* spu-tdep.c (spu_gdbarch_init): Call set_gdbarch_frame_red_zone_size.
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
d7d9f01e 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
c16158bc
JM
52@ifset VERSION_PACKAGE
53@value{VERSION_PACKAGE}
54@end ifset
9fe8321b 55Version @value{GDBVN}.
c906108c 56
8a037dd7 57Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 58 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 59 Free Software Foundation, Inc.
c906108c 60
e9c75b65
EZ
61Permission is granted to copy, distribute and/or modify this document
62under the terms of the GNU Free Documentation License, Version 1.1 or
63any later version published by the Free Software Foundation; with the
959acfd1
EZ
64Invariant Sections being ``Free Software'' and ``Free Software Needs
65Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
66and with the Back-Cover Texts as in (a) below.
c906108c 67
b8533aec
DJ
68(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
69this GNU Manual. Buying copies from GNU Press supports the FSF in
70developing GNU and promoting software freedom.''
c906108c
SS
71@end ifinfo
72
73@titlepage
74@title Debugging with @value{GDBN}
75@subtitle The @sc{gnu} Source-Level Debugger
c906108c 76@sp 1
c906108c 77@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
c16158bc
JM
78@ifset VERSION_PACKAGE
79@sp 1
80@subtitle @value{VERSION_PACKAGE}
81@end ifset
9e9c5ae7 82@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 83@page
c906108c
SS
84@tex
85{\parskip=0pt
c16158bc 86\hfill (Send bugs and comments on @value{GDBN} to @value{BUGURL}.)\par
c906108c
SS
87\hfill {\it Debugging with @value{GDBN}}\par
88\hfill \TeX{}info \texinfoversion\par
89}
90@end tex
53a5351d 91
c906108c 92@vskip 0pt plus 1filll
8a037dd7 93Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 941996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 95Free Software Foundation, Inc.
c906108c 96@sp 2
c906108c 97Published by the Free Software Foundation @*
c02a867d
EZ
9851 Franklin Street, Fifth Floor,
99Boston, MA 02110-1301, USA@*
6d2ebf8b 100ISBN 1-882114-77-9 @*
e9c75b65
EZ
101
102Permission is granted to copy, distribute and/or modify this document
103under the terms of the GNU Free Documentation License, Version 1.1 or
104any later version published by the Free Software Foundation; with the
959acfd1
EZ
105Invariant Sections being ``Free Software'' and ``Free Software Needs
106Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
107and with the Back-Cover Texts as in (a) below.
e9c75b65 108
b8533aec
DJ
109(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
110this GNU Manual. Buying copies from GNU Press supports the FSF in
111developing GNU and promoting software freedom.''
3fb6a982
JB
112@page
113This edition of the GDB manual is dedicated to the memory of Fred
114Fish. Fred was a long-standing contributor to GDB and to Free
115software in general. We will miss him.
c906108c
SS
116@end titlepage
117@page
118
6c0e9fb3 119@ifnottex
6d2ebf8b
SS
120@node Top, Summary, (dir), (dir)
121
c906108c
SS
122@top Debugging with @value{GDBN}
123
124This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
125
c16158bc
JM
126This is the @value{EDITION} Edition, for @value{GDBN}
127@ifset VERSION_PACKAGE
128@value{VERSION_PACKAGE}
129@end ifset
130Version @value{GDBVN}.
c906108c 131
b620eb07 132Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 133
3fb6a982
JB
134This edition of the GDB manual is dedicated to the memory of Fred
135Fish. Fred was a long-standing contributor to GDB and to Free
136software in general. We will miss him.
137
6d2ebf8b
SS
138@menu
139* Summary:: Summary of @value{GDBN}
140* Sample Session:: A sample @value{GDBN} session
141
142* Invocation:: Getting in and out of @value{GDBN}
143* Commands:: @value{GDBN} commands
144* Running:: Running programs under @value{GDBN}
145* Stopping:: Stopping and continuing
146* Stack:: Examining the stack
147* Source:: Examining source files
148* Data:: Examining data
e2e0bcd1 149* Macros:: Preprocessor Macros
b37052ae 150* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 151* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
152
153* Languages:: Using @value{GDBN} with different languages
154
155* Symbols:: Examining the symbol table
156* Altering:: Altering execution
157* GDB Files:: @value{GDBN} files
158* Targets:: Specifying a debugging target
6b2f586d 159* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
160* Configurations:: Configuration-specific information
161* Controlling GDB:: Controlling @value{GDBN}
162* Sequences:: Canned sequences of commands
21c294e6 163* Interpreters:: Command Interpreters
c8f4133a 164* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 165* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 166* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 167* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
168
169* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
170
171* Command Line Editing:: Command Line Editing
172* Using History Interactively:: Using History Interactively
0869d01b 173* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 174* Installing GDB:: Installing GDB
eb12ee30 175* Maintenance Commands:: Maintenance Commands
e0ce93ac 176* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 177* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
178* Target Descriptions:: How targets can describe themselves to
179 @value{GDBN}
aab4e0ec
AC
180* Copying:: GNU General Public License says
181 how you can copy and share GDB
6826cf00 182* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
183* Index:: Index
184@end menu
185
6c0e9fb3 186@end ifnottex
c906108c 187
449f3b6c 188@contents
449f3b6c 189
6d2ebf8b 190@node Summary
c906108c
SS
191@unnumbered Summary of @value{GDBN}
192
193The purpose of a debugger such as @value{GDBN} is to allow you to see what is
194going on ``inside'' another program while it executes---or what another
195program was doing at the moment it crashed.
196
197@value{GDBN} can do four main kinds of things (plus other things in support of
198these) to help you catch bugs in the act:
199
200@itemize @bullet
201@item
202Start your program, specifying anything that might affect its behavior.
203
204@item
205Make your program stop on specified conditions.
206
207@item
208Examine what has happened, when your program has stopped.
209
210@item
211Change things in your program, so you can experiment with correcting the
212effects of one bug and go on to learn about another.
213@end itemize
214
49efadf5 215You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 216For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
217For more information, see @ref{C,,C and C++}.
218
cce74817 219@cindex Modula-2
e632838e
AC
220Support for Modula-2 is partial. For information on Modula-2, see
221@ref{Modula-2,,Modula-2}.
c906108c 222
cce74817
JM
223@cindex Pascal
224Debugging Pascal programs which use sets, subranges, file variables, or
225nested functions does not currently work. @value{GDBN} does not support
226entering expressions, printing values, or similar features using Pascal
227syntax.
c906108c 228
c906108c
SS
229@cindex Fortran
230@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 231it may be necessary to refer to some variables with a trailing
cce74817 232underscore.
c906108c 233
b37303ee
AF
234@value{GDBN} can be used to debug programs written in Objective-C,
235using either the Apple/NeXT or the GNU Objective-C runtime.
236
c906108c
SS
237@menu
238* Free Software:: Freely redistributable software
239* Contributors:: Contributors to GDB
240@end menu
241
6d2ebf8b 242@node Free Software
79a6e687 243@unnumberedsec Free Software
c906108c 244
5d161b24 245@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
246General Public License
247(GPL). The GPL gives you the freedom to copy or adapt a licensed
248program---but every person getting a copy also gets with it the
249freedom to modify that copy (which means that they must get access to
250the source code), and the freedom to distribute further copies.
251Typical software companies use copyrights to limit your freedoms; the
252Free Software Foundation uses the GPL to preserve these freedoms.
253
254Fundamentally, the General Public License is a license which says that
255you have these freedoms and that you cannot take these freedoms away
256from anyone else.
257
2666264b 258@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
259
260The biggest deficiency in the free software community today is not in
261the software---it is the lack of good free documentation that we can
262include with the free software. Many of our most important
263programs do not come with free reference manuals and free introductory
264texts. Documentation is an essential part of any software package;
265when an important free software package does not come with a free
266manual and a free tutorial, that is a major gap. We have many such
267gaps today.
268
269Consider Perl, for instance. The tutorial manuals that people
270normally use are non-free. How did this come about? Because the
271authors of those manuals published them with restrictive terms---no
272copying, no modification, source files not available---which exclude
273them from the free software world.
274
275That wasn't the first time this sort of thing happened, and it was far
276from the last. Many times we have heard a GNU user eagerly describe a
277manual that he is writing, his intended contribution to the community,
278only to learn that he had ruined everything by signing a publication
279contract to make it non-free.
280
281Free documentation, like free software, is a matter of freedom, not
282price. The problem with the non-free manual is not that publishers
283charge a price for printed copies---that in itself is fine. (The Free
284Software Foundation sells printed copies of manuals, too.) The
285problem is the restrictions on the use of the manual. Free manuals
286are available in source code form, and give you permission to copy and
287modify. Non-free manuals do not allow this.
288
289The criteria of freedom for a free manual are roughly the same as for
290free software. Redistribution (including the normal kinds of
291commercial redistribution) must be permitted, so that the manual can
292accompany every copy of the program, both on-line and on paper.
293
294Permission for modification of the technical content is crucial too.
295When people modify the software, adding or changing features, if they
296are conscientious they will change the manual too---so they can
297provide accurate and clear documentation for the modified program. A
298manual that leaves you no choice but to write a new manual to document
299a changed version of the program is not really available to our
300community.
301
302Some kinds of limits on the way modification is handled are
303acceptable. For example, requirements to preserve the original
304author's copyright notice, the distribution terms, or the list of
305authors, are ok. It is also no problem to require modified versions
306to include notice that they were modified. Even entire sections that
307may not be deleted or changed are acceptable, as long as they deal
308with nontechnical topics (like this one). These kinds of restrictions
309are acceptable because they don't obstruct the community's normal use
310of the manual.
311
312However, it must be possible to modify all the @emph{technical}
313content of the manual, and then distribute the result in all the usual
314media, through all the usual channels. Otherwise, the restrictions
315obstruct the use of the manual, it is not free, and we need another
316manual to replace it.
317
318Please spread the word about this issue. Our community continues to
319lose manuals to proprietary publishing. If we spread the word that
320free software needs free reference manuals and free tutorials, perhaps
321the next person who wants to contribute by writing documentation will
322realize, before it is too late, that only free manuals contribute to
323the free software community.
324
325If you are writing documentation, please insist on publishing it under
326the GNU Free Documentation License or another free documentation
327license. Remember that this decision requires your approval---you
328don't have to let the publisher decide. Some commercial publishers
329will use a free license if you insist, but they will not propose the
330option; it is up to you to raise the issue and say firmly that this is
331what you want. If the publisher you are dealing with refuses, please
332try other publishers. If you're not sure whether a proposed license
42584a72 333is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
334
335You can encourage commercial publishers to sell more free, copylefted
336manuals and tutorials by buying them, and particularly by buying
337copies from the publishers that paid for their writing or for major
338improvements. Meanwhile, try to avoid buying non-free documentation
339at all. Check the distribution terms of a manual before you buy it,
340and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
341Check the history of the book, and try to reward the publishers that
342have paid or pay the authors to work on it.
959acfd1
EZ
343
344The Free Software Foundation maintains a list of free documentation
345published by other publishers, at
346@url{http://www.fsf.org/doc/other-free-books.html}.
347
6d2ebf8b 348@node Contributors
96a2c332
SS
349@unnumberedsec Contributors to @value{GDBN}
350
351Richard Stallman was the original author of @value{GDBN}, and of many
352other @sc{gnu} programs. Many others have contributed to its
353development. This section attempts to credit major contributors. One
354of the virtues of free software is that everyone is free to contribute
355to it; with regret, we cannot actually acknowledge everyone here. The
356file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
357blow-by-blow account.
358
359Changes much prior to version 2.0 are lost in the mists of time.
360
361@quotation
362@emph{Plea:} Additions to this section are particularly welcome. If you
363or your friends (or enemies, to be evenhanded) have been unfairly
364omitted from this list, we would like to add your names!
365@end quotation
366
367So that they may not regard their many labors as thankless, we
368particularly thank those who shepherded @value{GDBN} through major
369releases:
7ba3cf9c 370Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
371Jim Blandy (release 4.18);
372Jason Molenda (release 4.17);
373Stan Shebs (release 4.14);
374Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
375Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
376John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
377Jim Kingdon (releases 3.5, 3.4, and 3.3);
378and Randy Smith (releases 3.2, 3.1, and 3.0).
379
380Richard Stallman, assisted at various times by Peter TerMaat, Chris
381Hanson, and Richard Mlynarik, handled releases through 2.8.
382
b37052ae
EZ
383Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
384in @value{GDBN}, with significant additional contributions from Per
385Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
386demangler. Early work on C@t{++} was by Peter TerMaat (who also did
387much general update work leading to release 3.0).
c906108c 388
b37052ae 389@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
390object-file formats; BFD was a joint project of David V.
391Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
392
393David Johnson wrote the original COFF support; Pace Willison did
394the original support for encapsulated COFF.
395
0179ffac 396Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
397
398Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
399Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
400support.
401Jean-Daniel Fekete contributed Sun 386i support.
402Chris Hanson improved the HP9000 support.
403Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
404David Johnson contributed Encore Umax support.
405Jyrki Kuoppala contributed Altos 3068 support.
406Jeff Law contributed HP PA and SOM support.
407Keith Packard contributed NS32K support.
408Doug Rabson contributed Acorn Risc Machine support.
409Bob Rusk contributed Harris Nighthawk CX-UX support.
410Chris Smith contributed Convex support (and Fortran debugging).
411Jonathan Stone contributed Pyramid support.
412Michael Tiemann contributed SPARC support.
413Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
414Pace Willison contributed Intel 386 support.
415Jay Vosburgh contributed Symmetry support.
a37295f9 416Marko Mlinar contributed OpenRISC 1000 support.
c906108c 417
1104b9e7 418Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
419
420Rich Schaefer and Peter Schauer helped with support of SunOS shared
421libraries.
422
423Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
424about several machine instruction sets.
425
426Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
427remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
428contributed remote debugging modules for the i960, VxWorks, A29K UDI,
429and RDI targets, respectively.
430
431Brian Fox is the author of the readline libraries providing
432command-line editing and command history.
433
7a292a7a
SS
434Andrew Beers of SUNY Buffalo wrote the language-switching code, the
435Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 436
5d161b24 437Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 438He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 439symbols.
c906108c 440
f24c5e49
KI
441Hitachi America (now Renesas America), Ltd. sponsored the support for
442H8/300, H8/500, and Super-H processors.
c906108c
SS
443
444NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
445
f24c5e49
KI
446Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
447processors.
c906108c
SS
448
449Toshiba sponsored the support for the TX39 Mips processor.
450
451Matsushita sponsored the support for the MN10200 and MN10300 processors.
452
96a2c332 453Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
454
455Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
456watchpoints.
457
458Michael Snyder added support for tracepoints.
459
460Stu Grossman wrote gdbserver.
461
462Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 463nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
464
465The following people at the Hewlett-Packard Company contributed
466support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 467(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
468compiler, and the Text User Interface (nee Terminal User Interface):
469Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
470Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
471provided HP-specific information in this manual.
c906108c 472
b37052ae
EZ
473DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
474Robert Hoehne made significant contributions to the DJGPP port.
475
96a2c332
SS
476Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
477development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
478fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
479Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
480Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
481Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
482Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
483addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
484JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
485Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
486Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
487Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
488Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
489Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
490Zuhn have made contributions both large and small.
c906108c 491
ffed4509
AC
492Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
493Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
494
e2e0bcd1
JB
495Jim Blandy added support for preprocessor macros, while working for Red
496Hat.
c906108c 497
a9967aef
AC
498Andrew Cagney designed @value{GDBN}'s architecture vector. Many
499people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
500Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
501Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
502Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
503with the migration of old architectures to this new framework.
504
c5e30d01
AC
505Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
506unwinder framework, this consisting of a fresh new design featuring
507frame IDs, independent frame sniffers, and the sentinel frame. Mark
508Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
509libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 510trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
511complete rewrite of the architecture's frame code, were carried out by
512Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
513Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
514Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
515Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
516Weigand.
517
ca3bf3bd
DJ
518Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
519Tensilica, Inc.@: contributed support for Xtensa processors. Others
520who have worked on the Xtensa port of @value{GDBN} in the past include
521Steve Tjiang, John Newlin, and Scott Foehner.
522
6d2ebf8b 523@node Sample Session
c906108c
SS
524@chapter A Sample @value{GDBN} Session
525
526You can use this manual at your leisure to read all about @value{GDBN}.
527However, a handful of commands are enough to get started using the
528debugger. This chapter illustrates those commands.
529
530@iftex
531In this sample session, we emphasize user input like this: @b{input},
532to make it easier to pick out from the surrounding output.
533@end iftex
534
535@c FIXME: this example may not be appropriate for some configs, where
536@c FIXME...primary interest is in remote use.
537
538One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
539processor) exhibits the following bug: sometimes, when we change its
540quote strings from the default, the commands used to capture one macro
541definition within another stop working. In the following short @code{m4}
542session, we define a macro @code{foo} which expands to @code{0000}; we
543then use the @code{m4} built-in @code{defn} to define @code{bar} as the
544same thing. However, when we change the open quote string to
545@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
546procedure fails to define a new synonym @code{baz}:
547
548@smallexample
549$ @b{cd gnu/m4}
550$ @b{./m4}
551@b{define(foo,0000)}
552
553@b{foo}
5540000
555@b{define(bar,defn(`foo'))}
556
557@b{bar}
5580000
559@b{changequote(<QUOTE>,<UNQUOTE>)}
560
561@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
562@b{baz}
c8aa23ab 563@b{Ctrl-d}
c906108c
SS
564m4: End of input: 0: fatal error: EOF in string
565@end smallexample
566
567@noindent
568Let us use @value{GDBN} to try to see what is going on.
569
c906108c
SS
570@smallexample
571$ @b{@value{GDBP} m4}
572@c FIXME: this falsifies the exact text played out, to permit smallbook
573@c FIXME... format to come out better.
574@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 575 of it under certain conditions; type "show copying" to see
c906108c 576 the conditions.
5d161b24 577There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
578 for details.
579
580@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
581(@value{GDBP})
582@end smallexample
c906108c
SS
583
584@noindent
585@value{GDBN} reads only enough symbol data to know where to find the
586rest when needed; as a result, the first prompt comes up very quickly.
587We now tell @value{GDBN} to use a narrower display width than usual, so
588that examples fit in this manual.
589
590@smallexample
591(@value{GDBP}) @b{set width 70}
592@end smallexample
593
594@noindent
595We need to see how the @code{m4} built-in @code{changequote} works.
596Having looked at the source, we know the relevant subroutine is
597@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
598@code{break} command.
599
600@smallexample
601(@value{GDBP}) @b{break m4_changequote}
602Breakpoint 1 at 0x62f4: file builtin.c, line 879.
603@end smallexample
604
605@noindent
606Using the @code{run} command, we start @code{m4} running under @value{GDBN}
607control; as long as control does not reach the @code{m4_changequote}
608subroutine, the program runs as usual:
609
610@smallexample
611(@value{GDBP}) @b{run}
612Starting program: /work/Editorial/gdb/gnu/m4/m4
613@b{define(foo,0000)}
614
615@b{foo}
6160000
617@end smallexample
618
619@noindent
620To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
621suspends execution of @code{m4}, displaying information about the
622context where it stops.
623
624@smallexample
625@b{changequote(<QUOTE>,<UNQUOTE>)}
626
5d161b24 627Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
628 at builtin.c:879
629879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
630@end smallexample
631
632@noindent
633Now we use the command @code{n} (@code{next}) to advance execution to
634the next line of the current function.
635
636@smallexample
637(@value{GDBP}) @b{n}
638882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
639 : nil,
640@end smallexample
641
642@noindent
643@code{set_quotes} looks like a promising subroutine. We can go into it
644by using the command @code{s} (@code{step}) instead of @code{next}.
645@code{step} goes to the next line to be executed in @emph{any}
646subroutine, so it steps into @code{set_quotes}.
647
648@smallexample
649(@value{GDBP}) @b{s}
650set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
651 at input.c:530
652530 if (lquote != def_lquote)
653@end smallexample
654
655@noindent
656The display that shows the subroutine where @code{m4} is now
657suspended (and its arguments) is called a stack frame display. It
658shows a summary of the stack. We can use the @code{backtrace}
659command (which can also be spelled @code{bt}), to see where we are
660in the stack as a whole: the @code{backtrace} command displays a
661stack frame for each active subroutine.
662
663@smallexample
664(@value{GDBP}) @b{bt}
665#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
666 at input.c:530
5d161b24 667#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
668 at builtin.c:882
669#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
670#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
671 at macro.c:71
672#4 0x79dc in expand_input () at macro.c:40
673#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
674@end smallexample
675
676@noindent
677We step through a few more lines to see what happens. The first two
678times, we can use @samp{s}; the next two times we use @code{n} to avoid
679falling into the @code{xstrdup} subroutine.
680
681@smallexample
682(@value{GDBP}) @b{s}
6830x3b5c 532 if (rquote != def_rquote)
684(@value{GDBP}) @b{s}
6850x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
686def_lquote : xstrdup(lq);
687(@value{GDBP}) @b{n}
688536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
689 : xstrdup(rq);
690(@value{GDBP}) @b{n}
691538 len_lquote = strlen(rquote);
692@end smallexample
693
694@noindent
695The last line displayed looks a little odd; we can examine the variables
696@code{lquote} and @code{rquote} to see if they are in fact the new left
697and right quotes we specified. We use the command @code{p}
698(@code{print}) to see their values.
699
700@smallexample
701(@value{GDBP}) @b{p lquote}
702$1 = 0x35d40 "<QUOTE>"
703(@value{GDBP}) @b{p rquote}
704$2 = 0x35d50 "<UNQUOTE>"
705@end smallexample
706
707@noindent
708@code{lquote} and @code{rquote} are indeed the new left and right quotes.
709To look at some context, we can display ten lines of source
710surrounding the current line with the @code{l} (@code{list}) command.
711
712@smallexample
713(@value{GDBP}) @b{l}
714533 xfree(rquote);
715534
716535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
717 : xstrdup (lq);
718536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
719 : xstrdup (rq);
720537
721538 len_lquote = strlen(rquote);
722539 len_rquote = strlen(lquote);
723540 @}
724541
725542 void
726@end smallexample
727
728@noindent
729Let us step past the two lines that set @code{len_lquote} and
730@code{len_rquote}, and then examine the values of those variables.
731
732@smallexample
733(@value{GDBP}) @b{n}
734539 len_rquote = strlen(lquote);
735(@value{GDBP}) @b{n}
736540 @}
737(@value{GDBP}) @b{p len_lquote}
738$3 = 9
739(@value{GDBP}) @b{p len_rquote}
740$4 = 7
741@end smallexample
742
743@noindent
744That certainly looks wrong, assuming @code{len_lquote} and
745@code{len_rquote} are meant to be the lengths of @code{lquote} and
746@code{rquote} respectively. We can set them to better values using
747the @code{p} command, since it can print the value of
748any expression---and that expression can include subroutine calls and
749assignments.
750
751@smallexample
752(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
753$5 = 7
754(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
755$6 = 9
756@end smallexample
757
758@noindent
759Is that enough to fix the problem of using the new quotes with the
760@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
761executing with the @code{c} (@code{continue}) command, and then try the
762example that caused trouble initially:
763
764@smallexample
765(@value{GDBP}) @b{c}
766Continuing.
767
768@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
769
770baz
7710000
772@end smallexample
773
774@noindent
775Success! The new quotes now work just as well as the default ones. The
776problem seems to have been just the two typos defining the wrong
777lengths. We allow @code{m4} exit by giving it an EOF as input:
778
779@smallexample
c8aa23ab 780@b{Ctrl-d}
c906108c
SS
781Program exited normally.
782@end smallexample
783
784@noindent
785The message @samp{Program exited normally.} is from @value{GDBN}; it
786indicates @code{m4} has finished executing. We can end our @value{GDBN}
787session with the @value{GDBN} @code{quit} command.
788
789@smallexample
790(@value{GDBP}) @b{quit}
791@end smallexample
c906108c 792
6d2ebf8b 793@node Invocation
c906108c
SS
794@chapter Getting In and Out of @value{GDBN}
795
796This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 797The essentials are:
c906108c 798@itemize @bullet
5d161b24 799@item
53a5351d 800type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 801@item
c8aa23ab 802type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
803@end itemize
804
805@menu
806* Invoking GDB:: How to start @value{GDBN}
807* Quitting GDB:: How to quit @value{GDBN}
808* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 809* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
810@end menu
811
6d2ebf8b 812@node Invoking GDB
c906108c
SS
813@section Invoking @value{GDBN}
814
c906108c
SS
815Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
816@value{GDBN} reads commands from the terminal until you tell it to exit.
817
818You can also run @code{@value{GDBP}} with a variety of arguments and options,
819to specify more of your debugging environment at the outset.
820
c906108c
SS
821The command-line options described here are designed
822to cover a variety of situations; in some environments, some of these
5d161b24 823options may effectively be unavailable.
c906108c
SS
824
825The most usual way to start @value{GDBN} is with one argument,
826specifying an executable program:
827
474c8240 828@smallexample
c906108c 829@value{GDBP} @var{program}
474c8240 830@end smallexample
c906108c 831
c906108c
SS
832@noindent
833You can also start with both an executable program and a core file
834specified:
835
474c8240 836@smallexample
c906108c 837@value{GDBP} @var{program} @var{core}
474c8240 838@end smallexample
c906108c
SS
839
840You can, instead, specify a process ID as a second argument, if you want
841to debug a running process:
842
474c8240 843@smallexample
c906108c 844@value{GDBP} @var{program} 1234
474c8240 845@end smallexample
c906108c
SS
846
847@noindent
848would attach @value{GDBN} to process @code{1234} (unless you also have a file
849named @file{1234}; @value{GDBN} does check for a core file first).
850
c906108c 851Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
852complete operating system; when you use @value{GDBN} as a remote
853debugger attached to a bare board, there may not be any notion of
854``process'', and there is often no way to get a core dump. @value{GDBN}
855will warn you if it is unable to attach or to read core dumps.
c906108c 856
aa26fa3a
TT
857You can optionally have @code{@value{GDBP}} pass any arguments after the
858executable file to the inferior using @code{--args}. This option stops
859option processing.
474c8240 860@smallexample
3f94c067 861@value{GDBP} --args gcc -O2 -c foo.c
474c8240 862@end smallexample
aa26fa3a
TT
863This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
864@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
865
96a2c332 866You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
867@value{GDBN}'s non-warranty, by specifying @code{-silent}:
868
869@smallexample
870@value{GDBP} -silent
871@end smallexample
872
873@noindent
874You can further control how @value{GDBN} starts up by using command-line
875options. @value{GDBN} itself can remind you of the options available.
876
877@noindent
878Type
879
474c8240 880@smallexample
c906108c 881@value{GDBP} -help
474c8240 882@end smallexample
c906108c
SS
883
884@noindent
885to display all available options and briefly describe their use
886(@samp{@value{GDBP} -h} is a shorter equivalent).
887
888All options and command line arguments you give are processed
889in sequential order. The order makes a difference when the
890@samp{-x} option is used.
891
892
893@menu
c906108c
SS
894* File Options:: Choosing files
895* Mode Options:: Choosing modes
6fc08d32 896* Startup:: What @value{GDBN} does during startup
c906108c
SS
897@end menu
898
6d2ebf8b 899@node File Options
79a6e687 900@subsection Choosing Files
c906108c 901
2df3850c 902When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
903specifying an executable file and core file (or process ID). This is
904the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 905@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
906first argument that does not have an associated option flag as
907equivalent to the @samp{-se} option followed by that argument; and the
908second argument that does not have an associated option flag, if any, as
909equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
910If the second argument begins with a decimal digit, @value{GDBN} will
911first attempt to attach to it as a process, and if that fails, attempt
912to open it as a corefile. If you have a corefile whose name begins with
b383017d 913a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 914prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
915
916If @value{GDBN} has not been configured to included core file support,
917such as for most embedded targets, then it will complain about a second
918argument and ignore it.
c906108c
SS
919
920Many options have both long and short forms; both are shown in the
921following list. @value{GDBN} also recognizes the long forms if you truncate
922them, so long as enough of the option is present to be unambiguous.
923(If you prefer, you can flag option arguments with @samp{--} rather
924than @samp{-}, though we illustrate the more usual convention.)
925
d700128c
EZ
926@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
927@c way, both those who look for -foo and --foo in the index, will find
928@c it.
929
c906108c
SS
930@table @code
931@item -symbols @var{file}
932@itemx -s @var{file}
d700128c
EZ
933@cindex @code{--symbols}
934@cindex @code{-s}
c906108c
SS
935Read symbol table from file @var{file}.
936
937@item -exec @var{file}
938@itemx -e @var{file}
d700128c
EZ
939@cindex @code{--exec}
940@cindex @code{-e}
7a292a7a
SS
941Use file @var{file} as the executable file to execute when appropriate,
942and for examining pure data in conjunction with a core dump.
c906108c
SS
943
944@item -se @var{file}
d700128c 945@cindex @code{--se}
c906108c
SS
946Read symbol table from file @var{file} and use it as the executable
947file.
948
c906108c
SS
949@item -core @var{file}
950@itemx -c @var{file}
d700128c
EZ
951@cindex @code{--core}
952@cindex @code{-c}
b383017d 953Use file @var{file} as a core dump to examine.
c906108c 954
19837790
MS
955@item -pid @var{number}
956@itemx -p @var{number}
957@cindex @code{--pid}
958@cindex @code{-p}
959Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
960
961@item -command @var{file}
962@itemx -x @var{file}
d700128c
EZ
963@cindex @code{--command}
964@cindex @code{-x}
c906108c
SS
965Execute @value{GDBN} commands from file @var{file}. @xref{Command
966Files,, Command files}.
967
8a5a3c82
AS
968@item -eval-command @var{command}
969@itemx -ex @var{command}
970@cindex @code{--eval-command}
971@cindex @code{-ex}
972Execute a single @value{GDBN} command.
973
974This option may be used multiple times to call multiple commands. It may
975also be interleaved with @samp{-command} as required.
976
977@smallexample
978@value{GDBP} -ex 'target sim' -ex 'load' \
979 -x setbreakpoints -ex 'run' a.out
980@end smallexample
981
c906108c
SS
982@item -directory @var{directory}
983@itemx -d @var{directory}
d700128c
EZ
984@cindex @code{--directory}
985@cindex @code{-d}
4b505b12 986Add @var{directory} to the path to search for source and script files.
c906108c 987
c906108c
SS
988@item -r
989@itemx -readnow
d700128c
EZ
990@cindex @code{--readnow}
991@cindex @code{-r}
c906108c
SS
992Read each symbol file's entire symbol table immediately, rather than
993the default, which is to read it incrementally as it is needed.
994This makes startup slower, but makes future operations faster.
53a5351d 995
c906108c
SS
996@end table
997
6d2ebf8b 998@node Mode Options
79a6e687 999@subsection Choosing Modes
c906108c
SS
1000
1001You can run @value{GDBN} in various alternative modes---for example, in
1002batch mode or quiet mode.
1003
1004@table @code
1005@item -nx
1006@itemx -n
d700128c
EZ
1007@cindex @code{--nx}
1008@cindex @code{-n}
96565e91 1009Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1010@value{GDBN} executes the commands in these files after all the command
1011options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1012Files}.
c906108c
SS
1013
1014@item -quiet
d700128c 1015@itemx -silent
c906108c 1016@itemx -q
d700128c
EZ
1017@cindex @code{--quiet}
1018@cindex @code{--silent}
1019@cindex @code{-q}
c906108c
SS
1020``Quiet''. Do not print the introductory and copyright messages. These
1021messages are also suppressed in batch mode.
1022
1023@item -batch
d700128c 1024@cindex @code{--batch}
c906108c
SS
1025Run in batch mode. Exit with status @code{0} after processing all the
1026command files specified with @samp{-x} (and all commands from
1027initialization files, if not inhibited with @samp{-n}). Exit with
1028nonzero status if an error occurs in executing the @value{GDBN} commands
1029in the command files.
1030
2df3850c
JM
1031Batch mode may be useful for running @value{GDBN} as a filter, for
1032example to download and run a program on another computer; in order to
1033make this more useful, the message
c906108c 1034
474c8240 1035@smallexample
c906108c 1036Program exited normally.
474c8240 1037@end smallexample
c906108c
SS
1038
1039@noindent
2df3850c
JM
1040(which is ordinarily issued whenever a program running under
1041@value{GDBN} control terminates) is not issued when running in batch
1042mode.
1043
1a088d06
AS
1044@item -batch-silent
1045@cindex @code{--batch-silent}
1046Run in batch mode exactly like @samp{-batch}, but totally silently. All
1047@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1048unaffected). This is much quieter than @samp{-silent} and would be useless
1049for an interactive session.
1050
1051This is particularly useful when using targets that give @samp{Loading section}
1052messages, for example.
1053
1054Note that targets that give their output via @value{GDBN}, as opposed to
1055writing directly to @code{stdout}, will also be made silent.
1056
4b0ad762
AS
1057@item -return-child-result
1058@cindex @code{--return-child-result}
1059The return code from @value{GDBN} will be the return code from the child
1060process (the process being debugged), with the following exceptions:
1061
1062@itemize @bullet
1063@item
1064@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1065internal error. In this case the exit code is the same as it would have been
1066without @samp{-return-child-result}.
1067@item
1068The user quits with an explicit value. E.g., @samp{quit 1}.
1069@item
1070The child process never runs, or is not allowed to terminate, in which case
1071the exit code will be -1.
1072@end itemize
1073
1074This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1075when @value{GDBN} is being used as a remote program loader or simulator
1076interface.
1077
2df3850c
JM
1078@item -nowindows
1079@itemx -nw
d700128c
EZ
1080@cindex @code{--nowindows}
1081@cindex @code{-nw}
2df3850c 1082``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1083(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1084interface. If no GUI is available, this option has no effect.
1085
1086@item -windows
1087@itemx -w
d700128c
EZ
1088@cindex @code{--windows}
1089@cindex @code{-w}
2df3850c
JM
1090If @value{GDBN} includes a GUI, then this option requires it to be
1091used if possible.
c906108c
SS
1092
1093@item -cd @var{directory}
d700128c 1094@cindex @code{--cd}
c906108c
SS
1095Run @value{GDBN} using @var{directory} as its working directory,
1096instead of the current directory.
1097
c906108c
SS
1098@item -fullname
1099@itemx -f
d700128c
EZ
1100@cindex @code{--fullname}
1101@cindex @code{-f}
7a292a7a
SS
1102@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1103subprocess. It tells @value{GDBN} to output the full file name and line
1104number in a standard, recognizable fashion each time a stack frame is
1105displayed (which includes each time your program stops). This
1106recognizable format looks like two @samp{\032} characters, followed by
1107the file name, line number and character position separated by colons,
1108and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1109@samp{\032} characters as a signal to display the source code for the
1110frame.
c906108c 1111
d700128c
EZ
1112@item -epoch
1113@cindex @code{--epoch}
1114The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1115@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1116routines so as to allow Epoch to display values of expressions in a
1117separate window.
1118
1119@item -annotate @var{level}
1120@cindex @code{--annotate}
1121This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1122effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1123(@pxref{Annotations}). The annotation @var{level} controls how much
1124information @value{GDBN} prints together with its prompt, values of
1125expressions, source lines, and other types of output. Level 0 is the
1126normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1127@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1128that control @value{GDBN}, and level 2 has been deprecated.
1129
265eeb58 1130The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1131(@pxref{GDB/MI}).
d700128c 1132
aa26fa3a
TT
1133@item --args
1134@cindex @code{--args}
1135Change interpretation of command line so that arguments following the
1136executable file are passed as command line arguments to the inferior.
1137This option stops option processing.
1138
2df3850c
JM
1139@item -baud @var{bps}
1140@itemx -b @var{bps}
d700128c
EZ
1141@cindex @code{--baud}
1142@cindex @code{-b}
c906108c
SS
1143Set the line speed (baud rate or bits per second) of any serial
1144interface used by @value{GDBN} for remote debugging.
c906108c 1145
f47b1503
AS
1146@item -l @var{timeout}
1147@cindex @code{-l}
1148Set the timeout (in seconds) of any communication used by @value{GDBN}
1149for remote debugging.
1150
c906108c 1151@item -tty @var{device}
d700128c
EZ
1152@itemx -t @var{device}
1153@cindex @code{--tty}
1154@cindex @code{-t}
c906108c
SS
1155Run using @var{device} for your program's standard input and output.
1156@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1157
53a5351d 1158@c resolve the situation of these eventually
c4555f82
SC
1159@item -tui
1160@cindex @code{--tui}
d0d5df6f
AC
1161Activate the @dfn{Text User Interface} when starting. The Text User
1162Interface manages several text windows on the terminal, showing
1163source, assembly, registers and @value{GDBN} command outputs
1164(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1165Text User Interface can be enabled by invoking the program
46ba6afa 1166@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1167Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1168
1169@c @item -xdb
d700128c 1170@c @cindex @code{--xdb}
53a5351d
JM
1171@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1172@c For information, see the file @file{xdb_trans.html}, which is usually
1173@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1174@c systems.
1175
d700128c
EZ
1176@item -interpreter @var{interp}
1177@cindex @code{--interpreter}
1178Use the interpreter @var{interp} for interface with the controlling
1179program or device. This option is meant to be set by programs which
94bbb2c0 1180communicate with @value{GDBN} using it as a back end.
21c294e6 1181@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1182
da0f9dcd 1183@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1184@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1185The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1186previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1187selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1188@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1189
1190@item -write
1191@cindex @code{--write}
1192Open the executable and core files for both reading and writing. This
1193is equivalent to the @samp{set write on} command inside @value{GDBN}
1194(@pxref{Patching}).
1195
1196@item -statistics
1197@cindex @code{--statistics}
1198This option causes @value{GDBN} to print statistics about time and
1199memory usage after it completes each command and returns to the prompt.
1200
1201@item -version
1202@cindex @code{--version}
1203This option causes @value{GDBN} to print its version number and
1204no-warranty blurb, and exit.
1205
c906108c
SS
1206@end table
1207
6fc08d32 1208@node Startup
79a6e687 1209@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1210@cindex @value{GDBN} startup
1211
1212Here's the description of what @value{GDBN} does during session startup:
1213
1214@enumerate
1215@item
1216Sets up the command interpreter as specified by the command line
1217(@pxref{Mode Options, interpreter}).
1218
1219@item
1220@cindex init file
1221Reads the @dfn{init file} (if any) in your home directory@footnote{On
1222DOS/Windows systems, the home directory is the one pointed to by the
1223@code{HOME} environment variable.} and executes all the commands in
1224that file.
1225
1226@item
1227Processes command line options and operands.
1228
1229@item
1230Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1231working directory. This is only done if the current directory is
1232different from your home directory. Thus, you can have more than one
1233init file, one generic in your home directory, and another, specific
1234to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1235@value{GDBN}.
1236
1237@item
1238Reads command files specified by the @samp{-x} option. @xref{Command
1239Files}, for more details about @value{GDBN} command files.
1240
1241@item
1242Reads the command history recorded in the @dfn{history file}.
d620b259 1243@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1244files where @value{GDBN} records it.
1245@end enumerate
1246
1247Init files use the same syntax as @dfn{command files} (@pxref{Command
1248Files}) and are processed by @value{GDBN} in the same way. The init
1249file in your home directory can set options (such as @samp{set
1250complaints}) that affect subsequent processing of command line options
1251and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1252option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1253
1254@cindex init file name
1255@cindex @file{.gdbinit}
119b882a 1256@cindex @file{gdb.ini}
8807d78b 1257The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1258The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1259the limitations of file names imposed by DOS filesystems. The Windows
1260ports of @value{GDBN} use the standard name, but if they find a
1261@file{gdb.ini} file, they warn you about that and suggest to rename
1262the file to the standard name.
1263
6fc08d32 1264
6d2ebf8b 1265@node Quitting GDB
c906108c
SS
1266@section Quitting @value{GDBN}
1267@cindex exiting @value{GDBN}
1268@cindex leaving @value{GDBN}
1269
1270@table @code
1271@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1272@kindex q @r{(@code{quit})}
96a2c332
SS
1273@item quit @r{[}@var{expression}@r{]}
1274@itemx q
1275To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1276@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1277do not supply @var{expression}, @value{GDBN} will terminate normally;
1278otherwise it will terminate using the result of @var{expression} as the
1279error code.
c906108c
SS
1280@end table
1281
1282@cindex interrupt
c8aa23ab 1283An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1284terminates the action of any @value{GDBN} command that is in progress and
1285returns to @value{GDBN} command level. It is safe to type the interrupt
1286character at any time because @value{GDBN} does not allow it to take effect
1287until a time when it is safe.
1288
c906108c
SS
1289If you have been using @value{GDBN} to control an attached process or
1290device, you can release it with the @code{detach} command
79a6e687 1291(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1292
6d2ebf8b 1293@node Shell Commands
79a6e687 1294@section Shell Commands
c906108c
SS
1295
1296If you need to execute occasional shell commands during your
1297debugging session, there is no need to leave or suspend @value{GDBN}; you can
1298just use the @code{shell} command.
1299
1300@table @code
1301@kindex shell
1302@cindex shell escape
1303@item shell @var{command string}
1304Invoke a standard shell to execute @var{command string}.
c906108c 1305If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1306shell to run. Otherwise @value{GDBN} uses the default shell
1307(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1308@end table
1309
1310The utility @code{make} is often needed in development environments.
1311You do not have to use the @code{shell} command for this purpose in
1312@value{GDBN}:
1313
1314@table @code
1315@kindex make
1316@cindex calling make
1317@item make @var{make-args}
1318Execute the @code{make} program with the specified
1319arguments. This is equivalent to @samp{shell make @var{make-args}}.
1320@end table
1321
79a6e687
BW
1322@node Logging Output
1323@section Logging Output
0fac0b41 1324@cindex logging @value{GDBN} output
9c16f35a 1325@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1326
1327You may want to save the output of @value{GDBN} commands to a file.
1328There are several commands to control @value{GDBN}'s logging.
1329
1330@table @code
1331@kindex set logging
1332@item set logging on
1333Enable logging.
1334@item set logging off
1335Disable logging.
9c16f35a 1336@cindex logging file name
0fac0b41
DJ
1337@item set logging file @var{file}
1338Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1339@item set logging overwrite [on|off]
1340By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1341you want @code{set logging on} to overwrite the logfile instead.
1342@item set logging redirect [on|off]
1343By default, @value{GDBN} output will go to both the terminal and the logfile.
1344Set @code{redirect} if you want output to go only to the log file.
1345@kindex show logging
1346@item show logging
1347Show the current values of the logging settings.
1348@end table
1349
6d2ebf8b 1350@node Commands
c906108c
SS
1351@chapter @value{GDBN} Commands
1352
1353You can abbreviate a @value{GDBN} command to the first few letters of the command
1354name, if that abbreviation is unambiguous; and you can repeat certain
1355@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1356key to get @value{GDBN} to fill out the rest of a word in a command (or to
1357show you the alternatives available, if there is more than one possibility).
1358
1359@menu
1360* Command Syntax:: How to give commands to @value{GDBN}
1361* Completion:: Command completion
1362* Help:: How to ask @value{GDBN} for help
1363@end menu
1364
6d2ebf8b 1365@node Command Syntax
79a6e687 1366@section Command Syntax
c906108c
SS
1367
1368A @value{GDBN} command is a single line of input. There is no limit on
1369how long it can be. It starts with a command name, which is followed by
1370arguments whose meaning depends on the command name. For example, the
1371command @code{step} accepts an argument which is the number of times to
1372step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1373with no arguments. Some commands do not allow any arguments.
c906108c
SS
1374
1375@cindex abbreviation
1376@value{GDBN} command names may always be truncated if that abbreviation is
1377unambiguous. Other possible command abbreviations are listed in the
1378documentation for individual commands. In some cases, even ambiguous
1379abbreviations are allowed; for example, @code{s} is specially defined as
1380equivalent to @code{step} even though there are other commands whose
1381names start with @code{s}. You can test abbreviations by using them as
1382arguments to the @code{help} command.
1383
1384@cindex repeating commands
41afff9a 1385@kindex RET @r{(repeat last command)}
c906108c 1386A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1387repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1388will not repeat this way; these are commands whose unintentional
1389repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1390repeat. User-defined commands can disable this feature; see
1391@ref{Define, dont-repeat}.
c906108c
SS
1392
1393The @code{list} and @code{x} commands, when you repeat them with
1394@key{RET}, construct new arguments rather than repeating
1395exactly as typed. This permits easy scanning of source or memory.
1396
1397@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1398output, in a way similar to the common utility @code{more}
79a6e687 1399(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1400@key{RET} too many in this situation, @value{GDBN} disables command
1401repetition after any command that generates this sort of display.
1402
41afff9a 1403@kindex # @r{(a comment)}
c906108c
SS
1404@cindex comment
1405Any text from a @kbd{#} to the end of the line is a comment; it does
1406nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1407Files,,Command Files}).
c906108c 1408
88118b3a 1409@cindex repeating command sequences
c8aa23ab
EZ
1410@kindex Ctrl-o @r{(operate-and-get-next)}
1411The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1412commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1413then fetches the next line relative to the current line from the history
1414for editing.
1415
6d2ebf8b 1416@node Completion
79a6e687 1417@section Command Completion
c906108c
SS
1418
1419@cindex completion
1420@cindex word completion
1421@value{GDBN} can fill in the rest of a word in a command for you, if there is
1422only one possibility; it can also show you what the valid possibilities
1423are for the next word in a command, at any time. This works for @value{GDBN}
1424commands, @value{GDBN} subcommands, and the names of symbols in your program.
1425
1426Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1427of a word. If there is only one possibility, @value{GDBN} fills in the
1428word, and waits for you to finish the command (or press @key{RET} to
1429enter it). For example, if you type
1430
1431@c FIXME "@key" does not distinguish its argument sufficiently to permit
1432@c complete accuracy in these examples; space introduced for clarity.
1433@c If texinfo enhancements make it unnecessary, it would be nice to
1434@c replace " @key" by "@key" in the following...
474c8240 1435@smallexample
c906108c 1436(@value{GDBP}) info bre @key{TAB}
474c8240 1437@end smallexample
c906108c
SS
1438
1439@noindent
1440@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1441the only @code{info} subcommand beginning with @samp{bre}:
1442
474c8240 1443@smallexample
c906108c 1444(@value{GDBP}) info breakpoints
474c8240 1445@end smallexample
c906108c
SS
1446
1447@noindent
1448You can either press @key{RET} at this point, to run the @code{info
1449breakpoints} command, or backspace and enter something else, if
1450@samp{breakpoints} does not look like the command you expected. (If you
1451were sure you wanted @code{info breakpoints} in the first place, you
1452might as well just type @key{RET} immediately after @samp{info bre},
1453to exploit command abbreviations rather than command completion).
1454
1455If there is more than one possibility for the next word when you press
1456@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1457characters and try again, or just press @key{TAB} a second time;
1458@value{GDBN} displays all the possible completions for that word. For
1459example, you might want to set a breakpoint on a subroutine whose name
1460begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1461just sounds the bell. Typing @key{TAB} again displays all the
1462function names in your program that begin with those characters, for
1463example:
1464
474c8240 1465@smallexample
c906108c
SS
1466(@value{GDBP}) b make_ @key{TAB}
1467@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1468make_a_section_from_file make_environ
1469make_abs_section make_function_type
1470make_blockvector make_pointer_type
1471make_cleanup make_reference_type
c906108c
SS
1472make_command make_symbol_completion_list
1473(@value{GDBP}) b make_
474c8240 1474@end smallexample
c906108c
SS
1475
1476@noindent
1477After displaying the available possibilities, @value{GDBN} copies your
1478partial input (@samp{b make_} in the example) so you can finish the
1479command.
1480
1481If you just want to see the list of alternatives in the first place, you
b37052ae 1482can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1483means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1484key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1485one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1486
1487@cindex quotes in commands
1488@cindex completion of quoted strings
1489Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1490parentheses or other characters that @value{GDBN} normally excludes from
1491its notion of a word. To permit word completion to work in this
1492situation, you may enclose words in @code{'} (single quote marks) in
1493@value{GDBN} commands.
c906108c 1494
c906108c 1495The most likely situation where you might need this is in typing the
b37052ae
EZ
1496name of a C@t{++} function. This is because C@t{++} allows function
1497overloading (multiple definitions of the same function, distinguished
1498by argument type). For example, when you want to set a breakpoint you
1499may need to distinguish whether you mean the version of @code{name}
1500that takes an @code{int} parameter, @code{name(int)}, or the version
1501that takes a @code{float} parameter, @code{name(float)}. To use the
1502word-completion facilities in this situation, type a single quote
1503@code{'} at the beginning of the function name. This alerts
1504@value{GDBN} that it may need to consider more information than usual
1505when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1506
474c8240 1507@smallexample
96a2c332 1508(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1509bubble(double,double) bubble(int,int)
1510(@value{GDBP}) b 'bubble(
474c8240 1511@end smallexample
c906108c
SS
1512
1513In some cases, @value{GDBN} can tell that completing a name requires using
1514quotes. When this happens, @value{GDBN} inserts the quote for you (while
1515completing as much as it can) if you do not type the quote in the first
1516place:
1517
474c8240 1518@smallexample
c906108c
SS
1519(@value{GDBP}) b bub @key{TAB}
1520@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1521(@value{GDBP}) b 'bubble(
474c8240 1522@end smallexample
c906108c
SS
1523
1524@noindent
1525In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1526you have not yet started typing the argument list when you ask for
1527completion on an overloaded symbol.
1528
79a6e687
BW
1529For more information about overloaded functions, see @ref{C Plus Plus
1530Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1531overload-resolution off} to disable overload resolution;
79a6e687 1532see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c 1533
65d12d83
TT
1534@cindex completion of structure field names
1535@cindex structure field name completion
1536@cindex completion of union field names
1537@cindex union field name completion
1538When completing in an expression which looks up a field in a
1539structure, @value{GDBN} also tries@footnote{The completer can be
1540confused by certain kinds of invalid expressions. Also, it only
1541examines the static type of the expression, not the dynamic type.} to
1542limit completions to the field names available in the type of the
1543left-hand-side:
1544
1545@smallexample
1546(@value{GDBP}) p gdb_stdout.@kbd{M-?}
1547magic to_delete to_fputs to_put to_rewind
1548to_data to_flush to_isatty to_read to_write
1549@end smallexample
1550
1551@noindent
1552This is because the @code{gdb_stdout} is a variable of the type
1553@code{struct ui_file} that is defined in @value{GDBN} sources as
1554follows:
1555
1556@smallexample
1557struct ui_file
1558@{
1559 int *magic;
1560 ui_file_flush_ftype *to_flush;
1561 ui_file_write_ftype *to_write;
1562 ui_file_fputs_ftype *to_fputs;
1563 ui_file_read_ftype *to_read;
1564 ui_file_delete_ftype *to_delete;
1565 ui_file_isatty_ftype *to_isatty;
1566 ui_file_rewind_ftype *to_rewind;
1567 ui_file_put_ftype *to_put;
1568 void *to_data;
1569@}
1570@end smallexample
1571
c906108c 1572
6d2ebf8b 1573@node Help
79a6e687 1574@section Getting Help
c906108c
SS
1575@cindex online documentation
1576@kindex help
1577
5d161b24 1578You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1579using the command @code{help}.
1580
1581@table @code
41afff9a 1582@kindex h @r{(@code{help})}
c906108c
SS
1583@item help
1584@itemx h
1585You can use @code{help} (abbreviated @code{h}) with no arguments to
1586display a short list of named classes of commands:
1587
1588@smallexample
1589(@value{GDBP}) help
1590List of classes of commands:
1591
2df3850c 1592aliases -- Aliases of other commands
c906108c 1593breakpoints -- Making program stop at certain points
2df3850c 1594data -- Examining data
c906108c 1595files -- Specifying and examining files
2df3850c
JM
1596internals -- Maintenance commands
1597obscure -- Obscure features
1598running -- Running the program
1599stack -- Examining the stack
c906108c
SS
1600status -- Status inquiries
1601support -- Support facilities
12c27660 1602tracepoints -- Tracing of program execution without
96a2c332 1603 stopping the program
c906108c 1604user-defined -- User-defined commands
c906108c 1605
5d161b24 1606Type "help" followed by a class name for a list of
c906108c 1607commands in that class.
5d161b24 1608Type "help" followed by command name for full
c906108c
SS
1609documentation.
1610Command name abbreviations are allowed if unambiguous.
1611(@value{GDBP})
1612@end smallexample
96a2c332 1613@c the above line break eliminates huge line overfull...
c906108c
SS
1614
1615@item help @var{class}
1616Using one of the general help classes as an argument, you can get a
1617list of the individual commands in that class. For example, here is the
1618help display for the class @code{status}:
1619
1620@smallexample
1621(@value{GDBP}) help status
1622Status inquiries.
1623
1624List of commands:
1625
1626@c Line break in "show" line falsifies real output, but needed
1627@c to fit in smallbook page size.
2df3850c 1628info -- Generic command for showing things
12c27660 1629 about the program being debugged
2df3850c 1630show -- Generic command for showing things
12c27660 1631 about the debugger
c906108c 1632
5d161b24 1633Type "help" followed by command name for full
c906108c
SS
1634documentation.
1635Command name abbreviations are allowed if unambiguous.
1636(@value{GDBP})
1637@end smallexample
1638
1639@item help @var{command}
1640With a command name as @code{help} argument, @value{GDBN} displays a
1641short paragraph on how to use that command.
1642
6837a0a2
DB
1643@kindex apropos
1644@item apropos @var{args}
09d4efe1 1645The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1646commands, and their documentation, for the regular expression specified in
1647@var{args}. It prints out all matches found. For example:
1648
1649@smallexample
1650apropos reload
1651@end smallexample
1652
b37052ae
EZ
1653@noindent
1654results in:
6837a0a2
DB
1655
1656@smallexample
6d2ebf8b
SS
1657@c @group
1658set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1659 multiple times in one run
6d2ebf8b 1660show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1661 multiple times in one run
6d2ebf8b 1662@c @end group
6837a0a2
DB
1663@end smallexample
1664
c906108c
SS
1665@kindex complete
1666@item complete @var{args}
1667The @code{complete @var{args}} command lists all the possible completions
1668for the beginning of a command. Use @var{args} to specify the beginning of the
1669command you want completed. For example:
1670
1671@smallexample
1672complete i
1673@end smallexample
1674
1675@noindent results in:
1676
1677@smallexample
1678@group
2df3850c
JM
1679if
1680ignore
c906108c
SS
1681info
1682inspect
c906108c
SS
1683@end group
1684@end smallexample
1685
1686@noindent This is intended for use by @sc{gnu} Emacs.
1687@end table
1688
1689In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1690and @code{show} to inquire about the state of your program, or the state
1691of @value{GDBN} itself. Each command supports many topics of inquiry; this
1692manual introduces each of them in the appropriate context. The listings
1693under @code{info} and under @code{show} in the Index point to
1694all the sub-commands. @xref{Index}.
1695
1696@c @group
1697@table @code
1698@kindex info
41afff9a 1699@kindex i @r{(@code{info})}
c906108c
SS
1700@item info
1701This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1702program. For example, you can show the arguments passed to a function
c906108c
SS
1703with @code{info args}, list the registers currently in use with @code{info
1704registers}, or list the breakpoints you have set with @code{info breakpoints}.
1705You can get a complete list of the @code{info} sub-commands with
1706@w{@code{help info}}.
1707
1708@kindex set
1709@item set
5d161b24 1710You can assign the result of an expression to an environment variable with
c906108c
SS
1711@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1712@code{set prompt $}.
1713
1714@kindex show
1715@item show
5d161b24 1716In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1717@value{GDBN} itself.
1718You can change most of the things you can @code{show}, by using the
1719related command @code{set}; for example, you can control what number
1720system is used for displays with @code{set radix}, or simply inquire
1721which is currently in use with @code{show radix}.
1722
1723@kindex info set
1724To display all the settable parameters and their current
1725values, you can use @code{show} with no arguments; you may also use
1726@code{info set}. Both commands produce the same display.
1727@c FIXME: "info set" violates the rule that "info" is for state of
1728@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1729@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1730@end table
1731@c @end group
1732
1733Here are three miscellaneous @code{show} subcommands, all of which are
1734exceptional in lacking corresponding @code{set} commands:
1735
1736@table @code
1737@kindex show version
9c16f35a 1738@cindex @value{GDBN} version number
c906108c
SS
1739@item show version
1740Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1741information in @value{GDBN} bug-reports. If multiple versions of
1742@value{GDBN} are in use at your site, you may need to determine which
1743version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1744commands are introduced, and old ones may wither away. Also, many
1745system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1746variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1747The version number is the same as the one announced when you start
1748@value{GDBN}.
c906108c
SS
1749
1750@kindex show copying
09d4efe1 1751@kindex info copying
9c16f35a 1752@cindex display @value{GDBN} copyright
c906108c 1753@item show copying
09d4efe1 1754@itemx info copying
c906108c
SS
1755Display information about permission for copying @value{GDBN}.
1756
1757@kindex show warranty
09d4efe1 1758@kindex info warranty
c906108c 1759@item show warranty
09d4efe1 1760@itemx info warranty
2df3850c 1761Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1762if your version of @value{GDBN} comes with one.
2df3850c 1763
c906108c
SS
1764@end table
1765
6d2ebf8b 1766@node Running
c906108c
SS
1767@chapter Running Programs Under @value{GDBN}
1768
1769When you run a program under @value{GDBN}, you must first generate
1770debugging information when you compile it.
7a292a7a
SS
1771
1772You may start @value{GDBN} with its arguments, if any, in an environment
1773of your choice. If you are doing native debugging, you may redirect
1774your program's input and output, debug an already running process, or
1775kill a child process.
c906108c
SS
1776
1777@menu
1778* Compilation:: Compiling for debugging
1779* Starting:: Starting your program
c906108c
SS
1780* Arguments:: Your program's arguments
1781* Environment:: Your program's environment
c906108c
SS
1782
1783* Working Directory:: Your program's working directory
1784* Input/Output:: Your program's input and output
1785* Attach:: Debugging an already-running process
1786* Kill Process:: Killing the child process
c906108c
SS
1787
1788* Threads:: Debugging programs with multiple threads
1789* Processes:: Debugging programs with multiple processes
5c95884b 1790* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1791@end menu
1792
6d2ebf8b 1793@node Compilation
79a6e687 1794@section Compiling for Debugging
c906108c
SS
1795
1796In order to debug a program effectively, you need to generate
1797debugging information when you compile it. This debugging information
1798is stored in the object file; it describes the data type of each
1799variable or function and the correspondence between source line numbers
1800and addresses in the executable code.
1801
1802To request debugging information, specify the @samp{-g} option when you run
1803the compiler.
1804
514c4d71
EZ
1805Programs that are to be shipped to your customers are compiled with
1806optimizations, using the @samp{-O} compiler option. However, many
1807compilers are unable to handle the @samp{-g} and @samp{-O} options
1808together. Using those compilers, you cannot generate optimized
c906108c
SS
1809executables containing debugging information.
1810
514c4d71 1811@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1812without @samp{-O}, making it possible to debug optimized code. We
1813recommend that you @emph{always} use @samp{-g} whenever you compile a
1814program. You may think your program is correct, but there is no sense
1815in pushing your luck.
c906108c
SS
1816
1817@cindex optimized code, debugging
1818@cindex debugging optimized code
1819When you debug a program compiled with @samp{-g -O}, remember that the
1820optimizer is rearranging your code; the debugger shows you what is
1821really there. Do not be too surprised when the execution path does not
1822exactly match your source file! An extreme example: if you define a
1823variable, but never use it, @value{GDBN} never sees that
1824variable---because the compiler optimizes it out of existence.
1825
1826Some things do not work as well with @samp{-g -O} as with just
1827@samp{-g}, particularly on machines with instruction scheduling. If in
1828doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1829please report it to us as a bug (including a test case!).
15387254 1830@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1831
1832Older versions of the @sc{gnu} C compiler permitted a variant option
1833@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1834format; if your @sc{gnu} C compiler has this option, do not use it.
1835
514c4d71
EZ
1836@value{GDBN} knows about preprocessor macros and can show you their
1837expansion (@pxref{Macros}). Most compilers do not include information
1838about preprocessor macros in the debugging information if you specify
1839the @option{-g} flag alone, because this information is rather large.
1840Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1841provides macro information if you specify the options
1842@option{-gdwarf-2} and @option{-g3}; the former option requests
1843debugging information in the Dwarf 2 format, and the latter requests
1844``extra information''. In the future, we hope to find more compact
1845ways to represent macro information, so that it can be included with
1846@option{-g} alone.
1847
c906108c 1848@need 2000
6d2ebf8b 1849@node Starting
79a6e687 1850@section Starting your Program
c906108c
SS
1851@cindex starting
1852@cindex running
1853
1854@table @code
1855@kindex run
41afff9a 1856@kindex r @r{(@code{run})}
c906108c
SS
1857@item run
1858@itemx r
7a292a7a
SS
1859Use the @code{run} command to start your program under @value{GDBN}.
1860You must first specify the program name (except on VxWorks) with an
1861argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1862@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1863(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1864
1865@end table
1866
c906108c
SS
1867If you are running your program in an execution environment that
1868supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1869that process run your program. In some environments without processes,
1870@code{run} jumps to the start of your program. Other targets,
1871like @samp{remote}, are always running. If you get an error
1872message like this one:
1873
1874@smallexample
1875The "remote" target does not support "run".
1876Try "help target" or "continue".
1877@end smallexample
1878
1879@noindent
1880then use @code{continue} to run your program. You may need @code{load}
1881first (@pxref{load}).
c906108c
SS
1882
1883The execution of a program is affected by certain information it
1884receives from its superior. @value{GDBN} provides ways to specify this
1885information, which you must do @emph{before} starting your program. (You
1886can change it after starting your program, but such changes only affect
1887your program the next time you start it.) This information may be
1888divided into four categories:
1889
1890@table @asis
1891@item The @emph{arguments.}
1892Specify the arguments to give your program as the arguments of the
1893@code{run} command. If a shell is available on your target, the shell
1894is used to pass the arguments, so that you may use normal conventions
1895(such as wildcard expansion or variable substitution) in describing
1896the arguments.
1897In Unix systems, you can control which shell is used with the
1898@code{SHELL} environment variable.
79a6e687 1899@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1900
1901@item The @emph{environment.}
1902Your program normally inherits its environment from @value{GDBN}, but you can
1903use the @value{GDBN} commands @code{set environment} and @code{unset
1904environment} to change parts of the environment that affect
79a6e687 1905your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1906
1907@item The @emph{working directory.}
1908Your program inherits its working directory from @value{GDBN}. You can set
1909the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1910@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1911
1912@item The @emph{standard input and output.}
1913Your program normally uses the same device for standard input and
1914standard output as @value{GDBN} is using. You can redirect input and output
1915in the @code{run} command line, or you can use the @code{tty} command to
1916set a different device for your program.
79a6e687 1917@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1918
1919@cindex pipes
1920@emph{Warning:} While input and output redirection work, you cannot use
1921pipes to pass the output of the program you are debugging to another
1922program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1923wrong program.
1924@end table
c906108c
SS
1925
1926When you issue the @code{run} command, your program begins to execute
79a6e687 1927immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1928of how to arrange for your program to stop. Once your program has
1929stopped, you may call functions in your program, using the @code{print}
1930or @code{call} commands. @xref{Data, ,Examining Data}.
1931
1932If the modification time of your symbol file has changed since the last
1933time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1934table, and reads it again. When it does this, @value{GDBN} tries to retain
1935your current breakpoints.
1936
4e8b0763
JB
1937@table @code
1938@kindex start
1939@item start
1940@cindex run to main procedure
1941The name of the main procedure can vary from language to language.
1942With C or C@t{++}, the main procedure name is always @code{main}, but
1943other languages such as Ada do not require a specific name for their
1944main procedure. The debugger provides a convenient way to start the
1945execution of the program and to stop at the beginning of the main
1946procedure, depending on the language used.
1947
1948The @samp{start} command does the equivalent of setting a temporary
1949breakpoint at the beginning of the main procedure and then invoking
1950the @samp{run} command.
1951
f018e82f
EZ
1952@cindex elaboration phase
1953Some programs contain an @dfn{elaboration} phase where some startup code is
1954executed before the main procedure is called. This depends on the
1955languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1956constructors for static and global objects are executed before
1957@code{main} is called. It is therefore possible that the debugger stops
1958before reaching the main procedure. However, the temporary breakpoint
1959will remain to halt execution.
1960
1961Specify the arguments to give to your program as arguments to the
1962@samp{start} command. These arguments will be given verbatim to the
1963underlying @samp{run} command. Note that the same arguments will be
1964reused if no argument is provided during subsequent calls to
1965@samp{start} or @samp{run}.
1966
1967It is sometimes necessary to debug the program during elaboration. In
1968these cases, using the @code{start} command would stop the execution of
1969your program too late, as the program would have already completed the
1970elaboration phase. Under these circumstances, insert breakpoints in your
1971elaboration code before running your program.
ccd213ac
DJ
1972
1973@kindex set exec-wrapper
1974@item set exec-wrapper @var{wrapper}
1975@itemx show exec-wrapper
1976@itemx unset exec-wrapper
1977When @samp{exec-wrapper} is set, the specified wrapper is used to
1978launch programs for debugging. @value{GDBN} starts your program
1979with a shell command of the form @kbd{exec @var{wrapper}
1980@var{program}}. Quoting is added to @var{program} and its
1981arguments, but not to @var{wrapper}, so you should add quotes if
1982appropriate for your shell. The wrapper runs until it executes
1983your program, and then @value{GDBN} takes control.
1984
1985You can use any program that eventually calls @code{execve} with
1986its arguments as a wrapper. Several standard Unix utilities do
1987this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1988with @code{exec "$@@"} will also work.
1989
1990For example, you can use @code{env} to pass an environment variable to
1991the debugged program, without setting the variable in your shell's
1992environment:
1993
1994@smallexample
1995(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1996(@value{GDBP}) run
1997@end smallexample
1998
1999This command is available when debugging locally on most targets, excluding
2000@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
2001
10568435
JK
2002@kindex set disable-randomization
2003@item set disable-randomization
2004@itemx set disable-randomization on
2005This option (enabled by default in @value{GDBN}) will turn off the native
2006randomization of the virtual address space of the started program. This option
2007is useful for multiple debugging sessions to make the execution better
2008reproducible and memory addresses reusable across debugging sessions.
2009
2010This feature is implemented only on @sc{gnu}/Linux. You can get the same
2011behavior using
2012
2013@smallexample
2014(@value{GDBP}) set exec-wrapper setarch `uname -m` -R
2015@end smallexample
2016
2017@item set disable-randomization off
2018Leave the behavior of the started executable unchanged. Some bugs rear their
2019ugly heads only when the program is loaded at certain addresses. If your bug
2020disappears when you run the program under @value{GDBN}, that might be because
2021@value{GDBN} by default disables the address randomization on platforms, such
2022as @sc{gnu}/Linux, which do that for stand-alone programs. Use @kbd{set
2023disable-randomization off} to try to reproduce such elusive bugs.
2024
2025The virtual address space randomization is implemented only on @sc{gnu}/Linux.
2026It protects the programs against some kinds of security attacks. In these
2027cases the attacker needs to know the exact location of a concrete executable
2028code. Randomizing its location makes it impossible to inject jumps misusing
2029a code at its expected addresses.
2030
2031Prelinking shared libraries provides a startup performance advantage but it
2032makes addresses in these libraries predictable for privileged processes by
2033having just unprivileged access at the target system. Reading the shared
2034library binary gives enough information for assembling the malicious code
2035misusing it. Still even a prelinked shared library can get loaded at a new
2036random address just requiring the regular relocation process during the
2037startup. Shared libraries not already prelinked are always loaded at
2038a randomly chosen address.
2039
2040Position independent executables (PIE) contain position independent code
2041similar to the shared libraries and therefore such executables get loaded at
2042a randomly chosen address upon startup. PIE executables always load even
2043already prelinked shared libraries at a random address. You can build such
2044executable using @command{gcc -fPIE -pie}.
2045
2046Heap (malloc storage), stack and custom mmap areas are always placed randomly
2047(as long as the randomization is enabled).
2048
2049@item show disable-randomization
2050Show the current setting of the explicit disable of the native randomization of
2051the virtual address space of the started program.
2052
4e8b0763
JB
2053@end table
2054
6d2ebf8b 2055@node Arguments
79a6e687 2056@section Your Program's Arguments
c906108c
SS
2057
2058@cindex arguments (to your program)
2059The arguments to your program can be specified by the arguments of the
5d161b24 2060@code{run} command.
c906108c
SS
2061They are passed to a shell, which expands wildcard characters and
2062performs redirection of I/O, and thence to your program. Your
2063@code{SHELL} environment variable (if it exists) specifies what shell
2064@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
2065the default shell (@file{/bin/sh} on Unix).
2066
2067On non-Unix systems, the program is usually invoked directly by
2068@value{GDBN}, which emulates I/O redirection via the appropriate system
2069calls, and the wildcard characters are expanded by the startup code of
2070the program, not by the shell.
c906108c
SS
2071
2072@code{run} with no arguments uses the same arguments used by the previous
2073@code{run}, or those set by the @code{set args} command.
2074
c906108c 2075@table @code
41afff9a 2076@kindex set args
c906108c
SS
2077@item set args
2078Specify the arguments to be used the next time your program is run. If
2079@code{set args} has no arguments, @code{run} executes your program
2080with no arguments. Once you have run your program with arguments,
2081using @code{set args} before the next @code{run} is the only way to run
2082it again without arguments.
2083
2084@kindex show args
2085@item show args
2086Show the arguments to give your program when it is started.
2087@end table
2088
6d2ebf8b 2089@node Environment
79a6e687 2090@section Your Program's Environment
c906108c
SS
2091
2092@cindex environment (of your program)
2093The @dfn{environment} consists of a set of environment variables and
2094their values. Environment variables conventionally record such things as
2095your user name, your home directory, your terminal type, and your search
2096path for programs to run. Usually you set up environment variables with
2097the shell and they are inherited by all the other programs you run. When
2098debugging, it can be useful to try running your program with a modified
2099environment without having to start @value{GDBN} over again.
2100
2101@table @code
2102@kindex path
2103@item path @var{directory}
2104Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2105(the search path for executables) that will be passed to your program.
2106The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2107You may specify several directory names, separated by whitespace or by a
2108system-dependent separator character (@samp{:} on Unix, @samp{;} on
2109MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2110is moved to the front, so it is searched sooner.
c906108c
SS
2111
2112You can use the string @samp{$cwd} to refer to whatever is the current
2113working directory at the time @value{GDBN} searches the path. If you
2114use @samp{.} instead, it refers to the directory where you executed the
2115@code{path} command. @value{GDBN} replaces @samp{.} in the
2116@var{directory} argument (with the current path) before adding
2117@var{directory} to the search path.
2118@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2119@c document that, since repeating it would be a no-op.
2120
2121@kindex show paths
2122@item show paths
2123Display the list of search paths for executables (the @code{PATH}
2124environment variable).
2125
2126@kindex show environment
2127@item show environment @r{[}@var{varname}@r{]}
2128Print the value of environment variable @var{varname} to be given to
2129your program when it starts. If you do not supply @var{varname},
2130print the names and values of all environment variables to be given to
2131your program. You can abbreviate @code{environment} as @code{env}.
2132
2133@kindex set environment
53a5351d 2134@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2135Set environment variable @var{varname} to @var{value}. The value
2136changes for your program only, not for @value{GDBN} itself. @var{value} may
2137be any string; the values of environment variables are just strings, and
2138any interpretation is supplied by your program itself. The @var{value}
2139parameter is optional; if it is eliminated, the variable is set to a
2140null value.
2141@c "any string" here does not include leading, trailing
2142@c blanks. Gnu asks: does anyone care?
2143
2144For example, this command:
2145
474c8240 2146@smallexample
c906108c 2147set env USER = foo
474c8240 2148@end smallexample
c906108c
SS
2149
2150@noindent
d4f3574e 2151tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2152@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2153are not actually required.)
2154
2155@kindex unset environment
2156@item unset environment @var{varname}
2157Remove variable @var{varname} from the environment to be passed to your
2158program. This is different from @samp{set env @var{varname} =};
2159@code{unset environment} removes the variable from the environment,
2160rather than assigning it an empty value.
2161@end table
2162
d4f3574e
SS
2163@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2164the shell indicated
c906108c
SS
2165by your @code{SHELL} environment variable if it exists (or
2166@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2167that runs an initialization file---such as @file{.cshrc} for C-shell, or
2168@file{.bashrc} for BASH---any variables you set in that file affect
2169your program. You may wish to move setting of environment variables to
2170files that are only run when you sign on, such as @file{.login} or
2171@file{.profile}.
2172
6d2ebf8b 2173@node Working Directory
79a6e687 2174@section Your Program's Working Directory
c906108c
SS
2175
2176@cindex working directory (of your program)
2177Each time you start your program with @code{run}, it inherits its
2178working directory from the current working directory of @value{GDBN}.
2179The @value{GDBN} working directory is initially whatever it inherited
2180from its parent process (typically the shell), but you can specify a new
2181working directory in @value{GDBN} with the @code{cd} command.
2182
2183The @value{GDBN} working directory also serves as a default for the commands
2184that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2185Specify Files}.
c906108c
SS
2186
2187@table @code
2188@kindex cd
721c2651 2189@cindex change working directory
c906108c
SS
2190@item cd @var{directory}
2191Set the @value{GDBN} working directory to @var{directory}.
2192
2193@kindex pwd
2194@item pwd
2195Print the @value{GDBN} working directory.
2196@end table
2197
60bf7e09
EZ
2198It is generally impossible to find the current working directory of
2199the process being debugged (since a program can change its directory
2200during its run). If you work on a system where @value{GDBN} is
2201configured with the @file{/proc} support, you can use the @code{info
2202proc} command (@pxref{SVR4 Process Information}) to find out the
2203current working directory of the debuggee.
2204
6d2ebf8b 2205@node Input/Output
79a6e687 2206@section Your Program's Input and Output
c906108c
SS
2207
2208@cindex redirection
2209@cindex i/o
2210@cindex terminal
2211By default, the program you run under @value{GDBN} does input and output to
5d161b24 2212the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2213to its own terminal modes to interact with you, but it records the terminal
2214modes your program was using and switches back to them when you continue
2215running your program.
2216
2217@table @code
2218@kindex info terminal
2219@item info terminal
2220Displays information recorded by @value{GDBN} about the terminal modes your
2221program is using.
2222@end table
2223
2224You can redirect your program's input and/or output using shell
2225redirection with the @code{run} command. For example,
2226
474c8240 2227@smallexample
c906108c 2228run > outfile
474c8240 2229@end smallexample
c906108c
SS
2230
2231@noindent
2232starts your program, diverting its output to the file @file{outfile}.
2233
2234@kindex tty
2235@cindex controlling terminal
2236Another way to specify where your program should do input and output is
2237with the @code{tty} command. This command accepts a file name as
2238argument, and causes this file to be the default for future @code{run}
2239commands. It also resets the controlling terminal for the child
2240process, for future @code{run} commands. For example,
2241
474c8240 2242@smallexample
c906108c 2243tty /dev/ttyb
474c8240 2244@end smallexample
c906108c
SS
2245
2246@noindent
2247directs that processes started with subsequent @code{run} commands
2248default to do input and output on the terminal @file{/dev/ttyb} and have
2249that as their controlling terminal.
2250
2251An explicit redirection in @code{run} overrides the @code{tty} command's
2252effect on the input/output device, but not its effect on the controlling
2253terminal.
2254
2255When you use the @code{tty} command or redirect input in the @code{run}
2256command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2257for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2258for @code{set inferior-tty}.
2259
2260@cindex inferior tty
2261@cindex set inferior controlling terminal
2262You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2263display the name of the terminal that will be used for future runs of your
2264program.
2265
2266@table @code
2267@item set inferior-tty /dev/ttyb
2268@kindex set inferior-tty
2269Set the tty for the program being debugged to /dev/ttyb.
2270
2271@item show inferior-tty
2272@kindex show inferior-tty
2273Show the current tty for the program being debugged.
2274@end table
c906108c 2275
6d2ebf8b 2276@node Attach
79a6e687 2277@section Debugging an Already-running Process
c906108c
SS
2278@kindex attach
2279@cindex attach
2280
2281@table @code
2282@item attach @var{process-id}
2283This command attaches to a running process---one that was started
2284outside @value{GDBN}. (@code{info files} shows your active
2285targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2286find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2287or with the @samp{jobs -l} shell command.
2288
2289@code{attach} does not repeat if you press @key{RET} a second time after
2290executing the command.
2291@end table
2292
2293To use @code{attach}, your program must be running in an environment
2294which supports processes; for example, @code{attach} does not work for
2295programs on bare-board targets that lack an operating system. You must
2296also have permission to send the process a signal.
2297
2298When you use @code{attach}, the debugger finds the program running in
2299the process first by looking in the current working directory, then (if
2300the program is not found) by using the source file search path
79a6e687 2301(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2302the @code{file} command to load the program. @xref{Files, ,Commands to
2303Specify Files}.
2304
2305The first thing @value{GDBN} does after arranging to debug the specified
2306process is to stop it. You can examine and modify an attached process
53a5351d
JM
2307with all the @value{GDBN} commands that are ordinarily available when
2308you start processes with @code{run}. You can insert breakpoints; you
2309can step and continue; you can modify storage. If you would rather the
2310process continue running, you may use the @code{continue} command after
c906108c
SS
2311attaching @value{GDBN} to the process.
2312
2313@table @code
2314@kindex detach
2315@item detach
2316When you have finished debugging the attached process, you can use the
2317@code{detach} command to release it from @value{GDBN} control. Detaching
2318the process continues its execution. After the @code{detach} command,
2319that process and @value{GDBN} become completely independent once more, and you
2320are ready to @code{attach} another process or start one with @code{run}.
2321@code{detach} does not repeat if you press @key{RET} again after
2322executing the command.
2323@end table
2324
159fcc13
JK
2325If you exit @value{GDBN} while you have an attached process, you detach
2326that process. If you use the @code{run} command, you kill that process.
2327By default, @value{GDBN} asks for confirmation if you try to do either of these
2328things; you can control whether or not you need to confirm by using the
2329@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2330Messages}).
c906108c 2331
6d2ebf8b 2332@node Kill Process
79a6e687 2333@section Killing the Child Process
c906108c
SS
2334
2335@table @code
2336@kindex kill
2337@item kill
2338Kill the child process in which your program is running under @value{GDBN}.
2339@end table
2340
2341This command is useful if you wish to debug a core dump instead of a
2342running process. @value{GDBN} ignores any core dump file while your program
2343is running.
2344
2345On some operating systems, a program cannot be executed outside @value{GDBN}
2346while you have breakpoints set on it inside @value{GDBN}. You can use the
2347@code{kill} command in this situation to permit running your program
2348outside the debugger.
2349
2350The @code{kill} command is also useful if you wish to recompile and
2351relink your program, since on many systems it is impossible to modify an
2352executable file while it is running in a process. In this case, when you
2353next type @code{run}, @value{GDBN} notices that the file has changed, and
2354reads the symbol table again (while trying to preserve your current
2355breakpoint settings).
2356
6d2ebf8b 2357@node Threads
79a6e687 2358@section Debugging Programs with Multiple Threads
c906108c
SS
2359
2360@cindex threads of execution
2361@cindex multiple threads
2362@cindex switching threads
2363In some operating systems, such as HP-UX and Solaris, a single program
2364may have more than one @dfn{thread} of execution. The precise semantics
2365of threads differ from one operating system to another, but in general
2366the threads of a single program are akin to multiple processes---except
2367that they share one address space (that is, they can all examine and
2368modify the same variables). On the other hand, each thread has its own
2369registers and execution stack, and perhaps private memory.
2370
2371@value{GDBN} provides these facilities for debugging multi-thread
2372programs:
2373
2374@itemize @bullet
2375@item automatic notification of new threads
2376@item @samp{thread @var{threadno}}, a command to switch among threads
2377@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2378@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2379a command to apply a command to a list of threads
2380@item thread-specific breakpoints
93815fbf
VP
2381@item @samp{set print thread-events}, which controls printing of
2382messages on thread start and exit.
c906108c
SS
2383@end itemize
2384
c906108c
SS
2385@quotation
2386@emph{Warning:} These facilities are not yet available on every
2387@value{GDBN} configuration where the operating system supports threads.
2388If your @value{GDBN} does not support threads, these commands have no
2389effect. For example, a system without thread support shows no output
2390from @samp{info threads}, and always rejects the @code{thread} command,
2391like this:
2392
2393@smallexample
2394(@value{GDBP}) info threads
2395(@value{GDBP}) thread 1
2396Thread ID 1 not known. Use the "info threads" command to
2397see the IDs of currently known threads.
2398@end smallexample
2399@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2400@c doesn't support threads"?
2401@end quotation
c906108c
SS
2402
2403@cindex focus of debugging
2404@cindex current thread
2405The @value{GDBN} thread debugging facility allows you to observe all
2406threads while your program runs---but whenever @value{GDBN} takes
2407control, one thread in particular is always the focus of debugging.
2408This thread is called the @dfn{current thread}. Debugging commands show
2409program information from the perspective of the current thread.
2410
41afff9a 2411@cindex @code{New} @var{systag} message
c906108c
SS
2412@cindex thread identifier (system)
2413@c FIXME-implementors!! It would be more helpful if the [New...] message
2414@c included GDB's numeric thread handle, so you could just go to that
2415@c thread without first checking `info threads'.
2416Whenever @value{GDBN} detects a new thread in your program, it displays
2417the target system's identification for the thread with a message in the
2418form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2419whose form varies depending on the particular system. For example, on
8807d78b 2420@sc{gnu}/Linux, you might see
c906108c 2421
474c8240 2422@smallexample
8807d78b 2423[New Thread 46912507313328 (LWP 25582)]
474c8240 2424@end smallexample
c906108c
SS
2425
2426@noindent
2427when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2428the @var{systag} is simply something like @samp{process 368}, with no
2429further qualifier.
2430
2431@c FIXME!! (1) Does the [New...] message appear even for the very first
2432@c thread of a program, or does it only appear for the
6ca652b0 2433@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2434@c program?
2435@c (2) *Is* there necessarily a first thread always? Or do some
2436@c multithread systems permit starting a program with multiple
5d161b24 2437@c threads ab initio?
c906108c
SS
2438
2439@cindex thread number
2440@cindex thread identifier (GDB)
2441For debugging purposes, @value{GDBN} associates its own thread
2442number---always a single integer---with each thread in your program.
2443
2444@table @code
2445@kindex info threads
2446@item info threads
2447Display a summary of all threads currently in your
2448program. @value{GDBN} displays for each thread (in this order):
2449
2450@enumerate
09d4efe1
EZ
2451@item
2452the thread number assigned by @value{GDBN}
c906108c 2453
09d4efe1
EZ
2454@item
2455the target system's thread identifier (@var{systag})
c906108c 2456
09d4efe1
EZ
2457@item
2458the current stack frame summary for that thread
c906108c
SS
2459@end enumerate
2460
2461@noindent
2462An asterisk @samp{*} to the left of the @value{GDBN} thread number
2463indicates the current thread.
2464
5d161b24 2465For example,
c906108c
SS
2466@end table
2467@c end table here to get a little more width for example
2468
2469@smallexample
2470(@value{GDBP}) info threads
2471 3 process 35 thread 27 0x34e5 in sigpause ()
2472 2 process 35 thread 23 0x34e5 in sigpause ()
2473* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2474 at threadtest.c:68
2475@end smallexample
53a5351d
JM
2476
2477On HP-UX systems:
c906108c 2478
4644b6e3
EZ
2479@cindex debugging multithreaded programs (on HP-UX)
2480@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2481For debugging purposes, @value{GDBN} associates its own thread
2482number---a small integer assigned in thread-creation order---with each
2483thread in your program.
2484
41afff9a
EZ
2485@cindex @code{New} @var{systag} message, on HP-UX
2486@cindex thread identifier (system), on HP-UX
c906108c
SS
2487@c FIXME-implementors!! It would be more helpful if the [New...] message
2488@c included GDB's numeric thread handle, so you could just go to that
2489@c thread without first checking `info threads'.
2490Whenever @value{GDBN} detects a new thread in your program, it displays
2491both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2492form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2493whose form varies depending on the particular system. For example, on
2494HP-UX, you see
2495
474c8240 2496@smallexample
c906108c 2497[New thread 2 (system thread 26594)]
474c8240 2498@end smallexample
c906108c
SS
2499
2500@noindent
5d161b24 2501when @value{GDBN} notices a new thread.
c906108c
SS
2502
2503@table @code
4644b6e3 2504@kindex info threads (HP-UX)
c906108c
SS
2505@item info threads
2506Display a summary of all threads currently in your
2507program. @value{GDBN} displays for each thread (in this order):
2508
2509@enumerate
2510@item the thread number assigned by @value{GDBN}
2511
2512@item the target system's thread identifier (@var{systag})
2513
2514@item the current stack frame summary for that thread
2515@end enumerate
2516
2517@noindent
2518An asterisk @samp{*} to the left of the @value{GDBN} thread number
2519indicates the current thread.
2520
5d161b24 2521For example,
c906108c
SS
2522@end table
2523@c end table here to get a little more width for example
2524
474c8240 2525@smallexample
c906108c 2526(@value{GDBP}) info threads
6d2ebf8b
SS
2527 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2528 at quicksort.c:137
2529 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2530 from /usr/lib/libc.2
2531 1 system thread 27905 0x7b003498 in _brk () \@*
2532 from /usr/lib/libc.2
474c8240 2533@end smallexample
c906108c 2534
c45da7e6
EZ
2535On Solaris, you can display more information about user threads with a
2536Solaris-specific command:
2537
2538@table @code
2539@item maint info sol-threads
2540@kindex maint info sol-threads
2541@cindex thread info (Solaris)
2542Display info on Solaris user threads.
2543@end table
2544
c906108c
SS
2545@table @code
2546@kindex thread @var{threadno}
2547@item thread @var{threadno}
2548Make thread number @var{threadno} the current thread. The command
2549argument @var{threadno} is the internal @value{GDBN} thread number, as
2550shown in the first field of the @samp{info threads} display.
2551@value{GDBN} responds by displaying the system identifier of the thread
2552you selected, and its current stack frame summary:
2553
2554@smallexample
2555@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2556(@value{GDBP}) thread 2
c906108c 2557[Switching to process 35 thread 23]
c906108c
SS
25580x34e5 in sigpause ()
2559@end smallexample
2560
2561@noindent
2562As with the @samp{[New @dots{}]} message, the form of the text after
2563@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2564threads.
c906108c 2565
9c16f35a 2566@kindex thread apply
638ac427 2567@cindex apply command to several threads
839c27b7
EZ
2568@item thread apply [@var{threadno}] [@var{all}] @var{command}
2569The @code{thread apply} command allows you to apply the named
2570@var{command} to one or more threads. Specify the numbers of the
2571threads that you want affected with the command argument
2572@var{threadno}. It can be a single thread number, one of the numbers
2573shown in the first field of the @samp{info threads} display; or it
2574could be a range of thread numbers, as in @code{2-4}. To apply a
2575command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2576
2577@kindex set print thread-events
2578@cindex print messages on thread start and exit
2579@item set print thread-events
2580@itemx set print thread-events on
2581@itemx set print thread-events off
2582The @code{set print thread-events} command allows you to enable or
2583disable printing of messages when @value{GDBN} notices that new threads have
2584started or that threads have exited. By default, these messages will
2585be printed if detection of these events is supported by the target.
2586Note that these messages cannot be disabled on all targets.
2587
2588@kindex show print thread-events
2589@item show print thread-events
2590Show whether messages will be printed when @value{GDBN} detects that threads
2591have started and exited.
c906108c
SS
2592@end table
2593
2594@cindex automatic thread selection
2595@cindex switching threads automatically
2596@cindex threads, automatic switching
2597Whenever @value{GDBN} stops your program, due to a breakpoint or a
2598signal, it automatically selects the thread where that breakpoint or
2599signal happened. @value{GDBN} alerts you to the context switch with a
2600message of the form @samp{[Switching to @var{systag}]} to identify the
2601thread.
2602
79a6e687 2603@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2604more information about how @value{GDBN} behaves when you stop and start
2605programs with multiple threads.
2606
79a6e687 2607@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2608watchpoints in programs with multiple threads.
c906108c 2609
6d2ebf8b 2610@node Processes
79a6e687 2611@section Debugging Programs with Multiple Processes
c906108c
SS
2612
2613@cindex fork, debugging programs which call
2614@cindex multiple processes
2615@cindex processes, multiple
53a5351d
JM
2616On most systems, @value{GDBN} has no special support for debugging
2617programs which create additional processes using the @code{fork}
2618function. When a program forks, @value{GDBN} will continue to debug the
2619parent process and the child process will run unimpeded. If you have
2620set a breakpoint in any code which the child then executes, the child
2621will get a @code{SIGTRAP} signal which (unless it catches the signal)
2622will cause it to terminate.
c906108c
SS
2623
2624However, if you want to debug the child process there is a workaround
2625which isn't too painful. Put a call to @code{sleep} in the code which
2626the child process executes after the fork. It may be useful to sleep
2627only if a certain environment variable is set, or a certain file exists,
2628so that the delay need not occur when you don't want to run @value{GDBN}
2629on the child. While the child is sleeping, use the @code{ps} program to
2630get its process ID. Then tell @value{GDBN} (a new invocation of
2631@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2632the child process (@pxref{Attach}). From that point on you can debug
c906108c 2633the child process just like any other process which you attached to.
c906108c 2634
b51970ac
DJ
2635On some systems, @value{GDBN} provides support for debugging programs that
2636create additional processes using the @code{fork} or @code{vfork} functions.
2637Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2638only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2639
2640By default, when a program forks, @value{GDBN} will continue to debug
2641the parent process and the child process will run unimpeded.
2642
2643If you want to follow the child process instead of the parent process,
2644use the command @w{@code{set follow-fork-mode}}.
2645
2646@table @code
2647@kindex set follow-fork-mode
2648@item set follow-fork-mode @var{mode}
2649Set the debugger response to a program call of @code{fork} or
2650@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2651process. The @var{mode} argument can be:
c906108c
SS
2652
2653@table @code
2654@item parent
2655The original process is debugged after a fork. The child process runs
2df3850c 2656unimpeded. This is the default.
c906108c
SS
2657
2658@item child
2659The new process is debugged after a fork. The parent process runs
2660unimpeded.
2661
c906108c
SS
2662@end table
2663
9c16f35a 2664@kindex show follow-fork-mode
c906108c 2665@item show follow-fork-mode
2df3850c 2666Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2667@end table
2668
5c95884b
MS
2669@cindex debugging multiple processes
2670On Linux, if you want to debug both the parent and child processes, use the
2671command @w{@code{set detach-on-fork}}.
2672
2673@table @code
2674@kindex set detach-on-fork
2675@item set detach-on-fork @var{mode}
2676Tells gdb whether to detach one of the processes after a fork, or
2677retain debugger control over them both.
2678
2679@table @code
2680@item on
2681The child process (or parent process, depending on the value of
2682@code{follow-fork-mode}) will be detached and allowed to run
2683independently. This is the default.
2684
2685@item off
2686Both processes will be held under the control of @value{GDBN}.
2687One process (child or parent, depending on the value of
2688@code{follow-fork-mode}) is debugged as usual, while the other
2689is held suspended.
2690
2691@end table
2692
11310833
NR
2693@kindex show detach-on-fork
2694@item show detach-on-fork
2695Show whether detach-on-fork mode is on/off.
5c95884b
MS
2696@end table
2697
11310833 2698If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2699@value{GDBN} will retain control of all forked processes (including
2700nested forks). You can list the forked processes under the control of
2701@value{GDBN} by using the @w{@code{info forks}} command, and switch
2702from one fork to another by using the @w{@code{fork}} command.
2703
2704@table @code
2705@kindex info forks
2706@item info forks
2707Print a list of all forked processes under the control of @value{GDBN}.
2708The listing will include a fork id, a process id, and the current
2709position (program counter) of the process.
2710
5c95884b
MS
2711@kindex fork @var{fork-id}
2712@item fork @var{fork-id}
2713Make fork number @var{fork-id} the current process. The argument
2714@var{fork-id} is the internal fork number assigned by @value{GDBN},
2715as shown in the first field of the @samp{info forks} display.
2716
11310833
NR
2717@kindex process @var{process-id}
2718@item process @var{process-id}
2719Make process number @var{process-id} the current process. The
2720argument @var{process-id} must be one that is listed in the output of
2721@samp{info forks}.
2722
5c95884b
MS
2723@end table
2724
2725To quit debugging one of the forked processes, you can either detach
f73adfeb 2726from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2727run independently), or delete (and kill) it using the
b8db102d 2728@w{@code{delete fork}} command.
5c95884b
MS
2729
2730@table @code
f73adfeb
AS
2731@kindex detach fork @var{fork-id}
2732@item detach fork @var{fork-id}
5c95884b
MS
2733Detach from the process identified by @value{GDBN} fork number
2734@var{fork-id}, and remove it from the fork list. The process will be
2735allowed to run independently.
2736
b8db102d
MS
2737@kindex delete fork @var{fork-id}
2738@item delete fork @var{fork-id}
5c95884b
MS
2739Kill the process identified by @value{GDBN} fork number @var{fork-id},
2740and remove it from the fork list.
2741
2742@end table
2743
c906108c
SS
2744If you ask to debug a child process and a @code{vfork} is followed by an
2745@code{exec}, @value{GDBN} executes the new target up to the first
2746breakpoint in the new target. If you have a breakpoint set on
2747@code{main} in your original program, the breakpoint will also be set on
2748the child process's @code{main}.
2749
2750When a child process is spawned by @code{vfork}, you cannot debug the
2751child or parent until an @code{exec} call completes.
2752
2753If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2754call executes, the new target restarts. To restart the parent process,
2755use the @code{file} command with the parent executable name as its
2756argument.
2757
2758You can use the @code{catch} command to make @value{GDBN} stop whenever
2759a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2760Catchpoints, ,Setting Catchpoints}.
c906108c 2761
5c95884b 2762@node Checkpoint/Restart
79a6e687 2763@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2764
2765@cindex checkpoint
2766@cindex restart
2767@cindex bookmark
2768@cindex snapshot of a process
2769@cindex rewind program state
2770
2771On certain operating systems@footnote{Currently, only
2772@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2773program's state, called a @dfn{checkpoint}, and come back to it
2774later.
2775
2776Returning to a checkpoint effectively undoes everything that has
2777happened in the program since the @code{checkpoint} was saved. This
2778includes changes in memory, registers, and even (within some limits)
2779system state. Effectively, it is like going back in time to the
2780moment when the checkpoint was saved.
2781
2782Thus, if you're stepping thru a program and you think you're
2783getting close to the point where things go wrong, you can save
2784a checkpoint. Then, if you accidentally go too far and miss
2785the critical statement, instead of having to restart your program
2786from the beginning, you can just go back to the checkpoint and
2787start again from there.
2788
2789This can be especially useful if it takes a lot of time or
2790steps to reach the point where you think the bug occurs.
2791
2792To use the @code{checkpoint}/@code{restart} method of debugging:
2793
2794@table @code
2795@kindex checkpoint
2796@item checkpoint
2797Save a snapshot of the debugged program's current execution state.
2798The @code{checkpoint} command takes no arguments, but each checkpoint
2799is assigned a small integer id, similar to a breakpoint id.
2800
2801@kindex info checkpoints
2802@item info checkpoints
2803List the checkpoints that have been saved in the current debugging
2804session. For each checkpoint, the following information will be
2805listed:
2806
2807@table @code
2808@item Checkpoint ID
2809@item Process ID
2810@item Code Address
2811@item Source line, or label
2812@end table
2813
2814@kindex restart @var{checkpoint-id}
2815@item restart @var{checkpoint-id}
2816Restore the program state that was saved as checkpoint number
2817@var{checkpoint-id}. All program variables, registers, stack frames
2818etc.@: will be returned to the values that they had when the checkpoint
2819was saved. In essence, gdb will ``wind back the clock'' to the point
2820in time when the checkpoint was saved.
2821
2822Note that breakpoints, @value{GDBN} variables, command history etc.
2823are not affected by restoring a checkpoint. In general, a checkpoint
2824only restores things that reside in the program being debugged, not in
2825the debugger.
2826
b8db102d
MS
2827@kindex delete checkpoint @var{checkpoint-id}
2828@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2829Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2830
2831@end table
2832
2833Returning to a previously saved checkpoint will restore the user state
2834of the program being debugged, plus a significant subset of the system
2835(OS) state, including file pointers. It won't ``un-write'' data from
2836a file, but it will rewind the file pointer to the previous location,
2837so that the previously written data can be overwritten. For files
2838opened in read mode, the pointer will also be restored so that the
2839previously read data can be read again.
2840
2841Of course, characters that have been sent to a printer (or other
2842external device) cannot be ``snatched back'', and characters received
2843from eg.@: a serial device can be removed from internal program buffers,
2844but they cannot be ``pushed back'' into the serial pipeline, ready to
2845be received again. Similarly, the actual contents of files that have
2846been changed cannot be restored (at this time).
2847
2848However, within those constraints, you actually can ``rewind'' your
2849program to a previously saved point in time, and begin debugging it
2850again --- and you can change the course of events so as to debug a
2851different execution path this time.
2852
2853@cindex checkpoints and process id
2854Finally, there is one bit of internal program state that will be
2855different when you return to a checkpoint --- the program's process
2856id. Each checkpoint will have a unique process id (or @var{pid}),
2857and each will be different from the program's original @var{pid}.
2858If your program has saved a local copy of its process id, this could
2859potentially pose a problem.
2860
79a6e687 2861@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2862
2863On some systems such as @sc{gnu}/Linux, address space randomization
2864is performed on new processes for security reasons. This makes it
2865difficult or impossible to set a breakpoint, or watchpoint, on an
2866absolute address if you have to restart the program, since the
2867absolute location of a symbol will change from one execution to the
2868next.
2869
2870A checkpoint, however, is an @emph{identical} copy of a process.
2871Therefore if you create a checkpoint at (eg.@:) the start of main,
2872and simply return to that checkpoint instead of restarting the
2873process, you can avoid the effects of address randomization and
2874your symbols will all stay in the same place.
2875
6d2ebf8b 2876@node Stopping
c906108c
SS
2877@chapter Stopping and Continuing
2878
2879The principal purposes of using a debugger are so that you can stop your
2880program before it terminates; or so that, if your program runs into
2881trouble, you can investigate and find out why.
2882
7a292a7a
SS
2883Inside @value{GDBN}, your program may stop for any of several reasons,
2884such as a signal, a breakpoint, or reaching a new line after a
2885@value{GDBN} command such as @code{step}. You may then examine and
2886change variables, set new breakpoints or remove old ones, and then
2887continue execution. Usually, the messages shown by @value{GDBN} provide
2888ample explanation of the status of your program---but you can also
2889explicitly request this information at any time.
c906108c
SS
2890
2891@table @code
2892@kindex info program
2893@item info program
2894Display information about the status of your program: whether it is
7a292a7a 2895running or not, what process it is, and why it stopped.
c906108c
SS
2896@end table
2897
2898@menu
2899* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2900* Continuing and Stepping:: Resuming execution
c906108c 2901* Signals:: Signals
c906108c 2902* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2903@end menu
2904
6d2ebf8b 2905@node Breakpoints
79a6e687 2906@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2907
2908@cindex breakpoints
2909A @dfn{breakpoint} makes your program stop whenever a certain point in
2910the program is reached. For each breakpoint, you can add conditions to
2911control in finer detail whether your program stops. You can set
2912breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2913Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2914should stop by line number, function name or exact address in the
2915program.
2916
09d4efe1
EZ
2917On some systems, you can set breakpoints in shared libraries before
2918the executable is run. There is a minor limitation on HP-UX systems:
2919you must wait until the executable is run in order to set breakpoints
2920in shared library routines that are not called directly by the program
2921(for example, routines that are arguments in a @code{pthread_create}
2922call).
c906108c
SS
2923
2924@cindex watchpoints
fd60e0df 2925@cindex data breakpoints
c906108c
SS
2926@cindex memory tracing
2927@cindex breakpoint on memory address
2928@cindex breakpoint on variable modification
2929A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2930when the value of an expression changes. The expression may be a value
0ced0c34 2931of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2932combined by operators, such as @samp{a + b}. This is sometimes called
2933@dfn{data breakpoints}. You must use a different command to set
79a6e687 2934watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2935from that, you can manage a watchpoint like any other breakpoint: you
2936enable, disable, and delete both breakpoints and watchpoints using the
2937same commands.
c906108c
SS
2938
2939You can arrange to have values from your program displayed automatically
2940whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2941Automatic Display}.
c906108c
SS
2942
2943@cindex catchpoints
2944@cindex breakpoint on events
2945A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2946when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2947exception or the loading of a library. As with watchpoints, you use a
2948different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2949Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2950other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2951@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2952
2953@cindex breakpoint numbers
2954@cindex numbers for breakpoints
2955@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2956catchpoint when you create it; these numbers are successive integers
2957starting with one. In many of the commands for controlling various
2958features of breakpoints you use the breakpoint number to say which
2959breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2960@dfn{disabled}; if disabled, it has no effect on your program until you
2961enable it again.
2962
c5394b80
JM
2963@cindex breakpoint ranges
2964@cindex ranges of breakpoints
2965Some @value{GDBN} commands accept a range of breakpoints on which to
2966operate. A breakpoint range is either a single breakpoint number, like
2967@samp{5}, or two such numbers, in increasing order, separated by a
2968hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2969all breakpoints in that range are operated on.
c5394b80 2970
c906108c
SS
2971@menu
2972* Set Breaks:: Setting breakpoints
2973* Set Watchpoints:: Setting watchpoints
2974* Set Catchpoints:: Setting catchpoints
2975* Delete Breaks:: Deleting breakpoints
2976* Disabling:: Disabling breakpoints
2977* Conditions:: Break conditions
2978* Break Commands:: Breakpoint command lists
d4f3574e 2979* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2980* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2981@end menu
2982
6d2ebf8b 2983@node Set Breaks
79a6e687 2984@subsection Setting Breakpoints
c906108c 2985
5d161b24 2986@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2987@c consider in particular declaration with/without initialization.
2988@c
2989@c FIXME 2 is there stuff on this already? break at fun start, already init?
2990
2991@kindex break
41afff9a
EZ
2992@kindex b @r{(@code{break})}
2993@vindex $bpnum@r{, convenience variable}
c906108c
SS
2994@cindex latest breakpoint
2995Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2996@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2997number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2998Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2999convenience variables.
3000
c906108c 3001@table @code
2a25a5ba
EZ
3002@item break @var{location}
3003Set a breakpoint at the given @var{location}, which can specify a
3004function name, a line number, or an address of an instruction.
3005(@xref{Specify Location}, for a list of all the possible ways to
3006specify a @var{location}.) The breakpoint will stop your program just
3007before it executes any of the code in the specified @var{location}.
3008
c906108c 3009When using source languages that permit overloading of symbols, such as
2a25a5ba 3010C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
3011@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
3012that situation.
c906108c 3013
c906108c
SS
3014@item break
3015When called without any arguments, @code{break} sets a breakpoint at
3016the next instruction to be executed in the selected stack frame
3017(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
3018innermost, this makes your program stop as soon as control
3019returns to that frame. This is similar to the effect of a
3020@code{finish} command in the frame inside the selected frame---except
3021that @code{finish} does not leave an active breakpoint. If you use
3022@code{break} without an argument in the innermost frame, @value{GDBN} stops
3023the next time it reaches the current location; this may be useful
3024inside loops.
3025
3026@value{GDBN} normally ignores breakpoints when it resumes execution, until at
3027least one instruction has been executed. If it did not do this, you
3028would be unable to proceed past a breakpoint without first disabling the
3029breakpoint. This rule applies whether or not the breakpoint already
3030existed when your program stopped.
3031
3032@item break @dots{} if @var{cond}
3033Set a breakpoint with condition @var{cond}; evaluate the expression
3034@var{cond} each time the breakpoint is reached, and stop only if the
3035value is nonzero---that is, if @var{cond} evaluates as true.
3036@samp{@dots{}} stands for one of the possible arguments described
3037above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 3038,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
3039
3040@kindex tbreak
3041@item tbreak @var{args}
3042Set a breakpoint enabled only for one stop. @var{args} are the
3043same as for the @code{break} command, and the breakpoint is set in the same
3044way, but the breakpoint is automatically deleted after the first time your
79a6e687 3045program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 3046
c906108c 3047@kindex hbreak
ba04e063 3048@cindex hardware breakpoints
c906108c 3049@item hbreak @var{args}
d4f3574e
SS
3050Set a hardware-assisted breakpoint. @var{args} are the same as for the
3051@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
3052breakpoint requires hardware support and some target hardware may not
3053have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
3054debugging, so you can set a breakpoint at an instruction without
3055changing the instruction. This can be used with the new trap-generation
09d4efe1 3056provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
3057will generate traps when a program accesses some data or instruction
3058address that is assigned to the debug registers. However the hardware
3059breakpoint registers can take a limited number of breakpoints. For
3060example, on the DSU, only two data breakpoints can be set at a time, and
3061@value{GDBN} will reject this command if more than two are used. Delete
3062or disable unused hardware breakpoints before setting new ones
79a6e687
BW
3063(@pxref{Disabling, ,Disabling Breakpoints}).
3064@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
3065For remote targets, you can restrict the number of hardware
3066breakpoints @value{GDBN} will use, see @ref{set remote
3067hardware-breakpoint-limit}.
501eef12 3068
c906108c
SS
3069@kindex thbreak
3070@item thbreak @var{args}
3071Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
3072are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 3073the same way. However, like the @code{tbreak} command,
c906108c
SS
3074the breakpoint is automatically deleted after the
3075first time your program stops there. Also, like the @code{hbreak}
5d161b24 3076command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
3077may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
3078See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
3079
3080@kindex rbreak
3081@cindex regular expression
c45da7e6
EZ
3082@cindex breakpoints in functions matching a regexp
3083@cindex set breakpoints in many functions
c906108c 3084@item rbreak @var{regex}
c906108c 3085Set breakpoints on all functions matching the regular expression
11cf8741
JM
3086@var{regex}. This command sets an unconditional breakpoint on all
3087matches, printing a list of all breakpoints it set. Once these
3088breakpoints are set, they are treated just like the breakpoints set with
3089the @code{break} command. You can delete them, disable them, or make
3090them conditional the same way as any other breakpoint.
3091
3092The syntax of the regular expression is the standard one used with tools
3093like @file{grep}. Note that this is different from the syntax used by
3094shells, so for instance @code{foo*} matches all functions that include
3095an @code{fo} followed by zero or more @code{o}s. There is an implicit
3096@code{.*} leading and trailing the regular expression you supply, so to
3097match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 3098
f7dc1244 3099@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3100When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3101breakpoints on overloaded functions that are not members of any special
3102classes.
c906108c 3103
f7dc1244
EZ
3104@cindex set breakpoints on all functions
3105The @code{rbreak} command can be used to set breakpoints in
3106@strong{all} the functions in a program, like this:
3107
3108@smallexample
3109(@value{GDBP}) rbreak .
3110@end smallexample
3111
c906108c
SS
3112@kindex info breakpoints
3113@cindex @code{$_} and @code{info breakpoints}
3114@item info breakpoints @r{[}@var{n}@r{]}
3115@itemx info break @r{[}@var{n}@r{]}
3116@itemx info watchpoints @r{[}@var{n}@r{]}
3117Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3118not deleted. Optional argument @var{n} means print information only
3119about the specified breakpoint (or watchpoint or catchpoint). For
3120each breakpoint, following columns are printed:
c906108c
SS
3121
3122@table @emph
3123@item Breakpoint Numbers
3124@item Type
3125Breakpoint, watchpoint, or catchpoint.
3126@item Disposition
3127Whether the breakpoint is marked to be disabled or deleted when hit.
3128@item Enabled or Disabled
3129Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3130that are not enabled.
c906108c 3131@item Address
fe6fbf8b 3132Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3133pending breakpoint whose address is not yet known, this field will
3134contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3135library that has the symbol or line referred by breakpoint is loaded.
3136See below for details. A breakpoint with several locations will
3b784c4f 3137have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3138@item What
3139Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3140line number. For a pending breakpoint, the original string passed to
3141the breakpoint command will be listed as it cannot be resolved until
3142the appropriate shared library is loaded in the future.
c906108c
SS
3143@end table
3144
3145@noindent
3146If a breakpoint is conditional, @code{info break} shows the condition on
3147the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3148are listed after that. A pending breakpoint is allowed to have a condition
3149specified for it. The condition is not parsed for validity until a shared
3150library is loaded that allows the pending breakpoint to resolve to a
3151valid location.
c906108c
SS
3152
3153@noindent
3154@code{info break} with a breakpoint
3155number @var{n} as argument lists only that breakpoint. The
3156convenience variable @code{$_} and the default examining-address for
3157the @code{x} command are set to the address of the last breakpoint
79a6e687 3158listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3159
3160@noindent
3161@code{info break} displays a count of the number of times the breakpoint
3162has been hit. This is especially useful in conjunction with the
3163@code{ignore} command. You can ignore a large number of breakpoint
3164hits, look at the breakpoint info to see how many times the breakpoint
3165was hit, and then run again, ignoring one less than that number. This
3166will get you quickly to the last hit of that breakpoint.
3167@end table
3168
3169@value{GDBN} allows you to set any number of breakpoints at the same place in
3170your program. There is nothing silly or meaningless about this. When
3171the breakpoints are conditional, this is even useful
79a6e687 3172(@pxref{Conditions, ,Break Conditions}).
c906108c 3173
2e9132cc
EZ
3174@cindex multiple locations, breakpoints
3175@cindex breakpoints, multiple locations
fcda367b 3176It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3177in your program. Examples of this situation are:
3178
3179@itemize @bullet
fe6fbf8b
VP
3180@item
3181For a C@t{++} constructor, the @value{NGCC} compiler generates several
3182instances of the function body, used in different cases.
3183
3184@item
3185For a C@t{++} template function, a given line in the function can
3186correspond to any number of instantiations.
3187
3188@item
3189For an inlined function, a given source line can correspond to
3190several places where that function is inlined.
fe6fbf8b
VP
3191@end itemize
3192
3193In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3194the relevant locations@footnote{
3195As of this writing, multiple-location breakpoints work only if there's
3196line number information for all the locations. This means that they
3197will generally not work in system libraries, unless you have debug
3198info with line numbers for them.}.
fe6fbf8b 3199
3b784c4f
EZ
3200A breakpoint with multiple locations is displayed in the breakpoint
3201table using several rows---one header row, followed by one row for
3202each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3203address column. The rows for individual locations contain the actual
3204addresses for locations, and show the functions to which those
3205locations belong. The number column for a location is of the form
fe6fbf8b
VP
3206@var{breakpoint-number}.@var{location-number}.
3207
3208For example:
3b784c4f 3209
fe6fbf8b
VP
3210@smallexample
3211Num Type Disp Enb Address What
32121 breakpoint keep y <MULTIPLE>
3213 stop only if i==1
3214 breakpoint already hit 1 time
32151.1 y 0x080486a2 in void foo<int>() at t.cc:8
32161.2 y 0x080486ca in void foo<double>() at t.cc:8
3217@end smallexample
3218
3219Each location can be individually enabled or disabled by passing
3220@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3221@code{enable} and @code{disable} commands. Note that you cannot
3222delete the individual locations from the list, you can only delete the
16bfc218 3223entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3224the @kbd{delete @var{num}} command, where @var{num} is the number of
3225the parent breakpoint, 1 in the above example). Disabling or enabling
3226the parent breakpoint (@pxref{Disabling}) affects all of the locations
3227that belong to that breakpoint.
fe6fbf8b 3228
2650777c 3229@cindex pending breakpoints
fe6fbf8b 3230It's quite common to have a breakpoint inside a shared library.
3b784c4f 3231Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3232and possibly repeatedly, as the program is executed. To support
3233this use case, @value{GDBN} updates breakpoint locations whenever
3234any shared library is loaded or unloaded. Typically, you would
fcda367b 3235set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3236debugging session, when the library is not loaded, and when the
3237symbols from the library are not available. When you try to set
3238breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3239a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3240is not yet resolved.
3241
3242After the program is run, whenever a new shared library is loaded,
3243@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3244shared library contains the symbol or line referred to by some
3245pending breakpoint, that breakpoint is resolved and becomes an
3246ordinary breakpoint. When a library is unloaded, all breakpoints
3247that refer to its symbols or source lines become pending again.
3248
3249This logic works for breakpoints with multiple locations, too. For
3250example, if you have a breakpoint in a C@t{++} template function, and
3251a newly loaded shared library has an instantiation of that template,
3252a new location is added to the list of locations for the breakpoint.
3253
3254Except for having unresolved address, pending breakpoints do not
3255differ from regular breakpoints. You can set conditions or commands,
3256enable and disable them and perform other breakpoint operations.
3257
3258@value{GDBN} provides some additional commands for controlling what
3259happens when the @samp{break} command cannot resolve breakpoint
3260address specification to an address:
dd79a6cf
JJ
3261
3262@kindex set breakpoint pending
3263@kindex show breakpoint pending
3264@table @code
3265@item set breakpoint pending auto
3266This is the default behavior. When @value{GDBN} cannot find the breakpoint
3267location, it queries you whether a pending breakpoint should be created.
3268
3269@item set breakpoint pending on
3270This indicates that an unrecognized breakpoint location should automatically
3271result in a pending breakpoint being created.
3272
3273@item set breakpoint pending off
3274This indicates that pending breakpoints are not to be created. Any
3275unrecognized breakpoint location results in an error. This setting does
3276not affect any pending breakpoints previously created.
3277
3278@item show breakpoint pending
3279Show the current behavior setting for creating pending breakpoints.
3280@end table
2650777c 3281
fe6fbf8b
VP
3282The settings above only affect the @code{break} command and its
3283variants. Once breakpoint is set, it will be automatically updated
3284as shared libraries are loaded and unloaded.
2650777c 3285
765dc015
VP
3286@cindex automatic hardware breakpoints
3287For some targets, @value{GDBN} can automatically decide if hardware or
3288software breakpoints should be used, depending on whether the
3289breakpoint address is read-only or read-write. This applies to
3290breakpoints set with the @code{break} command as well as to internal
3291breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3292breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3293breakpoints.
3294
3295You can control this automatic behaviour with the following commands::
3296
3297@kindex set breakpoint auto-hw
3298@kindex show breakpoint auto-hw
3299@table @code
3300@item set breakpoint auto-hw on
3301This is the default behavior. When @value{GDBN} sets a breakpoint, it
3302will try to use the target memory map to decide if software or hardware
3303breakpoint must be used.
3304
3305@item set breakpoint auto-hw off
3306This indicates @value{GDBN} should not automatically select breakpoint
3307type. If the target provides a memory map, @value{GDBN} will warn when
3308trying to set software breakpoint at a read-only address.
3309@end table
3310
74960c60
VP
3311@value{GDBN} normally implements breakpoints by replacing the program code
3312at the breakpoint address with a special instruction, which, when
3313executed, given control to the debugger. By default, the program
3314code is so modified only when the program is resumed. As soon as
3315the program stops, @value{GDBN} restores the original instructions. This
3316behaviour guards against leaving breakpoints inserted in the
3317target should gdb abrubptly disconnect. However, with slow remote
3318targets, inserting and removing breakpoint can reduce the performance.
3319This behavior can be controlled with the following commands::
3320
3321@kindex set breakpoint always-inserted
3322@kindex show breakpoint always-inserted
3323@table @code
3324@item set breakpoint always-inserted off
3325This is the default behaviour. All breakpoints, including newly added
3326by the user, are inserted in the target only when the target is
3327resumed. All breakpoints are removed from the target when it stops.
3328
3329@item set breakpoint always-inserted on
3330Causes all breakpoints to be inserted in the target at all times. If
3331the user adds a new breakpoint, or changes an existing breakpoint, the
3332breakpoints in the target are updated immediately. A breakpoint is
3333removed from the target only when breakpoint itself is removed.
3334@end table
765dc015 3335
c906108c
SS
3336@cindex negative breakpoint numbers
3337@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3338@value{GDBN} itself sometimes sets breakpoints in your program for
3339special purposes, such as proper handling of @code{longjmp} (in C
3340programs). These internal breakpoints are assigned negative numbers,
3341starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3342You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3343@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3344
3345
6d2ebf8b 3346@node Set Watchpoints
79a6e687 3347@subsection Setting Watchpoints
c906108c
SS
3348
3349@cindex setting watchpoints
c906108c
SS
3350You can use a watchpoint to stop execution whenever the value of an
3351expression changes, without having to predict a particular place where
fd60e0df
EZ
3352this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3353The expression may be as simple as the value of a single variable, or
3354as complex as many variables combined by operators. Examples include:
3355
3356@itemize @bullet
3357@item
3358A reference to the value of a single variable.
3359
3360@item
3361An address cast to an appropriate data type. For example,
3362@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3363address (assuming an @code{int} occupies 4 bytes).
3364
3365@item
3366An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3367expression can use any operators valid in the program's native
3368language (@pxref{Languages}).
3369@end itemize
c906108c 3370
fa4727a6
DJ
3371You can set a watchpoint on an expression even if the expression can
3372not be evaluated yet. For instance, you can set a watchpoint on
3373@samp{*global_ptr} before @samp{global_ptr} is initialized.
3374@value{GDBN} will stop when your program sets @samp{global_ptr} and
3375the expression produces a valid value. If the expression becomes
3376valid in some other way than changing a variable (e.g.@: if the memory
3377pointed to by @samp{*global_ptr} becomes readable as the result of a
3378@code{malloc} call), @value{GDBN} may not stop until the next time
3379the expression changes.
3380
82f2d802
EZ
3381@cindex software watchpoints
3382@cindex hardware watchpoints
c906108c 3383Depending on your system, watchpoints may be implemented in software or
2df3850c 3384hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3385program and testing the variable's value each time, which is hundreds of
3386times slower than normal execution. (But this may still be worth it, to
3387catch errors where you have no clue what part of your program is the
3388culprit.)
3389
37e4754d 3390On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3391x86-based targets, @value{GDBN} includes support for hardware
3392watchpoints, which do not slow down the running of your program.
c906108c
SS
3393
3394@table @code
3395@kindex watch
d8b2a693 3396@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3397Set a watchpoint for an expression. @value{GDBN} will break when the
3398expression @var{expr} is written into by the program and its value
3399changes. The simplest (and the most popular) use of this command is
3400to watch the value of a single variable:
3401
3402@smallexample
3403(@value{GDBP}) watch foo
3404@end smallexample
c906108c 3405
d8b2a693
JB
3406If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3407clause, @value{GDBN} breaks only when the thread identified by
3408@var{threadnum} changes the value of @var{expr}. If any other threads
3409change the value of @var{expr}, @value{GDBN} will not break. Note
3410that watchpoints restricted to a single thread in this way only work
3411with Hardware Watchpoints.
3412
c906108c 3413@kindex rwatch
d8b2a693 3414@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3415Set a watchpoint that will break when the value of @var{expr} is read
3416by the program.
c906108c
SS
3417
3418@kindex awatch
d8b2a693 3419@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3420Set a watchpoint that will break when @var{expr} is either read from
3421or written into by the program.
c906108c 3422
45ac1734 3423@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3424@item info watchpoints
3425This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3426it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3427@end table
3428
3429@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3430watchpoints execute very quickly, and the debugger reports a change in
3431value at the exact instruction where the change occurs. If @value{GDBN}
3432cannot set a hardware watchpoint, it sets a software watchpoint, which
3433executes more slowly and reports the change in value at the next
82f2d802
EZ
3434@emph{statement}, not the instruction, after the change occurs.
3435
82f2d802
EZ
3436@cindex use only software watchpoints
3437You can force @value{GDBN} to use only software watchpoints with the
3438@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3439zero, @value{GDBN} will never try to use hardware watchpoints, even if
3440the underlying system supports them. (Note that hardware-assisted
3441watchpoints that were set @emph{before} setting
3442@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3443mechanism of watching expression values.)
c906108c 3444
9c16f35a
EZ
3445@table @code
3446@item set can-use-hw-watchpoints
3447@kindex set can-use-hw-watchpoints
3448Set whether or not to use hardware watchpoints.
3449
3450@item show can-use-hw-watchpoints
3451@kindex show can-use-hw-watchpoints
3452Show the current mode of using hardware watchpoints.
3453@end table
3454
3455For remote targets, you can restrict the number of hardware
3456watchpoints @value{GDBN} will use, see @ref{set remote
3457hardware-breakpoint-limit}.
3458
c906108c
SS
3459When you issue the @code{watch} command, @value{GDBN} reports
3460
474c8240 3461@smallexample
c906108c 3462Hardware watchpoint @var{num}: @var{expr}
474c8240 3463@end smallexample
c906108c
SS
3464
3465@noindent
3466if it was able to set a hardware watchpoint.
3467
7be570e7
JM
3468Currently, the @code{awatch} and @code{rwatch} commands can only set
3469hardware watchpoints, because accesses to data that don't change the
3470value of the watched expression cannot be detected without examining
3471every instruction as it is being executed, and @value{GDBN} does not do
3472that currently. If @value{GDBN} finds that it is unable to set a
3473hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3474will print a message like this:
3475
3476@smallexample
3477Expression cannot be implemented with read/access watchpoint.
3478@end smallexample
3479
3480Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3481data type of the watched expression is wider than what a hardware
3482watchpoint on the target machine can handle. For example, some systems
3483can only watch regions that are up to 4 bytes wide; on such systems you
3484cannot set hardware watchpoints for an expression that yields a
3485double-precision floating-point number (which is typically 8 bytes
3486wide). As a work-around, it might be possible to break the large region
3487into a series of smaller ones and watch them with separate watchpoints.
3488
3489If you set too many hardware watchpoints, @value{GDBN} might be unable
3490to insert all of them when you resume the execution of your program.
3491Since the precise number of active watchpoints is unknown until such
3492time as the program is about to be resumed, @value{GDBN} might not be
3493able to warn you about this when you set the watchpoints, and the
3494warning will be printed only when the program is resumed:
3495
3496@smallexample
3497Hardware watchpoint @var{num}: Could not insert watchpoint
3498@end smallexample
3499
3500@noindent
3501If this happens, delete or disable some of the watchpoints.
3502
fd60e0df
EZ
3503Watching complex expressions that reference many variables can also
3504exhaust the resources available for hardware-assisted watchpoints.
3505That's because @value{GDBN} needs to watch every variable in the
3506expression with separately allocated resources.
3507
c906108c 3508If you call a function interactively using @code{print} or @code{call},
2df3850c 3509any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3510kind of breakpoint or the call completes.
3511
7be570e7
JM
3512@value{GDBN} automatically deletes watchpoints that watch local
3513(automatic) variables, or expressions that involve such variables, when
3514they go out of scope, that is, when the execution leaves the block in
3515which these variables were defined. In particular, when the program
3516being debugged terminates, @emph{all} local variables go out of scope,
3517and so only watchpoints that watch global variables remain set. If you
3518rerun the program, you will need to set all such watchpoints again. One
3519way of doing that would be to set a code breakpoint at the entry to the
3520@code{main} function and when it breaks, set all the watchpoints.
3521
c906108c
SS
3522@cindex watchpoints and threads
3523@cindex threads and watchpoints
d983da9c
DJ
3524In multi-threaded programs, watchpoints will detect changes to the
3525watched expression from every thread.
3526
3527@quotation
3528@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3529have only limited usefulness. If @value{GDBN} creates a software
3530watchpoint, it can only watch the value of an expression @emph{in a
3531single thread}. If you are confident that the expression can only
3532change due to the current thread's activity (and if you are also
3533confident that no other thread can become current), then you can use
3534software watchpoints as usual. However, @value{GDBN} may not notice
3535when a non-current thread's activity changes the expression. (Hardware
3536watchpoints, in contrast, watch an expression in all threads.)
c906108c 3537@end quotation
c906108c 3538
501eef12
AC
3539@xref{set remote hardware-watchpoint-limit}.
3540
6d2ebf8b 3541@node Set Catchpoints
79a6e687 3542@subsection Setting Catchpoints
d4f3574e 3543@cindex catchpoints, setting
c906108c
SS
3544@cindex exception handlers
3545@cindex event handling
3546
3547You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3548kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3549shared library. Use the @code{catch} command to set a catchpoint.
3550
3551@table @code
3552@kindex catch
3553@item catch @var{event}
3554Stop when @var{event} occurs. @var{event} can be any of the following:
3555@table @code
3556@item throw
4644b6e3 3557@cindex stop on C@t{++} exceptions
b37052ae 3558The throwing of a C@t{++} exception.
c906108c
SS
3559
3560@item catch
b37052ae 3561The catching of a C@t{++} exception.
c906108c 3562
8936fcda
JB
3563@item exception
3564@cindex Ada exception catching
3565@cindex catch Ada exceptions
3566An Ada exception being raised. If an exception name is specified
3567at the end of the command (eg @code{catch exception Program_Error}),
3568the debugger will stop only when this specific exception is raised.
3569Otherwise, the debugger stops execution when any Ada exception is raised.
3570
3571@item exception unhandled
3572An exception that was raised but is not handled by the program.
3573
3574@item assert
3575A failed Ada assertion.
3576
c906108c 3577@item exec
4644b6e3 3578@cindex break on fork/exec
5ee187d7
DJ
3579A call to @code{exec}. This is currently only available for HP-UX
3580and @sc{gnu}/Linux.
c906108c
SS
3581
3582@item fork
5ee187d7
DJ
3583A call to @code{fork}. This is currently only available for HP-UX
3584and @sc{gnu}/Linux.
c906108c
SS
3585
3586@item vfork
5ee187d7
DJ
3587A call to @code{vfork}. This is currently only available for HP-UX
3588and @sc{gnu}/Linux.
c906108c
SS
3589
3590@item load
3591@itemx load @var{libname}
4644b6e3 3592@cindex break on load/unload of shared library
c906108c
SS
3593The dynamic loading of any shared library, or the loading of the library
3594@var{libname}. This is currently only available for HP-UX.
3595
3596@item unload
3597@itemx unload @var{libname}
c906108c
SS
3598The unloading of any dynamically loaded shared library, or the unloading
3599of the library @var{libname}. This is currently only available for HP-UX.
3600@end table
3601
3602@item tcatch @var{event}
3603Set a catchpoint that is enabled only for one stop. The catchpoint is
3604automatically deleted after the first time the event is caught.
3605
3606@end table
3607
3608Use the @code{info break} command to list the current catchpoints.
3609
b37052ae 3610There are currently some limitations to C@t{++} exception handling
c906108c
SS
3611(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3612
3613@itemize @bullet
3614@item
3615If you call a function interactively, @value{GDBN} normally returns
3616control to you when the function has finished executing. If the call
3617raises an exception, however, the call may bypass the mechanism that
3618returns control to you and cause your program either to abort or to
3619simply continue running until it hits a breakpoint, catches a signal
3620that @value{GDBN} is listening for, or exits. This is the case even if
3621you set a catchpoint for the exception; catchpoints on exceptions are
3622disabled within interactive calls.
3623
3624@item
3625You cannot raise an exception interactively.
3626
3627@item
3628You cannot install an exception handler interactively.
3629@end itemize
3630
3631@cindex raise exceptions
3632Sometimes @code{catch} is not the best way to debug exception handling:
3633if you need to know exactly where an exception is raised, it is better to
3634stop @emph{before} the exception handler is called, since that way you
3635can see the stack before any unwinding takes place. If you set a
3636breakpoint in an exception handler instead, it may not be easy to find
3637out where the exception was raised.
3638
3639To stop just before an exception handler is called, you need some
b37052ae 3640knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3641raised by calling a library function named @code{__raise_exception}
3642which has the following ANSI C interface:
3643
474c8240 3644@smallexample
c906108c 3645 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3646 @var{id} is the exception identifier. */
3647 void __raise_exception (void **addr, void *id);
474c8240 3648@end smallexample
c906108c
SS
3649
3650@noindent
3651To make the debugger catch all exceptions before any stack
3652unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3653(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3654
79a6e687 3655With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3656that depends on the value of @var{id}, you can stop your program when
3657a specific exception is raised. You can use multiple conditional
3658breakpoints to stop your program when any of a number of exceptions are
3659raised.
3660
3661
6d2ebf8b 3662@node Delete Breaks
79a6e687 3663@subsection Deleting Breakpoints
c906108c
SS
3664
3665@cindex clearing breakpoints, watchpoints, catchpoints
3666@cindex deleting breakpoints, watchpoints, catchpoints
3667It is often necessary to eliminate a breakpoint, watchpoint, or
3668catchpoint once it has done its job and you no longer want your program
3669to stop there. This is called @dfn{deleting} the breakpoint. A
3670breakpoint that has been deleted no longer exists; it is forgotten.
3671
3672With the @code{clear} command you can delete breakpoints according to
3673where they are in your program. With the @code{delete} command you can
3674delete individual breakpoints, watchpoints, or catchpoints by specifying
3675their breakpoint numbers.
3676
3677It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3678automatically ignores breakpoints on the first instruction to be executed
3679when you continue execution without changing the execution address.
3680
3681@table @code
3682@kindex clear
3683@item clear
3684Delete any breakpoints at the next instruction to be executed in the
79a6e687 3685selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3686the innermost frame is selected, this is a good way to delete a
3687breakpoint where your program just stopped.
3688
2a25a5ba
EZ
3689@item clear @var{location}
3690Delete any breakpoints set at the specified @var{location}.
3691@xref{Specify Location}, for the various forms of @var{location}; the
3692most useful ones are listed below:
3693
3694@table @code
c906108c
SS
3695@item clear @var{function}
3696@itemx clear @var{filename}:@var{function}
09d4efe1 3697Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3698
3699@item clear @var{linenum}
3700@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3701Delete any breakpoints set at or within the code of the specified
3702@var{linenum} of the specified @var{filename}.
2a25a5ba 3703@end table
c906108c
SS
3704
3705@cindex delete breakpoints
3706@kindex delete
41afff9a 3707@kindex d @r{(@code{delete})}
c5394b80
JM
3708@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3709Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3710ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3711breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3712confirm off}). You can abbreviate this command as @code{d}.
3713@end table
3714
6d2ebf8b 3715@node Disabling
79a6e687 3716@subsection Disabling Breakpoints
c906108c 3717
4644b6e3 3718@cindex enable/disable a breakpoint
c906108c
SS
3719Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3720prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3721it had been deleted, but remembers the information on the breakpoint so
3722that you can @dfn{enable} it again later.
3723
3724You disable and enable breakpoints, watchpoints, and catchpoints with
3725the @code{enable} and @code{disable} commands, optionally specifying one
3726or more breakpoint numbers as arguments. Use @code{info break} or
3727@code{info watch} to print a list of breakpoints, watchpoints, and
3728catchpoints if you do not know which numbers to use.
3729
3b784c4f
EZ
3730Disabling and enabling a breakpoint that has multiple locations
3731affects all of its locations.
3732
c906108c
SS
3733A breakpoint, watchpoint, or catchpoint can have any of four different
3734states of enablement:
3735
3736@itemize @bullet
3737@item
3738Enabled. The breakpoint stops your program. A breakpoint set
3739with the @code{break} command starts out in this state.
3740@item
3741Disabled. The breakpoint has no effect on your program.
3742@item
3743Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3744disabled.
c906108c
SS
3745@item
3746Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3747immediately after it does so it is deleted permanently. A breakpoint
3748set with the @code{tbreak} command starts out in this state.
c906108c
SS
3749@end itemize
3750
3751You can use the following commands to enable or disable breakpoints,
3752watchpoints, and catchpoints:
3753
3754@table @code
c906108c 3755@kindex disable
41afff9a 3756@kindex dis @r{(@code{disable})}
c5394b80 3757@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3758Disable the specified breakpoints---or all breakpoints, if none are
3759listed. A disabled breakpoint has no effect but is not forgotten. All
3760options such as ignore-counts, conditions and commands are remembered in
3761case the breakpoint is enabled again later. You may abbreviate
3762@code{disable} as @code{dis}.
3763
c906108c 3764@kindex enable
c5394b80 3765@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3766Enable the specified breakpoints (or all defined breakpoints). They
3767become effective once again in stopping your program.
3768
c5394b80 3769@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3770Enable the specified breakpoints temporarily. @value{GDBN} disables any
3771of these breakpoints immediately after stopping your program.
3772
c5394b80 3773@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3774Enable the specified breakpoints to work once, then die. @value{GDBN}
3775deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3776Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3777@end table
3778
d4f3574e
SS
3779@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3780@c confusing: tbreak is also initially enabled.
c906108c 3781Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3782,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3783subsequently, they become disabled or enabled only when you use one of
3784the commands above. (The command @code{until} can set and delete a
3785breakpoint of its own, but it does not change the state of your other
3786breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3787Stepping}.)
c906108c 3788
6d2ebf8b 3789@node Conditions
79a6e687 3790@subsection Break Conditions
c906108c
SS
3791@cindex conditional breakpoints
3792@cindex breakpoint conditions
3793
3794@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3795@c in particular for a watchpoint?
c906108c
SS
3796The simplest sort of breakpoint breaks every time your program reaches a
3797specified place. You can also specify a @dfn{condition} for a
3798breakpoint. A condition is just a Boolean expression in your
3799programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3800a condition evaluates the expression each time your program reaches it,
3801and your program stops only if the condition is @emph{true}.
3802
3803This is the converse of using assertions for program validation; in that
3804situation, you want to stop when the assertion is violated---that is,
3805when the condition is false. In C, if you want to test an assertion expressed
3806by the condition @var{assert}, you should set the condition
3807@samp{! @var{assert}} on the appropriate breakpoint.
3808
3809Conditions are also accepted for watchpoints; you may not need them,
3810since a watchpoint is inspecting the value of an expression anyhow---but
3811it might be simpler, say, to just set a watchpoint on a variable name,
3812and specify a condition that tests whether the new value is an interesting
3813one.
3814
3815Break conditions can have side effects, and may even call functions in
3816your program. This can be useful, for example, to activate functions
3817that log program progress, or to use your own print functions to
3818format special data structures. The effects are completely predictable
3819unless there is another enabled breakpoint at the same address. (In
3820that case, @value{GDBN} might see the other breakpoint first and stop your
3821program without checking the condition of this one.) Note that
d4f3574e
SS
3822breakpoint commands are usually more convenient and flexible than break
3823conditions for the
c906108c 3824purpose of performing side effects when a breakpoint is reached
79a6e687 3825(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3826
3827Break conditions can be specified when a breakpoint is set, by using
3828@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3829Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3830with the @code{condition} command.
53a5351d 3831
c906108c
SS
3832You can also use the @code{if} keyword with the @code{watch} command.
3833The @code{catch} command does not recognize the @code{if} keyword;
3834@code{condition} is the only way to impose a further condition on a
3835catchpoint.
c906108c
SS
3836
3837@table @code
3838@kindex condition
3839@item condition @var{bnum} @var{expression}
3840Specify @var{expression} as the break condition for breakpoint,
3841watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3842breakpoint @var{bnum} stops your program only if the value of
3843@var{expression} is true (nonzero, in C). When you use
3844@code{condition}, @value{GDBN} checks @var{expression} immediately for
3845syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3846referents in the context of your breakpoint. If @var{expression} uses
3847symbols not referenced in the context of the breakpoint, @value{GDBN}
3848prints an error message:
3849
474c8240 3850@smallexample
d4f3574e 3851No symbol "foo" in current context.
474c8240 3852@end smallexample
d4f3574e
SS
3853
3854@noindent
c906108c
SS
3855@value{GDBN} does
3856not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3857command (or a command that sets a breakpoint with a condition, like
3858@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3859
3860@item condition @var{bnum}
3861Remove the condition from breakpoint number @var{bnum}. It becomes
3862an ordinary unconditional breakpoint.
3863@end table
3864
3865@cindex ignore count (of breakpoint)
3866A special case of a breakpoint condition is to stop only when the
3867breakpoint has been reached a certain number of times. This is so
3868useful that there is a special way to do it, using the @dfn{ignore
3869count} of the breakpoint. Every breakpoint has an ignore count, which
3870is an integer. Most of the time, the ignore count is zero, and
3871therefore has no effect. But if your program reaches a breakpoint whose
3872ignore count is positive, then instead of stopping, it just decrements
3873the ignore count by one and continues. As a result, if the ignore count
3874value is @var{n}, the breakpoint does not stop the next @var{n} times
3875your program reaches it.
3876
3877@table @code
3878@kindex ignore
3879@item ignore @var{bnum} @var{count}
3880Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3881The next @var{count} times the breakpoint is reached, your program's
3882execution does not stop; other than to decrement the ignore count, @value{GDBN}
3883takes no action.
3884
3885To make the breakpoint stop the next time it is reached, specify
3886a count of zero.
3887
3888When you use @code{continue} to resume execution of your program from a
3889breakpoint, you can specify an ignore count directly as an argument to
3890@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3891Stepping,,Continuing and Stepping}.
c906108c
SS
3892
3893If a breakpoint has a positive ignore count and a condition, the
3894condition is not checked. Once the ignore count reaches zero,
3895@value{GDBN} resumes checking the condition.
3896
3897You could achieve the effect of the ignore count with a condition such
3898as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3899is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3900Variables}.
c906108c
SS
3901@end table
3902
3903Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3904
3905
6d2ebf8b 3906@node Break Commands
79a6e687 3907@subsection Breakpoint Command Lists
c906108c
SS
3908
3909@cindex breakpoint commands
3910You can give any breakpoint (or watchpoint or catchpoint) a series of
3911commands to execute when your program stops due to that breakpoint. For
3912example, you might want to print the values of certain expressions, or
3913enable other breakpoints.
3914
3915@table @code
3916@kindex commands
ca91424e 3917@kindex end@r{ (breakpoint commands)}
c906108c
SS
3918@item commands @r{[}@var{bnum}@r{]}
3919@itemx @dots{} @var{command-list} @dots{}
3920@itemx end
3921Specify a list of commands for breakpoint number @var{bnum}. The commands
3922themselves appear on the following lines. Type a line containing just
3923@code{end} to terminate the commands.
3924
3925To remove all commands from a breakpoint, type @code{commands} and
3926follow it immediately with @code{end}; that is, give no commands.
3927
3928With no @var{bnum} argument, @code{commands} refers to the last
3929breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3930recently encountered).
3931@end table
3932
3933Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3934disabled within a @var{command-list}.
3935
3936You can use breakpoint commands to start your program up again. Simply
3937use the @code{continue} command, or @code{step}, or any other command
3938that resumes execution.
3939
3940Any other commands in the command list, after a command that resumes
3941execution, are ignored. This is because any time you resume execution
3942(even with a simple @code{next} or @code{step}), you may encounter
3943another breakpoint---which could have its own command list, leading to
3944ambiguities about which list to execute.
3945
3946@kindex silent
3947If the first command you specify in a command list is @code{silent}, the
3948usual message about stopping at a breakpoint is not printed. This may
3949be desirable for breakpoints that are to print a specific message and
3950then continue. If none of the remaining commands print anything, you
3951see no sign that the breakpoint was reached. @code{silent} is
3952meaningful only at the beginning of a breakpoint command list.
3953
3954The commands @code{echo}, @code{output}, and @code{printf} allow you to
3955print precisely controlled output, and are often useful in silent
79a6e687 3956breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3957
3958For example, here is how you could use breakpoint commands to print the
3959value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3960
474c8240 3961@smallexample
c906108c
SS
3962break foo if x>0
3963commands
3964silent
3965printf "x is %d\n",x
3966cont
3967end
474c8240 3968@end smallexample
c906108c
SS
3969
3970One application for breakpoint commands is to compensate for one bug so
3971you can test for another. Put a breakpoint just after the erroneous line
3972of code, give it a condition to detect the case in which something
3973erroneous has been done, and give it commands to assign correct values
3974to any variables that need them. End with the @code{continue} command
3975so that your program does not stop, and start with the @code{silent}
3976command so that no output is produced. Here is an example:
3977
474c8240 3978@smallexample
c906108c
SS
3979break 403
3980commands
3981silent
3982set x = y + 4
3983cont
3984end
474c8240 3985@end smallexample
c906108c 3986
c906108c 3987@c @ifclear BARETARGET
6d2ebf8b 3988@node Error in Breakpoints
d4f3574e 3989@subsection ``Cannot insert breakpoints''
c906108c
SS
3990@c
3991@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3992@c
d4f3574e
SS
3993Under some operating systems, breakpoints cannot be used in a program if
3994any other process is running that program. In this situation,
5d161b24 3995attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3996@value{GDBN} to print an error message:
3997
474c8240 3998@smallexample
d4f3574e
SS
3999Cannot insert breakpoints.
4000The same program may be running in another process.
474c8240 4001@end smallexample
d4f3574e
SS
4002
4003When this happens, you have three ways to proceed:
4004
4005@enumerate
4006@item
4007Remove or disable the breakpoints, then continue.
4008
4009@item
5d161b24 4010Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 4011name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 4012that @value{GDBN} should run your program under that name.
d4f3574e
SS
4013Then start your program again.
4014
4015@item
4016Relink your program so that the text segment is nonsharable, using the
4017linker option @samp{-N}. The operating system limitation may not apply
4018to nonsharable executables.
4019@end enumerate
c906108c
SS
4020@c @end ifclear
4021
d4f3574e
SS
4022A similar message can be printed if you request too many active
4023hardware-assisted breakpoints and watchpoints:
4024
4025@c FIXME: the precise wording of this message may change; the relevant
4026@c source change is not committed yet (Sep 3, 1999).
4027@smallexample
4028Stopped; cannot insert breakpoints.
4029You may have requested too many hardware breakpoints and watchpoints.
4030@end smallexample
4031
4032@noindent
4033This message is printed when you attempt to resume the program, since
4034only then @value{GDBN} knows exactly how many hardware breakpoints and
4035watchpoints it needs to insert.
4036
4037When this message is printed, you need to disable or remove some of the
4038hardware-assisted breakpoints and watchpoints, and then continue.
4039
79a6e687 4040@node Breakpoint-related Warnings
1485d690
KB
4041@subsection ``Breakpoint address adjusted...''
4042@cindex breakpoint address adjusted
4043
4044Some processor architectures place constraints on the addresses at
4045which breakpoints may be placed. For architectures thus constrained,
4046@value{GDBN} will attempt to adjust the breakpoint's address to comply
4047with the constraints dictated by the architecture.
4048
4049One example of such an architecture is the Fujitsu FR-V. The FR-V is
4050a VLIW architecture in which a number of RISC-like instructions may be
4051bundled together for parallel execution. The FR-V architecture
4052constrains the location of a breakpoint instruction within such a
4053bundle to the instruction with the lowest address. @value{GDBN}
4054honors this constraint by adjusting a breakpoint's address to the
4055first in the bundle.
4056
4057It is not uncommon for optimized code to have bundles which contain
4058instructions from different source statements, thus it may happen that
4059a breakpoint's address will be adjusted from one source statement to
4060another. Since this adjustment may significantly alter @value{GDBN}'s
4061breakpoint related behavior from what the user expects, a warning is
4062printed when the breakpoint is first set and also when the breakpoint
4063is hit.
4064
4065A warning like the one below is printed when setting a breakpoint
4066that's been subject to address adjustment:
4067
4068@smallexample
4069warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
4070@end smallexample
4071
4072Such warnings are printed both for user settable and @value{GDBN}'s
4073internal breakpoints. If you see one of these warnings, you should
4074verify that a breakpoint set at the adjusted address will have the
4075desired affect. If not, the breakpoint in question may be removed and
b383017d 4076other breakpoints may be set which will have the desired behavior.
1485d690
KB
4077E.g., it may be sufficient to place the breakpoint at a later
4078instruction. A conditional breakpoint may also be useful in some
4079cases to prevent the breakpoint from triggering too often.
4080
4081@value{GDBN} will also issue a warning when stopping at one of these
4082adjusted breakpoints:
4083
4084@smallexample
4085warning: Breakpoint 1 address previously adjusted from 0x00010414
4086to 0x00010410.
4087@end smallexample
4088
4089When this warning is encountered, it may be too late to take remedial
4090action except in cases where the breakpoint is hit earlier or more
4091frequently than expected.
d4f3574e 4092
6d2ebf8b 4093@node Continuing and Stepping
79a6e687 4094@section Continuing and Stepping
c906108c
SS
4095
4096@cindex stepping
4097@cindex continuing
4098@cindex resuming execution
4099@dfn{Continuing} means resuming program execution until your program
4100completes normally. In contrast, @dfn{stepping} means executing just
4101one more ``step'' of your program, where ``step'' may mean either one
4102line of source code, or one machine instruction (depending on what
7a292a7a
SS
4103particular command you use). Either when continuing or when stepping,
4104your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
4105it stops due to a signal, you may want to use @code{handle}, or use
4106@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
4107
4108@table @code
4109@kindex continue
41afff9a
EZ
4110@kindex c @r{(@code{continue})}
4111@kindex fg @r{(resume foreground execution)}
c906108c
SS
4112@item continue @r{[}@var{ignore-count}@r{]}
4113@itemx c @r{[}@var{ignore-count}@r{]}
4114@itemx fg @r{[}@var{ignore-count}@r{]}
4115Resume program execution, at the address where your program last stopped;
4116any breakpoints set at that address are bypassed. The optional argument
4117@var{ignore-count} allows you to specify a further number of times to
4118ignore a breakpoint at this location; its effect is like that of
79a6e687 4119@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4120
4121The argument @var{ignore-count} is meaningful only when your program
4122stopped due to a breakpoint. At other times, the argument to
4123@code{continue} is ignored.
4124
d4f3574e
SS
4125The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4126debugged program is deemed to be the foreground program) are provided
4127purely for convenience, and have exactly the same behavior as
4128@code{continue}.
c906108c
SS
4129@end table
4130
4131To resume execution at a different place, you can use @code{return}
79a6e687 4132(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4133calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4134Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4135
4136A typical technique for using stepping is to set a breakpoint
79a6e687 4137(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4138beginning of the function or the section of your program where a problem
4139is believed to lie, run your program until it stops at that breakpoint,
4140and then step through the suspect area, examining the variables that are
4141interesting, until you see the problem happen.
4142
4143@table @code
4144@kindex step
41afff9a 4145@kindex s @r{(@code{step})}
c906108c
SS
4146@item step
4147Continue running your program until control reaches a different source
4148line, then stop it and return control to @value{GDBN}. This command is
4149abbreviated @code{s}.
4150
4151@quotation
4152@c "without debugging information" is imprecise; actually "without line
4153@c numbers in the debugging information". (gcc -g1 has debugging info but
4154@c not line numbers). But it seems complex to try to make that
4155@c distinction here.
4156@emph{Warning:} If you use the @code{step} command while control is
4157within a function that was compiled without debugging information,
4158execution proceeds until control reaches a function that does have
4159debugging information. Likewise, it will not step into a function which
4160is compiled without debugging information. To step through functions
4161without debugging information, use the @code{stepi} command, described
4162below.
4163@end quotation
4164
4a92d011
EZ
4165The @code{step} command only stops at the first instruction of a source
4166line. This prevents the multiple stops that could otherwise occur in
4167@code{switch} statements, @code{for} loops, etc. @code{step} continues
4168to stop if a function that has debugging information is called within
4169the line. In other words, @code{step} @emph{steps inside} any functions
4170called within the line.
c906108c 4171
d4f3574e
SS
4172Also, the @code{step} command only enters a function if there is line
4173number information for the function. Otherwise it acts like the
5d161b24 4174@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4175on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4176was any debugging information about the routine.
c906108c
SS
4177
4178@item step @var{count}
4179Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4180breakpoint is reached, or a signal not related to stepping occurs before
4181@var{count} steps, stepping stops right away.
c906108c
SS
4182
4183@kindex next
41afff9a 4184@kindex n @r{(@code{next})}
c906108c
SS
4185@item next @r{[}@var{count}@r{]}
4186Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4187This is similar to @code{step}, but function calls that appear within
4188the line of code are executed without stopping. Execution stops when
4189control reaches a different line of code at the original stack level
4190that was executing when you gave the @code{next} command. This command
4191is abbreviated @code{n}.
c906108c
SS
4192
4193An argument @var{count} is a repeat count, as for @code{step}.
4194
4195
4196@c FIX ME!! Do we delete this, or is there a way it fits in with
4197@c the following paragraph? --- Vctoria
4198@c
4199@c @code{next} within a function that lacks debugging information acts like
4200@c @code{step}, but any function calls appearing within the code of the
4201@c function are executed without stopping.
4202
d4f3574e
SS
4203The @code{next} command only stops at the first instruction of a
4204source line. This prevents multiple stops that could otherwise occur in
4a92d011 4205@code{switch} statements, @code{for} loops, etc.
c906108c 4206
b90a5f51
CF
4207@kindex set step-mode
4208@item set step-mode
4209@cindex functions without line info, and stepping
4210@cindex stepping into functions with no line info
4211@itemx set step-mode on
4a92d011 4212The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4213stop at the first instruction of a function which contains no debug line
4214information rather than stepping over it.
4215
4a92d011
EZ
4216This is useful in cases where you may be interested in inspecting the
4217machine instructions of a function which has no symbolic info and do not
4218want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4219
4220@item set step-mode off
4a92d011 4221Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4222debug information. This is the default.
4223
9c16f35a
EZ
4224@item show step-mode
4225Show whether @value{GDBN} will stop in or step over functions without
4226source line debug information.
4227
c906108c 4228@kindex finish
8dfa32fc 4229@kindex fin @r{(@code{finish})}
c906108c
SS
4230@item finish
4231Continue running until just after function in the selected stack frame
8dfa32fc
JB
4232returns. Print the returned value (if any). This command can be
4233abbreviated as @code{fin}.
c906108c
SS
4234
4235Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4236,Returning from a Function}).
c906108c
SS
4237
4238@kindex until
41afff9a 4239@kindex u @r{(@code{until})}
09d4efe1 4240@cindex run until specified location
c906108c
SS
4241@item until
4242@itemx u
4243Continue running until a source line past the current line, in the
4244current stack frame, is reached. This command is used to avoid single
4245stepping through a loop more than once. It is like the @code{next}
4246command, except that when @code{until} encounters a jump, it
4247automatically continues execution until the program counter is greater
4248than the address of the jump.
4249
4250This means that when you reach the end of a loop after single stepping
4251though it, @code{until} makes your program continue execution until it
4252exits the loop. In contrast, a @code{next} command at the end of a loop
4253simply steps back to the beginning of the loop, which forces you to step
4254through the next iteration.
4255
4256@code{until} always stops your program if it attempts to exit the current
4257stack frame.
4258
4259@code{until} may produce somewhat counterintuitive results if the order
4260of machine code does not match the order of the source lines. For
4261example, in the following excerpt from a debugging session, the @code{f}
4262(@code{frame}) command shows that execution is stopped at line
4263@code{206}; yet when we use @code{until}, we get to line @code{195}:
4264
474c8240 4265@smallexample
c906108c
SS
4266(@value{GDBP}) f
4267#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4268206 expand_input();
4269(@value{GDBP}) until
4270195 for ( ; argc > 0; NEXTARG) @{
474c8240 4271@end smallexample
c906108c
SS
4272
4273This happened because, for execution efficiency, the compiler had
4274generated code for the loop closure test at the end, rather than the
4275start, of the loop---even though the test in a C @code{for}-loop is
4276written before the body of the loop. The @code{until} command appeared
4277to step back to the beginning of the loop when it advanced to this
4278expression; however, it has not really gone to an earlier
4279statement---not in terms of the actual machine code.
4280
4281@code{until} with no argument works by means of single
4282instruction stepping, and hence is slower than @code{until} with an
4283argument.
4284
4285@item until @var{location}
4286@itemx u @var{location}
4287Continue running your program until either the specified location is
4288reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4289the forms described in @ref{Specify Location}.
4290This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4291hence is quicker than @code{until} without an argument. The specified
4292location is actually reached only if it is in the current frame. This
4293implies that @code{until} can be used to skip over recursive function
4294invocations. For instance in the code below, if the current location is
4295line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4296line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4297invocations have returned.
4298
4299@smallexample
430094 int factorial (int value)
430195 @{
430296 if (value > 1) @{
430397 value *= factorial (value - 1);
430498 @}
430599 return (value);
4306100 @}
4307@end smallexample
4308
4309
4310@kindex advance @var{location}
4311@itemx advance @var{location}
09d4efe1 4312Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4313required, which should be of one of the forms described in
4314@ref{Specify Location}.
4315Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4316frame. This command is similar to @code{until}, but @code{advance} will
4317not skip over recursive function calls, and the target location doesn't
4318have to be in the same frame as the current one.
4319
c906108c
SS
4320
4321@kindex stepi
41afff9a 4322@kindex si @r{(@code{stepi})}
c906108c 4323@item stepi
96a2c332 4324@itemx stepi @var{arg}
c906108c
SS
4325@itemx si
4326Execute one machine instruction, then stop and return to the debugger.
4327
4328It is often useful to do @samp{display/i $pc} when stepping by machine
4329instructions. This makes @value{GDBN} automatically display the next
4330instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4331Display,, Automatic Display}.
c906108c
SS
4332
4333An argument is a repeat count, as in @code{step}.
4334
4335@need 750
4336@kindex nexti
41afff9a 4337@kindex ni @r{(@code{nexti})}
c906108c 4338@item nexti
96a2c332 4339@itemx nexti @var{arg}
c906108c
SS
4340@itemx ni
4341Execute one machine instruction, but if it is a function call,
4342proceed until the function returns.
4343
4344An argument is a repeat count, as in @code{next}.
4345@end table
4346
6d2ebf8b 4347@node Signals
c906108c
SS
4348@section Signals
4349@cindex signals
4350
4351A signal is an asynchronous event that can happen in a program. The
4352operating system defines the possible kinds of signals, and gives each
4353kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4354signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4355@code{SIGSEGV} is the signal a program gets from referencing a place in
4356memory far away from all the areas in use; @code{SIGALRM} occurs when
4357the alarm clock timer goes off (which happens only if your program has
4358requested an alarm).
4359
4360@cindex fatal signals
4361Some signals, including @code{SIGALRM}, are a normal part of the
4362functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4363errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4364program has not specified in advance some other way to handle the signal.
4365@code{SIGINT} does not indicate an error in your program, but it is normally
4366fatal so it can carry out the purpose of the interrupt: to kill the program.
4367
4368@value{GDBN} has the ability to detect any occurrence of a signal in your
4369program. You can tell @value{GDBN} in advance what to do for each kind of
4370signal.
4371
4372@cindex handling signals
24f93129
EZ
4373Normally, @value{GDBN} is set up to let the non-erroneous signals like
4374@code{SIGALRM} be silently passed to your program
4375(so as not to interfere with their role in the program's functioning)
c906108c
SS
4376but to stop your program immediately whenever an error signal happens.
4377You can change these settings with the @code{handle} command.
4378
4379@table @code
4380@kindex info signals
09d4efe1 4381@kindex info handle
c906108c 4382@item info signals
96a2c332 4383@itemx info handle
c906108c
SS
4384Print a table of all the kinds of signals and how @value{GDBN} has been told to
4385handle each one. You can use this to see the signal numbers of all
4386the defined types of signals.
4387
45ac1734
EZ
4388@item info signals @var{sig}
4389Similar, but print information only about the specified signal number.
4390
d4f3574e 4391@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4392
4393@kindex handle
45ac1734 4394@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4395Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4396can be the number of a signal or its name (with or without the
24f93129 4397@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4398@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4399known signals. Optional arguments @var{keywords}, described below,
4400say what change to make.
c906108c
SS
4401@end table
4402
4403@c @group
4404The keywords allowed by the @code{handle} command can be abbreviated.
4405Their full names are:
4406
4407@table @code
4408@item nostop
4409@value{GDBN} should not stop your program when this signal happens. It may
4410still print a message telling you that the signal has come in.
4411
4412@item stop
4413@value{GDBN} should stop your program when this signal happens. This implies
4414the @code{print} keyword as well.
4415
4416@item print
4417@value{GDBN} should print a message when this signal happens.
4418
4419@item noprint
4420@value{GDBN} should not mention the occurrence of the signal at all. This
4421implies the @code{nostop} keyword as well.
4422
4423@item pass
5ece1a18 4424@itemx noignore
c906108c
SS
4425@value{GDBN} should allow your program to see this signal; your program
4426can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4427and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4428
4429@item nopass
5ece1a18 4430@itemx ignore
c906108c 4431@value{GDBN} should not allow your program to see this signal.
5ece1a18 4432@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4433@end table
4434@c @end group
4435
d4f3574e
SS
4436When a signal stops your program, the signal is not visible to the
4437program until you
c906108c
SS
4438continue. Your program sees the signal then, if @code{pass} is in
4439effect for the signal in question @emph{at that time}. In other words,
4440after @value{GDBN} reports a signal, you can use the @code{handle}
4441command with @code{pass} or @code{nopass} to control whether your
4442program sees that signal when you continue.
4443
24f93129
EZ
4444The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4445non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4446@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4447erroneous signals.
4448
c906108c
SS
4449You can also use the @code{signal} command to prevent your program from
4450seeing a signal, or cause it to see a signal it normally would not see,
4451or to give it any signal at any time. For example, if your program stopped
4452due to some sort of memory reference error, you might store correct
4453values into the erroneous variables and continue, hoping to see more
4454execution; but your program would probably terminate immediately as
4455a result of the fatal signal once it saw the signal. To prevent this,
4456you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4457Program a Signal}.
c906108c 4458
6d2ebf8b 4459@node Thread Stops
79a6e687 4460@section Stopping and Starting Multi-thread Programs
c906108c
SS
4461
4462When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4463Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4464breakpoints on all threads, or on a particular thread.
4465
4466@table @code
4467@cindex breakpoints and threads
4468@cindex thread breakpoints
4469@kindex break @dots{} thread @var{threadno}
4470@item break @var{linespec} thread @var{threadno}
4471@itemx break @var{linespec} thread @var{threadno} if @dots{}
4472@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4473writing them (@pxref{Specify Location}), but the effect is always to
4474specify some source line.
c906108c
SS
4475
4476Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4477to specify that you only want @value{GDBN} to stop the program when a
4478particular thread reaches this breakpoint. @var{threadno} is one of the
4479numeric thread identifiers assigned by @value{GDBN}, shown in the first
4480column of the @samp{info threads} display.
4481
4482If you do not specify @samp{thread @var{threadno}} when you set a
4483breakpoint, the breakpoint applies to @emph{all} threads of your
4484program.
4485
4486You can use the @code{thread} qualifier on conditional breakpoints as
4487well; in this case, place @samp{thread @var{threadno}} before the
4488breakpoint condition, like this:
4489
4490@smallexample
2df3850c 4491(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4492@end smallexample
4493
4494@end table
4495
4496@cindex stopped threads
4497@cindex threads, stopped
4498Whenever your program stops under @value{GDBN} for any reason,
4499@emph{all} threads of execution stop, not just the current thread. This
4500allows you to examine the overall state of the program, including
4501switching between threads, without worrying that things may change
4502underfoot.
4503
36d86913
MC
4504@cindex thread breakpoints and system calls
4505@cindex system calls and thread breakpoints
4506@cindex premature return from system calls
4507There is an unfortunate side effect. If one thread stops for a
4508breakpoint, or for some other reason, and another thread is blocked in a
4509system call, then the system call may return prematurely. This is a
4510consequence of the interaction between multiple threads and the signals
4511that @value{GDBN} uses to implement breakpoints and other events that
4512stop execution.
4513
4514To handle this problem, your program should check the return value of
4515each system call and react appropriately. This is good programming
4516style anyways.
4517
4518For example, do not write code like this:
4519
4520@smallexample
4521 sleep (10);
4522@end smallexample
4523
4524The call to @code{sleep} will return early if a different thread stops
4525at a breakpoint or for some other reason.
4526
4527Instead, write this:
4528
4529@smallexample
4530 int unslept = 10;
4531 while (unslept > 0)
4532 unslept = sleep (unslept);
4533@end smallexample
4534
4535A system call is allowed to return early, so the system is still
4536conforming to its specification. But @value{GDBN} does cause your
4537multi-threaded program to behave differently than it would without
4538@value{GDBN}.
4539
4540Also, @value{GDBN} uses internal breakpoints in the thread library to
4541monitor certain events such as thread creation and thread destruction.
4542When such an event happens, a system call in another thread may return
4543prematurely, even though your program does not appear to stop.
4544
c906108c
SS
4545@cindex continuing threads
4546@cindex threads, continuing
4547Conversely, whenever you restart the program, @emph{all} threads start
4548executing. @emph{This is true even when single-stepping} with commands
5d161b24 4549like @code{step} or @code{next}.
c906108c
SS
4550
4551In particular, @value{GDBN} cannot single-step all threads in lockstep.
4552Since thread scheduling is up to your debugging target's operating
4553system (not controlled by @value{GDBN}), other threads may
4554execute more than one statement while the current thread completes a
4555single step. Moreover, in general other threads stop in the middle of a
4556statement, rather than at a clean statement boundary, when the program
4557stops.
4558
4559You might even find your program stopped in another thread after
4560continuing or even single-stepping. This happens whenever some other
4561thread runs into a breakpoint, a signal, or an exception before the
4562first thread completes whatever you requested.
4563
4564On some OSes, you can lock the OS scheduler and thus allow only a single
4565thread to run.
4566
4567@table @code
4568@item set scheduler-locking @var{mode}
9c16f35a
EZ
4569@cindex scheduler locking mode
4570@cindex lock scheduler
c906108c
SS
4571Set the scheduler locking mode. If it is @code{off}, then there is no
4572locking and any thread may run at any time. If @code{on}, then only the
4573current thread may run when the inferior is resumed. The @code{step}
4574mode optimizes for single-stepping. It stops other threads from
4575``seizing the prompt'' by preempting the current thread while you are
4576stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4577when you step. They are more likely to run when you @samp{next} over a
c906108c 4578function call, and they are completely free to run when you use commands
d4f3574e 4579like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4580thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4581@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4582
4583@item show scheduler-locking
4584Display the current scheduler locking mode.
4585@end table
4586
c906108c 4587
6d2ebf8b 4588@node Stack
c906108c
SS
4589@chapter Examining the Stack
4590
4591When your program has stopped, the first thing you need to know is where it
4592stopped and how it got there.
4593
4594@cindex call stack
5d161b24
DB
4595Each time your program performs a function call, information about the call
4596is generated.
4597That information includes the location of the call in your program,
4598the arguments of the call,
c906108c 4599and the local variables of the function being called.
5d161b24 4600The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4601The stack frames are allocated in a region of memory called the @dfn{call
4602stack}.
4603
4604When your program stops, the @value{GDBN} commands for examining the
4605stack allow you to see all of this information.
4606
4607@cindex selected frame
4608One of the stack frames is @dfn{selected} by @value{GDBN} and many
4609@value{GDBN} commands refer implicitly to the selected frame. In
4610particular, whenever you ask @value{GDBN} for the value of a variable in
4611your program, the value is found in the selected frame. There are
4612special @value{GDBN} commands to select whichever frame you are
79a6e687 4613interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4614
4615When your program stops, @value{GDBN} automatically selects the
5d161b24 4616currently executing frame and describes it briefly, similar to the
79a6e687 4617@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4618
4619@menu
4620* Frames:: Stack frames
4621* Backtrace:: Backtraces
4622* Selection:: Selecting a frame
4623* Frame Info:: Information on a frame
c906108c
SS
4624
4625@end menu
4626
6d2ebf8b 4627@node Frames
79a6e687 4628@section Stack Frames
c906108c 4629
d4f3574e 4630@cindex frame, definition
c906108c
SS
4631@cindex stack frame
4632The call stack is divided up into contiguous pieces called @dfn{stack
4633frames}, or @dfn{frames} for short; each frame is the data associated
4634with one call to one function. The frame contains the arguments given
4635to the function, the function's local variables, and the address at
4636which the function is executing.
4637
4638@cindex initial frame
4639@cindex outermost frame
4640@cindex innermost frame
4641When your program is started, the stack has only one frame, that of the
4642function @code{main}. This is called the @dfn{initial} frame or the
4643@dfn{outermost} frame. Each time a function is called, a new frame is
4644made. Each time a function returns, the frame for that function invocation
4645is eliminated. If a function is recursive, there can be many frames for
4646the same function. The frame for the function in which execution is
4647actually occurring is called the @dfn{innermost} frame. This is the most
4648recently created of all the stack frames that still exist.
4649
4650@cindex frame pointer
4651Inside your program, stack frames are identified by their addresses. A
4652stack frame consists of many bytes, each of which has its own address; each
4653kind of computer has a convention for choosing one byte whose
4654address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4655in a register called the @dfn{frame pointer register}
4656(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4657
4658@cindex frame number
4659@value{GDBN} assigns numbers to all existing stack frames, starting with
4660zero for the innermost frame, one for the frame that called it,
4661and so on upward. These numbers do not really exist in your program;
4662they are assigned by @value{GDBN} to give you a way of designating stack
4663frames in @value{GDBN} commands.
4664
6d2ebf8b
SS
4665@c The -fomit-frame-pointer below perennially causes hbox overflow
4666@c underflow problems.
c906108c
SS
4667@cindex frameless execution
4668Some compilers provide a way to compile functions so that they operate
e22ea452 4669without stack frames. (For example, the @value{NGCC} option
474c8240 4670@smallexample
6d2ebf8b 4671@samp{-fomit-frame-pointer}
474c8240 4672@end smallexample
6d2ebf8b 4673generates functions without a frame.)
c906108c
SS
4674This is occasionally done with heavily used library functions to save
4675the frame setup time. @value{GDBN} has limited facilities for dealing
4676with these function invocations. If the innermost function invocation
4677has no stack frame, @value{GDBN} nevertheless regards it as though
4678it had a separate frame, which is numbered zero as usual, allowing
4679correct tracing of the function call chain. However, @value{GDBN} has
4680no provision for frameless functions elsewhere in the stack.
4681
4682@table @code
d4f3574e 4683@kindex frame@r{, command}
41afff9a 4684@cindex current stack frame
c906108c 4685@item frame @var{args}
5d161b24 4686The @code{frame} command allows you to move from one stack frame to another,
c906108c 4687and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4688address of the frame or the stack frame number. Without an argument,
4689@code{frame} prints the current stack frame.
c906108c
SS
4690
4691@kindex select-frame
41afff9a 4692@cindex selecting frame silently
c906108c
SS
4693@item select-frame
4694The @code{select-frame} command allows you to move from one stack frame
4695to another without printing the frame. This is the silent version of
4696@code{frame}.
4697@end table
4698
6d2ebf8b 4699@node Backtrace
c906108c
SS
4700@section Backtraces
4701
09d4efe1
EZ
4702@cindex traceback
4703@cindex call stack traces
c906108c
SS
4704A backtrace is a summary of how your program got where it is. It shows one
4705line per frame, for many frames, starting with the currently executing
4706frame (frame zero), followed by its caller (frame one), and on up the
4707stack.
4708
4709@table @code
4710@kindex backtrace
41afff9a 4711@kindex bt @r{(@code{backtrace})}
c906108c
SS
4712@item backtrace
4713@itemx bt
4714Print a backtrace of the entire stack: one line per frame for all
4715frames in the stack.
4716
4717You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4718character, normally @kbd{Ctrl-c}.
c906108c
SS
4719
4720@item backtrace @var{n}
4721@itemx bt @var{n}
4722Similar, but print only the innermost @var{n} frames.
4723
4724@item backtrace -@var{n}
4725@itemx bt -@var{n}
4726Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4727
4728@item backtrace full
0f061b69 4729@itemx bt full
dd74f6ae
NR
4730@itemx bt full @var{n}
4731@itemx bt full -@var{n}
e7109c7e 4732Print the values of the local variables also. @var{n} specifies the
286ba84d 4733number of frames to print, as described above.
c906108c
SS
4734@end table
4735
4736@kindex where
4737@kindex info stack
c906108c
SS
4738The names @code{where} and @code{info stack} (abbreviated @code{info s})
4739are additional aliases for @code{backtrace}.
4740
839c27b7
EZ
4741@cindex multiple threads, backtrace
4742In a multi-threaded program, @value{GDBN} by default shows the
4743backtrace only for the current thread. To display the backtrace for
4744several or all of the threads, use the command @code{thread apply}
4745(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4746apply all backtrace}, @value{GDBN} will display the backtrace for all
4747the threads; this is handy when you debug a core dump of a
4748multi-threaded program.
4749
c906108c
SS
4750Each line in the backtrace shows the frame number and the function name.
4751The program counter value is also shown---unless you use @code{set
4752print address off}. The backtrace also shows the source file name and
4753line number, as well as the arguments to the function. The program
4754counter value is omitted if it is at the beginning of the code for that
4755line number.
4756
4757Here is an example of a backtrace. It was made with the command
4758@samp{bt 3}, so it shows the innermost three frames.
4759
4760@smallexample
4761@group
5d161b24 4762#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4763 at builtin.c:993
4764#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4765#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4766 at macro.c:71
4767(More stack frames follow...)
4768@end group
4769@end smallexample
4770
4771@noindent
4772The display for frame zero does not begin with a program counter
4773value, indicating that your program has stopped at the beginning of the
4774code for line @code{993} of @code{builtin.c}.
4775
18999be5
EZ
4776@cindex value optimized out, in backtrace
4777@cindex function call arguments, optimized out
4778If your program was compiled with optimizations, some compilers will
4779optimize away arguments passed to functions if those arguments are
4780never used after the call. Such optimizations generate code that
4781passes arguments through registers, but doesn't store those arguments
4782in the stack frame. @value{GDBN} has no way of displaying such
4783arguments in stack frames other than the innermost one. Here's what
4784such a backtrace might look like:
4785
4786@smallexample
4787@group
4788#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4789 at builtin.c:993
4790#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4791#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4792 at macro.c:71
4793(More stack frames follow...)
4794@end group
4795@end smallexample
4796
4797@noindent
4798The values of arguments that were not saved in their stack frames are
4799shown as @samp{<value optimized out>}.
4800
4801If you need to display the values of such optimized-out arguments,
4802either deduce that from other variables whose values depend on the one
4803you are interested in, or recompile without optimizations.
4804
a8f24a35
EZ
4805@cindex backtrace beyond @code{main} function
4806@cindex program entry point
4807@cindex startup code, and backtrace
25d29d70
AC
4808Most programs have a standard user entry point---a place where system
4809libraries and startup code transition into user code. For C this is
d416eeec
EZ
4810@code{main}@footnote{
4811Note that embedded programs (the so-called ``free-standing''
4812environment) are not required to have a @code{main} function as the
4813entry point. They could even have multiple entry points.}.
4814When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4815it will terminate the backtrace, to avoid tracing into highly
4816system-specific (and generally uninteresting) code.
4817
4818If you need to examine the startup code, or limit the number of levels
4819in a backtrace, you can change this behavior:
95f90d25
DJ
4820
4821@table @code
25d29d70
AC
4822@item set backtrace past-main
4823@itemx set backtrace past-main on
4644b6e3 4824@kindex set backtrace
25d29d70
AC
4825Backtraces will continue past the user entry point.
4826
4827@item set backtrace past-main off
95f90d25
DJ
4828Backtraces will stop when they encounter the user entry point. This is the
4829default.
4830
25d29d70 4831@item show backtrace past-main
4644b6e3 4832@kindex show backtrace
25d29d70
AC
4833Display the current user entry point backtrace policy.
4834
2315ffec
RC
4835@item set backtrace past-entry
4836@itemx set backtrace past-entry on
a8f24a35 4837Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4838This entry point is encoded by the linker when the application is built,
4839and is likely before the user entry point @code{main} (or equivalent) is called.
4840
4841@item set backtrace past-entry off
d3e8051b 4842Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4843application. This is the default.
4844
4845@item show backtrace past-entry
4846Display the current internal entry point backtrace policy.
4847
25d29d70
AC
4848@item set backtrace limit @var{n}
4849@itemx set backtrace limit 0
4850@cindex backtrace limit
4851Limit the backtrace to @var{n} levels. A value of zero means
4852unlimited.
95f90d25 4853
25d29d70
AC
4854@item show backtrace limit
4855Display the current limit on backtrace levels.
95f90d25
DJ
4856@end table
4857
6d2ebf8b 4858@node Selection
79a6e687 4859@section Selecting a Frame
c906108c
SS
4860
4861Most commands for examining the stack and other data in your program work on
4862whichever stack frame is selected at the moment. Here are the commands for
4863selecting a stack frame; all of them finish by printing a brief description
4864of the stack frame just selected.
4865
4866@table @code
d4f3574e 4867@kindex frame@r{, selecting}
41afff9a 4868@kindex f @r{(@code{frame})}
c906108c
SS
4869@item frame @var{n}
4870@itemx f @var{n}
4871Select frame number @var{n}. Recall that frame zero is the innermost
4872(currently executing) frame, frame one is the frame that called the
4873innermost one, and so on. The highest-numbered frame is the one for
4874@code{main}.
4875
4876@item frame @var{addr}
4877@itemx f @var{addr}
4878Select the frame at address @var{addr}. This is useful mainly if the
4879chaining of stack frames has been damaged by a bug, making it
4880impossible for @value{GDBN} to assign numbers properly to all frames. In
4881addition, this can be useful when your program has multiple stacks and
4882switches between them.
4883
c906108c
SS
4884On the SPARC architecture, @code{frame} needs two addresses to
4885select an arbitrary frame: a frame pointer and a stack pointer.
4886
4887On the MIPS and Alpha architecture, it needs two addresses: a stack
4888pointer and a program counter.
4889
4890On the 29k architecture, it needs three addresses: a register stack
4891pointer, a program counter, and a memory stack pointer.
c906108c
SS
4892
4893@kindex up
4894@item up @var{n}
4895Move @var{n} frames up the stack. For positive numbers @var{n}, this
4896advances toward the outermost frame, to higher frame numbers, to frames
4897that have existed longer. @var{n} defaults to one.
4898
4899@kindex down
41afff9a 4900@kindex do @r{(@code{down})}
c906108c
SS
4901@item down @var{n}
4902Move @var{n} frames down the stack. For positive numbers @var{n}, this
4903advances toward the innermost frame, to lower frame numbers, to frames
4904that were created more recently. @var{n} defaults to one. You may
4905abbreviate @code{down} as @code{do}.
4906@end table
4907
4908All of these commands end by printing two lines of output describing the
4909frame. The first line shows the frame number, the function name, the
4910arguments, and the source file and line number of execution in that
5d161b24 4911frame. The second line shows the text of that source line.
c906108c
SS
4912
4913@need 1000
4914For example:
4915
4916@smallexample
4917@group
4918(@value{GDBP}) up
4919#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4920 at env.c:10
492110 read_input_file (argv[i]);
4922@end group
4923@end smallexample
4924
4925After such a printout, the @code{list} command with no arguments
4926prints ten lines centered on the point of execution in the frame.
87885426
FN
4927You can also edit the program at the point of execution with your favorite
4928editing program by typing @code{edit}.
79a6e687 4929@xref{List, ,Printing Source Lines},
87885426 4930for details.
c906108c
SS
4931
4932@table @code
4933@kindex down-silently
4934@kindex up-silently
4935@item up-silently @var{n}
4936@itemx down-silently @var{n}
4937These two commands are variants of @code{up} and @code{down},
4938respectively; they differ in that they do their work silently, without
4939causing display of the new frame. They are intended primarily for use
4940in @value{GDBN} command scripts, where the output might be unnecessary and
4941distracting.
4942@end table
4943
6d2ebf8b 4944@node Frame Info
79a6e687 4945@section Information About a Frame
c906108c
SS
4946
4947There are several other commands to print information about the selected
4948stack frame.
4949
4950@table @code
4951@item frame
4952@itemx f
4953When used without any argument, this command does not change which
4954frame is selected, but prints a brief description of the currently
4955selected stack frame. It can be abbreviated @code{f}. With an
4956argument, this command is used to select a stack frame.
79a6e687 4957@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4958
4959@kindex info frame
41afff9a 4960@kindex info f @r{(@code{info frame})}
c906108c
SS
4961@item info frame
4962@itemx info f
4963This command prints a verbose description of the selected stack frame,
4964including:
4965
4966@itemize @bullet
5d161b24
DB
4967@item
4968the address of the frame
c906108c
SS
4969@item
4970the address of the next frame down (called by this frame)
4971@item
4972the address of the next frame up (caller of this frame)
4973@item
4974the language in which the source code corresponding to this frame is written
4975@item
4976the address of the frame's arguments
4977@item
d4f3574e
SS
4978the address of the frame's local variables
4979@item
c906108c
SS
4980the program counter saved in it (the address of execution in the caller frame)
4981@item
4982which registers were saved in the frame
4983@end itemize
4984
4985@noindent The verbose description is useful when
4986something has gone wrong that has made the stack format fail to fit
4987the usual conventions.
4988
4989@item info frame @var{addr}
4990@itemx info f @var{addr}
4991Print a verbose description of the frame at address @var{addr}, without
4992selecting that frame. The selected frame remains unchanged by this
4993command. This requires the same kind of address (more than one for some
4994architectures) that you specify in the @code{frame} command.
79a6e687 4995@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4996
4997@kindex info args
4998@item info args
4999Print the arguments of the selected frame, each on a separate line.
5000
5001@item info locals
5002@kindex info locals
5003Print the local variables of the selected frame, each on a separate
5004line. These are all variables (declared either static or automatic)
5005accessible at the point of execution of the selected frame.
5006
c906108c 5007@kindex info catch
d4f3574e
SS
5008@cindex catch exceptions, list active handlers
5009@cindex exception handlers, how to list
c906108c
SS
5010@item info catch
5011Print a list of all the exception handlers that are active in the
5012current stack frame at the current point of execution. To see other
5013exception handlers, visit the associated frame (using the @code{up},
5014@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 5015@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 5016
c906108c
SS
5017@end table
5018
c906108c 5019
6d2ebf8b 5020@node Source
c906108c
SS
5021@chapter Examining Source Files
5022
5023@value{GDBN} can print parts of your program's source, since the debugging
5024information recorded in the program tells @value{GDBN} what source files were
5025used to build it. When your program stops, @value{GDBN} spontaneously prints
5026the line where it stopped. Likewise, when you select a stack frame
79a6e687 5027(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
5028execution in that frame has stopped. You can print other portions of
5029source files by explicit command.
5030
7a292a7a 5031If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 5032prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 5033@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
5034
5035@menu
5036* List:: Printing source lines
2a25a5ba 5037* Specify Location:: How to specify code locations
87885426 5038* Edit:: Editing source files
c906108c 5039* Search:: Searching source files
c906108c
SS
5040* Source Path:: Specifying source directories
5041* Machine Code:: Source and machine code
5042@end menu
5043
6d2ebf8b 5044@node List
79a6e687 5045@section Printing Source Lines
c906108c
SS
5046
5047@kindex list
41afff9a 5048@kindex l @r{(@code{list})}
c906108c 5049To print lines from a source file, use the @code{list} command
5d161b24 5050(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
5051There are several ways to specify what part of the file you want to
5052print; see @ref{Specify Location}, for the full list.
c906108c
SS
5053
5054Here are the forms of the @code{list} command most commonly used:
5055
5056@table @code
5057@item list @var{linenum}
5058Print lines centered around line number @var{linenum} in the
5059current source file.
5060
5061@item list @var{function}
5062Print lines centered around the beginning of function
5063@var{function}.
5064
5065@item list
5066Print more lines. If the last lines printed were printed with a
5067@code{list} command, this prints lines following the last lines
5068printed; however, if the last line printed was a solitary line printed
5069as part of displaying a stack frame (@pxref{Stack, ,Examining the
5070Stack}), this prints lines centered around that line.
5071
5072@item list -
5073Print lines just before the lines last printed.
5074@end table
5075
9c16f35a 5076@cindex @code{list}, how many lines to display
c906108c
SS
5077By default, @value{GDBN} prints ten source lines with any of these forms of
5078the @code{list} command. You can change this using @code{set listsize}:
5079
5080@table @code
5081@kindex set listsize
5082@item set listsize @var{count}
5083Make the @code{list} command display @var{count} source lines (unless
5084the @code{list} argument explicitly specifies some other number).
5085
5086@kindex show listsize
5087@item show listsize
5088Display the number of lines that @code{list} prints.
5089@end table
5090
5091Repeating a @code{list} command with @key{RET} discards the argument,
5092so it is equivalent to typing just @code{list}. This is more useful
5093than listing the same lines again. An exception is made for an
5094argument of @samp{-}; that argument is preserved in repetition so that
5095each repetition moves up in the source file.
5096
c906108c
SS
5097In general, the @code{list} command expects you to supply zero, one or two
5098@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
5099of writing them (@pxref{Specify Location}), but the effect is always
5100to specify some source line.
5101
c906108c
SS
5102Here is a complete description of the possible arguments for @code{list}:
5103
5104@table @code
5105@item list @var{linespec}
5106Print lines centered around the line specified by @var{linespec}.
5107
5108@item list @var{first},@var{last}
5109Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
5110linespecs. When a @code{list} command has two linespecs, and the
5111source file of the second linespec is omitted, this refers to
5112the same source file as the first linespec.
c906108c
SS
5113
5114@item list ,@var{last}
5115Print lines ending with @var{last}.
5116
5117@item list @var{first},
5118Print lines starting with @var{first}.
5119
5120@item list +
5121Print lines just after the lines last printed.
5122
5123@item list -
5124Print lines just before the lines last printed.
5125
5126@item list
5127As described in the preceding table.
5128@end table
5129
2a25a5ba
EZ
5130@node Specify Location
5131@section Specifying a Location
5132@cindex specifying location
5133@cindex linespec
c906108c 5134
2a25a5ba
EZ
5135Several @value{GDBN} commands accept arguments that specify a location
5136of your program's code. Since @value{GDBN} is a source-level
5137debugger, a location usually specifies some line in the source code;
5138for that reason, locations are also known as @dfn{linespecs}.
c906108c 5139
2a25a5ba
EZ
5140Here are all the different ways of specifying a code location that
5141@value{GDBN} understands:
c906108c 5142
2a25a5ba
EZ
5143@table @code
5144@item @var{linenum}
5145Specifies the line number @var{linenum} of the current source file.
c906108c 5146
2a25a5ba
EZ
5147@item -@var{offset}
5148@itemx +@var{offset}
5149Specifies the line @var{offset} lines before or after the @dfn{current
5150line}. For the @code{list} command, the current line is the last one
5151printed; for the breakpoint commands, this is the line at which
5152execution stopped in the currently selected @dfn{stack frame}
5153(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5154used as the second of the two linespecs in a @code{list} command,
5155this specifies the line @var{offset} lines up or down from the first
5156linespec.
5157
5158@item @var{filename}:@var{linenum}
5159Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5160
5161@item @var{function}
5162Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5163For example, in C, this is the line with the open brace.
c906108c
SS
5164
5165@item @var{filename}:@var{function}
2a25a5ba
EZ
5166Specifies the line that begins the body of the function @var{function}
5167in the file @var{filename}. You only need the file name with a
5168function name to avoid ambiguity when there are identically named
5169functions in different source files.
c906108c
SS
5170
5171@item *@var{address}
2a25a5ba
EZ
5172Specifies the program address @var{address}. For line-oriented
5173commands, such as @code{list} and @code{edit}, this specifies a source
5174line that contains @var{address}. For @code{break} and other
5175breakpoint oriented commands, this can be used to set breakpoints in
5176parts of your program which do not have debugging information or
5177source files.
5178
5179Here @var{address} may be any expression valid in the current working
5180language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5181address. In addition, as a convenience, @value{GDBN} extends the
5182semantics of expressions used in locations to cover the situations
5183that frequently happen during debugging. Here are the various forms
5184of @var{address}:
2a25a5ba
EZ
5185
5186@table @code
5187@item @var{expression}
5188Any expression valid in the current working language.
5189
5190@item @var{funcaddr}
5191An address of a function or procedure derived from its name. In C,
5192C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5193simply the function's name @var{function} (and actually a special case
5194of a valid expression). In Pascal and Modula-2, this is
5195@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5196(although the Pascal form also works).
5197
5198This form specifies the address of the function's first instruction,
5199before the stack frame and arguments have been set up.
5200
5201@item '@var{filename}'::@var{funcaddr}
5202Like @var{funcaddr} above, but also specifies the name of the source
5203file explicitly. This is useful if the name of the function does not
5204specify the function unambiguously, e.g., if there are several
5205functions with identical names in different source files.
c906108c
SS
5206@end table
5207
2a25a5ba
EZ
5208@end table
5209
5210
87885426 5211@node Edit
79a6e687 5212@section Editing Source Files
87885426
FN
5213@cindex editing source files
5214
5215@kindex edit
5216@kindex e @r{(@code{edit})}
5217To edit the lines in a source file, use the @code{edit} command.
5218The editing program of your choice
5219is invoked with the current line set to
5220the active line in the program.
5221Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5222want to print if you want to see other parts of the program:
87885426
FN
5223
5224@table @code
2a25a5ba
EZ
5225@item edit @var{location}
5226Edit the source file specified by @code{location}. Editing starts at
5227that @var{location}, e.g., at the specified source line of the
5228specified file. @xref{Specify Location}, for all the possible forms
5229of the @var{location} argument; here are the forms of the @code{edit}
5230command most commonly used:
87885426 5231
2a25a5ba 5232@table @code
87885426
FN
5233@item edit @var{number}
5234Edit the current source file with @var{number} as the active line number.
5235
5236@item edit @var{function}
5237Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5238@end table
87885426 5239
87885426
FN
5240@end table
5241
79a6e687 5242@subsection Choosing your Editor
87885426
FN
5243You can customize @value{GDBN} to use any editor you want
5244@footnote{
5245The only restriction is that your editor (say @code{ex}), recognizes the
5246following command-line syntax:
10998722 5247@smallexample
87885426 5248ex +@var{number} file
10998722 5249@end smallexample
15387254
EZ
5250The optional numeric value +@var{number} specifies the number of the line in
5251the file where to start editing.}.
5252By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5253by setting the environment variable @code{EDITOR} before using
5254@value{GDBN}. For example, to configure @value{GDBN} to use the
5255@code{vi} editor, you could use these commands with the @code{sh} shell:
5256@smallexample
87885426
FN
5257EDITOR=/usr/bin/vi
5258export EDITOR
15387254 5259gdb @dots{}
10998722 5260@end smallexample
87885426 5261or in the @code{csh} shell,
10998722 5262@smallexample
87885426 5263setenv EDITOR /usr/bin/vi
15387254 5264gdb @dots{}
10998722 5265@end smallexample
87885426 5266
6d2ebf8b 5267@node Search
79a6e687 5268@section Searching Source Files
15387254 5269@cindex searching source files
c906108c
SS
5270
5271There are two commands for searching through the current source file for a
5272regular expression.
5273
5274@table @code
5275@kindex search
5276@kindex forward-search
5277@item forward-search @var{regexp}
5278@itemx search @var{regexp}
5279The command @samp{forward-search @var{regexp}} checks each line,
5280starting with the one following the last line listed, for a match for
5d161b24 5281@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5282synonym @samp{search @var{regexp}} or abbreviate the command name as
5283@code{fo}.
5284
09d4efe1 5285@kindex reverse-search
c906108c
SS
5286@item reverse-search @var{regexp}
5287The command @samp{reverse-search @var{regexp}} checks each line, starting
5288with the one before the last line listed and going backward, for a match
5289for @var{regexp}. It lists the line that is found. You can abbreviate
5290this command as @code{rev}.
5291@end table
c906108c 5292
6d2ebf8b 5293@node Source Path
79a6e687 5294@section Specifying Source Directories
c906108c
SS
5295
5296@cindex source path
5297@cindex directories for source files
5298Executable programs sometimes do not record the directories of the source
5299files from which they were compiled, just the names. Even when they do,
5300the directories could be moved between the compilation and your debugging
5301session. @value{GDBN} has a list of directories to search for source files;
5302this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5303it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5304in the list, until it finds a file with the desired name.
5305
5306For example, suppose an executable references the file
5307@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5308@file{/mnt/cross}. The file is first looked up literally; if this
5309fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5310fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5311message is printed. @value{GDBN} does not look up the parts of the
5312source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5313Likewise, the subdirectories of the source path are not searched: if
5314the source path is @file{/mnt/cross}, and the binary refers to
5315@file{foo.c}, @value{GDBN} would not find it under
5316@file{/mnt/cross/usr/src/foo-1.0/lib}.
5317
5318Plain file names, relative file names with leading directories, file
5319names containing dots, etc.@: are all treated as described above; for
5320instance, if the source path is @file{/mnt/cross}, and the source file
5321is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5322@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5323that---@file{/mnt/cross/foo.c}.
5324
5325Note that the executable search path is @emph{not} used to locate the
cd852561 5326source files.
c906108c
SS
5327
5328Whenever you reset or rearrange the source path, @value{GDBN} clears out
5329any information it has cached about where source files are found and where
5330each line is in the file.
5331
5332@kindex directory
5333@kindex dir
d4f3574e
SS
5334When you start @value{GDBN}, its source path includes only @samp{cdir}
5335and @samp{cwd}, in that order.
c906108c
SS
5336To add other directories, use the @code{directory} command.
5337
4b505b12
AS
5338The search path is used to find both program source files and @value{GDBN}
5339script files (read using the @samp{-command} option and @samp{source} command).
5340
30daae6c
JB
5341In addition to the source path, @value{GDBN} provides a set of commands
5342that manage a list of source path substitution rules. A @dfn{substitution
5343rule} specifies how to rewrite source directories stored in the program's
5344debug information in case the sources were moved to a different
5345directory between compilation and debugging. A rule is made of
5346two strings, the first specifying what needs to be rewritten in
5347the path, and the second specifying how it should be rewritten.
5348In @ref{set substitute-path}, we name these two parts @var{from} and
5349@var{to} respectively. @value{GDBN} does a simple string replacement
5350of @var{from} with @var{to} at the start of the directory part of the
5351source file name, and uses that result instead of the original file
5352name to look up the sources.
5353
5354Using the previous example, suppose the @file{foo-1.0} tree has been
5355moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5356@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5357@file{/mnt/cross}. The first lookup will then be
5358@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5359of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5360substitution rule, use the @code{set substitute-path} command
5361(@pxref{set substitute-path}).
5362
5363To avoid unexpected substitution results, a rule is applied only if the
5364@var{from} part of the directory name ends at a directory separator.
5365For instance, a rule substituting @file{/usr/source} into
5366@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5367not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5368is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5369not be applied to @file{/root/usr/source/baz.c} either.
5370
5371In many cases, you can achieve the same result using the @code{directory}
5372command. However, @code{set substitute-path} can be more efficient in
5373the case where the sources are organized in a complex tree with multiple
5374subdirectories. With the @code{directory} command, you need to add each
5375subdirectory of your project. If you moved the entire tree while
5376preserving its internal organization, then @code{set substitute-path}
5377allows you to direct the debugger to all the sources with one single
5378command.
5379
5380@code{set substitute-path} is also more than just a shortcut command.
5381The source path is only used if the file at the original location no
5382longer exists. On the other hand, @code{set substitute-path} modifies
5383the debugger behavior to look at the rewritten location instead. So, if
5384for any reason a source file that is not relevant to your executable is
5385located at the original location, a substitution rule is the only
3f94c067 5386method available to point @value{GDBN} at the new location.
30daae6c 5387
c906108c
SS
5388@table @code
5389@item directory @var{dirname} @dots{}
5390@item dir @var{dirname} @dots{}
5391Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5392directory names may be given to this command, separated by @samp{:}
5393(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5394part of absolute file names) or
c906108c
SS
5395whitespace. You may specify a directory that is already in the source
5396path; this moves it forward, so @value{GDBN} searches it sooner.
5397
5398@kindex cdir
5399@kindex cwd
41afff9a 5400@vindex $cdir@r{, convenience variable}
d3e8051b 5401@vindex $cwd@r{, convenience variable}
c906108c
SS
5402@cindex compilation directory
5403@cindex current directory
5404@cindex working directory
5405@cindex directory, current
5406@cindex directory, compilation
5407You can use the string @samp{$cdir} to refer to the compilation
5408directory (if one is recorded), and @samp{$cwd} to refer to the current
5409working directory. @samp{$cwd} is not the same as @samp{.}---the former
5410tracks the current working directory as it changes during your @value{GDBN}
5411session, while the latter is immediately expanded to the current
5412directory at the time you add an entry to the source path.
5413
5414@item directory
cd852561 5415Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5416
5417@c RET-repeat for @code{directory} is explicitly disabled, but since
5418@c repeating it would be a no-op we do not say that. (thanks to RMS)
5419
5420@item show directories
5421@kindex show directories
5422Print the source path: show which directories it contains.
30daae6c
JB
5423
5424@anchor{set substitute-path}
5425@item set substitute-path @var{from} @var{to}
5426@kindex set substitute-path
5427Define a source path substitution rule, and add it at the end of the
5428current list of existing substitution rules. If a rule with the same
5429@var{from} was already defined, then the old rule is also deleted.
5430
5431For example, if the file @file{/foo/bar/baz.c} was moved to
5432@file{/mnt/cross/baz.c}, then the command
5433
5434@smallexample
5435(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5436@end smallexample
5437
5438@noindent
5439will tell @value{GDBN} to replace @samp{/usr/src} with
5440@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5441@file{baz.c} even though it was moved.
5442
5443In the case when more than one substitution rule have been defined,
5444the rules are evaluated one by one in the order where they have been
5445defined. The first one matching, if any, is selected to perform
5446the substitution.
5447
5448For instance, if we had entered the following commands:
5449
5450@smallexample
5451(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5452(@value{GDBP}) set substitute-path /usr/src /mnt/src
5453@end smallexample
5454
5455@noindent
5456@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5457@file{/mnt/include/defs.h} by using the first rule. However, it would
5458use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5459@file{/mnt/src/lib/foo.c}.
5460
5461
5462@item unset substitute-path [path]
5463@kindex unset substitute-path
5464If a path is specified, search the current list of substitution rules
5465for a rule that would rewrite that path. Delete that rule if found.
5466A warning is emitted by the debugger if no rule could be found.
5467
5468If no path is specified, then all substitution rules are deleted.
5469
5470@item show substitute-path [path]
5471@kindex show substitute-path
5472If a path is specified, then print the source path substitution rule
5473which would rewrite that path, if any.
5474
5475If no path is specified, then print all existing source path substitution
5476rules.
5477
c906108c
SS
5478@end table
5479
5480If your source path is cluttered with directories that are no longer of
5481interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5482versions of source. You can correct the situation as follows:
5483
5484@enumerate
5485@item
cd852561 5486Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5487
5488@item
5489Use @code{directory} with suitable arguments to reinstall the
5490directories you want in the source path. You can add all the
5491directories in one command.
5492@end enumerate
5493
6d2ebf8b 5494@node Machine Code
79a6e687 5495@section Source and Machine Code
15387254 5496@cindex source line and its code address
c906108c
SS
5497
5498You can use the command @code{info line} to map source lines to program
5499addresses (and vice versa), and the command @code{disassemble} to display
5500a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5501mode, the @code{info line} command causes the arrow to point to the
5d161b24 5502line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5503well as hex.
5504
5505@table @code
5506@kindex info line
5507@item info line @var{linespec}
5508Print the starting and ending addresses of the compiled code for
5509source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5510the ways documented in @ref{Specify Location}.
c906108c
SS
5511@end table
5512
5513For example, we can use @code{info line} to discover the location of
5514the object code for the first line of function
5515@code{m4_changequote}:
5516
d4f3574e
SS
5517@c FIXME: I think this example should also show the addresses in
5518@c symbolic form, as they usually would be displayed.
c906108c 5519@smallexample
96a2c332 5520(@value{GDBP}) info line m4_changequote
c906108c
SS
5521Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5522@end smallexample
5523
5524@noindent
15387254 5525@cindex code address and its source line
c906108c
SS
5526We can also inquire (using @code{*@var{addr}} as the form for
5527@var{linespec}) what source line covers a particular address:
5528@smallexample
5529(@value{GDBP}) info line *0x63ff
5530Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5531@end smallexample
5532
5533@cindex @code{$_} and @code{info line}
15387254 5534@cindex @code{x} command, default address
41afff9a 5535@kindex x@r{(examine), and} info line
c906108c
SS
5536After @code{info line}, the default address for the @code{x} command
5537is changed to the starting address of the line, so that @samp{x/i} is
5538sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5539,Examining Memory}). Also, this address is saved as the value of the
c906108c 5540convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5541Variables}).
c906108c
SS
5542
5543@table @code
5544@kindex disassemble
5545@cindex assembly instructions
5546@cindex instructions, assembly
5547@cindex machine instructions
5548@cindex listing machine instructions
5549@item disassemble
d14508fe 5550@itemx disassemble /m
c906108c 5551This specialized command dumps a range of memory as machine
d14508fe
DE
5552instructions. It can also print mixed source+disassembly by specifying
5553the @code{/m} modifier.
5554The default memory range is the function surrounding the
c906108c
SS
5555program counter of the selected frame. A single argument to this
5556command is a program counter value; @value{GDBN} dumps the function
5557surrounding this value. Two arguments specify a range of addresses
5558(first inclusive, second exclusive) to dump.
5559@end table
5560
c906108c
SS
5561The following example shows the disassembly of a range of addresses of
5562HP PA-RISC 2.0 code:
5563
5564@smallexample
5565(@value{GDBP}) disas 0x32c4 0x32e4
5566Dump of assembler code from 0x32c4 to 0x32e4:
55670x32c4 <main+204>: addil 0,dp
55680x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
55690x32cc <main+212>: ldil 0x3000,r31
55700x32d0 <main+216>: ble 0x3f8(sr4,r31)
55710x32d4 <main+220>: ldo 0(r31),rp
55720x32d8 <main+224>: addil -0x800,dp
55730x32dc <main+228>: ldo 0x588(r1),r26
55740x32e0 <main+232>: ldil 0x3000,r31
5575End of assembler dump.
5576@end smallexample
c906108c 5577
d14508fe
DE
5578Here is an example showing mixed source+assembly for Intel x86:
5579
5580@smallexample
5581(@value{GDBP}) disas /m main
5582Dump of assembler code for function main:
55835 @{
55840x08048330 <main+0>: push %ebp
55850x08048331 <main+1>: mov %esp,%ebp
55860x08048333 <main+3>: sub $0x8,%esp
55870x08048336 <main+6>: and $0xfffffff0,%esp
55880x08048339 <main+9>: sub $0x10,%esp
5589
55906 printf ("Hello.\n");
55910x0804833c <main+12>: movl $0x8048440,(%esp)
55920x08048343 <main+19>: call 0x8048284 <puts@@plt>
5593
55947 return 0;
55958 @}
55960x08048348 <main+24>: mov $0x0,%eax
55970x0804834d <main+29>: leave
55980x0804834e <main+30>: ret
5599
5600End of assembler dump.
5601@end smallexample
5602
c906108c
SS
5603Some architectures have more than one commonly-used set of instruction
5604mnemonics or other syntax.
5605
76d17f34
EZ
5606For programs that were dynamically linked and use shared libraries,
5607instructions that call functions or branch to locations in the shared
5608libraries might show a seemingly bogus location---it's actually a
5609location of the relocation table. On some architectures, @value{GDBN}
5610might be able to resolve these to actual function names.
5611
c906108c 5612@table @code
d4f3574e 5613@kindex set disassembly-flavor
d4f3574e
SS
5614@cindex Intel disassembly flavor
5615@cindex AT&T disassembly flavor
5616@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5617Select the instruction set to use when disassembling the
5618program via the @code{disassemble} or @code{x/i} commands.
5619
5620Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5621can set @var{instruction-set} to either @code{intel} or @code{att}.
5622The default is @code{att}, the AT&T flavor used by default by Unix
5623assemblers for x86-based targets.
9c16f35a
EZ
5624
5625@kindex show disassembly-flavor
5626@item show disassembly-flavor
5627Show the current setting of the disassembly flavor.
c906108c
SS
5628@end table
5629
5630
6d2ebf8b 5631@node Data
c906108c
SS
5632@chapter Examining Data
5633
5634@cindex printing data
5635@cindex examining data
5636@kindex print
5637@kindex inspect
5638@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5639@c document because it is nonstandard... Under Epoch it displays in a
5640@c different window or something like that.
5641The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5642command (abbreviated @code{p}), or its synonym @code{inspect}. It
5643evaluates and prints the value of an expression of the language your
5644program is written in (@pxref{Languages, ,Using @value{GDBN} with
5645Different Languages}).
c906108c
SS
5646
5647@table @code
d4f3574e
SS
5648@item print @var{expr}
5649@itemx print /@var{f} @var{expr}
5650@var{expr} is an expression (in the source language). By default the
5651value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5652you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5653@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5654Formats}.
c906108c
SS
5655
5656@item print
5657@itemx print /@var{f}
15387254 5658@cindex reprint the last value
d4f3574e 5659If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5660@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5661conveniently inspect the same value in an alternative format.
5662@end table
5663
5664A more low-level way of examining data is with the @code{x} command.
5665It examines data in memory at a specified address and prints it in a
79a6e687 5666specified format. @xref{Memory, ,Examining Memory}.
c906108c 5667
7a292a7a 5668If you are interested in information about types, or about how the
d4f3574e
SS
5669fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5670command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5671Table}.
c906108c
SS
5672
5673@menu
5674* Expressions:: Expressions
6ba66d6a 5675* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5676* Variables:: Program variables
5677* Arrays:: Artificial arrays
5678* Output Formats:: Output formats
5679* Memory:: Examining memory
5680* Auto Display:: Automatic display
5681* Print Settings:: Print settings
5682* Value History:: Value history
5683* Convenience Vars:: Convenience variables
5684* Registers:: Registers
c906108c 5685* Floating Point Hardware:: Floating point hardware
53c69bd7 5686* Vector Unit:: Vector Unit
721c2651 5687* OS Information:: Auxiliary data provided by operating system
29e57380 5688* Memory Region Attributes:: Memory region attributes
16d9dec6 5689* Dump/Restore Files:: Copy between memory and a file
384ee23f 5690* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5691* Character Sets:: Debugging programs that use a different
5692 character set than GDB does
09d4efe1 5693* Caching Remote Data:: Data caching for remote targets
08388c79 5694* Searching Memory:: Searching memory for a sequence of bytes
c906108c
SS
5695@end menu
5696
6d2ebf8b 5697@node Expressions
c906108c
SS
5698@section Expressions
5699
5700@cindex expressions
5701@code{print} and many other @value{GDBN} commands accept an expression and
5702compute its value. Any kind of constant, variable or operator defined
5703by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5704@value{GDBN}. This includes conditional expressions, function calls,
5705casts, and string constants. It also includes preprocessor macros, if
5706you compiled your program to include this information; see
5707@ref{Compilation}.
c906108c 5708
15387254 5709@cindex arrays in expressions
d4f3574e
SS
5710@value{GDBN} supports array constants in expressions input by
5711the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5712you can use the command @code{print @{1, 2, 3@}} to create an array
5713of three integers. If you pass an array to a function or assign it
5714to a program variable, @value{GDBN} copies the array to memory that
5715is @code{malloc}ed in the target program.
c906108c 5716
c906108c
SS
5717Because C is so widespread, most of the expressions shown in examples in
5718this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5719Languages}, for information on how to use expressions in other
5720languages.
5721
5722In this section, we discuss operators that you can use in @value{GDBN}
5723expressions regardless of your programming language.
5724
15387254 5725@cindex casts, in expressions
c906108c
SS
5726Casts are supported in all languages, not just in C, because it is so
5727useful to cast a number into a pointer in order to examine a structure
5728at that address in memory.
5729@c FIXME: casts supported---Mod2 true?
c906108c
SS
5730
5731@value{GDBN} supports these operators, in addition to those common
5732to programming languages:
5733
5734@table @code
5735@item @@
5736@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5737@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5738
5739@item ::
5740@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5741function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5742
5743@cindex @{@var{type}@}
5744@cindex type casting memory
5745@cindex memory, viewing as typed object
5746@cindex casts, to view memory
5747@item @{@var{type}@} @var{addr}
5748Refers to an object of type @var{type} stored at address @var{addr} in
5749memory. @var{addr} may be any expression whose value is an integer or
5750pointer (but parentheses are required around binary operators, just as in
5751a cast). This construct is allowed regardless of what kind of data is
5752normally supposed to reside at @var{addr}.
5753@end table
5754
6ba66d6a
JB
5755@node Ambiguous Expressions
5756@section Ambiguous Expressions
5757@cindex ambiguous expressions
5758
5759Expressions can sometimes contain some ambiguous elements. For instance,
5760some programming languages (notably Ada, C@t{++} and Objective-C) permit
5761a single function name to be defined several times, for application in
5762different contexts. This is called @dfn{overloading}. Another example
5763involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5764templates and is typically instantiated several times, resulting in
5765the same function name being defined in different contexts.
5766
5767In some cases and depending on the language, it is possible to adjust
5768the expression to remove the ambiguity. For instance in C@t{++}, you
5769can specify the signature of the function you want to break on, as in
5770@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5771qualified name of your function often makes the expression unambiguous
5772as well.
5773
5774When an ambiguity that needs to be resolved is detected, the debugger
5775has the capability to display a menu of numbered choices for each
5776possibility, and then waits for the selection with the prompt @samp{>}.
5777The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5778aborts the current command. If the command in which the expression was
5779used allows more than one choice to be selected, the next option in the
5780menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5781choices.
5782
5783For example, the following session excerpt shows an attempt to set a
5784breakpoint at the overloaded symbol @code{String::after}.
5785We choose three particular definitions of that function name:
5786
5787@c FIXME! This is likely to change to show arg type lists, at least
5788@smallexample
5789@group
5790(@value{GDBP}) b String::after
5791[0] cancel
5792[1] all
5793[2] file:String.cc; line number:867
5794[3] file:String.cc; line number:860
5795[4] file:String.cc; line number:875
5796[5] file:String.cc; line number:853
5797[6] file:String.cc; line number:846
5798[7] file:String.cc; line number:735
5799> 2 4 6
5800Breakpoint 1 at 0xb26c: file String.cc, line 867.
5801Breakpoint 2 at 0xb344: file String.cc, line 875.
5802Breakpoint 3 at 0xafcc: file String.cc, line 846.
5803Multiple breakpoints were set.
5804Use the "delete" command to delete unwanted
5805 breakpoints.
5806(@value{GDBP})
5807@end group
5808@end smallexample
5809
5810@table @code
5811@kindex set multiple-symbols
5812@item set multiple-symbols @var{mode}
5813@cindex multiple-symbols menu
5814
5815This option allows you to adjust the debugger behavior when an expression
5816is ambiguous.
5817
5818By default, @var{mode} is set to @code{all}. If the command with which
5819the expression is used allows more than one choice, then @value{GDBN}
5820automatically selects all possible choices. For instance, inserting
5821a breakpoint on a function using an ambiguous name results in a breakpoint
5822inserted on each possible match. However, if a unique choice must be made,
5823then @value{GDBN} uses the menu to help you disambiguate the expression.
5824For instance, printing the address of an overloaded function will result
5825in the use of the menu.
5826
5827When @var{mode} is set to @code{ask}, the debugger always uses the menu
5828when an ambiguity is detected.
5829
5830Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5831an error due to the ambiguity and the command is aborted.
5832
5833@kindex show multiple-symbols
5834@item show multiple-symbols
5835Show the current value of the @code{multiple-symbols} setting.
5836@end table
5837
6d2ebf8b 5838@node Variables
79a6e687 5839@section Program Variables
c906108c
SS
5840
5841The most common kind of expression to use is the name of a variable
5842in your program.
5843
5844Variables in expressions are understood in the selected stack frame
79a6e687 5845(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5846
5847@itemize @bullet
5848@item
5849global (or file-static)
5850@end itemize
5851
5d161b24 5852@noindent or
c906108c
SS
5853
5854@itemize @bullet
5855@item
5856visible according to the scope rules of the
5857programming language from the point of execution in that frame
5d161b24 5858@end itemize
c906108c
SS
5859
5860@noindent This means that in the function
5861
474c8240 5862@smallexample
c906108c
SS
5863foo (a)
5864 int a;
5865@{
5866 bar (a);
5867 @{
5868 int b = test ();
5869 bar (b);
5870 @}
5871@}
474c8240 5872@end smallexample
c906108c
SS
5873
5874@noindent
5875you can examine and use the variable @code{a} whenever your program is
5876executing within the function @code{foo}, but you can only use or
5877examine the variable @code{b} while your program is executing inside
5878the block where @code{b} is declared.
5879
5880@cindex variable name conflict
5881There is an exception: you can refer to a variable or function whose
5882scope is a single source file even if the current execution point is not
5883in this file. But it is possible to have more than one such variable or
5884function with the same name (in different source files). If that
5885happens, referring to that name has unpredictable effects. If you wish,
5886you can specify a static variable in a particular function or file,
15387254 5887using the colon-colon (@code{::}) notation:
c906108c 5888
d4f3574e 5889@cindex colon-colon, context for variables/functions
12c27660 5890@ifnotinfo
c906108c 5891@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5892@cindex @code{::}, context for variables/functions
12c27660 5893@end ifnotinfo
474c8240 5894@smallexample
c906108c
SS
5895@var{file}::@var{variable}
5896@var{function}::@var{variable}
474c8240 5897@end smallexample
c906108c
SS
5898
5899@noindent
5900Here @var{file} or @var{function} is the name of the context for the
5901static @var{variable}. In the case of file names, you can use quotes to
5902make sure @value{GDBN} parses the file name as a single word---for example,
5903to print a global value of @code{x} defined in @file{f2.c}:
5904
474c8240 5905@smallexample
c906108c 5906(@value{GDBP}) p 'f2.c'::x
474c8240 5907@end smallexample
c906108c 5908
b37052ae 5909@cindex C@t{++} scope resolution
c906108c 5910This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5911use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5912scope resolution operator in @value{GDBN} expressions.
5913@c FIXME: Um, so what happens in one of those rare cases where it's in
5914@c conflict?? --mew
c906108c
SS
5915
5916@cindex wrong values
5917@cindex variable values, wrong
15387254
EZ
5918@cindex function entry/exit, wrong values of variables
5919@cindex optimized code, wrong values of variables
c906108c
SS
5920@quotation
5921@emph{Warning:} Occasionally, a local variable may appear to have the
5922wrong value at certain points in a function---just after entry to a new
5923scope, and just before exit.
5924@end quotation
5925You may see this problem when you are stepping by machine instructions.
5926This is because, on most machines, it takes more than one instruction to
5927set up a stack frame (including local variable definitions); if you are
5928stepping by machine instructions, variables may appear to have the wrong
5929values until the stack frame is completely built. On exit, it usually
5930also takes more than one machine instruction to destroy a stack frame;
5931after you begin stepping through that group of instructions, local
5932variable definitions may be gone.
5933
5934This may also happen when the compiler does significant optimizations.
5935To be sure of always seeing accurate values, turn off all optimization
5936when compiling.
5937
d4f3574e
SS
5938@cindex ``No symbol "foo" in current context''
5939Another possible effect of compiler optimizations is to optimize
5940unused variables out of existence, or assign variables to registers (as
5941opposed to memory addresses). Depending on the support for such cases
5942offered by the debug info format used by the compiler, @value{GDBN}
5943might not be able to display values for such local variables. If that
5944happens, @value{GDBN} will print a message like this:
5945
474c8240 5946@smallexample
d4f3574e 5947No symbol "foo" in current context.
474c8240 5948@end smallexample
d4f3574e
SS
5949
5950To solve such problems, either recompile without optimizations, or use a
5951different debug info format, if the compiler supports several such
15387254 5952formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5953usually supports the @option{-gstabs+} option. @option{-gstabs+}
5954produces debug info in a format that is superior to formats such as
5955COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5956an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5957for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5958Compiler Collection (GCC)}.
79a6e687 5959@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5960that are best suited to C@t{++} programs.
d4f3574e 5961
ab1adacd
EZ
5962If you ask to print an object whose contents are unknown to
5963@value{GDBN}, e.g., because its data type is not completely specified
5964by the debug information, @value{GDBN} will say @samp{<incomplete
5965type>}. @xref{Symbols, incomplete type}, for more about this.
5966
3a60f64e
JK
5967Strings are identified as arrays of @code{char} values without specified
5968signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5969printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5970@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5971defines literal string type @code{"char"} as @code{char} without a sign.
5972For program code
5973
5974@smallexample
5975char var0[] = "A";
5976signed char var1[] = "A";
5977@end smallexample
5978
5979You get during debugging
5980@smallexample
5981(gdb) print var0
5982$1 = "A"
5983(gdb) print var1
5984$2 = @{65 'A', 0 '\0'@}
5985@end smallexample
5986
6d2ebf8b 5987@node Arrays
79a6e687 5988@section Artificial Arrays
c906108c
SS
5989
5990@cindex artificial array
15387254 5991@cindex arrays
41afff9a 5992@kindex @@@r{, referencing memory as an array}
c906108c
SS
5993It is often useful to print out several successive objects of the
5994same type in memory; a section of an array, or an array of
5995dynamically determined size for which only a pointer exists in the
5996program.
5997
5998You can do this by referring to a contiguous span of memory as an
5999@dfn{artificial array}, using the binary operator @samp{@@}. The left
6000operand of @samp{@@} should be the first element of the desired array
6001and be an individual object. The right operand should be the desired length
6002of the array. The result is an array value whose elements are all of
6003the type of the left argument. The first element is actually the left
6004argument; the second element comes from bytes of memory immediately
6005following those that hold the first element, and so on. Here is an
6006example. If a program says
6007
474c8240 6008@smallexample
c906108c 6009int *array = (int *) malloc (len * sizeof (int));
474c8240 6010@end smallexample
c906108c
SS
6011
6012@noindent
6013you can print the contents of @code{array} with
6014
474c8240 6015@smallexample
c906108c 6016p *array@@len
474c8240 6017@end smallexample
c906108c
SS
6018
6019The left operand of @samp{@@} must reside in memory. Array values made
6020with @samp{@@} in this way behave just like other arrays in terms of
6021subscripting, and are coerced to pointers when used in expressions.
6022Artificial arrays most often appear in expressions via the value history
79a6e687 6023(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
6024
6025Another way to create an artificial array is to use a cast.
6026This re-interprets a value as if it were an array.
6027The value need not be in memory:
474c8240 6028@smallexample
c906108c
SS
6029(@value{GDBP}) p/x (short[2])0x12345678
6030$1 = @{0x1234, 0x5678@}
474c8240 6031@end smallexample
c906108c
SS
6032
6033As a convenience, if you leave the array length out (as in
c3f6f71d 6034@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 6035the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 6036@smallexample
c906108c
SS
6037(@value{GDBP}) p/x (short[])0x12345678
6038$2 = @{0x1234, 0x5678@}
474c8240 6039@end smallexample
c906108c
SS
6040
6041Sometimes the artificial array mechanism is not quite enough; in
6042moderately complex data structures, the elements of interest may not
6043actually be adjacent---for example, if you are interested in the values
6044of pointers in an array. One useful work-around in this situation is
6045to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 6046Variables}) as a counter in an expression that prints the first
c906108c
SS
6047interesting value, and then repeat that expression via @key{RET}. For
6048instance, suppose you have an array @code{dtab} of pointers to
6049structures, and you are interested in the values of a field @code{fv}
6050in each structure. Here is an example of what you might type:
6051
474c8240 6052@smallexample
c906108c
SS
6053set $i = 0
6054p dtab[$i++]->fv
6055@key{RET}
6056@key{RET}
6057@dots{}
474c8240 6058@end smallexample
c906108c 6059
6d2ebf8b 6060@node Output Formats
79a6e687 6061@section Output Formats
c906108c
SS
6062
6063@cindex formatted output
6064@cindex output formats
6065By default, @value{GDBN} prints a value according to its data type. Sometimes
6066this is not what you want. For example, you might want to print a number
6067in hex, or a pointer in decimal. Or you might want to view data in memory
6068at a certain address as a character string or as an instruction. To do
6069these things, specify an @dfn{output format} when you print a value.
6070
6071The simplest use of output formats is to say how to print a value
6072already computed. This is done by starting the arguments of the
6073@code{print} command with a slash and a format letter. The format
6074letters supported are:
6075
6076@table @code
6077@item x
6078Regard the bits of the value as an integer, and print the integer in
6079hexadecimal.
6080
6081@item d
6082Print as integer in signed decimal.
6083
6084@item u
6085Print as integer in unsigned decimal.
6086
6087@item o
6088Print as integer in octal.
6089
6090@item t
6091Print as integer in binary. The letter @samp{t} stands for ``two''.
6092@footnote{@samp{b} cannot be used because these format letters are also
6093used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 6094see @ref{Memory,,Examining Memory}.}
c906108c
SS
6095
6096@item a
6097@cindex unknown address, locating
3d67e040 6098@cindex locate address
c906108c
SS
6099Print as an address, both absolute in hexadecimal and as an offset from
6100the nearest preceding symbol. You can use this format used to discover
6101where (in what function) an unknown address is located:
6102
474c8240 6103@smallexample
c906108c
SS
6104(@value{GDBP}) p/a 0x54320
6105$3 = 0x54320 <_initialize_vx+396>
474c8240 6106@end smallexample
c906108c 6107
3d67e040
EZ
6108@noindent
6109The command @code{info symbol 0x54320} yields similar results.
6110@xref{Symbols, info symbol}.
6111
c906108c 6112@item c
51274035
EZ
6113Regard as an integer and print it as a character constant. This
6114prints both the numerical value and its character representation. The
6115character representation is replaced with the octal escape @samp{\nnn}
6116for characters outside the 7-bit @sc{ascii} range.
c906108c 6117
ea37ba09
DJ
6118Without this format, @value{GDBN} displays @code{char},
6119@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
6120constants. Single-byte members of vectors are displayed as integer
6121data.
6122
c906108c
SS
6123@item f
6124Regard the bits of the value as a floating point number and print
6125using typical floating point syntax.
ea37ba09
DJ
6126
6127@item s
6128@cindex printing strings
6129@cindex printing byte arrays
6130Regard as a string, if possible. With this format, pointers to single-byte
6131data are displayed as null-terminated strings and arrays of single-byte data
6132are displayed as fixed-length strings. Other values are displayed in their
6133natural types.
6134
6135Without this format, @value{GDBN} displays pointers to and arrays of
6136@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
6137strings. Single-byte members of a vector are displayed as an integer
6138array.
c906108c
SS
6139@end table
6140
6141For example, to print the program counter in hex (@pxref{Registers}), type
6142
474c8240 6143@smallexample
c906108c 6144p/x $pc
474c8240 6145@end smallexample
c906108c
SS
6146
6147@noindent
6148Note that no space is required before the slash; this is because command
6149names in @value{GDBN} cannot contain a slash.
6150
6151To reprint the last value in the value history with a different format,
6152you can use the @code{print} command with just a format and no
6153expression. For example, @samp{p/x} reprints the last value in hex.
6154
6d2ebf8b 6155@node Memory
79a6e687 6156@section Examining Memory
c906108c
SS
6157
6158You can use the command @code{x} (for ``examine'') to examine memory in
6159any of several formats, independently of your program's data types.
6160
6161@cindex examining memory
6162@table @code
41afff9a 6163@kindex x @r{(examine memory)}
c906108c
SS
6164@item x/@var{nfu} @var{addr}
6165@itemx x @var{addr}
6166@itemx x
6167Use the @code{x} command to examine memory.
6168@end table
6169
6170@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6171much memory to display and how to format it; @var{addr} is an
6172expression giving the address where you want to start displaying memory.
6173If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6174Several commands set convenient defaults for @var{addr}.
6175
6176@table @r
6177@item @var{n}, the repeat count
6178The repeat count is a decimal integer; the default is 1. It specifies
6179how much memory (counting by units @var{u}) to display.
6180@c This really is **decimal**; unaffected by 'set radix' as of GDB
6181@c 4.1.2.
6182
6183@item @var{f}, the display format
51274035
EZ
6184The display format is one of the formats used by @code{print}
6185(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6186@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6187The default is @samp{x} (hexadecimal) initially. The default changes
6188each time you use either @code{x} or @code{print}.
c906108c
SS
6189
6190@item @var{u}, the unit size
6191The unit size is any of
6192
6193@table @code
6194@item b
6195Bytes.
6196@item h
6197Halfwords (two bytes).
6198@item w
6199Words (four bytes). This is the initial default.
6200@item g
6201Giant words (eight bytes).
6202@end table
6203
6204Each time you specify a unit size with @code{x}, that size becomes the
6205default unit the next time you use @code{x}. (For the @samp{s} and
6206@samp{i} formats, the unit size is ignored and is normally not written.)
6207
6208@item @var{addr}, starting display address
6209@var{addr} is the address where you want @value{GDBN} to begin displaying
6210memory. The expression need not have a pointer value (though it may);
6211it is always interpreted as an integer address of a byte of memory.
6212@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6213@var{addr} is usually just after the last address examined---but several
6214other commands also set the default address: @code{info breakpoints} (to
6215the address of the last breakpoint listed), @code{info line} (to the
6216starting address of a line), and @code{print} (if you use it to display
6217a value from memory).
6218@end table
6219
6220For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6221(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6222starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6223words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6224@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6225
6226Since the letters indicating unit sizes are all distinct from the
6227letters specifying output formats, you do not have to remember whether
6228unit size or format comes first; either order works. The output
6229specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6230(However, the count @var{n} must come first; @samp{wx4} does not work.)
6231
6232Even though the unit size @var{u} is ignored for the formats @samp{s}
6233and @samp{i}, you might still want to use a count @var{n}; for example,
6234@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6235including any operands. For convenience, especially when used with
6236the @code{display} command, the @samp{i} format also prints branch delay
6237slot instructions, if any, beyond the count specified, which immediately
6238follow the last instruction that is within the count. The command
6239@code{disassemble} gives an alternative way of inspecting machine
6240instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6241
6242All the defaults for the arguments to @code{x} are designed to make it
6243easy to continue scanning memory with minimal specifications each time
6244you use @code{x}. For example, after you have inspected three machine
6245instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6246with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6247the repeat count @var{n} is used again; the other arguments default as
6248for successive uses of @code{x}.
6249
6250@cindex @code{$_}, @code{$__}, and value history
6251The addresses and contents printed by the @code{x} command are not saved
6252in the value history because there is often too much of them and they
6253would get in the way. Instead, @value{GDBN} makes these values available for
6254subsequent use in expressions as values of the convenience variables
6255@code{$_} and @code{$__}. After an @code{x} command, the last address
6256examined is available for use in expressions in the convenience variable
6257@code{$_}. The contents of that address, as examined, are available in
6258the convenience variable @code{$__}.
6259
6260If the @code{x} command has a repeat count, the address and contents saved
6261are from the last memory unit printed; this is not the same as the last
6262address printed if several units were printed on the last line of output.
6263
09d4efe1
EZ
6264@cindex remote memory comparison
6265@cindex verify remote memory image
6266When you are debugging a program running on a remote target machine
ea35711c 6267(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6268remote machine's memory against the executable file you downloaded to
6269the target. The @code{compare-sections} command is provided for such
6270situations.
6271
6272@table @code
6273@kindex compare-sections
6274@item compare-sections @r{[}@var{section-name}@r{]}
6275Compare the data of a loadable section @var{section-name} in the
6276executable file of the program being debugged with the same section in
6277the remote machine's memory, and report any mismatches. With no
6278arguments, compares all loadable sections. This command's
6279availability depends on the target's support for the @code{"qCRC"}
6280remote request.
6281@end table
6282
6d2ebf8b 6283@node Auto Display
79a6e687 6284@section Automatic Display
c906108c
SS
6285@cindex automatic display
6286@cindex display of expressions
6287
6288If you find that you want to print the value of an expression frequently
6289(to see how it changes), you might want to add it to the @dfn{automatic
6290display list} so that @value{GDBN} prints its value each time your program stops.
6291Each expression added to the list is given a number to identify it;
6292to remove an expression from the list, you specify that number.
6293The automatic display looks like this:
6294
474c8240 6295@smallexample
c906108c
SS
62962: foo = 38
62973: bar[5] = (struct hack *) 0x3804
474c8240 6298@end smallexample
c906108c
SS
6299
6300@noindent
6301This display shows item numbers, expressions and their current values. As with
6302displays you request manually using @code{x} or @code{print}, you can
6303specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6304whether to use @code{print} or @code{x} depending your format
6305specification---it uses @code{x} if you specify either the @samp{i}
6306or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6307
6308@table @code
6309@kindex display
d4f3574e
SS
6310@item display @var{expr}
6311Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6312each time your program stops. @xref{Expressions, ,Expressions}.
6313
6314@code{display} does not repeat if you press @key{RET} again after using it.
6315
d4f3574e 6316@item display/@var{fmt} @var{expr}
c906108c 6317For @var{fmt} specifying only a display format and not a size or
d4f3574e 6318count, add the expression @var{expr} to the auto-display list but
c906108c 6319arrange to display it each time in the specified format @var{fmt}.
79a6e687 6320@xref{Output Formats,,Output Formats}.
c906108c
SS
6321
6322@item display/@var{fmt} @var{addr}
6323For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6324number of units, add the expression @var{addr} as a memory address to
6325be examined each time your program stops. Examining means in effect
79a6e687 6326doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6327@end table
6328
6329For example, @samp{display/i $pc} can be helpful, to see the machine
6330instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6331is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6332
6333@table @code
6334@kindex delete display
6335@kindex undisplay
6336@item undisplay @var{dnums}@dots{}
6337@itemx delete display @var{dnums}@dots{}
6338Remove item numbers @var{dnums} from the list of expressions to display.
6339
6340@code{undisplay} does not repeat if you press @key{RET} after using it.
6341(Otherwise you would just get the error @samp{No display number @dots{}}.)
6342
6343@kindex disable display
6344@item disable display @var{dnums}@dots{}
6345Disable the display of item numbers @var{dnums}. A disabled display
6346item is not printed automatically, but is not forgotten. It may be
6347enabled again later.
6348
6349@kindex enable display
6350@item enable display @var{dnums}@dots{}
6351Enable display of item numbers @var{dnums}. It becomes effective once
6352again in auto display of its expression, until you specify otherwise.
6353
6354@item display
6355Display the current values of the expressions on the list, just as is
6356done when your program stops.
6357
6358@kindex info display
6359@item info display
6360Print the list of expressions previously set up to display
6361automatically, each one with its item number, but without showing the
6362values. This includes disabled expressions, which are marked as such.
6363It also includes expressions which would not be displayed right now
6364because they refer to automatic variables not currently available.
6365@end table
6366
15387254 6367@cindex display disabled out of scope
c906108c
SS
6368If a display expression refers to local variables, then it does not make
6369sense outside the lexical context for which it was set up. Such an
6370expression is disabled when execution enters a context where one of its
6371variables is not defined. For example, if you give the command
6372@code{display last_char} while inside a function with an argument
6373@code{last_char}, @value{GDBN} displays this argument while your program
6374continues to stop inside that function. When it stops elsewhere---where
6375there is no variable @code{last_char}---the display is disabled
6376automatically. The next time your program stops where @code{last_char}
6377is meaningful, you can enable the display expression once again.
6378
6d2ebf8b 6379@node Print Settings
79a6e687 6380@section Print Settings
c906108c
SS
6381
6382@cindex format options
6383@cindex print settings
6384@value{GDBN} provides the following ways to control how arrays, structures,
6385and symbols are printed.
6386
6387@noindent
6388These settings are useful for debugging programs in any language:
6389
6390@table @code
4644b6e3 6391@kindex set print
c906108c
SS
6392@item set print address
6393@itemx set print address on
4644b6e3 6394@cindex print/don't print memory addresses
c906108c
SS
6395@value{GDBN} prints memory addresses showing the location of stack
6396traces, structure values, pointer values, breakpoints, and so forth,
6397even when it also displays the contents of those addresses. The default
6398is @code{on}. For example, this is what a stack frame display looks like with
6399@code{set print address on}:
6400
6401@smallexample
6402@group
6403(@value{GDBP}) f
6404#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6405 at input.c:530
6406530 if (lquote != def_lquote)
6407@end group
6408@end smallexample
6409
6410@item set print address off
6411Do not print addresses when displaying their contents. For example,
6412this is the same stack frame displayed with @code{set print address off}:
6413
6414@smallexample
6415@group
6416(@value{GDBP}) set print addr off
6417(@value{GDBP}) f
6418#0 set_quotes (lq="<<", rq=">>") at input.c:530
6419530 if (lquote != def_lquote)
6420@end group
6421@end smallexample
6422
6423You can use @samp{set print address off} to eliminate all machine
6424dependent displays from the @value{GDBN} interface. For example, with
6425@code{print address off}, you should get the same text for backtraces on
6426all machines---whether or not they involve pointer arguments.
6427
4644b6e3 6428@kindex show print
c906108c
SS
6429@item show print address
6430Show whether or not addresses are to be printed.
6431@end table
6432
6433When @value{GDBN} prints a symbolic address, it normally prints the
6434closest earlier symbol plus an offset. If that symbol does not uniquely
6435identify the address (for example, it is a name whose scope is a single
6436source file), you may need to clarify. One way to do this is with
6437@code{info line}, for example @samp{info line *0x4537}. Alternately,
6438you can set @value{GDBN} to print the source file and line number when
6439it prints a symbolic address:
6440
6441@table @code
c906108c 6442@item set print symbol-filename on
9c16f35a
EZ
6443@cindex source file and line of a symbol
6444@cindex symbol, source file and line
c906108c
SS
6445Tell @value{GDBN} to print the source file name and line number of a
6446symbol in the symbolic form of an address.
6447
6448@item set print symbol-filename off
6449Do not print source file name and line number of a symbol. This is the
6450default.
6451
c906108c
SS
6452@item show print symbol-filename
6453Show whether or not @value{GDBN} will print the source file name and
6454line number of a symbol in the symbolic form of an address.
6455@end table
6456
6457Another situation where it is helpful to show symbol filenames and line
6458numbers is when disassembling code; @value{GDBN} shows you the line
6459number and source file that corresponds to each instruction.
6460
6461Also, you may wish to see the symbolic form only if the address being
6462printed is reasonably close to the closest earlier symbol:
6463
6464@table @code
c906108c 6465@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6466@cindex maximum value for offset of closest symbol
c906108c
SS
6467Tell @value{GDBN} to only display the symbolic form of an address if the
6468offset between the closest earlier symbol and the address is less than
5d161b24 6469@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6470to always print the symbolic form of an address if any symbol precedes it.
6471
c906108c
SS
6472@item show print max-symbolic-offset
6473Ask how large the maximum offset is that @value{GDBN} prints in a
6474symbolic address.
6475@end table
6476
6477@cindex wild pointer, interpreting
6478@cindex pointer, finding referent
6479If you have a pointer and you are not sure where it points, try
6480@samp{set print symbol-filename on}. Then you can determine the name
6481and source file location of the variable where it points, using
6482@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6483For example, here @value{GDBN} shows that a variable @code{ptt} points
6484at another variable @code{t}, defined in @file{hi2.c}:
6485
474c8240 6486@smallexample
c906108c
SS
6487(@value{GDBP}) set print symbol-filename on
6488(@value{GDBP}) p/a ptt
6489$4 = 0xe008 <t in hi2.c>
474c8240 6490@end smallexample
c906108c
SS
6491
6492@quotation
6493@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6494does not show the symbol name and filename of the referent, even with
6495the appropriate @code{set print} options turned on.
6496@end quotation
6497
6498Other settings control how different kinds of objects are printed:
6499
6500@table @code
c906108c
SS
6501@item set print array
6502@itemx set print array on
4644b6e3 6503@cindex pretty print arrays
c906108c
SS
6504Pretty print arrays. This format is more convenient to read,
6505but uses more space. The default is off.
6506
6507@item set print array off
6508Return to compressed format for arrays.
6509
c906108c
SS
6510@item show print array
6511Show whether compressed or pretty format is selected for displaying
6512arrays.
6513
3c9c013a
JB
6514@cindex print array indexes
6515@item set print array-indexes
6516@itemx set print array-indexes on
6517Print the index of each element when displaying arrays. May be more
6518convenient to locate a given element in the array or quickly find the
6519index of a given element in that printed array. The default is off.
6520
6521@item set print array-indexes off
6522Stop printing element indexes when displaying arrays.
6523
6524@item show print array-indexes
6525Show whether the index of each element is printed when displaying
6526arrays.
6527
c906108c 6528@item set print elements @var{number-of-elements}
4644b6e3 6529@cindex number of array elements to print
9c16f35a 6530@cindex limit on number of printed array elements
c906108c
SS
6531Set a limit on how many elements of an array @value{GDBN} will print.
6532If @value{GDBN} is printing a large array, it stops printing after it has
6533printed the number of elements set by the @code{set print elements} command.
6534This limit also applies to the display of strings.
d4f3574e 6535When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6536Setting @var{number-of-elements} to zero means that the printing is unlimited.
6537
c906108c
SS
6538@item show print elements
6539Display the number of elements of a large array that @value{GDBN} will print.
6540If the number is 0, then the printing is unlimited.
6541
b4740add
JB
6542@item set print frame-arguments @var{value}
6543@cindex printing frame argument values
6544@cindex print all frame argument values
6545@cindex print frame argument values for scalars only
6546@cindex do not print frame argument values
6547This command allows to control how the values of arguments are printed
6548when the debugger prints a frame (@pxref{Frames}). The possible
6549values are:
6550
6551@table @code
6552@item all
6553The values of all arguments are printed. This is the default.
6554
6555@item scalars
6556Print the value of an argument only if it is a scalar. The value of more
6557complex arguments such as arrays, structures, unions, etc, is replaced
6558by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6559
6560@smallexample
6561#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6562 at frame-args.c:23
6563@end smallexample
6564
6565@item none
6566None of the argument values are printed. Instead, the value of each argument
6567is replaced by @code{@dots{}}. In this case, the example above now becomes:
6568
6569@smallexample
6570#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6571 at frame-args.c:23
6572@end smallexample
6573@end table
6574
6575By default, all argument values are always printed. But this command
6576can be useful in several cases. For instance, it can be used to reduce
6577the amount of information printed in each frame, making the backtrace
6578more readable. Also, this command can be used to improve performance
6579when displaying Ada frames, because the computation of large arguments
6580can sometimes be CPU-intensive, especiallly in large applications.
6581Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6582avoids this computation, thus speeding up the display of each Ada frame.
6583
6584@item show print frame-arguments
6585Show how the value of arguments should be displayed when printing a frame.
6586
9c16f35a
EZ
6587@item set print repeats
6588@cindex repeated array elements
6589Set the threshold for suppressing display of repeated array
d3e8051b 6590elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6591array exceeds the threshold, @value{GDBN} prints the string
6592@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6593identical repetitions, instead of displaying the identical elements
6594themselves. Setting the threshold to zero will cause all elements to
6595be individually printed. The default threshold is 10.
6596
6597@item show print repeats
6598Display the current threshold for printing repeated identical
6599elements.
6600
c906108c 6601@item set print null-stop
4644b6e3 6602@cindex @sc{null} elements in arrays
c906108c 6603Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6604@sc{null} is encountered. This is useful when large arrays actually
c906108c 6605contain only short strings.
d4f3574e 6606The default is off.
c906108c 6607
9c16f35a
EZ
6608@item show print null-stop
6609Show whether @value{GDBN} stops printing an array on the first
6610@sc{null} character.
6611
c906108c 6612@item set print pretty on
9c16f35a
EZ
6613@cindex print structures in indented form
6614@cindex indentation in structure display
5d161b24 6615Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6616per line, like this:
6617
6618@smallexample
6619@group
6620$1 = @{
6621 next = 0x0,
6622 flags = @{
6623 sweet = 1,
6624 sour = 1
6625 @},
6626 meat = 0x54 "Pork"
6627@}
6628@end group
6629@end smallexample
6630
6631@item set print pretty off
6632Cause @value{GDBN} to print structures in a compact format, like this:
6633
6634@smallexample
6635@group
6636$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6637meat = 0x54 "Pork"@}
6638@end group
6639@end smallexample
6640
6641@noindent
6642This is the default format.
6643
c906108c
SS
6644@item show print pretty
6645Show which format @value{GDBN} is using to print structures.
6646
c906108c 6647@item set print sevenbit-strings on
4644b6e3
EZ
6648@cindex eight-bit characters in strings
6649@cindex octal escapes in strings
c906108c
SS
6650Print using only seven-bit characters; if this option is set,
6651@value{GDBN} displays any eight-bit characters (in strings or
6652character values) using the notation @code{\}@var{nnn}. This setting is
6653best if you are working in English (@sc{ascii}) and you use the
6654high-order bit of characters as a marker or ``meta'' bit.
6655
6656@item set print sevenbit-strings off
6657Print full eight-bit characters. This allows the use of more
6658international character sets, and is the default.
6659
c906108c
SS
6660@item show print sevenbit-strings
6661Show whether or not @value{GDBN} is printing only seven-bit characters.
6662
c906108c 6663@item set print union on
4644b6e3 6664@cindex unions in structures, printing
9c16f35a
EZ
6665Tell @value{GDBN} to print unions which are contained in structures
6666and other unions. This is the default setting.
c906108c
SS
6667
6668@item set print union off
9c16f35a
EZ
6669Tell @value{GDBN} not to print unions which are contained in
6670structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6671instead.
c906108c 6672
c906108c
SS
6673@item show print union
6674Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6675structures and other unions.
c906108c
SS
6676
6677For example, given the declarations
6678
6679@smallexample
6680typedef enum @{Tree, Bug@} Species;
6681typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6682typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6683 Bug_forms;
6684
6685struct thing @{
6686 Species it;
6687 union @{
6688 Tree_forms tree;
6689 Bug_forms bug;
6690 @} form;
6691@};
6692
6693struct thing foo = @{Tree, @{Acorn@}@};
6694@end smallexample
6695
6696@noindent
6697with @code{set print union on} in effect @samp{p foo} would print
6698
6699@smallexample
6700$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6701@end smallexample
6702
6703@noindent
6704and with @code{set print union off} in effect it would print
6705
6706@smallexample
6707$1 = @{it = Tree, form = @{...@}@}
6708@end smallexample
9c16f35a
EZ
6709
6710@noindent
6711@code{set print union} affects programs written in C-like languages
6712and in Pascal.
c906108c
SS
6713@end table
6714
c906108c
SS
6715@need 1000
6716@noindent
b37052ae 6717These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6718
6719@table @code
4644b6e3 6720@cindex demangling C@t{++} names
c906108c
SS
6721@item set print demangle
6722@itemx set print demangle on
b37052ae 6723Print C@t{++} names in their source form rather than in the encoded
c906108c 6724(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6725linkage. The default is on.
c906108c 6726
c906108c 6727@item show print demangle
b37052ae 6728Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6729
c906108c
SS
6730@item set print asm-demangle
6731@itemx set print asm-demangle on
b37052ae 6732Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6733in assembler code printouts such as instruction disassemblies.
6734The default is off.
6735
c906108c 6736@item show print asm-demangle
b37052ae 6737Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6738or demangled form.
6739
b37052ae
EZ
6740@cindex C@t{++} symbol decoding style
6741@cindex symbol decoding style, C@t{++}
a8f24a35 6742@kindex set demangle-style
c906108c
SS
6743@item set demangle-style @var{style}
6744Choose among several encoding schemes used by different compilers to
b37052ae 6745represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6746
6747@table @code
6748@item auto
6749Allow @value{GDBN} to choose a decoding style by inspecting your program.
6750
6751@item gnu
b37052ae 6752Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6753This is the default.
c906108c
SS
6754
6755@item hp
b37052ae 6756Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6757
6758@item lucid
b37052ae 6759Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6760
6761@item arm
b37052ae 6762Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6763@strong{Warning:} this setting alone is not sufficient to allow
6764debugging @code{cfront}-generated executables. @value{GDBN} would
6765require further enhancement to permit that.
6766
6767@end table
6768If you omit @var{style}, you will see a list of possible formats.
6769
c906108c 6770@item show demangle-style
b37052ae 6771Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6772
c906108c
SS
6773@item set print object
6774@itemx set print object on
4644b6e3 6775@cindex derived type of an object, printing
9c16f35a 6776@cindex display derived types
c906108c
SS
6777When displaying a pointer to an object, identify the @emph{actual}
6778(derived) type of the object rather than the @emph{declared} type, using
6779the virtual function table.
6780
6781@item set print object off
6782Display only the declared type of objects, without reference to the
6783virtual function table. This is the default setting.
6784
c906108c
SS
6785@item show print object
6786Show whether actual, or declared, object types are displayed.
6787
c906108c
SS
6788@item set print static-members
6789@itemx set print static-members on
4644b6e3 6790@cindex static members of C@t{++} objects
b37052ae 6791Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6792
6793@item set print static-members off
b37052ae 6794Do not print static members when displaying a C@t{++} object.
c906108c 6795
c906108c 6796@item show print static-members
9c16f35a
EZ
6797Show whether C@t{++} static members are printed or not.
6798
6799@item set print pascal_static-members
6800@itemx set print pascal_static-members on
d3e8051b
EZ
6801@cindex static members of Pascal objects
6802@cindex Pascal objects, static members display
9c16f35a
EZ
6803Print static members when displaying a Pascal object. The default is on.
6804
6805@item set print pascal_static-members off
6806Do not print static members when displaying a Pascal object.
6807
6808@item show print pascal_static-members
6809Show whether Pascal static members are printed or not.
c906108c
SS
6810
6811@c These don't work with HP ANSI C++ yet.
c906108c
SS
6812@item set print vtbl
6813@itemx set print vtbl on
4644b6e3 6814@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6815@cindex virtual functions (C@t{++}) display
6816@cindex VTBL display
b37052ae 6817Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6818(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6819ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6820
6821@item set print vtbl off
b37052ae 6822Do not pretty print C@t{++} virtual function tables.
c906108c 6823
c906108c 6824@item show print vtbl
b37052ae 6825Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6826@end table
c906108c 6827
6d2ebf8b 6828@node Value History
79a6e687 6829@section Value History
c906108c
SS
6830
6831@cindex value history
9c16f35a 6832@cindex history of values printed by @value{GDBN}
5d161b24
DB
6833Values printed by the @code{print} command are saved in the @value{GDBN}
6834@dfn{value history}. This allows you to refer to them in other expressions.
6835Values are kept until the symbol table is re-read or discarded
6836(for example with the @code{file} or @code{symbol-file} commands).
6837When the symbol table changes, the value history is discarded,
6838since the values may contain pointers back to the types defined in the
c906108c
SS
6839symbol table.
6840
6841@cindex @code{$}
6842@cindex @code{$$}
6843@cindex history number
6844The values printed are given @dfn{history numbers} by which you can
6845refer to them. These are successive integers starting with one.
6846@code{print} shows you the history number assigned to a value by
6847printing @samp{$@var{num} = } before the value; here @var{num} is the
6848history number.
6849
6850To refer to any previous value, use @samp{$} followed by the value's
6851history number. The way @code{print} labels its output is designed to
6852remind you of this. Just @code{$} refers to the most recent value in
6853the history, and @code{$$} refers to the value before that.
6854@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6855is the value just prior to @code{$$}, @code{$$1} is equivalent to
6856@code{$$}, and @code{$$0} is equivalent to @code{$}.
6857
6858For example, suppose you have just printed a pointer to a structure and
6859want to see the contents of the structure. It suffices to type
6860
474c8240 6861@smallexample
c906108c 6862p *$
474c8240 6863@end smallexample
c906108c
SS
6864
6865If you have a chain of structures where the component @code{next} points
6866to the next one, you can print the contents of the next one with this:
6867
474c8240 6868@smallexample
c906108c 6869p *$.next
474c8240 6870@end smallexample
c906108c
SS
6871
6872@noindent
6873You can print successive links in the chain by repeating this
6874command---which you can do by just typing @key{RET}.
6875
6876Note that the history records values, not expressions. If the value of
6877@code{x} is 4 and you type these commands:
6878
474c8240 6879@smallexample
c906108c
SS
6880print x
6881set x=5
474c8240 6882@end smallexample
c906108c
SS
6883
6884@noindent
6885then the value recorded in the value history by the @code{print} command
6886remains 4 even though the value of @code{x} has changed.
6887
6888@table @code
6889@kindex show values
6890@item show values
6891Print the last ten values in the value history, with their item numbers.
6892This is like @samp{p@ $$9} repeated ten times, except that @code{show
6893values} does not change the history.
6894
6895@item show values @var{n}
6896Print ten history values centered on history item number @var{n}.
6897
6898@item show values +
6899Print ten history values just after the values last printed. If no more
6900values are available, @code{show values +} produces no display.
6901@end table
6902
6903Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6904same effect as @samp{show values +}.
6905
6d2ebf8b 6906@node Convenience Vars
79a6e687 6907@section Convenience Variables
c906108c
SS
6908
6909@cindex convenience variables
9c16f35a 6910@cindex user-defined variables
c906108c
SS
6911@value{GDBN} provides @dfn{convenience variables} that you can use within
6912@value{GDBN} to hold on to a value and refer to it later. These variables
6913exist entirely within @value{GDBN}; they are not part of your program, and
6914setting a convenience variable has no direct effect on further execution
6915of your program. That is why you can use them freely.
6916
6917Convenience variables are prefixed with @samp{$}. Any name preceded by
6918@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6919the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6920(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6921by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6922
6923You can save a value in a convenience variable with an assignment
6924expression, just as you would set a variable in your program.
6925For example:
6926
474c8240 6927@smallexample
c906108c 6928set $foo = *object_ptr
474c8240 6929@end smallexample
c906108c
SS
6930
6931@noindent
6932would save in @code{$foo} the value contained in the object pointed to by
6933@code{object_ptr}.
6934
6935Using a convenience variable for the first time creates it, but its
6936value is @code{void} until you assign a new value. You can alter the
6937value with another assignment at any time.
6938
6939Convenience variables have no fixed types. You can assign a convenience
6940variable any type of value, including structures and arrays, even if
6941that variable already has a value of a different type. The convenience
6942variable, when used as an expression, has the type of its current value.
6943
6944@table @code
6945@kindex show convenience
9c16f35a 6946@cindex show all user variables
c906108c
SS
6947@item show convenience
6948Print a list of convenience variables used so far, and their values.
d4f3574e 6949Abbreviated @code{show conv}.
53e5f3cf
AS
6950
6951@kindex init-if-undefined
6952@cindex convenience variables, initializing
6953@item init-if-undefined $@var{variable} = @var{expression}
6954Set a convenience variable if it has not already been set. This is useful
6955for user-defined commands that keep some state. It is similar, in concept,
6956to using local static variables with initializers in C (except that
6957convenience variables are global). It can also be used to allow users to
6958override default values used in a command script.
6959
6960If the variable is already defined then the expression is not evaluated so
6961any side-effects do not occur.
c906108c
SS
6962@end table
6963
6964One of the ways to use a convenience variable is as a counter to be
6965incremented or a pointer to be advanced. For example, to print
6966a field from successive elements of an array of structures:
6967
474c8240 6968@smallexample
c906108c
SS
6969set $i = 0
6970print bar[$i++]->contents
474c8240 6971@end smallexample
c906108c 6972
d4f3574e
SS
6973@noindent
6974Repeat that command by typing @key{RET}.
c906108c
SS
6975
6976Some convenience variables are created automatically by @value{GDBN} and given
6977values likely to be useful.
6978
6979@table @code
41afff9a 6980@vindex $_@r{, convenience variable}
c906108c
SS
6981@item $_
6982The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6983the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6984commands which provide a default address for @code{x} to examine also
6985set @code{$_} to that address; these commands include @code{info line}
6986and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6987except when set by the @code{x} command, in which case it is a pointer
6988to the type of @code{$__}.
6989
41afff9a 6990@vindex $__@r{, convenience variable}
c906108c
SS
6991@item $__
6992The variable @code{$__} is automatically set by the @code{x} command
6993to the value found in the last address examined. Its type is chosen
6994to match the format in which the data was printed.
6995
6996@item $_exitcode
41afff9a 6997@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6998The variable @code{$_exitcode} is automatically set to the exit code when
6999the program being debugged terminates.
7000@end table
7001
53a5351d
JM
7002On HP-UX systems, if you refer to a function or variable name that
7003begins with a dollar sign, @value{GDBN} searches for a user or system
7004name first, before it searches for a convenience variable.
c906108c 7005
6d2ebf8b 7006@node Registers
c906108c
SS
7007@section Registers
7008
7009@cindex registers
7010You can refer to machine register contents, in expressions, as variables
7011with names starting with @samp{$}. The names of registers are different
7012for each machine; use @code{info registers} to see the names used on
7013your machine.
7014
7015@table @code
7016@kindex info registers
7017@item info registers
7018Print the names and values of all registers except floating-point
c85508ee 7019and vector registers (in the selected stack frame).
c906108c
SS
7020
7021@kindex info all-registers
7022@cindex floating point registers
7023@item info all-registers
7024Print the names and values of all registers, including floating-point
c85508ee 7025and vector registers (in the selected stack frame).
c906108c
SS
7026
7027@item info registers @var{regname} @dots{}
7028Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
7029As discussed in detail below, register values are normally relative to
7030the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
7031the machine you are using, with or without the initial @samp{$}.
7032@end table
7033
e09f16f9
EZ
7034@cindex stack pointer register
7035@cindex program counter register
7036@cindex process status register
7037@cindex frame pointer register
7038@cindex standard registers
c906108c
SS
7039@value{GDBN} has four ``standard'' register names that are available (in
7040expressions) on most machines---whenever they do not conflict with an
7041architecture's canonical mnemonics for registers. The register names
7042@code{$pc} and @code{$sp} are used for the program counter register and
7043the stack pointer. @code{$fp} is used for a register that contains a
7044pointer to the current stack frame, and @code{$ps} is used for a
7045register that contains the processor status. For example,
7046you could print the program counter in hex with
7047
474c8240 7048@smallexample
c906108c 7049p/x $pc
474c8240 7050@end smallexample
c906108c
SS
7051
7052@noindent
7053or print the instruction to be executed next with
7054
474c8240 7055@smallexample
c906108c 7056x/i $pc
474c8240 7057@end smallexample
c906108c
SS
7058
7059@noindent
7060or add four to the stack pointer@footnote{This is a way of removing
7061one word from the stack, on machines where stacks grow downward in
7062memory (most machines, nowadays). This assumes that the innermost
7063stack frame is selected; setting @code{$sp} is not allowed when other
7064stack frames are selected. To pop entire frames off the stack,
7065regardless of machine architecture, use @code{return};
79a6e687 7066see @ref{Returning, ,Returning from a Function}.} with
c906108c 7067
474c8240 7068@smallexample
c906108c 7069set $sp += 4
474c8240 7070@end smallexample
c906108c
SS
7071
7072Whenever possible, these four standard register names are available on
7073your machine even though the machine has different canonical mnemonics,
7074so long as there is no conflict. The @code{info registers} command
7075shows the canonical names. For example, on the SPARC, @code{info
7076registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
7077can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
7078is an alias for the @sc{eflags} register.
c906108c
SS
7079
7080@value{GDBN} always considers the contents of an ordinary register as an
7081integer when the register is examined in this way. Some machines have
7082special registers which can hold nothing but floating point; these
7083registers are considered to have floating point values. There is no way
7084to refer to the contents of an ordinary register as floating point value
7085(although you can @emph{print} it as a floating point value with
7086@samp{print/f $@var{regname}}).
7087
7088Some registers have distinct ``raw'' and ``virtual'' data formats. This
7089means that the data format in which the register contents are saved by
7090the operating system is not the same one that your program normally
7091sees. For example, the registers of the 68881 floating point
7092coprocessor are always saved in ``extended'' (raw) format, but all C
7093programs expect to work with ``double'' (virtual) format. In such
5d161b24 7094cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
7095that makes sense for your program), but the @code{info registers} command
7096prints the data in both formats.
7097
36b80e65
EZ
7098@cindex SSE registers (x86)
7099@cindex MMX registers (x86)
7100Some machines have special registers whose contents can be interpreted
7101in several different ways. For example, modern x86-based machines
7102have SSE and MMX registers that can hold several values packed
7103together in several different formats. @value{GDBN} refers to such
7104registers in @code{struct} notation:
7105
7106@smallexample
7107(@value{GDBP}) print $xmm1
7108$1 = @{
7109 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
7110 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
7111 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
7112 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
7113 v4_int32 = @{0, 20657912, 11, 13@},
7114 v2_int64 = @{88725056443645952, 55834574859@},
7115 uint128 = 0x0000000d0000000b013b36f800000000
7116@}
7117@end smallexample
7118
7119@noindent
7120To set values of such registers, you need to tell @value{GDBN} which
7121view of the register you wish to change, as if you were assigning
7122value to a @code{struct} member:
7123
7124@smallexample
7125 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
7126@end smallexample
7127
c906108c 7128Normally, register values are relative to the selected stack frame
79a6e687 7129(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
7130value that the register would contain if all stack frames farther in
7131were exited and their saved registers restored. In order to see the
7132true contents of hardware registers, you must select the innermost
7133frame (with @samp{frame 0}).
7134
7135However, @value{GDBN} must deduce where registers are saved, from the machine
7136code generated by your compiler. If some registers are not saved, or if
7137@value{GDBN} is unable to locate the saved registers, the selected stack
7138frame makes no difference.
7139
6d2ebf8b 7140@node Floating Point Hardware
79a6e687 7141@section Floating Point Hardware
c906108c
SS
7142@cindex floating point
7143
7144Depending on the configuration, @value{GDBN} may be able to give
7145you more information about the status of the floating point hardware.
7146
7147@table @code
7148@kindex info float
7149@item info float
7150Display hardware-dependent information about the floating
7151point unit. The exact contents and layout vary depending on the
7152floating point chip. Currently, @samp{info float} is supported on
7153the ARM and x86 machines.
7154@end table
c906108c 7155
e76f1f2e
AC
7156@node Vector Unit
7157@section Vector Unit
7158@cindex vector unit
7159
7160Depending on the configuration, @value{GDBN} may be able to give you
7161more information about the status of the vector unit.
7162
7163@table @code
7164@kindex info vector
7165@item info vector
7166Display information about the vector unit. The exact contents and
7167layout vary depending on the hardware.
7168@end table
7169
721c2651 7170@node OS Information
79a6e687 7171@section Operating System Auxiliary Information
721c2651
EZ
7172@cindex OS information
7173
7174@value{GDBN} provides interfaces to useful OS facilities that can help
7175you debug your program.
7176
7177@cindex @code{ptrace} system call
7178@cindex @code{struct user} contents
7179When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7180machines), it interfaces with the inferior via the @code{ptrace}
7181system call. The operating system creates a special sata structure,
7182called @code{struct user}, for this interface. You can use the
7183command @code{info udot} to display the contents of this data
7184structure.
7185
7186@table @code
7187@item info udot
7188@kindex info udot
7189Display the contents of the @code{struct user} maintained by the OS
7190kernel for the program being debugged. @value{GDBN} displays the
7191contents of @code{struct user} as a list of hex numbers, similar to
7192the @code{examine} command.
7193@end table
7194
b383017d
RM
7195@cindex auxiliary vector
7196@cindex vector, auxiliary
b383017d
RM
7197Some operating systems supply an @dfn{auxiliary vector} to programs at
7198startup. This is akin to the arguments and environment that you
7199specify for a program, but contains a system-dependent variety of
7200binary values that tell system libraries important details about the
7201hardware, operating system, and process. Each value's purpose is
7202identified by an integer tag; the meanings are well-known but system-specific.
7203Depending on the configuration and operating system facilities,
9c16f35a
EZ
7204@value{GDBN} may be able to show you this information. For remote
7205targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7206support of the @samp{qXfer:auxv:read} packet, see
7207@ref{qXfer auxiliary vector read}.
b383017d
RM
7208
7209@table @code
7210@kindex info auxv
7211@item info auxv
7212Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7213live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7214numerically, and also shows names and text descriptions for recognized
7215tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7216pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7217most appropriate form for a recognized tag, and in hexadecimal for
7218an unrecognized tag.
7219@end table
7220
721c2651 7221
29e57380 7222@node Memory Region Attributes
79a6e687 7223@section Memory Region Attributes
29e57380
C
7224@cindex memory region attributes
7225
b383017d 7226@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7227required by regions of your target's memory. @value{GDBN} uses
7228attributes to determine whether to allow certain types of memory
7229accesses; whether to use specific width accesses; and whether to cache
7230target memory. By default the description of memory regions is
7231fetched from the target (if the current target supports this), but the
7232user can override the fetched regions.
29e57380
C
7233
7234Defined memory regions can be individually enabled and disabled. When a
7235memory region is disabled, @value{GDBN} uses the default attributes when
7236accessing memory in that region. Similarly, if no memory regions have
7237been defined, @value{GDBN} uses the default attributes when accessing
7238all memory.
7239
b383017d 7240When a memory region is defined, it is given a number to identify it;
29e57380
C
7241to enable, disable, or remove a memory region, you specify that number.
7242
7243@table @code
7244@kindex mem
bfac230e 7245@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7246Define a memory region bounded by @var{lower} and @var{upper} with
7247attributes @var{attributes}@dots{}, and add it to the list of regions
7248monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7249case: it is treated as the target's maximum memory address.
bfac230e 7250(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7251
fd79ecee
DJ
7252@item mem auto
7253Discard any user changes to the memory regions and use target-supplied
7254regions, if available, or no regions if the target does not support.
7255
29e57380
C
7256@kindex delete mem
7257@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7258Remove memory regions @var{nums}@dots{} from the list of regions
7259monitored by @value{GDBN}.
29e57380
C
7260
7261@kindex disable mem
7262@item disable mem @var{nums}@dots{}
09d4efe1 7263Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7264A disabled memory region is not forgotten.
29e57380
C
7265It may be enabled again later.
7266
7267@kindex enable mem
7268@item enable mem @var{nums}@dots{}
09d4efe1 7269Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7270
7271@kindex info mem
7272@item info mem
7273Print a table of all defined memory regions, with the following columns
09d4efe1 7274for each region:
29e57380
C
7275
7276@table @emph
7277@item Memory Region Number
7278@item Enabled or Disabled.
b383017d 7279Enabled memory regions are marked with @samp{y}.
29e57380
C
7280Disabled memory regions are marked with @samp{n}.
7281
7282@item Lo Address
7283The address defining the inclusive lower bound of the memory region.
7284
7285@item Hi Address
7286The address defining the exclusive upper bound of the memory region.
7287
7288@item Attributes
7289The list of attributes set for this memory region.
7290@end table
7291@end table
7292
7293
7294@subsection Attributes
7295
b383017d 7296@subsubsection Memory Access Mode
29e57380
C
7297The access mode attributes set whether @value{GDBN} may make read or
7298write accesses to a memory region.
7299
7300While these attributes prevent @value{GDBN} from performing invalid
7301memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7302etc.@: from accessing memory.
29e57380
C
7303
7304@table @code
7305@item ro
7306Memory is read only.
7307@item wo
7308Memory is write only.
7309@item rw
6ca652b0 7310Memory is read/write. This is the default.
29e57380
C
7311@end table
7312
7313@subsubsection Memory Access Size
d3e8051b 7314The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7315accesses in the memory region. Often memory mapped device registers
7316require specific sized accesses. If no access size attribute is
7317specified, @value{GDBN} may use accesses of any size.
7318
7319@table @code
7320@item 8
7321Use 8 bit memory accesses.
7322@item 16
7323Use 16 bit memory accesses.
7324@item 32
7325Use 32 bit memory accesses.
7326@item 64
7327Use 64 bit memory accesses.
7328@end table
7329
7330@c @subsubsection Hardware/Software Breakpoints
7331@c The hardware/software breakpoint attributes set whether @value{GDBN}
7332@c will use hardware or software breakpoints for the internal breakpoints
7333@c used by the step, next, finish, until, etc. commands.
7334@c
7335@c @table @code
7336@c @item hwbreak
b383017d 7337@c Always use hardware breakpoints
29e57380
C
7338@c @item swbreak (default)
7339@c @end table
7340
7341@subsubsection Data Cache
7342The data cache attributes set whether @value{GDBN} will cache target
7343memory. While this generally improves performance by reducing debug
7344protocol overhead, it can lead to incorrect results because @value{GDBN}
7345does not know about volatile variables or memory mapped device
7346registers.
7347
7348@table @code
7349@item cache
b383017d 7350Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7351@item nocache
7352Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7353@end table
7354
4b5752d0
VP
7355@subsection Memory Access Checking
7356@value{GDBN} can be instructed to refuse accesses to memory that is
7357not explicitly described. This can be useful if accessing such
7358regions has undesired effects for a specific target, or to provide
7359better error checking. The following commands control this behaviour.
7360
7361@table @code
7362@kindex set mem inaccessible-by-default
7363@item set mem inaccessible-by-default [on|off]
7364If @code{on} is specified, make @value{GDBN} treat memory not
7365explicitly described by the memory ranges as non-existent and refuse accesses
7366to such memory. The checks are only performed if there's at least one
7367memory range defined. If @code{off} is specified, make @value{GDBN}
7368treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7369The default value is @code{on}.
4b5752d0
VP
7370@kindex show mem inaccessible-by-default
7371@item show mem inaccessible-by-default
7372Show the current handling of accesses to unknown memory.
7373@end table
7374
7375
29e57380 7376@c @subsubsection Memory Write Verification
b383017d 7377@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7378@c will re-reads data after each write to verify the write was successful.
7379@c
7380@c @table @code
7381@c @item verify
7382@c @item noverify (default)
7383@c @end table
7384
16d9dec6 7385@node Dump/Restore Files
79a6e687 7386@section Copy Between Memory and a File
16d9dec6
MS
7387@cindex dump/restore files
7388@cindex append data to a file
7389@cindex dump data to a file
7390@cindex restore data from a file
16d9dec6 7391
df5215a6
JB
7392You can use the commands @code{dump}, @code{append}, and
7393@code{restore} to copy data between target memory and a file. The
7394@code{dump} and @code{append} commands write data to a file, and the
7395@code{restore} command reads data from a file back into the inferior's
7396memory. Files may be in binary, Motorola S-record, Intel hex, or
7397Tektronix Hex format; however, @value{GDBN} can only append to binary
7398files.
7399
7400@table @code
7401
7402@kindex dump
7403@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7404@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7405Dump the contents of memory from @var{start_addr} to @var{end_addr},
7406or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7407
df5215a6 7408The @var{format} parameter may be any one of:
16d9dec6 7409@table @code
df5215a6
JB
7410@item binary
7411Raw binary form.
7412@item ihex
7413Intel hex format.
7414@item srec
7415Motorola S-record format.
7416@item tekhex
7417Tektronix Hex format.
7418@end table
7419
7420@value{GDBN} uses the same definitions of these formats as the
7421@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7422@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7423form.
7424
7425@kindex append
7426@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7427@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7428Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7429or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7430(@value{GDBN} can only append data to files in raw binary form.)
7431
7432@kindex restore
7433@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7434Restore the contents of file @var{filename} into memory. The
7435@code{restore} command can automatically recognize any known @sc{bfd}
7436file format, except for raw binary. To restore a raw binary file you
7437must specify the optional keyword @code{binary} after the filename.
16d9dec6 7438
b383017d 7439If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7440contained in the file. Binary files always start at address zero, so
7441they will be restored at address @var{bias}. Other bfd files have
7442a built-in location; they will be restored at offset @var{bias}
7443from that location.
7444
7445If @var{start} and/or @var{end} are non-zero, then only data between
7446file offset @var{start} and file offset @var{end} will be restored.
b383017d 7447These offsets are relative to the addresses in the file, before
16d9dec6
MS
7448the @var{bias} argument is applied.
7449
7450@end table
7451
384ee23f
EZ
7452@node Core File Generation
7453@section How to Produce a Core File from Your Program
7454@cindex dump core from inferior
7455
7456A @dfn{core file} or @dfn{core dump} is a file that records the memory
7457image of a running process and its process status (register values
7458etc.). Its primary use is post-mortem debugging of a program that
7459crashed while it ran outside a debugger. A program that crashes
7460automatically produces a core file, unless this feature is disabled by
7461the user. @xref{Files}, for information on invoking @value{GDBN} in
7462the post-mortem debugging mode.
7463
7464Occasionally, you may wish to produce a core file of the program you
7465are debugging in order to preserve a snapshot of its state.
7466@value{GDBN} has a special command for that.
7467
7468@table @code
7469@kindex gcore
7470@kindex generate-core-file
7471@item generate-core-file [@var{file}]
7472@itemx gcore [@var{file}]
7473Produce a core dump of the inferior process. The optional argument
7474@var{file} specifies the file name where to put the core dump. If not
7475specified, the file name defaults to @file{core.@var{pid}}, where
7476@var{pid} is the inferior process ID.
7477
7478Note that this command is implemented only for some systems (as of
7479this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7480@end table
7481
a0eb71c5
KB
7482@node Character Sets
7483@section Character Sets
7484@cindex character sets
7485@cindex charset
7486@cindex translating between character sets
7487@cindex host character set
7488@cindex target character set
7489
7490If the program you are debugging uses a different character set to
7491represent characters and strings than the one @value{GDBN} uses itself,
7492@value{GDBN} can automatically translate between the character sets for
7493you. The character set @value{GDBN} uses we call the @dfn{host
7494character set}; the one the inferior program uses we call the
7495@dfn{target character set}.
7496
7497For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7498uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7499remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7500running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7501then the host character set is Latin-1, and the target character set is
7502@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7503target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7504@sc{ebcdic} and Latin 1 as you print character or string values, or use
7505character and string literals in expressions.
7506
7507@value{GDBN} has no way to automatically recognize which character set
7508the inferior program uses; you must tell it, using the @code{set
7509target-charset} command, described below.
7510
7511Here are the commands for controlling @value{GDBN}'s character set
7512support:
7513
7514@table @code
7515@item set target-charset @var{charset}
7516@kindex set target-charset
7517Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7518character set names @value{GDBN} recognizes below, but if you type
7519@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7520list the target character sets it supports.
a0eb71c5
KB
7521@end table
7522
7523@table @code
7524@item set host-charset @var{charset}
7525@kindex set host-charset
7526Set the current host character set to @var{charset}.
7527
7528By default, @value{GDBN} uses a host character set appropriate to the
7529system it is running on; you can override that default using the
7530@code{set host-charset} command.
7531
7532@value{GDBN} can only use certain character sets as its host character
7533set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7534indicate which can be host character sets, but if you type
7535@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7536list the host character sets it supports.
a0eb71c5
KB
7537
7538@item set charset @var{charset}
7539@kindex set charset
e33d66ec
EZ
7540Set the current host and target character sets to @var{charset}. As
7541above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7542@value{GDBN} will list the name of the character sets that can be used
7543for both host and target.
7544
a0eb71c5
KB
7545
7546@item show charset
a0eb71c5 7547@kindex show charset
b383017d 7548Show the names of the current host and target charsets.
e33d66ec
EZ
7549
7550@itemx show host-charset
a0eb71c5 7551@kindex show host-charset
b383017d 7552Show the name of the current host charset.
e33d66ec
EZ
7553
7554@itemx show target-charset
a0eb71c5 7555@kindex show target-charset
b383017d 7556Show the name of the current target charset.
a0eb71c5
KB
7557
7558@end table
7559
7560@value{GDBN} currently includes support for the following character
7561sets:
7562
7563@table @code
7564
7565@item ASCII
7566@cindex ASCII character set
7567Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7568character set.
7569
7570@item ISO-8859-1
7571@cindex ISO 8859-1 character set
7572@cindex ISO Latin 1 character set
e33d66ec 7573The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7574characters needed for French, German, and Spanish. @value{GDBN} can use
7575this as its host character set.
7576
7577@item EBCDIC-US
7578@itemx IBM1047
7579@cindex EBCDIC character set
7580@cindex IBM1047 character set
7581Variants of the @sc{ebcdic} character set, used on some of IBM's
7582mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7583@value{GDBN} cannot use these as its host character set.
7584
7585@end table
7586
7587Note that these are all single-byte character sets. More work inside
3f94c067 7588@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7589encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7590
7591Here is an example of @value{GDBN}'s character set support in action.
7592Assume that the following source code has been placed in the file
7593@file{charset-test.c}:
7594
7595@smallexample
7596#include <stdio.h>
7597
7598char ascii_hello[]
7599 = @{72, 101, 108, 108, 111, 44, 32, 119,
7600 111, 114, 108, 100, 33, 10, 0@};
7601char ibm1047_hello[]
7602 = @{200, 133, 147, 147, 150, 107, 64, 166,
7603 150, 153, 147, 132, 90, 37, 0@};
7604
7605main ()
7606@{
7607 printf ("Hello, world!\n");
7608@}
10998722 7609@end smallexample
a0eb71c5
KB
7610
7611In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7612containing the string @samp{Hello, world!} followed by a newline,
7613encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7614
7615We compile the program, and invoke the debugger on it:
7616
7617@smallexample
7618$ gcc -g charset-test.c -o charset-test
7619$ gdb -nw charset-test
7620GNU gdb 2001-12-19-cvs
7621Copyright 2001 Free Software Foundation, Inc.
7622@dots{}
f7dc1244 7623(@value{GDBP})
10998722 7624@end smallexample
a0eb71c5
KB
7625
7626We can use the @code{show charset} command to see what character sets
7627@value{GDBN} is currently using to interpret and display characters and
7628strings:
7629
7630@smallexample
f7dc1244 7631(@value{GDBP}) show charset
e33d66ec 7632The current host and target character set is `ISO-8859-1'.
f7dc1244 7633(@value{GDBP})
10998722 7634@end smallexample
a0eb71c5
KB
7635
7636For the sake of printing this manual, let's use @sc{ascii} as our
7637initial character set:
7638@smallexample
f7dc1244
EZ
7639(@value{GDBP}) set charset ASCII
7640(@value{GDBP}) show charset
e33d66ec 7641The current host and target character set is `ASCII'.
f7dc1244 7642(@value{GDBP})
10998722 7643@end smallexample
a0eb71c5
KB
7644
7645Let's assume that @sc{ascii} is indeed the correct character set for our
7646host system --- in other words, let's assume that if @value{GDBN} prints
7647characters using the @sc{ascii} character set, our terminal will display
7648them properly. Since our current target character set is also
7649@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7650
7651@smallexample
f7dc1244 7652(@value{GDBP}) print ascii_hello
a0eb71c5 7653$1 = 0x401698 "Hello, world!\n"
f7dc1244 7654(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7655$2 = 72 'H'
f7dc1244 7656(@value{GDBP})
10998722 7657@end smallexample
a0eb71c5
KB
7658
7659@value{GDBN} uses the target character set for character and string
7660literals you use in expressions:
7661
7662@smallexample
f7dc1244 7663(@value{GDBP}) print '+'
a0eb71c5 7664$3 = 43 '+'
f7dc1244 7665(@value{GDBP})
10998722 7666@end smallexample
a0eb71c5
KB
7667
7668The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7669character.
7670
7671@value{GDBN} relies on the user to tell it which character set the
7672target program uses. If we print @code{ibm1047_hello} while our target
7673character set is still @sc{ascii}, we get jibberish:
7674
7675@smallexample
f7dc1244 7676(@value{GDBP}) print ibm1047_hello
a0eb71c5 7677$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7678(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7679$5 = 200 '\310'
f7dc1244 7680(@value{GDBP})
10998722 7681@end smallexample
a0eb71c5 7682
e33d66ec 7683If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7684@value{GDBN} tells us the character sets it supports:
7685
7686@smallexample
f7dc1244 7687(@value{GDBP}) set target-charset
b383017d 7688ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7689(@value{GDBP}) set target-charset
10998722 7690@end smallexample
a0eb71c5
KB
7691
7692We can select @sc{ibm1047} as our target character set, and examine the
7693program's strings again. Now the @sc{ascii} string is wrong, but
7694@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7695target character set, @sc{ibm1047}, to the host character set,
7696@sc{ascii}, and they display correctly:
7697
7698@smallexample
f7dc1244
EZ
7699(@value{GDBP}) set target-charset IBM1047
7700(@value{GDBP}) show charset
e33d66ec
EZ
7701The current host character set is `ASCII'.
7702The current target character set is `IBM1047'.
f7dc1244 7703(@value{GDBP}) print ascii_hello
a0eb71c5 7704$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7705(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7706$7 = 72 '\110'
f7dc1244 7707(@value{GDBP}) print ibm1047_hello
a0eb71c5 7708$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7709(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7710$9 = 200 'H'
f7dc1244 7711(@value{GDBP})
10998722 7712@end smallexample
a0eb71c5
KB
7713
7714As above, @value{GDBN} uses the target character set for character and
7715string literals you use in expressions:
7716
7717@smallexample
f7dc1244 7718(@value{GDBP}) print '+'
a0eb71c5 7719$10 = 78 '+'
f7dc1244 7720(@value{GDBP})
10998722 7721@end smallexample
a0eb71c5 7722
e33d66ec 7723The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7724character.
7725
09d4efe1
EZ
7726@node Caching Remote Data
7727@section Caching Data of Remote Targets
7728@cindex caching data of remote targets
7729
7730@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7731remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7732performance, because it reduces the overhead of the remote protocol by
7733bundling memory reads and writes into large chunks. Unfortunately,
7734@value{GDBN} does not currently know anything about volatile
7735registers, and thus data caching will produce incorrect results when
7736volatile registers are in use.
7737
7738@table @code
7739@kindex set remotecache
7740@item set remotecache on
7741@itemx set remotecache off
7742Set caching state for remote targets. When @code{ON}, use data
7743caching. By default, this option is @code{OFF}.
7744
7745@kindex show remotecache
7746@item show remotecache
7747Show the current state of data caching for remote targets.
7748
7749@kindex info dcache
7750@item info dcache
7751Print the information about the data cache performance. The
7752information displayed includes: the dcache width and depth; and for
7753each cache line, how many times it was referenced, and its data and
7754state (dirty, bad, ok, etc.). This command is useful for debugging
7755the data cache operation.
7756@end table
7757
08388c79
DE
7758@node Searching Memory
7759@section Search Memory
7760@cindex searching memory
7761
7762Memory can be searched for a particular sequence of bytes with the
7763@code{find} command.
7764
7765@table @code
7766@kindex find
7767@item find @r{[}/@var{sn}@r{]} @var{start_addr}, +@var{len}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
7768@itemx find @r{[}/@var{sn}@r{]} @var{start_addr}, @var{end_addr}, @var{val1} @r{[}, @var{val2}, @dots{}@r{]}
7769Search memory for the sequence of bytes specified by @var{val1}, @var{val2},
7770etc. The search begins at address @var{start_addr} and continues for either
7771@var{len} bytes or through to @var{end_addr} inclusive.
7772@end table
7773
7774@var{s} and @var{n} are optional parameters.
7775They may be specified in either order, apart or together.
7776
7777@table @r
7778@item @var{s}, search query size
7779The size of each search query value.
7780
7781@table @code
7782@item b
7783bytes
7784@item h
7785halfwords (two bytes)
7786@item w
7787words (four bytes)
7788@item g
7789giant words (eight bytes)
7790@end table
7791
7792All values are interpreted in the current language.
7793This means, for example, that if the current source language is C/C@t{++}
7794then searching for the string ``hello'' includes the trailing '\0'.
7795
7796If the value size is not specified, it is taken from the
7797value's type in the current language.
7798This is useful when one wants to specify the search
7799pattern as a mixture of types.
7800Note that this means, for example, that in the case of C-like languages
7801a search for an untyped 0x42 will search for @samp{(int) 0x42}
7802which is typically four bytes.
7803
7804@item @var{n}, maximum number of finds
7805The maximum number of matches to print. The default is to print all finds.
7806@end table
7807
7808You can use strings as search values. Quote them with double-quotes
7809 (@code{"}).
7810The string value is copied into the search pattern byte by byte,
7811regardless of the endianness of the target and the size specification.
7812
7813The address of each match found is printed as well as a count of the
7814number of matches found.
7815
7816The address of the last value found is stored in convenience variable
7817@samp{$_}.
7818A count of the number of matches is stored in @samp{$numfound}.
7819
7820For example, if stopped at the @code{printf} in this function:
7821
7822@smallexample
7823void
7824hello ()
7825@{
7826 static char hello[] = "hello-hello";
7827 static struct @{ char c; short s; int i; @}
7828 __attribute__ ((packed)) mixed
7829 = @{ 'c', 0x1234, 0x87654321 @};
7830 printf ("%s\n", hello);
7831@}
7832@end smallexample
7833
7834@noindent
7835you get during debugging:
7836
7837@smallexample
7838(gdb) find &hello[0], +sizeof(hello), "hello"
78390x804956d <hello.1620+6>
78401 pattern found
7841(gdb) find &hello[0], +sizeof(hello), 'h', 'e', 'l', 'l', 'o'
78420x8049567 <hello.1620>
78430x804956d <hello.1620+6>
78442 patterns found
7845(gdb) find /b1 &hello[0], +sizeof(hello), 'h', 0x65, 'l'
78460x8049567 <hello.1620>
78471 pattern found
7848(gdb) find &mixed, +sizeof(mixed), (char) 'c', (short) 0x1234, (int) 0x87654321
78490x8049560 <mixed.1625>
78501 pattern found
7851(gdb) print $numfound
7852$1 = 1
7853(gdb) print $_
7854$2 = (void *) 0x8049560
7855@end smallexample
a0eb71c5 7856
e2e0bcd1
JB
7857@node Macros
7858@chapter C Preprocessor Macros
7859
49efadf5 7860Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7861``preprocessor macros'' which expand into strings of tokens.
7862@value{GDBN} can evaluate expressions containing macro invocations, show
7863the result of macro expansion, and show a macro's definition, including
7864where it was defined.
7865
7866You may need to compile your program specially to provide @value{GDBN}
7867with information about preprocessor macros. Most compilers do not
7868include macros in their debugging information, even when you compile
7869with the @option{-g} flag. @xref{Compilation}.
7870
7871A program may define a macro at one point, remove that definition later,
7872and then provide a different definition after that. Thus, at different
7873points in the program, a macro may have different definitions, or have
7874no definition at all. If there is a current stack frame, @value{GDBN}
7875uses the macros in scope at that frame's source code line. Otherwise,
7876@value{GDBN} uses the macros in scope at the current listing location;
7877see @ref{List}.
7878
7879At the moment, @value{GDBN} does not support the @code{##}
7880token-splicing operator, the @code{#} stringification operator, or
7881variable-arity macros.
7882
7883Whenever @value{GDBN} evaluates an expression, it always expands any
7884macro invocations present in the expression. @value{GDBN} also provides
7885the following commands for working with macros explicitly.
7886
7887@table @code
7888
7889@kindex macro expand
7890@cindex macro expansion, showing the results of preprocessor
7891@cindex preprocessor macro expansion, showing the results of
7892@cindex expanding preprocessor macros
7893@item macro expand @var{expression}
7894@itemx macro exp @var{expression}
7895Show the results of expanding all preprocessor macro invocations in
7896@var{expression}. Since @value{GDBN} simply expands macros, but does
7897not parse the result, @var{expression} need not be a valid expression;
7898it can be any string of tokens.
7899
09d4efe1 7900@kindex macro exp1
e2e0bcd1
JB
7901@item macro expand-once @var{expression}
7902@itemx macro exp1 @var{expression}
4644b6e3 7903@cindex expand macro once
e2e0bcd1
JB
7904@i{(This command is not yet implemented.)} Show the results of
7905expanding those preprocessor macro invocations that appear explicitly in
7906@var{expression}. Macro invocations appearing in that expansion are
7907left unchanged. This command allows you to see the effect of a
7908particular macro more clearly, without being confused by further
7909expansions. Since @value{GDBN} simply expands macros, but does not
7910parse the result, @var{expression} need not be a valid expression; it
7911can be any string of tokens.
7912
475b0867 7913@kindex info macro
e2e0bcd1
JB
7914@cindex macro definition, showing
7915@cindex definition, showing a macro's
475b0867 7916@item info macro @var{macro}
e2e0bcd1
JB
7917Show the definition of the macro named @var{macro}, and describe the
7918source location where that definition was established.
7919
7920@kindex macro define
7921@cindex user-defined macros
7922@cindex defining macros interactively
7923@cindex macros, user-defined
7924@item macro define @var{macro} @var{replacement-list}
7925@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
d7d9f01e
TT
7926Introduce a definition for a preprocessor macro named @var{macro},
7927invocations of which are replaced by the tokens given in
7928@var{replacement-list}. The first form of this command defines an
7929``object-like'' macro, which takes no arguments; the second form
7930defines a ``function-like'' macro, which takes the arguments given in
7931@var{arglist}.
7932
7933A definition introduced by this command is in scope in every
7934expression evaluated in @value{GDBN}, until it is removed with the
7935@code{macro undef} command, described below. The definition overrides
7936all definitions for @var{macro} present in the program being debugged,
7937as well as any previous user-supplied definition.
e2e0bcd1
JB
7938
7939@kindex macro undef
7940@item macro undef @var{macro}
d7d9f01e
TT
7941Remove any user-supplied definition for the macro named @var{macro}.
7942This command only affects definitions provided with the @code{macro
7943define} command, described above; it cannot remove definitions present
7944in the program being debugged.
e2e0bcd1 7945
09d4efe1
EZ
7946@kindex macro list
7947@item macro list
d7d9f01e 7948List all the macros defined using the @code{macro define} command.
e2e0bcd1
JB
7949@end table
7950
7951@cindex macros, example of debugging with
7952Here is a transcript showing the above commands in action. First, we
7953show our source files:
7954
7955@smallexample
7956$ cat sample.c
7957#include <stdio.h>
7958#include "sample.h"
7959
7960#define M 42
7961#define ADD(x) (M + x)
7962
7963main ()
7964@{
7965#define N 28
7966 printf ("Hello, world!\n");
7967#undef N
7968 printf ("We're so creative.\n");
7969#define N 1729
7970 printf ("Goodbye, world!\n");
7971@}
7972$ cat sample.h
7973#define Q <
7974$
7975@end smallexample
7976
7977Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7978We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7979compiler includes information about preprocessor macros in the debugging
7980information.
7981
7982@smallexample
7983$ gcc -gdwarf-2 -g3 sample.c -o sample
7984$
7985@end smallexample
7986
7987Now, we start @value{GDBN} on our sample program:
7988
7989@smallexample
7990$ gdb -nw sample
7991GNU gdb 2002-05-06-cvs
7992Copyright 2002 Free Software Foundation, Inc.
7993GDB is free software, @dots{}
f7dc1244 7994(@value{GDBP})
e2e0bcd1
JB
7995@end smallexample
7996
7997We can expand macros and examine their definitions, even when the
7998program is not running. @value{GDBN} uses the current listing position
7999to decide which macro definitions are in scope:
8000
8001@smallexample
f7dc1244 8002(@value{GDBP}) list main
e2e0bcd1
JB
80033
80044 #define M 42
80055 #define ADD(x) (M + x)
80066
80077 main ()
80088 @{
80099 #define N 28
801010 printf ("Hello, world!\n");
801111 #undef N
801212 printf ("We're so creative.\n");
f7dc1244 8013(@value{GDBP}) info macro ADD
e2e0bcd1
JB
8014Defined at /home/jimb/gdb/macros/play/sample.c:5
8015#define ADD(x) (M + x)
f7dc1244 8016(@value{GDBP}) info macro Q
e2e0bcd1
JB
8017Defined at /home/jimb/gdb/macros/play/sample.h:1
8018 included at /home/jimb/gdb/macros/play/sample.c:2
8019#define Q <
f7dc1244 8020(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 8021expands to: (42 + 1)
f7dc1244 8022(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 8023expands to: once (M + 1)
f7dc1244 8024(@value{GDBP})
e2e0bcd1
JB
8025@end smallexample
8026
d7d9f01e 8027In the example above, note that @code{macro expand-once} expands only
e2e0bcd1
JB
8028the macro invocation explicit in the original text --- the invocation of
8029@code{ADD} --- but does not expand the invocation of the macro @code{M},
8030which was introduced by @code{ADD}.
8031
3f94c067
BW
8032Once the program is running, @value{GDBN} uses the macro definitions in
8033force at the source line of the current stack frame:
e2e0bcd1
JB
8034
8035@smallexample
f7dc1244 8036(@value{GDBP}) break main
e2e0bcd1 8037Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 8038(@value{GDBP}) run
b383017d 8039Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
8040
8041Breakpoint 1, main () at sample.c:10
804210 printf ("Hello, world!\n");
f7dc1244 8043(@value{GDBP})
e2e0bcd1
JB
8044@end smallexample
8045
8046At line 10, the definition of the macro @code{N} at line 9 is in force:
8047
8048@smallexample
f7dc1244 8049(@value{GDBP}) info macro N
e2e0bcd1
JB
8050Defined at /home/jimb/gdb/macros/play/sample.c:9
8051#define N 28
f7dc1244 8052(@value{GDBP}) macro expand N Q M
e2e0bcd1 8053expands to: 28 < 42
f7dc1244 8054(@value{GDBP}) print N Q M
e2e0bcd1 8055$1 = 1
f7dc1244 8056(@value{GDBP})
e2e0bcd1
JB
8057@end smallexample
8058
8059As we step over directives that remove @code{N}'s definition, and then
8060give it a new definition, @value{GDBN} finds the definition (or lack
8061thereof) in force at each point:
8062
8063@smallexample
f7dc1244 8064(@value{GDBP}) next
e2e0bcd1
JB
8065Hello, world!
806612 printf ("We're so creative.\n");
f7dc1244 8067(@value{GDBP}) info macro N
e2e0bcd1
JB
8068The symbol `N' has no definition as a C/C++ preprocessor macro
8069at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 8070(@value{GDBP}) next
e2e0bcd1
JB
8071We're so creative.
807214 printf ("Goodbye, world!\n");
f7dc1244 8073(@value{GDBP}) info macro N
e2e0bcd1
JB
8074Defined at /home/jimb/gdb/macros/play/sample.c:13
8075#define N 1729
f7dc1244 8076(@value{GDBP}) macro expand N Q M
e2e0bcd1 8077expands to: 1729 < 42
f7dc1244 8078(@value{GDBP}) print N Q M
e2e0bcd1 8079$2 = 0
f7dc1244 8080(@value{GDBP})
e2e0bcd1
JB
8081@end smallexample
8082
8083
b37052ae
EZ
8084@node Tracepoints
8085@chapter Tracepoints
8086@c This chapter is based on the documentation written by Michael
8087@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
8088
8089@cindex tracepoints
8090In some applications, it is not feasible for the debugger to interrupt
8091the program's execution long enough for the developer to learn
8092anything helpful about its behavior. If the program's correctness
8093depends on its real-time behavior, delays introduced by a debugger
8094might cause the program to change its behavior drastically, or perhaps
8095fail, even when the code itself is correct. It is useful to be able
8096to observe the program's behavior without interrupting it.
8097
8098Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
8099specify locations in the program, called @dfn{tracepoints}, and
8100arbitrary expressions to evaluate when those tracepoints are reached.
8101Later, using the @code{tfind} command, you can examine the values
8102those expressions had when the program hit the tracepoints. The
8103expressions may also denote objects in memory---structures or arrays,
8104for example---whose values @value{GDBN} should record; while visiting
8105a particular tracepoint, you may inspect those objects as if they were
8106in memory at that moment. However, because @value{GDBN} records these
8107values without interacting with you, it can do so quickly and
8108unobtrusively, hopefully not disturbing the program's behavior.
8109
8110The tracepoint facility is currently available only for remote
9d29849a
JB
8111targets. @xref{Targets}. In addition, your remote target must know
8112how to collect trace data. This functionality is implemented in the
8113remote stub; however, none of the stubs distributed with @value{GDBN}
8114support tracepoints as of this writing. The format of the remote
8115packets used to implement tracepoints are described in @ref{Tracepoint
8116Packets}.
b37052ae
EZ
8117
8118This chapter describes the tracepoint commands and features.
8119
8120@menu
b383017d
RM
8121* Set Tracepoints::
8122* Analyze Collected Data::
8123* Tracepoint Variables::
b37052ae
EZ
8124@end menu
8125
8126@node Set Tracepoints
8127@section Commands to Set Tracepoints
8128
8129Before running such a @dfn{trace experiment}, an arbitrary number of
8130tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
8131tracepoint has a number assigned to it by @value{GDBN}. Like with
8132breakpoints, tracepoint numbers are successive integers starting from
8133one. Many of the commands associated with tracepoints take the
8134tracepoint number as their argument, to identify which tracepoint to
8135work on.
8136
8137For each tracepoint, you can specify, in advance, some arbitrary set
8138of data that you want the target to collect in the trace buffer when
8139it hits that tracepoint. The collected data can include registers,
8140local variables, or global data. Later, you can use @value{GDBN}
8141commands to examine the values these data had at the time the
8142tracepoint was hit.
8143
8144This section describes commands to set tracepoints and associated
8145conditions and actions.
8146
8147@menu
b383017d
RM
8148* Create and Delete Tracepoints::
8149* Enable and Disable Tracepoints::
8150* Tracepoint Passcounts::
8151* Tracepoint Actions::
8152* Listing Tracepoints::
79a6e687 8153* Starting and Stopping Trace Experiments::
b37052ae
EZ
8154@end menu
8155
8156@node Create and Delete Tracepoints
8157@subsection Create and Delete Tracepoints
8158
8159@table @code
8160@cindex set tracepoint
8161@kindex trace
8162@item trace
8163The @code{trace} command is very similar to the @code{break} command.
8164Its argument can be a source line, a function name, or an address in
8165the target program. @xref{Set Breaks}. The @code{trace} command
8166defines a tracepoint, which is a point in the target program where the
8167debugger will briefly stop, collect some data, and then allow the
8168program to continue. Setting a tracepoint or changing its commands
8169doesn't take effect until the next @code{tstart} command; thus, you
8170cannot change the tracepoint attributes once a trace experiment is
8171running.
8172
8173Here are some examples of using the @code{trace} command:
8174
8175@smallexample
8176(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
8177
8178(@value{GDBP}) @b{trace +2} // 2 lines forward
8179
8180(@value{GDBP}) @b{trace my_function} // first source line of function
8181
8182(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
8183
8184(@value{GDBP}) @b{trace *0x2117c4} // an address
8185@end smallexample
8186
8187@noindent
8188You can abbreviate @code{trace} as @code{tr}.
8189
8190@vindex $tpnum
8191@cindex last tracepoint number
8192@cindex recent tracepoint number
8193@cindex tracepoint number
8194The convenience variable @code{$tpnum} records the tracepoint number
8195of the most recently set tracepoint.
8196
8197@kindex delete tracepoint
8198@cindex tracepoint deletion
8199@item delete tracepoint @r{[}@var{num}@r{]}
8200Permanently delete one or more tracepoints. With no argument, the
8201default is to delete all tracepoints.
8202
8203Examples:
8204
8205@smallexample
8206(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
8207
8208(@value{GDBP}) @b{delete trace} // remove all tracepoints
8209@end smallexample
8210
8211@noindent
8212You can abbreviate this command as @code{del tr}.
8213@end table
8214
8215@node Enable and Disable Tracepoints
8216@subsection Enable and Disable Tracepoints
8217
8218@table @code
8219@kindex disable tracepoint
8220@item disable tracepoint @r{[}@var{num}@r{]}
8221Disable tracepoint @var{num}, or all tracepoints if no argument
8222@var{num} is given. A disabled tracepoint will have no effect during
8223the next trace experiment, but it is not forgotten. You can re-enable
8224a disabled tracepoint using the @code{enable tracepoint} command.
8225
8226@kindex enable tracepoint
8227@item enable tracepoint @r{[}@var{num}@r{]}
8228Enable tracepoint @var{num}, or all tracepoints. The enabled
8229tracepoints will become effective the next time a trace experiment is
8230run.
8231@end table
8232
8233@node Tracepoint Passcounts
8234@subsection Tracepoint Passcounts
8235
8236@table @code
8237@kindex passcount
8238@cindex tracepoint pass count
8239@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
8240Set the @dfn{passcount} of a tracepoint. The passcount is a way to
8241automatically stop a trace experiment. If a tracepoint's passcount is
8242@var{n}, then the trace experiment will be automatically stopped on
8243the @var{n}'th time that tracepoint is hit. If the tracepoint number
8244@var{num} is not specified, the @code{passcount} command sets the
8245passcount of the most recently defined tracepoint. If no passcount is
8246given, the trace experiment will run until stopped explicitly by the
8247user.
8248
8249Examples:
8250
8251@smallexample
b383017d 8252(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8253@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8254
8255(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8256@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8257(@value{GDBP}) @b{trace foo}
8258(@value{GDBP}) @b{pass 3}
8259(@value{GDBP}) @b{trace bar}
8260(@value{GDBP}) @b{pass 2}
8261(@value{GDBP}) @b{trace baz}
8262(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8263@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8264@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8265@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8266@end smallexample
8267@end table
8268
8269@node Tracepoint Actions
8270@subsection Tracepoint Action Lists
8271
8272@table @code
8273@kindex actions
8274@cindex tracepoint actions
8275@item actions @r{[}@var{num}@r{]}
8276This command will prompt for a list of actions to be taken when the
8277tracepoint is hit. If the tracepoint number @var{num} is not
8278specified, this command sets the actions for the one that was most
8279recently defined (so that you can define a tracepoint and then say
8280@code{actions} without bothering about its number). You specify the
8281actions themselves on the following lines, one action at a time, and
8282terminate the actions list with a line containing just @code{end}. So
8283far, the only defined actions are @code{collect} and
8284@code{while-stepping}.
8285
8286@cindex remove actions from a tracepoint
8287To remove all actions from a tracepoint, type @samp{actions @var{num}}
8288and follow it immediately with @samp{end}.
8289
8290@smallexample
8291(@value{GDBP}) @b{collect @var{data}} // collect some data
8292
6826cf00 8293(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8294
6826cf00 8295(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8296@end smallexample
8297
8298In the following example, the action list begins with @code{collect}
8299commands indicating the things to be collected when the tracepoint is
8300hit. Then, in order to single-step and collect additional data
8301following the tracepoint, a @code{while-stepping} command is used,
8302followed by the list of things to be collected while stepping. The
8303@code{while-stepping} command is terminated by its own separate
8304@code{end} command. Lastly, the action list is terminated by an
8305@code{end} command.
8306
8307@smallexample
8308(@value{GDBP}) @b{trace foo}
8309(@value{GDBP}) @b{actions}
8310Enter actions for tracepoint 1, one per line:
8311> collect bar,baz
8312> collect $regs
8313> while-stepping 12
8314 > collect $fp, $sp
8315 > end
8316end
8317@end smallexample
8318
8319@kindex collect @r{(tracepoints)}
8320@item collect @var{expr1}, @var{expr2}, @dots{}
8321Collect values of the given expressions when the tracepoint is hit.
8322This command accepts a comma-separated list of any valid expressions.
8323In addition to global, static, or local variables, the following
8324special arguments are supported:
8325
8326@table @code
8327@item $regs
8328collect all registers
8329
8330@item $args
8331collect all function arguments
8332
8333@item $locals
8334collect all local variables.
8335@end table
8336
8337You can give several consecutive @code{collect} commands, each one
8338with a single argument, or one @code{collect} command with several
8339arguments separated by commas: the effect is the same.
8340
f5c37c66
EZ
8341The command @code{info scope} (@pxref{Symbols, info scope}) is
8342particularly useful for figuring out what data to collect.
8343
b37052ae
EZ
8344@kindex while-stepping @r{(tracepoints)}
8345@item while-stepping @var{n}
8346Perform @var{n} single-step traces after the tracepoint, collecting
8347new data at each step. The @code{while-stepping} command is
8348followed by the list of what to collect while stepping (followed by
8349its own @code{end} command):
8350
8351@smallexample
8352> while-stepping 12
8353 > collect $regs, myglobal
8354 > end
8355>
8356@end smallexample
8357
8358@noindent
8359You may abbreviate @code{while-stepping} as @code{ws} or
8360@code{stepping}.
8361@end table
8362
8363@node Listing Tracepoints
8364@subsection Listing Tracepoints
8365
8366@table @code
8367@kindex info tracepoints
09d4efe1 8368@kindex info tp
b37052ae
EZ
8369@cindex information about tracepoints
8370@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8371Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8372a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8373defined so far. For each tracepoint, the following information is
8374shown:
8375
8376@itemize @bullet
8377@item
8378its number
8379@item
8380whether it is enabled or disabled
8381@item
8382its address
8383@item
8384its passcount as given by the @code{passcount @var{n}} command
8385@item
8386its step count as given by the @code{while-stepping @var{n}} command
8387@item
8388where in the source files is the tracepoint set
8389@item
8390its action list as given by the @code{actions} command
8391@end itemize
8392
8393@smallexample
8394(@value{GDBP}) @b{info trace}
8395Num Enb Address PassC StepC What
83961 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
83972 y 0x0020dc64 0 0 in g_test at g_test.c:1375
83983 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8399(@value{GDBP})
8400@end smallexample
8401
8402@noindent
8403This command can be abbreviated @code{info tp}.
8404@end table
8405
79a6e687
BW
8406@node Starting and Stopping Trace Experiments
8407@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8408
8409@table @code
8410@kindex tstart
8411@cindex start a new trace experiment
8412@cindex collected data discarded
8413@item tstart
8414This command takes no arguments. It starts the trace experiment, and
8415begins collecting data. This has the side effect of discarding all
8416the data collected in the trace buffer during the previous trace
8417experiment.
8418
8419@kindex tstop
8420@cindex stop a running trace experiment
8421@item tstop
8422This command takes no arguments. It ends the trace experiment, and
8423stops collecting data.
8424
68c71a2e 8425@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8426automatically if any tracepoint's passcount is reached
8427(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8428
8429@kindex tstatus
8430@cindex status of trace data collection
8431@cindex trace experiment, status of
8432@item tstatus
8433This command displays the status of the current trace data
8434collection.
8435@end table
8436
8437Here is an example of the commands we described so far:
8438
8439@smallexample
8440(@value{GDBP}) @b{trace gdb_c_test}
8441(@value{GDBP}) @b{actions}
8442Enter actions for tracepoint #1, one per line.
8443> collect $regs,$locals,$args
8444> while-stepping 11
8445 > collect $regs
8446 > end
8447> end
8448(@value{GDBP}) @b{tstart}
8449 [time passes @dots{}]
8450(@value{GDBP}) @b{tstop}
8451@end smallexample
8452
8453
8454@node Analyze Collected Data
79a6e687 8455@section Using the Collected Data
b37052ae
EZ
8456
8457After the tracepoint experiment ends, you use @value{GDBN} commands
8458for examining the trace data. The basic idea is that each tracepoint
8459collects a trace @dfn{snapshot} every time it is hit and another
8460snapshot every time it single-steps. All these snapshots are
8461consecutively numbered from zero and go into a buffer, and you can
8462examine them later. The way you examine them is to @dfn{focus} on a
8463specific trace snapshot. When the remote stub is focused on a trace
8464snapshot, it will respond to all @value{GDBN} requests for memory and
8465registers by reading from the buffer which belongs to that snapshot,
8466rather than from @emph{real} memory or registers of the program being
8467debugged. This means that @strong{all} @value{GDBN} commands
8468(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8469behave as if we were currently debugging the program state as it was
8470when the tracepoint occurred. Any requests for data that are not in
8471the buffer will fail.
8472
8473@menu
8474* tfind:: How to select a trace snapshot
8475* tdump:: How to display all data for a snapshot
8476* save-tracepoints:: How to save tracepoints for a future run
8477@end menu
8478
8479@node tfind
8480@subsection @code{tfind @var{n}}
8481
8482@kindex tfind
8483@cindex select trace snapshot
8484@cindex find trace snapshot
8485The basic command for selecting a trace snapshot from the buffer is
8486@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8487counting from zero. If no argument @var{n} is given, the next
8488snapshot is selected.
8489
8490Here are the various forms of using the @code{tfind} command.
8491
8492@table @code
8493@item tfind start
8494Find the first snapshot in the buffer. This is a synonym for
8495@code{tfind 0} (since 0 is the number of the first snapshot).
8496
8497@item tfind none
8498Stop debugging trace snapshots, resume @emph{live} debugging.
8499
8500@item tfind end
8501Same as @samp{tfind none}.
8502
8503@item tfind
8504No argument means find the next trace snapshot.
8505
8506@item tfind -
8507Find the previous trace snapshot before the current one. This permits
8508retracing earlier steps.
8509
8510@item tfind tracepoint @var{num}
8511Find the next snapshot associated with tracepoint @var{num}. Search
8512proceeds forward from the last examined trace snapshot. If no
8513argument @var{num} is given, it means find the next snapshot collected
8514for the same tracepoint as the current snapshot.
8515
8516@item tfind pc @var{addr}
8517Find the next snapshot associated with the value @var{addr} of the
8518program counter. Search proceeds forward from the last examined trace
8519snapshot. If no argument @var{addr} is given, it means find the next
8520snapshot with the same value of PC as the current snapshot.
8521
8522@item tfind outside @var{addr1}, @var{addr2}
8523Find the next snapshot whose PC is outside the given range of
8524addresses.
8525
8526@item tfind range @var{addr1}, @var{addr2}
8527Find the next snapshot whose PC is between @var{addr1} and
8528@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8529
8530@item tfind line @r{[}@var{file}:@r{]}@var{n}
8531Find the next snapshot associated with the source line @var{n}. If
8532the optional argument @var{file} is given, refer to line @var{n} in
8533that source file. Search proceeds forward from the last examined
8534trace snapshot. If no argument @var{n} is given, it means find the
8535next line other than the one currently being examined; thus saying
8536@code{tfind line} repeatedly can appear to have the same effect as
8537stepping from line to line in a @emph{live} debugging session.
8538@end table
8539
8540The default arguments for the @code{tfind} commands are specifically
8541designed to make it easy to scan through the trace buffer. For
8542instance, @code{tfind} with no argument selects the next trace
8543snapshot, and @code{tfind -} with no argument selects the previous
8544trace snapshot. So, by giving one @code{tfind} command, and then
8545simply hitting @key{RET} repeatedly you can examine all the trace
8546snapshots in order. Or, by saying @code{tfind -} and then hitting
8547@key{RET} repeatedly you can examine the snapshots in reverse order.
8548The @code{tfind line} command with no argument selects the snapshot
8549for the next source line executed. The @code{tfind pc} command with
8550no argument selects the next snapshot with the same program counter
8551(PC) as the current frame. The @code{tfind tracepoint} command with
8552no argument selects the next trace snapshot collected by the same
8553tracepoint as the current one.
8554
8555In addition to letting you scan through the trace buffer manually,
8556these commands make it easy to construct @value{GDBN} scripts that
8557scan through the trace buffer and print out whatever collected data
8558you are interested in. Thus, if we want to examine the PC, FP, and SP
8559registers from each trace frame in the buffer, we can say this:
8560
8561@smallexample
8562(@value{GDBP}) @b{tfind start}
8563(@value{GDBP}) @b{while ($trace_frame != -1)}
8564> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8565 $trace_frame, $pc, $sp, $fp
8566> tfind
8567> end
8568
8569Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8570Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8571Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8572Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8573Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8574Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8575Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8576Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8577Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8578Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8579Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8580@end smallexample
8581
8582Or, if we want to examine the variable @code{X} at each source line in
8583the buffer:
8584
8585@smallexample
8586(@value{GDBP}) @b{tfind start}
8587(@value{GDBP}) @b{while ($trace_frame != -1)}
8588> printf "Frame %d, X == %d\n", $trace_frame, X
8589> tfind line
8590> end
8591
8592Frame 0, X = 1
8593Frame 7, X = 2
8594Frame 13, X = 255
8595@end smallexample
8596
8597@node tdump
8598@subsection @code{tdump}
8599@kindex tdump
8600@cindex dump all data collected at tracepoint
8601@cindex tracepoint data, display
8602
8603This command takes no arguments. It prints all the data collected at
8604the current trace snapshot.
8605
8606@smallexample
8607(@value{GDBP}) @b{trace 444}
8608(@value{GDBP}) @b{actions}
8609Enter actions for tracepoint #2, one per line:
8610> collect $regs, $locals, $args, gdb_long_test
8611> end
8612
8613(@value{GDBP}) @b{tstart}
8614
8615(@value{GDBP}) @b{tfind line 444}
8616#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8617at gdb_test.c:444
8618444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8619
8620(@value{GDBP}) @b{tdump}
8621Data collected at tracepoint 2, trace frame 1:
8622d0 0xc4aa0085 -995491707
8623d1 0x18 24
8624d2 0x80 128
8625d3 0x33 51
8626d4 0x71aea3d 119204413
8627d5 0x22 34
8628d6 0xe0 224
8629d7 0x380035 3670069
8630a0 0x19e24a 1696330
8631a1 0x3000668 50333288
8632a2 0x100 256
8633a3 0x322000 3284992
8634a4 0x3000698 50333336
8635a5 0x1ad3cc 1758156
8636fp 0x30bf3c 0x30bf3c
8637sp 0x30bf34 0x30bf34
8638ps 0x0 0
8639pc 0x20b2c8 0x20b2c8
8640fpcontrol 0x0 0
8641fpstatus 0x0 0
8642fpiaddr 0x0 0
8643p = 0x20e5b4 "gdb-test"
8644p1 = (void *) 0x11
8645p2 = (void *) 0x22
8646p3 = (void *) 0x33
8647p4 = (void *) 0x44
8648p5 = (void *) 0x55
8649p6 = (void *) 0x66
8650gdb_long_test = 17 '\021'
8651
8652(@value{GDBP})
8653@end smallexample
8654
8655@node save-tracepoints
8656@subsection @code{save-tracepoints @var{filename}}
8657@kindex save-tracepoints
8658@cindex save tracepoints for future sessions
8659
8660This command saves all current tracepoint definitions together with
8661their actions and passcounts, into a file @file{@var{filename}}
8662suitable for use in a later debugging session. To read the saved
8663tracepoint definitions, use the @code{source} command (@pxref{Command
8664Files}).
8665
8666@node Tracepoint Variables
8667@section Convenience Variables for Tracepoints
8668@cindex tracepoint variables
8669@cindex convenience variables for tracepoints
8670
8671@table @code
8672@vindex $trace_frame
8673@item (int) $trace_frame
8674The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8675snapshot is selected.
8676
8677@vindex $tracepoint
8678@item (int) $tracepoint
8679The tracepoint for the current trace snapshot.
8680
8681@vindex $trace_line
8682@item (int) $trace_line
8683The line number for the current trace snapshot.
8684
8685@vindex $trace_file
8686@item (char []) $trace_file
8687The source file for the current trace snapshot.
8688
8689@vindex $trace_func
8690@item (char []) $trace_func
8691The name of the function containing @code{$tracepoint}.
8692@end table
8693
8694Note: @code{$trace_file} is not suitable for use in @code{printf},
8695use @code{output} instead.
8696
8697Here's a simple example of using these convenience variables for
8698stepping through all the trace snapshots and printing some of their
8699data.
8700
8701@smallexample
8702(@value{GDBP}) @b{tfind start}
8703
8704(@value{GDBP}) @b{while $trace_frame != -1}
8705> output $trace_file
8706> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8707> tfind
8708> end
8709@end smallexample
8710
df0cd8c5
JB
8711@node Overlays
8712@chapter Debugging Programs That Use Overlays
8713@cindex overlays
8714
8715If your program is too large to fit completely in your target system's
8716memory, you can sometimes use @dfn{overlays} to work around this
8717problem. @value{GDBN} provides some support for debugging programs that
8718use overlays.
8719
8720@menu
8721* How Overlays Work:: A general explanation of overlays.
8722* Overlay Commands:: Managing overlays in @value{GDBN}.
8723* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8724 mapped by asking the inferior.
8725* Overlay Sample Program:: A sample program using overlays.
8726@end menu
8727
8728@node How Overlays Work
8729@section How Overlays Work
8730@cindex mapped overlays
8731@cindex unmapped overlays
8732@cindex load address, overlay's
8733@cindex mapped address
8734@cindex overlay area
8735
8736Suppose you have a computer whose instruction address space is only 64
8737kilobytes long, but which has much more memory which can be accessed by
8738other means: special instructions, segment registers, or memory
8739management hardware, for example. Suppose further that you want to
8740adapt a program which is larger than 64 kilobytes to run on this system.
8741
8742One solution is to identify modules of your program which are relatively
8743independent, and need not call each other directly; call these modules
8744@dfn{overlays}. Separate the overlays from the main program, and place
8745their machine code in the larger memory. Place your main program in
8746instruction memory, but leave at least enough space there to hold the
8747largest overlay as well.
8748
8749Now, to call a function located in an overlay, you must first copy that
8750overlay's machine code from the large memory into the space set aside
8751for it in the instruction memory, and then jump to its entry point
8752there.
8753
c928edc0
AC
8754@c NB: In the below the mapped area's size is greater or equal to the
8755@c size of all overlays. This is intentional to remind the developer
8756@c that overlays don't necessarily need to be the same size.
8757
474c8240 8758@smallexample
df0cd8c5 8759@group
c928edc0
AC
8760 Data Instruction Larger
8761Address Space Address Space Address Space
8762+-----------+ +-----------+ +-----------+
8763| | | | | |
8764+-----------+ +-----------+ +-----------+<-- overlay 1
8765| program | | main | .----| overlay 1 | load address
8766| variables | | program | | +-----------+
8767| and heap | | | | | |
8768+-----------+ | | | +-----------+<-- overlay 2
8769| | +-----------+ | | | load address
8770+-----------+ | | | .-| overlay 2 |
8771 | | | | | |
8772 mapped --->+-----------+ | | +-----------+
8773 address | | | | | |
8774 | overlay | <-' | | |
8775 | area | <---' +-----------+<-- overlay 3
8776 | | <---. | | load address
8777 +-----------+ `--| overlay 3 |
8778 | | | |
8779 +-----------+ | |
8780 +-----------+
8781 | |
8782 +-----------+
8783
8784 @anchor{A code overlay}A code overlay
df0cd8c5 8785@end group
474c8240 8786@end smallexample
df0cd8c5 8787
c928edc0
AC
8788The diagram (@pxref{A code overlay}) shows a system with separate data
8789and instruction address spaces. To map an overlay, the program copies
8790its code from the larger address space to the instruction address space.
8791Since the overlays shown here all use the same mapped address, only one
8792may be mapped at a time. For a system with a single address space for
8793data and instructions, the diagram would be similar, except that the
8794program variables and heap would share an address space with the main
8795program and the overlay area.
df0cd8c5
JB
8796
8797An overlay loaded into instruction memory and ready for use is called a
8798@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8799instruction memory. An overlay not present (or only partially present)
8800in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8801is its address in the larger memory. The mapped address is also called
8802the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8803called the @dfn{load memory address}, or @dfn{LMA}.
8804
8805Unfortunately, overlays are not a completely transparent way to adapt a
8806program to limited instruction memory. They introduce a new set of
8807global constraints you must keep in mind as you design your program:
8808
8809@itemize @bullet
8810
8811@item
8812Before calling or returning to a function in an overlay, your program
8813must make sure that overlay is actually mapped. Otherwise, the call or
8814return will transfer control to the right address, but in the wrong
8815overlay, and your program will probably crash.
8816
8817@item
8818If the process of mapping an overlay is expensive on your system, you
8819will need to choose your overlays carefully to minimize their effect on
8820your program's performance.
8821
8822@item
8823The executable file you load onto your system must contain each
8824overlay's instructions, appearing at the overlay's load address, not its
8825mapped address. However, each overlay's instructions must be relocated
8826and its symbols defined as if the overlay were at its mapped address.
8827You can use GNU linker scripts to specify different load and relocation
8828addresses for pieces of your program; see @ref{Overlay Description,,,
8829ld.info, Using ld: the GNU linker}.
8830
8831@item
8832The procedure for loading executable files onto your system must be able
8833to load their contents into the larger address space as well as the
8834instruction and data spaces.
8835
8836@end itemize
8837
8838The overlay system described above is rather simple, and could be
8839improved in many ways:
8840
8841@itemize @bullet
8842
8843@item
8844If your system has suitable bank switch registers or memory management
8845hardware, you could use those facilities to make an overlay's load area
8846contents simply appear at their mapped address in instruction space.
8847This would probably be faster than copying the overlay to its mapped
8848area in the usual way.
8849
8850@item
8851If your overlays are small enough, you could set aside more than one
8852overlay area, and have more than one overlay mapped at a time.
8853
8854@item
8855You can use overlays to manage data, as well as instructions. In
8856general, data overlays are even less transparent to your design than
8857code overlays: whereas code overlays only require care when you call or
8858return to functions, data overlays require care every time you access
8859the data. Also, if you change the contents of a data overlay, you
8860must copy its contents back out to its load address before you can copy a
8861different data overlay into the same mapped area.
8862
8863@end itemize
8864
8865
8866@node Overlay Commands
8867@section Overlay Commands
8868
8869To use @value{GDBN}'s overlay support, each overlay in your program must
8870correspond to a separate section of the executable file. The section's
8871virtual memory address and load memory address must be the overlay's
8872mapped and load addresses. Identifying overlays with sections allows
8873@value{GDBN} to determine the appropriate address of a function or
8874variable, depending on whether the overlay is mapped or not.
8875
8876@value{GDBN}'s overlay commands all start with the word @code{overlay};
8877you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8878
8879@table @code
8880@item overlay off
4644b6e3 8881@kindex overlay
df0cd8c5
JB
8882Disable @value{GDBN}'s overlay support. When overlay support is
8883disabled, @value{GDBN} assumes that all functions and variables are
8884always present at their mapped addresses. By default, @value{GDBN}'s
8885overlay support is disabled.
8886
8887@item overlay manual
df0cd8c5
JB
8888@cindex manual overlay debugging
8889Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8890relies on you to tell it which overlays are mapped, and which are not,
8891using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8892commands described below.
8893
8894@item overlay map-overlay @var{overlay}
8895@itemx overlay map @var{overlay}
df0cd8c5
JB
8896@cindex map an overlay
8897Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8898be the name of the object file section containing the overlay. When an
8899overlay is mapped, @value{GDBN} assumes it can find the overlay's
8900functions and variables at their mapped addresses. @value{GDBN} assumes
8901that any other overlays whose mapped ranges overlap that of
8902@var{overlay} are now unmapped.
8903
8904@item overlay unmap-overlay @var{overlay}
8905@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8906@cindex unmap an overlay
8907Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8908must be the name of the object file section containing the overlay.
8909When an overlay is unmapped, @value{GDBN} assumes it can find the
8910overlay's functions and variables at their load addresses.
8911
8912@item overlay auto
df0cd8c5
JB
8913Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8914consults a data structure the overlay manager maintains in the inferior
8915to see which overlays are mapped. For details, see @ref{Automatic
8916Overlay Debugging}.
8917
8918@item overlay load-target
8919@itemx overlay load
df0cd8c5
JB
8920@cindex reloading the overlay table
8921Re-read the overlay table from the inferior. Normally, @value{GDBN}
8922re-reads the table @value{GDBN} automatically each time the inferior
8923stops, so this command should only be necessary if you have changed the
8924overlay mapping yourself using @value{GDBN}. This command is only
8925useful when using automatic overlay debugging.
8926
8927@item overlay list-overlays
8928@itemx overlay list
8929@cindex listing mapped overlays
8930Display a list of the overlays currently mapped, along with their mapped
8931addresses, load addresses, and sizes.
8932
8933@end table
8934
8935Normally, when @value{GDBN} prints a code address, it includes the name
8936of the function the address falls in:
8937
474c8240 8938@smallexample
f7dc1244 8939(@value{GDBP}) print main
df0cd8c5 8940$3 = @{int ()@} 0x11a0 <main>
474c8240 8941@end smallexample
df0cd8c5
JB
8942@noindent
8943When overlay debugging is enabled, @value{GDBN} recognizes code in
8944unmapped overlays, and prints the names of unmapped functions with
8945asterisks around them. For example, if @code{foo} is a function in an
8946unmapped overlay, @value{GDBN} prints it this way:
8947
474c8240 8948@smallexample
f7dc1244 8949(@value{GDBP}) overlay list
df0cd8c5 8950No sections are mapped.
f7dc1244 8951(@value{GDBP}) print foo
df0cd8c5 8952$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8953@end smallexample
df0cd8c5
JB
8954@noindent
8955When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8956name normally:
8957
474c8240 8958@smallexample
f7dc1244 8959(@value{GDBP}) overlay list
b383017d 8960Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8961 mapped at 0x1016 - 0x104a
f7dc1244 8962(@value{GDBP}) print foo
df0cd8c5 8963$6 = @{int (int)@} 0x1016 <foo>
474c8240 8964@end smallexample
df0cd8c5
JB
8965
8966When overlay debugging is enabled, @value{GDBN} can find the correct
8967address for functions and variables in an overlay, whether or not the
8968overlay is mapped. This allows most @value{GDBN} commands, like
8969@code{break} and @code{disassemble}, to work normally, even on unmapped
8970code. However, @value{GDBN}'s breakpoint support has some limitations:
8971
8972@itemize @bullet
8973@item
8974@cindex breakpoints in overlays
8975@cindex overlays, setting breakpoints in
8976You can set breakpoints in functions in unmapped overlays, as long as
8977@value{GDBN} can write to the overlay at its load address.
8978@item
8979@value{GDBN} can not set hardware or simulator-based breakpoints in
8980unmapped overlays. However, if you set a breakpoint at the end of your
8981overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8982you are using manual overlay management), @value{GDBN} will re-set its
8983breakpoints properly.
8984@end itemize
8985
8986
8987@node Automatic Overlay Debugging
8988@section Automatic Overlay Debugging
8989@cindex automatic overlay debugging
8990
8991@value{GDBN} can automatically track which overlays are mapped and which
8992are not, given some simple co-operation from the overlay manager in the
8993inferior. If you enable automatic overlay debugging with the
8994@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8995looks in the inferior's memory for certain variables describing the
8996current state of the overlays.
8997
8998Here are the variables your overlay manager must define to support
8999@value{GDBN}'s automatic overlay debugging:
9000
9001@table @asis
9002
9003@item @code{_ovly_table}:
9004This variable must be an array of the following structures:
9005
474c8240 9006@smallexample
df0cd8c5
JB
9007struct
9008@{
9009 /* The overlay's mapped address. */
9010 unsigned long vma;
9011
9012 /* The size of the overlay, in bytes. */
9013 unsigned long size;
9014
9015 /* The overlay's load address. */
9016 unsigned long lma;
9017
9018 /* Non-zero if the overlay is currently mapped;
9019 zero otherwise. */
9020 unsigned long mapped;
9021@}
474c8240 9022@end smallexample
df0cd8c5
JB
9023
9024@item @code{_novlys}:
9025This variable must be a four-byte signed integer, holding the total
9026number of elements in @code{_ovly_table}.
9027
9028@end table
9029
9030To decide whether a particular overlay is mapped or not, @value{GDBN}
9031looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
9032@code{lma} members equal the VMA and LMA of the overlay's section in the
9033executable file. When @value{GDBN} finds a matching entry, it consults
9034the entry's @code{mapped} member to determine whether the overlay is
9035currently mapped.
9036
81d46470 9037In addition, your overlay manager may define a function called
def71bfa 9038@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
9039will silently set a breakpoint there. If the overlay manager then
9040calls this function whenever it has changed the overlay table, this
9041will enable @value{GDBN} to accurately keep track of which overlays
9042are in program memory, and update any breakpoints that may be set
b383017d 9043in overlays. This will allow breakpoints to work even if the
81d46470
MS
9044overlays are kept in ROM or other non-writable memory while they
9045are not being executed.
df0cd8c5
JB
9046
9047@node Overlay Sample Program
9048@section Overlay Sample Program
9049@cindex overlay example program
9050
9051When linking a program which uses overlays, you must place the overlays
9052at their load addresses, while relocating them to run at their mapped
9053addresses. To do this, you must write a linker script (@pxref{Overlay
9054Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
9055since linker scripts are specific to a particular host system, target
9056architecture, and target memory layout, this manual cannot provide
9057portable sample code demonstrating @value{GDBN}'s overlay support.
9058
9059However, the @value{GDBN} source distribution does contain an overlaid
9060program, with linker scripts for a few systems, as part of its test
9061suite. The program consists of the following files from
9062@file{gdb/testsuite/gdb.base}:
9063
9064@table @file
9065@item overlays.c
9066The main program file.
9067@item ovlymgr.c
9068A simple overlay manager, used by @file{overlays.c}.
9069@item foo.c
9070@itemx bar.c
9071@itemx baz.c
9072@itemx grbx.c
9073Overlay modules, loaded and used by @file{overlays.c}.
9074@item d10v.ld
9075@itemx m32r.ld
9076Linker scripts for linking the test program on the @code{d10v-elf}
9077and @code{m32r-elf} targets.
9078@end table
9079
9080You can build the test program using the @code{d10v-elf} GCC
9081cross-compiler like this:
9082
474c8240 9083@smallexample
df0cd8c5
JB
9084$ d10v-elf-gcc -g -c overlays.c
9085$ d10v-elf-gcc -g -c ovlymgr.c
9086$ d10v-elf-gcc -g -c foo.c
9087$ d10v-elf-gcc -g -c bar.c
9088$ d10v-elf-gcc -g -c baz.c
9089$ d10v-elf-gcc -g -c grbx.c
9090$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
9091 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 9092@end smallexample
df0cd8c5
JB
9093
9094The build process is identical for any other architecture, except that
9095you must substitute the appropriate compiler and linker script for the
9096target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
9097
9098
6d2ebf8b 9099@node Languages
c906108c
SS
9100@chapter Using @value{GDBN} with Different Languages
9101@cindex languages
9102
c906108c
SS
9103Although programming languages generally have common aspects, they are
9104rarely expressed in the same manner. For instance, in ANSI C,
9105dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
9106Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 9107represented (and displayed) differently. Hex numbers in C appear as
c906108c 9108@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
9109
9110@cindex working language
9111Language-specific information is built into @value{GDBN} for some languages,
9112allowing you to express operations like the above in your program's
9113native language, and allowing @value{GDBN} to output values in a manner
9114consistent with the syntax of your program's native language. The
9115language you use to build expressions is called the @dfn{working
9116language}.
9117
9118@menu
9119* Setting:: Switching between source languages
9120* Show:: Displaying the language
c906108c 9121* Checks:: Type and range checks
79a6e687
BW
9122* Supported Languages:: Supported languages
9123* Unsupported Languages:: Unsupported languages
c906108c
SS
9124@end menu
9125
6d2ebf8b 9126@node Setting
79a6e687 9127@section Switching Between Source Languages
c906108c
SS
9128
9129There are two ways to control the working language---either have @value{GDBN}
9130set it automatically, or select it manually yourself. You can use the
9131@code{set language} command for either purpose. On startup, @value{GDBN}
9132defaults to setting the language automatically. The working language is
9133used to determine how expressions you type are interpreted, how values
9134are printed, etc.
9135
9136In addition to the working language, every source file that
9137@value{GDBN} knows about has its own working language. For some object
9138file formats, the compiler might indicate which language a particular
9139source file is in. However, most of the time @value{GDBN} infers the
9140language from the name of the file. The language of a source file
b37052ae 9141controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 9142show each frame appropriately for its own language. There is no way to
d4f3574e
SS
9143set the language of a source file from within @value{GDBN}, but you can
9144set the language associated with a filename extension. @xref{Show, ,
79a6e687 9145Displaying the Language}.
c906108c
SS
9146
9147This is most commonly a problem when you use a program, such
5d161b24 9148as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
9149another language. In that case, make the
9150program use @code{#line} directives in its C output; that way
9151@value{GDBN} will know the correct language of the source code of the original
9152program, and will display that source code, not the generated C code.
9153
9154@menu
9155* Filenames:: Filename extensions and languages.
9156* Manually:: Setting the working language manually
9157* Automatically:: Having @value{GDBN} infer the source language
9158@end menu
9159
6d2ebf8b 9160@node Filenames
79a6e687 9161@subsection List of Filename Extensions and Languages
c906108c
SS
9162
9163If a source file name ends in one of the following extensions, then
9164@value{GDBN} infers that its language is the one indicated.
9165
9166@table @file
e07c999f
PH
9167@item .ada
9168@itemx .ads
9169@itemx .adb
9170@itemx .a
9171Ada source file.
c906108c
SS
9172
9173@item .c
9174C source file
9175
9176@item .C
9177@itemx .cc
9178@itemx .cp
9179@itemx .cpp
9180@itemx .cxx
9181@itemx .c++
b37052ae 9182C@t{++} source file
c906108c 9183
b37303ee
AF
9184@item .m
9185Objective-C source file
9186
c906108c
SS
9187@item .f
9188@itemx .F
9189Fortran source file
9190
c906108c
SS
9191@item .mod
9192Modula-2 source file
c906108c
SS
9193
9194@item .s
9195@itemx .S
9196Assembler source file. This actually behaves almost like C, but
9197@value{GDBN} does not skip over function prologues when stepping.
9198@end table
9199
9200In addition, you may set the language associated with a filename
79a6e687 9201extension. @xref{Show, , Displaying the Language}.
c906108c 9202
6d2ebf8b 9203@node Manually
79a6e687 9204@subsection Setting the Working Language
c906108c
SS
9205
9206If you allow @value{GDBN} to set the language automatically,
9207expressions are interpreted the same way in your debugging session and
9208your program.
9209
9210@kindex set language
9211If you wish, you may set the language manually. To do this, issue the
9212command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 9213a language, such as
c906108c 9214@code{c} or @code{modula-2}.
c906108c
SS
9215For a list of the supported languages, type @samp{set language}.
9216
c906108c
SS
9217Setting the language manually prevents @value{GDBN} from updating the working
9218language automatically. This can lead to confusion if you try
9219to debug a program when the working language is not the same as the
9220source language, when an expression is acceptable to both
9221languages---but means different things. For instance, if the current
9222source file were written in C, and @value{GDBN} was parsing Modula-2, a
9223command such as:
9224
474c8240 9225@smallexample
c906108c 9226print a = b + c
474c8240 9227@end smallexample
c906108c
SS
9228
9229@noindent
9230might not have the effect you intended. In C, this means to add
9231@code{b} and @code{c} and place the result in @code{a}. The result
9232printed would be the value of @code{a}. In Modula-2, this means to compare
9233@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 9234
6d2ebf8b 9235@node Automatically
79a6e687 9236@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
9237
9238To have @value{GDBN} set the working language automatically, use
9239@samp{set language local} or @samp{set language auto}. @value{GDBN}
9240then infers the working language. That is, when your program stops in a
9241frame (usually by encountering a breakpoint), @value{GDBN} sets the
9242working language to the language recorded for the function in that
9243frame. If the language for a frame is unknown (that is, if the function
9244or block corresponding to the frame was defined in a source file that
9245does not have a recognized extension), the current working language is
9246not changed, and @value{GDBN} issues a warning.
9247
9248This may not seem necessary for most programs, which are written
9249entirely in one source language. However, program modules and libraries
9250written in one source language can be used by a main program written in
9251a different source language. Using @samp{set language auto} in this
9252case frees you from having to set the working language manually.
9253
6d2ebf8b 9254@node Show
79a6e687 9255@section Displaying the Language
c906108c
SS
9256
9257The following commands help you find out which language is the
9258working language, and also what language source files were written in.
9259
c906108c
SS
9260@table @code
9261@item show language
9c16f35a 9262@kindex show language
c906108c
SS
9263Display the current working language. This is the
9264language you can use with commands such as @code{print} to
9265build and compute expressions that may involve variables in your program.
9266
9267@item info frame
4644b6e3 9268@kindex info frame@r{, show the source language}
5d161b24 9269Display the source language for this frame. This language becomes the
c906108c 9270working language if you use an identifier from this frame.
79a6e687 9271@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9272information listed here.
9273
9274@item info source
4644b6e3 9275@kindex info source@r{, show the source language}
c906108c 9276Display the source language of this source file.
5d161b24 9277@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9278information listed here.
9279@end table
9280
9281In unusual circumstances, you may have source files with extensions
9282not in the standard list. You can then set the extension associated
9283with a language explicitly:
9284
c906108c 9285@table @code
09d4efe1 9286@item set extension-language @var{ext} @var{language}
9c16f35a 9287@kindex set extension-language
09d4efe1
EZ
9288Tell @value{GDBN} that source files with extension @var{ext} are to be
9289assumed as written in the source language @var{language}.
c906108c
SS
9290
9291@item info extensions
9c16f35a 9292@kindex info extensions
c906108c
SS
9293List all the filename extensions and the associated languages.
9294@end table
9295
6d2ebf8b 9296@node Checks
79a6e687 9297@section Type and Range Checking
c906108c
SS
9298
9299@quotation
9300@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9301checking are included, but they do not yet have any effect. This
9302section documents the intended facilities.
9303@end quotation
9304@c FIXME remove warning when type/range code added
9305
9306Some languages are designed to guard you against making seemingly common
9307errors through a series of compile- and run-time checks. These include
9308checking the type of arguments to functions and operators, and making
9309sure mathematical overflows are caught at run time. Checks such as
9310these help to ensure a program's correctness once it has been compiled
9311by eliminating type mismatches, and providing active checks for range
9312errors when your program is running.
9313
9314@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9315Although @value{GDBN} does not check the statements in your program,
9316it can check expressions entered directly into @value{GDBN} for
9317evaluation via the @code{print} command, for example. As with the
9318working language, @value{GDBN} can also decide whether or not to check
9319automatically based on your program's source language.
79a6e687 9320@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9321settings of supported languages.
c906108c
SS
9322
9323@menu
9324* Type Checking:: An overview of type checking
9325* Range Checking:: An overview of range checking
9326@end menu
9327
9328@cindex type checking
9329@cindex checks, type
6d2ebf8b 9330@node Type Checking
79a6e687 9331@subsection An Overview of Type Checking
c906108c
SS
9332
9333Some languages, such as Modula-2, are strongly typed, meaning that the
9334arguments to operators and functions have to be of the correct type,
9335otherwise an error occurs. These checks prevent type mismatch
9336errors from ever causing any run-time problems. For example,
9337
9338@smallexample
93391 + 2 @result{} 3
9340@exdent but
9341@error{} 1 + 2.3
9342@end smallexample
9343
9344The second example fails because the @code{CARDINAL} 1 is not
9345type-compatible with the @code{REAL} 2.3.
9346
5d161b24
DB
9347For the expressions you use in @value{GDBN} commands, you can tell the
9348@value{GDBN} type checker to skip checking;
9349to treat any mismatches as errors and abandon the expression;
9350or to only issue warnings when type mismatches occur,
c906108c
SS
9351but evaluate the expression anyway. When you choose the last of
9352these, @value{GDBN} evaluates expressions like the second example above, but
9353also issues a warning.
9354
5d161b24
DB
9355Even if you turn type checking off, there may be other reasons
9356related to type that prevent @value{GDBN} from evaluating an expression.
9357For instance, @value{GDBN} does not know how to add an @code{int} and
9358a @code{struct foo}. These particular type errors have nothing to do
9359with the language in use, and usually arise from expressions, such as
c906108c
SS
9360the one described above, which make little sense to evaluate anyway.
9361
9362Each language defines to what degree it is strict about type. For
9363instance, both Modula-2 and C require the arguments to arithmetical
9364operators to be numbers. In C, enumerated types and pointers can be
9365represented as numbers, so that they are valid arguments to mathematical
79a6e687 9366operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9367details on specific languages.
9368
9369@value{GDBN} provides some additional commands for controlling the type checker:
9370
c906108c
SS
9371@kindex set check type
9372@kindex show check type
9373@table @code
9374@item set check type auto
9375Set type checking on or off based on the current working language.
79a6e687 9376@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9377each language.
9378
9379@item set check type on
9380@itemx set check type off
9381Set type checking on or off, overriding the default setting for the
9382current working language. Issue a warning if the setting does not
9383match the language default. If any type mismatches occur in
d4f3574e 9384evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9385message and aborts evaluation of the expression.
9386
9387@item set check type warn
9388Cause the type checker to issue warnings, but to always attempt to
9389evaluate the expression. Evaluating the expression may still
9390be impossible for other reasons. For example, @value{GDBN} cannot add
9391numbers and structures.
9392
9393@item show type
5d161b24 9394Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9395is setting it automatically.
9396@end table
9397
9398@cindex range checking
9399@cindex checks, range
6d2ebf8b 9400@node Range Checking
79a6e687 9401@subsection An Overview of Range Checking
c906108c
SS
9402
9403In some languages (such as Modula-2), it is an error to exceed the
9404bounds of a type; this is enforced with run-time checks. Such range
9405checking is meant to ensure program correctness by making sure
9406computations do not overflow, or indices on an array element access do
9407not exceed the bounds of the array.
9408
9409For expressions you use in @value{GDBN} commands, you can tell
9410@value{GDBN} to treat range errors in one of three ways: ignore them,
9411always treat them as errors and abandon the expression, or issue
9412warnings but evaluate the expression anyway.
9413
9414A range error can result from numerical overflow, from exceeding an
9415array index bound, or when you type a constant that is not a member
9416of any type. Some languages, however, do not treat overflows as an
9417error. In many implementations of C, mathematical overflow causes the
9418result to ``wrap around'' to lower values---for example, if @var{m} is
9419the largest integer value, and @var{s} is the smallest, then
9420
474c8240 9421@smallexample
c906108c 9422@var{m} + 1 @result{} @var{s}
474c8240 9423@end smallexample
c906108c
SS
9424
9425This, too, is specific to individual languages, and in some cases
79a6e687
BW
9426specific to individual compilers or machines. @xref{Supported Languages, ,
9427Supported Languages}, for further details on specific languages.
c906108c
SS
9428
9429@value{GDBN} provides some additional commands for controlling the range checker:
9430
c906108c
SS
9431@kindex set check range
9432@kindex show check range
9433@table @code
9434@item set check range auto
9435Set range checking on or off based on the current working language.
79a6e687 9436@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9437each language.
9438
9439@item set check range on
9440@itemx set check range off
9441Set range checking on or off, overriding the default setting for the
9442current working language. A warning is issued if the setting does not
c3f6f71d
JM
9443match the language default. If a range error occurs and range checking is on,
9444then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9445
9446@item set check range warn
9447Output messages when the @value{GDBN} range checker detects a range error,
9448but attempt to evaluate the expression anyway. Evaluating the
9449expression may still be impossible for other reasons, such as accessing
9450memory that the process does not own (a typical example from many Unix
9451systems).
9452
9453@item show range
9454Show the current setting of the range checker, and whether or not it is
9455being set automatically by @value{GDBN}.
9456@end table
c906108c 9457
79a6e687
BW
9458@node Supported Languages
9459@section Supported Languages
c906108c 9460
9c16f35a
EZ
9461@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9462assembly, Modula-2, and Ada.
cce74817 9463@c This is false ...
c906108c
SS
9464Some @value{GDBN} features may be used in expressions regardless of the
9465language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9466and the @samp{@{type@}addr} construct (@pxref{Expressions,
9467,Expressions}) can be used with the constructs of any supported
9468language.
9469
9470The following sections detail to what degree each source language is
9471supported by @value{GDBN}. These sections are not meant to be language
9472tutorials or references, but serve only as a reference guide to what the
9473@value{GDBN} expression parser accepts, and what input and output
9474formats should look like for different languages. There are many good
9475books written on each of these languages; please look to these for a
9476language reference or tutorial.
9477
c906108c 9478@menu
b37303ee 9479* C:: C and C@t{++}
b383017d 9480* Objective-C:: Objective-C
09d4efe1 9481* Fortran:: Fortran
9c16f35a 9482* Pascal:: Pascal
b37303ee 9483* Modula-2:: Modula-2
e07c999f 9484* Ada:: Ada
c906108c
SS
9485@end menu
9486
6d2ebf8b 9487@node C
b37052ae 9488@subsection C and C@t{++}
7a292a7a 9489
b37052ae
EZ
9490@cindex C and C@t{++}
9491@cindex expressions in C or C@t{++}
c906108c 9492
b37052ae 9493Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9494to both languages. Whenever this is the case, we discuss those languages
9495together.
9496
41afff9a
EZ
9497@cindex C@t{++}
9498@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9499@cindex @sc{gnu} C@t{++}
9500The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9501compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9502effectively, you must compile your C@t{++} programs with a supported
9503C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9504compiler (@code{aCC}).
9505
0179ffac
DC
9506For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9507format; if it doesn't work on your system, try the stabs+ debugging
9508format. You can select those formats explicitly with the @code{g++}
9509command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9510@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9511gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9512
c906108c 9513@menu
b37052ae
EZ
9514* C Operators:: C and C@t{++} operators
9515* C Constants:: C and C@t{++} constants
79a6e687 9516* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9517* C Defaults:: Default settings for C and C@t{++}
9518* C Checks:: C and C@t{++} type and range checks
c906108c 9519* Debugging C:: @value{GDBN} and C
79a6e687 9520* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9521* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9522@end menu
c906108c 9523
6d2ebf8b 9524@node C Operators
79a6e687 9525@subsubsection C and C@t{++} Operators
7a292a7a 9526
b37052ae 9527@cindex C and C@t{++} operators
c906108c
SS
9528
9529Operators must be defined on values of specific types. For instance,
9530@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9531often defined on groups of types.
c906108c 9532
b37052ae 9533For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9534
9535@itemize @bullet
53a5351d 9536
c906108c 9537@item
c906108c 9538@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9539specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9540
9541@item
d4f3574e
SS
9542@emph{Floating-point types} include @code{float}, @code{double}, and
9543@code{long double} (if supported by the target platform).
c906108c
SS
9544
9545@item
53a5351d 9546@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9547
9548@item
9549@emph{Scalar types} include all of the above.
53a5351d 9550
c906108c
SS
9551@end itemize
9552
9553@noindent
9554The following operators are supported. They are listed here
9555in order of increasing precedence:
9556
9557@table @code
9558@item ,
9559The comma or sequencing operator. Expressions in a comma-separated list
9560are evaluated from left to right, with the result of the entire
9561expression being the last expression evaluated.
9562
9563@item =
9564Assignment. The value of an assignment expression is the value
9565assigned. Defined on scalar types.
9566
9567@item @var{op}=
9568Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9569and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9570@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9571@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9572@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9573
9574@item ?:
9575The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9576of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9577integral type.
9578
9579@item ||
9580Logical @sc{or}. Defined on integral types.
9581
9582@item &&
9583Logical @sc{and}. Defined on integral types.
9584
9585@item |
9586Bitwise @sc{or}. Defined on integral types.
9587
9588@item ^
9589Bitwise exclusive-@sc{or}. Defined on integral types.
9590
9591@item &
9592Bitwise @sc{and}. Defined on integral types.
9593
9594@item ==@r{, }!=
9595Equality and inequality. Defined on scalar types. The value of these
9596expressions is 0 for false and non-zero for true.
9597
9598@item <@r{, }>@r{, }<=@r{, }>=
9599Less than, greater than, less than or equal, greater than or equal.
9600Defined on scalar types. The value of these expressions is 0 for false
9601and non-zero for true.
9602
9603@item <<@r{, }>>
9604left shift, and right shift. Defined on integral types.
9605
9606@item @@
9607The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9608
9609@item +@r{, }-
9610Addition and subtraction. Defined on integral types, floating-point types and
9611pointer types.
9612
9613@item *@r{, }/@r{, }%
9614Multiplication, division, and modulus. Multiplication and division are
9615defined on integral and floating-point types. Modulus is defined on
9616integral types.
9617
9618@item ++@r{, }--
9619Increment and decrement. When appearing before a variable, the
9620operation is performed before the variable is used in an expression;
9621when appearing after it, the variable's value is used before the
9622operation takes place.
9623
9624@item *
9625Pointer dereferencing. Defined on pointer types. Same precedence as
9626@code{++}.
9627
9628@item &
9629Address operator. Defined on variables. Same precedence as @code{++}.
9630
b37052ae
EZ
9631For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9632allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9633to examine the address
b37052ae 9634where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9635stored.
c906108c
SS
9636
9637@item -
9638Negative. Defined on integral and floating-point types. Same
9639precedence as @code{++}.
9640
9641@item !
9642Logical negation. Defined on integral types. Same precedence as
9643@code{++}.
9644
9645@item ~
9646Bitwise complement operator. Defined on integral types. Same precedence as
9647@code{++}.
9648
9649
9650@item .@r{, }->
9651Structure member, and pointer-to-structure member. For convenience,
9652@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9653pointer based on the stored type information.
9654Defined on @code{struct} and @code{union} data.
9655
c906108c
SS
9656@item .*@r{, }->*
9657Dereferences of pointers to members.
c906108c
SS
9658
9659@item []
9660Array indexing. @code{@var{a}[@var{i}]} is defined as
9661@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9662
9663@item ()
9664Function parameter list. Same precedence as @code{->}.
9665
c906108c 9666@item ::
b37052ae 9667C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9668and @code{class} types.
c906108c
SS
9669
9670@item ::
7a292a7a
SS
9671Doubled colons also represent the @value{GDBN} scope operator
9672(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9673above.
c906108c
SS
9674@end table
9675
c906108c
SS
9676If an operator is redefined in the user code, @value{GDBN} usually
9677attempts to invoke the redefined version instead of using the operator's
9678predefined meaning.
c906108c 9679
6d2ebf8b 9680@node C Constants
79a6e687 9681@subsubsection C and C@t{++} Constants
c906108c 9682
b37052ae 9683@cindex C and C@t{++} constants
c906108c 9684
b37052ae 9685@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9686following ways:
c906108c
SS
9687
9688@itemize @bullet
9689@item
9690Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9691specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9692by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9693@samp{l}, specifying that the constant should be treated as a
9694@code{long} value.
9695
9696@item
9697Floating point constants are a sequence of digits, followed by a decimal
9698point, followed by a sequence of digits, and optionally followed by an
9699exponent. An exponent is of the form:
9700@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9701sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9702A floating-point constant may also end with a letter @samp{f} or
9703@samp{F}, specifying that the constant should be treated as being of
9704the @code{float} (as opposed to the default @code{double}) type; or with
9705a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9706constant.
c906108c
SS
9707
9708@item
9709Enumerated constants consist of enumerated identifiers, or their
9710integral equivalents.
9711
9712@item
9713Character constants are a single character surrounded by single quotes
9714(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9715(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9716be represented by a letter or by @dfn{escape sequences}, which are of
9717the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9718of the character's ordinal value; or of the form @samp{\@var{x}}, where
9719@samp{@var{x}} is a predefined special character---for example,
9720@samp{\n} for newline.
9721
9722@item
96a2c332
SS
9723String constants are a sequence of character constants surrounded by
9724double quotes (@code{"}). Any valid character constant (as described
9725above) may appear. Double quotes within the string must be preceded by
9726a backslash, so for instance @samp{"a\"b'c"} is a string of five
9727characters.
c906108c
SS
9728
9729@item
9730Pointer constants are an integral value. You can also write pointers
9731to constants using the C operator @samp{&}.
9732
9733@item
9734Array constants are comma-separated lists surrounded by braces @samp{@{}
9735and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9736integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9737and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9738@end itemize
9739
79a6e687
BW
9740@node C Plus Plus Expressions
9741@subsubsection C@t{++} Expressions
b37052ae
EZ
9742
9743@cindex expressions in C@t{++}
9744@value{GDBN} expression handling can interpret most C@t{++} expressions.
9745
0179ffac
DC
9746@cindex debugging C@t{++} programs
9747@cindex C@t{++} compilers
9748@cindex debug formats and C@t{++}
9749@cindex @value{NGCC} and C@t{++}
c906108c 9750@quotation
b37052ae 9751@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9752proper compiler and the proper debug format. Currently, @value{GDBN}
9753works best when debugging C@t{++} code that is compiled with
9754@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9755@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9756stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9757stabs+ as their default debug format, so you usually don't need to
9758specify a debug format explicitly. Other compilers and/or debug formats
9759are likely to work badly or not at all when using @value{GDBN} to debug
9760C@t{++} code.
c906108c 9761@end quotation
c906108c
SS
9762
9763@enumerate
9764
9765@cindex member functions
9766@item
9767Member function calls are allowed; you can use expressions like
9768
474c8240 9769@smallexample
c906108c 9770count = aml->GetOriginal(x, y)
474c8240 9771@end smallexample
c906108c 9772
41afff9a 9773@vindex this@r{, inside C@t{++} member functions}
b37052ae 9774@cindex namespace in C@t{++}
c906108c
SS
9775@item
9776While a member function is active (in the selected stack frame), your
9777expressions have the same namespace available as the member function;
9778that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9779pointer @code{this} following the same rules as C@t{++}.
c906108c 9780
c906108c 9781@cindex call overloaded functions
d4f3574e 9782@cindex overloaded functions, calling
b37052ae 9783@cindex type conversions in C@t{++}
c906108c
SS
9784@item
9785You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9786call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9787perform overload resolution involving user-defined type conversions,
9788calls to constructors, or instantiations of templates that do not exist
9789in the program. It also cannot handle ellipsis argument lists or
9790default arguments.
9791
9792It does perform integral conversions and promotions, floating-point
9793promotions, arithmetic conversions, pointer conversions, conversions of
9794class objects to base classes, and standard conversions such as those of
9795functions or arrays to pointers; it requires an exact match on the
9796number of function arguments.
9797
9798Overload resolution is always performed, unless you have specified
79a6e687
BW
9799@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9800,@value{GDBN} Features for C@t{++}}.
c906108c 9801
d4f3574e 9802You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9803explicit function signature to call an overloaded function, as in
9804@smallexample
9805p 'foo(char,int)'('x', 13)
9806@end smallexample
d4f3574e 9807
c906108c 9808The @value{GDBN} command-completion facility can simplify this;
79a6e687 9809see @ref{Completion, ,Command Completion}.
c906108c 9810
c906108c
SS
9811@cindex reference declarations
9812@item
b37052ae
EZ
9813@value{GDBN} understands variables declared as C@t{++} references; you can use
9814them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9815dereferenced.
9816
9817In the parameter list shown when @value{GDBN} displays a frame, the values of
9818reference variables are not displayed (unlike other variables); this
9819avoids clutter, since references are often used for large structures.
9820The @emph{address} of a reference variable is always shown, unless
9821you have specified @samp{set print address off}.
9822
9823@item
b37052ae 9824@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9825expressions can use it just as expressions in your program do. Since
9826one scope may be defined in another, you can use @code{::} repeatedly if
9827necessary, for example in an expression like
9828@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9829resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9830debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9831@end enumerate
9832
b37052ae 9833In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9834calling virtual functions correctly, printing out virtual bases of
9835objects, calling functions in a base subobject, casting objects, and
9836invoking user-defined operators.
c906108c 9837
6d2ebf8b 9838@node C Defaults
79a6e687 9839@subsubsection C and C@t{++} Defaults
7a292a7a 9840
b37052ae 9841@cindex C and C@t{++} defaults
c906108c 9842
c906108c
SS
9843If you allow @value{GDBN} to set type and range checking automatically, they
9844both default to @code{off} whenever the working language changes to
b37052ae 9845C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9846selects the working language.
c906108c
SS
9847
9848If you allow @value{GDBN} to set the language automatically, it
9849recognizes source files whose names end with @file{.c}, @file{.C}, or
9850@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9851these files, it sets the working language to C or C@t{++}.
79a6e687 9852@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9853for further details.
9854
c906108c
SS
9855@c Type checking is (a) primarily motivated by Modula-2, and (b)
9856@c unimplemented. If (b) changes, it might make sense to let this node
9857@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9858
6d2ebf8b 9859@node C Checks
79a6e687 9860@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9861
b37052ae 9862@cindex C and C@t{++} checks
c906108c 9863
b37052ae 9864By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9865is not used. However, if you turn type checking on, @value{GDBN}
9866considers two variables type equivalent if:
9867
9868@itemize @bullet
9869@item
9870The two variables are structured and have the same structure, union, or
9871enumerated tag.
9872
9873@item
9874The two variables have the same type name, or types that have been
9875declared equivalent through @code{typedef}.
9876
9877@ignore
9878@c leaving this out because neither J Gilmore nor R Pesch understand it.
9879@c FIXME--beers?
9880@item
9881The two @code{struct}, @code{union}, or @code{enum} variables are
9882declared in the same declaration. (Note: this may not be true for all C
9883compilers.)
9884@end ignore
9885@end itemize
9886
9887Range checking, if turned on, is done on mathematical operations. Array
9888indices are not checked, since they are often used to index a pointer
9889that is not itself an array.
c906108c 9890
6d2ebf8b 9891@node Debugging C
c906108c 9892@subsubsection @value{GDBN} and C
c906108c
SS
9893
9894The @code{set print union} and @code{show print union} commands apply to
9895the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9896inside a @code{struct} or @code{class} is also printed. Otherwise, it
9897appears as @samp{@{...@}}.
c906108c
SS
9898
9899The @code{@@} operator aids in the debugging of dynamic arrays, formed
9900with pointers and a memory allocation function. @xref{Expressions,
9901,Expressions}.
9902
79a6e687
BW
9903@node Debugging C Plus Plus
9904@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9905
b37052ae 9906@cindex commands for C@t{++}
7a292a7a 9907
b37052ae
EZ
9908Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9909designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9910
9911@table @code
9912@cindex break in overloaded functions
9913@item @r{breakpoint menus}
9914When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9915@value{GDBN} has the capability to display a menu of possible breakpoint
9916locations to help you specify which function definition you want.
9917@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9918
b37052ae 9919@cindex overloading in C@t{++}
c906108c
SS
9920@item rbreak @var{regex}
9921Setting breakpoints using regular expressions is helpful for setting
9922breakpoints on overloaded functions that are not members of any special
9923classes.
79a6e687 9924@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9925
b37052ae 9926@cindex C@t{++} exception handling
c906108c
SS
9927@item catch throw
9928@itemx catch catch
b37052ae 9929Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9930Catchpoints, , Setting Catchpoints}.
c906108c
SS
9931
9932@cindex inheritance
9933@item ptype @var{typename}
9934Print inheritance relationships as well as other information for type
9935@var{typename}.
9936@xref{Symbols, ,Examining the Symbol Table}.
9937
b37052ae 9938@cindex C@t{++} symbol display
c906108c
SS
9939@item set print demangle
9940@itemx show print demangle
9941@itemx set print asm-demangle
9942@itemx show print asm-demangle
b37052ae
EZ
9943Control whether C@t{++} symbols display in their source form, both when
9944displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9945@xref{Print Settings, ,Print Settings}.
c906108c
SS
9946
9947@item set print object
9948@itemx show print object
9949Choose whether to print derived (actual) or declared types of objects.
79a6e687 9950@xref{Print Settings, ,Print Settings}.
c906108c
SS
9951
9952@item set print vtbl
9953@itemx show print vtbl
9954Control the format for printing virtual function tables.
79a6e687 9955@xref{Print Settings, ,Print Settings}.
c906108c 9956(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9957ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9958
9959@kindex set overload-resolution
d4f3574e 9960@cindex overloaded functions, overload resolution
c906108c 9961@item set overload-resolution on
b37052ae 9962Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9963is on. For overloaded functions, @value{GDBN} evaluates the arguments
9964and searches for a function whose signature matches the argument types,
79a6e687
BW
9965using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9966Expressions, ,C@t{++} Expressions}, for details).
9967If it cannot find a match, it emits a message.
c906108c
SS
9968
9969@item set overload-resolution off
b37052ae 9970Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9971overloaded functions that are not class member functions, @value{GDBN}
9972chooses the first function of the specified name that it finds in the
9973symbol table, whether or not its arguments are of the correct type. For
9974overloaded functions that are class member functions, @value{GDBN}
9975searches for a function whose signature @emph{exactly} matches the
9976argument types.
c906108c 9977
9c16f35a
EZ
9978@kindex show overload-resolution
9979@item show overload-resolution
9980Show the current setting of overload resolution.
9981
c906108c
SS
9982@item @r{Overloaded symbol names}
9983You can specify a particular definition of an overloaded symbol, using
b37052ae 9984the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9985@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9986also use the @value{GDBN} command-line word completion facilities to list the
9987available choices, or to finish the type list for you.
79a6e687 9988@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9989@end table
c906108c 9990
febe4383
TJB
9991@node Decimal Floating Point
9992@subsubsection Decimal Floating Point format
9993@cindex decimal floating point format
9994
9995@value{GDBN} can examine, set and perform computations with numbers in
9996decimal floating point format, which in the C language correspond to the
9997@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9998specified by the extension to support decimal floating-point arithmetic.
9999
10000There are two encodings in use, depending on the architecture: BID (Binary
10001Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
10002PowerPC. @value{GDBN} will use the appropriate encoding for the configured
10003target.
10004
10005Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
10006to manipulate decimal floating point numbers, it is not possible to convert
10007(using a cast, for example) integers wider than 32-bit to decimal float.
10008
10009In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
10010point computations, error checking in decimal float operations ignores
10011underflow, overflow and divide by zero exceptions.
10012
4acd40f3
TJB
10013In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
10014to inspect @code{_Decimal128} values stored in floating point registers. See
10015@ref{PowerPC,,PowerPC} for more details.
10016
b37303ee
AF
10017@node Objective-C
10018@subsection Objective-C
10019
10020@cindex Objective-C
10021This section provides information about some commands and command
721c2651
EZ
10022options that are useful for debugging Objective-C code. See also
10023@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
10024few more commands specific to Objective-C support.
b37303ee
AF
10025
10026@menu
b383017d
RM
10027* Method Names in Commands::
10028* The Print Command with Objective-C::
b37303ee
AF
10029@end menu
10030
c8f4133a 10031@node Method Names in Commands
b37303ee
AF
10032@subsubsection Method Names in Commands
10033
10034The following commands have been extended to accept Objective-C method
10035names as line specifications:
10036
10037@kindex clear@r{, and Objective-C}
10038@kindex break@r{, and Objective-C}
10039@kindex info line@r{, and Objective-C}
10040@kindex jump@r{, and Objective-C}
10041@kindex list@r{, and Objective-C}
10042@itemize
10043@item @code{clear}
10044@item @code{break}
10045@item @code{info line}
10046@item @code{jump}
10047@item @code{list}
10048@end itemize
10049
10050A fully qualified Objective-C method name is specified as
10051
10052@smallexample
10053-[@var{Class} @var{methodName}]
10054@end smallexample
10055
c552b3bb
JM
10056where the minus sign is used to indicate an instance method and a
10057plus sign (not shown) is used to indicate a class method. The class
10058name @var{Class} and method name @var{methodName} are enclosed in
10059brackets, similar to the way messages are specified in Objective-C
10060source code. For example, to set a breakpoint at the @code{create}
10061instance method of class @code{Fruit} in the program currently being
10062debugged, enter:
b37303ee
AF
10063
10064@smallexample
10065break -[Fruit create]
10066@end smallexample
10067
10068To list ten program lines around the @code{initialize} class method,
10069enter:
10070
10071@smallexample
10072list +[NSText initialize]
10073@end smallexample
10074
c552b3bb
JM
10075In the current version of @value{GDBN}, the plus or minus sign is
10076required. In future versions of @value{GDBN}, the plus or minus
10077sign will be optional, but you can use it to narrow the search. It
10078is also possible to specify just a method name:
b37303ee
AF
10079
10080@smallexample
10081break create
10082@end smallexample
10083
10084You must specify the complete method name, including any colons. If
10085your program's source files contain more than one @code{create} method,
10086you'll be presented with a numbered list of classes that implement that
10087method. Indicate your choice by number, or type @samp{0} to exit if
10088none apply.
10089
10090As another example, to clear a breakpoint established at the
10091@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
10092
10093@smallexample
10094clear -[NSWindow makeKeyAndOrderFront:]
10095@end smallexample
10096
10097@node The Print Command with Objective-C
10098@subsubsection The Print Command With Objective-C
721c2651 10099@cindex Objective-C, print objects
c552b3bb
JM
10100@kindex print-object
10101@kindex po @r{(@code{print-object})}
b37303ee 10102
c552b3bb 10103The print command has also been extended to accept methods. For example:
b37303ee
AF
10104
10105@smallexample
c552b3bb 10106print -[@var{object} hash]
b37303ee
AF
10107@end smallexample
10108
10109@cindex print an Objective-C object description
c552b3bb
JM
10110@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
10111@noindent
10112will tell @value{GDBN} to send the @code{hash} message to @var{object}
10113and print the result. Also, an additional command has been added,
10114@code{print-object} or @code{po} for short, which is meant to print
10115the description of an object. However, this command may only work
10116with certain Objective-C libraries that have a particular hook
10117function, @code{_NSPrintForDebugger}, defined.
b37303ee 10118
09d4efe1
EZ
10119@node Fortran
10120@subsection Fortran
10121@cindex Fortran-specific support in @value{GDBN}
10122
814e32d7
WZ
10123@value{GDBN} can be used to debug programs written in Fortran, but it
10124currently supports only the features of Fortran 77 language.
10125
10126@cindex trailing underscore, in Fortran symbols
10127Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
10128among them) append an underscore to the names of variables and
10129functions. When you debug programs compiled by those compilers, you
10130will need to refer to variables and functions with a trailing
10131underscore.
10132
10133@menu
10134* Fortran Operators:: Fortran operators and expressions
10135* Fortran Defaults:: Default settings for Fortran
79a6e687 10136* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
10137@end menu
10138
10139@node Fortran Operators
79a6e687 10140@subsubsection Fortran Operators and Expressions
814e32d7
WZ
10141
10142@cindex Fortran operators and expressions
10143
10144Operators must be defined on values of specific types. For instance,
10145@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 10146arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
10147
10148@table @code
10149@item **
10150The exponentiation operator. It raises the first operand to the power
10151of the second one.
10152
10153@item :
10154The range operator. Normally used in the form of array(low:high) to
10155represent a section of array.
68837c9d
MD
10156
10157@item %
10158The access component operator. Normally used to access elements in derived
10159types. Also suitable for unions. As unions aren't part of regular Fortran,
10160this can only happen when accessing a register that uses a gdbarch-defined
10161union type.
814e32d7
WZ
10162@end table
10163
10164@node Fortran Defaults
10165@subsubsection Fortran Defaults
10166
10167@cindex Fortran Defaults
10168
10169Fortran symbols are usually case-insensitive, so @value{GDBN} by
10170default uses case-insensitive matches for Fortran symbols. You can
10171change that with the @samp{set case-insensitive} command, see
10172@ref{Symbols}, for the details.
10173
79a6e687
BW
10174@node Special Fortran Commands
10175@subsubsection Special Fortran Commands
814e32d7
WZ
10176
10177@cindex Special Fortran commands
10178
db2e3e2e
BW
10179@value{GDBN} has some commands to support Fortran-specific features,
10180such as displaying common blocks.
814e32d7 10181
09d4efe1
EZ
10182@table @code
10183@cindex @code{COMMON} blocks, Fortran
10184@kindex info common
10185@item info common @r{[}@var{common-name}@r{]}
10186This command prints the values contained in the Fortran @code{COMMON}
10187block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 10188all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
10189printed.
10190@end table
10191
9c16f35a
EZ
10192@node Pascal
10193@subsection Pascal
10194
10195@cindex Pascal support in @value{GDBN}, limitations
10196Debugging Pascal programs which use sets, subranges, file variables, or
10197nested functions does not currently work. @value{GDBN} does not support
10198entering expressions, printing values, or similar features using Pascal
10199syntax.
10200
10201The Pascal-specific command @code{set print pascal_static-members}
10202controls whether static members of Pascal objects are displayed.
10203@xref{Print Settings, pascal_static-members}.
10204
09d4efe1 10205@node Modula-2
c906108c 10206@subsection Modula-2
7a292a7a 10207
d4f3574e 10208@cindex Modula-2, @value{GDBN} support
c906108c
SS
10209
10210The extensions made to @value{GDBN} to support Modula-2 only support
10211output from the @sc{gnu} Modula-2 compiler (which is currently being
10212developed). Other Modula-2 compilers are not currently supported, and
10213attempting to debug executables produced by them is most likely
10214to give an error as @value{GDBN} reads in the executable's symbol
10215table.
10216
10217@cindex expressions in Modula-2
10218@menu
10219* M2 Operators:: Built-in operators
10220* Built-In Func/Proc:: Built-in functions and procedures
10221* M2 Constants:: Modula-2 constants
72019c9c 10222* M2 Types:: Modula-2 types
c906108c
SS
10223* M2 Defaults:: Default settings for Modula-2
10224* Deviations:: Deviations from standard Modula-2
10225* M2 Checks:: Modula-2 type and range checks
10226* M2 Scope:: The scope operators @code{::} and @code{.}
10227* GDB/M2:: @value{GDBN} and Modula-2
10228@end menu
10229
6d2ebf8b 10230@node M2 Operators
c906108c
SS
10231@subsubsection Operators
10232@cindex Modula-2 operators
10233
10234Operators must be defined on values of specific types. For instance,
10235@code{+} is defined on numbers, but not on structures. Operators are
10236often defined on groups of types. For the purposes of Modula-2, the
10237following definitions hold:
10238
10239@itemize @bullet
10240
10241@item
10242@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
10243their subranges.
10244
10245@item
10246@emph{Character types} consist of @code{CHAR} and its subranges.
10247
10248@item
10249@emph{Floating-point types} consist of @code{REAL}.
10250
10251@item
10252@emph{Pointer types} consist of anything declared as @code{POINTER TO
10253@var{type}}.
10254
10255@item
10256@emph{Scalar types} consist of all of the above.
10257
10258@item
10259@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10260
10261@item
10262@emph{Boolean types} consist of @code{BOOLEAN}.
10263@end itemize
10264
10265@noindent
10266The following operators are supported, and appear in order of
10267increasing precedence:
10268
10269@table @code
10270@item ,
10271Function argument or array index separator.
10272
10273@item :=
10274Assignment. The value of @var{var} @code{:=} @var{value} is
10275@var{value}.
10276
10277@item <@r{, }>
10278Less than, greater than on integral, floating-point, or enumerated
10279types.
10280
10281@item <=@r{, }>=
96a2c332 10282Less than or equal to, greater than or equal to
c906108c
SS
10283on integral, floating-point and enumerated types, or set inclusion on
10284set types. Same precedence as @code{<}.
10285
10286@item =@r{, }<>@r{, }#
10287Equality and two ways of expressing inequality, valid on scalar types.
10288Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10289available for inequality, since @code{#} conflicts with the script
10290comment character.
10291
10292@item IN
10293Set membership. Defined on set types and the types of their members.
10294Same precedence as @code{<}.
10295
10296@item OR
10297Boolean disjunction. Defined on boolean types.
10298
10299@item AND@r{, }&
d4f3574e 10300Boolean conjunction. Defined on boolean types.
c906108c
SS
10301
10302@item @@
10303The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10304
10305@item +@r{, }-
10306Addition and subtraction on integral and floating-point types, or union
10307and difference on set types.
10308
10309@item *
10310Multiplication on integral and floating-point types, or set intersection
10311on set types.
10312
10313@item /
10314Division on floating-point types, or symmetric set difference on set
10315types. Same precedence as @code{*}.
10316
10317@item DIV@r{, }MOD
10318Integer division and remainder. Defined on integral types. Same
10319precedence as @code{*}.
10320
10321@item -
10322Negative. Defined on @code{INTEGER} and @code{REAL} data.
10323
10324@item ^
10325Pointer dereferencing. Defined on pointer types.
10326
10327@item NOT
10328Boolean negation. Defined on boolean types. Same precedence as
10329@code{^}.
10330
10331@item .
10332@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10333precedence as @code{^}.
10334
10335@item []
10336Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10337
10338@item ()
10339Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10340as @code{^}.
10341
10342@item ::@r{, }.
10343@value{GDBN} and Modula-2 scope operators.
10344@end table
10345
10346@quotation
72019c9c 10347@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10348treats the use of the operator @code{IN}, or the use of operators
10349@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10350@code{<=}, and @code{>=} on sets as an error.
10351@end quotation
10352
cb51c4e0 10353
6d2ebf8b 10354@node Built-In Func/Proc
79a6e687 10355@subsubsection Built-in Functions and Procedures
cb51c4e0 10356@cindex Modula-2 built-ins
c906108c
SS
10357
10358Modula-2 also makes available several built-in procedures and functions.
10359In describing these, the following metavariables are used:
10360
10361@table @var
10362
10363@item a
10364represents an @code{ARRAY} variable.
10365
10366@item c
10367represents a @code{CHAR} constant or variable.
10368
10369@item i
10370represents a variable or constant of integral type.
10371
10372@item m
10373represents an identifier that belongs to a set. Generally used in the
10374same function with the metavariable @var{s}. The type of @var{s} should
10375be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10376
10377@item n
10378represents a variable or constant of integral or floating-point type.
10379
10380@item r
10381represents a variable or constant of floating-point type.
10382
10383@item t
10384represents a type.
10385
10386@item v
10387represents a variable.
10388
10389@item x
10390represents a variable or constant of one of many types. See the
10391explanation of the function for details.
10392@end table
10393
10394All Modula-2 built-in procedures also return a result, described below.
10395
10396@table @code
10397@item ABS(@var{n})
10398Returns the absolute value of @var{n}.
10399
10400@item CAP(@var{c})
10401If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10402equivalent, otherwise it returns its argument.
c906108c
SS
10403
10404@item CHR(@var{i})
10405Returns the character whose ordinal value is @var{i}.
10406
10407@item DEC(@var{v})
c3f6f71d 10408Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10409
10410@item DEC(@var{v},@var{i})
10411Decrements the value in the variable @var{v} by @var{i}. Returns the
10412new value.
10413
10414@item EXCL(@var{m},@var{s})
10415Removes the element @var{m} from the set @var{s}. Returns the new
10416set.
10417
10418@item FLOAT(@var{i})
10419Returns the floating point equivalent of the integer @var{i}.
10420
10421@item HIGH(@var{a})
10422Returns the index of the last member of @var{a}.
10423
10424@item INC(@var{v})
c3f6f71d 10425Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10426
10427@item INC(@var{v},@var{i})
10428Increments the value in the variable @var{v} by @var{i}. Returns the
10429new value.
10430
10431@item INCL(@var{m},@var{s})
10432Adds the element @var{m} to the set @var{s} if it is not already
10433there. Returns the new set.
10434
10435@item MAX(@var{t})
10436Returns the maximum value of the type @var{t}.
10437
10438@item MIN(@var{t})
10439Returns the minimum value of the type @var{t}.
10440
10441@item ODD(@var{i})
10442Returns boolean TRUE if @var{i} is an odd number.
10443
10444@item ORD(@var{x})
10445Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10446value of a character is its @sc{ascii} value (on machines supporting the
10447@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10448integral, character and enumerated types.
10449
10450@item SIZE(@var{x})
10451Returns the size of its argument. @var{x} can be a variable or a type.
10452
10453@item TRUNC(@var{r})
10454Returns the integral part of @var{r}.
10455
844781a1
GM
10456@item TSIZE(@var{x})
10457Returns the size of its argument. @var{x} can be a variable or a type.
10458
c906108c
SS
10459@item VAL(@var{t},@var{i})
10460Returns the member of the type @var{t} whose ordinal value is @var{i}.
10461@end table
10462
10463@quotation
10464@emph{Warning:} Sets and their operations are not yet supported, so
10465@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10466an error.
10467@end quotation
10468
10469@cindex Modula-2 constants
6d2ebf8b 10470@node M2 Constants
c906108c
SS
10471@subsubsection Constants
10472
10473@value{GDBN} allows you to express the constants of Modula-2 in the following
10474ways:
10475
10476@itemize @bullet
10477
10478@item
10479Integer constants are simply a sequence of digits. When used in an
10480expression, a constant is interpreted to be type-compatible with the
10481rest of the expression. Hexadecimal integers are specified by a
10482trailing @samp{H}, and octal integers by a trailing @samp{B}.
10483
10484@item
10485Floating point constants appear as a sequence of digits, followed by a
10486decimal point and another sequence of digits. An optional exponent can
10487then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10488@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10489digits of the floating point constant must be valid decimal (base 10)
10490digits.
10491
10492@item
10493Character constants consist of a single character enclosed by a pair of
10494like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10495also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10496followed by a @samp{C}.
10497
10498@item
10499String constants consist of a sequence of characters enclosed by a
10500pair of like quotes, either single (@code{'}) or double (@code{"}).
10501Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10502Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10503sequences.
10504
10505@item
10506Enumerated constants consist of an enumerated identifier.
10507
10508@item
10509Boolean constants consist of the identifiers @code{TRUE} and
10510@code{FALSE}.
10511
10512@item
10513Pointer constants consist of integral values only.
10514
10515@item
10516Set constants are not yet supported.
10517@end itemize
10518
72019c9c
GM
10519@node M2 Types
10520@subsubsection Modula-2 Types
10521@cindex Modula-2 types
10522
10523Currently @value{GDBN} can print the following data types in Modula-2
10524syntax: array types, record types, set types, pointer types, procedure
10525types, enumerated types, subrange types and base types. You can also
10526print the contents of variables declared using these type.
10527This section gives a number of simple source code examples together with
10528sample @value{GDBN} sessions.
10529
10530The first example contains the following section of code:
10531
10532@smallexample
10533VAR
10534 s: SET OF CHAR ;
10535 r: [20..40] ;
10536@end smallexample
10537
10538@noindent
10539and you can request @value{GDBN} to interrogate the type and value of
10540@code{r} and @code{s}.
10541
10542@smallexample
10543(@value{GDBP}) print s
10544@{'A'..'C', 'Z'@}
10545(@value{GDBP}) ptype s
10546SET OF CHAR
10547(@value{GDBP}) print r
1054821
10549(@value{GDBP}) ptype r
10550[20..40]
10551@end smallexample
10552
10553@noindent
10554Likewise if your source code declares @code{s} as:
10555
10556@smallexample
10557VAR
10558 s: SET ['A'..'Z'] ;
10559@end smallexample
10560
10561@noindent
10562then you may query the type of @code{s} by:
10563
10564@smallexample
10565(@value{GDBP}) ptype s
10566type = SET ['A'..'Z']
10567@end smallexample
10568
10569@noindent
10570Note that at present you cannot interactively manipulate set
10571expressions using the debugger.
10572
10573The following example shows how you might declare an array in Modula-2
10574and how you can interact with @value{GDBN} to print its type and contents:
10575
10576@smallexample
10577VAR
10578 s: ARRAY [-10..10] OF CHAR ;
10579@end smallexample
10580
10581@smallexample
10582(@value{GDBP}) ptype s
10583ARRAY [-10..10] OF CHAR
10584@end smallexample
10585
10586Note that the array handling is not yet complete and although the type
10587is printed correctly, expression handling still assumes that all
10588arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10589above.
72019c9c
GM
10590
10591Here are some more type related Modula-2 examples:
10592
10593@smallexample
10594TYPE
10595 colour = (blue, red, yellow, green) ;
10596 t = [blue..yellow] ;
10597VAR
10598 s: t ;
10599BEGIN
10600 s := blue ;
10601@end smallexample
10602
10603@noindent
10604The @value{GDBN} interaction shows how you can query the data type
10605and value of a variable.
10606
10607@smallexample
10608(@value{GDBP}) print s
10609$1 = blue
10610(@value{GDBP}) ptype t
10611type = [blue..yellow]
10612@end smallexample
10613
10614@noindent
10615In this example a Modula-2 array is declared and its contents
10616displayed. Observe that the contents are written in the same way as
10617their @code{C} counterparts.
10618
10619@smallexample
10620VAR
10621 s: ARRAY [1..5] OF CARDINAL ;
10622BEGIN
10623 s[1] := 1 ;
10624@end smallexample
10625
10626@smallexample
10627(@value{GDBP}) print s
10628$1 = @{1, 0, 0, 0, 0@}
10629(@value{GDBP}) ptype s
10630type = ARRAY [1..5] OF CARDINAL
10631@end smallexample
10632
10633The Modula-2 language interface to @value{GDBN} also understands
10634pointer types as shown in this example:
10635
10636@smallexample
10637VAR
10638 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10639BEGIN
10640 NEW(s) ;
10641 s^[1] := 1 ;
10642@end smallexample
10643
10644@noindent
10645and you can request that @value{GDBN} describes the type of @code{s}.
10646
10647@smallexample
10648(@value{GDBP}) ptype s
10649type = POINTER TO ARRAY [1..5] OF CARDINAL
10650@end smallexample
10651
10652@value{GDBN} handles compound types as we can see in this example.
10653Here we combine array types, record types, pointer types and subrange
10654types:
10655
10656@smallexample
10657TYPE
10658 foo = RECORD
10659 f1: CARDINAL ;
10660 f2: CHAR ;
10661 f3: myarray ;
10662 END ;
10663
10664 myarray = ARRAY myrange OF CARDINAL ;
10665 myrange = [-2..2] ;
10666VAR
10667 s: POINTER TO ARRAY myrange OF foo ;
10668@end smallexample
10669
10670@noindent
10671and you can ask @value{GDBN} to describe the type of @code{s} as shown
10672below.
10673
10674@smallexample
10675(@value{GDBP}) ptype s
10676type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10677 f1 : CARDINAL;
10678 f2 : CHAR;
10679 f3 : ARRAY [-2..2] OF CARDINAL;
10680END
10681@end smallexample
10682
6d2ebf8b 10683@node M2 Defaults
79a6e687 10684@subsubsection Modula-2 Defaults
c906108c
SS
10685@cindex Modula-2 defaults
10686
10687If type and range checking are set automatically by @value{GDBN}, they
10688both default to @code{on} whenever the working language changes to
d4f3574e 10689Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10690selected the working language.
10691
10692If you allow @value{GDBN} to set the language automatically, then entering
10693code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10694working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10695Infer the Source Language}, for further details.
c906108c 10696
6d2ebf8b 10697@node Deviations
79a6e687 10698@subsubsection Deviations from Standard Modula-2
c906108c
SS
10699@cindex Modula-2, deviations from
10700
10701A few changes have been made to make Modula-2 programs easier to debug.
10702This is done primarily via loosening its type strictness:
10703
10704@itemize @bullet
10705@item
10706Unlike in standard Modula-2, pointer constants can be formed by
10707integers. This allows you to modify pointer variables during
10708debugging. (In standard Modula-2, the actual address contained in a
10709pointer variable is hidden from you; it can only be modified
10710through direct assignment to another pointer variable or expression that
10711returned a pointer.)
10712
10713@item
10714C escape sequences can be used in strings and characters to represent
10715non-printable characters. @value{GDBN} prints out strings with these
10716escape sequences embedded. Single non-printable characters are
10717printed using the @samp{CHR(@var{nnn})} format.
10718
10719@item
10720The assignment operator (@code{:=}) returns the value of its right-hand
10721argument.
10722
10723@item
10724All built-in procedures both modify @emph{and} return their argument.
10725@end itemize
10726
6d2ebf8b 10727@node M2 Checks
79a6e687 10728@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10729@cindex Modula-2 checks
10730
10731@quotation
10732@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10733range checking.
10734@end quotation
10735@c FIXME remove warning when type/range checks added
10736
10737@value{GDBN} considers two Modula-2 variables type equivalent if:
10738
10739@itemize @bullet
10740@item
10741They are of types that have been declared equivalent via a @code{TYPE
10742@var{t1} = @var{t2}} statement
10743
10744@item
10745They have been declared on the same line. (Note: This is true of the
10746@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10747@end itemize
10748
10749As long as type checking is enabled, any attempt to combine variables
10750whose types are not equivalent is an error.
10751
10752Range checking is done on all mathematical operations, assignment, array
10753index bounds, and all built-in functions and procedures.
10754
6d2ebf8b 10755@node M2 Scope
79a6e687 10756@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10757@cindex scope
41afff9a 10758@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10759@cindex colon, doubled as scope operator
10760@ifinfo
41afff9a 10761@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10762@c Info cannot handle :: but TeX can.
10763@end ifinfo
10764@iftex
41afff9a 10765@vindex ::@r{, in Modula-2}
c906108c
SS
10766@end iftex
10767
10768There are a few subtle differences between the Modula-2 scope operator
10769(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10770similar syntax:
10771
474c8240 10772@smallexample
c906108c
SS
10773
10774@var{module} . @var{id}
10775@var{scope} :: @var{id}
474c8240 10776@end smallexample
c906108c
SS
10777
10778@noindent
10779where @var{scope} is the name of a module or a procedure,
10780@var{module} the name of a module, and @var{id} is any declared
10781identifier within your program, except another module.
10782
10783Using the @code{::} operator makes @value{GDBN} search the scope
10784specified by @var{scope} for the identifier @var{id}. If it is not
10785found in the specified scope, then @value{GDBN} searches all scopes
10786enclosing the one specified by @var{scope}.
10787
10788Using the @code{.} operator makes @value{GDBN} search the current scope for
10789the identifier specified by @var{id} that was imported from the
10790definition module specified by @var{module}. With this operator, it is
10791an error if the identifier @var{id} was not imported from definition
10792module @var{module}, or if @var{id} is not an identifier in
10793@var{module}.
10794
6d2ebf8b 10795@node GDB/M2
c906108c
SS
10796@subsubsection @value{GDBN} and Modula-2
10797
10798Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10799Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10800specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10801@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10802apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10803analogue in Modula-2.
10804
10805The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10806with any language, is not useful with Modula-2. Its
c906108c 10807intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10808created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10809address can be specified by an integral constant, the construct
d4f3574e 10810@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10811
10812@cindex @code{#} in Modula-2
10813In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10814interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10815
e07c999f
PH
10816@node Ada
10817@subsection Ada
10818@cindex Ada
10819
10820The extensions made to @value{GDBN} for Ada only support
10821output from the @sc{gnu} Ada (GNAT) compiler.
10822Other Ada compilers are not currently supported, and
10823attempting to debug executables produced by them is most likely
10824to be difficult.
10825
10826
10827@cindex expressions in Ada
10828@menu
10829* Ada Mode Intro:: General remarks on the Ada syntax
10830 and semantics supported by Ada mode
10831 in @value{GDBN}.
10832* Omissions from Ada:: Restrictions on the Ada expression syntax.
10833* Additions to Ada:: Extensions of the Ada expression syntax.
10834* Stopping Before Main Program:: Debugging the program during elaboration.
10835* Ada Glitches:: Known peculiarities of Ada mode.
10836@end menu
10837
10838@node Ada Mode Intro
10839@subsubsection Introduction
10840@cindex Ada mode, general
10841
10842The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10843syntax, with some extensions.
10844The philosophy behind the design of this subset is
10845
10846@itemize @bullet
10847@item
10848That @value{GDBN} should provide basic literals and access to operations for
10849arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10850leaving more sophisticated computations to subprograms written into the
10851program (which therefore may be called from @value{GDBN}).
10852
10853@item
10854That type safety and strict adherence to Ada language restrictions
10855are not particularly important to the @value{GDBN} user.
10856
10857@item
10858That brevity is important to the @value{GDBN} user.
10859@end itemize
10860
10861Thus, for brevity, the debugger acts as if there were
10862implicit @code{with} and @code{use} clauses in effect for all user-written
10863packages, making it unnecessary to fully qualify most names with
10864their packages, regardless of context. Where this causes ambiguity,
10865@value{GDBN} asks the user's intent.
10866
10867The debugger will start in Ada mode if it detects an Ada main program.
10868As for other languages, it will enter Ada mode when stopped in a program that
10869was translated from an Ada source file.
10870
10871While in Ada mode, you may use `@t{--}' for comments. This is useful
10872mostly for documenting command files. The standard @value{GDBN} comment
10873(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10874middle (to allow based literals).
10875
10876The debugger supports limited overloading. Given a subprogram call in which
10877the function symbol has multiple definitions, it will use the number of
10878actual parameters and some information about their types to attempt to narrow
10879the set of definitions. It also makes very limited use of context, preferring
10880procedures to functions in the context of the @code{call} command, and
10881functions to procedures elsewhere.
10882
10883@node Omissions from Ada
10884@subsubsection Omissions from Ada
10885@cindex Ada, omissions from
10886
10887Here are the notable omissions from the subset:
10888
10889@itemize @bullet
10890@item
10891Only a subset of the attributes are supported:
10892
10893@itemize @minus
10894@item
10895@t{'First}, @t{'Last}, and @t{'Length}
10896 on array objects (not on types and subtypes).
10897
10898@item
10899@t{'Min} and @t{'Max}.
10900
10901@item
10902@t{'Pos} and @t{'Val}.
10903
10904@item
10905@t{'Tag}.
10906
10907@item
10908@t{'Range} on array objects (not subtypes), but only as the right
10909operand of the membership (@code{in}) operator.
10910
10911@item
10912@t{'Access}, @t{'Unchecked_Access}, and
10913@t{'Unrestricted_Access} (a GNAT extension).
10914
10915@item
10916@t{'Address}.
10917@end itemize
10918
10919@item
10920The names in
10921@code{Characters.Latin_1} are not available and
10922concatenation is not implemented. Thus, escape characters in strings are
10923not currently available.
10924
10925@item
10926Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10927equality of representations. They will generally work correctly
10928for strings and arrays whose elements have integer or enumeration types.
10929They may not work correctly for arrays whose element
10930types have user-defined equality, for arrays of real values
10931(in particular, IEEE-conformant floating point, because of negative
10932zeroes and NaNs), and for arrays whose elements contain unused bits with
10933indeterminate values.
10934
10935@item
10936The other component-by-component array operations (@code{and}, @code{or},
10937@code{xor}, @code{not}, and relational tests other than equality)
10938are not implemented.
10939
10940@item
860701dc
PH
10941@cindex array aggregates (Ada)
10942@cindex record aggregates (Ada)
10943@cindex aggregates (Ada)
10944There is limited support for array and record aggregates. They are
10945permitted only on the right sides of assignments, as in these examples:
10946
10947@smallexample
10948set An_Array := (1, 2, 3, 4, 5, 6)
10949set An_Array := (1, others => 0)
10950set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10951set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10952set A_Record := (1, "Peter", True);
10953set A_Record := (Name => "Peter", Id => 1, Alive => True)
10954@end smallexample
10955
10956Changing a
10957discriminant's value by assigning an aggregate has an
10958undefined effect if that discriminant is used within the record.
10959However, you can first modify discriminants by directly assigning to
10960them (which normally would not be allowed in Ada), and then performing an
10961aggregate assignment. For example, given a variable @code{A_Rec}
10962declared to have a type such as:
10963
10964@smallexample
10965type Rec (Len : Small_Integer := 0) is record
10966 Id : Integer;
10967 Vals : IntArray (1 .. Len);
10968end record;
10969@end smallexample
10970
10971you can assign a value with a different size of @code{Vals} with two
10972assignments:
10973
10974@smallexample
10975set A_Rec.Len := 4
10976set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10977@end smallexample
10978
10979As this example also illustrates, @value{GDBN} is very loose about the usual
10980rules concerning aggregates. You may leave out some of the
10981components of an array or record aggregate (such as the @code{Len}
10982component in the assignment to @code{A_Rec} above); they will retain their
10983original values upon assignment. You may freely use dynamic values as
10984indices in component associations. You may even use overlapping or
10985redundant component associations, although which component values are
10986assigned in such cases is not defined.
e07c999f
PH
10987
10988@item
10989Calls to dispatching subprograms are not implemented.
10990
10991@item
10992The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10993than that of real Ada. It makes only limited use of the context in
10994which a subexpression appears to resolve its meaning, and it is much
10995looser in its rules for allowing type matches. As a result, some
10996function calls will be ambiguous, and the user will be asked to choose
10997the proper resolution.
e07c999f
PH
10998
10999@item
11000The @code{new} operator is not implemented.
11001
11002@item
11003Entry calls are not implemented.
11004
11005@item
11006Aside from printing, arithmetic operations on the native VAX floating-point
11007formats are not supported.
11008
11009@item
11010It is not possible to slice a packed array.
11011@end itemize
11012
11013@node Additions to Ada
11014@subsubsection Additions to Ada
11015@cindex Ada, deviations from
11016
11017As it does for other languages, @value{GDBN} makes certain generic
11018extensions to Ada (@pxref{Expressions}):
11019
11020@itemize @bullet
11021@item
ae21e955
BW
11022If the expression @var{E} is a variable residing in memory (typically
11023a local variable or array element) and @var{N} is a positive integer,
11024then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
11025@var{N}-1 adjacent variables following it in memory as an array. In
11026Ada, this operator is generally not necessary, since its prime use is
11027in displaying parts of an array, and slicing will usually do this in
11028Ada. However, there are occasional uses when debugging programs in
11029which certain debugging information has been optimized away.
e07c999f
PH
11030
11031@item
ae21e955
BW
11032@code{@var{B}::@var{var}} means ``the variable named @var{var} that
11033appears in function or file @var{B}.'' When @var{B} is a file name,
11034you must typically surround it in single quotes.
e07c999f
PH
11035
11036@item
11037The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
11038@var{type} that appears at address @var{addr}.''
11039
11040@item
11041A name starting with @samp{$} is a convenience variable
11042(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
11043@end itemize
11044
ae21e955
BW
11045In addition, @value{GDBN} provides a few other shortcuts and outright
11046additions specific to Ada:
e07c999f
PH
11047
11048@itemize @bullet
11049@item
11050The assignment statement is allowed as an expression, returning
11051its right-hand operand as its value. Thus, you may enter
11052
11053@smallexample
11054set x := y + 3
11055print A(tmp := y + 1)
11056@end smallexample
11057
11058@item
11059The semicolon is allowed as an ``operator,'' returning as its value
11060the value of its right-hand operand.
11061This allows, for example,
11062complex conditional breaks:
11063
11064@smallexample
11065break f
11066condition 1 (report(i); k += 1; A(k) > 100)
11067@end smallexample
11068
11069@item
11070Rather than use catenation and symbolic character names to introduce special
11071characters into strings, one may instead use a special bracket notation,
11072which is also used to print strings. A sequence of characters of the form
11073@samp{["@var{XX}"]} within a string or character literal denotes the
11074(single) character whose numeric encoding is @var{XX} in hexadecimal. The
11075sequence of characters @samp{["""]} also denotes a single quotation mark
11076in strings. For example,
11077@smallexample
11078 "One line.["0a"]Next line.["0a"]"
11079@end smallexample
11080@noindent
ae21e955
BW
11081contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
11082after each period.
e07c999f
PH
11083
11084@item
11085The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
11086@t{'Max} is optional (and is ignored in any case). For example, it is valid
11087to write
11088
11089@smallexample
11090print 'max(x, y)
11091@end smallexample
11092
11093@item
11094When printing arrays, @value{GDBN} uses positional notation when the
11095array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
11096For example, a one-dimensional array of three integers with a lower bound
11097of 3 might print as
e07c999f
PH
11098
11099@smallexample
11100(3 => 10, 17, 1)
11101@end smallexample
11102
11103@noindent
11104That is, in contrast to valid Ada, only the first component has a @code{=>}
11105clause.
11106
11107@item
11108You may abbreviate attributes in expressions with any unique,
11109multi-character subsequence of
11110their names (an exact match gets preference).
11111For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
11112in place of @t{a'length}.
11113
11114@item
11115@cindex quoting Ada internal identifiers
11116Since Ada is case-insensitive, the debugger normally maps identifiers you type
11117to lower case. The GNAT compiler uses upper-case characters for
11118some of its internal identifiers, which are normally of no interest to users.
11119For the rare occasions when you actually have to look at them,
11120enclose them in angle brackets to avoid the lower-case mapping.
11121For example,
11122@smallexample
11123@value{GDBP} print <JMPBUF_SAVE>[0]
11124@end smallexample
11125
11126@item
11127Printing an object of class-wide type or dereferencing an
11128access-to-class-wide value will display all the components of the object's
11129specific type (as indicated by its run-time tag). Likewise, component
11130selection on such a value will operate on the specific type of the
11131object.
11132
11133@end itemize
11134
11135@node Stopping Before Main Program
11136@subsubsection Stopping at the Very Beginning
11137
11138@cindex breakpointing Ada elaboration code
11139It is sometimes necessary to debug the program during elaboration, and
11140before reaching the main procedure.
11141As defined in the Ada Reference
11142Manual, the elaboration code is invoked from a procedure called
11143@code{adainit}. To run your program up to the beginning of
11144elaboration, simply use the following two commands:
11145@code{tbreak adainit} and @code{run}.
11146
11147@node Ada Glitches
11148@subsubsection Known Peculiarities of Ada Mode
11149@cindex Ada, problems
11150
11151Besides the omissions listed previously (@pxref{Omissions from Ada}),
11152we know of several problems with and limitations of Ada mode in
11153@value{GDBN},
11154some of which will be fixed with planned future releases of the debugger
11155and the GNU Ada compiler.
11156
11157@itemize @bullet
11158@item
11159Currently, the debugger
11160has insufficient information to determine whether certain pointers represent
11161pointers to objects or the objects themselves.
11162Thus, the user may have to tack an extra @code{.all} after an expression
11163to get it printed properly.
11164
11165@item
11166Static constants that the compiler chooses not to materialize as objects in
11167storage are invisible to the debugger.
11168
11169@item
11170Named parameter associations in function argument lists are ignored (the
11171argument lists are treated as positional).
11172
11173@item
11174Many useful library packages are currently invisible to the debugger.
11175
11176@item
11177Fixed-point arithmetic, conversions, input, and output is carried out using
11178floating-point arithmetic, and may give results that only approximate those on
11179the host machine.
11180
11181@item
11182The type of the @t{'Address} attribute may not be @code{System.Address}.
11183
11184@item
11185The GNAT compiler never generates the prefix @code{Standard} for any of
11186the standard symbols defined by the Ada language. @value{GDBN} knows about
11187this: it will strip the prefix from names when you use it, and will never
11188look for a name you have so qualified among local symbols, nor match against
11189symbols in other packages or subprograms. If you have
11190defined entities anywhere in your program other than parameters and
11191local variables whose simple names match names in @code{Standard},
11192GNAT's lack of qualification here can cause confusion. When this happens,
11193you can usually resolve the confusion
11194by qualifying the problematic names with package
11195@code{Standard} explicitly.
11196@end itemize
11197
79a6e687
BW
11198@node Unsupported Languages
11199@section Unsupported Languages
4e562065
JB
11200
11201@cindex unsupported languages
11202@cindex minimal language
11203In addition to the other fully-supported programming languages,
11204@value{GDBN} also provides a pseudo-language, called @code{minimal}.
11205It does not represent a real programming language, but provides a set
11206of capabilities close to what the C or assembly languages provide.
11207This should allow most simple operations to be performed while debugging
11208an application that uses a language currently not supported by @value{GDBN}.
11209
11210If the language is set to @code{auto}, @value{GDBN} will automatically
11211select this language if the current frame corresponds to an unsupported
11212language.
11213
6d2ebf8b 11214@node Symbols
c906108c
SS
11215@chapter Examining the Symbol Table
11216
d4f3574e 11217The commands described in this chapter allow you to inquire about the
c906108c
SS
11218symbols (names of variables, functions and types) defined in your
11219program. This information is inherent in the text of your program and
11220does not change as your program executes. @value{GDBN} finds it in your
11221program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
11222(@pxref{File Options, ,Choosing Files}), or by one of the
11223file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
11224
11225@cindex symbol names
11226@cindex names of symbols
11227@cindex quoting names
11228Occasionally, you may need to refer to symbols that contain unusual
11229characters, which @value{GDBN} ordinarily treats as word delimiters. The
11230most frequent case is in referring to static variables in other
79a6e687 11231source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
11232are recorded in object files as debugging symbols, but @value{GDBN} would
11233ordinarily parse a typical file name, like @file{foo.c}, as the three words
11234@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
11235@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
11236
474c8240 11237@smallexample
c906108c 11238p 'foo.c'::x
474c8240 11239@end smallexample
c906108c
SS
11240
11241@noindent
11242looks up the value of @code{x} in the scope of the file @file{foo.c}.
11243
11244@table @code
a8f24a35
EZ
11245@cindex case-insensitive symbol names
11246@cindex case sensitivity in symbol names
11247@kindex set case-sensitive
11248@item set case-sensitive on
11249@itemx set case-sensitive off
11250@itemx set case-sensitive auto
11251Normally, when @value{GDBN} looks up symbols, it matches their names
11252with case sensitivity determined by the current source language.
11253Occasionally, you may wish to control that. The command @code{set
11254case-sensitive} lets you do that by specifying @code{on} for
11255case-sensitive matches or @code{off} for case-insensitive ones. If
11256you specify @code{auto}, case sensitivity is reset to the default
11257suitable for the source language. The default is case-sensitive
11258matches for all languages except for Fortran, for which the default is
11259case-insensitive matches.
11260
9c16f35a
EZ
11261@kindex show case-sensitive
11262@item show case-sensitive
a8f24a35
EZ
11263This command shows the current setting of case sensitivity for symbols
11264lookups.
11265
c906108c 11266@kindex info address
b37052ae 11267@cindex address of a symbol
c906108c
SS
11268@item info address @var{symbol}
11269Describe where the data for @var{symbol} is stored. For a register
11270variable, this says which register it is kept in. For a non-register
11271local variable, this prints the stack-frame offset at which the variable
11272is always stored.
11273
11274Note the contrast with @samp{print &@var{symbol}}, which does not work
11275at all for a register variable, and for a stack local variable prints
11276the exact address of the current instantiation of the variable.
11277
3d67e040 11278@kindex info symbol
b37052ae 11279@cindex symbol from address
9c16f35a 11280@cindex closest symbol and offset for an address
3d67e040
EZ
11281@item info symbol @var{addr}
11282Print the name of a symbol which is stored at the address @var{addr}.
11283If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11284nearest symbol and an offset from it:
11285
474c8240 11286@smallexample
3d67e040
EZ
11287(@value{GDBP}) info symbol 0x54320
11288_initialize_vx + 396 in section .text
474c8240 11289@end smallexample
3d67e040
EZ
11290
11291@noindent
11292This is the opposite of the @code{info address} command. You can use
11293it to find out the name of a variable or a function given its address.
11294
c906108c 11295@kindex whatis
62f3a2ba
FF
11296@item whatis [@var{arg}]
11297Print the data type of @var{arg}, which can be either an expression or
11298a data type. With no argument, print the data type of @code{$}, the
11299last value in the value history. If @var{arg} is an expression, it is
11300not actually evaluated, and any side-effecting operations (such as
11301assignments or function calls) inside it do not take place. If
11302@var{arg} is a type name, it may be the name of a type or typedef, or
11303for C code it may have the form @samp{class @var{class-name}},
11304@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11305@samp{enum @var{enum-tag}}.
c906108c
SS
11306@xref{Expressions, ,Expressions}.
11307
c906108c 11308@kindex ptype
62f3a2ba
FF
11309@item ptype [@var{arg}]
11310@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11311detailed description of the type, instead of just the name of the type.
11312@xref{Expressions, ,Expressions}.
c906108c
SS
11313
11314For example, for this variable declaration:
11315
474c8240 11316@smallexample
c906108c 11317struct complex @{double real; double imag;@} v;
474c8240 11318@end smallexample
c906108c
SS
11319
11320@noindent
11321the two commands give this output:
11322
474c8240 11323@smallexample
c906108c
SS
11324@group
11325(@value{GDBP}) whatis v
11326type = struct complex
11327(@value{GDBP}) ptype v
11328type = struct complex @{
11329 double real;
11330 double imag;
11331@}
11332@end group
474c8240 11333@end smallexample
c906108c
SS
11334
11335@noindent
11336As with @code{whatis}, using @code{ptype} without an argument refers to
11337the type of @code{$}, the last value in the value history.
11338
ab1adacd
EZ
11339@cindex incomplete type
11340Sometimes, programs use opaque data types or incomplete specifications
11341of complex data structure. If the debug information included in the
11342program does not allow @value{GDBN} to display a full declaration of
11343the data type, it will say @samp{<incomplete type>}. For example,
11344given these declarations:
11345
11346@smallexample
11347 struct foo;
11348 struct foo *fooptr;
11349@end smallexample
11350
11351@noindent
11352but no definition for @code{struct foo} itself, @value{GDBN} will say:
11353
11354@smallexample
ddb50cd7 11355 (@value{GDBP}) ptype foo
ab1adacd
EZ
11356 $1 = <incomplete type>
11357@end smallexample
11358
11359@noindent
11360``Incomplete type'' is C terminology for data types that are not
11361completely specified.
11362
c906108c
SS
11363@kindex info types
11364@item info types @var{regexp}
11365@itemx info types
09d4efe1
EZ
11366Print a brief description of all types whose names match the regular
11367expression @var{regexp} (or all types in your program, if you supply
11368no argument). Each complete typename is matched as though it were a
11369complete line; thus, @samp{i type value} gives information on all
11370types in your program whose names include the string @code{value}, but
11371@samp{i type ^value$} gives information only on types whose complete
11372name is @code{value}.
c906108c
SS
11373
11374This command differs from @code{ptype} in two ways: first, like
11375@code{whatis}, it does not print a detailed description; second, it
11376lists all source files where a type is defined.
11377
b37052ae
EZ
11378@kindex info scope
11379@cindex local variables
09d4efe1 11380@item info scope @var{location}
b37052ae 11381List all the variables local to a particular scope. This command
09d4efe1
EZ
11382accepts a @var{location} argument---a function name, a source line, or
11383an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11384to the scope defined by that location. (@xref{Specify Location}, for
11385details about supported forms of @var{location}.) For example:
b37052ae
EZ
11386
11387@smallexample
11388(@value{GDBP}) @b{info scope command_line_handler}
11389Scope for command_line_handler:
11390Symbol rl is an argument at stack/frame offset 8, length 4.
11391Symbol linebuffer is in static storage at address 0x150a18, length 4.
11392Symbol linelength is in static storage at address 0x150a1c, length 4.
11393Symbol p is a local variable in register $esi, length 4.
11394Symbol p1 is a local variable in register $ebx, length 4.
11395Symbol nline is a local variable in register $edx, length 4.
11396Symbol repeat is a local variable at frame offset -8, length 4.
11397@end smallexample
11398
f5c37c66
EZ
11399@noindent
11400This command is especially useful for determining what data to collect
11401during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11402collect}.
11403
c906108c
SS
11404@kindex info source
11405@item info source
919d772c
JB
11406Show information about the current source file---that is, the source file for
11407the function containing the current point of execution:
11408@itemize @bullet
11409@item
11410the name of the source file, and the directory containing it,
11411@item
11412the directory it was compiled in,
11413@item
11414its length, in lines,
11415@item
11416which programming language it is written in,
11417@item
11418whether the executable includes debugging information for that file, and
11419if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11420@item
11421whether the debugging information includes information about
11422preprocessor macros.
11423@end itemize
11424
c906108c
SS
11425
11426@kindex info sources
11427@item info sources
11428Print the names of all source files in your program for which there is
11429debugging information, organized into two lists: files whose symbols
11430have already been read, and files whose symbols will be read when needed.
11431
11432@kindex info functions
11433@item info functions
11434Print the names and data types of all defined functions.
11435
11436@item info functions @var{regexp}
11437Print the names and data types of all defined functions
11438whose names contain a match for regular expression @var{regexp}.
11439Thus, @samp{info fun step} finds all functions whose names
11440include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11441start with @code{step}. If a function name contains characters
c1468174 11442that conflict with the regular expression language (e.g.@:
1c5dfdad 11443@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11444
11445@kindex info variables
11446@item info variables
11447Print the names and data types of all variables that are declared
6ca652b0 11448outside of functions (i.e.@: excluding local variables).
c906108c
SS
11449
11450@item info variables @var{regexp}
11451Print the names and data types of all variables (except for local
11452variables) whose names contain a match for regular expression
11453@var{regexp}.
11454
b37303ee 11455@kindex info classes
721c2651 11456@cindex Objective-C, classes and selectors
b37303ee
AF
11457@item info classes
11458@itemx info classes @var{regexp}
11459Display all Objective-C classes in your program, or
11460(with the @var{regexp} argument) all those matching a particular regular
11461expression.
11462
11463@kindex info selectors
11464@item info selectors
11465@itemx info selectors @var{regexp}
11466Display all Objective-C selectors in your program, or
11467(with the @var{regexp} argument) all those matching a particular regular
11468expression.
11469
c906108c
SS
11470@ignore
11471This was never implemented.
11472@kindex info methods
11473@item info methods
11474@itemx info methods @var{regexp}
11475The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11476methods within C@t{++} program, or (with the @var{regexp} argument) a
11477specific set of methods found in the various C@t{++} classes. Many
11478C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11479from the @code{ptype} command can be overwhelming and hard to use. The
11480@code{info-methods} command filters the methods, printing only those
11481which match the regular-expression @var{regexp}.
11482@end ignore
11483
c906108c
SS
11484@cindex reloading symbols
11485Some systems allow individual object files that make up your program to
7a292a7a
SS
11486be replaced without stopping and restarting your program. For example,
11487in VxWorks you can simply recompile a defective object file and keep on
11488running. If you are running on one of these systems, you can allow
11489@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11490
11491@table @code
11492@kindex set symbol-reloading
11493@item set symbol-reloading on
11494Replace symbol definitions for the corresponding source file when an
11495object file with a particular name is seen again.
11496
11497@item set symbol-reloading off
6d2ebf8b
SS
11498Do not replace symbol definitions when encountering object files of the
11499same name more than once. This is the default state; if you are not
11500running on a system that permits automatic relinking of modules, you
11501should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11502may discard symbols when linking large programs, that may contain
11503several modules (from different directories or libraries) with the same
11504name.
c906108c
SS
11505
11506@kindex show symbol-reloading
11507@item show symbol-reloading
11508Show the current @code{on} or @code{off} setting.
11509@end table
c906108c 11510
9c16f35a 11511@cindex opaque data types
c906108c
SS
11512@kindex set opaque-type-resolution
11513@item set opaque-type-resolution on
11514Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11515declared as a pointer to a @code{struct}, @code{class}, or
11516@code{union}---for example, @code{struct MyType *}---that is used in one
11517source file although the full declaration of @code{struct MyType} is in
11518another source file. The default is on.
11519
11520A change in the setting of this subcommand will not take effect until
11521the next time symbols for a file are loaded.
11522
11523@item set opaque-type-resolution off
11524Tell @value{GDBN} not to resolve opaque types. In this case, the type
11525is printed as follows:
11526@smallexample
11527@{<no data fields>@}
11528@end smallexample
11529
11530@kindex show opaque-type-resolution
11531@item show opaque-type-resolution
11532Show whether opaque types are resolved or not.
c906108c 11533
bf250677
DE
11534@kindex set print symbol-loading
11535@cindex print messages when symbols are loaded
11536@item set print symbol-loading
11537@itemx set print symbol-loading on
11538@itemx set print symbol-loading off
11539The @code{set print symbol-loading} command allows you to enable or
11540disable printing of messages when @value{GDBN} loads symbols.
11541By default, these messages will be printed, and normally this is what
11542you want. Disabling these messages is useful when debugging applications
11543with lots of shared libraries where the quantity of output can be more
11544annoying than useful.
11545
11546@kindex show print symbol-loading
11547@item show print symbol-loading
11548Show whether messages will be printed when @value{GDBN} loads symbols.
11549
c906108c
SS
11550@kindex maint print symbols
11551@cindex symbol dump
11552@kindex maint print psymbols
11553@cindex partial symbol dump
11554@item maint print symbols @var{filename}
11555@itemx maint print psymbols @var{filename}
11556@itemx maint print msymbols @var{filename}
11557Write a dump of debugging symbol data into the file @var{filename}.
11558These commands are used to debug the @value{GDBN} symbol-reading code. Only
11559symbols with debugging data are included. If you use @samp{maint print
11560symbols}, @value{GDBN} includes all the symbols for which it has already
11561collected full details: that is, @var{filename} reflects symbols for
11562only those files whose symbols @value{GDBN} has read. You can use the
11563command @code{info sources} to find out which files these are. If you
11564use @samp{maint print psymbols} instead, the dump shows information about
11565symbols that @value{GDBN} only knows partially---that is, symbols defined in
11566files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11567@samp{maint print msymbols} dumps just the minimal symbol information
11568required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11569@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11570@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11571
5e7b2f39
JB
11572@kindex maint info symtabs
11573@kindex maint info psymtabs
44ea7b70
JB
11574@cindex listing @value{GDBN}'s internal symbol tables
11575@cindex symbol tables, listing @value{GDBN}'s internal
11576@cindex full symbol tables, listing @value{GDBN}'s internal
11577@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11578@item maint info symtabs @r{[} @var{regexp} @r{]}
11579@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11580
11581List the @code{struct symtab} or @code{struct partial_symtab}
11582structures whose names match @var{regexp}. If @var{regexp} is not
11583given, list them all. The output includes expressions which you can
11584copy into a @value{GDBN} debugging this one to examine a particular
11585structure in more detail. For example:
11586
11587@smallexample
5e7b2f39 11588(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11589@{ objfile /home/gnu/build/gdb/gdb
11590 ((struct objfile *) 0x82e69d0)
b383017d 11591 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11592 ((struct partial_symtab *) 0x8474b10)
11593 readin no
11594 fullname (null)
11595 text addresses 0x814d3c8 -- 0x8158074
11596 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11597 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11598 dependencies (none)
11599 @}
11600@}
5e7b2f39 11601(@value{GDBP}) maint info symtabs
44ea7b70
JB
11602(@value{GDBP})
11603@end smallexample
11604@noindent
11605We see that there is one partial symbol table whose filename contains
11606the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11607and we see that @value{GDBN} has not read in any symtabs yet at all.
11608If we set a breakpoint on a function, that will cause @value{GDBN} to
11609read the symtab for the compilation unit containing that function:
11610
11611@smallexample
11612(@value{GDBP}) break dwarf2_psymtab_to_symtab
11613Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11614line 1574.
5e7b2f39 11615(@value{GDBP}) maint info symtabs
b383017d 11616@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11617 ((struct objfile *) 0x82e69d0)
b383017d 11618 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11619 ((struct symtab *) 0x86c1f38)
11620 dirname (null)
11621 fullname (null)
11622 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11623 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11624 debugformat DWARF 2
11625 @}
11626@}
b383017d 11627(@value{GDBP})
44ea7b70 11628@end smallexample
c906108c
SS
11629@end table
11630
44ea7b70 11631
6d2ebf8b 11632@node Altering
c906108c
SS
11633@chapter Altering Execution
11634
11635Once you think you have found an error in your program, you might want to
11636find out for certain whether correcting the apparent error would lead to
11637correct results in the rest of the run. You can find the answer by
11638experiment, using the @value{GDBN} features for altering execution of the
11639program.
11640
11641For example, you can store new values into variables or memory
7a292a7a
SS
11642locations, give your program a signal, restart it at a different
11643address, or even return prematurely from a function.
c906108c
SS
11644
11645@menu
11646* Assignment:: Assignment to variables
11647* Jumping:: Continuing at a different address
c906108c 11648* Signaling:: Giving your program a signal
c906108c
SS
11649* Returning:: Returning from a function
11650* Calling:: Calling your program's functions
11651* Patching:: Patching your program
11652@end menu
11653
6d2ebf8b 11654@node Assignment
79a6e687 11655@section Assignment to Variables
c906108c
SS
11656
11657@cindex assignment
11658@cindex setting variables
11659To alter the value of a variable, evaluate an assignment expression.
11660@xref{Expressions, ,Expressions}. For example,
11661
474c8240 11662@smallexample
c906108c 11663print x=4
474c8240 11664@end smallexample
c906108c
SS
11665
11666@noindent
11667stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11668value of the assignment expression (which is 4).
c906108c
SS
11669@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11670information on operators in supported languages.
c906108c
SS
11671
11672@kindex set variable
11673@cindex variables, setting
11674If you are not interested in seeing the value of the assignment, use the
11675@code{set} command instead of the @code{print} command. @code{set} is
11676really the same as @code{print} except that the expression's value is
11677not printed and is not put in the value history (@pxref{Value History,
79a6e687 11678,Value History}). The expression is evaluated only for its effects.
c906108c 11679
c906108c
SS
11680If the beginning of the argument string of the @code{set} command
11681appears identical to a @code{set} subcommand, use the @code{set
11682variable} command instead of just @code{set}. This command is identical
11683to @code{set} except for its lack of subcommands. For example, if your
11684program has a variable @code{width}, you get an error if you try to set
11685a new value with just @samp{set width=13}, because @value{GDBN} has the
11686command @code{set width}:
11687
474c8240 11688@smallexample
c906108c
SS
11689(@value{GDBP}) whatis width
11690type = double
11691(@value{GDBP}) p width
11692$4 = 13
11693(@value{GDBP}) set width=47
11694Invalid syntax in expression.
474c8240 11695@end smallexample
c906108c
SS
11696
11697@noindent
11698The invalid expression, of course, is @samp{=47}. In
11699order to actually set the program's variable @code{width}, use
11700
474c8240 11701@smallexample
c906108c 11702(@value{GDBP}) set var width=47
474c8240 11703@end smallexample
53a5351d 11704
c906108c
SS
11705Because the @code{set} command has many subcommands that can conflict
11706with the names of program variables, it is a good idea to use the
11707@code{set variable} command instead of just @code{set}. For example, if
11708your program has a variable @code{g}, you run into problems if you try
11709to set a new value with just @samp{set g=4}, because @value{GDBN} has
11710the command @code{set gnutarget}, abbreviated @code{set g}:
11711
474c8240 11712@smallexample
c906108c
SS
11713@group
11714(@value{GDBP}) whatis g
11715type = double
11716(@value{GDBP}) p g
11717$1 = 1
11718(@value{GDBP}) set g=4
2df3850c 11719(@value{GDBP}) p g
c906108c
SS
11720$2 = 1
11721(@value{GDBP}) r
11722The program being debugged has been started already.
11723Start it from the beginning? (y or n) y
11724Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11725"/home/smith/cc_progs/a.out": can't open to read symbols:
11726 Invalid bfd target.
c906108c
SS
11727(@value{GDBP}) show g
11728The current BFD target is "=4".
11729@end group
474c8240 11730@end smallexample
c906108c
SS
11731
11732@noindent
11733The program variable @code{g} did not change, and you silently set the
11734@code{gnutarget} to an invalid value. In order to set the variable
11735@code{g}, use
11736
474c8240 11737@smallexample
c906108c 11738(@value{GDBP}) set var g=4
474c8240 11739@end smallexample
c906108c
SS
11740
11741@value{GDBN} allows more implicit conversions in assignments than C; you can
11742freely store an integer value into a pointer variable or vice versa,
11743and you can convert any structure to any other structure that is the
11744same length or shorter.
11745@comment FIXME: how do structs align/pad in these conversions?
11746@comment /doc@cygnus.com 18dec1990
11747
11748To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11749construct to generate a value of specified type at a specified address
11750(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11751to memory location @code{0x83040} as an integer (which implies a certain size
11752and representation in memory), and
11753
474c8240 11754@smallexample
c906108c 11755set @{int@}0x83040 = 4
474c8240 11756@end smallexample
c906108c
SS
11757
11758@noindent
11759stores the value 4 into that memory location.
11760
6d2ebf8b 11761@node Jumping
79a6e687 11762@section Continuing at a Different Address
c906108c
SS
11763
11764Ordinarily, when you continue your program, you do so at the place where
11765it stopped, with the @code{continue} command. You can instead continue at
11766an address of your own choosing, with the following commands:
11767
11768@table @code
11769@kindex jump
11770@item jump @var{linespec}
2a25a5ba
EZ
11771@itemx jump @var{location}
11772Resume execution at line @var{linespec} or at address given by
11773@var{location}. Execution stops again immediately if there is a
11774breakpoint there. @xref{Specify Location}, for a description of the
11775different forms of @var{linespec} and @var{location}. It is common
11776practice to use the @code{tbreak} command in conjunction with
11777@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11778
11779The @code{jump} command does not change the current stack frame, or
11780the stack pointer, or the contents of any memory location or any
11781register other than the program counter. If line @var{linespec} is in
11782a different function from the one currently executing, the results may
11783be bizarre if the two functions expect different patterns of arguments or
11784of local variables. For this reason, the @code{jump} command requests
11785confirmation if the specified line is not in the function currently
11786executing. However, even bizarre results are predictable if you are
11787well acquainted with the machine-language code of your program.
c906108c
SS
11788@end table
11789
c906108c 11790@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11791On many systems, you can get much the same effect as the @code{jump}
11792command by storing a new value into the register @code{$pc}. The
11793difference is that this does not start your program running; it only
11794changes the address of where it @emph{will} run when you continue. For
11795example,
c906108c 11796
474c8240 11797@smallexample
c906108c 11798set $pc = 0x485
474c8240 11799@end smallexample
c906108c
SS
11800
11801@noindent
11802makes the next @code{continue} command or stepping command execute at
11803address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11804@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11805
11806The most common occasion to use the @code{jump} command is to back
11807up---perhaps with more breakpoints set---over a portion of a program
11808that has already executed, in order to examine its execution in more
11809detail.
11810
c906108c 11811@c @group
6d2ebf8b 11812@node Signaling
79a6e687 11813@section Giving your Program a Signal
9c16f35a 11814@cindex deliver a signal to a program
c906108c
SS
11815
11816@table @code
11817@kindex signal
11818@item signal @var{signal}
11819Resume execution where your program stopped, but immediately give it the
11820signal @var{signal}. @var{signal} can be the name or the number of a
11821signal. For example, on many systems @code{signal 2} and @code{signal
11822SIGINT} are both ways of sending an interrupt signal.
11823
11824Alternatively, if @var{signal} is zero, continue execution without
11825giving a signal. This is useful when your program stopped on account of
11826a signal and would ordinary see the signal when resumed with the
11827@code{continue} command; @samp{signal 0} causes it to resume without a
11828signal.
11829
11830@code{signal} does not repeat when you press @key{RET} a second time
11831after executing the command.
11832@end table
11833@c @end group
11834
11835Invoking the @code{signal} command is not the same as invoking the
11836@code{kill} utility from the shell. Sending a signal with @code{kill}
11837causes @value{GDBN} to decide what to do with the signal depending on
11838the signal handling tables (@pxref{Signals}). The @code{signal} command
11839passes the signal directly to your program.
11840
c906108c 11841
6d2ebf8b 11842@node Returning
79a6e687 11843@section Returning from a Function
c906108c
SS
11844
11845@table @code
11846@cindex returning from a function
11847@kindex return
11848@item return
11849@itemx return @var{expression}
11850You can cancel execution of a function call with the @code{return}
11851command. If you give an
11852@var{expression} argument, its value is used as the function's return
11853value.
11854@end table
11855
11856When you use @code{return}, @value{GDBN} discards the selected stack frame
11857(and all frames within it). You can think of this as making the
11858discarded frame return prematurely. If you wish to specify a value to
11859be returned, give that value as the argument to @code{return}.
11860
11861This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11862Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11863innermost remaining frame. That frame becomes selected. The
11864specified value is stored in the registers used for returning values
11865of functions.
11866
11867The @code{return} command does not resume execution; it leaves the
11868program stopped in the state that would exist if the function had just
11869returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11870and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11871selected stack frame returns naturally.
11872
6d2ebf8b 11873@node Calling
79a6e687 11874@section Calling Program Functions
c906108c 11875
f8568604 11876@table @code
c906108c 11877@cindex calling functions
f8568604
EZ
11878@cindex inferior functions, calling
11879@item print @var{expr}
d3e8051b 11880Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11881@var{expr} may include calls to functions in the program being
11882debugged.
11883
c906108c 11884@kindex call
c906108c
SS
11885@item call @var{expr}
11886Evaluate the expression @var{expr} without displaying @code{void}
11887returned values.
c906108c
SS
11888
11889You can use this variant of the @code{print} command if you want to
f8568604
EZ
11890execute a function from your program that does not return anything
11891(a.k.a.@: @dfn{a void function}), but without cluttering the output
11892with @code{void} returned values that @value{GDBN} will otherwise
11893print. If the result is not void, it is printed and saved in the
11894value history.
11895@end table
11896
9c16f35a
EZ
11897It is possible for the function you call via the @code{print} or
11898@code{call} command to generate a signal (e.g., if there's a bug in
11899the function, or if you passed it incorrect arguments). What happens
11900in that case is controlled by the @code{set unwindonsignal} command.
11901
11902@table @code
11903@item set unwindonsignal
11904@kindex set unwindonsignal
11905@cindex unwind stack in called functions
11906@cindex call dummy stack unwinding
11907Set unwinding of the stack if a signal is received while in a function
11908that @value{GDBN} called in the program being debugged. If set to on,
11909@value{GDBN} unwinds the stack it created for the call and restores
11910the context to what it was before the call. If set to off (the
11911default), @value{GDBN} stops in the frame where the signal was
11912received.
11913
11914@item show unwindonsignal
11915@kindex show unwindonsignal
11916Show the current setting of stack unwinding in the functions called by
11917@value{GDBN}.
11918@end table
11919
f8568604
EZ
11920@cindex weak alias functions
11921Sometimes, a function you wish to call is actually a @dfn{weak alias}
11922for another function. In such case, @value{GDBN} might not pick up
11923the type information, including the types of the function arguments,
11924which causes @value{GDBN} to call the inferior function incorrectly.
11925As a result, the called function will function erroneously and may
11926even crash. A solution to that is to use the name of the aliased
11927function instead.
c906108c 11928
6d2ebf8b 11929@node Patching
79a6e687 11930@section Patching Programs
7a292a7a 11931
c906108c
SS
11932@cindex patching binaries
11933@cindex writing into executables
c906108c 11934@cindex writing into corefiles
c906108c 11935
7a292a7a
SS
11936By default, @value{GDBN} opens the file containing your program's
11937executable code (or the corefile) read-only. This prevents accidental
11938alterations to machine code; but it also prevents you from intentionally
11939patching your program's binary.
c906108c
SS
11940
11941If you'd like to be able to patch the binary, you can specify that
11942explicitly with the @code{set write} command. For example, you might
11943want to turn on internal debugging flags, or even to make emergency
11944repairs.
11945
11946@table @code
11947@kindex set write
11948@item set write on
11949@itemx set write off
7a292a7a
SS
11950If you specify @samp{set write on}, @value{GDBN} opens executable and
11951core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11952off} (the default), @value{GDBN} opens them read-only.
11953
11954If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11955@code{exec-file} or @code{core-file} command) after changing @code{set
11956write}, for your new setting to take effect.
c906108c
SS
11957
11958@item show write
11959@kindex show write
7a292a7a
SS
11960Display whether executable files and core files are opened for writing
11961as well as reading.
c906108c
SS
11962@end table
11963
6d2ebf8b 11964@node GDB Files
c906108c
SS
11965@chapter @value{GDBN} Files
11966
7a292a7a
SS
11967@value{GDBN} needs to know the file name of the program to be debugged,
11968both in order to read its symbol table and in order to start your
11969program. To debug a core dump of a previous run, you must also tell
11970@value{GDBN} the name of the core dump file.
c906108c
SS
11971
11972@menu
11973* Files:: Commands to specify files
5b5d99cf 11974* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11975* Symbol Errors:: Errors reading symbol files
11976@end menu
11977
6d2ebf8b 11978@node Files
79a6e687 11979@section Commands to Specify Files
c906108c 11980
7a292a7a 11981@cindex symbol table
c906108c 11982@cindex core dump file
7a292a7a
SS
11983
11984You may want to specify executable and core dump file names. The usual
11985way to do this is at start-up time, using the arguments to
11986@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11987Out of @value{GDBN}}).
c906108c
SS
11988
11989Occasionally it is necessary to change to a different file during a
397ca115
EZ
11990@value{GDBN} session. Or you may run @value{GDBN} and forget to
11991specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11992via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11993Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11994new files are useful.
c906108c
SS
11995
11996@table @code
11997@cindex executable file
11998@kindex file
11999@item file @var{filename}
12000Use @var{filename} as the program to be debugged. It is read for its
12001symbols and for the contents of pure memory. It is also the program
12002executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
12003directory and the file is not found in the @value{GDBN} working directory,
12004@value{GDBN} uses the environment variable @code{PATH} as a list of
12005directories to search, just as the shell does when looking for a program
12006to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
12007and your program, using the @code{path} command.
12008
fc8be69e
EZ
12009@cindex unlinked object files
12010@cindex patching object files
12011You can load unlinked object @file{.o} files into @value{GDBN} using
12012the @code{file} command. You will not be able to ``run'' an object
12013file, but you can disassemble functions and inspect variables. Also,
12014if the underlying BFD functionality supports it, you could use
12015@kbd{gdb -write} to patch object files using this technique. Note
12016that @value{GDBN} can neither interpret nor modify relocations in this
12017case, so branches and some initialized variables will appear to go to
12018the wrong place. But this feature is still handy from time to time.
12019
c906108c
SS
12020@item file
12021@code{file} with no argument makes @value{GDBN} discard any information it
12022has on both executable file and the symbol table.
12023
12024@kindex exec-file
12025@item exec-file @r{[} @var{filename} @r{]}
12026Specify that the program to be run (but not the symbol table) is found
12027in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
12028if necessary to locate your program. Omitting @var{filename} means to
12029discard information on the executable file.
12030
12031@kindex symbol-file
12032@item symbol-file @r{[} @var{filename} @r{]}
12033Read symbol table information from file @var{filename}. @code{PATH} is
12034searched when necessary. Use the @code{file} command to get both symbol
12035table and program to run from the same file.
12036
12037@code{symbol-file} with no argument clears out @value{GDBN} information on your
12038program's symbol table.
12039
ae5a43e0
DJ
12040The @code{symbol-file} command causes @value{GDBN} to forget the contents of
12041some breakpoints and auto-display expressions. This is because they may
12042contain pointers to the internal data recording symbols and data types,
12043which are part of the old symbol table data being discarded inside
12044@value{GDBN}.
c906108c
SS
12045
12046@code{symbol-file} does not repeat if you press @key{RET} again after
12047executing it once.
12048
12049When @value{GDBN} is configured for a particular environment, it
12050understands debugging information in whatever format is the standard
12051generated for that environment; you may use either a @sc{gnu} compiler, or
12052other compilers that adhere to the local conventions.
c906108c 12053Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 12054using @code{@value{NGCC}} you can generate debugging information for
c906108c 12055optimized code.
c906108c
SS
12056
12057For most kinds of object files, with the exception of old SVR3 systems
12058using COFF, the @code{symbol-file} command does not normally read the
12059symbol table in full right away. Instead, it scans the symbol table
12060quickly to find which source files and which symbols are present. The
12061details are read later, one source file at a time, as they are needed.
12062
12063The purpose of this two-stage reading strategy is to make @value{GDBN}
12064start up faster. For the most part, it is invisible except for
12065occasional pauses while the symbol table details for a particular source
12066file are being read. (The @code{set verbose} command can turn these
12067pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 12068Warnings and Messages}.)
c906108c 12069
c906108c
SS
12070We have not implemented the two-stage strategy for COFF yet. When the
12071symbol table is stored in COFF format, @code{symbol-file} reads the
12072symbol table data in full right away. Note that ``stabs-in-COFF''
12073still does the two-stage strategy, since the debug info is actually
12074in stabs format.
12075
12076@kindex readnow
12077@cindex reading symbols immediately
12078@cindex symbols, reading immediately
a94ab193
EZ
12079@item symbol-file @var{filename} @r{[} -readnow @r{]}
12080@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
12081You can override the @value{GDBN} two-stage strategy for reading symbol
12082tables by using the @samp{-readnow} option with any of the commands that
12083load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 12084entire symbol table available.
c906108c 12085
c906108c
SS
12086@c FIXME: for now no mention of directories, since this seems to be in
12087@c flux. 13mar1992 status is that in theory GDB would look either in
12088@c current dir or in same dir as myprog; but issues like competing
12089@c GDB's, or clutter in system dirs, mean that in practice right now
12090@c only current dir is used. FFish says maybe a special GDB hierarchy
12091@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
12092@c files.
12093
c906108c 12094@kindex core-file
09d4efe1 12095@item core-file @r{[}@var{filename}@r{]}
4644b6e3 12096@itemx core
c906108c
SS
12097Specify the whereabouts of a core dump file to be used as the ``contents
12098of memory''. Traditionally, core files contain only some parts of the
12099address space of the process that generated them; @value{GDBN} can access the
12100executable file itself for other parts.
12101
12102@code{core-file} with no argument specifies that no core file is
12103to be used.
12104
12105Note that the core file is ignored when your program is actually running
7a292a7a
SS
12106under @value{GDBN}. So, if you have been running your program and you
12107wish to debug a core file instead, you must kill the subprocess in which
12108the program is running. To do this, use the @code{kill} command
79a6e687 12109(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 12110
c906108c
SS
12111@kindex add-symbol-file
12112@cindex dynamic linking
12113@item add-symbol-file @var{filename} @var{address}
a94ab193 12114@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 12115@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
12116The @code{add-symbol-file} command reads additional symbol table
12117information from the file @var{filename}. You would use this command
12118when @var{filename} has been dynamically loaded (by some other means)
12119into the program that is running. @var{address} should be the memory
12120address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
12121this out for itself. You can additionally specify an arbitrary number
12122of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
12123section name and base address for that section. You can specify any
12124@var{address} as an expression.
c906108c
SS
12125
12126The symbol table of the file @var{filename} is added to the symbol table
12127originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
12128@code{add-symbol-file} command any number of times; the new symbol data
12129thus read keeps adding to the old. To discard all old symbol data
12130instead, use the @code{symbol-file} command without any arguments.
c906108c 12131
17d9d558
JB
12132@cindex relocatable object files, reading symbols from
12133@cindex object files, relocatable, reading symbols from
12134@cindex reading symbols from relocatable object files
12135@cindex symbols, reading from relocatable object files
12136@cindex @file{.o} files, reading symbols from
12137Although @var{filename} is typically a shared library file, an
12138executable file, or some other object file which has been fully
12139relocated for loading into a process, you can also load symbolic
12140information from relocatable @file{.o} files, as long as:
12141
12142@itemize @bullet
12143@item
12144the file's symbolic information refers only to linker symbols defined in
12145that file, not to symbols defined by other object files,
12146@item
12147every section the file's symbolic information refers to has actually
12148been loaded into the inferior, as it appears in the file, and
12149@item
12150you can determine the address at which every section was loaded, and
12151provide these to the @code{add-symbol-file} command.
12152@end itemize
12153
12154@noindent
12155Some embedded operating systems, like Sun Chorus and VxWorks, can load
12156relocatable files into an already running program; such systems
12157typically make the requirements above easy to meet. However, it's
12158important to recognize that many native systems use complex link
49efadf5 12159procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
12160assembly, for example) that make the requirements difficult to meet. In
12161general, one cannot assume that using @code{add-symbol-file} to read a
12162relocatable object file's symbolic information will have the same effect
12163as linking the relocatable object file into the program in the normal
12164way.
12165
c906108c
SS
12166@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
12167
c45da7e6
EZ
12168@kindex add-symbol-file-from-memory
12169@cindex @code{syscall DSO}
12170@cindex load symbols from memory
12171@item add-symbol-file-from-memory @var{address}
12172Load symbols from the given @var{address} in a dynamically loaded
12173object file whose image is mapped directly into the inferior's memory.
12174For example, the Linux kernel maps a @code{syscall DSO} into each
12175process's address space; this DSO provides kernel-specific code for
12176some system calls. The argument can be any expression whose
12177evaluation yields the address of the file's shared object file header.
12178For this command to work, you must have used @code{symbol-file} or
12179@code{exec-file} commands in advance.
12180
09d4efe1
EZ
12181@kindex add-shared-symbol-files
12182@kindex assf
12183@item add-shared-symbol-files @var{library-file}
12184@itemx assf @var{library-file}
12185The @code{add-shared-symbol-files} command can currently be used only
12186in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
12187alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
12188@value{GDBN} automatically looks for shared libraries, however if
12189@value{GDBN} does not find yours, you can invoke
12190@code{add-shared-symbol-files}. It takes one argument: the shared
12191library's file name. @code{assf} is a shorthand alias for
12192@code{add-shared-symbol-files}.
c906108c 12193
c906108c 12194@kindex section
09d4efe1
EZ
12195@item section @var{section} @var{addr}
12196The @code{section} command changes the base address of the named
12197@var{section} of the exec file to @var{addr}. This can be used if the
12198exec file does not contain section addresses, (such as in the
12199@code{a.out} format), or when the addresses specified in the file
12200itself are wrong. Each section must be changed separately. The
12201@code{info files} command, described below, lists all the sections and
12202their addresses.
c906108c
SS
12203
12204@kindex info files
12205@kindex info target
12206@item info files
12207@itemx info target
7a292a7a
SS
12208@code{info files} and @code{info target} are synonymous; both print the
12209current target (@pxref{Targets, ,Specifying a Debugging Target}),
12210including the names of the executable and core dump files currently in
12211use by @value{GDBN}, and the files from which symbols were loaded. The
12212command @code{help target} lists all possible targets rather than
12213current ones.
12214
fe95c787
MS
12215@kindex maint info sections
12216@item maint info sections
12217Another command that can give you extra information about program sections
12218is @code{maint info sections}. In addition to the section information
12219displayed by @code{info files}, this command displays the flags and file
12220offset of each section in the executable and core dump files. In addition,
12221@code{maint info sections} provides the following command options (which
12222may be arbitrarily combined):
12223
12224@table @code
12225@item ALLOBJ
12226Display sections for all loaded object files, including shared libraries.
12227@item @var{sections}
6600abed 12228Display info only for named @var{sections}.
fe95c787
MS
12229@item @var{section-flags}
12230Display info only for sections for which @var{section-flags} are true.
12231The section flags that @value{GDBN} currently knows about are:
12232@table @code
12233@item ALLOC
12234Section will have space allocated in the process when loaded.
12235Set for all sections except those containing debug information.
12236@item LOAD
12237Section will be loaded from the file into the child process memory.
12238Set for pre-initialized code and data, clear for @code{.bss} sections.
12239@item RELOC
12240Section needs to be relocated before loading.
12241@item READONLY
12242Section cannot be modified by the child process.
12243@item CODE
12244Section contains executable code only.
6600abed 12245@item DATA
fe95c787
MS
12246Section contains data only (no executable code).
12247@item ROM
12248Section will reside in ROM.
12249@item CONSTRUCTOR
12250Section contains data for constructor/destructor lists.
12251@item HAS_CONTENTS
12252Section is not empty.
12253@item NEVER_LOAD
12254An instruction to the linker to not output the section.
12255@item COFF_SHARED_LIBRARY
12256A notification to the linker that the section contains
12257COFF shared library information.
12258@item IS_COMMON
12259Section contains common symbols.
12260@end table
12261@end table
6763aef9 12262@kindex set trust-readonly-sections
9c16f35a 12263@cindex read-only sections
6763aef9
MS
12264@item set trust-readonly-sections on
12265Tell @value{GDBN} that readonly sections in your object file
6ca652b0 12266really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
12267In that case, @value{GDBN} can fetch values from these sections
12268out of the object file, rather than from the target program.
12269For some targets (notably embedded ones), this can be a significant
12270enhancement to debugging performance.
12271
12272The default is off.
12273
12274@item set trust-readonly-sections off
15110bc3 12275Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12276the contents of the section might change while the program is running,
12277and must therefore be fetched from the target when needed.
9c16f35a
EZ
12278
12279@item show trust-readonly-sections
12280Show the current setting of trusting readonly sections.
c906108c
SS
12281@end table
12282
12283All file-specifying commands allow both absolute and relative file names
12284as arguments. @value{GDBN} always converts the file name to an absolute file
12285name and remembers it that way.
12286
c906108c 12287@cindex shared libraries
9cceb671
DJ
12288@anchor{Shared Libraries}
12289@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12290and IBM RS/6000 AIX shared libraries.
53a5351d 12291
9cceb671
DJ
12292On MS-Windows @value{GDBN} must be linked with the Expat library to support
12293shared libraries. @xref{Expat}.
12294
c906108c
SS
12295@value{GDBN} automatically loads symbol definitions from shared libraries
12296when you use the @code{run} command, or when you examine a core file.
12297(Before you issue the @code{run} command, @value{GDBN} does not understand
12298references to a function in a shared library, however---unless you are
12299debugging a core file).
53a5351d
JM
12300
12301On HP-UX, if the program loads a library explicitly, @value{GDBN}
12302automatically loads the symbols at the time of the @code{shl_load} call.
12303
c906108c
SS
12304@c FIXME: some @value{GDBN} release may permit some refs to undef
12305@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12306@c FIXME...lib; check this from time to time when updating manual
12307
b7209cb4
FF
12308There are times, however, when you may wish to not automatically load
12309symbol definitions from shared libraries, such as when they are
12310particularly large or there are many of them.
12311
12312To control the automatic loading of shared library symbols, use the
12313commands:
12314
12315@table @code
12316@kindex set auto-solib-add
12317@item set auto-solib-add @var{mode}
12318If @var{mode} is @code{on}, symbols from all shared object libraries
12319will be loaded automatically when the inferior begins execution, you
12320attach to an independently started inferior, or when the dynamic linker
12321informs @value{GDBN} that a new library has been loaded. If @var{mode}
12322is @code{off}, symbols must be loaded manually, using the
12323@code{sharedlibrary} command. The default value is @code{on}.
12324
dcaf7c2c
EZ
12325@cindex memory used for symbol tables
12326If your program uses lots of shared libraries with debug info that
12327takes large amounts of memory, you can decrease the @value{GDBN}
12328memory footprint by preventing it from automatically loading the
12329symbols from shared libraries. To that end, type @kbd{set
12330auto-solib-add off} before running the inferior, then load each
12331library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12332@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12333the libraries whose symbols you want to be loaded.
12334
b7209cb4
FF
12335@kindex show auto-solib-add
12336@item show auto-solib-add
12337Display the current autoloading mode.
12338@end table
12339
c45da7e6 12340@cindex load shared library
b7209cb4
FF
12341To explicitly load shared library symbols, use the @code{sharedlibrary}
12342command:
12343
c906108c
SS
12344@table @code
12345@kindex info sharedlibrary
12346@kindex info share
12347@item info share
12348@itemx info sharedlibrary
12349Print the names of the shared libraries which are currently loaded.
12350
12351@kindex sharedlibrary
12352@kindex share
12353@item sharedlibrary @var{regex}
12354@itemx share @var{regex}
c906108c
SS
12355Load shared object library symbols for files matching a
12356Unix regular expression.
12357As with files loaded automatically, it only loads shared libraries
12358required by your program for a core file or after typing @code{run}. If
12359@var{regex} is omitted all shared libraries required by your program are
12360loaded.
c45da7e6
EZ
12361
12362@item nosharedlibrary
12363@kindex nosharedlibrary
12364@cindex unload symbols from shared libraries
12365Unload all shared object library symbols. This discards all symbols
12366that have been loaded from all shared libraries. Symbols from shared
12367libraries that were loaded by explicit user requests are not
12368discarded.
c906108c
SS
12369@end table
12370
721c2651
EZ
12371Sometimes you may wish that @value{GDBN} stops and gives you control
12372when any of shared library events happen. Use the @code{set
12373stop-on-solib-events} command for this:
12374
12375@table @code
12376@item set stop-on-solib-events
12377@kindex set stop-on-solib-events
12378This command controls whether @value{GDBN} should give you control
12379when the dynamic linker notifies it about some shared library event.
12380The most common event of interest is loading or unloading of a new
12381shared library.
12382
12383@item show stop-on-solib-events
12384@kindex show stop-on-solib-events
12385Show whether @value{GDBN} stops and gives you control when shared
12386library events happen.
12387@end table
12388
f5ebfba0
DJ
12389Shared libraries are also supported in many cross or remote debugging
12390configurations. A copy of the target's libraries need to be present on the
12391host system; they need to be the same as the target libraries, although the
12392copies on the target can be stripped as long as the copies on the host are
12393not.
12394
59b7b46f
EZ
12395@cindex where to look for shared libraries
12396For remote debugging, you need to tell @value{GDBN} where the target
12397libraries are, so that it can load the correct copies---otherwise, it
12398may try to load the host's libraries. @value{GDBN} has two variables
12399to specify the search directories for target libraries.
f5ebfba0
DJ
12400
12401@table @code
59b7b46f 12402@cindex prefix for shared library file names
f822c95b 12403@cindex system root, alternate
f5ebfba0 12404@kindex set solib-absolute-prefix
f822c95b
DJ
12405@kindex set sysroot
12406@item set sysroot @var{path}
12407Use @var{path} as the system root for the program being debugged. Any
12408absolute shared library paths will be prefixed with @var{path}; many
12409runtime loaders store the absolute paths to the shared library in the
12410target program's memory. If you use @code{set sysroot} to find shared
12411libraries, they need to be laid out in the same way that they are on
12412the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12413under @var{path}.
12414
12415The @code{set solib-absolute-prefix} command is an alias for @code{set
12416sysroot}.
12417
12418@cindex default system root
59b7b46f 12419@cindex @samp{--with-sysroot}
f822c95b
DJ
12420You can set the default system root by using the configure-time
12421@samp{--with-sysroot} option. If the system root is inside
12422@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12423@samp{--exec-prefix}), then the default system root will be updated
12424automatically if the installed @value{GDBN} is moved to a new
12425location.
12426
12427@kindex show sysroot
12428@item show sysroot
f5ebfba0
DJ
12429Display the current shared library prefix.
12430
12431@kindex set solib-search-path
12432@item set solib-search-path @var{path}
f822c95b
DJ
12433If this variable is set, @var{path} is a colon-separated list of
12434directories to search for shared libraries. @samp{solib-search-path}
12435is used after @samp{sysroot} fails to locate the library, or if the
12436path to the library is relative instead of absolute. If you want to
12437use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12438@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12439finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12440it to a nonexistent directory may interfere with automatic loading
f822c95b 12441of shared library symbols.
f5ebfba0
DJ
12442
12443@kindex show solib-search-path
12444@item show solib-search-path
12445Display the current shared library search path.
12446@end table
12447
5b5d99cf
JB
12448
12449@node Separate Debug Files
12450@section Debugging Information in Separate Files
12451@cindex separate debugging information files
12452@cindex debugging information in separate files
12453@cindex @file{.debug} subdirectories
12454@cindex debugging information directory, global
12455@cindex global debugging information directory
c7e83d54
EZ
12456@cindex build ID, and separate debugging files
12457@cindex @file{.build-id} directory
5b5d99cf
JB
12458
12459@value{GDBN} allows you to put a program's debugging information in a
12460file separate from the executable itself, in a way that allows
12461@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12462Since debugging information can be very large---sometimes larger
12463than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12464information for their executables in separate files, which users can
12465install only when they need to debug a problem.
12466
c7e83d54
EZ
12467@value{GDBN} supports two ways of specifying the separate debug info
12468file:
5b5d99cf
JB
12469
12470@itemize @bullet
12471@item
c7e83d54
EZ
12472The executable contains a @dfn{debug link} that specifies the name of
12473the separate debug info file. The separate debug file's name is
12474usually @file{@var{executable}.debug}, where @var{executable} is the
12475name of the corresponding executable file without leading directories
12476(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12477debug link specifies a CRC32 checksum for the debug file, which
12478@value{GDBN} uses to validate that the executable and the debug file
12479came from the same build.
12480
12481@item
7e27a47a 12482The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12483also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12484only on some operating systems, notably those which use the ELF format
12485for binary files and the @sc{gnu} Binutils.) For more details about
12486this feature, see the description of the @option{--build-id}
12487command-line option in @ref{Options, , Command Line Options, ld.info,
12488The GNU Linker}. The debug info file's name is not specified
12489explicitly by the build ID, but can be computed from the build ID, see
12490below.
d3750b24
JK
12491@end itemize
12492
c7e83d54
EZ
12493Depending on the way the debug info file is specified, @value{GDBN}
12494uses two different methods of looking for the debug file:
d3750b24
JK
12495
12496@itemize @bullet
12497@item
c7e83d54
EZ
12498For the ``debug link'' method, @value{GDBN} looks up the named file in
12499the directory of the executable file, then in a subdirectory of that
12500directory named @file{.debug}, and finally under the global debug
12501directory, in a subdirectory whose name is identical to the leading
12502directories of the executable's absolute file name.
12503
12504@item
83f83d7f 12505For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12506@file{.build-id} subdirectory of the global debug directory for a file
12507named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12508first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12509are the rest of the bit string. (Real build ID strings are 32 or more
12510hex characters, not 10.)
c7e83d54
EZ
12511@end itemize
12512
12513So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12514@file{/usr/bin/ls}, which has a debug link that specifies the
12515file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12516@code{abcdef1234}. If the global debug directory is
12517@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12518debug information files, in the indicated order:
12519
12520@itemize @minus
12521@item
12522@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12523@item
c7e83d54 12524@file{/usr/bin/ls.debug}
5b5d99cf 12525@item
c7e83d54 12526@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12527@item
c7e83d54 12528@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12529@end itemize
5b5d99cf
JB
12530
12531You can set the global debugging info directory's name, and view the
12532name @value{GDBN} is currently using.
12533
12534@table @code
12535
12536@kindex set debug-file-directory
12537@item set debug-file-directory @var{directory}
12538Set the directory which @value{GDBN} searches for separate debugging
12539information files to @var{directory}.
12540
12541@kindex show debug-file-directory
12542@item show debug-file-directory
12543Show the directory @value{GDBN} searches for separate debugging
12544information files.
12545
12546@end table
12547
12548@cindex @code{.gnu_debuglink} sections
c7e83d54 12549@cindex debug link sections
5b5d99cf
JB
12550A debug link is a special section of the executable file named
12551@code{.gnu_debuglink}. The section must contain:
12552
12553@itemize
12554@item
12555A filename, with any leading directory components removed, followed by
12556a zero byte,
12557@item
12558zero to three bytes of padding, as needed to reach the next four-byte
12559boundary within the section, and
12560@item
12561a four-byte CRC checksum, stored in the same endianness used for the
12562executable file itself. The checksum is computed on the debugging
12563information file's full contents by the function given below, passing
12564zero as the @var{crc} argument.
12565@end itemize
12566
12567Any executable file format can carry a debug link, as long as it can
12568contain a section named @code{.gnu_debuglink} with the contents
12569described above.
12570
d3750b24 12571@cindex @code{.note.gnu.build-id} sections
c7e83d54 12572@cindex build ID sections
7e27a47a
EZ
12573The build ID is a special section in the executable file (and in other
12574ELF binary files that @value{GDBN} may consider). This section is
12575often named @code{.note.gnu.build-id}, but that name is not mandatory.
12576It contains unique identification for the built files---the ID remains
12577the same across multiple builds of the same build tree. The default
12578algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12579content for the build ID string. The same section with an identical
12580value is present in the original built binary with symbols, in its
12581stripped variant, and in the separate debugging information file.
d3750b24 12582
5b5d99cf
JB
12583The debugging information file itself should be an ordinary
12584executable, containing a full set of linker symbols, sections, and
12585debugging information. The sections of the debugging information file
c7e83d54
EZ
12586should have the same names, addresses, and sizes as the original file,
12587but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12588in an ordinary executable.
12589
7e27a47a 12590The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12591@samp{objcopy} utility that can produce
12592the separated executable / debugging information file pairs using the
12593following commands:
12594
12595@smallexample
12596@kbd{objcopy --only-keep-debug foo foo.debug}
12597@kbd{strip -g foo}
c7e83d54
EZ
12598@end smallexample
12599
12600@noindent
12601These commands remove the debugging
83f83d7f
JK
12602information from the executable file @file{foo} and place it in the file
12603@file{foo.debug}. You can use the first, second or both methods to link the
12604two files:
12605
12606@itemize @bullet
12607@item
12608The debug link method needs the following additional command to also leave
12609behind a debug link in @file{foo}:
12610
12611@smallexample
12612@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12613@end smallexample
12614
12615Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12616a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12617foo.debug} has the same functionality as the two @code{objcopy} commands and
12618the @code{ln -s} command above, together.
12619
12620@item
12621Build ID gets embedded into the main executable using @code{ld --build-id} or
12622the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12623compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12624utilities (Binutils) package since version 2.18.
83f83d7f
JK
12625@end itemize
12626
12627@noindent
d3750b24 12628
c7e83d54
EZ
12629Since there are many different ways to compute CRC's for the debug
12630link (different polynomials, reversals, byte ordering, etc.), the
12631simplest way to describe the CRC used in @code{.gnu_debuglink}
12632sections is to give the complete code for a function that computes it:
5b5d99cf 12633
4644b6e3 12634@kindex gnu_debuglink_crc32
5b5d99cf
JB
12635@smallexample
12636unsigned long
12637gnu_debuglink_crc32 (unsigned long crc,
12638 unsigned char *buf, size_t len)
12639@{
12640 static const unsigned long crc32_table[256] =
12641 @{
12642 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12643 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12644 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12645 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12646 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12647 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12648 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12649 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12650 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12651 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12652 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12653 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12654 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12655 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12656 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12657 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12658 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12659 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12660 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12661 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12662 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12663 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12664 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12665 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12666 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12667 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12668 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12669 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12670 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12671 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12672 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12673 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12674 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12675 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12676 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12677 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12678 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12679 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12680 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12681 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12682 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12683 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12684 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12685 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12686 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12687 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12688 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12689 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12690 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12691 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12692 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12693 0x2d02ef8d
12694 @};
12695 unsigned char *end;
12696
12697 crc = ~crc & 0xffffffff;
12698 for (end = buf + len; buf < end; ++buf)
12699 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12700 return ~crc & 0xffffffff;
5b5d99cf
JB
12701@}
12702@end smallexample
12703
c7e83d54
EZ
12704@noindent
12705This computation does not apply to the ``build ID'' method.
12706
5b5d99cf 12707
6d2ebf8b 12708@node Symbol Errors
79a6e687 12709@section Errors Reading Symbol Files
c906108c
SS
12710
12711While reading a symbol file, @value{GDBN} occasionally encounters problems,
12712such as symbol types it does not recognize, or known bugs in compiler
12713output. By default, @value{GDBN} does not notify you of such problems, since
12714they are relatively common and primarily of interest to people
12715debugging compilers. If you are interested in seeing information
12716about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12717only one message about each such type of problem, no matter how many
12718times the problem occurs; or you can ask @value{GDBN} to print more messages,
12719to see how many times the problems occur, with the @code{set
79a6e687
BW
12720complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12721Messages}).
c906108c
SS
12722
12723The messages currently printed, and their meanings, include:
12724
12725@table @code
12726@item inner block not inside outer block in @var{symbol}
12727
12728The symbol information shows where symbol scopes begin and end
12729(such as at the start of a function or a block of statements). This
12730error indicates that an inner scope block is not fully contained
12731in its outer scope blocks.
12732
12733@value{GDBN} circumvents the problem by treating the inner block as if it had
12734the same scope as the outer block. In the error message, @var{symbol}
12735may be shown as ``@code{(don't know)}'' if the outer block is not a
12736function.
12737
12738@item block at @var{address} out of order
12739
12740The symbol information for symbol scope blocks should occur in
12741order of increasing addresses. This error indicates that it does not
12742do so.
12743
12744@value{GDBN} does not circumvent this problem, and has trouble
12745locating symbols in the source file whose symbols it is reading. (You
12746can often determine what source file is affected by specifying
79a6e687
BW
12747@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12748Messages}.)
c906108c
SS
12749
12750@item bad block start address patched
12751
12752The symbol information for a symbol scope block has a start address
12753smaller than the address of the preceding source line. This is known
12754to occur in the SunOS 4.1.1 (and earlier) C compiler.
12755
12756@value{GDBN} circumvents the problem by treating the symbol scope block as
12757starting on the previous source line.
12758
12759@item bad string table offset in symbol @var{n}
12760
12761@cindex foo
12762Symbol number @var{n} contains a pointer into the string table which is
12763larger than the size of the string table.
12764
12765@value{GDBN} circumvents the problem by considering the symbol to have the
12766name @code{foo}, which may cause other problems if many symbols end up
12767with this name.
12768
12769@item unknown symbol type @code{0x@var{nn}}
12770
7a292a7a
SS
12771The symbol information contains new data types that @value{GDBN} does
12772not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12773uncomprehended information, in hexadecimal.
c906108c 12774
7a292a7a
SS
12775@value{GDBN} circumvents the error by ignoring this symbol information.
12776This usually allows you to debug your program, though certain symbols
c906108c 12777are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12778debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12779on @code{complain}, then go up to the function @code{read_dbx_symtab}
12780and examine @code{*bufp} to see the symbol.
c906108c
SS
12781
12782@item stub type has NULL name
c906108c 12783
7a292a7a 12784@value{GDBN} could not find the full definition for a struct or class.
c906108c 12785
7a292a7a 12786@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12787The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12788information that recent versions of the compiler should have output for
12789it.
c906108c
SS
12790
12791@item info mismatch between compiler and debugger
12792
12793@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12794
c906108c
SS
12795@end table
12796
6d2ebf8b 12797@node Targets
c906108c 12798@chapter Specifying a Debugging Target
7a292a7a 12799
c906108c 12800@cindex debugging target
c906108c 12801A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12802
12803Often, @value{GDBN} runs in the same host environment as your program;
12804in that case, the debugging target is specified as a side effect when
12805you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12806flexibility---for example, running @value{GDBN} on a physically separate
12807host, or controlling a standalone system over a serial port or a
53a5351d
JM
12808realtime system over a TCP/IP connection---you can use the @code{target}
12809command to specify one of the target types configured for @value{GDBN}
79a6e687 12810(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12811
a8f24a35
EZ
12812@cindex target architecture
12813It is possible to build @value{GDBN} for several different @dfn{target
12814architectures}. When @value{GDBN} is built like that, you can choose
12815one of the available architectures with the @kbd{set architecture}
12816command.
12817
12818@table @code
12819@kindex set architecture
12820@kindex show architecture
12821@item set architecture @var{arch}
12822This command sets the current target architecture to @var{arch}. The
12823value of @var{arch} can be @code{"auto"}, in addition to one of the
12824supported architectures.
12825
12826@item show architecture
12827Show the current target architecture.
9c16f35a
EZ
12828
12829@item set processor
12830@itemx processor
12831@kindex set processor
12832@kindex show processor
12833These are alias commands for, respectively, @code{set architecture}
12834and @code{show architecture}.
a8f24a35
EZ
12835@end table
12836
c906108c
SS
12837@menu
12838* Active Targets:: Active targets
12839* Target Commands:: Commands for managing targets
c906108c 12840* Byte Order:: Choosing target byte order
c906108c
SS
12841@end menu
12842
6d2ebf8b 12843@node Active Targets
79a6e687 12844@section Active Targets
7a292a7a 12845
c906108c
SS
12846@cindex stacking targets
12847@cindex active targets
12848@cindex multiple targets
12849
c906108c 12850There are three classes of targets: processes, core files, and
7a292a7a
SS
12851executable files. @value{GDBN} can work concurrently on up to three
12852active targets, one in each class. This allows you to (for example)
12853start a process and inspect its activity without abandoning your work on
12854a core file.
c906108c
SS
12855
12856For example, if you execute @samp{gdb a.out}, then the executable file
12857@code{a.out} is the only active target. If you designate a core file as
12858well---presumably from a prior run that crashed and coredumped---then
12859@value{GDBN} has two active targets and uses them in tandem, looking
12860first in the corefile target, then in the executable file, to satisfy
12861requests for memory addresses. (Typically, these two classes of target
12862are complementary, since core files contain only a program's
12863read-write memory---variables and so on---plus machine status, while
12864executable files contain only the program text and initialized data.)
c906108c
SS
12865
12866When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12867target as well. When a process target is active, all @value{GDBN}
12868commands requesting memory addresses refer to that target; addresses in
12869an active core file or executable file target are obscured while the
12870process target is active.
c906108c 12871
7a292a7a 12872Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12873core file or executable target (@pxref{Files, ,Commands to Specify
12874Files}). To specify as a target a process that is already running, use
12875the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12876Process}).
c906108c 12877
6d2ebf8b 12878@node Target Commands
79a6e687 12879@section Commands for Managing Targets
c906108c
SS
12880
12881@table @code
12882@item target @var{type} @var{parameters}
7a292a7a
SS
12883Connects the @value{GDBN} host environment to a target machine or
12884process. A target is typically a protocol for talking to debugging
12885facilities. You use the argument @var{type} to specify the type or
12886protocol of the target machine.
c906108c
SS
12887
12888Further @var{parameters} are interpreted by the target protocol, but
12889typically include things like device names or host names to connect
12890with, process numbers, and baud rates.
c906108c
SS
12891
12892The @code{target} command does not repeat if you press @key{RET} again
12893after executing the command.
12894
12895@kindex help target
12896@item help target
12897Displays the names of all targets available. To display targets
12898currently selected, use either @code{info target} or @code{info files}
79a6e687 12899(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12900
12901@item help target @var{name}
12902Describe a particular target, including any parameters necessary to
12903select it.
12904
12905@kindex set gnutarget
12906@item set gnutarget @var{args}
5d161b24 12907@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12908knows whether it is reading an @dfn{executable},
5d161b24
DB
12909a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12910with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12911with @code{gnutarget} the @code{target} refers to a program, not a machine.
12912
d4f3574e 12913@quotation
c906108c
SS
12914@emph{Warning:} To specify a file format with @code{set gnutarget},
12915you must know the actual BFD name.
d4f3574e 12916@end quotation
c906108c 12917
d4f3574e 12918@noindent
79a6e687 12919@xref{Files, , Commands to Specify Files}.
c906108c 12920
5d161b24 12921@kindex show gnutarget
c906108c
SS
12922@item show gnutarget
12923Use the @code{show gnutarget} command to display what file format
12924@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12925@value{GDBN} will determine the file format for each file automatically,
12926and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12927@end table
12928
4644b6e3 12929@cindex common targets
c906108c
SS
12930Here are some common targets (available, or not, depending on the GDB
12931configuration):
c906108c
SS
12932
12933@table @code
4644b6e3 12934@kindex target
c906108c 12935@item target exec @var{program}
4644b6e3 12936@cindex executable file target
c906108c
SS
12937An executable file. @samp{target exec @var{program}} is the same as
12938@samp{exec-file @var{program}}.
12939
c906108c 12940@item target core @var{filename}
4644b6e3 12941@cindex core dump file target
c906108c
SS
12942A core dump file. @samp{target core @var{filename}} is the same as
12943@samp{core-file @var{filename}}.
c906108c 12944
1a10341b 12945@item target remote @var{medium}
4644b6e3 12946@cindex remote target
1a10341b
JB
12947A remote system connected to @value{GDBN} via a serial line or network
12948connection. This command tells @value{GDBN} to use its own remote
12949protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12950
12951For example, if you have a board connected to @file{/dev/ttya} on the
12952machine running @value{GDBN}, you could say:
12953
12954@smallexample
12955target remote /dev/ttya
12956@end smallexample
12957
12958@code{target remote} supports the @code{load} command. This is only
12959useful if you have some other way of getting the stub to the target
12960system, and you can put it somewhere in memory where it won't get
12961clobbered by the download.
c906108c 12962
c906108c 12963@item target sim
4644b6e3 12964@cindex built-in simulator target
2df3850c 12965Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12966In general,
474c8240 12967@smallexample
104c1213
JM
12968 target sim
12969 load
12970 run
474c8240 12971@end smallexample
d4f3574e 12972@noindent
104c1213 12973works; however, you cannot assume that a specific memory map, device
d4f3574e 12974drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12975provide these. For info about any processor-specific simulator details,
12976see the appropriate section in @ref{Embedded Processors, ,Embedded
12977Processors}.
12978
c906108c
SS
12979@end table
12980
104c1213 12981Some configurations may include these targets as well:
c906108c
SS
12982
12983@table @code
12984
c906108c 12985@item target nrom @var{dev}
4644b6e3 12986@cindex NetROM ROM emulator target
c906108c
SS
12987NetROM ROM emulator. This target only supports downloading.
12988
c906108c
SS
12989@end table
12990
5d161b24 12991Different targets are available on different configurations of @value{GDBN};
c906108c 12992your configuration may have more or fewer targets.
c906108c 12993
721c2651
EZ
12994Many remote targets require you to download the executable's code once
12995you've successfully established a connection. You may wish to control
3d00d119
DJ
12996various aspects of this process.
12997
12998@table @code
721c2651
EZ
12999
13000@item set hash
13001@kindex set hash@r{, for remote monitors}
13002@cindex hash mark while downloading
13003This command controls whether a hash mark @samp{#} is displayed while
13004downloading a file to the remote monitor. If on, a hash mark is
13005displayed after each S-record is successfully downloaded to the
13006monitor.
13007
13008@item show hash
13009@kindex show hash@r{, for remote monitors}
13010Show the current status of displaying the hash mark.
13011
13012@item set debug monitor
13013@kindex set debug monitor
13014@cindex display remote monitor communications
13015Enable or disable display of communications messages between
13016@value{GDBN} and the remote monitor.
13017
13018@item show debug monitor
13019@kindex show debug monitor
13020Show the current status of displaying communications between
13021@value{GDBN} and the remote monitor.
a8f24a35 13022@end table
c906108c
SS
13023
13024@table @code
13025
13026@kindex load @var{filename}
13027@item load @var{filename}
8edfe269 13028@anchor{load}
c906108c
SS
13029Depending on what remote debugging facilities are configured into
13030@value{GDBN}, the @code{load} command may be available. Where it exists, it
13031is meant to make @var{filename} (an executable) available for debugging
13032on the remote system---by downloading, or dynamic linking, for example.
13033@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
13034the @code{add-symbol-file} command.
13035
13036If your @value{GDBN} does not have a @code{load} command, attempting to
13037execute it gets the error message ``@code{You can't do that when your
13038target is @dots{}}''
c906108c
SS
13039
13040The file is loaded at whatever address is specified in the executable.
13041For some object file formats, you can specify the load address when you
13042link the program; for other formats, like a.out, the object file format
13043specifies a fixed address.
13044@c FIXME! This would be a good place for an xref to the GNU linker doc.
13045
68437a39
DJ
13046Depending on the remote side capabilities, @value{GDBN} may be able to
13047load programs into flash memory.
13048
c906108c
SS
13049@code{load} does not repeat if you press @key{RET} again after using it.
13050@end table
13051
6d2ebf8b 13052@node Byte Order
79a6e687 13053@section Choosing Target Byte Order
7a292a7a 13054
c906108c
SS
13055@cindex choosing target byte order
13056@cindex target byte order
c906108c 13057
172c2a43 13058Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
13059offer the ability to run either big-endian or little-endian byte
13060orders. Usually the executable or symbol will include a bit to
13061designate the endian-ness, and you will not need to worry about
13062which to use. However, you may still find it useful to adjust
d4f3574e 13063@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
13064
13065@table @code
4644b6e3 13066@kindex set endian
c906108c
SS
13067@item set endian big
13068Instruct @value{GDBN} to assume the target is big-endian.
13069
c906108c
SS
13070@item set endian little
13071Instruct @value{GDBN} to assume the target is little-endian.
13072
c906108c
SS
13073@item set endian auto
13074Instruct @value{GDBN} to use the byte order associated with the
13075executable.
13076
13077@item show endian
13078Display @value{GDBN}'s current idea of the target byte order.
13079
13080@end table
13081
13082Note that these commands merely adjust interpretation of symbolic
13083data on the host, and that they have absolutely no effect on the
13084target system.
13085
ea35711c
DJ
13086
13087@node Remote Debugging
13088@chapter Debugging Remote Programs
c906108c
SS
13089@cindex remote debugging
13090
13091If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
13092@value{GDBN} in the usual way, it is often useful to use remote debugging.
13093For example, you might use remote debugging on an operating system kernel,
c906108c
SS
13094or on a small system which does not have a general purpose operating system
13095powerful enough to run a full-featured debugger.
13096
13097Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
13098to make this work with particular debugging targets. In addition,
5d161b24 13099@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
13100but not specific to any particular target system) which you can use if you
13101write the remote stubs---the code that runs on the remote system to
13102communicate with @value{GDBN}.
13103
13104Other remote targets may be available in your
13105configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 13106
6b2f586d 13107@menu
07f31aa6 13108* Connecting:: Connecting to a remote target
a6b151f1 13109* File Transfer:: Sending files to a remote system
6b2f586d 13110* Server:: Using the gdbserver program
79a6e687
BW
13111* Remote Configuration:: Remote configuration
13112* Remote Stub:: Implementing a remote stub
6b2f586d
AC
13113@end menu
13114
07f31aa6 13115@node Connecting
79a6e687 13116@section Connecting to a Remote Target
07f31aa6
DJ
13117
13118On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 13119your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
13120Start up @value{GDBN} as usual, using the name of the local copy of your
13121program as the first argument.
13122
86941c27
JB
13123@cindex @code{target remote}
13124@value{GDBN} can communicate with the target over a serial line, or
13125over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
13126each case, @value{GDBN} uses the same protocol for debugging your
13127program; only the medium carrying the debugging packets varies. The
13128@code{target remote} command establishes a connection to the target.
13129Its arguments indicate which medium to use:
13130
13131@table @code
13132
13133@item target remote @var{serial-device}
07f31aa6 13134@cindex serial line, @code{target remote}
86941c27
JB
13135Use @var{serial-device} to communicate with the target. For example,
13136to use a serial line connected to the device named @file{/dev/ttyb}:
13137
13138@smallexample
13139target remote /dev/ttyb
13140@end smallexample
13141
07f31aa6
DJ
13142If you're using a serial line, you may want to give @value{GDBN} the
13143@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 13144(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 13145@code{target} command.
07f31aa6 13146
86941c27
JB
13147@item target remote @code{@var{host}:@var{port}}
13148@itemx target remote @code{tcp:@var{host}:@var{port}}
13149@cindex @acronym{TCP} port, @code{target remote}
13150Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
13151The @var{host} may be either a host name or a numeric @acronym{IP}
13152address; @var{port} must be a decimal number. The @var{host} could be
13153the target machine itself, if it is directly connected to the net, or
13154it might be a terminal server which in turn has a serial line to the
13155target.
07f31aa6 13156
86941c27
JB
13157For example, to connect to port 2828 on a terminal server named
13158@code{manyfarms}:
07f31aa6
DJ
13159
13160@smallexample
13161target remote manyfarms:2828
13162@end smallexample
13163
86941c27
JB
13164If your remote target is actually running on the same machine as your
13165debugger session (e.g.@: a simulator for your target running on the
13166same host), you can omit the hostname. For example, to connect to
13167port 1234 on your local machine:
07f31aa6
DJ
13168
13169@smallexample
13170target remote :1234
13171@end smallexample
13172@noindent
13173
13174Note that the colon is still required here.
13175
86941c27
JB
13176@item target remote @code{udp:@var{host}:@var{port}}
13177@cindex @acronym{UDP} port, @code{target remote}
13178Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
13179connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
13180
13181@smallexample
13182target remote udp:manyfarms:2828
13183@end smallexample
13184
86941c27
JB
13185When using a @acronym{UDP} connection for remote debugging, you should
13186keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
13187can silently drop packets on busy or unreliable networks, which will
13188cause havoc with your debugging session.
13189
66b8c7f6
JB
13190@item target remote | @var{command}
13191@cindex pipe, @code{target remote} to
13192Run @var{command} in the background and communicate with it using a
13193pipe. The @var{command} is a shell command, to be parsed and expanded
13194by the system's command shell, @code{/bin/sh}; it should expect remote
13195protocol packets on its standard input, and send replies on its
13196standard output. You could use this to run a stand-alone simulator
13197that speaks the remote debugging protocol, to make net connections
13198using programs like @code{ssh}, or for other similar tricks.
13199
13200If @var{command} closes its standard output (perhaps by exiting),
13201@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
13202program has already exited, this will have no effect.)
13203
86941c27 13204@end table
07f31aa6 13205
86941c27 13206Once the connection has been established, you can use all the usual
8edfe269
DJ
13207commands to examine and change data. The remote program is already
13208running; you can use @kbd{step} and @kbd{continue}, and you do not
13209need to use @kbd{run}.
07f31aa6
DJ
13210
13211@cindex interrupting remote programs
13212@cindex remote programs, interrupting
13213Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 13214interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
13215program. This may or may not succeed, depending in part on the hardware
13216and the serial drivers the remote system uses. If you type the
13217interrupt character once again, @value{GDBN} displays this prompt:
13218
13219@smallexample
13220Interrupted while waiting for the program.
13221Give up (and stop debugging it)? (y or n)
13222@end smallexample
13223
13224If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
13225(If you decide you want to try again later, you can use @samp{target
13226remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
13227goes back to waiting.
13228
13229@table @code
13230@kindex detach (remote)
13231@item detach
13232When you have finished debugging the remote program, you can use the
13233@code{detach} command to release it from @value{GDBN} control.
13234Detaching from the target normally resumes its execution, but the results
13235will depend on your particular remote stub. After the @code{detach}
13236command, @value{GDBN} is free to connect to another target.
13237
13238@kindex disconnect
13239@item disconnect
13240The @code{disconnect} command behaves like @code{detach}, except that
13241the target is generally not resumed. It will wait for @value{GDBN}
13242(this instance or another one) to connect and continue debugging. After
13243the @code{disconnect} command, @value{GDBN} is again free to connect to
13244another target.
09d4efe1
EZ
13245
13246@cindex send command to remote monitor
fad38dfa
EZ
13247@cindex extend @value{GDBN} for remote targets
13248@cindex add new commands for external monitor
09d4efe1
EZ
13249@kindex monitor
13250@item monitor @var{cmd}
fad38dfa
EZ
13251This command allows you to send arbitrary commands directly to the
13252remote monitor. Since @value{GDBN} doesn't care about the commands it
13253sends like this, this command is the way to extend @value{GDBN}---you
13254can add new commands that only the external monitor will understand
13255and implement.
07f31aa6
DJ
13256@end table
13257
a6b151f1
DJ
13258@node File Transfer
13259@section Sending files to a remote system
13260@cindex remote target, file transfer
13261@cindex file transfer
13262@cindex sending files to remote systems
13263
13264Some remote targets offer the ability to transfer files over the same
13265connection used to communicate with @value{GDBN}. This is convenient
13266for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
13267running @code{gdbserver} over a network interface. For other targets,
13268e.g.@: embedded devices with only a single serial port, this may be
13269the only way to upload or download files.
13270
13271Not all remote targets support these commands.
13272
13273@table @code
13274@kindex remote put
13275@item remote put @var{hostfile} @var{targetfile}
13276Copy file @var{hostfile} from the host system (the machine running
13277@value{GDBN}) to @var{targetfile} on the target system.
13278
13279@kindex remote get
13280@item remote get @var{targetfile} @var{hostfile}
13281Copy file @var{targetfile} from the target system to @var{hostfile}
13282on the host system.
13283
13284@kindex remote delete
13285@item remote delete @var{targetfile}
13286Delete @var{targetfile} from the target system.
13287
13288@end table
13289
6f05cf9f 13290@node Server
79a6e687 13291@section Using the @code{gdbserver} Program
6f05cf9f
AC
13292
13293@kindex gdbserver
13294@cindex remote connection without stubs
13295@code{gdbserver} is a control program for Unix-like systems, which
13296allows you to connect your program with a remote @value{GDBN} via
13297@code{target remote}---but without linking in the usual debugging stub.
13298
13299@code{gdbserver} is not a complete replacement for the debugging stubs,
13300because it requires essentially the same operating-system facilities
13301that @value{GDBN} itself does. In fact, a system that can run
13302@code{gdbserver} to connect to a remote @value{GDBN} could also run
13303@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13304because it is a much smaller program than @value{GDBN} itself. It is
13305also easier to port than all of @value{GDBN}, so you may be able to get
13306started more quickly on a new system by using @code{gdbserver}.
13307Finally, if you develop code for real-time systems, you may find that
13308the tradeoffs involved in real-time operation make it more convenient to
13309do as much development work as possible on another system, for example
13310by cross-compiling. You can use @code{gdbserver} to make a similar
13311choice for debugging.
13312
13313@value{GDBN} and @code{gdbserver} communicate via either a serial line
13314or a TCP connection, using the standard @value{GDBN} remote serial
13315protocol.
13316
2d717e4f
DJ
13317@quotation
13318@emph{Warning:} @code{gdbserver} does not have any built-in security.
13319Do not run @code{gdbserver} connected to any public network; a
13320@value{GDBN} connection to @code{gdbserver} provides access to the
13321target system with the same privileges as the user running
13322@code{gdbserver}.
13323@end quotation
13324
13325@subsection Running @code{gdbserver}
13326@cindex arguments, to @code{gdbserver}
13327
13328Run @code{gdbserver} on the target system. You need a copy of the
13329program you want to debug, including any libraries it requires.
6f05cf9f
AC
13330@code{gdbserver} does not need your program's symbol table, so you can
13331strip the program if necessary to save space. @value{GDBN} on the host
13332system does all the symbol handling.
13333
13334To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13335the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13336syntax is:
13337
13338@smallexample
13339target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13340@end smallexample
13341
13342@var{comm} is either a device name (to use a serial line) or a TCP
13343hostname and portnumber. For example, to debug Emacs with the argument
13344@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13345@file{/dev/com1}:
13346
13347@smallexample
13348target> gdbserver /dev/com1 emacs foo.txt
13349@end smallexample
13350
13351@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13352with it.
13353
13354To use a TCP connection instead of a serial line:
13355
13356@smallexample
13357target> gdbserver host:2345 emacs foo.txt
13358@end smallexample
13359
13360The only difference from the previous example is the first argument,
13361specifying that you are communicating with the host @value{GDBN} via
13362TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13363expect a TCP connection from machine @samp{host} to local TCP port 2345.
13364(Currently, the @samp{host} part is ignored.) You can choose any number
13365you want for the port number as long as it does not conflict with any
13366TCP ports already in use on the target system (for example, @code{23} is
13367reserved for @code{telnet}).@footnote{If you choose a port number that
13368conflicts with another service, @code{gdbserver} prints an error message
13369and exits.} You must use the same port number with the host @value{GDBN}
13370@code{target remote} command.
13371
2d717e4f
DJ
13372@subsubsection Attaching to a Running Program
13373
56460a61
DJ
13374On some targets, @code{gdbserver} can also attach to running programs.
13375This is accomplished via the @code{--attach} argument. The syntax is:
13376
13377@smallexample
2d717e4f 13378target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13379@end smallexample
13380
13381@var{pid} is the process ID of a currently running process. It isn't necessary
13382to point @code{gdbserver} at a binary for the running process.
13383
b1fe9455
DJ
13384@pindex pidof
13385@cindex attach to a program by name
13386You can debug processes by name instead of process ID if your target has the
13387@code{pidof} utility:
13388
13389@smallexample
2d717e4f 13390target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13391@end smallexample
13392
f822c95b 13393In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13394has multiple threads, most versions of @code{pidof} support the
13395@code{-s} option to only return the first process ID.
13396
2d717e4f
DJ
13397@subsubsection Multi-Process Mode for @code{gdbserver}
13398@cindex gdbserver, multiple processes
13399@cindex multiple processes with gdbserver
13400
13401When you connect to @code{gdbserver} using @code{target remote},
13402@code{gdbserver} debugs the specified program only once. When the
13403program exits, or you detach from it, @value{GDBN} closes the connection
13404and @code{gdbserver} exits.
13405
6e6c6f50 13406If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13407enters multi-process mode. When the debugged program exits, or you
13408detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13409though no program is running. The @code{run} and @code{attach}
13410commands instruct @code{gdbserver} to run or attach to a new program.
13411The @code{run} command uses @code{set remote exec-file} (@pxref{set
13412remote exec-file}) to select the program to run. Command line
13413arguments are supported, except for wildcard expansion and I/O
13414redirection (@pxref{Arguments}).
13415
13416To start @code{gdbserver} without supplying an initial command to run
13417or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13418Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13419the program you want to debug.
13420
13421@code{gdbserver} does not automatically exit in multi-process mode.
13422You can terminate it by using @code{monitor exit}
13423(@pxref{Monitor Commands for gdbserver}).
13424
13425@subsubsection Other Command-Line Arguments for @code{gdbserver}
13426
13427You can include @option{--debug} on the @code{gdbserver} command line.
13428@code{gdbserver} will display extra status information about the debugging
13429process. This option is intended for @code{gdbserver} development and
13430for bug reports to the developers.
13431
ccd213ac
DJ
13432The @option{--wrapper} option specifies a wrapper to launch programs
13433for debugging. The option should be followed by the name of the
13434wrapper, then any command-line arguments to pass to the wrapper, then
13435@kbd{--} indicating the end of the wrapper arguments.
13436
13437@code{gdbserver} runs the specified wrapper program with a combined
13438command line including the wrapper arguments, then the name of the
13439program to debug, then any arguments to the program. The wrapper
13440runs until it executes your program, and then @value{GDBN} gains control.
13441
13442You can use any program that eventually calls @code{execve} with
13443its arguments as a wrapper. Several standard Unix utilities do
13444this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13445with @code{exec "$@@"} will also work.
13446
13447For example, you can use @code{env} to pass an environment variable to
13448the debugged program, without setting the variable in @code{gdbserver}'s
13449environment:
13450
13451@smallexample
13452$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13453@end smallexample
13454
2d717e4f
DJ
13455@subsection Connecting to @code{gdbserver}
13456
13457Run @value{GDBN} on the host system.
13458
13459First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13460your application using the @code{file} command before you connect. Use
13461@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13462was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13463
13464The symbol file and target libraries must exactly match the executable
13465and libraries on the target, with one exception: the files on the host
13466system should not be stripped, even if the files on the target system
13467are. Mismatched or missing files will lead to confusing results
13468during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13469files may also prevent @code{gdbserver} from debugging multi-threaded
13470programs.
13471
79a6e687 13472Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13473For TCP connections, you must start up @code{gdbserver} prior to using
13474the @code{target remote} command. Otherwise you may get an error whose
13475text depends on the host system, but which usually looks something like
2d717e4f 13476@samp{Connection refused}. Don't use the @code{load}
397ca115 13477command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13478already on the target.
07f31aa6 13479
79a6e687 13480@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13481@cindex monitor commands, for @code{gdbserver}
2d717e4f 13482@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13483
13484During a @value{GDBN} session using @code{gdbserver}, you can use the
13485@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13486Here are the available commands.
c74d0ad8
DJ
13487
13488@table @code
13489@item monitor help
13490List the available monitor commands.
13491
13492@item monitor set debug 0
13493@itemx monitor set debug 1
13494Disable or enable general debugging messages.
13495
13496@item monitor set remote-debug 0
13497@itemx monitor set remote-debug 1
13498Disable or enable specific debugging messages associated with the remote
13499protocol (@pxref{Remote Protocol}).
13500
2d717e4f
DJ
13501@item monitor exit
13502Tell gdbserver to exit immediately. This command should be followed by
13503@code{disconnect} to close the debugging session. @code{gdbserver} will
13504detach from any attached processes and kill any processes it created.
13505Use @code{monitor exit} to terminate @code{gdbserver} at the end
13506of a multi-process mode debug session.
13507
c74d0ad8
DJ
13508@end table
13509
79a6e687
BW
13510@node Remote Configuration
13511@section Remote Configuration
501eef12 13512
9c16f35a
EZ
13513@kindex set remote
13514@kindex show remote
13515This section documents the configuration options available when
13516debugging remote programs. For the options related to the File I/O
fc320d37 13517extensions of the remote protocol, see @ref{system,
9c16f35a 13518system-call-allowed}.
501eef12
AC
13519
13520@table @code
9c16f35a 13521@item set remoteaddresssize @var{bits}
d3e8051b 13522@cindex address size for remote targets
9c16f35a
EZ
13523@cindex bits in remote address
13524Set the maximum size of address in a memory packet to the specified
13525number of bits. @value{GDBN} will mask off the address bits above
13526that number, when it passes addresses to the remote target. The
13527default value is the number of bits in the target's address.
13528
13529@item show remoteaddresssize
13530Show the current value of remote address size in bits.
13531
13532@item set remotebaud @var{n}
13533@cindex baud rate for remote targets
13534Set the baud rate for the remote serial I/O to @var{n} baud. The
13535value is used to set the speed of the serial port used for debugging
13536remote targets.
13537
13538@item show remotebaud
13539Show the current speed of the remote connection.
13540
13541@item set remotebreak
13542@cindex interrupt remote programs
13543@cindex BREAK signal instead of Ctrl-C
9a6253be 13544@anchor{set remotebreak}
9c16f35a 13545If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13546when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13547on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13548character instead. The default is off, since most remote systems
13549expect to see @samp{Ctrl-C} as the interrupt signal.
13550
13551@item show remotebreak
13552Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13553interrupt the remote program.
13554
23776285
MR
13555@item set remoteflow on
13556@itemx set remoteflow off
13557@kindex set remoteflow
13558Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13559on the serial port used to communicate to the remote target.
13560
13561@item show remoteflow
13562@kindex show remoteflow
13563Show the current setting of hardware flow control.
13564
9c16f35a
EZ
13565@item set remotelogbase @var{base}
13566Set the base (a.k.a.@: radix) of logging serial protocol
13567communications to @var{base}. Supported values of @var{base} are:
13568@code{ascii}, @code{octal}, and @code{hex}. The default is
13569@code{ascii}.
13570
13571@item show remotelogbase
13572Show the current setting of the radix for logging remote serial
13573protocol.
13574
13575@item set remotelogfile @var{file}
13576@cindex record serial communications on file
13577Record remote serial communications on the named @var{file}. The
13578default is not to record at all.
13579
13580@item show remotelogfile.
13581Show the current setting of the file name on which to record the
13582serial communications.
13583
13584@item set remotetimeout @var{num}
13585@cindex timeout for serial communications
13586@cindex remote timeout
13587Set the timeout limit to wait for the remote target to respond to
13588@var{num} seconds. The default is 2 seconds.
13589
13590@item show remotetimeout
13591Show the current number of seconds to wait for the remote target
13592responses.
13593
13594@cindex limit hardware breakpoints and watchpoints
13595@cindex remote target, limit break- and watchpoints
501eef12
AC
13596@anchor{set remote hardware-watchpoint-limit}
13597@anchor{set remote hardware-breakpoint-limit}
13598@item set remote hardware-watchpoint-limit @var{limit}
13599@itemx set remote hardware-breakpoint-limit @var{limit}
13600Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13601watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13602
13603@item set remote exec-file @var{filename}
13604@itemx show remote exec-file
13605@anchor{set remote exec-file}
13606@cindex executable file, for remote target
13607Select the file used for @code{run} with @code{target
13608extended-remote}. This should be set to a filename valid on the
13609target system. If it is not set, the target will use a default
13610filename (e.g.@: the last program run).
501eef12
AC
13611@end table
13612
427c3a89
DJ
13613@cindex remote packets, enabling and disabling
13614The @value{GDBN} remote protocol autodetects the packets supported by
13615your debugging stub. If you need to override the autodetection, you
13616can use these commands to enable or disable individual packets. Each
13617packet can be set to @samp{on} (the remote target supports this
13618packet), @samp{off} (the remote target does not support this packet),
13619or @samp{auto} (detect remote target support for this packet). They
13620all default to @samp{auto}. For more information about each packet,
13621see @ref{Remote Protocol}.
13622
13623During normal use, you should not have to use any of these commands.
13624If you do, that may be a bug in your remote debugging stub, or a bug
13625in @value{GDBN}. You may want to report the problem to the
13626@value{GDBN} developers.
13627
cfa9d6d9
DJ
13628For each packet @var{name}, the command to enable or disable the
13629packet is @code{set remote @var{name}-packet}. The available settings
13630are:
427c3a89 13631
cfa9d6d9 13632@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13633@item Command Name
13634@tab Remote Packet
13635@tab Related Features
13636
cfa9d6d9 13637@item @code{fetch-register}
427c3a89
DJ
13638@tab @code{p}
13639@tab @code{info registers}
13640
cfa9d6d9 13641@item @code{set-register}
427c3a89
DJ
13642@tab @code{P}
13643@tab @code{set}
13644
cfa9d6d9 13645@item @code{binary-download}
427c3a89
DJ
13646@tab @code{X}
13647@tab @code{load}, @code{set}
13648
cfa9d6d9 13649@item @code{read-aux-vector}
427c3a89
DJ
13650@tab @code{qXfer:auxv:read}
13651@tab @code{info auxv}
13652
cfa9d6d9 13653@item @code{symbol-lookup}
427c3a89
DJ
13654@tab @code{qSymbol}
13655@tab Detecting multiple threads
13656
2d717e4f
DJ
13657@item @code{attach}
13658@tab @code{vAttach}
13659@tab @code{attach}
13660
cfa9d6d9 13661@item @code{verbose-resume}
427c3a89
DJ
13662@tab @code{vCont}
13663@tab Stepping or resuming multiple threads
13664
2d717e4f
DJ
13665@item @code{run}
13666@tab @code{vRun}
13667@tab @code{run}
13668
cfa9d6d9 13669@item @code{software-breakpoint}
427c3a89
DJ
13670@tab @code{Z0}
13671@tab @code{break}
13672
cfa9d6d9 13673@item @code{hardware-breakpoint}
427c3a89
DJ
13674@tab @code{Z1}
13675@tab @code{hbreak}
13676
cfa9d6d9 13677@item @code{write-watchpoint}
427c3a89
DJ
13678@tab @code{Z2}
13679@tab @code{watch}
13680
cfa9d6d9 13681@item @code{read-watchpoint}
427c3a89
DJ
13682@tab @code{Z3}
13683@tab @code{rwatch}
13684
cfa9d6d9 13685@item @code{access-watchpoint}
427c3a89
DJ
13686@tab @code{Z4}
13687@tab @code{awatch}
13688
cfa9d6d9
DJ
13689@item @code{target-features}
13690@tab @code{qXfer:features:read}
13691@tab @code{set architecture}
13692
13693@item @code{library-info}
13694@tab @code{qXfer:libraries:read}
13695@tab @code{info sharedlibrary}
13696
13697@item @code{memory-map}
13698@tab @code{qXfer:memory-map:read}
13699@tab @code{info mem}
13700
13701@item @code{read-spu-object}
13702@tab @code{qXfer:spu:read}
13703@tab @code{info spu}
13704
13705@item @code{write-spu-object}
13706@tab @code{qXfer:spu:write}
13707@tab @code{info spu}
13708
13709@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13710@tab @code{qGetTLSAddr}
13711@tab Displaying @code{__thread} variables
13712
08388c79
DE
13713@item @code{search-memory}
13714@tab @code{qSearch:memory}
13715@tab @code{find}
13716
427c3a89
DJ
13717@item @code{supported-packets}
13718@tab @code{qSupported}
13719@tab Remote communications parameters
13720
cfa9d6d9 13721@item @code{pass-signals}
89be2091
DJ
13722@tab @code{QPassSignals}
13723@tab @code{handle @var{signal}}
13724
a6b151f1
DJ
13725@item @code{hostio-close-packet}
13726@tab @code{vFile:close}
13727@tab @code{remote get}, @code{remote put}
13728
13729@item @code{hostio-open-packet}
13730@tab @code{vFile:open}
13731@tab @code{remote get}, @code{remote put}
13732
13733@item @code{hostio-pread-packet}
13734@tab @code{vFile:pread}
13735@tab @code{remote get}, @code{remote put}
13736
13737@item @code{hostio-pwrite-packet}
13738@tab @code{vFile:pwrite}
13739@tab @code{remote get}, @code{remote put}
13740
13741@item @code{hostio-unlink-packet}
13742@tab @code{vFile:unlink}
13743@tab @code{remote delete}
427c3a89
DJ
13744@end multitable
13745
79a6e687
BW
13746@node Remote Stub
13747@section Implementing a Remote Stub
7a292a7a 13748
8e04817f
AC
13749@cindex debugging stub, example
13750@cindex remote stub, example
13751@cindex stub example, remote debugging
13752The stub files provided with @value{GDBN} implement the target side of the
13753communication protocol, and the @value{GDBN} side is implemented in the
13754@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13755these subroutines to communicate, and ignore the details. (If you're
13756implementing your own stub file, you can still ignore the details: start
13757with one of the existing stub files. @file{sparc-stub.c} is the best
13758organized, and therefore the easiest to read.)
13759
104c1213
JM
13760@cindex remote serial debugging, overview
13761To debug a program running on another machine (the debugging
13762@dfn{target} machine), you must first arrange for all the usual
13763prerequisites for the program to run by itself. For example, for a C
13764program, you need:
c906108c 13765
104c1213
JM
13766@enumerate
13767@item
13768A startup routine to set up the C runtime environment; these usually
13769have a name like @file{crt0}. The startup routine may be supplied by
13770your hardware supplier, or you may have to write your own.
96baa820 13771
5d161b24 13772@item
d4f3574e 13773A C subroutine library to support your program's
104c1213 13774subroutine calls, notably managing input and output.
96baa820 13775
104c1213
JM
13776@item
13777A way of getting your program to the other machine---for example, a
13778download program. These are often supplied by the hardware
13779manufacturer, but you may have to write your own from hardware
13780documentation.
13781@end enumerate
96baa820 13782
104c1213
JM
13783The next step is to arrange for your program to use a serial port to
13784communicate with the machine where @value{GDBN} is running (the @dfn{host}
13785machine). In general terms, the scheme looks like this:
96baa820 13786
104c1213
JM
13787@table @emph
13788@item On the host,
13789@value{GDBN} already understands how to use this protocol; when everything
13790else is set up, you can simply use the @samp{target remote} command
13791(@pxref{Targets,,Specifying a Debugging Target}).
13792
13793@item On the target,
13794you must link with your program a few special-purpose subroutines that
13795implement the @value{GDBN} remote serial protocol. The file containing these
13796subroutines is called a @dfn{debugging stub}.
13797
13798On certain remote targets, you can use an auxiliary program
13799@code{gdbserver} instead of linking a stub into your program.
79a6e687 13800@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13801@end table
96baa820 13802
104c1213
JM
13803The debugging stub is specific to the architecture of the remote
13804machine; for example, use @file{sparc-stub.c} to debug programs on
13805@sc{sparc} boards.
96baa820 13806
104c1213
JM
13807@cindex remote serial stub list
13808These working remote stubs are distributed with @value{GDBN}:
96baa820 13809
104c1213
JM
13810@table @code
13811
13812@item i386-stub.c
41afff9a 13813@cindex @file{i386-stub.c}
104c1213
JM
13814@cindex Intel
13815@cindex i386
13816For Intel 386 and compatible architectures.
13817
13818@item m68k-stub.c
41afff9a 13819@cindex @file{m68k-stub.c}
104c1213
JM
13820@cindex Motorola 680x0
13821@cindex m680x0
13822For Motorola 680x0 architectures.
13823
13824@item sh-stub.c
41afff9a 13825@cindex @file{sh-stub.c}
172c2a43 13826@cindex Renesas
104c1213 13827@cindex SH
172c2a43 13828For Renesas SH architectures.
104c1213
JM
13829
13830@item sparc-stub.c
41afff9a 13831@cindex @file{sparc-stub.c}
104c1213
JM
13832@cindex Sparc
13833For @sc{sparc} architectures.
13834
13835@item sparcl-stub.c
41afff9a 13836@cindex @file{sparcl-stub.c}
104c1213
JM
13837@cindex Fujitsu
13838@cindex SparcLite
13839For Fujitsu @sc{sparclite} architectures.
13840
13841@end table
13842
13843The @file{README} file in the @value{GDBN} distribution may list other
13844recently added stubs.
13845
13846@menu
13847* Stub Contents:: What the stub can do for you
13848* Bootstrapping:: What you must do for the stub
13849* Debug Session:: Putting it all together
104c1213
JM
13850@end menu
13851
6d2ebf8b 13852@node Stub Contents
79a6e687 13853@subsection What the Stub Can Do for You
104c1213
JM
13854
13855@cindex remote serial stub
13856The debugging stub for your architecture supplies these three
13857subroutines:
13858
13859@table @code
13860@item set_debug_traps
4644b6e3 13861@findex set_debug_traps
104c1213
JM
13862@cindex remote serial stub, initialization
13863This routine arranges for @code{handle_exception} to run when your
13864program stops. You must call this subroutine explicitly near the
13865beginning of your program.
13866
13867@item handle_exception
4644b6e3 13868@findex handle_exception
104c1213
JM
13869@cindex remote serial stub, main routine
13870This is the central workhorse, but your program never calls it
13871explicitly---the setup code arranges for @code{handle_exception} to
13872run when a trap is triggered.
13873
13874@code{handle_exception} takes control when your program stops during
13875execution (for example, on a breakpoint), and mediates communications
13876with @value{GDBN} on the host machine. This is where the communications
13877protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13878representative on the target machine. It begins by sending summary
104c1213
JM
13879information on the state of your program, then continues to execute,
13880retrieving and transmitting any information @value{GDBN} needs, until you
13881execute a @value{GDBN} command that makes your program resume; at that point,
13882@code{handle_exception} returns control to your own code on the target
5d161b24 13883machine.
104c1213
JM
13884
13885@item breakpoint
13886@cindex @code{breakpoint} subroutine, remote
13887Use this auxiliary subroutine to make your program contain a
13888breakpoint. Depending on the particular situation, this may be the only
13889way for @value{GDBN} to get control. For instance, if your target
13890machine has some sort of interrupt button, you won't need to call this;
13891pressing the interrupt button transfers control to
13892@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13893simply receiving characters on the serial port may also trigger a trap;
13894again, in that situation, you don't need to call @code{breakpoint} from
13895your own program---simply running @samp{target remote} from the host
5d161b24 13896@value{GDBN} session gets control.
104c1213
JM
13897
13898Call @code{breakpoint} if none of these is true, or if you simply want
13899to make certain your program stops at a predetermined point for the
13900start of your debugging session.
13901@end table
13902
6d2ebf8b 13903@node Bootstrapping
79a6e687 13904@subsection What You Must Do for the Stub
104c1213
JM
13905
13906@cindex remote stub, support routines
13907The debugging stubs that come with @value{GDBN} are set up for a particular
13908chip architecture, but they have no information about the rest of your
13909debugging target machine.
13910
13911First of all you need to tell the stub how to communicate with the
13912serial port.
13913
13914@table @code
13915@item int getDebugChar()
4644b6e3 13916@findex getDebugChar
104c1213
JM
13917Write this subroutine to read a single character from the serial port.
13918It may be identical to @code{getchar} for your target system; a
13919different name is used to allow you to distinguish the two if you wish.
13920
13921@item void putDebugChar(int)
4644b6e3 13922@findex putDebugChar
104c1213 13923Write this subroutine to write a single character to the serial port.
5d161b24 13924It may be identical to @code{putchar} for your target system; a
104c1213
JM
13925different name is used to allow you to distinguish the two if you wish.
13926@end table
13927
13928@cindex control C, and remote debugging
13929@cindex interrupting remote targets
13930If you want @value{GDBN} to be able to stop your program while it is
13931running, you need to use an interrupt-driven serial driver, and arrange
13932for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13933character). That is the character which @value{GDBN} uses to tell the
13934remote system to stop.
13935
13936Getting the debugging target to return the proper status to @value{GDBN}
13937probably requires changes to the standard stub; one quick and dirty way
13938is to just execute a breakpoint instruction (the ``dirty'' part is that
13939@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13940
13941Other routines you need to supply are:
13942
13943@table @code
13944@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13945@findex exceptionHandler
104c1213
JM
13946Write this function to install @var{exception_address} in the exception
13947handling tables. You need to do this because the stub does not have any
13948way of knowing what the exception handling tables on your target system
13949are like (for example, the processor's table might be in @sc{rom},
13950containing entries which point to a table in @sc{ram}).
13951@var{exception_number} is the exception number which should be changed;
13952its meaning is architecture-dependent (for example, different numbers
13953might represent divide by zero, misaligned access, etc). When this
13954exception occurs, control should be transferred directly to
13955@var{exception_address}, and the processor state (stack, registers,
13956and so on) should be just as it is when a processor exception occurs. So if
13957you want to use a jump instruction to reach @var{exception_address}, it
13958should be a simple jump, not a jump to subroutine.
13959
13960For the 386, @var{exception_address} should be installed as an interrupt
13961gate so that interrupts are masked while the handler runs. The gate
13962should be at privilege level 0 (the most privileged level). The
13963@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13964help from @code{exceptionHandler}.
13965
13966@item void flush_i_cache()
4644b6e3 13967@findex flush_i_cache
d4f3574e 13968On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13969instruction cache, if any, on your target machine. If there is no
13970instruction cache, this subroutine may be a no-op.
13971
13972On target machines that have instruction caches, @value{GDBN} requires this
13973function to make certain that the state of your program is stable.
13974@end table
13975
13976@noindent
13977You must also make sure this library routine is available:
13978
13979@table @code
13980@item void *memset(void *, int, int)
4644b6e3 13981@findex memset
104c1213
JM
13982This is the standard library function @code{memset} that sets an area of
13983memory to a known value. If you have one of the free versions of
13984@code{libc.a}, @code{memset} can be found there; otherwise, you must
13985either obtain it from your hardware manufacturer, or write your own.
13986@end table
13987
13988If you do not use the GNU C compiler, you may need other standard
13989library subroutines as well; this varies from one stub to another,
13990but in general the stubs are likely to use any of the common library
e22ea452 13991subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13992
13993
6d2ebf8b 13994@node Debug Session
79a6e687 13995@subsection Putting it All Together
104c1213
JM
13996
13997@cindex remote serial debugging summary
13998In summary, when your program is ready to debug, you must follow these
13999steps.
14000
14001@enumerate
14002@item
6d2ebf8b 14003Make sure you have defined the supporting low-level routines
79a6e687 14004(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
14005@display
14006@code{getDebugChar}, @code{putDebugChar},
14007@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
14008@end display
14009
14010@item
14011Insert these lines near the top of your program:
14012
474c8240 14013@smallexample
104c1213
JM
14014set_debug_traps();
14015breakpoint();
474c8240 14016@end smallexample
104c1213
JM
14017
14018@item
14019For the 680x0 stub only, you need to provide a variable called
14020@code{exceptionHook}. Normally you just use:
14021
474c8240 14022@smallexample
104c1213 14023void (*exceptionHook)() = 0;
474c8240 14024@end smallexample
104c1213 14025
d4f3574e 14026@noindent
104c1213 14027but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 14028function in your program, that function is called when
104c1213
JM
14029@code{@value{GDBN}} continues after stopping on a trap (for example, bus
14030error). The function indicated by @code{exceptionHook} is called with
14031one parameter: an @code{int} which is the exception number.
14032
14033@item
14034Compile and link together: your program, the @value{GDBN} debugging stub for
14035your target architecture, and the supporting subroutines.
14036
14037@item
14038Make sure you have a serial connection between your target machine and
14039the @value{GDBN} host, and identify the serial port on the host.
14040
14041@item
14042@c The "remote" target now provides a `load' command, so we should
14043@c document that. FIXME.
14044Download your program to your target machine (or get it there by
14045whatever means the manufacturer provides), and start it.
14046
14047@item
07f31aa6 14048Start @value{GDBN} on the host, and connect to the target
79a6e687 14049(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 14050
104c1213
JM
14051@end enumerate
14052
8e04817f
AC
14053@node Configurations
14054@chapter Configuration-Specific Information
104c1213 14055
8e04817f
AC
14056While nearly all @value{GDBN} commands are available for all native and
14057cross versions of the debugger, there are some exceptions. This chapter
14058describes things that are only available in certain configurations.
104c1213 14059
8e04817f
AC
14060There are three major categories of configurations: native
14061configurations, where the host and target are the same, embedded
14062operating system configurations, which are usually the same for several
14063different processor architectures, and bare embedded processors, which
14064are quite different from each other.
104c1213 14065
8e04817f
AC
14066@menu
14067* Native::
14068* Embedded OS::
14069* Embedded Processors::
14070* Architectures::
14071@end menu
104c1213 14072
8e04817f
AC
14073@node Native
14074@section Native
104c1213 14075
8e04817f
AC
14076This section describes details specific to particular native
14077configurations.
6cf7e474 14078
8e04817f
AC
14079@menu
14080* HP-UX:: HP-UX
7561d450 14081* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
14082* SVR4 Process Information:: SVR4 process information
14083* DJGPP Native:: Features specific to the DJGPP port
78c47bea 14084* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 14085* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 14086* Neutrino:: Features specific to QNX Neutrino
8e04817f 14087@end menu
6cf7e474 14088
8e04817f
AC
14089@node HP-UX
14090@subsection HP-UX
104c1213 14091
8e04817f
AC
14092On HP-UX systems, if you refer to a function or variable name that
14093begins with a dollar sign, @value{GDBN} searches for a user or system
14094name first, before it searches for a convenience variable.
104c1213 14095
9c16f35a 14096
7561d450
MK
14097@node BSD libkvm Interface
14098@subsection BSD libkvm Interface
14099
14100@cindex libkvm
14101@cindex kernel memory image
14102@cindex kernel crash dump
14103
14104BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
14105interface that provides a uniform interface for accessing kernel virtual
14106memory images, including live systems and crash dumps. @value{GDBN}
14107uses this interface to allow you to debug live kernels and kernel crash
14108dumps on many native BSD configurations. This is implemented as a
14109special @code{kvm} debugging target. For debugging a live system, load
14110the currently running kernel into @value{GDBN} and connect to the
14111@code{kvm} target:
14112
14113@smallexample
14114(@value{GDBP}) @b{target kvm}
14115@end smallexample
14116
14117For debugging crash dumps, provide the file name of the crash dump as an
14118argument:
14119
14120@smallexample
14121(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
14122@end smallexample
14123
14124Once connected to the @code{kvm} target, the following commands are
14125available:
14126
14127@table @code
14128@kindex kvm
14129@item kvm pcb
721c2651 14130Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
14131
14132@item kvm proc
14133Set current context from proc address. This command isn't available on
14134modern FreeBSD systems.
14135@end table
14136
8e04817f 14137@node SVR4 Process Information
79a6e687 14138@subsection SVR4 Process Information
60bf7e09
EZ
14139@cindex /proc
14140@cindex examine process image
14141@cindex process info via @file{/proc}
104c1213 14142
60bf7e09
EZ
14143Many versions of SVR4 and compatible systems provide a facility called
14144@samp{/proc} that can be used to examine the image of a running
14145process using file-system subroutines. If @value{GDBN} is configured
14146for an operating system with this facility, the command @code{info
14147proc} is available to report information about the process running
14148your program, or about any process running on your system. @code{info
14149proc} works only on SVR4 systems that include the @code{procfs} code.
14150This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
14151Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 14152
8e04817f
AC
14153@table @code
14154@kindex info proc
60bf7e09 14155@cindex process ID
8e04817f 14156@item info proc
60bf7e09
EZ
14157@itemx info proc @var{process-id}
14158Summarize available information about any running process. If a
14159process ID is specified by @var{process-id}, display information about
14160that process; otherwise display information about the program being
14161debugged. The summary includes the debugged process ID, the command
14162line used to invoke it, its current working directory, and its
14163executable file's absolute file name.
14164
14165On some systems, @var{process-id} can be of the form
14166@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
14167within a process. If the optional @var{pid} part is missing, it means
14168a thread from the process being debugged (the leading @samp{/} still
14169needs to be present, or else @value{GDBN} will interpret the number as
14170a process ID rather than a thread ID).
6cf7e474 14171
8e04817f 14172@item info proc mappings
60bf7e09
EZ
14173@cindex memory address space mappings
14174Report the memory address space ranges accessible in the program, with
14175information on whether the process has read, write, or execute access
14176rights to each range. On @sc{gnu}/Linux systems, each memory range
14177includes the object file which is mapped to that range, instead of the
14178memory access rights to that range.
14179
14180@item info proc stat
14181@itemx info proc status
14182@cindex process detailed status information
14183These subcommands are specific to @sc{gnu}/Linux systems. They show
14184the process-related information, including the user ID and group ID;
14185how many threads are there in the process; its virtual memory usage;
14186the signals that are pending, blocked, and ignored; its TTY; its
14187consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 14188value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
14189(type @kbd{man 5 proc} from your shell prompt).
14190
14191@item info proc all
14192Show all the information about the process described under all of the
14193above @code{info proc} subcommands.
14194
8e04817f
AC
14195@ignore
14196@comment These sub-options of 'info proc' were not included when
14197@comment procfs.c was re-written. Keep their descriptions around
14198@comment against the day when someone finds the time to put them back in.
14199@kindex info proc times
14200@item info proc times
14201Starting time, user CPU time, and system CPU time for your program and
14202its children.
6cf7e474 14203
8e04817f
AC
14204@kindex info proc id
14205@item info proc id
14206Report on the process IDs related to your program: its own process ID,
14207the ID of its parent, the process group ID, and the session ID.
8e04817f 14208@end ignore
721c2651
EZ
14209
14210@item set procfs-trace
14211@kindex set procfs-trace
14212@cindex @code{procfs} API calls
14213This command enables and disables tracing of @code{procfs} API calls.
14214
14215@item show procfs-trace
14216@kindex show procfs-trace
14217Show the current state of @code{procfs} API call tracing.
14218
14219@item set procfs-file @var{file}
14220@kindex set procfs-file
14221Tell @value{GDBN} to write @code{procfs} API trace to the named
14222@var{file}. @value{GDBN} appends the trace info to the previous
14223contents of the file. The default is to display the trace on the
14224standard output.
14225
14226@item show procfs-file
14227@kindex show procfs-file
14228Show the file to which @code{procfs} API trace is written.
14229
14230@item proc-trace-entry
14231@itemx proc-trace-exit
14232@itemx proc-untrace-entry
14233@itemx proc-untrace-exit
14234@kindex proc-trace-entry
14235@kindex proc-trace-exit
14236@kindex proc-untrace-entry
14237@kindex proc-untrace-exit
14238These commands enable and disable tracing of entries into and exits
14239from the @code{syscall} interface.
14240
14241@item info pidlist
14242@kindex info pidlist
14243@cindex process list, QNX Neutrino
14244For QNX Neutrino only, this command displays the list of all the
14245processes and all the threads within each process.
14246
14247@item info meminfo
14248@kindex info meminfo
14249@cindex mapinfo list, QNX Neutrino
14250For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 14251@end table
104c1213 14252
8e04817f
AC
14253@node DJGPP Native
14254@subsection Features for Debugging @sc{djgpp} Programs
14255@cindex @sc{djgpp} debugging
14256@cindex native @sc{djgpp} debugging
14257@cindex MS-DOS-specific commands
104c1213 14258
514c4d71
EZ
14259@cindex DPMI
14260@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
14261MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
14262that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
14263top of real-mode DOS systems and their emulations.
104c1213 14264
8e04817f
AC
14265@value{GDBN} supports native debugging of @sc{djgpp} programs, and
14266defines a few commands specific to the @sc{djgpp} port. This
14267subsection describes those commands.
104c1213 14268
8e04817f
AC
14269@table @code
14270@kindex info dos
14271@item info dos
14272This is a prefix of @sc{djgpp}-specific commands which print
14273information about the target system and important OS structures.
f1251bdd 14274
8e04817f
AC
14275@kindex sysinfo
14276@cindex MS-DOS system info
14277@cindex free memory information (MS-DOS)
14278@item info dos sysinfo
14279This command displays assorted information about the underlying
14280platform: the CPU type and features, the OS version and flavor, the
14281DPMI version, and the available conventional and DPMI memory.
104c1213 14282
8e04817f
AC
14283@cindex GDT
14284@cindex LDT
14285@cindex IDT
14286@cindex segment descriptor tables
14287@cindex descriptor tables display
14288@item info dos gdt
14289@itemx info dos ldt
14290@itemx info dos idt
14291These 3 commands display entries from, respectively, Global, Local,
14292and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14293tables are data structures which store a descriptor for each segment
14294that is currently in use. The segment's selector is an index into a
14295descriptor table; the table entry for that index holds the
14296descriptor's base address and limit, and its attributes and access
14297rights.
104c1213 14298
8e04817f
AC
14299A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14300segment (used for both data and the stack), and a DOS segment (which
14301allows access to DOS/BIOS data structures and absolute addresses in
14302conventional memory). However, the DPMI host will usually define
14303additional segments in order to support the DPMI environment.
d4f3574e 14304
8e04817f
AC
14305@cindex garbled pointers
14306These commands allow to display entries from the descriptor tables.
14307Without an argument, all entries from the specified table are
14308displayed. An argument, which should be an integer expression, means
14309display a single entry whose index is given by the argument. For
14310example, here's a convenient way to display information about the
14311debugged program's data segment:
104c1213 14312
8e04817f
AC
14313@smallexample
14314@exdent @code{(@value{GDBP}) info dos ldt $ds}
14315@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14316@end smallexample
104c1213 14317
8e04817f
AC
14318@noindent
14319This comes in handy when you want to see whether a pointer is outside
14320the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14321
8e04817f
AC
14322@cindex page tables display (MS-DOS)
14323@item info dos pde
14324@itemx info dos pte
14325These two commands display entries from, respectively, the Page
14326Directory and the Page Tables. Page Directories and Page Tables are
14327data structures which control how virtual memory addresses are mapped
14328into physical addresses. A Page Table includes an entry for every
14329page of memory that is mapped into the program's address space; there
14330may be several Page Tables, each one holding up to 4096 entries. A
14331Page Directory has up to 4096 entries, one each for every Page Table
14332that is currently in use.
104c1213 14333
8e04817f
AC
14334Without an argument, @kbd{info dos pde} displays the entire Page
14335Directory, and @kbd{info dos pte} displays all the entries in all of
14336the Page Tables. An argument, an integer expression, given to the
14337@kbd{info dos pde} command means display only that entry from the Page
14338Directory table. An argument given to the @kbd{info dos pte} command
14339means display entries from a single Page Table, the one pointed to by
14340the specified entry in the Page Directory.
104c1213 14341
8e04817f
AC
14342@cindex direct memory access (DMA) on MS-DOS
14343These commands are useful when your program uses @dfn{DMA} (Direct
14344Memory Access), which needs physical addresses to program the DMA
14345controller.
104c1213 14346
8e04817f 14347These commands are supported only with some DPMI servers.
104c1213 14348
8e04817f
AC
14349@cindex physical address from linear address
14350@item info dos address-pte @var{addr}
14351This command displays the Page Table entry for a specified linear
514c4d71
EZ
14352address. The argument @var{addr} is a linear address which should
14353already have the appropriate segment's base address added to it,
14354because this command accepts addresses which may belong to @emph{any}
14355segment. For example, here's how to display the Page Table entry for
14356the page where a variable @code{i} is stored:
104c1213 14357
b383017d 14358@smallexample
8e04817f
AC
14359@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14360@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14361@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14362@end smallexample
104c1213 14363
8e04817f
AC
14364@noindent
14365This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14366whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14367attributes of that page.
104c1213 14368
8e04817f
AC
14369Note that you must cast the addresses of variables to a @code{char *},
14370since otherwise the value of @code{__djgpp_base_address}, the base
14371address of all variables and functions in a @sc{djgpp} program, will
14372be added using the rules of C pointer arithmetics: if @code{i} is
14373declared an @code{int}, @value{GDBN} will add 4 times the value of
14374@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14375
8e04817f
AC
14376Here's another example, it displays the Page Table entry for the
14377transfer buffer:
104c1213 14378
8e04817f
AC
14379@smallexample
14380@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14381@exdent @code{Page Table entry for address 0x29110:}
14382@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14383@end smallexample
104c1213 14384
8e04817f
AC
14385@noindent
14386(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
143873rd member of the @code{_go32_info_block} structure.) The output
14388clearly shows that this DPMI server maps the addresses in conventional
14389memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14390linear (@code{0x29110}) addresses are identical.
104c1213 14391
8e04817f
AC
14392This command is supported only with some DPMI servers.
14393@end table
104c1213 14394
c45da7e6 14395@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14396In addition to native debugging, the DJGPP port supports remote
14397debugging via a serial data link. The following commands are specific
14398to remote serial debugging in the DJGPP port of @value{GDBN}.
14399
14400@table @code
14401@kindex set com1base
14402@kindex set com1irq
14403@kindex set com2base
14404@kindex set com2irq
14405@kindex set com3base
14406@kindex set com3irq
14407@kindex set com4base
14408@kindex set com4irq
14409@item set com1base @var{addr}
14410This command sets the base I/O port address of the @file{COM1} serial
14411port.
14412
14413@item set com1irq @var{irq}
14414This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14415for the @file{COM1} serial port.
14416
14417There are similar commands @samp{set com2base}, @samp{set com3irq},
14418etc.@: for setting the port address and the @code{IRQ} lines for the
14419other 3 COM ports.
14420
14421@kindex show com1base
14422@kindex show com1irq
14423@kindex show com2base
14424@kindex show com2irq
14425@kindex show com3base
14426@kindex show com3irq
14427@kindex show com4base
14428@kindex show com4irq
14429The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14430display the current settings of the base address and the @code{IRQ}
14431lines used by the COM ports.
c45da7e6
EZ
14432
14433@item info serial
14434@kindex info serial
14435@cindex DOS serial port status
14436This command prints the status of the 4 DOS serial ports. For each
14437port, it prints whether it's active or not, its I/O base address and
14438IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14439counts of various errors encountered so far.
a8f24a35
EZ
14440@end table
14441
14442
78c47bea 14443@node Cygwin Native
79a6e687 14444@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14445@cindex MS Windows debugging
14446@cindex native Cygwin debugging
14447@cindex Cygwin-specific commands
14448
be448670 14449@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14450DLLs with and without symbolic debugging information. There are various
14451additional Cygwin-specific commands, described in this section.
14452Working with DLLs that have no debugging symbols is described in
14453@ref{Non-debug DLL Symbols}.
78c47bea
PM
14454
14455@table @code
14456@kindex info w32
14457@item info w32
db2e3e2e 14458This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14459information about the target system and important OS structures.
14460
14461@item info w32 selector
14462This command displays information returned by
14463the Win32 API @code{GetThreadSelectorEntry} function.
14464It takes an optional argument that is evaluated to
14465a long value to give the information about this given selector.
14466Without argument, this command displays information
d3e8051b 14467about the six segment registers.
78c47bea
PM
14468
14469@kindex info dll
14470@item info dll
db2e3e2e 14471This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14472
14473@kindex dll-symbols
14474@item dll-symbols
14475This command loads symbols from a dll similarly to
14476add-sym command but without the need to specify a base address.
14477
be90c084 14478@kindex set cygwin-exceptions
e16b02ee
EZ
14479@cindex debugging the Cygwin DLL
14480@cindex Cygwin DLL, debugging
be90c084 14481@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14482If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14483happen inside the Cygwin DLL. If @var{mode} is @code{off},
14484@value{GDBN} will delay recognition of exceptions, and may ignore some
14485exceptions which seem to be caused by internal Cygwin DLL
14486``bookkeeping''. This option is meant primarily for debugging the
14487Cygwin DLL itself; the default value is @code{off} to avoid annoying
14488@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14489
14490@kindex show cygwin-exceptions
14491@item show cygwin-exceptions
e16b02ee
EZ
14492Displays whether @value{GDBN} will break on exceptions that happen
14493inside the Cygwin DLL itself.
be90c084 14494
b383017d 14495@kindex set new-console
78c47bea 14496@item set new-console @var{mode}
b383017d 14497If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14498be started in a new console on next start.
14499If @var{mode} is @code{off}i, the debuggee will
14500be started in the same console as the debugger.
14501
14502@kindex show new-console
14503@item show new-console
14504Displays whether a new console is used
14505when the debuggee is started.
14506
14507@kindex set new-group
14508@item set new-group @var{mode}
14509This boolean value controls whether the debuggee should
14510start a new group or stay in the same group as the debugger.
14511This affects the way the Windows OS handles
c8aa23ab 14512@samp{Ctrl-C}.
78c47bea
PM
14513
14514@kindex show new-group
14515@item show new-group
14516Displays current value of new-group boolean.
14517
14518@kindex set debugevents
14519@item set debugevents
219eec71
EZ
14520This boolean value adds debug output concerning kernel events related
14521to the debuggee seen by the debugger. This includes events that
14522signal thread and process creation and exit, DLL loading and
14523unloading, console interrupts, and debugging messages produced by the
14524Windows @code{OutputDebugString} API call.
78c47bea
PM
14525
14526@kindex set debugexec
14527@item set debugexec
b383017d 14528This boolean value adds debug output concerning execute events
219eec71 14529(such as resume thread) seen by the debugger.
78c47bea
PM
14530
14531@kindex set debugexceptions
14532@item set debugexceptions
219eec71
EZ
14533This boolean value adds debug output concerning exceptions in the
14534debuggee seen by the debugger.
78c47bea
PM
14535
14536@kindex set debugmemory
14537@item set debugmemory
219eec71
EZ
14538This boolean value adds debug output concerning debuggee memory reads
14539and writes by the debugger.
78c47bea
PM
14540
14541@kindex set shell
14542@item set shell
14543This boolean values specifies whether the debuggee is called
14544via a shell or directly (default value is on).
14545
14546@kindex show shell
14547@item show shell
14548Displays if the debuggee will be started with a shell.
14549
14550@end table
14551
be448670 14552@menu
79a6e687 14553* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14554@end menu
14555
79a6e687
BW
14556@node Non-debug DLL Symbols
14557@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14558@cindex DLLs with no debugging symbols
14559@cindex Minimal symbols and DLLs
14560
14561Very often on windows, some of the DLLs that your program relies on do
14562not include symbolic debugging information (for example,
db2e3e2e 14563@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14564symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14565information contained in the DLL's export table. This section
be448670
CF
14566describes working with such symbols, known internally to @value{GDBN} as
14567``minimal symbols''.
14568
14569Note that before the debugged program has started execution, no DLLs
db2e3e2e 14570will have been loaded. The easiest way around this problem is simply to
be448670 14571start the program --- either by setting a breakpoint or letting the
db2e3e2e 14572program run once to completion. It is also possible to force
be448670 14573@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14574see the shared library information in @ref{Files}, or the
db2e3e2e 14575@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14576explicitly loading symbols from a DLL with no debugging information will
14577cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14578which may adversely affect symbol lookup performance.
14579
79a6e687 14580@subsubsection DLL Name Prefixes
be448670
CF
14581
14582In keeping with the naming conventions used by the Microsoft debugging
14583tools, DLL export symbols are made available with a prefix based on the
14584DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14585also entered into the symbol table, so @code{CreateFileA} is often
14586sufficient. In some cases there will be name clashes within a program
14587(particularly if the executable itself includes full debugging symbols)
14588necessitating the use of the fully qualified name when referring to the
14589contents of the DLL. Use single-quotes around the name to avoid the
14590exclamation mark (``!'') being interpreted as a language operator.
14591
14592Note that the internal name of the DLL may be all upper-case, even
14593though the file name of the DLL is lower-case, or vice-versa. Since
14594symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14595some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14596@code{info variables} commands or even @code{maint print msymbols}
14597(@pxref{Symbols}). Here's an example:
be448670
CF
14598
14599@smallexample
f7dc1244 14600(@value{GDBP}) info function CreateFileA
be448670
CF
14601All functions matching regular expression "CreateFileA":
14602
14603Non-debugging symbols:
146040x77e885f4 CreateFileA
146050x77e885f4 KERNEL32!CreateFileA
14606@end smallexample
14607
14608@smallexample
f7dc1244 14609(@value{GDBP}) info function !
be448670
CF
14610All functions matching regular expression "!":
14611
14612Non-debugging symbols:
146130x6100114c cygwin1!__assert
146140x61004034 cygwin1!_dll_crt0@@0
146150x61004240 cygwin1!dll_crt0(per_process *)
14616[etc...]
14617@end smallexample
14618
79a6e687 14619@subsubsection Working with Minimal Symbols
be448670
CF
14620
14621Symbols extracted from a DLL's export table do not contain very much
14622type information. All that @value{GDBN} can do is guess whether a symbol
14623refers to a function or variable depending on the linker section that
14624contains the symbol. Also note that the actual contents of the memory
14625contained in a DLL are not available unless the program is running. This
14626means that you cannot examine the contents of a variable or disassemble
14627a function within a DLL without a running program.
14628
14629Variables are generally treated as pointers and dereferenced
14630automatically. For this reason, it is often necessary to prefix a
14631variable name with the address-of operator (``&'') and provide explicit
14632type information in the command. Here's an example of the type of
14633problem:
14634
14635@smallexample
f7dc1244 14636(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14637$1 = 268572168
14638@end smallexample
14639
14640@smallexample
f7dc1244 14641(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
146420x10021610: "\230y\""
14643@end smallexample
14644
14645And two possible solutions:
14646
14647@smallexample
f7dc1244 14648(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14649$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14650@end smallexample
14651
14652@smallexample
f7dc1244 14653(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 146540x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14655(@value{GDBP}) x/x 0x10021608
be448670 146560x10021608: 0x0022fd98
f7dc1244 14657(@value{GDBP}) x/s 0x0022fd98
be448670
CF
146580x22fd98: "/cygdrive/c/mydirectory/myprogram"
14659@end smallexample
14660
14661Setting a break point within a DLL is possible even before the program
14662starts execution. However, under these circumstances, @value{GDBN} can't
14663examine the initial instructions of the function in order to skip the
14664function's frame set-up code. You can work around this by using ``*&''
14665to set the breakpoint at a raw memory address:
14666
14667@smallexample
f7dc1244 14668(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14669Breakpoint 1 at 0x1e04eff0
14670@end smallexample
14671
14672The author of these extensions is not entirely convinced that setting a
14673break point within a shared DLL like @file{kernel32.dll} is completely
14674safe.
14675
14d6dd68 14676@node Hurd Native
79a6e687 14677@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14678@cindex @sc{gnu} Hurd debugging
14679
14680This subsection describes @value{GDBN} commands specific to the
14681@sc{gnu} Hurd native debugging.
14682
14683@table @code
14684@item set signals
14685@itemx set sigs
14686@kindex set signals@r{, Hurd command}
14687@kindex set sigs@r{, Hurd command}
14688This command toggles the state of inferior signal interception by
14689@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14690affected by this command. @code{sigs} is a shorthand alias for
14691@code{signals}.
14692
14693@item show signals
14694@itemx show sigs
14695@kindex show signals@r{, Hurd command}
14696@kindex show sigs@r{, Hurd command}
14697Show the current state of intercepting inferior's signals.
14698
14699@item set signal-thread
14700@itemx set sigthread
14701@kindex set signal-thread
14702@kindex set sigthread
14703This command tells @value{GDBN} which thread is the @code{libc} signal
14704thread. That thread is run when a signal is delivered to a running
14705process. @code{set sigthread} is the shorthand alias of @code{set
14706signal-thread}.
14707
14708@item show signal-thread
14709@itemx show sigthread
14710@kindex show signal-thread
14711@kindex show sigthread
14712These two commands show which thread will run when the inferior is
14713delivered a signal.
14714
14715@item set stopped
14716@kindex set stopped@r{, Hurd command}
14717This commands tells @value{GDBN} that the inferior process is stopped,
14718as with the @code{SIGSTOP} signal. The stopped process can be
14719continued by delivering a signal to it.
14720
14721@item show stopped
14722@kindex show stopped@r{, Hurd command}
14723This command shows whether @value{GDBN} thinks the debuggee is
14724stopped.
14725
14726@item set exceptions
14727@kindex set exceptions@r{, Hurd command}
14728Use this command to turn off trapping of exceptions in the inferior.
14729When exception trapping is off, neither breakpoints nor
14730single-stepping will work. To restore the default, set exception
14731trapping on.
14732
14733@item show exceptions
14734@kindex show exceptions@r{, Hurd command}
14735Show the current state of trapping exceptions in the inferior.
14736
14737@item set task pause
14738@kindex set task@r{, Hurd commands}
14739@cindex task attributes (@sc{gnu} Hurd)
14740@cindex pause current task (@sc{gnu} Hurd)
14741This command toggles task suspension when @value{GDBN} has control.
14742Setting it to on takes effect immediately, and the task is suspended
14743whenever @value{GDBN} gets control. Setting it to off will take
14744effect the next time the inferior is continued. If this option is set
14745to off, you can use @code{set thread default pause on} or @code{set
14746thread pause on} (see below) to pause individual threads.
14747
14748@item show task pause
14749@kindex show task@r{, Hurd commands}
14750Show the current state of task suspension.
14751
14752@item set task detach-suspend-count
14753@cindex task suspend count
14754@cindex detach from task, @sc{gnu} Hurd
14755This command sets the suspend count the task will be left with when
14756@value{GDBN} detaches from it.
14757
14758@item show task detach-suspend-count
14759Show the suspend count the task will be left with when detaching.
14760
14761@item set task exception-port
14762@itemx set task excp
14763@cindex task exception port, @sc{gnu} Hurd
14764This command sets the task exception port to which @value{GDBN} will
14765forward exceptions. The argument should be the value of the @dfn{send
14766rights} of the task. @code{set task excp} is a shorthand alias.
14767
14768@item set noninvasive
14769@cindex noninvasive task options
14770This command switches @value{GDBN} to a mode that is the least
14771invasive as far as interfering with the inferior is concerned. This
14772is the same as using @code{set task pause}, @code{set exceptions}, and
14773@code{set signals} to values opposite to the defaults.
14774
14775@item info send-rights
14776@itemx info receive-rights
14777@itemx info port-rights
14778@itemx info port-sets
14779@itemx info dead-names
14780@itemx info ports
14781@itemx info psets
14782@cindex send rights, @sc{gnu} Hurd
14783@cindex receive rights, @sc{gnu} Hurd
14784@cindex port rights, @sc{gnu} Hurd
14785@cindex port sets, @sc{gnu} Hurd
14786@cindex dead names, @sc{gnu} Hurd
14787These commands display information about, respectively, send rights,
14788receive rights, port rights, port sets, and dead names of a task.
14789There are also shorthand aliases: @code{info ports} for @code{info
14790port-rights} and @code{info psets} for @code{info port-sets}.
14791
14792@item set thread pause
14793@kindex set thread@r{, Hurd command}
14794@cindex thread properties, @sc{gnu} Hurd
14795@cindex pause current thread (@sc{gnu} Hurd)
14796This command toggles current thread suspension when @value{GDBN} has
14797control. Setting it to on takes effect immediately, and the current
14798thread is suspended whenever @value{GDBN} gets control. Setting it to
14799off will take effect the next time the inferior is continued.
14800Normally, this command has no effect, since when @value{GDBN} has
14801control, the whole task is suspended. However, if you used @code{set
14802task pause off} (see above), this command comes in handy to suspend
14803only the current thread.
14804
14805@item show thread pause
14806@kindex show thread@r{, Hurd command}
14807This command shows the state of current thread suspension.
14808
14809@item set thread run
d3e8051b 14810This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14811
14812@item show thread run
14813Show whether the current thread is allowed to run.
14814
14815@item set thread detach-suspend-count
14816@cindex thread suspend count, @sc{gnu} Hurd
14817@cindex detach from thread, @sc{gnu} Hurd
14818This command sets the suspend count @value{GDBN} will leave on a
14819thread when detaching. This number is relative to the suspend count
14820found by @value{GDBN} when it notices the thread; use @code{set thread
14821takeover-suspend-count} to force it to an absolute value.
14822
14823@item show thread detach-suspend-count
14824Show the suspend count @value{GDBN} will leave on the thread when
14825detaching.
14826
14827@item set thread exception-port
14828@itemx set thread excp
14829Set the thread exception port to which to forward exceptions. This
14830overrides the port set by @code{set task exception-port} (see above).
14831@code{set thread excp} is the shorthand alias.
14832
14833@item set thread takeover-suspend-count
14834Normally, @value{GDBN}'s thread suspend counts are relative to the
14835value @value{GDBN} finds when it notices each thread. This command
14836changes the suspend counts to be absolute instead.
14837
14838@item set thread default
14839@itemx show thread default
14840@cindex thread default settings, @sc{gnu} Hurd
14841Each of the above @code{set thread} commands has a @code{set thread
14842default} counterpart (e.g., @code{set thread default pause}, @code{set
14843thread default exception-port}, etc.). The @code{thread default}
14844variety of commands sets the default thread properties for all
14845threads; you can then change the properties of individual threads with
14846the non-default commands.
14847@end table
14848
14849
a64548ea
EZ
14850@node Neutrino
14851@subsection QNX Neutrino
14852@cindex QNX Neutrino
14853
14854@value{GDBN} provides the following commands specific to the QNX
14855Neutrino target:
14856
14857@table @code
14858@item set debug nto-debug
14859@kindex set debug nto-debug
14860When set to on, enables debugging messages specific to the QNX
14861Neutrino support.
14862
14863@item show debug nto-debug
14864@kindex show debug nto-debug
14865Show the current state of QNX Neutrino messages.
14866@end table
14867
14868
8e04817f
AC
14869@node Embedded OS
14870@section Embedded Operating Systems
104c1213 14871
8e04817f
AC
14872This section describes configurations involving the debugging of
14873embedded operating systems that are available for several different
14874architectures.
d4f3574e 14875
8e04817f
AC
14876@menu
14877* VxWorks:: Using @value{GDBN} with VxWorks
14878@end menu
104c1213 14879
8e04817f
AC
14880@value{GDBN} includes the ability to debug programs running on
14881various real-time operating systems.
104c1213 14882
8e04817f
AC
14883@node VxWorks
14884@subsection Using @value{GDBN} with VxWorks
104c1213 14885
8e04817f 14886@cindex VxWorks
104c1213 14887
8e04817f 14888@table @code
104c1213 14889
8e04817f
AC
14890@kindex target vxworks
14891@item target vxworks @var{machinename}
14892A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14893is the target system's machine name or IP address.
104c1213 14894
8e04817f 14895@end table
104c1213 14896
8e04817f
AC
14897On VxWorks, @code{load} links @var{filename} dynamically on the
14898current target system as well as adding its symbols in @value{GDBN}.
104c1213 14899
8e04817f
AC
14900@value{GDBN} enables developers to spawn and debug tasks running on networked
14901VxWorks targets from a Unix host. Already-running tasks spawned from
14902the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14903both the Unix host and on the VxWorks target. The program
14904@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14905installed with the name @code{vxgdb}, to distinguish it from a
14906@value{GDBN} for debugging programs on the host itself.)
104c1213 14907
8e04817f
AC
14908@table @code
14909@item VxWorks-timeout @var{args}
14910@kindex vxworks-timeout
14911All VxWorks-based targets now support the option @code{vxworks-timeout}.
14912This option is set by the user, and @var{args} represents the number of
14913seconds @value{GDBN} waits for responses to rpc's. You might use this if
14914your VxWorks target is a slow software simulator or is on the far side
14915of a thin network line.
14916@end table
104c1213 14917
8e04817f
AC
14918The following information on connecting to VxWorks was current when
14919this manual was produced; newer releases of VxWorks may use revised
14920procedures.
104c1213 14921
4644b6e3 14922@findex INCLUDE_RDB
8e04817f
AC
14923To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14924to include the remote debugging interface routines in the VxWorks
14925library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14926VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14927kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14928source debugging task @code{tRdbTask} when VxWorks is booted. For more
14929information on configuring and remaking VxWorks, see the manufacturer's
14930manual.
14931@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14932
8e04817f
AC
14933Once you have included @file{rdb.a} in your VxWorks system image and set
14934your Unix execution search path to find @value{GDBN}, you are ready to
14935run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14936@code{vxgdb}, depending on your installation).
104c1213 14937
8e04817f 14938@value{GDBN} comes up showing the prompt:
104c1213 14939
474c8240 14940@smallexample
8e04817f 14941(vxgdb)
474c8240 14942@end smallexample
104c1213 14943
8e04817f
AC
14944@menu
14945* VxWorks Connection:: Connecting to VxWorks
14946* VxWorks Download:: VxWorks download
14947* VxWorks Attach:: Running tasks
14948@end menu
104c1213 14949
8e04817f
AC
14950@node VxWorks Connection
14951@subsubsection Connecting to VxWorks
104c1213 14952
8e04817f
AC
14953The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14954network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14955
474c8240 14956@smallexample
8e04817f 14957(vxgdb) target vxworks tt
474c8240 14958@end smallexample
104c1213 14959
8e04817f
AC
14960@need 750
14961@value{GDBN} displays messages like these:
104c1213 14962
8e04817f
AC
14963@smallexample
14964Attaching remote machine across net...
14965Connected to tt.
14966@end smallexample
104c1213 14967
8e04817f
AC
14968@need 1000
14969@value{GDBN} then attempts to read the symbol tables of any object modules
14970loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14971these files by searching the directories listed in the command search
79a6e687 14972path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14973to find an object file, it displays a message such as:
5d161b24 14974
474c8240 14975@smallexample
8e04817f 14976prog.o: No such file or directory.
474c8240 14977@end smallexample
104c1213 14978
8e04817f
AC
14979When this happens, add the appropriate directory to the search path with
14980the @value{GDBN} command @code{path}, and execute the @code{target}
14981command again.
104c1213 14982
8e04817f 14983@node VxWorks Download
79a6e687 14984@subsubsection VxWorks Download
104c1213 14985
8e04817f
AC
14986@cindex download to VxWorks
14987If you have connected to the VxWorks target and you want to debug an
14988object that has not yet been loaded, you can use the @value{GDBN}
14989@code{load} command to download a file from Unix to VxWorks
14990incrementally. The object file given as an argument to the @code{load}
14991command is actually opened twice: first by the VxWorks target in order
14992to download the code, then by @value{GDBN} in order to read the symbol
14993table. This can lead to problems if the current working directories on
14994the two systems differ. If both systems have NFS mounted the same
14995filesystems, you can avoid these problems by using absolute paths.
14996Otherwise, it is simplest to set the working directory on both systems
14997to the directory in which the object file resides, and then to reference
14998the file by its name, without any path. For instance, a program
14999@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
15000and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
15001program, type this on VxWorks:
104c1213 15002
474c8240 15003@smallexample
8e04817f 15004-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 15005@end smallexample
104c1213 15006
8e04817f
AC
15007@noindent
15008Then, in @value{GDBN}, type:
104c1213 15009
474c8240 15010@smallexample
8e04817f
AC
15011(vxgdb) cd @var{hostpath}/vw/demo/rdb
15012(vxgdb) load prog.o
474c8240 15013@end smallexample
104c1213 15014
8e04817f 15015@value{GDBN} displays a response similar to this:
104c1213 15016
8e04817f
AC
15017@smallexample
15018Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
15019@end smallexample
104c1213 15020
8e04817f
AC
15021You can also use the @code{load} command to reload an object module
15022after editing and recompiling the corresponding source file. Note that
15023this makes @value{GDBN} delete all currently-defined breakpoints,
15024auto-displays, and convenience variables, and to clear the value
15025history. (This is necessary in order to preserve the integrity of
15026debugger's data structures that reference the target system's symbol
15027table.)
104c1213 15028
8e04817f 15029@node VxWorks Attach
79a6e687 15030@subsubsection Running Tasks
104c1213
JM
15031
15032@cindex running VxWorks tasks
15033You can also attach to an existing task using the @code{attach} command as
15034follows:
15035
474c8240 15036@smallexample
104c1213 15037(vxgdb) attach @var{task}
474c8240 15038@end smallexample
104c1213
JM
15039
15040@noindent
15041where @var{task} is the VxWorks hexadecimal task ID. The task can be running
15042or suspended when you attach to it. Running tasks are suspended at
15043the time of attachment.
15044
6d2ebf8b 15045@node Embedded Processors
104c1213
JM
15046@section Embedded Processors
15047
15048This section goes into details specific to particular embedded
15049configurations.
15050
c45da7e6
EZ
15051@cindex send command to simulator
15052Whenever a specific embedded processor has a simulator, @value{GDBN}
15053allows to send an arbitrary command to the simulator.
15054
15055@table @code
15056@item sim @var{command}
15057@kindex sim@r{, a command}
15058Send an arbitrary @var{command} string to the simulator. Consult the
15059documentation for the specific simulator in use for information about
15060acceptable commands.
15061@end table
15062
7d86b5d5 15063
104c1213 15064@menu
c45da7e6 15065* ARM:: ARM RDI
172c2a43 15066* M32R/D:: Renesas M32R/D
104c1213 15067* M68K:: Motorola M68K
104c1213 15068* MIPS Embedded:: MIPS Embedded
a37295f9 15069* OpenRISC 1000:: OpenRisc 1000
104c1213 15070* PA:: HP PA Embedded
4acd40f3 15071* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
15072* Sparclet:: Tsqware Sparclet
15073* Sparclite:: Fujitsu Sparclite
104c1213 15074* Z8000:: Zilog Z8000
a64548ea
EZ
15075* AVR:: Atmel AVR
15076* CRIS:: CRIS
15077* Super-H:: Renesas Super-H
104c1213
JM
15078@end menu
15079
6d2ebf8b 15080@node ARM
104c1213 15081@subsection ARM
c45da7e6 15082@cindex ARM RDI
104c1213
JM
15083
15084@table @code
8e04817f
AC
15085@kindex target rdi
15086@item target rdi @var{dev}
15087ARM Angel monitor, via RDI library interface to ADP protocol. You may
15088use this target to communicate with both boards running the Angel
15089monitor, or with the EmbeddedICE JTAG debug device.
15090
15091@kindex target rdp
15092@item target rdp @var{dev}
15093ARM Demon monitor.
15094
15095@end table
15096
e2f4edfd
EZ
15097@value{GDBN} provides the following ARM-specific commands:
15098
15099@table @code
15100@item set arm disassembler
15101@kindex set arm
15102This commands selects from a list of disassembly styles. The
15103@code{"std"} style is the standard style.
15104
15105@item show arm disassembler
15106@kindex show arm
15107Show the current disassembly style.
15108
15109@item set arm apcs32
15110@cindex ARM 32-bit mode
15111This command toggles ARM operation mode between 32-bit and 26-bit.
15112
15113@item show arm apcs32
15114Display the current usage of the ARM 32-bit mode.
15115
15116@item set arm fpu @var{fputype}
15117This command sets the ARM floating-point unit (FPU) type. The
15118argument @var{fputype} can be one of these:
15119
15120@table @code
15121@item auto
15122Determine the FPU type by querying the OS ABI.
15123@item softfpa
15124Software FPU, with mixed-endian doubles on little-endian ARM
15125processors.
15126@item fpa
15127GCC-compiled FPA co-processor.
15128@item softvfp
15129Software FPU with pure-endian doubles.
15130@item vfp
15131VFP co-processor.
15132@end table
15133
15134@item show arm fpu
15135Show the current type of the FPU.
15136
15137@item set arm abi
15138This command forces @value{GDBN} to use the specified ABI.
15139
15140@item show arm abi
15141Show the currently used ABI.
15142
0428b8f5
DJ
15143@item set arm fallback-mode (arm|thumb|auto)
15144@value{GDBN} uses the symbol table, when available, to determine
15145whether instructions are ARM or Thumb. This command controls
15146@value{GDBN}'s default behavior when the symbol table is not
15147available. The default is @samp{auto}, which causes @value{GDBN} to
15148use the current execution mode (from the @code{T} bit in the @code{CPSR}
15149register).
15150
15151@item show arm fallback-mode
15152Show the current fallback instruction mode.
15153
15154@item set arm force-mode (arm|thumb|auto)
15155This command overrides use of the symbol table to determine whether
15156instructions are ARM or Thumb. The default is @samp{auto}, which
15157causes @value{GDBN} to use the symbol table and then the setting
15158of @samp{set arm fallback-mode}.
15159
15160@item show arm force-mode
15161Show the current forced instruction mode.
15162
e2f4edfd
EZ
15163@item set debug arm
15164Toggle whether to display ARM-specific debugging messages from the ARM
15165target support subsystem.
15166
15167@item show debug arm
15168Show whether ARM-specific debugging messages are enabled.
15169@end table
15170
c45da7e6
EZ
15171The following commands are available when an ARM target is debugged
15172using the RDI interface:
15173
15174@table @code
15175@item rdilogfile @r{[}@var{file}@r{]}
15176@kindex rdilogfile
15177@cindex ADP (Angel Debugger Protocol) logging
15178Set the filename for the ADP (Angel Debugger Protocol) packet log.
15179With an argument, sets the log file to the specified @var{file}. With
15180no argument, show the current log file name. The default log file is
15181@file{rdi.log}.
15182
15183@item rdilogenable @r{[}@var{arg}@r{]}
15184@kindex rdilogenable
15185Control logging of ADP packets. With an argument of 1 or @code{"yes"}
15186enables logging, with an argument 0 or @code{"no"} disables it. With
15187no arguments displays the current setting. When logging is enabled,
15188ADP packets exchanged between @value{GDBN} and the RDI target device
15189are logged to a file.
15190
15191@item set rdiromatzero
15192@kindex set rdiromatzero
15193@cindex ROM at zero address, RDI
15194Tell @value{GDBN} whether the target has ROM at address 0. If on,
15195vector catching is disabled, so that zero address can be used. If off
15196(the default), vector catching is enabled. For this command to take
15197effect, it needs to be invoked prior to the @code{target rdi} command.
15198
15199@item show rdiromatzero
15200@kindex show rdiromatzero
15201Show the current setting of ROM at zero address.
15202
15203@item set rdiheartbeat
15204@kindex set rdiheartbeat
15205@cindex RDI heartbeat
15206Enable or disable RDI heartbeat packets. It is not recommended to
15207turn on this option, since it confuses ARM and EPI JTAG interface, as
15208well as the Angel monitor.
15209
15210@item show rdiheartbeat
15211@kindex show rdiheartbeat
15212Show the setting of RDI heartbeat packets.
15213@end table
15214
e2f4edfd 15215
8e04817f 15216@node M32R/D
ba04e063 15217@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
15218
15219@table @code
8e04817f
AC
15220@kindex target m32r
15221@item target m32r @var{dev}
172c2a43 15222Renesas M32R/D ROM monitor.
8e04817f 15223
fb3e19c0
KI
15224@kindex target m32rsdi
15225@item target m32rsdi @var{dev}
15226Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
15227@end table
15228
15229The following @value{GDBN} commands are specific to the M32R monitor:
15230
15231@table @code
15232@item set download-path @var{path}
15233@kindex set download-path
15234@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 15235Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
15236
15237@item show download-path
15238@kindex show download-path
15239Show the default path for downloadable @sc{srec} files.
fb3e19c0 15240
721c2651
EZ
15241@item set board-address @var{addr}
15242@kindex set board-address
15243@cindex M32-EVA target board address
15244Set the IP address for the M32R-EVA target board.
15245
15246@item show board-address
15247@kindex show board-address
15248Show the current IP address of the target board.
15249
15250@item set server-address @var{addr}
15251@kindex set server-address
15252@cindex download server address (M32R)
15253Set the IP address for the download server, which is the @value{GDBN}'s
15254host machine.
15255
15256@item show server-address
15257@kindex show server-address
15258Display the IP address of the download server.
15259
15260@item upload @r{[}@var{file}@r{]}
15261@kindex upload@r{, M32R}
15262Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
15263upload capability. If no @var{file} argument is given, the current
15264executable file is uploaded.
15265
15266@item tload @r{[}@var{file}@r{]}
15267@kindex tload@r{, M32R}
15268Test the @code{upload} command.
8e04817f
AC
15269@end table
15270
ba04e063
EZ
15271The following commands are available for M32R/SDI:
15272
15273@table @code
15274@item sdireset
15275@kindex sdireset
15276@cindex reset SDI connection, M32R
15277This command resets the SDI connection.
15278
15279@item sdistatus
15280@kindex sdistatus
15281This command shows the SDI connection status.
15282
15283@item debug_chaos
15284@kindex debug_chaos
15285@cindex M32R/Chaos debugging
15286Instructs the remote that M32R/Chaos debugging is to be used.
15287
15288@item use_debug_dma
15289@kindex use_debug_dma
15290Instructs the remote to use the DEBUG_DMA method of accessing memory.
15291
15292@item use_mon_code
15293@kindex use_mon_code
15294Instructs the remote to use the MON_CODE method of accessing memory.
15295
15296@item use_ib_break
15297@kindex use_ib_break
15298Instructs the remote to set breakpoints by IB break.
15299
15300@item use_dbt_break
15301@kindex use_dbt_break
15302Instructs the remote to set breakpoints by DBT.
15303@end table
15304
8e04817f
AC
15305@node M68K
15306@subsection M68k
15307
7ce59000
DJ
15308The Motorola m68k configuration includes ColdFire support, and a
15309target command for the following ROM monitor.
8e04817f
AC
15310
15311@table @code
15312
8e04817f
AC
15313@kindex target dbug
15314@item target dbug @var{dev}
15315dBUG ROM monitor for Motorola ColdFire.
15316
8e04817f
AC
15317@end table
15318
8e04817f
AC
15319@node MIPS Embedded
15320@subsection MIPS Embedded
15321
15322@cindex MIPS boards
15323@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15324MIPS board attached to a serial line. This is available when
15325you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15326
8e04817f
AC
15327@need 1000
15328Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15329
8e04817f
AC
15330@table @code
15331@item target mips @var{port}
15332@kindex target mips @var{port}
15333To run a program on the board, start up @code{@value{GDBP}} with the
15334name of your program as the argument. To connect to the board, use the
15335command @samp{target mips @var{port}}, where @var{port} is the name of
15336the serial port connected to the board. If the program has not already
15337been downloaded to the board, you may use the @code{load} command to
15338download it. You can then use all the usual @value{GDBN} commands.
104c1213 15339
8e04817f
AC
15340For example, this sequence connects to the target board through a serial
15341port, and loads and runs a program called @var{prog} through the
15342debugger:
104c1213 15343
474c8240 15344@smallexample
8e04817f
AC
15345host$ @value{GDBP} @var{prog}
15346@value{GDBN} is free software and @dots{}
15347(@value{GDBP}) target mips /dev/ttyb
15348(@value{GDBP}) load @var{prog}
15349(@value{GDBP}) run
474c8240 15350@end smallexample
104c1213 15351
8e04817f
AC
15352@item target mips @var{hostname}:@var{portnumber}
15353On some @value{GDBN} host configurations, you can specify a TCP
15354connection (for instance, to a serial line managed by a terminal
15355concentrator) instead of a serial port, using the syntax
15356@samp{@var{hostname}:@var{portnumber}}.
104c1213 15357
8e04817f
AC
15358@item target pmon @var{port}
15359@kindex target pmon @var{port}
15360PMON ROM monitor.
104c1213 15361
8e04817f
AC
15362@item target ddb @var{port}
15363@kindex target ddb @var{port}
15364NEC's DDB variant of PMON for Vr4300.
104c1213 15365
8e04817f
AC
15366@item target lsi @var{port}
15367@kindex target lsi @var{port}
15368LSI variant of PMON.
104c1213 15369
8e04817f
AC
15370@kindex target r3900
15371@item target r3900 @var{dev}
15372Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15373
8e04817f
AC
15374@kindex target array
15375@item target array @var{dev}
15376Array Tech LSI33K RAID controller board.
104c1213 15377
8e04817f 15378@end table
104c1213 15379
104c1213 15380
8e04817f
AC
15381@noindent
15382@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15383
8e04817f 15384@table @code
8e04817f
AC
15385@item set mipsfpu double
15386@itemx set mipsfpu single
15387@itemx set mipsfpu none
a64548ea 15388@itemx set mipsfpu auto
8e04817f
AC
15389@itemx show mipsfpu
15390@kindex set mipsfpu
15391@kindex show mipsfpu
15392@cindex MIPS remote floating point
15393@cindex floating point, MIPS remote
15394If your target board does not support the MIPS floating point
15395coprocessor, you should use the command @samp{set mipsfpu none} (if you
15396need this, you may wish to put the command in your @value{GDBN} init
15397file). This tells @value{GDBN} how to find the return value of
15398functions which return floating point values. It also allows
15399@value{GDBN} to avoid saving the floating point registers when calling
15400functions on the board. If you are using a floating point coprocessor
15401with only single precision floating point support, as on the @sc{r4650}
15402processor, use the command @samp{set mipsfpu single}. The default
15403double precision floating point coprocessor may be selected using
15404@samp{set mipsfpu double}.
104c1213 15405
8e04817f
AC
15406In previous versions the only choices were double precision or no
15407floating point, so @samp{set mipsfpu on} will select double precision
15408and @samp{set mipsfpu off} will select no floating point.
104c1213 15409
8e04817f
AC
15410As usual, you can inquire about the @code{mipsfpu} variable with
15411@samp{show mipsfpu}.
104c1213 15412
8e04817f
AC
15413@item set timeout @var{seconds}
15414@itemx set retransmit-timeout @var{seconds}
15415@itemx show timeout
15416@itemx show retransmit-timeout
15417@cindex @code{timeout}, MIPS protocol
15418@cindex @code{retransmit-timeout}, MIPS protocol
15419@kindex set timeout
15420@kindex show timeout
15421@kindex set retransmit-timeout
15422@kindex show retransmit-timeout
15423You can control the timeout used while waiting for a packet, in the MIPS
15424remote protocol, with the @code{set timeout @var{seconds}} command. The
15425default is 5 seconds. Similarly, you can control the timeout used while
15426waiting for an acknowledgement of a packet with the @code{set
15427retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15428You can inspect both values with @code{show timeout} and @code{show
15429retransmit-timeout}. (These commands are @emph{only} available when
15430@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15431
8e04817f
AC
15432The timeout set by @code{set timeout} does not apply when @value{GDBN}
15433is waiting for your program to stop. In that case, @value{GDBN} waits
15434forever because it has no way of knowing how long the program is going
15435to run before stopping.
ba04e063
EZ
15436
15437@item set syn-garbage-limit @var{num}
15438@kindex set syn-garbage-limit@r{, MIPS remote}
15439@cindex synchronize with remote MIPS target
15440Limit the maximum number of characters @value{GDBN} should ignore when
15441it tries to synchronize with the remote target. The default is 10
15442characters. Setting the limit to -1 means there's no limit.
15443
15444@item show syn-garbage-limit
15445@kindex show syn-garbage-limit@r{, MIPS remote}
15446Show the current limit on the number of characters to ignore when
15447trying to synchronize with the remote system.
15448
15449@item set monitor-prompt @var{prompt}
15450@kindex set monitor-prompt@r{, MIPS remote}
15451@cindex remote monitor prompt
15452Tell @value{GDBN} to expect the specified @var{prompt} string from the
15453remote monitor. The default depends on the target:
15454@table @asis
15455@item pmon target
15456@samp{PMON}
15457@item ddb target
15458@samp{NEC010}
15459@item lsi target
15460@samp{PMON>}
15461@end table
15462
15463@item show monitor-prompt
15464@kindex show monitor-prompt@r{, MIPS remote}
15465Show the current strings @value{GDBN} expects as the prompt from the
15466remote monitor.
15467
15468@item set monitor-warnings
15469@kindex set monitor-warnings@r{, MIPS remote}
15470Enable or disable monitor warnings about hardware breakpoints. This
15471has effect only for the @code{lsi} target. When on, @value{GDBN} will
15472display warning messages whose codes are returned by the @code{lsi}
15473PMON monitor for breakpoint commands.
15474
15475@item show monitor-warnings
15476@kindex show monitor-warnings@r{, MIPS remote}
15477Show the current setting of printing monitor warnings.
15478
15479@item pmon @var{command}
15480@kindex pmon@r{, MIPS remote}
15481@cindex send PMON command
15482This command allows sending an arbitrary @var{command} string to the
15483monitor. The monitor must be in debug mode for this to work.
8e04817f 15484@end table
104c1213 15485
a37295f9
MM
15486@node OpenRISC 1000
15487@subsection OpenRISC 1000
15488@cindex OpenRISC 1000
15489
15490@cindex or1k boards
15491See OR1k Architecture document (@uref{www.opencores.org}) for more information
15492about platform and commands.
15493
15494@table @code
15495
15496@kindex target jtag
15497@item target jtag jtag://@var{host}:@var{port}
15498
15499Connects to remote JTAG server.
15500JTAG remote server can be either an or1ksim or JTAG server,
15501connected via parallel port to the board.
15502
15503Example: @code{target jtag jtag://localhost:9999}
15504
15505@kindex or1ksim
15506@item or1ksim @var{command}
15507If connected to @code{or1ksim} OpenRISC 1000 Architectural
15508Simulator, proprietary commands can be executed.
15509
15510@kindex info or1k spr
15511@item info or1k spr
15512Displays spr groups.
15513
15514@item info or1k spr @var{group}
15515@itemx info or1k spr @var{groupno}
15516Displays register names in selected group.
15517
15518@item info or1k spr @var{group} @var{register}
15519@itemx info or1k spr @var{register}
15520@itemx info or1k spr @var{groupno} @var{registerno}
15521@itemx info or1k spr @var{registerno}
15522Shows information about specified spr register.
15523
15524@kindex spr
15525@item spr @var{group} @var{register} @var{value}
15526@itemx spr @var{register @var{value}}
15527@itemx spr @var{groupno} @var{registerno @var{value}}
15528@itemx spr @var{registerno @var{value}}
15529Writes @var{value} to specified spr register.
15530@end table
15531
15532Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15533It is very similar to @value{GDBN} trace, except it does not interfere with normal
15534program execution and is thus much faster. Hardware breakpoints/watchpoint
15535triggers can be set using:
15536@table @code
15537@item $LEA/$LDATA
15538Load effective address/data
15539@item $SEA/$SDATA
15540Store effective address/data
15541@item $AEA/$ADATA
15542Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15543@item $FETCH
15544Fetch data
15545@end table
15546
15547When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15548@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15549
15550@code{htrace} commands:
15551@cindex OpenRISC 1000 htrace
15552@table @code
15553@kindex hwatch
15554@item hwatch @var{conditional}
d3e8051b 15555Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15556or Data. For example:
15557
15558@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15559
15560@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15561
4644b6e3 15562@kindex htrace
a37295f9
MM
15563@item htrace info
15564Display information about current HW trace configuration.
15565
a37295f9
MM
15566@item htrace trigger @var{conditional}
15567Set starting criteria for HW trace.
15568
a37295f9
MM
15569@item htrace qualifier @var{conditional}
15570Set acquisition qualifier for HW trace.
15571
a37295f9
MM
15572@item htrace stop @var{conditional}
15573Set HW trace stopping criteria.
15574
f153cc92 15575@item htrace record [@var{data}]*
a37295f9
MM
15576Selects the data to be recorded, when qualifier is met and HW trace was
15577triggered.
15578
a37295f9 15579@item htrace enable
a37295f9
MM
15580@itemx htrace disable
15581Enables/disables the HW trace.
15582
f153cc92 15583@item htrace rewind [@var{filename}]
a37295f9
MM
15584Clears currently recorded trace data.
15585
15586If filename is specified, new trace file is made and any newly collected data
15587will be written there.
15588
f153cc92 15589@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15590Prints trace buffer, using current record configuration.
15591
a37295f9
MM
15592@item htrace mode continuous
15593Set continuous trace mode.
15594
a37295f9
MM
15595@item htrace mode suspend
15596Set suspend trace mode.
15597
15598@end table
15599
4acd40f3
TJB
15600@node PowerPC Embedded
15601@subsection PowerPC Embedded
104c1213 15602
55eddb0f
DJ
15603@value{GDBN} provides the following PowerPC-specific commands:
15604
104c1213 15605@table @code
55eddb0f
DJ
15606@kindex set powerpc
15607@item set powerpc soft-float
15608@itemx show powerpc soft-float
15609Force @value{GDBN} to use (or not use) a software floating point calling
15610convention. By default, @value{GDBN} selects the calling convention based
15611on the selected architecture and the provided executable file.
15612
15613@item set powerpc vector-abi
15614@itemx show powerpc vector-abi
15615Force @value{GDBN} to use the specified calling convention for vector
15616arguments and return values. The valid options are @samp{auto};
15617@samp{generic}, to avoid vector registers even if they are present;
15618@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15619registers. By default, @value{GDBN} selects the calling convention
15620based on the selected architecture and the provided executable file.
15621
8e04817f
AC
15622@kindex target dink32
15623@item target dink32 @var{dev}
15624DINK32 ROM monitor.
104c1213 15625
8e04817f
AC
15626@kindex target ppcbug
15627@item target ppcbug @var{dev}
15628@kindex target ppcbug1
15629@item target ppcbug1 @var{dev}
15630PPCBUG ROM monitor for PowerPC.
104c1213 15631
8e04817f
AC
15632@kindex target sds
15633@item target sds @var{dev}
15634SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15635@end table
8e04817f 15636
c45da7e6 15637@cindex SDS protocol
d52fb0e9 15638The following commands specific to the SDS protocol are supported
55eddb0f 15639by @value{GDBN}:
c45da7e6
EZ
15640
15641@table @code
15642@item set sdstimeout @var{nsec}
15643@kindex set sdstimeout
15644Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15645default is 2 seconds.
15646
15647@item show sdstimeout
15648@kindex show sdstimeout
15649Show the current value of the SDS timeout.
15650
15651@item sds @var{command}
15652@kindex sds@r{, a command}
15653Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15654@end table
15655
c45da7e6 15656
8e04817f
AC
15657@node PA
15658@subsection HP PA Embedded
104c1213
JM
15659
15660@table @code
15661
8e04817f
AC
15662@kindex target op50n
15663@item target op50n @var{dev}
15664OP50N monitor, running on an OKI HPPA board.
15665
15666@kindex target w89k
15667@item target w89k @var{dev}
15668W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15669
15670@end table
15671
8e04817f
AC
15672@node Sparclet
15673@subsection Tsqware Sparclet
104c1213 15674
8e04817f
AC
15675@cindex Sparclet
15676
15677@value{GDBN} enables developers to debug tasks running on
15678Sparclet targets from a Unix host.
15679@value{GDBN} uses code that runs on
15680both the Unix host and on the Sparclet target. The program
15681@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15682
8e04817f
AC
15683@table @code
15684@item remotetimeout @var{args}
15685@kindex remotetimeout
15686@value{GDBN} supports the option @code{remotetimeout}.
15687This option is set by the user, and @var{args} represents the number of
15688seconds @value{GDBN} waits for responses.
104c1213
JM
15689@end table
15690
8e04817f
AC
15691@cindex compiling, on Sparclet
15692When compiling for debugging, include the options @samp{-g} to get debug
15693information and @samp{-Ttext} to relocate the program to where you wish to
15694load it on the target. You may also want to add the options @samp{-n} or
15695@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15696
474c8240 15697@smallexample
8e04817f 15698sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15699@end smallexample
104c1213 15700
8e04817f 15701You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15702
474c8240 15703@smallexample
8e04817f 15704sparclet-aout-objdump --headers --syms prog
474c8240 15705@end smallexample
104c1213 15706
8e04817f
AC
15707@cindex running, on Sparclet
15708Once you have set
15709your Unix execution search path to find @value{GDBN}, you are ready to
15710run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15711(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15712
8e04817f
AC
15713@value{GDBN} comes up showing the prompt:
15714
474c8240 15715@smallexample
8e04817f 15716(gdbslet)
474c8240 15717@end smallexample
104c1213
JM
15718
15719@menu
8e04817f
AC
15720* Sparclet File:: Setting the file to debug
15721* Sparclet Connection:: Connecting to Sparclet
15722* Sparclet Download:: Sparclet download
15723* Sparclet Execution:: Running and debugging
104c1213
JM
15724@end menu
15725
8e04817f 15726@node Sparclet File
79a6e687 15727@subsubsection Setting File to Debug
104c1213 15728
8e04817f 15729The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15730
474c8240 15731@smallexample
8e04817f 15732(gdbslet) file prog
474c8240 15733@end smallexample
104c1213 15734
8e04817f
AC
15735@need 1000
15736@value{GDBN} then attempts to read the symbol table of @file{prog}.
15737@value{GDBN} locates
15738the file by searching the directories listed in the command search
15739path.
12c27660 15740If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15741files will be searched as well.
15742@value{GDBN} locates
15743the source files by searching the directories listed in the directory search
79a6e687 15744path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15745If it fails
15746to find a file, it displays a message such as:
104c1213 15747
474c8240 15748@smallexample
8e04817f 15749prog: No such file or directory.
474c8240 15750@end smallexample
104c1213 15751
8e04817f
AC
15752When this happens, add the appropriate directories to the search paths with
15753the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15754@code{target} command again.
104c1213 15755
8e04817f
AC
15756@node Sparclet Connection
15757@subsubsection Connecting to Sparclet
104c1213 15758
8e04817f
AC
15759The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15760To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15761
474c8240 15762@smallexample
8e04817f
AC
15763(gdbslet) target sparclet /dev/ttya
15764Remote target sparclet connected to /dev/ttya
15765main () at ../prog.c:3
474c8240 15766@end smallexample
104c1213 15767
8e04817f
AC
15768@need 750
15769@value{GDBN} displays messages like these:
104c1213 15770
474c8240 15771@smallexample
8e04817f 15772Connected to ttya.
474c8240 15773@end smallexample
104c1213 15774
8e04817f 15775@node Sparclet Download
79a6e687 15776@subsubsection Sparclet Download
104c1213 15777
8e04817f
AC
15778@cindex download to Sparclet
15779Once connected to the Sparclet target,
15780you can use the @value{GDBN}
15781@code{load} command to download the file from the host to the target.
15782The file name and load offset should be given as arguments to the @code{load}
15783command.
15784Since the file format is aout, the program must be loaded to the starting
15785address. You can use @code{objdump} to find out what this value is. The load
15786offset is an offset which is added to the VMA (virtual memory address)
15787of each of the file's sections.
15788For instance, if the program
15789@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15790and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15791
474c8240 15792@smallexample
8e04817f
AC
15793(gdbslet) load prog 0x12010000
15794Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15795@end smallexample
104c1213 15796
8e04817f
AC
15797If the code is loaded at a different address then what the program was linked
15798to, you may need to use the @code{section} and @code{add-symbol-file} commands
15799to tell @value{GDBN} where to map the symbol table.
15800
15801@node Sparclet Execution
79a6e687 15802@subsubsection Running and Debugging
8e04817f
AC
15803
15804@cindex running and debugging Sparclet programs
15805You can now begin debugging the task using @value{GDBN}'s execution control
15806commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15807manual for the list of commands.
15808
474c8240 15809@smallexample
8e04817f
AC
15810(gdbslet) b main
15811Breakpoint 1 at 0x12010000: file prog.c, line 3.
15812(gdbslet) run
15813Starting program: prog
15814Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
158153 char *symarg = 0;
15816(gdbslet) step
158174 char *execarg = "hello!";
15818(gdbslet)
474c8240 15819@end smallexample
8e04817f
AC
15820
15821@node Sparclite
15822@subsection Fujitsu Sparclite
104c1213
JM
15823
15824@table @code
15825
8e04817f
AC
15826@kindex target sparclite
15827@item target sparclite @var{dev}
15828Fujitsu sparclite boards, used only for the purpose of loading.
15829You must use an additional command to debug the program.
15830For example: target remote @var{dev} using @value{GDBN} standard
15831remote protocol.
104c1213
JM
15832
15833@end table
15834
8e04817f
AC
15835@node Z8000
15836@subsection Zilog Z8000
104c1213 15837
8e04817f
AC
15838@cindex Z8000
15839@cindex simulator, Z8000
15840@cindex Zilog Z8000 simulator
104c1213 15841
8e04817f
AC
15842When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15843a Z8000 simulator.
15844
15845For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15846unsegmented variant of the Z8000 architecture) or the Z8001 (the
15847segmented variant). The simulator recognizes which architecture is
15848appropriate by inspecting the object code.
104c1213 15849
8e04817f
AC
15850@table @code
15851@item target sim @var{args}
15852@kindex sim
15853@kindex target sim@r{, with Z8000}
15854Debug programs on a simulated CPU. If the simulator supports setup
15855options, specify them via @var{args}.
104c1213
JM
15856@end table
15857
8e04817f
AC
15858@noindent
15859After specifying this target, you can debug programs for the simulated
15860CPU in the same style as programs for your host computer; use the
15861@code{file} command to load a new program image, the @code{run} command
15862to run your program, and so on.
15863
15864As well as making available all the usual machine registers
15865(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15866additional items of information as specially named registers:
104c1213
JM
15867
15868@table @code
15869
8e04817f
AC
15870@item cycles
15871Counts clock-ticks in the simulator.
104c1213 15872
8e04817f
AC
15873@item insts
15874Counts instructions run in the simulator.
104c1213 15875
8e04817f
AC
15876@item time
15877Execution time in 60ths of a second.
104c1213 15878
8e04817f 15879@end table
104c1213 15880
8e04817f
AC
15881You can refer to these values in @value{GDBN} expressions with the usual
15882conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15883conditional breakpoint that suspends only after at least 5000
15884simulated clock ticks.
104c1213 15885
a64548ea
EZ
15886@node AVR
15887@subsection Atmel AVR
15888@cindex AVR
15889
15890When configured for debugging the Atmel AVR, @value{GDBN} supports the
15891following AVR-specific commands:
15892
15893@table @code
15894@item info io_registers
15895@kindex info io_registers@r{, AVR}
15896@cindex I/O registers (Atmel AVR)
15897This command displays information about the AVR I/O registers. For
15898each register, @value{GDBN} prints its number and value.
15899@end table
15900
15901@node CRIS
15902@subsection CRIS
15903@cindex CRIS
15904
15905When configured for debugging CRIS, @value{GDBN} provides the
15906following CRIS-specific commands:
15907
15908@table @code
15909@item set cris-version @var{ver}
15910@cindex CRIS version
e22e55c9
OF
15911Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15912The CRIS version affects register names and sizes. This command is useful in
15913case autodetection of the CRIS version fails.
a64548ea
EZ
15914
15915@item show cris-version
15916Show the current CRIS version.
15917
15918@item set cris-dwarf2-cfi
15919@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15920Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15921Change to @samp{off} when using @code{gcc-cris} whose version is below
15922@code{R59}.
a64548ea
EZ
15923
15924@item show cris-dwarf2-cfi
15925Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15926
15927@item set cris-mode @var{mode}
15928@cindex CRIS mode
15929Set the current CRIS mode to @var{mode}. It should only be changed when
15930debugging in guru mode, in which case it should be set to
15931@samp{guru} (the default is @samp{normal}).
15932
15933@item show cris-mode
15934Show the current CRIS mode.
a64548ea
EZ
15935@end table
15936
15937@node Super-H
15938@subsection Renesas Super-H
15939@cindex Super-H
15940
15941For the Renesas Super-H processor, @value{GDBN} provides these
15942commands:
15943
15944@table @code
15945@item regs
15946@kindex regs@r{, Super-H}
15947Show the values of all Super-H registers.
c055b101
CV
15948
15949@item set sh calling-convention @var{convention}
15950@kindex set sh calling-convention
15951Set the calling-convention used when calling functions from @value{GDBN}.
15952Allowed values are @samp{gcc}, which is the default setting, and @samp{renesas}.
15953With the @samp{gcc} setting, functions are called using the @value{NGCC} calling
15954convention. If the DWARF-2 information of the called function specifies
15955that the function follows the Renesas calling convention, the function
15956is called using the Renesas calling convention. If the calling convention
15957is set to @samp{renesas}, the Renesas calling convention is always used,
15958regardless of the DWARF-2 information. This can be used to override the
15959default of @samp{gcc} if debug information is missing, or the compiler
15960does not emit the DWARF-2 calling convention entry for a function.
15961
15962@item show sh calling-convention
15963@kindex show sh calling-convention
15964Show the current calling convention setting.
15965
a64548ea
EZ
15966@end table
15967
15968
8e04817f
AC
15969@node Architectures
15970@section Architectures
104c1213 15971
8e04817f
AC
15972This section describes characteristics of architectures that affect
15973all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15974
8e04817f 15975@menu
9c16f35a 15976* i386::
8e04817f
AC
15977* A29K::
15978* Alpha::
15979* MIPS::
a64548ea 15980* HPPA:: HP PA architecture
23d964e7 15981* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15982* PowerPC::
8e04817f 15983@end menu
104c1213 15984
9c16f35a 15985@node i386
db2e3e2e 15986@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15987
15988@table @code
15989@item set struct-convention @var{mode}
15990@kindex set struct-convention
15991@cindex struct return convention
15992@cindex struct/union returned in registers
15993Set the convention used by the inferior to return @code{struct}s and
15994@code{union}s from functions to @var{mode}. Possible values of
15995@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15996default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15997are returned on the stack, while @code{"reg"} means that a
15998@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15999be returned in a register.
16000
16001@item show struct-convention
16002@kindex show struct-convention
16003Show the current setting of the convention to return @code{struct}s
16004from functions.
16005@end table
16006
8e04817f
AC
16007@node A29K
16008@subsection A29K
104c1213
JM
16009
16010@table @code
104c1213 16011
8e04817f
AC
16012@kindex set rstack_high_address
16013@cindex AMD 29K register stack
16014@cindex register stack, AMD29K
16015@item set rstack_high_address @var{address}
16016On AMD 29000 family processors, registers are saved in a separate
16017@dfn{register stack}. There is no way for @value{GDBN} to determine the
16018extent of this stack. Normally, @value{GDBN} just assumes that the
16019stack is ``large enough''. This may result in @value{GDBN} referencing
16020memory locations that do not exist. If necessary, you can get around
16021this problem by specifying the ending address of the register stack with
16022the @code{set rstack_high_address} command. The argument should be an
16023address, which you probably want to precede with @samp{0x} to specify in
16024hexadecimal.
104c1213 16025
8e04817f
AC
16026@kindex show rstack_high_address
16027@item show rstack_high_address
16028Display the current limit of the register stack, on AMD 29000 family
16029processors.
104c1213 16030
8e04817f 16031@end table
104c1213 16032
8e04817f
AC
16033@node Alpha
16034@subsection Alpha
104c1213 16035
8e04817f 16036See the following section.
104c1213 16037
8e04817f
AC
16038@node MIPS
16039@subsection MIPS
104c1213 16040
8e04817f
AC
16041@cindex stack on Alpha
16042@cindex stack on MIPS
16043@cindex Alpha stack
16044@cindex MIPS stack
16045Alpha- and MIPS-based computers use an unusual stack frame, which
16046sometimes requires @value{GDBN} to search backward in the object code to
16047find the beginning of a function.
104c1213 16048
8e04817f
AC
16049@cindex response time, MIPS debugging
16050To improve response time (especially for embedded applications, where
16051@value{GDBN} may be restricted to a slow serial line for this search)
16052you may want to limit the size of this search, using one of these
16053commands:
104c1213 16054
8e04817f
AC
16055@table @code
16056@cindex @code{heuristic-fence-post} (Alpha, MIPS)
16057@item set heuristic-fence-post @var{limit}
16058Restrict @value{GDBN} to examining at most @var{limit} bytes in its
16059search for the beginning of a function. A value of @var{0} (the
16060default) means there is no limit. However, except for @var{0}, the
16061larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
16062and therefore the longer it takes to run. You should only need to use
16063this command when debugging a stripped executable.
104c1213 16064
8e04817f
AC
16065@item show heuristic-fence-post
16066Display the current limit.
16067@end table
104c1213
JM
16068
16069@noindent
8e04817f
AC
16070These commands are available @emph{only} when @value{GDBN} is configured
16071for debugging programs on Alpha or MIPS processors.
104c1213 16072
a64548ea
EZ
16073Several MIPS-specific commands are available when debugging MIPS
16074programs:
16075
16076@table @code
a64548ea
EZ
16077@item set mips abi @var{arg}
16078@kindex set mips abi
16079@cindex set ABI for MIPS
16080Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
16081values of @var{arg} are:
16082
16083@table @samp
16084@item auto
16085The default ABI associated with the current binary (this is the
16086default).
16087@item o32
16088@item o64
16089@item n32
16090@item n64
16091@item eabi32
16092@item eabi64
16093@item auto
16094@end table
16095
16096@item show mips abi
16097@kindex show mips abi
16098Show the MIPS ABI used by @value{GDBN} to debug the inferior.
16099
16100@item set mipsfpu
16101@itemx show mipsfpu
16102@xref{MIPS Embedded, set mipsfpu}.
16103
16104@item set mips mask-address @var{arg}
16105@kindex set mips mask-address
16106@cindex MIPS addresses, masking
16107This command determines whether the most-significant 32 bits of 64-bit
16108MIPS addresses are masked off. The argument @var{arg} can be
16109@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
16110setting, which lets @value{GDBN} determine the correct value.
16111
16112@item show mips mask-address
16113@kindex show mips mask-address
16114Show whether the upper 32 bits of MIPS addresses are masked off or
16115not.
16116
16117@item set remote-mips64-transfers-32bit-regs
16118@kindex set remote-mips64-transfers-32bit-regs
16119This command controls compatibility with 64-bit MIPS targets that
16120transfer data in 32-bit quantities. If you have an old MIPS 64 target
16121that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
16122and 64 bits for other registers, set this option to @samp{on}.
16123
16124@item show remote-mips64-transfers-32bit-regs
16125@kindex show remote-mips64-transfers-32bit-regs
16126Show the current setting of compatibility with older MIPS 64 targets.
16127
16128@item set debug mips
16129@kindex set debug mips
16130This command turns on and off debugging messages for the MIPS-specific
16131target code in @value{GDBN}.
16132
16133@item show debug mips
16134@kindex show debug mips
16135Show the current setting of MIPS debugging messages.
16136@end table
16137
16138
16139@node HPPA
16140@subsection HPPA
16141@cindex HPPA support
16142
d3e8051b 16143When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
16144following special commands:
16145
16146@table @code
16147@item set debug hppa
16148@kindex set debug hppa
db2e3e2e 16149This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
16150messages are to be displayed.
16151
16152@item show debug hppa
16153Show whether HPPA debugging messages are displayed.
16154
16155@item maint print unwind @var{address}
16156@kindex maint print unwind@r{, HPPA}
16157This command displays the contents of the unwind table entry at the
16158given @var{address}.
16159
16160@end table
16161
104c1213 16162
23d964e7
UW
16163@node SPU
16164@subsection Cell Broadband Engine SPU architecture
16165@cindex Cell Broadband Engine
16166@cindex SPU
16167
16168When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
16169it provides the following special commands:
16170
16171@table @code
16172@item info spu event
16173@kindex info spu
16174Display SPU event facility status. Shows current event mask
16175and pending event status.
16176
16177@item info spu signal
16178Display SPU signal notification facility status. Shows pending
16179signal-control word and signal notification mode of both signal
16180notification channels.
16181
16182@item info spu mailbox
16183Display SPU mailbox facility status. Shows all pending entries,
16184in order of processing, in each of the SPU Write Outbound,
16185SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
16186
16187@item info spu dma
16188Display MFC DMA status. Shows all pending commands in the MFC
16189DMA queue. For each entry, opcode, tag, class IDs, effective
16190and local store addresses and transfer size are shown.
16191
16192@item info spu proxydma
16193Display MFC Proxy-DMA status. Shows all pending commands in the MFC
16194Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
16195and local store addresses and transfer size are shown.
16196
16197@end table
16198
4acd40f3
TJB
16199@node PowerPC
16200@subsection PowerPC
16201@cindex PowerPC architecture
16202
16203When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
16204pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
16205numbers stored in the floating point registers. These values must be stored
16206in two consecutive registers, always starting at an even register like
16207@code{f0} or @code{f2}.
16208
16209The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
16210by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
16211@code{f2} and @code{f3} for @code{$dl1} and so on.
16212
23d964e7 16213
8e04817f
AC
16214@node Controlling GDB
16215@chapter Controlling @value{GDBN}
16216
16217You can alter the way @value{GDBN} interacts with you by using the
16218@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 16219data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
16220described here.
16221
16222@menu
16223* Prompt:: Prompt
16224* Editing:: Command editing
d620b259 16225* Command History:: Command history
8e04817f
AC
16226* Screen Size:: Screen size
16227* Numbers:: Numbers
1e698235 16228* ABI:: Configuring the current ABI
8e04817f
AC
16229* Messages/Warnings:: Optional warnings and messages
16230* Debugging Output:: Optional messages about internal happenings
16231@end menu
16232
16233@node Prompt
16234@section Prompt
104c1213 16235
8e04817f 16236@cindex prompt
104c1213 16237
8e04817f
AC
16238@value{GDBN} indicates its readiness to read a command by printing a string
16239called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
16240can change the prompt string with the @code{set prompt} command. For
16241instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
16242the prompt in one of the @value{GDBN} sessions so that you can always tell
16243which one you are talking to.
104c1213 16244
8e04817f
AC
16245@emph{Note:} @code{set prompt} does not add a space for you after the
16246prompt you set. This allows you to set a prompt which ends in a space
16247or a prompt that does not.
104c1213 16248
8e04817f
AC
16249@table @code
16250@kindex set prompt
16251@item set prompt @var{newprompt}
16252Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 16253
8e04817f
AC
16254@kindex show prompt
16255@item show prompt
16256Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
16257@end table
16258
8e04817f 16259@node Editing
79a6e687 16260@section Command Editing
8e04817f
AC
16261@cindex readline
16262@cindex command line editing
104c1213 16263
703663ab 16264@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
16265@sc{gnu} library provides consistent behavior for programs which provide a
16266command line interface to the user. Advantages are @sc{gnu} Emacs-style
16267or @dfn{vi}-style inline editing of commands, @code{csh}-like history
16268substitution, and a storage and recall of command history across
16269debugging sessions.
104c1213 16270
8e04817f
AC
16271You may control the behavior of command line editing in @value{GDBN} with the
16272command @code{set}.
104c1213 16273
8e04817f
AC
16274@table @code
16275@kindex set editing
16276@cindex editing
16277@item set editing
16278@itemx set editing on
16279Enable command line editing (enabled by default).
104c1213 16280
8e04817f
AC
16281@item set editing off
16282Disable command line editing.
104c1213 16283
8e04817f
AC
16284@kindex show editing
16285@item show editing
16286Show whether command line editing is enabled.
104c1213
JM
16287@end table
16288
703663ab
EZ
16289@xref{Command Line Editing}, for more details about the Readline
16290interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
16291encouraged to read that chapter.
16292
d620b259 16293@node Command History
79a6e687 16294@section Command History
703663ab 16295@cindex command history
8e04817f
AC
16296
16297@value{GDBN} can keep track of the commands you type during your
16298debugging sessions, so that you can be certain of precisely what
16299happened. Use these commands to manage the @value{GDBN} command
16300history facility.
104c1213 16301
703663ab
EZ
16302@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
16303package, to provide the history facility. @xref{Using History
16304Interactively}, for the detailed description of the History library.
16305
d620b259 16306To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
16307the state which is seen by users, prefix it with @samp{server }
16308(@pxref{Server Prefix}). This
d620b259
NR
16309means that this command will not affect the command history, nor will it
16310affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
16311pressed on a line by itself.
16312
16313@cindex @code{server}, command prefix
16314The server prefix does not affect the recording of values into the value
16315history; to print a value without recording it into the value history,
16316use the @code{output} command instead of the @code{print} command.
16317
703663ab
EZ
16318Here is the description of @value{GDBN} commands related to command
16319history.
16320
104c1213 16321@table @code
8e04817f
AC
16322@cindex history substitution
16323@cindex history file
16324@kindex set history filename
4644b6e3 16325@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16326@item set history filename @var{fname}
16327Set the name of the @value{GDBN} command history file to @var{fname}.
16328This is the file where @value{GDBN} reads an initial command history
16329list, and where it writes the command history from this session when it
16330exits. You can access this list through history expansion or through
16331the history command editing characters listed below. This file defaults
16332to the value of the environment variable @code{GDBHISTFILE}, or to
16333@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16334is not set.
104c1213 16335
9c16f35a
EZ
16336@cindex save command history
16337@kindex set history save
8e04817f
AC
16338@item set history save
16339@itemx set history save on
16340Record command history in a file, whose name may be specified with the
16341@code{set history filename} command. By default, this option is disabled.
104c1213 16342
8e04817f
AC
16343@item set history save off
16344Stop recording command history in a file.
104c1213 16345
8e04817f 16346@cindex history size
9c16f35a 16347@kindex set history size
6fc08d32 16348@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16349@item set history size @var{size}
16350Set the number of commands which @value{GDBN} keeps in its history list.
16351This defaults to the value of the environment variable
16352@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16353@end table
16354
8e04817f 16355History expansion assigns special meaning to the character @kbd{!}.
703663ab 16356@xref{Event Designators}, for more details.
8e04817f 16357
703663ab 16358@cindex history expansion, turn on/off
8e04817f
AC
16359Since @kbd{!} is also the logical not operator in C, history expansion
16360is off by default. If you decide to enable history expansion with the
16361@code{set history expansion on} command, you may sometimes need to
16362follow @kbd{!} (when it is used as logical not, in an expression) with
16363a space or a tab to prevent it from being expanded. The readline
16364history facilities do not attempt substitution on the strings
16365@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16366
16367The commands to control history expansion are:
104c1213
JM
16368
16369@table @code
8e04817f
AC
16370@item set history expansion on
16371@itemx set history expansion
703663ab 16372@kindex set history expansion
8e04817f 16373Enable history expansion. History expansion is off by default.
104c1213 16374
8e04817f
AC
16375@item set history expansion off
16376Disable history expansion.
104c1213 16377
8e04817f
AC
16378@c @group
16379@kindex show history
16380@item show history
16381@itemx show history filename
16382@itemx show history save
16383@itemx show history size
16384@itemx show history expansion
16385These commands display the state of the @value{GDBN} history parameters.
16386@code{show history} by itself displays all four states.
16387@c @end group
16388@end table
16389
16390@table @code
9c16f35a
EZ
16391@kindex show commands
16392@cindex show last commands
16393@cindex display command history
8e04817f
AC
16394@item show commands
16395Display the last ten commands in the command history.
104c1213 16396
8e04817f
AC
16397@item show commands @var{n}
16398Print ten commands centered on command number @var{n}.
16399
16400@item show commands +
16401Print ten commands just after the commands last printed.
104c1213
JM
16402@end table
16403
8e04817f 16404@node Screen Size
79a6e687 16405@section Screen Size
8e04817f
AC
16406@cindex size of screen
16407@cindex pauses in output
104c1213 16408
8e04817f
AC
16409Certain commands to @value{GDBN} may produce large amounts of
16410information output to the screen. To help you read all of it,
16411@value{GDBN} pauses and asks you for input at the end of each page of
16412output. Type @key{RET} when you want to continue the output, or @kbd{q}
16413to discard the remaining output. Also, the screen width setting
16414determines when to wrap lines of output. Depending on what is being
16415printed, @value{GDBN} tries to break the line at a readable place,
16416rather than simply letting it overflow onto the following line.
16417
16418Normally @value{GDBN} knows the size of the screen from the terminal
16419driver software. For example, on Unix @value{GDBN} uses the termcap data base
16420together with the value of the @code{TERM} environment variable and the
16421@code{stty rows} and @code{stty cols} settings. If this is not correct,
16422you can override it with the @code{set height} and @code{set
16423width} commands:
16424
16425@table @code
16426@kindex set height
16427@kindex set width
16428@kindex show width
16429@kindex show height
16430@item set height @var{lpp}
16431@itemx show height
16432@itemx set width @var{cpl}
16433@itemx show width
16434These @code{set} commands specify a screen height of @var{lpp} lines and
16435a screen width of @var{cpl} characters. The associated @code{show}
16436commands display the current settings.
104c1213 16437
8e04817f
AC
16438If you specify a height of zero lines, @value{GDBN} does not pause during
16439output no matter how long the output is. This is useful if output is to a
16440file or to an editor buffer.
104c1213 16441
8e04817f
AC
16442Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16443from wrapping its output.
9c16f35a
EZ
16444
16445@item set pagination on
16446@itemx set pagination off
16447@kindex set pagination
16448Turn the output pagination on or off; the default is on. Turning
16449pagination off is the alternative to @code{set height 0}.
16450
16451@item show pagination
16452@kindex show pagination
16453Show the current pagination mode.
104c1213
JM
16454@end table
16455
8e04817f
AC
16456@node Numbers
16457@section Numbers
16458@cindex number representation
16459@cindex entering numbers
104c1213 16460
8e04817f
AC
16461You can always enter numbers in octal, decimal, or hexadecimal in
16462@value{GDBN} by the usual conventions: octal numbers begin with
16463@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16464begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16465@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1646610; likewise, the default display for numbers---when no particular
16467format is specified---is base 10. You can change the default base for
16468both input and output with the commands described below.
104c1213 16469
8e04817f
AC
16470@table @code
16471@kindex set input-radix
16472@item set input-radix @var{base}
16473Set the default base for numeric input. Supported choices
16474for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16475specified either unambiguously or using the current input radix; for
8e04817f 16476example, any of
104c1213 16477
8e04817f 16478@smallexample
9c16f35a
EZ
16479set input-radix 012
16480set input-radix 10.
16481set input-radix 0xa
8e04817f 16482@end smallexample
104c1213 16483
8e04817f 16484@noindent
9c16f35a 16485sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16486leaves the input radix unchanged, no matter what it was, since
16487@samp{10}, being without any leading or trailing signs of its base, is
16488interpreted in the current radix. Thus, if the current radix is 16,
16489@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16490change the radix.
104c1213 16491
8e04817f
AC
16492@kindex set output-radix
16493@item set output-radix @var{base}
16494Set the default base for numeric display. Supported choices
16495for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16496specified either unambiguously or using the current input radix.
104c1213 16497
8e04817f
AC
16498@kindex show input-radix
16499@item show input-radix
16500Display the current default base for numeric input.
104c1213 16501
8e04817f
AC
16502@kindex show output-radix
16503@item show output-radix
16504Display the current default base for numeric display.
9c16f35a
EZ
16505
16506@item set radix @r{[}@var{base}@r{]}
16507@itemx show radix
16508@kindex set radix
16509@kindex show radix
16510These commands set and show the default base for both input and output
16511of numbers. @code{set radix} sets the radix of input and output to
16512the same base; without an argument, it resets the radix back to its
16513default value of 10.
16514
8e04817f 16515@end table
104c1213 16516
1e698235 16517@node ABI
79a6e687 16518@section Configuring the Current ABI
1e698235
DJ
16519
16520@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16521application automatically. However, sometimes you need to override its
16522conclusions. Use these commands to manage @value{GDBN}'s view of the
16523current ABI.
16524
98b45e30
DJ
16525@cindex OS ABI
16526@kindex set osabi
b4e9345d 16527@kindex show osabi
98b45e30
DJ
16528
16529One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16530system targets, either via remote debugging or native emulation.
98b45e30
DJ
16531@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16532but you can override its conclusion using the @code{set osabi} command.
16533One example where this is useful is in debugging of binaries which use
16534an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16535not have the same identifying marks that the standard C library for your
16536platform provides.
16537
16538@table @code
16539@item show osabi
16540Show the OS ABI currently in use.
16541
16542@item set osabi
16543With no argument, show the list of registered available OS ABI's.
16544
16545@item set osabi @var{abi}
16546Set the current OS ABI to @var{abi}.
16547@end table
16548
1e698235 16549@cindex float promotion
1e698235
DJ
16550
16551Generally, the way that an argument of type @code{float} is passed to a
16552function depends on whether the function is prototyped. For a prototyped
16553(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16554according to the architecture's convention for @code{float}. For unprototyped
16555(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16556@code{double} and then passed.
16557
16558Unfortunately, some forms of debug information do not reliably indicate whether
16559a function is prototyped. If @value{GDBN} calls a function that is not marked
16560as prototyped, it consults @kbd{set coerce-float-to-double}.
16561
16562@table @code
a8f24a35 16563@kindex set coerce-float-to-double
1e698235
DJ
16564@item set coerce-float-to-double
16565@itemx set coerce-float-to-double on
16566Arguments of type @code{float} will be promoted to @code{double} when passed
16567to an unprototyped function. This is the default setting.
16568
16569@item set coerce-float-to-double off
16570Arguments of type @code{float} will be passed directly to unprototyped
16571functions.
9c16f35a
EZ
16572
16573@kindex show coerce-float-to-double
16574@item show coerce-float-to-double
16575Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16576@end table
16577
f1212245
DJ
16578@kindex set cp-abi
16579@kindex show cp-abi
16580@value{GDBN} needs to know the ABI used for your program's C@t{++}
16581objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16582used to build your application. @value{GDBN} only fully supports
16583programs with a single C@t{++} ABI; if your program contains code using
16584multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16585program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16586Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16587before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16588``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16589use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16590``auto''.
16591
16592@table @code
16593@item show cp-abi
16594Show the C@t{++} ABI currently in use.
16595
16596@item set cp-abi
16597With no argument, show the list of supported C@t{++} ABI's.
16598
16599@item set cp-abi @var{abi}
16600@itemx set cp-abi auto
16601Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16602@end table
16603
8e04817f 16604@node Messages/Warnings
79a6e687 16605@section Optional Warnings and Messages
104c1213 16606
9c16f35a
EZ
16607@cindex verbose operation
16608@cindex optional warnings
8e04817f
AC
16609By default, @value{GDBN} is silent about its inner workings. If you are
16610running on a slow machine, you may want to use the @code{set verbose}
16611command. This makes @value{GDBN} tell you when it does a lengthy
16612internal operation, so you will not think it has crashed.
104c1213 16613
8e04817f
AC
16614Currently, the messages controlled by @code{set verbose} are those
16615which announce that the symbol table for a source file is being read;
79a6e687 16616see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16617
8e04817f
AC
16618@table @code
16619@kindex set verbose
16620@item set verbose on
16621Enables @value{GDBN} output of certain informational messages.
104c1213 16622
8e04817f
AC
16623@item set verbose off
16624Disables @value{GDBN} output of certain informational messages.
104c1213 16625
8e04817f
AC
16626@kindex show verbose
16627@item show verbose
16628Displays whether @code{set verbose} is on or off.
16629@end table
104c1213 16630
8e04817f
AC
16631By default, if @value{GDBN} encounters bugs in the symbol table of an
16632object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16633find this information useful (@pxref{Symbol Errors, ,Errors Reading
16634Symbol Files}).
104c1213 16635
8e04817f 16636@table @code
104c1213 16637
8e04817f
AC
16638@kindex set complaints
16639@item set complaints @var{limit}
16640Permits @value{GDBN} to output @var{limit} complaints about each type of
16641unusual symbols before becoming silent about the problem. Set
16642@var{limit} to zero to suppress all complaints; set it to a large number
16643to prevent complaints from being suppressed.
104c1213 16644
8e04817f
AC
16645@kindex show complaints
16646@item show complaints
16647Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16648
8e04817f 16649@end table
104c1213 16650
8e04817f
AC
16651By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16652lot of stupid questions to confirm certain commands. For example, if
16653you try to run a program which is already running:
104c1213 16654
474c8240 16655@smallexample
8e04817f
AC
16656(@value{GDBP}) run
16657The program being debugged has been started already.
16658Start it from the beginning? (y or n)
474c8240 16659@end smallexample
104c1213 16660
8e04817f
AC
16661If you are willing to unflinchingly face the consequences of your own
16662commands, you can disable this ``feature'':
104c1213 16663
8e04817f 16664@table @code
104c1213 16665
8e04817f
AC
16666@kindex set confirm
16667@cindex flinching
16668@cindex confirmation
16669@cindex stupid questions
16670@item set confirm off
16671Disables confirmation requests.
104c1213 16672
8e04817f
AC
16673@item set confirm on
16674Enables confirmation requests (the default).
104c1213 16675
8e04817f
AC
16676@kindex show confirm
16677@item show confirm
16678Displays state of confirmation requests.
16679
16680@end table
104c1213 16681
16026cd7
AS
16682@cindex command tracing
16683If you need to debug user-defined commands or sourced files you may find it
16684useful to enable @dfn{command tracing}. In this mode each command will be
16685printed as it is executed, prefixed with one or more @samp{+} symbols, the
16686quantity denoting the call depth of each command.
16687
16688@table @code
16689@kindex set trace-commands
16690@cindex command scripts, debugging
16691@item set trace-commands on
16692Enable command tracing.
16693@item set trace-commands off
16694Disable command tracing.
16695@item show trace-commands
16696Display the current state of command tracing.
16697@end table
16698
8e04817f 16699@node Debugging Output
79a6e687 16700@section Optional Messages about Internal Happenings
4644b6e3
EZ
16701@cindex optional debugging messages
16702
da316a69
EZ
16703@value{GDBN} has commands that enable optional debugging messages from
16704various @value{GDBN} subsystems; normally these commands are of
16705interest to @value{GDBN} maintainers, or when reporting a bug. This
16706section documents those commands.
16707
104c1213 16708@table @code
a8f24a35
EZ
16709@kindex set exec-done-display
16710@item set exec-done-display
16711Turns on or off the notification of asynchronous commands'
16712completion. When on, @value{GDBN} will print a message when an
16713asynchronous command finishes its execution. The default is off.
16714@kindex show exec-done-display
16715@item show exec-done-display
16716Displays the current setting of asynchronous command completion
16717notification.
4644b6e3
EZ
16718@kindex set debug
16719@cindex gdbarch debugging info
a8f24a35 16720@cindex architecture debugging info
8e04817f 16721@item set debug arch
a8f24a35 16722Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16723@kindex show debug
8e04817f
AC
16724@item show debug arch
16725Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16726@item set debug aix-thread
16727@cindex AIX threads
16728Display debugging messages about inner workings of the AIX thread
16729module.
16730@item show debug aix-thread
16731Show the current state of AIX thread debugging info display.
237fc4c9
PA
16732@item set debug displaced
16733@cindex displaced stepping debugging info
16734Turns on or off display of @value{GDBN} debugging info for the
16735displaced stepping support. The default is off.
16736@item show debug displaced
16737Displays the current state of displaying @value{GDBN} debugging info
16738related to displaced stepping.
8e04817f 16739@item set debug event
4644b6e3 16740@cindex event debugging info
a8f24a35 16741Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16742default is off.
8e04817f
AC
16743@item show debug event
16744Displays the current state of displaying @value{GDBN} event debugging
16745info.
8e04817f 16746@item set debug expression
4644b6e3 16747@cindex expression debugging info
721c2651
EZ
16748Turns on or off display of debugging info about @value{GDBN}
16749expression parsing. The default is off.
8e04817f 16750@item show debug expression
721c2651
EZ
16751Displays the current state of displaying debugging info about
16752@value{GDBN} expression parsing.
7453dc06 16753@item set debug frame
4644b6e3 16754@cindex frame debugging info
7453dc06
AC
16755Turns on or off display of @value{GDBN} frame debugging info. The
16756default is off.
7453dc06
AC
16757@item show debug frame
16758Displays the current state of displaying @value{GDBN} frame debugging
16759info.
30e91e0b
RC
16760@item set debug infrun
16761@cindex inferior debugging info
16762Turns on or off display of @value{GDBN} debugging info for running the inferior.
16763The default is off. @file{infrun.c} contains GDB's runtime state machine used
16764for implementing operations such as single-stepping the inferior.
16765@item show debug infrun
16766Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16767@item set debug lin-lwp
16768@cindex @sc{gnu}/Linux LWP debug messages
16769@cindex Linux lightweight processes
721c2651 16770Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16771@item show debug lin-lwp
16772Show the current state of Linux LWP debugging messages.
b84876c2
PA
16773@item set debug lin-lwp-async
16774@cindex @sc{gnu}/Linux LWP async debug messages
16775@cindex Linux lightweight processes
16776Turns on or off debugging messages from the Linux LWP async debug support.
16777@item show debug lin-lwp-async
16778Show the current state of Linux LWP async debugging messages.
2b4855ab 16779@item set debug observer
4644b6e3 16780@cindex observer debugging info
2b4855ab
AC
16781Turns on or off display of @value{GDBN} observer debugging. This
16782includes info such as the notification of observable events.
2b4855ab
AC
16783@item show debug observer
16784Displays the current state of observer debugging.
8e04817f 16785@item set debug overload
4644b6e3 16786@cindex C@t{++} overload debugging info
8e04817f 16787Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16788info. This includes info such as ranking of functions, etc. The default
8e04817f 16789is off.
8e04817f
AC
16790@item show debug overload
16791Displays the current state of displaying @value{GDBN} C@t{++} overload
16792debugging info.
8e04817f
AC
16793@cindex packets, reporting on stdout
16794@cindex serial connections, debugging
605a56cb
DJ
16795@cindex debug remote protocol
16796@cindex remote protocol debugging
16797@cindex display remote packets
8e04817f
AC
16798@item set debug remote
16799Turns on or off display of reports on all packets sent back and forth across
16800the serial line to the remote machine. The info is printed on the
16801@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16802@item show debug remote
16803Displays the state of display of remote packets.
8e04817f
AC
16804@item set debug serial
16805Turns on or off display of @value{GDBN} serial debugging info. The
16806default is off.
8e04817f
AC
16807@item show debug serial
16808Displays the current state of displaying @value{GDBN} serial debugging
16809info.
c45da7e6
EZ
16810@item set debug solib-frv
16811@cindex FR-V shared-library debugging
16812Turns on or off debugging messages for FR-V shared-library code.
16813@item show debug solib-frv
16814Display the current state of FR-V shared-library code debugging
16815messages.
8e04817f 16816@item set debug target
4644b6e3 16817@cindex target debugging info
8e04817f
AC
16818Turns on or off display of @value{GDBN} target debugging info. This info
16819includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16820default is 0. Set it to 1 to track events, and to 2 to also track the
16821value of large memory transfers. Changes to this flag do not take effect
16822until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16823@item show debug target
16824Displays the current state of displaying @value{GDBN} target debugging
16825info.
75feb17d
DJ
16826@item set debug timestamp
16827@cindex timestampping debugging info
16828Turns on or off display of timestamps with @value{GDBN} debugging info.
16829When enabled, seconds and microseconds are displayed before each debugging
16830message.
16831@item show debug timestamp
16832Displays the current state of displaying timestamps with @value{GDBN}
16833debugging info.
c45da7e6 16834@item set debugvarobj
4644b6e3 16835@cindex variable object debugging info
8e04817f
AC
16836Turns on or off display of @value{GDBN} variable object debugging
16837info. The default is off.
c45da7e6 16838@item show debugvarobj
8e04817f
AC
16839Displays the current state of displaying @value{GDBN} variable object
16840debugging info.
e776119f
DJ
16841@item set debug xml
16842@cindex XML parser debugging
16843Turns on or off debugging messages for built-in XML parsers.
16844@item show debug xml
16845Displays the current state of XML debugging messages.
8e04817f 16846@end table
104c1213 16847
8e04817f
AC
16848@node Sequences
16849@chapter Canned Sequences of Commands
104c1213 16850
8e04817f 16851Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16852Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16853commands for execution as a unit: user-defined commands and command
16854files.
104c1213 16855
8e04817f 16856@menu
fcc73fe3
EZ
16857* Define:: How to define your own commands
16858* Hooks:: Hooks for user-defined commands
16859* Command Files:: How to write scripts of commands to be stored in a file
16860* Output:: Commands for controlled output
8e04817f 16861@end menu
104c1213 16862
8e04817f 16863@node Define
79a6e687 16864@section User-defined Commands
104c1213 16865
8e04817f 16866@cindex user-defined command
fcc73fe3 16867@cindex arguments, to user-defined commands
8e04817f
AC
16868A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16869which you assign a new name as a command. This is done with the
16870@code{define} command. User commands may accept up to 10 arguments
16871separated by whitespace. Arguments are accessed within the user command
c03c782f 16872via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16873
8e04817f
AC
16874@smallexample
16875define adder
16876 print $arg0 + $arg1 + $arg2
c03c782f 16877end
8e04817f 16878@end smallexample
104c1213
JM
16879
16880@noindent
8e04817f 16881To execute the command use:
104c1213 16882
8e04817f
AC
16883@smallexample
16884adder 1 2 3
16885@end smallexample
104c1213 16886
8e04817f
AC
16887@noindent
16888This defines the command @code{adder}, which prints the sum of
16889its three arguments. Note the arguments are text substitutions, so they may
16890reference variables, use complex expressions, or even perform inferior
16891functions calls.
104c1213 16892
fcc73fe3
EZ
16893@cindex argument count in user-defined commands
16894@cindex how many arguments (user-defined commands)
c03c782f
AS
16895In addition, @code{$argc} may be used to find out how many arguments have
16896been passed. This expands to a number in the range 0@dots{}10.
16897
16898@smallexample
16899define adder
16900 if $argc == 2
16901 print $arg0 + $arg1
16902 end
16903 if $argc == 3
16904 print $arg0 + $arg1 + $arg2
16905 end
16906end
16907@end smallexample
16908
104c1213 16909@table @code
104c1213 16910
8e04817f
AC
16911@kindex define
16912@item define @var{commandname}
16913Define a command named @var{commandname}. If there is already a command
16914by that name, you are asked to confirm that you want to redefine it.
104c1213 16915
8e04817f
AC
16916The definition of the command is made up of other @value{GDBN} command lines,
16917which are given following the @code{define} command. The end of these
16918commands is marked by a line containing @code{end}.
104c1213 16919
8e04817f 16920@kindex document
ca91424e 16921@kindex end@r{ (user-defined commands)}
8e04817f
AC
16922@item document @var{commandname}
16923Document the user-defined command @var{commandname}, so that it can be
16924accessed by @code{help}. The command @var{commandname} must already be
16925defined. This command reads lines of documentation just as @code{define}
16926reads the lines of the command definition, ending with @code{end}.
16927After the @code{document} command is finished, @code{help} on command
16928@var{commandname} displays the documentation you have written.
104c1213 16929
8e04817f
AC
16930You may use the @code{document} command again to change the
16931documentation of a command. Redefining the command with @code{define}
16932does not change the documentation.
104c1213 16933
c45da7e6
EZ
16934@kindex dont-repeat
16935@cindex don't repeat command
16936@item dont-repeat
16937Used inside a user-defined command, this tells @value{GDBN} that this
16938command should not be repeated when the user hits @key{RET}
16939(@pxref{Command Syntax, repeat last command}).
16940
8e04817f
AC
16941@kindex help user-defined
16942@item help user-defined
16943List all user-defined commands, with the first line of the documentation
16944(if any) for each.
104c1213 16945
8e04817f
AC
16946@kindex show user
16947@item show user
16948@itemx show user @var{commandname}
16949Display the @value{GDBN} commands used to define @var{commandname} (but
16950not its documentation). If no @var{commandname} is given, display the
16951definitions for all user-defined commands.
104c1213 16952
fcc73fe3 16953@cindex infinite recursion in user-defined commands
20f01a46
DH
16954@kindex show max-user-call-depth
16955@kindex set max-user-call-depth
16956@item show max-user-call-depth
5ca0cb28
DH
16957@itemx set max-user-call-depth
16958The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16959levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16960infinite recursion and aborts the command.
104c1213
JM
16961@end table
16962
fcc73fe3
EZ
16963In addition to the above commands, user-defined commands frequently
16964use control flow commands, described in @ref{Command Files}.
16965
8e04817f
AC
16966When user-defined commands are executed, the
16967commands of the definition are not printed. An error in any command
16968stops execution of the user-defined command.
104c1213 16969
8e04817f
AC
16970If used interactively, commands that would ask for confirmation proceed
16971without asking when used inside a user-defined command. Many @value{GDBN}
16972commands that normally print messages to say what they are doing omit the
16973messages when used in a user-defined command.
104c1213 16974
8e04817f 16975@node Hooks
79a6e687 16976@section User-defined Command Hooks
8e04817f
AC
16977@cindex command hooks
16978@cindex hooks, for commands
16979@cindex hooks, pre-command
104c1213 16980
8e04817f 16981@kindex hook
8e04817f
AC
16982You may define @dfn{hooks}, which are a special kind of user-defined
16983command. Whenever you run the command @samp{foo}, if the user-defined
16984command @samp{hook-foo} exists, it is executed (with no arguments)
16985before that command.
104c1213 16986
8e04817f
AC
16987@cindex hooks, post-command
16988@kindex hookpost
8e04817f
AC
16989A hook may also be defined which is run after the command you executed.
16990Whenever you run the command @samp{foo}, if the user-defined command
16991@samp{hookpost-foo} exists, it is executed (with no arguments) after
16992that command. Post-execution hooks may exist simultaneously with
16993pre-execution hooks, for the same command.
104c1213 16994
8e04817f 16995It is valid for a hook to call the command which it hooks. If this
9f1c6395 16996occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16997
8e04817f
AC
16998@c It would be nice if hookpost could be passed a parameter indicating
16999@c if the command it hooks executed properly or not. FIXME!
104c1213 17000
8e04817f
AC
17001@kindex stop@r{, a pseudo-command}
17002In addition, a pseudo-command, @samp{stop} exists. Defining
17003(@samp{hook-stop}) makes the associated commands execute every time
17004execution stops in your program: before breakpoint commands are run,
17005displays are printed, or the stack frame is printed.
104c1213 17006
8e04817f
AC
17007For example, to ignore @code{SIGALRM} signals while
17008single-stepping, but treat them normally during normal execution,
17009you could define:
104c1213 17010
474c8240 17011@smallexample
8e04817f
AC
17012define hook-stop
17013handle SIGALRM nopass
17014end
104c1213 17015
8e04817f
AC
17016define hook-run
17017handle SIGALRM pass
17018end
104c1213 17019
8e04817f 17020define hook-continue
d3e8051b 17021handle SIGALRM pass
8e04817f 17022end
474c8240 17023@end smallexample
104c1213 17024
d3e8051b 17025As a further example, to hook at the beginning and end of the @code{echo}
b383017d 17026command, and to add extra text to the beginning and end of the message,
8e04817f 17027you could define:
104c1213 17028
474c8240 17029@smallexample
8e04817f
AC
17030define hook-echo
17031echo <<<---
17032end
104c1213 17033
8e04817f
AC
17034define hookpost-echo
17035echo --->>>\n
17036end
104c1213 17037
8e04817f
AC
17038(@value{GDBP}) echo Hello World
17039<<<---Hello World--->>>
17040(@value{GDBP})
104c1213 17041
474c8240 17042@end smallexample
104c1213 17043
8e04817f
AC
17044You can define a hook for any single-word command in @value{GDBN}, but
17045not for command aliases; you should define a hook for the basic command
c1468174 17046name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
17047@c FIXME! So how does Joe User discover whether a command is an alias
17048@c or not?
17049If an error occurs during the execution of your hook, execution of
17050@value{GDBN} commands stops and @value{GDBN} issues a prompt
17051(before the command that you actually typed had a chance to run).
104c1213 17052
8e04817f
AC
17053If you try to define a hook which does not match any known command, you
17054get a warning from the @code{define} command.
c906108c 17055
8e04817f 17056@node Command Files
79a6e687 17057@section Command Files
c906108c 17058
8e04817f 17059@cindex command files
fcc73fe3 17060@cindex scripting commands
6fc08d32
EZ
17061A command file for @value{GDBN} is a text file made of lines that are
17062@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
17063also be included. An empty line in a command file does nothing; it
17064does not mean to repeat the last command, as it would from the
17065terminal.
c906108c 17066
6fc08d32
EZ
17067You can request the execution of a command file with the @code{source}
17068command:
c906108c 17069
8e04817f
AC
17070@table @code
17071@kindex source
ca91424e 17072@cindex execute commands from a file
16026cd7 17073@item source [@code{-v}] @var{filename}
8e04817f 17074Execute the command file @var{filename}.
c906108c
SS
17075@end table
17076
fcc73fe3
EZ
17077The lines in a command file are generally executed sequentially,
17078unless the order of execution is changed by one of the
17079@emph{flow-control commands} described below. The commands are not
a71ec265
DH
17080printed as they are executed. An error in any command terminates
17081execution of the command file and control is returned to the console.
c906108c 17082
4b505b12
AS
17083@value{GDBN} searches for @var{filename} in the current directory and then
17084on the search path (specified with the @samp{directory} command).
17085
16026cd7
AS
17086If @code{-v}, for verbose mode, is given then @value{GDBN} displays
17087each command as it is executed. The option must be given before
17088@var{filename}, and is interpreted as part of the filename anywhere else.
17089
8e04817f
AC
17090Commands that would ask for confirmation if used interactively proceed
17091without asking when used in a command file. Many @value{GDBN} commands that
17092normally print messages to say what they are doing omit the messages
17093when called from command files.
c906108c 17094
8e04817f
AC
17095@value{GDBN} also accepts command input from standard input. In this
17096mode, normal output goes to standard output and error output goes to
17097standard error. Errors in a command file supplied on standard input do
6fc08d32 17098not terminate execution of the command file---execution continues with
8e04817f 17099the next command.
c906108c 17100
474c8240 17101@smallexample
8e04817f 17102gdb < cmds > log 2>&1
474c8240 17103@end smallexample
c906108c 17104
8e04817f
AC
17105(The syntax above will vary depending on the shell used.) This example
17106will execute commands from the file @file{cmds}. All output and errors
17107would be directed to @file{log}.
c906108c 17108
fcc73fe3
EZ
17109Since commands stored on command files tend to be more general than
17110commands typed interactively, they frequently need to deal with
17111complicated situations, such as different or unexpected values of
17112variables and symbols, changes in how the program being debugged is
17113built, etc. @value{GDBN} provides a set of flow-control commands to
17114deal with these complexities. Using these commands, you can write
17115complex scripts that loop over data structures, execute commands
17116conditionally, etc.
17117
17118@table @code
17119@kindex if
17120@kindex else
17121@item if
17122@itemx else
17123This command allows to include in your script conditionally executed
17124commands. The @code{if} command takes a single argument, which is an
17125expression to evaluate. It is followed by a series of commands that
17126are executed only if the expression is true (its value is nonzero).
17127There can then optionally be an @code{else} line, followed by a series
17128of commands that are only executed if the expression was false. The
17129end of the list is marked by a line containing @code{end}.
17130
17131@kindex while
17132@item while
17133This command allows to write loops. Its syntax is similar to
17134@code{if}: the command takes a single argument, which is an expression
17135to evaluate, and must be followed by the commands to execute, one per
17136line, terminated by an @code{end}. These commands are called the
17137@dfn{body} of the loop. The commands in the body of @code{while} are
17138executed repeatedly as long as the expression evaluates to true.
17139
17140@kindex loop_break
17141@item loop_break
17142This command exits the @code{while} loop in whose body it is included.
17143Execution of the script continues after that @code{while}s @code{end}
17144line.
17145
17146@kindex loop_continue
17147@item loop_continue
17148This command skips the execution of the rest of the body of commands
17149in the @code{while} loop in whose body it is included. Execution
17150branches to the beginning of the @code{while} loop, where it evaluates
17151the controlling expression.
ca91424e
EZ
17152
17153@kindex end@r{ (if/else/while commands)}
17154@item end
17155Terminate the block of commands that are the body of @code{if},
17156@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
17157@end table
17158
17159
8e04817f 17160@node Output
79a6e687 17161@section Commands for Controlled Output
c906108c 17162
8e04817f
AC
17163During the execution of a command file or a user-defined command, normal
17164@value{GDBN} output is suppressed; the only output that appears is what is
17165explicitly printed by the commands in the definition. This section
17166describes three commands useful for generating exactly the output you
17167want.
c906108c
SS
17168
17169@table @code
8e04817f
AC
17170@kindex echo
17171@item echo @var{text}
17172@c I do not consider backslash-space a standard C escape sequence
17173@c because it is not in ANSI.
17174Print @var{text}. Nonprinting characters can be included in
17175@var{text} using C escape sequences, such as @samp{\n} to print a
17176newline. @strong{No newline is printed unless you specify one.}
17177In addition to the standard C escape sequences, a backslash followed
17178by a space stands for a space. This is useful for displaying a
17179string with spaces at the beginning or the end, since leading and
17180trailing spaces are otherwise trimmed from all arguments.
17181To print @samp{@w{ }and foo =@w{ }}, use the command
17182@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 17183
8e04817f
AC
17184A backslash at the end of @var{text} can be used, as in C, to continue
17185the command onto subsequent lines. For example,
c906108c 17186
474c8240 17187@smallexample
8e04817f
AC
17188echo This is some text\n\
17189which is continued\n\
17190onto several lines.\n
474c8240 17191@end smallexample
c906108c 17192
8e04817f 17193produces the same output as
c906108c 17194
474c8240 17195@smallexample
8e04817f
AC
17196echo This is some text\n
17197echo which is continued\n
17198echo onto several lines.\n
474c8240 17199@end smallexample
c906108c 17200
8e04817f
AC
17201@kindex output
17202@item output @var{expression}
17203Print the value of @var{expression} and nothing but that value: no
17204newlines, no @samp{$@var{nn} = }. The value is not entered in the
17205value history either. @xref{Expressions, ,Expressions}, for more information
17206on expressions.
c906108c 17207
8e04817f
AC
17208@item output/@var{fmt} @var{expression}
17209Print the value of @var{expression} in format @var{fmt}. You can use
17210the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 17211Formats}, for more information.
c906108c 17212
8e04817f 17213@kindex printf
82160952
EZ
17214@item printf @var{template}, @var{expressions}@dots{}
17215Print the values of one or more @var{expressions} under the control of
17216the string @var{template}. To print several values, make
17217@var{expressions} be a comma-separated list of individual expressions,
17218which may be either numbers or pointers. Their values are printed as
17219specified by @var{template}, exactly as a C program would do by
17220executing the code below:
c906108c 17221
474c8240 17222@smallexample
82160952 17223printf (@var{template}, @var{expressions}@dots{});
474c8240 17224@end smallexample
c906108c 17225
82160952
EZ
17226As in @code{C} @code{printf}, ordinary characters in @var{template}
17227are printed verbatim, while @dfn{conversion specification} introduced
17228by the @samp{%} character cause subsequent @var{expressions} to be
17229evaluated, their values converted and formatted according to type and
17230style information encoded in the conversion specifications, and then
17231printed.
17232
8e04817f 17233For example, you can print two values in hex like this:
c906108c 17234
8e04817f
AC
17235@smallexample
17236printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
17237@end smallexample
c906108c 17238
82160952
EZ
17239@code{printf} supports all the standard @code{C} conversion
17240specifications, including the flags and modifiers between the @samp{%}
17241character and the conversion letter, with the following exceptions:
17242
17243@itemize @bullet
17244@item
17245The argument-ordering modifiers, such as @samp{2$}, are not supported.
17246
17247@item
17248The modifier @samp{*} is not supported for specifying precision or
17249width.
17250
17251@item
17252The @samp{'} flag (for separation of digits into groups according to
17253@code{LC_NUMERIC'}) is not supported.
17254
17255@item
17256The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
17257supported.
17258
17259@item
17260The conversion letter @samp{n} (as in @samp{%n}) is not supported.
17261
17262@item
17263The conversion letters @samp{a} and @samp{A} are not supported.
17264@end itemize
17265
17266@noindent
17267Note that the @samp{ll} type modifier is supported only if the
17268underlying @code{C} implementation used to build @value{GDBN} supports
17269the @code{long long int} type, and the @samp{L} type modifier is
17270supported only if @code{long double} type is available.
17271
17272As in @code{C}, @code{printf} supports simple backslash-escape
17273sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
17274@samp{\a}, and @samp{\f}, that consist of backslash followed by a
17275single character. Octal and hexadecimal escape sequences are not
17276supported.
1a619819
LM
17277
17278Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
17279(@dfn{Decimal Floating Point}) types using the following length modifiers
17280together with a floating point specifier.
1a619819
LM
17281letters:
17282
17283@itemize @bullet
17284@item
17285@samp{H} for printing @code{Decimal32} types.
17286
17287@item
17288@samp{D} for printing @code{Decimal64} types.
17289
17290@item
17291@samp{DD} for printing @code{Decimal128} types.
17292@end itemize
17293
17294If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 17295support for the three length modifiers for DFP types, other modifiers
3b784c4f 17296such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
17297
17298In case there is no such @code{C} support, no additional modifiers will be
17299available and the value will be printed in the standard way.
17300
17301Here's an example of printing DFP types using the above conversion letters:
17302@smallexample
0aea4bf3 17303printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
17304@end smallexample
17305
c906108c
SS
17306@end table
17307
21c294e6
AC
17308@node Interpreters
17309@chapter Command Interpreters
17310@cindex command interpreters
17311
17312@value{GDBN} supports multiple command interpreters, and some command
17313infrastructure to allow users or user interface writers to switch
17314between interpreters or run commands in other interpreters.
17315
17316@value{GDBN} currently supports two command interpreters, the console
17317interpreter (sometimes called the command-line interpreter or @sc{cli})
17318and the machine interface interpreter (or @sc{gdb/mi}). This manual
17319describes both of these interfaces in great detail.
17320
17321By default, @value{GDBN} will start with the console interpreter.
17322However, the user may choose to start @value{GDBN} with another
17323interpreter by specifying the @option{-i} or @option{--interpreter}
17324startup options. Defined interpreters include:
17325
17326@table @code
17327@item console
17328@cindex console interpreter
17329The traditional console or command-line interpreter. This is the most often
17330used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17331@value{GDBN} will use this interpreter.
17332
17333@item mi
17334@cindex mi interpreter
17335The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17336by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17337or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17338Interface}.
17339
17340@item mi2
17341@cindex mi2 interpreter
17342The current @sc{gdb/mi} interface.
17343
17344@item mi1
17345@cindex mi1 interpreter
17346The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17347
17348@end table
17349
17350@cindex invoke another interpreter
17351The interpreter being used by @value{GDBN} may not be dynamically
17352switched at runtime. Although possible, this could lead to a very
17353precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17354enters the command "interpreter-set console" in a console view,
17355@value{GDBN} would switch to using the console interpreter, rendering
17356the IDE inoperable!
17357
17358@kindex interpreter-exec
17359Although you may only choose a single interpreter at startup, you may execute
17360commands in any interpreter from the current interpreter using the appropriate
17361command. If you are running the console interpreter, simply use the
17362@code{interpreter-exec} command:
17363
17364@smallexample
17365interpreter-exec mi "-data-list-register-names"
17366@end smallexample
17367
17368@sc{gdb/mi} has a similar command, although it is only available in versions of
17369@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17370
8e04817f
AC
17371@node TUI
17372@chapter @value{GDBN} Text User Interface
17373@cindex TUI
d0d5df6f 17374@cindex Text User Interface
c906108c 17375
8e04817f
AC
17376@menu
17377* TUI Overview:: TUI overview
17378* TUI Keys:: TUI key bindings
7cf36c78 17379* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17380* TUI Commands:: TUI-specific commands
8e04817f
AC
17381* TUI Configuration:: TUI configuration variables
17382@end menu
c906108c 17383
46ba6afa 17384The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17385interface which uses the @code{curses} library to show the source
17386file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17387commands in separate text windows. The TUI mode is supported only
17388on platforms where a suitable version of the @code{curses} library
17389is available.
d0d5df6f 17390
46ba6afa
BW
17391@pindex @value{GDBTUI}
17392The TUI mode is enabled by default when you invoke @value{GDBN} as
17393either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17394You can also switch in and out of TUI mode while @value{GDBN} runs by
17395using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17396@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17397
8e04817f 17398@node TUI Overview
79a6e687 17399@section TUI Overview
c906108c 17400
46ba6afa 17401In TUI mode, @value{GDBN} can display several text windows:
c906108c 17402
8e04817f
AC
17403@table @emph
17404@item command
17405This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17406prompt and the @value{GDBN} output. The @value{GDBN} input is still
17407managed using readline.
c906108c 17408
8e04817f
AC
17409@item source
17410The source window shows the source file of the program. The current
46ba6afa 17411line and active breakpoints are displayed in this window.
c906108c 17412
8e04817f
AC
17413@item assembly
17414The assembly window shows the disassembly output of the program.
c906108c 17415
8e04817f 17416@item register
46ba6afa
BW
17417This window shows the processor registers. Registers are highlighted
17418when their values change.
c906108c
SS
17419@end table
17420
269c21fe 17421The source and assembly windows show the current program position
46ba6afa
BW
17422by highlighting the current line and marking it with a @samp{>} marker.
17423Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17424indicates the breakpoint type:
17425
17426@table @code
17427@item B
17428Breakpoint which was hit at least once.
17429
17430@item b
17431Breakpoint which was never hit.
17432
17433@item H
17434Hardware breakpoint which was hit at least once.
17435
17436@item h
17437Hardware breakpoint which was never hit.
269c21fe
SC
17438@end table
17439
17440The second marker indicates whether the breakpoint is enabled or not:
17441
17442@table @code
17443@item +
17444Breakpoint is enabled.
17445
17446@item -
17447Breakpoint is disabled.
269c21fe
SC
17448@end table
17449
46ba6afa
BW
17450The source, assembly and register windows are updated when the current
17451thread changes, when the frame changes, or when the program counter
17452changes.
17453
17454These windows are not all visible at the same time. The command
17455window is always visible. The others can be arranged in several
17456layouts:
c906108c 17457
8e04817f
AC
17458@itemize @bullet
17459@item
46ba6afa 17460source only,
2df3850c 17461
8e04817f 17462@item
46ba6afa 17463assembly only,
8e04817f
AC
17464
17465@item
46ba6afa 17466source and assembly,
8e04817f
AC
17467
17468@item
46ba6afa 17469source and registers, or
c906108c 17470
8e04817f 17471@item
46ba6afa 17472assembly and registers.
8e04817f 17473@end itemize
c906108c 17474
46ba6afa 17475A status line above the command window shows the following information:
b7bb15bc
SC
17476
17477@table @emph
17478@item target
46ba6afa 17479Indicates the current @value{GDBN} target.
b7bb15bc
SC
17480(@pxref{Targets, ,Specifying a Debugging Target}).
17481
17482@item process
46ba6afa 17483Gives the current process or thread number.
b7bb15bc
SC
17484When no process is being debugged, this field is set to @code{No process}.
17485
17486@item function
17487Gives the current function name for the selected frame.
17488The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17489When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17490the string @code{??} is displayed.
17491
17492@item line
17493Indicates the current line number for the selected frame.
46ba6afa 17494When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17495
17496@item pc
17497Indicates the current program counter address.
b7bb15bc
SC
17498@end table
17499
8e04817f
AC
17500@node TUI Keys
17501@section TUI Key Bindings
17502@cindex TUI key bindings
c906108c 17503
8e04817f 17504The TUI installs several key bindings in the readline keymaps
46ba6afa 17505(@pxref{Command Line Editing}). The following key bindings
8e04817f 17506are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17507
8e04817f
AC
17508@table @kbd
17509@kindex C-x C-a
17510@item C-x C-a
17511@kindex C-x a
17512@itemx C-x a
17513@kindex C-x A
17514@itemx C-x A
46ba6afa
BW
17515Enter or leave the TUI mode. When leaving the TUI mode,
17516the curses window management stops and @value{GDBN} operates using
17517its standard mode, writing on the terminal directly. When reentering
17518the TUI mode, control is given back to the curses windows.
8e04817f 17519The screen is then refreshed.
c906108c 17520
8e04817f
AC
17521@kindex C-x 1
17522@item C-x 1
17523Use a TUI layout with only one window. The layout will
17524either be @samp{source} or @samp{assembly}. When the TUI mode
17525is not active, it will switch to the TUI mode.
2df3850c 17526
8e04817f 17527Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17528
8e04817f
AC
17529@kindex C-x 2
17530@item C-x 2
17531Use a TUI layout with at least two windows. When the current
46ba6afa 17532layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17533When a new layout is chosen, one window will always be common to the
17534previous layout and the new one.
c906108c 17535
8e04817f 17536Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17537
72ffddc9
SC
17538@kindex C-x o
17539@item C-x o
17540Change the active window. The TUI associates several key bindings
46ba6afa 17541(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17542gives the focus to the next TUI window.
17543
17544Think of it as the Emacs @kbd{C-x o} binding.
17545
7cf36c78
SC
17546@kindex C-x s
17547@item C-x s
46ba6afa
BW
17548Switch in and out of the TUI SingleKey mode that binds single
17549keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17550@end table
17551
46ba6afa 17552The following key bindings only work in the TUI mode:
5d161b24 17553
46ba6afa 17554@table @asis
8e04817f 17555@kindex PgUp
46ba6afa 17556@item @key{PgUp}
8e04817f 17557Scroll the active window one page up.
c906108c 17558
8e04817f 17559@kindex PgDn
46ba6afa 17560@item @key{PgDn}
8e04817f 17561Scroll the active window one page down.
c906108c 17562
8e04817f 17563@kindex Up
46ba6afa 17564@item @key{Up}
8e04817f 17565Scroll the active window one line up.
c906108c 17566
8e04817f 17567@kindex Down
46ba6afa 17568@item @key{Down}
8e04817f 17569Scroll the active window one line down.
c906108c 17570
8e04817f 17571@kindex Left
46ba6afa 17572@item @key{Left}
8e04817f 17573Scroll the active window one column left.
c906108c 17574
8e04817f 17575@kindex Right
46ba6afa 17576@item @key{Right}
8e04817f 17577Scroll the active window one column right.
c906108c 17578
8e04817f 17579@kindex C-L
46ba6afa 17580@item @kbd{C-L}
8e04817f 17581Refresh the screen.
8e04817f 17582@end table
c906108c 17583
46ba6afa
BW
17584Because the arrow keys scroll the active window in the TUI mode, they
17585are not available for their normal use by readline unless the command
17586window has the focus. When another window is active, you must use
17587other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17588and @kbd{C-f} to control the command window.
8e04817f 17589
7cf36c78
SC
17590@node TUI Single Key Mode
17591@section TUI Single Key Mode
17592@cindex TUI single key mode
17593
46ba6afa
BW
17594The TUI also provides a @dfn{SingleKey} mode, which binds several
17595frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17596switch into this mode, where the following key bindings are used:
7cf36c78
SC
17597
17598@table @kbd
17599@kindex c @r{(SingleKey TUI key)}
17600@item c
17601continue
17602
17603@kindex d @r{(SingleKey TUI key)}
17604@item d
17605down
17606
17607@kindex f @r{(SingleKey TUI key)}
17608@item f
17609finish
17610
17611@kindex n @r{(SingleKey TUI key)}
17612@item n
17613next
17614
17615@kindex q @r{(SingleKey TUI key)}
17616@item q
46ba6afa 17617exit the SingleKey mode.
7cf36c78
SC
17618
17619@kindex r @r{(SingleKey TUI key)}
17620@item r
17621run
17622
17623@kindex s @r{(SingleKey TUI key)}
17624@item s
17625step
17626
17627@kindex u @r{(SingleKey TUI key)}
17628@item u
17629up
17630
17631@kindex v @r{(SingleKey TUI key)}
17632@item v
17633info locals
17634
17635@kindex w @r{(SingleKey TUI key)}
17636@item w
17637where
7cf36c78
SC
17638@end table
17639
17640Other keys temporarily switch to the @value{GDBN} command prompt.
17641The key that was pressed is inserted in the editing buffer so that
17642it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17643with the TUI SingleKey mode. Once the command is entered the TUI
17644SingleKey mode is restored. The only way to permanently leave
7f9087cb 17645this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17646
17647
8e04817f 17648@node TUI Commands
db2e3e2e 17649@section TUI-specific Commands
8e04817f
AC
17650@cindex TUI commands
17651
17652The TUI has specific commands to control the text windows.
46ba6afa
BW
17653These commands are always available, even when @value{GDBN} is not in
17654the TUI mode. When @value{GDBN} is in the standard mode, most
17655of these commands will automatically switch to the TUI mode.
c906108c
SS
17656
17657@table @code
3d757584
SC
17658@item info win
17659@kindex info win
17660List and give the size of all displayed windows.
17661
8e04817f 17662@item layout next
4644b6e3 17663@kindex layout
8e04817f 17664Display the next layout.
2df3850c 17665
8e04817f 17666@item layout prev
8e04817f 17667Display the previous layout.
c906108c 17668
8e04817f 17669@item layout src
8e04817f 17670Display the source window only.
c906108c 17671
8e04817f 17672@item layout asm
8e04817f 17673Display the assembly window only.
c906108c 17674
8e04817f 17675@item layout split
8e04817f 17676Display the source and assembly window.
c906108c 17677
8e04817f 17678@item layout regs
8e04817f
AC
17679Display the register window together with the source or assembly window.
17680
46ba6afa 17681@item focus next
8e04817f 17682@kindex focus
46ba6afa
BW
17683Make the next window active for scrolling.
17684
17685@item focus prev
17686Make the previous window active for scrolling.
17687
17688@item focus src
17689Make the source window active for scrolling.
17690
17691@item focus asm
17692Make the assembly window active for scrolling.
17693
17694@item focus regs
17695Make the register window active for scrolling.
17696
17697@item focus cmd
17698Make the command window active for scrolling.
c906108c 17699
8e04817f
AC
17700@item refresh
17701@kindex refresh
7f9087cb 17702Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17703
6a1b180d
SC
17704@item tui reg float
17705@kindex tui reg
17706Show the floating point registers in the register window.
17707
17708@item tui reg general
17709Show the general registers in the register window.
17710
17711@item tui reg next
17712Show the next register group. The list of register groups as well as
17713their order is target specific. The predefined register groups are the
17714following: @code{general}, @code{float}, @code{system}, @code{vector},
17715@code{all}, @code{save}, @code{restore}.
17716
17717@item tui reg system
17718Show the system registers in the register window.
17719
8e04817f
AC
17720@item update
17721@kindex update
17722Update the source window and the current execution point.
c906108c 17723
8e04817f
AC
17724@item winheight @var{name} +@var{count}
17725@itemx winheight @var{name} -@var{count}
17726@kindex winheight
17727Change the height of the window @var{name} by @var{count}
17728lines. Positive counts increase the height, while negative counts
17729decrease it.
2df3850c 17730
46ba6afa
BW
17731@item tabset @var{nchars}
17732@kindex tabset
c45da7e6 17733Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17734@end table
17735
8e04817f 17736@node TUI Configuration
79a6e687 17737@section TUI Configuration Variables
8e04817f 17738@cindex TUI configuration variables
c906108c 17739
46ba6afa 17740Several configuration variables control the appearance of TUI windows.
c906108c 17741
8e04817f
AC
17742@table @code
17743@item set tui border-kind @var{kind}
17744@kindex set tui border-kind
17745Select the border appearance for the source, assembly and register windows.
17746The possible values are the following:
17747@table @code
17748@item space
17749Use a space character to draw the border.
c906108c 17750
8e04817f 17751@item ascii
46ba6afa 17752Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17753
8e04817f
AC
17754@item acs
17755Use the Alternate Character Set to draw the border. The border is
17756drawn using character line graphics if the terminal supports them.
8e04817f 17757@end table
c78b4128 17758
8e04817f
AC
17759@item set tui border-mode @var{mode}
17760@kindex set tui border-mode
46ba6afa
BW
17761@itemx set tui active-border-mode @var{mode}
17762@kindex set tui active-border-mode
17763Select the display attributes for the borders of the inactive windows
17764or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17765@table @code
17766@item normal
17767Use normal attributes to display the border.
c906108c 17768
8e04817f
AC
17769@item standout
17770Use standout mode.
c906108c 17771
8e04817f
AC
17772@item reverse
17773Use reverse video mode.
c906108c 17774
8e04817f
AC
17775@item half
17776Use half bright mode.
c906108c 17777
8e04817f
AC
17778@item half-standout
17779Use half bright and standout mode.
c906108c 17780
8e04817f
AC
17781@item bold
17782Use extra bright or bold mode.
c78b4128 17783
8e04817f
AC
17784@item bold-standout
17785Use extra bright or bold and standout mode.
8e04817f 17786@end table
8e04817f 17787@end table
c78b4128 17788
8e04817f
AC
17789@node Emacs
17790@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17791
8e04817f
AC
17792@cindex Emacs
17793@cindex @sc{gnu} Emacs
17794A special interface allows you to use @sc{gnu} Emacs to view (and
17795edit) the source files for the program you are debugging with
17796@value{GDBN}.
c906108c 17797
8e04817f
AC
17798To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17799executable file you want to debug as an argument. This command starts
17800@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17801created Emacs buffer.
17802@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17803
5e252a2e 17804Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17805things:
c906108c 17806
8e04817f
AC
17807@itemize @bullet
17808@item
5e252a2e
NR
17809All ``terminal'' input and output goes through an Emacs buffer, called
17810the GUD buffer.
c906108c 17811
8e04817f
AC
17812This applies both to @value{GDBN} commands and their output, and to the input
17813and output done by the program you are debugging.
bf0184be 17814
8e04817f
AC
17815This is useful because it means that you can copy the text of previous
17816commands and input them again; you can even use parts of the output
17817in this way.
bf0184be 17818
8e04817f
AC
17819All the facilities of Emacs' Shell mode are available for interacting
17820with your program. In particular, you can send signals the usual
17821way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17822stop.
bf0184be
ND
17823
17824@item
8e04817f 17825@value{GDBN} displays source code through Emacs.
bf0184be 17826
8e04817f
AC
17827Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17828source file for that frame and puts an arrow (@samp{=>}) at the
17829left margin of the current line. Emacs uses a separate buffer for
17830source display, and splits the screen to show both your @value{GDBN} session
17831and the source.
bf0184be 17832
8e04817f
AC
17833Explicit @value{GDBN} @code{list} or search commands still produce output as
17834usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17835@end itemize
17836
17837We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17838a graphical mode, enabled by default, which provides further buffers
17839that can control the execution and describe the state of your program.
17840@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17841
64fabec2
AC
17842If you specify an absolute file name when prompted for the @kbd{M-x
17843gdb} argument, then Emacs sets your current working directory to where
17844your program resides. If you only specify the file name, then Emacs
17845sets your current working directory to to the directory associated
17846with the previous buffer. In this case, @value{GDBN} may find your
17847program by searching your environment's @code{PATH} variable, but on
17848some operating systems it might not find the source. So, although the
17849@value{GDBN} input and output session proceeds normally, the auxiliary
17850buffer does not display the current source and line of execution.
17851
17852The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17853line of the GUD buffer and this serves as a default for the commands
17854that specify files for @value{GDBN} to operate on. @xref{Files,
17855,Commands to Specify Files}.
64fabec2
AC
17856
17857By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17858need to call @value{GDBN} by a different name (for example, if you
17859keep several configurations around, with different names) you can
17860customize the Emacs variable @code{gud-gdb-command-name} to run the
17861one you want.
8e04817f 17862
5e252a2e 17863In the GUD buffer, you can use these special Emacs commands in
8e04817f 17864addition to the standard Shell mode commands:
c906108c 17865
8e04817f
AC
17866@table @kbd
17867@item C-h m
5e252a2e 17868Describe the features of Emacs' GUD Mode.
c906108c 17869
64fabec2 17870@item C-c C-s
8e04817f
AC
17871Execute to another source line, like the @value{GDBN} @code{step} command; also
17872update the display window to show the current file and location.
c906108c 17873
64fabec2 17874@item C-c C-n
8e04817f
AC
17875Execute to next source line in this function, skipping all function
17876calls, like the @value{GDBN} @code{next} command. Then update the display window
17877to show the current file and location.
c906108c 17878
64fabec2 17879@item C-c C-i
8e04817f
AC
17880Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17881display window accordingly.
c906108c 17882
8e04817f
AC
17883@item C-c C-f
17884Execute until exit from the selected stack frame, like the @value{GDBN}
17885@code{finish} command.
c906108c 17886
64fabec2 17887@item C-c C-r
8e04817f
AC
17888Continue execution of your program, like the @value{GDBN} @code{continue}
17889command.
b433d00b 17890
64fabec2 17891@item C-c <
8e04817f
AC
17892Go up the number of frames indicated by the numeric argument
17893(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17894like the @value{GDBN} @code{up} command.
b433d00b 17895
64fabec2 17896@item C-c >
8e04817f
AC
17897Go down the number of frames indicated by the numeric argument, like the
17898@value{GDBN} @code{down} command.
8e04817f 17899@end table
c906108c 17900
7f9087cb 17901In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17902tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17903
5e252a2e
NR
17904In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17905separate frame which shows a backtrace when the GUD buffer is current.
17906Move point to any frame in the stack and type @key{RET} to make it
17907become the current frame and display the associated source in the
17908source buffer. Alternatively, click @kbd{Mouse-2} to make the
17909selected frame become the current one. In graphical mode, the
17910speedbar displays watch expressions.
64fabec2 17911
8e04817f
AC
17912If you accidentally delete the source-display buffer, an easy way to get
17913it back is to type the command @code{f} in the @value{GDBN} buffer, to
17914request a frame display; when you run under Emacs, this recreates
17915the source buffer if necessary to show you the context of the current
17916frame.
c906108c 17917
8e04817f
AC
17918The source files displayed in Emacs are in ordinary Emacs buffers
17919which are visiting the source files in the usual way. You can edit
17920the files with these buffers if you wish; but keep in mind that @value{GDBN}
17921communicates with Emacs in terms of line numbers. If you add or
17922delete lines from the text, the line numbers that @value{GDBN} knows cease
17923to correspond properly with the code.
b383017d 17924
5e252a2e
NR
17925A more detailed description of Emacs' interaction with @value{GDBN} is
17926given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17927Emacs Manual}).
c906108c 17928
8e04817f
AC
17929@c The following dropped because Epoch is nonstandard. Reactivate
17930@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17931@ignore
17932@kindex Emacs Epoch environment
17933@kindex Epoch
17934@kindex inspect
c906108c 17935
8e04817f
AC
17936Version 18 of @sc{gnu} Emacs has a built-in window system
17937called the @code{epoch}
17938environment. Users of this environment can use a new command,
17939@code{inspect} which performs identically to @code{print} except that
17940each value is printed in its own window.
17941@end ignore
c906108c 17942
922fbb7b
AC
17943
17944@node GDB/MI
17945@chapter The @sc{gdb/mi} Interface
17946
17947@unnumberedsec Function and Purpose
17948
17949@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17950@sc{gdb/mi} is a line based machine oriented text interface to
17951@value{GDBN} and is activated by specifying using the
17952@option{--interpreter} command line option (@pxref{Mode Options}). It
17953is specifically intended to support the development of systems which
17954use the debugger as just one small component of a larger system.
922fbb7b
AC
17955
17956This chapter is a specification of the @sc{gdb/mi} interface. It is written
17957in the form of a reference manual.
17958
17959Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17960features described below are incomplete and subject to change
17961(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17962
17963@unnumberedsec Notation and Terminology
17964
17965@cindex notational conventions, for @sc{gdb/mi}
17966This chapter uses the following notation:
17967
17968@itemize @bullet
17969@item
17970@code{|} separates two alternatives.
17971
17972@item
17973@code{[ @var{something} ]} indicates that @var{something} is optional:
17974it may or may not be given.
17975
17976@item
17977@code{( @var{group} )*} means that @var{group} inside the parentheses
17978may repeat zero or more times.
17979
17980@item
17981@code{( @var{group} )+} means that @var{group} inside the parentheses
17982may repeat one or more times.
17983
17984@item
17985@code{"@var{string}"} means a literal @var{string}.
17986@end itemize
17987
17988@ignore
17989@heading Dependencies
17990@end ignore
17991
922fbb7b
AC
17992@menu
17993* GDB/MI Command Syntax::
17994* GDB/MI Compatibility with CLI::
af6eff6f 17995* GDB/MI Development and Front Ends::
922fbb7b 17996* GDB/MI Output Records::
ef21caaf 17997* GDB/MI Simple Examples::
922fbb7b 17998* GDB/MI Command Description Format::
ef21caaf 17999* GDB/MI Breakpoint Commands::
a2c02241
NR
18000* GDB/MI Program Context::
18001* GDB/MI Thread Commands::
18002* GDB/MI Program Execution::
18003* GDB/MI Stack Manipulation::
18004* GDB/MI Variable Objects::
922fbb7b 18005* GDB/MI Data Manipulation::
a2c02241
NR
18006* GDB/MI Tracepoint Commands::
18007* GDB/MI Symbol Query::
351ff01a 18008* GDB/MI File Commands::
922fbb7b
AC
18009@ignore
18010* GDB/MI Kod Commands::
18011* GDB/MI Memory Overlay Commands::
18012* GDB/MI Signal Handling Commands::
18013@end ignore
922fbb7b 18014* GDB/MI Target Manipulation::
a6b151f1 18015* GDB/MI File Transfer Commands::
ef21caaf 18016* GDB/MI Miscellaneous Commands::
922fbb7b
AC
18017@end menu
18018
18019@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18020@node GDB/MI Command Syntax
18021@section @sc{gdb/mi} Command Syntax
18022
18023@menu
18024* GDB/MI Input Syntax::
18025* GDB/MI Output Syntax::
922fbb7b
AC
18026@end menu
18027
18028@node GDB/MI Input Syntax
18029@subsection @sc{gdb/mi} Input Syntax
18030
18031@cindex input syntax for @sc{gdb/mi}
18032@cindex @sc{gdb/mi}, input syntax
18033@table @code
18034@item @var{command} @expansion{}
18035@code{@var{cli-command} | @var{mi-command}}
18036
18037@item @var{cli-command} @expansion{}
18038@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
18039@var{cli-command} is any existing @value{GDBN} CLI command.
18040
18041@item @var{mi-command} @expansion{}
18042@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
18043@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
18044
18045@item @var{token} @expansion{}
18046"any sequence of digits"
18047
18048@item @var{option} @expansion{}
18049@code{"-" @var{parameter} [ " " @var{parameter} ]}
18050
18051@item @var{parameter} @expansion{}
18052@code{@var{non-blank-sequence} | @var{c-string}}
18053
18054@item @var{operation} @expansion{}
18055@emph{any of the operations described in this chapter}
18056
18057@item @var{non-blank-sequence} @expansion{}
18058@emph{anything, provided it doesn't contain special characters such as
18059"-", @var{nl}, """ and of course " "}
18060
18061@item @var{c-string} @expansion{}
18062@code{""" @var{seven-bit-iso-c-string-content} """}
18063
18064@item @var{nl} @expansion{}
18065@code{CR | CR-LF}
18066@end table
18067
18068@noindent
18069Notes:
18070
18071@itemize @bullet
18072@item
18073The CLI commands are still handled by the @sc{mi} interpreter; their
18074output is described below.
18075
18076@item
18077The @code{@var{token}}, when present, is passed back when the command
18078finishes.
18079
18080@item
18081Some @sc{mi} commands accept optional arguments as part of the parameter
18082list. Each option is identified by a leading @samp{-} (dash) and may be
18083followed by an optional argument parameter. Options occur first in the
18084parameter list and can be delimited from normal parameters using
18085@samp{--} (this is useful when some parameters begin with a dash).
18086@end itemize
18087
18088Pragmatics:
18089
18090@itemize @bullet
18091@item
18092We want easy access to the existing CLI syntax (for debugging).
18093
18094@item
18095We want it to be easy to spot a @sc{mi} operation.
18096@end itemize
18097
18098@node GDB/MI Output Syntax
18099@subsection @sc{gdb/mi} Output Syntax
18100
18101@cindex output syntax of @sc{gdb/mi}
18102@cindex @sc{gdb/mi}, output syntax
18103The output from @sc{gdb/mi} consists of zero or more out-of-band records
18104followed, optionally, by a single result record. This result record
18105is for the most recent command. The sequence of output records is
594fe323 18106terminated by @samp{(gdb)}.
922fbb7b
AC
18107
18108If an input command was prefixed with a @code{@var{token}} then the
18109corresponding output for that command will also be prefixed by that same
18110@var{token}.
18111
18112@table @code
18113@item @var{output} @expansion{}
594fe323 18114@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
18115
18116@item @var{result-record} @expansion{}
18117@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
18118
18119@item @var{out-of-band-record} @expansion{}
18120@code{@var{async-record} | @var{stream-record}}
18121
18122@item @var{async-record} @expansion{}
18123@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
18124
18125@item @var{exec-async-output} @expansion{}
18126@code{[ @var{token} ] "*" @var{async-output}}
18127
18128@item @var{status-async-output} @expansion{}
18129@code{[ @var{token} ] "+" @var{async-output}}
18130
18131@item @var{notify-async-output} @expansion{}
18132@code{[ @var{token} ] "=" @var{async-output}}
18133
18134@item @var{async-output} @expansion{}
18135@code{@var{async-class} ( "," @var{result} )* @var{nl}}
18136
18137@item @var{result-class} @expansion{}
18138@code{"done" | "running" | "connected" | "error" | "exit"}
18139
18140@item @var{async-class} @expansion{}
18141@code{"stopped" | @var{others}} (where @var{others} will be added
18142depending on the needs---this is still in development).
18143
18144@item @var{result} @expansion{}
18145@code{ @var{variable} "=" @var{value}}
18146
18147@item @var{variable} @expansion{}
18148@code{ @var{string} }
18149
18150@item @var{value} @expansion{}
18151@code{ @var{const} | @var{tuple} | @var{list} }
18152
18153@item @var{const} @expansion{}
18154@code{@var{c-string}}
18155
18156@item @var{tuple} @expansion{}
18157@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
18158
18159@item @var{list} @expansion{}
18160@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
18161@var{result} ( "," @var{result} )* "]" }
18162
18163@item @var{stream-record} @expansion{}
18164@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
18165
18166@item @var{console-stream-output} @expansion{}
18167@code{"~" @var{c-string}}
18168
18169@item @var{target-stream-output} @expansion{}
18170@code{"@@" @var{c-string}}
18171
18172@item @var{log-stream-output} @expansion{}
18173@code{"&" @var{c-string}}
18174
18175@item @var{nl} @expansion{}
18176@code{CR | CR-LF}
18177
18178@item @var{token} @expansion{}
18179@emph{any sequence of digits}.
18180@end table
18181
18182@noindent
18183Notes:
18184
18185@itemize @bullet
18186@item
18187All output sequences end in a single line containing a period.
18188
18189@item
721c02de
VP
18190The @code{@var{token}} is from the corresponding request. Note that
18191for all async output, while the token is allowed by the grammar and
18192may be output by future versions of @value{GDBN} for select async
18193output messages, it is generally omitted. Frontends should treat
18194all async output as reporting general changes in the state of the
18195target and there should be no need to associate async output to any
18196prior command.
922fbb7b
AC
18197
18198@item
18199@cindex status output in @sc{gdb/mi}
18200@var{status-async-output} contains on-going status information about the
18201progress of a slow operation. It can be discarded. All status output is
18202prefixed by @samp{+}.
18203
18204@item
18205@cindex async output in @sc{gdb/mi}
18206@var{exec-async-output} contains asynchronous state change on the target
18207(stopped, started, disappeared). All async output is prefixed by
18208@samp{*}.
18209
18210@item
18211@cindex notify output in @sc{gdb/mi}
18212@var{notify-async-output} contains supplementary information that the
18213client should handle (e.g., a new breakpoint information). All notify
18214output is prefixed by @samp{=}.
18215
18216@item
18217@cindex console output in @sc{gdb/mi}
18218@var{console-stream-output} is output that should be displayed as is in the
18219console. It is the textual response to a CLI command. All the console
18220output is prefixed by @samp{~}.
18221
18222@item
18223@cindex target output in @sc{gdb/mi}
18224@var{target-stream-output} is the output produced by the target program.
18225All the target output is prefixed by @samp{@@}.
18226
18227@item
18228@cindex log output in @sc{gdb/mi}
18229@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
18230instance messages that should be displayed as part of an error log. All
18231the log output is prefixed by @samp{&}.
18232
18233@item
18234@cindex list output in @sc{gdb/mi}
18235New @sc{gdb/mi} commands should only output @var{lists} containing
18236@var{values}.
18237
18238
18239@end itemize
18240
18241@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
18242details about the various output records.
18243
922fbb7b
AC
18244@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18245@node GDB/MI Compatibility with CLI
18246@section @sc{gdb/mi} Compatibility with CLI
18247
18248@cindex compatibility, @sc{gdb/mi} and CLI
18249@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 18250
a2c02241
NR
18251For the developers convenience CLI commands can be entered directly,
18252but there may be some unexpected behaviour. For example, commands
18253that query the user will behave as if the user replied yes, breakpoint
18254command lists are not executed and some CLI commands, such as
18255@code{if}, @code{when} and @code{define}, prompt for further input with
18256@samp{>}, which is not valid MI output.
ef21caaf
NR
18257
18258This feature may be removed at some stage in the future and it is
a2c02241
NR
18259recommended that front ends use the @code{-interpreter-exec} command
18260(@pxref{-interpreter-exec}).
922fbb7b 18261
af6eff6f
NR
18262@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18263@node GDB/MI Development and Front Ends
18264@section @sc{gdb/mi} Development and Front Ends
18265@cindex @sc{gdb/mi} development
18266
18267The application which takes the MI output and presents the state of the
18268program being debugged to the user is called a @dfn{front end}.
18269
18270Although @sc{gdb/mi} is still incomplete, it is currently being used
18271by a variety of front ends to @value{GDBN}. This makes it difficult
18272to introduce new functionality without breaking existing usage. This
18273section tries to minimize the problems by describing how the protocol
18274might change.
18275
18276Some changes in MI need not break a carefully designed front end, and
18277for these the MI version will remain unchanged. The following is a
18278list of changes that may occur within one level, so front ends should
18279parse MI output in a way that can handle them:
18280
18281@itemize @bullet
18282@item
18283New MI commands may be added.
18284
18285@item
18286New fields may be added to the output of any MI command.
18287
36ece8b3
NR
18288@item
18289The range of values for fields with specified values, e.g.,
9f708cb2 18290@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 18291
af6eff6f
NR
18292@c The format of field's content e.g type prefix, may change so parse it
18293@c at your own risk. Yes, in general?
18294
18295@c The order of fields may change? Shouldn't really matter but it might
18296@c resolve inconsistencies.
18297@end itemize
18298
18299If the changes are likely to break front ends, the MI version level
18300will be increased by one. This will allow the front end to parse the
18301output according to the MI version. Apart from mi0, new versions of
18302@value{GDBN} will not support old versions of MI and it will be the
18303responsibility of the front end to work with the new one.
18304
18305@c Starting with mi3, add a new command -mi-version that prints the MI
18306@c version?
18307
18308The best way to avoid unexpected changes in MI that might break your front
18309end is to make your project known to @value{GDBN} developers and
7a9a6b69 18310follow development on @email{gdb@@sourceware.org} and
fa0f268d 18311@email{gdb-patches@@sourceware.org}.
af6eff6f
NR
18312@cindex mailing lists
18313
922fbb7b
AC
18314@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18315@node GDB/MI Output Records
18316@section @sc{gdb/mi} Output Records
18317
18318@menu
18319* GDB/MI Result Records::
18320* GDB/MI Stream Records::
82f68b1c 18321* GDB/MI Async Records::
922fbb7b
AC
18322@end menu
18323
18324@node GDB/MI Result Records
18325@subsection @sc{gdb/mi} Result Records
18326
18327@cindex result records in @sc{gdb/mi}
18328@cindex @sc{gdb/mi}, result records
18329In addition to a number of out-of-band notifications, the response to a
18330@sc{gdb/mi} command includes one of the following result indications:
18331
18332@table @code
18333@findex ^done
18334@item "^done" [ "," @var{results} ]
18335The synchronous operation was successful, @code{@var{results}} are the return
18336values.
18337
18338@item "^running"
18339@findex ^running
18340@c Is this one correct? Should it be an out-of-band notification?
18341The asynchronous operation was successfully started. The target is
18342running.
18343
ef21caaf
NR
18344@item "^connected"
18345@findex ^connected
3f94c067 18346@value{GDBN} has connected to a remote target.
ef21caaf 18347
922fbb7b
AC
18348@item "^error" "," @var{c-string}
18349@findex ^error
18350The operation failed. The @code{@var{c-string}} contains the corresponding
18351error message.
ef21caaf
NR
18352
18353@item "^exit"
18354@findex ^exit
3f94c067 18355@value{GDBN} has terminated.
ef21caaf 18356
922fbb7b
AC
18357@end table
18358
18359@node GDB/MI Stream Records
18360@subsection @sc{gdb/mi} Stream Records
18361
18362@cindex @sc{gdb/mi}, stream records
18363@cindex stream records in @sc{gdb/mi}
18364@value{GDBN} internally maintains a number of output streams: the console, the
18365target, and the log. The output intended for each of these streams is
18366funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18367
18368Each stream record begins with a unique @dfn{prefix character} which
18369identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18370Syntax}). In addition to the prefix, each stream record contains a
18371@code{@var{string-output}}. This is either raw text (with an implicit new
18372line) or a quoted C string (which does not contain an implicit newline).
18373
18374@table @code
18375@item "~" @var{string-output}
18376The console output stream contains text that should be displayed in the
18377CLI console window. It contains the textual responses to CLI commands.
18378
18379@item "@@" @var{string-output}
18380The target output stream contains any textual output from the running
ef21caaf
NR
18381target. This is only present when GDB's event loop is truly
18382asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18383
18384@item "&" @var{string-output}
18385The log stream contains debugging messages being produced by @value{GDBN}'s
18386internals.
18387@end table
18388
82f68b1c
VP
18389@node GDB/MI Async Records
18390@subsection @sc{gdb/mi} Async Records
922fbb7b 18391
82f68b1c
VP
18392@cindex async records in @sc{gdb/mi}
18393@cindex @sc{gdb/mi}, async records
18394@dfn{Async} records are used to notify the @sc{gdb/mi} client of
922fbb7b 18395additional changes that have occurred. Those changes can either be a
82f68b1c 18396consequence of @sc{gdb/mi} commands (e.g., a breakpoint modified) or a result of
922fbb7b
AC
18397target activity (e.g., target stopped).
18398
8eb41542 18399The following is the list of possible async records:
922fbb7b
AC
18400
18401@table @code
034dad6f 18402
e1ac3328
VP
18403@item *running,thread-id="@var{thread}"
18404The target is now running. The @var{thread} field tells which
18405specific thread is now running, and can be @samp{all} if all threads
18406are running. The frontend should assume that no interaction with a
18407running thread is possible after this notification is produced.
18408The frontend should not assume that this notification is output
18409only once for any command. @value{GDBN} may emit this notification
18410several times, either for different threads, because it cannot resume
18411all threads together, or even for a single thread, if the thread must
18412be stepped though some code before letting it run freely.
18413
82f68b1c
VP
18414@item *stopped,reason="@var{reason}"
18415The target has stopped. The @var{reason} field can have one of the
18416following values:
034dad6f
BR
18417
18418@table @code
18419@item breakpoint-hit
18420A breakpoint was reached.
18421@item watchpoint-trigger
18422A watchpoint was triggered.
18423@item read-watchpoint-trigger
18424A read watchpoint was triggered.
18425@item access-watchpoint-trigger
18426An access watchpoint was triggered.
18427@item function-finished
18428An -exec-finish or similar CLI command was accomplished.
18429@item location-reached
18430An -exec-until or similar CLI command was accomplished.
18431@item watchpoint-scope
18432A watchpoint has gone out of scope.
18433@item end-stepping-range
18434An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18435similar CLI command was accomplished.
18436@item exited-signalled
18437The inferior exited because of a signal.
18438@item exited
18439The inferior exited.
18440@item exited-normally
18441The inferior exited normally.
18442@item signal-received
18443A signal was received by the inferior.
922fbb7b
AC
18444@end table
18445
82f68b1c
VP
18446@item =thread-created,id="@var{id}"
18447@itemx =thread-exited,id="@var{id}"
18448A thread either was created, or has exited. The @var{id} field
18449contains the @value{GDBN} identifier of the thread.
18450@end table
18451
18452
922fbb7b 18453
ef21caaf
NR
18454@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18455@node GDB/MI Simple Examples
18456@section Simple Examples of @sc{gdb/mi} Interaction
18457@cindex @sc{gdb/mi}, simple examples
18458
18459This subsection presents several simple examples of interaction using
18460the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18461following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18462the output received from @sc{gdb/mi}.
18463
d3e8051b 18464Note the line breaks shown in the examples are here only for
ef21caaf
NR
18465readability, they don't appear in the real output.
18466
79a6e687 18467@subheading Setting a Breakpoint
ef21caaf
NR
18468
18469Setting a breakpoint generates synchronous output which contains detailed
18470information of the breakpoint.
18471
18472@smallexample
18473-> -break-insert main
18474<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18475 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18476 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18477<- (gdb)
18478@end smallexample
18479
18480@subheading Program Execution
18481
18482Program execution generates asynchronous records and MI gives the
18483reason that execution stopped.
18484
18485@smallexample
18486-> -exec-run
18487<- ^running
18488<- (gdb)
a47ec5fe 18489<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18490 frame=@{addr="0x08048564",func="main",
18491 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18492 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18493<- (gdb)
18494-> -exec-continue
18495<- ^running
18496<- (gdb)
18497<- *stopped,reason="exited-normally"
18498<- (gdb)
18499@end smallexample
18500
3f94c067 18501@subheading Quitting @value{GDBN}
ef21caaf 18502
3f94c067 18503Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18504
18505@smallexample
18506-> (gdb)
18507<- -gdb-exit
18508<- ^exit
18509@end smallexample
18510
a2c02241 18511@subheading A Bad Command
ef21caaf
NR
18512
18513Here's what happens if you pass a non-existent command:
18514
18515@smallexample
18516-> -rubbish
18517<- ^error,msg="Undefined MI command: rubbish"
594fe323 18518<- (gdb)
ef21caaf
NR
18519@end smallexample
18520
18521
922fbb7b
AC
18522@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18523@node GDB/MI Command Description Format
18524@section @sc{gdb/mi} Command Description Format
18525
18526The remaining sections describe blocks of commands. Each block of
18527commands is laid out in a fashion similar to this section.
18528
922fbb7b
AC
18529@subheading Motivation
18530
18531The motivation for this collection of commands.
18532
18533@subheading Introduction
18534
18535A brief introduction to this collection of commands as a whole.
18536
18537@subheading Commands
18538
18539For each command in the block, the following is described:
18540
18541@subsubheading Synopsis
18542
18543@smallexample
18544 -command @var{args}@dots{}
18545@end smallexample
18546
922fbb7b
AC
18547@subsubheading Result
18548
265eeb58 18549@subsubheading @value{GDBN} Command
922fbb7b 18550
265eeb58 18551The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18552
18553@subsubheading Example
18554
ef21caaf
NR
18555Example(s) formatted for readability. Some of the described commands have
18556not been implemented yet and these are labeled N.A.@: (not available).
18557
18558
922fbb7b 18559@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18560@node GDB/MI Breakpoint Commands
18561@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18562
18563@cindex breakpoint commands for @sc{gdb/mi}
18564@cindex @sc{gdb/mi}, breakpoint commands
18565This section documents @sc{gdb/mi} commands for manipulating
18566breakpoints.
18567
18568@subheading The @code{-break-after} Command
18569@findex -break-after
18570
18571@subsubheading Synopsis
18572
18573@smallexample
18574 -break-after @var{number} @var{count}
18575@end smallexample
18576
18577The breakpoint number @var{number} is not in effect until it has been
18578hit @var{count} times. To see how this is reflected in the output of
18579the @samp{-break-list} command, see the description of the
18580@samp{-break-list} command below.
18581
18582@subsubheading @value{GDBN} Command
18583
18584The corresponding @value{GDBN} command is @samp{ignore}.
18585
18586@subsubheading Example
18587
18588@smallexample
594fe323 18589(gdb)
922fbb7b 18590-break-insert main
a47ec5fe
AR
18591^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18592enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18593fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18594(gdb)
922fbb7b
AC
18595-break-after 1 3
18596~
18597^done
594fe323 18598(gdb)
922fbb7b
AC
18599-break-list
18600^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18601hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18602@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18603@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18604@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18605@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18606@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18607body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18608addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18609line="5",times="0",ignore="3"@}]@}
594fe323 18610(gdb)
922fbb7b
AC
18611@end smallexample
18612
18613@ignore
18614@subheading The @code{-break-catch} Command
18615@findex -break-catch
18616
18617@subheading The @code{-break-commands} Command
18618@findex -break-commands
18619@end ignore
18620
18621
18622@subheading The @code{-break-condition} Command
18623@findex -break-condition
18624
18625@subsubheading Synopsis
18626
18627@smallexample
18628 -break-condition @var{number} @var{expr}
18629@end smallexample
18630
18631Breakpoint @var{number} will stop the program only if the condition in
18632@var{expr} is true. The condition becomes part of the
18633@samp{-break-list} output (see the description of the @samp{-break-list}
18634command below).
18635
18636@subsubheading @value{GDBN} Command
18637
18638The corresponding @value{GDBN} command is @samp{condition}.
18639
18640@subsubheading Example
18641
18642@smallexample
594fe323 18643(gdb)
922fbb7b
AC
18644-break-condition 1 1
18645^done
594fe323 18646(gdb)
922fbb7b
AC
18647-break-list
18648^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18649hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18650@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18651@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18652@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18653@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18654@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18655body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18656addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18657line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18658(gdb)
922fbb7b
AC
18659@end smallexample
18660
18661@subheading The @code{-break-delete} Command
18662@findex -break-delete
18663
18664@subsubheading Synopsis
18665
18666@smallexample
18667 -break-delete ( @var{breakpoint} )+
18668@end smallexample
18669
18670Delete the breakpoint(s) whose number(s) are specified in the argument
18671list. This is obviously reflected in the breakpoint list.
18672
79a6e687 18673@subsubheading @value{GDBN} Command
922fbb7b
AC
18674
18675The corresponding @value{GDBN} command is @samp{delete}.
18676
18677@subsubheading Example
18678
18679@smallexample
594fe323 18680(gdb)
922fbb7b
AC
18681-break-delete 1
18682^done
594fe323 18683(gdb)
922fbb7b
AC
18684-break-list
18685^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18686hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18687@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18688@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18689@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18690@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18691@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18692body=[]@}
594fe323 18693(gdb)
922fbb7b
AC
18694@end smallexample
18695
18696@subheading The @code{-break-disable} Command
18697@findex -break-disable
18698
18699@subsubheading Synopsis
18700
18701@smallexample
18702 -break-disable ( @var{breakpoint} )+
18703@end smallexample
18704
18705Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18706break list is now set to @samp{n} for the named @var{breakpoint}(s).
18707
18708@subsubheading @value{GDBN} Command
18709
18710The corresponding @value{GDBN} command is @samp{disable}.
18711
18712@subsubheading Example
18713
18714@smallexample
594fe323 18715(gdb)
922fbb7b
AC
18716-break-disable 2
18717^done
594fe323 18718(gdb)
922fbb7b
AC
18719-break-list
18720^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18721hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18722@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18723@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18724@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18725@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18726@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18727body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18728addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18729line="5",times="0"@}]@}
594fe323 18730(gdb)
922fbb7b
AC
18731@end smallexample
18732
18733@subheading The @code{-break-enable} Command
18734@findex -break-enable
18735
18736@subsubheading Synopsis
18737
18738@smallexample
18739 -break-enable ( @var{breakpoint} )+
18740@end smallexample
18741
18742Enable (previously disabled) @var{breakpoint}(s).
18743
18744@subsubheading @value{GDBN} Command
18745
18746The corresponding @value{GDBN} command is @samp{enable}.
18747
18748@subsubheading Example
18749
18750@smallexample
594fe323 18751(gdb)
922fbb7b
AC
18752-break-enable 2
18753^done
594fe323 18754(gdb)
922fbb7b
AC
18755-break-list
18756^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18757hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18758@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18759@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18760@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18761@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18762@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18763body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18764addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18765line="5",times="0"@}]@}
594fe323 18766(gdb)
922fbb7b
AC
18767@end smallexample
18768
18769@subheading The @code{-break-info} Command
18770@findex -break-info
18771
18772@subsubheading Synopsis
18773
18774@smallexample
18775 -break-info @var{breakpoint}
18776@end smallexample
18777
18778@c REDUNDANT???
18779Get information about a single breakpoint.
18780
79a6e687 18781@subsubheading @value{GDBN} Command
922fbb7b
AC
18782
18783The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18784
18785@subsubheading Example
18786N.A.
18787
18788@subheading The @code{-break-insert} Command
18789@findex -break-insert
18790
18791@subsubheading Synopsis
18792
18793@smallexample
afe8ab22 18794 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18795 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18796 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18797@end smallexample
18798
18799@noindent
afe8ab22 18800If specified, @var{location}, can be one of:
922fbb7b
AC
18801
18802@itemize @bullet
18803@item function
18804@c @item +offset
18805@c @item -offset
18806@c @item linenum
18807@item filename:linenum
18808@item filename:function
18809@item *address
18810@end itemize
18811
18812The possible optional parameters of this command are:
18813
18814@table @samp
18815@item -t
948d5102 18816Insert a temporary breakpoint.
922fbb7b
AC
18817@item -h
18818Insert a hardware breakpoint.
18819@item -c @var{condition}
18820Make the breakpoint conditional on @var{condition}.
18821@item -i @var{ignore-count}
18822Initialize the @var{ignore-count}.
afe8ab22
VP
18823@item -f
18824If @var{location} cannot be parsed (for example if it
18825refers to unknown files or functions), create a pending
18826breakpoint. Without this flag, @value{GDBN} will report
18827an error, and won't create a breakpoint, if @var{location}
18828cannot be parsed.
922fbb7b
AC
18829@end table
18830
18831@subsubheading Result
18832
18833The result is in the form:
18834
18835@smallexample
948d5102
NR
18836^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18837enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18838fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18839times="@var{times}"@}
922fbb7b
AC
18840@end smallexample
18841
18842@noindent
948d5102
NR
18843where @var{number} is the @value{GDBN} number for this breakpoint,
18844@var{funcname} is the name of the function where the breakpoint was
18845inserted, @var{filename} is the name of the source file which contains
18846this function, @var{lineno} is the source line number within that file
18847and @var{times} the number of times that the breakpoint has been hit
18848(always 0 for -break-insert but may be greater for -break-info or -break-list
18849which use the same output).
922fbb7b
AC
18850
18851Note: this format is open to change.
18852@c An out-of-band breakpoint instead of part of the result?
18853
18854@subsubheading @value{GDBN} Command
18855
18856The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18857@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18858
18859@subsubheading Example
18860
18861@smallexample
594fe323 18862(gdb)
922fbb7b 18863-break-insert main
948d5102
NR
18864^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18865fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18866(gdb)
922fbb7b 18867-break-insert -t foo
948d5102
NR
18868^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18869fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18870(gdb)
922fbb7b
AC
18871-break-list
18872^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18873hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18874@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18875@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18876@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18877@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18878@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18879body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18880addr="0x0001072c", func="main",file="recursive2.c",
18881fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18882bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18883addr="0x00010774",func="foo",file="recursive2.c",
18884fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18885(gdb)
922fbb7b
AC
18886-break-insert -r foo.*
18887~int foo(int, int);
948d5102
NR
18888^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18889"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18890(gdb)
922fbb7b
AC
18891@end smallexample
18892
18893@subheading The @code{-break-list} Command
18894@findex -break-list
18895
18896@subsubheading Synopsis
18897
18898@smallexample
18899 -break-list
18900@end smallexample
18901
18902Displays the list of inserted breakpoints, showing the following fields:
18903
18904@table @samp
18905@item Number
18906number of the breakpoint
18907@item Type
18908type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18909@item Disposition
18910should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18911or @samp{nokeep}
18912@item Enabled
18913is the breakpoint enabled or no: @samp{y} or @samp{n}
18914@item Address
18915memory location at which the breakpoint is set
18916@item What
18917logical location of the breakpoint, expressed by function name, file
18918name, line number
18919@item Times
18920number of times the breakpoint has been hit
18921@end table
18922
18923If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18924@code{body} field is an empty list.
18925
18926@subsubheading @value{GDBN} Command
18927
18928The corresponding @value{GDBN} command is @samp{info break}.
18929
18930@subsubheading Example
18931
18932@smallexample
594fe323 18933(gdb)
922fbb7b
AC
18934-break-list
18935^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18936hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18937@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18938@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18939@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18940@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18941@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18942body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18943addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18944bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18945addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18946line="13",times="0"@}]@}
594fe323 18947(gdb)
922fbb7b
AC
18948@end smallexample
18949
18950Here's an example of the result when there are no breakpoints:
18951
18952@smallexample
594fe323 18953(gdb)
922fbb7b
AC
18954-break-list
18955^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18956hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18957@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18958@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18959@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18960@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18961@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18962body=[]@}
594fe323 18963(gdb)
922fbb7b
AC
18964@end smallexample
18965
18966@subheading The @code{-break-watch} Command
18967@findex -break-watch
18968
18969@subsubheading Synopsis
18970
18971@smallexample
18972 -break-watch [ -a | -r ]
18973@end smallexample
18974
18975Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18976@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18977read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18978option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18979trigger only when the memory location is accessed for reading. Without
18980either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18981i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18982@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18983
18984Note that @samp{-break-list} will report a single list of watchpoints and
18985breakpoints inserted.
18986
18987@subsubheading @value{GDBN} Command
18988
18989The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18990@samp{rwatch}.
18991
18992@subsubheading Example
18993
18994Setting a watchpoint on a variable in the @code{main} function:
18995
18996@smallexample
594fe323 18997(gdb)
922fbb7b
AC
18998-break-watch x
18999^done,wpt=@{number="2",exp="x"@}
594fe323 19000(gdb)
922fbb7b
AC
19001-exec-continue
19002^running
0869d01b
NR
19003(gdb)
19004*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 19005value=@{old="-268439212",new="55"@},
76ff342d 19006frame=@{func="main",args=[],file="recursive2.c",
948d5102 19007fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 19008(gdb)
922fbb7b
AC
19009@end smallexample
19010
19011Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
19012the program execution twice: first for the variable changing value, then
19013for the watchpoint going out of scope.
19014
19015@smallexample
594fe323 19016(gdb)
922fbb7b
AC
19017-break-watch C
19018^done,wpt=@{number="5",exp="C"@}
594fe323 19019(gdb)
922fbb7b
AC
19020-exec-continue
19021^running
0869d01b
NR
19022(gdb)
19023*stopped,reason="watchpoint-trigger",
922fbb7b
AC
19024wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
19025frame=@{func="callee4",args=[],
76ff342d
DJ
19026file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19027fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 19028(gdb)
922fbb7b
AC
19029-exec-continue
19030^running
0869d01b
NR
19031(gdb)
19032*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
19033frame=@{func="callee3",args=[@{name="strarg",
19034value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19035file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19036fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19037(gdb)
922fbb7b
AC
19038@end smallexample
19039
19040Listing breakpoints and watchpoints, at different points in the program
19041execution. Note that once the watchpoint goes out of scope, it is
19042deleted.
19043
19044@smallexample
594fe323 19045(gdb)
922fbb7b
AC
19046-break-watch C
19047^done,wpt=@{number="2",exp="C"@}
594fe323 19048(gdb)
922fbb7b
AC
19049-break-list
19050^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
19051hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
19052@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
19053@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
19054@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
19055@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
19056@{width="40",alignment="2",col_name="what",colhdr="What"@}],
19057body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
19058addr="0x00010734",func="callee4",
948d5102
NR
19059file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19060fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
19061bkpt=@{number="2",type="watchpoint",disp="keep",
19062enabled="y",addr="",what="C",times="0"@}]@}
594fe323 19063(gdb)
922fbb7b
AC
19064-exec-continue
19065^running
0869d01b
NR
19066(gdb)
19067*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
19068value=@{old="-276895068",new="3"@},
19069frame=@{func="callee4",args=[],
76ff342d
DJ
19070file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19071fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 19072(gdb)
922fbb7b
AC
19073-break-list
19074^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
19075hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
19076@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
19077@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
19078@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
19079@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
19080@{width="40",alignment="2",col_name="what",colhdr="What"@}],
19081body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
19082addr="0x00010734",func="callee4",
948d5102
NR
19083file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19084fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
19085bkpt=@{number="2",type="watchpoint",disp="keep",
19086enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 19087(gdb)
922fbb7b
AC
19088-exec-continue
19089^running
19090^done,reason="watchpoint-scope",wpnum="2",
19091frame=@{func="callee3",args=[@{name="strarg",
19092value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19093file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19094fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19095(gdb)
922fbb7b
AC
19096-break-list
19097^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
19098hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
19099@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
19100@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
19101@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
19102@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
19103@{width="40",alignment="2",col_name="what",colhdr="What"@}],
19104body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
19105addr="0x00010734",func="callee4",
948d5102
NR
19106file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19107fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
19108times="1"@}]@}
594fe323 19109(gdb)
922fbb7b
AC
19110@end smallexample
19111
19112@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19113@node GDB/MI Program Context
19114@section @sc{gdb/mi} Program Context
922fbb7b 19115
a2c02241
NR
19116@subheading The @code{-exec-arguments} Command
19117@findex -exec-arguments
922fbb7b 19118
922fbb7b
AC
19119
19120@subsubheading Synopsis
19121
19122@smallexample
a2c02241 19123 -exec-arguments @var{args}
922fbb7b
AC
19124@end smallexample
19125
a2c02241
NR
19126Set the inferior program arguments, to be used in the next
19127@samp{-exec-run}.
922fbb7b 19128
a2c02241 19129@subsubheading @value{GDBN} Command
922fbb7b 19130
a2c02241 19131The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 19132
a2c02241 19133@subsubheading Example
922fbb7b 19134
fbc5282e
MK
19135@smallexample
19136(gdb)
19137-exec-arguments -v word
19138^done
19139(gdb)
19140@end smallexample
922fbb7b 19141
a2c02241
NR
19142
19143@subheading The @code{-exec-show-arguments} Command
19144@findex -exec-show-arguments
19145
19146@subsubheading Synopsis
19147
19148@smallexample
19149 -exec-show-arguments
19150@end smallexample
19151
19152Print the arguments of the program.
922fbb7b
AC
19153
19154@subsubheading @value{GDBN} Command
19155
a2c02241 19156The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
19157
19158@subsubheading Example
a2c02241 19159N.A.
922fbb7b 19160
922fbb7b 19161
a2c02241
NR
19162@subheading The @code{-environment-cd} Command
19163@findex -environment-cd
922fbb7b 19164
a2c02241 19165@subsubheading Synopsis
922fbb7b
AC
19166
19167@smallexample
a2c02241 19168 -environment-cd @var{pathdir}
922fbb7b
AC
19169@end smallexample
19170
a2c02241 19171Set @value{GDBN}'s working directory.
922fbb7b 19172
a2c02241 19173@subsubheading @value{GDBN} Command
922fbb7b 19174
a2c02241
NR
19175The corresponding @value{GDBN} command is @samp{cd}.
19176
19177@subsubheading Example
922fbb7b
AC
19178
19179@smallexample
594fe323 19180(gdb)
a2c02241
NR
19181-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
19182^done
594fe323 19183(gdb)
922fbb7b
AC
19184@end smallexample
19185
19186
a2c02241
NR
19187@subheading The @code{-environment-directory} Command
19188@findex -environment-directory
922fbb7b
AC
19189
19190@subsubheading Synopsis
19191
19192@smallexample
a2c02241 19193 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19194@end smallexample
19195
a2c02241
NR
19196Add directories @var{pathdir} to beginning of search path for source files.
19197If the @samp{-r} option is used, the search path is reset to the default
19198search path. If directories @var{pathdir} are supplied in addition to the
19199@samp{-r} option, the search path is first reset and then addition
19200occurs as normal.
19201Multiple directories may be specified, separated by blanks. Specifying
19202multiple directories in a single command
19203results in the directories added to the beginning of the
19204search path in the same order they were presented in the command.
19205If blanks are needed as
19206part of a directory name, double-quotes should be used around
19207the name. In the command output, the path will show up separated
d3e8051b 19208by the system directory-separator character. The directory-separator
a2c02241
NR
19209character must not be used
19210in any directory name.
19211If no directories are specified, the current search path is displayed.
922fbb7b
AC
19212
19213@subsubheading @value{GDBN} Command
19214
a2c02241 19215The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
19216
19217@subsubheading Example
19218
922fbb7b 19219@smallexample
594fe323 19220(gdb)
a2c02241
NR
19221-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
19222^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 19223(gdb)
a2c02241
NR
19224-environment-directory ""
19225^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 19226(gdb)
a2c02241
NR
19227-environment-directory -r /home/jjohnstn/src/gdb /usr/src
19228^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 19229(gdb)
a2c02241
NR
19230-environment-directory -r
19231^done,source-path="$cdir:$cwd"
594fe323 19232(gdb)
922fbb7b
AC
19233@end smallexample
19234
19235
a2c02241
NR
19236@subheading The @code{-environment-path} Command
19237@findex -environment-path
922fbb7b
AC
19238
19239@subsubheading Synopsis
19240
19241@smallexample
a2c02241 19242 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
19243@end smallexample
19244
a2c02241
NR
19245Add directories @var{pathdir} to beginning of search path for object files.
19246If the @samp{-r} option is used, the search path is reset to the original
19247search path that existed at gdb start-up. If directories @var{pathdir} are
19248supplied in addition to the
19249@samp{-r} option, the search path is first reset and then addition
19250occurs as normal.
19251Multiple directories may be specified, separated by blanks. Specifying
19252multiple directories in a single command
19253results in the directories added to the beginning of the
19254search path in the same order they were presented in the command.
19255If blanks are needed as
19256part of a directory name, double-quotes should be used around
19257the name. In the command output, the path will show up separated
d3e8051b 19258by the system directory-separator character. The directory-separator
a2c02241
NR
19259character must not be used
19260in any directory name.
19261If no directories are specified, the current path is displayed.
19262
922fbb7b
AC
19263
19264@subsubheading @value{GDBN} Command
19265
a2c02241 19266The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
19267
19268@subsubheading Example
19269
922fbb7b 19270@smallexample
594fe323 19271(gdb)
a2c02241
NR
19272-environment-path
19273^done,path="/usr/bin"
594fe323 19274(gdb)
a2c02241
NR
19275-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
19276^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 19277(gdb)
a2c02241
NR
19278-environment-path -r /usr/local/bin
19279^done,path="/usr/local/bin:/usr/bin"
594fe323 19280(gdb)
922fbb7b
AC
19281@end smallexample
19282
19283
a2c02241
NR
19284@subheading The @code{-environment-pwd} Command
19285@findex -environment-pwd
922fbb7b
AC
19286
19287@subsubheading Synopsis
19288
19289@smallexample
a2c02241 19290 -environment-pwd
922fbb7b
AC
19291@end smallexample
19292
a2c02241 19293Show the current working directory.
922fbb7b 19294
79a6e687 19295@subsubheading @value{GDBN} Command
922fbb7b 19296
a2c02241 19297The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
19298
19299@subsubheading Example
19300
922fbb7b 19301@smallexample
594fe323 19302(gdb)
a2c02241
NR
19303-environment-pwd
19304^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 19305(gdb)
922fbb7b
AC
19306@end smallexample
19307
a2c02241
NR
19308@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19309@node GDB/MI Thread Commands
19310@section @sc{gdb/mi} Thread Commands
19311
19312
19313@subheading The @code{-thread-info} Command
19314@findex -thread-info
922fbb7b
AC
19315
19316@subsubheading Synopsis
19317
19318@smallexample
8e8901c5 19319 -thread-info [ @var{thread-id} ]
922fbb7b
AC
19320@end smallexample
19321
8e8901c5
VP
19322Reports information about either a specific thread, if
19323the @var{thread-id} parameter is present, or about all
19324threads. When printing information about all threads,
19325also reports the current thread.
19326
79a6e687 19327@subsubheading @value{GDBN} Command
922fbb7b 19328
8e8901c5
VP
19329The @samp{info thread} command prints the same information
19330about all threads.
922fbb7b
AC
19331
19332@subsubheading Example
922fbb7b
AC
19333
19334@smallexample
8e8901c5
VP
19335-thread-info
19336^done,threads=[
19337@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
19338 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
19339@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
19340 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19341 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19342current-thread-id="1"
19343(gdb)
922fbb7b
AC
19344@end smallexample
19345
a2c02241
NR
19346@subheading The @code{-thread-list-ids} Command
19347@findex -thread-list-ids
922fbb7b 19348
a2c02241 19349@subsubheading Synopsis
922fbb7b 19350
a2c02241
NR
19351@smallexample
19352 -thread-list-ids
19353@end smallexample
922fbb7b 19354
a2c02241
NR
19355Produces a list of the currently known @value{GDBN} thread ids. At the
19356end of the list it also prints the total number of such threads.
922fbb7b
AC
19357
19358@subsubheading @value{GDBN} Command
19359
a2c02241 19360Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19361
19362@subsubheading Example
19363
a2c02241 19364No threads present, besides the main process:
922fbb7b
AC
19365
19366@smallexample
594fe323 19367(gdb)
a2c02241
NR
19368-thread-list-ids
19369^done,thread-ids=@{@},number-of-threads="0"
594fe323 19370(gdb)
922fbb7b
AC
19371@end smallexample
19372
922fbb7b 19373
a2c02241 19374Several threads:
922fbb7b
AC
19375
19376@smallexample
594fe323 19377(gdb)
a2c02241
NR
19378-thread-list-ids
19379^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19380number-of-threads="3"
594fe323 19381(gdb)
922fbb7b
AC
19382@end smallexample
19383
a2c02241
NR
19384
19385@subheading The @code{-thread-select} Command
19386@findex -thread-select
922fbb7b
AC
19387
19388@subsubheading Synopsis
19389
19390@smallexample
a2c02241 19391 -thread-select @var{threadnum}
922fbb7b
AC
19392@end smallexample
19393
a2c02241
NR
19394Make @var{threadnum} the current thread. It prints the number of the new
19395current thread, and the topmost frame for that thread.
922fbb7b
AC
19396
19397@subsubheading @value{GDBN} Command
19398
a2c02241 19399The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19400
19401@subsubheading Example
922fbb7b
AC
19402
19403@smallexample
594fe323 19404(gdb)
a2c02241
NR
19405-exec-next
19406^running
594fe323 19407(gdb)
a2c02241
NR
19408*stopped,reason="end-stepping-range",thread-id="2",line="187",
19409file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19410(gdb)
a2c02241
NR
19411-thread-list-ids
19412^done,
19413thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19414number-of-threads="3"
594fe323 19415(gdb)
a2c02241
NR
19416-thread-select 3
19417^done,new-thread-id="3",
19418frame=@{level="0",func="vprintf",
19419args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19420@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19421(gdb)
922fbb7b
AC
19422@end smallexample
19423
a2c02241
NR
19424@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19425@node GDB/MI Program Execution
19426@section @sc{gdb/mi} Program Execution
922fbb7b 19427
ef21caaf 19428These are the asynchronous commands which generate the out-of-band
3f94c067 19429record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19430asynchronously with remote targets and this interaction is mimicked in
19431other cases.
922fbb7b 19432
922fbb7b
AC
19433@subheading The @code{-exec-continue} Command
19434@findex -exec-continue
19435
19436@subsubheading Synopsis
19437
19438@smallexample
19439 -exec-continue
19440@end smallexample
19441
ef21caaf
NR
19442Resumes the execution of the inferior program until a breakpoint is
19443encountered, or until the inferior exits.
922fbb7b
AC
19444
19445@subsubheading @value{GDBN} Command
19446
19447The corresponding @value{GDBN} corresponding is @samp{continue}.
19448
19449@subsubheading Example
19450
19451@smallexample
19452-exec-continue
19453^running
594fe323 19454(gdb)
922fbb7b 19455@@Hello world
a47ec5fe
AR
19456*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19457func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19458line="13"@}
594fe323 19459(gdb)
922fbb7b
AC
19460@end smallexample
19461
19462
19463@subheading The @code{-exec-finish} Command
19464@findex -exec-finish
19465
19466@subsubheading Synopsis
19467
19468@smallexample
19469 -exec-finish
19470@end smallexample
19471
ef21caaf
NR
19472Resumes the execution of the inferior program until the current
19473function is exited. Displays the results returned by the function.
922fbb7b
AC
19474
19475@subsubheading @value{GDBN} Command
19476
19477The corresponding @value{GDBN} command is @samp{finish}.
19478
19479@subsubheading Example
19480
19481Function returning @code{void}.
19482
19483@smallexample
19484-exec-finish
19485^running
594fe323 19486(gdb)
922fbb7b
AC
19487@@hello from foo
19488*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19489file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19490(gdb)
922fbb7b
AC
19491@end smallexample
19492
19493Function returning other than @code{void}. The name of the internal
19494@value{GDBN} variable storing the result is printed, together with the
19495value itself.
19496
19497@smallexample
19498-exec-finish
19499^running
594fe323 19500(gdb)
922fbb7b
AC
19501*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19502args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19503file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19504gdb-result-var="$1",return-value="0"
594fe323 19505(gdb)
922fbb7b
AC
19506@end smallexample
19507
19508
19509@subheading The @code{-exec-interrupt} Command
19510@findex -exec-interrupt
19511
19512@subsubheading Synopsis
19513
19514@smallexample
19515 -exec-interrupt
19516@end smallexample
19517
ef21caaf
NR
19518Interrupts the background execution of the target. Note how the token
19519associated with the stop message is the one for the execution command
19520that has been interrupted. The token for the interrupt itself only
19521appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19522interrupt a non-running program, an error message will be printed.
19523
19524@subsubheading @value{GDBN} Command
19525
19526The corresponding @value{GDBN} command is @samp{interrupt}.
19527
19528@subsubheading Example
19529
19530@smallexample
594fe323 19531(gdb)
922fbb7b
AC
19532111-exec-continue
19533111^running
19534
594fe323 19535(gdb)
922fbb7b
AC
19536222-exec-interrupt
19537222^done
594fe323 19538(gdb)
922fbb7b 19539111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19540frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19541fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19542(gdb)
922fbb7b 19543
594fe323 19544(gdb)
922fbb7b
AC
19545-exec-interrupt
19546^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19547(gdb)
922fbb7b
AC
19548@end smallexample
19549
19550
19551@subheading The @code{-exec-next} Command
19552@findex -exec-next
19553
19554@subsubheading Synopsis
19555
19556@smallexample
19557 -exec-next
19558@end smallexample
19559
ef21caaf
NR
19560Resumes execution of the inferior program, stopping when the beginning
19561of the next source line is reached.
922fbb7b
AC
19562
19563@subsubheading @value{GDBN} Command
19564
19565The corresponding @value{GDBN} command is @samp{next}.
19566
19567@subsubheading Example
19568
19569@smallexample
19570-exec-next
19571^running
594fe323 19572(gdb)
922fbb7b 19573*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19574(gdb)
922fbb7b
AC
19575@end smallexample
19576
19577
19578@subheading The @code{-exec-next-instruction} Command
19579@findex -exec-next-instruction
19580
19581@subsubheading Synopsis
19582
19583@smallexample
19584 -exec-next-instruction
19585@end smallexample
19586
ef21caaf
NR
19587Executes one machine instruction. If the instruction is a function
19588call, continues until the function returns. If the program stops at an
19589instruction in the middle of a source line, the address will be
19590printed as well.
922fbb7b
AC
19591
19592@subsubheading @value{GDBN} Command
19593
19594The corresponding @value{GDBN} command is @samp{nexti}.
19595
19596@subsubheading Example
19597
19598@smallexample
594fe323 19599(gdb)
922fbb7b
AC
19600-exec-next-instruction
19601^running
19602
594fe323 19603(gdb)
922fbb7b
AC
19604*stopped,reason="end-stepping-range",
19605addr="0x000100d4",line="5",file="hello.c"
594fe323 19606(gdb)
922fbb7b
AC
19607@end smallexample
19608
19609
19610@subheading The @code{-exec-return} Command
19611@findex -exec-return
19612
19613@subsubheading Synopsis
19614
19615@smallexample
19616 -exec-return
19617@end smallexample
19618
19619Makes current function return immediately. Doesn't execute the inferior.
19620Displays the new current frame.
19621
19622@subsubheading @value{GDBN} Command
19623
19624The corresponding @value{GDBN} command is @samp{return}.
19625
19626@subsubheading Example
19627
19628@smallexample
594fe323 19629(gdb)
922fbb7b
AC
19630200-break-insert callee4
19631200^done,bkpt=@{number="1",addr="0x00010734",
19632file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19633(gdb)
922fbb7b
AC
19634000-exec-run
19635000^running
594fe323 19636(gdb)
a47ec5fe 19637000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19638frame=@{func="callee4",args=[],
76ff342d
DJ
19639file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19640fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19641(gdb)
922fbb7b
AC
19642205-break-delete
19643205^done
594fe323 19644(gdb)
922fbb7b
AC
19645111-exec-return
19646111^done,frame=@{level="0",func="callee3",
19647args=[@{name="strarg",
19648value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19649file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19650fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19651(gdb)
922fbb7b
AC
19652@end smallexample
19653
19654
19655@subheading The @code{-exec-run} Command
19656@findex -exec-run
19657
19658@subsubheading Synopsis
19659
19660@smallexample
19661 -exec-run
19662@end smallexample
19663
ef21caaf
NR
19664Starts execution of the inferior from the beginning. The inferior
19665executes until either a breakpoint is encountered or the program
19666exits. In the latter case the output will include an exit code, if
19667the program has exited exceptionally.
922fbb7b
AC
19668
19669@subsubheading @value{GDBN} Command
19670
19671The corresponding @value{GDBN} command is @samp{run}.
19672
ef21caaf 19673@subsubheading Examples
922fbb7b
AC
19674
19675@smallexample
594fe323 19676(gdb)
922fbb7b
AC
19677-break-insert main
19678^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19679(gdb)
922fbb7b
AC
19680-exec-run
19681^running
594fe323 19682(gdb)
a47ec5fe 19683*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19684frame=@{func="main",args=[],file="recursive2.c",
948d5102 19685fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19686(gdb)
922fbb7b
AC
19687@end smallexample
19688
ef21caaf
NR
19689@noindent
19690Program exited normally:
19691
19692@smallexample
594fe323 19693(gdb)
ef21caaf
NR
19694-exec-run
19695^running
594fe323 19696(gdb)
ef21caaf
NR
19697x = 55
19698*stopped,reason="exited-normally"
594fe323 19699(gdb)
ef21caaf
NR
19700@end smallexample
19701
19702@noindent
19703Program exited exceptionally:
19704
19705@smallexample
594fe323 19706(gdb)
ef21caaf
NR
19707-exec-run
19708^running
594fe323 19709(gdb)
ef21caaf
NR
19710x = 55
19711*stopped,reason="exited",exit-code="01"
594fe323 19712(gdb)
ef21caaf
NR
19713@end smallexample
19714
19715Another way the program can terminate is if it receives a signal such as
19716@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19717
19718@smallexample
594fe323 19719(gdb)
ef21caaf
NR
19720*stopped,reason="exited-signalled",signal-name="SIGINT",
19721signal-meaning="Interrupt"
19722@end smallexample
19723
922fbb7b 19724
a2c02241
NR
19725@c @subheading -exec-signal
19726
19727
19728@subheading The @code{-exec-step} Command
19729@findex -exec-step
922fbb7b
AC
19730
19731@subsubheading Synopsis
19732
19733@smallexample
a2c02241 19734 -exec-step
922fbb7b
AC
19735@end smallexample
19736
a2c02241
NR
19737Resumes execution of the inferior program, stopping when the beginning
19738of the next source line is reached, if the next source line is not a
19739function call. If it is, stop at the first instruction of the called
19740function.
922fbb7b
AC
19741
19742@subsubheading @value{GDBN} Command
19743
a2c02241 19744The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19745
19746@subsubheading Example
19747
19748Stepping into a function:
19749
19750@smallexample
19751-exec-step
19752^running
594fe323 19753(gdb)
922fbb7b
AC
19754*stopped,reason="end-stepping-range",
19755frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19756@{name="b",value="0"@}],file="recursive2.c",
948d5102 19757fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19758(gdb)
922fbb7b
AC
19759@end smallexample
19760
19761Regular stepping:
19762
19763@smallexample
19764-exec-step
19765^running
594fe323 19766(gdb)
922fbb7b 19767*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19768(gdb)
922fbb7b
AC
19769@end smallexample
19770
19771
19772@subheading The @code{-exec-step-instruction} Command
19773@findex -exec-step-instruction
19774
19775@subsubheading Synopsis
19776
19777@smallexample
19778 -exec-step-instruction
19779@end smallexample
19780
ef21caaf
NR
19781Resumes the inferior which executes one machine instruction. The
19782output, once @value{GDBN} has stopped, will vary depending on whether
19783we have stopped in the middle of a source line or not. In the former
19784case, the address at which the program stopped will be printed as
922fbb7b
AC
19785well.
19786
19787@subsubheading @value{GDBN} Command
19788
19789The corresponding @value{GDBN} command is @samp{stepi}.
19790
19791@subsubheading Example
19792
19793@smallexample
594fe323 19794(gdb)
922fbb7b
AC
19795-exec-step-instruction
19796^running
19797
594fe323 19798(gdb)
922fbb7b 19799*stopped,reason="end-stepping-range",
76ff342d 19800frame=@{func="foo",args=[],file="try.c",
948d5102 19801fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19802(gdb)
922fbb7b
AC
19803-exec-step-instruction
19804^running
19805
594fe323 19806(gdb)
922fbb7b 19807*stopped,reason="end-stepping-range",
76ff342d 19808frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19809fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19810(gdb)
922fbb7b
AC
19811@end smallexample
19812
19813
19814@subheading The @code{-exec-until} Command
19815@findex -exec-until
19816
19817@subsubheading Synopsis
19818
19819@smallexample
19820 -exec-until [ @var{location} ]
19821@end smallexample
19822
ef21caaf
NR
19823Executes the inferior until the @var{location} specified in the
19824argument is reached. If there is no argument, the inferior executes
19825until a source line greater than the current one is reached. The
19826reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19827
19828@subsubheading @value{GDBN} Command
19829
19830The corresponding @value{GDBN} command is @samp{until}.
19831
19832@subsubheading Example
19833
19834@smallexample
594fe323 19835(gdb)
922fbb7b
AC
19836-exec-until recursive2.c:6
19837^running
594fe323 19838(gdb)
922fbb7b
AC
19839x = 55
19840*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19841file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19842(gdb)
922fbb7b
AC
19843@end smallexample
19844
19845@ignore
19846@subheading -file-clear
19847Is this going away????
19848@end ignore
19849
351ff01a 19850@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19851@node GDB/MI Stack Manipulation
19852@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19853
922fbb7b 19854
a2c02241
NR
19855@subheading The @code{-stack-info-frame} Command
19856@findex -stack-info-frame
922fbb7b
AC
19857
19858@subsubheading Synopsis
19859
19860@smallexample
a2c02241 19861 -stack-info-frame
922fbb7b
AC
19862@end smallexample
19863
a2c02241 19864Get info on the selected frame.
922fbb7b
AC
19865
19866@subsubheading @value{GDBN} Command
19867
a2c02241
NR
19868The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19869(without arguments).
922fbb7b
AC
19870
19871@subsubheading Example
19872
19873@smallexample
594fe323 19874(gdb)
a2c02241
NR
19875-stack-info-frame
19876^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19877file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19878fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19879(gdb)
922fbb7b
AC
19880@end smallexample
19881
a2c02241
NR
19882@subheading The @code{-stack-info-depth} Command
19883@findex -stack-info-depth
922fbb7b
AC
19884
19885@subsubheading Synopsis
19886
19887@smallexample
a2c02241 19888 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19889@end smallexample
19890
a2c02241
NR
19891Return the depth of the stack. If the integer argument @var{max-depth}
19892is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19893
19894@subsubheading @value{GDBN} Command
19895
a2c02241 19896There's no equivalent @value{GDBN} command.
922fbb7b
AC
19897
19898@subsubheading Example
19899
a2c02241
NR
19900For a stack with frame levels 0 through 11:
19901
922fbb7b 19902@smallexample
594fe323 19903(gdb)
a2c02241
NR
19904-stack-info-depth
19905^done,depth="12"
594fe323 19906(gdb)
a2c02241
NR
19907-stack-info-depth 4
19908^done,depth="4"
594fe323 19909(gdb)
a2c02241
NR
19910-stack-info-depth 12
19911^done,depth="12"
594fe323 19912(gdb)
a2c02241
NR
19913-stack-info-depth 11
19914^done,depth="11"
594fe323 19915(gdb)
a2c02241
NR
19916-stack-info-depth 13
19917^done,depth="12"
594fe323 19918(gdb)
922fbb7b
AC
19919@end smallexample
19920
a2c02241
NR
19921@subheading The @code{-stack-list-arguments} Command
19922@findex -stack-list-arguments
922fbb7b
AC
19923
19924@subsubheading Synopsis
19925
19926@smallexample
a2c02241
NR
19927 -stack-list-arguments @var{show-values}
19928 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19929@end smallexample
19930
a2c02241
NR
19931Display a list of the arguments for the frames between @var{low-frame}
19932and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19933@var{high-frame} are not provided, list the arguments for the whole
19934call stack. If the two arguments are equal, show the single frame
19935at the corresponding level. It is an error if @var{low-frame} is
19936larger than the actual number of frames. On the other hand,
19937@var{high-frame} may be larger than the actual number of frames, in
19938which case only existing frames will be returned.
a2c02241
NR
19939
19940The @var{show-values} argument must have a value of 0 or 1. A value of
199410 means that only the names of the arguments are listed, a value of 1
19942means that both names and values of the arguments are printed.
922fbb7b
AC
19943
19944@subsubheading @value{GDBN} Command
19945
a2c02241
NR
19946@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19947@samp{gdb_get_args} command which partially overlaps with the
19948functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19949
19950@subsubheading Example
922fbb7b 19951
a2c02241 19952@smallexample
594fe323 19953(gdb)
a2c02241
NR
19954-stack-list-frames
19955^done,
19956stack=[
19957frame=@{level="0",addr="0x00010734",func="callee4",
19958file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19959fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19960frame=@{level="1",addr="0x0001076c",func="callee3",
19961file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19962fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19963frame=@{level="2",addr="0x0001078c",func="callee2",
19964file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19965fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19966frame=@{level="3",addr="0x000107b4",func="callee1",
19967file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19968fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19969frame=@{level="4",addr="0x000107e0",func="main",
19970file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19971fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19972(gdb)
a2c02241
NR
19973-stack-list-arguments 0
19974^done,
19975stack-args=[
19976frame=@{level="0",args=[]@},
19977frame=@{level="1",args=[name="strarg"]@},
19978frame=@{level="2",args=[name="intarg",name="strarg"]@},
19979frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19980frame=@{level="4",args=[]@}]
594fe323 19981(gdb)
a2c02241
NR
19982-stack-list-arguments 1
19983^done,
19984stack-args=[
19985frame=@{level="0",args=[]@},
19986frame=@{level="1",
19987 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19988frame=@{level="2",args=[
19989@{name="intarg",value="2"@},
19990@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19991@{frame=@{level="3",args=[
19992@{name="intarg",value="2"@},
19993@{name="strarg",value="0x11940 \"A string argument.\""@},
19994@{name="fltarg",value="3.5"@}]@},
19995frame=@{level="4",args=[]@}]
594fe323 19996(gdb)
a2c02241
NR
19997-stack-list-arguments 0 2 2
19998^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19999(gdb)
a2c02241
NR
20000-stack-list-arguments 1 2 2
20001^done,stack-args=[frame=@{level="2",
20002args=[@{name="intarg",value="2"@},
20003@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 20004(gdb)
a2c02241
NR
20005@end smallexample
20006
20007@c @subheading -stack-list-exception-handlers
922fbb7b 20008
a2c02241
NR
20009
20010@subheading The @code{-stack-list-frames} Command
20011@findex -stack-list-frames
1abaf70c
BR
20012
20013@subsubheading Synopsis
20014
20015@smallexample
a2c02241 20016 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
20017@end smallexample
20018
a2c02241
NR
20019List the frames currently on the stack. For each frame it displays the
20020following info:
20021
20022@table @samp
20023@item @var{level}
d3e8051b 20024The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
20025@item @var{addr}
20026The @code{$pc} value for that frame.
20027@item @var{func}
20028Function name.
20029@item @var{file}
20030File name of the source file where the function lives.
20031@item @var{line}
20032Line number corresponding to the @code{$pc}.
20033@end table
20034
20035If invoked without arguments, this command prints a backtrace for the
20036whole stack. If given two integer arguments, it shows the frames whose
20037levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
20038are equal, it shows the single frame at the corresponding level. It is
20039an error if @var{low-frame} is larger than the actual number of
a5451f4e 20040frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 20041actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
20042
20043@subsubheading @value{GDBN} Command
20044
a2c02241 20045The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
20046
20047@subsubheading Example
20048
a2c02241
NR
20049Full stack backtrace:
20050
1abaf70c 20051@smallexample
594fe323 20052(gdb)
a2c02241
NR
20053-stack-list-frames
20054^done,stack=
20055[frame=@{level="0",addr="0x0001076c",func="foo",
20056 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
20057frame=@{level="1",addr="0x000107a4",func="foo",
20058 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20059frame=@{level="2",addr="0x000107a4",func="foo",
20060 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20061frame=@{level="3",addr="0x000107a4",func="foo",
20062 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20063frame=@{level="4",addr="0x000107a4",func="foo",
20064 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20065frame=@{level="5",addr="0x000107a4",func="foo",
20066 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20067frame=@{level="6",addr="0x000107a4",func="foo",
20068 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20069frame=@{level="7",addr="0x000107a4",func="foo",
20070 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20071frame=@{level="8",addr="0x000107a4",func="foo",
20072 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20073frame=@{level="9",addr="0x000107a4",func="foo",
20074 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20075frame=@{level="10",addr="0x000107a4",func="foo",
20076 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20077frame=@{level="11",addr="0x00010738",func="main",
20078 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 20079(gdb)
1abaf70c
BR
20080@end smallexample
20081
a2c02241 20082Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 20083
a2c02241 20084@smallexample
594fe323 20085(gdb)
a2c02241
NR
20086-stack-list-frames 3 5
20087^done,stack=
20088[frame=@{level="3",addr="0x000107a4",func="foo",
20089 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20090frame=@{level="4",addr="0x000107a4",func="foo",
20091 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
20092frame=@{level="5",addr="0x000107a4",func="foo",
20093 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 20094(gdb)
a2c02241 20095@end smallexample
922fbb7b 20096
a2c02241 20097Show a single frame:
922fbb7b
AC
20098
20099@smallexample
594fe323 20100(gdb)
a2c02241
NR
20101-stack-list-frames 3 3
20102^done,stack=
20103[frame=@{level="3",addr="0x000107a4",func="foo",
20104 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 20105(gdb)
922fbb7b
AC
20106@end smallexample
20107
922fbb7b 20108
a2c02241
NR
20109@subheading The @code{-stack-list-locals} Command
20110@findex -stack-list-locals
57c22c6c 20111
a2c02241 20112@subsubheading Synopsis
922fbb7b
AC
20113
20114@smallexample
a2c02241 20115 -stack-list-locals @var{print-values}
922fbb7b
AC
20116@end smallexample
20117
a2c02241
NR
20118Display the local variable names for the selected frame. If
20119@var{print-values} is 0 or @code{--no-values}, print only the names of
20120the variables; if it is 1 or @code{--all-values}, print also their
20121values; and if it is 2 or @code{--simple-values}, print the name,
20122type and value for simple data types and the name and type for arrays,
20123structures and unions. In this last case, a frontend can immediately
20124display the value of simple data types and create variable objects for
d3e8051b 20125other data types when the user wishes to explore their values in
a2c02241 20126more detail.
922fbb7b
AC
20127
20128@subsubheading @value{GDBN} Command
20129
a2c02241 20130@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
20131
20132@subsubheading Example
922fbb7b
AC
20133
20134@smallexample
594fe323 20135(gdb)
a2c02241
NR
20136-stack-list-locals 0
20137^done,locals=[name="A",name="B",name="C"]
594fe323 20138(gdb)
a2c02241
NR
20139-stack-list-locals --all-values
20140^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
20141 @{name="C",value="@{1, 2, 3@}"@}]
20142-stack-list-locals --simple-values
20143^done,locals=[@{name="A",type="int",value="1"@},
20144 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 20145(gdb)
922fbb7b
AC
20146@end smallexample
20147
922fbb7b 20148
a2c02241
NR
20149@subheading The @code{-stack-select-frame} Command
20150@findex -stack-select-frame
922fbb7b
AC
20151
20152@subsubheading Synopsis
20153
20154@smallexample
a2c02241 20155 -stack-select-frame @var{framenum}
922fbb7b
AC
20156@end smallexample
20157
a2c02241
NR
20158Change the selected frame. Select a different frame @var{framenum} on
20159the stack.
922fbb7b
AC
20160
20161@subsubheading @value{GDBN} Command
20162
a2c02241
NR
20163The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
20164@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
20165
20166@subsubheading Example
20167
20168@smallexample
594fe323 20169(gdb)
a2c02241 20170-stack-select-frame 2
922fbb7b 20171^done
594fe323 20172(gdb)
922fbb7b
AC
20173@end smallexample
20174
20175@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
20176@node GDB/MI Variable Objects
20177@section @sc{gdb/mi} Variable Objects
922fbb7b 20178
a1b5960f 20179@ignore
922fbb7b 20180
a2c02241 20181@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 20182
a2c02241
NR
20183For the implementation of a variable debugger window (locals, watched
20184expressions, etc.), we are proposing the adaptation of the existing code
20185used by @code{Insight}.
922fbb7b 20186
a2c02241 20187The two main reasons for that are:
922fbb7b 20188
a2c02241
NR
20189@enumerate 1
20190@item
20191It has been proven in practice (it is already on its second generation).
922fbb7b 20192
a2c02241
NR
20193@item
20194It will shorten development time (needless to say how important it is
20195now).
20196@end enumerate
922fbb7b 20197
a2c02241
NR
20198The original interface was designed to be used by Tcl code, so it was
20199slightly changed so it could be used through @sc{gdb/mi}. This section
20200describes the @sc{gdb/mi} operations that will be available and gives some
20201hints about their use.
922fbb7b 20202
a2c02241
NR
20203@emph{Note}: In addition to the set of operations described here, we
20204expect the @sc{gui} implementation of a variable window to require, at
20205least, the following operations:
922fbb7b 20206
a2c02241
NR
20207@itemize @bullet
20208@item @code{-gdb-show} @code{output-radix}
20209@item @code{-stack-list-arguments}
20210@item @code{-stack-list-locals}
20211@item @code{-stack-select-frame}
20212@end itemize
922fbb7b 20213
a1b5960f
VP
20214@end ignore
20215
c8b2f53c 20216@subheading Introduction to Variable Objects
922fbb7b 20217
a2c02241 20218@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
20219
20220Variable objects are "object-oriented" MI interface for examining and
20221changing values of expressions. Unlike some other MI interfaces that
20222work with expressions, variable objects are specifically designed for
20223simple and efficient presentation in the frontend. A variable object
20224is identified by string name. When a variable object is created, the
20225frontend specifies the expression for that variable object. The
20226expression can be a simple variable, or it can be an arbitrary complex
20227expression, and can even involve CPU registers. After creating a
20228variable object, the frontend can invoke other variable object
20229operations---for example to obtain or change the value of a variable
20230object, or to change display format.
20231
20232Variable objects have hierarchical tree structure. Any variable object
20233that corresponds to a composite type, such as structure in C, has
20234a number of child variable objects, for example corresponding to each
20235element of a structure. A child variable object can itself have
20236children, recursively. Recursion ends when we reach
25d5ea92
VP
20237leaf variable objects, which always have built-in types. Child variable
20238objects are created only by explicit request, so if a frontend
20239is not interested in the children of a particular variable object, no
20240child will be created.
c8b2f53c
VP
20241
20242For a leaf variable object it is possible to obtain its value as a
20243string, or set the value from a string. String value can be also
20244obtained for a non-leaf variable object, but it's generally a string
20245that only indicates the type of the object, and does not list its
20246contents. Assignment to a non-leaf variable object is not allowed.
20247
20248A frontend does not need to read the values of all variable objects each time
20249the program stops. Instead, MI provides an update command that lists all
20250variable objects whose values has changed since the last update
20251operation. This considerably reduces the amount of data that must
25d5ea92
VP
20252be transferred to the frontend. As noted above, children variable
20253objects are created on demand, and only leaf variable objects have a
20254real value. As result, gdb will read target memory only for leaf
20255variables that frontend has created.
20256
20257The automatic update is not always desirable. For example, a frontend
20258might want to keep a value of some expression for future reference,
20259and never update it. For another example, fetching memory is
20260relatively slow for embedded targets, so a frontend might want
20261to disable automatic update for the variables that are either not
20262visible on the screen, or ``closed''. This is possible using so
20263called ``frozen variable objects''. Such variable objects are never
20264implicitly updated.
922fbb7b 20265
a2c02241
NR
20266The following is the complete set of @sc{gdb/mi} operations defined to
20267access this functionality:
922fbb7b 20268
a2c02241
NR
20269@multitable @columnfractions .4 .6
20270@item @strong{Operation}
20271@tab @strong{Description}
922fbb7b 20272
a2c02241
NR
20273@item @code{-var-create}
20274@tab create a variable object
20275@item @code{-var-delete}
22d8a470 20276@tab delete the variable object and/or its children
a2c02241
NR
20277@item @code{-var-set-format}
20278@tab set the display format of this variable
20279@item @code{-var-show-format}
20280@tab show the display format of this variable
20281@item @code{-var-info-num-children}
20282@tab tells how many children this object has
20283@item @code{-var-list-children}
20284@tab return a list of the object's children
20285@item @code{-var-info-type}
20286@tab show the type of this variable object
20287@item @code{-var-info-expression}
02142340
VP
20288@tab print parent-relative expression that this variable object represents
20289@item @code{-var-info-path-expression}
20290@tab print full expression that this variable object represents
a2c02241
NR
20291@item @code{-var-show-attributes}
20292@tab is this variable editable? does it exist here?
20293@item @code{-var-evaluate-expression}
20294@tab get the value of this variable
20295@item @code{-var-assign}
20296@tab set the value of this variable
20297@item @code{-var-update}
20298@tab update the variable and its children
25d5ea92
VP
20299@item @code{-var-set-frozen}
20300@tab set frozeness attribute
a2c02241 20301@end multitable
922fbb7b 20302
a2c02241
NR
20303In the next subsection we describe each operation in detail and suggest
20304how it can be used.
922fbb7b 20305
a2c02241 20306@subheading Description And Use of Operations on Variable Objects
922fbb7b 20307
a2c02241
NR
20308@subheading The @code{-var-create} Command
20309@findex -var-create
ef21caaf 20310
a2c02241 20311@subsubheading Synopsis
ef21caaf 20312
a2c02241
NR
20313@smallexample
20314 -var-create @{@var{name} | "-"@}
20315 @{@var{frame-addr} | "*"@} @var{expression}
20316@end smallexample
20317
20318This operation creates a variable object, which allows the monitoring of
20319a variable, the result of an expression, a memory cell or a CPU
20320register.
ef21caaf 20321
a2c02241
NR
20322The @var{name} parameter is the string by which the object can be
20323referenced. It must be unique. If @samp{-} is specified, the varobj
20324system will generate a string ``varNNNNNN'' automatically. It will be
20325unique provided that one does not specify @var{name} on that format.
20326The command fails if a duplicate name is found.
ef21caaf 20327
a2c02241
NR
20328The frame under which the expression should be evaluated can be
20329specified by @var{frame-addr}. A @samp{*} indicates that the current
20330frame should be used.
922fbb7b 20331
a2c02241
NR
20332@var{expression} is any expression valid on the current language set (must not
20333begin with a @samp{*}), or one of the following:
922fbb7b 20334
a2c02241
NR
20335@itemize @bullet
20336@item
20337@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 20338
a2c02241
NR
20339@item
20340@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20341
a2c02241
NR
20342@item
20343@samp{$@var{regname}} --- a CPU register name
20344@end itemize
922fbb7b 20345
a2c02241 20346@subsubheading Result
922fbb7b 20347
a2c02241
NR
20348This operation returns the name, number of children and the type of the
20349object created. Type is returned as a string as the ones generated by
20350the @value{GDBN} CLI:
922fbb7b
AC
20351
20352@smallexample
a2c02241 20353 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20354@end smallexample
20355
a2c02241
NR
20356
20357@subheading The @code{-var-delete} Command
20358@findex -var-delete
922fbb7b
AC
20359
20360@subsubheading Synopsis
20361
20362@smallexample
22d8a470 20363 -var-delete [ -c ] @var{name}
922fbb7b
AC
20364@end smallexample
20365
a2c02241 20366Deletes a previously created variable object and all of its children.
22d8a470 20367With the @samp{-c} option, just deletes the children.
922fbb7b 20368
a2c02241 20369Returns an error if the object @var{name} is not found.
922fbb7b 20370
922fbb7b 20371
a2c02241
NR
20372@subheading The @code{-var-set-format} Command
20373@findex -var-set-format
922fbb7b 20374
a2c02241 20375@subsubheading Synopsis
922fbb7b
AC
20376
20377@smallexample
a2c02241 20378 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20379@end smallexample
20380
a2c02241
NR
20381Sets the output format for the value of the object @var{name} to be
20382@var{format-spec}.
20383
de051565 20384@anchor{-var-set-format}
a2c02241
NR
20385The syntax for the @var{format-spec} is as follows:
20386
20387@smallexample
20388 @var{format-spec} @expansion{}
20389 @{binary | decimal | hexadecimal | octal | natural@}
20390@end smallexample
20391
c8b2f53c
VP
20392The natural format is the default format choosen automatically
20393based on the variable type (like decimal for an @code{int}, hex
20394for pointers, etc.).
20395
20396For a variable with children, the format is set only on the
20397variable itself, and the children are not affected.
a2c02241
NR
20398
20399@subheading The @code{-var-show-format} Command
20400@findex -var-show-format
922fbb7b
AC
20401
20402@subsubheading Synopsis
20403
20404@smallexample
a2c02241 20405 -var-show-format @var{name}
922fbb7b
AC
20406@end smallexample
20407
a2c02241 20408Returns the format used to display the value of the object @var{name}.
922fbb7b 20409
a2c02241
NR
20410@smallexample
20411 @var{format} @expansion{}
20412 @var{format-spec}
20413@end smallexample
922fbb7b 20414
922fbb7b 20415
a2c02241
NR
20416@subheading The @code{-var-info-num-children} Command
20417@findex -var-info-num-children
20418
20419@subsubheading Synopsis
20420
20421@smallexample
20422 -var-info-num-children @var{name}
20423@end smallexample
20424
20425Returns the number of children of a variable object @var{name}:
20426
20427@smallexample
20428 numchild=@var{n}
20429@end smallexample
20430
20431
20432@subheading The @code{-var-list-children} Command
20433@findex -var-list-children
20434
20435@subsubheading Synopsis
20436
20437@smallexample
20438 -var-list-children [@var{print-values}] @var{name}
20439@end smallexample
20440@anchor{-var-list-children}
20441
20442Return a list of the children of the specified variable object and
20443create variable objects for them, if they do not already exist. With
20444a single argument or if @var{print-values} has a value for of 0 or
20445@code{--no-values}, print only the names of the variables; if
20446@var{print-values} is 1 or @code{--all-values}, also print their
20447values; and if it is 2 or @code{--simple-values} print the name and
20448value for simple data types and just the name for arrays, structures
20449and unions.
922fbb7b
AC
20450
20451@subsubheading Example
20452
20453@smallexample
594fe323 20454(gdb)
a2c02241
NR
20455 -var-list-children n
20456 ^done,numchild=@var{n},children=[@{name=@var{name},
20457 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20458(gdb)
a2c02241
NR
20459 -var-list-children --all-values n
20460 ^done,numchild=@var{n},children=[@{name=@var{name},
20461 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20462@end smallexample
20463
922fbb7b 20464
a2c02241
NR
20465@subheading The @code{-var-info-type} Command
20466@findex -var-info-type
922fbb7b 20467
a2c02241
NR
20468@subsubheading Synopsis
20469
20470@smallexample
20471 -var-info-type @var{name}
20472@end smallexample
20473
20474Returns the type of the specified variable @var{name}. The type is
20475returned as a string in the same format as it is output by the
20476@value{GDBN} CLI:
20477
20478@smallexample
20479 type=@var{typename}
20480@end smallexample
20481
20482
20483@subheading The @code{-var-info-expression} Command
20484@findex -var-info-expression
922fbb7b
AC
20485
20486@subsubheading Synopsis
20487
20488@smallexample
a2c02241 20489 -var-info-expression @var{name}
922fbb7b
AC
20490@end smallexample
20491
02142340
VP
20492Returns a string that is suitable for presenting this
20493variable object in user interface. The string is generally
20494not valid expression in the current language, and cannot be evaluated.
20495
20496For example, if @code{a} is an array, and variable object
20497@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20498
a2c02241 20499@smallexample
02142340
VP
20500(gdb) -var-info-expression A.1
20501^done,lang="C",exp="1"
a2c02241 20502@end smallexample
922fbb7b 20503
a2c02241 20504@noindent
02142340
VP
20505Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20506
20507Note that the output of the @code{-var-list-children} command also
20508includes those expressions, so the @code{-var-info-expression} command
20509is of limited use.
20510
20511@subheading The @code{-var-info-path-expression} Command
20512@findex -var-info-path-expression
20513
20514@subsubheading Synopsis
20515
20516@smallexample
20517 -var-info-path-expression @var{name}
20518@end smallexample
20519
20520Returns an expression that can be evaluated in the current
20521context and will yield the same value that a variable object has.
20522Compare this with the @code{-var-info-expression} command, which
20523result can be used only for UI presentation. Typical use of
20524the @code{-var-info-path-expression} command is creating a
20525watchpoint from a variable object.
20526
20527For example, suppose @code{C} is a C@t{++} class, derived from class
20528@code{Base}, and that the @code{Base} class has a member called
20529@code{m_size}. Assume a variable @code{c} is has the type of
20530@code{C} and a variable object @code{C} was created for variable
20531@code{c}. Then, we'll get this output:
20532@smallexample
20533(gdb) -var-info-path-expression C.Base.public.m_size
20534^done,path_expr=((Base)c).m_size)
20535@end smallexample
922fbb7b 20536
a2c02241
NR
20537@subheading The @code{-var-show-attributes} Command
20538@findex -var-show-attributes
922fbb7b 20539
a2c02241 20540@subsubheading Synopsis
922fbb7b 20541
a2c02241
NR
20542@smallexample
20543 -var-show-attributes @var{name}
20544@end smallexample
922fbb7b 20545
a2c02241 20546List attributes of the specified variable object @var{name}:
922fbb7b
AC
20547
20548@smallexample
a2c02241 20549 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20550@end smallexample
20551
a2c02241
NR
20552@noindent
20553where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20554
20555@subheading The @code{-var-evaluate-expression} Command
20556@findex -var-evaluate-expression
20557
20558@subsubheading Synopsis
20559
20560@smallexample
de051565 20561 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20562@end smallexample
20563
20564Evaluates the expression that is represented by the specified variable
de051565
MK
20565object and returns its value as a string. The format of the string
20566can be specified with the @samp{-f} option. The possible values of
20567this option are the same as for @code{-var-set-format}
20568(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20569the current display format will be used. The current display format
20570can be changed using the @code{-var-set-format} command.
a2c02241
NR
20571
20572@smallexample
20573 value=@var{value}
20574@end smallexample
20575
20576Note that one must invoke @code{-var-list-children} for a variable
20577before the value of a child variable can be evaluated.
20578
20579@subheading The @code{-var-assign} Command
20580@findex -var-assign
20581
20582@subsubheading Synopsis
20583
20584@smallexample
20585 -var-assign @var{name} @var{expression}
20586@end smallexample
20587
20588Assigns the value of @var{expression} to the variable object specified
20589by @var{name}. The object must be @samp{editable}. If the variable's
20590value is altered by the assign, the variable will show up in any
20591subsequent @code{-var-update} list.
20592
20593@subsubheading Example
922fbb7b
AC
20594
20595@smallexample
594fe323 20596(gdb)
a2c02241
NR
20597-var-assign var1 3
20598^done,value="3"
594fe323 20599(gdb)
a2c02241
NR
20600-var-update *
20601^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20602(gdb)
922fbb7b
AC
20603@end smallexample
20604
a2c02241
NR
20605@subheading The @code{-var-update} Command
20606@findex -var-update
20607
20608@subsubheading Synopsis
20609
20610@smallexample
20611 -var-update [@var{print-values}] @{@var{name} | "*"@}
20612@end smallexample
20613
c8b2f53c
VP
20614Reevaluate the expressions corresponding to the variable object
20615@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20616list of variable objects whose values have changed; @var{name} must
20617be a root variable object. Here, ``changed'' means that the result of
20618@code{-var-evaluate-expression} before and after the
20619@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20620object names, all existing variable objects are updated, except
20621for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20622@var{print-values} determines whether both names and values, or just
de051565 20623names are printed. The possible values of this option are the same
36ece8b3
NR
20624as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20625recommended to use the @samp{--all-values} option, to reduce the
20626number of MI commands needed on each program stop.
c8b2f53c 20627
a2c02241
NR
20628
20629@subsubheading Example
922fbb7b
AC
20630
20631@smallexample
594fe323 20632(gdb)
a2c02241
NR
20633-var-assign var1 3
20634^done,value="3"
594fe323 20635(gdb)
a2c02241
NR
20636-var-update --all-values var1
20637^done,changelist=[@{name="var1",value="3",in_scope="true",
20638type_changed="false"@}]
594fe323 20639(gdb)
922fbb7b
AC
20640@end smallexample
20641
9f708cb2 20642@anchor{-var-update}
36ece8b3
NR
20643The field in_scope may take three values:
20644
20645@table @code
20646@item "true"
20647The variable object's current value is valid.
20648
20649@item "false"
20650The variable object does not currently hold a valid value but it may
20651hold one in the future if its associated expression comes back into
20652scope.
20653
20654@item "invalid"
20655The variable object no longer holds a valid value.
20656This can occur when the executable file being debugged has changed,
20657either through recompilation or by using the @value{GDBN} @code{file}
20658command. The front end should normally choose to delete these variable
20659objects.
20660@end table
20661
20662In the future new values may be added to this list so the front should
20663be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20664
25d5ea92
VP
20665@subheading The @code{-var-set-frozen} Command
20666@findex -var-set-frozen
9f708cb2 20667@anchor{-var-set-frozen}
25d5ea92
VP
20668
20669@subsubheading Synopsis
20670
20671@smallexample
9f708cb2 20672 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20673@end smallexample
20674
9f708cb2 20675Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20676@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20677frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20678frozen, then neither itself, nor any of its children, are
9f708cb2 20679implicitly updated by @code{-var-update} of
25d5ea92
VP
20680a parent variable or by @code{-var-update *}. Only
20681@code{-var-update} of the variable itself will update its value and
20682values of its children. After a variable object is unfrozen, it is
20683implicitly updated by all subsequent @code{-var-update} operations.
20684Unfreezing a variable does not update it, only subsequent
20685@code{-var-update} does.
20686
20687@subsubheading Example
20688
20689@smallexample
20690(gdb)
20691-var-set-frozen V 1
20692^done
20693(gdb)
20694@end smallexample
20695
20696
a2c02241
NR
20697@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20698@node GDB/MI Data Manipulation
20699@section @sc{gdb/mi} Data Manipulation
922fbb7b 20700
a2c02241
NR
20701@cindex data manipulation, in @sc{gdb/mi}
20702@cindex @sc{gdb/mi}, data manipulation
20703This section describes the @sc{gdb/mi} commands that manipulate data:
20704examine memory and registers, evaluate expressions, etc.
20705
20706@c REMOVED FROM THE INTERFACE.
20707@c @subheading -data-assign
20708@c Change the value of a program variable. Plenty of side effects.
79a6e687 20709@c @subsubheading GDB Command
a2c02241
NR
20710@c set variable
20711@c @subsubheading Example
20712@c N.A.
20713
20714@subheading The @code{-data-disassemble} Command
20715@findex -data-disassemble
922fbb7b
AC
20716
20717@subsubheading Synopsis
20718
20719@smallexample
a2c02241
NR
20720 -data-disassemble
20721 [ -s @var{start-addr} -e @var{end-addr} ]
20722 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20723 -- @var{mode}
922fbb7b
AC
20724@end smallexample
20725
a2c02241
NR
20726@noindent
20727Where:
20728
20729@table @samp
20730@item @var{start-addr}
20731is the beginning address (or @code{$pc})
20732@item @var{end-addr}
20733is the end address
20734@item @var{filename}
20735is the name of the file to disassemble
20736@item @var{linenum}
20737is the line number to disassemble around
20738@item @var{lines}
d3e8051b 20739is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20740the whole function will be disassembled, in case no @var{end-addr} is
20741specified. If @var{end-addr} is specified as a non-zero value, and
20742@var{lines} is lower than the number of disassembly lines between
20743@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20744displayed; if @var{lines} is higher than the number of lines between
20745@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20746are displayed.
20747@item @var{mode}
20748is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20749disassembly).
20750@end table
20751
20752@subsubheading Result
20753
20754The output for each instruction is composed of four fields:
20755
20756@itemize @bullet
20757@item Address
20758@item Func-name
20759@item Offset
20760@item Instruction
20761@end itemize
20762
20763Note that whatever included in the instruction field, is not manipulated
d3e8051b 20764directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20765
20766@subsubheading @value{GDBN} Command
20767
a2c02241 20768There's no direct mapping from this command to the CLI.
922fbb7b
AC
20769
20770@subsubheading Example
20771
a2c02241
NR
20772Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20773
922fbb7b 20774@smallexample
594fe323 20775(gdb)
a2c02241
NR
20776-data-disassemble -s $pc -e "$pc + 20" -- 0
20777^done,
20778asm_insns=[
20779@{address="0x000107c0",func-name="main",offset="4",
20780inst="mov 2, %o0"@},
20781@{address="0x000107c4",func-name="main",offset="8",
20782inst="sethi %hi(0x11800), %o2"@},
20783@{address="0x000107c8",func-name="main",offset="12",
20784inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20785@{address="0x000107cc",func-name="main",offset="16",
20786inst="sethi %hi(0x11800), %o2"@},
20787@{address="0x000107d0",func-name="main",offset="20",
20788inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20789(gdb)
a2c02241
NR
20790@end smallexample
20791
20792Disassemble the whole @code{main} function. Line 32 is part of
20793@code{main}.
20794
20795@smallexample
20796-data-disassemble -f basics.c -l 32 -- 0
20797^done,asm_insns=[
20798@{address="0x000107bc",func-name="main",offset="0",
20799inst="save %sp, -112, %sp"@},
20800@{address="0x000107c0",func-name="main",offset="4",
20801inst="mov 2, %o0"@},
20802@{address="0x000107c4",func-name="main",offset="8",
20803inst="sethi %hi(0x11800), %o2"@},
20804[@dots{}]
20805@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20806@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20807(gdb)
922fbb7b
AC
20808@end smallexample
20809
a2c02241 20810Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20811
a2c02241 20812@smallexample
594fe323 20813(gdb)
a2c02241
NR
20814-data-disassemble -f basics.c -l 32 -n 3 -- 0
20815^done,asm_insns=[
20816@{address="0x000107bc",func-name="main",offset="0",
20817inst="save %sp, -112, %sp"@},
20818@{address="0x000107c0",func-name="main",offset="4",
20819inst="mov 2, %o0"@},
20820@{address="0x000107c4",func-name="main",offset="8",
20821inst="sethi %hi(0x11800), %o2"@}]
594fe323 20822(gdb)
a2c02241
NR
20823@end smallexample
20824
20825Disassemble 3 instructions from the start of @code{main} in mixed mode:
20826
20827@smallexample
594fe323 20828(gdb)
a2c02241
NR
20829-data-disassemble -f basics.c -l 32 -n 3 -- 1
20830^done,asm_insns=[
20831src_and_asm_line=@{line="31",
20832file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20833 testsuite/gdb.mi/basics.c",line_asm_insn=[
20834@{address="0x000107bc",func-name="main",offset="0",
20835inst="save %sp, -112, %sp"@}]@},
20836src_and_asm_line=@{line="32",
20837file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20838 testsuite/gdb.mi/basics.c",line_asm_insn=[
20839@{address="0x000107c0",func-name="main",offset="4",
20840inst="mov 2, %o0"@},
20841@{address="0x000107c4",func-name="main",offset="8",
20842inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20843(gdb)
a2c02241
NR
20844@end smallexample
20845
20846
20847@subheading The @code{-data-evaluate-expression} Command
20848@findex -data-evaluate-expression
922fbb7b
AC
20849
20850@subsubheading Synopsis
20851
20852@smallexample
a2c02241 20853 -data-evaluate-expression @var{expr}
922fbb7b
AC
20854@end smallexample
20855
a2c02241
NR
20856Evaluate @var{expr} as an expression. The expression could contain an
20857inferior function call. The function call will execute synchronously.
20858If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20859
20860@subsubheading @value{GDBN} Command
20861
a2c02241
NR
20862The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20863@samp{call}. In @code{gdbtk} only, there's a corresponding
20864@samp{gdb_eval} command.
922fbb7b
AC
20865
20866@subsubheading Example
20867
a2c02241
NR
20868In the following example, the numbers that precede the commands are the
20869@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20870Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20871output.
20872
922fbb7b 20873@smallexample
a2c02241
NR
20874211-data-evaluate-expression A
20875211^done,value="1"
594fe323 20876(gdb)
a2c02241
NR
20877311-data-evaluate-expression &A
20878311^done,value="0xefffeb7c"
594fe323 20879(gdb)
a2c02241
NR
20880411-data-evaluate-expression A+3
20881411^done,value="4"
594fe323 20882(gdb)
a2c02241
NR
20883511-data-evaluate-expression "A + 3"
20884511^done,value="4"
594fe323 20885(gdb)
a2c02241 20886@end smallexample
922fbb7b
AC
20887
20888
a2c02241
NR
20889@subheading The @code{-data-list-changed-registers} Command
20890@findex -data-list-changed-registers
922fbb7b
AC
20891
20892@subsubheading Synopsis
20893
20894@smallexample
a2c02241 20895 -data-list-changed-registers
922fbb7b
AC
20896@end smallexample
20897
a2c02241 20898Display a list of the registers that have changed.
922fbb7b
AC
20899
20900@subsubheading @value{GDBN} Command
20901
a2c02241
NR
20902@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20903has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20904
20905@subsubheading Example
922fbb7b 20906
a2c02241 20907On a PPC MBX board:
922fbb7b
AC
20908
20909@smallexample
594fe323 20910(gdb)
a2c02241
NR
20911-exec-continue
20912^running
922fbb7b 20913
594fe323 20914(gdb)
a47ec5fe
AR
20915*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20916func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20917line="5"@}
594fe323 20918(gdb)
a2c02241
NR
20919-data-list-changed-registers
20920^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20921"10","11","13","14","15","16","17","18","19","20","21","22","23",
20922"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20923(gdb)
a2c02241 20924@end smallexample
922fbb7b
AC
20925
20926
a2c02241
NR
20927@subheading The @code{-data-list-register-names} Command
20928@findex -data-list-register-names
922fbb7b
AC
20929
20930@subsubheading Synopsis
20931
20932@smallexample
a2c02241 20933 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20934@end smallexample
20935
a2c02241
NR
20936Show a list of register names for the current target. If no arguments
20937are given, it shows a list of the names of all the registers. If
20938integer numbers are given as arguments, it will print a list of the
20939names of the registers corresponding to the arguments. To ensure
20940consistency between a register name and its number, the output list may
20941include empty register names.
922fbb7b
AC
20942
20943@subsubheading @value{GDBN} Command
20944
a2c02241
NR
20945@value{GDBN} does not have a command which corresponds to
20946@samp{-data-list-register-names}. In @code{gdbtk} there is a
20947corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20948
20949@subsubheading Example
922fbb7b 20950
a2c02241
NR
20951For the PPC MBX board:
20952@smallexample
594fe323 20953(gdb)
a2c02241
NR
20954-data-list-register-names
20955^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20956"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20957"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20958"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20959"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20960"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20961"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20962(gdb)
a2c02241
NR
20963-data-list-register-names 1 2 3
20964^done,register-names=["r1","r2","r3"]
594fe323 20965(gdb)
a2c02241 20966@end smallexample
922fbb7b 20967
a2c02241
NR
20968@subheading The @code{-data-list-register-values} Command
20969@findex -data-list-register-values
922fbb7b
AC
20970
20971@subsubheading Synopsis
20972
20973@smallexample
a2c02241 20974 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20975@end smallexample
20976
a2c02241
NR
20977Display the registers' contents. @var{fmt} is the format according to
20978which the registers' contents are to be returned, followed by an optional
20979list of numbers specifying the registers to display. A missing list of
20980numbers indicates that the contents of all the registers must be returned.
20981
20982Allowed formats for @var{fmt} are:
20983
20984@table @code
20985@item x
20986Hexadecimal
20987@item o
20988Octal
20989@item t
20990Binary
20991@item d
20992Decimal
20993@item r
20994Raw
20995@item N
20996Natural
20997@end table
922fbb7b
AC
20998
20999@subsubheading @value{GDBN} Command
21000
a2c02241
NR
21001The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
21002all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
21003
21004@subsubheading Example
922fbb7b 21005
a2c02241
NR
21006For a PPC MBX board (note: line breaks are for readability only, they
21007don't appear in the actual output):
21008
21009@smallexample
594fe323 21010(gdb)
a2c02241
NR
21011-data-list-register-values r 64 65
21012^done,register-values=[@{number="64",value="0xfe00a300"@},
21013@{number="65",value="0x00029002"@}]
594fe323 21014(gdb)
a2c02241
NR
21015-data-list-register-values x
21016^done,register-values=[@{number="0",value="0xfe0043c8"@},
21017@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
21018@{number="3",value="0x0"@},@{number="4",value="0xa"@},
21019@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
21020@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
21021@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
21022@{number="11",value="0x1"@},@{number="12",value="0x0"@},
21023@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
21024@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
21025@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
21026@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
21027@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
21028@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
21029@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
21030@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
21031@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
21032@{number="31",value="0x0"@},@{number="32",value="0x0"@},
21033@{number="33",value="0x0"@},@{number="34",value="0x0"@},
21034@{number="35",value="0x0"@},@{number="36",value="0x0"@},
21035@{number="37",value="0x0"@},@{number="38",value="0x0"@},
21036@{number="39",value="0x0"@},@{number="40",value="0x0"@},
21037@{number="41",value="0x0"@},@{number="42",value="0x0"@},
21038@{number="43",value="0x0"@},@{number="44",value="0x0"@},
21039@{number="45",value="0x0"@},@{number="46",value="0x0"@},
21040@{number="47",value="0x0"@},@{number="48",value="0x0"@},
21041@{number="49",value="0x0"@},@{number="50",value="0x0"@},
21042@{number="51",value="0x0"@},@{number="52",value="0x0"@},
21043@{number="53",value="0x0"@},@{number="54",value="0x0"@},
21044@{number="55",value="0x0"@},@{number="56",value="0x0"@},
21045@{number="57",value="0x0"@},@{number="58",value="0x0"@},
21046@{number="59",value="0x0"@},@{number="60",value="0x0"@},
21047@{number="61",value="0x0"@},@{number="62",value="0x0"@},
21048@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
21049@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
21050@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
21051@{number="69",value="0x20002b03"@}]
594fe323 21052(gdb)
a2c02241 21053@end smallexample
922fbb7b 21054
a2c02241
NR
21055
21056@subheading The @code{-data-read-memory} Command
21057@findex -data-read-memory
922fbb7b
AC
21058
21059@subsubheading Synopsis
21060
21061@smallexample
a2c02241
NR
21062 -data-read-memory [ -o @var{byte-offset} ]
21063 @var{address} @var{word-format} @var{word-size}
21064 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
21065@end smallexample
21066
a2c02241
NR
21067@noindent
21068where:
922fbb7b 21069
a2c02241
NR
21070@table @samp
21071@item @var{address}
21072An expression specifying the address of the first memory word to be
21073read. Complex expressions containing embedded white space should be
21074quoted using the C convention.
922fbb7b 21075
a2c02241
NR
21076@item @var{word-format}
21077The format to be used to print the memory words. The notation is the
21078same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 21079,Output Formats}).
922fbb7b 21080
a2c02241
NR
21081@item @var{word-size}
21082The size of each memory word in bytes.
922fbb7b 21083
a2c02241
NR
21084@item @var{nr-rows}
21085The number of rows in the output table.
922fbb7b 21086
a2c02241
NR
21087@item @var{nr-cols}
21088The number of columns in the output table.
922fbb7b 21089
a2c02241
NR
21090@item @var{aschar}
21091If present, indicates that each row should include an @sc{ascii} dump. The
21092value of @var{aschar} is used as a padding character when a byte is not a
21093member of the printable @sc{ascii} character set (printable @sc{ascii}
21094characters are those whose code is between 32 and 126, inclusively).
922fbb7b 21095
a2c02241
NR
21096@item @var{byte-offset}
21097An offset to add to the @var{address} before fetching memory.
21098@end table
922fbb7b 21099
a2c02241
NR
21100This command displays memory contents as a table of @var{nr-rows} by
21101@var{nr-cols} words, each word being @var{word-size} bytes. In total,
21102@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
21103(returned as @samp{total-bytes}). Should less than the requested number
21104of bytes be returned by the target, the missing words are identified
21105using @samp{N/A}. The number of bytes read from the target is returned
21106in @samp{nr-bytes} and the starting address used to read memory in
21107@samp{addr}.
21108
21109The address of the next/previous row or page is available in
21110@samp{next-row} and @samp{prev-row}, @samp{next-page} and
21111@samp{prev-page}.
922fbb7b
AC
21112
21113@subsubheading @value{GDBN} Command
21114
a2c02241
NR
21115The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
21116@samp{gdb_get_mem} memory read command.
922fbb7b
AC
21117
21118@subsubheading Example
32e7087d 21119
a2c02241
NR
21120Read six bytes of memory starting at @code{bytes+6} but then offset by
21121@code{-6} bytes. Format as three rows of two columns. One byte per
21122word. Display each word in hex.
32e7087d
JB
21123
21124@smallexample
594fe323 21125(gdb)
a2c02241
NR
211269-data-read-memory -o -6 -- bytes+6 x 1 3 2
211279^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
21128next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
21129prev-page="0x0000138a",memory=[
21130@{addr="0x00001390",data=["0x00","0x01"]@},
21131@{addr="0x00001392",data=["0x02","0x03"]@},
21132@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 21133(gdb)
32e7087d
JB
21134@end smallexample
21135
a2c02241
NR
21136Read two bytes of memory starting at address @code{shorts + 64} and
21137display as a single word formatted in decimal.
32e7087d 21138
32e7087d 21139@smallexample
594fe323 21140(gdb)
a2c02241
NR
211415-data-read-memory shorts+64 d 2 1 1
211425^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
21143next-row="0x00001512",prev-row="0x0000150e",
21144next-page="0x00001512",prev-page="0x0000150e",memory=[
21145@{addr="0x00001510",data=["128"]@}]
594fe323 21146(gdb)
32e7087d
JB
21147@end smallexample
21148
a2c02241
NR
21149Read thirty two bytes of memory starting at @code{bytes+16} and format
21150as eight rows of four columns. Include a string encoding with @samp{x}
21151used as the non-printable character.
922fbb7b
AC
21152
21153@smallexample
594fe323 21154(gdb)
a2c02241
NR
211554-data-read-memory bytes+16 x 1 8 4 x
211564^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
21157next-row="0x000013c0",prev-row="0x0000139c",
21158next-page="0x000013c0",prev-page="0x00001380",memory=[
21159@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
21160@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
21161@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
21162@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
21163@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
21164@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
21165@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
21166@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 21167(gdb)
922fbb7b
AC
21168@end smallexample
21169
a2c02241
NR
21170@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21171@node GDB/MI Tracepoint Commands
21172@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 21173
a2c02241 21174The tracepoint commands are not yet implemented.
922fbb7b 21175
a2c02241 21176@c @subheading -trace-actions
922fbb7b 21177
a2c02241 21178@c @subheading -trace-delete
922fbb7b 21179
a2c02241 21180@c @subheading -trace-disable
922fbb7b 21181
a2c02241 21182@c @subheading -trace-dump
922fbb7b 21183
a2c02241 21184@c @subheading -trace-enable
922fbb7b 21185
a2c02241 21186@c @subheading -trace-exists
922fbb7b 21187
a2c02241 21188@c @subheading -trace-find
922fbb7b 21189
a2c02241 21190@c @subheading -trace-frame-number
922fbb7b 21191
a2c02241 21192@c @subheading -trace-info
922fbb7b 21193
a2c02241 21194@c @subheading -trace-insert
922fbb7b 21195
a2c02241 21196@c @subheading -trace-list
922fbb7b 21197
a2c02241 21198@c @subheading -trace-pass-count
922fbb7b 21199
a2c02241 21200@c @subheading -trace-save
922fbb7b 21201
a2c02241 21202@c @subheading -trace-start
922fbb7b 21203
a2c02241 21204@c @subheading -trace-stop
922fbb7b 21205
922fbb7b 21206
a2c02241
NR
21207@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21208@node GDB/MI Symbol Query
21209@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
21210
21211
a2c02241
NR
21212@subheading The @code{-symbol-info-address} Command
21213@findex -symbol-info-address
922fbb7b
AC
21214
21215@subsubheading Synopsis
21216
21217@smallexample
a2c02241 21218 -symbol-info-address @var{symbol}
922fbb7b
AC
21219@end smallexample
21220
a2c02241 21221Describe where @var{symbol} is stored.
922fbb7b
AC
21222
21223@subsubheading @value{GDBN} Command
21224
a2c02241 21225The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
21226
21227@subsubheading Example
21228N.A.
21229
21230
a2c02241
NR
21231@subheading The @code{-symbol-info-file} Command
21232@findex -symbol-info-file
922fbb7b
AC
21233
21234@subsubheading Synopsis
21235
21236@smallexample
a2c02241 21237 -symbol-info-file
922fbb7b
AC
21238@end smallexample
21239
a2c02241 21240Show the file for the symbol.
922fbb7b 21241
a2c02241 21242@subsubheading @value{GDBN} Command
922fbb7b 21243
a2c02241
NR
21244There's no equivalent @value{GDBN} command. @code{gdbtk} has
21245@samp{gdb_find_file}.
922fbb7b
AC
21246
21247@subsubheading Example
21248N.A.
21249
21250
a2c02241
NR
21251@subheading The @code{-symbol-info-function} Command
21252@findex -symbol-info-function
922fbb7b
AC
21253
21254@subsubheading Synopsis
21255
21256@smallexample
a2c02241 21257 -symbol-info-function
922fbb7b
AC
21258@end smallexample
21259
a2c02241 21260Show which function the symbol lives in.
922fbb7b
AC
21261
21262@subsubheading @value{GDBN} Command
21263
a2c02241 21264@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
21265
21266@subsubheading Example
21267N.A.
21268
21269
a2c02241
NR
21270@subheading The @code{-symbol-info-line} Command
21271@findex -symbol-info-line
922fbb7b
AC
21272
21273@subsubheading Synopsis
21274
21275@smallexample
a2c02241 21276 -symbol-info-line
922fbb7b
AC
21277@end smallexample
21278
a2c02241 21279Show the core addresses of the code for a source line.
922fbb7b 21280
a2c02241 21281@subsubheading @value{GDBN} Command
922fbb7b 21282
a2c02241
NR
21283The corresponding @value{GDBN} command is @samp{info line}.
21284@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
21285
21286@subsubheading Example
a2c02241 21287N.A.
922fbb7b
AC
21288
21289
a2c02241
NR
21290@subheading The @code{-symbol-info-symbol} Command
21291@findex -symbol-info-symbol
07f31aa6
DJ
21292
21293@subsubheading Synopsis
21294
a2c02241
NR
21295@smallexample
21296 -symbol-info-symbol @var{addr}
21297@end smallexample
07f31aa6 21298
a2c02241 21299Describe what symbol is at location @var{addr}.
07f31aa6 21300
a2c02241 21301@subsubheading @value{GDBN} Command
07f31aa6 21302
a2c02241 21303The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
21304
21305@subsubheading Example
a2c02241 21306N.A.
07f31aa6
DJ
21307
21308
a2c02241
NR
21309@subheading The @code{-symbol-list-functions} Command
21310@findex -symbol-list-functions
922fbb7b
AC
21311
21312@subsubheading Synopsis
21313
21314@smallexample
a2c02241 21315 -symbol-list-functions
922fbb7b
AC
21316@end smallexample
21317
a2c02241 21318List the functions in the executable.
922fbb7b
AC
21319
21320@subsubheading @value{GDBN} Command
21321
a2c02241
NR
21322@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
21323@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21324
21325@subsubheading Example
a2c02241 21326N.A.
922fbb7b
AC
21327
21328
a2c02241
NR
21329@subheading The @code{-symbol-list-lines} Command
21330@findex -symbol-list-lines
922fbb7b
AC
21331
21332@subsubheading Synopsis
21333
21334@smallexample
a2c02241 21335 -symbol-list-lines @var{filename}
922fbb7b
AC
21336@end smallexample
21337
a2c02241
NR
21338Print the list of lines that contain code and their associated program
21339addresses for the given source filename. The entries are sorted in
21340ascending PC order.
922fbb7b
AC
21341
21342@subsubheading @value{GDBN} Command
21343
a2c02241 21344There is no corresponding @value{GDBN} command.
922fbb7b
AC
21345
21346@subsubheading Example
a2c02241 21347@smallexample
594fe323 21348(gdb)
a2c02241
NR
21349-symbol-list-lines basics.c
21350^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21351(gdb)
a2c02241 21352@end smallexample
922fbb7b
AC
21353
21354
a2c02241
NR
21355@subheading The @code{-symbol-list-types} Command
21356@findex -symbol-list-types
922fbb7b
AC
21357
21358@subsubheading Synopsis
21359
21360@smallexample
a2c02241 21361 -symbol-list-types
922fbb7b
AC
21362@end smallexample
21363
a2c02241 21364List all the type names.
922fbb7b
AC
21365
21366@subsubheading @value{GDBN} Command
21367
a2c02241
NR
21368The corresponding commands are @samp{info types} in @value{GDBN},
21369@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21370
21371@subsubheading Example
21372N.A.
21373
21374
a2c02241
NR
21375@subheading The @code{-symbol-list-variables} Command
21376@findex -symbol-list-variables
922fbb7b
AC
21377
21378@subsubheading Synopsis
21379
21380@smallexample
a2c02241 21381 -symbol-list-variables
922fbb7b
AC
21382@end smallexample
21383
a2c02241 21384List all the global and static variable names.
922fbb7b
AC
21385
21386@subsubheading @value{GDBN} Command
21387
a2c02241 21388@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21389
21390@subsubheading Example
21391N.A.
21392
21393
a2c02241
NR
21394@subheading The @code{-symbol-locate} Command
21395@findex -symbol-locate
922fbb7b
AC
21396
21397@subsubheading Synopsis
21398
21399@smallexample
a2c02241 21400 -symbol-locate
922fbb7b
AC
21401@end smallexample
21402
922fbb7b
AC
21403@subsubheading @value{GDBN} Command
21404
a2c02241 21405@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21406
21407@subsubheading Example
21408N.A.
21409
21410
a2c02241
NR
21411@subheading The @code{-symbol-type} Command
21412@findex -symbol-type
922fbb7b
AC
21413
21414@subsubheading Synopsis
21415
21416@smallexample
a2c02241 21417 -symbol-type @var{variable}
922fbb7b
AC
21418@end smallexample
21419
a2c02241 21420Show type of @var{variable}.
922fbb7b 21421
a2c02241 21422@subsubheading @value{GDBN} Command
922fbb7b 21423
a2c02241
NR
21424The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21425@samp{gdb_obj_variable}.
21426
21427@subsubheading Example
21428N.A.
21429
21430
21431@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21432@node GDB/MI File Commands
21433@section @sc{gdb/mi} File Commands
21434
21435This section describes the GDB/MI commands to specify executable file names
21436and to read in and obtain symbol table information.
21437
21438@subheading The @code{-file-exec-and-symbols} Command
21439@findex -file-exec-and-symbols
21440
21441@subsubheading Synopsis
922fbb7b
AC
21442
21443@smallexample
a2c02241 21444 -file-exec-and-symbols @var{file}
922fbb7b
AC
21445@end smallexample
21446
a2c02241
NR
21447Specify the executable file to be debugged. This file is the one from
21448which the symbol table is also read. If no file is specified, the
21449command clears the executable and symbol information. If breakpoints
21450are set when using this command with no arguments, @value{GDBN} will produce
21451error messages. Otherwise, no output is produced, except a completion
21452notification.
21453
922fbb7b
AC
21454@subsubheading @value{GDBN} Command
21455
a2c02241 21456The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21457
21458@subsubheading Example
21459
21460@smallexample
594fe323 21461(gdb)
a2c02241
NR
21462-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21463^done
594fe323 21464(gdb)
922fbb7b
AC
21465@end smallexample
21466
922fbb7b 21467
a2c02241
NR
21468@subheading The @code{-file-exec-file} Command
21469@findex -file-exec-file
922fbb7b
AC
21470
21471@subsubheading Synopsis
21472
21473@smallexample
a2c02241 21474 -file-exec-file @var{file}
922fbb7b
AC
21475@end smallexample
21476
a2c02241
NR
21477Specify the executable file to be debugged. Unlike
21478@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21479from this file. If used without argument, @value{GDBN} clears the information
21480about the executable file. No output is produced, except a completion
21481notification.
922fbb7b 21482
a2c02241
NR
21483@subsubheading @value{GDBN} Command
21484
21485The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21486
21487@subsubheading Example
a2c02241
NR
21488
21489@smallexample
594fe323 21490(gdb)
a2c02241
NR
21491-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21492^done
594fe323 21493(gdb)
a2c02241 21494@end smallexample
922fbb7b
AC
21495
21496
a2c02241
NR
21497@subheading The @code{-file-list-exec-sections} Command
21498@findex -file-list-exec-sections
922fbb7b
AC
21499
21500@subsubheading Synopsis
21501
21502@smallexample
a2c02241 21503 -file-list-exec-sections
922fbb7b
AC
21504@end smallexample
21505
a2c02241
NR
21506List the sections of the current executable file.
21507
922fbb7b
AC
21508@subsubheading @value{GDBN} Command
21509
a2c02241
NR
21510The @value{GDBN} command @samp{info file} shows, among the rest, the same
21511information as this command. @code{gdbtk} has a corresponding command
21512@samp{gdb_load_info}.
922fbb7b
AC
21513
21514@subsubheading Example
21515N.A.
21516
21517
a2c02241
NR
21518@subheading The @code{-file-list-exec-source-file} Command
21519@findex -file-list-exec-source-file
922fbb7b
AC
21520
21521@subsubheading Synopsis
21522
21523@smallexample
a2c02241 21524 -file-list-exec-source-file
922fbb7b
AC
21525@end smallexample
21526
a2c02241 21527List the line number, the current source file, and the absolute path
44288b44
NR
21528to the current source file for the current executable. The macro
21529information field has a value of @samp{1} or @samp{0} depending on
21530whether or not the file includes preprocessor macro information.
922fbb7b
AC
21531
21532@subsubheading @value{GDBN} Command
21533
a2c02241 21534The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21535
21536@subsubheading Example
21537
922fbb7b 21538@smallexample
594fe323 21539(gdb)
a2c02241 21540123-file-list-exec-source-file
44288b44 21541123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21542(gdb)
922fbb7b
AC
21543@end smallexample
21544
21545
a2c02241
NR
21546@subheading The @code{-file-list-exec-source-files} Command
21547@findex -file-list-exec-source-files
922fbb7b
AC
21548
21549@subsubheading Synopsis
21550
21551@smallexample
a2c02241 21552 -file-list-exec-source-files
922fbb7b
AC
21553@end smallexample
21554
a2c02241
NR
21555List the source files for the current executable.
21556
3f94c067
BW
21557It will always output the filename, but only when @value{GDBN} can find
21558the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21559
21560@subsubheading @value{GDBN} Command
21561
a2c02241
NR
21562The @value{GDBN} equivalent is @samp{info sources}.
21563@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21564
21565@subsubheading Example
922fbb7b 21566@smallexample
594fe323 21567(gdb)
a2c02241
NR
21568-file-list-exec-source-files
21569^done,files=[
21570@{file=foo.c,fullname=/home/foo.c@},
21571@{file=/home/bar.c,fullname=/home/bar.c@},
21572@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21573(gdb)
922fbb7b
AC
21574@end smallexample
21575
a2c02241
NR
21576@subheading The @code{-file-list-shared-libraries} Command
21577@findex -file-list-shared-libraries
922fbb7b 21578
a2c02241 21579@subsubheading Synopsis
922fbb7b 21580
a2c02241
NR
21581@smallexample
21582 -file-list-shared-libraries
21583@end smallexample
922fbb7b 21584
a2c02241 21585List the shared libraries in the program.
922fbb7b 21586
a2c02241 21587@subsubheading @value{GDBN} Command
922fbb7b 21588
a2c02241 21589The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21590
a2c02241
NR
21591@subsubheading Example
21592N.A.
922fbb7b
AC
21593
21594
a2c02241
NR
21595@subheading The @code{-file-list-symbol-files} Command
21596@findex -file-list-symbol-files
922fbb7b 21597
a2c02241 21598@subsubheading Synopsis
922fbb7b 21599
a2c02241
NR
21600@smallexample
21601 -file-list-symbol-files
21602@end smallexample
922fbb7b 21603
a2c02241 21604List symbol files.
922fbb7b 21605
a2c02241 21606@subsubheading @value{GDBN} Command
922fbb7b 21607
a2c02241 21608The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21609
a2c02241
NR
21610@subsubheading Example
21611N.A.
922fbb7b 21612
922fbb7b 21613
a2c02241
NR
21614@subheading The @code{-file-symbol-file} Command
21615@findex -file-symbol-file
922fbb7b 21616
a2c02241 21617@subsubheading Synopsis
922fbb7b 21618
a2c02241
NR
21619@smallexample
21620 -file-symbol-file @var{file}
21621@end smallexample
922fbb7b 21622
a2c02241
NR
21623Read symbol table info from the specified @var{file} argument. When
21624used without arguments, clears @value{GDBN}'s symbol table info. No output is
21625produced, except for a completion notification.
922fbb7b 21626
a2c02241 21627@subsubheading @value{GDBN} Command
922fbb7b 21628
a2c02241 21629The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21630
a2c02241 21631@subsubheading Example
922fbb7b 21632
a2c02241 21633@smallexample
594fe323 21634(gdb)
a2c02241
NR
21635-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21636^done
594fe323 21637(gdb)
a2c02241 21638@end smallexample
922fbb7b 21639
a2c02241 21640@ignore
a2c02241
NR
21641@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21642@node GDB/MI Memory Overlay Commands
21643@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21644
a2c02241 21645The memory overlay commands are not implemented.
922fbb7b 21646
a2c02241 21647@c @subheading -overlay-auto
922fbb7b 21648
a2c02241 21649@c @subheading -overlay-list-mapping-state
922fbb7b 21650
a2c02241 21651@c @subheading -overlay-list-overlays
922fbb7b 21652
a2c02241 21653@c @subheading -overlay-map
922fbb7b 21654
a2c02241 21655@c @subheading -overlay-off
922fbb7b 21656
a2c02241 21657@c @subheading -overlay-on
922fbb7b 21658
a2c02241 21659@c @subheading -overlay-unmap
922fbb7b 21660
a2c02241
NR
21661@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21662@node GDB/MI Signal Handling Commands
21663@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21664
a2c02241 21665Signal handling commands are not implemented.
922fbb7b 21666
a2c02241 21667@c @subheading -signal-handle
922fbb7b 21668
a2c02241 21669@c @subheading -signal-list-handle-actions
922fbb7b 21670
a2c02241
NR
21671@c @subheading -signal-list-signal-types
21672@end ignore
922fbb7b 21673
922fbb7b 21674
a2c02241
NR
21675@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21676@node GDB/MI Target Manipulation
21677@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21678
21679
a2c02241
NR
21680@subheading The @code{-target-attach} Command
21681@findex -target-attach
922fbb7b
AC
21682
21683@subsubheading Synopsis
21684
21685@smallexample
a2c02241 21686 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21687@end smallexample
21688
a2c02241 21689Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21690
79a6e687 21691@subsubheading @value{GDBN} Command
922fbb7b 21692
a2c02241 21693The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21694
a2c02241 21695@subsubheading Example
b56e7235
VP
21696@smallexample
21697(gdb)
21698-target-attach 34
21699=thread-created,id="1"
5ae4183a 21700*stopped,thread-id="1",frame=@{addr="0xb7f7e410",func="bar",args=[]@}
b56e7235
VP
21701^done
21702(gdb)
21703@end smallexample
a2c02241
NR
21704
21705@subheading The @code{-target-compare-sections} Command
21706@findex -target-compare-sections
922fbb7b
AC
21707
21708@subsubheading Synopsis
21709
21710@smallexample
a2c02241 21711 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21712@end smallexample
21713
a2c02241
NR
21714Compare data of section @var{section} on target to the exec file.
21715Without the argument, all sections are compared.
922fbb7b 21716
a2c02241 21717@subsubheading @value{GDBN} Command
922fbb7b 21718
a2c02241 21719The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21720
a2c02241
NR
21721@subsubheading Example
21722N.A.
21723
21724
21725@subheading The @code{-target-detach} Command
21726@findex -target-detach
922fbb7b
AC
21727
21728@subsubheading Synopsis
21729
21730@smallexample
a2c02241 21731 -target-detach
922fbb7b
AC
21732@end smallexample
21733
a2c02241
NR
21734Detach from the remote target which normally resumes its execution.
21735There's no output.
21736
79a6e687 21737@subsubheading @value{GDBN} Command
a2c02241
NR
21738
21739The corresponding @value{GDBN} command is @samp{detach}.
21740
21741@subsubheading Example
922fbb7b
AC
21742
21743@smallexample
594fe323 21744(gdb)
a2c02241
NR
21745-target-detach
21746^done
594fe323 21747(gdb)
922fbb7b
AC
21748@end smallexample
21749
21750
a2c02241
NR
21751@subheading The @code{-target-disconnect} Command
21752@findex -target-disconnect
922fbb7b
AC
21753
21754@subsubheading Synopsis
21755
123dc839 21756@smallexample
a2c02241 21757 -target-disconnect
123dc839 21758@end smallexample
922fbb7b 21759
a2c02241
NR
21760Disconnect from the remote target. There's no output and the target is
21761generally not resumed.
21762
79a6e687 21763@subsubheading @value{GDBN} Command
a2c02241
NR
21764
21765The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21766
21767@subsubheading Example
922fbb7b
AC
21768
21769@smallexample
594fe323 21770(gdb)
a2c02241
NR
21771-target-disconnect
21772^done
594fe323 21773(gdb)
922fbb7b
AC
21774@end smallexample
21775
21776
a2c02241
NR
21777@subheading The @code{-target-download} Command
21778@findex -target-download
922fbb7b
AC
21779
21780@subsubheading Synopsis
21781
21782@smallexample
a2c02241 21783 -target-download
922fbb7b
AC
21784@end smallexample
21785
a2c02241
NR
21786Loads the executable onto the remote target.
21787It prints out an update message every half second, which includes the fields:
21788
21789@table @samp
21790@item section
21791The name of the section.
21792@item section-sent
21793The size of what has been sent so far for that section.
21794@item section-size
21795The size of the section.
21796@item total-sent
21797The total size of what was sent so far (the current and the previous sections).
21798@item total-size
21799The size of the overall executable to download.
21800@end table
21801
21802@noindent
21803Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21804@sc{gdb/mi} Output Syntax}).
21805
21806In addition, it prints the name and size of the sections, as they are
21807downloaded. These messages include the following fields:
21808
21809@table @samp
21810@item section
21811The name of the section.
21812@item section-size
21813The size of the section.
21814@item total-size
21815The size of the overall executable to download.
21816@end table
21817
21818@noindent
21819At the end, a summary is printed.
21820
21821@subsubheading @value{GDBN} Command
21822
21823The corresponding @value{GDBN} command is @samp{load}.
21824
21825@subsubheading Example
21826
21827Note: each status message appears on a single line. Here the messages
21828have been broken down so that they can fit onto a page.
922fbb7b
AC
21829
21830@smallexample
594fe323 21831(gdb)
a2c02241
NR
21832-target-download
21833+download,@{section=".text",section-size="6668",total-size="9880"@}
21834+download,@{section=".text",section-sent="512",section-size="6668",
21835total-sent="512",total-size="9880"@}
21836+download,@{section=".text",section-sent="1024",section-size="6668",
21837total-sent="1024",total-size="9880"@}
21838+download,@{section=".text",section-sent="1536",section-size="6668",
21839total-sent="1536",total-size="9880"@}
21840+download,@{section=".text",section-sent="2048",section-size="6668",
21841total-sent="2048",total-size="9880"@}
21842+download,@{section=".text",section-sent="2560",section-size="6668",
21843total-sent="2560",total-size="9880"@}
21844+download,@{section=".text",section-sent="3072",section-size="6668",
21845total-sent="3072",total-size="9880"@}
21846+download,@{section=".text",section-sent="3584",section-size="6668",
21847total-sent="3584",total-size="9880"@}
21848+download,@{section=".text",section-sent="4096",section-size="6668",
21849total-sent="4096",total-size="9880"@}
21850+download,@{section=".text",section-sent="4608",section-size="6668",
21851total-sent="4608",total-size="9880"@}
21852+download,@{section=".text",section-sent="5120",section-size="6668",
21853total-sent="5120",total-size="9880"@}
21854+download,@{section=".text",section-sent="5632",section-size="6668",
21855total-sent="5632",total-size="9880"@}
21856+download,@{section=".text",section-sent="6144",section-size="6668",
21857total-sent="6144",total-size="9880"@}
21858+download,@{section=".text",section-sent="6656",section-size="6668",
21859total-sent="6656",total-size="9880"@}
21860+download,@{section=".init",section-size="28",total-size="9880"@}
21861+download,@{section=".fini",section-size="28",total-size="9880"@}
21862+download,@{section=".data",section-size="3156",total-size="9880"@}
21863+download,@{section=".data",section-sent="512",section-size="3156",
21864total-sent="7236",total-size="9880"@}
21865+download,@{section=".data",section-sent="1024",section-size="3156",
21866total-sent="7748",total-size="9880"@}
21867+download,@{section=".data",section-sent="1536",section-size="3156",
21868total-sent="8260",total-size="9880"@}
21869+download,@{section=".data",section-sent="2048",section-size="3156",
21870total-sent="8772",total-size="9880"@}
21871+download,@{section=".data",section-sent="2560",section-size="3156",
21872total-sent="9284",total-size="9880"@}
21873+download,@{section=".data",section-sent="3072",section-size="3156",
21874total-sent="9796",total-size="9880"@}
21875^done,address="0x10004",load-size="9880",transfer-rate="6586",
21876write-rate="429"
594fe323 21877(gdb)
922fbb7b
AC
21878@end smallexample
21879
21880
a2c02241
NR
21881@subheading The @code{-target-exec-status} Command
21882@findex -target-exec-status
922fbb7b
AC
21883
21884@subsubheading Synopsis
21885
21886@smallexample
a2c02241 21887 -target-exec-status
922fbb7b
AC
21888@end smallexample
21889
a2c02241
NR
21890Provide information on the state of the target (whether it is running or
21891not, for instance).
922fbb7b 21892
a2c02241 21893@subsubheading @value{GDBN} Command
922fbb7b 21894
a2c02241
NR
21895There's no equivalent @value{GDBN} command.
21896
21897@subsubheading Example
21898N.A.
922fbb7b 21899
a2c02241
NR
21900
21901@subheading The @code{-target-list-available-targets} Command
21902@findex -target-list-available-targets
922fbb7b
AC
21903
21904@subsubheading Synopsis
21905
21906@smallexample
a2c02241 21907 -target-list-available-targets
922fbb7b
AC
21908@end smallexample
21909
a2c02241 21910List the possible targets to connect to.
922fbb7b 21911
a2c02241 21912@subsubheading @value{GDBN} Command
922fbb7b 21913
a2c02241 21914The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21915
a2c02241
NR
21916@subsubheading Example
21917N.A.
21918
21919
21920@subheading The @code{-target-list-current-targets} Command
21921@findex -target-list-current-targets
922fbb7b
AC
21922
21923@subsubheading Synopsis
21924
21925@smallexample
a2c02241 21926 -target-list-current-targets
922fbb7b
AC
21927@end smallexample
21928
a2c02241 21929Describe the current target.
922fbb7b 21930
a2c02241 21931@subsubheading @value{GDBN} Command
922fbb7b 21932
a2c02241
NR
21933The corresponding information is printed by @samp{info file} (among
21934other things).
922fbb7b 21935
a2c02241
NR
21936@subsubheading Example
21937N.A.
21938
21939
21940@subheading The @code{-target-list-parameters} Command
21941@findex -target-list-parameters
922fbb7b
AC
21942
21943@subsubheading Synopsis
21944
21945@smallexample
a2c02241 21946 -target-list-parameters
922fbb7b
AC
21947@end smallexample
21948
a2c02241
NR
21949@c ????
21950
21951@subsubheading @value{GDBN} Command
21952
21953No equivalent.
922fbb7b
AC
21954
21955@subsubheading Example
a2c02241
NR
21956N.A.
21957
21958
21959@subheading The @code{-target-select} Command
21960@findex -target-select
21961
21962@subsubheading Synopsis
922fbb7b
AC
21963
21964@smallexample
a2c02241 21965 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21966@end smallexample
21967
a2c02241 21968Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21969
a2c02241
NR
21970@table @samp
21971@item @var{type}
75c99385 21972The type of target, for instance @samp{remote}, etc.
a2c02241
NR
21973@item @var{parameters}
21974Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21975Commands for Managing Targets}, for more details.
a2c02241
NR
21976@end table
21977
21978The output is a connection notification, followed by the address at
21979which the target program is, in the following form:
922fbb7b
AC
21980
21981@smallexample
a2c02241
NR
21982^connected,addr="@var{address}",func="@var{function name}",
21983 args=[@var{arg list}]
922fbb7b
AC
21984@end smallexample
21985
a2c02241
NR
21986@subsubheading @value{GDBN} Command
21987
21988The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21989
21990@subsubheading Example
922fbb7b 21991
265eeb58 21992@smallexample
594fe323 21993(gdb)
75c99385 21994-target-select remote /dev/ttya
a2c02241 21995^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21996(gdb)
265eeb58 21997@end smallexample
ef21caaf 21998
a6b151f1
DJ
21999@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22000@node GDB/MI File Transfer Commands
22001@section @sc{gdb/mi} File Transfer Commands
22002
22003
22004@subheading The @code{-target-file-put} Command
22005@findex -target-file-put
22006
22007@subsubheading Synopsis
22008
22009@smallexample
22010 -target-file-put @var{hostfile} @var{targetfile}
22011@end smallexample
22012
22013Copy file @var{hostfile} from the host system (the machine running
22014@value{GDBN}) to @var{targetfile} on the target system.
22015
22016@subsubheading @value{GDBN} Command
22017
22018The corresponding @value{GDBN} command is @samp{remote put}.
22019
22020@subsubheading Example
22021
22022@smallexample
22023(gdb)
22024-target-file-put localfile remotefile
22025^done
22026(gdb)
22027@end smallexample
22028
22029
1763a388 22030@subheading The @code{-target-file-get} Command
a6b151f1
DJ
22031@findex -target-file-get
22032
22033@subsubheading Synopsis
22034
22035@smallexample
22036 -target-file-get @var{targetfile} @var{hostfile}
22037@end smallexample
22038
22039Copy file @var{targetfile} from the target system to @var{hostfile}
22040on the host system.
22041
22042@subsubheading @value{GDBN} Command
22043
22044The corresponding @value{GDBN} command is @samp{remote get}.
22045
22046@subsubheading Example
22047
22048@smallexample
22049(gdb)
22050-target-file-get remotefile localfile
22051^done
22052(gdb)
22053@end smallexample
22054
22055
22056@subheading The @code{-target-file-delete} Command
22057@findex -target-file-delete
22058
22059@subsubheading Synopsis
22060
22061@smallexample
22062 -target-file-delete @var{targetfile}
22063@end smallexample
22064
22065Delete @var{targetfile} from the target system.
22066
22067@subsubheading @value{GDBN} Command
22068
22069The corresponding @value{GDBN} command is @samp{remote delete}.
22070
22071@subsubheading Example
22072
22073@smallexample
22074(gdb)
22075-target-file-delete remotefile
22076^done
22077(gdb)
22078@end smallexample
22079
22080
ef21caaf
NR
22081@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22082@node GDB/MI Miscellaneous Commands
22083@section Miscellaneous @sc{gdb/mi} Commands
22084
22085@c @subheading -gdb-complete
22086
22087@subheading The @code{-gdb-exit} Command
22088@findex -gdb-exit
22089
22090@subsubheading Synopsis
22091
22092@smallexample
22093 -gdb-exit
22094@end smallexample
22095
22096Exit @value{GDBN} immediately.
22097
22098@subsubheading @value{GDBN} Command
22099
22100Approximately corresponds to @samp{quit}.
22101
22102@subsubheading Example
22103
22104@smallexample
594fe323 22105(gdb)
ef21caaf
NR
22106-gdb-exit
22107^exit
22108@end smallexample
22109
a2c02241
NR
22110
22111@subheading The @code{-exec-abort} Command
22112@findex -exec-abort
22113
22114@subsubheading Synopsis
22115
22116@smallexample
22117 -exec-abort
22118@end smallexample
22119
22120Kill the inferior running program.
22121
22122@subsubheading @value{GDBN} Command
22123
22124The corresponding @value{GDBN} command is @samp{kill}.
22125
22126@subsubheading Example
22127N.A.
22128
22129
ef21caaf
NR
22130@subheading The @code{-gdb-set} Command
22131@findex -gdb-set
22132
22133@subsubheading Synopsis
22134
22135@smallexample
22136 -gdb-set
22137@end smallexample
22138
22139Set an internal @value{GDBN} variable.
22140@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
22141
22142@subsubheading @value{GDBN} Command
22143
22144The corresponding @value{GDBN} command is @samp{set}.
22145
22146@subsubheading Example
22147
22148@smallexample
594fe323 22149(gdb)
ef21caaf
NR
22150-gdb-set $foo=3
22151^done
594fe323 22152(gdb)
ef21caaf
NR
22153@end smallexample
22154
22155
22156@subheading The @code{-gdb-show} Command
22157@findex -gdb-show
22158
22159@subsubheading Synopsis
22160
22161@smallexample
22162 -gdb-show
22163@end smallexample
22164
22165Show the current value of a @value{GDBN} variable.
22166
79a6e687 22167@subsubheading @value{GDBN} Command
ef21caaf
NR
22168
22169The corresponding @value{GDBN} command is @samp{show}.
22170
22171@subsubheading Example
22172
22173@smallexample
594fe323 22174(gdb)
ef21caaf
NR
22175-gdb-show annotate
22176^done,value="0"
594fe323 22177(gdb)
ef21caaf
NR
22178@end smallexample
22179
22180@c @subheading -gdb-source
22181
22182
22183@subheading The @code{-gdb-version} Command
22184@findex -gdb-version
22185
22186@subsubheading Synopsis
22187
22188@smallexample
22189 -gdb-version
22190@end smallexample
22191
22192Show version information for @value{GDBN}. Used mostly in testing.
22193
22194@subsubheading @value{GDBN} Command
22195
22196The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
22197default shows this information when you start an interactive session.
22198
22199@subsubheading Example
22200
22201@c This example modifies the actual output from GDB to avoid overfull
22202@c box in TeX.
22203@smallexample
594fe323 22204(gdb)
ef21caaf
NR
22205-gdb-version
22206~GNU gdb 5.2.1
22207~Copyright 2000 Free Software Foundation, Inc.
22208~GDB is free software, covered by the GNU General Public License, and
22209~you are welcome to change it and/or distribute copies of it under
22210~ certain conditions.
22211~Type "show copying" to see the conditions.
22212~There is absolutely no warranty for GDB. Type "show warranty" for
22213~ details.
22214~This GDB was configured as
22215 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
22216^done
594fe323 22217(gdb)
ef21caaf
NR
22218@end smallexample
22219
084344da
VP
22220@subheading The @code{-list-features} Command
22221@findex -list-features
22222
22223Returns a list of particular features of the MI protocol that
22224this version of gdb implements. A feature can be a command,
22225or a new field in an output of some command, or even an
22226important bugfix. While a frontend can sometimes detect presence
22227of a feature at runtime, it is easier to perform detection at debugger
22228startup.
22229
22230The command returns a list of strings, with each string naming an
22231available feature. Each returned string is just a name, it does not
22232have any internal structure. The list of possible feature names
22233is given below.
22234
22235Example output:
22236
22237@smallexample
22238(gdb) -list-features
22239^done,result=["feature1","feature2"]
22240@end smallexample
22241
22242The current list of features is:
22243
22244@itemize @minus
22245@item
22246@samp{frozen-varobjs}---indicates presence of the
22247@code{-var-set-frozen} command, as well as possible presense of the
22248@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
22249@item
22250@samp{pending-breakpoints}---indicates presence of the @code{-f}
22251option to the @code{-break-insert} command.
8e8901c5
VP
22252@item
22253@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 22254
084344da
VP
22255@end itemize
22256
ef21caaf
NR
22257@subheading The @code{-interpreter-exec} Command
22258@findex -interpreter-exec
22259
22260@subheading Synopsis
22261
22262@smallexample
22263-interpreter-exec @var{interpreter} @var{command}
22264@end smallexample
a2c02241 22265@anchor{-interpreter-exec}
ef21caaf
NR
22266
22267Execute the specified @var{command} in the given @var{interpreter}.
22268
22269@subheading @value{GDBN} Command
22270
22271The corresponding @value{GDBN} command is @samp{interpreter-exec}.
22272
22273@subheading Example
22274
22275@smallexample
594fe323 22276(gdb)
ef21caaf
NR
22277-interpreter-exec console "break main"
22278&"During symbol reading, couldn't parse type; debugger out of date?.\n"
22279&"During symbol reading, bad structure-type format.\n"
22280~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
22281^done
594fe323 22282(gdb)
ef21caaf
NR
22283@end smallexample
22284
22285@subheading The @code{-inferior-tty-set} Command
22286@findex -inferior-tty-set
22287
22288@subheading Synopsis
22289
22290@smallexample
22291-inferior-tty-set /dev/pts/1
22292@end smallexample
22293
22294Set terminal for future runs of the program being debugged.
22295
22296@subheading @value{GDBN} Command
22297
22298The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
22299
22300@subheading Example
22301
22302@smallexample
594fe323 22303(gdb)
ef21caaf
NR
22304-inferior-tty-set /dev/pts/1
22305^done
594fe323 22306(gdb)
ef21caaf
NR
22307@end smallexample
22308
22309@subheading The @code{-inferior-tty-show} Command
22310@findex -inferior-tty-show
22311
22312@subheading Synopsis
22313
22314@smallexample
22315-inferior-tty-show
22316@end smallexample
22317
22318Show terminal for future runs of program being debugged.
22319
22320@subheading @value{GDBN} Command
22321
22322The corresponding @value{GDBN} command is @samp{show inferior-tty}.
22323
22324@subheading Example
22325
22326@smallexample
594fe323 22327(gdb)
ef21caaf
NR
22328-inferior-tty-set /dev/pts/1
22329^done
594fe323 22330(gdb)
ef21caaf
NR
22331-inferior-tty-show
22332^done,inferior_tty_terminal="/dev/pts/1"
594fe323 22333(gdb)
ef21caaf 22334@end smallexample
922fbb7b 22335
a4eefcd8
NR
22336@subheading The @code{-enable-timings} Command
22337@findex -enable-timings
22338
22339@subheading Synopsis
22340
22341@smallexample
22342-enable-timings [yes | no]
22343@end smallexample
22344
22345Toggle the printing of the wallclock, user and system times for an MI
22346command as a field in its output. This command is to help frontend
22347developers optimize the performance of their code. No argument is
22348equivalent to @samp{yes}.
22349
22350@subheading @value{GDBN} Command
22351
22352No equivalent.
22353
22354@subheading Example
22355
22356@smallexample
22357(gdb)
22358-enable-timings
22359^done
22360(gdb)
22361-break-insert main
22362^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22363addr="0x080484ed",func="main",file="myprog.c",
22364fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22365time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22366(gdb)
22367-enable-timings no
22368^done
22369(gdb)
22370-exec-run
22371^running
22372(gdb)
a47ec5fe 22373*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22374frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22375@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22376fullname="/home/nickrob/myprog.c",line="73"@}
22377(gdb)
22378@end smallexample
22379
922fbb7b
AC
22380@node Annotations
22381@chapter @value{GDBN} Annotations
22382
086432e2
AC
22383This chapter describes annotations in @value{GDBN}. Annotations were
22384designed to interface @value{GDBN} to graphical user interfaces or other
22385similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22386relatively high level.
22387
d3e8051b 22388The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22389(@pxref{GDB/MI}).
22390
922fbb7b
AC
22391@ignore
22392This is Edition @value{EDITION}, @value{DATE}.
22393@end ignore
22394
22395@menu
22396* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22397* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22398* Prompting:: Annotations marking @value{GDBN}'s need for input.
22399* Errors:: Annotations for error messages.
922fbb7b
AC
22400* Invalidation:: Some annotations describe things now invalid.
22401* Annotations for Running::
22402 Whether the program is running, how it stopped, etc.
22403* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22404@end menu
22405
22406@node Annotations Overview
22407@section What is an Annotation?
22408@cindex annotations
22409
922fbb7b
AC
22410Annotations start with a newline character, two @samp{control-z}
22411characters, and the name of the annotation. If there is no additional
22412information associated with this annotation, the name of the annotation
22413is followed immediately by a newline. If there is additional
22414information, the name of the annotation is followed by a space, the
22415additional information, and a newline. The additional information
22416cannot contain newline characters.
22417
22418Any output not beginning with a newline and two @samp{control-z}
22419characters denotes literal output from @value{GDBN}. Currently there is
22420no need for @value{GDBN} to output a newline followed by two
22421@samp{control-z} characters, but if there was such a need, the
22422annotations could be extended with an @samp{escape} annotation which
22423means those three characters as output.
22424
086432e2
AC
22425The annotation @var{level}, which is specified using the
22426@option{--annotate} command line option (@pxref{Mode Options}), controls
22427how much information @value{GDBN} prints together with its prompt,
22428values of expressions, source lines, and other types of output. Level 0
d3e8051b 22429is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22430subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22431for programs that control @value{GDBN}, and level 2 annotations have
22432been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22433Interface, annotate, GDB's Obsolete Annotations}).
22434
22435@table @code
22436@kindex set annotate
22437@item set annotate @var{level}
e09f16f9 22438The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22439annotations to the specified @var{level}.
9c16f35a
EZ
22440
22441@item show annotate
22442@kindex show annotate
22443Show the current annotation level.
09d4efe1
EZ
22444@end table
22445
22446This chapter describes level 3 annotations.
086432e2 22447
922fbb7b
AC
22448A simple example of starting up @value{GDBN} with annotations is:
22449
22450@smallexample
086432e2
AC
22451$ @kbd{gdb --annotate=3}
22452GNU gdb 6.0
22453Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22454GDB is free software, covered by the GNU General Public License,
22455and you are welcome to change it and/or distribute copies of it
22456under certain conditions.
22457Type "show copying" to see the conditions.
22458There is absolutely no warranty for GDB. Type "show warranty"
22459for details.
086432e2 22460This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22461
22462^Z^Zpre-prompt
f7dc1244 22463(@value{GDBP})
922fbb7b 22464^Z^Zprompt
086432e2 22465@kbd{quit}
922fbb7b
AC
22466
22467^Z^Zpost-prompt
b383017d 22468$
922fbb7b
AC
22469@end smallexample
22470
22471Here @samp{quit} is input to @value{GDBN}; the rest is output from
22472@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22473denotes a @samp{control-z} character) are annotations; the rest is
22474output from @value{GDBN}.
22475
9e6c4bd5
NR
22476@node Server Prefix
22477@section The Server Prefix
22478@cindex server prefix
22479
22480If you prefix a command with @samp{server } then it will not affect
22481the command history, nor will it affect @value{GDBN}'s notion of which
22482command to repeat if @key{RET} is pressed on a line by itself. This
22483means that commands can be run behind a user's back by a front-end in
22484a transparent manner.
22485
22486The server prefix does not affect the recording of values into the value
22487history; to print a value without recording it into the value history,
22488use the @code{output} command instead of the @code{print} command.
22489
922fbb7b
AC
22490@node Prompting
22491@section Annotation for @value{GDBN} Input
22492
22493@cindex annotations for prompts
22494When @value{GDBN} prompts for input, it annotates this fact so it is possible
22495to know when to send output, when the output from a given command is
22496over, etc.
22497
22498Different kinds of input each have a different @dfn{input type}. Each
22499input type has three annotations: a @code{pre-} annotation, which
22500denotes the beginning of any prompt which is being output, a plain
22501annotation, which denotes the end of the prompt, and then a @code{post-}
22502annotation which denotes the end of any echo which may (or may not) be
22503associated with the input. For example, the @code{prompt} input type
22504features the following annotations:
22505
22506@smallexample
22507^Z^Zpre-prompt
22508^Z^Zprompt
22509^Z^Zpost-prompt
22510@end smallexample
22511
22512The input types are
22513
22514@table @code
e5ac9b53
EZ
22515@findex pre-prompt annotation
22516@findex prompt annotation
22517@findex post-prompt annotation
922fbb7b
AC
22518@item prompt
22519When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22520
e5ac9b53
EZ
22521@findex pre-commands annotation
22522@findex commands annotation
22523@findex post-commands annotation
922fbb7b
AC
22524@item commands
22525When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22526command. The annotations are repeated for each command which is input.
22527
e5ac9b53
EZ
22528@findex pre-overload-choice annotation
22529@findex overload-choice annotation
22530@findex post-overload-choice annotation
922fbb7b
AC
22531@item overload-choice
22532When @value{GDBN} wants the user to select between various overloaded functions.
22533
e5ac9b53
EZ
22534@findex pre-query annotation
22535@findex query annotation
22536@findex post-query annotation
922fbb7b
AC
22537@item query
22538When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22539
e5ac9b53
EZ
22540@findex pre-prompt-for-continue annotation
22541@findex prompt-for-continue annotation
22542@findex post-prompt-for-continue annotation
922fbb7b
AC
22543@item prompt-for-continue
22544When @value{GDBN} is asking the user to press return to continue. Note: Don't
22545expect this to work well; instead use @code{set height 0} to disable
22546prompting. This is because the counting of lines is buggy in the
22547presence of annotations.
22548@end table
22549
22550@node Errors
22551@section Errors
22552@cindex annotations for errors, warnings and interrupts
22553
e5ac9b53 22554@findex quit annotation
922fbb7b
AC
22555@smallexample
22556^Z^Zquit
22557@end smallexample
22558
22559This annotation occurs right before @value{GDBN} responds to an interrupt.
22560
e5ac9b53 22561@findex error annotation
922fbb7b
AC
22562@smallexample
22563^Z^Zerror
22564@end smallexample
22565
22566This annotation occurs right before @value{GDBN} responds to an error.
22567
22568Quit and error annotations indicate that any annotations which @value{GDBN} was
22569in the middle of may end abruptly. For example, if a
22570@code{value-history-begin} annotation is followed by a @code{error}, one
22571cannot expect to receive the matching @code{value-history-end}. One
22572cannot expect not to receive it either, however; an error annotation
22573does not necessarily mean that @value{GDBN} is immediately returning all the way
22574to the top level.
22575
e5ac9b53 22576@findex error-begin annotation
922fbb7b
AC
22577A quit or error annotation may be preceded by
22578
22579@smallexample
22580^Z^Zerror-begin
22581@end smallexample
22582
22583Any output between that and the quit or error annotation is the error
22584message.
22585
22586Warning messages are not yet annotated.
22587@c If we want to change that, need to fix warning(), type_error(),
22588@c range_error(), and possibly other places.
22589
922fbb7b
AC
22590@node Invalidation
22591@section Invalidation Notices
22592
22593@cindex annotations for invalidation messages
22594The following annotations say that certain pieces of state may have
22595changed.
22596
22597@table @code
e5ac9b53 22598@findex frames-invalid annotation
922fbb7b
AC
22599@item ^Z^Zframes-invalid
22600
22601The frames (for example, output from the @code{backtrace} command) may
22602have changed.
22603
e5ac9b53 22604@findex breakpoints-invalid annotation
922fbb7b
AC
22605@item ^Z^Zbreakpoints-invalid
22606
22607The breakpoints may have changed. For example, the user just added or
22608deleted a breakpoint.
22609@end table
22610
22611@node Annotations for Running
22612@section Running the Program
22613@cindex annotations for running programs
22614
e5ac9b53
EZ
22615@findex starting annotation
22616@findex stopping annotation
922fbb7b 22617When the program starts executing due to a @value{GDBN} command such as
b383017d 22618@code{step} or @code{continue},
922fbb7b
AC
22619
22620@smallexample
22621^Z^Zstarting
22622@end smallexample
22623
b383017d 22624is output. When the program stops,
922fbb7b
AC
22625
22626@smallexample
22627^Z^Zstopped
22628@end smallexample
22629
22630is output. Before the @code{stopped} annotation, a variety of
22631annotations describe how the program stopped.
22632
22633@table @code
e5ac9b53 22634@findex exited annotation
922fbb7b
AC
22635@item ^Z^Zexited @var{exit-status}
22636The program exited, and @var{exit-status} is the exit status (zero for
22637successful exit, otherwise nonzero).
22638
e5ac9b53
EZ
22639@findex signalled annotation
22640@findex signal-name annotation
22641@findex signal-name-end annotation
22642@findex signal-string annotation
22643@findex signal-string-end annotation
922fbb7b
AC
22644@item ^Z^Zsignalled
22645The program exited with a signal. After the @code{^Z^Zsignalled}, the
22646annotation continues:
22647
22648@smallexample
22649@var{intro-text}
22650^Z^Zsignal-name
22651@var{name}
22652^Z^Zsignal-name-end
22653@var{middle-text}
22654^Z^Zsignal-string
22655@var{string}
22656^Z^Zsignal-string-end
22657@var{end-text}
22658@end smallexample
22659
22660@noindent
22661where @var{name} is the name of the signal, such as @code{SIGILL} or
22662@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22663as @code{Illegal Instruction} or @code{Segmentation fault}.
22664@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22665user's benefit and have no particular format.
22666
e5ac9b53 22667@findex signal annotation
922fbb7b
AC
22668@item ^Z^Zsignal
22669The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22670just saying that the program received the signal, not that it was
22671terminated with it.
22672
e5ac9b53 22673@findex breakpoint annotation
922fbb7b
AC
22674@item ^Z^Zbreakpoint @var{number}
22675The program hit breakpoint number @var{number}.
22676
e5ac9b53 22677@findex watchpoint annotation
922fbb7b
AC
22678@item ^Z^Zwatchpoint @var{number}
22679The program hit watchpoint number @var{number}.
22680@end table
22681
22682@node Source Annotations
22683@section Displaying Source
22684@cindex annotations for source display
22685
e5ac9b53 22686@findex source annotation
922fbb7b
AC
22687The following annotation is used instead of displaying source code:
22688
22689@smallexample
22690^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22691@end smallexample
22692
22693where @var{filename} is an absolute file name indicating which source
22694file, @var{line} is the line number within that file (where 1 is the
22695first line in the file), @var{character} is the character position
22696within the file (where 0 is the first character in the file) (for most
22697debug formats this will necessarily point to the beginning of a line),
22698@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22699line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22700@var{addr} is the address in the target program associated with the
22701source which is being displayed. @var{addr} is in the form @samp{0x}
22702followed by one or more lowercase hex digits (note that this does not
22703depend on the language).
22704
8e04817f
AC
22705@node GDB Bugs
22706@chapter Reporting Bugs in @value{GDBN}
22707@cindex bugs in @value{GDBN}
22708@cindex reporting bugs in @value{GDBN}
c906108c 22709
8e04817f 22710Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22711
8e04817f
AC
22712Reporting a bug may help you by bringing a solution to your problem, or it
22713may not. But in any case the principal function of a bug report is to help
22714the entire community by making the next version of @value{GDBN} work better. Bug
22715reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22716
8e04817f
AC
22717In order for a bug report to serve its purpose, you must include the
22718information that enables us to fix the bug.
c4555f82
SC
22719
22720@menu
8e04817f
AC
22721* Bug Criteria:: Have you found a bug?
22722* Bug Reporting:: How to report bugs
c4555f82
SC
22723@end menu
22724
8e04817f 22725@node Bug Criteria
79a6e687 22726@section Have You Found a Bug?
8e04817f 22727@cindex bug criteria
c4555f82 22728
8e04817f 22729If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22730
22731@itemize @bullet
8e04817f
AC
22732@cindex fatal signal
22733@cindex debugger crash
22734@cindex crash of debugger
c4555f82 22735@item
8e04817f
AC
22736If the debugger gets a fatal signal, for any input whatever, that is a
22737@value{GDBN} bug. Reliable debuggers never crash.
22738
22739@cindex error on valid input
22740@item
22741If @value{GDBN} produces an error message for valid input, that is a
22742bug. (Note that if you're cross debugging, the problem may also be
22743somewhere in the connection to the target.)
c4555f82 22744
8e04817f 22745@cindex invalid input
c4555f82 22746@item
8e04817f
AC
22747If @value{GDBN} does not produce an error message for invalid input,
22748that is a bug. However, you should note that your idea of
22749``invalid input'' might be our idea of ``an extension'' or ``support
22750for traditional practice''.
22751
22752@item
22753If you are an experienced user of debugging tools, your suggestions
22754for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22755@end itemize
22756
8e04817f 22757@node Bug Reporting
79a6e687 22758@section How to Report Bugs
8e04817f
AC
22759@cindex bug reports
22760@cindex @value{GDBN} bugs, reporting
22761
22762A number of companies and individuals offer support for @sc{gnu} products.
22763If you obtained @value{GDBN} from a support organization, we recommend you
22764contact that organization first.
22765
22766You can find contact information for many support companies and
22767individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22768distribution.
22769@c should add a web page ref...
22770
c16158bc
JM
22771@ifset BUGURL
22772@ifset BUGURL_DEFAULT
129188f6 22773In any event, we also recommend that you submit bug reports for
d3e8051b 22774@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22775@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22776page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22777be used.
8e04817f
AC
22778
22779@strong{Do not send bug reports to @samp{info-gdb}, or to
22780@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22781not want to receive bug reports. Those that do have arranged to receive
22782@samp{bug-gdb}.
22783
22784The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22785serves as a repeater. The mailing list and the newsgroup carry exactly
22786the same messages. Often people think of posting bug reports to the
22787newsgroup instead of mailing them. This appears to work, but it has one
22788problem which can be crucial: a newsgroup posting often lacks a mail
22789path back to the sender. Thus, if we need to ask for more information,
22790we may be unable to reach you. For this reason, it is better to send
22791bug reports to the mailing list.
c16158bc
JM
22792@end ifset
22793@ifclear BUGURL_DEFAULT
22794In any event, we also recommend that you submit bug reports for
22795@value{GDBN} to @value{BUGURL}.
22796@end ifclear
22797@end ifset
c4555f82 22798
8e04817f
AC
22799The fundamental principle of reporting bugs usefully is this:
22800@strong{report all the facts}. If you are not sure whether to state a
22801fact or leave it out, state it!
c4555f82 22802
8e04817f
AC
22803Often people omit facts because they think they know what causes the
22804problem and assume that some details do not matter. Thus, you might
22805assume that the name of the variable you use in an example does not matter.
22806Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22807stray memory reference which happens to fetch from the location where that
22808name is stored in memory; perhaps, if the name were different, the contents
22809of that location would fool the debugger into doing the right thing despite
22810the bug. Play it safe and give a specific, complete example. That is the
22811easiest thing for you to do, and the most helpful.
c4555f82 22812
8e04817f
AC
22813Keep in mind that the purpose of a bug report is to enable us to fix the
22814bug. It may be that the bug has been reported previously, but neither
22815you nor we can know that unless your bug report is complete and
22816self-contained.
c4555f82 22817
8e04817f
AC
22818Sometimes people give a few sketchy facts and ask, ``Does this ring a
22819bell?'' Those bug reports are useless, and we urge everyone to
22820@emph{refuse to respond to them} except to chide the sender to report
22821bugs properly.
22822
22823To enable us to fix the bug, you should include all these things:
c4555f82
SC
22824
22825@itemize @bullet
22826@item
8e04817f
AC
22827The version of @value{GDBN}. @value{GDBN} announces it if you start
22828with no arguments; you can also print it at any time using @code{show
22829version}.
c4555f82 22830
8e04817f
AC
22831Without this, we will not know whether there is any point in looking for
22832the bug in the current version of @value{GDBN}.
c4555f82
SC
22833
22834@item
8e04817f
AC
22835The type of machine you are using, and the operating system name and
22836version number.
c4555f82
SC
22837
22838@item
c1468174 22839What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22840``@value{GCC}--2.8.1''.
c4555f82
SC
22841
22842@item
8e04817f 22843What compiler (and its version) was used to compile the program you are
c1468174 22844debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22845C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22846to get this information; for other compilers, see the documentation for
22847those compilers.
c4555f82 22848
8e04817f
AC
22849@item
22850The command arguments you gave the compiler to compile your example and
22851observe the bug. For example, did you use @samp{-O}? To guarantee
22852you will not omit something important, list them all. A copy of the
22853Makefile (or the output from make) is sufficient.
c4555f82 22854
8e04817f
AC
22855If we were to try to guess the arguments, we would probably guess wrong
22856and then we might not encounter the bug.
c4555f82 22857
8e04817f
AC
22858@item
22859A complete input script, and all necessary source files, that will
22860reproduce the bug.
c4555f82 22861
8e04817f
AC
22862@item
22863A description of what behavior you observe that you believe is
22864incorrect. For example, ``It gets a fatal signal.''
c4555f82 22865
8e04817f
AC
22866Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22867will certainly notice it. But if the bug is incorrect output, we might
22868not notice unless it is glaringly wrong. You might as well not give us
22869a chance to make a mistake.
c4555f82 22870
8e04817f
AC
22871Even if the problem you experience is a fatal signal, you should still
22872say so explicitly. Suppose something strange is going on, such as, your
22873copy of @value{GDBN} is out of synch, or you have encountered a bug in
22874the C library on your system. (This has happened!) Your copy might
22875crash and ours would not. If you told us to expect a crash, then when
22876ours fails to crash, we would know that the bug was not happening for
22877us. If you had not told us to expect a crash, then we would not be able
22878to draw any conclusion from our observations.
c4555f82 22879
e0c07bf0
MC
22880@pindex script
22881@cindex recording a session script
22882To collect all this information, you can use a session recording program
22883such as @command{script}, which is available on many Unix systems.
22884Just run your @value{GDBN} session inside @command{script} and then
22885include the @file{typescript} file with your bug report.
22886
22887Another way to record a @value{GDBN} session is to run @value{GDBN}
22888inside Emacs and then save the entire buffer to a file.
22889
8e04817f
AC
22890@item
22891If you wish to suggest changes to the @value{GDBN} source, send us context
22892diffs. If you even discuss something in the @value{GDBN} source, refer to
22893it by context, not by line number.
c4555f82 22894
8e04817f
AC
22895The line numbers in our development sources will not match those in your
22896sources. Your line numbers would convey no useful information to us.
c4555f82 22897
8e04817f 22898@end itemize
c4555f82 22899
8e04817f 22900Here are some things that are not necessary:
c4555f82 22901
8e04817f
AC
22902@itemize @bullet
22903@item
22904A description of the envelope of the bug.
c4555f82 22905
8e04817f
AC
22906Often people who encounter a bug spend a lot of time investigating
22907which changes to the input file will make the bug go away and which
22908changes will not affect it.
c4555f82 22909
8e04817f
AC
22910This is often time consuming and not very useful, because the way we
22911will find the bug is by running a single example under the debugger
22912with breakpoints, not by pure deduction from a series of examples.
22913We recommend that you save your time for something else.
c4555f82 22914
8e04817f
AC
22915Of course, if you can find a simpler example to report @emph{instead}
22916of the original one, that is a convenience for us. Errors in the
22917output will be easier to spot, running under the debugger will take
22918less time, and so on.
c4555f82 22919
8e04817f
AC
22920However, simplification is not vital; if you do not want to do this,
22921report the bug anyway and send us the entire test case you used.
c4555f82 22922
8e04817f
AC
22923@item
22924A patch for the bug.
c4555f82 22925
8e04817f
AC
22926A patch for the bug does help us if it is a good one. But do not omit
22927the necessary information, such as the test case, on the assumption that
22928a patch is all we need. We might see problems with your patch and decide
22929to fix the problem another way, or we might not understand it at all.
c4555f82 22930
8e04817f
AC
22931Sometimes with a program as complicated as @value{GDBN} it is very hard to
22932construct an example that will make the program follow a certain path
22933through the code. If you do not send us the example, we will not be able
22934to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22935
8e04817f
AC
22936And if we cannot understand what bug you are trying to fix, or why your
22937patch should be an improvement, we will not install it. A test case will
22938help us to understand.
c4555f82 22939
8e04817f
AC
22940@item
22941A guess about what the bug is or what it depends on.
c4555f82 22942
8e04817f
AC
22943Such guesses are usually wrong. Even we cannot guess right about such
22944things without first using the debugger to find the facts.
22945@end itemize
c4555f82 22946
8e04817f
AC
22947@c The readline documentation is distributed with the readline code
22948@c and consists of the two following files:
22949@c rluser.texinfo
22950@c inc-hist.texinfo
22951@c Use -I with makeinfo to point to the appropriate directory,
22952@c environment var TEXINPUTS with TeX.
5bdf8622 22953@include rluser.texi
8e04817f 22954@include inc-hist.texinfo
c4555f82 22955
c4555f82 22956
8e04817f
AC
22957@node Formatting Documentation
22958@appendix Formatting Documentation
c4555f82 22959
8e04817f
AC
22960@cindex @value{GDBN} reference card
22961@cindex reference card
22962The @value{GDBN} 4 release includes an already-formatted reference card, ready
22963for printing with PostScript or Ghostscript, in the @file{gdb}
22964subdirectory of the main source directory@footnote{In
22965@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22966release.}. If you can use PostScript or Ghostscript with your printer,
22967you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22968
8e04817f
AC
22969The release also includes the source for the reference card. You
22970can format it, using @TeX{}, by typing:
c4555f82 22971
474c8240 22972@smallexample
8e04817f 22973make refcard.dvi
474c8240 22974@end smallexample
c4555f82 22975
8e04817f
AC
22976The @value{GDBN} reference card is designed to print in @dfn{landscape}
22977mode on US ``letter'' size paper;
22978that is, on a sheet 11 inches wide by 8.5 inches
22979high. You will need to specify this form of printing as an option to
22980your @sc{dvi} output program.
c4555f82 22981
8e04817f 22982@cindex documentation
c4555f82 22983
8e04817f
AC
22984All the documentation for @value{GDBN} comes as part of the machine-readable
22985distribution. The documentation is written in Texinfo format, which is
22986a documentation system that uses a single source file to produce both
22987on-line information and a printed manual. You can use one of the Info
22988formatting commands to create the on-line version of the documentation
22989and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22990
8e04817f
AC
22991@value{GDBN} includes an already formatted copy of the on-line Info
22992version of this manual in the @file{gdb} subdirectory. The main Info
22993file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22994subordinate files matching @samp{gdb.info*} in the same directory. If
22995necessary, you can print out these files, or read them with any editor;
22996but they are easier to read using the @code{info} subsystem in @sc{gnu}
22997Emacs or the standalone @code{info} program, available as part of the
22998@sc{gnu} Texinfo distribution.
c4555f82 22999
8e04817f
AC
23000If you want to format these Info files yourself, you need one of the
23001Info formatting programs, such as @code{texinfo-format-buffer} or
23002@code{makeinfo}.
c4555f82 23003
8e04817f
AC
23004If you have @code{makeinfo} installed, and are in the top level
23005@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
23006version @value{GDBVN}), you can make the Info file by typing:
c4555f82 23007
474c8240 23008@smallexample
8e04817f
AC
23009cd gdb
23010make gdb.info
474c8240 23011@end smallexample
c4555f82 23012
8e04817f
AC
23013If you want to typeset and print copies of this manual, you need @TeX{},
23014a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
23015Texinfo definitions file.
c4555f82 23016
8e04817f
AC
23017@TeX{} is a typesetting program; it does not print files directly, but
23018produces output files called @sc{dvi} files. To print a typeset
23019document, you need a program to print @sc{dvi} files. If your system
23020has @TeX{} installed, chances are it has such a program. The precise
23021command to use depends on your system; @kbd{lpr -d} is common; another
23022(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
23023require a file name without any extension or a @samp{.dvi} extension.
c4555f82 23024
8e04817f
AC
23025@TeX{} also requires a macro definitions file called
23026@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
23027written in Texinfo format. On its own, @TeX{} cannot either read or
23028typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
23029and is located in the @file{gdb-@var{version-number}/texinfo}
23030directory.
c4555f82 23031
8e04817f 23032If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 23033typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
23034subdirectory of the main source directory (for example, to
23035@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 23036
474c8240 23037@smallexample
8e04817f 23038make gdb.dvi
474c8240 23039@end smallexample
c4555f82 23040
8e04817f 23041Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 23042
8e04817f
AC
23043@node Installing GDB
23044@appendix Installing @value{GDBN}
8e04817f 23045@cindex installation
c4555f82 23046
7fa2210b
DJ
23047@menu
23048* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 23049* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
23050* Separate Objdir:: Compiling @value{GDBN} in another directory
23051* Config Names:: Specifying names for hosts and targets
23052* Configure Options:: Summary of options for configure
23053@end menu
23054
23055@node Requirements
79a6e687 23056@section Requirements for Building @value{GDBN}
7fa2210b
DJ
23057@cindex building @value{GDBN}, requirements for
23058
23059Building @value{GDBN} requires various tools and packages to be available.
23060Other packages will be used only if they are found.
23061
79a6e687 23062@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
23063@table @asis
23064@item ISO C90 compiler
23065@value{GDBN} is written in ISO C90. It should be buildable with any
23066working C90 compiler, e.g.@: GCC.
23067
23068@end table
23069
79a6e687 23070@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
23071@table @asis
23072@item Expat
123dc839 23073@anchor{Expat}
7fa2210b
DJ
23074@value{GDBN} can use the Expat XML parsing library. This library may be
23075included with your operating system distribution; if it is not, you
23076can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 23077The @file{configure} script will search for this library in several
7fa2210b
DJ
23078standard locations; if it is installed in an unusual path, you can
23079use the @option{--with-libexpat-prefix} option to specify its location.
23080
9cceb671
DJ
23081Expat is used for:
23082
23083@itemize @bullet
23084@item
23085Remote protocol memory maps (@pxref{Memory Map Format})
23086@item
23087Target descriptions (@pxref{Target Descriptions})
23088@item
23089Remote shared library lists (@pxref{Library List Format})
23090@item
23091MS-Windows shared libraries (@pxref{Shared Libraries})
23092@end itemize
7fa2210b 23093
31fffb02
CS
23094@item zlib
23095@cindex compressed debug sections
23096@value{GDBN} will use the @samp{zlib} library, if available, to read
23097compressed debug sections. Some linkers, such as GNU gold, are capable
23098of producing binaries with compressed debug sections. If @value{GDBN}
23099is compiled with @samp{zlib}, it will be able to read the debug
23100information in such binaries.
23101
23102The @samp{zlib} library is likely included with your operating system
23103distribution; if it is not, you can get the latest version from
23104@url{http://zlib.net}.
23105
7fa2210b
DJ
23106@end table
23107
23108@node Running Configure
db2e3e2e 23109@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 23110@cindex configuring @value{GDBN}
db2e3e2e 23111@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
23112of preparing @value{GDBN} for installation; you can then use @code{make} to
23113build the @code{gdb} program.
23114@iftex
23115@c irrelevant in info file; it's as current as the code it lives with.
23116@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
23117look at the @file{README} file in the sources; we may have improved the
23118installation procedures since publishing this manual.}
23119@end iftex
c4555f82 23120
8e04817f
AC
23121The @value{GDBN} distribution includes all the source code you need for
23122@value{GDBN} in a single directory, whose name is usually composed by
23123appending the version number to @samp{gdb}.
c4555f82 23124
8e04817f
AC
23125For example, the @value{GDBN} version @value{GDBVN} distribution is in the
23126@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 23127
8e04817f
AC
23128@table @code
23129@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
23130script for configuring @value{GDBN} and all its supporting libraries
c4555f82 23131
8e04817f
AC
23132@item gdb-@value{GDBVN}/gdb
23133the source specific to @value{GDBN} itself
c4555f82 23134
8e04817f
AC
23135@item gdb-@value{GDBVN}/bfd
23136source for the Binary File Descriptor library
c906108c 23137
8e04817f
AC
23138@item gdb-@value{GDBVN}/include
23139@sc{gnu} include files
c906108c 23140
8e04817f
AC
23141@item gdb-@value{GDBVN}/libiberty
23142source for the @samp{-liberty} free software library
c906108c 23143
8e04817f
AC
23144@item gdb-@value{GDBVN}/opcodes
23145source for the library of opcode tables and disassemblers
c906108c 23146
8e04817f
AC
23147@item gdb-@value{GDBVN}/readline
23148source for the @sc{gnu} command-line interface
c906108c 23149
8e04817f
AC
23150@item gdb-@value{GDBVN}/glob
23151source for the @sc{gnu} filename pattern-matching subroutine
c906108c 23152
8e04817f
AC
23153@item gdb-@value{GDBVN}/mmalloc
23154source for the @sc{gnu} memory-mapped malloc package
23155@end table
c906108c 23156
db2e3e2e 23157The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
23158from the @file{gdb-@var{version-number}} source directory, which in
23159this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 23160
8e04817f 23161First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 23162if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
23163identifier for the platform on which @value{GDBN} will run as an
23164argument.
c906108c 23165
8e04817f 23166For example:
c906108c 23167
474c8240 23168@smallexample
8e04817f
AC
23169cd gdb-@value{GDBVN}
23170./configure @var{host}
23171make
474c8240 23172@end smallexample
c906108c 23173
8e04817f
AC
23174@noindent
23175where @var{host} is an identifier such as @samp{sun4} or
23176@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 23177(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 23178correct value by examining your system.)
c906108c 23179
8e04817f
AC
23180Running @samp{configure @var{host}} and then running @code{make} builds the
23181@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
23182libraries, then @code{gdb} itself. The configured source files, and the
23183binaries, are left in the corresponding source directories.
c906108c 23184
8e04817f 23185@need 750
db2e3e2e 23186@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
23187system does not recognize this automatically when you run a different
23188shell, you may need to run @code{sh} on it explicitly:
c906108c 23189
474c8240 23190@smallexample
8e04817f 23191sh configure @var{host}
474c8240 23192@end smallexample
c906108c 23193
db2e3e2e 23194If you run @file{configure} from a directory that contains source
8e04817f 23195directories for multiple libraries or programs, such as the
db2e3e2e
BW
23196@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
23197@file{configure}
8e04817f
AC
23198creates configuration files for every directory level underneath (unless
23199you tell it not to, with the @samp{--norecursion} option).
23200
db2e3e2e 23201You should run the @file{configure} script from the top directory in the
94e91d6d 23202source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 23203@file{configure} from one of the subdirectories, you will configure only
94e91d6d 23204that subdirectory. That is usually not what you want. In particular,
db2e3e2e 23205if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
23206of the @file{gdb-@var{version-number}} directory, you will omit the
23207configuration of @file{bfd}, @file{readline}, and other sibling
23208directories of the @file{gdb} subdirectory. This leads to build errors
23209about missing include files such as @file{bfd/bfd.h}.
c906108c 23210
8e04817f
AC
23211You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
23212However, you should make sure that the shell on your path (named by
23213the @samp{SHELL} environment variable) is publicly readable. Remember
23214that @value{GDBN} uses the shell to start your program---some systems refuse to
23215let @value{GDBN} debug child processes whose programs are not readable.
c906108c 23216
8e04817f 23217@node Separate Objdir
79a6e687 23218@section Compiling @value{GDBN} in Another Directory
c906108c 23219
8e04817f
AC
23220If you want to run @value{GDBN} versions for several host or target machines,
23221you need a different @code{gdb} compiled for each combination of
db2e3e2e 23222host and target. @file{configure} is designed to make this easy by
8e04817f
AC
23223allowing you to generate each configuration in a separate subdirectory,
23224rather than in the source directory. If your @code{make} program
23225handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
23226@code{make} in each of these directories builds the @code{gdb}
23227program specified there.
c906108c 23228
db2e3e2e 23229To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 23230with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
23231(You also need to specify a path to find @file{configure}
23232itself from your working directory. If the path to @file{configure}
8e04817f
AC
23233would be the same as the argument to @samp{--srcdir}, you can leave out
23234the @samp{--srcdir} option; it is assumed.)
c906108c 23235
8e04817f
AC
23236For example, with version @value{GDBVN}, you can build @value{GDBN} in a
23237separate directory for a Sun 4 like this:
c906108c 23238
474c8240 23239@smallexample
8e04817f
AC
23240@group
23241cd gdb-@value{GDBVN}
23242mkdir ../gdb-sun4
23243cd ../gdb-sun4
23244../gdb-@value{GDBVN}/configure sun4
23245make
23246@end group
474c8240 23247@end smallexample
c906108c 23248
db2e3e2e 23249When @file{configure} builds a configuration using a remote source
8e04817f
AC
23250directory, it creates a tree for the binaries with the same structure
23251(and using the same names) as the tree under the source directory. In
23252the example, you'd find the Sun 4 library @file{libiberty.a} in the
23253directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
23254@file{gdb-sun4/gdb}.
c906108c 23255
94e91d6d
MC
23256Make sure that your path to the @file{configure} script has just one
23257instance of @file{gdb} in it. If your path to @file{configure} looks
23258like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
23259one subdirectory of @value{GDBN}, not the whole package. This leads to
23260build errors about missing include files such as @file{bfd/bfd.h}.
23261
8e04817f
AC
23262One popular reason to build several @value{GDBN} configurations in separate
23263directories is to configure @value{GDBN} for cross-compiling (where
23264@value{GDBN} runs on one machine---the @dfn{host}---while debugging
23265programs that run on another machine---the @dfn{target}).
23266You specify a cross-debugging target by
db2e3e2e 23267giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 23268
8e04817f
AC
23269When you run @code{make} to build a program or library, you must run
23270it in a configured directory---whatever directory you were in when you
db2e3e2e 23271called @file{configure} (or one of its subdirectories).
c906108c 23272
db2e3e2e 23273The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
23274directory also runs recursively. If you type @code{make} in a source
23275directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
23276directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
23277will build all the required libraries, and then build GDB.
c906108c 23278
8e04817f
AC
23279When you have multiple hosts or targets configured in separate
23280directories, you can run @code{make} on them in parallel (for example,
23281if they are NFS-mounted on each of the hosts); they will not interfere
23282with each other.
c906108c 23283
8e04817f 23284@node Config Names
79a6e687 23285@section Specifying Names for Hosts and Targets
c906108c 23286
db2e3e2e 23287The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
23288script are based on a three-part naming scheme, but some short predefined
23289aliases are also supported. The full naming scheme encodes three pieces
23290of information in the following pattern:
c906108c 23291
474c8240 23292@smallexample
8e04817f 23293@var{architecture}-@var{vendor}-@var{os}
474c8240 23294@end smallexample
c906108c 23295
8e04817f
AC
23296For example, you can use the alias @code{sun4} as a @var{host} argument,
23297or as the value for @var{target} in a @code{--target=@var{target}}
23298option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 23299
db2e3e2e 23300The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 23301any query facility to list all supported host and target names or
db2e3e2e 23302aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
23303@code{config.sub} to map abbreviations to full names; you can read the
23304script, if you wish, or you can use it to test your guesses on
23305abbreviations---for example:
c906108c 23306
8e04817f
AC
23307@smallexample
23308% sh config.sub i386-linux
23309i386-pc-linux-gnu
23310% sh config.sub alpha-linux
23311alpha-unknown-linux-gnu
23312% sh config.sub hp9k700
23313hppa1.1-hp-hpux
23314% sh config.sub sun4
23315sparc-sun-sunos4.1.1
23316% sh config.sub sun3
23317m68k-sun-sunos4.1.1
23318% sh config.sub i986v
23319Invalid configuration `i986v': machine `i986v' not recognized
23320@end smallexample
c906108c 23321
8e04817f
AC
23322@noindent
23323@code{config.sub} is also distributed in the @value{GDBN} source
23324directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 23325
8e04817f 23326@node Configure Options
db2e3e2e 23327@section @file{configure} Options
c906108c 23328
db2e3e2e
BW
23329Here is a summary of the @file{configure} options and arguments that
23330are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 23331several other options not listed here. @inforef{What Configure
db2e3e2e 23332Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 23333
474c8240 23334@smallexample
8e04817f
AC
23335configure @r{[}--help@r{]}
23336 @r{[}--prefix=@var{dir}@r{]}
23337 @r{[}--exec-prefix=@var{dir}@r{]}
23338 @r{[}--srcdir=@var{dirname}@r{]}
23339 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
23340 @r{[}--target=@var{target}@r{]}
23341 @var{host}
474c8240 23342@end smallexample
c906108c 23343
8e04817f
AC
23344@noindent
23345You may introduce options with a single @samp{-} rather than
23346@samp{--} if you prefer; but you may abbreviate option names if you use
23347@samp{--}.
c906108c 23348
8e04817f
AC
23349@table @code
23350@item --help
db2e3e2e 23351Display a quick summary of how to invoke @file{configure}.
c906108c 23352
8e04817f
AC
23353@item --prefix=@var{dir}
23354Configure the source to install programs and files under directory
23355@file{@var{dir}}.
c906108c 23356
8e04817f
AC
23357@item --exec-prefix=@var{dir}
23358Configure the source to install programs under directory
23359@file{@var{dir}}.
c906108c 23360
8e04817f
AC
23361@c avoid splitting the warning from the explanation:
23362@need 2000
23363@item --srcdir=@var{dirname}
23364@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23365@code{make} that implements the @code{VPATH} feature.}@*
23366Use this option to make configurations in directories separate from the
23367@value{GDBN} source directories. Among other things, you can use this to
23368build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23369directories. @file{configure} writes configuration-specific files in
8e04817f 23370the current directory, but arranges for them to use the source in the
db2e3e2e 23371directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23372the working directory in parallel to the source directories below
23373@var{dirname}.
c906108c 23374
8e04817f 23375@item --norecursion
db2e3e2e 23376Configure only the directory level where @file{configure} is executed; do not
8e04817f 23377propagate configuration to subdirectories.
c906108c 23378
8e04817f
AC
23379@item --target=@var{target}
23380Configure @value{GDBN} for cross-debugging programs running on the specified
23381@var{target}. Without this option, @value{GDBN} is configured to debug
23382programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23383
8e04817f 23384There is no convenient way to generate a list of all available targets.
c906108c 23385
8e04817f
AC
23386@item @var{host} @dots{}
23387Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23388
8e04817f
AC
23389There is no convenient way to generate a list of all available hosts.
23390@end table
c906108c 23391
8e04817f
AC
23392There are many other options available as well, but they are generally
23393needed for special purposes only.
c906108c 23394
8e04817f
AC
23395@node Maintenance Commands
23396@appendix Maintenance Commands
23397@cindex maintenance commands
23398@cindex internal commands
c906108c 23399
8e04817f 23400In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23401includes a number of commands intended for @value{GDBN} developers,
23402that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23403provided here for reference. (For commands that turn on debugging
23404messages, see @ref{Debugging Output}.)
c906108c 23405
8e04817f 23406@table @code
09d4efe1
EZ
23407@kindex maint agent
23408@item maint agent @var{expression}
23409Translate the given @var{expression} into remote agent bytecodes.
23410This command is useful for debugging the Agent Expression mechanism
23411(@pxref{Agent Expressions}).
23412
8e04817f
AC
23413@kindex maint info breakpoints
23414@item @anchor{maint info breakpoints}maint info breakpoints
23415Using the same format as @samp{info breakpoints}, display both the
23416breakpoints you've set explicitly, and those @value{GDBN} is using for
23417internal purposes. Internal breakpoints are shown with negative
23418breakpoint numbers. The type column identifies what kind of breakpoint
23419is shown:
c906108c 23420
8e04817f
AC
23421@table @code
23422@item breakpoint
23423Normal, explicitly set breakpoint.
c906108c 23424
8e04817f
AC
23425@item watchpoint
23426Normal, explicitly set watchpoint.
c906108c 23427
8e04817f
AC
23428@item longjmp
23429Internal breakpoint, used to handle correctly stepping through
23430@code{longjmp} calls.
c906108c 23431
8e04817f
AC
23432@item longjmp resume
23433Internal breakpoint at the target of a @code{longjmp}.
c906108c 23434
8e04817f
AC
23435@item until
23436Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23437
8e04817f
AC
23438@item finish
23439Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23440
8e04817f
AC
23441@item shlib events
23442Shared library events.
c906108c 23443
8e04817f 23444@end table
c906108c 23445
237fc4c9
PA
23446@kindex maint set can-use-displaced-stepping
23447@kindex maint show can-use-displaced-stepping
23448@cindex displaced stepping support
23449@cindex out-of-line single-stepping
23450@item maint set can-use-displaced-stepping
23451@itemx maint show can-use-displaced-stepping
23452Control whether or not @value{GDBN} will do @dfn{displaced stepping}
23453if the target supports it. The default is on. Displaced stepping is
23454a way to single-step over breakpoints without removing them from the
23455inferior, by executing an out-of-line copy of the instruction that was
23456originally at the breakpoint location. It is also known as
23457out-of-line single-stepping.
23458
09d4efe1
EZ
23459@kindex maint check-symtabs
23460@item maint check-symtabs
23461Check the consistency of psymtabs and symtabs.
23462
23463@kindex maint cplus first_component
23464@item maint cplus first_component @var{name}
23465Print the first C@t{++} class/namespace component of @var{name}.
23466
23467@kindex maint cplus namespace
23468@item maint cplus namespace
23469Print the list of possible C@t{++} namespaces.
23470
23471@kindex maint demangle
23472@item maint demangle @var{name}
d3e8051b 23473Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23474
23475@kindex maint deprecate
23476@kindex maint undeprecate
23477@cindex deprecated commands
23478@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23479@itemx maint undeprecate @var{command}
23480Deprecate or undeprecate the named @var{command}. Deprecated commands
23481cause @value{GDBN} to issue a warning when you use them. The optional
23482argument @var{replacement} says which newer command should be used in
23483favor of the deprecated one; if it is given, @value{GDBN} will mention
23484the replacement as part of the warning.
23485
23486@kindex maint dump-me
23487@item maint dump-me
721c2651 23488@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23489Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23490This is supported only on systems which support aborting a program
23491with the @code{SIGQUIT} signal.
09d4efe1 23492
8d30a00d
AC
23493@kindex maint internal-error
23494@kindex maint internal-warning
09d4efe1
EZ
23495@item maint internal-error @r{[}@var{message-text}@r{]}
23496@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23497Cause @value{GDBN} to call the internal function @code{internal_error}
23498or @code{internal_warning} and hence behave as though an internal error
23499or internal warning has been detected. In addition to reporting the
23500internal problem, these functions give the user the opportunity to
23501either quit @value{GDBN} or create a core file of the current
23502@value{GDBN} session.
23503
09d4efe1
EZ
23504These commands take an optional parameter @var{message-text} that is
23505used as the text of the error or warning message.
23506
d3e8051b 23507Here's an example of using @code{internal-error}:
09d4efe1 23508
8d30a00d 23509@smallexample
f7dc1244 23510(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23511@dots{}/maint.c:121: internal-error: testing, 1, 2
23512A problem internal to GDB has been detected. Further
23513debugging may prove unreliable.
23514Quit this debugging session? (y or n) @kbd{n}
23515Create a core file? (y or n) @kbd{n}
f7dc1244 23516(@value{GDBP})
8d30a00d
AC
23517@end smallexample
23518
09d4efe1
EZ
23519@kindex maint packet
23520@item maint packet @var{text}
23521If @value{GDBN} is talking to an inferior via the serial protocol,
23522then this command sends the string @var{text} to the inferior, and
23523displays the response packet. @value{GDBN} supplies the initial
23524@samp{$} character, the terminating @samp{#} character, and the
23525checksum.
23526
23527@kindex maint print architecture
23528@item maint print architecture @r{[}@var{file}@r{]}
23529Print the entire architecture configuration. The optional argument
23530@var{file} names the file where the output goes.
8d30a00d 23531
81adfced
DJ
23532@kindex maint print c-tdesc
23533@item maint print c-tdesc
23534Print the current target description (@pxref{Target Descriptions}) as
23535a C source file. The created source file can be used in @value{GDBN}
23536when an XML parser is not available to parse the description.
23537
00905d52
AC
23538@kindex maint print dummy-frames
23539@item maint print dummy-frames
00905d52
AC
23540Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23541
23542@smallexample
f7dc1244 23543(@value{GDBP}) @kbd{b add}
00905d52 23544@dots{}
f7dc1244 23545(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23546Breakpoint 2, add (a=2, b=3) at @dots{}
2354758 return (a + b);
23548The program being debugged stopped while in a function called from GDB.
23549@dots{}
f7dc1244 23550(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
235510x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23552 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23553 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23554(@value{GDBP})
00905d52
AC
23555@end smallexample
23556
23557Takes an optional file parameter.
23558
0680b120
AC
23559@kindex maint print registers
23560@kindex maint print raw-registers
23561@kindex maint print cooked-registers
617073a9 23562@kindex maint print register-groups
09d4efe1
EZ
23563@item maint print registers @r{[}@var{file}@r{]}
23564@itemx maint print raw-registers @r{[}@var{file}@r{]}
23565@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23566@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23567Print @value{GDBN}'s internal register data structures.
23568
617073a9
AC
23569The command @code{maint print raw-registers} includes the contents of
23570the raw register cache; the command @code{maint print cooked-registers}
23571includes the (cooked) value of all registers; and the command
23572@code{maint print register-groups} includes the groups that each
23573register is a member of. @xref{Registers,, Registers, gdbint,
23574@value{GDBN} Internals}.
0680b120 23575
09d4efe1
EZ
23576These commands take an optional parameter, a file name to which to
23577write the information.
0680b120 23578
617073a9 23579@kindex maint print reggroups
09d4efe1
EZ
23580@item maint print reggroups @r{[}@var{file}@r{]}
23581Print @value{GDBN}'s internal register group data structures. The
23582optional argument @var{file} tells to what file to write the
23583information.
617073a9 23584
09d4efe1 23585The register groups info looks like this:
617073a9
AC
23586
23587@smallexample
f7dc1244 23588(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23589 Group Type
23590 general user
23591 float user
23592 all user
23593 vector user
23594 system user
23595 save internal
23596 restore internal
617073a9
AC
23597@end smallexample
23598
09d4efe1
EZ
23599@kindex flushregs
23600@item flushregs
23601This command forces @value{GDBN} to flush its internal register cache.
23602
23603@kindex maint print objfiles
23604@cindex info for known object files
23605@item maint print objfiles
23606Print a dump of all known object files. For each object file, this
23607command prints its name, address in memory, and all of its psymtabs
23608and symtabs.
23609
23610@kindex maint print statistics
23611@cindex bcache statistics
23612@item maint print statistics
23613This command prints, for each object file in the program, various data
23614about that object file followed by the byte cache (@dfn{bcache})
23615statistics for the object file. The objfile data includes the number
d3e8051b 23616of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23617defined by the objfile, the number of as yet unexpanded psym tables,
23618the number of line tables and string tables, and the amount of memory
23619used by the various tables. The bcache statistics include the counts,
23620sizes, and counts of duplicates of all and unique objects, max,
23621average, and median entry size, total memory used and its overhead and
23622savings, and various measures of the hash table size and chain
23623lengths.
23624
c7ba131e
JB
23625@kindex maint print target-stack
23626@cindex target stack description
23627@item maint print target-stack
23628A @dfn{target} is an interface between the debugger and a particular
23629kind of file or process. Targets can be stacked in @dfn{strata},
23630so that more than one target can potentially respond to a request.
23631In particular, memory accesses will walk down the stack of targets
23632until they find a target that is interested in handling that particular
23633address.
23634
23635This command prints a short description of each layer that was pushed on
23636the @dfn{target stack}, starting from the top layer down to the bottom one.
23637
09d4efe1
EZ
23638@kindex maint print type
23639@cindex type chain of a data type
23640@item maint print type @var{expr}
23641Print the type chain for a type specified by @var{expr}. The argument
23642can be either a type name or a symbol. If it is a symbol, the type of
23643that symbol is described. The type chain produced by this command is
23644a recursive definition of the data type as stored in @value{GDBN}'s
23645data structures, including its flags and contained types.
23646
23647@kindex maint set dwarf2 max-cache-age
23648@kindex maint show dwarf2 max-cache-age
23649@item maint set dwarf2 max-cache-age
23650@itemx maint show dwarf2 max-cache-age
23651Control the DWARF 2 compilation unit cache.
23652
23653@cindex DWARF 2 compilation units cache
23654In object files with inter-compilation-unit references, such as those
23655produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23656reader needs to frequently refer to previously read compilation units.
23657This setting controls how long a compilation unit will remain in the
23658cache if it is not referenced. A higher limit means that cached
23659compilation units will be stored in memory longer, and more total
23660memory will be used. Setting it to zero disables caching, which will
23661slow down @value{GDBN} startup, but reduce memory consumption.
23662
e7ba9c65
DJ
23663@kindex maint set profile
23664@kindex maint show profile
23665@cindex profiling GDB
23666@item maint set profile
23667@itemx maint show profile
23668Control profiling of @value{GDBN}.
23669
23670Profiling will be disabled until you use the @samp{maint set profile}
23671command to enable it. When you enable profiling, the system will begin
23672collecting timing and execution count data; when you disable profiling or
23673exit @value{GDBN}, the results will be written to a log file. Remember that
23674if you use profiling, @value{GDBN} will overwrite the profiling log file
23675(often called @file{gmon.out}). If you have a record of important profiling
23676data in a @file{gmon.out} file, be sure to move it to a safe location.
23677
23678Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23679compiled with the @samp{-pg} compiler option.
e7ba9c65 23680
b84876c2
PA
23681@kindex maint set linux-async
23682@kindex maint show linux-async
23683@cindex asynchronous support
23684@item maint set linux-async
23685@itemx maint show linux-async
23686Control the GNU/Linux native asynchronous support of @value{GDBN}.
23687
23688GNU/Linux native asynchronous support will be disabled until you use
23689the @samp{maint set linux-async} command to enable it.
23690
75c99385
PA
23691@kindex maint set remote-async
23692@kindex maint show remote-async
23693@cindex asynchronous support
23694@item maint set remote-async
23695@itemx maint show remote-async
23696Control the remote asynchronous support of @value{GDBN}.
23697
23698Remote asynchronous support will be disabled until you use
23699the @samp{maint set remote-async} command to enable it.
23700
09d4efe1
EZ
23701@kindex maint show-debug-regs
23702@cindex x86 hardware debug registers
23703@item maint show-debug-regs
23704Control whether to show variables that mirror the x86 hardware debug
23705registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23706enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23707removes a hardware breakpoint or watchpoint, and when the inferior
23708triggers a hardware-assisted breakpoint or watchpoint.
23709
23710@kindex maint space
23711@cindex memory used by commands
23712@item maint space
23713Control whether to display memory usage for each command. If set to a
23714nonzero value, @value{GDBN} will display how much memory each command
23715took, following the command's own output. This can also be requested
23716by invoking @value{GDBN} with the @option{--statistics} command-line
23717switch (@pxref{Mode Options}).
23718
23719@kindex maint time
23720@cindex time of command execution
23721@item maint time
23722Control whether to display the execution time for each command. If
23723set to a nonzero value, @value{GDBN} will display how much time it
23724took to execute each command, following the command's own output.
e2b7ddea
VP
23725The time is not printed for the commands that run the target, since
23726there's no mechanism currently to compute how much time was spend
23727by @value{GDBN} and how much time was spend by the program been debugged.
23728it's not possibly currently
09d4efe1
EZ
23729This can also be requested by invoking @value{GDBN} with the
23730@option{--statistics} command-line switch (@pxref{Mode Options}).
23731
23732@kindex maint translate-address
23733@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23734Find the symbol stored at the location specified by the address
23735@var{addr} and an optional section name @var{section}. If found,
23736@value{GDBN} prints the name of the closest symbol and an offset from
23737the symbol's location to the specified address. This is similar to
23738the @code{info address} command (@pxref{Symbols}), except that this
23739command also allows to find symbols in other sections.
ae038cb0 23740
8e04817f 23741@end table
c906108c 23742
9c16f35a
EZ
23743The following command is useful for non-interactive invocations of
23744@value{GDBN}, such as in the test suite.
23745
23746@table @code
23747@item set watchdog @var{nsec}
23748@kindex set watchdog
23749@cindex watchdog timer
23750@cindex timeout for commands
23751Set the maximum number of seconds @value{GDBN} will wait for the
23752target operation to finish. If this time expires, @value{GDBN}
23753reports and error and the command is aborted.
23754
23755@item show watchdog
23756Show the current setting of the target wait timeout.
23757@end table
c906108c 23758
e0ce93ac 23759@node Remote Protocol
8e04817f 23760@appendix @value{GDBN} Remote Serial Protocol
c906108c 23761
ee2d5c50
AC
23762@menu
23763* Overview::
23764* Packets::
23765* Stop Reply Packets::
23766* General Query Packets::
23767* Register Packet Format::
9d29849a 23768* Tracepoint Packets::
a6b151f1 23769* Host I/O Packets::
9a6253be 23770* Interrupts::
ee2d5c50 23771* Examples::
79a6e687 23772* File-I/O Remote Protocol Extension::
cfa9d6d9 23773* Library List Format::
79a6e687 23774* Memory Map Format::
ee2d5c50
AC
23775@end menu
23776
23777@node Overview
23778@section Overview
23779
8e04817f
AC
23780There may be occasions when you need to know something about the
23781protocol---for example, if there is only one serial port to your target
23782machine, you might want your program to do something special if it
23783recognizes a packet meant for @value{GDBN}.
c906108c 23784
d2c6833e 23785In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23786transmitted and received data, respectively.
c906108c 23787
8e04817f
AC
23788@cindex protocol, @value{GDBN} remote serial
23789@cindex serial protocol, @value{GDBN} remote
23790@cindex remote serial protocol
23791All @value{GDBN} commands and responses (other than acknowledgments) are
23792sent as a @var{packet}. A @var{packet} is introduced with the character
23793@samp{$}, the actual @var{packet-data}, and the terminating character
23794@samp{#} followed by a two-digit @var{checksum}:
c906108c 23795
474c8240 23796@smallexample
8e04817f 23797@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23798@end smallexample
8e04817f 23799@noindent
c906108c 23800
8e04817f
AC
23801@cindex checksum, for @value{GDBN} remote
23802@noindent
23803The two-digit @var{checksum} is computed as the modulo 256 sum of all
23804characters between the leading @samp{$} and the trailing @samp{#} (an
23805eight bit unsigned checksum).
c906108c 23806
8e04817f
AC
23807Implementors should note that prior to @value{GDBN} 5.0 the protocol
23808specification also included an optional two-digit @var{sequence-id}:
c906108c 23809
474c8240 23810@smallexample
8e04817f 23811@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23812@end smallexample
c906108c 23813
8e04817f
AC
23814@cindex sequence-id, for @value{GDBN} remote
23815@noindent
23816That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23817has never output @var{sequence-id}s. Stubs that handle packets added
23818since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23819
8e04817f
AC
23820@cindex acknowledgment, for @value{GDBN} remote
23821When either the host or the target machine receives a packet, the first
23822response expected is an acknowledgment: either @samp{+} (to indicate
23823the package was received correctly) or @samp{-} (to request
23824retransmission):
c906108c 23825
474c8240 23826@smallexample
d2c6833e
AC
23827-> @code{$}@var{packet-data}@code{#}@var{checksum}
23828<- @code{+}
474c8240 23829@end smallexample
8e04817f 23830@noindent
53a5351d 23831
8e04817f
AC
23832The host (@value{GDBN}) sends @var{command}s, and the target (the
23833debugging stub incorporated in your program) sends a @var{response}. In
23834the case of step and continue @var{command}s, the response is only sent
23835when the operation has completed (the target has again stopped).
c906108c 23836
8e04817f
AC
23837@var{packet-data} consists of a sequence of characters with the
23838exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23839exceptions).
c906108c 23840
ee2d5c50 23841@cindex remote protocol, field separator
0876f84a 23842Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23843@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23844@sc{hex} with leading zeros suppressed.
c906108c 23845
8e04817f
AC
23846Implementors should note that prior to @value{GDBN} 5.0, the character
23847@samp{:} could not appear as the third character in a packet (as it
23848would potentially conflict with the @var{sequence-id}).
c906108c 23849
0876f84a
DJ
23850@cindex remote protocol, binary data
23851@anchor{Binary Data}
23852Binary data in most packets is encoded either as two hexadecimal
23853digits per byte of binary data. This allowed the traditional remote
23854protocol to work over connections which were only seven-bit clean.
23855Some packets designed more recently assume an eight-bit clean
23856connection, and use a more efficient encoding to send and receive
23857binary data.
23858
23859The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23860as an escape character. Any escaped byte is transmitted as the escape
23861character followed by the original character XORed with @code{0x20}.
23862For example, the byte @code{0x7d} would be transmitted as the two
23863bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23864@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23865@samp{@}}) must always be escaped. Responses sent by the stub
23866must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23867is not interpreted as the start of a run-length encoded sequence
23868(described next).
23869
1d3811f6
DJ
23870Response @var{data} can be run-length encoded to save space.
23871Run-length encoding replaces runs of identical characters with one
23872instance of the repeated character, followed by a @samp{*} and a
23873repeat count. The repeat count is itself sent encoded, to avoid
23874binary characters in @var{data}: a value of @var{n} is sent as
23875@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23876produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23877code 32) for a repeat count of 3. (This is because run-length
23878encoding starts to win for counts 3 or more.) Thus, for example,
23879@samp{0* } is a run-length encoding of ``0000'': the space character
23880after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
238813}} more times.
23882
23883The printable characters @samp{#} and @samp{$} or with a numeric value
23884greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23885seven repeats (@samp{$}) can be expanded using a repeat count of only
23886five (@samp{"}). For example, @samp{00000000} can be encoded as
23887@samp{0*"00}.
c906108c 23888
8e04817f
AC
23889The error response returned for some packets includes a two character
23890error number. That number is not well defined.
c906108c 23891
f8da2bff 23892@cindex empty response, for unsupported packets
8e04817f
AC
23893For any @var{command} not supported by the stub, an empty response
23894(@samp{$#00}) should be returned. That way it is possible to extend the
23895protocol. A newer @value{GDBN} can tell if a packet is supported based
23896on that response.
c906108c 23897
b383017d
RM
23898A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23899@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23900optional.
c906108c 23901
ee2d5c50
AC
23902@node Packets
23903@section Packets
23904
23905The following table provides a complete list of all currently defined
23906@var{command}s and their corresponding response @var{data}.
79a6e687 23907@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23908I/O extension of the remote protocol.
ee2d5c50 23909
b8ff78ce
JB
23910Each packet's description has a template showing the packet's overall
23911syntax, followed by an explanation of the packet's meaning. We
23912include spaces in some of the templates for clarity; these are not
23913part of the packet's syntax. No @value{GDBN} packet uses spaces to
23914separate its components. For example, a template like @samp{foo
23915@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23916bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23917@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23918@samp{foo} and the @var{bar}, or between the @var{bar} and the
23919@var{baz}.
23920
8ffe2530
JB
23921Note that all packet forms beginning with an upper- or lower-case
23922letter, other than those described here, are reserved for future use.
23923
b8ff78ce 23924Here are the packet descriptions.
ee2d5c50 23925
b8ff78ce 23926@table @samp
ee2d5c50 23927
b8ff78ce
JB
23928@item !
23929@cindex @samp{!} packet
2d717e4f 23930@anchor{extended mode}
8e04817f
AC
23931Enable extended mode. In extended mode, the remote server is made
23932persistent. The @samp{R} packet is used to restart the program being
23933debugged.
ee2d5c50
AC
23934
23935Reply:
23936@table @samp
23937@item OK
8e04817f 23938The remote target both supports and has enabled extended mode.
ee2d5c50 23939@end table
c906108c 23940
b8ff78ce
JB
23941@item ?
23942@cindex @samp{?} packet
ee2d5c50
AC
23943Indicate the reason the target halted. The reply is the same as for
23944step and continue.
c906108c 23945
ee2d5c50
AC
23946Reply:
23947@xref{Stop Reply Packets}, for the reply specifications.
23948
b8ff78ce
JB
23949@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23950@cindex @samp{A} packet
23951Initialized @code{argv[]} array passed into program. @var{arglen}
23952specifies the number of bytes in the hex encoded byte stream
23953@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23954
23955Reply:
23956@table @samp
23957@item OK
b8ff78ce
JB
23958The arguments were set.
23959@item E @var{NN}
23960An error occurred.
ee2d5c50
AC
23961@end table
23962
b8ff78ce
JB
23963@item b @var{baud}
23964@cindex @samp{b} packet
23965(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23966Change the serial line speed to @var{baud}.
23967
23968JTC: @emph{When does the transport layer state change? When it's
23969received, or after the ACK is transmitted. In either case, there are
23970problems if the command or the acknowledgment packet is dropped.}
23971
23972Stan: @emph{If people really wanted to add something like this, and get
23973it working for the first time, they ought to modify ser-unix.c to send
23974some kind of out-of-band message to a specially-setup stub and have the
23975switch happen "in between" packets, so that from remote protocol's point
23976of view, nothing actually happened.}
23977
b8ff78ce
JB
23978@item B @var{addr},@var{mode}
23979@cindex @samp{B} packet
8e04817f 23980Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23981breakpoint at @var{addr}.
23982
b8ff78ce 23983Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23984(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23985
4f553f88 23986@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23987@cindex @samp{c} packet
23988Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23989resume at current address.
c906108c 23990
ee2d5c50
AC
23991Reply:
23992@xref{Stop Reply Packets}, for the reply specifications.
23993
4f553f88 23994@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23995@cindex @samp{C} packet
8e04817f 23996Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23997@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23998
ee2d5c50
AC
23999Reply:
24000@xref{Stop Reply Packets}, for the reply specifications.
c906108c 24001
b8ff78ce
JB
24002@item d
24003@cindex @samp{d} packet
ee2d5c50
AC
24004Toggle debug flag.
24005
b8ff78ce
JB
24006Don't use this packet; instead, define a general set packet
24007(@pxref{General Query Packets}).
ee2d5c50 24008
b8ff78ce
JB
24009@item D
24010@cindex @samp{D} packet
ee2d5c50 24011Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 24012before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
24013
24014Reply:
24015@table @samp
10fac096
NW
24016@item OK
24017for success
b8ff78ce 24018@item E @var{NN}
10fac096 24019for an error
ee2d5c50 24020@end table
c906108c 24021
b8ff78ce
JB
24022@item F @var{RC},@var{EE},@var{CF};@var{XX}
24023@cindex @samp{F} packet
24024A reply from @value{GDBN} to an @samp{F} packet sent by the target.
24025This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 24026Remote Protocol Extension}, for the specification.
ee2d5c50 24027
b8ff78ce 24028@item g
ee2d5c50 24029@anchor{read registers packet}
b8ff78ce 24030@cindex @samp{g} packet
ee2d5c50
AC
24031Read general registers.
24032
24033Reply:
24034@table @samp
24035@item @var{XX@dots{}}
8e04817f
AC
24036Each byte of register data is described by two hex digits. The bytes
24037with the register are transmitted in target byte order. The size of
b8ff78ce 24038each register and their position within the @samp{g} packet are
4a9bb1df
UW
24039determined by the @value{GDBN} internal gdbarch functions
24040@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
24041specification of several standard @samp{g} packets is specified below.
24042@item E @var{NN}
ee2d5c50
AC
24043for an error.
24044@end table
c906108c 24045
b8ff78ce
JB
24046@item G @var{XX@dots{}}
24047@cindex @samp{G} packet
24048Write general registers. @xref{read registers packet}, for a
24049description of the @var{XX@dots{}} data.
ee2d5c50
AC
24050
24051Reply:
24052@table @samp
24053@item OK
24054for success
b8ff78ce 24055@item E @var{NN}
ee2d5c50
AC
24056for an error
24057@end table
24058
b8ff78ce
JB
24059@item H @var{c} @var{t}
24060@cindex @samp{H} packet
8e04817f 24061Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
24062@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
24063should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
24064operations. The thread designator @var{t} may be @samp{-1}, meaning all
24065the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
24066
24067Reply:
24068@table @samp
24069@item OK
24070for success
b8ff78ce 24071@item E @var{NN}
ee2d5c50
AC
24072for an error
24073@end table
c906108c 24074
8e04817f
AC
24075@c FIXME: JTC:
24076@c 'H': How restrictive (or permissive) is the thread model. If a
24077@c thread is selected and stopped, are other threads allowed
24078@c to continue to execute? As I mentioned above, I think the
24079@c semantics of each command when a thread is selected must be
24080@c described. For example:
24081@c
24082@c 'g': If the stub supports threads and a specific thread is
24083@c selected, returns the register block from that thread;
24084@c otherwise returns current registers.
24085@c
24086@c 'G' If the stub supports threads and a specific thread is
24087@c selected, sets the registers of the register block of
24088@c that thread; otherwise sets current registers.
c906108c 24089
b8ff78ce 24090@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 24091@anchor{cycle step packet}
b8ff78ce
JB
24092@cindex @samp{i} packet
24093Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
24094present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
24095step starting at that address.
c906108c 24096
b8ff78ce
JB
24097@item I
24098@cindex @samp{I} packet
24099Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
24100step packet}.
ee2d5c50 24101
b8ff78ce
JB
24102@item k
24103@cindex @samp{k} packet
24104Kill request.
c906108c 24105
ac282366 24106FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
24107thread context has been selected (i.e.@: does 'k' kill only that
24108thread?)}.
c906108c 24109
b8ff78ce
JB
24110@item m @var{addr},@var{length}
24111@cindex @samp{m} packet
8e04817f 24112Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
24113Note that @var{addr} may not be aligned to any particular boundary.
24114
24115The stub need not use any particular size or alignment when gathering
24116data from memory for the response; even if @var{addr} is word-aligned
24117and @var{length} is a multiple of the word size, the stub is free to
24118use byte accesses, or not. For this reason, this packet may not be
24119suitable for accessing memory-mapped I/O devices.
c43c5473
JB
24120@cindex alignment of remote memory accesses
24121@cindex size of remote memory accesses
24122@cindex memory, alignment and size of remote accesses
c906108c 24123
ee2d5c50
AC
24124Reply:
24125@table @samp
24126@item @var{XX@dots{}}
599b237a 24127Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
24128number. The reply may contain fewer bytes than requested if the
24129server was able to read only part of the region of memory.
24130@item E @var{NN}
ee2d5c50
AC
24131@var{NN} is errno
24132@end table
24133
b8ff78ce
JB
24134@item M @var{addr},@var{length}:@var{XX@dots{}}
24135@cindex @samp{M} packet
8e04817f 24136Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 24137@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 24138hexadecimal number.
ee2d5c50
AC
24139
24140Reply:
24141@table @samp
24142@item OK
24143for success
b8ff78ce 24144@item E @var{NN}
8e04817f
AC
24145for an error (this includes the case where only part of the data was
24146written).
ee2d5c50 24147@end table
c906108c 24148
b8ff78ce
JB
24149@item p @var{n}
24150@cindex @samp{p} packet
24151Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
24152@xref{read registers packet}, for a description of how the returned
24153register value is encoded.
ee2d5c50
AC
24154
24155Reply:
24156@table @samp
2e868123
AC
24157@item @var{XX@dots{}}
24158the register's value
b8ff78ce 24159@item E @var{NN}
2e868123
AC
24160for an error
24161@item
24162Indicating an unrecognized @var{query}.
ee2d5c50
AC
24163@end table
24164
b8ff78ce 24165@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 24166@anchor{write register packet}
b8ff78ce
JB
24167@cindex @samp{P} packet
24168Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 24169number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 24170digits for each byte in the register (target byte order).
c906108c 24171
ee2d5c50
AC
24172Reply:
24173@table @samp
24174@item OK
24175for success
b8ff78ce 24176@item E @var{NN}
ee2d5c50
AC
24177for an error
24178@end table
24179
5f3bebba
JB
24180@item q @var{name} @var{params}@dots{}
24181@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 24182@cindex @samp{q} packet
b8ff78ce 24183@cindex @samp{Q} packet
5f3bebba
JB
24184General query (@samp{q}) and set (@samp{Q}). These packets are
24185described fully in @ref{General Query Packets}.
c906108c 24186
b8ff78ce
JB
24187@item r
24188@cindex @samp{r} packet
8e04817f 24189Reset the entire system.
c906108c 24190
b8ff78ce 24191Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 24192
b8ff78ce
JB
24193@item R @var{XX}
24194@cindex @samp{R} packet
8e04817f 24195Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 24196This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 24197
8e04817f 24198The @samp{R} packet has no reply.
ee2d5c50 24199
4f553f88 24200@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
24201@cindex @samp{s} packet
24202Single step. @var{addr} is the address at which to resume. If
24203@var{addr} is omitted, resume at same address.
c906108c 24204
ee2d5c50
AC
24205Reply:
24206@xref{Stop Reply Packets}, for the reply specifications.
24207
4f553f88 24208@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 24209@anchor{step with signal packet}
b8ff78ce
JB
24210@cindex @samp{S} packet
24211Step with signal. This is analogous to the @samp{C} packet, but
24212requests a single-step, rather than a normal resumption of execution.
c906108c 24213
ee2d5c50
AC
24214Reply:
24215@xref{Stop Reply Packets}, for the reply specifications.
24216
b8ff78ce
JB
24217@item t @var{addr}:@var{PP},@var{MM}
24218@cindex @samp{t} packet
8e04817f 24219Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
24220@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
24221@var{addr} must be at least 3 digits.
c906108c 24222
b8ff78ce
JB
24223@item T @var{XX}
24224@cindex @samp{T} packet
ee2d5c50 24225Find out if the thread XX is alive.
c906108c 24226
ee2d5c50
AC
24227Reply:
24228@table @samp
24229@item OK
24230thread is still alive
b8ff78ce 24231@item E @var{NN}
ee2d5c50
AC
24232thread is dead
24233@end table
24234
b8ff78ce
JB
24235@item v
24236Packets starting with @samp{v} are identified by a multi-letter name,
24237up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 24238
2d717e4f
DJ
24239@item vAttach;@var{pid}
24240@cindex @samp{vAttach} packet
24241Attach to a new process with the specified process ID. @var{pid} is a
d0d064df
PA
24242hexadecimal integer identifying the process. The attached process is
24243stopped.
2d717e4f
DJ
24244
24245This packet is only available in extended mode (@pxref{extended mode}).
24246
24247Reply:
24248@table @samp
24249@item E @var{nn}
24250for an error
24251@item @r{Any stop packet}
24252for success (@pxref{Stop Reply Packets})
24253@end table
24254
b8ff78ce
JB
24255@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
24256@cindex @samp{vCont} packet
24257Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
24258If an action is specified with no @var{tid}, then it is applied to any
24259threads that don't have a specific action specified; if no default action is
24260specified then other threads should remain stopped. Specifying multiple
24261default actions is an error; specifying no actions is also an error.
24262Thread IDs are specified in hexadecimal. Currently supported actions are:
24263
b8ff78ce 24264@table @samp
86d30acc
DJ
24265@item c
24266Continue.
b8ff78ce 24267@item C @var{sig}
86d30acc
DJ
24268Continue with signal @var{sig}. @var{sig} should be two hex digits.
24269@item s
24270Step.
b8ff78ce 24271@item S @var{sig}
86d30acc
DJ
24272Step with signal @var{sig}. @var{sig} should be two hex digits.
24273@end table
24274
24275The optional @var{addr} argument normally associated with these packets is
b8ff78ce 24276not supported in @samp{vCont}.
86d30acc
DJ
24277
24278Reply:
24279@xref{Stop Reply Packets}, for the reply specifications.
24280
b8ff78ce
JB
24281@item vCont?
24282@cindex @samp{vCont?} packet
d3e8051b 24283Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
24284
24285Reply:
24286@table @samp
b8ff78ce
JB
24287@item vCont@r{[};@var{action}@dots{}@r{]}
24288The @samp{vCont} packet is supported. Each @var{action} is a supported
24289command in the @samp{vCont} packet.
86d30acc 24290@item
b8ff78ce 24291The @samp{vCont} packet is not supported.
86d30acc 24292@end table
ee2d5c50 24293
a6b151f1
DJ
24294@item vFile:@var{operation}:@var{parameter}@dots{}
24295@cindex @samp{vFile} packet
24296Perform a file operation on the target system. For details,
24297see @ref{Host I/O Packets}.
24298
68437a39
DJ
24299@item vFlashErase:@var{addr},@var{length}
24300@cindex @samp{vFlashErase} packet
24301Direct the stub to erase @var{length} bytes of flash starting at
24302@var{addr}. The region may enclose any number of flash blocks, but
24303its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
24304flash block size appearing in the memory map (@pxref{Memory Map
24305Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
24306together, and sends a @samp{vFlashDone} request after each group; the
24307stub is allowed to delay erase operation until the @samp{vFlashDone}
24308packet is received.
24309
24310Reply:
24311@table @samp
24312@item OK
24313for success
24314@item E @var{NN}
24315for an error
24316@end table
24317
24318@item vFlashWrite:@var{addr}:@var{XX@dots{}}
24319@cindex @samp{vFlashWrite} packet
24320Direct the stub to write data to flash address @var{addr}. The data
24321is passed in binary form using the same encoding as for the @samp{X}
24322packet (@pxref{Binary Data}). The memory ranges specified by
24323@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
24324not overlap, and must appear in order of increasing addresses
24325(although @samp{vFlashErase} packets for higher addresses may already
24326have been received; the ordering is guaranteed only between
24327@samp{vFlashWrite} packets). If a packet writes to an address that was
24328neither erased by a preceding @samp{vFlashErase} packet nor by some other
24329target-specific method, the results are unpredictable.
24330
24331
24332Reply:
24333@table @samp
24334@item OK
24335for success
24336@item E.memtype
24337for vFlashWrite addressing non-flash memory
24338@item E @var{NN}
24339for an error
24340@end table
24341
24342@item vFlashDone
24343@cindex @samp{vFlashDone} packet
24344Indicate to the stub that flash programming operation is finished.
24345The stub is permitted to delay or batch the effects of a group of
24346@samp{vFlashErase} and @samp{vFlashWrite} packets until a
24347@samp{vFlashDone} packet is received. The contents of the affected
24348regions of flash memory are unpredictable until the @samp{vFlashDone}
24349request is completed.
24350
2d717e4f
DJ
24351@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
24352@cindex @samp{vRun} packet
24353Run the program @var{filename}, passing it each @var{argument} on its
24354command line. The file and arguments are hex-encoded strings. If
24355@var{filename} is an empty string, the stub may use a default program
24356(e.g.@: the last program run). The program is created in the stopped
9b562ab8 24357state.
2d717e4f
DJ
24358
24359This packet is only available in extended mode (@pxref{extended mode}).
24360
24361Reply:
24362@table @samp
24363@item E @var{nn}
24364for an error
24365@item @r{Any stop packet}
24366for success (@pxref{Stop Reply Packets})
24367@end table
24368
b8ff78ce 24369@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 24370@anchor{X packet}
b8ff78ce
JB
24371@cindex @samp{X} packet
24372Write data to memory, where the data is transmitted in binary.
24373@var{addr} is address, @var{length} is number of bytes,
0876f84a 24374@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 24375
ee2d5c50
AC
24376Reply:
24377@table @samp
24378@item OK
24379for success
b8ff78ce 24380@item E @var{NN}
ee2d5c50
AC
24381for an error
24382@end table
24383
b8ff78ce
JB
24384@item z @var{type},@var{addr},@var{length}
24385@itemx Z @var{type},@var{addr},@var{length}
2f870471 24386@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24387@cindex @samp{z} packet
24388@cindex @samp{Z} packets
24389Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24390watchpoint starting at address @var{address} and covering the next
24391@var{length} bytes.
ee2d5c50 24392
2f870471
AC
24393Each breakpoint and watchpoint packet @var{type} is documented
24394separately.
24395
512217c7
AC
24396@emph{Implementation notes: A remote target shall return an empty string
24397for an unrecognized breakpoint or watchpoint packet @var{type}. A
24398remote target shall support either both or neither of a given
b8ff78ce 24399@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24400avoid potential problems with duplicate packets, the operations should
24401be implemented in an idempotent way.}
24402
b8ff78ce
JB
24403@item z0,@var{addr},@var{length}
24404@itemx Z0,@var{addr},@var{length}
24405@cindex @samp{z0} packet
24406@cindex @samp{Z0} packet
24407Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24408@var{addr} of size @var{length}.
2f870471
AC
24409
24410A memory breakpoint is implemented by replacing the instruction at
24411@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24412@var{length} is used by targets that indicates the size of the
2f870471
AC
24413breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24414@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24415
2f870471
AC
24416@emph{Implementation note: It is possible for a target to copy or move
24417code that contains memory breakpoints (e.g., when implementing
24418overlays). The behavior of this packet, in the presence of such a
24419target, is not defined.}
c906108c 24420
ee2d5c50
AC
24421Reply:
24422@table @samp
2f870471
AC
24423@item OK
24424success
24425@item
24426not supported
b8ff78ce 24427@item E @var{NN}
ee2d5c50 24428for an error
2f870471
AC
24429@end table
24430
b8ff78ce
JB
24431@item z1,@var{addr},@var{length}
24432@itemx Z1,@var{addr},@var{length}
24433@cindex @samp{z1} packet
24434@cindex @samp{Z1} packet
24435Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24436address @var{addr} of size @var{length}.
2f870471
AC
24437
24438A hardware breakpoint is implemented using a mechanism that is not
24439dependant on being able to modify the target's memory.
24440
24441@emph{Implementation note: A hardware breakpoint is not affected by code
24442movement.}
24443
24444Reply:
24445@table @samp
ee2d5c50 24446@item OK
2f870471
AC
24447success
24448@item
24449not supported
b8ff78ce 24450@item E @var{NN}
2f870471
AC
24451for an error
24452@end table
24453
b8ff78ce
JB
24454@item z2,@var{addr},@var{length}
24455@itemx Z2,@var{addr},@var{length}
24456@cindex @samp{z2} packet
24457@cindex @samp{Z2} packet
24458Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24459
24460Reply:
24461@table @samp
24462@item OK
24463success
24464@item
24465not supported
b8ff78ce 24466@item E @var{NN}
2f870471
AC
24467for an error
24468@end table
24469
b8ff78ce
JB
24470@item z3,@var{addr},@var{length}
24471@itemx Z3,@var{addr},@var{length}
24472@cindex @samp{z3} packet
24473@cindex @samp{Z3} packet
24474Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24475
24476Reply:
24477@table @samp
24478@item OK
24479success
24480@item
24481not supported
b8ff78ce 24482@item E @var{NN}
2f870471
AC
24483for an error
24484@end table
24485
b8ff78ce
JB
24486@item z4,@var{addr},@var{length}
24487@itemx Z4,@var{addr},@var{length}
24488@cindex @samp{z4} packet
24489@cindex @samp{Z4} packet
24490Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24491
24492Reply:
24493@table @samp
24494@item OK
24495success
24496@item
24497not supported
b8ff78ce 24498@item E @var{NN}
2f870471 24499for an error
ee2d5c50
AC
24500@end table
24501
24502@end table
c906108c 24503
ee2d5c50
AC
24504@node Stop Reply Packets
24505@section Stop Reply Packets
24506@cindex stop reply packets
c906108c 24507
8e04817f
AC
24508The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24509receive any of the below as a reply. In the case of the @samp{C},
24510@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24511when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24512number} is defined by the header @file{include/gdb/signals.h} in the
24513@value{GDBN} source code.
c906108c 24514
b8ff78ce
JB
24515As in the description of request packets, we include spaces in the
24516reply templates for clarity; these are not part of the reply packet's
24517syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24518components.
c906108c 24519
b8ff78ce 24520@table @samp
ee2d5c50 24521
b8ff78ce 24522@item S @var{AA}
599b237a 24523The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24524number). This is equivalent to a @samp{T} response with no
24525@var{n}:@var{r} pairs.
c906108c 24526
b8ff78ce
JB
24527@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24528@cindex @samp{T} packet reply
599b237a 24529The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24530number). This is equivalent to an @samp{S} response, except that the
24531@samp{@var{n}:@var{r}} pairs can carry values of important registers
24532and other information directly in the stop reply packet, reducing
24533round-trip latency. Single-step and breakpoint traps are reported
24534this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24535
24536@itemize @bullet
b8ff78ce 24537@item
599b237a 24538If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24539corresponding @var{r} gives that register's value. @var{r} is a
24540series of bytes in target byte order, with each byte given by a
24541two-digit hex number.
cfa9d6d9 24542
b8ff78ce
JB
24543@item
24544If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24545hex.
cfa9d6d9 24546
b8ff78ce 24547@item
cfa9d6d9
DJ
24548If @var{n} is a recognized @dfn{stop reason}, it describes a more
24549specific event that stopped the target. The currently defined stop
24550reasons are listed below. @var{aa} should be @samp{05}, the trap
24551signal. At most one stop reason should be present.
24552
b8ff78ce
JB
24553@item
24554Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24555and go on to the next; this allows us to extend the protocol in the
24556future.
cfa9d6d9
DJ
24557@end itemize
24558
24559The currently defined stop reasons are:
24560
24561@table @samp
24562@item watch
24563@itemx rwatch
24564@itemx awatch
24565The packet indicates a watchpoint hit, and @var{r} is the data address, in
24566hex.
24567
24568@cindex shared library events, remote reply
24569@item library
24570The packet indicates that the loaded libraries have changed.
24571@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24572list of loaded libraries. @var{r} is ignored.
24573@end table
ee2d5c50 24574
b8ff78ce 24575@item W @var{AA}
8e04817f 24576The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24577applicable to certain targets.
24578
b8ff78ce 24579@item X @var{AA}
8e04817f 24580The process terminated with signal @var{AA}.
c906108c 24581
b8ff78ce
JB
24582@item O @var{XX}@dots{}
24583@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24584written as the program's console output. This can happen at any time
24585while the program is running and the debugger should continue to wait
24586for @samp{W}, @samp{T}, etc.
0ce1b118 24587
b8ff78ce 24588@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24589@var{call-id} is the identifier which says which host system call should
24590be called. This is just the name of the function. Translation into the
24591correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24592@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24593system calls.
24594
b8ff78ce
JB
24595@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24596this very system call.
0ce1b118 24597
b8ff78ce
JB
24598The target replies with this packet when it expects @value{GDBN} to
24599call a host system call on behalf of the target. @value{GDBN} replies
24600with an appropriate @samp{F} packet and keeps up waiting for the next
24601reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24602or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24603Protocol Extension}, for more details.
0ce1b118 24604
ee2d5c50
AC
24605@end table
24606
24607@node General Query Packets
24608@section General Query Packets
9c16f35a 24609@cindex remote query requests
c906108c 24610
5f3bebba
JB
24611Packets starting with @samp{q} are @dfn{general query packets};
24612packets starting with @samp{Q} are @dfn{general set packets}. General
24613query and set packets are a semi-unified form for retrieving and
24614sending information to and from the stub.
24615
24616The initial letter of a query or set packet is followed by a name
24617indicating what sort of thing the packet applies to. For example,
24618@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24619definitions with the stub. These packet names follow some
24620conventions:
24621
24622@itemize @bullet
24623@item
24624The name must not contain commas, colons or semicolons.
24625@item
24626Most @value{GDBN} query and set packets have a leading upper case
24627letter.
24628@item
24629The names of custom vendor packets should use a company prefix, in
24630lower case, followed by a period. For example, packets designed at
24631the Acme Corporation might begin with @samp{qacme.foo} (for querying
24632foos) or @samp{Qacme.bar} (for setting bars).
24633@end itemize
24634
aa56d27a
JB
24635The name of a query or set packet should be separated from any
24636parameters by a @samp{:}; the parameters themselves should be
24637separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24638full packet name, and check for a separator or the end of the packet,
24639in case two packet names share a common prefix. New packets should not begin
24640with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24641packets predate these conventions, and have arguments without any terminator
24642for the packet name; we suspect they are in widespread use in places that
24643are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24644existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24645packet.}.
c906108c 24646
b8ff78ce
JB
24647Like the descriptions of the other packets, each description here
24648has a template showing the packet's overall syntax, followed by an
24649explanation of the packet's meaning. We include spaces in some of the
24650templates for clarity; these are not part of the packet's syntax. No
24651@value{GDBN} packet uses spaces to separate its components.
24652
5f3bebba
JB
24653Here are the currently defined query and set packets:
24654
b8ff78ce 24655@table @samp
c906108c 24656
b8ff78ce 24657@item qC
9c16f35a 24658@cindex current thread, remote request
b8ff78ce 24659@cindex @samp{qC} packet
ee2d5c50
AC
24660Return the current thread id.
24661
24662Reply:
24663@table @samp
b8ff78ce 24664@item QC @var{pid}
599b237a 24665Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24666@item @r{(anything else)}
ee2d5c50
AC
24667Any other reply implies the old pid.
24668@end table
24669
b8ff78ce 24670@item qCRC:@var{addr},@var{length}
ff2587ec 24671@cindex CRC of memory block, remote request
b8ff78ce
JB
24672@cindex @samp{qCRC} packet
24673Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24674Reply:
24675@table @samp
b8ff78ce 24676@item E @var{NN}
ff2587ec 24677An error (such as memory fault)
b8ff78ce
JB
24678@item C @var{crc32}
24679The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24680@end table
24681
b8ff78ce
JB
24682@item qfThreadInfo
24683@itemx qsThreadInfo
9c16f35a 24684@cindex list active threads, remote request
b8ff78ce
JB
24685@cindex @samp{qfThreadInfo} packet
24686@cindex @samp{qsThreadInfo} packet
24687Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24688may be too many active threads to fit into one reply packet, this query
24689works iteratively: it may require more than one query/reply sequence to
24690obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24691be the @samp{qfThreadInfo} query; subsequent queries in the
24692sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24693
b8ff78ce 24694NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24695
24696Reply:
24697@table @samp
b8ff78ce 24698@item m @var{id}
ee2d5c50 24699A single thread id
b8ff78ce 24700@item m @var{id},@var{id}@dots{}
ee2d5c50 24701a comma-separated list of thread ids
b8ff78ce
JB
24702@item l
24703(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24704@end table
24705
24706In response to each query, the target will reply with a list of one or
e1aac25b
JB
24707more thread ids, in big-endian unsigned hex, separated by commas.
24708@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24709ids (using the @samp{qs} form of the query), until the target responds
24710with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24711
b8ff78ce 24712@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24713@cindex get thread-local storage address, remote request
b8ff78ce 24714@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24715Fetch the address associated with thread local storage specified
24716by @var{thread-id}, @var{offset}, and @var{lm}.
24717
24718@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24719thread for which to fetch the TLS address.
24720
24721@var{offset} is the (big endian, hex encoded) offset associated with the
24722thread local variable. (This offset is obtained from the debug
24723information associated with the variable.)
24724
db2e3e2e 24725@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24726the load module associated with the thread local storage. For example,
24727a @sc{gnu}/Linux system will pass the link map address of the shared
24728object associated with the thread local storage under consideration.
24729Other operating environments may choose to represent the load module
24730differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24731
24732Reply:
b8ff78ce
JB
24733@table @samp
24734@item @var{XX}@dots{}
ff2587ec
WZ
24735Hex encoded (big endian) bytes representing the address of the thread
24736local storage requested.
24737
b8ff78ce
JB
24738@item E @var{nn}
24739An error occurred. @var{nn} are hex digits.
ff2587ec 24740
b8ff78ce
JB
24741@item
24742An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24743@end table
24744
b8ff78ce 24745@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24746Obtain thread information from RTOS. Where: @var{startflag} (one hex
24747digit) is one to indicate the first query and zero to indicate a
24748subsequent query; @var{threadcount} (two hex digits) is the maximum
24749number of threads the response packet can contain; and @var{nextthread}
24750(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24751returned in the response as @var{argthread}.
ee2d5c50 24752
b8ff78ce 24753Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24754
24755Reply:
24756@table @samp
b8ff78ce 24757@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24758Where: @var{count} (two hex digits) is the number of threads being
24759returned; @var{done} (one hex digit) is zero to indicate more threads
24760and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24761digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24762is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24763digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24764@end table
c906108c 24765
b8ff78ce 24766@item qOffsets
9c16f35a 24767@cindex section offsets, remote request
b8ff78ce 24768@cindex @samp{qOffsets} packet
31d99776
DJ
24769Get section offsets that the target used when relocating the downloaded
24770image.
c906108c 24771
ee2d5c50
AC
24772Reply:
24773@table @samp
31d99776
DJ
24774@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24775Relocate the @code{Text} section by @var{xxx} from its original address.
24776Relocate the @code{Data} section by @var{yyy} from its original address.
24777If the object file format provides segment information (e.g.@: @sc{elf}
24778@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24779segments by the supplied offsets.
24780
24781@emph{Note: while a @code{Bss} offset may be included in the response,
24782@value{GDBN} ignores this and instead applies the @code{Data} offset
24783to the @code{Bss} section.}
24784
24785@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24786Relocate the first segment of the object file, which conventionally
24787contains program code, to a starting address of @var{xxx}. If
24788@samp{DataSeg} is specified, relocate the second segment, which
24789conventionally contains modifiable data, to a starting address of
24790@var{yyy}. @value{GDBN} will report an error if the object file
24791does not contain segment information, or does not contain at least
24792as many segments as mentioned in the reply. Extra segments are
24793kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24794@end table
24795
b8ff78ce 24796@item qP @var{mode} @var{threadid}
9c16f35a 24797@cindex thread information, remote request
b8ff78ce 24798@cindex @samp{qP} packet
8e04817f
AC
24799Returns information on @var{threadid}. Where: @var{mode} is a hex
24800encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24801
aa56d27a
JB
24802Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24803(see below).
24804
b8ff78ce 24805Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24806
89be2091
DJ
24807@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24808@cindex pass signals to inferior, remote request
24809@cindex @samp{QPassSignals} packet
23181151 24810@anchor{QPassSignals}
89be2091
DJ
24811Each listed @var{signal} should be passed directly to the inferior process.
24812Signals are numbered identically to continue packets and stop replies
24813(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24814strictly greater than the previous item. These signals do not need to stop
24815the inferior, or be reported to @value{GDBN}. All other signals should be
24816reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24817combine; any earlier @samp{QPassSignals} list is completely replaced by the
24818new list. This packet improves performance when using @samp{handle
24819@var{signal} nostop noprint pass}.
24820
24821Reply:
24822@table @samp
24823@item OK
24824The request succeeded.
24825
24826@item E @var{nn}
24827An error occurred. @var{nn} are hex digits.
24828
24829@item
24830An empty reply indicates that @samp{QPassSignals} is not supported by
24831the stub.
24832@end table
24833
24834Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24835command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24836This packet is not probed by default; the remote stub must request it,
24837by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24838
b8ff78ce 24839@item qRcmd,@var{command}
ff2587ec 24840@cindex execute remote command, remote request
b8ff78ce 24841@cindex @samp{qRcmd} packet
ff2587ec 24842@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24843execution. Invalid commands should be reported using the output
24844string. Before the final result packet, the target may also respond
24845with a number of intermediate @samp{O@var{output}} console output
24846packets. @emph{Implementors should note that providing access to a
24847stubs's interpreter may have security implications}.
fa93a9d8 24848
ff2587ec
WZ
24849Reply:
24850@table @samp
24851@item OK
24852A command response with no output.
24853@item @var{OUTPUT}
24854A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24855@item E @var{NN}
ff2587ec 24856Indicate a badly formed request.
b8ff78ce
JB
24857@item
24858An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24859@end table
fa93a9d8 24860
aa56d27a
JB
24861(Note that the @code{qRcmd} packet's name is separated from the
24862command by a @samp{,}, not a @samp{:}, contrary to the naming
24863conventions above. Please don't use this packet as a model for new
24864packets.)
24865
08388c79
DE
24866@item qSearch:memory:@var{address};@var{length};@var{search-pattern}
24867@cindex searching memory, in remote debugging
24868@cindex @samp{qSearch:memory} packet
24869@anchor{qSearch memory}
24870Search @var{length} bytes at @var{address} for @var{search-pattern}.
24871@var{address} and @var{length} are encoded in hex.
24872@var{search-pattern} is a sequence of bytes, hex encoded.
24873
24874Reply:
24875@table @samp
24876@item 0
24877The pattern was not found.
24878@item 1,address
24879The pattern was found at @var{address}.
24880@item E @var{NN}
24881A badly formed request or an error was encountered while searching memory.
24882@item
24883An empty reply indicates that @samp{qSearch:memory} is not recognized.
24884@end table
24885
be2a5f71
DJ
24886@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24887@cindex supported packets, remote query
24888@cindex features of the remote protocol
24889@cindex @samp{qSupported} packet
0876f84a 24890@anchor{qSupported}
be2a5f71
DJ
24891Tell the remote stub about features supported by @value{GDBN}, and
24892query the stub for features it supports. This packet allows
24893@value{GDBN} and the remote stub to take advantage of each others'
24894features. @samp{qSupported} also consolidates multiple feature probes
24895at startup, to improve @value{GDBN} performance---a single larger
24896packet performs better than multiple smaller probe packets on
24897high-latency links. Some features may enable behavior which must not
24898be on by default, e.g.@: because it would confuse older clients or
24899stubs. Other features may describe packets which could be
24900automatically probed for, but are not. These features must be
24901reported before @value{GDBN} will use them. This ``default
24902unsupported'' behavior is not appropriate for all packets, but it
24903helps to keep the initial connection time under control with new
24904versions of @value{GDBN} which support increasing numbers of packets.
24905
24906Reply:
24907@table @samp
24908@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24909The stub supports or does not support each returned @var{stubfeature},
24910depending on the form of each @var{stubfeature} (see below for the
24911possible forms).
24912@item
24913An empty reply indicates that @samp{qSupported} is not recognized,
24914or that no features needed to be reported to @value{GDBN}.
24915@end table
24916
24917The allowed forms for each feature (either a @var{gdbfeature} in the
24918@samp{qSupported} packet, or a @var{stubfeature} in the response)
24919are:
24920
24921@table @samp
24922@item @var{name}=@var{value}
24923The remote protocol feature @var{name} is supported, and associated
24924with the specified @var{value}. The format of @var{value} depends
24925on the feature, but it must not include a semicolon.
24926@item @var{name}+
24927The remote protocol feature @var{name} is supported, and does not
24928need an associated value.
24929@item @var{name}-
24930The remote protocol feature @var{name} is not supported.
24931@item @var{name}?
24932The remote protocol feature @var{name} may be supported, and
24933@value{GDBN} should auto-detect support in some other way when it is
24934needed. This form will not be used for @var{gdbfeature} notifications,
24935but may be used for @var{stubfeature} responses.
24936@end table
24937
24938Whenever the stub receives a @samp{qSupported} request, the
24939supplied set of @value{GDBN} features should override any previous
24940request. This allows @value{GDBN} to put the stub in a known
24941state, even if the stub had previously been communicating with
24942a different version of @value{GDBN}.
24943
24944No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24945are defined yet. Stubs should ignore any unknown values for
24946@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24947packet supports receiving packets of unlimited length (earlier
24948versions of @value{GDBN} may reject overly long responses). Values
24949for @var{gdbfeature} may be defined in the future to let the stub take
24950advantage of new features in @value{GDBN}, e.g.@: incompatible
24951improvements in the remote protocol---support for unlimited length
24952responses would be a @var{gdbfeature} example, if it were not implied by
24953the @samp{qSupported} query. The stub's reply should be independent
24954of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24955describes all the features it supports, and then the stub replies with
24956all the features it supports.
24957
24958Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24959responses, as long as each response uses one of the standard forms.
24960
24961Some features are flags. A stub which supports a flag feature
24962should respond with a @samp{+} form response. Other features
24963require values, and the stub should respond with an @samp{=}
24964form response.
24965
24966Each feature has a default value, which @value{GDBN} will use if
24967@samp{qSupported} is not available or if the feature is not mentioned
24968in the @samp{qSupported} response. The default values are fixed; a
24969stub is free to omit any feature responses that match the defaults.
24970
24971Not all features can be probed, but for those which can, the probing
24972mechanism is useful: in some cases, a stub's internal
24973architecture may not allow the protocol layer to know some information
24974about the underlying target in advance. This is especially common in
24975stubs which may be configured for multiple targets.
24976
24977These are the currently defined stub features and their properties:
24978
cfa9d6d9 24979@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24980@c NOTE: The first row should be @headitem, but we do not yet require
24981@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24982@item Feature Name
be2a5f71
DJ
24983@tab Value Required
24984@tab Default
24985@tab Probe Allowed
24986
24987@item @samp{PacketSize}
24988@tab Yes
24989@tab @samp{-}
24990@tab No
24991
0876f84a
DJ
24992@item @samp{qXfer:auxv:read}
24993@tab No
24994@tab @samp{-}
24995@tab Yes
24996
23181151
DJ
24997@item @samp{qXfer:features:read}
24998@tab No
24999@tab @samp{-}
25000@tab Yes
25001
cfa9d6d9
DJ
25002@item @samp{qXfer:libraries:read}
25003@tab No
25004@tab @samp{-}
25005@tab Yes
25006
68437a39
DJ
25007@item @samp{qXfer:memory-map:read}
25008@tab No
25009@tab @samp{-}
25010@tab Yes
25011
0e7f50da
UW
25012@item @samp{qXfer:spu:read}
25013@tab No
25014@tab @samp{-}
25015@tab Yes
25016
25017@item @samp{qXfer:spu:write}
25018@tab No
25019@tab @samp{-}
25020@tab Yes
25021
89be2091
DJ
25022@item @samp{QPassSignals}
25023@tab No
25024@tab @samp{-}
25025@tab Yes
25026
be2a5f71
DJ
25027@end multitable
25028
25029These are the currently defined stub features, in more detail:
25030
25031@table @samp
25032@cindex packet size, remote protocol
25033@item PacketSize=@var{bytes}
25034The remote stub can accept packets up to at least @var{bytes} in
25035length. @value{GDBN} will send packets up to this size for bulk
25036transfers, and will never send larger packets. This is a limit on the
25037data characters in the packet, including the frame and checksum.
25038There is no trailing NUL byte in a remote protocol packet; if the stub
25039stores packets in a NUL-terminated format, it should allow an extra
25040byte in its buffer for the NUL. If this stub feature is not supported,
25041@value{GDBN} guesses based on the size of the @samp{g} packet response.
25042
0876f84a
DJ
25043@item qXfer:auxv:read
25044The remote stub understands the @samp{qXfer:auxv:read} packet
25045(@pxref{qXfer auxiliary vector read}).
25046
23181151
DJ
25047@item qXfer:features:read
25048The remote stub understands the @samp{qXfer:features:read} packet
25049(@pxref{qXfer target description read}).
25050
cfa9d6d9
DJ
25051@item qXfer:libraries:read
25052The remote stub understands the @samp{qXfer:libraries:read} packet
25053(@pxref{qXfer library list read}).
25054
23181151
DJ
25055@item qXfer:memory-map:read
25056The remote stub understands the @samp{qXfer:memory-map:read} packet
25057(@pxref{qXfer memory map read}).
25058
0e7f50da
UW
25059@item qXfer:spu:read
25060The remote stub understands the @samp{qXfer:spu:read} packet
25061(@pxref{qXfer spu read}).
25062
25063@item qXfer:spu:write
25064The remote stub understands the @samp{qXfer:spu:write} packet
25065(@pxref{qXfer spu write}).
25066
23181151
DJ
25067@item QPassSignals
25068The remote stub understands the @samp{QPassSignals} packet
25069(@pxref{QPassSignals}).
25070
be2a5f71
DJ
25071@end table
25072
b8ff78ce 25073@item qSymbol::
ff2587ec 25074@cindex symbol lookup, remote request
b8ff78ce 25075@cindex @samp{qSymbol} packet
ff2587ec
WZ
25076Notify the target that @value{GDBN} is prepared to serve symbol lookup
25077requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
25078
25079Reply:
ff2587ec 25080@table @samp
b8ff78ce 25081@item OK
ff2587ec 25082The target does not need to look up any (more) symbols.
b8ff78ce 25083@item qSymbol:@var{sym_name}
ff2587ec
WZ
25084The target requests the value of symbol @var{sym_name} (hex encoded).
25085@value{GDBN} may provide the value by using the
b8ff78ce
JB
25086@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
25087below.
ff2587ec 25088@end table
83761cbd 25089
b8ff78ce 25090@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
25091Set the value of @var{sym_name} to @var{sym_value}.
25092
25093@var{sym_name} (hex encoded) is the name of a symbol whose value the
25094target has previously requested.
25095
25096@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
25097@value{GDBN} cannot supply a value for @var{sym_name}, then this field
25098will be empty.
25099
25100Reply:
25101@table @samp
b8ff78ce 25102@item OK
ff2587ec 25103The target does not need to look up any (more) symbols.
b8ff78ce 25104@item qSymbol:@var{sym_name}
ff2587ec
WZ
25105The target requests the value of a new symbol @var{sym_name} (hex
25106encoded). @value{GDBN} will continue to supply the values of symbols
25107(if available), until the target ceases to request them.
fa93a9d8 25108@end table
0abb7bc7 25109
9d29849a
JB
25110@item QTDP
25111@itemx QTFrame
25112@xref{Tracepoint Packets}.
25113
b8ff78ce 25114@item qThreadExtraInfo,@var{id}
ff2587ec 25115@cindex thread attributes info, remote request
b8ff78ce
JB
25116@cindex @samp{qThreadExtraInfo} packet
25117Obtain a printable string description of a thread's attributes from
25118the target OS. @var{id} is a thread-id in big-endian hex. This
25119string may contain anything that the target OS thinks is interesting
25120for @value{GDBN} to tell the user about the thread. The string is
25121displayed in @value{GDBN}'s @code{info threads} display. Some
25122examples of possible thread extra info strings are @samp{Runnable}, or
25123@samp{Blocked on Mutex}.
ff2587ec
WZ
25124
25125Reply:
25126@table @samp
b8ff78ce
JB
25127@item @var{XX}@dots{}
25128Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
25129comprising the printable string containing the extra information about
25130the thread's attributes.
ff2587ec 25131@end table
814e32d7 25132
aa56d27a
JB
25133(Note that the @code{qThreadExtraInfo} packet's name is separated from
25134the command by a @samp{,}, not a @samp{:}, contrary to the naming
25135conventions above. Please don't use this packet as a model for new
25136packets.)
25137
9d29849a
JB
25138@item QTStart
25139@itemx QTStop
25140@itemx QTinit
25141@itemx QTro
25142@itemx qTStatus
25143@xref{Tracepoint Packets}.
25144
0876f84a
DJ
25145@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
25146@cindex read special object, remote request
25147@cindex @samp{qXfer} packet
68437a39 25148@anchor{qXfer read}
0876f84a
DJ
25149Read uninterpreted bytes from the target's special data area
25150identified by the keyword @var{object}. Request @var{length} bytes
25151starting at @var{offset} bytes into the data. The content and
0e7f50da 25152encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
25153additional details about what data to access.
25154
25155Here are the specific requests of this form defined so far. All
25156@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
25157formats, listed below.
25158
25159@table @samp
25160@item qXfer:auxv:read::@var{offset},@var{length}
25161@anchor{qXfer auxiliary vector read}
25162Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 25163auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
25164
25165This packet is not probed by default; the remote stub must request it,
89be2091 25166by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 25167
23181151
DJ
25168@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
25169@anchor{qXfer target description read}
25170Access the @dfn{target description}. @xref{Target Descriptions}. The
25171annex specifies which XML document to access. The main description is
25172always loaded from the @samp{target.xml} annex.
25173
25174This packet is not probed by default; the remote stub must request it,
25175by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25176
cfa9d6d9
DJ
25177@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
25178@anchor{qXfer library list read}
25179Access the target's list of loaded libraries. @xref{Library List Format}.
25180The annex part of the generic @samp{qXfer} packet must be empty
25181(@pxref{qXfer read}).
25182
25183Targets which maintain a list of libraries in the program's memory do
25184not need to implement this packet; it is designed for platforms where
25185the operating system manages the list of loaded libraries.
25186
25187This packet is not probed by default; the remote stub must request it,
25188by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25189
68437a39
DJ
25190@item qXfer:memory-map:read::@var{offset},@var{length}
25191@anchor{qXfer memory map read}
79a6e687 25192Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
25193annex part of the generic @samp{qXfer} packet must be empty
25194(@pxref{qXfer read}).
25195
0e7f50da
UW
25196This packet is not probed by default; the remote stub must request it,
25197by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25198
25199@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
25200@anchor{qXfer spu read}
25201Read contents of an @code{spufs} file on the target system. The
25202annex specifies which file to read; it must be of the form
25203@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
25204in the target process, and @var{name} identifes the @code{spufs} file
25205in that context to be accessed.
25206
68437a39
DJ
25207This packet is not probed by default; the remote stub must request it,
25208by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25209@end table
25210
0876f84a
DJ
25211Reply:
25212@table @samp
25213@item m @var{data}
25214Data @var{data} (@pxref{Binary Data}) has been read from the
25215target. There may be more data at a higher address (although
25216it is permitted to return @samp{m} even for the last valid
25217block of data, as long as at least one byte of data was read).
25218@var{data} may have fewer bytes than the @var{length} in the
25219request.
25220
25221@item l @var{data}
25222Data @var{data} (@pxref{Binary Data}) has been read from the target.
25223There is no more data to be read. @var{data} may have fewer bytes
25224than the @var{length} in the request.
25225
25226@item l
25227The @var{offset} in the request is at the end of the data.
25228There is no more data to be read.
25229
25230@item E00
25231The request was malformed, or @var{annex} was invalid.
25232
25233@item E @var{nn}
25234The offset was invalid, or there was an error encountered reading the data.
25235@var{nn} is a hex-encoded @code{errno} value.
25236
25237@item
25238An empty reply indicates the @var{object} string was not recognized by
25239the stub, or that the object does not support reading.
25240@end table
25241
25242@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
25243@cindex write data into object, remote request
25244Write uninterpreted bytes into the target's special data area
25245identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 25246into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 25247(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 25248is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
25249to access.
25250
0e7f50da
UW
25251Here are the specific requests of this form defined so far. All
25252@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
25253formats, listed below.
25254
25255@table @samp
25256@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
25257@anchor{qXfer spu write}
25258Write @var{data} to an @code{spufs} file on the target system. The
25259annex specifies which file to write; it must be of the form
25260@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
25261in the target process, and @var{name} identifes the @code{spufs} file
25262in that context to be accessed.
25263
25264This packet is not probed by default; the remote stub must request it,
25265by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
25266@end table
0876f84a
DJ
25267
25268Reply:
25269@table @samp
25270@item @var{nn}
25271@var{nn} (hex encoded) is the number of bytes written.
25272This may be fewer bytes than supplied in the request.
25273
25274@item E00
25275The request was malformed, or @var{annex} was invalid.
25276
25277@item E @var{nn}
25278The offset was invalid, or there was an error encountered writing the data.
25279@var{nn} is a hex-encoded @code{errno} value.
25280
25281@item
25282An empty reply indicates the @var{object} string was not
25283recognized by the stub, or that the object does not support writing.
25284@end table
25285
25286@item qXfer:@var{object}:@var{operation}:@dots{}
25287Requests of this form may be added in the future. When a stub does
25288not recognize the @var{object} keyword, or its support for
25289@var{object} does not recognize the @var{operation} keyword, the stub
25290must respond with an empty packet.
25291
ee2d5c50
AC
25292@end table
25293
25294@node Register Packet Format
25295@section Register Packet Format
eb12ee30 25296
b8ff78ce 25297The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
25298In the below, some thirty-two bit registers are transferred as
25299sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
25300to fill the space allocated. Register bytes are transferred in target
25301byte order. The two nibbles within a register byte are transferred
ee2d5c50 25302most-significant - least-significant.
eb12ee30 25303
ee2d5c50 25304@table @r
eb12ee30 25305
8e04817f 25306@item MIPS32
ee2d5c50 25307
599b237a 25308All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2530932 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
25310registers; fsr; fir; fp.
eb12ee30 25311
8e04817f 25312@item MIPS64
ee2d5c50 25313
599b237a 25314All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
25315thirty-two bit registers such as @code{sr}). The ordering is the same
25316as @code{MIPS32}.
eb12ee30 25317
ee2d5c50
AC
25318@end table
25319
9d29849a
JB
25320@node Tracepoint Packets
25321@section Tracepoint Packets
25322@cindex tracepoint packets
25323@cindex packets, tracepoint
25324
25325Here we describe the packets @value{GDBN} uses to implement
25326tracepoints (@pxref{Tracepoints}).
25327
25328@table @samp
25329
25330@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
25331Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
25332is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
25333the tracepoint is disabled. @var{step} is the tracepoint's step
25334count, and @var{pass} is its pass count. If the trailing @samp{-} is
25335present, further @samp{QTDP} packets will follow to specify this
25336tracepoint's actions.
25337
25338Replies:
25339@table @samp
25340@item OK
25341The packet was understood and carried out.
25342@item
25343The packet was not recognized.
25344@end table
25345
25346@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
25347Define actions to be taken when a tracepoint is hit. @var{n} and
25348@var{addr} must be the same as in the initial @samp{QTDP} packet for
25349this tracepoint. This packet may only be sent immediately after
25350another @samp{QTDP} packet that ended with a @samp{-}. If the
25351trailing @samp{-} is present, further @samp{QTDP} packets will follow,
25352specifying more actions for this tracepoint.
25353
25354In the series of action packets for a given tracepoint, at most one
25355can have an @samp{S} before its first @var{action}. If such a packet
25356is sent, it and the following packets define ``while-stepping''
25357actions. Any prior packets define ordinary actions --- that is, those
25358taken when the tracepoint is first hit. If no action packet has an
25359@samp{S}, then all the packets in the series specify ordinary
25360tracepoint actions.
25361
25362The @samp{@var{action}@dots{}} portion of the packet is a series of
25363actions, concatenated without separators. Each action has one of the
25364following forms:
25365
25366@table @samp
25367
25368@item R @var{mask}
25369Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 25370a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
25371@var{i} should be collected. (The least significant bit is numbered
25372zero.) Note that @var{mask} may be any number of digits long; it may
25373not fit in a 32-bit word.
25374
25375@item M @var{basereg},@var{offset},@var{len}
25376Collect @var{len} bytes of memory starting at the address in register
25377number @var{basereg}, plus @var{offset}. If @var{basereg} is
25378@samp{-1}, then the range has a fixed address: @var{offset} is the
25379address of the lowest byte to collect. The @var{basereg},
599b237a 25380@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
25381values (the @samp{-1} value for @var{basereg} is a special case).
25382
25383@item X @var{len},@var{expr}
25384Evaluate @var{expr}, whose length is @var{len}, and collect memory as
25385it directs. @var{expr} is an agent expression, as described in
25386@ref{Agent Expressions}. Each byte of the expression is encoded as a
25387two-digit hex number in the packet; @var{len} is the number of bytes
25388in the expression (and thus one-half the number of hex digits in the
25389packet).
25390
25391@end table
25392
25393Any number of actions may be packed together in a single @samp{QTDP}
25394packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
25395length (400 bytes, for many stubs). There may be only one @samp{R}
25396action per tracepoint, and it must precede any @samp{M} or @samp{X}
25397actions. Any registers referred to by @samp{M} and @samp{X} actions
25398must be collected by a preceding @samp{R} action. (The
25399``while-stepping'' actions are treated as if they were attached to a
25400separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
25401
25402Replies:
25403@table @samp
25404@item OK
25405The packet was understood and carried out.
25406@item
25407The packet was not recognized.
25408@end table
25409
25410@item QTFrame:@var{n}
25411Select the @var{n}'th tracepoint frame from the buffer, and use the
25412register and memory contents recorded there to answer subsequent
25413request packets from @value{GDBN}.
25414
25415A successful reply from the stub indicates that the stub has found the
25416requested frame. The response is a series of parts, concatenated
25417without separators, describing the frame we selected. Each part has
25418one of the following forms:
25419
25420@table @samp
25421@item F @var{f}
25422The selected frame is number @var{n} in the trace frame buffer;
599b237a 25423@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25424was no frame matching the criteria in the request packet.
25425
25426@item T @var{t}
25427The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25428@var{t} is a hexadecimal number.
9d29849a
JB
25429
25430@end table
25431
25432@item QTFrame:pc:@var{addr}
25433Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25434currently selected frame whose PC is @var{addr};
599b237a 25435@var{addr} is a hexadecimal number.
9d29849a
JB
25436
25437@item QTFrame:tdp:@var{t}
25438Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25439currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25440is a hexadecimal number.
9d29849a
JB
25441
25442@item QTFrame:range:@var{start}:@var{end}
25443Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25444currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25445and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25446numbers.
25447
25448@item QTFrame:outside:@var{start}:@var{end}
25449Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25450frame @emph{outside} the given range of addresses.
25451
25452@item QTStart
25453Begin the tracepoint experiment. Begin collecting data from tracepoint
25454hits in the trace frame buffer.
25455
25456@item QTStop
25457End the tracepoint experiment. Stop collecting trace frames.
25458
25459@item QTinit
25460Clear the table of tracepoints, and empty the trace frame buffer.
25461
25462@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25463Establish the given ranges of memory as ``transparent''. The stub
25464will answer requests for these ranges from memory's current contents,
25465if they were not collected as part of the tracepoint hit.
25466
25467@value{GDBN} uses this to mark read-only regions of memory, like those
25468containing program code. Since these areas never change, they should
25469still have the same contents they did when the tracepoint was hit, so
25470there's no reason for the stub to refuse to provide their contents.
25471
25472@item qTStatus
25473Ask the stub if there is a trace experiment running right now.
25474
25475Replies:
25476@table @samp
25477@item T0
25478There is no trace experiment running.
25479@item T1
25480There is a trace experiment running.
25481@end table
25482
25483@end table
25484
25485
a6b151f1
DJ
25486@node Host I/O Packets
25487@section Host I/O Packets
25488@cindex Host I/O, remote protocol
25489@cindex file transfer, remote protocol
25490
25491The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25492operations on the far side of a remote link. For example, Host I/O is
25493used to upload and download files to a remote target with its own
25494filesystem. Host I/O uses the same constant values and data structure
25495layout as the target-initiated File-I/O protocol. However, the
25496Host I/O packets are structured differently. The target-initiated
25497protocol relies on target memory to store parameters and buffers.
25498Host I/O requests are initiated by @value{GDBN}, and the
25499target's memory is not involved. @xref{File-I/O Remote Protocol
25500Extension}, for more details on the target-initiated protocol.
25501
25502The Host I/O request packets all encode a single operation along with
25503its arguments. They have this format:
25504
25505@table @samp
25506
25507@item vFile:@var{operation}: @var{parameter}@dots{}
25508@var{operation} is the name of the particular request; the target
25509should compare the entire packet name up to the second colon when checking
25510for a supported operation. The format of @var{parameter} depends on
25511the operation. Numbers are always passed in hexadecimal. Negative
25512numbers have an explicit minus sign (i.e.@: two's complement is not
25513used). Strings (e.g.@: filenames) are encoded as a series of
25514hexadecimal bytes. The last argument to a system call may be a
25515buffer of escaped binary data (@pxref{Binary Data}).
25516
25517@end table
25518
25519The valid responses to Host I/O packets are:
25520
25521@table @samp
25522
25523@item F @var{result} [, @var{errno}] [; @var{attachment}]
25524@var{result} is the integer value returned by this operation, usually
25525non-negative for success and -1 for errors. If an error has occured,
25526@var{errno} will be included in the result. @var{errno} will have a
25527value defined by the File-I/O protocol (@pxref{Errno Values}). For
25528operations which return data, @var{attachment} supplies the data as a
25529binary buffer. Binary buffers in response packets are escaped in the
25530normal way (@pxref{Binary Data}). See the individual packet
25531documentation for the interpretation of @var{result} and
25532@var{attachment}.
25533
25534@item
25535An empty response indicates that this operation is not recognized.
25536
25537@end table
25538
25539These are the supported Host I/O operations:
25540
25541@table @samp
25542@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25543Open a file at @var{pathname} and return a file descriptor for it, or
25544return -1 if an error occurs. @var{pathname} is a string,
25545@var{flags} is an integer indicating a mask of open flags
25546(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25547of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25548@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25549
25550@item vFile:close: @var{fd}
25551Close the open file corresponding to @var{fd} and return 0, or
25552-1 if an error occurs.
25553
25554@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25555Read data from the open file corresponding to @var{fd}. Up to
25556@var{count} bytes will be read from the file, starting at @var{offset}
25557relative to the start of the file. The target may read fewer bytes;
25558common reasons include packet size limits and an end-of-file
25559condition. The number of bytes read is returned. Zero should only be
25560returned for a successful read at the end of the file, or if
25561@var{count} was zero.
25562
25563The data read should be returned as a binary attachment on success.
25564If zero bytes were read, the response should include an empty binary
25565attachment (i.e.@: a trailing semicolon). The return value is the
25566number of target bytes read; the binary attachment may be longer if
25567some characters were escaped.
25568
25569@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25570Write @var{data} (a binary buffer) to the open file corresponding
25571to @var{fd}. Start the write at @var{offset} from the start of the
25572file. Unlike many @code{write} system calls, there is no
25573separate @var{count} argument; the length of @var{data} in the
25574packet is used. @samp{vFile:write} returns the number of bytes written,
25575which may be shorter than the length of @var{data}, or -1 if an
25576error occurred.
25577
25578@item vFile:unlink: @var{pathname}
25579Delete the file at @var{pathname} on the target. Return 0,
25580or -1 if an error occurs. @var{pathname} is a string.
25581
25582@end table
25583
9a6253be
KB
25584@node Interrupts
25585@section Interrupts
25586@cindex interrupts (remote protocol)
25587
25588When a program on the remote target is running, @value{GDBN} may
25589attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25590control of which is specified via @value{GDBN}'s @samp{remotebreak}
25591setting (@pxref{set remotebreak}).
25592
25593The precise meaning of @code{BREAK} is defined by the transport
25594mechanism and may, in fact, be undefined. @value{GDBN} does
25595not currently define a @code{BREAK} mechanism for any of the network
25596interfaces.
25597
25598@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25599transport mechanisms. It is represented by sending the single byte
25600@code{0x03} without any of the usual packet overhead described in
25601the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25602transmitted as part of a packet, it is considered to be packet data
25603and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25604(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25605@code{0x03} as part of its packet.
25606
25607Stubs are not required to recognize these interrupt mechanisms and the
25608precise meaning associated with receipt of the interrupt is
25609implementation defined. If the stub is successful at interrupting the
25610running program, it is expected that it will send one of the Stop
25611Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25612of successfully stopping the program. Interrupts received while the
25613program is stopped will be discarded.
25614
ee2d5c50
AC
25615@node Examples
25616@section Examples
eb12ee30 25617
8e04817f
AC
25618Example sequence of a target being re-started. Notice how the restart
25619does not get any direct output:
eb12ee30 25620
474c8240 25621@smallexample
d2c6833e
AC
25622-> @code{R00}
25623<- @code{+}
8e04817f 25624@emph{target restarts}
d2c6833e 25625-> @code{?}
8e04817f 25626<- @code{+}
d2c6833e
AC
25627<- @code{T001:1234123412341234}
25628-> @code{+}
474c8240 25629@end smallexample
eb12ee30 25630
8e04817f 25631Example sequence of a target being stepped by a single instruction:
eb12ee30 25632
474c8240 25633@smallexample
d2c6833e 25634-> @code{G1445@dots{}}
8e04817f 25635<- @code{+}
d2c6833e
AC
25636-> @code{s}
25637<- @code{+}
25638@emph{time passes}
25639<- @code{T001:1234123412341234}
8e04817f 25640-> @code{+}
d2c6833e 25641-> @code{g}
8e04817f 25642<- @code{+}
d2c6833e
AC
25643<- @code{1455@dots{}}
25644-> @code{+}
474c8240 25645@end smallexample
eb12ee30 25646
79a6e687
BW
25647@node File-I/O Remote Protocol Extension
25648@section File-I/O Remote Protocol Extension
0ce1b118
CV
25649@cindex File-I/O remote protocol extension
25650
25651@menu
25652* File-I/O Overview::
79a6e687
BW
25653* Protocol Basics::
25654* The F Request Packet::
25655* The F Reply Packet::
25656* The Ctrl-C Message::
0ce1b118 25657* Console I/O::
79a6e687 25658* List of Supported Calls::
db2e3e2e 25659* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25660* Constants::
25661* File-I/O Examples::
25662@end menu
25663
25664@node File-I/O Overview
25665@subsection File-I/O Overview
25666@cindex file-i/o overview
25667
9c16f35a 25668The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25669target to use the host's file system and console I/O to perform various
0ce1b118 25670system calls. System calls on the target system are translated into a
fc320d37
SL
25671remote protocol packet to the host system, which then performs the needed
25672actions and returns a response packet to the target system.
0ce1b118
CV
25673This simulates file system operations even on targets that lack file systems.
25674
fc320d37
SL
25675The protocol is defined to be independent of both the host and target systems.
25676It uses its own internal representation of datatypes and values. Both
0ce1b118 25677@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25678translating the system-dependent value representations into the internal
25679protocol representations when data is transmitted.
0ce1b118 25680
fc320d37
SL
25681The communication is synchronous. A system call is possible only when
25682@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25683or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25684the target is stopped to allow deterministic access to the target's
fc320d37
SL
25685memory. Therefore File-I/O is not interruptible by target signals. On
25686the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25687(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25688
25689The target's request to perform a host system call does not finish
25690the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25691after finishing the system call, the target returns to continuing the
25692previous activity (continue, step). No additional continue or step
25693request from @value{GDBN} is required.
25694
25695@smallexample
f7dc1244 25696(@value{GDBP}) continue
0ce1b118
CV
25697 <- target requests 'system call X'
25698 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25699 -> @value{GDBN} returns result
25700 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25701 <- target hits breakpoint and sends a Txx packet
25702@end smallexample
25703
fc320d37
SL
25704The protocol only supports I/O on the console and to regular files on
25705the host file system. Character or block special devices, pipes,
25706named pipes, sockets or any other communication method on the host
0ce1b118
CV
25707system are not supported by this protocol.
25708
79a6e687
BW
25709@node Protocol Basics
25710@subsection Protocol Basics
0ce1b118
CV
25711@cindex protocol basics, file-i/o
25712
fc320d37
SL
25713The File-I/O protocol uses the @code{F} packet as the request as well
25714as reply packet. Since a File-I/O system call can only occur when
25715@value{GDBN} is waiting for a response from the continuing or stepping target,
25716the File-I/O request is a reply that @value{GDBN} has to expect as a result
25717of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25718This @code{F} packet contains all information needed to allow @value{GDBN}
25719to call the appropriate host system call:
25720
25721@itemize @bullet
b383017d 25722@item
0ce1b118
CV
25723A unique identifier for the requested system call.
25724
25725@item
25726All parameters to the system call. Pointers are given as addresses
25727in the target memory address space. Pointers to strings are given as
b383017d 25728pointer/length pair. Numerical values are given as they are.
db2e3e2e 25729Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25730
25731@end itemize
25732
fc320d37 25733At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25734
25735@itemize @bullet
b383017d 25736@item
fc320d37
SL
25737If the parameters include pointer values to data needed as input to a
25738system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25739standard @code{m} packet request. This additional communication has to be
25740expected by the target implementation and is handled as any other @code{m}
25741packet.
25742
25743@item
25744@value{GDBN} translates all value from protocol representation to host
25745representation as needed. Datatypes are coerced into the host types.
25746
25747@item
fc320d37 25748@value{GDBN} calls the system call.
0ce1b118
CV
25749
25750@item
25751It then coerces datatypes back to protocol representation.
25752
25753@item
fc320d37
SL
25754If the system call is expected to return data in buffer space specified
25755by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25756target using a @code{M} or @code{X} packet. This packet has to be expected
25757by the target implementation and is handled as any other @code{M} or @code{X}
25758packet.
25759
25760@end itemize
25761
25762Eventually @value{GDBN} replies with another @code{F} packet which contains all
25763necessary information for the target to continue. This at least contains
25764
25765@itemize @bullet
25766@item
25767Return value.
25768
25769@item
25770@code{errno}, if has been changed by the system call.
25771
25772@item
25773``Ctrl-C'' flag.
25774
25775@end itemize
25776
25777After having done the needed type and value coercion, the target continues
25778the latest continue or step action.
25779
79a6e687
BW
25780@node The F Request Packet
25781@subsection The @code{F} Request Packet
0ce1b118
CV
25782@cindex file-i/o request packet
25783@cindex @code{F} request packet
25784
25785The @code{F} request packet has the following format:
25786
25787@table @samp
fc320d37 25788@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25789
25790@var{call-id} is the identifier to indicate the host system call to be called.
25791This is just the name of the function.
25792
fc320d37
SL
25793@var{parameter@dots{}} are the parameters to the system call.
25794Parameters are hexadecimal integer values, either the actual values in case
25795of scalar datatypes, pointers to target buffer space in case of compound
25796datatypes and unspecified memory areas, or pointer/length pairs in case
25797of string parameters. These are appended to the @var{call-id} as a
25798comma-delimited list. All values are transmitted in ASCII
25799string representation, pointer/length pairs separated by a slash.
0ce1b118 25800
b383017d 25801@end table
0ce1b118 25802
fc320d37 25803
0ce1b118 25804
79a6e687
BW
25805@node The F Reply Packet
25806@subsection The @code{F} Reply Packet
0ce1b118
CV
25807@cindex file-i/o reply packet
25808@cindex @code{F} reply packet
25809
25810The @code{F} reply packet has the following format:
25811
25812@table @samp
25813
d3bdde98 25814@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25815
25816@var{retcode} is the return code of the system call as hexadecimal value.
25817
db2e3e2e
BW
25818@var{errno} is the @code{errno} set by the call, in protocol-specific
25819representation.
0ce1b118
CV
25820This parameter can be omitted if the call was successful.
25821
fc320d37
SL
25822@var{Ctrl-C flag} is only sent if the user requested a break. In this
25823case, @var{errno} must be sent as well, even if the call was successful.
25824The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25825
25826@smallexample
25827F0,0,C
25828@end smallexample
25829
25830@noindent
fc320d37 25831or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25832
25833@smallexample
25834F-1,4,C
25835@end smallexample
25836
25837@noindent
db2e3e2e 25838assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25839
25840@end table
25841
0ce1b118 25842
79a6e687
BW
25843@node The Ctrl-C Message
25844@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25845@cindex ctrl-c message, in file-i/o protocol
25846
c8aa23ab 25847If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25848reply packet (@pxref{The F Reply Packet}),
fc320d37 25849the target should behave as if it had
0ce1b118 25850gotten a break message. The meaning for the target is ``system call
fc320d37 25851interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25852(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25853packet.
fc320d37
SL
25854
25855It's important for the target to know in which
25856state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25857
25858@itemize @bullet
25859@item
25860The system call hasn't been performed on the host yet.
25861
25862@item
25863The system call on the host has been finished.
25864
25865@end itemize
25866
25867These two states can be distinguished by the target by the value of the
25868returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25869call hasn't been performed. This is equivalent to the @code{EINTR} handling
25870on POSIX systems. In any other case, the target may presume that the
fc320d37 25871system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25872as if the break message arrived right after the system call.
25873
fc320d37 25874@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25875yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25876@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25877before the user requests a break, the full action must be finished by
25878@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25879The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25880or the full action has been completed.
25881
25882@node Console I/O
25883@subsection Console I/O
25884@cindex console i/o as part of file-i/o
25885
d3e8051b 25886By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25887descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25888on the @value{GDBN} console is handled as any other file output operation
25889(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25890by @value{GDBN} so that after the target read request from file descriptor
258910 all following typing is buffered until either one of the following
25892conditions is met:
25893
25894@itemize @bullet
25895@item
c8aa23ab 25896The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25897@code{read}
25898system call is treated as finished.
25899
25900@item
7f9087cb 25901The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25902newline.
0ce1b118
CV
25903
25904@item
c8aa23ab
EZ
25905The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25906character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25907
25908@end itemize
25909
fc320d37
SL
25910If the user has typed more characters than fit in the buffer given to
25911the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25912either another @code{read(0, @dots{})} is requested by the target, or debugging
25913is stopped at the user's request.
0ce1b118 25914
0ce1b118 25915
79a6e687
BW
25916@node List of Supported Calls
25917@subsection List of Supported Calls
0ce1b118
CV
25918@cindex list of supported file-i/o calls
25919
25920@menu
25921* open::
25922* close::
25923* read::
25924* write::
25925* lseek::
25926* rename::
25927* unlink::
25928* stat/fstat::
25929* gettimeofday::
25930* isatty::
25931* system::
25932@end menu
25933
25934@node open
25935@unnumberedsubsubsec open
25936@cindex open, file-i/o system call
25937
fc320d37
SL
25938@table @asis
25939@item Synopsis:
0ce1b118 25940@smallexample
0ce1b118
CV
25941int open(const char *pathname, int flags);
25942int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25943@end smallexample
25944
fc320d37
SL
25945@item Request:
25946@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25947
0ce1b118 25948@noindent
fc320d37 25949@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25950
25951@table @code
b383017d 25952@item O_CREAT
0ce1b118
CV
25953If the file does not exist it will be created. The host
25954rules apply as far as file ownership and time stamps
25955are concerned.
25956
b383017d 25957@item O_EXCL
fc320d37 25958When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25959an error and open() fails.
25960
b383017d 25961@item O_TRUNC
0ce1b118 25962If the file already exists and the open mode allows
fc320d37
SL
25963writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25964truncated to zero length.
0ce1b118 25965
b383017d 25966@item O_APPEND
0ce1b118
CV
25967The file is opened in append mode.
25968
b383017d 25969@item O_RDONLY
0ce1b118
CV
25970The file is opened for reading only.
25971
b383017d 25972@item O_WRONLY
0ce1b118
CV
25973The file is opened for writing only.
25974
b383017d 25975@item O_RDWR
0ce1b118 25976The file is opened for reading and writing.
fc320d37 25977@end table
0ce1b118
CV
25978
25979@noindent
fc320d37 25980Other bits are silently ignored.
0ce1b118 25981
0ce1b118
CV
25982
25983@noindent
fc320d37 25984@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25985
25986@table @code
b383017d 25987@item S_IRUSR
0ce1b118
CV
25988User has read permission.
25989
b383017d 25990@item S_IWUSR
0ce1b118
CV
25991User has write permission.
25992
b383017d 25993@item S_IRGRP
0ce1b118
CV
25994Group has read permission.
25995
b383017d 25996@item S_IWGRP
0ce1b118
CV
25997Group has write permission.
25998
b383017d 25999@item S_IROTH
0ce1b118
CV
26000Others have read permission.
26001
b383017d 26002@item S_IWOTH
0ce1b118 26003Others have write permission.
fc320d37 26004@end table
0ce1b118
CV
26005
26006@noindent
fc320d37 26007Other bits are silently ignored.
0ce1b118 26008
0ce1b118 26009
fc320d37
SL
26010@item Return value:
26011@code{open} returns the new file descriptor or -1 if an error
26012occurred.
0ce1b118 26013
fc320d37 26014@item Errors:
0ce1b118
CV
26015
26016@table @code
b383017d 26017@item EEXIST
fc320d37 26018@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 26019
b383017d 26020@item EISDIR
fc320d37 26021@var{pathname} refers to a directory.
0ce1b118 26022
b383017d 26023@item EACCES
0ce1b118
CV
26024The requested access is not allowed.
26025
26026@item ENAMETOOLONG
fc320d37 26027@var{pathname} was too long.
0ce1b118 26028
b383017d 26029@item ENOENT
fc320d37 26030A directory component in @var{pathname} does not exist.
0ce1b118 26031
b383017d 26032@item ENODEV
fc320d37 26033@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 26034
b383017d 26035@item EROFS
fc320d37 26036@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
26037write access was requested.
26038
b383017d 26039@item EFAULT
fc320d37 26040@var{pathname} is an invalid pointer value.
0ce1b118 26041
b383017d 26042@item ENOSPC
0ce1b118
CV
26043No space on device to create the file.
26044
b383017d 26045@item EMFILE
0ce1b118
CV
26046The process already has the maximum number of files open.
26047
b383017d 26048@item ENFILE
0ce1b118
CV
26049The limit on the total number of files open on the system
26050has been reached.
26051
b383017d 26052@item EINTR
0ce1b118
CV
26053The call was interrupted by the user.
26054@end table
26055
fc320d37
SL
26056@end table
26057
0ce1b118
CV
26058@node close
26059@unnumberedsubsubsec close
26060@cindex close, file-i/o system call
26061
fc320d37
SL
26062@table @asis
26063@item Synopsis:
0ce1b118 26064@smallexample
0ce1b118 26065int close(int fd);
fc320d37 26066@end smallexample
0ce1b118 26067
fc320d37
SL
26068@item Request:
26069@samp{Fclose,@var{fd}}
0ce1b118 26070
fc320d37
SL
26071@item Return value:
26072@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 26073
fc320d37 26074@item Errors:
0ce1b118
CV
26075
26076@table @code
b383017d 26077@item EBADF
fc320d37 26078@var{fd} isn't a valid open file descriptor.
0ce1b118 26079
b383017d 26080@item EINTR
0ce1b118
CV
26081The call was interrupted by the user.
26082@end table
26083
fc320d37
SL
26084@end table
26085
0ce1b118
CV
26086@node read
26087@unnumberedsubsubsec read
26088@cindex read, file-i/o system call
26089
fc320d37
SL
26090@table @asis
26091@item Synopsis:
0ce1b118 26092@smallexample
0ce1b118 26093int read(int fd, void *buf, unsigned int count);
fc320d37 26094@end smallexample
0ce1b118 26095
fc320d37
SL
26096@item Request:
26097@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 26098
fc320d37 26099@item Return value:
0ce1b118
CV
26100On success, the number of bytes read is returned.
26101Zero indicates end of file. If count is zero, read
b383017d 26102returns zero as well. On error, -1 is returned.
0ce1b118 26103
fc320d37 26104@item Errors:
0ce1b118
CV
26105
26106@table @code
b383017d 26107@item EBADF
fc320d37 26108@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
26109reading.
26110
b383017d 26111@item EFAULT
fc320d37 26112@var{bufptr} is an invalid pointer value.
0ce1b118 26113
b383017d 26114@item EINTR
0ce1b118
CV
26115The call was interrupted by the user.
26116@end table
26117
fc320d37
SL
26118@end table
26119
0ce1b118
CV
26120@node write
26121@unnumberedsubsubsec write
26122@cindex write, file-i/o system call
26123
fc320d37
SL
26124@table @asis
26125@item Synopsis:
0ce1b118 26126@smallexample
0ce1b118 26127int write(int fd, const void *buf, unsigned int count);
fc320d37 26128@end smallexample
0ce1b118 26129
fc320d37
SL
26130@item Request:
26131@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 26132
fc320d37 26133@item Return value:
0ce1b118
CV
26134On success, the number of bytes written are returned.
26135Zero indicates nothing was written. On error, -1
26136is returned.
26137
fc320d37 26138@item Errors:
0ce1b118
CV
26139
26140@table @code
b383017d 26141@item EBADF
fc320d37 26142@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
26143writing.
26144
b383017d 26145@item EFAULT
fc320d37 26146@var{bufptr} is an invalid pointer value.
0ce1b118 26147
b383017d 26148@item EFBIG
0ce1b118 26149An attempt was made to write a file that exceeds the
db2e3e2e 26150host-specific maximum file size allowed.
0ce1b118 26151
b383017d 26152@item ENOSPC
0ce1b118
CV
26153No space on device to write the data.
26154
b383017d 26155@item EINTR
0ce1b118
CV
26156The call was interrupted by the user.
26157@end table
26158
fc320d37
SL
26159@end table
26160
0ce1b118
CV
26161@node lseek
26162@unnumberedsubsubsec lseek
26163@cindex lseek, file-i/o system call
26164
fc320d37
SL
26165@table @asis
26166@item Synopsis:
0ce1b118 26167@smallexample
0ce1b118 26168long lseek (int fd, long offset, int flag);
0ce1b118
CV
26169@end smallexample
26170
fc320d37
SL
26171@item Request:
26172@samp{Flseek,@var{fd},@var{offset},@var{flag}}
26173
26174@var{flag} is one of:
0ce1b118
CV
26175
26176@table @code
b383017d 26177@item SEEK_SET
fc320d37 26178The offset is set to @var{offset} bytes.
0ce1b118 26179
b383017d 26180@item SEEK_CUR
fc320d37 26181The offset is set to its current location plus @var{offset}
0ce1b118
CV
26182bytes.
26183
b383017d 26184@item SEEK_END
fc320d37 26185The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
26186bytes.
26187@end table
26188
fc320d37 26189@item Return value:
0ce1b118
CV
26190On success, the resulting unsigned offset in bytes from
26191the beginning of the file is returned. Otherwise, a
26192value of -1 is returned.
26193
fc320d37 26194@item Errors:
0ce1b118
CV
26195
26196@table @code
b383017d 26197@item EBADF
fc320d37 26198@var{fd} is not a valid open file descriptor.
0ce1b118 26199
b383017d 26200@item ESPIPE
fc320d37 26201@var{fd} is associated with the @value{GDBN} console.
0ce1b118 26202
b383017d 26203@item EINVAL
fc320d37 26204@var{flag} is not a proper value.
0ce1b118 26205
b383017d 26206@item EINTR
0ce1b118
CV
26207The call was interrupted by the user.
26208@end table
26209
fc320d37
SL
26210@end table
26211
0ce1b118
CV
26212@node rename
26213@unnumberedsubsubsec rename
26214@cindex rename, file-i/o system call
26215
fc320d37
SL
26216@table @asis
26217@item Synopsis:
0ce1b118 26218@smallexample
0ce1b118 26219int rename(const char *oldpath, const char *newpath);
fc320d37 26220@end smallexample
0ce1b118 26221
fc320d37
SL
26222@item Request:
26223@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 26224
fc320d37 26225@item Return value:
0ce1b118
CV
26226On success, zero is returned. On error, -1 is returned.
26227
fc320d37 26228@item Errors:
0ce1b118
CV
26229
26230@table @code
b383017d 26231@item EISDIR
fc320d37 26232@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
26233directory.
26234
b383017d 26235@item EEXIST
fc320d37 26236@var{newpath} is a non-empty directory.
0ce1b118 26237
b383017d 26238@item EBUSY
fc320d37 26239@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
26240process.
26241
b383017d 26242@item EINVAL
0ce1b118
CV
26243An attempt was made to make a directory a subdirectory
26244of itself.
26245
b383017d 26246@item ENOTDIR
fc320d37
SL
26247A component used as a directory in @var{oldpath} or new
26248path is not a directory. Or @var{oldpath} is a directory
26249and @var{newpath} exists but is not a directory.
0ce1b118 26250
b383017d 26251@item EFAULT
fc320d37 26252@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 26253
b383017d 26254@item EACCES
0ce1b118
CV
26255No access to the file or the path of the file.
26256
26257@item ENAMETOOLONG
b383017d 26258
fc320d37 26259@var{oldpath} or @var{newpath} was too long.
0ce1b118 26260
b383017d 26261@item ENOENT
fc320d37 26262A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 26263
b383017d 26264@item EROFS
0ce1b118
CV
26265The file is on a read-only filesystem.
26266
b383017d 26267@item ENOSPC
0ce1b118
CV
26268The device containing the file has no room for the new
26269directory entry.
26270
b383017d 26271@item EINTR
0ce1b118
CV
26272The call was interrupted by the user.
26273@end table
26274
fc320d37
SL
26275@end table
26276
0ce1b118
CV
26277@node unlink
26278@unnumberedsubsubsec unlink
26279@cindex unlink, file-i/o system call
26280
fc320d37
SL
26281@table @asis
26282@item Synopsis:
0ce1b118 26283@smallexample
0ce1b118 26284int unlink(const char *pathname);
fc320d37 26285@end smallexample
0ce1b118 26286
fc320d37
SL
26287@item Request:
26288@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 26289
fc320d37 26290@item Return value:
0ce1b118
CV
26291On success, zero is returned. On error, -1 is returned.
26292
fc320d37 26293@item Errors:
0ce1b118
CV
26294
26295@table @code
b383017d 26296@item EACCES
0ce1b118
CV
26297No access to the file or the path of the file.
26298
b383017d 26299@item EPERM
0ce1b118
CV
26300The system does not allow unlinking of directories.
26301
b383017d 26302@item EBUSY
fc320d37 26303The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
26304being used by another process.
26305
b383017d 26306@item EFAULT
fc320d37 26307@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
26308
26309@item ENAMETOOLONG
fc320d37 26310@var{pathname} was too long.
0ce1b118 26311
b383017d 26312@item ENOENT
fc320d37 26313A directory component in @var{pathname} does not exist.
0ce1b118 26314
b383017d 26315@item ENOTDIR
0ce1b118
CV
26316A component of the path is not a directory.
26317
b383017d 26318@item EROFS
0ce1b118
CV
26319The file is on a read-only filesystem.
26320
b383017d 26321@item EINTR
0ce1b118
CV
26322The call was interrupted by the user.
26323@end table
26324
fc320d37
SL
26325@end table
26326
0ce1b118
CV
26327@node stat/fstat
26328@unnumberedsubsubsec stat/fstat
26329@cindex fstat, file-i/o system call
26330@cindex stat, file-i/o system call
26331
fc320d37
SL
26332@table @asis
26333@item Synopsis:
0ce1b118 26334@smallexample
0ce1b118
CV
26335int stat(const char *pathname, struct stat *buf);
26336int fstat(int fd, struct stat *buf);
fc320d37 26337@end smallexample
0ce1b118 26338
fc320d37
SL
26339@item Request:
26340@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
26341@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 26342
fc320d37 26343@item Return value:
0ce1b118
CV
26344On success, zero is returned. On error, -1 is returned.
26345
fc320d37 26346@item Errors:
0ce1b118
CV
26347
26348@table @code
b383017d 26349@item EBADF
fc320d37 26350@var{fd} is not a valid open file.
0ce1b118 26351
b383017d 26352@item ENOENT
fc320d37 26353A directory component in @var{pathname} does not exist or the
0ce1b118
CV
26354path is an empty string.
26355
b383017d 26356@item ENOTDIR
0ce1b118
CV
26357A component of the path is not a directory.
26358
b383017d 26359@item EFAULT
fc320d37 26360@var{pathnameptr} is an invalid pointer value.
0ce1b118 26361
b383017d 26362@item EACCES
0ce1b118
CV
26363No access to the file or the path of the file.
26364
26365@item ENAMETOOLONG
fc320d37 26366@var{pathname} was too long.
0ce1b118 26367
b383017d 26368@item EINTR
0ce1b118
CV
26369The call was interrupted by the user.
26370@end table
26371
fc320d37
SL
26372@end table
26373
0ce1b118
CV
26374@node gettimeofday
26375@unnumberedsubsubsec gettimeofday
26376@cindex gettimeofday, file-i/o system call
26377
fc320d37
SL
26378@table @asis
26379@item Synopsis:
0ce1b118 26380@smallexample
0ce1b118 26381int gettimeofday(struct timeval *tv, void *tz);
fc320d37 26382@end smallexample
0ce1b118 26383
fc320d37
SL
26384@item Request:
26385@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 26386
fc320d37 26387@item Return value:
0ce1b118
CV
26388On success, 0 is returned, -1 otherwise.
26389
fc320d37 26390@item Errors:
0ce1b118
CV
26391
26392@table @code
b383017d 26393@item EINVAL
fc320d37 26394@var{tz} is a non-NULL pointer.
0ce1b118 26395
b383017d 26396@item EFAULT
fc320d37
SL
26397@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
26398@end table
26399
0ce1b118
CV
26400@end table
26401
26402@node isatty
26403@unnumberedsubsubsec isatty
26404@cindex isatty, file-i/o system call
26405
fc320d37
SL
26406@table @asis
26407@item Synopsis:
0ce1b118 26408@smallexample
0ce1b118 26409int isatty(int fd);
fc320d37 26410@end smallexample
0ce1b118 26411
fc320d37
SL
26412@item Request:
26413@samp{Fisatty,@var{fd}}
0ce1b118 26414
fc320d37
SL
26415@item Return value:
26416Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26417
fc320d37 26418@item Errors:
0ce1b118
CV
26419
26420@table @code
b383017d 26421@item EINTR
0ce1b118
CV
26422The call was interrupted by the user.
26423@end table
26424
fc320d37
SL
26425@end table
26426
26427Note that the @code{isatty} call is treated as a special case: it returns
264281 to the target if the file descriptor is attached
26429to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26430would require implementing @code{ioctl} and would be more complex than
26431needed.
26432
26433
0ce1b118
CV
26434@node system
26435@unnumberedsubsubsec system
26436@cindex system, file-i/o system call
26437
fc320d37
SL
26438@table @asis
26439@item Synopsis:
0ce1b118 26440@smallexample
0ce1b118 26441int system(const char *command);
fc320d37 26442@end smallexample
0ce1b118 26443
fc320d37
SL
26444@item Request:
26445@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26446
fc320d37 26447@item Return value:
5600ea19
NS
26448If @var{len} is zero, the return value indicates whether a shell is
26449available. A zero return value indicates a shell is not available.
26450For non-zero @var{len}, the value returned is -1 on error and the
26451return status of the command otherwise. Only the exit status of the
26452command is returned, which is extracted from the host's @code{system}
26453return value by calling @code{WEXITSTATUS(retval)}. In case
26454@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26455
fc320d37 26456@item Errors:
0ce1b118
CV
26457
26458@table @code
b383017d 26459@item EINTR
0ce1b118
CV
26460The call was interrupted by the user.
26461@end table
26462
fc320d37
SL
26463@end table
26464
26465@value{GDBN} takes over the full task of calling the necessary host calls
26466to perform the @code{system} call. The return value of @code{system} on
26467the host is simplified before it's returned
26468to the target. Any termination signal information from the child process
26469is discarded, and the return value consists
26470entirely of the exit status of the called command.
26471
26472Due to security concerns, the @code{system} call is by default refused
26473by @value{GDBN}. The user has to allow this call explicitly with the
26474@code{set remote system-call-allowed 1} command.
26475
26476@table @code
26477@item set remote system-call-allowed
26478@kindex set remote system-call-allowed
26479Control whether to allow the @code{system} calls in the File I/O
26480protocol for the remote target. The default is zero (disabled).
26481
26482@item show remote system-call-allowed
26483@kindex show remote system-call-allowed
26484Show whether the @code{system} calls are allowed in the File I/O
26485protocol.
26486@end table
26487
db2e3e2e
BW
26488@node Protocol-specific Representation of Datatypes
26489@subsection Protocol-specific Representation of Datatypes
26490@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26491
26492@menu
79a6e687
BW
26493* Integral Datatypes::
26494* Pointer Values::
26495* Memory Transfer::
0ce1b118
CV
26496* struct stat::
26497* struct timeval::
26498@end menu
26499
79a6e687
BW
26500@node Integral Datatypes
26501@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26502@cindex integral datatypes, in file-i/o protocol
26503
fc320d37
SL
26504The integral datatypes used in the system calls are @code{int},
26505@code{unsigned int}, @code{long}, @code{unsigned long},
26506@code{mode_t}, and @code{time_t}.
0ce1b118 26507
fc320d37 26508@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26509implemented as 32 bit values in this protocol.
26510
fc320d37 26511@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26512
0ce1b118
CV
26513@xref{Limits}, for corresponding MIN and MAX values (similar to those
26514in @file{limits.h}) to allow range checking on host and target.
26515
26516@code{time_t} datatypes are defined as seconds since the Epoch.
26517
26518All integral datatypes transferred as part of a memory read or write of a
26519structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26520byte order.
26521
79a6e687
BW
26522@node Pointer Values
26523@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26524@cindex pointer values, in file-i/o protocol
26525
26526Pointers to target data are transmitted as they are. An exception
26527is made for pointers to buffers for which the length isn't
26528transmitted as part of the function call, namely strings. Strings
26529are transmitted as a pointer/length pair, both as hex values, e.g.@:
26530
26531@smallexample
26532@code{1aaf/12}
26533@end smallexample
26534
26535@noindent
26536which is a pointer to data of length 18 bytes at position 0x1aaf.
26537The length is defined as the full string length in bytes, including
fc320d37
SL
26538the trailing null byte. For example, the string @code{"hello world"}
26539at address 0x123456 is transmitted as
0ce1b118
CV
26540
26541@smallexample
fc320d37 26542@code{123456/d}
0ce1b118
CV
26543@end smallexample
26544
79a6e687
BW
26545@node Memory Transfer
26546@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26547@cindex memory transfer, in file-i/o protocol
26548
26549Structured data which is transferred using a memory read or write (for
db2e3e2e 26550example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26551with all scalar multibyte datatypes being big endian. Translation to
26552this representation needs to be done both by the target before the @code{F}
26553packet is sent, and by @value{GDBN} before
26554it transfers memory to the target. Transferred pointers to structured
26555data should point to the already-coerced data at any time.
0ce1b118 26556
0ce1b118
CV
26557
26558@node struct stat
26559@unnumberedsubsubsec struct stat
26560@cindex struct stat, in file-i/o protocol
26561
fc320d37
SL
26562The buffer of type @code{struct stat} used by the target and @value{GDBN}
26563is defined as follows:
0ce1b118
CV
26564
26565@smallexample
26566struct stat @{
26567 unsigned int st_dev; /* device */
26568 unsigned int st_ino; /* inode */
26569 mode_t st_mode; /* protection */
26570 unsigned int st_nlink; /* number of hard links */
26571 unsigned int st_uid; /* user ID of owner */
26572 unsigned int st_gid; /* group ID of owner */
26573 unsigned int st_rdev; /* device type (if inode device) */
26574 unsigned long st_size; /* total size, in bytes */
26575 unsigned long st_blksize; /* blocksize for filesystem I/O */
26576 unsigned long st_blocks; /* number of blocks allocated */
26577 time_t st_atime; /* time of last access */
26578 time_t st_mtime; /* time of last modification */
26579 time_t st_ctime; /* time of last change */
26580@};
26581@end smallexample
26582
fc320d37 26583The integral datatypes conform to the definitions given in the
79a6e687 26584appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26585structure is of size 64 bytes.
26586
26587The values of several fields have a restricted meaning and/or
26588range of values.
26589
fc320d37 26590@table @code
0ce1b118 26591
fc320d37
SL
26592@item st_dev
26593A value of 0 represents a file, 1 the console.
0ce1b118 26594
fc320d37
SL
26595@item st_ino
26596No valid meaning for the target. Transmitted unchanged.
0ce1b118 26597
fc320d37
SL
26598@item st_mode
26599Valid mode bits are described in @ref{Constants}. Any other
26600bits have currently no meaning for the target.
0ce1b118 26601
fc320d37
SL
26602@item st_uid
26603@itemx st_gid
26604@itemx st_rdev
26605No valid meaning for the target. Transmitted unchanged.
0ce1b118 26606
fc320d37
SL
26607@item st_atime
26608@itemx st_mtime
26609@itemx st_ctime
26610These values have a host and file system dependent
26611accuracy. Especially on Windows hosts, the file system may not
26612support exact timing values.
26613@end table
0ce1b118 26614
fc320d37
SL
26615The target gets a @code{struct stat} of the above representation and is
26616responsible for coercing it to the target representation before
0ce1b118
CV
26617continuing.
26618
fc320d37
SL
26619Note that due to size differences between the host, target, and protocol
26620representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26621get truncated on the target.
26622
26623@node struct timeval
26624@unnumberedsubsubsec struct timeval
26625@cindex struct timeval, in file-i/o protocol
26626
fc320d37 26627The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26628is defined as follows:
26629
26630@smallexample
b383017d 26631struct timeval @{
0ce1b118
CV
26632 time_t tv_sec; /* second */
26633 long tv_usec; /* microsecond */
26634@};
26635@end smallexample
26636
fc320d37 26637The integral datatypes conform to the definitions given in the
79a6e687 26638appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26639structure is of size 8 bytes.
26640
26641@node Constants
26642@subsection Constants
26643@cindex constants, in file-i/o protocol
26644
26645The following values are used for the constants inside of the
fc320d37 26646protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26647values before and after the call as needed.
26648
26649@menu
79a6e687
BW
26650* Open Flags::
26651* mode_t Values::
26652* Errno Values::
26653* Lseek Flags::
0ce1b118
CV
26654* Limits::
26655@end menu
26656
79a6e687
BW
26657@node Open Flags
26658@unnumberedsubsubsec Open Flags
0ce1b118
CV
26659@cindex open flags, in file-i/o protocol
26660
26661All values are given in hexadecimal representation.
26662
26663@smallexample
26664 O_RDONLY 0x0
26665 O_WRONLY 0x1
26666 O_RDWR 0x2
26667 O_APPEND 0x8
26668 O_CREAT 0x200
26669 O_TRUNC 0x400
26670 O_EXCL 0x800
26671@end smallexample
26672
79a6e687
BW
26673@node mode_t Values
26674@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26675@cindex mode_t values, in file-i/o protocol
26676
26677All values are given in octal representation.
26678
26679@smallexample
26680 S_IFREG 0100000
26681 S_IFDIR 040000
26682 S_IRUSR 0400
26683 S_IWUSR 0200
26684 S_IXUSR 0100
26685 S_IRGRP 040
26686 S_IWGRP 020
26687 S_IXGRP 010
26688 S_IROTH 04
26689 S_IWOTH 02
26690 S_IXOTH 01
26691@end smallexample
26692
79a6e687
BW
26693@node Errno Values
26694@unnumberedsubsubsec Errno Values
0ce1b118
CV
26695@cindex errno values, in file-i/o protocol
26696
26697All values are given in decimal representation.
26698
26699@smallexample
26700 EPERM 1
26701 ENOENT 2
26702 EINTR 4
26703 EBADF 9
26704 EACCES 13
26705 EFAULT 14
26706 EBUSY 16
26707 EEXIST 17
26708 ENODEV 19
26709 ENOTDIR 20
26710 EISDIR 21
26711 EINVAL 22
26712 ENFILE 23
26713 EMFILE 24
26714 EFBIG 27
26715 ENOSPC 28
26716 ESPIPE 29
26717 EROFS 30
26718 ENAMETOOLONG 91
26719 EUNKNOWN 9999
26720@end smallexample
26721
fc320d37 26722 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26723 any error value not in the list of supported error numbers.
26724
79a6e687
BW
26725@node Lseek Flags
26726@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26727@cindex lseek flags, in file-i/o protocol
26728
26729@smallexample
26730 SEEK_SET 0
26731 SEEK_CUR 1
26732 SEEK_END 2
26733@end smallexample
26734
26735@node Limits
26736@unnumberedsubsubsec Limits
26737@cindex limits, in file-i/o protocol
26738
26739All values are given in decimal representation.
26740
26741@smallexample
26742 INT_MIN -2147483648
26743 INT_MAX 2147483647
26744 UINT_MAX 4294967295
26745 LONG_MIN -9223372036854775808
26746 LONG_MAX 9223372036854775807
26747 ULONG_MAX 18446744073709551615
26748@end smallexample
26749
26750@node File-I/O Examples
26751@subsection File-I/O Examples
26752@cindex file-i/o examples
26753
26754Example sequence of a write call, file descriptor 3, buffer is at target
26755address 0x1234, 6 bytes should be written:
26756
26757@smallexample
26758<- @code{Fwrite,3,1234,6}
26759@emph{request memory read from target}
26760-> @code{m1234,6}
26761<- XXXXXX
26762@emph{return "6 bytes written"}
26763-> @code{F6}
26764@end smallexample
26765
26766Example sequence of a read call, file descriptor 3, buffer is at target
26767address 0x1234, 6 bytes should be read:
26768
26769@smallexample
26770<- @code{Fread,3,1234,6}
26771@emph{request memory write to target}
26772-> @code{X1234,6:XXXXXX}
26773@emph{return "6 bytes read"}
26774-> @code{F6}
26775@end smallexample
26776
26777Example sequence of a read call, call fails on the host due to invalid
fc320d37 26778file descriptor (@code{EBADF}):
0ce1b118
CV
26779
26780@smallexample
26781<- @code{Fread,3,1234,6}
26782-> @code{F-1,9}
26783@end smallexample
26784
c8aa23ab 26785Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26786host is called:
26787
26788@smallexample
26789<- @code{Fread,3,1234,6}
26790-> @code{F-1,4,C}
26791<- @code{T02}
26792@end smallexample
26793
c8aa23ab 26794Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26795host is called:
26796
26797@smallexample
26798<- @code{Fread,3,1234,6}
26799-> @code{X1234,6:XXXXXX}
26800<- @code{T02}
26801@end smallexample
26802
cfa9d6d9
DJ
26803@node Library List Format
26804@section Library List Format
26805@cindex library list format, remote protocol
26806
26807On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26808same process as your application to manage libraries. In this case,
26809@value{GDBN} can use the loader's symbol table and normal memory
26810operations to maintain a list of shared libraries. On other
26811platforms, the operating system manages loaded libraries.
26812@value{GDBN} can not retrieve the list of currently loaded libraries
26813through memory operations, so it uses the @samp{qXfer:libraries:read}
26814packet (@pxref{qXfer library list read}) instead. The remote stub
26815queries the target's operating system and reports which libraries
26816are loaded.
26817
26818The @samp{qXfer:libraries:read} packet returns an XML document which
26819lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26820associated name and one or more segment or section base addresses,
26821which report where the library was loaded in memory.
26822
26823For the common case of libraries that are fully linked binaries, the
26824library should have a list of segments. If the target supports
26825dynamic linking of a relocatable object file, its library XML element
26826should instead include a list of allocated sections. The segment or
26827section bases are start addresses, not relocation offsets; they do not
26828depend on the library's link-time base addresses.
cfa9d6d9 26829
9cceb671
DJ
26830@value{GDBN} must be linked with the Expat library to support XML
26831library lists. @xref{Expat}.
26832
cfa9d6d9
DJ
26833A simple memory map, with one loaded library relocated by a single
26834offset, looks like this:
26835
26836@smallexample
26837<library-list>
26838 <library name="/lib/libc.so.6">
26839 <segment address="0x10000000"/>
26840 </library>
26841</library-list>
26842@end smallexample
26843
1fddbabb
PA
26844Another simple memory map, with one loaded library with three
26845allocated sections (.text, .data, .bss), looks like this:
26846
26847@smallexample
26848<library-list>
26849 <library name="sharedlib.o">
26850 <section address="0x10000000"/>
26851 <section address="0x20000000"/>
26852 <section address="0x30000000"/>
26853 </library>
26854</library-list>
26855@end smallexample
26856
cfa9d6d9
DJ
26857The format of a library list is described by this DTD:
26858
26859@smallexample
26860<!-- library-list: Root element with versioning -->
26861<!ELEMENT library-list (library)*>
26862<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26863<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26864<!ATTLIST library name CDATA #REQUIRED>
26865<!ELEMENT segment EMPTY>
26866<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26867<!ELEMENT section EMPTY>
26868<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26869@end smallexample
26870
1fddbabb
PA
26871In addition, segments and section descriptors cannot be mixed within a
26872single library element, and you must supply at least one segment or
26873section for each library.
26874
79a6e687
BW
26875@node Memory Map Format
26876@section Memory Map Format
68437a39
DJ
26877@cindex memory map format
26878
26879To be able to write into flash memory, @value{GDBN} needs to obtain a
26880memory map from the target. This section describes the format of the
26881memory map.
26882
26883The memory map is obtained using the @samp{qXfer:memory-map:read}
26884(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26885lists memory regions.
26886
26887@value{GDBN} must be linked with the Expat library to support XML
26888memory maps. @xref{Expat}.
26889
26890The top-level structure of the document is shown below:
68437a39
DJ
26891
26892@smallexample
26893<?xml version="1.0"?>
26894<!DOCTYPE memory-map
26895 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26896 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26897<memory-map>
26898 region...
26899</memory-map>
26900@end smallexample
26901
26902Each region can be either:
26903
26904@itemize
26905
26906@item
26907A region of RAM starting at @var{addr} and extending for @var{length}
26908bytes from there:
26909
26910@smallexample
26911<memory type="ram" start="@var{addr}" length="@var{length}"/>
26912@end smallexample
26913
26914
26915@item
26916A region of read-only memory:
26917
26918@smallexample
26919<memory type="rom" start="@var{addr}" length="@var{length}"/>
26920@end smallexample
26921
26922
26923@item
26924A region of flash memory, with erasure blocks @var{blocksize}
26925bytes in length:
26926
26927@smallexample
26928<memory type="flash" start="@var{addr}" length="@var{length}">
26929 <property name="blocksize">@var{blocksize}</property>
26930</memory>
26931@end smallexample
26932
26933@end itemize
26934
26935Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26936by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26937packets to write to addresses in such ranges.
26938
26939The formal DTD for memory map format is given below:
26940
26941@smallexample
26942<!-- ................................................... -->
26943<!-- Memory Map XML DTD ................................ -->
26944<!-- File: memory-map.dtd .............................. -->
26945<!-- .................................... .............. -->
26946<!-- memory-map.dtd -->
26947<!-- memory-map: Root element with versioning -->
26948<!ELEMENT memory-map (memory | property)>
26949<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26950<!ELEMENT memory (property)>
26951<!-- memory: Specifies a memory region,
26952 and its type, or device. -->
26953<!ATTLIST memory type CDATA #REQUIRED
26954 start CDATA #REQUIRED
26955 length CDATA #REQUIRED
26956 device CDATA #IMPLIED>
26957<!-- property: Generic attribute tag -->
26958<!ELEMENT property (#PCDATA | property)*>
26959<!ATTLIST property name CDATA #REQUIRED>
26960@end smallexample
26961
f418dd93
DJ
26962@include agentexpr.texi
26963
23181151
DJ
26964@node Target Descriptions
26965@appendix Target Descriptions
26966@cindex target descriptions
26967
26968@strong{Warning:} target descriptions are still under active development,
26969and the contents and format may change between @value{GDBN} releases.
26970The format is expected to stabilize in the future.
26971
26972One of the challenges of using @value{GDBN} to debug embedded systems
26973is that there are so many minor variants of each processor
26974architecture in use. It is common practice for vendors to start with
26975a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26976and then make changes to adapt it to a particular market niche. Some
26977architectures have hundreds of variants, available from dozens of
26978vendors. This leads to a number of problems:
26979
26980@itemize @bullet
26981@item
26982With so many different customized processors, it is difficult for
26983the @value{GDBN} maintainers to keep up with the changes.
26984@item
26985Since individual variants may have short lifetimes or limited
26986audiences, it may not be worthwhile to carry information about every
26987variant in the @value{GDBN} source tree.
26988@item
26989When @value{GDBN} does support the architecture of the embedded system
26990at hand, the task of finding the correct architecture name to give the
26991@command{set architecture} command can be error-prone.
26992@end itemize
26993
26994To address these problems, the @value{GDBN} remote protocol allows a
26995target system to not only identify itself to @value{GDBN}, but to
26996actually describe its own features. This lets @value{GDBN} support
26997processor variants it has never seen before --- to the extent that the
26998descriptions are accurate, and that @value{GDBN} understands them.
26999
9cceb671
DJ
27000@value{GDBN} must be linked with the Expat library to support XML
27001target descriptions. @xref{Expat}.
123dc839 27002
23181151
DJ
27003@menu
27004* Retrieving Descriptions:: How descriptions are fetched from a target.
27005* Target Description Format:: The contents of a target description.
123dc839
DJ
27006* Predefined Target Types:: Standard types available for target
27007 descriptions.
27008* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
27009@end menu
27010
27011@node Retrieving Descriptions
27012@section Retrieving Descriptions
27013
27014Target descriptions can be read from the target automatically, or
27015specified by the user manually. The default behavior is to read the
27016description from the target. @value{GDBN} retrieves it via the remote
27017protocol using @samp{qXfer} requests (@pxref{General Query Packets,
27018qXfer}). The @var{annex} in the @samp{qXfer} packet will be
27019@samp{target.xml}. The contents of the @samp{target.xml} annex are an
27020XML document, of the form described in @ref{Target Description
27021Format}.
27022
27023Alternatively, you can specify a file to read for the target description.
27024If a file is set, the target will not be queried. The commands to
27025specify a file are:
27026
27027@table @code
27028@cindex set tdesc filename
27029@item set tdesc filename @var{path}
27030Read the target description from @var{path}.
27031
27032@cindex unset tdesc filename
27033@item unset tdesc filename
27034Do not read the XML target description from a file. @value{GDBN}
27035will use the description supplied by the current target.
27036
27037@cindex show tdesc filename
27038@item show tdesc filename
27039Show the filename to read for a target description, if any.
27040@end table
27041
27042
27043@node Target Description Format
27044@section Target Description Format
27045@cindex target descriptions, XML format
27046
27047A target description annex is an @uref{http://www.w3.org/XML/, XML}
27048document which complies with the Document Type Definition provided in
27049the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
27050means you can use generally available tools like @command{xmllint} to
27051check that your feature descriptions are well-formed and valid.
27052However, to help people unfamiliar with XML write descriptions for
27053their targets, we also describe the grammar here.
27054
123dc839
DJ
27055Target descriptions can identify the architecture of the remote target
27056and (for some architectures) provide information about custom register
27057sets. @value{GDBN} can use this information to autoconfigure for your
27058target, or to warn you if you connect to an unsupported target.
23181151
DJ
27059
27060Here is a simple target description:
27061
123dc839 27062@smallexample
1780a0ed 27063<target version="1.0">
23181151
DJ
27064 <architecture>i386:x86-64</architecture>
27065</target>
123dc839 27066@end smallexample
23181151
DJ
27067
27068@noindent
27069This minimal description only says that the target uses
27070the x86-64 architecture.
27071
123dc839
DJ
27072A target description has the following overall form, with [ ] marking
27073optional elements and @dots{} marking repeatable elements. The elements
27074are explained further below.
23181151 27075
123dc839 27076@smallexample
23181151
DJ
27077<?xml version="1.0"?>
27078<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 27079<target version="1.0">
123dc839
DJ
27080 @r{[}@var{architecture}@r{]}
27081 @r{[}@var{feature}@dots{}@r{]}
23181151 27082</target>
123dc839 27083@end smallexample
23181151
DJ
27084
27085@noindent
27086The description is generally insensitive to whitespace and line
27087breaks, under the usual common-sense rules. The XML version
27088declaration and document type declaration can generally be omitted
27089(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
27090useful for XML validation tools. The @samp{version} attribute for
27091@samp{<target>} may also be omitted, but we recommend
27092including it; if future versions of @value{GDBN} use an incompatible
27093revision of @file{gdb-target.dtd}, they will detect and report
27094the version mismatch.
23181151 27095
108546a0
DJ
27096@subsection Inclusion
27097@cindex target descriptions, inclusion
27098@cindex XInclude
27099@ifnotinfo
27100@cindex <xi:include>
27101@end ifnotinfo
27102
27103It can sometimes be valuable to split a target description up into
27104several different annexes, either for organizational purposes, or to
27105share files between different possible target descriptions. You can
27106divide a description into multiple files by replacing any element of
27107the target description with an inclusion directive of the form:
27108
123dc839 27109@smallexample
108546a0 27110<xi:include href="@var{document}"/>
123dc839 27111@end smallexample
108546a0
DJ
27112
27113@noindent
27114When @value{GDBN} encounters an element of this form, it will retrieve
27115the named XML @var{document}, and replace the inclusion directive with
27116the contents of that document. If the current description was read
27117using @samp{qXfer}, then so will be the included document;
27118@var{document} will be interpreted as the name of an annex. If the
27119current description was read from a file, @value{GDBN} will look for
27120@var{document} as a file in the same directory where it found the
27121original description.
27122
123dc839
DJ
27123@subsection Architecture
27124@cindex <architecture>
27125
27126An @samp{<architecture>} element has this form:
27127
27128@smallexample
27129 <architecture>@var{arch}</architecture>
27130@end smallexample
27131
27132@var{arch} is an architecture name from the same selection
27133accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
27134Debugging Target}).
27135
27136@subsection Features
27137@cindex <feature>
27138
27139Each @samp{<feature>} describes some logical portion of the target
27140system. Features are currently used to describe available CPU
27141registers and the types of their contents. A @samp{<feature>} element
27142has this form:
27143
27144@smallexample
27145<feature name="@var{name}">
27146 @r{[}@var{type}@dots{}@r{]}
27147 @var{reg}@dots{}
27148</feature>
27149@end smallexample
27150
27151@noindent
27152Each feature's name should be unique within the description. The name
27153of a feature does not matter unless @value{GDBN} has some special
27154knowledge of the contents of that feature; if it does, the feature
27155should have its standard name. @xref{Standard Target Features}.
27156
27157@subsection Types
27158
27159Any register's value is a collection of bits which @value{GDBN} must
27160interpret. The default interpretation is a two's complement integer,
27161but other types can be requested by name in the register description.
27162Some predefined types are provided by @value{GDBN} (@pxref{Predefined
27163Target Types}), and the description can define additional composite types.
27164
27165Each type element must have an @samp{id} attribute, which gives
27166a unique (within the containing @samp{<feature>}) name to the type.
27167Types must be defined before they are used.
27168
27169@cindex <vector>
27170Some targets offer vector registers, which can be treated as arrays
27171of scalar elements. These types are written as @samp{<vector>} elements,
27172specifying the array element type, @var{type}, and the number of elements,
27173@var{count}:
27174
27175@smallexample
27176<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
27177@end smallexample
27178
27179@cindex <union>
27180If a register's value is usefully viewed in multiple ways, define it
27181with a union type containing the useful representations. The
27182@samp{<union>} element contains one or more @samp{<field>} elements,
27183each of which has a @var{name} and a @var{type}:
27184
27185@smallexample
27186<union id="@var{id}">
27187 <field name="@var{name}" type="@var{type}"/>
27188 @dots{}
27189</union>
27190@end smallexample
27191
27192@subsection Registers
27193@cindex <reg>
27194
27195Each register is represented as an element with this form:
27196
27197@smallexample
27198<reg name="@var{name}"
27199 bitsize="@var{size}"
27200 @r{[}regnum="@var{num}"@r{]}
27201 @r{[}save-restore="@var{save-restore}"@r{]}
27202 @r{[}type="@var{type}"@r{]}
27203 @r{[}group="@var{group}"@r{]}/>
27204@end smallexample
27205
27206@noindent
27207The components are as follows:
27208
27209@table @var
27210
27211@item name
27212The register's name; it must be unique within the target description.
27213
27214@item bitsize
27215The register's size, in bits.
27216
27217@item regnum
27218The register's number. If omitted, a register's number is one greater
27219than that of the previous register (either in the current feature or in
27220a preceeding feature); the first register in the target description
27221defaults to zero. This register number is used to read or write
27222the register; e.g.@: it is used in the remote @code{p} and @code{P}
27223packets, and registers appear in the @code{g} and @code{G} packets
27224in order of increasing register number.
27225
27226@item save-restore
27227Whether the register should be preserved across inferior function
27228calls; this must be either @code{yes} or @code{no}. The default is
27229@code{yes}, which is appropriate for most registers except for
27230some system control registers; this is not related to the target's
27231ABI.
27232
27233@item type
27234The type of the register. @var{type} may be a predefined type, a type
27235defined in the current feature, or one of the special types @code{int}
27236and @code{float}. @code{int} is an integer type of the correct size
27237for @var{bitsize}, and @code{float} is a floating point type (in the
27238architecture's normal floating point format) of the correct size for
27239@var{bitsize}. The default is @code{int}.
27240
27241@item group
27242The register group to which this register belongs. @var{group} must
27243be either @code{general}, @code{float}, or @code{vector}. If no
27244@var{group} is specified, @value{GDBN} will not display the register
27245in @code{info registers}.
27246
27247@end table
27248
27249@node Predefined Target Types
27250@section Predefined Target Types
27251@cindex target descriptions, predefined types
27252
27253Type definitions in the self-description can build up composite types
27254from basic building blocks, but can not define fundamental types. Instead,
27255standard identifiers are provided by @value{GDBN} for the fundamental
27256types. The currently supported types are:
27257
27258@table @code
27259
27260@item int8
27261@itemx int16
27262@itemx int32
27263@itemx int64
7cc46491 27264@itemx int128
123dc839
DJ
27265Signed integer types holding the specified number of bits.
27266
27267@item uint8
27268@itemx uint16
27269@itemx uint32
27270@itemx uint64
7cc46491 27271@itemx uint128
123dc839
DJ
27272Unsigned integer types holding the specified number of bits.
27273
27274@item code_ptr
27275@itemx data_ptr
27276Pointers to unspecified code and data. The program counter and
27277any dedicated return address register may be marked as code
27278pointers; printing a code pointer converts it into a symbolic
27279address. The stack pointer and any dedicated address registers
27280may be marked as data pointers.
27281
6e3bbd1a
PB
27282@item ieee_single
27283Single precision IEEE floating point.
27284
27285@item ieee_double
27286Double precision IEEE floating point.
27287
123dc839
DJ
27288@item arm_fpa_ext
27289The 12-byte extended precision format used by ARM FPA registers.
27290
27291@end table
27292
27293@node Standard Target Features
27294@section Standard Target Features
27295@cindex target descriptions, standard features
27296
27297A target description must contain either no registers or all the
27298target's registers. If the description contains no registers, then
27299@value{GDBN} will assume a default register layout, selected based on
27300the architecture. If the description contains any registers, the
27301default layout will not be used; the standard registers must be
27302described in the target description, in such a way that @value{GDBN}
27303can recognize them.
27304
27305This is accomplished by giving specific names to feature elements
27306which contain standard registers. @value{GDBN} will look for features
27307with those names and verify that they contain the expected registers;
27308if any known feature is missing required registers, or if any required
27309feature is missing, @value{GDBN} will reject the target
27310description. You can add additional registers to any of the
27311standard features --- @value{GDBN} will display them just as if
27312they were added to an unrecognized feature.
27313
27314This section lists the known features and their expected contents.
27315Sample XML documents for these features are included in the
27316@value{GDBN} source tree, in the directory @file{gdb/features}.
27317
27318Names recognized by @value{GDBN} should include the name of the
27319company or organization which selected the name, and the overall
27320architecture to which the feature applies; so e.g.@: the feature
27321containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
27322
ff6f572f
DJ
27323The names of registers are not case sensitive for the purpose
27324of recognizing standard features, but @value{GDBN} will only display
27325registers using the capitalization used in the description.
27326
e9c17194
VP
27327@menu
27328* ARM Features::
1e26b4f8 27329* MIPS Features::
e9c17194 27330* M68K Features::
1e26b4f8 27331* PowerPC Features::
e9c17194
VP
27332@end menu
27333
27334
27335@node ARM Features
123dc839
DJ
27336@subsection ARM Features
27337@cindex target descriptions, ARM features
27338
27339The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
27340It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
27341@samp{lr}, @samp{pc}, and @samp{cpsr}.
27342
27343The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
27344should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
27345
ff6f572f
DJ
27346The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
27347it should contain at least registers @samp{wR0} through @samp{wR15} and
27348@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
27349@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 27350
1e26b4f8 27351@node MIPS Features
f8b73d13
DJ
27352@subsection MIPS Features
27353@cindex target descriptions, MIPS features
27354
27355The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
27356It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
27357@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
27358on the target.
27359
27360The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
27361contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
27362registers. They may be 32-bit or 64-bit depending on the target.
27363
27364The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
27365it may be optional in a future version of @value{GDBN}. It should
27366contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
27367@samp{fir}. They may be 32-bit or 64-bit depending on the target.
27368
822b6570
DJ
27369The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
27370contain a single register, @samp{restart}, which is used by the
27371Linux kernel to control restartable syscalls.
27372
e9c17194
VP
27373@node M68K Features
27374@subsection M68K Features
27375@cindex target descriptions, M68K features
27376
27377@table @code
27378@item @samp{org.gnu.gdb.m68k.core}
27379@itemx @samp{org.gnu.gdb.coldfire.core}
27380@itemx @samp{org.gnu.gdb.fido.core}
27381One of those features must be always present.
27382The feature that is present determines which flavor of m86k is
27383used. The feature that is present should contain registers
27384@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
27385@samp{sp}, @samp{ps} and @samp{pc}.
27386
27387@item @samp{org.gnu.gdb.coldfire.fp}
27388This feature is optional. If present, it should contain registers
27389@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
27390@samp{fpiaddr}.
27391@end table
27392
1e26b4f8 27393@node PowerPC Features
7cc46491
DJ
27394@subsection PowerPC Features
27395@cindex target descriptions, PowerPC features
27396
27397The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
27398targets. It should contain registers @samp{r0} through @samp{r31},
27399@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
27400@samp{xer}. They may be 32-bit or 64-bit depending on the target.
27401
27402The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27403contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27404
27405The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27406contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27407and @samp{vrsave}.
27408
27409The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27410contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27411@samp{spefscr}. SPE targets should provide 32-bit registers in
27412@samp{org.gnu.gdb.power.core} and provide the upper halves in
27413@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27414these to present registers @samp{ev0} through @samp{ev31} to the
27415user.
27416
aab4e0ec 27417@include gpl.texi
eb12ee30 27418
2154891a 27419@raisesections
6826cf00 27420@include fdl.texi
2154891a 27421@lowersections
6826cf00 27422
6d2ebf8b 27423@node Index
c906108c
SS
27424@unnumbered Index
27425
27426@printindex cp
27427
27428@tex
27429% I think something like @colophon should be in texinfo. In the
27430% meantime:
27431\long\def\colophon{\hbox to0pt{}\vfill
27432\centerline{The body of this manual is set in}
27433\centerline{\fontname\tenrm,}
27434\centerline{with headings in {\bf\fontname\tenbf}}
27435\centerline{and examples in {\tt\fontname\tentt}.}
27436\centerline{{\it\fontname\tenit\/},}
27437\centerline{{\bf\fontname\tenbf}, and}
27438\centerline{{\sl\fontname\tensl\/}}
27439\centerline{are used for emphasis.}\vfill}
27440\page\colophon
27441% Blame: doc@cygnus.com, 1991.
27442@end tex
27443
c906108c 27444@bye
This page took 2.74085 seconds and 4 git commands to generate.