal register data structures.
23200
617073a9
AC
23201The command @code{maint print raw-registers} includes the contents of
23202the raw register cache; the command @code{maint print cooked-registers}
23203includes the (cooked) value of all registers; and the command
23204@code{maint print register-groups} includes the groups that each
23205register is a member of. @xref{Registers,, Registers, gdbint,
23206@value{GDBN} Internals}.
0680b120 23207
09d4efe1
EZ
23208These commands take an optional parameter, a file name to which to
23209write the information.
0680b120 23210
617073a9 23211@kindex maint print reggroups
09d4efe1
EZ
23212@item maint print reggroups @r{[}@var{file}@r{]}
23213Print @value{GDBN}'s internal register group data structures. The
23214optional argument @var{file} tells to what file to write the
23215information.
617073a9 23216
09d4efe1 23217The register groups info looks like this:
617073a9
AC
23218
23219@smallexample
f7dc1244 23220(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23221 Group Type
23222 general user
23223 float user
23224 all user
23225 vector user
23226 system user
23227 save internal
23228 restore internal
617073a9
AC
23229@end smallexample
23230
09d4efe1
EZ
23231@kindex flushregs
23232@item flushregs
23233This command forces @value{GDBN} to flush its internal register cache.
23234
23235@kindex maint print objfiles
23236@cindex info for known object files
23237@item maint print objfiles
23238Print a dump of all known object files. For each object file, this
23239command prints its name, address in memory, and all of its psymtabs
23240and symtabs.
23241
23242@kindex maint print statistics
23243@cindex bcache statistics
23244@item maint print statistics
23245This command prints, for each object file in the program, various data
23246about that object file followed by the byte cache (@dfn{bcache})
23247statistics for the object file. The objfile data includes the number
d3e8051b 23248of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23249defined by the objfile, the number of as yet unexpanded psym tables,
23250the number of line tables and string tables, and the amount of memory
23251used by the various tables. The bcache statistics include the counts,
23252sizes, and counts of duplicates of all and unique objects, max,
23253average, and median entry size, total memory used and its overhead and
23254savings, and various measures of the hash table size and chain
23255lengths.
23256
c7ba131e
JB
23257@kindex maint print target-stack
23258@cindex target stack description
23259@item maint print target-stack
23260A @dfn{target} is an interface between the debugger and a particular
23261kind of file or process. Targets can be stacked in @dfn{strata},
23262so that more than one target can potentially respond to a request.
23263In particular, memory accesses will walk down the stack of targets
23264until they find a target that is interested in handling that particular
23265address.
23266
23267This command prints a short description of each layer that was pushed on
23268the @dfn{target stack}, starting from the top layer down to the bottom one.
23269
09d4efe1
EZ
23270@kindex maint print type
23271@cindex type chain of a data type
23272@item maint print type @var{expr}
23273Print the type chain for a type specified by @var{expr}. The argument
23274can be either a type name or a symbol. If it is a symbol, the type of
23275that symbol is described. The type chain produced by this command is
23276a recursive definition of the data type as stored in @value{GDBN}'s
23277data structures, including its flags and contained types.
23278
23279@kindex maint set dwarf2 max-cache-age
23280@kindex maint show dwarf2 max-cache-age
23281@item maint set dwarf2 max-cache-age
23282@itemx maint show dwarf2 max-cache-age
23283Control the DWARF 2 compilation unit cache.
23284
23285@cindex DWARF 2 compilation units cache
23286In object files with inter-compilation-unit references, such as those
23287produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23288reader needs to frequently refer to previously read compilation units.
23289This setting controls how long a compilation unit will remain in the
23290cache if it is not referenced. A higher limit means that cached
23291compilation units will be stored in memory longer, and more total
23292memory will be used. Setting it to zero disables caching, which will
23293slow down @value{GDBN} startup, but reduce memory consumption.
23294
e7ba9c65
DJ
23295@kindex maint set profile
23296@kindex maint show profile
23297@cindex profiling GDB
23298@item maint set profile
23299@itemx maint show profile
23300Control profiling of @value{GDBN}.
23301
23302Profiling will be disabled until you use the @samp{maint set profile}
23303command to enable it. When you enable profiling, the system will begin
23304collecting timing and execution count data; when you disable profiling or
23305exit @value{GDBN}, the results will be written to a log file. Remember that
23306if you use profiling, @value{GDBN} will overwrite the profiling log file
23307(often called @file{gmon.out}). If you have a record of important profiling
23308data in a @file{gmon.out} file, be sure to move it to a safe location.
23309
23310Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23311compiled with the @samp{-pg} compiler option.
e7ba9c65 23312
b84876c2
PA
23313@kindex maint set linux-async
23314@kindex maint show linux-async
23315@cindex asynchronous support
23316@item maint set linux-async
23317@itemx maint show linux-async
23318Control the GNU/Linux native asynchronous support of @value{GDBN}.
23319
23320GNU/Linux native asynchronous support will be disabled until you use
23321the @samp{maint set linux-async} command to enable it.
23322
09d4efe1
EZ
23323@kindex maint show-debug-regs
23324@cindex x86 hardware debug registers
23325@item maint show-debug-regs
23326Control whether to show variables that mirror the x86 hardware debug
23327registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23328enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23329removes a hardware breakpoint or watchpoint, and when the inferior
23330triggers a hardware-assisted breakpoint or watchpoint.
23331
23332@kindex maint space
23333@cindex memory used by commands
23334@item maint space
23335Control whether to display memory usage for each command. If set to a
23336nonzero value, @value{GDBN} will display how much memory each command
23337took, following the command's own output. This can also be requested
23338by invoking @value{GDBN} with the @option{--statistics} command-line
23339switch (@pxref{Mode Options}).
23340
23341@kindex maint time
23342@cindex time of command execution
23343@item maint time
23344Control whether to display the execution time for each command. If
23345set to a nonzero value, @value{GDBN} will display how much time it
23346took to execute each command, following the command's own output.
23347This can also be requested by invoking @value{GDBN} with the
23348@option{--statistics} command-line switch (@pxref{Mode Options}).
23349
23350@kindex maint translate-address
23351@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23352Find the symbol stored at the location specified by the address
23353@var{addr} and an optional section name @var{section}. If found,
23354@value{GDBN} prints the name of the closest symbol and an offset from
23355the symbol's location to the specified address. This is similar to
23356the @code{info address} command (@pxref{Symbols}), except that this
23357command also allows to find symbols in other sections.
ae038cb0 23358
8e04817f 23359@end table
c906108c 23360
9c16f35a
EZ
23361The following command is useful for non-interactive invocations of
23362@value{GDBN}, such as in the test suite.
23363
23364@table @code
23365@item set watchdog @var{nsec}
23366@kindex set watchdog
23367@cindex watchdog timer
23368@cindex timeout for commands
23369Set the maximum number of seconds @value{GDBN} will wait for the
23370target operation to finish. If this time expires, @value{GDBN}
23371reports and error and the command is aborted.
23372
23373@item show watchdog
23374Show the current setting of the target wait timeout.
23375@end table
c906108c 23376
e0ce93ac 23377@node Remote Protocol
8e04817f 23378@appendix @value{GDBN} Remote Serial Protocol
c906108c 23379
ee2d5c50
AC
23380@menu
23381* Overview::
23382* Packets::
23383* Stop Reply Packets::
23384* General Query Packets::
23385* Register Packet Format::
9d29849a 23386* Tracepoint Packets::
a6b151f1 23387* Host I/O Packets::
9a6253be 23388* Interrupts::
ee2d5c50 23389* Examples::
79a6e687 23390* File-I/O Remote Protocol Extension::
cfa9d6d9 23391* Library List Format::
79a6e687 23392* Memory Map Format::
ee2d5c50
AC
23393@end menu
23394
23395@node Overview
23396@section Overview
23397
8e04817f
AC
23398There may be occasions when you need to know something about the
23399protocol---for example, if there is only one serial port to your target
23400machine, you might want your program to do something special if it
23401recognizes a packet meant for @value{GDBN}.
c906108c 23402
d2c6833e 23403In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23404transmitted and received data, respectively.
c906108c 23405
8e04817f
AC
23406@cindex protocol, @value{GDBN} remote serial
23407@cindex serial protocol, @value{GDBN} remote
23408@cindex remote serial protocol
23409All @value{GDBN} commands and responses (other than acknowledgments) are
23410sent as a @var{packet}. A @var{packet} is introduced with the character
23411@samp{$}, the actual @var{packet-data}, and the terminating character
23412@samp{#} followed by a two-digit @var{checksum}:
c906108c 23413
474c8240 23414@smallexample
8e04817f 23415@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23416@end smallexample
8e04817f 23417@noindent
c906108c 23418
8e04817f
AC
23419@cindex checksum, for @value{GDBN} remote
23420@noindent
23421The two-digit @var{checksum} is computed as the modulo 256 sum of all
23422characters between the leading @samp{$} and the trailing @samp{#} (an
23423eight bit unsigned checksum).
c906108c 23424
8e04817f
AC
23425Implementors should note that prior to @value{GDBN} 5.0 the protocol
23426specification also included an optional two-digit @var{sequence-id}:
c906108c 23427
474c8240 23428@smallexample
8e04817f 23429@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23430@end smallexample
c906108c 23431
8e04817f
AC
23432@cindex sequence-id, for @value{GDBN} remote
23433@noindent
23434That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23435has never output @var{sequence-id}s. Stubs that handle packets added
23436since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23437
8e04817f
AC
23438@cindex acknowledgment, for @value{GDBN} remote
23439When either the host or the target machine receives a packet, the first
23440response expected is an acknowledgment: either @samp{+} (to indicate
23441the package was received correctly) or @samp{-} (to request
23442retransmission):
c906108c 23443
474c8240 23444@smallexample
d2c6833e
AC
23445-> @code{$}@var{packet-data}@code{#}@var{checksum}
23446<- @code{+}
474c8240 23447@end smallexample
8e04817f 23448@noindent
53a5351d 23449
8e04817f
AC
23450The host (@value{GDBN}) sends @var{command}s, and the target (the
23451debugging stub incorporated in your program) sends a @var{response}. In
23452the case of step and continue @var{command}s, the response is only sent
23453when the operation has completed (the target has again stopped).
c906108c 23454
8e04817f
AC
23455@var{packet-data} consists of a sequence of characters with the
23456exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23457exceptions).
c906108c 23458
ee2d5c50 23459@cindex remote protocol, field separator
0876f84a 23460Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23461@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23462@sc{hex} with leading zeros suppressed.
c906108c 23463
8e04817f
AC
23464Implementors should note that prior to @value{GDBN} 5.0, the character
23465@samp{:} could not appear as the third character in a packet (as it
23466would potentially conflict with the @var{sequence-id}).
c906108c 23467
0876f84a
DJ
23468@cindex remote protocol, binary data
23469@anchor{Binary Data}
23470Binary data in most packets is encoded either as two hexadecimal
23471digits per byte of binary data. This allowed the traditional remote
23472protocol to work over connections which were only seven-bit clean.
23473Some packets designed more recently assume an eight-bit clean
23474connection, and use a more efficient encoding to send and receive
23475binary data.
23476
23477The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23478as an escape character. Any escaped byte is transmitted as the escape
23479character followed by the original character XORed with @code{0x20}.
23480For example, the byte @code{0x7d} would be transmitted as the two
23481bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23482@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23483@samp{@}}) must always be escaped. Responses sent by the stub
23484must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23485is not interpreted as the start of a run-length encoded sequence
23486(described next).
23487
1d3811f6
DJ
23488Response @var{data} can be run-length encoded to save space.
23489Run-length encoding replaces runs of identical characters with one
23490instance of the repeated character, followed by a @samp{*} and a
23491repeat count. The repeat count is itself sent encoded, to avoid
23492binary characters in @var{data}: a value of @var{n} is sent as
23493@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23494produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23495code 32) for a repeat count of 3. (This is because run-length
23496encoding starts to win for counts 3 or more.) Thus, for example,
23497@samp{0* } is a run-length encoding of ``0000'': the space character
23498after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
234993}} more times.
23500
23501The printable characters @samp{#} and @samp{$} or with a numeric value
23502greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23503seven repeats (@samp{$}) can be expanded using a repeat count of only
23504five (@samp{"}). For example, @samp{00000000} can be encoded as
23505@samp{0*"00}.
c906108c 23506
8e04817f
AC
23507The error response returned for some packets includes a two character
23508error number. That number is not well defined.
c906108c 23509
f8da2bff 23510@cindex empty response, for unsupported packets
8e04817f
AC
23511For any @var{command} not supported by the stub, an empty response
23512(@samp{$#00}) should be returned. That way it is possible to extend the
23513protocol. A newer @value{GDBN} can tell if a packet is supported based
23514on that response.
c906108c 23515
b383017d
RM
23516A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23517@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23518optional.
c906108c 23519
ee2d5c50
AC
23520@node Packets
23521@section Packets
23522
23523The following table provides a complete list of all currently defined
23524@var{command}s and their corresponding response @var{data}.
79a6e687 23525@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23526I/O extension of the remote protocol.
ee2d5c50 23527
b8ff78ce
JB
23528Each packet's description has a template showing the packet's overall
23529syntax, followed by an explanation of the packet's meaning. We
23530include spaces in some of the templates for clarity; these are not
23531part of the packet's syntax. No @value{GDBN} packet uses spaces to
23532separate its components. For example, a template like @samp{foo
23533@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23534bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23535@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23536@samp{foo} and the @var{bar}, or between the @var{bar} and the
23537@var{baz}.
23538
8ffe2530
JB
23539Note that all packet forms beginning with an upper- or lower-case
23540letter, other than those described here, are reserved for future use.
23541
b8ff78ce 23542Here are the packet descriptions.
ee2d5c50 23543
b8ff78ce 23544@table @samp
ee2d5c50 23545
b8ff78ce
JB
23546@item !
23547@cindex @samp{!} packet
2d717e4f 23548@anchor{extended mode}
8e04817f
AC
23549Enable extended mode. In extended mode, the remote server is made
23550persistent. The @samp{R} packet is used to restart the program being
23551debugged.
ee2d5c50
AC
23552
23553Reply:
23554@table @samp
23555@item OK
8e04817f 23556The remote target both supports and has enabled extended mode.
ee2d5c50 23557@end table
c906108c 23558
b8ff78ce
JB
23559@item ?
23560@cindex @samp{?} packet
ee2d5c50
AC
23561Indicate the reason the target halted. The reply is the same as for
23562step and continue.
c906108c 23563
ee2d5c50
AC
23564Reply:
23565@xref{Stop Reply Packets}, for the reply specifications.
23566
b8ff78ce
JB
23567@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23568@cindex @samp{A} packet
23569Initialized @code{argv[]} array passed into program. @var{arglen}
23570specifies the number of bytes in the hex encoded byte stream
23571@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23572
23573Reply:
23574@table @samp
23575@item OK
b8ff78ce
JB
23576The arguments were set.
23577@item E @var{NN}
23578An error occurred.
ee2d5c50
AC
23579@end table
23580
b8ff78ce
JB
23581@item b @var{baud}
23582@cindex @samp{b} packet
23583(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23584Change the serial line speed to @var{baud}.
23585
23586JTC: @emph{When does the transport layer state change? When it's
23587received, or after the ACK is transmitted. In either case, there are
23588problems if the command or the acknowledgment packet is dropped.}
23589
23590Stan: @emph{If people really wanted to add something like this, and get
23591it working for the first time, they ought to modify ser-unix.c to send
23592some kind of out-of-band message to a specially-setup stub and have the
23593switch happen "in between" packets, so that from remote protocol's point
23594of view, nothing actually happened.}
23595
b8ff78ce
JB
23596@item B @var{addr},@var{mode}
23597@cindex @samp{B} packet
8e04817f 23598Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23599breakpoint at @var{addr}.
23600
b8ff78ce 23601Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23602(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23603
4f553f88 23604@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23605@cindex @samp{c} packet
23606Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23607resume at current address.
c906108c 23608
ee2d5c50
AC
23609Reply:
23610@xref{Stop Reply Packets}, for the reply specifications.
23611
4f553f88 23612@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23613@cindex @samp{C} packet
8e04817f 23614Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23615@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23616
ee2d5c50
AC
23617Reply:
23618@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23619
b8ff78ce
JB
23620@item d
23621@cindex @samp{d} packet
ee2d5c50
AC
23622Toggle debug flag.
23623
b8ff78ce
JB
23624Don't use this packet; instead, define a general set packet
23625(@pxref{General Query Packets}).
ee2d5c50 23626
b8ff78ce
JB
23627@item D
23628@cindex @samp{D} packet
ee2d5c50 23629Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23630before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23631
23632Reply:
23633@table @samp
10fac096
NW
23634@item OK
23635for success
b8ff78ce 23636@item E @var{NN}
10fac096 23637for an error
ee2d5c50 23638@end table
c906108c 23639
b8ff78ce
JB
23640@item F @var{RC},@var{EE},@var{CF};@var{XX}
23641@cindex @samp{F} packet
23642A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23643This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23644Remote Protocol Extension}, for the specification.
ee2d5c50 23645
b8ff78ce 23646@item g
ee2d5c50 23647@anchor{read registers packet}
b8ff78ce 23648@cindex @samp{g} packet
ee2d5c50
AC
23649Read general registers.
23650
23651Reply:
23652@table @samp
23653@item @var{XX@dots{}}
8e04817f
AC
23654Each byte of register data is described by two hex digits. The bytes
23655with the register are transmitted in target byte order. The size of
b8ff78ce 23656each register and their position within the @samp{g} packet are
4a9bb1df
UW
23657determined by the @value{GDBN} internal gdbarch functions
23658@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23659specification of several standard @samp{g} packets is specified below.
23660@item E @var{NN}
ee2d5c50
AC
23661for an error.
23662@end table
c906108c 23663
b8ff78ce
JB
23664@item G @var{XX@dots{}}
23665@cindex @samp{G} packet
23666Write general registers. @xref{read registers packet}, for a
23667description of the @var{XX@dots{}} data.
ee2d5c50
AC
23668
23669Reply:
23670@table @samp
23671@item OK
23672for success
b8ff78ce 23673@item E @var{NN}
ee2d5c50
AC
23674for an error
23675@end table
23676
b8ff78ce
JB
23677@item H @var{c} @var{t}
23678@cindex @samp{H} packet
8e04817f 23679Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23680@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23681should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23682operations. The thread designator @var{t} may be @samp{-1}, meaning all
23683the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23684
23685Reply:
23686@table @samp
23687@item OK
23688for success
b8ff78ce 23689@item E @var{NN}
ee2d5c50
AC
23690for an error
23691@end table
c906108c 23692
8e04817f
AC
23693@c FIXME: JTC:
23694@c 'H': How restrictive (or permissive) is the thread model. If a
23695@c thread is selected and stopped, are other threads allowed
23696@c to continue to execute? As I mentioned above, I think the
23697@c semantics of each command when a thread is selected must be
23698@c described. For example:
23699@c
23700@c 'g': If the stub supports threads and a specific thread is
23701@c selected, returns the register block from that thread;
23702@c otherwise returns current registers.
23703@c
23704@c 'G' If the stub supports threads and a specific thread is
23705@c selected, sets the registers of the register block of
23706@c that thread; otherwise sets current registers.
c906108c 23707
b8ff78ce 23708@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23709@anchor{cycle step packet}
b8ff78ce
JB
23710@cindex @samp{i} packet
23711Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23712present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23713step starting at that address.
c906108c 23714
b8ff78ce
JB
23715@item I
23716@cindex @samp{I} packet
23717Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23718step packet}.
ee2d5c50 23719
b8ff78ce
JB
23720@item k
23721@cindex @samp{k} packet
23722Kill request.
c906108c 23723
ac282366 23724FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23725thread context has been selected (i.e.@: does 'k' kill only that
23726thread?)}.
c906108c 23727
b8ff78ce
JB
23728@item m @var{addr},@var{length}
23729@cindex @samp{m} packet
8e04817f 23730Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23731Note that @var{addr} may not be aligned to any particular boundary.
23732
23733The stub need not use any particular size or alignment when gathering
23734data from memory for the response; even if @var{addr} is word-aligned
23735and @var{length} is a multiple of the word size, the stub is free to
23736use byte accesses, or not. For this reason, this packet may not be
23737suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23738@cindex alignment of remote memory accesses
23739@cindex size of remote memory accesses
23740@cindex memory, alignment and size of remote accesses
c906108c 23741
ee2d5c50
AC
23742Reply:
23743@table @samp
23744@item @var{XX@dots{}}
599b237a 23745Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23746number. The reply may contain fewer bytes than requested if the
23747server was able to read only part of the region of memory.
23748@item E @var{NN}
ee2d5c50
AC
23749@var{NN} is errno
23750@end table
23751
b8ff78ce
JB
23752@item M @var{addr},@var{length}:@var{XX@dots{}}
23753@cindex @samp{M} packet
8e04817f 23754Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23755@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23756hexadecimal number.
ee2d5c50
AC
23757
23758Reply:
23759@table @samp
23760@item OK
23761for success
b8ff78ce 23762@item E @var{NN}
8e04817f
AC
23763for an error (this includes the case where only part of the data was
23764written).
ee2d5c50 23765@end table
c906108c 23766
b8ff78ce
JB
23767@item p @var{n}
23768@cindex @samp{p} packet
23769Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23770@xref{read registers packet}, for a description of how the returned
23771register value is encoded.
ee2d5c50
AC
23772
23773Reply:
23774@table @samp
2e868123
AC
23775@item @var{XX@dots{}}
23776the register's value
b8ff78ce 23777@item E @var{NN}
2e868123
AC
23778for an error
23779@item
23780Indicating an unrecognized @var{query}.
ee2d5c50
AC
23781@end table
23782
b8ff78ce 23783@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23784@anchor{write register packet}
b8ff78ce
JB
23785@cindex @samp{P} packet
23786Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23787number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23788digits for each byte in the register (target byte order).
c906108c 23789
ee2d5c50
AC
23790Reply:
23791@table @samp
23792@item OK
23793for success
b8ff78ce 23794@item E @var{NN}
ee2d5c50
AC
23795for an error
23796@end table
23797
5f3bebba
JB
23798@item q @var{name} @var{params}@dots{}
23799@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23800@cindex @samp{q} packet
b8ff78ce 23801@cindex @samp{Q} packet
5f3bebba
JB
23802General query (@samp{q}) and set (@samp{Q}). These packets are
23803described fully in @ref{General Query Packets}.
c906108c 23804
b8ff78ce
JB
23805@item r
23806@cindex @samp{r} packet
8e04817f 23807Reset the entire system.
c906108c 23808
b8ff78ce 23809Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23810
b8ff78ce
JB
23811@item R @var{XX}
23812@cindex @samp{R} packet
8e04817f 23813Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23814This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23815
8e04817f 23816The @samp{R} packet has no reply.
ee2d5c50 23817
4f553f88 23818@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23819@cindex @samp{s} packet
23820Single step. @var{addr} is the address at which to resume. If
23821@var{addr} is omitted, resume at same address.
c906108c 23822
ee2d5c50
AC
23823Reply:
23824@xref{Stop Reply Packets}, for the reply specifications.
23825
4f553f88 23826@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23827@anchor{step with signal packet}
b8ff78ce
JB
23828@cindex @samp{S} packet
23829Step with signal. This is analogous to the @samp{C} packet, but
23830requests a single-step, rather than a normal resumption of execution.
c906108c 23831
ee2d5c50
AC
23832Reply:
23833@xref{Stop Reply Packets}, for the reply specifications.
23834
b8ff78ce
JB
23835@item t @var{addr}:@var{PP},@var{MM}
23836@cindex @samp{t} packet
8e04817f 23837Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23838@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23839@var{addr} must be at least 3 digits.
c906108c 23840
b8ff78ce
JB
23841@item T @var{XX}
23842@cindex @samp{T} packet
ee2d5c50 23843Find out if the thread XX is alive.
c906108c 23844
ee2d5c50
AC
23845Reply:
23846@table @samp
23847@item OK
23848thread is still alive
b8ff78ce 23849@item E @var{NN}
ee2d5c50
AC
23850thread is dead
23851@end table
23852
b8ff78ce
JB
23853@item v
23854Packets starting with @samp{v} are identified by a multi-letter name,
23855up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23856
2d717e4f
DJ
23857@item vAttach;@var{pid}
23858@cindex @samp{vAttach} packet
23859Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23860hexadecimal integer identifying the process. If the stub is currently
23861controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23862
23863This packet is only available in extended mode (@pxref{extended mode}).
23864
23865Reply:
23866@table @samp
23867@item E @var{nn}
23868for an error
23869@item @r{Any stop packet}
23870for success (@pxref{Stop Reply Packets})
23871@end table
23872
b8ff78ce
JB
23873@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23874@cindex @samp{vCont} packet
23875Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23876If an action is specified with no @var{tid}, then it is applied to any
23877threads that don't have a specific action specified; if no default action is
23878specified then other threads should remain stopped. Specifying multiple
23879default actions is an error; specifying no actions is also an error.
23880Thread IDs are specified in hexadecimal. Currently supported actions are:
23881
b8ff78ce 23882@table @samp
86d30acc
DJ
23883@item c
23884Continue.
b8ff78ce 23885@item C @var{sig}
86d30acc
DJ
23886Continue with signal @var{sig}. @var{sig} should be two hex digits.
23887@item s
23888Step.
b8ff78ce 23889@item S @var{sig}
86d30acc
DJ
23890Step with signal @var{sig}. @var{sig} should be two hex digits.
23891@end table
23892
23893The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23894not supported in @samp{vCont}.
86d30acc
DJ
23895
23896Reply:
23897@xref{Stop Reply Packets}, for the reply specifications.
23898
b8ff78ce
JB
23899@item vCont?
23900@cindex @samp{vCont?} packet
d3e8051b 23901Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23902
23903Reply:
23904@table @samp
b8ff78ce
JB
23905@item vCont@r{[};@var{action}@dots{}@r{]}
23906The @samp{vCont} packet is supported. Each @var{action} is a supported
23907command in the @samp{vCont} packet.
86d30acc 23908@item
b8ff78ce 23909The @samp{vCont} packet is not supported.
86d30acc 23910@end table
ee2d5c50 23911
a6b151f1
DJ
23912@item vFile:@var{operation}:@var{parameter}@dots{}
23913@cindex @samp{vFile} packet
23914Perform a file operation on the target system. For details,
23915see @ref{Host I/O Packets}.
23916
68437a39
DJ
23917@item vFlashErase:@var{addr},@var{length}
23918@cindex @samp{vFlashErase} packet
23919Direct the stub to erase @var{length} bytes of flash starting at
23920@var{addr}. The region may enclose any number of flash blocks, but
23921its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23922flash block size appearing in the memory map (@pxref{Memory Map
23923Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23924together, and sends a @samp{vFlashDone} request after each group; the
23925stub is allowed to delay erase operation until the @samp{vFlashDone}
23926packet is received.
23927
23928Reply:
23929@table @samp
23930@item OK
23931for success
23932@item E @var{NN}
23933for an error
23934@end table
23935
23936@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23937@cindex @samp{vFlashWrite} packet
23938Direct the stub to write data to flash address @var{addr}. The data
23939is passed in binary form using the same encoding as for the @samp{X}
23940packet (@pxref{Binary Data}). The memory ranges specified by
23941@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23942not overlap, and must appear in order of increasing addresses
23943(although @samp{vFlashErase} packets for higher addresses may already
23944have been received; the ordering is guaranteed only between
23945@samp{vFlashWrite} packets). If a packet writes to an address that was
23946neither erased by a preceding @samp{vFlashErase} packet nor by some other
23947target-specific method, the results are unpredictable.
23948
23949
23950Reply:
23951@table @samp
23952@item OK
23953for success
23954@item E.memtype
23955for vFlashWrite addressing non-flash memory
23956@item E @var{NN}
23957for an error
23958@end table
23959
23960@item vFlashDone
23961@cindex @samp{vFlashDone} packet
23962Indicate to the stub that flash programming operation is finished.
23963The stub is permitted to delay or batch the effects of a group of
23964@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23965@samp{vFlashDone} packet is received. The contents of the affected
23966regions of flash memory are unpredictable until the @samp{vFlashDone}
23967request is completed.
23968
2d717e4f
DJ
23969@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23970@cindex @samp{vRun} packet
23971Run the program @var{filename}, passing it each @var{argument} on its
23972command line. The file and arguments are hex-encoded strings. If
23973@var{filename} is an empty string, the stub may use a default program
23974(e.g.@: the last program run). The program is created in the stopped
1fddbabb 23975state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
23976
23977This packet is only available in extended mode (@pxref{extended mode}).
23978
23979Reply:
23980@table @samp
23981@item E @var{nn}
23982for an error
23983@item @r{Any stop packet}
23984for success (@pxref{Stop Reply Packets})
23985@end table
23986
b8ff78ce 23987@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23988@anchor{X packet}
b8ff78ce
JB
23989@cindex @samp{X} packet
23990Write data to memory, where the data is transmitted in binary.
23991@var{addr} is address, @var{length} is number of bytes,
0876f84a 23992@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23993
ee2d5c50
AC
23994Reply:
23995@table @samp
23996@item OK
23997for success
b8ff78ce 23998@item E @var{NN}
ee2d5c50
AC
23999for an error
24000@end table
24001
b8ff78ce
JB
24002@item z @var{type},@var{addr},@var{length}
24003@itemx Z @var{type},@var{addr},@var{length}
2f870471 24004@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24005@cindex @samp{z} packet
24006@cindex @samp{Z} packets
24007Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24008watchpoint starting at address @var{address} and covering the next
24009@var{length} bytes.
ee2d5c50 24010
2f870471
AC
24011Each breakpoint and watchpoint packet @var{type} is documented
24012separately.
24013
512217c7
AC
24014@emph{Implementation notes: A remote target shall return an empty string
24015for an unrecognized breakpoint or watchpoint packet @var{type}. A
24016remote target shall support either both or neither of a given
b8ff78ce 24017@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24018avoid potential problems with duplicate packets, the operations should
24019be implemented in an idempotent way.}
24020
b8ff78ce
JB
24021@item z0,@var{addr},@var{length}
24022@itemx Z0,@var{addr},@var{length}
24023@cindex @samp{z0} packet
24024@cindex @samp{Z0} packet
24025Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24026@var{addr} of size @var{length}.
2f870471
AC
24027
24028A memory breakpoint is implemented by replacing the instruction at
24029@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24030@var{length} is used by targets that indicates the size of the
2f870471
AC
24031breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24032@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24033
2f870471
AC
24034@emph{Implementation note: It is possible for a target to copy or move
24035code that contains memory breakpoints (e.g., when implementing
24036overlays). The behavior of this packet, in the presence of such a
24037target, is not defined.}
c906108c 24038
ee2d5c50
AC
24039Reply:
24040@table @samp
2f870471
AC
24041@item OK
24042success
24043@item
24044not supported
b8ff78ce 24045@item E @var{NN}
ee2d5c50 24046for an error
2f870471
AC
24047@end table
24048
b8ff78ce
JB
24049@item z1,@var{addr},@var{length}
24050@itemx Z1,@var{addr},@var{length}
24051@cindex @samp{z1} packet
24052@cindex @samp{Z1} packet
24053Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24054address @var{addr} of size @var{length}.
2f870471
AC
24055
24056A hardware breakpoint is implemented using a mechanism that is not
24057dependant on being able to modify the target's memory.
24058
24059@emph{Implementation note: A hardware breakpoint is not affected by code
24060movement.}
24061
24062Reply:
24063@table @samp
ee2d5c50 24064@item OK
2f870471
AC
24065success
24066@item
24067not supported
b8ff78ce 24068@item E @var{NN}
2f870471
AC
24069for an error
24070@end table
24071
b8ff78ce
JB
24072@item z2,@var{addr},@var{length}
24073@itemx Z2,@var{addr},@var{length}
24074@cindex @samp{z2} packet
24075@cindex @samp{Z2} packet
24076Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24077
24078Reply:
24079@table @samp
24080@item OK
24081success
24082@item
24083not supported
b8ff78ce 24084@item E @var{NN}
2f870471
AC
24085for an error
24086@end table
24087
b8ff78ce
JB
24088@item z3,@var{addr},@var{length}
24089@itemx Z3,@var{addr},@var{length}
24090@cindex @samp{z3} packet
24091@cindex @samp{Z3} packet
24092Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24093
24094Reply:
24095@table @samp
24096@item OK
24097success
24098@item
24099not supported
b8ff78ce 24100@item E @var{NN}
2f870471
AC
24101for an error
24102@end table
24103
b8ff78ce
JB
24104@item z4,@var{addr},@var{length}
24105@itemx Z4,@var{addr},@var{length}
24106@cindex @samp{z4} packet
24107@cindex @samp{Z4} packet
24108Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24109
24110Reply:
24111@table @samp
24112@item OK
24113success
24114@item
24115not supported
b8ff78ce 24116@item E @var{NN}
2f870471 24117for an error
ee2d5c50
AC
24118@end table
24119
24120@end table
c906108c 24121
ee2d5c50
AC
24122@node Stop Reply Packets
24123@section Stop Reply Packets
24124@cindex stop reply packets
c906108c 24125
8e04817f
AC
24126The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24127receive any of the below as a reply. In the case of the @samp{C},
24128@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24129when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24130number} is defined by the header @file{include/gdb/signals.h} in the
24131@value{GDBN} source code.
c906108c 24132
b8ff78ce
JB
24133As in the description of request packets, we include spaces in the
24134reply templates for clarity; these are not part of the reply packet's
24135syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24136components.
c906108c 24137
b8ff78ce 24138@table @samp
ee2d5c50 24139
b8ff78ce 24140@item S @var{AA}
599b237a 24141The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24142number). This is equivalent to a @samp{T} response with no
24143@var{n}:@var{r} pairs.
c906108c 24144
b8ff78ce
JB
24145@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24146@cindex @samp{T} packet reply
599b237a 24147The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24148number). This is equivalent to an @samp{S} response, except that the
24149@samp{@var{n}:@var{r}} pairs can carry values of important registers
24150and other information directly in the stop reply packet, reducing
24151round-trip latency. Single-step and breakpoint traps are reported
24152this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24153
24154@itemize @bullet
b8ff78ce 24155@item
599b237a 24156If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24157corresponding @var{r} gives that register's value. @var{r} is a
24158series of bytes in target byte order, with each byte given by a
24159two-digit hex number.
cfa9d6d9 24160
b8ff78ce
JB
24161@item
24162If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24163hex.
cfa9d6d9 24164
b8ff78ce 24165@item
cfa9d6d9
DJ
24166If @var{n} is a recognized @dfn{stop reason}, it describes a more
24167specific event that stopped the target. The currently defined stop
24168reasons are listed below. @var{aa} should be @samp{05}, the trap
24169signal. At most one stop reason should be present.
24170
b8ff78ce
JB
24171@item
24172Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24173and go on to the next; this allows us to extend the protocol in the
24174future.
cfa9d6d9
DJ
24175@end itemize
24176
24177The currently defined stop reasons are:
24178
24179@table @samp
24180@item watch
24181@itemx rwatch
24182@itemx awatch
24183The packet indicates a watchpoint hit, and @var{r} is the data address, in
24184hex.
24185
24186@cindex shared library events, remote reply
24187@item library
24188The packet indicates that the loaded libraries have changed.
24189@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24190list of loaded libraries. @var{r} is ignored.
24191@end table
ee2d5c50 24192
b8ff78ce 24193@item W @var{AA}
8e04817f 24194The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24195applicable to certain targets.
24196
b8ff78ce 24197@item X @var{AA}
8e04817f 24198The process terminated with signal @var{AA}.
c906108c 24199
b8ff78ce
JB
24200@item O @var{XX}@dots{}
24201@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24202written as the program's console output. This can happen at any time
24203while the program is running and the debugger should continue to wait
24204for @samp{W}, @samp{T}, etc.
0ce1b118 24205
b8ff78ce 24206@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24207@var{call-id} is the identifier which says which host system call should
24208be called. This is just the name of the function. Translation into the
24209correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24210@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24211system calls.
24212
b8ff78ce
JB
24213@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24214this very system call.
0ce1b118 24215
b8ff78ce
JB
24216The target replies with this packet when it expects @value{GDBN} to
24217call a host system call on behalf of the target. @value{GDBN} replies
24218with an appropriate @samp{F} packet and keeps up waiting for the next
24219reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24220or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24221Protocol Extension}, for more details.
0ce1b118 24222
ee2d5c50
AC
24223@end table
24224
24225@node General Query Packets
24226@section General Query Packets
9c16f35a 24227@cindex remote query requests
c906108c 24228
5f3bebba
JB
24229Packets starting with @samp{q} are @dfn{general query packets};
24230packets starting with @samp{Q} are @dfn{general set packets}. General
24231query and set packets are a semi-unified form for retrieving and
24232sending information to and from the stub.
24233
24234The initial letter of a query or set packet is followed by a name
24235indicating what sort of thing the packet applies to. For example,
24236@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24237definitions with the stub. These packet names follow some
24238conventions:
24239
24240@itemize @bullet
24241@item
24242The name must not contain commas, colons or semicolons.
24243@item
24244Most @value{GDBN} query and set packets have a leading upper case
24245letter.
24246@item
24247The names of custom vendor packets should use a company prefix, in
24248lower case, followed by a period. For example, packets designed at
24249the Acme Corporation might begin with @samp{qacme.foo} (for querying
24250foos) or @samp{Qacme.bar} (for setting bars).
24251@end itemize
24252
aa56d27a
JB
24253The name of a query or set packet should be separated from any
24254parameters by a @samp{:}; the parameters themselves should be
24255separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24256full packet name, and check for a separator or the end of the packet,
24257in case two packet names share a common prefix. New packets should not begin
24258with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24259packets predate these conventions, and have arguments without any terminator
24260for the packet name; we suspect they are in widespread use in places that
24261are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24262existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24263packet.}.
c906108c 24264
b8ff78ce
JB
24265Like the descriptions of the other packets, each description here
24266has a template showing the packet's overall syntax, followed by an
24267explanation of the packet's meaning. We include spaces in some of the
24268templates for clarity; these are not part of the packet's syntax. No
24269@value{GDBN} packet uses spaces to separate its components.
24270
5f3bebba
JB
24271Here are the currently defined query and set packets:
24272
b8ff78ce 24273@table @samp
c906108c 24274
b8ff78ce 24275@item qC
9c16f35a 24276@cindex current thread, remote request
b8ff78ce 24277@cindex @samp{qC} packet
ee2d5c50
AC
24278Return the current thread id.
24279
24280Reply:
24281@table @samp
b8ff78ce 24282@item QC @var{pid}
599b237a 24283Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24284@item @r{(anything else)}
ee2d5c50
AC
24285Any other reply implies the old pid.
24286@end table
24287
b8ff78ce 24288@item qCRC:@var{addr},@var{length}
ff2587ec 24289@cindex CRC of memory block, remote request
b8ff78ce
JB
24290@cindex @samp{qCRC} packet
24291Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24292Reply:
24293@table @samp
b8ff78ce 24294@item E @var{NN}
ff2587ec 24295An error (such as memory fault)
b8ff78ce
JB
24296@item C @var{crc32}
24297The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24298@end table
24299
b8ff78ce
JB
24300@item qfThreadInfo
24301@itemx qsThreadInfo
9c16f35a 24302@cindex list active threads, remote request
b8ff78ce
JB
24303@cindex @samp{qfThreadInfo} packet
24304@cindex @samp{qsThreadInfo} packet
24305Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24306may be too many active threads to fit into one reply packet, this query
24307works iteratively: it may require more than one query/reply sequence to
24308obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24309be the @samp{qfThreadInfo} query; subsequent queries in the
24310sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24311
b8ff78ce 24312NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24313
24314Reply:
24315@table @samp
b8ff78ce 24316@item m @var{id}
ee2d5c50 24317A single thread id
b8ff78ce 24318@item m @var{id},@var{id}@dots{}
ee2d5c50 24319a comma-separated list of thread ids
b8ff78ce
JB
24320@item l
24321(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24322@end table
24323
24324In response to each query, the target will reply with a list of one or
e1aac25b
JB
24325more thread ids, in big-endian unsigned hex, separated by commas.
24326@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24327ids (using the @samp{qs} form of the query), until the target responds
24328with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24329
b8ff78ce 24330@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24331@cindex get thread-local storage address, remote request
b8ff78ce 24332@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24333Fetch the address associated with thread local storage specified
24334by @var{thread-id}, @var{offset}, and @var{lm}.
24335
24336@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24337thread for which to fetch the TLS address.
24338
24339@var{offset} is the (big endian, hex encoded) offset associated with the
24340thread local variable. (This offset is obtained from the debug
24341information associated with the variable.)
24342
db2e3e2e 24343@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24344the load module associated with the thread local storage. For example,
24345a @sc{gnu}/Linux system will pass the link map address of the shared
24346object associated with the thread local storage under consideration.
24347Other operating environments may choose to represent the load module
24348differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24349
24350Reply:
b8ff78ce
JB
24351@table @samp
24352@item @var{XX}@dots{}
ff2587ec
WZ
24353Hex encoded (big endian) bytes representing the address of the thread
24354local storage requested.
24355
b8ff78ce
JB
24356@item E @var{nn}
24357An error occurred. @var{nn} are hex digits.
ff2587ec 24358
b8ff78ce
JB
24359@item
24360An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24361@end table
24362
b8ff78ce 24363@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24364Obtain thread information from RTOS. Where: @var{startflag} (one hex
24365digit) is one to indicate the first query and zero to indicate a
24366subsequent query; @var{threadcount} (two hex digits) is the maximum
24367number of threads the response packet can contain; and @var{nextthread}
24368(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24369returned in the response as @var{argthread}.
ee2d5c50 24370
b8ff78ce 24371Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24372
24373Reply:
24374@table @samp
b8ff78ce 24375@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24376Where: @var{count} (two hex digits) is the number of threads being
24377returned; @var{done} (one hex digit) is zero to indicate more threads
24378and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24379digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24380is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24381digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24382@end table
c906108c 24383
b8ff78ce 24384@item qOffsets
9c16f35a 24385@cindex section offsets, remote request
b8ff78ce 24386@cindex @samp{qOffsets} packet
31d99776
DJ
24387Get section offsets that the target used when relocating the downloaded
24388image.
c906108c 24389
ee2d5c50
AC
24390Reply:
24391@table @samp
31d99776
DJ
24392@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24393Relocate the @code{Text} section by @var{xxx} from its original address.
24394Relocate the @code{Data} section by @var{yyy} from its original address.
24395If the object file format provides segment information (e.g.@: @sc{elf}
24396@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24397segments by the supplied offsets.
24398
24399@emph{Note: while a @code{Bss} offset may be included in the response,
24400@value{GDBN} ignores this and instead applies the @code{Data} offset
24401to the @code{Bss} section.}
24402
24403@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24404Relocate the first segment of the object file, which conventionally
24405contains program code, to a starting address of @var{xxx}. If
24406@samp{DataSeg} is specified, relocate the second segment, which
24407conventionally contains modifiable data, to a starting address of
24408@var{yyy}. @value{GDBN} will report an error if the object file
24409does not contain segment information, or does not contain at least
24410as many segments as mentioned in the reply. Extra segments are
24411kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24412@end table
24413
b8ff78ce 24414@item qP @var{mode} @var{threadid}
9c16f35a 24415@cindex thread information, remote request
b8ff78ce 24416@cindex @samp{qP} packet
8e04817f
AC
24417Returns information on @var{threadid}. Where: @var{mode} is a hex
24418encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24419
aa56d27a
JB
24420Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24421(see below).
24422
b8ff78ce 24423Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24424
89be2091
DJ
24425@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24426@cindex pass signals to inferior, remote request
24427@cindex @samp{QPassSignals} packet
23181151 24428@anchor{QPassSignals}
89be2091
DJ
24429Each listed @var{signal} should be passed directly to the inferior process.
24430Signals are numbered identically to continue packets and stop replies
24431(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24432strictly greater than the previous item. These signals do not need to stop
24433the inferior, or be reported to @value{GDBN}. All other signals should be
24434reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24435combine; any earlier @samp{QPassSignals} list is completely replaced by the
24436new list. This packet improves performance when using @samp{handle
24437@var{signal} nostop noprint pass}.
24438
24439Reply:
24440@table @samp
24441@item OK
24442The request succeeded.
24443
24444@item E @var{nn}
24445An error occurred. @var{nn} are hex digits.
24446
24447@item
24448An empty reply indicates that @samp{QPassSignals} is not supported by
24449the stub.
24450@end table
24451
24452Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24453command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24454This packet is not probed by default; the remote stub must request it,
24455by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24456
b8ff78ce 24457@item qRcmd,@var{command}
ff2587ec 24458@cindex execute remote command, remote request
b8ff78ce 24459@cindex @samp{qRcmd} packet
ff2587ec 24460@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24461execution. Invalid commands should be reported using the output
24462string. Before the final result packet, the target may also respond
24463with a number of intermediate @samp{O@var{output}} console output
24464packets. @emph{Implementors should note that providing access to a
24465stubs's interpreter may have security implications}.
fa93a9d8 24466
ff2587ec
WZ
24467Reply:
24468@table @samp
24469@item OK
24470A command response with no output.
24471@item @var{OUTPUT}
24472A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24473@item E @var{NN}
ff2587ec 24474Indicate a badly formed request.
b8ff78ce
JB
24475@item
24476An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24477@end table
fa93a9d8 24478
aa56d27a
JB
24479(Note that the @code{qRcmd} packet's name is separated from the
24480command by a @samp{,}, not a @samp{:}, contrary to the naming
24481conventions above. Please don't use this packet as a model for new
24482packets.)
24483
be2a5f71
DJ
24484@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24485@cindex supported packets, remote query
24486@cindex features of the remote protocol
24487@cindex @samp{qSupported} packet
0876f84a 24488@anchor{qSupported}
be2a5f71
DJ
24489Tell the remote stub about features supported by @value{GDBN}, and
24490query the stub for features it supports. This packet allows
24491@value{GDBN} and the remote stub to take advantage of each others'
24492features. @samp{qSupported} also consolidates multiple feature probes
24493at startup, to improve @value{GDBN} performance---a single larger
24494packet performs better than multiple smaller probe packets on
24495high-latency links. Some features may enable behavior which must not
24496be on by default, e.g.@: because it would confuse older clients or
24497stubs. Other features may describe packets which could be
24498automatically probed for, but are not. These features must be
24499reported before @value{GDBN} will use them. This ``default
24500unsupported'' behavior is not appropriate for all packets, but it
24501helps to keep the initial connection time under control with new
24502versions of @value{GDBN} which support increasing numbers of packets.
24503
24504Reply:
24505@table @samp
24506@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24507The stub supports or does not support each returned @var{stubfeature},
24508depending on the form of each @var{stubfeature} (see below for the
24509possible forms).
24510@item
24511An empty reply indicates that @samp{qSupported} is not recognized,
24512or that no features needed to be reported to @value{GDBN}.
24513@end table
24514
24515The allowed forms for each feature (either a @var{gdbfeature} in the
24516@samp{qSupported} packet, or a @var{stubfeature} in the response)
24517are:
24518
24519@table @samp
24520@item @var{name}=@var{value}
24521The remote protocol feature @var{name} is supported, and associated
24522with the specified @var{value}. The format of @var{value} depends
24523on the feature, but it must not include a semicolon.
24524@item @var{name}+
24525The remote protocol feature @var{name} is supported, and does not
24526need an associated value.
24527@item @var{name}-
24528The remote protocol feature @var{name} is not supported.
24529@item @var{name}?
24530The remote protocol feature @var{name} may be supported, and
24531@value{GDBN} should auto-detect support in some other way when it is
24532needed. This form will not be used for @var{gdbfeature} notifications,
24533but may be used for @var{stubfeature} responses.
24534@end table
24535
24536Whenever the stub receives a @samp{qSupported} request, the
24537supplied set of @value{GDBN} features should override any previous
24538request. This allows @value{GDBN} to put the stub in a known
24539state, even if the stub had previously been communicating with
24540a different version of @value{GDBN}.
24541
24542No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24543are defined yet. Stubs should ignore any unknown values for
24544@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24545packet supports receiving packets of unlimited length (earlier
24546versions of @value{GDBN} may reject overly long responses). Values
24547for @var{gdbfeature} may be defined in the future to let the stub take
24548advantage of new features in @value{GDBN}, e.g.@: incompatible
24549improvements in the remote protocol---support for unlimited length
24550responses would be a @var{gdbfeature} example, if it were not implied by
24551the @samp{qSupported} query. The stub's reply should be independent
24552of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24553describes all the features it supports, and then the stub replies with
24554all the features it supports.
24555
24556Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24557responses, as long as each response uses one of the standard forms.
24558
24559Some features are flags. A stub which supports a flag feature
24560should respond with a @samp{+} form response. Other features
24561require values, and the stub should respond with an @samp{=}
24562form response.
24563
24564Each feature has a default value, which @value{GDBN} will use if
24565@samp{qSupported} is not available or if the feature is not mentioned
24566in the @samp{qSupported} response. The default values are fixed; a
24567stub is free to omit any feature responses that match the defaults.
24568
24569Not all features can be probed, but for those which can, the probing
24570mechanism is useful: in some cases, a stub's internal
24571architecture may not allow the protocol layer to know some information
24572about the underlying target in advance. This is especially common in
24573stubs which may be configured for multiple targets.
24574
24575These are the currently defined stub features and their properties:
24576
cfa9d6d9 24577@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24578@c NOTE: The first row should be @headitem, but we do not yet require
24579@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24580@item Feature Name
be2a5f71
DJ
24581@tab Value Required
24582@tab Default
24583@tab Probe Allowed
24584
24585@item @samp{PacketSize}
24586@tab Yes
24587@tab @samp{-}
24588@tab No
24589
0876f84a
DJ
24590@item @samp{qXfer:auxv:read}
24591@tab No
24592@tab @samp{-}
24593@tab Yes
24594
23181151
DJ
24595@item @samp{qXfer:features:read}
24596@tab No
24597@tab @samp{-}
24598@tab Yes
24599
cfa9d6d9
DJ
24600@item @samp{qXfer:libraries:read}
24601@tab No
24602@tab @samp{-}
24603@tab Yes
24604
68437a39
DJ
24605@item @samp{qXfer:memory-map:read}
24606@tab No
24607@tab @samp{-}
24608@tab Yes
24609
0e7f50da
UW
24610@item @samp{qXfer:spu:read}
24611@tab No
24612@tab @samp{-}
24613@tab Yes
24614
24615@item @samp{qXfer:spu:write}
24616@tab No
24617@tab @samp{-}
24618@tab Yes
24619
89be2091
DJ
24620@item @samp{QPassSignals}
24621@tab No
24622@tab @samp{-}
24623@tab Yes
24624
be2a5f71
DJ
24625@end multitable
24626
24627These are the currently defined stub features, in more detail:
24628
24629@table @samp
24630@cindex packet size, remote protocol
24631@item PacketSize=@var{bytes}
24632The remote stub can accept packets up to at least @var{bytes} in
24633length. @value{GDBN} will send packets up to this size for bulk
24634transfers, and will never send larger packets. This is a limit on the
24635data characters in the packet, including the frame and checksum.
24636There is no trailing NUL byte in a remote protocol packet; if the stub
24637stores packets in a NUL-terminated format, it should allow an extra
24638byte in its buffer for the NUL. If this stub feature is not supported,
24639@value{GDBN} guesses based on the size of the @samp{g} packet response.
24640
0876f84a
DJ
24641@item qXfer:auxv:read
24642The remote stub understands the @samp{qXfer:auxv:read} packet
24643(@pxref{qXfer auxiliary vector read}).
24644
23181151
DJ
24645@item qXfer:features:read
24646The remote stub understands the @samp{qXfer:features:read} packet
24647(@pxref{qXfer target description read}).
24648
cfa9d6d9
DJ
24649@item qXfer:libraries:read
24650The remote stub understands the @samp{qXfer:libraries:read} packet
24651(@pxref{qXfer library list read}).
24652
23181151
DJ
24653@item qXfer:memory-map:read
24654The remote stub understands the @samp{qXfer:memory-map:read} packet
24655(@pxref{qXfer memory map read}).
24656
0e7f50da
UW
24657@item qXfer:spu:read
24658The remote stub understands the @samp{qXfer:spu:read} packet
24659(@pxref{qXfer spu read}).
24660
24661@item qXfer:spu:write
24662The remote stub understands the @samp{qXfer:spu:write} packet
24663(@pxref{qXfer spu write}).
24664
23181151
DJ
24665@item QPassSignals
24666The remote stub understands the @samp{QPassSignals} packet
24667(@pxref{QPassSignals}).
24668
be2a5f71
DJ
24669@end table
24670
b8ff78ce 24671@item qSymbol::
ff2587ec 24672@cindex symbol lookup, remote request
b8ff78ce 24673@cindex @samp{qSymbol} packet
ff2587ec
WZ
24674Notify the target that @value{GDBN} is prepared to serve symbol lookup
24675requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24676
24677Reply:
ff2587ec 24678@table @samp
b8ff78ce 24679@item OK
ff2587ec 24680The target does not need to look up any (more) symbols.
b8ff78ce 24681@item qSymbol:@var{sym_name}
ff2587ec
WZ
24682The target requests the value of symbol @var{sym_name} (hex encoded).
24683@value{GDBN} may provide the value by using the
b8ff78ce
JB
24684@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24685below.
ff2587ec 24686@end table
83761cbd 24687
b8ff78ce 24688@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24689Set the value of @var{sym_name} to @var{sym_value}.
24690
24691@var{sym_name} (hex encoded) is the name of a symbol whose value the
24692target has previously requested.
24693
24694@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24695@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24696will be empty.
24697
24698Reply:
24699@table @samp
b8ff78ce 24700@item OK
ff2587ec 24701The target does not need to look up any (more) symbols.
b8ff78ce 24702@item qSymbol:@var{sym_name}
ff2587ec
WZ
24703The target requests the value of a new symbol @var{sym_name} (hex
24704encoded). @value{GDBN} will continue to supply the values of symbols
24705(if available), until the target ceases to request them.
fa93a9d8 24706@end table
0abb7bc7 24707
9d29849a
JB
24708@item QTDP
24709@itemx QTFrame
24710@xref{Tracepoint Packets}.
24711
b8ff78ce 24712@item qThreadExtraInfo,@var{id}
ff2587ec 24713@cindex thread attributes info, remote request
b8ff78ce
JB
24714@cindex @samp{qThreadExtraInfo} packet
24715Obtain a printable string description of a thread's attributes from
24716the target OS. @var{id} is a thread-id in big-endian hex. This
24717string may contain anything that the target OS thinks is interesting
24718for @value{GDBN} to tell the user about the thread. The string is
24719displayed in @value{GDBN}'s @code{info threads} display. Some
24720examples of possible thread extra info strings are @samp{Runnable}, or
24721@samp{Blocked on Mutex}.
ff2587ec
WZ
24722
24723Reply:
24724@table @samp
b8ff78ce
JB
24725@item @var{XX}@dots{}
24726Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24727comprising the printable string containing the extra information about
24728the thread's attributes.
ff2587ec 24729@end table
814e32d7 24730
aa56d27a
JB
24731(Note that the @code{qThreadExtraInfo} packet's name is separated from
24732the command by a @samp{,}, not a @samp{:}, contrary to the naming
24733conventions above. Please don't use this packet as a model for new
24734packets.)
24735
9d29849a
JB
24736@item QTStart
24737@itemx QTStop
24738@itemx QTinit
24739@itemx QTro
24740@itemx qTStatus
24741@xref{Tracepoint Packets}.
24742
0876f84a
DJ
24743@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24744@cindex read special object, remote request
24745@cindex @samp{qXfer} packet
68437a39 24746@anchor{qXfer read}
0876f84a
DJ
24747Read uninterpreted bytes from the target's special data area
24748identified by the keyword @var{object}. Request @var{length} bytes
24749starting at @var{offset} bytes into the data. The content and
0e7f50da 24750encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24751additional details about what data to access.
24752
24753Here are the specific requests of this form defined so far. All
24754@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24755formats, listed below.
24756
24757@table @samp
24758@item qXfer:auxv:read::@var{offset},@var{length}
24759@anchor{qXfer auxiliary vector read}
24760Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24761auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24762
24763This packet is not probed by default; the remote stub must request it,
89be2091 24764by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24765
23181151
DJ
24766@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24767@anchor{qXfer target description read}
24768Access the @dfn{target description}. @xref{Target Descriptions}. The
24769annex specifies which XML document to access. The main description is
24770always loaded from the @samp{target.xml} annex.
24771
24772This packet is not probed by default; the remote stub must request it,
24773by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24774
cfa9d6d9
DJ
24775@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24776@anchor{qXfer library list read}
24777Access the target's list of loaded libraries. @xref{Library List Format}.
24778The annex part of the generic @samp{qXfer} packet must be empty
24779(@pxref{qXfer read}).
24780
24781Targets which maintain a list of libraries in the program's memory do
24782not need to implement this packet; it is designed for platforms where
24783the operating system manages the list of loaded libraries.
24784
24785This packet is not probed by default; the remote stub must request it,
24786by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24787
68437a39
DJ
24788@item qXfer:memory-map:read::@var{offset},@var{length}
24789@anchor{qXfer memory map read}
79a6e687 24790Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24791annex part of the generic @samp{qXfer} packet must be empty
24792(@pxref{qXfer read}).
24793
0e7f50da
UW
24794This packet is not probed by default; the remote stub must request it,
24795by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24796
24797@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24798@anchor{qXfer spu read}
24799Read contents of an @code{spufs} file on the target system. The
24800annex specifies which file to read; it must be of the form
24801@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24802in the target process, and @var{name} identifes the @code{spufs} file
24803in that context to be accessed.
24804
68437a39
DJ
24805This packet is not probed by default; the remote stub must request it,
24806by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24807@end table
24808
0876f84a
DJ
24809Reply:
24810@table @samp
24811@item m @var{data}
24812Data @var{data} (@pxref{Binary Data}) has been read from the
24813target. There may be more data at a higher address (although
24814it is permitted to return @samp{m} even for the last valid
24815block of data, as long as at least one byte of data was read).
24816@var{data} may have fewer bytes than the @var{length} in the
24817request.
24818
24819@item l @var{data}
24820Data @var{data} (@pxref{Binary Data}) has been read from the target.
24821There is no more data to be read. @var{data} may have fewer bytes
24822than the @var{length} in the request.
24823
24824@item l
24825The @var{offset} in the request is at the end of the data.
24826There is no more data to be read.
24827
24828@item E00
24829The request was malformed, or @var{annex} was invalid.
24830
24831@item E @var{nn}
24832The offset was invalid, or there was an error encountered reading the data.
24833@var{nn} is a hex-encoded @code{errno} value.
24834
24835@item
24836An empty reply indicates the @var{object} string was not recognized by
24837the stub, or that the object does not support reading.
24838@end table
24839
24840@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24841@cindex write data into object, remote request
24842Write uninterpreted bytes into the target's special data area
24843identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24844into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24845(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24846is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24847to access.
24848
0e7f50da
UW
24849Here are the specific requests of this form defined so far. All
24850@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24851formats, listed below.
24852
24853@table @samp
24854@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24855@anchor{qXfer spu write}
24856Write @var{data} to an @code{spufs} file on the target system. The
24857annex specifies which file to write; it must be of the form
24858@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24859in the target process, and @var{name} identifes the @code{spufs} file
24860in that context to be accessed.
24861
24862This packet is not probed by default; the remote stub must request it,
24863by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24864@end table
0876f84a
DJ
24865
24866Reply:
24867@table @samp
24868@item @var{nn}
24869@var{nn} (hex encoded) is the number of bytes written.
24870This may be fewer bytes than supplied in the request.
24871
24872@item E00
24873The request was malformed, or @var{annex} was invalid.
24874
24875@item E @var{nn}
24876The offset was invalid, or there was an error encountered writing the data.
24877@var{nn} is a hex-encoded @code{errno} value.
24878
24879@item
24880An empty reply indicates the @var{object} string was not
24881recognized by the stub, or that the object does not support writing.
24882@end table
24883
24884@item qXfer:@var{object}:@var{operation}:@dots{}
24885Requests of this form may be added in the future. When a stub does
24886not recognize the @var{object} keyword, or its support for
24887@var{object} does not recognize the @var{operation} keyword, the stub
24888must respond with an empty packet.
24889
ee2d5c50
AC
24890@end table
24891
24892@node Register Packet Format
24893@section Register Packet Format
eb12ee30 24894
b8ff78ce 24895The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24896In the below, some thirty-two bit registers are transferred as
24897sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24898to fill the space allocated. Register bytes are transferred in target
24899byte order. The two nibbles within a register byte are transferred
ee2d5c50 24900most-significant - least-significant.
eb12ee30 24901
ee2d5c50 24902@table @r
eb12ee30 24903
8e04817f 24904@item MIPS32
ee2d5c50 24905
599b237a 24906All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2490732 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24908registers; fsr; fir; fp.
eb12ee30 24909
8e04817f 24910@item MIPS64
ee2d5c50 24911
599b237a 24912All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24913thirty-two bit registers such as @code{sr}). The ordering is the same
24914as @code{MIPS32}.
eb12ee30 24915
ee2d5c50
AC
24916@end table
24917
9d29849a
JB
24918@node Tracepoint Packets
24919@section Tracepoint Packets
24920@cindex tracepoint packets
24921@cindex packets, tracepoint
24922
24923Here we describe the packets @value{GDBN} uses to implement
24924tracepoints (@pxref{Tracepoints}).
24925
24926@table @samp
24927
24928@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24929Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24930is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24931the tracepoint is disabled. @var{step} is the tracepoint's step
24932count, and @var{pass} is its pass count. If the trailing @samp{-} is
24933present, further @samp{QTDP} packets will follow to specify this
24934tracepoint's actions.
24935
24936Replies:
24937@table @samp
24938@item OK
24939The packet was understood and carried out.
24940@item
24941The packet was not recognized.
24942@end table
24943
24944@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24945Define actions to be taken when a tracepoint is hit. @var{n} and
24946@var{addr} must be the same as in the initial @samp{QTDP} packet for
24947this tracepoint. This packet may only be sent immediately after
24948another @samp{QTDP} packet that ended with a @samp{-}. If the
24949trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24950specifying more actions for this tracepoint.
24951
24952In the series of action packets for a given tracepoint, at most one
24953can have an @samp{S} before its first @var{action}. If such a packet
24954is sent, it and the following packets define ``while-stepping''
24955actions. Any prior packets define ordinary actions --- that is, those
24956taken when the tracepoint is first hit. If no action packet has an
24957@samp{S}, then all the packets in the series specify ordinary
24958tracepoint actions.
24959
24960The @samp{@var{action}@dots{}} portion of the packet is a series of
24961actions, concatenated without separators. Each action has one of the
24962following forms:
24963
24964@table @samp
24965
24966@item R @var{mask}
24967Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24968a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24969@var{i} should be collected. (The least significant bit is numbered
24970zero.) Note that @var{mask} may be any number of digits long; it may
24971not fit in a 32-bit word.
24972
24973@item M @var{basereg},@var{offset},@var{len}
24974Collect @var{len} bytes of memory starting at the address in register
24975number @var{basereg}, plus @var{offset}. If @var{basereg} is
24976@samp{-1}, then the range has a fixed address: @var{offset} is the
24977address of the lowest byte to collect. The @var{basereg},
599b237a 24978@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24979values (the @samp{-1} value for @var{basereg} is a special case).
24980
24981@item X @var{len},@var{expr}
24982Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24983it directs. @var{expr} is an agent expression, as described in
24984@ref{Agent Expressions}. Each byte of the expression is encoded as a
24985two-digit hex number in the packet; @var{len} is the number of bytes
24986in the expression (and thus one-half the number of hex digits in the
24987packet).
24988
24989@end table
24990
24991Any number of actions may be packed together in a single @samp{QTDP}
24992packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24993length (400 bytes, for many stubs). There may be only one @samp{R}
24994action per tracepoint, and it must precede any @samp{M} or @samp{X}
24995actions. Any registers referred to by @samp{M} and @samp{X} actions
24996must be collected by a preceding @samp{R} action. (The
24997``while-stepping'' actions are treated as if they were attached to a
24998separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24999
25000Replies:
25001@table @samp
25002@item OK
25003The packet was understood and carried out.
25004@item
25005The packet was not recognized.
25006@end table
25007
25008@item QTFrame:@var{n}
25009Select the @var{n}'th tracepoint frame from the buffer, and use the
25010register and memory contents recorded there to answer subsequent
25011request packets from @value{GDBN}.
25012
25013A successful reply from the stub indicates that the stub has found the
25014requested frame. The response is a series of parts, concatenated
25015without separators, describing the frame we selected. Each part has
25016one of the following forms:
25017
25018@table @samp
25019@item F @var{f}
25020The selected frame is number @var{n} in the trace frame buffer;
599b237a 25021@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25022was no frame matching the criteria in the request packet.
25023
25024@item T @var{t}
25025The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25026@var{t} is a hexadecimal number.
9d29849a
JB
25027
25028@end table
25029
25030@item QTFrame:pc:@var{addr}
25031Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25032currently selected frame whose PC is @var{addr};
599b237a 25033@var{addr} is a hexadecimal number.
9d29849a
JB
25034
25035@item QTFrame:tdp:@var{t}
25036Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25037currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25038is a hexadecimal number.
9d29849a
JB
25039
25040@item QTFrame:range:@var{start}:@var{end}
25041Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25042currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25043and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25044numbers.
25045
25046@item QTFrame:outside:@var{start}:@var{end}
25047Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25048frame @emph{outside} the given range of addresses.
25049
25050@item QTStart
25051Begin the tracepoint experiment. Begin collecting data from tracepoint
25052hits in the trace frame buffer.
25053
25054@item QTStop
25055End the tracepoint experiment. Stop collecting trace frames.
25056
25057@item QTinit
25058Clear the table of tracepoints, and empty the trace frame buffer.
25059
25060@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25061Establish the given ranges of memory as ``transparent''. The stub
25062will answer requests for these ranges from memory's current contents,
25063if they were not collected as part of the tracepoint hit.
25064
25065@value{GDBN} uses this to mark read-only regions of memory, like those
25066containing program code. Since these areas never change, they should
25067still have the same contents they did when the tracepoint was hit, so
25068there's no reason for the stub to refuse to provide their contents.
25069
25070@item qTStatus
25071Ask the stub if there is a trace experiment running right now.
25072
25073Replies:
25074@table @samp
25075@item T0
25076There is no trace experiment running.
25077@item T1
25078There is a trace experiment running.
25079@end table
25080
25081@end table
25082
25083
a6b151f1
DJ
25084@node Host I/O Packets
25085@section Host I/O Packets
25086@cindex Host I/O, remote protocol
25087@cindex file transfer, remote protocol
25088
25089The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25090operations on the far side of a remote link. For example, Host I/O is
25091used to upload and download files to a remote target with its own
25092filesystem. Host I/O uses the same constant values and data structure
25093layout as the target-initiated File-I/O protocol. However, the
25094Host I/O packets are structured differently. The target-initiated
25095protocol relies on target memory to store parameters and buffers.
25096Host I/O requests are initiated by @value{GDBN}, and the
25097target's memory is not involved. @xref{File-I/O Remote Protocol
25098Extension}, for more details on the target-initiated protocol.
25099
25100The Host I/O request packets all encode a single operation along with
25101its arguments. They have this format:
25102
25103@table @samp
25104
25105@item vFile:@var{operation}: @var{parameter}@dots{}
25106@var{operation} is the name of the particular request; the target
25107should compare the entire packet name up to the second colon when checking
25108for a supported operation. The format of @var{parameter} depends on
25109the operation. Numbers are always passed in hexadecimal. Negative
25110numbers have an explicit minus sign (i.e.@: two's complement is not
25111used). Strings (e.g.@: filenames) are encoded as a series of
25112hexadecimal bytes. The last argument to a system call may be a
25113buffer of escaped binary data (@pxref{Binary Data}).
25114
25115@end table
25116
25117The valid responses to Host I/O packets are:
25118
25119@table @samp
25120
25121@item F @var{result} [, @var{errno}] [; @var{attachment}]
25122@var{result} is the integer value returned by this operation, usually
25123non-negative for success and -1 for errors. If an error has occured,
25124@var{errno} will be included in the result. @var{errno} will have a
25125value defined by the File-I/O protocol (@pxref{Errno Values}). For
25126operations which return data, @var{attachment} supplies the data as a
25127binary buffer. Binary buffers in response packets are escaped in the
25128normal way (@pxref{Binary Data}). See the individual packet
25129documentation for the interpretation of @var{result} and
25130@var{attachment}.
25131
25132@item
25133An empty response indicates that this operation is not recognized.
25134
25135@end table
25136
25137These are the supported Host I/O operations:
25138
25139@table @samp
25140@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25141Open a file at @var{pathname} and return a file descriptor for it, or
25142return -1 if an error occurs. @var{pathname} is a string,
25143@var{flags} is an integer indicating a mask of open flags
25144(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25145of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25146@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25147
25148@item vFile:close: @var{fd}
25149Close the open file corresponding to @var{fd} and return 0, or
25150-1 if an error occurs.
25151
25152@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25153Read data from the open file corresponding to @var{fd}. Up to
25154@var{count} bytes will be read from the file, starting at @var{offset}
25155relative to the start of the file. The target may read fewer bytes;
25156common reasons include packet size limits and an end-of-file
25157condition. The number of bytes read is returned. Zero should only be
25158returned for a successful read at the end of the file, or if
25159@var{count} was zero.
25160
25161The data read should be returned as a binary attachment on success.
25162If zero bytes were read, the response should include an empty binary
25163attachment (i.e.@: a trailing semicolon). The return value is the
25164number of target bytes read; the binary attachment may be longer if
25165some characters were escaped.
25166
25167@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25168Write @var{data} (a binary buffer) to the open file corresponding
25169to @var{fd}. Start the write at @var{offset} from the start of the
25170file. Unlike many @code{write} system calls, there is no
25171separate @var{count} argument; the length of @var{data} in the
25172packet is used. @samp{vFile:write} returns the number of bytes written,
25173which may be shorter than the length of @var{data}, or -1 if an
25174error occurred.
25175
25176@item vFile:unlink: @var{pathname}
25177Delete the file at @var{pathname} on the target. Return 0,
25178or -1 if an error occurs. @var{pathname} is a string.
25179
25180@end table
25181
9a6253be
KB
25182@node Interrupts
25183@section Interrupts
25184@cindex interrupts (remote protocol)
25185
25186When a program on the remote target is running, @value{GDBN} may
25187attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25188control of which is specified via @value{GDBN}'s @samp{remotebreak}
25189setting (@pxref{set remotebreak}).
25190
25191The precise meaning of @code{BREAK} is defined by the transport
25192mechanism and may, in fact, be undefined. @value{GDBN} does
25193not currently define a @code{BREAK} mechanism for any of the network
25194interfaces.
25195
25196@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25197transport mechanisms. It is represented by sending the single byte
25198@code{0x03} without any of the usual packet overhead described in
25199the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25200transmitted as part of a packet, it is considered to be packet data
25201and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25202(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25203@code{0x03} as part of its packet.
25204
25205Stubs are not required to recognize these interrupt mechanisms and the
25206precise meaning associated with receipt of the interrupt is
25207implementation defined. If the stub is successful at interrupting the
25208running program, it is expected that it will send one of the Stop
25209Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25210of successfully stopping the program. Interrupts received while the
25211program is stopped will be discarded.
25212
ee2d5c50
AC
25213@node Examples
25214@section Examples
eb12ee30 25215
8e04817f
AC
25216Example sequence of a target being re-started. Notice how the restart
25217does not get any direct output:
eb12ee30 25218
474c8240 25219@smallexample
d2c6833e
AC
25220-> @code{R00}
25221<- @code{+}
8e04817f 25222@emph{target restarts}
d2c6833e 25223-> @code{?}
8e04817f 25224<- @code{+}
d2c6833e
AC
25225<- @code{T001:1234123412341234}
25226-> @code{+}
474c8240 25227@end smallexample
eb12ee30 25228
8e04817f 25229Example sequence of a target being stepped by a single instruction:
eb12ee30 25230
474c8240 25231@smallexample
d2c6833e 25232-> @code{G1445@dots{}}
8e04817f 25233<- @code{+}
d2c6833e
AC
25234-> @code{s}
25235<- @code{+}
25236@emph{time passes}
25237<- @code{T001:1234123412341234}
8e04817f 25238-> @code{+}
d2c6833e 25239-> @code{g}
8e04817f 25240<- @code{+}
d2c6833e
AC
25241<- @code{1455@dots{}}
25242-> @code{+}
474c8240 25243@end smallexample
eb12ee30 25244
79a6e687
BW
25245@node File-I/O Remote Protocol Extension
25246@section File-I/O Remote Protocol Extension
0ce1b118
CV
25247@cindex File-I/O remote protocol extension
25248
25249@menu
25250* File-I/O Overview::
79a6e687
BW
25251* Protocol Basics::
25252* The F Request Packet::
25253* The F Reply Packet::
25254* The Ctrl-C Message::
0ce1b118 25255* Console I/O::
79a6e687 25256* List of Supported Calls::
db2e3e2e 25257* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25258* Constants::
25259* File-I/O Examples::
25260@end menu
25261
25262@node File-I/O Overview
25263@subsection File-I/O Overview
25264@cindex file-i/o overview
25265
9c16f35a 25266The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25267target to use the host's file system and console I/O to perform various
0ce1b118 25268system calls. System calls on the target system are translated into a
fc320d37
SL
25269remote protocol packet to the host system, which then performs the needed
25270actions and returns a response packet to the target system.
0ce1b118
CV
25271This simulates file system operations even on targets that lack file systems.
25272
fc320d37
SL
25273The protocol is defined to be independent of both the host and target systems.
25274It uses its own internal representation of datatypes and values. Both
0ce1b118 25275@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25276translating the system-dependent value representations into the internal
25277protocol representations when data is transmitted.
0ce1b118 25278
fc320d37
SL
25279The communication is synchronous. A system call is possible only when
25280@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25281or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25282the target is stopped to allow deterministic access to the target's
fc320d37
SL
25283memory. Therefore File-I/O is not interruptible by target signals. On
25284the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25285(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25286
25287The target's request to perform a host system call does not finish
25288the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25289after finishing the system call, the target returns to continuing the
25290previous activity (continue, step). No additional continue or step
25291request from @value{GDBN} is required.
25292
25293@smallexample
f7dc1244 25294(@value{GDBP}) continue
0ce1b118
CV
25295 <- target requests 'system call X'
25296 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25297 -> @value{GDBN} returns result
25298 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25299 <- target hits breakpoint and sends a Txx packet
25300@end smallexample
25301
fc320d37
SL
25302The protocol only supports I/O on the console and to regular files on
25303the host file system. Character or block special devices, pipes,
25304named pipes, sockets or any other communication method on the host
0ce1b118
CV
25305system are not supported by this protocol.
25306
79a6e687
BW
25307@node Protocol Basics
25308@subsection Protocol Basics
0ce1b118
CV
25309@cindex protocol basics, file-i/o
25310
fc320d37
SL
25311The File-I/O protocol uses the @code{F} packet as the request as well
25312as reply packet. Since a File-I/O system call can only occur when
25313@value{GDBN} is waiting for a response from the continuing or stepping target,
25314the File-I/O request is a reply that @value{GDBN} has to expect as a result
25315of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25316This @code{F} packet contains all information needed to allow @value{GDBN}
25317to call the appropriate host system call:
25318
25319@itemize @bullet
b383017d 25320@item
0ce1b118
CV
25321A unique identifier for the requested system call.
25322
25323@item
25324All parameters to the system call. Pointers are given as addresses
25325in the target memory address space. Pointers to strings are given as
b383017d 25326pointer/length pair. Numerical values are given as they are.
db2e3e2e 25327Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25328
25329@end itemize
25330
fc320d37 25331At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25332
25333@itemize @bullet
b383017d 25334@item
fc320d37
SL
25335If the parameters include pointer values to data needed as input to a
25336system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25337standard @code{m} packet request. This additional communication has to be
25338expected by the target implementation and is handled as any other @code{m}
25339packet.
25340
25341@item
25342@value{GDBN} translates all value from protocol representation to host
25343representation as needed. Datatypes are coerced into the host types.
25344
25345@item
fc320d37 25346@value{GDBN} calls the system call.
0ce1b118
CV
25347
25348@item
25349It then coerces datatypes back to protocol representation.
25350
25351@item
fc320d37
SL
25352If the system call is expected to return data in buffer space specified
25353by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25354target using a @code{M} or @code{X} packet. This packet has to be expected
25355by the target implementation and is handled as any other @code{M} or @code{X}
25356packet.
25357
25358@end itemize
25359
25360Eventually @value{GDBN} replies with another @code{F} packet which contains all
25361necessary information for the target to continue. This at least contains
25362
25363@itemize @bullet
25364@item
25365Return value.
25366
25367@item
25368@code{errno}, if has been changed by the system call.
25369
25370@item
25371``Ctrl-C'' flag.
25372
25373@end itemize
25374
25375After having done the needed type and value coercion, the target continues
25376the latest continue or step action.
25377
79a6e687
BW
25378@node The F Request Packet
25379@subsection The @code{F} Request Packet
0ce1b118
CV
25380@cindex file-i/o request packet
25381@cindex @code{F} request packet
25382
25383The @code{F} request packet has the following format:
25384
25385@table @samp
fc320d37 25386@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25387
25388@var{call-id} is the identifier to indicate the host system call to be called.
25389This is just the name of the function.
25390
fc320d37
SL
25391@var{parameter@dots{}} are the parameters to the system call.
25392Parameters are hexadecimal integer values, either the actual values in case
25393of scalar datatypes, pointers to target buffer space in case of compound
25394datatypes and unspecified memory areas, or pointer/length pairs in case
25395of string parameters. These are appended to the @var{call-id} as a
25396comma-delimited list. All values are transmitted in ASCII
25397string representation, pointer/length pairs separated by a slash.
0ce1b118 25398
b383017d 25399@end table
0ce1b118 25400
fc320d37 25401
0ce1b118 25402
79a6e687
BW
25403@node The F Reply Packet
25404@subsection The @code{F} Reply Packet
0ce1b118
CV
25405@cindex file-i/o reply packet
25406@cindex @code{F} reply packet
25407
25408The @code{F} reply packet has the following format:
25409
25410@table @samp
25411
d3bdde98 25412@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25413
25414@var{retcode} is the return code of the system call as hexadecimal value.
25415
db2e3e2e
BW
25416@var{errno} is the @code{errno} set by the call, in protocol-specific
25417representation.
0ce1b118
CV
25418This parameter can be omitted if the call was successful.
25419
fc320d37
SL
25420@var{Ctrl-C flag} is only sent if the user requested a break. In this
25421case, @var{errno} must be sent as well, even if the call was successful.
25422The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25423
25424@smallexample
25425F0,0,C
25426@end smallexample
25427
25428@noindent
fc320d37 25429or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25430
25431@smallexample
25432F-1,4,C
25433@end smallexample
25434
25435@noindent
db2e3e2e 25436assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25437
25438@end table
25439
0ce1b118 25440
79a6e687
BW
25441@node The Ctrl-C Message
25442@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25443@cindex ctrl-c message, in file-i/o protocol
25444
c8aa23ab 25445If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25446reply packet (@pxref{The F Reply Packet}),
fc320d37 25447the target should behave as if it had
0ce1b118 25448gotten a break message. The meaning for the target is ``system call
fc320d37 25449interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25450(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25451packet.
fc320d37
SL
25452
25453It's important for the target to know in which
25454state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25455
25456@itemize @bullet
25457@item
25458The system call hasn't been performed on the host yet.
25459
25460@item
25461The system call on the host has been finished.
25462
25463@end itemize
25464
25465These two states can be distinguished by the target by the value of the
25466returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25467call hasn't been performed. This is equivalent to the @code{EINTR} handling
25468on POSIX systems. In any other case, the target may presume that the
fc320d37 25469system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25470as if the break message arrived right after the system call.
25471
fc320d37 25472@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25473yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25474@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25475before the user requests a break, the full action must be finished by
25476@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25477The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25478or the full action has been completed.
25479
25480@node Console I/O
25481@subsection Console I/O
25482@cindex console i/o as part of file-i/o
25483
d3e8051b 25484By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25485descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25486on the @value{GDBN} console is handled as any other file output operation
25487(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25488by @value{GDBN} so that after the target read request from file descriptor
254890 all following typing is buffered until either one of the following
25490conditions is met:
25491
25492@itemize @bullet
25493@item
c8aa23ab 25494The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25495@code{read}
25496system call is treated as finished.
25497
25498@item
7f9087cb 25499The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25500newline.
0ce1b118
CV
25501
25502@item
c8aa23ab
EZ
25503The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25504character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25505
25506@end itemize
25507
fc320d37
SL
25508If the user has typed more characters than fit in the buffer given to
25509the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25510either another @code{read(0, @dots{})} is requested by the target, or debugging
25511is stopped at the user's request.
0ce1b118 25512
0ce1b118 25513
79a6e687
BW
25514@node List of Supported Calls
25515@subsection List of Supported Calls
0ce1b118
CV
25516@cindex list of supported file-i/o calls
25517
25518@menu
25519* open::
25520* close::
25521* read::
25522* write::
25523* lseek::
25524* rename::
25525* unlink::
25526* stat/fstat::
25527* gettimeofday::
25528* isatty::
25529* system::
25530@end menu
25531
25532@node open
25533@unnumberedsubsubsec open
25534@cindex open, file-i/o system call
25535
fc320d37
SL
25536@table @asis
25537@item Synopsis:
0ce1b118 25538@smallexample
0ce1b118
CV
25539int open(const char *pathname, int flags);
25540int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25541@end smallexample
25542
fc320d37
SL
25543@item Request:
25544@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25545
0ce1b118 25546@noindent
fc320d37 25547@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25548
25549@table @code
b383017d 25550@item O_CREAT
0ce1b118
CV
25551If the file does not exist it will be created. The host
25552rules apply as far as file ownership and time stamps
25553are concerned.
25554
b383017d 25555@item O_EXCL
fc320d37 25556When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25557an error and open() fails.
25558
b383017d 25559@item O_TRUNC
0ce1b118 25560If the file already exists and the open mode allows
fc320d37
SL
25561writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25562truncated to zero length.
0ce1b118 25563
b383017d 25564@item O_APPEND
0ce1b118
CV
25565The file is opened in append mode.
25566
b383017d 25567@item O_RDONLY
0ce1b118
CV
25568The file is opened for reading only.
25569
b383017d 25570@item O_WRONLY
0ce1b118
CV
25571The file is opened for writing only.
25572
b383017d 25573@item O_RDWR
0ce1b118 25574The file is opened for reading and writing.
fc320d37 25575@end table
0ce1b118
CV
25576
25577@noindent
fc320d37 25578Other bits are silently ignored.
0ce1b118 25579
0ce1b118
CV
25580
25581@noindent
fc320d37 25582@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25583
25584@table @code
b383017d 25585@item S_IRUSR
0ce1b118
CV
25586User has read permission.
25587
b383017d 25588@item S_IWUSR
0ce1b118
CV
25589User has write permission.
25590
b383017d 25591@item S_IRGRP
0ce1b118
CV
25592Group has read permission.
25593
b383017d 25594@item S_IWGRP
0ce1b118
CV
25595Group has write permission.
25596
b383017d 25597@item S_IROTH
0ce1b118
CV
25598Others have read permission.
25599
b383017d 25600@item S_IWOTH
0ce1b118 25601Others have write permission.
fc320d37 25602@end table
0ce1b118
CV
25603
25604@noindent
fc320d37 25605Other bits are silently ignored.
0ce1b118 25606
0ce1b118 25607
fc320d37
SL
25608@item Return value:
25609@code{open} returns the new file descriptor or -1 if an error
25610occurred.
0ce1b118 25611
fc320d37 25612@item Errors:
0ce1b118
CV
25613
25614@table @code
b383017d 25615@item EEXIST
fc320d37 25616@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25617
b383017d 25618@item EISDIR
fc320d37 25619@var{pathname} refers to a directory.
0ce1b118 25620
b383017d 25621@item EACCES
0ce1b118
CV
25622The requested access is not allowed.
25623
25624@item ENAMETOOLONG
fc320d37 25625@var{pathname} was too long.
0ce1b118 25626
b383017d 25627@item ENOENT
fc320d37 25628A directory component in @var{pathname} does not exist.
0ce1b118 25629
b383017d 25630@item ENODEV
fc320d37 25631@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25632
b383017d 25633@item EROFS
fc320d37 25634@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25635write access was requested.
25636
b383017d 25637@item EFAULT
fc320d37 25638@var{pathname} is an invalid pointer value.
0ce1b118 25639
b383017d 25640@item ENOSPC
0ce1b118
CV
25641No space on device to create the file.
25642
b383017d 25643@item EMFILE
0ce1b118
CV
25644The process already has the maximum number of files open.
25645
b383017d 25646@item ENFILE
0ce1b118
CV
25647The limit on the total number of files open on the system
25648has been reached.
25649
b383017d 25650@item EINTR
0ce1b118
CV
25651The call was interrupted by the user.
25652@end table
25653
fc320d37
SL
25654@end table
25655
0ce1b118
CV
25656@node close
25657@unnumberedsubsubsec close
25658@cindex close, file-i/o system call
25659
fc320d37
SL
25660@table @asis
25661@item Synopsis:
0ce1b118 25662@smallexample
0ce1b118 25663int close(int fd);
fc320d37 25664@end smallexample
0ce1b118 25665
fc320d37
SL
25666@item Request:
25667@samp{Fclose,@var{fd}}
0ce1b118 25668
fc320d37
SL
25669@item Return value:
25670@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25671
fc320d37 25672@item Errors:
0ce1b118
CV
25673
25674@table @code
b383017d 25675@item EBADF
fc320d37 25676@var{fd} isn't a valid open file descriptor.
0ce1b118 25677
b383017d 25678@item EINTR
0ce1b118
CV
25679The call was interrupted by the user.
25680@end table
25681
fc320d37
SL
25682@end table
25683
0ce1b118
CV
25684@node read
25685@unnumberedsubsubsec read
25686@cindex read, file-i/o system call
25687
fc320d37
SL
25688@table @asis
25689@item Synopsis:
0ce1b118 25690@smallexample
0ce1b118 25691int read(int fd, void *buf, unsigned int count);
fc320d37 25692@end smallexample
0ce1b118 25693
fc320d37
SL
25694@item Request:
25695@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25696
fc320d37 25697@item Return value:
0ce1b118
CV
25698On success, the number of bytes read is returned.
25699Zero indicates end of file. If count is zero, read
b383017d 25700returns zero as well. On error, -1 is returned.
0ce1b118 25701
fc320d37 25702@item Errors:
0ce1b118
CV
25703
25704@table @code
b383017d 25705@item EBADF
fc320d37 25706@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25707reading.
25708
b383017d 25709@item EFAULT
fc320d37 25710@var{bufptr} is an invalid pointer value.
0ce1b118 25711
b383017d 25712@item EINTR
0ce1b118
CV
25713The call was interrupted by the user.
25714@end table
25715
fc320d37
SL
25716@end table
25717
0ce1b118
CV
25718@node write
25719@unnumberedsubsubsec write
25720@cindex write, file-i/o system call
25721
fc320d37
SL
25722@table @asis
25723@item Synopsis:
0ce1b118 25724@smallexample
0ce1b118 25725int write(int fd, const void *buf, unsigned int count);
fc320d37 25726@end smallexample
0ce1b118 25727
fc320d37
SL
25728@item Request:
25729@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25730
fc320d37 25731@item Return value:
0ce1b118
CV
25732On success, the number of bytes written are returned.
25733Zero indicates nothing was written. On error, -1
25734is returned.
25735
fc320d37 25736@item Errors:
0ce1b118
CV
25737
25738@table @code
b383017d 25739@item EBADF
fc320d37 25740@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25741writing.
25742
b383017d 25743@item EFAULT
fc320d37 25744@var{bufptr} is an invalid pointer value.
0ce1b118 25745
b383017d 25746@item EFBIG
0ce1b118 25747An attempt was made to write a file that exceeds the
db2e3e2e 25748host-specific maximum file size allowed.
0ce1b118 25749
b383017d 25750@item ENOSPC
0ce1b118
CV
25751No space on device to write the data.
25752
b383017d 25753@item EINTR
0ce1b118
CV
25754The call was interrupted by the user.
25755@end table
25756
fc320d37
SL
25757@end table
25758
0ce1b118
CV
25759@node lseek
25760@unnumberedsubsubsec lseek
25761@cindex lseek, file-i/o system call
25762
fc320d37
SL
25763@table @asis
25764@item Synopsis:
0ce1b118 25765@smallexample
0ce1b118 25766long lseek (int fd, long offset, int flag);
0ce1b118
CV
25767@end smallexample
25768
fc320d37
SL
25769@item Request:
25770@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25771
25772@var{flag} is one of:
0ce1b118
CV
25773
25774@table @code
b383017d 25775@item SEEK_SET
fc320d37 25776The offset is set to @var{offset} bytes.
0ce1b118 25777
b383017d 25778@item SEEK_CUR
fc320d37 25779The offset is set to its current location plus @var{offset}
0ce1b118
CV
25780bytes.
25781
b383017d 25782@item SEEK_END
fc320d37 25783The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25784bytes.
25785@end table
25786
fc320d37 25787@item Return value:
0ce1b118
CV
25788On success, the resulting unsigned offset in bytes from
25789the beginning of the file is returned. Otherwise, a
25790value of -1 is returned.
25791
fc320d37 25792@item Errors:
0ce1b118
CV
25793
25794@table @code
b383017d 25795@item EBADF
fc320d37 25796@var{fd} is not a valid open file descriptor.
0ce1b118 25797
b383017d 25798@item ESPIPE
fc320d37 25799@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25800
b383017d 25801@item EINVAL
fc320d37 25802@var{flag} is not a proper value.
0ce1b118 25803
b383017d 25804@item EINTR
0ce1b118
CV
25805The call was interrupted by the user.
25806@end table
25807
fc320d37
SL
25808@end table
25809
0ce1b118
CV
25810@node rename
25811@unnumberedsubsubsec rename
25812@cindex rename, file-i/o system call
25813
fc320d37
SL
25814@table @asis
25815@item Synopsis:
0ce1b118 25816@smallexample
0ce1b118 25817int rename(const char *oldpath, const char *newpath);
fc320d37 25818@end smallexample
0ce1b118 25819
fc320d37
SL
25820@item Request:
25821@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25822
fc320d37 25823@item Return value:
0ce1b118
CV
25824On success, zero is returned. On error, -1 is returned.
25825
fc320d37 25826@item Errors:
0ce1b118
CV
25827
25828@table @code
b383017d 25829@item EISDIR
fc320d37 25830@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25831directory.
25832
b383017d 25833@item EEXIST
fc320d37 25834@var{newpath} is a non-empty directory.
0ce1b118 25835
b383017d 25836@item EBUSY
fc320d37 25837@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25838process.
25839
b383017d 25840@item EINVAL
0ce1b118
CV
25841An attempt was made to make a directory a subdirectory
25842of itself.
25843
b383017d 25844@item ENOTDIR
fc320d37
SL
25845A component used as a directory in @var{oldpath} or new
25846path is not a directory. Or @var{oldpath} is a directory
25847and @var{newpath} exists but is not a directory.
0ce1b118 25848
b383017d 25849@item EFAULT
fc320d37 25850@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25851
b383017d 25852@item EACCES
0ce1b118
CV
25853No access to the file or the path of the file.
25854
25855@item ENAMETOOLONG
b383017d 25856
fc320d37 25857@var{oldpath} or @var{newpath} was too long.
0ce1b118 25858
b383017d 25859@item ENOENT
fc320d37 25860A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25861
b383017d 25862@item EROFS
0ce1b118
CV
25863The file is on a read-only filesystem.
25864
b383017d 25865@item ENOSPC
0ce1b118
CV
25866The device containing the file has no room for the new
25867directory entry.
25868
b383017d 25869@item EINTR
0ce1b118
CV
25870The call was interrupted by the user.
25871@end table
25872
fc320d37
SL
25873@end table
25874
0ce1b118
CV
25875@node unlink
25876@unnumberedsubsubsec unlink
25877@cindex unlink, file-i/o system call
25878
fc320d37
SL
25879@table @asis
25880@item Synopsis:
0ce1b118 25881@smallexample
0ce1b118 25882int unlink(const char *pathname);
fc320d37 25883@end smallexample
0ce1b118 25884
fc320d37
SL
25885@item Request:
25886@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25887
fc320d37 25888@item Return value:
0ce1b118
CV
25889On success, zero is returned. On error, -1 is returned.
25890
fc320d37 25891@item Errors:
0ce1b118
CV
25892
25893@table @code
b383017d 25894@item EACCES
0ce1b118
CV
25895No access to the file or the path of the file.
25896
b383017d 25897@item EPERM
0ce1b118
CV
25898The system does not allow unlinking of directories.
25899
b383017d 25900@item EBUSY
fc320d37 25901The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25902being used by another process.
25903
b383017d 25904@item EFAULT
fc320d37 25905@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25906
25907@item ENAMETOOLONG
fc320d37 25908@var{pathname} was too long.
0ce1b118 25909
b383017d 25910@item ENOENT
fc320d37 25911A directory component in @var{pathname} does not exist.
0ce1b118 25912
b383017d 25913@item ENOTDIR
0ce1b118
CV
25914A component of the path is not a directory.
25915
b383017d 25916@item EROFS
0ce1b118
CV
25917The file is on a read-only filesystem.
25918
b383017d 25919@item EINTR
0ce1b118
CV
25920The call was interrupted by the user.
25921@end table
25922
fc320d37
SL
25923@end table
25924
0ce1b118
CV
25925@node stat/fstat
25926@unnumberedsubsubsec stat/fstat
25927@cindex fstat, file-i/o system call
25928@cindex stat, file-i/o system call
25929
fc320d37
SL
25930@table @asis
25931@item Synopsis:
0ce1b118 25932@smallexample
0ce1b118
CV
25933int stat(const char *pathname, struct stat *buf);
25934int fstat(int fd, struct stat *buf);
fc320d37 25935@end smallexample
0ce1b118 25936
fc320d37
SL
25937@item Request:
25938@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25939@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25940
fc320d37 25941@item Return value:
0ce1b118
CV
25942On success, zero is returned. On error, -1 is returned.
25943
fc320d37 25944@item Errors:
0ce1b118
CV
25945
25946@table @code
b383017d 25947@item EBADF
fc320d37 25948@var{fd} is not a valid open file.
0ce1b118 25949
b383017d 25950@item ENOENT
fc320d37 25951A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25952path is an empty string.
25953
b383017d 25954@item ENOTDIR
0ce1b118
CV
25955A component of the path is not a directory.
25956
b383017d 25957@item EFAULT
fc320d37 25958@var{pathnameptr} is an invalid pointer value.
0ce1b118 25959
b383017d 25960@item EACCES
0ce1b118
CV
25961No access to the file or the path of the file.
25962
25963@item ENAMETOOLONG
fc320d37 25964@var{pathname} was too long.
0ce1b118 25965
b383017d 25966@item EINTR
0ce1b118
CV
25967The call was interrupted by the user.
25968@end table
25969
fc320d37
SL
25970@end table
25971
0ce1b118
CV
25972@node gettimeofday
25973@unnumberedsubsubsec gettimeofday
25974@cindex gettimeofday, file-i/o system call
25975
fc320d37
SL
25976@table @asis
25977@item Synopsis:
0ce1b118 25978@smallexample
0ce1b118 25979int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25980@end smallexample
0ce1b118 25981
fc320d37
SL
25982@item Request:
25983@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25984
fc320d37 25985@item Return value:
0ce1b118
CV
25986On success, 0 is returned, -1 otherwise.
25987
fc320d37 25988@item Errors:
0ce1b118
CV
25989
25990@table @code
b383017d 25991@item EINVAL
fc320d37 25992@var{tz} is a non-NULL pointer.
0ce1b118 25993
b383017d 25994@item EFAULT
fc320d37
SL
25995@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25996@end table
25997
0ce1b118
CV
25998@end table
25999
26000@node isatty
26001@unnumberedsubsubsec isatty
26002@cindex isatty, file-i/o system call
26003
fc320d37
SL
26004@table @asis
26005@item Synopsis:
0ce1b118 26006@smallexample
0ce1b118 26007int isatty(int fd);
fc320d37 26008@end smallexample
0ce1b118 26009
fc320d37
SL
26010@item Request:
26011@samp{Fisatty,@var{fd}}
0ce1b118 26012
fc320d37
SL
26013@item Return value:
26014Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26015
fc320d37 26016@item Errors:
0ce1b118
CV
26017
26018@table @code
b383017d 26019@item EINTR
0ce1b118
CV
26020The call was interrupted by the user.
26021@end table
26022
fc320d37
SL
26023@end table
26024
26025Note that the @code{isatty} call is treated as a special case: it returns
260261 to the target if the file descriptor is attached
26027to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26028would require implementing @code{ioctl} and would be more complex than
26029needed.
26030
26031
0ce1b118
CV
26032@node system
26033@unnumberedsubsubsec system
26034@cindex system, file-i/o system call
26035
fc320d37
SL
26036@table @asis
26037@item Synopsis:
0ce1b118 26038@smallexample
0ce1b118 26039int system(const char *command);
fc320d37 26040@end smallexample
0ce1b118 26041
fc320d37
SL
26042@item Request:
26043@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26044
fc320d37 26045@item Return value:
5600ea19
NS
26046If @var{len} is zero, the return value indicates whether a shell is
26047available. A zero return value indicates a shell is not available.
26048For non-zero @var{len}, the value returned is -1 on error and the
26049return status of the command otherwise. Only the exit status of the
26050command is returned, which is extracted from the host's @code{system}
26051return value by calling @code{WEXITSTATUS(retval)}. In case
26052@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26053
fc320d37 26054@item Errors:
0ce1b118
CV
26055
26056@table @code
b383017d 26057@item EINTR
0ce1b118
CV
26058The call was interrupted by the user.
26059@end table
26060
fc320d37
SL
26061@end table
26062
26063@value{GDBN} takes over the full task of calling the necessary host calls
26064to perform the @code{system} call. The return value of @code{system} on
26065the host is simplified before it's returned
26066to the target. Any termination signal information from the child process
26067is discarded, and the return value consists
26068entirely of the exit status of the called command.
26069
26070Due to security concerns, the @code{system} call is by default refused
26071by @value{GDBN}. The user has to allow this call explicitly with the
26072@code{set remote system-call-allowed 1} command.
26073
26074@table @code
26075@item set remote system-call-allowed
26076@kindex set remote system-call-allowed
26077Control whether to allow the @code{system} calls in the File I/O
26078protocol for the remote target. The default is zero (disabled).
26079
26080@item show remote system-call-allowed
26081@kindex show remote system-call-allowed
26082Show whether the @code{system} calls are allowed in the File I/O
26083protocol.
26084@end table
26085
db2e3e2e
BW
26086@node Protocol-specific Representation of Datatypes
26087@subsection Protocol-specific Representation of Datatypes
26088@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26089
26090@menu
79a6e687
BW
26091* Integral Datatypes::
26092* Pointer Values::
26093* Memory Transfer::
0ce1b118
CV
26094* struct stat::
26095* struct timeval::
26096@end menu
26097
79a6e687
BW
26098@node Integral Datatypes
26099@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26100@cindex integral datatypes, in file-i/o protocol
26101
fc320d37
SL
26102The integral datatypes used in the system calls are @code{int},
26103@code{unsigned int}, @code{long}, @code{unsigned long},
26104@code{mode_t}, and @code{time_t}.
0ce1b118 26105
fc320d37 26106@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26107implemented as 32 bit values in this protocol.
26108
fc320d37 26109@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26110
0ce1b118
CV
26111@xref{Limits}, for corresponding MIN and MAX values (similar to those
26112in @file{limits.h}) to allow range checking on host and target.
26113
26114@code{time_t} datatypes are defined as seconds since the Epoch.
26115
26116All integral datatypes transferred as part of a memory read or write of a
26117structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26118byte order.
26119
79a6e687
BW
26120@node Pointer Values
26121@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26122@cindex pointer values, in file-i/o protocol
26123
26124Pointers to target data are transmitted as they are. An exception
26125is made for pointers to buffers for which the length isn't
26126transmitted as part of the function call, namely strings. Strings
26127are transmitted as a pointer/length pair, both as hex values, e.g.@:
26128
26129@smallexample
26130@code{1aaf/12}
26131@end smallexample
26132
26133@noindent
26134which is a pointer to data of length 18 bytes at position 0x1aaf.
26135The length is defined as the full string length in bytes, including
fc320d37
SL
26136the trailing null byte. For example, the string @code{"hello world"}
26137at address 0x123456 is transmitted as
0ce1b118
CV
26138
26139@smallexample
fc320d37 26140@code{123456/d}
0ce1b118
CV
26141@end smallexample
26142
79a6e687
BW
26143@node Memory Transfer
26144@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26145@cindex memory transfer, in file-i/o protocol
26146
26147Structured data which is transferred using a memory read or write (for
db2e3e2e 26148example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26149with all scalar multibyte datatypes being big endian. Translation to
26150this representation needs to be done both by the target before the @code{F}
26151packet is sent, and by @value{GDBN} before
26152it transfers memory to the target. Transferred pointers to structured
26153data should point to the already-coerced data at any time.
0ce1b118 26154
0ce1b118
CV
26155
26156@node struct stat
26157@unnumberedsubsubsec struct stat
26158@cindex struct stat, in file-i/o protocol
26159
fc320d37
SL
26160The buffer of type @code{struct stat} used by the target and @value{GDBN}
26161is defined as follows:
0ce1b118
CV
26162
26163@smallexample
26164struct stat @{
26165 unsigned int st_dev; /* device */
26166 unsigned int st_ino; /* inode */
26167 mode_t st_mode; /* protection */
26168 unsigned int st_nlink; /* number of hard links */
26169 unsigned int st_uid; /* user ID of owner */
26170 unsigned int st_gid; /* group ID of owner */
26171 unsigned int st_rdev; /* device type (if inode device) */
26172 unsigned long st_size; /* total size, in bytes */
26173 unsigned long st_blksize; /* blocksize for filesystem I/O */
26174 unsigned long st_blocks; /* number of blocks allocated */
26175 time_t st_atime; /* time of last access */
26176 time_t st_mtime; /* time of last modification */
26177 time_t st_ctime; /* time of last change */
26178@};
26179@end smallexample
26180
fc320d37 26181The integral datatypes conform to the definitions given in the
79a6e687 26182appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26183structure is of size 64 bytes.
26184
26185The values of several fields have a restricted meaning and/or
26186range of values.
26187
fc320d37 26188@table @code
0ce1b118 26189
fc320d37
SL
26190@item st_dev
26191A value of 0 represents a file, 1 the console.
0ce1b118 26192
fc320d37
SL
26193@item st_ino
26194No valid meaning for the target. Transmitted unchanged.
0ce1b118 26195
fc320d37
SL
26196@item st_mode
26197Valid mode bits are described in @ref{Constants}. Any other
26198bits have currently no meaning for the target.
0ce1b118 26199
fc320d37
SL
26200@item st_uid
26201@itemx st_gid
26202@itemx st_rdev
26203No valid meaning for the target. Transmitted unchanged.
0ce1b118 26204
fc320d37
SL
26205@item st_atime
26206@itemx st_mtime
26207@itemx st_ctime
26208These values have a host and file system dependent
26209accuracy. Especially on Windows hosts, the file system may not
26210support exact timing values.
26211@end table
0ce1b118 26212
fc320d37
SL
26213The target gets a @code{struct stat} of the above representation and is
26214responsible for coercing it to the target representation before
0ce1b118
CV
26215continuing.
26216
fc320d37
SL
26217Note that due to size differences between the host, target, and protocol
26218representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26219get truncated on the target.
26220
26221@node struct timeval
26222@unnumberedsubsubsec struct timeval
26223@cindex struct timeval, in file-i/o protocol
26224
fc320d37 26225The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26226is defined as follows:
26227
26228@smallexample
b383017d 26229struct timeval @{
0ce1b118
CV
26230 time_t tv_sec; /* second */
26231 long tv_usec; /* microsecond */
26232@};
26233@end smallexample
26234
fc320d37 26235The integral datatypes conform to the definitions given in the
79a6e687 26236appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26237structure is of size 8 bytes.
26238
26239@node Constants
26240@subsection Constants
26241@cindex constants, in file-i/o protocol
26242
26243The following values are used for the constants inside of the
fc320d37 26244protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26245values before and after the call as needed.
26246
26247@menu
79a6e687
BW
26248* Open Flags::
26249* mode_t Values::
26250* Errno Values::
26251* Lseek Flags::
0ce1b118
CV
26252* Limits::
26253@end menu
26254
79a6e687
BW
26255@node Open Flags
26256@unnumberedsubsubsec Open Flags
0ce1b118
CV
26257@cindex open flags, in file-i/o protocol
26258
26259All values are given in hexadecimal representation.
26260
26261@smallexample
26262 O_RDONLY 0x0
26263 O_WRONLY 0x1
26264 O_RDWR 0x2
26265 O_APPEND 0x8
26266 O_CREAT 0x200
26267 O_TRUNC 0x400
26268 O_EXCL 0x800
26269@end smallexample
26270
79a6e687
BW
26271@node mode_t Values
26272@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26273@cindex mode_t values, in file-i/o protocol
26274
26275All values are given in octal representation.
26276
26277@smallexample
26278 S_IFREG 0100000
26279 S_IFDIR 040000
26280 S_IRUSR 0400
26281 S_IWUSR 0200
26282 S_IXUSR 0100
26283 S_IRGRP 040
26284 S_IWGRP 020
26285 S_IXGRP 010
26286 S_IROTH 04
26287 S_IWOTH 02
26288 S_IXOTH 01
26289@end smallexample
26290
79a6e687
BW
26291@node Errno Values
26292@unnumberedsubsubsec Errno Values
0ce1b118
CV
26293@cindex errno values, in file-i/o protocol
26294
26295All values are given in decimal representation.
26296
26297@smallexample
26298 EPERM 1
26299 ENOENT 2
26300 EINTR 4
26301 EBADF 9
26302 EACCES 13
26303 EFAULT 14
26304 EBUSY 16
26305 EEXIST 17
26306 ENODEV 19
26307 ENOTDIR 20
26308 EISDIR 21
26309 EINVAL 22
26310 ENFILE 23
26311 EMFILE 24
26312 EFBIG 27
26313 ENOSPC 28
26314 ESPIPE 29
26315 EROFS 30
26316 ENAMETOOLONG 91
26317 EUNKNOWN 9999
26318@end smallexample
26319
fc320d37 26320 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26321 any error value not in the list of supported error numbers.
26322
79a6e687
BW
26323@node Lseek Flags
26324@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26325@cindex lseek flags, in file-i/o protocol
26326
26327@smallexample
26328 SEEK_SET 0
26329 SEEK_CUR 1
26330 SEEK_END 2
26331@end smallexample
26332
26333@node Limits
26334@unnumberedsubsubsec Limits
26335@cindex limits, in file-i/o protocol
26336
26337All values are given in decimal representation.
26338
26339@smallexample
26340 INT_MIN -2147483648
26341 INT_MAX 2147483647
26342 UINT_MAX 4294967295
26343 LONG_MIN -9223372036854775808
26344 LONG_MAX 9223372036854775807
26345 ULONG_MAX 18446744073709551615
26346@end smallexample
26347
26348@node File-I/O Examples
26349@subsection File-I/O Examples
26350@cindex file-i/o examples
26351
26352Example sequence of a write call, file descriptor 3, buffer is at target
26353address 0x1234, 6 bytes should be written:
26354
26355@smallexample
26356<- @code{Fwrite,3,1234,6}
26357@emph{request memory read from target}
26358-> @code{m1234,6}
26359<- XXXXXX
26360@emph{return "6 bytes written"}
26361-> @code{F6}
26362@end smallexample
26363
26364Example sequence of a read call, file descriptor 3, buffer is at target
26365address 0x1234, 6 bytes should be read:
26366
26367@smallexample
26368<- @code{Fread,3,1234,6}
26369@emph{request memory write to target}
26370-> @code{X1234,6:XXXXXX}
26371@emph{return "6 bytes read"}
26372-> @code{F6}
26373@end smallexample
26374
26375Example sequence of a read call, call fails on the host due to invalid
fc320d37 26376file descriptor (@code{EBADF}):
0ce1b118
CV
26377
26378@smallexample
26379<- @code{Fread,3,1234,6}
26380-> @code{F-1,9}
26381@end smallexample
26382
c8aa23ab 26383Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26384host is called:
26385
26386@smallexample
26387<- @code{Fread,3,1234,6}
26388-> @code{F-1,4,C}
26389<- @code{T02}
26390@end smallexample
26391
c8aa23ab 26392Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26393host is called:
26394
26395@smallexample
26396<- @code{Fread,3,1234,6}
26397-> @code{X1234,6:XXXXXX}
26398<- @code{T02}
26399@end smallexample
26400
cfa9d6d9
DJ
26401@node Library List Format
26402@section Library List Format
26403@cindex library list format, remote protocol
26404
26405On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26406same process as your application to manage libraries. In this case,
26407@value{GDBN} can use the loader's symbol table and normal memory
26408operations to maintain a list of shared libraries. On other
26409platforms, the operating system manages loaded libraries.
26410@value{GDBN} can not retrieve the list of currently loaded libraries
26411through memory operations, so it uses the @samp{qXfer:libraries:read}
26412packet (@pxref{qXfer library list read}) instead. The remote stub
26413queries the target's operating system and reports which libraries
26414are loaded.
26415
26416The @samp{qXfer:libraries:read} packet returns an XML document which
26417lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26418associated name and one or more segment or section base addresses,
26419which report where the library was loaded in memory.
26420
26421For the common case of libraries that are fully linked binaries, the
26422library should have a list of segments. If the target supports
26423dynamic linking of a relocatable object file, its library XML element
26424should instead include a list of allocated sections. The segment or
26425section bases are start addresses, not relocation offsets; they do not
26426depend on the library's link-time base addresses.
cfa9d6d9 26427
9cceb671
DJ
26428@value{GDBN} must be linked with the Expat library to support XML
26429library lists. @xref{Expat}.
26430
cfa9d6d9
DJ
26431A simple memory map, with one loaded library relocated by a single
26432offset, looks like this:
26433
26434@smallexample
26435<library-list>
26436 <library name="/lib/libc.so.6">
26437 <segment address="0x10000000"/>
26438 </library>
26439</library-list>
26440@end smallexample
26441
1fddbabb
PA
26442Another simple memory map, with one loaded library with three
26443allocated sections (.text, .data, .bss), looks like this:
26444
26445@smallexample
26446<library-list>
26447 <library name="sharedlib.o">
26448 <section address="0x10000000"/>
26449 <section address="0x20000000"/>
26450 <section address="0x30000000"/>
26451 </library>
26452</library-list>
26453@end smallexample
26454
cfa9d6d9
DJ
26455The format of a library list is described by this DTD:
26456
26457@smallexample
26458<!-- library-list: Root element with versioning -->
26459<!ELEMENT library-list (library)*>
26460<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26461<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26462<!ATTLIST library name CDATA #REQUIRED>
26463<!ELEMENT segment EMPTY>
26464<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26465<!ELEMENT section EMPTY>
26466<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26467@end smallexample
26468
1fddbabb
PA
26469In addition, segments and section descriptors cannot be mixed within a
26470single library element, and you must supply at least one segment or
26471section for each library.
26472
79a6e687
BW
26473@node Memory Map Format
26474@section Memory Map Format
68437a39
DJ
26475@cindex memory map format
26476
26477To be able to write into flash memory, @value{GDBN} needs to obtain a
26478memory map from the target. This section describes the format of the
26479memory map.
26480
26481The memory map is obtained using the @samp{qXfer:memory-map:read}
26482(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26483lists memory regions.
26484
26485@value{GDBN} must be linked with the Expat library to support XML
26486memory maps. @xref{Expat}.
26487
26488The top-level structure of the document is shown below:
68437a39
DJ
26489
26490@smallexample
26491<?xml version="1.0"?>
26492<!DOCTYPE memory-map
26493 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26494 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26495<memory-map>
26496 region...
26497</memory-map>
26498@end smallexample
26499
26500Each region can be either:
26501
26502@itemize
26503
26504@item
26505A region of RAM starting at @var{addr} and extending for @var{length}
26506bytes from there:
26507
26508@smallexample
26509<memory type="ram" start="@var{addr}" length="@var{length}"/>
26510@end smallexample
26511
26512
26513@item
26514A region of read-only memory:
26515
26516@smallexample
26517<memory type="rom" start="@var{addr}" length="@var{length}"/>
26518@end smallexample
26519
26520
26521@item
26522A region of flash memory, with erasure blocks @var{blocksize}
26523bytes in length:
26524
26525@smallexample
26526<memory type="flash" start="@var{addr}" length="@var{length}">
26527 <property name="blocksize">@var{blocksize}</property>
26528</memory>
26529@end smallexample
26530
26531@end itemize
26532
26533Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26534by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26535packets to write to addresses in such ranges.
26536
26537The formal DTD for memory map format is given below:
26538
26539@smallexample
26540<!-- ................................................... -->
26541<!-- Memory Map XML DTD ................................ -->
26542<!-- File: memory-map.dtd .............................. -->
26543<!-- .................................... .............. -->
26544<!-- memory-map.dtd -->
26545<!-- memory-map: Root element with versioning -->
26546<!ELEMENT memory-map (memory | property)>
26547<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26548<!ELEMENT memory (property)>
26549<!-- memory: Specifies a memory region,
26550 and its type, or device. -->
26551<!ATTLIST memory type CDATA #REQUIRED
26552 start CDATA #REQUIRED
26553 length CDATA #REQUIRED
26554 device CDATA #IMPLIED>
26555<!-- property: Generic attribute tag -->
26556<!ELEMENT property (#PCDATA | property)*>
26557<!ATTLIST property name CDATA #REQUIRED>
26558@end smallexample
26559
f418dd93
DJ
26560@include agentexpr.texi
26561
23181151
DJ
26562@node Target Descriptions
26563@appendix Target Descriptions
26564@cindex target descriptions
26565
26566@strong{Warning:} target descriptions are still under active development,
26567and the contents and format may change between @value{GDBN} releases.
26568The format is expected to stabilize in the future.
26569
26570One of the challenges of using @value{GDBN} to debug embedded systems
26571is that there are so many minor variants of each processor
26572architecture in use. It is common practice for vendors to start with
26573a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26574and then make changes to adapt it to a particular market niche. Some
26575architectures have hundreds of variants, available from dozens of
26576vendors. This leads to a number of problems:
26577
26578@itemize @bullet
26579@item
26580With so many different customized processors, it is difficult for
26581the @value{GDBN} maintainers to keep up with the changes.
26582@item
26583Since individual variants may have short lifetimes or limited
26584audiences, it may not be worthwhile to carry information about every
26585variant in the @value{GDBN} source tree.
26586@item
26587When @value{GDBN} does support the architecture of the embedded system
26588at hand, the task of finding the correct architecture name to give the
26589@command{set architecture} command can be error-prone.
26590@end itemize
26591
26592To address these problems, the @value{GDBN} remote protocol allows a
26593target system to not only identify itself to @value{GDBN}, but to
26594actually describe its own features. This lets @value{GDBN} support
26595processor variants it has never seen before --- to the extent that the
26596descriptions are accurate, and that @value{GDBN} understands them.
26597
9cceb671
DJ
26598@value{GDBN} must be linked with the Expat library to support XML
26599target descriptions. @xref{Expat}.
123dc839 26600
23181151
DJ
26601@menu
26602* Retrieving Descriptions:: How descriptions are fetched from a target.
26603* Target Description Format:: The contents of a target description.
123dc839
DJ
26604* Predefined Target Types:: Standard types available for target
26605 descriptions.
26606* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26607@end menu
26608
26609@node Retrieving Descriptions
26610@section Retrieving Descriptions
26611
26612Target descriptions can be read from the target automatically, or
26613specified by the user manually. The default behavior is to read the
26614description from the target. @value{GDBN} retrieves it via the remote
26615protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26616qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26617@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26618XML document, of the form described in @ref{Target Description
26619Format}.
26620
26621Alternatively, you can specify a file to read for the target description.
26622If a file is set, the target will not be queried. The commands to
26623specify a file are:
26624
26625@table @code
26626@cindex set tdesc filename
26627@item set tdesc filename @var{path}
26628Read the target description from @var{path}.
26629
26630@cindex unset tdesc filename
26631@item unset tdesc filename
26632Do not read the XML target description from a file. @value{GDBN}
26633will use the description supplied by the current target.
26634
26635@cindex show tdesc filename
26636@item show tdesc filename
26637Show the filename to read for a target description, if any.
26638@end table
26639
26640
26641@node Target Description Format
26642@section Target Description Format
26643@cindex target descriptions, XML format
26644
26645A target description annex is an @uref{http://www.w3.org/XML/, XML}
26646document which complies with the Document Type Definition provided in
26647the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26648means you can use generally available tools like @command{xmllint} to
26649check that your feature descriptions are well-formed and valid.
26650However, to help people unfamiliar with XML write descriptions for
26651their targets, we also describe the grammar here.
26652
123dc839
DJ
26653Target descriptions can identify the architecture of the remote target
26654and (for some architectures) provide information about custom register
26655sets. @value{GDBN} can use this information to autoconfigure for your
26656target, or to warn you if you connect to an unsupported target.
23181151
DJ
26657
26658Here is a simple target description:
26659
123dc839 26660@smallexample
1780a0ed 26661<target version="1.0">
23181151
DJ
26662 <architecture>i386:x86-64</architecture>
26663</target>
123dc839 26664@end smallexample
23181151
DJ
26665
26666@noindent
26667This minimal description only says that the target uses
26668the x86-64 architecture.
26669
123dc839
DJ
26670A target description has the following overall form, with [ ] marking
26671optional elements and @dots{} marking repeatable elements. The elements
26672are explained further below.
23181151 26673
123dc839 26674@smallexample
23181151
DJ
26675<?xml version="1.0"?>
26676<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26677<target version="1.0">
123dc839
DJ
26678 @r{[}@var{architecture}@r{]}
26679 @r{[}@var{feature}@dots{}@r{]}
23181151 26680</target>
123dc839 26681@end smallexample
23181151
DJ
26682
26683@noindent
26684The description is generally insensitive to whitespace and line
26685breaks, under the usual common-sense rules. The XML version
26686declaration and document type declaration can generally be omitted
26687(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26688useful for XML validation tools. The @samp{version} attribute for
26689@samp{<target>} may also be omitted, but we recommend
26690including it; if future versions of @value{GDBN} use an incompatible
26691revision of @file{gdb-target.dtd}, they will detect and report
26692the version mismatch.
23181151 26693
108546a0
DJ
26694@subsection Inclusion
26695@cindex target descriptions, inclusion
26696@cindex XInclude
26697@ifnotinfo
26698@cindex <xi:include>
26699@end ifnotinfo
26700
26701It can sometimes be valuable to split a target description up into
26702several different annexes, either for organizational purposes, or to
26703share files between different possible target descriptions. You can
26704divide a description into multiple files by replacing any element of
26705the target description with an inclusion directive of the form:
26706
123dc839 26707@smallexample
108546a0 26708<xi:include href="@var{document}"/>
123dc839 26709@end smallexample
108546a0
DJ
26710
26711@noindent
26712When @value{GDBN} encounters an element of this form, it will retrieve
26713the named XML @var{document}, and replace the inclusion directive with
26714the contents of that document. If the current description was read
26715using @samp{qXfer}, then so will be the included document;
26716@var{document} will be interpreted as the name of an annex. If the
26717current description was read from a file, @value{GDBN} will look for
26718@var{document} as a file in the same directory where it found the
26719original description.
26720
123dc839
DJ
26721@subsection Architecture
26722@cindex <architecture>
26723
26724An @samp{<architecture>} element has this form:
26725
26726@smallexample
26727 <architecture>@var{arch}</architecture>
26728@end smallexample
26729
26730@var{arch} is an architecture name from the same selection
26731accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26732Debugging Target}).
26733
26734@subsection Features
26735@cindex <feature>
26736
26737Each @samp{<feature>} describes some logical portion of the target
26738system. Features are currently used to describe available CPU
26739registers and the types of their contents. A @samp{<feature>} element
26740has this form:
26741
26742@smallexample
26743<feature name="@var{name}">
26744 @r{[}@var{type}@dots{}@r{]}
26745 @var{reg}@dots{}
26746</feature>
26747@end smallexample
26748
26749@noindent
26750Each feature's name should be unique within the description. The name
26751of a feature does not matter unless @value{GDBN} has some special
26752knowledge of the contents of that feature; if it does, the feature
26753should have its standard name. @xref{Standard Target Features}.
26754
26755@subsection Types
26756
26757Any register's value is a collection of bits which @value{GDBN} must
26758interpret. The default interpretation is a two's complement integer,
26759but other types can be requested by name in the register description.
26760Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26761Target Types}), and the description can define additional composite types.
26762
26763Each type element must have an @samp{id} attribute, which gives
26764a unique (within the containing @samp{<feature>}) name to the type.
26765Types must be defined before they are used.
26766
26767@cindex <vector>
26768Some targets offer vector registers, which can be treated as arrays
26769of scalar elements. These types are written as @samp{<vector>} elements,
26770specifying the array element type, @var{type}, and the number of elements,
26771@var{count}:
26772
26773@smallexample
26774<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26775@end smallexample
26776
26777@cindex <union>
26778If a register's value is usefully viewed in multiple ways, define it
26779with a union type containing the useful representations. The
26780@samp{<union>} element contains one or more @samp{<field>} elements,
26781each of which has a @var{name} and a @var{type}:
26782
26783@smallexample
26784<union id="@var{id}">
26785 <field name="@var{name}" type="@var{type}"/>
26786 @dots{}
26787</union>
26788@end smallexample
26789
26790@subsection Registers
26791@cindex <reg>
26792
26793Each register is represented as an element with this form:
26794
26795@smallexample
26796<reg name="@var{name}"
26797 bitsize="@var{size}"
26798 @r{[}regnum="@var{num}"@r{]}
26799 @r{[}save-restore="@var{save-restore}"@r{]}
26800 @r{[}type="@var{type}"@r{]}
26801 @r{[}group="@var{group}"@r{]}/>
26802@end smallexample
26803
26804@noindent
26805The components are as follows:
26806
26807@table @var
26808
26809@item name
26810The register's name; it must be unique within the target description.
26811
26812@item bitsize
26813The register's size, in bits.
26814
26815@item regnum
26816The register's number. If omitted, a register's number is one greater
26817than that of the previous register (either in the current feature or in
26818a preceeding feature); the first register in the target description
26819defaults to zero. This register number is used to read or write
26820the register; e.g.@: it is used in the remote @code{p} and @code{P}
26821packets, and registers appear in the @code{g} and @code{G} packets
26822in order of increasing register number.
26823
26824@item save-restore
26825Whether the register should be preserved across inferior function
26826calls; this must be either @code{yes} or @code{no}. The default is
26827@code{yes}, which is appropriate for most registers except for
26828some system control registers; this is not related to the target's
26829ABI.
26830
26831@item type
26832The type of the register. @var{type} may be a predefined type, a type
26833defined in the current feature, or one of the special types @code{int}
26834and @code{float}. @code{int} is an integer type of the correct size
26835for @var{bitsize}, and @code{float} is a floating point type (in the
26836architecture's normal floating point format) of the correct size for
26837@var{bitsize}. The default is @code{int}.
26838
26839@item group
26840The register group to which this register belongs. @var{group} must
26841be either @code{general}, @code{float}, or @code{vector}. If no
26842@var{group} is specified, @value{GDBN} will not display the register
26843in @code{info registers}.
26844
26845@end table
26846
26847@node Predefined Target Types
26848@section Predefined Target Types
26849@cindex target descriptions, predefined types
26850
26851Type definitions in the self-description can build up composite types
26852from basic building blocks, but can not define fundamental types. Instead,
26853standard identifiers are provided by @value{GDBN} for the fundamental
26854types. The currently supported types are:
26855
26856@table @code
26857
26858@item int8
26859@itemx int16
26860@itemx int32
26861@itemx int64
7cc46491 26862@itemx int128
123dc839
DJ
26863Signed integer types holding the specified number of bits.
26864
26865@item uint8
26866@itemx uint16
26867@itemx uint32
26868@itemx uint64
7cc46491 26869@itemx uint128
123dc839
DJ
26870Unsigned integer types holding the specified number of bits.
26871
26872@item code_ptr
26873@itemx data_ptr
26874Pointers to unspecified code and data. The program counter and
26875any dedicated return address register may be marked as code
26876pointers; printing a code pointer converts it into a symbolic
26877address. The stack pointer and any dedicated address registers
26878may be marked as data pointers.
26879
6e3bbd1a
PB
26880@item ieee_single
26881Single precision IEEE floating point.
26882
26883@item ieee_double
26884Double precision IEEE floating point.
26885
123dc839
DJ
26886@item arm_fpa_ext
26887The 12-byte extended precision format used by ARM FPA registers.
26888
26889@end table
26890
26891@node Standard Target Features
26892@section Standard Target Features
26893@cindex target descriptions, standard features
26894
26895A target description must contain either no registers or all the
26896target's registers. If the description contains no registers, then
26897@value{GDBN} will assume a default register layout, selected based on
26898the architecture. If the description contains any registers, the
26899default layout will not be used; the standard registers must be
26900described in the target description, in such a way that @value{GDBN}
26901can recognize them.
26902
26903This is accomplished by giving specific names to feature elements
26904which contain standard registers. @value{GDBN} will look for features
26905with those names and verify that they contain the expected registers;
26906if any known feature is missing required registers, or if any required
26907feature is missing, @value{GDBN} will reject the target
26908description. You can add additional registers to any of the
26909standard features --- @value{GDBN} will display them just as if
26910they were added to an unrecognized feature.
26911
26912This section lists the known features and their expected contents.
26913Sample XML documents for these features are included in the
26914@value{GDBN} source tree, in the directory @file{gdb/features}.
26915
26916Names recognized by @value{GDBN} should include the name of the
26917company or organization which selected the name, and the overall
26918architecture to which the feature applies; so e.g.@: the feature
26919containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26920
ff6f572f
DJ
26921The names of registers are not case sensitive for the purpose
26922of recognizing standard features, but @value{GDBN} will only display
26923registers using the capitalization used in the description.
26924
e9c17194
VP
26925@menu
26926* ARM Features::
1e26b4f8 26927* MIPS Features::
e9c17194 26928* M68K Features::
1e26b4f8 26929* PowerPC Features::
e9c17194
VP
26930@end menu
26931
26932
26933@node ARM Features
123dc839
DJ
26934@subsection ARM Features
26935@cindex target descriptions, ARM features
26936
26937The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26938It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26939@samp{lr}, @samp{pc}, and @samp{cpsr}.
26940
26941The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26942should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26943
ff6f572f
DJ
26944The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26945it should contain at least registers @samp{wR0} through @samp{wR15} and
26946@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26947@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26948
1e26b4f8 26949@node MIPS Features
f8b73d13
DJ
26950@subsection MIPS Features
26951@cindex target descriptions, MIPS features
26952
26953The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26954It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26955@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26956on the target.
26957
26958The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26959contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26960registers. They may be 32-bit or 64-bit depending on the target.
26961
26962The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26963it may be optional in a future version of @value{GDBN}. It should
26964contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26965@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26966
822b6570
DJ
26967The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26968contain a single register, @samp{restart}, which is used by the
26969Linux kernel to control restartable syscalls.
26970
e9c17194
VP
26971@node M68K Features
26972@subsection M68K Features
26973@cindex target descriptions, M68K features
26974
26975@table @code
26976@item @samp{org.gnu.gdb.m68k.core}
26977@itemx @samp{org.gnu.gdb.coldfire.core}
26978@itemx @samp{org.gnu.gdb.fido.core}
26979One of those features must be always present.
26980The feature that is present determines which flavor of m86k is
26981used. The feature that is present should contain registers
26982@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26983@samp{sp}, @samp{ps} and @samp{pc}.
26984
26985@item @samp{org.gnu.gdb.coldfire.fp}
26986This feature is optional. If present, it should contain registers
26987@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26988@samp{fpiaddr}.
26989@end table
26990
1e26b4f8 26991@node PowerPC Features
7cc46491
DJ
26992@subsection PowerPC Features
26993@cindex target descriptions, PowerPC features
26994
26995The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26996targets. It should contain registers @samp{r0} through @samp{r31},
26997@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26998@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26999
27000The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27001contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27002
27003The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27004contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27005and @samp{vrsave}.
27006
27007The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27008contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27009@samp{spefscr}. SPE targets should provide 32-bit registers in
27010@samp{org.gnu.gdb.power.core} and provide the upper halves in
27011@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27012these to present registers @samp{ev0} through @samp{ev31} to the
27013user.
27014
aab4e0ec 27015@include gpl.texi
eb12ee30 27016
2154891a 27017@raisesections
6826cf00 27018@include fdl.texi
2154891a 27019@lowersections
6826cf00 27020
6d2ebf8b 27021@node Index
c906108c
SS
27022@unnumbered Index
27023
27024@printindex cp
27025
27026@tex
27027% I think something like @colophon should be in texinfo. In the
27028% meantime:
27029\long\def\colophon{\hbox to0pt{}\vfill
27030\centerline{The body of this manual is set in}
27031\centerline{\fontname\tenrm,}
27032\centerline{with headings in {\bf\fontname\tenbf}}
27033\centerline{and examples in {\tt\fontname\tentt}.}
27034\centerline{{\it\fontname\tenit\/},}
27035\centerline{{\bf\fontname\tenbf}, and}
27036\centerline{{\sl\fontname\tensl\/}}
27037\centerline{are used for emphasis.}\vfill}
27038\page\colophon
27039% Blame: doc@cygnus.com, 1991.
27040@end tex
27041
c906108c 27042@bye
This page took 2.727139 seconds and 4 git commands to generate.