* eval.c (evaluate_subexp_standard): Use value_subscripted_rvalue for
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
cda4ce5a 1654program. For example, you can show the arguments passed to a function
c906108c
SS
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
8edfe269
DJ
1821that process run your program. In some environments without processes,
1822@code{run} jumps to the start of your program. Other targets,
1823like @samp{remote}, are always running. If you get an error
1824message like this one:
1825
1826@smallexample
1827The "remote" target does not support "run".
1828Try "help target" or "continue".
1829@end smallexample
1830
1831@noindent
1832then use @code{continue} to run your program. You may need @code{load}
1833first (@pxref{load}).
c906108c
SS
1834
1835The execution of a program is affected by certain information it
1836receives from its superior. @value{GDBN} provides ways to specify this
1837information, which you must do @emph{before} starting your program. (You
1838can change it after starting your program, but such changes only affect
1839your program the next time you start it.) This information may be
1840divided into four categories:
1841
1842@table @asis
1843@item The @emph{arguments.}
1844Specify the arguments to give your program as the arguments of the
1845@code{run} command. If a shell is available on your target, the shell
1846is used to pass the arguments, so that you may use normal conventions
1847(such as wildcard expansion or variable substitution) in describing
1848the arguments.
1849In Unix systems, you can control which shell is used with the
1850@code{SHELL} environment variable.
79a6e687 1851@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1852
1853@item The @emph{environment.}
1854Your program normally inherits its environment from @value{GDBN}, but you can
1855use the @value{GDBN} commands @code{set environment} and @code{unset
1856environment} to change parts of the environment that affect
79a6e687 1857your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1858
1859@item The @emph{working directory.}
1860Your program inherits its working directory from @value{GDBN}. You can set
1861the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1862@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1863
1864@item The @emph{standard input and output.}
1865Your program normally uses the same device for standard input and
1866standard output as @value{GDBN} is using. You can redirect input and output
1867in the @code{run} command line, or you can use the @code{tty} command to
1868set a different device for your program.
79a6e687 1869@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1870
1871@cindex pipes
1872@emph{Warning:} While input and output redirection work, you cannot use
1873pipes to pass the output of the program you are debugging to another
1874program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1875wrong program.
1876@end table
c906108c
SS
1877
1878When you issue the @code{run} command, your program begins to execute
79a6e687 1879immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1880of how to arrange for your program to stop. Once your program has
1881stopped, you may call functions in your program, using the @code{print}
1882or @code{call} commands. @xref{Data, ,Examining Data}.
1883
1884If the modification time of your symbol file has changed since the last
1885time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1886table, and reads it again. When it does this, @value{GDBN} tries to retain
1887your current breakpoints.
1888
4e8b0763
JB
1889@table @code
1890@kindex start
1891@item start
1892@cindex run to main procedure
1893The name of the main procedure can vary from language to language.
1894With C or C@t{++}, the main procedure name is always @code{main}, but
1895other languages such as Ada do not require a specific name for their
1896main procedure. The debugger provides a convenient way to start the
1897execution of the program and to stop at the beginning of the main
1898procedure, depending on the language used.
1899
1900The @samp{start} command does the equivalent of setting a temporary
1901breakpoint at the beginning of the main procedure and then invoking
1902the @samp{run} command.
1903
f018e82f
EZ
1904@cindex elaboration phase
1905Some programs contain an @dfn{elaboration} phase where some startup code is
1906executed before the main procedure is called. This depends on the
1907languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1908constructors for static and global objects are executed before
1909@code{main} is called. It is therefore possible that the debugger stops
1910before reaching the main procedure. However, the temporary breakpoint
1911will remain to halt execution.
1912
1913Specify the arguments to give to your program as arguments to the
1914@samp{start} command. These arguments will be given verbatim to the
1915underlying @samp{run} command. Note that the same arguments will be
1916reused if no argument is provided during subsequent calls to
1917@samp{start} or @samp{run}.
1918
1919It is sometimes necessary to debug the program during elaboration. In
1920these cases, using the @code{start} command would stop the execution of
1921your program too late, as the program would have already completed the
1922elaboration phase. Under these circumstances, insert breakpoints in your
1923elaboration code before running your program.
ccd213ac
DJ
1924
1925@kindex set exec-wrapper
1926@item set exec-wrapper @var{wrapper}
1927@itemx show exec-wrapper
1928@itemx unset exec-wrapper
1929When @samp{exec-wrapper} is set, the specified wrapper is used to
1930launch programs for debugging. @value{GDBN} starts your program
1931with a shell command of the form @kbd{exec @var{wrapper}
1932@var{program}}. Quoting is added to @var{program} and its
1933arguments, but not to @var{wrapper}, so you should add quotes if
1934appropriate for your shell. The wrapper runs until it executes
1935your program, and then @value{GDBN} takes control.
1936
1937You can use any program that eventually calls @code{execve} with
1938its arguments as a wrapper. Several standard Unix utilities do
1939this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
1940with @code{exec "$@@"} will also work.
1941
1942For example, you can use @code{env} to pass an environment variable to
1943the debugged program, without setting the variable in your shell's
1944environment:
1945
1946@smallexample
1947(@value{GDBP}) set exec-wrapper env 'LD_PRELOAD=libtest.so'
1948(@value{GDBP}) run
1949@end smallexample
1950
1951This command is available when debugging locally on most targets, excluding
1952@sc{djgpp}, Cygwin, MS Windows, and QNX Neutrino.
1953
4e8b0763
JB
1954@end table
1955
6d2ebf8b 1956@node Arguments
79a6e687 1957@section Your Program's Arguments
c906108c
SS
1958
1959@cindex arguments (to your program)
1960The arguments to your program can be specified by the arguments of the
5d161b24 1961@code{run} command.
c906108c
SS
1962They are passed to a shell, which expands wildcard characters and
1963performs redirection of I/O, and thence to your program. Your
1964@code{SHELL} environment variable (if it exists) specifies what shell
1965@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1966the default shell (@file{/bin/sh} on Unix).
1967
1968On non-Unix systems, the program is usually invoked directly by
1969@value{GDBN}, which emulates I/O redirection via the appropriate system
1970calls, and the wildcard characters are expanded by the startup code of
1971the program, not by the shell.
c906108c
SS
1972
1973@code{run} with no arguments uses the same arguments used by the previous
1974@code{run}, or those set by the @code{set args} command.
1975
c906108c 1976@table @code
41afff9a 1977@kindex set args
c906108c
SS
1978@item set args
1979Specify the arguments to be used the next time your program is run. If
1980@code{set args} has no arguments, @code{run} executes your program
1981with no arguments. Once you have run your program with arguments,
1982using @code{set args} before the next @code{run} is the only way to run
1983it again without arguments.
1984
1985@kindex show args
1986@item show args
1987Show the arguments to give your program when it is started.
1988@end table
1989
6d2ebf8b 1990@node Environment
79a6e687 1991@section Your Program's Environment
c906108c
SS
1992
1993@cindex environment (of your program)
1994The @dfn{environment} consists of a set of environment variables and
1995their values. Environment variables conventionally record such things as
1996your user name, your home directory, your terminal type, and your search
1997path for programs to run. Usually you set up environment variables with
1998the shell and they are inherited by all the other programs you run. When
1999debugging, it can be useful to try running your program with a modified
2000environment without having to start @value{GDBN} over again.
2001
2002@table @code
2003@kindex path
2004@item path @var{directory}
2005Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
2006(the search path for executables) that will be passed to your program.
2007The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
2008You may specify several directory names, separated by whitespace or by a
2009system-dependent separator character (@samp{:} on Unix, @samp{;} on
2010MS-DOS and MS-Windows). If @var{directory} is already in the path, it
2011is moved to the front, so it is searched sooner.
c906108c
SS
2012
2013You can use the string @samp{$cwd} to refer to whatever is the current
2014working directory at the time @value{GDBN} searches the path. If you
2015use @samp{.} instead, it refers to the directory where you executed the
2016@code{path} command. @value{GDBN} replaces @samp{.} in the
2017@var{directory} argument (with the current path) before adding
2018@var{directory} to the search path.
2019@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
2020@c document that, since repeating it would be a no-op.
2021
2022@kindex show paths
2023@item show paths
2024Display the list of search paths for executables (the @code{PATH}
2025environment variable).
2026
2027@kindex show environment
2028@item show environment @r{[}@var{varname}@r{]}
2029Print the value of environment variable @var{varname} to be given to
2030your program when it starts. If you do not supply @var{varname},
2031print the names and values of all environment variables to be given to
2032your program. You can abbreviate @code{environment} as @code{env}.
2033
2034@kindex set environment
53a5351d 2035@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
2036Set environment variable @var{varname} to @var{value}. The value
2037changes for your program only, not for @value{GDBN} itself. @var{value} may
2038be any string; the values of environment variables are just strings, and
2039any interpretation is supplied by your program itself. The @var{value}
2040parameter is optional; if it is eliminated, the variable is set to a
2041null value.
2042@c "any string" here does not include leading, trailing
2043@c blanks. Gnu asks: does anyone care?
2044
2045For example, this command:
2046
474c8240 2047@smallexample
c906108c 2048set env USER = foo
474c8240 2049@end smallexample
c906108c
SS
2050
2051@noindent
d4f3574e 2052tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2053@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2054are not actually required.)
2055
2056@kindex unset environment
2057@item unset environment @var{varname}
2058Remove variable @var{varname} from the environment to be passed to your
2059program. This is different from @samp{set env @var{varname} =};
2060@code{unset environment} removes the variable from the environment,
2061rather than assigning it an empty value.
2062@end table
2063
d4f3574e
SS
2064@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2065the shell indicated
c906108c
SS
2066by your @code{SHELL} environment variable if it exists (or
2067@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2068that runs an initialization file---such as @file{.cshrc} for C-shell, or
2069@file{.bashrc} for BASH---any variables you set in that file affect
2070your program. You may wish to move setting of environment variables to
2071files that are only run when you sign on, such as @file{.login} or
2072@file{.profile}.
2073
6d2ebf8b 2074@node Working Directory
79a6e687 2075@section Your Program's Working Directory
c906108c
SS
2076
2077@cindex working directory (of your program)
2078Each time you start your program with @code{run}, it inherits its
2079working directory from the current working directory of @value{GDBN}.
2080The @value{GDBN} working directory is initially whatever it inherited
2081from its parent process (typically the shell), but you can specify a new
2082working directory in @value{GDBN} with the @code{cd} command.
2083
2084The @value{GDBN} working directory also serves as a default for the commands
2085that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2086Specify Files}.
c906108c
SS
2087
2088@table @code
2089@kindex cd
721c2651 2090@cindex change working directory
c906108c
SS
2091@item cd @var{directory}
2092Set the @value{GDBN} working directory to @var{directory}.
2093
2094@kindex pwd
2095@item pwd
2096Print the @value{GDBN} working directory.
2097@end table
2098
60bf7e09
EZ
2099It is generally impossible to find the current working directory of
2100the process being debugged (since a program can change its directory
2101during its run). If you work on a system where @value{GDBN} is
2102configured with the @file{/proc} support, you can use the @code{info
2103proc} command (@pxref{SVR4 Process Information}) to find out the
2104current working directory of the debuggee.
2105
6d2ebf8b 2106@node Input/Output
79a6e687 2107@section Your Program's Input and Output
c906108c
SS
2108
2109@cindex redirection
2110@cindex i/o
2111@cindex terminal
2112By default, the program you run under @value{GDBN} does input and output to
5d161b24 2113the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2114to its own terminal modes to interact with you, but it records the terminal
2115modes your program was using and switches back to them when you continue
2116running your program.
2117
2118@table @code
2119@kindex info terminal
2120@item info terminal
2121Displays information recorded by @value{GDBN} about the terminal modes your
2122program is using.
2123@end table
2124
2125You can redirect your program's input and/or output using shell
2126redirection with the @code{run} command. For example,
2127
474c8240 2128@smallexample
c906108c 2129run > outfile
474c8240 2130@end smallexample
c906108c
SS
2131
2132@noindent
2133starts your program, diverting its output to the file @file{outfile}.
2134
2135@kindex tty
2136@cindex controlling terminal
2137Another way to specify where your program should do input and output is
2138with the @code{tty} command. This command accepts a file name as
2139argument, and causes this file to be the default for future @code{run}
2140commands. It also resets the controlling terminal for the child
2141process, for future @code{run} commands. For example,
2142
474c8240 2143@smallexample
c906108c 2144tty /dev/ttyb
474c8240 2145@end smallexample
c906108c
SS
2146
2147@noindent
2148directs that processes started with subsequent @code{run} commands
2149default to do input and output on the terminal @file{/dev/ttyb} and have
2150that as their controlling terminal.
2151
2152An explicit redirection in @code{run} overrides the @code{tty} command's
2153effect on the input/output device, but not its effect on the controlling
2154terminal.
2155
2156When you use the @code{tty} command or redirect input in the @code{run}
2157command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2158for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2159for @code{set inferior-tty}.
2160
2161@cindex inferior tty
2162@cindex set inferior controlling terminal
2163You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2164display the name of the terminal that will be used for future runs of your
2165program.
2166
2167@table @code
2168@item set inferior-tty /dev/ttyb
2169@kindex set inferior-tty
2170Set the tty for the program being debugged to /dev/ttyb.
2171
2172@item show inferior-tty
2173@kindex show inferior-tty
2174Show the current tty for the program being debugged.
2175@end table
c906108c 2176
6d2ebf8b 2177@node Attach
79a6e687 2178@section Debugging an Already-running Process
c906108c
SS
2179@kindex attach
2180@cindex attach
2181
2182@table @code
2183@item attach @var{process-id}
2184This command attaches to a running process---one that was started
2185outside @value{GDBN}. (@code{info files} shows your active
2186targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2187find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2188or with the @samp{jobs -l} shell command.
2189
2190@code{attach} does not repeat if you press @key{RET} a second time after
2191executing the command.
2192@end table
2193
2194To use @code{attach}, your program must be running in an environment
2195which supports processes; for example, @code{attach} does not work for
2196programs on bare-board targets that lack an operating system. You must
2197also have permission to send the process a signal.
2198
2199When you use @code{attach}, the debugger finds the program running in
2200the process first by looking in the current working directory, then (if
2201the program is not found) by using the source file search path
79a6e687 2202(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2203the @code{file} command to load the program. @xref{Files, ,Commands to
2204Specify Files}.
2205
2206The first thing @value{GDBN} does after arranging to debug the specified
2207process is to stop it. You can examine and modify an attached process
53a5351d
JM
2208with all the @value{GDBN} commands that are ordinarily available when
2209you start processes with @code{run}. You can insert breakpoints; you
2210can step and continue; you can modify storage. If you would rather the
2211process continue running, you may use the @code{continue} command after
c906108c
SS
2212attaching @value{GDBN} to the process.
2213
2214@table @code
2215@kindex detach
2216@item detach
2217When you have finished debugging the attached process, you can use the
2218@code{detach} command to release it from @value{GDBN} control. Detaching
2219the process continues its execution. After the @code{detach} command,
2220that process and @value{GDBN} become completely independent once more, and you
2221are ready to @code{attach} another process or start one with @code{run}.
2222@code{detach} does not repeat if you press @key{RET} again after
2223executing the command.
2224@end table
2225
159fcc13
JK
2226If you exit @value{GDBN} while you have an attached process, you detach
2227that process. If you use the @code{run} command, you kill that process.
2228By default, @value{GDBN} asks for confirmation if you try to do either of these
2229things; you can control whether or not you need to confirm by using the
2230@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2231Messages}).
c906108c 2232
6d2ebf8b 2233@node Kill Process
79a6e687 2234@section Killing the Child Process
c906108c
SS
2235
2236@table @code
2237@kindex kill
2238@item kill
2239Kill the child process in which your program is running under @value{GDBN}.
2240@end table
2241
2242This command is useful if you wish to debug a core dump instead of a
2243running process. @value{GDBN} ignores any core dump file while your program
2244is running.
2245
2246On some operating systems, a program cannot be executed outside @value{GDBN}
2247while you have breakpoints set on it inside @value{GDBN}. You can use the
2248@code{kill} command in this situation to permit running your program
2249outside the debugger.
2250
2251The @code{kill} command is also useful if you wish to recompile and
2252relink your program, since on many systems it is impossible to modify an
2253executable file while it is running in a process. In this case, when you
2254next type @code{run}, @value{GDBN} notices that the file has changed, and
2255reads the symbol table again (while trying to preserve your current
2256breakpoint settings).
2257
6d2ebf8b 2258@node Threads
79a6e687 2259@section Debugging Programs with Multiple Threads
c906108c
SS
2260
2261@cindex threads of execution
2262@cindex multiple threads
2263@cindex switching threads
2264In some operating systems, such as HP-UX and Solaris, a single program
2265may have more than one @dfn{thread} of execution. The precise semantics
2266of threads differ from one operating system to another, but in general
2267the threads of a single program are akin to multiple processes---except
2268that they share one address space (that is, they can all examine and
2269modify the same variables). On the other hand, each thread has its own
2270registers and execution stack, and perhaps private memory.
2271
2272@value{GDBN} provides these facilities for debugging multi-thread
2273programs:
2274
2275@itemize @bullet
2276@item automatic notification of new threads
2277@item @samp{thread @var{threadno}}, a command to switch among threads
2278@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2279@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2280a command to apply a command to a list of threads
2281@item thread-specific breakpoints
93815fbf
VP
2282@item @samp{set print thread-events}, which controls printing of
2283messages on thread start and exit.
c906108c
SS
2284@end itemize
2285
c906108c
SS
2286@quotation
2287@emph{Warning:} These facilities are not yet available on every
2288@value{GDBN} configuration where the operating system supports threads.
2289If your @value{GDBN} does not support threads, these commands have no
2290effect. For example, a system without thread support shows no output
2291from @samp{info threads}, and always rejects the @code{thread} command,
2292like this:
2293
2294@smallexample
2295(@value{GDBP}) info threads
2296(@value{GDBP}) thread 1
2297Thread ID 1 not known. Use the "info threads" command to
2298see the IDs of currently known threads.
2299@end smallexample
2300@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2301@c doesn't support threads"?
2302@end quotation
c906108c
SS
2303
2304@cindex focus of debugging
2305@cindex current thread
2306The @value{GDBN} thread debugging facility allows you to observe all
2307threads while your program runs---but whenever @value{GDBN} takes
2308control, one thread in particular is always the focus of debugging.
2309This thread is called the @dfn{current thread}. Debugging commands show
2310program information from the perspective of the current thread.
2311
41afff9a 2312@cindex @code{New} @var{systag} message
c906108c
SS
2313@cindex thread identifier (system)
2314@c FIXME-implementors!! It would be more helpful if the [New...] message
2315@c included GDB's numeric thread handle, so you could just go to that
2316@c thread without first checking `info threads'.
2317Whenever @value{GDBN} detects a new thread in your program, it displays
2318the target system's identification for the thread with a message in the
2319form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2320whose form varies depending on the particular system. For example, on
8807d78b 2321@sc{gnu}/Linux, you might see
c906108c 2322
474c8240 2323@smallexample
8807d78b 2324[New Thread 46912507313328 (LWP 25582)]
474c8240 2325@end smallexample
c906108c
SS
2326
2327@noindent
2328when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2329the @var{systag} is simply something like @samp{process 368}, with no
2330further qualifier.
2331
2332@c FIXME!! (1) Does the [New...] message appear even for the very first
2333@c thread of a program, or does it only appear for the
6ca652b0 2334@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2335@c program?
2336@c (2) *Is* there necessarily a first thread always? Or do some
2337@c multithread systems permit starting a program with multiple
5d161b24 2338@c threads ab initio?
c906108c
SS
2339
2340@cindex thread number
2341@cindex thread identifier (GDB)
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---always a single integer---with each thread in your program.
2344
2345@table @code
2346@kindex info threads
2347@item info threads
2348Display a summary of all threads currently in your
2349program. @value{GDBN} displays for each thread (in this order):
2350
2351@enumerate
09d4efe1
EZ
2352@item
2353the thread number assigned by @value{GDBN}
c906108c 2354
09d4efe1
EZ
2355@item
2356the target system's thread identifier (@var{systag})
c906108c 2357
09d4efe1
EZ
2358@item
2359the current stack frame summary for that thread
c906108c
SS
2360@end enumerate
2361
2362@noindent
2363An asterisk @samp{*} to the left of the @value{GDBN} thread number
2364indicates the current thread.
2365
5d161b24 2366For example,
c906108c
SS
2367@end table
2368@c end table here to get a little more width for example
2369
2370@smallexample
2371(@value{GDBP}) info threads
2372 3 process 35 thread 27 0x34e5 in sigpause ()
2373 2 process 35 thread 23 0x34e5 in sigpause ()
2374* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2375 at threadtest.c:68
2376@end smallexample
53a5351d
JM
2377
2378On HP-UX systems:
c906108c 2379
4644b6e3
EZ
2380@cindex debugging multithreaded programs (on HP-UX)
2381@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2382For debugging purposes, @value{GDBN} associates its own thread
2383number---a small integer assigned in thread-creation order---with each
2384thread in your program.
2385
41afff9a
EZ
2386@cindex @code{New} @var{systag} message, on HP-UX
2387@cindex thread identifier (system), on HP-UX
c906108c
SS
2388@c FIXME-implementors!! It would be more helpful if the [New...] message
2389@c included GDB's numeric thread handle, so you could just go to that
2390@c thread without first checking `info threads'.
2391Whenever @value{GDBN} detects a new thread in your program, it displays
2392both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2393form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2394whose form varies depending on the particular system. For example, on
2395HP-UX, you see
2396
474c8240 2397@smallexample
c906108c 2398[New thread 2 (system thread 26594)]
474c8240 2399@end smallexample
c906108c
SS
2400
2401@noindent
5d161b24 2402when @value{GDBN} notices a new thread.
c906108c
SS
2403
2404@table @code
4644b6e3 2405@kindex info threads (HP-UX)
c906108c
SS
2406@item info threads
2407Display a summary of all threads currently in your
2408program. @value{GDBN} displays for each thread (in this order):
2409
2410@enumerate
2411@item the thread number assigned by @value{GDBN}
2412
2413@item the target system's thread identifier (@var{systag})
2414
2415@item the current stack frame summary for that thread
2416@end enumerate
2417
2418@noindent
2419An asterisk @samp{*} to the left of the @value{GDBN} thread number
2420indicates the current thread.
2421
5d161b24 2422For example,
c906108c
SS
2423@end table
2424@c end table here to get a little more width for example
2425
474c8240 2426@smallexample
c906108c 2427(@value{GDBP}) info threads
6d2ebf8b
SS
2428 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2429 at quicksort.c:137
2430 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2431 from /usr/lib/libc.2
2432 1 system thread 27905 0x7b003498 in _brk () \@*
2433 from /usr/lib/libc.2
474c8240 2434@end smallexample
c906108c 2435
c45da7e6
EZ
2436On Solaris, you can display more information about user threads with a
2437Solaris-specific command:
2438
2439@table @code
2440@item maint info sol-threads
2441@kindex maint info sol-threads
2442@cindex thread info (Solaris)
2443Display info on Solaris user threads.
2444@end table
2445
c906108c
SS
2446@table @code
2447@kindex thread @var{threadno}
2448@item thread @var{threadno}
2449Make thread number @var{threadno} the current thread. The command
2450argument @var{threadno} is the internal @value{GDBN} thread number, as
2451shown in the first field of the @samp{info threads} display.
2452@value{GDBN} responds by displaying the system identifier of the thread
2453you selected, and its current stack frame summary:
2454
2455@smallexample
2456@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2457(@value{GDBP}) thread 2
c906108c 2458[Switching to process 35 thread 23]
c906108c
SS
24590x34e5 in sigpause ()
2460@end smallexample
2461
2462@noindent
2463As with the @samp{[New @dots{}]} message, the form of the text after
2464@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2465threads.
c906108c 2466
9c16f35a 2467@kindex thread apply
638ac427 2468@cindex apply command to several threads
839c27b7
EZ
2469@item thread apply [@var{threadno}] [@var{all}] @var{command}
2470The @code{thread apply} command allows you to apply the named
2471@var{command} to one or more threads. Specify the numbers of the
2472threads that you want affected with the command argument
2473@var{threadno}. It can be a single thread number, one of the numbers
2474shown in the first field of the @samp{info threads} display; or it
2475could be a range of thread numbers, as in @code{2-4}. To apply a
2476command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2477
2478@kindex set print thread-events
2479@cindex print messages on thread start and exit
2480@item set print thread-events
2481@itemx set print thread-events on
2482@itemx set print thread-events off
2483The @code{set print thread-events} command allows you to enable or
2484disable printing of messages when @value{GDBN} notices that new threads have
2485started or that threads have exited. By default, these messages will
2486be printed if detection of these events is supported by the target.
2487Note that these messages cannot be disabled on all targets.
2488
2489@kindex show print thread-events
2490@item show print thread-events
2491Show whether messages will be printed when @value{GDBN} detects that threads
2492have started and exited.
c906108c
SS
2493@end table
2494
2495@cindex automatic thread selection
2496@cindex switching threads automatically
2497@cindex threads, automatic switching
2498Whenever @value{GDBN} stops your program, due to a breakpoint or a
2499signal, it automatically selects the thread where that breakpoint or
2500signal happened. @value{GDBN} alerts you to the context switch with a
2501message of the form @samp{[Switching to @var{systag}]} to identify the
2502thread.
2503
79a6e687 2504@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2505more information about how @value{GDBN} behaves when you stop and start
2506programs with multiple threads.
2507
79a6e687 2508@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2509watchpoints in programs with multiple threads.
c906108c 2510
6d2ebf8b 2511@node Processes
79a6e687 2512@section Debugging Programs with Multiple Processes
c906108c
SS
2513
2514@cindex fork, debugging programs which call
2515@cindex multiple processes
2516@cindex processes, multiple
53a5351d
JM
2517On most systems, @value{GDBN} has no special support for debugging
2518programs which create additional processes using the @code{fork}
2519function. When a program forks, @value{GDBN} will continue to debug the
2520parent process and the child process will run unimpeded. If you have
2521set a breakpoint in any code which the child then executes, the child
2522will get a @code{SIGTRAP} signal which (unless it catches the signal)
2523will cause it to terminate.
c906108c
SS
2524
2525However, if you want to debug the child process there is a workaround
2526which isn't too painful. Put a call to @code{sleep} in the code which
2527the child process executes after the fork. It may be useful to sleep
2528only if a certain environment variable is set, or a certain file exists,
2529so that the delay need not occur when you don't want to run @value{GDBN}
2530on the child. While the child is sleeping, use the @code{ps} program to
2531get its process ID. Then tell @value{GDBN} (a new invocation of
2532@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2533the child process (@pxref{Attach}). From that point on you can debug
c906108c 2534the child process just like any other process which you attached to.
c906108c 2535
b51970ac
DJ
2536On some systems, @value{GDBN} provides support for debugging programs that
2537create additional processes using the @code{fork} or @code{vfork} functions.
2538Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2539only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2540
2541By default, when a program forks, @value{GDBN} will continue to debug
2542the parent process and the child process will run unimpeded.
2543
2544If you want to follow the child process instead of the parent process,
2545use the command @w{@code{set follow-fork-mode}}.
2546
2547@table @code
2548@kindex set follow-fork-mode
2549@item set follow-fork-mode @var{mode}
2550Set the debugger response to a program call of @code{fork} or
2551@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2552process. The @var{mode} argument can be:
c906108c
SS
2553
2554@table @code
2555@item parent
2556The original process is debugged after a fork. The child process runs
2df3850c 2557unimpeded. This is the default.
c906108c
SS
2558
2559@item child
2560The new process is debugged after a fork. The parent process runs
2561unimpeded.
2562
c906108c
SS
2563@end table
2564
9c16f35a 2565@kindex show follow-fork-mode
c906108c 2566@item show follow-fork-mode
2df3850c 2567Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2568@end table
2569
5c95884b
MS
2570@cindex debugging multiple processes
2571On Linux, if you want to debug both the parent and child processes, use the
2572command @w{@code{set detach-on-fork}}.
2573
2574@table @code
2575@kindex set detach-on-fork
2576@item set detach-on-fork @var{mode}
2577Tells gdb whether to detach one of the processes after a fork, or
2578retain debugger control over them both.
2579
2580@table @code
2581@item on
2582The child process (or parent process, depending on the value of
2583@code{follow-fork-mode}) will be detached and allowed to run
2584independently. This is the default.
2585
2586@item off
2587Both processes will be held under the control of @value{GDBN}.
2588One process (child or parent, depending on the value of
2589@code{follow-fork-mode}) is debugged as usual, while the other
2590is held suspended.
2591
2592@end table
2593
11310833
NR
2594@kindex show detach-on-fork
2595@item show detach-on-fork
2596Show whether detach-on-fork mode is on/off.
5c95884b
MS
2597@end table
2598
11310833 2599If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2600@value{GDBN} will retain control of all forked processes (including
2601nested forks). You can list the forked processes under the control of
2602@value{GDBN} by using the @w{@code{info forks}} command, and switch
2603from one fork to another by using the @w{@code{fork}} command.
2604
2605@table @code
2606@kindex info forks
2607@item info forks
2608Print a list of all forked processes under the control of @value{GDBN}.
2609The listing will include a fork id, a process id, and the current
2610position (program counter) of the process.
2611
5c95884b
MS
2612@kindex fork @var{fork-id}
2613@item fork @var{fork-id}
2614Make fork number @var{fork-id} the current process. The argument
2615@var{fork-id} is the internal fork number assigned by @value{GDBN},
2616as shown in the first field of the @samp{info forks} display.
2617
11310833
NR
2618@kindex process @var{process-id}
2619@item process @var{process-id}
2620Make process number @var{process-id} the current process. The
2621argument @var{process-id} must be one that is listed in the output of
2622@samp{info forks}.
2623
5c95884b
MS
2624@end table
2625
2626To quit debugging one of the forked processes, you can either detach
f73adfeb 2627from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2628run independently), or delete (and kill) it using the
b8db102d 2629@w{@code{delete fork}} command.
5c95884b
MS
2630
2631@table @code
f73adfeb
AS
2632@kindex detach fork @var{fork-id}
2633@item detach fork @var{fork-id}
5c95884b
MS
2634Detach from the process identified by @value{GDBN} fork number
2635@var{fork-id}, and remove it from the fork list. The process will be
2636allowed to run independently.
2637
b8db102d
MS
2638@kindex delete fork @var{fork-id}
2639@item delete fork @var{fork-id}
5c95884b
MS
2640Kill the process identified by @value{GDBN} fork number @var{fork-id},
2641and remove it from the fork list.
2642
2643@end table
2644
c906108c
SS
2645If you ask to debug a child process and a @code{vfork} is followed by an
2646@code{exec}, @value{GDBN} executes the new target up to the first
2647breakpoint in the new target. If you have a breakpoint set on
2648@code{main} in your original program, the breakpoint will also be set on
2649the child process's @code{main}.
2650
2651When a child process is spawned by @code{vfork}, you cannot debug the
2652child or parent until an @code{exec} call completes.
2653
2654If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2655call executes, the new target restarts. To restart the parent process,
2656use the @code{file} command with the parent executable name as its
2657argument.
2658
2659You can use the @code{catch} command to make @value{GDBN} stop whenever
2660a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2661Catchpoints, ,Setting Catchpoints}.
c906108c 2662
5c95884b 2663@node Checkpoint/Restart
79a6e687 2664@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2665
2666@cindex checkpoint
2667@cindex restart
2668@cindex bookmark
2669@cindex snapshot of a process
2670@cindex rewind program state
2671
2672On certain operating systems@footnote{Currently, only
2673@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2674program's state, called a @dfn{checkpoint}, and come back to it
2675later.
2676
2677Returning to a checkpoint effectively undoes everything that has
2678happened in the program since the @code{checkpoint} was saved. This
2679includes changes in memory, registers, and even (within some limits)
2680system state. Effectively, it is like going back in time to the
2681moment when the checkpoint was saved.
2682
2683Thus, if you're stepping thru a program and you think you're
2684getting close to the point where things go wrong, you can save
2685a checkpoint. Then, if you accidentally go too far and miss
2686the critical statement, instead of having to restart your program
2687from the beginning, you can just go back to the checkpoint and
2688start again from there.
2689
2690This can be especially useful if it takes a lot of time or
2691steps to reach the point where you think the bug occurs.
2692
2693To use the @code{checkpoint}/@code{restart} method of debugging:
2694
2695@table @code
2696@kindex checkpoint
2697@item checkpoint
2698Save a snapshot of the debugged program's current execution state.
2699The @code{checkpoint} command takes no arguments, but each checkpoint
2700is assigned a small integer id, similar to a breakpoint id.
2701
2702@kindex info checkpoints
2703@item info checkpoints
2704List the checkpoints that have been saved in the current debugging
2705session. For each checkpoint, the following information will be
2706listed:
2707
2708@table @code
2709@item Checkpoint ID
2710@item Process ID
2711@item Code Address
2712@item Source line, or label
2713@end table
2714
2715@kindex restart @var{checkpoint-id}
2716@item restart @var{checkpoint-id}
2717Restore the program state that was saved as checkpoint number
2718@var{checkpoint-id}. All program variables, registers, stack frames
2719etc.@: will be returned to the values that they had when the checkpoint
2720was saved. In essence, gdb will ``wind back the clock'' to the point
2721in time when the checkpoint was saved.
2722
2723Note that breakpoints, @value{GDBN} variables, command history etc.
2724are not affected by restoring a checkpoint. In general, a checkpoint
2725only restores things that reside in the program being debugged, not in
2726the debugger.
2727
b8db102d
MS
2728@kindex delete checkpoint @var{checkpoint-id}
2729@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2730Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2731
2732@end table
2733
2734Returning to a previously saved checkpoint will restore the user state
2735of the program being debugged, plus a significant subset of the system
2736(OS) state, including file pointers. It won't ``un-write'' data from
2737a file, but it will rewind the file pointer to the previous location,
2738so that the previously written data can be overwritten. For files
2739opened in read mode, the pointer will also be restored so that the
2740previously read data can be read again.
2741
2742Of course, characters that have been sent to a printer (or other
2743external device) cannot be ``snatched back'', and characters received
2744from eg.@: a serial device can be removed from internal program buffers,
2745but they cannot be ``pushed back'' into the serial pipeline, ready to
2746be received again. Similarly, the actual contents of files that have
2747been changed cannot be restored (at this time).
2748
2749However, within those constraints, you actually can ``rewind'' your
2750program to a previously saved point in time, and begin debugging it
2751again --- and you can change the course of events so as to debug a
2752different execution path this time.
2753
2754@cindex checkpoints and process id
2755Finally, there is one bit of internal program state that will be
2756different when you return to a checkpoint --- the program's process
2757id. Each checkpoint will have a unique process id (or @var{pid}),
2758and each will be different from the program's original @var{pid}.
2759If your program has saved a local copy of its process id, this could
2760potentially pose a problem.
2761
79a6e687 2762@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2763
2764On some systems such as @sc{gnu}/Linux, address space randomization
2765is performed on new processes for security reasons. This makes it
2766difficult or impossible to set a breakpoint, or watchpoint, on an
2767absolute address if you have to restart the program, since the
2768absolute location of a symbol will change from one execution to the
2769next.
2770
2771A checkpoint, however, is an @emph{identical} copy of a process.
2772Therefore if you create a checkpoint at (eg.@:) the start of main,
2773and simply return to that checkpoint instead of restarting the
2774process, you can avoid the effects of address randomization and
2775your symbols will all stay in the same place.
2776
6d2ebf8b 2777@node Stopping
c906108c
SS
2778@chapter Stopping and Continuing
2779
2780The principal purposes of using a debugger are so that you can stop your
2781program before it terminates; or so that, if your program runs into
2782trouble, you can investigate and find out why.
2783
7a292a7a
SS
2784Inside @value{GDBN}, your program may stop for any of several reasons,
2785such as a signal, a breakpoint, or reaching a new line after a
2786@value{GDBN} command such as @code{step}. You may then examine and
2787change variables, set new breakpoints or remove old ones, and then
2788continue execution. Usually, the messages shown by @value{GDBN} provide
2789ample explanation of the status of your program---but you can also
2790explicitly request this information at any time.
c906108c
SS
2791
2792@table @code
2793@kindex info program
2794@item info program
2795Display information about the status of your program: whether it is
7a292a7a 2796running or not, what process it is, and why it stopped.
c906108c
SS
2797@end table
2798
2799@menu
2800* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2801* Continuing and Stepping:: Resuming execution
c906108c 2802* Signals:: Signals
c906108c 2803* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2804@end menu
2805
6d2ebf8b 2806@node Breakpoints
79a6e687 2807@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2808
2809@cindex breakpoints
2810A @dfn{breakpoint} makes your program stop whenever a certain point in
2811the program is reached. For each breakpoint, you can add conditions to
2812control in finer detail whether your program stops. You can set
2813breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2814Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2815should stop by line number, function name or exact address in the
2816program.
2817
09d4efe1
EZ
2818On some systems, you can set breakpoints in shared libraries before
2819the executable is run. There is a minor limitation on HP-UX systems:
2820you must wait until the executable is run in order to set breakpoints
2821in shared library routines that are not called directly by the program
2822(for example, routines that are arguments in a @code{pthread_create}
2823call).
c906108c
SS
2824
2825@cindex watchpoints
fd60e0df 2826@cindex data breakpoints
c906108c
SS
2827@cindex memory tracing
2828@cindex breakpoint on memory address
2829@cindex breakpoint on variable modification
2830A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2831when the value of an expression changes. The expression may be a value
0ced0c34 2832of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2833combined by operators, such as @samp{a + b}. This is sometimes called
2834@dfn{data breakpoints}. You must use a different command to set
79a6e687 2835watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2836from that, you can manage a watchpoint like any other breakpoint: you
2837enable, disable, and delete both breakpoints and watchpoints using the
2838same commands.
c906108c
SS
2839
2840You can arrange to have values from your program displayed automatically
2841whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2842Automatic Display}.
c906108c
SS
2843
2844@cindex catchpoints
2845@cindex breakpoint on events
2846A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2847when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2848exception or the loading of a library. As with watchpoints, you use a
2849different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2850Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2851other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2852@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2853
2854@cindex breakpoint numbers
2855@cindex numbers for breakpoints
2856@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2857catchpoint when you create it; these numbers are successive integers
2858starting with one. In many of the commands for controlling various
2859features of breakpoints you use the breakpoint number to say which
2860breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2861@dfn{disabled}; if disabled, it has no effect on your program until you
2862enable it again.
2863
c5394b80
JM
2864@cindex breakpoint ranges
2865@cindex ranges of breakpoints
2866Some @value{GDBN} commands accept a range of breakpoints on which to
2867operate. A breakpoint range is either a single breakpoint number, like
2868@samp{5}, or two such numbers, in increasing order, separated by a
2869hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2870all breakpoints in that range are operated on.
c5394b80 2871
c906108c
SS
2872@menu
2873* Set Breaks:: Setting breakpoints
2874* Set Watchpoints:: Setting watchpoints
2875* Set Catchpoints:: Setting catchpoints
2876* Delete Breaks:: Deleting breakpoints
2877* Disabling:: Disabling breakpoints
2878* Conditions:: Break conditions
2879* Break Commands:: Breakpoint command lists
d4f3574e 2880* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2881* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2882@end menu
2883
6d2ebf8b 2884@node Set Breaks
79a6e687 2885@subsection Setting Breakpoints
c906108c 2886
5d161b24 2887@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2888@c consider in particular declaration with/without initialization.
2889@c
2890@c FIXME 2 is there stuff on this already? break at fun start, already init?
2891
2892@kindex break
41afff9a
EZ
2893@kindex b @r{(@code{break})}
2894@vindex $bpnum@r{, convenience variable}
c906108c
SS
2895@cindex latest breakpoint
2896Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2897@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2898number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2899Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2900convenience variables.
2901
c906108c 2902@table @code
2a25a5ba
EZ
2903@item break @var{location}
2904Set a breakpoint at the given @var{location}, which can specify a
2905function name, a line number, or an address of an instruction.
2906(@xref{Specify Location}, for a list of all the possible ways to
2907specify a @var{location}.) The breakpoint will stop your program just
2908before it executes any of the code in the specified @var{location}.
2909
c906108c 2910When using source languages that permit overloading of symbols, such as
2a25a5ba 2911C@t{++}, a function name may refer to more than one possible place to break.
6ba66d6a
JB
2912@xref{Ambiguous Expressions,,Ambiguous Expressions}, for a discussion of
2913that situation.
c906108c 2914
c906108c
SS
2915@item break
2916When called without any arguments, @code{break} sets a breakpoint at
2917the next instruction to be executed in the selected stack frame
2918(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2919innermost, this makes your program stop as soon as control
2920returns to that frame. This is similar to the effect of a
2921@code{finish} command in the frame inside the selected frame---except
2922that @code{finish} does not leave an active breakpoint. If you use
2923@code{break} without an argument in the innermost frame, @value{GDBN} stops
2924the next time it reaches the current location; this may be useful
2925inside loops.
2926
2927@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2928least one instruction has been executed. If it did not do this, you
2929would be unable to proceed past a breakpoint without first disabling the
2930breakpoint. This rule applies whether or not the breakpoint already
2931existed when your program stopped.
2932
2933@item break @dots{} if @var{cond}
2934Set a breakpoint with condition @var{cond}; evaluate the expression
2935@var{cond} each time the breakpoint is reached, and stop only if the
2936value is nonzero---that is, if @var{cond} evaluates as true.
2937@samp{@dots{}} stands for one of the possible arguments described
2938above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2939,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2940
2941@kindex tbreak
2942@item tbreak @var{args}
2943Set a breakpoint enabled only for one stop. @var{args} are the
2944same as for the @code{break} command, and the breakpoint is set in the same
2945way, but the breakpoint is automatically deleted after the first time your
79a6e687 2946program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2947
c906108c 2948@kindex hbreak
ba04e063 2949@cindex hardware breakpoints
c906108c 2950@item hbreak @var{args}
d4f3574e
SS
2951Set a hardware-assisted breakpoint. @var{args} are the same as for the
2952@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2953breakpoint requires hardware support and some target hardware may not
2954have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2955debugging, so you can set a breakpoint at an instruction without
2956changing the instruction. This can be used with the new trap-generation
09d4efe1 2957provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2958will generate traps when a program accesses some data or instruction
2959address that is assigned to the debug registers. However the hardware
2960breakpoint registers can take a limited number of breakpoints. For
2961example, on the DSU, only two data breakpoints can be set at a time, and
2962@value{GDBN} will reject this command if more than two are used. Delete
2963or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2964(@pxref{Disabling, ,Disabling Breakpoints}).
2965@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2966For remote targets, you can restrict the number of hardware
2967breakpoints @value{GDBN} will use, see @ref{set remote
2968hardware-breakpoint-limit}.
501eef12 2969
c906108c
SS
2970@kindex thbreak
2971@item thbreak @var{args}
2972Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2973are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2974the same way. However, like the @code{tbreak} command,
c906108c
SS
2975the breakpoint is automatically deleted after the
2976first time your program stops there. Also, like the @code{hbreak}
5d161b24 2977command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2978may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2979See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2980
2981@kindex rbreak
2982@cindex regular expression
c45da7e6
EZ
2983@cindex breakpoints in functions matching a regexp
2984@cindex set breakpoints in many functions
c906108c 2985@item rbreak @var{regex}
c906108c 2986Set breakpoints on all functions matching the regular expression
11cf8741
JM
2987@var{regex}. This command sets an unconditional breakpoint on all
2988matches, printing a list of all breakpoints it set. Once these
2989breakpoints are set, they are treated just like the breakpoints set with
2990the @code{break} command. You can delete them, disable them, or make
2991them conditional the same way as any other breakpoint.
2992
2993The syntax of the regular expression is the standard one used with tools
2994like @file{grep}. Note that this is different from the syntax used by
2995shells, so for instance @code{foo*} matches all functions that include
2996an @code{fo} followed by zero or more @code{o}s. There is an implicit
2997@code{.*} leading and trailing the regular expression you supply, so to
2998match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2999
f7dc1244 3000@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 3001When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
3002breakpoints on overloaded functions that are not members of any special
3003classes.
c906108c 3004
f7dc1244
EZ
3005@cindex set breakpoints on all functions
3006The @code{rbreak} command can be used to set breakpoints in
3007@strong{all} the functions in a program, like this:
3008
3009@smallexample
3010(@value{GDBP}) rbreak .
3011@end smallexample
3012
c906108c
SS
3013@kindex info breakpoints
3014@cindex @code{$_} and @code{info breakpoints}
3015@item info breakpoints @r{[}@var{n}@r{]}
3016@itemx info break @r{[}@var{n}@r{]}
3017@itemx info watchpoints @r{[}@var{n}@r{]}
3018Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
3019not deleted. Optional argument @var{n} means print information only
3020about the specified breakpoint (or watchpoint or catchpoint). For
3021each breakpoint, following columns are printed:
c906108c
SS
3022
3023@table @emph
3024@item Breakpoint Numbers
3025@item Type
3026Breakpoint, watchpoint, or catchpoint.
3027@item Disposition
3028Whether the breakpoint is marked to be disabled or deleted when hit.
3029@item Enabled or Disabled
3030Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
b3db7447 3031that are not enabled.
c906108c 3032@item Address
fe6fbf8b 3033Where the breakpoint is in your program, as a memory address. For a
b3db7447
NR
3034pending breakpoint whose address is not yet known, this field will
3035contain @samp{<PENDING>}. Such breakpoint won't fire until a shared
3036library that has the symbol or line referred by breakpoint is loaded.
3037See below for details. A breakpoint with several locations will
3b784c4f 3038have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3039@item What
3040Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3041line number. For a pending breakpoint, the original string passed to
3042the breakpoint command will be listed as it cannot be resolved until
3043the appropriate shared library is loaded in the future.
c906108c
SS
3044@end table
3045
3046@noindent
3047If a breakpoint is conditional, @code{info break} shows the condition on
3048the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3049are listed after that. A pending breakpoint is allowed to have a condition
3050specified for it. The condition is not parsed for validity until a shared
3051library is loaded that allows the pending breakpoint to resolve to a
3052valid location.
c906108c
SS
3053
3054@noindent
3055@code{info break} with a breakpoint
3056number @var{n} as argument lists only that breakpoint. The
3057convenience variable @code{$_} and the default examining-address for
3058the @code{x} command are set to the address of the last breakpoint
79a6e687 3059listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3060
3061@noindent
3062@code{info break} displays a count of the number of times the breakpoint
3063has been hit. This is especially useful in conjunction with the
3064@code{ignore} command. You can ignore a large number of breakpoint
3065hits, look at the breakpoint info to see how many times the breakpoint
3066was hit, and then run again, ignoring one less than that number. This
3067will get you quickly to the last hit of that breakpoint.
3068@end table
3069
3070@value{GDBN} allows you to set any number of breakpoints at the same place in
3071your program. There is nothing silly or meaningless about this. When
3072the breakpoints are conditional, this is even useful
79a6e687 3073(@pxref{Conditions, ,Break Conditions}).
c906108c 3074
2e9132cc
EZ
3075@cindex multiple locations, breakpoints
3076@cindex breakpoints, multiple locations
fcda367b 3077It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3078in your program. Examples of this situation are:
3079
3080@itemize @bullet
fe6fbf8b
VP
3081@item
3082For a C@t{++} constructor, the @value{NGCC} compiler generates several
3083instances of the function body, used in different cases.
3084
3085@item
3086For a C@t{++} template function, a given line in the function can
3087correspond to any number of instantiations.
3088
3089@item
3090For an inlined function, a given source line can correspond to
3091several places where that function is inlined.
fe6fbf8b
VP
3092@end itemize
3093
3094In all those cases, @value{GDBN} will insert a breakpoint at all
2e9132cc
EZ
3095the relevant locations@footnote{
3096As of this writing, multiple-location breakpoints work only if there's
3097line number information for all the locations. This means that they
3098will generally not work in system libraries, unless you have debug
3099info with line numbers for them.}.
fe6fbf8b 3100
3b784c4f
EZ
3101A breakpoint with multiple locations is displayed in the breakpoint
3102table using several rows---one header row, followed by one row for
3103each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3104address column. The rows for individual locations contain the actual
3105addresses for locations, and show the functions to which those
3106locations belong. The number column for a location is of the form
fe6fbf8b
VP
3107@var{breakpoint-number}.@var{location-number}.
3108
3109For example:
3b784c4f 3110
fe6fbf8b
VP
3111@smallexample
3112Num Type Disp Enb Address What
31131 breakpoint keep y <MULTIPLE>
3114 stop only if i==1
3115 breakpoint already hit 1 time
31161.1 y 0x080486a2 in void foo<int>() at t.cc:8
31171.2 y 0x080486ca in void foo<double>() at t.cc:8
3118@end smallexample
3119
3120Each location can be individually enabled or disabled by passing
3121@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3122@code{enable} and @code{disable} commands. Note that you cannot
3123delete the individual locations from the list, you can only delete the
16bfc218 3124entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3125the @kbd{delete @var{num}} command, where @var{num} is the number of
3126the parent breakpoint, 1 in the above example). Disabling or enabling
3127the parent breakpoint (@pxref{Disabling}) affects all of the locations
3128that belong to that breakpoint.
fe6fbf8b 3129
2650777c 3130@cindex pending breakpoints
fe6fbf8b 3131It's quite common to have a breakpoint inside a shared library.
3b784c4f 3132Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3133and possibly repeatedly, as the program is executed. To support
3134this use case, @value{GDBN} updates breakpoint locations whenever
3135any shared library is loaded or unloaded. Typically, you would
fcda367b 3136set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3137debugging session, when the library is not loaded, and when the
3138symbols from the library are not available. When you try to set
3139breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3140a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3141is not yet resolved.
3142
3143After the program is run, whenever a new shared library is loaded,
3144@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3145shared library contains the symbol or line referred to by some
3146pending breakpoint, that breakpoint is resolved and becomes an
3147ordinary breakpoint. When a library is unloaded, all breakpoints
3148that refer to its symbols or source lines become pending again.
3149
3150This logic works for breakpoints with multiple locations, too. For
3151example, if you have a breakpoint in a C@t{++} template function, and
3152a newly loaded shared library has an instantiation of that template,
3153a new location is added to the list of locations for the breakpoint.
3154
3155Except for having unresolved address, pending breakpoints do not
3156differ from regular breakpoints. You can set conditions or commands,
3157enable and disable them and perform other breakpoint operations.
3158
3159@value{GDBN} provides some additional commands for controlling what
3160happens when the @samp{break} command cannot resolve breakpoint
3161address specification to an address:
dd79a6cf
JJ
3162
3163@kindex set breakpoint pending
3164@kindex show breakpoint pending
3165@table @code
3166@item set breakpoint pending auto
3167This is the default behavior. When @value{GDBN} cannot find the breakpoint
3168location, it queries you whether a pending breakpoint should be created.
3169
3170@item set breakpoint pending on
3171This indicates that an unrecognized breakpoint location should automatically
3172result in a pending breakpoint being created.
3173
3174@item set breakpoint pending off
3175This indicates that pending breakpoints are not to be created. Any
3176unrecognized breakpoint location results in an error. This setting does
3177not affect any pending breakpoints previously created.
3178
3179@item show breakpoint pending
3180Show the current behavior setting for creating pending breakpoints.
3181@end table
2650777c 3182
fe6fbf8b
VP
3183The settings above only affect the @code{break} command and its
3184variants. Once breakpoint is set, it will be automatically updated
3185as shared libraries are loaded and unloaded.
2650777c 3186
765dc015
VP
3187@cindex automatic hardware breakpoints
3188For some targets, @value{GDBN} can automatically decide if hardware or
3189software breakpoints should be used, depending on whether the
3190breakpoint address is read-only or read-write. This applies to
3191breakpoints set with the @code{break} command as well as to internal
3192breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3193breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3194breakpoints.
3195
3196You can control this automatic behaviour with the following commands::
3197
3198@kindex set breakpoint auto-hw
3199@kindex show breakpoint auto-hw
3200@table @code
3201@item set breakpoint auto-hw on
3202This is the default behavior. When @value{GDBN} sets a breakpoint, it
3203will try to use the target memory map to decide if software or hardware
3204breakpoint must be used.
3205
3206@item set breakpoint auto-hw off
3207This indicates @value{GDBN} should not automatically select breakpoint
3208type. If the target provides a memory map, @value{GDBN} will warn when
3209trying to set software breakpoint at a read-only address.
3210@end table
3211
3212
c906108c
SS
3213@cindex negative breakpoint numbers
3214@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3215@value{GDBN} itself sometimes sets breakpoints in your program for
3216special purposes, such as proper handling of @code{longjmp} (in C
3217programs). These internal breakpoints are assigned negative numbers,
3218starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3219You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3220@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3221
3222
6d2ebf8b 3223@node Set Watchpoints
79a6e687 3224@subsection Setting Watchpoints
c906108c
SS
3225
3226@cindex setting watchpoints
c906108c
SS
3227You can use a watchpoint to stop execution whenever the value of an
3228expression changes, without having to predict a particular place where
fd60e0df
EZ
3229this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3230The expression may be as simple as the value of a single variable, or
3231as complex as many variables combined by operators. Examples include:
3232
3233@itemize @bullet
3234@item
3235A reference to the value of a single variable.
3236
3237@item
3238An address cast to an appropriate data type. For example,
3239@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3240address (assuming an @code{int} occupies 4 bytes).
3241
3242@item
3243An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3244expression can use any operators valid in the program's native
3245language (@pxref{Languages}).
3246@end itemize
c906108c 3247
fa4727a6
DJ
3248You can set a watchpoint on an expression even if the expression can
3249not be evaluated yet. For instance, you can set a watchpoint on
3250@samp{*global_ptr} before @samp{global_ptr} is initialized.
3251@value{GDBN} will stop when your program sets @samp{global_ptr} and
3252the expression produces a valid value. If the expression becomes
3253valid in some other way than changing a variable (e.g.@: if the memory
3254pointed to by @samp{*global_ptr} becomes readable as the result of a
3255@code{malloc} call), @value{GDBN} may not stop until the next time
3256the expression changes.
3257
82f2d802
EZ
3258@cindex software watchpoints
3259@cindex hardware watchpoints
c906108c 3260Depending on your system, watchpoints may be implemented in software or
2df3850c 3261hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3262program and testing the variable's value each time, which is hundreds of
3263times slower than normal execution. (But this may still be worth it, to
3264catch errors where you have no clue what part of your program is the
3265culprit.)
3266
37e4754d 3267On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3268x86-based targets, @value{GDBN} includes support for hardware
3269watchpoints, which do not slow down the running of your program.
c906108c
SS
3270
3271@table @code
3272@kindex watch
d8b2a693 3273@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3274Set a watchpoint for an expression. @value{GDBN} will break when the
3275expression @var{expr} is written into by the program and its value
3276changes. The simplest (and the most popular) use of this command is
3277to watch the value of a single variable:
3278
3279@smallexample
3280(@value{GDBP}) watch foo
3281@end smallexample
c906108c 3282
d8b2a693
JB
3283If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3284clause, @value{GDBN} breaks only when the thread identified by
3285@var{threadnum} changes the value of @var{expr}. If any other threads
3286change the value of @var{expr}, @value{GDBN} will not break. Note
3287that watchpoints restricted to a single thread in this way only work
3288with Hardware Watchpoints.
3289
c906108c 3290@kindex rwatch
d8b2a693 3291@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3292Set a watchpoint that will break when the value of @var{expr} is read
3293by the program.
c906108c
SS
3294
3295@kindex awatch
d8b2a693 3296@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3297Set a watchpoint that will break when @var{expr} is either read from
3298or written into by the program.
c906108c 3299
45ac1734 3300@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3301@item info watchpoints
3302This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3303it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3304@end table
3305
3306@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3307watchpoints execute very quickly, and the debugger reports a change in
3308value at the exact instruction where the change occurs. If @value{GDBN}
3309cannot set a hardware watchpoint, it sets a software watchpoint, which
3310executes more slowly and reports the change in value at the next
82f2d802
EZ
3311@emph{statement}, not the instruction, after the change occurs.
3312
82f2d802
EZ
3313@cindex use only software watchpoints
3314You can force @value{GDBN} to use only software watchpoints with the
3315@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3316zero, @value{GDBN} will never try to use hardware watchpoints, even if
3317the underlying system supports them. (Note that hardware-assisted
3318watchpoints that were set @emph{before} setting
3319@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3320mechanism of watching expression values.)
c906108c 3321
9c16f35a
EZ
3322@table @code
3323@item set can-use-hw-watchpoints
3324@kindex set can-use-hw-watchpoints
3325Set whether or not to use hardware watchpoints.
3326
3327@item show can-use-hw-watchpoints
3328@kindex show can-use-hw-watchpoints
3329Show the current mode of using hardware watchpoints.
3330@end table
3331
3332For remote targets, you can restrict the number of hardware
3333watchpoints @value{GDBN} will use, see @ref{set remote
3334hardware-breakpoint-limit}.
3335
c906108c
SS
3336When you issue the @code{watch} command, @value{GDBN} reports
3337
474c8240 3338@smallexample
c906108c 3339Hardware watchpoint @var{num}: @var{expr}
474c8240 3340@end smallexample
c906108c
SS
3341
3342@noindent
3343if it was able to set a hardware watchpoint.
3344
7be570e7
JM
3345Currently, the @code{awatch} and @code{rwatch} commands can only set
3346hardware watchpoints, because accesses to data that don't change the
3347value of the watched expression cannot be detected without examining
3348every instruction as it is being executed, and @value{GDBN} does not do
3349that currently. If @value{GDBN} finds that it is unable to set a
3350hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3351will print a message like this:
3352
3353@smallexample
3354Expression cannot be implemented with read/access watchpoint.
3355@end smallexample
3356
3357Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3358data type of the watched expression is wider than what a hardware
3359watchpoint on the target machine can handle. For example, some systems
3360can only watch regions that are up to 4 bytes wide; on such systems you
3361cannot set hardware watchpoints for an expression that yields a
3362double-precision floating-point number (which is typically 8 bytes
3363wide). As a work-around, it might be possible to break the large region
3364into a series of smaller ones and watch them with separate watchpoints.
3365
3366If you set too many hardware watchpoints, @value{GDBN} might be unable
3367to insert all of them when you resume the execution of your program.
3368Since the precise number of active watchpoints is unknown until such
3369time as the program is about to be resumed, @value{GDBN} might not be
3370able to warn you about this when you set the watchpoints, and the
3371warning will be printed only when the program is resumed:
3372
3373@smallexample
3374Hardware watchpoint @var{num}: Could not insert watchpoint
3375@end smallexample
3376
3377@noindent
3378If this happens, delete or disable some of the watchpoints.
3379
fd60e0df
EZ
3380Watching complex expressions that reference many variables can also
3381exhaust the resources available for hardware-assisted watchpoints.
3382That's because @value{GDBN} needs to watch every variable in the
3383expression with separately allocated resources.
3384
c906108c 3385If you call a function interactively using @code{print} or @code{call},
2df3850c 3386any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3387kind of breakpoint or the call completes.
3388
7be570e7
JM
3389@value{GDBN} automatically deletes watchpoints that watch local
3390(automatic) variables, or expressions that involve such variables, when
3391they go out of scope, that is, when the execution leaves the block in
3392which these variables were defined. In particular, when the program
3393being debugged terminates, @emph{all} local variables go out of scope,
3394and so only watchpoints that watch global variables remain set. If you
3395rerun the program, you will need to set all such watchpoints again. One
3396way of doing that would be to set a code breakpoint at the entry to the
3397@code{main} function and when it breaks, set all the watchpoints.
3398
c906108c
SS
3399@cindex watchpoints and threads
3400@cindex threads and watchpoints
d983da9c
DJ
3401In multi-threaded programs, watchpoints will detect changes to the
3402watched expression from every thread.
3403
3404@quotation
3405@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3406have only limited usefulness. If @value{GDBN} creates a software
3407watchpoint, it can only watch the value of an expression @emph{in a
3408single thread}. If you are confident that the expression can only
3409change due to the current thread's activity (and if you are also
3410confident that no other thread can become current), then you can use
3411software watchpoints as usual. However, @value{GDBN} may not notice
3412when a non-current thread's activity changes the expression. (Hardware
3413watchpoints, in contrast, watch an expression in all threads.)
c906108c 3414@end quotation
c906108c 3415
501eef12
AC
3416@xref{set remote hardware-watchpoint-limit}.
3417
6d2ebf8b 3418@node Set Catchpoints
79a6e687 3419@subsection Setting Catchpoints
d4f3574e 3420@cindex catchpoints, setting
c906108c
SS
3421@cindex exception handlers
3422@cindex event handling
3423
3424You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3425kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3426shared library. Use the @code{catch} command to set a catchpoint.
3427
3428@table @code
3429@kindex catch
3430@item catch @var{event}
3431Stop when @var{event} occurs. @var{event} can be any of the following:
3432@table @code
3433@item throw
4644b6e3 3434@cindex stop on C@t{++} exceptions
b37052ae 3435The throwing of a C@t{++} exception.
c906108c
SS
3436
3437@item catch
b37052ae 3438The catching of a C@t{++} exception.
c906108c 3439
8936fcda
JB
3440@item exception
3441@cindex Ada exception catching
3442@cindex catch Ada exceptions
3443An Ada exception being raised. If an exception name is specified
3444at the end of the command (eg @code{catch exception Program_Error}),
3445the debugger will stop only when this specific exception is raised.
3446Otherwise, the debugger stops execution when any Ada exception is raised.
3447
3448@item exception unhandled
3449An exception that was raised but is not handled by the program.
3450
3451@item assert
3452A failed Ada assertion.
3453
c906108c 3454@item exec
4644b6e3 3455@cindex break on fork/exec
5ee187d7
DJ
3456A call to @code{exec}. This is currently only available for HP-UX
3457and @sc{gnu}/Linux.
c906108c
SS
3458
3459@item fork
5ee187d7
DJ
3460A call to @code{fork}. This is currently only available for HP-UX
3461and @sc{gnu}/Linux.
c906108c
SS
3462
3463@item vfork
5ee187d7
DJ
3464A call to @code{vfork}. This is currently only available for HP-UX
3465and @sc{gnu}/Linux.
c906108c
SS
3466
3467@item load
3468@itemx load @var{libname}
4644b6e3 3469@cindex break on load/unload of shared library
c906108c
SS
3470The dynamic loading of any shared library, or the loading of the library
3471@var{libname}. This is currently only available for HP-UX.
3472
3473@item unload
3474@itemx unload @var{libname}
c906108c
SS
3475The unloading of any dynamically loaded shared library, or the unloading
3476of the library @var{libname}. This is currently only available for HP-UX.
3477@end table
3478
3479@item tcatch @var{event}
3480Set a catchpoint that is enabled only for one stop. The catchpoint is
3481automatically deleted after the first time the event is caught.
3482
3483@end table
3484
3485Use the @code{info break} command to list the current catchpoints.
3486
b37052ae 3487There are currently some limitations to C@t{++} exception handling
c906108c
SS
3488(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3489
3490@itemize @bullet
3491@item
3492If you call a function interactively, @value{GDBN} normally returns
3493control to you when the function has finished executing. If the call
3494raises an exception, however, the call may bypass the mechanism that
3495returns control to you and cause your program either to abort or to
3496simply continue running until it hits a breakpoint, catches a signal
3497that @value{GDBN} is listening for, or exits. This is the case even if
3498you set a catchpoint for the exception; catchpoints on exceptions are
3499disabled within interactive calls.
3500
3501@item
3502You cannot raise an exception interactively.
3503
3504@item
3505You cannot install an exception handler interactively.
3506@end itemize
3507
3508@cindex raise exceptions
3509Sometimes @code{catch} is not the best way to debug exception handling:
3510if you need to know exactly where an exception is raised, it is better to
3511stop @emph{before} the exception handler is called, since that way you
3512can see the stack before any unwinding takes place. If you set a
3513breakpoint in an exception handler instead, it may not be easy to find
3514out where the exception was raised.
3515
3516To stop just before an exception handler is called, you need some
b37052ae 3517knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3518raised by calling a library function named @code{__raise_exception}
3519which has the following ANSI C interface:
3520
474c8240 3521@smallexample
c906108c 3522 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3523 @var{id} is the exception identifier. */
3524 void __raise_exception (void **addr, void *id);
474c8240 3525@end smallexample
c906108c
SS
3526
3527@noindent
3528To make the debugger catch all exceptions before any stack
3529unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3530(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3531
79a6e687 3532With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3533that depends on the value of @var{id}, you can stop your program when
3534a specific exception is raised. You can use multiple conditional
3535breakpoints to stop your program when any of a number of exceptions are
3536raised.
3537
3538
6d2ebf8b 3539@node Delete Breaks
79a6e687 3540@subsection Deleting Breakpoints
c906108c
SS
3541
3542@cindex clearing breakpoints, watchpoints, catchpoints
3543@cindex deleting breakpoints, watchpoints, catchpoints
3544It is often necessary to eliminate a breakpoint, watchpoint, or
3545catchpoint once it has done its job and you no longer want your program
3546to stop there. This is called @dfn{deleting} the breakpoint. A
3547breakpoint that has been deleted no longer exists; it is forgotten.
3548
3549With the @code{clear} command you can delete breakpoints according to
3550where they are in your program. With the @code{delete} command you can
3551delete individual breakpoints, watchpoints, or catchpoints by specifying
3552their breakpoint numbers.
3553
3554It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3555automatically ignores breakpoints on the first instruction to be executed
3556when you continue execution without changing the execution address.
3557
3558@table @code
3559@kindex clear
3560@item clear
3561Delete any breakpoints at the next instruction to be executed in the
79a6e687 3562selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3563the innermost frame is selected, this is a good way to delete a
3564breakpoint where your program just stopped.
3565
2a25a5ba
EZ
3566@item clear @var{location}
3567Delete any breakpoints set at the specified @var{location}.
3568@xref{Specify Location}, for the various forms of @var{location}; the
3569most useful ones are listed below:
3570
3571@table @code
c906108c
SS
3572@item clear @var{function}
3573@itemx clear @var{filename}:@var{function}
09d4efe1 3574Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3575
3576@item clear @var{linenum}
3577@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3578Delete any breakpoints set at or within the code of the specified
3579@var{linenum} of the specified @var{filename}.
2a25a5ba 3580@end table
c906108c
SS
3581
3582@cindex delete breakpoints
3583@kindex delete
41afff9a 3584@kindex d @r{(@code{delete})}
c5394b80
JM
3585@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3586Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3587ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3588breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3589confirm off}). You can abbreviate this command as @code{d}.
3590@end table
3591
6d2ebf8b 3592@node Disabling
79a6e687 3593@subsection Disabling Breakpoints
c906108c 3594
4644b6e3 3595@cindex enable/disable a breakpoint
c906108c
SS
3596Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3597prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3598it had been deleted, but remembers the information on the breakpoint so
3599that you can @dfn{enable} it again later.
3600
3601You disable and enable breakpoints, watchpoints, and catchpoints with
3602the @code{enable} and @code{disable} commands, optionally specifying one
3603or more breakpoint numbers as arguments. Use @code{info break} or
3604@code{info watch} to print a list of breakpoints, watchpoints, and
3605catchpoints if you do not know which numbers to use.
3606
3b784c4f
EZ
3607Disabling and enabling a breakpoint that has multiple locations
3608affects all of its locations.
3609
c906108c
SS
3610A breakpoint, watchpoint, or catchpoint can have any of four different
3611states of enablement:
3612
3613@itemize @bullet
3614@item
3615Enabled. The breakpoint stops your program. A breakpoint set
3616with the @code{break} command starts out in this state.
3617@item
3618Disabled. The breakpoint has no effect on your program.
3619@item
3620Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3621disabled.
c906108c
SS
3622@item
3623Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3624immediately after it does so it is deleted permanently. A breakpoint
3625set with the @code{tbreak} command starts out in this state.
c906108c
SS
3626@end itemize
3627
3628You can use the following commands to enable or disable breakpoints,
3629watchpoints, and catchpoints:
3630
3631@table @code
c906108c 3632@kindex disable
41afff9a 3633@kindex dis @r{(@code{disable})}
c5394b80 3634@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3635Disable the specified breakpoints---or all breakpoints, if none are
3636listed. A disabled breakpoint has no effect but is not forgotten. All
3637options such as ignore-counts, conditions and commands are remembered in
3638case the breakpoint is enabled again later. You may abbreviate
3639@code{disable} as @code{dis}.
3640
c906108c 3641@kindex enable
c5394b80 3642@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3643Enable the specified breakpoints (or all defined breakpoints). They
3644become effective once again in stopping your program.
3645
c5394b80 3646@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3647Enable the specified breakpoints temporarily. @value{GDBN} disables any
3648of these breakpoints immediately after stopping your program.
3649
c5394b80 3650@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3651Enable the specified breakpoints to work once, then die. @value{GDBN}
3652deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3653Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3654@end table
3655
d4f3574e
SS
3656@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3657@c confusing: tbreak is also initially enabled.
c906108c 3658Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3659,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3660subsequently, they become disabled or enabled only when you use one of
3661the commands above. (The command @code{until} can set and delete a
3662breakpoint of its own, but it does not change the state of your other
3663breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3664Stepping}.)
c906108c 3665
6d2ebf8b 3666@node Conditions
79a6e687 3667@subsection Break Conditions
c906108c
SS
3668@cindex conditional breakpoints
3669@cindex breakpoint conditions
3670
3671@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3672@c in particular for a watchpoint?
c906108c
SS
3673The simplest sort of breakpoint breaks every time your program reaches a
3674specified place. You can also specify a @dfn{condition} for a
3675breakpoint. A condition is just a Boolean expression in your
3676programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3677a condition evaluates the expression each time your program reaches it,
3678and your program stops only if the condition is @emph{true}.
3679
3680This is the converse of using assertions for program validation; in that
3681situation, you want to stop when the assertion is violated---that is,
3682when the condition is false. In C, if you want to test an assertion expressed
3683by the condition @var{assert}, you should set the condition
3684@samp{! @var{assert}} on the appropriate breakpoint.
3685
3686Conditions are also accepted for watchpoints; you may not need them,
3687since a watchpoint is inspecting the value of an expression anyhow---but
3688it might be simpler, say, to just set a watchpoint on a variable name,
3689and specify a condition that tests whether the new value is an interesting
3690one.
3691
3692Break conditions can have side effects, and may even call functions in
3693your program. This can be useful, for example, to activate functions
3694that log program progress, or to use your own print functions to
3695format special data structures. The effects are completely predictable
3696unless there is another enabled breakpoint at the same address. (In
3697that case, @value{GDBN} might see the other breakpoint first and stop your
3698program without checking the condition of this one.) Note that
d4f3574e
SS
3699breakpoint commands are usually more convenient and flexible than break
3700conditions for the
c906108c 3701purpose of performing side effects when a breakpoint is reached
79a6e687 3702(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3703
3704Break conditions can be specified when a breakpoint is set, by using
3705@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3706Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3707with the @code{condition} command.
53a5351d 3708
c906108c
SS
3709You can also use the @code{if} keyword with the @code{watch} command.
3710The @code{catch} command does not recognize the @code{if} keyword;
3711@code{condition} is the only way to impose a further condition on a
3712catchpoint.
c906108c
SS
3713
3714@table @code
3715@kindex condition
3716@item condition @var{bnum} @var{expression}
3717Specify @var{expression} as the break condition for breakpoint,
3718watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3719breakpoint @var{bnum} stops your program only if the value of
3720@var{expression} is true (nonzero, in C). When you use
3721@code{condition}, @value{GDBN} checks @var{expression} immediately for
3722syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3723referents in the context of your breakpoint. If @var{expression} uses
3724symbols not referenced in the context of the breakpoint, @value{GDBN}
3725prints an error message:
3726
474c8240 3727@smallexample
d4f3574e 3728No symbol "foo" in current context.
474c8240 3729@end smallexample
d4f3574e
SS
3730
3731@noindent
c906108c
SS
3732@value{GDBN} does
3733not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3734command (or a command that sets a breakpoint with a condition, like
3735@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3736
3737@item condition @var{bnum}
3738Remove the condition from breakpoint number @var{bnum}. It becomes
3739an ordinary unconditional breakpoint.
3740@end table
3741
3742@cindex ignore count (of breakpoint)
3743A special case of a breakpoint condition is to stop only when the
3744breakpoint has been reached a certain number of times. This is so
3745useful that there is a special way to do it, using the @dfn{ignore
3746count} of the breakpoint. Every breakpoint has an ignore count, which
3747is an integer. Most of the time, the ignore count is zero, and
3748therefore has no effect. But if your program reaches a breakpoint whose
3749ignore count is positive, then instead of stopping, it just decrements
3750the ignore count by one and continues. As a result, if the ignore count
3751value is @var{n}, the breakpoint does not stop the next @var{n} times
3752your program reaches it.
3753
3754@table @code
3755@kindex ignore
3756@item ignore @var{bnum} @var{count}
3757Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3758The next @var{count} times the breakpoint is reached, your program's
3759execution does not stop; other than to decrement the ignore count, @value{GDBN}
3760takes no action.
3761
3762To make the breakpoint stop the next time it is reached, specify
3763a count of zero.
3764
3765When you use @code{continue} to resume execution of your program from a
3766breakpoint, you can specify an ignore count directly as an argument to
3767@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3768Stepping,,Continuing and Stepping}.
c906108c
SS
3769
3770If a breakpoint has a positive ignore count and a condition, the
3771condition is not checked. Once the ignore count reaches zero,
3772@value{GDBN} resumes checking the condition.
3773
3774You could achieve the effect of the ignore count with a condition such
3775as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3776is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3777Variables}.
c906108c
SS
3778@end table
3779
3780Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3781
3782
6d2ebf8b 3783@node Break Commands
79a6e687 3784@subsection Breakpoint Command Lists
c906108c
SS
3785
3786@cindex breakpoint commands
3787You can give any breakpoint (or watchpoint or catchpoint) a series of
3788commands to execute when your program stops due to that breakpoint. For
3789example, you might want to print the values of certain expressions, or
3790enable other breakpoints.
3791
3792@table @code
3793@kindex commands
ca91424e 3794@kindex end@r{ (breakpoint commands)}
c906108c
SS
3795@item commands @r{[}@var{bnum}@r{]}
3796@itemx @dots{} @var{command-list} @dots{}
3797@itemx end
3798Specify a list of commands for breakpoint number @var{bnum}. The commands
3799themselves appear on the following lines. Type a line containing just
3800@code{end} to terminate the commands.
3801
3802To remove all commands from a breakpoint, type @code{commands} and
3803follow it immediately with @code{end}; that is, give no commands.
3804
3805With no @var{bnum} argument, @code{commands} refers to the last
3806breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3807recently encountered).
3808@end table
3809
3810Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3811disabled within a @var{command-list}.
3812
3813You can use breakpoint commands to start your program up again. Simply
3814use the @code{continue} command, or @code{step}, or any other command
3815that resumes execution.
3816
3817Any other commands in the command list, after a command that resumes
3818execution, are ignored. This is because any time you resume execution
3819(even with a simple @code{next} or @code{step}), you may encounter
3820another breakpoint---which could have its own command list, leading to
3821ambiguities about which list to execute.
3822
3823@kindex silent
3824If the first command you specify in a command list is @code{silent}, the
3825usual message about stopping at a breakpoint is not printed. This may
3826be desirable for breakpoints that are to print a specific message and
3827then continue. If none of the remaining commands print anything, you
3828see no sign that the breakpoint was reached. @code{silent} is
3829meaningful only at the beginning of a breakpoint command list.
3830
3831The commands @code{echo}, @code{output}, and @code{printf} allow you to
3832print precisely controlled output, and are often useful in silent
79a6e687 3833breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3834
3835For example, here is how you could use breakpoint commands to print the
3836value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3837
474c8240 3838@smallexample
c906108c
SS
3839break foo if x>0
3840commands
3841silent
3842printf "x is %d\n",x
3843cont
3844end
474c8240 3845@end smallexample
c906108c
SS
3846
3847One application for breakpoint commands is to compensate for one bug so
3848you can test for another. Put a breakpoint just after the erroneous line
3849of code, give it a condition to detect the case in which something
3850erroneous has been done, and give it commands to assign correct values
3851to any variables that need them. End with the @code{continue} command
3852so that your program does not stop, and start with the @code{silent}
3853command so that no output is produced. Here is an example:
3854
474c8240 3855@smallexample
c906108c
SS
3856break 403
3857commands
3858silent
3859set x = y + 4
3860cont
3861end
474c8240 3862@end smallexample
c906108c 3863
c906108c 3864@c @ifclear BARETARGET
6d2ebf8b 3865@node Error in Breakpoints
d4f3574e 3866@subsection ``Cannot insert breakpoints''
c906108c
SS
3867@c
3868@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3869@c
d4f3574e
SS
3870Under some operating systems, breakpoints cannot be used in a program if
3871any other process is running that program. In this situation,
5d161b24 3872attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3873@value{GDBN} to print an error message:
3874
474c8240 3875@smallexample
d4f3574e
SS
3876Cannot insert breakpoints.
3877The same program may be running in another process.
474c8240 3878@end smallexample
d4f3574e
SS
3879
3880When this happens, you have three ways to proceed:
3881
3882@enumerate
3883@item
3884Remove or disable the breakpoints, then continue.
3885
3886@item
5d161b24 3887Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3888name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3889that @value{GDBN} should run your program under that name.
d4f3574e
SS
3890Then start your program again.
3891
3892@item
3893Relink your program so that the text segment is nonsharable, using the
3894linker option @samp{-N}. The operating system limitation may not apply
3895to nonsharable executables.
3896@end enumerate
c906108c
SS
3897@c @end ifclear
3898
d4f3574e
SS
3899A similar message can be printed if you request too many active
3900hardware-assisted breakpoints and watchpoints:
3901
3902@c FIXME: the precise wording of this message may change; the relevant
3903@c source change is not committed yet (Sep 3, 1999).
3904@smallexample
3905Stopped; cannot insert breakpoints.
3906You may have requested too many hardware breakpoints and watchpoints.
3907@end smallexample
3908
3909@noindent
3910This message is printed when you attempt to resume the program, since
3911only then @value{GDBN} knows exactly how many hardware breakpoints and
3912watchpoints it needs to insert.
3913
3914When this message is printed, you need to disable or remove some of the
3915hardware-assisted breakpoints and watchpoints, and then continue.
3916
79a6e687 3917@node Breakpoint-related Warnings
1485d690
KB
3918@subsection ``Breakpoint address adjusted...''
3919@cindex breakpoint address adjusted
3920
3921Some processor architectures place constraints on the addresses at
3922which breakpoints may be placed. For architectures thus constrained,
3923@value{GDBN} will attempt to adjust the breakpoint's address to comply
3924with the constraints dictated by the architecture.
3925
3926One example of such an architecture is the Fujitsu FR-V. The FR-V is
3927a VLIW architecture in which a number of RISC-like instructions may be
3928bundled together for parallel execution. The FR-V architecture
3929constrains the location of a breakpoint instruction within such a
3930bundle to the instruction with the lowest address. @value{GDBN}
3931honors this constraint by adjusting a breakpoint's address to the
3932first in the bundle.
3933
3934It is not uncommon for optimized code to have bundles which contain
3935instructions from different source statements, thus it may happen that
3936a breakpoint's address will be adjusted from one source statement to
3937another. Since this adjustment may significantly alter @value{GDBN}'s
3938breakpoint related behavior from what the user expects, a warning is
3939printed when the breakpoint is first set and also when the breakpoint
3940is hit.
3941
3942A warning like the one below is printed when setting a breakpoint
3943that's been subject to address adjustment:
3944
3945@smallexample
3946warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3947@end smallexample
3948
3949Such warnings are printed both for user settable and @value{GDBN}'s
3950internal breakpoints. If you see one of these warnings, you should
3951verify that a breakpoint set at the adjusted address will have the
3952desired affect. If not, the breakpoint in question may be removed and
b383017d 3953other breakpoints may be set which will have the desired behavior.
1485d690
KB
3954E.g., it may be sufficient to place the breakpoint at a later
3955instruction. A conditional breakpoint may also be useful in some
3956cases to prevent the breakpoint from triggering too often.
3957
3958@value{GDBN} will also issue a warning when stopping at one of these
3959adjusted breakpoints:
3960
3961@smallexample
3962warning: Breakpoint 1 address previously adjusted from 0x00010414
3963to 0x00010410.
3964@end smallexample
3965
3966When this warning is encountered, it may be too late to take remedial
3967action except in cases where the breakpoint is hit earlier or more
3968frequently than expected.
d4f3574e 3969
6d2ebf8b 3970@node Continuing and Stepping
79a6e687 3971@section Continuing and Stepping
c906108c
SS
3972
3973@cindex stepping
3974@cindex continuing
3975@cindex resuming execution
3976@dfn{Continuing} means resuming program execution until your program
3977completes normally. In contrast, @dfn{stepping} means executing just
3978one more ``step'' of your program, where ``step'' may mean either one
3979line of source code, or one machine instruction (depending on what
7a292a7a
SS
3980particular command you use). Either when continuing or when stepping,
3981your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3982it stops due to a signal, you may want to use @code{handle}, or use
3983@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3984
3985@table @code
3986@kindex continue
41afff9a
EZ
3987@kindex c @r{(@code{continue})}
3988@kindex fg @r{(resume foreground execution)}
c906108c
SS
3989@item continue @r{[}@var{ignore-count}@r{]}
3990@itemx c @r{[}@var{ignore-count}@r{]}
3991@itemx fg @r{[}@var{ignore-count}@r{]}
3992Resume program execution, at the address where your program last stopped;
3993any breakpoints set at that address are bypassed. The optional argument
3994@var{ignore-count} allows you to specify a further number of times to
3995ignore a breakpoint at this location; its effect is like that of
79a6e687 3996@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3997
3998The argument @var{ignore-count} is meaningful only when your program
3999stopped due to a breakpoint. At other times, the argument to
4000@code{continue} is ignored.
4001
d4f3574e
SS
4002The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4003debugged program is deemed to be the foreground program) are provided
4004purely for convenience, and have exactly the same behavior as
4005@code{continue}.
c906108c
SS
4006@end table
4007
4008To resume execution at a different place, you can use @code{return}
79a6e687 4009(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4010calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4011Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4012
4013A typical technique for using stepping is to set a breakpoint
79a6e687 4014(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4015beginning of the function or the section of your program where a problem
4016is believed to lie, run your program until it stops at that breakpoint,
4017and then step through the suspect area, examining the variables that are
4018interesting, until you see the problem happen.
4019
4020@table @code
4021@kindex step
41afff9a 4022@kindex s @r{(@code{step})}
c906108c
SS
4023@item step
4024Continue running your program until control reaches a different source
4025line, then stop it and return control to @value{GDBN}. This command is
4026abbreviated @code{s}.
4027
4028@quotation
4029@c "without debugging information" is imprecise; actually "without line
4030@c numbers in the debugging information". (gcc -g1 has debugging info but
4031@c not line numbers). But it seems complex to try to make that
4032@c distinction here.
4033@emph{Warning:} If you use the @code{step} command while control is
4034within a function that was compiled without debugging information,
4035execution proceeds until control reaches a function that does have
4036debugging information. Likewise, it will not step into a function which
4037is compiled without debugging information. To step through functions
4038without debugging information, use the @code{stepi} command, described
4039below.
4040@end quotation
4041
4a92d011
EZ
4042The @code{step} command only stops at the first instruction of a source
4043line. This prevents the multiple stops that could otherwise occur in
4044@code{switch} statements, @code{for} loops, etc. @code{step} continues
4045to stop if a function that has debugging information is called within
4046the line. In other words, @code{step} @emph{steps inside} any functions
4047called within the line.
c906108c 4048
d4f3574e
SS
4049Also, the @code{step} command only enters a function if there is line
4050number information for the function. Otherwise it acts like the
5d161b24 4051@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4052on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4053was any debugging information about the routine.
c906108c
SS
4054
4055@item step @var{count}
4056Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4057breakpoint is reached, or a signal not related to stepping occurs before
4058@var{count} steps, stepping stops right away.
c906108c
SS
4059
4060@kindex next
41afff9a 4061@kindex n @r{(@code{next})}
c906108c
SS
4062@item next @r{[}@var{count}@r{]}
4063Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4064This is similar to @code{step}, but function calls that appear within
4065the line of code are executed without stopping. Execution stops when
4066control reaches a different line of code at the original stack level
4067that was executing when you gave the @code{next} command. This command
4068is abbreviated @code{n}.
c906108c
SS
4069
4070An argument @var{count} is a repeat count, as for @code{step}.
4071
4072
4073@c FIX ME!! Do we delete this, or is there a way it fits in with
4074@c the following paragraph? --- Vctoria
4075@c
4076@c @code{next} within a function that lacks debugging information acts like
4077@c @code{step}, but any function calls appearing within the code of the
4078@c function are executed without stopping.
4079
d4f3574e
SS
4080The @code{next} command only stops at the first instruction of a
4081source line. This prevents multiple stops that could otherwise occur in
4a92d011 4082@code{switch} statements, @code{for} loops, etc.
c906108c 4083
b90a5f51
CF
4084@kindex set step-mode
4085@item set step-mode
4086@cindex functions without line info, and stepping
4087@cindex stepping into functions with no line info
4088@itemx set step-mode on
4a92d011 4089The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4090stop at the first instruction of a function which contains no debug line
4091information rather than stepping over it.
4092
4a92d011
EZ
4093This is useful in cases where you may be interested in inspecting the
4094machine instructions of a function which has no symbolic info and do not
4095want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4096
4097@item set step-mode off
4a92d011 4098Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4099debug information. This is the default.
4100
9c16f35a
EZ
4101@item show step-mode
4102Show whether @value{GDBN} will stop in or step over functions without
4103source line debug information.
4104
c906108c
SS
4105@kindex finish
4106@item finish
4107Continue running until just after function in the selected stack frame
4108returns. Print the returned value (if any).
4109
4110Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4111,Returning from a Function}).
c906108c
SS
4112
4113@kindex until
41afff9a 4114@kindex u @r{(@code{until})}
09d4efe1 4115@cindex run until specified location
c906108c
SS
4116@item until
4117@itemx u
4118Continue running until a source line past the current line, in the
4119current stack frame, is reached. This command is used to avoid single
4120stepping through a loop more than once. It is like the @code{next}
4121command, except that when @code{until} encounters a jump, it
4122automatically continues execution until the program counter is greater
4123than the address of the jump.
4124
4125This means that when you reach the end of a loop after single stepping
4126though it, @code{until} makes your program continue execution until it
4127exits the loop. In contrast, a @code{next} command at the end of a loop
4128simply steps back to the beginning of the loop, which forces you to step
4129through the next iteration.
4130
4131@code{until} always stops your program if it attempts to exit the current
4132stack frame.
4133
4134@code{until} may produce somewhat counterintuitive results if the order
4135of machine code does not match the order of the source lines. For
4136example, in the following excerpt from a debugging session, the @code{f}
4137(@code{frame}) command shows that execution is stopped at line
4138@code{206}; yet when we use @code{until}, we get to line @code{195}:
4139
474c8240 4140@smallexample
c906108c
SS
4141(@value{GDBP}) f
4142#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4143206 expand_input();
4144(@value{GDBP}) until
4145195 for ( ; argc > 0; NEXTARG) @{
474c8240 4146@end smallexample
c906108c
SS
4147
4148This happened because, for execution efficiency, the compiler had
4149generated code for the loop closure test at the end, rather than the
4150start, of the loop---even though the test in a C @code{for}-loop is
4151written before the body of the loop. The @code{until} command appeared
4152to step back to the beginning of the loop when it advanced to this
4153expression; however, it has not really gone to an earlier
4154statement---not in terms of the actual machine code.
4155
4156@code{until} with no argument works by means of single
4157instruction stepping, and hence is slower than @code{until} with an
4158argument.
4159
4160@item until @var{location}
4161@itemx u @var{location}
4162Continue running your program until either the specified location is
4163reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4164the forms described in @ref{Specify Location}.
4165This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4166hence is quicker than @code{until} without an argument. The specified
4167location is actually reached only if it is in the current frame. This
4168implies that @code{until} can be used to skip over recursive function
4169invocations. For instance in the code below, if the current location is
4170line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4171line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4172invocations have returned.
4173
4174@smallexample
417594 int factorial (int value)
417695 @{
417796 if (value > 1) @{
417897 value *= factorial (value - 1);
417998 @}
418099 return (value);
4181100 @}
4182@end smallexample
4183
4184
4185@kindex advance @var{location}
4186@itemx advance @var{location}
09d4efe1 4187Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4188required, which should be of one of the forms described in
4189@ref{Specify Location}.
4190Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4191frame. This command is similar to @code{until}, but @code{advance} will
4192not skip over recursive function calls, and the target location doesn't
4193have to be in the same frame as the current one.
4194
c906108c
SS
4195
4196@kindex stepi
41afff9a 4197@kindex si @r{(@code{stepi})}
c906108c 4198@item stepi
96a2c332 4199@itemx stepi @var{arg}
c906108c
SS
4200@itemx si
4201Execute one machine instruction, then stop and return to the debugger.
4202
4203It is often useful to do @samp{display/i $pc} when stepping by machine
4204instructions. This makes @value{GDBN} automatically display the next
4205instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4206Display,, Automatic Display}.
c906108c
SS
4207
4208An argument is a repeat count, as in @code{step}.
4209
4210@need 750
4211@kindex nexti
41afff9a 4212@kindex ni @r{(@code{nexti})}
c906108c 4213@item nexti
96a2c332 4214@itemx nexti @var{arg}
c906108c
SS
4215@itemx ni
4216Execute one machine instruction, but if it is a function call,
4217proceed until the function returns.
4218
4219An argument is a repeat count, as in @code{next}.
4220@end table
4221
6d2ebf8b 4222@node Signals
c906108c
SS
4223@section Signals
4224@cindex signals
4225
4226A signal is an asynchronous event that can happen in a program. The
4227operating system defines the possible kinds of signals, and gives each
4228kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4229signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4230@code{SIGSEGV} is the signal a program gets from referencing a place in
4231memory far away from all the areas in use; @code{SIGALRM} occurs when
4232the alarm clock timer goes off (which happens only if your program has
4233requested an alarm).
4234
4235@cindex fatal signals
4236Some signals, including @code{SIGALRM}, are a normal part of the
4237functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4238errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4239program has not specified in advance some other way to handle the signal.
4240@code{SIGINT} does not indicate an error in your program, but it is normally
4241fatal so it can carry out the purpose of the interrupt: to kill the program.
4242
4243@value{GDBN} has the ability to detect any occurrence of a signal in your
4244program. You can tell @value{GDBN} in advance what to do for each kind of
4245signal.
4246
4247@cindex handling signals
24f93129
EZ
4248Normally, @value{GDBN} is set up to let the non-erroneous signals like
4249@code{SIGALRM} be silently passed to your program
4250(so as not to interfere with their role in the program's functioning)
c906108c
SS
4251but to stop your program immediately whenever an error signal happens.
4252You can change these settings with the @code{handle} command.
4253
4254@table @code
4255@kindex info signals
09d4efe1 4256@kindex info handle
c906108c 4257@item info signals
96a2c332 4258@itemx info handle
c906108c
SS
4259Print a table of all the kinds of signals and how @value{GDBN} has been told to
4260handle each one. You can use this to see the signal numbers of all
4261the defined types of signals.
4262
45ac1734
EZ
4263@item info signals @var{sig}
4264Similar, but print information only about the specified signal number.
4265
d4f3574e 4266@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4267
4268@kindex handle
45ac1734 4269@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4270Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4271can be the number of a signal or its name (with or without the
24f93129 4272@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4273@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4274known signals. Optional arguments @var{keywords}, described below,
4275say what change to make.
c906108c
SS
4276@end table
4277
4278@c @group
4279The keywords allowed by the @code{handle} command can be abbreviated.
4280Their full names are:
4281
4282@table @code
4283@item nostop
4284@value{GDBN} should not stop your program when this signal happens. It may
4285still print a message telling you that the signal has come in.
4286
4287@item stop
4288@value{GDBN} should stop your program when this signal happens. This implies
4289the @code{print} keyword as well.
4290
4291@item print
4292@value{GDBN} should print a message when this signal happens.
4293
4294@item noprint
4295@value{GDBN} should not mention the occurrence of the signal at all. This
4296implies the @code{nostop} keyword as well.
4297
4298@item pass
5ece1a18 4299@itemx noignore
c906108c
SS
4300@value{GDBN} should allow your program to see this signal; your program
4301can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4302and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4303
4304@item nopass
5ece1a18 4305@itemx ignore
c906108c 4306@value{GDBN} should not allow your program to see this signal.
5ece1a18 4307@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4308@end table
4309@c @end group
4310
d4f3574e
SS
4311When a signal stops your program, the signal is not visible to the
4312program until you
c906108c
SS
4313continue. Your program sees the signal then, if @code{pass} is in
4314effect for the signal in question @emph{at that time}. In other words,
4315after @value{GDBN} reports a signal, you can use the @code{handle}
4316command with @code{pass} or @code{nopass} to control whether your
4317program sees that signal when you continue.
4318
24f93129
EZ
4319The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4320non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4321@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4322erroneous signals.
4323
c906108c
SS
4324You can also use the @code{signal} command to prevent your program from
4325seeing a signal, or cause it to see a signal it normally would not see,
4326or to give it any signal at any time. For example, if your program stopped
4327due to some sort of memory reference error, you might store correct
4328values into the erroneous variables and continue, hoping to see more
4329execution; but your program would probably terminate immediately as
4330a result of the fatal signal once it saw the signal. To prevent this,
4331you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4332Program a Signal}.
c906108c 4333
6d2ebf8b 4334@node Thread Stops
79a6e687 4335@section Stopping and Starting Multi-thread Programs
c906108c
SS
4336
4337When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4338Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4339breakpoints on all threads, or on a particular thread.
4340
4341@table @code
4342@cindex breakpoints and threads
4343@cindex thread breakpoints
4344@kindex break @dots{} thread @var{threadno}
4345@item break @var{linespec} thread @var{threadno}
4346@itemx break @var{linespec} thread @var{threadno} if @dots{}
4347@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4348writing them (@pxref{Specify Location}), but the effect is always to
4349specify some source line.
c906108c
SS
4350
4351Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4352to specify that you only want @value{GDBN} to stop the program when a
4353particular thread reaches this breakpoint. @var{threadno} is one of the
4354numeric thread identifiers assigned by @value{GDBN}, shown in the first
4355column of the @samp{info threads} display.
4356
4357If you do not specify @samp{thread @var{threadno}} when you set a
4358breakpoint, the breakpoint applies to @emph{all} threads of your
4359program.
4360
4361You can use the @code{thread} qualifier on conditional breakpoints as
4362well; in this case, place @samp{thread @var{threadno}} before the
4363breakpoint condition, like this:
4364
4365@smallexample
2df3850c 4366(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4367@end smallexample
4368
4369@end table
4370
4371@cindex stopped threads
4372@cindex threads, stopped
4373Whenever your program stops under @value{GDBN} for any reason,
4374@emph{all} threads of execution stop, not just the current thread. This
4375allows you to examine the overall state of the program, including
4376switching between threads, without worrying that things may change
4377underfoot.
4378
36d86913
MC
4379@cindex thread breakpoints and system calls
4380@cindex system calls and thread breakpoints
4381@cindex premature return from system calls
4382There is an unfortunate side effect. If one thread stops for a
4383breakpoint, or for some other reason, and another thread is blocked in a
4384system call, then the system call may return prematurely. This is a
4385consequence of the interaction between multiple threads and the signals
4386that @value{GDBN} uses to implement breakpoints and other events that
4387stop execution.
4388
4389To handle this problem, your program should check the return value of
4390each system call and react appropriately. This is good programming
4391style anyways.
4392
4393For example, do not write code like this:
4394
4395@smallexample
4396 sleep (10);
4397@end smallexample
4398
4399The call to @code{sleep} will return early if a different thread stops
4400at a breakpoint or for some other reason.
4401
4402Instead, write this:
4403
4404@smallexample
4405 int unslept = 10;
4406 while (unslept > 0)
4407 unslept = sleep (unslept);
4408@end smallexample
4409
4410A system call is allowed to return early, so the system is still
4411conforming to its specification. But @value{GDBN} does cause your
4412multi-threaded program to behave differently than it would without
4413@value{GDBN}.
4414
4415Also, @value{GDBN} uses internal breakpoints in the thread library to
4416monitor certain events such as thread creation and thread destruction.
4417When such an event happens, a system call in another thread may return
4418prematurely, even though your program does not appear to stop.
4419
c906108c
SS
4420@cindex continuing threads
4421@cindex threads, continuing
4422Conversely, whenever you restart the program, @emph{all} threads start
4423executing. @emph{This is true even when single-stepping} with commands
5d161b24 4424like @code{step} or @code{next}.
c906108c
SS
4425
4426In particular, @value{GDBN} cannot single-step all threads in lockstep.
4427Since thread scheduling is up to your debugging target's operating
4428system (not controlled by @value{GDBN}), other threads may
4429execute more than one statement while the current thread completes a
4430single step. Moreover, in general other threads stop in the middle of a
4431statement, rather than at a clean statement boundary, when the program
4432stops.
4433
4434You might even find your program stopped in another thread after
4435continuing or even single-stepping. This happens whenever some other
4436thread runs into a breakpoint, a signal, or an exception before the
4437first thread completes whatever you requested.
4438
4439On some OSes, you can lock the OS scheduler and thus allow only a single
4440thread to run.
4441
4442@table @code
4443@item set scheduler-locking @var{mode}
9c16f35a
EZ
4444@cindex scheduler locking mode
4445@cindex lock scheduler
c906108c
SS
4446Set the scheduler locking mode. If it is @code{off}, then there is no
4447locking and any thread may run at any time. If @code{on}, then only the
4448current thread may run when the inferior is resumed. The @code{step}
4449mode optimizes for single-stepping. It stops other threads from
4450``seizing the prompt'' by preempting the current thread while you are
4451stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4452when you step. They are more likely to run when you @samp{next} over a
c906108c 4453function call, and they are completely free to run when you use commands
d4f3574e 4454like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4455thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4456@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4457
4458@item show scheduler-locking
4459Display the current scheduler locking mode.
4460@end table
4461
c906108c 4462
6d2ebf8b 4463@node Stack
c906108c
SS
4464@chapter Examining the Stack
4465
4466When your program has stopped, the first thing you need to know is where it
4467stopped and how it got there.
4468
4469@cindex call stack
5d161b24
DB
4470Each time your program performs a function call, information about the call
4471is generated.
4472That information includes the location of the call in your program,
4473the arguments of the call,
c906108c 4474and the local variables of the function being called.
5d161b24 4475The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4476The stack frames are allocated in a region of memory called the @dfn{call
4477stack}.
4478
4479When your program stops, the @value{GDBN} commands for examining the
4480stack allow you to see all of this information.
4481
4482@cindex selected frame
4483One of the stack frames is @dfn{selected} by @value{GDBN} and many
4484@value{GDBN} commands refer implicitly to the selected frame. In
4485particular, whenever you ask @value{GDBN} for the value of a variable in
4486your program, the value is found in the selected frame. There are
4487special @value{GDBN} commands to select whichever frame you are
79a6e687 4488interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4489
4490When your program stops, @value{GDBN} automatically selects the
5d161b24 4491currently executing frame and describes it briefly, similar to the
79a6e687 4492@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4493
4494@menu
4495* Frames:: Stack frames
4496* Backtrace:: Backtraces
4497* Selection:: Selecting a frame
4498* Frame Info:: Information on a frame
c906108c
SS
4499
4500@end menu
4501
6d2ebf8b 4502@node Frames
79a6e687 4503@section Stack Frames
c906108c 4504
d4f3574e 4505@cindex frame, definition
c906108c
SS
4506@cindex stack frame
4507The call stack is divided up into contiguous pieces called @dfn{stack
4508frames}, or @dfn{frames} for short; each frame is the data associated
4509with one call to one function. The frame contains the arguments given
4510to the function, the function's local variables, and the address at
4511which the function is executing.
4512
4513@cindex initial frame
4514@cindex outermost frame
4515@cindex innermost frame
4516When your program is started, the stack has only one frame, that of the
4517function @code{main}. This is called the @dfn{initial} frame or the
4518@dfn{outermost} frame. Each time a function is called, a new frame is
4519made. Each time a function returns, the frame for that function invocation
4520is eliminated. If a function is recursive, there can be many frames for
4521the same function. The frame for the function in which execution is
4522actually occurring is called the @dfn{innermost} frame. This is the most
4523recently created of all the stack frames that still exist.
4524
4525@cindex frame pointer
4526Inside your program, stack frames are identified by their addresses. A
4527stack frame consists of many bytes, each of which has its own address; each
4528kind of computer has a convention for choosing one byte whose
4529address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4530in a register called the @dfn{frame pointer register}
4531(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4532
4533@cindex frame number
4534@value{GDBN} assigns numbers to all existing stack frames, starting with
4535zero for the innermost frame, one for the frame that called it,
4536and so on upward. These numbers do not really exist in your program;
4537they are assigned by @value{GDBN} to give you a way of designating stack
4538frames in @value{GDBN} commands.
4539
6d2ebf8b
SS
4540@c The -fomit-frame-pointer below perennially causes hbox overflow
4541@c underflow problems.
c906108c
SS
4542@cindex frameless execution
4543Some compilers provide a way to compile functions so that they operate
e22ea452 4544without stack frames. (For example, the @value{NGCC} option
474c8240 4545@smallexample
6d2ebf8b 4546@samp{-fomit-frame-pointer}
474c8240 4547@end smallexample
6d2ebf8b 4548generates functions without a frame.)
c906108c
SS
4549This is occasionally done with heavily used library functions to save
4550the frame setup time. @value{GDBN} has limited facilities for dealing
4551with these function invocations. If the innermost function invocation
4552has no stack frame, @value{GDBN} nevertheless regards it as though
4553it had a separate frame, which is numbered zero as usual, allowing
4554correct tracing of the function call chain. However, @value{GDBN} has
4555no provision for frameless functions elsewhere in the stack.
4556
4557@table @code
d4f3574e 4558@kindex frame@r{, command}
41afff9a 4559@cindex current stack frame
c906108c 4560@item frame @var{args}
5d161b24 4561The @code{frame} command allows you to move from one stack frame to another,
c906108c 4562and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4563address of the frame or the stack frame number. Without an argument,
4564@code{frame} prints the current stack frame.
c906108c
SS
4565
4566@kindex select-frame
41afff9a 4567@cindex selecting frame silently
c906108c
SS
4568@item select-frame
4569The @code{select-frame} command allows you to move from one stack frame
4570to another without printing the frame. This is the silent version of
4571@code{frame}.
4572@end table
4573
6d2ebf8b 4574@node Backtrace
c906108c
SS
4575@section Backtraces
4576
09d4efe1
EZ
4577@cindex traceback
4578@cindex call stack traces
c906108c
SS
4579A backtrace is a summary of how your program got where it is. It shows one
4580line per frame, for many frames, starting with the currently executing
4581frame (frame zero), followed by its caller (frame one), and on up the
4582stack.
4583
4584@table @code
4585@kindex backtrace
41afff9a 4586@kindex bt @r{(@code{backtrace})}
c906108c
SS
4587@item backtrace
4588@itemx bt
4589Print a backtrace of the entire stack: one line per frame for all
4590frames in the stack.
4591
4592You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4593character, normally @kbd{Ctrl-c}.
c906108c
SS
4594
4595@item backtrace @var{n}
4596@itemx bt @var{n}
4597Similar, but print only the innermost @var{n} frames.
4598
4599@item backtrace -@var{n}
4600@itemx bt -@var{n}
4601Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4602
4603@item backtrace full
0f061b69 4604@itemx bt full
dd74f6ae
NR
4605@itemx bt full @var{n}
4606@itemx bt full -@var{n}
e7109c7e 4607Print the values of the local variables also. @var{n} specifies the
286ba84d 4608number of frames to print, as described above.
c906108c
SS
4609@end table
4610
4611@kindex where
4612@kindex info stack
c906108c
SS
4613The names @code{where} and @code{info stack} (abbreviated @code{info s})
4614are additional aliases for @code{backtrace}.
4615
839c27b7
EZ
4616@cindex multiple threads, backtrace
4617In a multi-threaded program, @value{GDBN} by default shows the
4618backtrace only for the current thread. To display the backtrace for
4619several or all of the threads, use the command @code{thread apply}
4620(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4621apply all backtrace}, @value{GDBN} will display the backtrace for all
4622the threads; this is handy when you debug a core dump of a
4623multi-threaded program.
4624
c906108c
SS
4625Each line in the backtrace shows the frame number and the function name.
4626The program counter value is also shown---unless you use @code{set
4627print address off}. The backtrace also shows the source file name and
4628line number, as well as the arguments to the function. The program
4629counter value is omitted if it is at the beginning of the code for that
4630line number.
4631
4632Here is an example of a backtrace. It was made with the command
4633@samp{bt 3}, so it shows the innermost three frames.
4634
4635@smallexample
4636@group
5d161b24 4637#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4638 at builtin.c:993
4639#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4640#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4641 at macro.c:71
4642(More stack frames follow...)
4643@end group
4644@end smallexample
4645
4646@noindent
4647The display for frame zero does not begin with a program counter
4648value, indicating that your program has stopped at the beginning of the
4649code for line @code{993} of @code{builtin.c}.
4650
18999be5
EZ
4651@cindex value optimized out, in backtrace
4652@cindex function call arguments, optimized out
4653If your program was compiled with optimizations, some compilers will
4654optimize away arguments passed to functions if those arguments are
4655never used after the call. Such optimizations generate code that
4656passes arguments through registers, but doesn't store those arguments
4657in the stack frame. @value{GDBN} has no way of displaying such
4658arguments in stack frames other than the innermost one. Here's what
4659such a backtrace might look like:
4660
4661@smallexample
4662@group
4663#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4664 at builtin.c:993
4665#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4666#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4667 at macro.c:71
4668(More stack frames follow...)
4669@end group
4670@end smallexample
4671
4672@noindent
4673The values of arguments that were not saved in their stack frames are
4674shown as @samp{<value optimized out>}.
4675
4676If you need to display the values of such optimized-out arguments,
4677either deduce that from other variables whose values depend on the one
4678you are interested in, or recompile without optimizations.
4679
a8f24a35
EZ
4680@cindex backtrace beyond @code{main} function
4681@cindex program entry point
4682@cindex startup code, and backtrace
25d29d70
AC
4683Most programs have a standard user entry point---a place where system
4684libraries and startup code transition into user code. For C this is
d416eeec
EZ
4685@code{main}@footnote{
4686Note that embedded programs (the so-called ``free-standing''
4687environment) are not required to have a @code{main} function as the
4688entry point. They could even have multiple entry points.}.
4689When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4690it will terminate the backtrace, to avoid tracing into highly
4691system-specific (and generally uninteresting) code.
4692
4693If you need to examine the startup code, or limit the number of levels
4694in a backtrace, you can change this behavior:
95f90d25
DJ
4695
4696@table @code
25d29d70
AC
4697@item set backtrace past-main
4698@itemx set backtrace past-main on
4644b6e3 4699@kindex set backtrace
25d29d70
AC
4700Backtraces will continue past the user entry point.
4701
4702@item set backtrace past-main off
95f90d25
DJ
4703Backtraces will stop when they encounter the user entry point. This is the
4704default.
4705
25d29d70 4706@item show backtrace past-main
4644b6e3 4707@kindex show backtrace
25d29d70
AC
4708Display the current user entry point backtrace policy.
4709
2315ffec
RC
4710@item set backtrace past-entry
4711@itemx set backtrace past-entry on
a8f24a35 4712Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4713This entry point is encoded by the linker when the application is built,
4714and is likely before the user entry point @code{main} (or equivalent) is called.
4715
4716@item set backtrace past-entry off
d3e8051b 4717Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4718application. This is the default.
4719
4720@item show backtrace past-entry
4721Display the current internal entry point backtrace policy.
4722
25d29d70
AC
4723@item set backtrace limit @var{n}
4724@itemx set backtrace limit 0
4725@cindex backtrace limit
4726Limit the backtrace to @var{n} levels. A value of zero means
4727unlimited.
95f90d25 4728
25d29d70
AC
4729@item show backtrace limit
4730Display the current limit on backtrace levels.
95f90d25
DJ
4731@end table
4732
6d2ebf8b 4733@node Selection
79a6e687 4734@section Selecting a Frame
c906108c
SS
4735
4736Most commands for examining the stack and other data in your program work on
4737whichever stack frame is selected at the moment. Here are the commands for
4738selecting a stack frame; all of them finish by printing a brief description
4739of the stack frame just selected.
4740
4741@table @code
d4f3574e 4742@kindex frame@r{, selecting}
41afff9a 4743@kindex f @r{(@code{frame})}
c906108c
SS
4744@item frame @var{n}
4745@itemx f @var{n}
4746Select frame number @var{n}. Recall that frame zero is the innermost
4747(currently executing) frame, frame one is the frame that called the
4748innermost one, and so on. The highest-numbered frame is the one for
4749@code{main}.
4750
4751@item frame @var{addr}
4752@itemx f @var{addr}
4753Select the frame at address @var{addr}. This is useful mainly if the
4754chaining of stack frames has been damaged by a bug, making it
4755impossible for @value{GDBN} to assign numbers properly to all frames. In
4756addition, this can be useful when your program has multiple stacks and
4757switches between them.
4758
c906108c
SS
4759On the SPARC architecture, @code{frame} needs two addresses to
4760select an arbitrary frame: a frame pointer and a stack pointer.
4761
4762On the MIPS and Alpha architecture, it needs two addresses: a stack
4763pointer and a program counter.
4764
4765On the 29k architecture, it needs three addresses: a register stack
4766pointer, a program counter, and a memory stack pointer.
c906108c
SS
4767
4768@kindex up
4769@item up @var{n}
4770Move @var{n} frames up the stack. For positive numbers @var{n}, this
4771advances toward the outermost frame, to higher frame numbers, to frames
4772that have existed longer. @var{n} defaults to one.
4773
4774@kindex down
41afff9a 4775@kindex do @r{(@code{down})}
c906108c
SS
4776@item down @var{n}
4777Move @var{n} frames down the stack. For positive numbers @var{n}, this
4778advances toward the innermost frame, to lower frame numbers, to frames
4779that were created more recently. @var{n} defaults to one. You may
4780abbreviate @code{down} as @code{do}.
4781@end table
4782
4783All of these commands end by printing two lines of output describing the
4784frame. The first line shows the frame number, the function name, the
4785arguments, and the source file and line number of execution in that
5d161b24 4786frame. The second line shows the text of that source line.
c906108c
SS
4787
4788@need 1000
4789For example:
4790
4791@smallexample
4792@group
4793(@value{GDBP}) up
4794#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4795 at env.c:10
479610 read_input_file (argv[i]);
4797@end group
4798@end smallexample
4799
4800After such a printout, the @code{list} command with no arguments
4801prints ten lines centered on the point of execution in the frame.
87885426
FN
4802You can also edit the program at the point of execution with your favorite
4803editing program by typing @code{edit}.
79a6e687 4804@xref{List, ,Printing Source Lines},
87885426 4805for details.
c906108c
SS
4806
4807@table @code
4808@kindex down-silently
4809@kindex up-silently
4810@item up-silently @var{n}
4811@itemx down-silently @var{n}
4812These two commands are variants of @code{up} and @code{down},
4813respectively; they differ in that they do their work silently, without
4814causing display of the new frame. They are intended primarily for use
4815in @value{GDBN} command scripts, where the output might be unnecessary and
4816distracting.
4817@end table
4818
6d2ebf8b 4819@node Frame Info
79a6e687 4820@section Information About a Frame
c906108c
SS
4821
4822There are several other commands to print information about the selected
4823stack frame.
4824
4825@table @code
4826@item frame
4827@itemx f
4828When used without any argument, this command does not change which
4829frame is selected, but prints a brief description of the currently
4830selected stack frame. It can be abbreviated @code{f}. With an
4831argument, this command is used to select a stack frame.
79a6e687 4832@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4833
4834@kindex info frame
41afff9a 4835@kindex info f @r{(@code{info frame})}
c906108c
SS
4836@item info frame
4837@itemx info f
4838This command prints a verbose description of the selected stack frame,
4839including:
4840
4841@itemize @bullet
5d161b24
DB
4842@item
4843the address of the frame
c906108c
SS
4844@item
4845the address of the next frame down (called by this frame)
4846@item
4847the address of the next frame up (caller of this frame)
4848@item
4849the language in which the source code corresponding to this frame is written
4850@item
4851the address of the frame's arguments
4852@item
d4f3574e
SS
4853the address of the frame's local variables
4854@item
c906108c
SS
4855the program counter saved in it (the address of execution in the caller frame)
4856@item
4857which registers were saved in the frame
4858@end itemize
4859
4860@noindent The verbose description is useful when
4861something has gone wrong that has made the stack format fail to fit
4862the usual conventions.
4863
4864@item info frame @var{addr}
4865@itemx info f @var{addr}
4866Print a verbose description of the frame at address @var{addr}, without
4867selecting that frame. The selected frame remains unchanged by this
4868command. This requires the same kind of address (more than one for some
4869architectures) that you specify in the @code{frame} command.
79a6e687 4870@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4871
4872@kindex info args
4873@item info args
4874Print the arguments of the selected frame, each on a separate line.
4875
4876@item info locals
4877@kindex info locals
4878Print the local variables of the selected frame, each on a separate
4879line. These are all variables (declared either static or automatic)
4880accessible at the point of execution of the selected frame.
4881
c906108c 4882@kindex info catch
d4f3574e
SS
4883@cindex catch exceptions, list active handlers
4884@cindex exception handlers, how to list
c906108c
SS
4885@item info catch
4886Print a list of all the exception handlers that are active in the
4887current stack frame at the current point of execution. To see other
4888exception handlers, visit the associated frame (using the @code{up},
4889@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4890@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4891
c906108c
SS
4892@end table
4893
c906108c 4894
6d2ebf8b 4895@node Source
c906108c
SS
4896@chapter Examining Source Files
4897
4898@value{GDBN} can print parts of your program's source, since the debugging
4899information recorded in the program tells @value{GDBN} what source files were
4900used to build it. When your program stops, @value{GDBN} spontaneously prints
4901the line where it stopped. Likewise, when you select a stack frame
79a6e687 4902(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4903execution in that frame has stopped. You can print other portions of
4904source files by explicit command.
4905
7a292a7a 4906If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4907prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4908@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4909
4910@menu
4911* List:: Printing source lines
2a25a5ba 4912* Specify Location:: How to specify code locations
87885426 4913* Edit:: Editing source files
c906108c 4914* Search:: Searching source files
c906108c
SS
4915* Source Path:: Specifying source directories
4916* Machine Code:: Source and machine code
4917@end menu
4918
6d2ebf8b 4919@node List
79a6e687 4920@section Printing Source Lines
c906108c
SS
4921
4922@kindex list
41afff9a 4923@kindex l @r{(@code{list})}
c906108c 4924To print lines from a source file, use the @code{list} command
5d161b24 4925(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4926There are several ways to specify what part of the file you want to
4927print; see @ref{Specify Location}, for the full list.
c906108c
SS
4928
4929Here are the forms of the @code{list} command most commonly used:
4930
4931@table @code
4932@item list @var{linenum}
4933Print lines centered around line number @var{linenum} in the
4934current source file.
4935
4936@item list @var{function}
4937Print lines centered around the beginning of function
4938@var{function}.
4939
4940@item list
4941Print more lines. If the last lines printed were printed with a
4942@code{list} command, this prints lines following the last lines
4943printed; however, if the last line printed was a solitary line printed
4944as part of displaying a stack frame (@pxref{Stack, ,Examining the
4945Stack}), this prints lines centered around that line.
4946
4947@item list -
4948Print lines just before the lines last printed.
4949@end table
4950
9c16f35a 4951@cindex @code{list}, how many lines to display
c906108c
SS
4952By default, @value{GDBN} prints ten source lines with any of these forms of
4953the @code{list} command. You can change this using @code{set listsize}:
4954
4955@table @code
4956@kindex set listsize
4957@item set listsize @var{count}
4958Make the @code{list} command display @var{count} source lines (unless
4959the @code{list} argument explicitly specifies some other number).
4960
4961@kindex show listsize
4962@item show listsize
4963Display the number of lines that @code{list} prints.
4964@end table
4965
4966Repeating a @code{list} command with @key{RET} discards the argument,
4967so it is equivalent to typing just @code{list}. This is more useful
4968than listing the same lines again. An exception is made for an
4969argument of @samp{-}; that argument is preserved in repetition so that
4970each repetition moves up in the source file.
4971
c906108c
SS
4972In general, the @code{list} command expects you to supply zero, one or two
4973@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4974of writing them (@pxref{Specify Location}), but the effect is always
4975to specify some source line.
4976
c906108c
SS
4977Here is a complete description of the possible arguments for @code{list}:
4978
4979@table @code
4980@item list @var{linespec}
4981Print lines centered around the line specified by @var{linespec}.
4982
4983@item list @var{first},@var{last}
4984Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4985linespecs. When a @code{list} command has two linespecs, and the
4986source file of the second linespec is omitted, this refers to
4987the same source file as the first linespec.
c906108c
SS
4988
4989@item list ,@var{last}
4990Print lines ending with @var{last}.
4991
4992@item list @var{first},
4993Print lines starting with @var{first}.
4994
4995@item list +
4996Print lines just after the lines last printed.
4997
4998@item list -
4999Print lines just before the lines last printed.
5000
5001@item list
5002As described in the preceding table.
5003@end table
5004
2a25a5ba
EZ
5005@node Specify Location
5006@section Specifying a Location
5007@cindex specifying location
5008@cindex linespec
c906108c 5009
2a25a5ba
EZ
5010Several @value{GDBN} commands accept arguments that specify a location
5011of your program's code. Since @value{GDBN} is a source-level
5012debugger, a location usually specifies some line in the source code;
5013for that reason, locations are also known as @dfn{linespecs}.
c906108c 5014
2a25a5ba
EZ
5015Here are all the different ways of specifying a code location that
5016@value{GDBN} understands:
c906108c 5017
2a25a5ba
EZ
5018@table @code
5019@item @var{linenum}
5020Specifies the line number @var{linenum} of the current source file.
c906108c 5021
2a25a5ba
EZ
5022@item -@var{offset}
5023@itemx +@var{offset}
5024Specifies the line @var{offset} lines before or after the @dfn{current
5025line}. For the @code{list} command, the current line is the last one
5026printed; for the breakpoint commands, this is the line at which
5027execution stopped in the currently selected @dfn{stack frame}
5028(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5029used as the second of the two linespecs in a @code{list} command,
5030this specifies the line @var{offset} lines up or down from the first
5031linespec.
5032
5033@item @var{filename}:@var{linenum}
5034Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5035
5036@item @var{function}
5037Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5038For example, in C, this is the line with the open brace.
c906108c
SS
5039
5040@item @var{filename}:@var{function}
2a25a5ba
EZ
5041Specifies the line that begins the body of the function @var{function}
5042in the file @var{filename}. You only need the file name with a
5043function name to avoid ambiguity when there are identically named
5044functions in different source files.
c906108c
SS
5045
5046@item *@var{address}
2a25a5ba
EZ
5047Specifies the program address @var{address}. For line-oriented
5048commands, such as @code{list} and @code{edit}, this specifies a source
5049line that contains @var{address}. For @code{break} and other
5050breakpoint oriented commands, this can be used to set breakpoints in
5051parts of your program which do not have debugging information or
5052source files.
5053
5054Here @var{address} may be any expression valid in the current working
5055language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5056address. In addition, as a convenience, @value{GDBN} extends the
5057semantics of expressions used in locations to cover the situations
5058that frequently happen during debugging. Here are the various forms
5059of @var{address}:
2a25a5ba
EZ
5060
5061@table @code
5062@item @var{expression}
5063Any expression valid in the current working language.
5064
5065@item @var{funcaddr}
5066An address of a function or procedure derived from its name. In C,
5067C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5068simply the function's name @var{function} (and actually a special case
5069of a valid expression). In Pascal and Modula-2, this is
5070@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5071(although the Pascal form also works).
5072
5073This form specifies the address of the function's first instruction,
5074before the stack frame and arguments have been set up.
5075
5076@item '@var{filename}'::@var{funcaddr}
5077Like @var{funcaddr} above, but also specifies the name of the source
5078file explicitly. This is useful if the name of the function does not
5079specify the function unambiguously, e.g., if there are several
5080functions with identical names in different source files.
c906108c
SS
5081@end table
5082
2a25a5ba
EZ
5083@end table
5084
5085
87885426 5086@node Edit
79a6e687 5087@section Editing Source Files
87885426
FN
5088@cindex editing source files
5089
5090@kindex edit
5091@kindex e @r{(@code{edit})}
5092To edit the lines in a source file, use the @code{edit} command.
5093The editing program of your choice
5094is invoked with the current line set to
5095the active line in the program.
5096Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5097want to print if you want to see other parts of the program:
87885426
FN
5098
5099@table @code
2a25a5ba
EZ
5100@item edit @var{location}
5101Edit the source file specified by @code{location}. Editing starts at
5102that @var{location}, e.g., at the specified source line of the
5103specified file. @xref{Specify Location}, for all the possible forms
5104of the @var{location} argument; here are the forms of the @code{edit}
5105command most commonly used:
87885426 5106
2a25a5ba 5107@table @code
87885426
FN
5108@item edit @var{number}
5109Edit the current source file with @var{number} as the active line number.
5110
5111@item edit @var{function}
5112Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5113@end table
87885426 5114
87885426
FN
5115@end table
5116
79a6e687 5117@subsection Choosing your Editor
87885426
FN
5118You can customize @value{GDBN} to use any editor you want
5119@footnote{
5120The only restriction is that your editor (say @code{ex}), recognizes the
5121following command-line syntax:
10998722 5122@smallexample
87885426 5123ex +@var{number} file
10998722 5124@end smallexample
15387254
EZ
5125The optional numeric value +@var{number} specifies the number of the line in
5126the file where to start editing.}.
5127By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5128by setting the environment variable @code{EDITOR} before using
5129@value{GDBN}. For example, to configure @value{GDBN} to use the
5130@code{vi} editor, you could use these commands with the @code{sh} shell:
5131@smallexample
87885426
FN
5132EDITOR=/usr/bin/vi
5133export EDITOR
15387254 5134gdb @dots{}
10998722 5135@end smallexample
87885426 5136or in the @code{csh} shell,
10998722 5137@smallexample
87885426 5138setenv EDITOR /usr/bin/vi
15387254 5139gdb @dots{}
10998722 5140@end smallexample
87885426 5141
6d2ebf8b 5142@node Search
79a6e687 5143@section Searching Source Files
15387254 5144@cindex searching source files
c906108c
SS
5145
5146There are two commands for searching through the current source file for a
5147regular expression.
5148
5149@table @code
5150@kindex search
5151@kindex forward-search
5152@item forward-search @var{regexp}
5153@itemx search @var{regexp}
5154The command @samp{forward-search @var{regexp}} checks each line,
5155starting with the one following the last line listed, for a match for
5d161b24 5156@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5157synonym @samp{search @var{regexp}} or abbreviate the command name as
5158@code{fo}.
5159
09d4efe1 5160@kindex reverse-search
c906108c
SS
5161@item reverse-search @var{regexp}
5162The command @samp{reverse-search @var{regexp}} checks each line, starting
5163with the one before the last line listed and going backward, for a match
5164for @var{regexp}. It lists the line that is found. You can abbreviate
5165this command as @code{rev}.
5166@end table
c906108c 5167
6d2ebf8b 5168@node Source Path
79a6e687 5169@section Specifying Source Directories
c906108c
SS
5170
5171@cindex source path
5172@cindex directories for source files
5173Executable programs sometimes do not record the directories of the source
5174files from which they were compiled, just the names. Even when they do,
5175the directories could be moved between the compilation and your debugging
5176session. @value{GDBN} has a list of directories to search for source files;
5177this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5178it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5179in the list, until it finds a file with the desired name.
5180
5181For example, suppose an executable references the file
5182@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5183@file{/mnt/cross}. The file is first looked up literally; if this
5184fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5185fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5186message is printed. @value{GDBN} does not look up the parts of the
5187source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5188Likewise, the subdirectories of the source path are not searched: if
5189the source path is @file{/mnt/cross}, and the binary refers to
5190@file{foo.c}, @value{GDBN} would not find it under
5191@file{/mnt/cross/usr/src/foo-1.0/lib}.
5192
5193Plain file names, relative file names with leading directories, file
5194names containing dots, etc.@: are all treated as described above; for
5195instance, if the source path is @file{/mnt/cross}, and the source file
5196is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5197@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5198that---@file{/mnt/cross/foo.c}.
5199
5200Note that the executable search path is @emph{not} used to locate the
cd852561 5201source files.
c906108c
SS
5202
5203Whenever you reset or rearrange the source path, @value{GDBN} clears out
5204any information it has cached about where source files are found and where
5205each line is in the file.
5206
5207@kindex directory
5208@kindex dir
d4f3574e
SS
5209When you start @value{GDBN}, its source path includes only @samp{cdir}
5210and @samp{cwd}, in that order.
c906108c
SS
5211To add other directories, use the @code{directory} command.
5212
4b505b12
AS
5213The search path is used to find both program source files and @value{GDBN}
5214script files (read using the @samp{-command} option and @samp{source} command).
5215
30daae6c
JB
5216In addition to the source path, @value{GDBN} provides a set of commands
5217that manage a list of source path substitution rules. A @dfn{substitution
5218rule} specifies how to rewrite source directories stored in the program's
5219debug information in case the sources were moved to a different
5220directory between compilation and debugging. A rule is made of
5221two strings, the first specifying what needs to be rewritten in
5222the path, and the second specifying how it should be rewritten.
5223In @ref{set substitute-path}, we name these two parts @var{from} and
5224@var{to} respectively. @value{GDBN} does a simple string replacement
5225of @var{from} with @var{to} at the start of the directory part of the
5226source file name, and uses that result instead of the original file
5227name to look up the sources.
5228
5229Using the previous example, suppose the @file{foo-1.0} tree has been
5230moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5231@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5232@file{/mnt/cross}. The first lookup will then be
5233@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5234of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5235substitution rule, use the @code{set substitute-path} command
5236(@pxref{set substitute-path}).
5237
5238To avoid unexpected substitution results, a rule is applied only if the
5239@var{from} part of the directory name ends at a directory separator.
5240For instance, a rule substituting @file{/usr/source} into
5241@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5242not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5243is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5244not be applied to @file{/root/usr/source/baz.c} either.
5245
5246In many cases, you can achieve the same result using the @code{directory}
5247command. However, @code{set substitute-path} can be more efficient in
5248the case where the sources are organized in a complex tree with multiple
5249subdirectories. With the @code{directory} command, you need to add each
5250subdirectory of your project. If you moved the entire tree while
5251preserving its internal organization, then @code{set substitute-path}
5252allows you to direct the debugger to all the sources with one single
5253command.
5254
5255@code{set substitute-path} is also more than just a shortcut command.
5256The source path is only used if the file at the original location no
5257longer exists. On the other hand, @code{set substitute-path} modifies
5258the debugger behavior to look at the rewritten location instead. So, if
5259for any reason a source file that is not relevant to your executable is
5260located at the original location, a substitution rule is the only
3f94c067 5261method available to point @value{GDBN} at the new location.
30daae6c 5262
c906108c
SS
5263@table @code
5264@item directory @var{dirname} @dots{}
5265@item dir @var{dirname} @dots{}
5266Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5267directory names may be given to this command, separated by @samp{:}
5268(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5269part of absolute file names) or
c906108c
SS
5270whitespace. You may specify a directory that is already in the source
5271path; this moves it forward, so @value{GDBN} searches it sooner.
5272
5273@kindex cdir
5274@kindex cwd
41afff9a 5275@vindex $cdir@r{, convenience variable}
d3e8051b 5276@vindex $cwd@r{, convenience variable}
c906108c
SS
5277@cindex compilation directory
5278@cindex current directory
5279@cindex working directory
5280@cindex directory, current
5281@cindex directory, compilation
5282You can use the string @samp{$cdir} to refer to the compilation
5283directory (if one is recorded), and @samp{$cwd} to refer to the current
5284working directory. @samp{$cwd} is not the same as @samp{.}---the former
5285tracks the current working directory as it changes during your @value{GDBN}
5286session, while the latter is immediately expanded to the current
5287directory at the time you add an entry to the source path.
5288
5289@item directory
cd852561 5290Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5291
5292@c RET-repeat for @code{directory} is explicitly disabled, but since
5293@c repeating it would be a no-op we do not say that. (thanks to RMS)
5294
5295@item show directories
5296@kindex show directories
5297Print the source path: show which directories it contains.
30daae6c
JB
5298
5299@anchor{set substitute-path}
5300@item set substitute-path @var{from} @var{to}
5301@kindex set substitute-path
5302Define a source path substitution rule, and add it at the end of the
5303current list of existing substitution rules. If a rule with the same
5304@var{from} was already defined, then the old rule is also deleted.
5305
5306For example, if the file @file{/foo/bar/baz.c} was moved to
5307@file{/mnt/cross/baz.c}, then the command
5308
5309@smallexample
5310(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5311@end smallexample
5312
5313@noindent
5314will tell @value{GDBN} to replace @samp{/usr/src} with
5315@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5316@file{baz.c} even though it was moved.
5317
5318In the case when more than one substitution rule have been defined,
5319the rules are evaluated one by one in the order where they have been
5320defined. The first one matching, if any, is selected to perform
5321the substitution.
5322
5323For instance, if we had entered the following commands:
5324
5325@smallexample
5326(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5327(@value{GDBP}) set substitute-path /usr/src /mnt/src
5328@end smallexample
5329
5330@noindent
5331@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5332@file{/mnt/include/defs.h} by using the first rule. However, it would
5333use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5334@file{/mnt/src/lib/foo.c}.
5335
5336
5337@item unset substitute-path [path]
5338@kindex unset substitute-path
5339If a path is specified, search the current list of substitution rules
5340for a rule that would rewrite that path. Delete that rule if found.
5341A warning is emitted by the debugger if no rule could be found.
5342
5343If no path is specified, then all substitution rules are deleted.
5344
5345@item show substitute-path [path]
5346@kindex show substitute-path
5347If a path is specified, then print the source path substitution rule
5348which would rewrite that path, if any.
5349
5350If no path is specified, then print all existing source path substitution
5351rules.
5352
c906108c
SS
5353@end table
5354
5355If your source path is cluttered with directories that are no longer of
5356interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5357versions of source. You can correct the situation as follows:
5358
5359@enumerate
5360@item
cd852561 5361Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5362
5363@item
5364Use @code{directory} with suitable arguments to reinstall the
5365directories you want in the source path. You can add all the
5366directories in one command.
5367@end enumerate
5368
6d2ebf8b 5369@node Machine Code
79a6e687 5370@section Source and Machine Code
15387254 5371@cindex source line and its code address
c906108c
SS
5372
5373You can use the command @code{info line} to map source lines to program
5374addresses (and vice versa), and the command @code{disassemble} to display
5375a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5376mode, the @code{info line} command causes the arrow to point to the
5d161b24 5377line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5378well as hex.
5379
5380@table @code
5381@kindex info line
5382@item info line @var{linespec}
5383Print the starting and ending addresses of the compiled code for
5384source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5385the ways documented in @ref{Specify Location}.
c906108c
SS
5386@end table
5387
5388For example, we can use @code{info line} to discover the location of
5389the object code for the first line of function
5390@code{m4_changequote}:
5391
d4f3574e
SS
5392@c FIXME: I think this example should also show the addresses in
5393@c symbolic form, as they usually would be displayed.
c906108c 5394@smallexample
96a2c332 5395(@value{GDBP}) info line m4_changequote
c906108c
SS
5396Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5397@end smallexample
5398
5399@noindent
15387254 5400@cindex code address and its source line
c906108c
SS
5401We can also inquire (using @code{*@var{addr}} as the form for
5402@var{linespec}) what source line covers a particular address:
5403@smallexample
5404(@value{GDBP}) info line *0x63ff
5405Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5406@end smallexample
5407
5408@cindex @code{$_} and @code{info line}
15387254 5409@cindex @code{x} command, default address
41afff9a 5410@kindex x@r{(examine), and} info line
c906108c
SS
5411After @code{info line}, the default address for the @code{x} command
5412is changed to the starting address of the line, so that @samp{x/i} is
5413sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5414,Examining Memory}). Also, this address is saved as the value of the
c906108c 5415convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5416Variables}).
c906108c
SS
5417
5418@table @code
5419@kindex disassemble
5420@cindex assembly instructions
5421@cindex instructions, assembly
5422@cindex machine instructions
5423@cindex listing machine instructions
5424@item disassemble
5425This specialized command dumps a range of memory as machine
5426instructions. The default memory range is the function surrounding the
5427program counter of the selected frame. A single argument to this
5428command is a program counter value; @value{GDBN} dumps the function
5429surrounding this value. Two arguments specify a range of addresses
5430(first inclusive, second exclusive) to dump.
5431@end table
5432
c906108c
SS
5433The following example shows the disassembly of a range of addresses of
5434HP PA-RISC 2.0 code:
5435
5436@smallexample
5437(@value{GDBP}) disas 0x32c4 0x32e4
5438Dump of assembler code from 0x32c4 to 0x32e4:
54390x32c4 <main+204>: addil 0,dp
54400x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54410x32cc <main+212>: ldil 0x3000,r31
54420x32d0 <main+216>: ble 0x3f8(sr4,r31)
54430x32d4 <main+220>: ldo 0(r31),rp
54440x32d8 <main+224>: addil -0x800,dp
54450x32dc <main+228>: ldo 0x588(r1),r26
54460x32e0 <main+232>: ldil 0x3000,r31
5447End of assembler dump.
5448@end smallexample
c906108c
SS
5449
5450Some architectures have more than one commonly-used set of instruction
5451mnemonics or other syntax.
5452
76d17f34
EZ
5453For programs that were dynamically linked and use shared libraries,
5454instructions that call functions or branch to locations in the shared
5455libraries might show a seemingly bogus location---it's actually a
5456location of the relocation table. On some architectures, @value{GDBN}
5457might be able to resolve these to actual function names.
5458
c906108c 5459@table @code
d4f3574e 5460@kindex set disassembly-flavor
d4f3574e
SS
5461@cindex Intel disassembly flavor
5462@cindex AT&T disassembly flavor
5463@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5464Select the instruction set to use when disassembling the
5465program via the @code{disassemble} or @code{x/i} commands.
5466
5467Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5468can set @var{instruction-set} to either @code{intel} or @code{att}.
5469The default is @code{att}, the AT&T flavor used by default by Unix
5470assemblers for x86-based targets.
9c16f35a
EZ
5471
5472@kindex show disassembly-flavor
5473@item show disassembly-flavor
5474Show the current setting of the disassembly flavor.
c906108c
SS
5475@end table
5476
5477
6d2ebf8b 5478@node Data
c906108c
SS
5479@chapter Examining Data
5480
5481@cindex printing data
5482@cindex examining data
5483@kindex print
5484@kindex inspect
5485@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5486@c document because it is nonstandard... Under Epoch it displays in a
5487@c different window or something like that.
5488The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5489command (abbreviated @code{p}), or its synonym @code{inspect}. It
5490evaluates and prints the value of an expression of the language your
5491program is written in (@pxref{Languages, ,Using @value{GDBN} with
5492Different Languages}).
c906108c
SS
5493
5494@table @code
d4f3574e
SS
5495@item print @var{expr}
5496@itemx print /@var{f} @var{expr}
5497@var{expr} is an expression (in the source language). By default the
5498value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5499you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5500@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5501Formats}.
c906108c
SS
5502
5503@item print
5504@itemx print /@var{f}
15387254 5505@cindex reprint the last value
d4f3574e 5506If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5507@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5508conveniently inspect the same value in an alternative format.
5509@end table
5510
5511A more low-level way of examining data is with the @code{x} command.
5512It examines data in memory at a specified address and prints it in a
79a6e687 5513specified format. @xref{Memory, ,Examining Memory}.
c906108c 5514
7a292a7a 5515If you are interested in information about types, or about how the
d4f3574e
SS
5516fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5517command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5518Table}.
c906108c
SS
5519
5520@menu
5521* Expressions:: Expressions
6ba66d6a 5522* Ambiguous Expressions:: Ambiguous Expressions
c906108c
SS
5523* Variables:: Program variables
5524* Arrays:: Artificial arrays
5525* Output Formats:: Output formats
5526* Memory:: Examining memory
5527* Auto Display:: Automatic display
5528* Print Settings:: Print settings
5529* Value History:: Value history
5530* Convenience Vars:: Convenience variables
5531* Registers:: Registers
c906108c 5532* Floating Point Hardware:: Floating point hardware
53c69bd7 5533* Vector Unit:: Vector Unit
721c2651 5534* OS Information:: Auxiliary data provided by operating system
29e57380 5535* Memory Region Attributes:: Memory region attributes
16d9dec6 5536* Dump/Restore Files:: Copy between memory and a file
384ee23f 5537* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5538* Character Sets:: Debugging programs that use a different
5539 character set than GDB does
09d4efe1 5540* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5541@end menu
5542
6d2ebf8b 5543@node Expressions
c906108c
SS
5544@section Expressions
5545
5546@cindex expressions
5547@code{print} and many other @value{GDBN} commands accept an expression and
5548compute its value. Any kind of constant, variable or operator defined
5549by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5550@value{GDBN}. This includes conditional expressions, function calls,
5551casts, and string constants. It also includes preprocessor macros, if
5552you compiled your program to include this information; see
5553@ref{Compilation}.
c906108c 5554
15387254 5555@cindex arrays in expressions
d4f3574e
SS
5556@value{GDBN} supports array constants in expressions input by
5557the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
63092375
DJ
5558you can use the command @code{print @{1, 2, 3@}} to create an array
5559of three integers. If you pass an array to a function or assign it
5560to a program variable, @value{GDBN} copies the array to memory that
5561is @code{malloc}ed in the target program.
c906108c 5562
c906108c
SS
5563Because C is so widespread, most of the expressions shown in examples in
5564this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5565Languages}, for information on how to use expressions in other
5566languages.
5567
5568In this section, we discuss operators that you can use in @value{GDBN}
5569expressions regardless of your programming language.
5570
15387254 5571@cindex casts, in expressions
c906108c
SS
5572Casts are supported in all languages, not just in C, because it is so
5573useful to cast a number into a pointer in order to examine a structure
5574at that address in memory.
5575@c FIXME: casts supported---Mod2 true?
c906108c
SS
5576
5577@value{GDBN} supports these operators, in addition to those common
5578to programming languages:
5579
5580@table @code
5581@item @@
5582@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5583@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5584
5585@item ::
5586@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5587function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5588
5589@cindex @{@var{type}@}
5590@cindex type casting memory
5591@cindex memory, viewing as typed object
5592@cindex casts, to view memory
5593@item @{@var{type}@} @var{addr}
5594Refers to an object of type @var{type} stored at address @var{addr} in
5595memory. @var{addr} may be any expression whose value is an integer or
5596pointer (but parentheses are required around binary operators, just as in
5597a cast). This construct is allowed regardless of what kind of data is
5598normally supposed to reside at @var{addr}.
5599@end table
5600
6ba66d6a
JB
5601@node Ambiguous Expressions
5602@section Ambiguous Expressions
5603@cindex ambiguous expressions
5604
5605Expressions can sometimes contain some ambiguous elements. For instance,
5606some programming languages (notably Ada, C@t{++} and Objective-C) permit
5607a single function name to be defined several times, for application in
5608different contexts. This is called @dfn{overloading}. Another example
5609involving Ada is generics. A @dfn{generic package} is similar to C@t{++}
5610templates and is typically instantiated several times, resulting in
5611the same function name being defined in different contexts.
5612
5613In some cases and depending on the language, it is possible to adjust
5614the expression to remove the ambiguity. For instance in C@t{++}, you
5615can specify the signature of the function you want to break on, as in
5616@kbd{break @var{function}(@var{types})}. In Ada, using the fully
5617qualified name of your function often makes the expression unambiguous
5618as well.
5619
5620When an ambiguity that needs to be resolved is detected, the debugger
5621has the capability to display a menu of numbered choices for each
5622possibility, and then waits for the selection with the prompt @samp{>}.
5623The first option is always @samp{[0] cancel}, and typing @kbd{0 @key{RET}}
5624aborts the current command. If the command in which the expression was
5625used allows more than one choice to be selected, the next option in the
5626menu is @samp{[1] all}, and typing @kbd{1 @key{RET}} selects all possible
5627choices.
5628
5629For example, the following session excerpt shows an attempt to set a
5630breakpoint at the overloaded symbol @code{String::after}.
5631We choose three particular definitions of that function name:
5632
5633@c FIXME! This is likely to change to show arg type lists, at least
5634@smallexample
5635@group
5636(@value{GDBP}) b String::after
5637[0] cancel
5638[1] all
5639[2] file:String.cc; line number:867
5640[3] file:String.cc; line number:860
5641[4] file:String.cc; line number:875
5642[5] file:String.cc; line number:853
5643[6] file:String.cc; line number:846
5644[7] file:String.cc; line number:735
5645> 2 4 6
5646Breakpoint 1 at 0xb26c: file String.cc, line 867.
5647Breakpoint 2 at 0xb344: file String.cc, line 875.
5648Breakpoint 3 at 0xafcc: file String.cc, line 846.
5649Multiple breakpoints were set.
5650Use the "delete" command to delete unwanted
5651 breakpoints.
5652(@value{GDBP})
5653@end group
5654@end smallexample
5655
5656@table @code
5657@kindex set multiple-symbols
5658@item set multiple-symbols @var{mode}
5659@cindex multiple-symbols menu
5660
5661This option allows you to adjust the debugger behavior when an expression
5662is ambiguous.
5663
5664By default, @var{mode} is set to @code{all}. If the command with which
5665the expression is used allows more than one choice, then @value{GDBN}
5666automatically selects all possible choices. For instance, inserting
5667a breakpoint on a function using an ambiguous name results in a breakpoint
5668inserted on each possible match. However, if a unique choice must be made,
5669then @value{GDBN} uses the menu to help you disambiguate the expression.
5670For instance, printing the address of an overloaded function will result
5671in the use of the menu.
5672
5673When @var{mode} is set to @code{ask}, the debugger always uses the menu
5674when an ambiguity is detected.
5675
5676Finally, when @var{mode} is set to @code{cancel}, the debugger reports
5677an error due to the ambiguity and the command is aborted.
5678
5679@kindex show multiple-symbols
5680@item show multiple-symbols
5681Show the current value of the @code{multiple-symbols} setting.
5682@end table
5683
6d2ebf8b 5684@node Variables
79a6e687 5685@section Program Variables
c906108c
SS
5686
5687The most common kind of expression to use is the name of a variable
5688in your program.
5689
5690Variables in expressions are understood in the selected stack frame
79a6e687 5691(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5692
5693@itemize @bullet
5694@item
5695global (or file-static)
5696@end itemize
5697
5d161b24 5698@noindent or
c906108c
SS
5699
5700@itemize @bullet
5701@item
5702visible according to the scope rules of the
5703programming language from the point of execution in that frame
5d161b24 5704@end itemize
c906108c
SS
5705
5706@noindent This means that in the function
5707
474c8240 5708@smallexample
c906108c
SS
5709foo (a)
5710 int a;
5711@{
5712 bar (a);
5713 @{
5714 int b = test ();
5715 bar (b);
5716 @}
5717@}
474c8240 5718@end smallexample
c906108c
SS
5719
5720@noindent
5721you can examine and use the variable @code{a} whenever your program is
5722executing within the function @code{foo}, but you can only use or
5723examine the variable @code{b} while your program is executing inside
5724the block where @code{b} is declared.
5725
5726@cindex variable name conflict
5727There is an exception: you can refer to a variable or function whose
5728scope is a single source file even if the current execution point is not
5729in this file. But it is possible to have more than one such variable or
5730function with the same name (in different source files). If that
5731happens, referring to that name has unpredictable effects. If you wish,
5732you can specify a static variable in a particular function or file,
15387254 5733using the colon-colon (@code{::}) notation:
c906108c 5734
d4f3574e 5735@cindex colon-colon, context for variables/functions
12c27660 5736@ifnotinfo
c906108c 5737@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5738@cindex @code{::}, context for variables/functions
12c27660 5739@end ifnotinfo
474c8240 5740@smallexample
c906108c
SS
5741@var{file}::@var{variable}
5742@var{function}::@var{variable}
474c8240 5743@end smallexample
c906108c
SS
5744
5745@noindent
5746Here @var{file} or @var{function} is the name of the context for the
5747static @var{variable}. In the case of file names, you can use quotes to
5748make sure @value{GDBN} parses the file name as a single word---for example,
5749to print a global value of @code{x} defined in @file{f2.c}:
5750
474c8240 5751@smallexample
c906108c 5752(@value{GDBP}) p 'f2.c'::x
474c8240 5753@end smallexample
c906108c 5754
b37052ae 5755@cindex C@t{++} scope resolution
c906108c 5756This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5757use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5758scope resolution operator in @value{GDBN} expressions.
5759@c FIXME: Um, so what happens in one of those rare cases where it's in
5760@c conflict?? --mew
c906108c
SS
5761
5762@cindex wrong values
5763@cindex variable values, wrong
15387254
EZ
5764@cindex function entry/exit, wrong values of variables
5765@cindex optimized code, wrong values of variables
c906108c
SS
5766@quotation
5767@emph{Warning:} Occasionally, a local variable may appear to have the
5768wrong value at certain points in a function---just after entry to a new
5769scope, and just before exit.
5770@end quotation
5771You may see this problem when you are stepping by machine instructions.
5772This is because, on most machines, it takes more than one instruction to
5773set up a stack frame (including local variable definitions); if you are
5774stepping by machine instructions, variables may appear to have the wrong
5775values until the stack frame is completely built. On exit, it usually
5776also takes more than one machine instruction to destroy a stack frame;
5777after you begin stepping through that group of instructions, local
5778variable definitions may be gone.
5779
5780This may also happen when the compiler does significant optimizations.
5781To be sure of always seeing accurate values, turn off all optimization
5782when compiling.
5783
d4f3574e
SS
5784@cindex ``No symbol "foo" in current context''
5785Another possible effect of compiler optimizations is to optimize
5786unused variables out of existence, or assign variables to registers (as
5787opposed to memory addresses). Depending on the support for such cases
5788offered by the debug info format used by the compiler, @value{GDBN}
5789might not be able to display values for such local variables. If that
5790happens, @value{GDBN} will print a message like this:
5791
474c8240 5792@smallexample
d4f3574e 5793No symbol "foo" in current context.
474c8240 5794@end smallexample
d4f3574e
SS
5795
5796To solve such problems, either recompile without optimizations, or use a
5797different debug info format, if the compiler supports several such
15387254 5798formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5799usually supports the @option{-gstabs+} option. @option{-gstabs+}
5800produces debug info in a format that is superior to formats such as
5801COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5802an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5803for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5804Compiler Collection (GCC)}.
79a6e687 5805@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5806that are best suited to C@t{++} programs.
d4f3574e 5807
ab1adacd
EZ
5808If you ask to print an object whose contents are unknown to
5809@value{GDBN}, e.g., because its data type is not completely specified
5810by the debug information, @value{GDBN} will say @samp{<incomplete
5811type>}. @xref{Symbols, incomplete type}, for more about this.
5812
3a60f64e
JK
5813Strings are identified as arrays of @code{char} values without specified
5814signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5815printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5816@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5817defines literal string type @code{"char"} as @code{char} without a sign.
5818For program code
5819
5820@smallexample
5821char var0[] = "A";
5822signed char var1[] = "A";
5823@end smallexample
5824
5825You get during debugging
5826@smallexample
5827(gdb) print var0
5828$1 = "A"
5829(gdb) print var1
5830$2 = @{65 'A', 0 '\0'@}
5831@end smallexample
5832
6d2ebf8b 5833@node Arrays
79a6e687 5834@section Artificial Arrays
c906108c
SS
5835
5836@cindex artificial array
15387254 5837@cindex arrays
41afff9a 5838@kindex @@@r{, referencing memory as an array}
c906108c
SS
5839It is often useful to print out several successive objects of the
5840same type in memory; a section of an array, or an array of
5841dynamically determined size for which only a pointer exists in the
5842program.
5843
5844You can do this by referring to a contiguous span of memory as an
5845@dfn{artificial array}, using the binary operator @samp{@@}. The left
5846operand of @samp{@@} should be the first element of the desired array
5847and be an individual object. The right operand should be the desired length
5848of the array. The result is an array value whose elements are all of
5849the type of the left argument. The first element is actually the left
5850argument; the second element comes from bytes of memory immediately
5851following those that hold the first element, and so on. Here is an
5852example. If a program says
5853
474c8240 5854@smallexample
c906108c 5855int *array = (int *) malloc (len * sizeof (int));
474c8240 5856@end smallexample
c906108c
SS
5857
5858@noindent
5859you can print the contents of @code{array} with
5860
474c8240 5861@smallexample
c906108c 5862p *array@@len
474c8240 5863@end smallexample
c906108c
SS
5864
5865The left operand of @samp{@@} must reside in memory. Array values made
5866with @samp{@@} in this way behave just like other arrays in terms of
5867subscripting, and are coerced to pointers when used in expressions.
5868Artificial arrays most often appear in expressions via the value history
79a6e687 5869(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5870
5871Another way to create an artificial array is to use a cast.
5872This re-interprets a value as if it were an array.
5873The value need not be in memory:
474c8240 5874@smallexample
c906108c
SS
5875(@value{GDBP}) p/x (short[2])0x12345678
5876$1 = @{0x1234, 0x5678@}
474c8240 5877@end smallexample
c906108c
SS
5878
5879As a convenience, if you leave the array length out (as in
c3f6f71d 5880@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5881the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5882@smallexample
c906108c
SS
5883(@value{GDBP}) p/x (short[])0x12345678
5884$2 = @{0x1234, 0x5678@}
474c8240 5885@end smallexample
c906108c
SS
5886
5887Sometimes the artificial array mechanism is not quite enough; in
5888moderately complex data structures, the elements of interest may not
5889actually be adjacent---for example, if you are interested in the values
5890of pointers in an array. One useful work-around in this situation is
5891to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5892Variables}) as a counter in an expression that prints the first
c906108c
SS
5893interesting value, and then repeat that expression via @key{RET}. For
5894instance, suppose you have an array @code{dtab} of pointers to
5895structures, and you are interested in the values of a field @code{fv}
5896in each structure. Here is an example of what you might type:
5897
474c8240 5898@smallexample
c906108c
SS
5899set $i = 0
5900p dtab[$i++]->fv
5901@key{RET}
5902@key{RET}
5903@dots{}
474c8240 5904@end smallexample
c906108c 5905
6d2ebf8b 5906@node Output Formats
79a6e687 5907@section Output Formats
c906108c
SS
5908
5909@cindex formatted output
5910@cindex output formats
5911By default, @value{GDBN} prints a value according to its data type. Sometimes
5912this is not what you want. For example, you might want to print a number
5913in hex, or a pointer in decimal. Or you might want to view data in memory
5914at a certain address as a character string or as an instruction. To do
5915these things, specify an @dfn{output format} when you print a value.
5916
5917The simplest use of output formats is to say how to print a value
5918already computed. This is done by starting the arguments of the
5919@code{print} command with a slash and a format letter. The format
5920letters supported are:
5921
5922@table @code
5923@item x
5924Regard the bits of the value as an integer, and print the integer in
5925hexadecimal.
5926
5927@item d
5928Print as integer in signed decimal.
5929
5930@item u
5931Print as integer in unsigned decimal.
5932
5933@item o
5934Print as integer in octal.
5935
5936@item t
5937Print as integer in binary. The letter @samp{t} stands for ``two''.
5938@footnote{@samp{b} cannot be used because these format letters are also
5939used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5940see @ref{Memory,,Examining Memory}.}
c906108c
SS
5941
5942@item a
5943@cindex unknown address, locating
3d67e040 5944@cindex locate address
c906108c
SS
5945Print as an address, both absolute in hexadecimal and as an offset from
5946the nearest preceding symbol. You can use this format used to discover
5947where (in what function) an unknown address is located:
5948
474c8240 5949@smallexample
c906108c
SS
5950(@value{GDBP}) p/a 0x54320
5951$3 = 0x54320 <_initialize_vx+396>
474c8240 5952@end smallexample
c906108c 5953
3d67e040
EZ
5954@noindent
5955The command @code{info symbol 0x54320} yields similar results.
5956@xref{Symbols, info symbol}.
5957
c906108c 5958@item c
51274035
EZ
5959Regard as an integer and print it as a character constant. This
5960prints both the numerical value and its character representation. The
5961character representation is replaced with the octal escape @samp{\nnn}
5962for characters outside the 7-bit @sc{ascii} range.
c906108c 5963
ea37ba09
DJ
5964Without this format, @value{GDBN} displays @code{char},
5965@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5966constants. Single-byte members of vectors are displayed as integer
5967data.
5968
c906108c
SS
5969@item f
5970Regard the bits of the value as a floating point number and print
5971using typical floating point syntax.
ea37ba09
DJ
5972
5973@item s
5974@cindex printing strings
5975@cindex printing byte arrays
5976Regard as a string, if possible. With this format, pointers to single-byte
5977data are displayed as null-terminated strings and arrays of single-byte data
5978are displayed as fixed-length strings. Other values are displayed in their
5979natural types.
5980
5981Without this format, @value{GDBN} displays pointers to and arrays of
5982@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5983strings. Single-byte members of a vector are displayed as an integer
5984array.
c906108c
SS
5985@end table
5986
5987For example, to print the program counter in hex (@pxref{Registers}), type
5988
474c8240 5989@smallexample
c906108c 5990p/x $pc
474c8240 5991@end smallexample
c906108c
SS
5992
5993@noindent
5994Note that no space is required before the slash; this is because command
5995names in @value{GDBN} cannot contain a slash.
5996
5997To reprint the last value in the value history with a different format,
5998you can use the @code{print} command with just a format and no
5999expression. For example, @samp{p/x} reprints the last value in hex.
6000
6d2ebf8b 6001@node Memory
79a6e687 6002@section Examining Memory
c906108c
SS
6003
6004You can use the command @code{x} (for ``examine'') to examine memory in
6005any of several formats, independently of your program's data types.
6006
6007@cindex examining memory
6008@table @code
41afff9a 6009@kindex x @r{(examine memory)}
c906108c
SS
6010@item x/@var{nfu} @var{addr}
6011@itemx x @var{addr}
6012@itemx x
6013Use the @code{x} command to examine memory.
6014@end table
6015
6016@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
6017much memory to display and how to format it; @var{addr} is an
6018expression giving the address where you want to start displaying memory.
6019If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
6020Several commands set convenient defaults for @var{addr}.
6021
6022@table @r
6023@item @var{n}, the repeat count
6024The repeat count is a decimal integer; the default is 1. It specifies
6025how much memory (counting by units @var{u}) to display.
6026@c This really is **decimal**; unaffected by 'set radix' as of GDB
6027@c 4.1.2.
6028
6029@item @var{f}, the display format
51274035
EZ
6030The display format is one of the formats used by @code{print}
6031(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
6032@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
6033The default is @samp{x} (hexadecimal) initially. The default changes
6034each time you use either @code{x} or @code{print}.
c906108c
SS
6035
6036@item @var{u}, the unit size
6037The unit size is any of
6038
6039@table @code
6040@item b
6041Bytes.
6042@item h
6043Halfwords (two bytes).
6044@item w
6045Words (four bytes). This is the initial default.
6046@item g
6047Giant words (eight bytes).
6048@end table
6049
6050Each time you specify a unit size with @code{x}, that size becomes the
6051default unit the next time you use @code{x}. (For the @samp{s} and
6052@samp{i} formats, the unit size is ignored and is normally not written.)
6053
6054@item @var{addr}, starting display address
6055@var{addr} is the address where you want @value{GDBN} to begin displaying
6056memory. The expression need not have a pointer value (though it may);
6057it is always interpreted as an integer address of a byte of memory.
6058@xref{Expressions, ,Expressions}, for more information on expressions. The default for
6059@var{addr} is usually just after the last address examined---but several
6060other commands also set the default address: @code{info breakpoints} (to
6061the address of the last breakpoint listed), @code{info line} (to the
6062starting address of a line), and @code{print} (if you use it to display
6063a value from memory).
6064@end table
6065
6066For example, @samp{x/3uh 0x54320} is a request to display three halfwords
6067(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
6068starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
6069words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 6070@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
6071
6072Since the letters indicating unit sizes are all distinct from the
6073letters specifying output formats, you do not have to remember whether
6074unit size or format comes first; either order works. The output
6075specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
6076(However, the count @var{n} must come first; @samp{wx4} does not work.)
6077
6078Even though the unit size @var{u} is ignored for the formats @samp{s}
6079and @samp{i}, you might still want to use a count @var{n}; for example,
6080@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6081including any operands. For convenience, especially when used with
6082the @code{display} command, the @samp{i} format also prints branch delay
6083slot instructions, if any, beyond the count specified, which immediately
6084follow the last instruction that is within the count. The command
6085@code{disassemble} gives an alternative way of inspecting machine
6086instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6087
6088All the defaults for the arguments to @code{x} are designed to make it
6089easy to continue scanning memory with minimal specifications each time
6090you use @code{x}. For example, after you have inspected three machine
6091instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6092with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6093the repeat count @var{n} is used again; the other arguments default as
6094for successive uses of @code{x}.
6095
6096@cindex @code{$_}, @code{$__}, and value history
6097The addresses and contents printed by the @code{x} command are not saved
6098in the value history because there is often too much of them and they
6099would get in the way. Instead, @value{GDBN} makes these values available for
6100subsequent use in expressions as values of the convenience variables
6101@code{$_} and @code{$__}. After an @code{x} command, the last address
6102examined is available for use in expressions in the convenience variable
6103@code{$_}. The contents of that address, as examined, are available in
6104the convenience variable @code{$__}.
6105
6106If the @code{x} command has a repeat count, the address and contents saved
6107are from the last memory unit printed; this is not the same as the last
6108address printed if several units were printed on the last line of output.
6109
09d4efe1
EZ
6110@cindex remote memory comparison
6111@cindex verify remote memory image
6112When you are debugging a program running on a remote target machine
ea35711c 6113(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6114remote machine's memory against the executable file you downloaded to
6115the target. The @code{compare-sections} command is provided for such
6116situations.
6117
6118@table @code
6119@kindex compare-sections
6120@item compare-sections @r{[}@var{section-name}@r{]}
6121Compare the data of a loadable section @var{section-name} in the
6122executable file of the program being debugged with the same section in
6123the remote machine's memory, and report any mismatches. With no
6124arguments, compares all loadable sections. This command's
6125availability depends on the target's support for the @code{"qCRC"}
6126remote request.
6127@end table
6128
6d2ebf8b 6129@node Auto Display
79a6e687 6130@section Automatic Display
c906108c
SS
6131@cindex automatic display
6132@cindex display of expressions
6133
6134If you find that you want to print the value of an expression frequently
6135(to see how it changes), you might want to add it to the @dfn{automatic
6136display list} so that @value{GDBN} prints its value each time your program stops.
6137Each expression added to the list is given a number to identify it;
6138to remove an expression from the list, you specify that number.
6139The automatic display looks like this:
6140
474c8240 6141@smallexample
c906108c
SS
61422: foo = 38
61433: bar[5] = (struct hack *) 0x3804
474c8240 6144@end smallexample
c906108c
SS
6145
6146@noindent
6147This display shows item numbers, expressions and their current values. As with
6148displays you request manually using @code{x} or @code{print}, you can
6149specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6150whether to use @code{print} or @code{x} depending your format
6151specification---it uses @code{x} if you specify either the @samp{i}
6152or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6153
6154@table @code
6155@kindex display
d4f3574e
SS
6156@item display @var{expr}
6157Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6158each time your program stops. @xref{Expressions, ,Expressions}.
6159
6160@code{display} does not repeat if you press @key{RET} again after using it.
6161
d4f3574e 6162@item display/@var{fmt} @var{expr}
c906108c 6163For @var{fmt} specifying only a display format and not a size or
d4f3574e 6164count, add the expression @var{expr} to the auto-display list but
c906108c 6165arrange to display it each time in the specified format @var{fmt}.
79a6e687 6166@xref{Output Formats,,Output Formats}.
c906108c
SS
6167
6168@item display/@var{fmt} @var{addr}
6169For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6170number of units, add the expression @var{addr} as a memory address to
6171be examined each time your program stops. Examining means in effect
79a6e687 6172doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6173@end table
6174
6175For example, @samp{display/i $pc} can be helpful, to see the machine
6176instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6177is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6178
6179@table @code
6180@kindex delete display
6181@kindex undisplay
6182@item undisplay @var{dnums}@dots{}
6183@itemx delete display @var{dnums}@dots{}
6184Remove item numbers @var{dnums} from the list of expressions to display.
6185
6186@code{undisplay} does not repeat if you press @key{RET} after using it.
6187(Otherwise you would just get the error @samp{No display number @dots{}}.)
6188
6189@kindex disable display
6190@item disable display @var{dnums}@dots{}
6191Disable the display of item numbers @var{dnums}. A disabled display
6192item is not printed automatically, but is not forgotten. It may be
6193enabled again later.
6194
6195@kindex enable display
6196@item enable display @var{dnums}@dots{}
6197Enable display of item numbers @var{dnums}. It becomes effective once
6198again in auto display of its expression, until you specify otherwise.
6199
6200@item display
6201Display the current values of the expressions on the list, just as is
6202done when your program stops.
6203
6204@kindex info display
6205@item info display
6206Print the list of expressions previously set up to display
6207automatically, each one with its item number, but without showing the
6208values. This includes disabled expressions, which are marked as such.
6209It also includes expressions which would not be displayed right now
6210because they refer to automatic variables not currently available.
6211@end table
6212
15387254 6213@cindex display disabled out of scope
c906108c
SS
6214If a display expression refers to local variables, then it does not make
6215sense outside the lexical context for which it was set up. Such an
6216expression is disabled when execution enters a context where one of its
6217variables is not defined. For example, if you give the command
6218@code{display last_char} while inside a function with an argument
6219@code{last_char}, @value{GDBN} displays this argument while your program
6220continues to stop inside that function. When it stops elsewhere---where
6221there is no variable @code{last_char}---the display is disabled
6222automatically. The next time your program stops where @code{last_char}
6223is meaningful, you can enable the display expression once again.
6224
6d2ebf8b 6225@node Print Settings
79a6e687 6226@section Print Settings
c906108c
SS
6227
6228@cindex format options
6229@cindex print settings
6230@value{GDBN} provides the following ways to control how arrays, structures,
6231and symbols are printed.
6232
6233@noindent
6234These settings are useful for debugging programs in any language:
6235
6236@table @code
4644b6e3 6237@kindex set print
c906108c
SS
6238@item set print address
6239@itemx set print address on
4644b6e3 6240@cindex print/don't print memory addresses
c906108c
SS
6241@value{GDBN} prints memory addresses showing the location of stack
6242traces, structure values, pointer values, breakpoints, and so forth,
6243even when it also displays the contents of those addresses. The default
6244is @code{on}. For example, this is what a stack frame display looks like with
6245@code{set print address on}:
6246
6247@smallexample
6248@group
6249(@value{GDBP}) f
6250#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6251 at input.c:530
6252530 if (lquote != def_lquote)
6253@end group
6254@end smallexample
6255
6256@item set print address off
6257Do not print addresses when displaying their contents. For example,
6258this is the same stack frame displayed with @code{set print address off}:
6259
6260@smallexample
6261@group
6262(@value{GDBP}) set print addr off
6263(@value{GDBP}) f
6264#0 set_quotes (lq="<<", rq=">>") at input.c:530
6265530 if (lquote != def_lquote)
6266@end group
6267@end smallexample
6268
6269You can use @samp{set print address off} to eliminate all machine
6270dependent displays from the @value{GDBN} interface. For example, with
6271@code{print address off}, you should get the same text for backtraces on
6272all machines---whether or not they involve pointer arguments.
6273
4644b6e3 6274@kindex show print
c906108c
SS
6275@item show print address
6276Show whether or not addresses are to be printed.
6277@end table
6278
6279When @value{GDBN} prints a symbolic address, it normally prints the
6280closest earlier symbol plus an offset. If that symbol does not uniquely
6281identify the address (for example, it is a name whose scope is a single
6282source file), you may need to clarify. One way to do this is with
6283@code{info line}, for example @samp{info line *0x4537}. Alternately,
6284you can set @value{GDBN} to print the source file and line number when
6285it prints a symbolic address:
6286
6287@table @code
c906108c 6288@item set print symbol-filename on
9c16f35a
EZ
6289@cindex source file and line of a symbol
6290@cindex symbol, source file and line
c906108c
SS
6291Tell @value{GDBN} to print the source file name and line number of a
6292symbol in the symbolic form of an address.
6293
6294@item set print symbol-filename off
6295Do not print source file name and line number of a symbol. This is the
6296default.
6297
c906108c
SS
6298@item show print symbol-filename
6299Show whether or not @value{GDBN} will print the source file name and
6300line number of a symbol in the symbolic form of an address.
6301@end table
6302
6303Another situation where it is helpful to show symbol filenames and line
6304numbers is when disassembling code; @value{GDBN} shows you the line
6305number and source file that corresponds to each instruction.
6306
6307Also, you may wish to see the symbolic form only if the address being
6308printed is reasonably close to the closest earlier symbol:
6309
6310@table @code
c906108c 6311@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6312@cindex maximum value for offset of closest symbol
c906108c
SS
6313Tell @value{GDBN} to only display the symbolic form of an address if the
6314offset between the closest earlier symbol and the address is less than
5d161b24 6315@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6316to always print the symbolic form of an address if any symbol precedes it.
6317
c906108c
SS
6318@item show print max-symbolic-offset
6319Ask how large the maximum offset is that @value{GDBN} prints in a
6320symbolic address.
6321@end table
6322
6323@cindex wild pointer, interpreting
6324@cindex pointer, finding referent
6325If you have a pointer and you are not sure where it points, try
6326@samp{set print symbol-filename on}. Then you can determine the name
6327and source file location of the variable where it points, using
6328@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6329For example, here @value{GDBN} shows that a variable @code{ptt} points
6330at another variable @code{t}, defined in @file{hi2.c}:
6331
474c8240 6332@smallexample
c906108c
SS
6333(@value{GDBP}) set print symbol-filename on
6334(@value{GDBP}) p/a ptt
6335$4 = 0xe008 <t in hi2.c>
474c8240 6336@end smallexample
c906108c
SS
6337
6338@quotation
6339@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6340does not show the symbol name and filename of the referent, even with
6341the appropriate @code{set print} options turned on.
6342@end quotation
6343
6344Other settings control how different kinds of objects are printed:
6345
6346@table @code
c906108c
SS
6347@item set print array
6348@itemx set print array on
4644b6e3 6349@cindex pretty print arrays
c906108c
SS
6350Pretty print arrays. This format is more convenient to read,
6351but uses more space. The default is off.
6352
6353@item set print array off
6354Return to compressed format for arrays.
6355
c906108c
SS
6356@item show print array
6357Show whether compressed or pretty format is selected for displaying
6358arrays.
6359
3c9c013a
JB
6360@cindex print array indexes
6361@item set print array-indexes
6362@itemx set print array-indexes on
6363Print the index of each element when displaying arrays. May be more
6364convenient to locate a given element in the array or quickly find the
6365index of a given element in that printed array. The default is off.
6366
6367@item set print array-indexes off
6368Stop printing element indexes when displaying arrays.
6369
6370@item show print array-indexes
6371Show whether the index of each element is printed when displaying
6372arrays.
6373
c906108c 6374@item set print elements @var{number-of-elements}
4644b6e3 6375@cindex number of array elements to print
9c16f35a 6376@cindex limit on number of printed array elements
c906108c
SS
6377Set a limit on how many elements of an array @value{GDBN} will print.
6378If @value{GDBN} is printing a large array, it stops printing after it has
6379printed the number of elements set by the @code{set print elements} command.
6380This limit also applies to the display of strings.
d4f3574e 6381When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6382Setting @var{number-of-elements} to zero means that the printing is unlimited.
6383
c906108c
SS
6384@item show print elements
6385Display the number of elements of a large array that @value{GDBN} will print.
6386If the number is 0, then the printing is unlimited.
6387
b4740add
JB
6388@item set print frame-arguments @var{value}
6389@cindex printing frame argument values
6390@cindex print all frame argument values
6391@cindex print frame argument values for scalars only
6392@cindex do not print frame argument values
6393This command allows to control how the values of arguments are printed
6394when the debugger prints a frame (@pxref{Frames}). The possible
6395values are:
6396
6397@table @code
6398@item all
6399The values of all arguments are printed. This is the default.
6400
6401@item scalars
6402Print the value of an argument only if it is a scalar. The value of more
6403complex arguments such as arrays, structures, unions, etc, is replaced
6404by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6405
6406@smallexample
6407#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6408 at frame-args.c:23
6409@end smallexample
6410
6411@item none
6412None of the argument values are printed. Instead, the value of each argument
6413is replaced by @code{@dots{}}. In this case, the example above now becomes:
6414
6415@smallexample
6416#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6417 at frame-args.c:23
6418@end smallexample
6419@end table
6420
6421By default, all argument values are always printed. But this command
6422can be useful in several cases. For instance, it can be used to reduce
6423the amount of information printed in each frame, making the backtrace
6424more readable. Also, this command can be used to improve performance
6425when displaying Ada frames, because the computation of large arguments
6426can sometimes be CPU-intensive, especiallly in large applications.
6427Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6428avoids this computation, thus speeding up the display of each Ada frame.
6429
6430@item show print frame-arguments
6431Show how the value of arguments should be displayed when printing a frame.
6432
9c16f35a
EZ
6433@item set print repeats
6434@cindex repeated array elements
6435Set the threshold for suppressing display of repeated array
d3e8051b 6436elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6437array exceeds the threshold, @value{GDBN} prints the string
6438@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6439identical repetitions, instead of displaying the identical elements
6440themselves. Setting the threshold to zero will cause all elements to
6441be individually printed. The default threshold is 10.
6442
6443@item show print repeats
6444Display the current threshold for printing repeated identical
6445elements.
6446
c906108c 6447@item set print null-stop
4644b6e3 6448@cindex @sc{null} elements in arrays
c906108c 6449Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6450@sc{null} is encountered. This is useful when large arrays actually
c906108c 6451contain only short strings.
d4f3574e 6452The default is off.
c906108c 6453
9c16f35a
EZ
6454@item show print null-stop
6455Show whether @value{GDBN} stops printing an array on the first
6456@sc{null} character.
6457
c906108c 6458@item set print pretty on
9c16f35a
EZ
6459@cindex print structures in indented form
6460@cindex indentation in structure display
5d161b24 6461Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6462per line, like this:
6463
6464@smallexample
6465@group
6466$1 = @{
6467 next = 0x0,
6468 flags = @{
6469 sweet = 1,
6470 sour = 1
6471 @},
6472 meat = 0x54 "Pork"
6473@}
6474@end group
6475@end smallexample
6476
6477@item set print pretty off
6478Cause @value{GDBN} to print structures in a compact format, like this:
6479
6480@smallexample
6481@group
6482$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6483meat = 0x54 "Pork"@}
6484@end group
6485@end smallexample
6486
6487@noindent
6488This is the default format.
6489
c906108c
SS
6490@item show print pretty
6491Show which format @value{GDBN} is using to print structures.
6492
c906108c 6493@item set print sevenbit-strings on
4644b6e3
EZ
6494@cindex eight-bit characters in strings
6495@cindex octal escapes in strings
c906108c
SS
6496Print using only seven-bit characters; if this option is set,
6497@value{GDBN} displays any eight-bit characters (in strings or
6498character values) using the notation @code{\}@var{nnn}. This setting is
6499best if you are working in English (@sc{ascii}) and you use the
6500high-order bit of characters as a marker or ``meta'' bit.
6501
6502@item set print sevenbit-strings off
6503Print full eight-bit characters. This allows the use of more
6504international character sets, and is the default.
6505
c906108c
SS
6506@item show print sevenbit-strings
6507Show whether or not @value{GDBN} is printing only seven-bit characters.
6508
c906108c 6509@item set print union on
4644b6e3 6510@cindex unions in structures, printing
9c16f35a
EZ
6511Tell @value{GDBN} to print unions which are contained in structures
6512and other unions. This is the default setting.
c906108c
SS
6513
6514@item set print union off
9c16f35a
EZ
6515Tell @value{GDBN} not to print unions which are contained in
6516structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6517instead.
c906108c 6518
c906108c
SS
6519@item show print union
6520Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6521structures and other unions.
c906108c
SS
6522
6523For example, given the declarations
6524
6525@smallexample
6526typedef enum @{Tree, Bug@} Species;
6527typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6528typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6529 Bug_forms;
6530
6531struct thing @{
6532 Species it;
6533 union @{
6534 Tree_forms tree;
6535 Bug_forms bug;
6536 @} form;
6537@};
6538
6539struct thing foo = @{Tree, @{Acorn@}@};
6540@end smallexample
6541
6542@noindent
6543with @code{set print union on} in effect @samp{p foo} would print
6544
6545@smallexample
6546$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6547@end smallexample
6548
6549@noindent
6550and with @code{set print union off} in effect it would print
6551
6552@smallexample
6553$1 = @{it = Tree, form = @{...@}@}
6554@end smallexample
9c16f35a
EZ
6555
6556@noindent
6557@code{set print union} affects programs written in C-like languages
6558and in Pascal.
c906108c
SS
6559@end table
6560
c906108c
SS
6561@need 1000
6562@noindent
b37052ae 6563These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6564
6565@table @code
4644b6e3 6566@cindex demangling C@t{++} names
c906108c
SS
6567@item set print demangle
6568@itemx set print demangle on
b37052ae 6569Print C@t{++} names in their source form rather than in the encoded
c906108c 6570(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6571linkage. The default is on.
c906108c 6572
c906108c 6573@item show print demangle
b37052ae 6574Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6575
c906108c
SS
6576@item set print asm-demangle
6577@itemx set print asm-demangle on
b37052ae 6578Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6579in assembler code printouts such as instruction disassemblies.
6580The default is off.
6581
c906108c 6582@item show print asm-demangle
b37052ae 6583Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6584or demangled form.
6585
b37052ae
EZ
6586@cindex C@t{++} symbol decoding style
6587@cindex symbol decoding style, C@t{++}
a8f24a35 6588@kindex set demangle-style
c906108c
SS
6589@item set demangle-style @var{style}
6590Choose among several encoding schemes used by different compilers to
b37052ae 6591represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6592
6593@table @code
6594@item auto
6595Allow @value{GDBN} to choose a decoding style by inspecting your program.
6596
6597@item gnu
b37052ae 6598Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6599This is the default.
c906108c
SS
6600
6601@item hp
b37052ae 6602Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6603
6604@item lucid
b37052ae 6605Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6606
6607@item arm
b37052ae 6608Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6609@strong{Warning:} this setting alone is not sufficient to allow
6610debugging @code{cfront}-generated executables. @value{GDBN} would
6611require further enhancement to permit that.
6612
6613@end table
6614If you omit @var{style}, you will see a list of possible formats.
6615
c906108c 6616@item show demangle-style
b37052ae 6617Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6618
c906108c
SS
6619@item set print object
6620@itemx set print object on
4644b6e3 6621@cindex derived type of an object, printing
9c16f35a 6622@cindex display derived types
c906108c
SS
6623When displaying a pointer to an object, identify the @emph{actual}
6624(derived) type of the object rather than the @emph{declared} type, using
6625the virtual function table.
6626
6627@item set print object off
6628Display only the declared type of objects, without reference to the
6629virtual function table. This is the default setting.
6630
c906108c
SS
6631@item show print object
6632Show whether actual, or declared, object types are displayed.
6633
c906108c
SS
6634@item set print static-members
6635@itemx set print static-members on
4644b6e3 6636@cindex static members of C@t{++} objects
b37052ae 6637Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6638
6639@item set print static-members off
b37052ae 6640Do not print static members when displaying a C@t{++} object.
c906108c 6641
c906108c 6642@item show print static-members
9c16f35a
EZ
6643Show whether C@t{++} static members are printed or not.
6644
6645@item set print pascal_static-members
6646@itemx set print pascal_static-members on
d3e8051b
EZ
6647@cindex static members of Pascal objects
6648@cindex Pascal objects, static members display
9c16f35a
EZ
6649Print static members when displaying a Pascal object. The default is on.
6650
6651@item set print pascal_static-members off
6652Do not print static members when displaying a Pascal object.
6653
6654@item show print pascal_static-members
6655Show whether Pascal static members are printed or not.
c906108c
SS
6656
6657@c These don't work with HP ANSI C++ yet.
c906108c
SS
6658@item set print vtbl
6659@itemx set print vtbl on
4644b6e3 6660@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6661@cindex virtual functions (C@t{++}) display
6662@cindex VTBL display
b37052ae 6663Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6664(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6665ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6666
6667@item set print vtbl off
b37052ae 6668Do not pretty print C@t{++} virtual function tables.
c906108c 6669
c906108c 6670@item show print vtbl
b37052ae 6671Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6672@end table
c906108c 6673
6d2ebf8b 6674@node Value History
79a6e687 6675@section Value History
c906108c
SS
6676
6677@cindex value history
9c16f35a 6678@cindex history of values printed by @value{GDBN}
5d161b24
DB
6679Values printed by the @code{print} command are saved in the @value{GDBN}
6680@dfn{value history}. This allows you to refer to them in other expressions.
6681Values are kept until the symbol table is re-read or discarded
6682(for example with the @code{file} or @code{symbol-file} commands).
6683When the symbol table changes, the value history is discarded,
6684since the values may contain pointers back to the types defined in the
c906108c
SS
6685symbol table.
6686
6687@cindex @code{$}
6688@cindex @code{$$}
6689@cindex history number
6690The values printed are given @dfn{history numbers} by which you can
6691refer to them. These are successive integers starting with one.
6692@code{print} shows you the history number assigned to a value by
6693printing @samp{$@var{num} = } before the value; here @var{num} is the
6694history number.
6695
6696To refer to any previous value, use @samp{$} followed by the value's
6697history number. The way @code{print} labels its output is designed to
6698remind you of this. Just @code{$} refers to the most recent value in
6699the history, and @code{$$} refers to the value before that.
6700@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6701is the value just prior to @code{$$}, @code{$$1} is equivalent to
6702@code{$$}, and @code{$$0} is equivalent to @code{$}.
6703
6704For example, suppose you have just printed a pointer to a structure and
6705want to see the contents of the structure. It suffices to type
6706
474c8240 6707@smallexample
c906108c 6708p *$
474c8240 6709@end smallexample
c906108c
SS
6710
6711If you have a chain of structures where the component @code{next} points
6712to the next one, you can print the contents of the next one with this:
6713
474c8240 6714@smallexample
c906108c 6715p *$.next
474c8240 6716@end smallexample
c906108c
SS
6717
6718@noindent
6719You can print successive links in the chain by repeating this
6720command---which you can do by just typing @key{RET}.
6721
6722Note that the history records values, not expressions. If the value of
6723@code{x} is 4 and you type these commands:
6724
474c8240 6725@smallexample
c906108c
SS
6726print x
6727set x=5
474c8240 6728@end smallexample
c906108c
SS
6729
6730@noindent
6731then the value recorded in the value history by the @code{print} command
6732remains 4 even though the value of @code{x} has changed.
6733
6734@table @code
6735@kindex show values
6736@item show values
6737Print the last ten values in the value history, with their item numbers.
6738This is like @samp{p@ $$9} repeated ten times, except that @code{show
6739values} does not change the history.
6740
6741@item show values @var{n}
6742Print ten history values centered on history item number @var{n}.
6743
6744@item show values +
6745Print ten history values just after the values last printed. If no more
6746values are available, @code{show values +} produces no display.
6747@end table
6748
6749Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6750same effect as @samp{show values +}.
6751
6d2ebf8b 6752@node Convenience Vars
79a6e687 6753@section Convenience Variables
c906108c
SS
6754
6755@cindex convenience variables
9c16f35a 6756@cindex user-defined variables
c906108c
SS
6757@value{GDBN} provides @dfn{convenience variables} that you can use within
6758@value{GDBN} to hold on to a value and refer to it later. These variables
6759exist entirely within @value{GDBN}; they are not part of your program, and
6760setting a convenience variable has no direct effect on further execution
6761of your program. That is why you can use them freely.
6762
6763Convenience variables are prefixed with @samp{$}. Any name preceded by
6764@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6765the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6766(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6767by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6768
6769You can save a value in a convenience variable with an assignment
6770expression, just as you would set a variable in your program.
6771For example:
6772
474c8240 6773@smallexample
c906108c 6774set $foo = *object_ptr
474c8240 6775@end smallexample
c906108c
SS
6776
6777@noindent
6778would save in @code{$foo} the value contained in the object pointed to by
6779@code{object_ptr}.
6780
6781Using a convenience variable for the first time creates it, but its
6782value is @code{void} until you assign a new value. You can alter the
6783value with another assignment at any time.
6784
6785Convenience variables have no fixed types. You can assign a convenience
6786variable any type of value, including structures and arrays, even if
6787that variable already has a value of a different type. The convenience
6788variable, when used as an expression, has the type of its current value.
6789
6790@table @code
6791@kindex show convenience
9c16f35a 6792@cindex show all user variables
c906108c
SS
6793@item show convenience
6794Print a list of convenience variables used so far, and their values.
d4f3574e 6795Abbreviated @code{show conv}.
53e5f3cf
AS
6796
6797@kindex init-if-undefined
6798@cindex convenience variables, initializing
6799@item init-if-undefined $@var{variable} = @var{expression}
6800Set a convenience variable if it has not already been set. This is useful
6801for user-defined commands that keep some state. It is similar, in concept,
6802to using local static variables with initializers in C (except that
6803convenience variables are global). It can also be used to allow users to
6804override default values used in a command script.
6805
6806If the variable is already defined then the expression is not evaluated so
6807any side-effects do not occur.
c906108c
SS
6808@end table
6809
6810One of the ways to use a convenience variable is as a counter to be
6811incremented or a pointer to be advanced. For example, to print
6812a field from successive elements of an array of structures:
6813
474c8240 6814@smallexample
c906108c
SS
6815set $i = 0
6816print bar[$i++]->contents
474c8240 6817@end smallexample
c906108c 6818
d4f3574e
SS
6819@noindent
6820Repeat that command by typing @key{RET}.
c906108c
SS
6821
6822Some convenience variables are created automatically by @value{GDBN} and given
6823values likely to be useful.
6824
6825@table @code
41afff9a 6826@vindex $_@r{, convenience variable}
c906108c
SS
6827@item $_
6828The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6829the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6830commands which provide a default address for @code{x} to examine also
6831set @code{$_} to that address; these commands include @code{info line}
6832and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6833except when set by the @code{x} command, in which case it is a pointer
6834to the type of @code{$__}.
6835
41afff9a 6836@vindex $__@r{, convenience variable}
c906108c
SS
6837@item $__
6838The variable @code{$__} is automatically set by the @code{x} command
6839to the value found in the last address examined. Its type is chosen
6840to match the format in which the data was printed.
6841
6842@item $_exitcode
41afff9a 6843@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6844The variable @code{$_exitcode} is automatically set to the exit code when
6845the program being debugged terminates.
6846@end table
6847
53a5351d
JM
6848On HP-UX systems, if you refer to a function or variable name that
6849begins with a dollar sign, @value{GDBN} searches for a user or system
6850name first, before it searches for a convenience variable.
c906108c 6851
6d2ebf8b 6852@node Registers
c906108c
SS
6853@section Registers
6854
6855@cindex registers
6856You can refer to machine register contents, in expressions, as variables
6857with names starting with @samp{$}. The names of registers are different
6858for each machine; use @code{info registers} to see the names used on
6859your machine.
6860
6861@table @code
6862@kindex info registers
6863@item info registers
6864Print the names and values of all registers except floating-point
c85508ee 6865and vector registers (in the selected stack frame).
c906108c
SS
6866
6867@kindex info all-registers
6868@cindex floating point registers
6869@item info all-registers
6870Print the names and values of all registers, including floating-point
c85508ee 6871and vector registers (in the selected stack frame).
c906108c
SS
6872
6873@item info registers @var{regname} @dots{}
6874Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6875As discussed in detail below, register values are normally relative to
6876the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6877the machine you are using, with or without the initial @samp{$}.
6878@end table
6879
e09f16f9
EZ
6880@cindex stack pointer register
6881@cindex program counter register
6882@cindex process status register
6883@cindex frame pointer register
6884@cindex standard registers
c906108c
SS
6885@value{GDBN} has four ``standard'' register names that are available (in
6886expressions) on most machines---whenever they do not conflict with an
6887architecture's canonical mnemonics for registers. The register names
6888@code{$pc} and @code{$sp} are used for the program counter register and
6889the stack pointer. @code{$fp} is used for a register that contains a
6890pointer to the current stack frame, and @code{$ps} is used for a
6891register that contains the processor status. For example,
6892you could print the program counter in hex with
6893
474c8240 6894@smallexample
c906108c 6895p/x $pc
474c8240 6896@end smallexample
c906108c
SS
6897
6898@noindent
6899or print the instruction to be executed next with
6900
474c8240 6901@smallexample
c906108c 6902x/i $pc
474c8240 6903@end smallexample
c906108c
SS
6904
6905@noindent
6906or add four to the stack pointer@footnote{This is a way of removing
6907one word from the stack, on machines where stacks grow downward in
6908memory (most machines, nowadays). This assumes that the innermost
6909stack frame is selected; setting @code{$sp} is not allowed when other
6910stack frames are selected. To pop entire frames off the stack,
6911regardless of machine architecture, use @code{return};
79a6e687 6912see @ref{Returning, ,Returning from a Function}.} with
c906108c 6913
474c8240 6914@smallexample
c906108c 6915set $sp += 4
474c8240 6916@end smallexample
c906108c
SS
6917
6918Whenever possible, these four standard register names are available on
6919your machine even though the machine has different canonical mnemonics,
6920so long as there is no conflict. The @code{info registers} command
6921shows the canonical names. For example, on the SPARC, @code{info
6922registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6923can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6924is an alias for the @sc{eflags} register.
c906108c
SS
6925
6926@value{GDBN} always considers the contents of an ordinary register as an
6927integer when the register is examined in this way. Some machines have
6928special registers which can hold nothing but floating point; these
6929registers are considered to have floating point values. There is no way
6930to refer to the contents of an ordinary register as floating point value
6931(although you can @emph{print} it as a floating point value with
6932@samp{print/f $@var{regname}}).
6933
6934Some registers have distinct ``raw'' and ``virtual'' data formats. This
6935means that the data format in which the register contents are saved by
6936the operating system is not the same one that your program normally
6937sees. For example, the registers of the 68881 floating point
6938coprocessor are always saved in ``extended'' (raw) format, but all C
6939programs expect to work with ``double'' (virtual) format. In such
5d161b24 6940cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6941that makes sense for your program), but the @code{info registers} command
6942prints the data in both formats.
6943
36b80e65
EZ
6944@cindex SSE registers (x86)
6945@cindex MMX registers (x86)
6946Some machines have special registers whose contents can be interpreted
6947in several different ways. For example, modern x86-based machines
6948have SSE and MMX registers that can hold several values packed
6949together in several different formats. @value{GDBN} refers to such
6950registers in @code{struct} notation:
6951
6952@smallexample
6953(@value{GDBP}) print $xmm1
6954$1 = @{
6955 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6956 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6957 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6958 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6959 v4_int32 = @{0, 20657912, 11, 13@},
6960 v2_int64 = @{88725056443645952, 55834574859@},
6961 uint128 = 0x0000000d0000000b013b36f800000000
6962@}
6963@end smallexample
6964
6965@noindent
6966To set values of such registers, you need to tell @value{GDBN} which
6967view of the register you wish to change, as if you were assigning
6968value to a @code{struct} member:
6969
6970@smallexample
6971 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6972@end smallexample
6973
c906108c 6974Normally, register values are relative to the selected stack frame
79a6e687 6975(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6976value that the register would contain if all stack frames farther in
6977were exited and their saved registers restored. In order to see the
6978true contents of hardware registers, you must select the innermost
6979frame (with @samp{frame 0}).
6980
6981However, @value{GDBN} must deduce where registers are saved, from the machine
6982code generated by your compiler. If some registers are not saved, or if
6983@value{GDBN} is unable to locate the saved registers, the selected stack
6984frame makes no difference.
6985
6d2ebf8b 6986@node Floating Point Hardware
79a6e687 6987@section Floating Point Hardware
c906108c
SS
6988@cindex floating point
6989
6990Depending on the configuration, @value{GDBN} may be able to give
6991you more information about the status of the floating point hardware.
6992
6993@table @code
6994@kindex info float
6995@item info float
6996Display hardware-dependent information about the floating
6997point unit. The exact contents and layout vary depending on the
6998floating point chip. Currently, @samp{info float} is supported on
6999the ARM and x86 machines.
7000@end table
c906108c 7001
e76f1f2e
AC
7002@node Vector Unit
7003@section Vector Unit
7004@cindex vector unit
7005
7006Depending on the configuration, @value{GDBN} may be able to give you
7007more information about the status of the vector unit.
7008
7009@table @code
7010@kindex info vector
7011@item info vector
7012Display information about the vector unit. The exact contents and
7013layout vary depending on the hardware.
7014@end table
7015
721c2651 7016@node OS Information
79a6e687 7017@section Operating System Auxiliary Information
721c2651
EZ
7018@cindex OS information
7019
7020@value{GDBN} provides interfaces to useful OS facilities that can help
7021you debug your program.
7022
7023@cindex @code{ptrace} system call
7024@cindex @code{struct user} contents
7025When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
7026machines), it interfaces with the inferior via the @code{ptrace}
7027system call. The operating system creates a special sata structure,
7028called @code{struct user}, for this interface. You can use the
7029command @code{info udot} to display the contents of this data
7030structure.
7031
7032@table @code
7033@item info udot
7034@kindex info udot
7035Display the contents of the @code{struct user} maintained by the OS
7036kernel for the program being debugged. @value{GDBN} displays the
7037contents of @code{struct user} as a list of hex numbers, similar to
7038the @code{examine} command.
7039@end table
7040
b383017d
RM
7041@cindex auxiliary vector
7042@cindex vector, auxiliary
b383017d
RM
7043Some operating systems supply an @dfn{auxiliary vector} to programs at
7044startup. This is akin to the arguments and environment that you
7045specify for a program, but contains a system-dependent variety of
7046binary values that tell system libraries important details about the
7047hardware, operating system, and process. Each value's purpose is
7048identified by an integer tag; the meanings are well-known but system-specific.
7049Depending on the configuration and operating system facilities,
9c16f35a
EZ
7050@value{GDBN} may be able to show you this information. For remote
7051targets, this functionality may further depend on the remote stub's
427c3a89
DJ
7052support of the @samp{qXfer:auxv:read} packet, see
7053@ref{qXfer auxiliary vector read}.
b383017d
RM
7054
7055@table @code
7056@kindex info auxv
7057@item info auxv
7058Display the auxiliary vector of the inferior, which can be either a
e4937fc1 7059live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
7060numerically, and also shows names and text descriptions for recognized
7061tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 7062pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
7063most appropriate form for a recognized tag, and in hexadecimal for
7064an unrecognized tag.
7065@end table
7066
721c2651 7067
29e57380 7068@node Memory Region Attributes
79a6e687 7069@section Memory Region Attributes
29e57380
C
7070@cindex memory region attributes
7071
b383017d 7072@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
7073required by regions of your target's memory. @value{GDBN} uses
7074attributes to determine whether to allow certain types of memory
7075accesses; whether to use specific width accesses; and whether to cache
7076target memory. By default the description of memory regions is
7077fetched from the target (if the current target supports this), but the
7078user can override the fetched regions.
29e57380
C
7079
7080Defined memory regions can be individually enabled and disabled. When a
7081memory region is disabled, @value{GDBN} uses the default attributes when
7082accessing memory in that region. Similarly, if no memory regions have
7083been defined, @value{GDBN} uses the default attributes when accessing
7084all memory.
7085
b383017d 7086When a memory region is defined, it is given a number to identify it;
29e57380
C
7087to enable, disable, or remove a memory region, you specify that number.
7088
7089@table @code
7090@kindex mem
bfac230e 7091@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7092Define a memory region bounded by @var{lower} and @var{upper} with
7093attributes @var{attributes}@dots{}, and add it to the list of regions
7094monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7095case: it is treated as the target's maximum memory address.
bfac230e 7096(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7097
fd79ecee
DJ
7098@item mem auto
7099Discard any user changes to the memory regions and use target-supplied
7100regions, if available, or no regions if the target does not support.
7101
29e57380
C
7102@kindex delete mem
7103@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7104Remove memory regions @var{nums}@dots{} from the list of regions
7105monitored by @value{GDBN}.
29e57380
C
7106
7107@kindex disable mem
7108@item disable mem @var{nums}@dots{}
09d4efe1 7109Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7110A disabled memory region is not forgotten.
29e57380
C
7111It may be enabled again later.
7112
7113@kindex enable mem
7114@item enable mem @var{nums}@dots{}
09d4efe1 7115Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7116
7117@kindex info mem
7118@item info mem
7119Print a table of all defined memory regions, with the following columns
09d4efe1 7120for each region:
29e57380
C
7121
7122@table @emph
7123@item Memory Region Number
7124@item Enabled or Disabled.
b383017d 7125Enabled memory regions are marked with @samp{y}.
29e57380
C
7126Disabled memory regions are marked with @samp{n}.
7127
7128@item Lo Address
7129The address defining the inclusive lower bound of the memory region.
7130
7131@item Hi Address
7132The address defining the exclusive upper bound of the memory region.
7133
7134@item Attributes
7135The list of attributes set for this memory region.
7136@end table
7137@end table
7138
7139
7140@subsection Attributes
7141
b383017d 7142@subsubsection Memory Access Mode
29e57380
C
7143The access mode attributes set whether @value{GDBN} may make read or
7144write accesses to a memory region.
7145
7146While these attributes prevent @value{GDBN} from performing invalid
7147memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7148etc.@: from accessing memory.
29e57380
C
7149
7150@table @code
7151@item ro
7152Memory is read only.
7153@item wo
7154Memory is write only.
7155@item rw
6ca652b0 7156Memory is read/write. This is the default.
29e57380
C
7157@end table
7158
7159@subsubsection Memory Access Size
d3e8051b 7160The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7161accesses in the memory region. Often memory mapped device registers
7162require specific sized accesses. If no access size attribute is
7163specified, @value{GDBN} may use accesses of any size.
7164
7165@table @code
7166@item 8
7167Use 8 bit memory accesses.
7168@item 16
7169Use 16 bit memory accesses.
7170@item 32
7171Use 32 bit memory accesses.
7172@item 64
7173Use 64 bit memory accesses.
7174@end table
7175
7176@c @subsubsection Hardware/Software Breakpoints
7177@c The hardware/software breakpoint attributes set whether @value{GDBN}
7178@c will use hardware or software breakpoints for the internal breakpoints
7179@c used by the step, next, finish, until, etc. commands.
7180@c
7181@c @table @code
7182@c @item hwbreak
b383017d 7183@c Always use hardware breakpoints
29e57380
C
7184@c @item swbreak (default)
7185@c @end table
7186
7187@subsubsection Data Cache
7188The data cache attributes set whether @value{GDBN} will cache target
7189memory. While this generally improves performance by reducing debug
7190protocol overhead, it can lead to incorrect results because @value{GDBN}
7191does not know about volatile variables or memory mapped device
7192registers.
7193
7194@table @code
7195@item cache
b383017d 7196Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7197@item nocache
7198Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7199@end table
7200
4b5752d0
VP
7201@subsection Memory Access Checking
7202@value{GDBN} can be instructed to refuse accesses to memory that is
7203not explicitly described. This can be useful if accessing such
7204regions has undesired effects for a specific target, or to provide
7205better error checking. The following commands control this behaviour.
7206
7207@table @code
7208@kindex set mem inaccessible-by-default
7209@item set mem inaccessible-by-default [on|off]
7210If @code{on} is specified, make @value{GDBN} treat memory not
7211explicitly described by the memory ranges as non-existent and refuse accesses
7212to such memory. The checks are only performed if there's at least one
7213memory range defined. If @code{off} is specified, make @value{GDBN}
7214treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7215The default value is @code{on}.
4b5752d0
VP
7216@kindex show mem inaccessible-by-default
7217@item show mem inaccessible-by-default
7218Show the current handling of accesses to unknown memory.
7219@end table
7220
7221
29e57380 7222@c @subsubsection Memory Write Verification
b383017d 7223@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7224@c will re-reads data after each write to verify the write was successful.
7225@c
7226@c @table @code
7227@c @item verify
7228@c @item noverify (default)
7229@c @end table
7230
16d9dec6 7231@node Dump/Restore Files
79a6e687 7232@section Copy Between Memory and a File
16d9dec6
MS
7233@cindex dump/restore files
7234@cindex append data to a file
7235@cindex dump data to a file
7236@cindex restore data from a file
16d9dec6 7237
df5215a6
JB
7238You can use the commands @code{dump}, @code{append}, and
7239@code{restore} to copy data between target memory and a file. The
7240@code{dump} and @code{append} commands write data to a file, and the
7241@code{restore} command reads data from a file back into the inferior's
7242memory. Files may be in binary, Motorola S-record, Intel hex, or
7243Tektronix Hex format; however, @value{GDBN} can only append to binary
7244files.
7245
7246@table @code
7247
7248@kindex dump
7249@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7250@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7251Dump the contents of memory from @var{start_addr} to @var{end_addr},
7252or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7253
df5215a6 7254The @var{format} parameter may be any one of:
16d9dec6 7255@table @code
df5215a6
JB
7256@item binary
7257Raw binary form.
7258@item ihex
7259Intel hex format.
7260@item srec
7261Motorola S-record format.
7262@item tekhex
7263Tektronix Hex format.
7264@end table
7265
7266@value{GDBN} uses the same definitions of these formats as the
7267@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7268@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7269form.
7270
7271@kindex append
7272@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7273@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7274Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7275or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7276(@value{GDBN} can only append data to files in raw binary form.)
7277
7278@kindex restore
7279@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7280Restore the contents of file @var{filename} into memory. The
7281@code{restore} command can automatically recognize any known @sc{bfd}
7282file format, except for raw binary. To restore a raw binary file you
7283must specify the optional keyword @code{binary} after the filename.
16d9dec6 7284
b383017d 7285If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7286contained in the file. Binary files always start at address zero, so
7287they will be restored at address @var{bias}. Other bfd files have
7288a built-in location; they will be restored at offset @var{bias}
7289from that location.
7290
7291If @var{start} and/or @var{end} are non-zero, then only data between
7292file offset @var{start} and file offset @var{end} will be restored.
b383017d 7293These offsets are relative to the addresses in the file, before
16d9dec6
MS
7294the @var{bias} argument is applied.
7295
7296@end table
7297
384ee23f
EZ
7298@node Core File Generation
7299@section How to Produce a Core File from Your Program
7300@cindex dump core from inferior
7301
7302A @dfn{core file} or @dfn{core dump} is a file that records the memory
7303image of a running process and its process status (register values
7304etc.). Its primary use is post-mortem debugging of a program that
7305crashed while it ran outside a debugger. A program that crashes
7306automatically produces a core file, unless this feature is disabled by
7307the user. @xref{Files}, for information on invoking @value{GDBN} in
7308the post-mortem debugging mode.
7309
7310Occasionally, you may wish to produce a core file of the program you
7311are debugging in order to preserve a snapshot of its state.
7312@value{GDBN} has a special command for that.
7313
7314@table @code
7315@kindex gcore
7316@kindex generate-core-file
7317@item generate-core-file [@var{file}]
7318@itemx gcore [@var{file}]
7319Produce a core dump of the inferior process. The optional argument
7320@var{file} specifies the file name where to put the core dump. If not
7321specified, the file name defaults to @file{core.@var{pid}}, where
7322@var{pid} is the inferior process ID.
7323
7324Note that this command is implemented only for some systems (as of
7325this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7326@end table
7327
a0eb71c5
KB
7328@node Character Sets
7329@section Character Sets
7330@cindex character sets
7331@cindex charset
7332@cindex translating between character sets
7333@cindex host character set
7334@cindex target character set
7335
7336If the program you are debugging uses a different character set to
7337represent characters and strings than the one @value{GDBN} uses itself,
7338@value{GDBN} can automatically translate between the character sets for
7339you. The character set @value{GDBN} uses we call the @dfn{host
7340character set}; the one the inferior program uses we call the
7341@dfn{target character set}.
7342
7343For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7344uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7345remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7346running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7347then the host character set is Latin-1, and the target character set is
7348@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7349target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7350@sc{ebcdic} and Latin 1 as you print character or string values, or use
7351character and string literals in expressions.
7352
7353@value{GDBN} has no way to automatically recognize which character set
7354the inferior program uses; you must tell it, using the @code{set
7355target-charset} command, described below.
7356
7357Here are the commands for controlling @value{GDBN}'s character set
7358support:
7359
7360@table @code
7361@item set target-charset @var{charset}
7362@kindex set target-charset
7363Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7364character set names @value{GDBN} recognizes below, but if you type
7365@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7366list the target character sets it supports.
a0eb71c5
KB
7367@end table
7368
7369@table @code
7370@item set host-charset @var{charset}
7371@kindex set host-charset
7372Set the current host character set to @var{charset}.
7373
7374By default, @value{GDBN} uses a host character set appropriate to the
7375system it is running on; you can override that default using the
7376@code{set host-charset} command.
7377
7378@value{GDBN} can only use certain character sets as its host character
7379set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7380indicate which can be host character sets, but if you type
7381@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7382list the host character sets it supports.
a0eb71c5
KB
7383
7384@item set charset @var{charset}
7385@kindex set charset
e33d66ec
EZ
7386Set the current host and target character sets to @var{charset}. As
7387above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7388@value{GDBN} will list the name of the character sets that can be used
7389for both host and target.
7390
a0eb71c5
KB
7391
7392@item show charset
a0eb71c5 7393@kindex show charset
b383017d 7394Show the names of the current host and target charsets.
e33d66ec
EZ
7395
7396@itemx show host-charset
a0eb71c5 7397@kindex show host-charset
b383017d 7398Show the name of the current host charset.
e33d66ec
EZ
7399
7400@itemx show target-charset
a0eb71c5 7401@kindex show target-charset
b383017d 7402Show the name of the current target charset.
a0eb71c5
KB
7403
7404@end table
7405
7406@value{GDBN} currently includes support for the following character
7407sets:
7408
7409@table @code
7410
7411@item ASCII
7412@cindex ASCII character set
7413Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7414character set.
7415
7416@item ISO-8859-1
7417@cindex ISO 8859-1 character set
7418@cindex ISO Latin 1 character set
e33d66ec 7419The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7420characters needed for French, German, and Spanish. @value{GDBN} can use
7421this as its host character set.
7422
7423@item EBCDIC-US
7424@itemx IBM1047
7425@cindex EBCDIC character set
7426@cindex IBM1047 character set
7427Variants of the @sc{ebcdic} character set, used on some of IBM's
7428mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7429@value{GDBN} cannot use these as its host character set.
7430
7431@end table
7432
7433Note that these are all single-byte character sets. More work inside
3f94c067 7434@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7435encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7436
7437Here is an example of @value{GDBN}'s character set support in action.
7438Assume that the following source code has been placed in the file
7439@file{charset-test.c}:
7440
7441@smallexample
7442#include <stdio.h>
7443
7444char ascii_hello[]
7445 = @{72, 101, 108, 108, 111, 44, 32, 119,
7446 111, 114, 108, 100, 33, 10, 0@};
7447char ibm1047_hello[]
7448 = @{200, 133, 147, 147, 150, 107, 64, 166,
7449 150, 153, 147, 132, 90, 37, 0@};
7450
7451main ()
7452@{
7453 printf ("Hello, world!\n");
7454@}
10998722 7455@end smallexample
a0eb71c5
KB
7456
7457In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7458containing the string @samp{Hello, world!} followed by a newline,
7459encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7460
7461We compile the program, and invoke the debugger on it:
7462
7463@smallexample
7464$ gcc -g charset-test.c -o charset-test
7465$ gdb -nw charset-test
7466GNU gdb 2001-12-19-cvs
7467Copyright 2001 Free Software Foundation, Inc.
7468@dots{}
f7dc1244 7469(@value{GDBP})
10998722 7470@end smallexample
a0eb71c5
KB
7471
7472We can use the @code{show charset} command to see what character sets
7473@value{GDBN} is currently using to interpret and display characters and
7474strings:
7475
7476@smallexample
f7dc1244 7477(@value{GDBP}) show charset
e33d66ec 7478The current host and target character set is `ISO-8859-1'.
f7dc1244 7479(@value{GDBP})
10998722 7480@end smallexample
a0eb71c5
KB
7481
7482For the sake of printing this manual, let's use @sc{ascii} as our
7483initial character set:
7484@smallexample
f7dc1244
EZ
7485(@value{GDBP}) set charset ASCII
7486(@value{GDBP}) show charset
e33d66ec 7487The current host and target character set is `ASCII'.
f7dc1244 7488(@value{GDBP})
10998722 7489@end smallexample
a0eb71c5
KB
7490
7491Let's assume that @sc{ascii} is indeed the correct character set for our
7492host system --- in other words, let's assume that if @value{GDBN} prints
7493characters using the @sc{ascii} character set, our terminal will display
7494them properly. Since our current target character set is also
7495@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7496
7497@smallexample
f7dc1244 7498(@value{GDBP}) print ascii_hello
a0eb71c5 7499$1 = 0x401698 "Hello, world!\n"
f7dc1244 7500(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7501$2 = 72 'H'
f7dc1244 7502(@value{GDBP})
10998722 7503@end smallexample
a0eb71c5
KB
7504
7505@value{GDBN} uses the target character set for character and string
7506literals you use in expressions:
7507
7508@smallexample
f7dc1244 7509(@value{GDBP}) print '+'
a0eb71c5 7510$3 = 43 '+'
f7dc1244 7511(@value{GDBP})
10998722 7512@end smallexample
a0eb71c5
KB
7513
7514The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7515character.
7516
7517@value{GDBN} relies on the user to tell it which character set the
7518target program uses. If we print @code{ibm1047_hello} while our target
7519character set is still @sc{ascii}, we get jibberish:
7520
7521@smallexample
f7dc1244 7522(@value{GDBP}) print ibm1047_hello
a0eb71c5 7523$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7524(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7525$5 = 200 '\310'
f7dc1244 7526(@value{GDBP})
10998722 7527@end smallexample
a0eb71c5 7528
e33d66ec 7529If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7530@value{GDBN} tells us the character sets it supports:
7531
7532@smallexample
f7dc1244 7533(@value{GDBP}) set target-charset
b383017d 7534ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7535(@value{GDBP}) set target-charset
10998722 7536@end smallexample
a0eb71c5
KB
7537
7538We can select @sc{ibm1047} as our target character set, and examine the
7539program's strings again. Now the @sc{ascii} string is wrong, but
7540@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7541target character set, @sc{ibm1047}, to the host character set,
7542@sc{ascii}, and they display correctly:
7543
7544@smallexample
f7dc1244
EZ
7545(@value{GDBP}) set target-charset IBM1047
7546(@value{GDBP}) show charset
e33d66ec
EZ
7547The current host character set is `ASCII'.
7548The current target character set is `IBM1047'.
f7dc1244 7549(@value{GDBP}) print ascii_hello
a0eb71c5 7550$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7551(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7552$7 = 72 '\110'
f7dc1244 7553(@value{GDBP}) print ibm1047_hello
a0eb71c5 7554$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7555(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7556$9 = 200 'H'
f7dc1244 7557(@value{GDBP})
10998722 7558@end smallexample
a0eb71c5
KB
7559
7560As above, @value{GDBN} uses the target character set for character and
7561string literals you use in expressions:
7562
7563@smallexample
f7dc1244 7564(@value{GDBP}) print '+'
a0eb71c5 7565$10 = 78 '+'
f7dc1244 7566(@value{GDBP})
10998722 7567@end smallexample
a0eb71c5 7568
e33d66ec 7569The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7570character.
7571
09d4efe1
EZ
7572@node Caching Remote Data
7573@section Caching Data of Remote Targets
7574@cindex caching data of remote targets
7575
7576@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7577remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7578performance, because it reduces the overhead of the remote protocol by
7579bundling memory reads and writes into large chunks. Unfortunately,
7580@value{GDBN} does not currently know anything about volatile
7581registers, and thus data caching will produce incorrect results when
7582volatile registers are in use.
7583
7584@table @code
7585@kindex set remotecache
7586@item set remotecache on
7587@itemx set remotecache off
7588Set caching state for remote targets. When @code{ON}, use data
7589caching. By default, this option is @code{OFF}.
7590
7591@kindex show remotecache
7592@item show remotecache
7593Show the current state of data caching for remote targets.
7594
7595@kindex info dcache
7596@item info dcache
7597Print the information about the data cache performance. The
7598information displayed includes: the dcache width and depth; and for
7599each cache line, how many times it was referenced, and its data and
7600state (dirty, bad, ok, etc.). This command is useful for debugging
7601the data cache operation.
7602@end table
7603
a0eb71c5 7604
e2e0bcd1
JB
7605@node Macros
7606@chapter C Preprocessor Macros
7607
49efadf5 7608Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7609``preprocessor macros'' which expand into strings of tokens.
7610@value{GDBN} can evaluate expressions containing macro invocations, show
7611the result of macro expansion, and show a macro's definition, including
7612where it was defined.
7613
7614You may need to compile your program specially to provide @value{GDBN}
7615with information about preprocessor macros. Most compilers do not
7616include macros in their debugging information, even when you compile
7617with the @option{-g} flag. @xref{Compilation}.
7618
7619A program may define a macro at one point, remove that definition later,
7620and then provide a different definition after that. Thus, at different
7621points in the program, a macro may have different definitions, or have
7622no definition at all. If there is a current stack frame, @value{GDBN}
7623uses the macros in scope at that frame's source code line. Otherwise,
7624@value{GDBN} uses the macros in scope at the current listing location;
7625see @ref{List}.
7626
7627At the moment, @value{GDBN} does not support the @code{##}
7628token-splicing operator, the @code{#} stringification operator, or
7629variable-arity macros.
7630
7631Whenever @value{GDBN} evaluates an expression, it always expands any
7632macro invocations present in the expression. @value{GDBN} also provides
7633the following commands for working with macros explicitly.
7634
7635@table @code
7636
7637@kindex macro expand
7638@cindex macro expansion, showing the results of preprocessor
7639@cindex preprocessor macro expansion, showing the results of
7640@cindex expanding preprocessor macros
7641@item macro expand @var{expression}
7642@itemx macro exp @var{expression}
7643Show the results of expanding all preprocessor macro invocations in
7644@var{expression}. Since @value{GDBN} simply expands macros, but does
7645not parse the result, @var{expression} need not be a valid expression;
7646it can be any string of tokens.
7647
09d4efe1 7648@kindex macro exp1
e2e0bcd1
JB
7649@item macro expand-once @var{expression}
7650@itemx macro exp1 @var{expression}
4644b6e3 7651@cindex expand macro once
e2e0bcd1
JB
7652@i{(This command is not yet implemented.)} Show the results of
7653expanding those preprocessor macro invocations that appear explicitly in
7654@var{expression}. Macro invocations appearing in that expansion are
7655left unchanged. This command allows you to see the effect of a
7656particular macro more clearly, without being confused by further
7657expansions. Since @value{GDBN} simply expands macros, but does not
7658parse the result, @var{expression} need not be a valid expression; it
7659can be any string of tokens.
7660
475b0867 7661@kindex info macro
e2e0bcd1
JB
7662@cindex macro definition, showing
7663@cindex definition, showing a macro's
475b0867 7664@item info macro @var{macro}
e2e0bcd1
JB
7665Show the definition of the macro named @var{macro}, and describe the
7666source location where that definition was established.
7667
7668@kindex macro define
7669@cindex user-defined macros
7670@cindex defining macros interactively
7671@cindex macros, user-defined
7672@item macro define @var{macro} @var{replacement-list}
7673@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7674@i{(This command is not yet implemented.)} Introduce a definition for a
7675preprocessor macro named @var{macro}, invocations of which are replaced
7676by the tokens given in @var{replacement-list}. The first form of this
7677command defines an ``object-like'' macro, which takes no arguments; the
7678second form defines a ``function-like'' macro, which takes the arguments
7679given in @var{arglist}.
7680
7681A definition introduced by this command is in scope in every expression
7682evaluated in @value{GDBN}, until it is removed with the @command{macro
7683undef} command, described below. The definition overrides all
7684definitions for @var{macro} present in the program being debugged, as
7685well as any previous user-supplied definition.
7686
7687@kindex macro undef
7688@item macro undef @var{macro}
7689@i{(This command is not yet implemented.)} Remove any user-supplied
7690definition for the macro named @var{macro}. This command only affects
7691definitions provided with the @command{macro define} command, described
7692above; it cannot remove definitions present in the program being
7693debugged.
7694
09d4efe1
EZ
7695@kindex macro list
7696@item macro list
7697@i{(This command is not yet implemented.)} List all the macros
7698defined using the @code{macro define} command.
e2e0bcd1
JB
7699@end table
7700
7701@cindex macros, example of debugging with
7702Here is a transcript showing the above commands in action. First, we
7703show our source files:
7704
7705@smallexample
7706$ cat sample.c
7707#include <stdio.h>
7708#include "sample.h"
7709
7710#define M 42
7711#define ADD(x) (M + x)
7712
7713main ()
7714@{
7715#define N 28
7716 printf ("Hello, world!\n");
7717#undef N
7718 printf ("We're so creative.\n");
7719#define N 1729
7720 printf ("Goodbye, world!\n");
7721@}
7722$ cat sample.h
7723#define Q <
7724$
7725@end smallexample
7726
7727Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7728We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7729compiler includes information about preprocessor macros in the debugging
7730information.
7731
7732@smallexample
7733$ gcc -gdwarf-2 -g3 sample.c -o sample
7734$
7735@end smallexample
7736
7737Now, we start @value{GDBN} on our sample program:
7738
7739@smallexample
7740$ gdb -nw sample
7741GNU gdb 2002-05-06-cvs
7742Copyright 2002 Free Software Foundation, Inc.
7743GDB is free software, @dots{}
f7dc1244 7744(@value{GDBP})
e2e0bcd1
JB
7745@end smallexample
7746
7747We can expand macros and examine their definitions, even when the
7748program is not running. @value{GDBN} uses the current listing position
7749to decide which macro definitions are in scope:
7750
7751@smallexample
f7dc1244 7752(@value{GDBP}) list main
e2e0bcd1
JB
77533
77544 #define M 42
77555 #define ADD(x) (M + x)
77566
77577 main ()
77588 @{
77599 #define N 28
776010 printf ("Hello, world!\n");
776111 #undef N
776212 printf ("We're so creative.\n");
f7dc1244 7763(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7764Defined at /home/jimb/gdb/macros/play/sample.c:5
7765#define ADD(x) (M + x)
f7dc1244 7766(@value{GDBP}) info macro Q
e2e0bcd1
JB
7767Defined at /home/jimb/gdb/macros/play/sample.h:1
7768 included at /home/jimb/gdb/macros/play/sample.c:2
7769#define Q <
f7dc1244 7770(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7771expands to: (42 + 1)
f7dc1244 7772(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7773expands to: once (M + 1)
f7dc1244 7774(@value{GDBP})
e2e0bcd1
JB
7775@end smallexample
7776
7777In the example above, note that @command{macro expand-once} expands only
7778the macro invocation explicit in the original text --- the invocation of
7779@code{ADD} --- but does not expand the invocation of the macro @code{M},
7780which was introduced by @code{ADD}.
7781
3f94c067
BW
7782Once the program is running, @value{GDBN} uses the macro definitions in
7783force at the source line of the current stack frame:
e2e0bcd1
JB
7784
7785@smallexample
f7dc1244 7786(@value{GDBP}) break main
e2e0bcd1 7787Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7788(@value{GDBP}) run
b383017d 7789Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7790
7791Breakpoint 1, main () at sample.c:10
779210 printf ("Hello, world!\n");
f7dc1244 7793(@value{GDBP})
e2e0bcd1
JB
7794@end smallexample
7795
7796At line 10, the definition of the macro @code{N} at line 9 is in force:
7797
7798@smallexample
f7dc1244 7799(@value{GDBP}) info macro N
e2e0bcd1
JB
7800Defined at /home/jimb/gdb/macros/play/sample.c:9
7801#define N 28
f7dc1244 7802(@value{GDBP}) macro expand N Q M
e2e0bcd1 7803expands to: 28 < 42
f7dc1244 7804(@value{GDBP}) print N Q M
e2e0bcd1 7805$1 = 1
f7dc1244 7806(@value{GDBP})
e2e0bcd1
JB
7807@end smallexample
7808
7809As we step over directives that remove @code{N}'s definition, and then
7810give it a new definition, @value{GDBN} finds the definition (or lack
7811thereof) in force at each point:
7812
7813@smallexample
f7dc1244 7814(@value{GDBP}) next
e2e0bcd1
JB
7815Hello, world!
781612 printf ("We're so creative.\n");
f7dc1244 7817(@value{GDBP}) info macro N
e2e0bcd1
JB
7818The symbol `N' has no definition as a C/C++ preprocessor macro
7819at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7820(@value{GDBP}) next
e2e0bcd1
JB
7821We're so creative.
782214 printf ("Goodbye, world!\n");
f7dc1244 7823(@value{GDBP}) info macro N
e2e0bcd1
JB
7824Defined at /home/jimb/gdb/macros/play/sample.c:13
7825#define N 1729
f7dc1244 7826(@value{GDBP}) macro expand N Q M
e2e0bcd1 7827expands to: 1729 < 42
f7dc1244 7828(@value{GDBP}) print N Q M
e2e0bcd1 7829$2 = 0
f7dc1244 7830(@value{GDBP})
e2e0bcd1
JB
7831@end smallexample
7832
7833
b37052ae
EZ
7834@node Tracepoints
7835@chapter Tracepoints
7836@c This chapter is based on the documentation written by Michael
7837@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7838
7839@cindex tracepoints
7840In some applications, it is not feasible for the debugger to interrupt
7841the program's execution long enough for the developer to learn
7842anything helpful about its behavior. If the program's correctness
7843depends on its real-time behavior, delays introduced by a debugger
7844might cause the program to change its behavior drastically, or perhaps
7845fail, even when the code itself is correct. It is useful to be able
7846to observe the program's behavior without interrupting it.
7847
7848Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7849specify locations in the program, called @dfn{tracepoints}, and
7850arbitrary expressions to evaluate when those tracepoints are reached.
7851Later, using the @code{tfind} command, you can examine the values
7852those expressions had when the program hit the tracepoints. The
7853expressions may also denote objects in memory---structures or arrays,
7854for example---whose values @value{GDBN} should record; while visiting
7855a particular tracepoint, you may inspect those objects as if they were
7856in memory at that moment. However, because @value{GDBN} records these
7857values without interacting with you, it can do so quickly and
7858unobtrusively, hopefully not disturbing the program's behavior.
7859
7860The tracepoint facility is currently available only for remote
9d29849a
JB
7861targets. @xref{Targets}. In addition, your remote target must know
7862how to collect trace data. This functionality is implemented in the
7863remote stub; however, none of the stubs distributed with @value{GDBN}
7864support tracepoints as of this writing. The format of the remote
7865packets used to implement tracepoints are described in @ref{Tracepoint
7866Packets}.
b37052ae
EZ
7867
7868This chapter describes the tracepoint commands and features.
7869
7870@menu
b383017d
RM
7871* Set Tracepoints::
7872* Analyze Collected Data::
7873* Tracepoint Variables::
b37052ae
EZ
7874@end menu
7875
7876@node Set Tracepoints
7877@section Commands to Set Tracepoints
7878
7879Before running such a @dfn{trace experiment}, an arbitrary number of
7880tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7881tracepoint has a number assigned to it by @value{GDBN}. Like with
7882breakpoints, tracepoint numbers are successive integers starting from
7883one. Many of the commands associated with tracepoints take the
7884tracepoint number as their argument, to identify which tracepoint to
7885work on.
7886
7887For each tracepoint, you can specify, in advance, some arbitrary set
7888of data that you want the target to collect in the trace buffer when
7889it hits that tracepoint. The collected data can include registers,
7890local variables, or global data. Later, you can use @value{GDBN}
7891commands to examine the values these data had at the time the
7892tracepoint was hit.
7893
7894This section describes commands to set tracepoints and associated
7895conditions and actions.
7896
7897@menu
b383017d
RM
7898* Create and Delete Tracepoints::
7899* Enable and Disable Tracepoints::
7900* Tracepoint Passcounts::
7901* Tracepoint Actions::
7902* Listing Tracepoints::
79a6e687 7903* Starting and Stopping Trace Experiments::
b37052ae
EZ
7904@end menu
7905
7906@node Create and Delete Tracepoints
7907@subsection Create and Delete Tracepoints
7908
7909@table @code
7910@cindex set tracepoint
7911@kindex trace
7912@item trace
7913The @code{trace} command is very similar to the @code{break} command.
7914Its argument can be a source line, a function name, or an address in
7915the target program. @xref{Set Breaks}. The @code{trace} command
7916defines a tracepoint, which is a point in the target program where the
7917debugger will briefly stop, collect some data, and then allow the
7918program to continue. Setting a tracepoint or changing its commands
7919doesn't take effect until the next @code{tstart} command; thus, you
7920cannot change the tracepoint attributes once a trace experiment is
7921running.
7922
7923Here are some examples of using the @code{trace} command:
7924
7925@smallexample
7926(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7927
7928(@value{GDBP}) @b{trace +2} // 2 lines forward
7929
7930(@value{GDBP}) @b{trace my_function} // first source line of function
7931
7932(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7933
7934(@value{GDBP}) @b{trace *0x2117c4} // an address
7935@end smallexample
7936
7937@noindent
7938You can abbreviate @code{trace} as @code{tr}.
7939
7940@vindex $tpnum
7941@cindex last tracepoint number
7942@cindex recent tracepoint number
7943@cindex tracepoint number
7944The convenience variable @code{$tpnum} records the tracepoint number
7945of the most recently set tracepoint.
7946
7947@kindex delete tracepoint
7948@cindex tracepoint deletion
7949@item delete tracepoint @r{[}@var{num}@r{]}
7950Permanently delete one or more tracepoints. With no argument, the
7951default is to delete all tracepoints.
7952
7953Examples:
7954
7955@smallexample
7956(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7957
7958(@value{GDBP}) @b{delete trace} // remove all tracepoints
7959@end smallexample
7960
7961@noindent
7962You can abbreviate this command as @code{del tr}.
7963@end table
7964
7965@node Enable and Disable Tracepoints
7966@subsection Enable and Disable Tracepoints
7967
7968@table @code
7969@kindex disable tracepoint
7970@item disable tracepoint @r{[}@var{num}@r{]}
7971Disable tracepoint @var{num}, or all tracepoints if no argument
7972@var{num} is given. A disabled tracepoint will have no effect during
7973the next trace experiment, but it is not forgotten. You can re-enable
7974a disabled tracepoint using the @code{enable tracepoint} command.
7975
7976@kindex enable tracepoint
7977@item enable tracepoint @r{[}@var{num}@r{]}
7978Enable tracepoint @var{num}, or all tracepoints. The enabled
7979tracepoints will become effective the next time a trace experiment is
7980run.
7981@end table
7982
7983@node Tracepoint Passcounts
7984@subsection Tracepoint Passcounts
7985
7986@table @code
7987@kindex passcount
7988@cindex tracepoint pass count
7989@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7990Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7991automatically stop a trace experiment. If a tracepoint's passcount is
7992@var{n}, then the trace experiment will be automatically stopped on
7993the @var{n}'th time that tracepoint is hit. If the tracepoint number
7994@var{num} is not specified, the @code{passcount} command sets the
7995passcount of the most recently defined tracepoint. If no passcount is
7996given, the trace experiment will run until stopped explicitly by the
7997user.
7998
7999Examples:
8000
8001@smallexample
b383017d 8002(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 8003@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
8004
8005(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 8006@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
8007(@value{GDBP}) @b{trace foo}
8008(@value{GDBP}) @b{pass 3}
8009(@value{GDBP}) @b{trace bar}
8010(@value{GDBP}) @b{pass 2}
8011(@value{GDBP}) @b{trace baz}
8012(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
8013@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
8014@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
8015@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
8016@end smallexample
8017@end table
8018
8019@node Tracepoint Actions
8020@subsection Tracepoint Action Lists
8021
8022@table @code
8023@kindex actions
8024@cindex tracepoint actions
8025@item actions @r{[}@var{num}@r{]}
8026This command will prompt for a list of actions to be taken when the
8027tracepoint is hit. If the tracepoint number @var{num} is not
8028specified, this command sets the actions for the one that was most
8029recently defined (so that you can define a tracepoint and then say
8030@code{actions} without bothering about its number). You specify the
8031actions themselves on the following lines, one action at a time, and
8032terminate the actions list with a line containing just @code{end}. So
8033far, the only defined actions are @code{collect} and
8034@code{while-stepping}.
8035
8036@cindex remove actions from a tracepoint
8037To remove all actions from a tracepoint, type @samp{actions @var{num}}
8038and follow it immediately with @samp{end}.
8039
8040@smallexample
8041(@value{GDBP}) @b{collect @var{data}} // collect some data
8042
6826cf00 8043(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 8044
6826cf00 8045(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
8046@end smallexample
8047
8048In the following example, the action list begins with @code{collect}
8049commands indicating the things to be collected when the tracepoint is
8050hit. Then, in order to single-step and collect additional data
8051following the tracepoint, a @code{while-stepping} command is used,
8052followed by the list of things to be collected while stepping. The
8053@code{while-stepping} command is terminated by its own separate
8054@code{end} command. Lastly, the action list is terminated by an
8055@code{end} command.
8056
8057@smallexample
8058(@value{GDBP}) @b{trace foo}
8059(@value{GDBP}) @b{actions}
8060Enter actions for tracepoint 1, one per line:
8061> collect bar,baz
8062> collect $regs
8063> while-stepping 12
8064 > collect $fp, $sp
8065 > end
8066end
8067@end smallexample
8068
8069@kindex collect @r{(tracepoints)}
8070@item collect @var{expr1}, @var{expr2}, @dots{}
8071Collect values of the given expressions when the tracepoint is hit.
8072This command accepts a comma-separated list of any valid expressions.
8073In addition to global, static, or local variables, the following
8074special arguments are supported:
8075
8076@table @code
8077@item $regs
8078collect all registers
8079
8080@item $args
8081collect all function arguments
8082
8083@item $locals
8084collect all local variables.
8085@end table
8086
8087You can give several consecutive @code{collect} commands, each one
8088with a single argument, or one @code{collect} command with several
8089arguments separated by commas: the effect is the same.
8090
f5c37c66
EZ
8091The command @code{info scope} (@pxref{Symbols, info scope}) is
8092particularly useful for figuring out what data to collect.
8093
b37052ae
EZ
8094@kindex while-stepping @r{(tracepoints)}
8095@item while-stepping @var{n}
8096Perform @var{n} single-step traces after the tracepoint, collecting
8097new data at each step. The @code{while-stepping} command is
8098followed by the list of what to collect while stepping (followed by
8099its own @code{end} command):
8100
8101@smallexample
8102> while-stepping 12
8103 > collect $regs, myglobal
8104 > end
8105>
8106@end smallexample
8107
8108@noindent
8109You may abbreviate @code{while-stepping} as @code{ws} or
8110@code{stepping}.
8111@end table
8112
8113@node Listing Tracepoints
8114@subsection Listing Tracepoints
8115
8116@table @code
8117@kindex info tracepoints
09d4efe1 8118@kindex info tp
b37052ae
EZ
8119@cindex information about tracepoints
8120@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8121Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8122a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8123defined so far. For each tracepoint, the following information is
8124shown:
8125
8126@itemize @bullet
8127@item
8128its number
8129@item
8130whether it is enabled or disabled
8131@item
8132its address
8133@item
8134its passcount as given by the @code{passcount @var{n}} command
8135@item
8136its step count as given by the @code{while-stepping @var{n}} command
8137@item
8138where in the source files is the tracepoint set
8139@item
8140its action list as given by the @code{actions} command
8141@end itemize
8142
8143@smallexample
8144(@value{GDBP}) @b{info trace}
8145Num Enb Address PassC StepC What
81461 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
81472 y 0x0020dc64 0 0 in g_test at g_test.c:1375
81483 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8149(@value{GDBP})
8150@end smallexample
8151
8152@noindent
8153This command can be abbreviated @code{info tp}.
8154@end table
8155
79a6e687
BW
8156@node Starting and Stopping Trace Experiments
8157@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8158
8159@table @code
8160@kindex tstart
8161@cindex start a new trace experiment
8162@cindex collected data discarded
8163@item tstart
8164This command takes no arguments. It starts the trace experiment, and
8165begins collecting data. This has the side effect of discarding all
8166the data collected in the trace buffer during the previous trace
8167experiment.
8168
8169@kindex tstop
8170@cindex stop a running trace experiment
8171@item tstop
8172This command takes no arguments. It ends the trace experiment, and
8173stops collecting data.
8174
68c71a2e 8175@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8176automatically if any tracepoint's passcount is reached
8177(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8178
8179@kindex tstatus
8180@cindex status of trace data collection
8181@cindex trace experiment, status of
8182@item tstatus
8183This command displays the status of the current trace data
8184collection.
8185@end table
8186
8187Here is an example of the commands we described so far:
8188
8189@smallexample
8190(@value{GDBP}) @b{trace gdb_c_test}
8191(@value{GDBP}) @b{actions}
8192Enter actions for tracepoint #1, one per line.
8193> collect $regs,$locals,$args
8194> while-stepping 11
8195 > collect $regs
8196 > end
8197> end
8198(@value{GDBP}) @b{tstart}
8199 [time passes @dots{}]
8200(@value{GDBP}) @b{tstop}
8201@end smallexample
8202
8203
8204@node Analyze Collected Data
79a6e687 8205@section Using the Collected Data
b37052ae
EZ
8206
8207After the tracepoint experiment ends, you use @value{GDBN} commands
8208for examining the trace data. The basic idea is that each tracepoint
8209collects a trace @dfn{snapshot} every time it is hit and another
8210snapshot every time it single-steps. All these snapshots are
8211consecutively numbered from zero and go into a buffer, and you can
8212examine them later. The way you examine them is to @dfn{focus} on a
8213specific trace snapshot. When the remote stub is focused on a trace
8214snapshot, it will respond to all @value{GDBN} requests for memory and
8215registers by reading from the buffer which belongs to that snapshot,
8216rather than from @emph{real} memory or registers of the program being
8217debugged. This means that @strong{all} @value{GDBN} commands
8218(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8219behave as if we were currently debugging the program state as it was
8220when the tracepoint occurred. Any requests for data that are not in
8221the buffer will fail.
8222
8223@menu
8224* tfind:: How to select a trace snapshot
8225* tdump:: How to display all data for a snapshot
8226* save-tracepoints:: How to save tracepoints for a future run
8227@end menu
8228
8229@node tfind
8230@subsection @code{tfind @var{n}}
8231
8232@kindex tfind
8233@cindex select trace snapshot
8234@cindex find trace snapshot
8235The basic command for selecting a trace snapshot from the buffer is
8236@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8237counting from zero. If no argument @var{n} is given, the next
8238snapshot is selected.
8239
8240Here are the various forms of using the @code{tfind} command.
8241
8242@table @code
8243@item tfind start
8244Find the first snapshot in the buffer. This is a synonym for
8245@code{tfind 0} (since 0 is the number of the first snapshot).
8246
8247@item tfind none
8248Stop debugging trace snapshots, resume @emph{live} debugging.
8249
8250@item tfind end
8251Same as @samp{tfind none}.
8252
8253@item tfind
8254No argument means find the next trace snapshot.
8255
8256@item tfind -
8257Find the previous trace snapshot before the current one. This permits
8258retracing earlier steps.
8259
8260@item tfind tracepoint @var{num}
8261Find the next snapshot associated with tracepoint @var{num}. Search
8262proceeds forward from the last examined trace snapshot. If no
8263argument @var{num} is given, it means find the next snapshot collected
8264for the same tracepoint as the current snapshot.
8265
8266@item tfind pc @var{addr}
8267Find the next snapshot associated with the value @var{addr} of the
8268program counter. Search proceeds forward from the last examined trace
8269snapshot. If no argument @var{addr} is given, it means find the next
8270snapshot with the same value of PC as the current snapshot.
8271
8272@item tfind outside @var{addr1}, @var{addr2}
8273Find the next snapshot whose PC is outside the given range of
8274addresses.
8275
8276@item tfind range @var{addr1}, @var{addr2}
8277Find the next snapshot whose PC is between @var{addr1} and
8278@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8279
8280@item tfind line @r{[}@var{file}:@r{]}@var{n}
8281Find the next snapshot associated with the source line @var{n}. If
8282the optional argument @var{file} is given, refer to line @var{n} in
8283that source file. Search proceeds forward from the last examined
8284trace snapshot. If no argument @var{n} is given, it means find the
8285next line other than the one currently being examined; thus saying
8286@code{tfind line} repeatedly can appear to have the same effect as
8287stepping from line to line in a @emph{live} debugging session.
8288@end table
8289
8290The default arguments for the @code{tfind} commands are specifically
8291designed to make it easy to scan through the trace buffer. For
8292instance, @code{tfind} with no argument selects the next trace
8293snapshot, and @code{tfind -} with no argument selects the previous
8294trace snapshot. So, by giving one @code{tfind} command, and then
8295simply hitting @key{RET} repeatedly you can examine all the trace
8296snapshots in order. Or, by saying @code{tfind -} and then hitting
8297@key{RET} repeatedly you can examine the snapshots in reverse order.
8298The @code{tfind line} command with no argument selects the snapshot
8299for the next source line executed. The @code{tfind pc} command with
8300no argument selects the next snapshot with the same program counter
8301(PC) as the current frame. The @code{tfind tracepoint} command with
8302no argument selects the next trace snapshot collected by the same
8303tracepoint as the current one.
8304
8305In addition to letting you scan through the trace buffer manually,
8306these commands make it easy to construct @value{GDBN} scripts that
8307scan through the trace buffer and print out whatever collected data
8308you are interested in. Thus, if we want to examine the PC, FP, and SP
8309registers from each trace frame in the buffer, we can say this:
8310
8311@smallexample
8312(@value{GDBP}) @b{tfind start}
8313(@value{GDBP}) @b{while ($trace_frame != -1)}
8314> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8315 $trace_frame, $pc, $sp, $fp
8316> tfind
8317> end
8318
8319Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8320Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8321Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8322Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8323Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8324Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8325Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8326Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8327Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8328Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8329Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8330@end smallexample
8331
8332Or, if we want to examine the variable @code{X} at each source line in
8333the buffer:
8334
8335@smallexample
8336(@value{GDBP}) @b{tfind start}
8337(@value{GDBP}) @b{while ($trace_frame != -1)}
8338> printf "Frame %d, X == %d\n", $trace_frame, X
8339> tfind line
8340> end
8341
8342Frame 0, X = 1
8343Frame 7, X = 2
8344Frame 13, X = 255
8345@end smallexample
8346
8347@node tdump
8348@subsection @code{tdump}
8349@kindex tdump
8350@cindex dump all data collected at tracepoint
8351@cindex tracepoint data, display
8352
8353This command takes no arguments. It prints all the data collected at
8354the current trace snapshot.
8355
8356@smallexample
8357(@value{GDBP}) @b{trace 444}
8358(@value{GDBP}) @b{actions}
8359Enter actions for tracepoint #2, one per line:
8360> collect $regs, $locals, $args, gdb_long_test
8361> end
8362
8363(@value{GDBP}) @b{tstart}
8364
8365(@value{GDBP}) @b{tfind line 444}
8366#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8367at gdb_test.c:444
8368444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8369
8370(@value{GDBP}) @b{tdump}
8371Data collected at tracepoint 2, trace frame 1:
8372d0 0xc4aa0085 -995491707
8373d1 0x18 24
8374d2 0x80 128
8375d3 0x33 51
8376d4 0x71aea3d 119204413
8377d5 0x22 34
8378d6 0xe0 224
8379d7 0x380035 3670069
8380a0 0x19e24a 1696330
8381a1 0x3000668 50333288
8382a2 0x100 256
8383a3 0x322000 3284992
8384a4 0x3000698 50333336
8385a5 0x1ad3cc 1758156
8386fp 0x30bf3c 0x30bf3c
8387sp 0x30bf34 0x30bf34
8388ps 0x0 0
8389pc 0x20b2c8 0x20b2c8
8390fpcontrol 0x0 0
8391fpstatus 0x0 0
8392fpiaddr 0x0 0
8393p = 0x20e5b4 "gdb-test"
8394p1 = (void *) 0x11
8395p2 = (void *) 0x22
8396p3 = (void *) 0x33
8397p4 = (void *) 0x44
8398p5 = (void *) 0x55
8399p6 = (void *) 0x66
8400gdb_long_test = 17 '\021'
8401
8402(@value{GDBP})
8403@end smallexample
8404
8405@node save-tracepoints
8406@subsection @code{save-tracepoints @var{filename}}
8407@kindex save-tracepoints
8408@cindex save tracepoints for future sessions
8409
8410This command saves all current tracepoint definitions together with
8411their actions and passcounts, into a file @file{@var{filename}}
8412suitable for use in a later debugging session. To read the saved
8413tracepoint definitions, use the @code{source} command (@pxref{Command
8414Files}).
8415
8416@node Tracepoint Variables
8417@section Convenience Variables for Tracepoints
8418@cindex tracepoint variables
8419@cindex convenience variables for tracepoints
8420
8421@table @code
8422@vindex $trace_frame
8423@item (int) $trace_frame
8424The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8425snapshot is selected.
8426
8427@vindex $tracepoint
8428@item (int) $tracepoint
8429The tracepoint for the current trace snapshot.
8430
8431@vindex $trace_line
8432@item (int) $trace_line
8433The line number for the current trace snapshot.
8434
8435@vindex $trace_file
8436@item (char []) $trace_file
8437The source file for the current trace snapshot.
8438
8439@vindex $trace_func
8440@item (char []) $trace_func
8441The name of the function containing @code{$tracepoint}.
8442@end table
8443
8444Note: @code{$trace_file} is not suitable for use in @code{printf},
8445use @code{output} instead.
8446
8447Here's a simple example of using these convenience variables for
8448stepping through all the trace snapshots and printing some of their
8449data.
8450
8451@smallexample
8452(@value{GDBP}) @b{tfind start}
8453
8454(@value{GDBP}) @b{while $trace_frame != -1}
8455> output $trace_file
8456> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8457> tfind
8458> end
8459@end smallexample
8460
df0cd8c5
JB
8461@node Overlays
8462@chapter Debugging Programs That Use Overlays
8463@cindex overlays
8464
8465If your program is too large to fit completely in your target system's
8466memory, you can sometimes use @dfn{overlays} to work around this
8467problem. @value{GDBN} provides some support for debugging programs that
8468use overlays.
8469
8470@menu
8471* How Overlays Work:: A general explanation of overlays.
8472* Overlay Commands:: Managing overlays in @value{GDBN}.
8473* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8474 mapped by asking the inferior.
8475* Overlay Sample Program:: A sample program using overlays.
8476@end menu
8477
8478@node How Overlays Work
8479@section How Overlays Work
8480@cindex mapped overlays
8481@cindex unmapped overlays
8482@cindex load address, overlay's
8483@cindex mapped address
8484@cindex overlay area
8485
8486Suppose you have a computer whose instruction address space is only 64
8487kilobytes long, but which has much more memory which can be accessed by
8488other means: special instructions, segment registers, or memory
8489management hardware, for example. Suppose further that you want to
8490adapt a program which is larger than 64 kilobytes to run on this system.
8491
8492One solution is to identify modules of your program which are relatively
8493independent, and need not call each other directly; call these modules
8494@dfn{overlays}. Separate the overlays from the main program, and place
8495their machine code in the larger memory. Place your main program in
8496instruction memory, but leave at least enough space there to hold the
8497largest overlay as well.
8498
8499Now, to call a function located in an overlay, you must first copy that
8500overlay's machine code from the large memory into the space set aside
8501for it in the instruction memory, and then jump to its entry point
8502there.
8503
c928edc0
AC
8504@c NB: In the below the mapped area's size is greater or equal to the
8505@c size of all overlays. This is intentional to remind the developer
8506@c that overlays don't necessarily need to be the same size.
8507
474c8240 8508@smallexample
df0cd8c5 8509@group
c928edc0
AC
8510 Data Instruction Larger
8511Address Space Address Space Address Space
8512+-----------+ +-----------+ +-----------+
8513| | | | | |
8514+-----------+ +-----------+ +-----------+<-- overlay 1
8515| program | | main | .----| overlay 1 | load address
8516| variables | | program | | +-----------+
8517| and heap | | | | | |
8518+-----------+ | | | +-----------+<-- overlay 2
8519| | +-----------+ | | | load address
8520+-----------+ | | | .-| overlay 2 |
8521 | | | | | |
8522 mapped --->+-----------+ | | +-----------+
8523 address | | | | | |
8524 | overlay | <-' | | |
8525 | area | <---' +-----------+<-- overlay 3
8526 | | <---. | | load address
8527 +-----------+ `--| overlay 3 |
8528 | | | |
8529 +-----------+ | |
8530 +-----------+
8531 | |
8532 +-----------+
8533
8534 @anchor{A code overlay}A code overlay
df0cd8c5 8535@end group
474c8240 8536@end smallexample
df0cd8c5 8537
c928edc0
AC
8538The diagram (@pxref{A code overlay}) shows a system with separate data
8539and instruction address spaces. To map an overlay, the program copies
8540its code from the larger address space to the instruction address space.
8541Since the overlays shown here all use the same mapped address, only one
8542may be mapped at a time. For a system with a single address space for
8543data and instructions, the diagram would be similar, except that the
8544program variables and heap would share an address space with the main
8545program and the overlay area.
df0cd8c5
JB
8546
8547An overlay loaded into instruction memory and ready for use is called a
8548@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8549instruction memory. An overlay not present (or only partially present)
8550in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8551is its address in the larger memory. The mapped address is also called
8552the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8553called the @dfn{load memory address}, or @dfn{LMA}.
8554
8555Unfortunately, overlays are not a completely transparent way to adapt a
8556program to limited instruction memory. They introduce a new set of
8557global constraints you must keep in mind as you design your program:
8558
8559@itemize @bullet
8560
8561@item
8562Before calling or returning to a function in an overlay, your program
8563must make sure that overlay is actually mapped. Otherwise, the call or
8564return will transfer control to the right address, but in the wrong
8565overlay, and your program will probably crash.
8566
8567@item
8568If the process of mapping an overlay is expensive on your system, you
8569will need to choose your overlays carefully to minimize their effect on
8570your program's performance.
8571
8572@item
8573The executable file you load onto your system must contain each
8574overlay's instructions, appearing at the overlay's load address, not its
8575mapped address. However, each overlay's instructions must be relocated
8576and its symbols defined as if the overlay were at its mapped address.
8577You can use GNU linker scripts to specify different load and relocation
8578addresses for pieces of your program; see @ref{Overlay Description,,,
8579ld.info, Using ld: the GNU linker}.
8580
8581@item
8582The procedure for loading executable files onto your system must be able
8583to load their contents into the larger address space as well as the
8584instruction and data spaces.
8585
8586@end itemize
8587
8588The overlay system described above is rather simple, and could be
8589improved in many ways:
8590
8591@itemize @bullet
8592
8593@item
8594If your system has suitable bank switch registers or memory management
8595hardware, you could use those facilities to make an overlay's load area
8596contents simply appear at their mapped address in instruction space.
8597This would probably be faster than copying the overlay to its mapped
8598area in the usual way.
8599
8600@item
8601If your overlays are small enough, you could set aside more than one
8602overlay area, and have more than one overlay mapped at a time.
8603
8604@item
8605You can use overlays to manage data, as well as instructions. In
8606general, data overlays are even less transparent to your design than
8607code overlays: whereas code overlays only require care when you call or
8608return to functions, data overlays require care every time you access
8609the data. Also, if you change the contents of a data overlay, you
8610must copy its contents back out to its load address before you can copy a
8611different data overlay into the same mapped area.
8612
8613@end itemize
8614
8615
8616@node Overlay Commands
8617@section Overlay Commands
8618
8619To use @value{GDBN}'s overlay support, each overlay in your program must
8620correspond to a separate section of the executable file. The section's
8621virtual memory address and load memory address must be the overlay's
8622mapped and load addresses. Identifying overlays with sections allows
8623@value{GDBN} to determine the appropriate address of a function or
8624variable, depending on whether the overlay is mapped or not.
8625
8626@value{GDBN}'s overlay commands all start with the word @code{overlay};
8627you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8628
8629@table @code
8630@item overlay off
4644b6e3 8631@kindex overlay
df0cd8c5
JB
8632Disable @value{GDBN}'s overlay support. When overlay support is
8633disabled, @value{GDBN} assumes that all functions and variables are
8634always present at their mapped addresses. By default, @value{GDBN}'s
8635overlay support is disabled.
8636
8637@item overlay manual
df0cd8c5
JB
8638@cindex manual overlay debugging
8639Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8640relies on you to tell it which overlays are mapped, and which are not,
8641using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8642commands described below.
8643
8644@item overlay map-overlay @var{overlay}
8645@itemx overlay map @var{overlay}
df0cd8c5
JB
8646@cindex map an overlay
8647Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8648be the name of the object file section containing the overlay. When an
8649overlay is mapped, @value{GDBN} assumes it can find the overlay's
8650functions and variables at their mapped addresses. @value{GDBN} assumes
8651that any other overlays whose mapped ranges overlap that of
8652@var{overlay} are now unmapped.
8653
8654@item overlay unmap-overlay @var{overlay}
8655@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8656@cindex unmap an overlay
8657Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8658must be the name of the object file section containing the overlay.
8659When an overlay is unmapped, @value{GDBN} assumes it can find the
8660overlay's functions and variables at their load addresses.
8661
8662@item overlay auto
df0cd8c5
JB
8663Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8664consults a data structure the overlay manager maintains in the inferior
8665to see which overlays are mapped. For details, see @ref{Automatic
8666Overlay Debugging}.
8667
8668@item overlay load-target
8669@itemx overlay load
df0cd8c5
JB
8670@cindex reloading the overlay table
8671Re-read the overlay table from the inferior. Normally, @value{GDBN}
8672re-reads the table @value{GDBN} automatically each time the inferior
8673stops, so this command should only be necessary if you have changed the
8674overlay mapping yourself using @value{GDBN}. This command is only
8675useful when using automatic overlay debugging.
8676
8677@item overlay list-overlays
8678@itemx overlay list
8679@cindex listing mapped overlays
8680Display a list of the overlays currently mapped, along with their mapped
8681addresses, load addresses, and sizes.
8682
8683@end table
8684
8685Normally, when @value{GDBN} prints a code address, it includes the name
8686of the function the address falls in:
8687
474c8240 8688@smallexample
f7dc1244 8689(@value{GDBP}) print main
df0cd8c5 8690$3 = @{int ()@} 0x11a0 <main>
474c8240 8691@end smallexample
df0cd8c5
JB
8692@noindent
8693When overlay debugging is enabled, @value{GDBN} recognizes code in
8694unmapped overlays, and prints the names of unmapped functions with
8695asterisks around them. For example, if @code{foo} is a function in an
8696unmapped overlay, @value{GDBN} prints it this way:
8697
474c8240 8698@smallexample
f7dc1244 8699(@value{GDBP}) overlay list
df0cd8c5 8700No sections are mapped.
f7dc1244 8701(@value{GDBP}) print foo
df0cd8c5 8702$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8703@end smallexample
df0cd8c5
JB
8704@noindent
8705When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8706name normally:
8707
474c8240 8708@smallexample
f7dc1244 8709(@value{GDBP}) overlay list
b383017d 8710Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8711 mapped at 0x1016 - 0x104a
f7dc1244 8712(@value{GDBP}) print foo
df0cd8c5 8713$6 = @{int (int)@} 0x1016 <foo>
474c8240 8714@end smallexample
df0cd8c5
JB
8715
8716When overlay debugging is enabled, @value{GDBN} can find the correct
8717address for functions and variables in an overlay, whether or not the
8718overlay is mapped. This allows most @value{GDBN} commands, like
8719@code{break} and @code{disassemble}, to work normally, even on unmapped
8720code. However, @value{GDBN}'s breakpoint support has some limitations:
8721
8722@itemize @bullet
8723@item
8724@cindex breakpoints in overlays
8725@cindex overlays, setting breakpoints in
8726You can set breakpoints in functions in unmapped overlays, as long as
8727@value{GDBN} can write to the overlay at its load address.
8728@item
8729@value{GDBN} can not set hardware or simulator-based breakpoints in
8730unmapped overlays. However, if you set a breakpoint at the end of your
8731overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8732you are using manual overlay management), @value{GDBN} will re-set its
8733breakpoints properly.
8734@end itemize
8735
8736
8737@node Automatic Overlay Debugging
8738@section Automatic Overlay Debugging
8739@cindex automatic overlay debugging
8740
8741@value{GDBN} can automatically track which overlays are mapped and which
8742are not, given some simple co-operation from the overlay manager in the
8743inferior. If you enable automatic overlay debugging with the
8744@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8745looks in the inferior's memory for certain variables describing the
8746current state of the overlays.
8747
8748Here are the variables your overlay manager must define to support
8749@value{GDBN}'s automatic overlay debugging:
8750
8751@table @asis
8752
8753@item @code{_ovly_table}:
8754This variable must be an array of the following structures:
8755
474c8240 8756@smallexample
df0cd8c5
JB
8757struct
8758@{
8759 /* The overlay's mapped address. */
8760 unsigned long vma;
8761
8762 /* The size of the overlay, in bytes. */
8763 unsigned long size;
8764
8765 /* The overlay's load address. */
8766 unsigned long lma;
8767
8768 /* Non-zero if the overlay is currently mapped;
8769 zero otherwise. */
8770 unsigned long mapped;
8771@}
474c8240 8772@end smallexample
df0cd8c5
JB
8773
8774@item @code{_novlys}:
8775This variable must be a four-byte signed integer, holding the total
8776number of elements in @code{_ovly_table}.
8777
8778@end table
8779
8780To decide whether a particular overlay is mapped or not, @value{GDBN}
8781looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8782@code{lma} members equal the VMA and LMA of the overlay's section in the
8783executable file. When @value{GDBN} finds a matching entry, it consults
8784the entry's @code{mapped} member to determine whether the overlay is
8785currently mapped.
8786
81d46470 8787In addition, your overlay manager may define a function called
def71bfa 8788@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8789will silently set a breakpoint there. If the overlay manager then
8790calls this function whenever it has changed the overlay table, this
8791will enable @value{GDBN} to accurately keep track of which overlays
8792are in program memory, and update any breakpoints that may be set
b383017d 8793in overlays. This will allow breakpoints to work even if the
81d46470
MS
8794overlays are kept in ROM or other non-writable memory while they
8795are not being executed.
df0cd8c5
JB
8796
8797@node Overlay Sample Program
8798@section Overlay Sample Program
8799@cindex overlay example program
8800
8801When linking a program which uses overlays, you must place the overlays
8802at their load addresses, while relocating them to run at their mapped
8803addresses. To do this, you must write a linker script (@pxref{Overlay
8804Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8805since linker scripts are specific to a particular host system, target
8806architecture, and target memory layout, this manual cannot provide
8807portable sample code demonstrating @value{GDBN}'s overlay support.
8808
8809However, the @value{GDBN} source distribution does contain an overlaid
8810program, with linker scripts for a few systems, as part of its test
8811suite. The program consists of the following files from
8812@file{gdb/testsuite/gdb.base}:
8813
8814@table @file
8815@item overlays.c
8816The main program file.
8817@item ovlymgr.c
8818A simple overlay manager, used by @file{overlays.c}.
8819@item foo.c
8820@itemx bar.c
8821@itemx baz.c
8822@itemx grbx.c
8823Overlay modules, loaded and used by @file{overlays.c}.
8824@item d10v.ld
8825@itemx m32r.ld
8826Linker scripts for linking the test program on the @code{d10v-elf}
8827and @code{m32r-elf} targets.
8828@end table
8829
8830You can build the test program using the @code{d10v-elf} GCC
8831cross-compiler like this:
8832
474c8240 8833@smallexample
df0cd8c5
JB
8834$ d10v-elf-gcc -g -c overlays.c
8835$ d10v-elf-gcc -g -c ovlymgr.c
8836$ d10v-elf-gcc -g -c foo.c
8837$ d10v-elf-gcc -g -c bar.c
8838$ d10v-elf-gcc -g -c baz.c
8839$ d10v-elf-gcc -g -c grbx.c
8840$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8841 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8842@end smallexample
df0cd8c5
JB
8843
8844The build process is identical for any other architecture, except that
8845you must substitute the appropriate compiler and linker script for the
8846target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8847
8848
6d2ebf8b 8849@node Languages
c906108c
SS
8850@chapter Using @value{GDBN} with Different Languages
8851@cindex languages
8852
c906108c
SS
8853Although programming languages generally have common aspects, they are
8854rarely expressed in the same manner. For instance, in ANSI C,
8855dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8856Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8857represented (and displayed) differently. Hex numbers in C appear as
c906108c 8858@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8859
8860@cindex working language
8861Language-specific information is built into @value{GDBN} for some languages,
8862allowing you to express operations like the above in your program's
8863native language, and allowing @value{GDBN} to output values in a manner
8864consistent with the syntax of your program's native language. The
8865language you use to build expressions is called the @dfn{working
8866language}.
8867
8868@menu
8869* Setting:: Switching between source languages
8870* Show:: Displaying the language
c906108c 8871* Checks:: Type and range checks
79a6e687
BW
8872* Supported Languages:: Supported languages
8873* Unsupported Languages:: Unsupported languages
c906108c
SS
8874@end menu
8875
6d2ebf8b 8876@node Setting
79a6e687 8877@section Switching Between Source Languages
c906108c
SS
8878
8879There are two ways to control the working language---either have @value{GDBN}
8880set it automatically, or select it manually yourself. You can use the
8881@code{set language} command for either purpose. On startup, @value{GDBN}
8882defaults to setting the language automatically. The working language is
8883used to determine how expressions you type are interpreted, how values
8884are printed, etc.
8885
8886In addition to the working language, every source file that
8887@value{GDBN} knows about has its own working language. For some object
8888file formats, the compiler might indicate which language a particular
8889source file is in. However, most of the time @value{GDBN} infers the
8890language from the name of the file. The language of a source file
b37052ae 8891controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8892show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8893set the language of a source file from within @value{GDBN}, but you can
8894set the language associated with a filename extension. @xref{Show, ,
79a6e687 8895Displaying the Language}.
c906108c
SS
8896
8897This is most commonly a problem when you use a program, such
5d161b24 8898as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8899another language. In that case, make the
8900program use @code{#line} directives in its C output; that way
8901@value{GDBN} will know the correct language of the source code of the original
8902program, and will display that source code, not the generated C code.
8903
8904@menu
8905* Filenames:: Filename extensions and languages.
8906* Manually:: Setting the working language manually
8907* Automatically:: Having @value{GDBN} infer the source language
8908@end menu
8909
6d2ebf8b 8910@node Filenames
79a6e687 8911@subsection List of Filename Extensions and Languages
c906108c
SS
8912
8913If a source file name ends in one of the following extensions, then
8914@value{GDBN} infers that its language is the one indicated.
8915
8916@table @file
e07c999f
PH
8917@item .ada
8918@itemx .ads
8919@itemx .adb
8920@itemx .a
8921Ada source file.
c906108c
SS
8922
8923@item .c
8924C source file
8925
8926@item .C
8927@itemx .cc
8928@itemx .cp
8929@itemx .cpp
8930@itemx .cxx
8931@itemx .c++
b37052ae 8932C@t{++} source file
c906108c 8933
b37303ee
AF
8934@item .m
8935Objective-C source file
8936
c906108c
SS
8937@item .f
8938@itemx .F
8939Fortran source file
8940
c906108c
SS
8941@item .mod
8942Modula-2 source file
c906108c
SS
8943
8944@item .s
8945@itemx .S
8946Assembler source file. This actually behaves almost like C, but
8947@value{GDBN} does not skip over function prologues when stepping.
8948@end table
8949
8950In addition, you may set the language associated with a filename
79a6e687 8951extension. @xref{Show, , Displaying the Language}.
c906108c 8952
6d2ebf8b 8953@node Manually
79a6e687 8954@subsection Setting the Working Language
c906108c
SS
8955
8956If you allow @value{GDBN} to set the language automatically,
8957expressions are interpreted the same way in your debugging session and
8958your program.
8959
8960@kindex set language
8961If you wish, you may set the language manually. To do this, issue the
8962command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8963a language, such as
c906108c 8964@code{c} or @code{modula-2}.
c906108c
SS
8965For a list of the supported languages, type @samp{set language}.
8966
c906108c
SS
8967Setting the language manually prevents @value{GDBN} from updating the working
8968language automatically. This can lead to confusion if you try
8969to debug a program when the working language is not the same as the
8970source language, when an expression is acceptable to both
8971languages---but means different things. For instance, if the current
8972source file were written in C, and @value{GDBN} was parsing Modula-2, a
8973command such as:
8974
474c8240 8975@smallexample
c906108c 8976print a = b + c
474c8240 8977@end smallexample
c906108c
SS
8978
8979@noindent
8980might not have the effect you intended. In C, this means to add
8981@code{b} and @code{c} and place the result in @code{a}. The result
8982printed would be the value of @code{a}. In Modula-2, this means to compare
8983@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8984
6d2ebf8b 8985@node Automatically
79a6e687 8986@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8987
8988To have @value{GDBN} set the working language automatically, use
8989@samp{set language local} or @samp{set language auto}. @value{GDBN}
8990then infers the working language. That is, when your program stops in a
8991frame (usually by encountering a breakpoint), @value{GDBN} sets the
8992working language to the language recorded for the function in that
8993frame. If the language for a frame is unknown (that is, if the function
8994or block corresponding to the frame was defined in a source file that
8995does not have a recognized extension), the current working language is
8996not changed, and @value{GDBN} issues a warning.
8997
8998This may not seem necessary for most programs, which are written
8999entirely in one source language. However, program modules and libraries
9000written in one source language can be used by a main program written in
9001a different source language. Using @samp{set language auto} in this
9002case frees you from having to set the working language manually.
9003
6d2ebf8b 9004@node Show
79a6e687 9005@section Displaying the Language
c906108c
SS
9006
9007The following commands help you find out which language is the
9008working language, and also what language source files were written in.
9009
c906108c
SS
9010@table @code
9011@item show language
9c16f35a 9012@kindex show language
c906108c
SS
9013Display the current working language. This is the
9014language you can use with commands such as @code{print} to
9015build and compute expressions that may involve variables in your program.
9016
9017@item info frame
4644b6e3 9018@kindex info frame@r{, show the source language}
5d161b24 9019Display the source language for this frame. This language becomes the
c906108c 9020working language if you use an identifier from this frame.
79a6e687 9021@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
9022information listed here.
9023
9024@item info source
4644b6e3 9025@kindex info source@r{, show the source language}
c906108c 9026Display the source language of this source file.
5d161b24 9027@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
9028information listed here.
9029@end table
9030
9031In unusual circumstances, you may have source files with extensions
9032not in the standard list. You can then set the extension associated
9033with a language explicitly:
9034
c906108c 9035@table @code
09d4efe1 9036@item set extension-language @var{ext} @var{language}
9c16f35a 9037@kindex set extension-language
09d4efe1
EZ
9038Tell @value{GDBN} that source files with extension @var{ext} are to be
9039assumed as written in the source language @var{language}.
c906108c
SS
9040
9041@item info extensions
9c16f35a 9042@kindex info extensions
c906108c
SS
9043List all the filename extensions and the associated languages.
9044@end table
9045
6d2ebf8b 9046@node Checks
79a6e687 9047@section Type and Range Checking
c906108c
SS
9048
9049@quotation
9050@emph{Warning:} In this release, the @value{GDBN} commands for type and range
9051checking are included, but they do not yet have any effect. This
9052section documents the intended facilities.
9053@end quotation
9054@c FIXME remove warning when type/range code added
9055
9056Some languages are designed to guard you against making seemingly common
9057errors through a series of compile- and run-time checks. These include
9058checking the type of arguments to functions and operators, and making
9059sure mathematical overflows are caught at run time. Checks such as
9060these help to ensure a program's correctness once it has been compiled
9061by eliminating type mismatches, and providing active checks for range
9062errors when your program is running.
9063
9064@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
9065Although @value{GDBN} does not check the statements in your program,
9066it can check expressions entered directly into @value{GDBN} for
9067evaluation via the @code{print} command, for example. As with the
9068working language, @value{GDBN} can also decide whether or not to check
9069automatically based on your program's source language.
79a6e687 9070@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 9071settings of supported languages.
c906108c
SS
9072
9073@menu
9074* Type Checking:: An overview of type checking
9075* Range Checking:: An overview of range checking
9076@end menu
9077
9078@cindex type checking
9079@cindex checks, type
6d2ebf8b 9080@node Type Checking
79a6e687 9081@subsection An Overview of Type Checking
c906108c
SS
9082
9083Some languages, such as Modula-2, are strongly typed, meaning that the
9084arguments to operators and functions have to be of the correct type,
9085otherwise an error occurs. These checks prevent type mismatch
9086errors from ever causing any run-time problems. For example,
9087
9088@smallexample
90891 + 2 @result{} 3
9090@exdent but
9091@error{} 1 + 2.3
9092@end smallexample
9093
9094The second example fails because the @code{CARDINAL} 1 is not
9095type-compatible with the @code{REAL} 2.3.
9096
5d161b24
DB
9097For the expressions you use in @value{GDBN} commands, you can tell the
9098@value{GDBN} type checker to skip checking;
9099to treat any mismatches as errors and abandon the expression;
9100or to only issue warnings when type mismatches occur,
c906108c
SS
9101but evaluate the expression anyway. When you choose the last of
9102these, @value{GDBN} evaluates expressions like the second example above, but
9103also issues a warning.
9104
5d161b24
DB
9105Even if you turn type checking off, there may be other reasons
9106related to type that prevent @value{GDBN} from evaluating an expression.
9107For instance, @value{GDBN} does not know how to add an @code{int} and
9108a @code{struct foo}. These particular type errors have nothing to do
9109with the language in use, and usually arise from expressions, such as
c906108c
SS
9110the one described above, which make little sense to evaluate anyway.
9111
9112Each language defines to what degree it is strict about type. For
9113instance, both Modula-2 and C require the arguments to arithmetical
9114operators to be numbers. In C, enumerated types and pointers can be
9115represented as numbers, so that they are valid arguments to mathematical
79a6e687 9116operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9117details on specific languages.
9118
9119@value{GDBN} provides some additional commands for controlling the type checker:
9120
c906108c
SS
9121@kindex set check type
9122@kindex show check type
9123@table @code
9124@item set check type auto
9125Set type checking on or off based on the current working language.
79a6e687 9126@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9127each language.
9128
9129@item set check type on
9130@itemx set check type off
9131Set type checking on or off, overriding the default setting for the
9132current working language. Issue a warning if the setting does not
9133match the language default. If any type mismatches occur in
d4f3574e 9134evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9135message and aborts evaluation of the expression.
9136
9137@item set check type warn
9138Cause the type checker to issue warnings, but to always attempt to
9139evaluate the expression. Evaluating the expression may still
9140be impossible for other reasons. For example, @value{GDBN} cannot add
9141numbers and structures.
9142
9143@item show type
5d161b24 9144Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9145is setting it automatically.
9146@end table
9147
9148@cindex range checking
9149@cindex checks, range
6d2ebf8b 9150@node Range Checking
79a6e687 9151@subsection An Overview of Range Checking
c906108c
SS
9152
9153In some languages (such as Modula-2), it is an error to exceed the
9154bounds of a type; this is enforced with run-time checks. Such range
9155checking is meant to ensure program correctness by making sure
9156computations do not overflow, or indices on an array element access do
9157not exceed the bounds of the array.
9158
9159For expressions you use in @value{GDBN} commands, you can tell
9160@value{GDBN} to treat range errors in one of three ways: ignore them,
9161always treat them as errors and abandon the expression, or issue
9162warnings but evaluate the expression anyway.
9163
9164A range error can result from numerical overflow, from exceeding an
9165array index bound, or when you type a constant that is not a member
9166of any type. Some languages, however, do not treat overflows as an
9167error. In many implementations of C, mathematical overflow causes the
9168result to ``wrap around'' to lower values---for example, if @var{m} is
9169the largest integer value, and @var{s} is the smallest, then
9170
474c8240 9171@smallexample
c906108c 9172@var{m} + 1 @result{} @var{s}
474c8240 9173@end smallexample
c906108c
SS
9174
9175This, too, is specific to individual languages, and in some cases
79a6e687
BW
9176specific to individual compilers or machines. @xref{Supported Languages, ,
9177Supported Languages}, for further details on specific languages.
c906108c
SS
9178
9179@value{GDBN} provides some additional commands for controlling the range checker:
9180
c906108c
SS
9181@kindex set check range
9182@kindex show check range
9183@table @code
9184@item set check range auto
9185Set range checking on or off based on the current working language.
79a6e687 9186@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9187each language.
9188
9189@item set check range on
9190@itemx set check range off
9191Set range checking on or off, overriding the default setting for the
9192current working language. A warning is issued if the setting does not
c3f6f71d
JM
9193match the language default. If a range error occurs and range checking is on,
9194then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9195
9196@item set check range warn
9197Output messages when the @value{GDBN} range checker detects a range error,
9198but attempt to evaluate the expression anyway. Evaluating the
9199expression may still be impossible for other reasons, such as accessing
9200memory that the process does not own (a typical example from many Unix
9201systems).
9202
9203@item show range
9204Show the current setting of the range checker, and whether or not it is
9205being set automatically by @value{GDBN}.
9206@end table
c906108c 9207
79a6e687
BW
9208@node Supported Languages
9209@section Supported Languages
c906108c 9210
9c16f35a
EZ
9211@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9212assembly, Modula-2, and Ada.
cce74817 9213@c This is false ...
c906108c
SS
9214Some @value{GDBN} features may be used in expressions regardless of the
9215language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9216and the @samp{@{type@}addr} construct (@pxref{Expressions,
9217,Expressions}) can be used with the constructs of any supported
9218language.
9219
9220The following sections detail to what degree each source language is
9221supported by @value{GDBN}. These sections are not meant to be language
9222tutorials or references, but serve only as a reference guide to what the
9223@value{GDBN} expression parser accepts, and what input and output
9224formats should look like for different languages. There are many good
9225books written on each of these languages; please look to these for a
9226language reference or tutorial.
9227
c906108c 9228@menu
b37303ee 9229* C:: C and C@t{++}
b383017d 9230* Objective-C:: Objective-C
09d4efe1 9231* Fortran:: Fortran
9c16f35a 9232* Pascal:: Pascal
b37303ee 9233* Modula-2:: Modula-2
e07c999f 9234* Ada:: Ada
c906108c
SS
9235@end menu
9236
6d2ebf8b 9237@node C
b37052ae 9238@subsection C and C@t{++}
7a292a7a 9239
b37052ae
EZ
9240@cindex C and C@t{++}
9241@cindex expressions in C or C@t{++}
c906108c 9242
b37052ae 9243Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9244to both languages. Whenever this is the case, we discuss those languages
9245together.
9246
41afff9a
EZ
9247@cindex C@t{++}
9248@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9249@cindex @sc{gnu} C@t{++}
9250The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9251compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9252effectively, you must compile your C@t{++} programs with a supported
9253C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9254compiler (@code{aCC}).
9255
0179ffac
DC
9256For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9257format; if it doesn't work on your system, try the stabs+ debugging
9258format. You can select those formats explicitly with the @code{g++}
9259command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9260@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9261gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9262
c906108c 9263@menu
b37052ae
EZ
9264* C Operators:: C and C@t{++} operators
9265* C Constants:: C and C@t{++} constants
79a6e687 9266* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9267* C Defaults:: Default settings for C and C@t{++}
9268* C Checks:: C and C@t{++} type and range checks
c906108c 9269* Debugging C:: @value{GDBN} and C
79a6e687 9270* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9271* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9272@end menu
c906108c 9273
6d2ebf8b 9274@node C Operators
79a6e687 9275@subsubsection C and C@t{++} Operators
7a292a7a 9276
b37052ae 9277@cindex C and C@t{++} operators
c906108c
SS
9278
9279Operators must be defined on values of specific types. For instance,
9280@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9281often defined on groups of types.
c906108c 9282
b37052ae 9283For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9284
9285@itemize @bullet
53a5351d 9286
c906108c 9287@item
c906108c 9288@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9289specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9290
9291@item
d4f3574e
SS
9292@emph{Floating-point types} include @code{float}, @code{double}, and
9293@code{long double} (if supported by the target platform).
c906108c
SS
9294
9295@item
53a5351d 9296@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9297
9298@item
9299@emph{Scalar types} include all of the above.
53a5351d 9300
c906108c
SS
9301@end itemize
9302
9303@noindent
9304The following operators are supported. They are listed here
9305in order of increasing precedence:
9306
9307@table @code
9308@item ,
9309The comma or sequencing operator. Expressions in a comma-separated list
9310are evaluated from left to right, with the result of the entire
9311expression being the last expression evaluated.
9312
9313@item =
9314Assignment. The value of an assignment expression is the value
9315assigned. Defined on scalar types.
9316
9317@item @var{op}=
9318Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9319and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9320@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9321@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9322@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9323
9324@item ?:
9325The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9326of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9327integral type.
9328
9329@item ||
9330Logical @sc{or}. Defined on integral types.
9331
9332@item &&
9333Logical @sc{and}. Defined on integral types.
9334
9335@item |
9336Bitwise @sc{or}. Defined on integral types.
9337
9338@item ^
9339Bitwise exclusive-@sc{or}. Defined on integral types.
9340
9341@item &
9342Bitwise @sc{and}. Defined on integral types.
9343
9344@item ==@r{, }!=
9345Equality and inequality. Defined on scalar types. The value of these
9346expressions is 0 for false and non-zero for true.
9347
9348@item <@r{, }>@r{, }<=@r{, }>=
9349Less than, greater than, less than or equal, greater than or equal.
9350Defined on scalar types. The value of these expressions is 0 for false
9351and non-zero for true.
9352
9353@item <<@r{, }>>
9354left shift, and right shift. Defined on integral types.
9355
9356@item @@
9357The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9358
9359@item +@r{, }-
9360Addition and subtraction. Defined on integral types, floating-point types and
9361pointer types.
9362
9363@item *@r{, }/@r{, }%
9364Multiplication, division, and modulus. Multiplication and division are
9365defined on integral and floating-point types. Modulus is defined on
9366integral types.
9367
9368@item ++@r{, }--
9369Increment and decrement. When appearing before a variable, the
9370operation is performed before the variable is used in an expression;
9371when appearing after it, the variable's value is used before the
9372operation takes place.
9373
9374@item *
9375Pointer dereferencing. Defined on pointer types. Same precedence as
9376@code{++}.
9377
9378@item &
9379Address operator. Defined on variables. Same precedence as @code{++}.
9380
b37052ae
EZ
9381For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9382allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9383to examine the address
b37052ae 9384where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9385stored.
c906108c
SS
9386
9387@item -
9388Negative. Defined on integral and floating-point types. Same
9389precedence as @code{++}.
9390
9391@item !
9392Logical negation. Defined on integral types. Same precedence as
9393@code{++}.
9394
9395@item ~
9396Bitwise complement operator. Defined on integral types. Same precedence as
9397@code{++}.
9398
9399
9400@item .@r{, }->
9401Structure member, and pointer-to-structure member. For convenience,
9402@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9403pointer based on the stored type information.
9404Defined on @code{struct} and @code{union} data.
9405
c906108c
SS
9406@item .*@r{, }->*
9407Dereferences of pointers to members.
c906108c
SS
9408
9409@item []
9410Array indexing. @code{@var{a}[@var{i}]} is defined as
9411@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9412
9413@item ()
9414Function parameter list. Same precedence as @code{->}.
9415
c906108c 9416@item ::
b37052ae 9417C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9418and @code{class} types.
c906108c
SS
9419
9420@item ::
7a292a7a
SS
9421Doubled colons also represent the @value{GDBN} scope operator
9422(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9423above.
c906108c
SS
9424@end table
9425
c906108c
SS
9426If an operator is redefined in the user code, @value{GDBN} usually
9427attempts to invoke the redefined version instead of using the operator's
9428predefined meaning.
c906108c 9429
6d2ebf8b 9430@node C Constants
79a6e687 9431@subsubsection C and C@t{++} Constants
c906108c 9432
b37052ae 9433@cindex C and C@t{++} constants
c906108c 9434
b37052ae 9435@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9436following ways:
c906108c
SS
9437
9438@itemize @bullet
9439@item
9440Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9441specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9442by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9443@samp{l}, specifying that the constant should be treated as a
9444@code{long} value.
9445
9446@item
9447Floating point constants are a sequence of digits, followed by a decimal
9448point, followed by a sequence of digits, and optionally followed by an
9449exponent. An exponent is of the form:
9450@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9451sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9452A floating-point constant may also end with a letter @samp{f} or
9453@samp{F}, specifying that the constant should be treated as being of
9454the @code{float} (as opposed to the default @code{double}) type; or with
9455a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9456constant.
c906108c
SS
9457
9458@item
9459Enumerated constants consist of enumerated identifiers, or their
9460integral equivalents.
9461
9462@item
9463Character constants are a single character surrounded by single quotes
9464(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9465(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9466be represented by a letter or by @dfn{escape sequences}, which are of
9467the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9468of the character's ordinal value; or of the form @samp{\@var{x}}, where
9469@samp{@var{x}} is a predefined special character---for example,
9470@samp{\n} for newline.
9471
9472@item
96a2c332
SS
9473String constants are a sequence of character constants surrounded by
9474double quotes (@code{"}). Any valid character constant (as described
9475above) may appear. Double quotes within the string must be preceded by
9476a backslash, so for instance @samp{"a\"b'c"} is a string of five
9477characters.
c906108c
SS
9478
9479@item
9480Pointer constants are an integral value. You can also write pointers
9481to constants using the C operator @samp{&}.
9482
9483@item
9484Array constants are comma-separated lists surrounded by braces @samp{@{}
9485and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9486integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9487and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9488@end itemize
9489
79a6e687
BW
9490@node C Plus Plus Expressions
9491@subsubsection C@t{++} Expressions
b37052ae
EZ
9492
9493@cindex expressions in C@t{++}
9494@value{GDBN} expression handling can interpret most C@t{++} expressions.
9495
0179ffac
DC
9496@cindex debugging C@t{++} programs
9497@cindex C@t{++} compilers
9498@cindex debug formats and C@t{++}
9499@cindex @value{NGCC} and C@t{++}
c906108c 9500@quotation
b37052ae 9501@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9502proper compiler and the proper debug format. Currently, @value{GDBN}
9503works best when debugging C@t{++} code that is compiled with
9504@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9505@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9506stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9507stabs+ as their default debug format, so you usually don't need to
9508specify a debug format explicitly. Other compilers and/or debug formats
9509are likely to work badly or not at all when using @value{GDBN} to debug
9510C@t{++} code.
c906108c 9511@end quotation
c906108c
SS
9512
9513@enumerate
9514
9515@cindex member functions
9516@item
9517Member function calls are allowed; you can use expressions like
9518
474c8240 9519@smallexample
c906108c 9520count = aml->GetOriginal(x, y)
474c8240 9521@end smallexample
c906108c 9522
41afff9a 9523@vindex this@r{, inside C@t{++} member functions}
b37052ae 9524@cindex namespace in C@t{++}
c906108c
SS
9525@item
9526While a member function is active (in the selected stack frame), your
9527expressions have the same namespace available as the member function;
9528that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9529pointer @code{this} following the same rules as C@t{++}.
c906108c 9530
c906108c 9531@cindex call overloaded functions
d4f3574e 9532@cindex overloaded functions, calling
b37052ae 9533@cindex type conversions in C@t{++}
c906108c
SS
9534@item
9535You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9536call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9537perform overload resolution involving user-defined type conversions,
9538calls to constructors, or instantiations of templates that do not exist
9539in the program. It also cannot handle ellipsis argument lists or
9540default arguments.
9541
9542It does perform integral conversions and promotions, floating-point
9543promotions, arithmetic conversions, pointer conversions, conversions of
9544class objects to base classes, and standard conversions such as those of
9545functions or arrays to pointers; it requires an exact match on the
9546number of function arguments.
9547
9548Overload resolution is always performed, unless you have specified
79a6e687
BW
9549@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9550,@value{GDBN} Features for C@t{++}}.
c906108c 9551
d4f3574e 9552You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9553explicit function signature to call an overloaded function, as in
9554@smallexample
9555p 'foo(char,int)'('x', 13)
9556@end smallexample
d4f3574e 9557
c906108c 9558The @value{GDBN} command-completion facility can simplify this;
79a6e687 9559see @ref{Completion, ,Command Completion}.
c906108c 9560
c906108c
SS
9561@cindex reference declarations
9562@item
b37052ae
EZ
9563@value{GDBN} understands variables declared as C@t{++} references; you can use
9564them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9565dereferenced.
9566
9567In the parameter list shown when @value{GDBN} displays a frame, the values of
9568reference variables are not displayed (unlike other variables); this
9569avoids clutter, since references are often used for large structures.
9570The @emph{address} of a reference variable is always shown, unless
9571you have specified @samp{set print address off}.
9572
9573@item
b37052ae 9574@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9575expressions can use it just as expressions in your program do. Since
9576one scope may be defined in another, you can use @code{::} repeatedly if
9577necessary, for example in an expression like
9578@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9579resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9580debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9581@end enumerate
9582
b37052ae 9583In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9584calling virtual functions correctly, printing out virtual bases of
9585objects, calling functions in a base subobject, casting objects, and
9586invoking user-defined operators.
c906108c 9587
6d2ebf8b 9588@node C Defaults
79a6e687 9589@subsubsection C and C@t{++} Defaults
7a292a7a 9590
b37052ae 9591@cindex C and C@t{++} defaults
c906108c 9592
c906108c
SS
9593If you allow @value{GDBN} to set type and range checking automatically, they
9594both default to @code{off} whenever the working language changes to
b37052ae 9595C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9596selects the working language.
c906108c
SS
9597
9598If you allow @value{GDBN} to set the language automatically, it
9599recognizes source files whose names end with @file{.c}, @file{.C}, or
9600@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9601these files, it sets the working language to C or C@t{++}.
79a6e687 9602@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9603for further details.
9604
c906108c
SS
9605@c Type checking is (a) primarily motivated by Modula-2, and (b)
9606@c unimplemented. If (b) changes, it might make sense to let this node
9607@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9608
6d2ebf8b 9609@node C Checks
79a6e687 9610@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9611
b37052ae 9612@cindex C and C@t{++} checks
c906108c 9613
b37052ae 9614By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9615is not used. However, if you turn type checking on, @value{GDBN}
9616considers two variables type equivalent if:
9617
9618@itemize @bullet
9619@item
9620The two variables are structured and have the same structure, union, or
9621enumerated tag.
9622
9623@item
9624The two variables have the same type name, or types that have been
9625declared equivalent through @code{typedef}.
9626
9627@ignore
9628@c leaving this out because neither J Gilmore nor R Pesch understand it.
9629@c FIXME--beers?
9630@item
9631The two @code{struct}, @code{union}, or @code{enum} variables are
9632declared in the same declaration. (Note: this may not be true for all C
9633compilers.)
9634@end ignore
9635@end itemize
9636
9637Range checking, if turned on, is done on mathematical operations. Array
9638indices are not checked, since they are often used to index a pointer
9639that is not itself an array.
c906108c 9640
6d2ebf8b 9641@node Debugging C
c906108c 9642@subsubsection @value{GDBN} and C
c906108c
SS
9643
9644The @code{set print union} and @code{show print union} commands apply to
9645the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9646inside a @code{struct} or @code{class} is also printed. Otherwise, it
9647appears as @samp{@{...@}}.
c906108c
SS
9648
9649The @code{@@} operator aids in the debugging of dynamic arrays, formed
9650with pointers and a memory allocation function. @xref{Expressions,
9651,Expressions}.
9652
79a6e687
BW
9653@node Debugging C Plus Plus
9654@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9655
b37052ae 9656@cindex commands for C@t{++}
7a292a7a 9657
b37052ae
EZ
9658Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9659designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9660
9661@table @code
9662@cindex break in overloaded functions
9663@item @r{breakpoint menus}
9664When you want a breakpoint in a function whose name is overloaded,
6ba66d6a
JB
9665@value{GDBN} has the capability to display a menu of possible breakpoint
9666locations to help you specify which function definition you want.
9667@xref{Ambiguous Expressions,,Ambiguous Expressions}.
c906108c 9668
b37052ae 9669@cindex overloading in C@t{++}
c906108c
SS
9670@item rbreak @var{regex}
9671Setting breakpoints using regular expressions is helpful for setting
9672breakpoints on overloaded functions that are not members of any special
9673classes.
79a6e687 9674@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9675
b37052ae 9676@cindex C@t{++} exception handling
c906108c
SS
9677@item catch throw
9678@itemx catch catch
b37052ae 9679Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9680Catchpoints, , Setting Catchpoints}.
c906108c
SS
9681
9682@cindex inheritance
9683@item ptype @var{typename}
9684Print inheritance relationships as well as other information for type
9685@var{typename}.
9686@xref{Symbols, ,Examining the Symbol Table}.
9687
b37052ae 9688@cindex C@t{++} symbol display
c906108c
SS
9689@item set print demangle
9690@itemx show print demangle
9691@itemx set print asm-demangle
9692@itemx show print asm-demangle
b37052ae
EZ
9693Control whether C@t{++} symbols display in their source form, both when
9694displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9695@xref{Print Settings, ,Print Settings}.
c906108c
SS
9696
9697@item set print object
9698@itemx show print object
9699Choose whether to print derived (actual) or declared types of objects.
79a6e687 9700@xref{Print Settings, ,Print Settings}.
c906108c
SS
9701
9702@item set print vtbl
9703@itemx show print vtbl
9704Control the format for printing virtual function tables.
79a6e687 9705@xref{Print Settings, ,Print Settings}.
c906108c 9706(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9707ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9708
9709@kindex set overload-resolution
d4f3574e 9710@cindex overloaded functions, overload resolution
c906108c 9711@item set overload-resolution on
b37052ae 9712Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9713is on. For overloaded functions, @value{GDBN} evaluates the arguments
9714and searches for a function whose signature matches the argument types,
79a6e687
BW
9715using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9716Expressions, ,C@t{++} Expressions}, for details).
9717If it cannot find a match, it emits a message.
c906108c
SS
9718
9719@item set overload-resolution off
b37052ae 9720Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9721overloaded functions that are not class member functions, @value{GDBN}
9722chooses the first function of the specified name that it finds in the
9723symbol table, whether or not its arguments are of the correct type. For
9724overloaded functions that are class member functions, @value{GDBN}
9725searches for a function whose signature @emph{exactly} matches the
9726argument types.
c906108c 9727
9c16f35a
EZ
9728@kindex show overload-resolution
9729@item show overload-resolution
9730Show the current setting of overload resolution.
9731
c906108c
SS
9732@item @r{Overloaded symbol names}
9733You can specify a particular definition of an overloaded symbol, using
b37052ae 9734the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9735@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9736also use the @value{GDBN} command-line word completion facilities to list the
9737available choices, or to finish the type list for you.
79a6e687 9738@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9739@end table
c906108c 9740
febe4383
TJB
9741@node Decimal Floating Point
9742@subsubsection Decimal Floating Point format
9743@cindex decimal floating point format
9744
9745@value{GDBN} can examine, set and perform computations with numbers in
9746decimal floating point format, which in the C language correspond to the
9747@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9748specified by the extension to support decimal floating-point arithmetic.
9749
9750There are two encodings in use, depending on the architecture: BID (Binary
9751Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9752PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9753target.
9754
9755Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9756to manipulate decimal floating point numbers, it is not possible to convert
9757(using a cast, for example) integers wider than 32-bit to decimal float.
9758
9759In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9760point computations, error checking in decimal float operations ignores
9761underflow, overflow and divide by zero exceptions.
9762
4acd40f3
TJB
9763In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9764to inspect @code{_Decimal128} values stored in floating point registers. See
9765@ref{PowerPC,,PowerPC} for more details.
9766
b37303ee
AF
9767@node Objective-C
9768@subsection Objective-C
9769
9770@cindex Objective-C
9771This section provides information about some commands and command
721c2651
EZ
9772options that are useful for debugging Objective-C code. See also
9773@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9774few more commands specific to Objective-C support.
b37303ee
AF
9775
9776@menu
b383017d
RM
9777* Method Names in Commands::
9778* The Print Command with Objective-C::
b37303ee
AF
9779@end menu
9780
c8f4133a 9781@node Method Names in Commands
b37303ee
AF
9782@subsubsection Method Names in Commands
9783
9784The following commands have been extended to accept Objective-C method
9785names as line specifications:
9786
9787@kindex clear@r{, and Objective-C}
9788@kindex break@r{, and Objective-C}
9789@kindex info line@r{, and Objective-C}
9790@kindex jump@r{, and Objective-C}
9791@kindex list@r{, and Objective-C}
9792@itemize
9793@item @code{clear}
9794@item @code{break}
9795@item @code{info line}
9796@item @code{jump}
9797@item @code{list}
9798@end itemize
9799
9800A fully qualified Objective-C method name is specified as
9801
9802@smallexample
9803-[@var{Class} @var{methodName}]
9804@end smallexample
9805
c552b3bb
JM
9806where the minus sign is used to indicate an instance method and a
9807plus sign (not shown) is used to indicate a class method. The class
9808name @var{Class} and method name @var{methodName} are enclosed in
9809brackets, similar to the way messages are specified in Objective-C
9810source code. For example, to set a breakpoint at the @code{create}
9811instance method of class @code{Fruit} in the program currently being
9812debugged, enter:
b37303ee
AF
9813
9814@smallexample
9815break -[Fruit create]
9816@end smallexample
9817
9818To list ten program lines around the @code{initialize} class method,
9819enter:
9820
9821@smallexample
9822list +[NSText initialize]
9823@end smallexample
9824
c552b3bb
JM
9825In the current version of @value{GDBN}, the plus or minus sign is
9826required. In future versions of @value{GDBN}, the plus or minus
9827sign will be optional, but you can use it to narrow the search. It
9828is also possible to specify just a method name:
b37303ee
AF
9829
9830@smallexample
9831break create
9832@end smallexample
9833
9834You must specify the complete method name, including any colons. If
9835your program's source files contain more than one @code{create} method,
9836you'll be presented with a numbered list of classes that implement that
9837method. Indicate your choice by number, or type @samp{0} to exit if
9838none apply.
9839
9840As another example, to clear a breakpoint established at the
9841@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9842
9843@smallexample
9844clear -[NSWindow makeKeyAndOrderFront:]
9845@end smallexample
9846
9847@node The Print Command with Objective-C
9848@subsubsection The Print Command With Objective-C
721c2651 9849@cindex Objective-C, print objects
c552b3bb
JM
9850@kindex print-object
9851@kindex po @r{(@code{print-object})}
b37303ee 9852
c552b3bb 9853The print command has also been extended to accept methods. For example:
b37303ee
AF
9854
9855@smallexample
c552b3bb 9856print -[@var{object} hash]
b37303ee
AF
9857@end smallexample
9858
9859@cindex print an Objective-C object description
c552b3bb
JM
9860@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9861@noindent
9862will tell @value{GDBN} to send the @code{hash} message to @var{object}
9863and print the result. Also, an additional command has been added,
9864@code{print-object} or @code{po} for short, which is meant to print
9865the description of an object. However, this command may only work
9866with certain Objective-C libraries that have a particular hook
9867function, @code{_NSPrintForDebugger}, defined.
b37303ee 9868
09d4efe1
EZ
9869@node Fortran
9870@subsection Fortran
9871@cindex Fortran-specific support in @value{GDBN}
9872
814e32d7
WZ
9873@value{GDBN} can be used to debug programs written in Fortran, but it
9874currently supports only the features of Fortran 77 language.
9875
9876@cindex trailing underscore, in Fortran symbols
9877Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9878among them) append an underscore to the names of variables and
9879functions. When you debug programs compiled by those compilers, you
9880will need to refer to variables and functions with a trailing
9881underscore.
9882
9883@menu
9884* Fortran Operators:: Fortran operators and expressions
9885* Fortran Defaults:: Default settings for Fortran
79a6e687 9886* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9887@end menu
9888
9889@node Fortran Operators
79a6e687 9890@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9891
9892@cindex Fortran operators and expressions
9893
9894Operators must be defined on values of specific types. For instance,
9895@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9896arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9897
9898@table @code
9899@item **
9900The exponentiation operator. It raises the first operand to the power
9901of the second one.
9902
9903@item :
9904The range operator. Normally used in the form of array(low:high) to
9905represent a section of array.
68837c9d
MD
9906
9907@item %
9908The access component operator. Normally used to access elements in derived
9909types. Also suitable for unions. As unions aren't part of regular Fortran,
9910this can only happen when accessing a register that uses a gdbarch-defined
9911union type.
814e32d7
WZ
9912@end table
9913
9914@node Fortran Defaults
9915@subsubsection Fortran Defaults
9916
9917@cindex Fortran Defaults
9918
9919Fortran symbols are usually case-insensitive, so @value{GDBN} by
9920default uses case-insensitive matches for Fortran symbols. You can
9921change that with the @samp{set case-insensitive} command, see
9922@ref{Symbols}, for the details.
9923
79a6e687
BW
9924@node Special Fortran Commands
9925@subsubsection Special Fortran Commands
814e32d7
WZ
9926
9927@cindex Special Fortran commands
9928
db2e3e2e
BW
9929@value{GDBN} has some commands to support Fortran-specific features,
9930such as displaying common blocks.
814e32d7 9931
09d4efe1
EZ
9932@table @code
9933@cindex @code{COMMON} blocks, Fortran
9934@kindex info common
9935@item info common @r{[}@var{common-name}@r{]}
9936This command prints the values contained in the Fortran @code{COMMON}
9937block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9938all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9939printed.
9940@end table
9941
9c16f35a
EZ
9942@node Pascal
9943@subsection Pascal
9944
9945@cindex Pascal support in @value{GDBN}, limitations
9946Debugging Pascal programs which use sets, subranges, file variables, or
9947nested functions does not currently work. @value{GDBN} does not support
9948entering expressions, printing values, or similar features using Pascal
9949syntax.
9950
9951The Pascal-specific command @code{set print pascal_static-members}
9952controls whether static members of Pascal objects are displayed.
9953@xref{Print Settings, pascal_static-members}.
9954
09d4efe1 9955@node Modula-2
c906108c 9956@subsection Modula-2
7a292a7a 9957
d4f3574e 9958@cindex Modula-2, @value{GDBN} support
c906108c
SS
9959
9960The extensions made to @value{GDBN} to support Modula-2 only support
9961output from the @sc{gnu} Modula-2 compiler (which is currently being
9962developed). Other Modula-2 compilers are not currently supported, and
9963attempting to debug executables produced by them is most likely
9964to give an error as @value{GDBN} reads in the executable's symbol
9965table.
9966
9967@cindex expressions in Modula-2
9968@menu
9969* M2 Operators:: Built-in operators
9970* Built-In Func/Proc:: Built-in functions and procedures
9971* M2 Constants:: Modula-2 constants
72019c9c 9972* M2 Types:: Modula-2 types
c906108c
SS
9973* M2 Defaults:: Default settings for Modula-2
9974* Deviations:: Deviations from standard Modula-2
9975* M2 Checks:: Modula-2 type and range checks
9976* M2 Scope:: The scope operators @code{::} and @code{.}
9977* GDB/M2:: @value{GDBN} and Modula-2
9978@end menu
9979
6d2ebf8b 9980@node M2 Operators
c906108c
SS
9981@subsubsection Operators
9982@cindex Modula-2 operators
9983
9984Operators must be defined on values of specific types. For instance,
9985@code{+} is defined on numbers, but not on structures. Operators are
9986often defined on groups of types. For the purposes of Modula-2, the
9987following definitions hold:
9988
9989@itemize @bullet
9990
9991@item
9992@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9993their subranges.
9994
9995@item
9996@emph{Character types} consist of @code{CHAR} and its subranges.
9997
9998@item
9999@emph{Floating-point types} consist of @code{REAL}.
10000
10001@item
10002@emph{Pointer types} consist of anything declared as @code{POINTER TO
10003@var{type}}.
10004
10005@item
10006@emph{Scalar types} consist of all of the above.
10007
10008@item
10009@emph{Set types} consist of @code{SET} and @code{BITSET} types.
10010
10011@item
10012@emph{Boolean types} consist of @code{BOOLEAN}.
10013@end itemize
10014
10015@noindent
10016The following operators are supported, and appear in order of
10017increasing precedence:
10018
10019@table @code
10020@item ,
10021Function argument or array index separator.
10022
10023@item :=
10024Assignment. The value of @var{var} @code{:=} @var{value} is
10025@var{value}.
10026
10027@item <@r{, }>
10028Less than, greater than on integral, floating-point, or enumerated
10029types.
10030
10031@item <=@r{, }>=
96a2c332 10032Less than or equal to, greater than or equal to
c906108c
SS
10033on integral, floating-point and enumerated types, or set inclusion on
10034set types. Same precedence as @code{<}.
10035
10036@item =@r{, }<>@r{, }#
10037Equality and two ways of expressing inequality, valid on scalar types.
10038Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
10039available for inequality, since @code{#} conflicts with the script
10040comment character.
10041
10042@item IN
10043Set membership. Defined on set types and the types of their members.
10044Same precedence as @code{<}.
10045
10046@item OR
10047Boolean disjunction. Defined on boolean types.
10048
10049@item AND@r{, }&
d4f3574e 10050Boolean conjunction. Defined on boolean types.
c906108c
SS
10051
10052@item @@
10053The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
10054
10055@item +@r{, }-
10056Addition and subtraction on integral and floating-point types, or union
10057and difference on set types.
10058
10059@item *
10060Multiplication on integral and floating-point types, or set intersection
10061on set types.
10062
10063@item /
10064Division on floating-point types, or symmetric set difference on set
10065types. Same precedence as @code{*}.
10066
10067@item DIV@r{, }MOD
10068Integer division and remainder. Defined on integral types. Same
10069precedence as @code{*}.
10070
10071@item -
10072Negative. Defined on @code{INTEGER} and @code{REAL} data.
10073
10074@item ^
10075Pointer dereferencing. Defined on pointer types.
10076
10077@item NOT
10078Boolean negation. Defined on boolean types. Same precedence as
10079@code{^}.
10080
10081@item .
10082@code{RECORD} field selector. Defined on @code{RECORD} data. Same
10083precedence as @code{^}.
10084
10085@item []
10086Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10087
10088@item ()
10089Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10090as @code{^}.
10091
10092@item ::@r{, }.
10093@value{GDBN} and Modula-2 scope operators.
10094@end table
10095
10096@quotation
72019c9c 10097@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10098treats the use of the operator @code{IN}, or the use of operators
10099@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10100@code{<=}, and @code{>=} on sets as an error.
10101@end quotation
10102
cb51c4e0 10103
6d2ebf8b 10104@node Built-In Func/Proc
79a6e687 10105@subsubsection Built-in Functions and Procedures
cb51c4e0 10106@cindex Modula-2 built-ins
c906108c
SS
10107
10108Modula-2 also makes available several built-in procedures and functions.
10109In describing these, the following metavariables are used:
10110
10111@table @var
10112
10113@item a
10114represents an @code{ARRAY} variable.
10115
10116@item c
10117represents a @code{CHAR} constant or variable.
10118
10119@item i
10120represents a variable or constant of integral type.
10121
10122@item m
10123represents an identifier that belongs to a set. Generally used in the
10124same function with the metavariable @var{s}. The type of @var{s} should
10125be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10126
10127@item n
10128represents a variable or constant of integral or floating-point type.
10129
10130@item r
10131represents a variable or constant of floating-point type.
10132
10133@item t
10134represents a type.
10135
10136@item v
10137represents a variable.
10138
10139@item x
10140represents a variable or constant of one of many types. See the
10141explanation of the function for details.
10142@end table
10143
10144All Modula-2 built-in procedures also return a result, described below.
10145
10146@table @code
10147@item ABS(@var{n})
10148Returns the absolute value of @var{n}.
10149
10150@item CAP(@var{c})
10151If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10152equivalent, otherwise it returns its argument.
c906108c
SS
10153
10154@item CHR(@var{i})
10155Returns the character whose ordinal value is @var{i}.
10156
10157@item DEC(@var{v})
c3f6f71d 10158Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10159
10160@item DEC(@var{v},@var{i})
10161Decrements the value in the variable @var{v} by @var{i}. Returns the
10162new value.
10163
10164@item EXCL(@var{m},@var{s})
10165Removes the element @var{m} from the set @var{s}. Returns the new
10166set.
10167
10168@item FLOAT(@var{i})
10169Returns the floating point equivalent of the integer @var{i}.
10170
10171@item HIGH(@var{a})
10172Returns the index of the last member of @var{a}.
10173
10174@item INC(@var{v})
c3f6f71d 10175Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10176
10177@item INC(@var{v},@var{i})
10178Increments the value in the variable @var{v} by @var{i}. Returns the
10179new value.
10180
10181@item INCL(@var{m},@var{s})
10182Adds the element @var{m} to the set @var{s} if it is not already
10183there. Returns the new set.
10184
10185@item MAX(@var{t})
10186Returns the maximum value of the type @var{t}.
10187
10188@item MIN(@var{t})
10189Returns the minimum value of the type @var{t}.
10190
10191@item ODD(@var{i})
10192Returns boolean TRUE if @var{i} is an odd number.
10193
10194@item ORD(@var{x})
10195Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10196value of a character is its @sc{ascii} value (on machines supporting the
10197@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10198integral, character and enumerated types.
10199
10200@item SIZE(@var{x})
10201Returns the size of its argument. @var{x} can be a variable or a type.
10202
10203@item TRUNC(@var{r})
10204Returns the integral part of @var{r}.
10205
844781a1
GM
10206@item TSIZE(@var{x})
10207Returns the size of its argument. @var{x} can be a variable or a type.
10208
c906108c
SS
10209@item VAL(@var{t},@var{i})
10210Returns the member of the type @var{t} whose ordinal value is @var{i}.
10211@end table
10212
10213@quotation
10214@emph{Warning:} Sets and their operations are not yet supported, so
10215@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10216an error.
10217@end quotation
10218
10219@cindex Modula-2 constants
6d2ebf8b 10220@node M2 Constants
c906108c
SS
10221@subsubsection Constants
10222
10223@value{GDBN} allows you to express the constants of Modula-2 in the following
10224ways:
10225
10226@itemize @bullet
10227
10228@item
10229Integer constants are simply a sequence of digits. When used in an
10230expression, a constant is interpreted to be type-compatible with the
10231rest of the expression. Hexadecimal integers are specified by a
10232trailing @samp{H}, and octal integers by a trailing @samp{B}.
10233
10234@item
10235Floating point constants appear as a sequence of digits, followed by a
10236decimal point and another sequence of digits. An optional exponent can
10237then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10238@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10239digits of the floating point constant must be valid decimal (base 10)
10240digits.
10241
10242@item
10243Character constants consist of a single character enclosed by a pair of
10244like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10245also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10246followed by a @samp{C}.
10247
10248@item
10249String constants consist of a sequence of characters enclosed by a
10250pair of like quotes, either single (@code{'}) or double (@code{"}).
10251Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10252Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10253sequences.
10254
10255@item
10256Enumerated constants consist of an enumerated identifier.
10257
10258@item
10259Boolean constants consist of the identifiers @code{TRUE} and
10260@code{FALSE}.
10261
10262@item
10263Pointer constants consist of integral values only.
10264
10265@item
10266Set constants are not yet supported.
10267@end itemize
10268
72019c9c
GM
10269@node M2 Types
10270@subsubsection Modula-2 Types
10271@cindex Modula-2 types
10272
10273Currently @value{GDBN} can print the following data types in Modula-2
10274syntax: array types, record types, set types, pointer types, procedure
10275types, enumerated types, subrange types and base types. You can also
10276print the contents of variables declared using these type.
10277This section gives a number of simple source code examples together with
10278sample @value{GDBN} sessions.
10279
10280The first example contains the following section of code:
10281
10282@smallexample
10283VAR
10284 s: SET OF CHAR ;
10285 r: [20..40] ;
10286@end smallexample
10287
10288@noindent
10289and you can request @value{GDBN} to interrogate the type and value of
10290@code{r} and @code{s}.
10291
10292@smallexample
10293(@value{GDBP}) print s
10294@{'A'..'C', 'Z'@}
10295(@value{GDBP}) ptype s
10296SET OF CHAR
10297(@value{GDBP}) print r
1029821
10299(@value{GDBP}) ptype r
10300[20..40]
10301@end smallexample
10302
10303@noindent
10304Likewise if your source code declares @code{s} as:
10305
10306@smallexample
10307VAR
10308 s: SET ['A'..'Z'] ;
10309@end smallexample
10310
10311@noindent
10312then you may query the type of @code{s} by:
10313
10314@smallexample
10315(@value{GDBP}) ptype s
10316type = SET ['A'..'Z']
10317@end smallexample
10318
10319@noindent
10320Note that at present you cannot interactively manipulate set
10321expressions using the debugger.
10322
10323The following example shows how you might declare an array in Modula-2
10324and how you can interact with @value{GDBN} to print its type and contents:
10325
10326@smallexample
10327VAR
10328 s: ARRAY [-10..10] OF CHAR ;
10329@end smallexample
10330
10331@smallexample
10332(@value{GDBP}) ptype s
10333ARRAY [-10..10] OF CHAR
10334@end smallexample
10335
10336Note that the array handling is not yet complete and although the type
10337is printed correctly, expression handling still assumes that all
10338arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10339above.
72019c9c
GM
10340
10341Here are some more type related Modula-2 examples:
10342
10343@smallexample
10344TYPE
10345 colour = (blue, red, yellow, green) ;
10346 t = [blue..yellow] ;
10347VAR
10348 s: t ;
10349BEGIN
10350 s := blue ;
10351@end smallexample
10352
10353@noindent
10354The @value{GDBN} interaction shows how you can query the data type
10355and value of a variable.
10356
10357@smallexample
10358(@value{GDBP}) print s
10359$1 = blue
10360(@value{GDBP}) ptype t
10361type = [blue..yellow]
10362@end smallexample
10363
10364@noindent
10365In this example a Modula-2 array is declared and its contents
10366displayed. Observe that the contents are written in the same way as
10367their @code{C} counterparts.
10368
10369@smallexample
10370VAR
10371 s: ARRAY [1..5] OF CARDINAL ;
10372BEGIN
10373 s[1] := 1 ;
10374@end smallexample
10375
10376@smallexample
10377(@value{GDBP}) print s
10378$1 = @{1, 0, 0, 0, 0@}
10379(@value{GDBP}) ptype s
10380type = ARRAY [1..5] OF CARDINAL
10381@end smallexample
10382
10383The Modula-2 language interface to @value{GDBN} also understands
10384pointer types as shown in this example:
10385
10386@smallexample
10387VAR
10388 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10389BEGIN
10390 NEW(s) ;
10391 s^[1] := 1 ;
10392@end smallexample
10393
10394@noindent
10395and you can request that @value{GDBN} describes the type of @code{s}.
10396
10397@smallexample
10398(@value{GDBP}) ptype s
10399type = POINTER TO ARRAY [1..5] OF CARDINAL
10400@end smallexample
10401
10402@value{GDBN} handles compound types as we can see in this example.
10403Here we combine array types, record types, pointer types and subrange
10404types:
10405
10406@smallexample
10407TYPE
10408 foo = RECORD
10409 f1: CARDINAL ;
10410 f2: CHAR ;
10411 f3: myarray ;
10412 END ;
10413
10414 myarray = ARRAY myrange OF CARDINAL ;
10415 myrange = [-2..2] ;
10416VAR
10417 s: POINTER TO ARRAY myrange OF foo ;
10418@end smallexample
10419
10420@noindent
10421and you can ask @value{GDBN} to describe the type of @code{s} as shown
10422below.
10423
10424@smallexample
10425(@value{GDBP}) ptype s
10426type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10427 f1 : CARDINAL;
10428 f2 : CHAR;
10429 f3 : ARRAY [-2..2] OF CARDINAL;
10430END
10431@end smallexample
10432
6d2ebf8b 10433@node M2 Defaults
79a6e687 10434@subsubsection Modula-2 Defaults
c906108c
SS
10435@cindex Modula-2 defaults
10436
10437If type and range checking are set automatically by @value{GDBN}, they
10438both default to @code{on} whenever the working language changes to
d4f3574e 10439Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10440selected the working language.
10441
10442If you allow @value{GDBN} to set the language automatically, then entering
10443code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10444working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10445Infer the Source Language}, for further details.
c906108c 10446
6d2ebf8b 10447@node Deviations
79a6e687 10448@subsubsection Deviations from Standard Modula-2
c906108c
SS
10449@cindex Modula-2, deviations from
10450
10451A few changes have been made to make Modula-2 programs easier to debug.
10452This is done primarily via loosening its type strictness:
10453
10454@itemize @bullet
10455@item
10456Unlike in standard Modula-2, pointer constants can be formed by
10457integers. This allows you to modify pointer variables during
10458debugging. (In standard Modula-2, the actual address contained in a
10459pointer variable is hidden from you; it can only be modified
10460through direct assignment to another pointer variable or expression that
10461returned a pointer.)
10462
10463@item
10464C escape sequences can be used in strings and characters to represent
10465non-printable characters. @value{GDBN} prints out strings with these
10466escape sequences embedded. Single non-printable characters are
10467printed using the @samp{CHR(@var{nnn})} format.
10468
10469@item
10470The assignment operator (@code{:=}) returns the value of its right-hand
10471argument.
10472
10473@item
10474All built-in procedures both modify @emph{and} return their argument.
10475@end itemize
10476
6d2ebf8b 10477@node M2 Checks
79a6e687 10478@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10479@cindex Modula-2 checks
10480
10481@quotation
10482@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10483range checking.
10484@end quotation
10485@c FIXME remove warning when type/range checks added
10486
10487@value{GDBN} considers two Modula-2 variables type equivalent if:
10488
10489@itemize @bullet
10490@item
10491They are of types that have been declared equivalent via a @code{TYPE
10492@var{t1} = @var{t2}} statement
10493
10494@item
10495They have been declared on the same line. (Note: This is true of the
10496@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10497@end itemize
10498
10499As long as type checking is enabled, any attempt to combine variables
10500whose types are not equivalent is an error.
10501
10502Range checking is done on all mathematical operations, assignment, array
10503index bounds, and all built-in functions and procedures.
10504
6d2ebf8b 10505@node M2 Scope
79a6e687 10506@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10507@cindex scope
41afff9a 10508@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10509@cindex colon, doubled as scope operator
10510@ifinfo
41afff9a 10511@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10512@c Info cannot handle :: but TeX can.
10513@end ifinfo
10514@iftex
41afff9a 10515@vindex ::@r{, in Modula-2}
c906108c
SS
10516@end iftex
10517
10518There are a few subtle differences between the Modula-2 scope operator
10519(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10520similar syntax:
10521
474c8240 10522@smallexample
c906108c
SS
10523
10524@var{module} . @var{id}
10525@var{scope} :: @var{id}
474c8240 10526@end smallexample
c906108c
SS
10527
10528@noindent
10529where @var{scope} is the name of a module or a procedure,
10530@var{module} the name of a module, and @var{id} is any declared
10531identifier within your program, except another module.
10532
10533Using the @code{::} operator makes @value{GDBN} search the scope
10534specified by @var{scope} for the identifier @var{id}. If it is not
10535found in the specified scope, then @value{GDBN} searches all scopes
10536enclosing the one specified by @var{scope}.
10537
10538Using the @code{.} operator makes @value{GDBN} search the current scope for
10539the identifier specified by @var{id} that was imported from the
10540definition module specified by @var{module}. With this operator, it is
10541an error if the identifier @var{id} was not imported from definition
10542module @var{module}, or if @var{id} is not an identifier in
10543@var{module}.
10544
6d2ebf8b 10545@node GDB/M2
c906108c
SS
10546@subsubsection @value{GDBN} and Modula-2
10547
10548Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10549Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10550specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10551@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10552apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10553analogue in Modula-2.
10554
10555The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10556with any language, is not useful with Modula-2. Its
c906108c 10557intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10558created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10559address can be specified by an integral constant, the construct
d4f3574e 10560@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10561
10562@cindex @code{#} in Modula-2
10563In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10564interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10565
e07c999f
PH
10566@node Ada
10567@subsection Ada
10568@cindex Ada
10569
10570The extensions made to @value{GDBN} for Ada only support
10571output from the @sc{gnu} Ada (GNAT) compiler.
10572Other Ada compilers are not currently supported, and
10573attempting to debug executables produced by them is most likely
10574to be difficult.
10575
10576
10577@cindex expressions in Ada
10578@menu
10579* Ada Mode Intro:: General remarks on the Ada syntax
10580 and semantics supported by Ada mode
10581 in @value{GDBN}.
10582* Omissions from Ada:: Restrictions on the Ada expression syntax.
10583* Additions to Ada:: Extensions of the Ada expression syntax.
10584* Stopping Before Main Program:: Debugging the program during elaboration.
10585* Ada Glitches:: Known peculiarities of Ada mode.
10586@end menu
10587
10588@node Ada Mode Intro
10589@subsubsection Introduction
10590@cindex Ada mode, general
10591
10592The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10593syntax, with some extensions.
10594The philosophy behind the design of this subset is
10595
10596@itemize @bullet
10597@item
10598That @value{GDBN} should provide basic literals and access to operations for
10599arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10600leaving more sophisticated computations to subprograms written into the
10601program (which therefore may be called from @value{GDBN}).
10602
10603@item
10604That type safety and strict adherence to Ada language restrictions
10605are not particularly important to the @value{GDBN} user.
10606
10607@item
10608That brevity is important to the @value{GDBN} user.
10609@end itemize
10610
10611Thus, for brevity, the debugger acts as if there were
10612implicit @code{with} and @code{use} clauses in effect for all user-written
10613packages, making it unnecessary to fully qualify most names with
10614their packages, regardless of context. Where this causes ambiguity,
10615@value{GDBN} asks the user's intent.
10616
10617The debugger will start in Ada mode if it detects an Ada main program.
10618As for other languages, it will enter Ada mode when stopped in a program that
10619was translated from an Ada source file.
10620
10621While in Ada mode, you may use `@t{--}' for comments. This is useful
10622mostly for documenting command files. The standard @value{GDBN} comment
10623(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10624middle (to allow based literals).
10625
10626The debugger supports limited overloading. Given a subprogram call in which
10627the function symbol has multiple definitions, it will use the number of
10628actual parameters and some information about their types to attempt to narrow
10629the set of definitions. It also makes very limited use of context, preferring
10630procedures to functions in the context of the @code{call} command, and
10631functions to procedures elsewhere.
10632
10633@node Omissions from Ada
10634@subsubsection Omissions from Ada
10635@cindex Ada, omissions from
10636
10637Here are the notable omissions from the subset:
10638
10639@itemize @bullet
10640@item
10641Only a subset of the attributes are supported:
10642
10643@itemize @minus
10644@item
10645@t{'First}, @t{'Last}, and @t{'Length}
10646 on array objects (not on types and subtypes).
10647
10648@item
10649@t{'Min} and @t{'Max}.
10650
10651@item
10652@t{'Pos} and @t{'Val}.
10653
10654@item
10655@t{'Tag}.
10656
10657@item
10658@t{'Range} on array objects (not subtypes), but only as the right
10659operand of the membership (@code{in}) operator.
10660
10661@item
10662@t{'Access}, @t{'Unchecked_Access}, and
10663@t{'Unrestricted_Access} (a GNAT extension).
10664
10665@item
10666@t{'Address}.
10667@end itemize
10668
10669@item
10670The names in
10671@code{Characters.Latin_1} are not available and
10672concatenation is not implemented. Thus, escape characters in strings are
10673not currently available.
10674
10675@item
10676Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10677equality of representations. They will generally work correctly
10678for strings and arrays whose elements have integer or enumeration types.
10679They may not work correctly for arrays whose element
10680types have user-defined equality, for arrays of real values
10681(in particular, IEEE-conformant floating point, because of negative
10682zeroes and NaNs), and for arrays whose elements contain unused bits with
10683indeterminate values.
10684
10685@item
10686The other component-by-component array operations (@code{and}, @code{or},
10687@code{xor}, @code{not}, and relational tests other than equality)
10688are not implemented.
10689
10690@item
860701dc
PH
10691@cindex array aggregates (Ada)
10692@cindex record aggregates (Ada)
10693@cindex aggregates (Ada)
10694There is limited support for array and record aggregates. They are
10695permitted only on the right sides of assignments, as in these examples:
10696
10697@smallexample
10698set An_Array := (1, 2, 3, 4, 5, 6)
10699set An_Array := (1, others => 0)
10700set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10701set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10702set A_Record := (1, "Peter", True);
10703set A_Record := (Name => "Peter", Id => 1, Alive => True)
10704@end smallexample
10705
10706Changing a
10707discriminant's value by assigning an aggregate has an
10708undefined effect if that discriminant is used within the record.
10709However, you can first modify discriminants by directly assigning to
10710them (which normally would not be allowed in Ada), and then performing an
10711aggregate assignment. For example, given a variable @code{A_Rec}
10712declared to have a type such as:
10713
10714@smallexample
10715type Rec (Len : Small_Integer := 0) is record
10716 Id : Integer;
10717 Vals : IntArray (1 .. Len);
10718end record;
10719@end smallexample
10720
10721you can assign a value with a different size of @code{Vals} with two
10722assignments:
10723
10724@smallexample
10725set A_Rec.Len := 4
10726set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10727@end smallexample
10728
10729As this example also illustrates, @value{GDBN} is very loose about the usual
10730rules concerning aggregates. You may leave out some of the
10731components of an array or record aggregate (such as the @code{Len}
10732component in the assignment to @code{A_Rec} above); they will retain their
10733original values upon assignment. You may freely use dynamic values as
10734indices in component associations. You may even use overlapping or
10735redundant component associations, although which component values are
10736assigned in such cases is not defined.
e07c999f
PH
10737
10738@item
10739Calls to dispatching subprograms are not implemented.
10740
10741@item
10742The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10743than that of real Ada. It makes only limited use of the context in
10744which a subexpression appears to resolve its meaning, and it is much
10745looser in its rules for allowing type matches. As a result, some
10746function calls will be ambiguous, and the user will be asked to choose
10747the proper resolution.
e07c999f
PH
10748
10749@item
10750The @code{new} operator is not implemented.
10751
10752@item
10753Entry calls are not implemented.
10754
10755@item
10756Aside from printing, arithmetic operations on the native VAX floating-point
10757formats are not supported.
10758
10759@item
10760It is not possible to slice a packed array.
10761@end itemize
10762
10763@node Additions to Ada
10764@subsubsection Additions to Ada
10765@cindex Ada, deviations from
10766
10767As it does for other languages, @value{GDBN} makes certain generic
10768extensions to Ada (@pxref{Expressions}):
10769
10770@itemize @bullet
10771@item
ae21e955
BW
10772If the expression @var{E} is a variable residing in memory (typically
10773a local variable or array element) and @var{N} is a positive integer,
10774then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10775@var{N}-1 adjacent variables following it in memory as an array. In
10776Ada, this operator is generally not necessary, since its prime use is
10777in displaying parts of an array, and slicing will usually do this in
10778Ada. However, there are occasional uses when debugging programs in
10779which certain debugging information has been optimized away.
e07c999f
PH
10780
10781@item
ae21e955
BW
10782@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10783appears in function or file @var{B}.'' When @var{B} is a file name,
10784you must typically surround it in single quotes.
e07c999f
PH
10785
10786@item
10787The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10788@var{type} that appears at address @var{addr}.''
10789
10790@item
10791A name starting with @samp{$} is a convenience variable
10792(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10793@end itemize
10794
ae21e955
BW
10795In addition, @value{GDBN} provides a few other shortcuts and outright
10796additions specific to Ada:
e07c999f
PH
10797
10798@itemize @bullet
10799@item
10800The assignment statement is allowed as an expression, returning
10801its right-hand operand as its value. Thus, you may enter
10802
10803@smallexample
10804set x := y + 3
10805print A(tmp := y + 1)
10806@end smallexample
10807
10808@item
10809The semicolon is allowed as an ``operator,'' returning as its value
10810the value of its right-hand operand.
10811This allows, for example,
10812complex conditional breaks:
10813
10814@smallexample
10815break f
10816condition 1 (report(i); k += 1; A(k) > 100)
10817@end smallexample
10818
10819@item
10820Rather than use catenation and symbolic character names to introduce special
10821characters into strings, one may instead use a special bracket notation,
10822which is also used to print strings. A sequence of characters of the form
10823@samp{["@var{XX}"]} within a string or character literal denotes the
10824(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10825sequence of characters @samp{["""]} also denotes a single quotation mark
10826in strings. For example,
10827@smallexample
10828 "One line.["0a"]Next line.["0a"]"
10829@end smallexample
10830@noindent
ae21e955
BW
10831contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10832after each period.
e07c999f
PH
10833
10834@item
10835The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10836@t{'Max} is optional (and is ignored in any case). For example, it is valid
10837to write
10838
10839@smallexample
10840print 'max(x, y)
10841@end smallexample
10842
10843@item
10844When printing arrays, @value{GDBN} uses positional notation when the
10845array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10846For example, a one-dimensional array of three integers with a lower bound
10847of 3 might print as
e07c999f
PH
10848
10849@smallexample
10850(3 => 10, 17, 1)
10851@end smallexample
10852
10853@noindent
10854That is, in contrast to valid Ada, only the first component has a @code{=>}
10855clause.
10856
10857@item
10858You may abbreviate attributes in expressions with any unique,
10859multi-character subsequence of
10860their names (an exact match gets preference).
10861For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10862in place of @t{a'length}.
10863
10864@item
10865@cindex quoting Ada internal identifiers
10866Since Ada is case-insensitive, the debugger normally maps identifiers you type
10867to lower case. The GNAT compiler uses upper-case characters for
10868some of its internal identifiers, which are normally of no interest to users.
10869For the rare occasions when you actually have to look at them,
10870enclose them in angle brackets to avoid the lower-case mapping.
10871For example,
10872@smallexample
10873@value{GDBP} print <JMPBUF_SAVE>[0]
10874@end smallexample
10875
10876@item
10877Printing an object of class-wide type or dereferencing an
10878access-to-class-wide value will display all the components of the object's
10879specific type (as indicated by its run-time tag). Likewise, component
10880selection on such a value will operate on the specific type of the
10881object.
10882
10883@end itemize
10884
10885@node Stopping Before Main Program
10886@subsubsection Stopping at the Very Beginning
10887
10888@cindex breakpointing Ada elaboration code
10889It is sometimes necessary to debug the program during elaboration, and
10890before reaching the main procedure.
10891As defined in the Ada Reference
10892Manual, the elaboration code is invoked from a procedure called
10893@code{adainit}. To run your program up to the beginning of
10894elaboration, simply use the following two commands:
10895@code{tbreak adainit} and @code{run}.
10896
10897@node Ada Glitches
10898@subsubsection Known Peculiarities of Ada Mode
10899@cindex Ada, problems
10900
10901Besides the omissions listed previously (@pxref{Omissions from Ada}),
10902we know of several problems with and limitations of Ada mode in
10903@value{GDBN},
10904some of which will be fixed with planned future releases of the debugger
10905and the GNU Ada compiler.
10906
10907@itemize @bullet
10908@item
10909Currently, the debugger
10910has insufficient information to determine whether certain pointers represent
10911pointers to objects or the objects themselves.
10912Thus, the user may have to tack an extra @code{.all} after an expression
10913to get it printed properly.
10914
10915@item
10916Static constants that the compiler chooses not to materialize as objects in
10917storage are invisible to the debugger.
10918
10919@item
10920Named parameter associations in function argument lists are ignored (the
10921argument lists are treated as positional).
10922
10923@item
10924Many useful library packages are currently invisible to the debugger.
10925
10926@item
10927Fixed-point arithmetic, conversions, input, and output is carried out using
10928floating-point arithmetic, and may give results that only approximate those on
10929the host machine.
10930
10931@item
10932The type of the @t{'Address} attribute may not be @code{System.Address}.
10933
10934@item
10935The GNAT compiler never generates the prefix @code{Standard} for any of
10936the standard symbols defined by the Ada language. @value{GDBN} knows about
10937this: it will strip the prefix from names when you use it, and will never
10938look for a name you have so qualified among local symbols, nor match against
10939symbols in other packages or subprograms. If you have
10940defined entities anywhere in your program other than parameters and
10941local variables whose simple names match names in @code{Standard},
10942GNAT's lack of qualification here can cause confusion. When this happens,
10943you can usually resolve the confusion
10944by qualifying the problematic names with package
10945@code{Standard} explicitly.
10946@end itemize
10947
79a6e687
BW
10948@node Unsupported Languages
10949@section Unsupported Languages
4e562065
JB
10950
10951@cindex unsupported languages
10952@cindex minimal language
10953In addition to the other fully-supported programming languages,
10954@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10955It does not represent a real programming language, but provides a set
10956of capabilities close to what the C or assembly languages provide.
10957This should allow most simple operations to be performed while debugging
10958an application that uses a language currently not supported by @value{GDBN}.
10959
10960If the language is set to @code{auto}, @value{GDBN} will automatically
10961select this language if the current frame corresponds to an unsupported
10962language.
10963
6d2ebf8b 10964@node Symbols
c906108c
SS
10965@chapter Examining the Symbol Table
10966
d4f3574e 10967The commands described in this chapter allow you to inquire about the
c906108c
SS
10968symbols (names of variables, functions and types) defined in your
10969program. This information is inherent in the text of your program and
10970does not change as your program executes. @value{GDBN} finds it in your
10971program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10972(@pxref{File Options, ,Choosing Files}), or by one of the
10973file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10974
10975@cindex symbol names
10976@cindex names of symbols
10977@cindex quoting names
10978Occasionally, you may need to refer to symbols that contain unusual
10979characters, which @value{GDBN} ordinarily treats as word delimiters. The
10980most frequent case is in referring to static variables in other
79a6e687 10981source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10982are recorded in object files as debugging symbols, but @value{GDBN} would
10983ordinarily parse a typical file name, like @file{foo.c}, as the three words
10984@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10985@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10986
474c8240 10987@smallexample
c906108c 10988p 'foo.c'::x
474c8240 10989@end smallexample
c906108c
SS
10990
10991@noindent
10992looks up the value of @code{x} in the scope of the file @file{foo.c}.
10993
10994@table @code
a8f24a35
EZ
10995@cindex case-insensitive symbol names
10996@cindex case sensitivity in symbol names
10997@kindex set case-sensitive
10998@item set case-sensitive on
10999@itemx set case-sensitive off
11000@itemx set case-sensitive auto
11001Normally, when @value{GDBN} looks up symbols, it matches their names
11002with case sensitivity determined by the current source language.
11003Occasionally, you may wish to control that. The command @code{set
11004case-sensitive} lets you do that by specifying @code{on} for
11005case-sensitive matches or @code{off} for case-insensitive ones. If
11006you specify @code{auto}, case sensitivity is reset to the default
11007suitable for the source language. The default is case-sensitive
11008matches for all languages except for Fortran, for which the default is
11009case-insensitive matches.
11010
9c16f35a
EZ
11011@kindex show case-sensitive
11012@item show case-sensitive
a8f24a35
EZ
11013This command shows the current setting of case sensitivity for symbols
11014lookups.
11015
c906108c 11016@kindex info address
b37052ae 11017@cindex address of a symbol
c906108c
SS
11018@item info address @var{symbol}
11019Describe where the data for @var{symbol} is stored. For a register
11020variable, this says which register it is kept in. For a non-register
11021local variable, this prints the stack-frame offset at which the variable
11022is always stored.
11023
11024Note the contrast with @samp{print &@var{symbol}}, which does not work
11025at all for a register variable, and for a stack local variable prints
11026the exact address of the current instantiation of the variable.
11027
3d67e040 11028@kindex info symbol
b37052ae 11029@cindex symbol from address
9c16f35a 11030@cindex closest symbol and offset for an address
3d67e040
EZ
11031@item info symbol @var{addr}
11032Print the name of a symbol which is stored at the address @var{addr}.
11033If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
11034nearest symbol and an offset from it:
11035
474c8240 11036@smallexample
3d67e040
EZ
11037(@value{GDBP}) info symbol 0x54320
11038_initialize_vx + 396 in section .text
474c8240 11039@end smallexample
3d67e040
EZ
11040
11041@noindent
11042This is the opposite of the @code{info address} command. You can use
11043it to find out the name of a variable or a function given its address.
11044
c906108c 11045@kindex whatis
62f3a2ba
FF
11046@item whatis [@var{arg}]
11047Print the data type of @var{arg}, which can be either an expression or
11048a data type. With no argument, print the data type of @code{$}, the
11049last value in the value history. If @var{arg} is an expression, it is
11050not actually evaluated, and any side-effecting operations (such as
11051assignments or function calls) inside it do not take place. If
11052@var{arg} is a type name, it may be the name of a type or typedef, or
11053for C code it may have the form @samp{class @var{class-name}},
11054@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
11055@samp{enum @var{enum-tag}}.
c906108c
SS
11056@xref{Expressions, ,Expressions}.
11057
c906108c 11058@kindex ptype
62f3a2ba
FF
11059@item ptype [@var{arg}]
11060@code{ptype} accepts the same arguments as @code{whatis}, but prints a
11061detailed description of the type, instead of just the name of the type.
11062@xref{Expressions, ,Expressions}.
c906108c
SS
11063
11064For example, for this variable declaration:
11065
474c8240 11066@smallexample
c906108c 11067struct complex @{double real; double imag;@} v;
474c8240 11068@end smallexample
c906108c
SS
11069
11070@noindent
11071the two commands give this output:
11072
474c8240 11073@smallexample
c906108c
SS
11074@group
11075(@value{GDBP}) whatis v
11076type = struct complex
11077(@value{GDBP}) ptype v
11078type = struct complex @{
11079 double real;
11080 double imag;
11081@}
11082@end group
474c8240 11083@end smallexample
c906108c
SS
11084
11085@noindent
11086As with @code{whatis}, using @code{ptype} without an argument refers to
11087the type of @code{$}, the last value in the value history.
11088
ab1adacd
EZ
11089@cindex incomplete type
11090Sometimes, programs use opaque data types or incomplete specifications
11091of complex data structure. If the debug information included in the
11092program does not allow @value{GDBN} to display a full declaration of
11093the data type, it will say @samp{<incomplete type>}. For example,
11094given these declarations:
11095
11096@smallexample
11097 struct foo;
11098 struct foo *fooptr;
11099@end smallexample
11100
11101@noindent
11102but no definition for @code{struct foo} itself, @value{GDBN} will say:
11103
11104@smallexample
ddb50cd7 11105 (@value{GDBP}) ptype foo
ab1adacd
EZ
11106 $1 = <incomplete type>
11107@end smallexample
11108
11109@noindent
11110``Incomplete type'' is C terminology for data types that are not
11111completely specified.
11112
c906108c
SS
11113@kindex info types
11114@item info types @var{regexp}
11115@itemx info types
09d4efe1
EZ
11116Print a brief description of all types whose names match the regular
11117expression @var{regexp} (or all types in your program, if you supply
11118no argument). Each complete typename is matched as though it were a
11119complete line; thus, @samp{i type value} gives information on all
11120types in your program whose names include the string @code{value}, but
11121@samp{i type ^value$} gives information only on types whose complete
11122name is @code{value}.
c906108c
SS
11123
11124This command differs from @code{ptype} in two ways: first, like
11125@code{whatis}, it does not print a detailed description; second, it
11126lists all source files where a type is defined.
11127
b37052ae
EZ
11128@kindex info scope
11129@cindex local variables
09d4efe1 11130@item info scope @var{location}
b37052ae 11131List all the variables local to a particular scope. This command
09d4efe1
EZ
11132accepts a @var{location} argument---a function name, a source line, or
11133an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11134to the scope defined by that location. (@xref{Specify Location}, for
11135details about supported forms of @var{location}.) For example:
b37052ae
EZ
11136
11137@smallexample
11138(@value{GDBP}) @b{info scope command_line_handler}
11139Scope for command_line_handler:
11140Symbol rl is an argument at stack/frame offset 8, length 4.
11141Symbol linebuffer is in static storage at address 0x150a18, length 4.
11142Symbol linelength is in static storage at address 0x150a1c, length 4.
11143Symbol p is a local variable in register $esi, length 4.
11144Symbol p1 is a local variable in register $ebx, length 4.
11145Symbol nline is a local variable in register $edx, length 4.
11146Symbol repeat is a local variable at frame offset -8, length 4.
11147@end smallexample
11148
f5c37c66
EZ
11149@noindent
11150This command is especially useful for determining what data to collect
11151during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11152collect}.
11153
c906108c
SS
11154@kindex info source
11155@item info source
919d772c
JB
11156Show information about the current source file---that is, the source file for
11157the function containing the current point of execution:
11158@itemize @bullet
11159@item
11160the name of the source file, and the directory containing it,
11161@item
11162the directory it was compiled in,
11163@item
11164its length, in lines,
11165@item
11166which programming language it is written in,
11167@item
11168whether the executable includes debugging information for that file, and
11169if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11170@item
11171whether the debugging information includes information about
11172preprocessor macros.
11173@end itemize
11174
c906108c
SS
11175
11176@kindex info sources
11177@item info sources
11178Print the names of all source files in your program for which there is
11179debugging information, organized into two lists: files whose symbols
11180have already been read, and files whose symbols will be read when needed.
11181
11182@kindex info functions
11183@item info functions
11184Print the names and data types of all defined functions.
11185
11186@item info functions @var{regexp}
11187Print the names and data types of all defined functions
11188whose names contain a match for regular expression @var{regexp}.
11189Thus, @samp{info fun step} finds all functions whose names
11190include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11191start with @code{step}. If a function name contains characters
c1468174 11192that conflict with the regular expression language (e.g.@:
1c5dfdad 11193@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11194
11195@kindex info variables
11196@item info variables
11197Print the names and data types of all variables that are declared
6ca652b0 11198outside of functions (i.e.@: excluding local variables).
c906108c
SS
11199
11200@item info variables @var{regexp}
11201Print the names and data types of all variables (except for local
11202variables) whose names contain a match for regular expression
11203@var{regexp}.
11204
b37303ee 11205@kindex info classes
721c2651 11206@cindex Objective-C, classes and selectors
b37303ee
AF
11207@item info classes
11208@itemx info classes @var{regexp}
11209Display all Objective-C classes in your program, or
11210(with the @var{regexp} argument) all those matching a particular regular
11211expression.
11212
11213@kindex info selectors
11214@item info selectors
11215@itemx info selectors @var{regexp}
11216Display all Objective-C selectors in your program, or
11217(with the @var{regexp} argument) all those matching a particular regular
11218expression.
11219
c906108c
SS
11220@ignore
11221This was never implemented.
11222@kindex info methods
11223@item info methods
11224@itemx info methods @var{regexp}
11225The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11226methods within C@t{++} program, or (with the @var{regexp} argument) a
11227specific set of methods found in the various C@t{++} classes. Many
11228C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11229from the @code{ptype} command can be overwhelming and hard to use. The
11230@code{info-methods} command filters the methods, printing only those
11231which match the regular-expression @var{regexp}.
11232@end ignore
11233
c906108c
SS
11234@cindex reloading symbols
11235Some systems allow individual object files that make up your program to
7a292a7a
SS
11236be replaced without stopping and restarting your program. For example,
11237in VxWorks you can simply recompile a defective object file and keep on
11238running. If you are running on one of these systems, you can allow
11239@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11240
11241@table @code
11242@kindex set symbol-reloading
11243@item set symbol-reloading on
11244Replace symbol definitions for the corresponding source file when an
11245object file with a particular name is seen again.
11246
11247@item set symbol-reloading off
6d2ebf8b
SS
11248Do not replace symbol definitions when encountering object files of the
11249same name more than once. This is the default state; if you are not
11250running on a system that permits automatic relinking of modules, you
11251should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11252may discard symbols when linking large programs, that may contain
11253several modules (from different directories or libraries) with the same
11254name.
c906108c
SS
11255
11256@kindex show symbol-reloading
11257@item show symbol-reloading
11258Show the current @code{on} or @code{off} setting.
11259@end table
c906108c 11260
9c16f35a 11261@cindex opaque data types
c906108c
SS
11262@kindex set opaque-type-resolution
11263@item set opaque-type-resolution on
11264Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11265declared as a pointer to a @code{struct}, @code{class}, or
11266@code{union}---for example, @code{struct MyType *}---that is used in one
11267source file although the full declaration of @code{struct MyType} is in
11268another source file. The default is on.
11269
11270A change in the setting of this subcommand will not take effect until
11271the next time symbols for a file are loaded.
11272
11273@item set opaque-type-resolution off
11274Tell @value{GDBN} not to resolve opaque types. In this case, the type
11275is printed as follows:
11276@smallexample
11277@{<no data fields>@}
11278@end smallexample
11279
11280@kindex show opaque-type-resolution
11281@item show opaque-type-resolution
11282Show whether opaque types are resolved or not.
c906108c
SS
11283
11284@kindex maint print symbols
11285@cindex symbol dump
11286@kindex maint print psymbols
11287@cindex partial symbol dump
11288@item maint print symbols @var{filename}
11289@itemx maint print psymbols @var{filename}
11290@itemx maint print msymbols @var{filename}
11291Write a dump of debugging symbol data into the file @var{filename}.
11292These commands are used to debug the @value{GDBN} symbol-reading code. Only
11293symbols with debugging data are included. If you use @samp{maint print
11294symbols}, @value{GDBN} includes all the symbols for which it has already
11295collected full details: that is, @var{filename} reflects symbols for
11296only those files whose symbols @value{GDBN} has read. You can use the
11297command @code{info sources} to find out which files these are. If you
11298use @samp{maint print psymbols} instead, the dump shows information about
11299symbols that @value{GDBN} only knows partially---that is, symbols defined in
11300files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11301@samp{maint print msymbols} dumps just the minimal symbol information
11302required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11303@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11304@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11305
5e7b2f39
JB
11306@kindex maint info symtabs
11307@kindex maint info psymtabs
44ea7b70
JB
11308@cindex listing @value{GDBN}'s internal symbol tables
11309@cindex symbol tables, listing @value{GDBN}'s internal
11310@cindex full symbol tables, listing @value{GDBN}'s internal
11311@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11312@item maint info symtabs @r{[} @var{regexp} @r{]}
11313@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11314
11315List the @code{struct symtab} or @code{struct partial_symtab}
11316structures whose names match @var{regexp}. If @var{regexp} is not
11317given, list them all. The output includes expressions which you can
11318copy into a @value{GDBN} debugging this one to examine a particular
11319structure in more detail. For example:
11320
11321@smallexample
5e7b2f39 11322(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11323@{ objfile /home/gnu/build/gdb/gdb
11324 ((struct objfile *) 0x82e69d0)
b383017d 11325 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11326 ((struct partial_symtab *) 0x8474b10)
11327 readin no
11328 fullname (null)
11329 text addresses 0x814d3c8 -- 0x8158074
11330 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11331 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11332 dependencies (none)
11333 @}
11334@}
5e7b2f39 11335(@value{GDBP}) maint info symtabs
44ea7b70
JB
11336(@value{GDBP})
11337@end smallexample
11338@noindent
11339We see that there is one partial symbol table whose filename contains
11340the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11341and we see that @value{GDBN} has not read in any symtabs yet at all.
11342If we set a breakpoint on a function, that will cause @value{GDBN} to
11343read the symtab for the compilation unit containing that function:
11344
11345@smallexample
11346(@value{GDBP}) break dwarf2_psymtab_to_symtab
11347Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11348line 1574.
5e7b2f39 11349(@value{GDBP}) maint info symtabs
b383017d 11350@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11351 ((struct objfile *) 0x82e69d0)
b383017d 11352 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11353 ((struct symtab *) 0x86c1f38)
11354 dirname (null)
11355 fullname (null)
11356 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11357 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11358 debugformat DWARF 2
11359 @}
11360@}
b383017d 11361(@value{GDBP})
44ea7b70 11362@end smallexample
c906108c
SS
11363@end table
11364
44ea7b70 11365
6d2ebf8b 11366@node Altering
c906108c
SS
11367@chapter Altering Execution
11368
11369Once you think you have found an error in your program, you might want to
11370find out for certain whether correcting the apparent error would lead to
11371correct results in the rest of the run. You can find the answer by
11372experiment, using the @value{GDBN} features for altering execution of the
11373program.
11374
11375For example, you can store new values into variables or memory
7a292a7a
SS
11376locations, give your program a signal, restart it at a different
11377address, or even return prematurely from a function.
c906108c
SS
11378
11379@menu
11380* Assignment:: Assignment to variables
11381* Jumping:: Continuing at a different address
c906108c 11382* Signaling:: Giving your program a signal
c906108c
SS
11383* Returning:: Returning from a function
11384* Calling:: Calling your program's functions
11385* Patching:: Patching your program
11386@end menu
11387
6d2ebf8b 11388@node Assignment
79a6e687 11389@section Assignment to Variables
c906108c
SS
11390
11391@cindex assignment
11392@cindex setting variables
11393To alter the value of a variable, evaluate an assignment expression.
11394@xref{Expressions, ,Expressions}. For example,
11395
474c8240 11396@smallexample
c906108c 11397print x=4
474c8240 11398@end smallexample
c906108c
SS
11399
11400@noindent
11401stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11402value of the assignment expression (which is 4).
c906108c
SS
11403@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11404information on operators in supported languages.
c906108c
SS
11405
11406@kindex set variable
11407@cindex variables, setting
11408If you are not interested in seeing the value of the assignment, use the
11409@code{set} command instead of the @code{print} command. @code{set} is
11410really the same as @code{print} except that the expression's value is
11411not printed and is not put in the value history (@pxref{Value History,
79a6e687 11412,Value History}). The expression is evaluated only for its effects.
c906108c 11413
c906108c
SS
11414If the beginning of the argument string of the @code{set} command
11415appears identical to a @code{set} subcommand, use the @code{set
11416variable} command instead of just @code{set}. This command is identical
11417to @code{set} except for its lack of subcommands. For example, if your
11418program has a variable @code{width}, you get an error if you try to set
11419a new value with just @samp{set width=13}, because @value{GDBN} has the
11420command @code{set width}:
11421
474c8240 11422@smallexample
c906108c
SS
11423(@value{GDBP}) whatis width
11424type = double
11425(@value{GDBP}) p width
11426$4 = 13
11427(@value{GDBP}) set width=47
11428Invalid syntax in expression.
474c8240 11429@end smallexample
c906108c
SS
11430
11431@noindent
11432The invalid expression, of course, is @samp{=47}. In
11433order to actually set the program's variable @code{width}, use
11434
474c8240 11435@smallexample
c906108c 11436(@value{GDBP}) set var width=47
474c8240 11437@end smallexample
53a5351d 11438
c906108c
SS
11439Because the @code{set} command has many subcommands that can conflict
11440with the names of program variables, it is a good idea to use the
11441@code{set variable} command instead of just @code{set}. For example, if
11442your program has a variable @code{g}, you run into problems if you try
11443to set a new value with just @samp{set g=4}, because @value{GDBN} has
11444the command @code{set gnutarget}, abbreviated @code{set g}:
11445
474c8240 11446@smallexample
c906108c
SS
11447@group
11448(@value{GDBP}) whatis g
11449type = double
11450(@value{GDBP}) p g
11451$1 = 1
11452(@value{GDBP}) set g=4
2df3850c 11453(@value{GDBP}) p g
c906108c
SS
11454$2 = 1
11455(@value{GDBP}) r
11456The program being debugged has been started already.
11457Start it from the beginning? (y or n) y
11458Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11459"/home/smith/cc_progs/a.out": can't open to read symbols:
11460 Invalid bfd target.
c906108c
SS
11461(@value{GDBP}) show g
11462The current BFD target is "=4".
11463@end group
474c8240 11464@end smallexample
c906108c
SS
11465
11466@noindent
11467The program variable @code{g} did not change, and you silently set the
11468@code{gnutarget} to an invalid value. In order to set the variable
11469@code{g}, use
11470
474c8240 11471@smallexample
c906108c 11472(@value{GDBP}) set var g=4
474c8240 11473@end smallexample
c906108c
SS
11474
11475@value{GDBN} allows more implicit conversions in assignments than C; you can
11476freely store an integer value into a pointer variable or vice versa,
11477and you can convert any structure to any other structure that is the
11478same length or shorter.
11479@comment FIXME: how do structs align/pad in these conversions?
11480@comment /doc@cygnus.com 18dec1990
11481
11482To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11483construct to generate a value of specified type at a specified address
11484(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11485to memory location @code{0x83040} as an integer (which implies a certain size
11486and representation in memory), and
11487
474c8240 11488@smallexample
c906108c 11489set @{int@}0x83040 = 4
474c8240 11490@end smallexample
c906108c
SS
11491
11492@noindent
11493stores the value 4 into that memory location.
11494
6d2ebf8b 11495@node Jumping
79a6e687 11496@section Continuing at a Different Address
c906108c
SS
11497
11498Ordinarily, when you continue your program, you do so at the place where
11499it stopped, with the @code{continue} command. You can instead continue at
11500an address of your own choosing, with the following commands:
11501
11502@table @code
11503@kindex jump
11504@item jump @var{linespec}
2a25a5ba
EZ
11505@itemx jump @var{location}
11506Resume execution at line @var{linespec} or at address given by
11507@var{location}. Execution stops again immediately if there is a
11508breakpoint there. @xref{Specify Location}, for a description of the
11509different forms of @var{linespec} and @var{location}. It is common
11510practice to use the @code{tbreak} command in conjunction with
11511@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11512
11513The @code{jump} command does not change the current stack frame, or
11514the stack pointer, or the contents of any memory location or any
11515register other than the program counter. If line @var{linespec} is in
11516a different function from the one currently executing, the results may
11517be bizarre if the two functions expect different patterns of arguments or
11518of local variables. For this reason, the @code{jump} command requests
11519confirmation if the specified line is not in the function currently
11520executing. However, even bizarre results are predictable if you are
11521well acquainted with the machine-language code of your program.
c906108c
SS
11522@end table
11523
c906108c 11524@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11525On many systems, you can get much the same effect as the @code{jump}
11526command by storing a new value into the register @code{$pc}. The
11527difference is that this does not start your program running; it only
11528changes the address of where it @emph{will} run when you continue. For
11529example,
c906108c 11530
474c8240 11531@smallexample
c906108c 11532set $pc = 0x485
474c8240 11533@end smallexample
c906108c
SS
11534
11535@noindent
11536makes the next @code{continue} command or stepping command execute at
11537address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11538@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11539
11540The most common occasion to use the @code{jump} command is to back
11541up---perhaps with more breakpoints set---over a portion of a program
11542that has already executed, in order to examine its execution in more
11543detail.
11544
c906108c 11545@c @group
6d2ebf8b 11546@node Signaling
79a6e687 11547@section Giving your Program a Signal
9c16f35a 11548@cindex deliver a signal to a program
c906108c
SS
11549
11550@table @code
11551@kindex signal
11552@item signal @var{signal}
11553Resume execution where your program stopped, but immediately give it the
11554signal @var{signal}. @var{signal} can be the name or the number of a
11555signal. For example, on many systems @code{signal 2} and @code{signal
11556SIGINT} are both ways of sending an interrupt signal.
11557
11558Alternatively, if @var{signal} is zero, continue execution without
11559giving a signal. This is useful when your program stopped on account of
11560a signal and would ordinary see the signal when resumed with the
11561@code{continue} command; @samp{signal 0} causes it to resume without a
11562signal.
11563
11564@code{signal} does not repeat when you press @key{RET} a second time
11565after executing the command.
11566@end table
11567@c @end group
11568
11569Invoking the @code{signal} command is not the same as invoking the
11570@code{kill} utility from the shell. Sending a signal with @code{kill}
11571causes @value{GDBN} to decide what to do with the signal depending on
11572the signal handling tables (@pxref{Signals}). The @code{signal} command
11573passes the signal directly to your program.
11574
c906108c 11575
6d2ebf8b 11576@node Returning
79a6e687 11577@section Returning from a Function
c906108c
SS
11578
11579@table @code
11580@cindex returning from a function
11581@kindex return
11582@item return
11583@itemx return @var{expression}
11584You can cancel execution of a function call with the @code{return}
11585command. If you give an
11586@var{expression} argument, its value is used as the function's return
11587value.
11588@end table
11589
11590When you use @code{return}, @value{GDBN} discards the selected stack frame
11591(and all frames within it). You can think of this as making the
11592discarded frame return prematurely. If you wish to specify a value to
11593be returned, give that value as the argument to @code{return}.
11594
11595This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11596Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11597innermost remaining frame. That frame becomes selected. The
11598specified value is stored in the registers used for returning values
11599of functions.
11600
11601The @code{return} command does not resume execution; it leaves the
11602program stopped in the state that would exist if the function had just
11603returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11604and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11605selected stack frame returns naturally.
11606
6d2ebf8b 11607@node Calling
79a6e687 11608@section Calling Program Functions
c906108c 11609
f8568604 11610@table @code
c906108c 11611@cindex calling functions
f8568604
EZ
11612@cindex inferior functions, calling
11613@item print @var{expr}
d3e8051b 11614Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11615@var{expr} may include calls to functions in the program being
11616debugged.
11617
c906108c 11618@kindex call
c906108c
SS
11619@item call @var{expr}
11620Evaluate the expression @var{expr} without displaying @code{void}
11621returned values.
c906108c
SS
11622
11623You can use this variant of the @code{print} command if you want to
f8568604
EZ
11624execute a function from your program that does not return anything
11625(a.k.a.@: @dfn{a void function}), but without cluttering the output
11626with @code{void} returned values that @value{GDBN} will otherwise
11627print. If the result is not void, it is printed and saved in the
11628value history.
11629@end table
11630
9c16f35a
EZ
11631It is possible for the function you call via the @code{print} or
11632@code{call} command to generate a signal (e.g., if there's a bug in
11633the function, or if you passed it incorrect arguments). What happens
11634in that case is controlled by the @code{set unwindonsignal} command.
11635
11636@table @code
11637@item set unwindonsignal
11638@kindex set unwindonsignal
11639@cindex unwind stack in called functions
11640@cindex call dummy stack unwinding
11641Set unwinding of the stack if a signal is received while in a function
11642that @value{GDBN} called in the program being debugged. If set to on,
11643@value{GDBN} unwinds the stack it created for the call and restores
11644the context to what it was before the call. If set to off (the
11645default), @value{GDBN} stops in the frame where the signal was
11646received.
11647
11648@item show unwindonsignal
11649@kindex show unwindonsignal
11650Show the current setting of stack unwinding in the functions called by
11651@value{GDBN}.
11652@end table
11653
f8568604
EZ
11654@cindex weak alias functions
11655Sometimes, a function you wish to call is actually a @dfn{weak alias}
11656for another function. In such case, @value{GDBN} might not pick up
11657the type information, including the types of the function arguments,
11658which causes @value{GDBN} to call the inferior function incorrectly.
11659As a result, the called function will function erroneously and may
11660even crash. A solution to that is to use the name of the aliased
11661function instead.
c906108c 11662
6d2ebf8b 11663@node Patching
79a6e687 11664@section Patching Programs
7a292a7a 11665
c906108c
SS
11666@cindex patching binaries
11667@cindex writing into executables
c906108c 11668@cindex writing into corefiles
c906108c 11669
7a292a7a
SS
11670By default, @value{GDBN} opens the file containing your program's
11671executable code (or the corefile) read-only. This prevents accidental
11672alterations to machine code; but it also prevents you from intentionally
11673patching your program's binary.
c906108c
SS
11674
11675If you'd like to be able to patch the binary, you can specify that
11676explicitly with the @code{set write} command. For example, you might
11677want to turn on internal debugging flags, or even to make emergency
11678repairs.
11679
11680@table @code
11681@kindex set write
11682@item set write on
11683@itemx set write off
7a292a7a
SS
11684If you specify @samp{set write on}, @value{GDBN} opens executable and
11685core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11686off} (the default), @value{GDBN} opens them read-only.
11687
11688If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11689@code{exec-file} or @code{core-file} command) after changing @code{set
11690write}, for your new setting to take effect.
c906108c
SS
11691
11692@item show write
11693@kindex show write
7a292a7a
SS
11694Display whether executable files and core files are opened for writing
11695as well as reading.
c906108c
SS
11696@end table
11697
6d2ebf8b 11698@node GDB Files
c906108c
SS
11699@chapter @value{GDBN} Files
11700
7a292a7a
SS
11701@value{GDBN} needs to know the file name of the program to be debugged,
11702both in order to read its symbol table and in order to start your
11703program. To debug a core dump of a previous run, you must also tell
11704@value{GDBN} the name of the core dump file.
c906108c
SS
11705
11706@menu
11707* Files:: Commands to specify files
5b5d99cf 11708* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11709* Symbol Errors:: Errors reading symbol files
11710@end menu
11711
6d2ebf8b 11712@node Files
79a6e687 11713@section Commands to Specify Files
c906108c 11714
7a292a7a 11715@cindex symbol table
c906108c 11716@cindex core dump file
7a292a7a
SS
11717
11718You may want to specify executable and core dump file names. The usual
11719way to do this is at start-up time, using the arguments to
11720@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11721Out of @value{GDBN}}).
c906108c
SS
11722
11723Occasionally it is necessary to change to a different file during a
397ca115
EZ
11724@value{GDBN} session. Or you may run @value{GDBN} and forget to
11725specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11726via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11727Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11728new files are useful.
c906108c
SS
11729
11730@table @code
11731@cindex executable file
11732@kindex file
11733@item file @var{filename}
11734Use @var{filename} as the program to be debugged. It is read for its
11735symbols and for the contents of pure memory. It is also the program
11736executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11737directory and the file is not found in the @value{GDBN} working directory,
11738@value{GDBN} uses the environment variable @code{PATH} as a list of
11739directories to search, just as the shell does when looking for a program
11740to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11741and your program, using the @code{path} command.
11742
fc8be69e
EZ
11743@cindex unlinked object files
11744@cindex patching object files
11745You can load unlinked object @file{.o} files into @value{GDBN} using
11746the @code{file} command. You will not be able to ``run'' an object
11747file, but you can disassemble functions and inspect variables. Also,
11748if the underlying BFD functionality supports it, you could use
11749@kbd{gdb -write} to patch object files using this technique. Note
11750that @value{GDBN} can neither interpret nor modify relocations in this
11751case, so branches and some initialized variables will appear to go to
11752the wrong place. But this feature is still handy from time to time.
11753
c906108c
SS
11754@item file
11755@code{file} with no argument makes @value{GDBN} discard any information it
11756has on both executable file and the symbol table.
11757
11758@kindex exec-file
11759@item exec-file @r{[} @var{filename} @r{]}
11760Specify that the program to be run (but not the symbol table) is found
11761in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11762if necessary to locate your program. Omitting @var{filename} means to
11763discard information on the executable file.
11764
11765@kindex symbol-file
11766@item symbol-file @r{[} @var{filename} @r{]}
11767Read symbol table information from file @var{filename}. @code{PATH} is
11768searched when necessary. Use the @code{file} command to get both symbol
11769table and program to run from the same file.
11770
11771@code{symbol-file} with no argument clears out @value{GDBN} information on your
11772program's symbol table.
11773
ae5a43e0
DJ
11774The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11775some breakpoints and auto-display expressions. This is because they may
11776contain pointers to the internal data recording symbols and data types,
11777which are part of the old symbol table data being discarded inside
11778@value{GDBN}.
c906108c
SS
11779
11780@code{symbol-file} does not repeat if you press @key{RET} again after
11781executing it once.
11782
11783When @value{GDBN} is configured for a particular environment, it
11784understands debugging information in whatever format is the standard
11785generated for that environment; you may use either a @sc{gnu} compiler, or
11786other compilers that adhere to the local conventions.
c906108c 11787Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11788using @code{@value{NGCC}} you can generate debugging information for
c906108c 11789optimized code.
c906108c
SS
11790
11791For most kinds of object files, with the exception of old SVR3 systems
11792using COFF, the @code{symbol-file} command does not normally read the
11793symbol table in full right away. Instead, it scans the symbol table
11794quickly to find which source files and which symbols are present. The
11795details are read later, one source file at a time, as they are needed.
11796
11797The purpose of this two-stage reading strategy is to make @value{GDBN}
11798start up faster. For the most part, it is invisible except for
11799occasional pauses while the symbol table details for a particular source
11800file are being read. (The @code{set verbose} command can turn these
11801pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11802Warnings and Messages}.)
c906108c 11803
c906108c
SS
11804We have not implemented the two-stage strategy for COFF yet. When the
11805symbol table is stored in COFF format, @code{symbol-file} reads the
11806symbol table data in full right away. Note that ``stabs-in-COFF''
11807still does the two-stage strategy, since the debug info is actually
11808in stabs format.
11809
11810@kindex readnow
11811@cindex reading symbols immediately
11812@cindex symbols, reading immediately
a94ab193
EZ
11813@item symbol-file @var{filename} @r{[} -readnow @r{]}
11814@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11815You can override the @value{GDBN} two-stage strategy for reading symbol
11816tables by using the @samp{-readnow} option with any of the commands that
11817load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11818entire symbol table available.
c906108c 11819
c906108c
SS
11820@c FIXME: for now no mention of directories, since this seems to be in
11821@c flux. 13mar1992 status is that in theory GDB would look either in
11822@c current dir or in same dir as myprog; but issues like competing
11823@c GDB's, or clutter in system dirs, mean that in practice right now
11824@c only current dir is used. FFish says maybe a special GDB hierarchy
11825@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11826@c files.
11827
c906108c 11828@kindex core-file
09d4efe1 11829@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11830@itemx core
c906108c
SS
11831Specify the whereabouts of a core dump file to be used as the ``contents
11832of memory''. Traditionally, core files contain only some parts of the
11833address space of the process that generated them; @value{GDBN} can access the
11834executable file itself for other parts.
11835
11836@code{core-file} with no argument specifies that no core file is
11837to be used.
11838
11839Note that the core file is ignored when your program is actually running
7a292a7a
SS
11840under @value{GDBN}. So, if you have been running your program and you
11841wish to debug a core file instead, you must kill the subprocess in which
11842the program is running. To do this, use the @code{kill} command
79a6e687 11843(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11844
c906108c
SS
11845@kindex add-symbol-file
11846@cindex dynamic linking
11847@item add-symbol-file @var{filename} @var{address}
a94ab193 11848@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11849@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11850The @code{add-symbol-file} command reads additional symbol table
11851information from the file @var{filename}. You would use this command
11852when @var{filename} has been dynamically loaded (by some other means)
11853into the program that is running. @var{address} should be the memory
11854address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11855this out for itself. You can additionally specify an arbitrary number
11856of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11857section name and base address for that section. You can specify any
11858@var{address} as an expression.
c906108c
SS
11859
11860The symbol table of the file @var{filename} is added to the symbol table
11861originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11862@code{add-symbol-file} command any number of times; the new symbol data
11863thus read keeps adding to the old. To discard all old symbol data
11864instead, use the @code{symbol-file} command without any arguments.
c906108c 11865
17d9d558
JB
11866@cindex relocatable object files, reading symbols from
11867@cindex object files, relocatable, reading symbols from
11868@cindex reading symbols from relocatable object files
11869@cindex symbols, reading from relocatable object files
11870@cindex @file{.o} files, reading symbols from
11871Although @var{filename} is typically a shared library file, an
11872executable file, or some other object file which has been fully
11873relocated for loading into a process, you can also load symbolic
11874information from relocatable @file{.o} files, as long as:
11875
11876@itemize @bullet
11877@item
11878the file's symbolic information refers only to linker symbols defined in
11879that file, not to symbols defined by other object files,
11880@item
11881every section the file's symbolic information refers to has actually
11882been loaded into the inferior, as it appears in the file, and
11883@item
11884you can determine the address at which every section was loaded, and
11885provide these to the @code{add-symbol-file} command.
11886@end itemize
11887
11888@noindent
11889Some embedded operating systems, like Sun Chorus and VxWorks, can load
11890relocatable files into an already running program; such systems
11891typically make the requirements above easy to meet. However, it's
11892important to recognize that many native systems use complex link
49efadf5 11893procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11894assembly, for example) that make the requirements difficult to meet. In
11895general, one cannot assume that using @code{add-symbol-file} to read a
11896relocatable object file's symbolic information will have the same effect
11897as linking the relocatable object file into the program in the normal
11898way.
11899
c906108c
SS
11900@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11901
c45da7e6
EZ
11902@kindex add-symbol-file-from-memory
11903@cindex @code{syscall DSO}
11904@cindex load symbols from memory
11905@item add-symbol-file-from-memory @var{address}
11906Load symbols from the given @var{address} in a dynamically loaded
11907object file whose image is mapped directly into the inferior's memory.
11908For example, the Linux kernel maps a @code{syscall DSO} into each
11909process's address space; this DSO provides kernel-specific code for
11910some system calls. The argument can be any expression whose
11911evaluation yields the address of the file's shared object file header.
11912For this command to work, you must have used @code{symbol-file} or
11913@code{exec-file} commands in advance.
11914
09d4efe1
EZ
11915@kindex add-shared-symbol-files
11916@kindex assf
11917@item add-shared-symbol-files @var{library-file}
11918@itemx assf @var{library-file}
11919The @code{add-shared-symbol-files} command can currently be used only
11920in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11921alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11922@value{GDBN} automatically looks for shared libraries, however if
11923@value{GDBN} does not find yours, you can invoke
11924@code{add-shared-symbol-files}. It takes one argument: the shared
11925library's file name. @code{assf} is a shorthand alias for
11926@code{add-shared-symbol-files}.
c906108c 11927
c906108c 11928@kindex section
09d4efe1
EZ
11929@item section @var{section} @var{addr}
11930The @code{section} command changes the base address of the named
11931@var{section} of the exec file to @var{addr}. This can be used if the
11932exec file does not contain section addresses, (such as in the
11933@code{a.out} format), or when the addresses specified in the file
11934itself are wrong. Each section must be changed separately. The
11935@code{info files} command, described below, lists all the sections and
11936their addresses.
c906108c
SS
11937
11938@kindex info files
11939@kindex info target
11940@item info files
11941@itemx info target
7a292a7a
SS
11942@code{info files} and @code{info target} are synonymous; both print the
11943current target (@pxref{Targets, ,Specifying a Debugging Target}),
11944including the names of the executable and core dump files currently in
11945use by @value{GDBN}, and the files from which symbols were loaded. The
11946command @code{help target} lists all possible targets rather than
11947current ones.
11948
fe95c787
MS
11949@kindex maint info sections
11950@item maint info sections
11951Another command that can give you extra information about program sections
11952is @code{maint info sections}. In addition to the section information
11953displayed by @code{info files}, this command displays the flags and file
11954offset of each section in the executable and core dump files. In addition,
11955@code{maint info sections} provides the following command options (which
11956may be arbitrarily combined):
11957
11958@table @code
11959@item ALLOBJ
11960Display sections for all loaded object files, including shared libraries.
11961@item @var{sections}
6600abed 11962Display info only for named @var{sections}.
fe95c787
MS
11963@item @var{section-flags}
11964Display info only for sections for which @var{section-flags} are true.
11965The section flags that @value{GDBN} currently knows about are:
11966@table @code
11967@item ALLOC
11968Section will have space allocated in the process when loaded.
11969Set for all sections except those containing debug information.
11970@item LOAD
11971Section will be loaded from the file into the child process memory.
11972Set for pre-initialized code and data, clear for @code{.bss} sections.
11973@item RELOC
11974Section needs to be relocated before loading.
11975@item READONLY
11976Section cannot be modified by the child process.
11977@item CODE
11978Section contains executable code only.
6600abed 11979@item DATA
fe95c787
MS
11980Section contains data only (no executable code).
11981@item ROM
11982Section will reside in ROM.
11983@item CONSTRUCTOR
11984Section contains data for constructor/destructor lists.
11985@item HAS_CONTENTS
11986Section is not empty.
11987@item NEVER_LOAD
11988An instruction to the linker to not output the section.
11989@item COFF_SHARED_LIBRARY
11990A notification to the linker that the section contains
11991COFF shared library information.
11992@item IS_COMMON
11993Section contains common symbols.
11994@end table
11995@end table
6763aef9 11996@kindex set trust-readonly-sections
9c16f35a 11997@cindex read-only sections
6763aef9
MS
11998@item set trust-readonly-sections on
11999Tell @value{GDBN} that readonly sections in your object file
6ca652b0 12000really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
12001In that case, @value{GDBN} can fetch values from these sections
12002out of the object file, rather than from the target program.
12003For some targets (notably embedded ones), this can be a significant
12004enhancement to debugging performance.
12005
12006The default is off.
12007
12008@item set trust-readonly-sections off
15110bc3 12009Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
12010the contents of the section might change while the program is running,
12011and must therefore be fetched from the target when needed.
9c16f35a
EZ
12012
12013@item show trust-readonly-sections
12014Show the current setting of trusting readonly sections.
c906108c
SS
12015@end table
12016
12017All file-specifying commands allow both absolute and relative file names
12018as arguments. @value{GDBN} always converts the file name to an absolute file
12019name and remembers it that way.
12020
c906108c 12021@cindex shared libraries
9cceb671
DJ
12022@anchor{Shared Libraries}
12023@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 12024and IBM RS/6000 AIX shared libraries.
53a5351d 12025
9cceb671
DJ
12026On MS-Windows @value{GDBN} must be linked with the Expat library to support
12027shared libraries. @xref{Expat}.
12028
c906108c
SS
12029@value{GDBN} automatically loads symbol definitions from shared libraries
12030when you use the @code{run} command, or when you examine a core file.
12031(Before you issue the @code{run} command, @value{GDBN} does not understand
12032references to a function in a shared library, however---unless you are
12033debugging a core file).
53a5351d
JM
12034
12035On HP-UX, if the program loads a library explicitly, @value{GDBN}
12036automatically loads the symbols at the time of the @code{shl_load} call.
12037
c906108c
SS
12038@c FIXME: some @value{GDBN} release may permit some refs to undef
12039@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
12040@c FIXME...lib; check this from time to time when updating manual
12041
b7209cb4
FF
12042There are times, however, when you may wish to not automatically load
12043symbol definitions from shared libraries, such as when they are
12044particularly large or there are many of them.
12045
12046To control the automatic loading of shared library symbols, use the
12047commands:
12048
12049@table @code
12050@kindex set auto-solib-add
12051@item set auto-solib-add @var{mode}
12052If @var{mode} is @code{on}, symbols from all shared object libraries
12053will be loaded automatically when the inferior begins execution, you
12054attach to an independently started inferior, or when the dynamic linker
12055informs @value{GDBN} that a new library has been loaded. If @var{mode}
12056is @code{off}, symbols must be loaded manually, using the
12057@code{sharedlibrary} command. The default value is @code{on}.
12058
dcaf7c2c
EZ
12059@cindex memory used for symbol tables
12060If your program uses lots of shared libraries with debug info that
12061takes large amounts of memory, you can decrease the @value{GDBN}
12062memory footprint by preventing it from automatically loading the
12063symbols from shared libraries. To that end, type @kbd{set
12064auto-solib-add off} before running the inferior, then load each
12065library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 12066@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
12067the libraries whose symbols you want to be loaded.
12068
b7209cb4
FF
12069@kindex show auto-solib-add
12070@item show auto-solib-add
12071Display the current autoloading mode.
12072@end table
12073
c45da7e6 12074@cindex load shared library
b7209cb4
FF
12075To explicitly load shared library symbols, use the @code{sharedlibrary}
12076command:
12077
c906108c
SS
12078@table @code
12079@kindex info sharedlibrary
12080@kindex info share
12081@item info share
12082@itemx info sharedlibrary
12083Print the names of the shared libraries which are currently loaded.
12084
12085@kindex sharedlibrary
12086@kindex share
12087@item sharedlibrary @var{regex}
12088@itemx share @var{regex}
c906108c
SS
12089Load shared object library symbols for files matching a
12090Unix regular expression.
12091As with files loaded automatically, it only loads shared libraries
12092required by your program for a core file or after typing @code{run}. If
12093@var{regex} is omitted all shared libraries required by your program are
12094loaded.
c45da7e6
EZ
12095
12096@item nosharedlibrary
12097@kindex nosharedlibrary
12098@cindex unload symbols from shared libraries
12099Unload all shared object library symbols. This discards all symbols
12100that have been loaded from all shared libraries. Symbols from shared
12101libraries that were loaded by explicit user requests are not
12102discarded.
c906108c
SS
12103@end table
12104
721c2651
EZ
12105Sometimes you may wish that @value{GDBN} stops and gives you control
12106when any of shared library events happen. Use the @code{set
12107stop-on-solib-events} command for this:
12108
12109@table @code
12110@item set stop-on-solib-events
12111@kindex set stop-on-solib-events
12112This command controls whether @value{GDBN} should give you control
12113when the dynamic linker notifies it about some shared library event.
12114The most common event of interest is loading or unloading of a new
12115shared library.
12116
12117@item show stop-on-solib-events
12118@kindex show stop-on-solib-events
12119Show whether @value{GDBN} stops and gives you control when shared
12120library events happen.
12121@end table
12122
f5ebfba0
DJ
12123Shared libraries are also supported in many cross or remote debugging
12124configurations. A copy of the target's libraries need to be present on the
12125host system; they need to be the same as the target libraries, although the
12126copies on the target can be stripped as long as the copies on the host are
12127not.
12128
59b7b46f
EZ
12129@cindex where to look for shared libraries
12130For remote debugging, you need to tell @value{GDBN} where the target
12131libraries are, so that it can load the correct copies---otherwise, it
12132may try to load the host's libraries. @value{GDBN} has two variables
12133to specify the search directories for target libraries.
f5ebfba0
DJ
12134
12135@table @code
59b7b46f 12136@cindex prefix for shared library file names
f822c95b 12137@cindex system root, alternate
f5ebfba0 12138@kindex set solib-absolute-prefix
f822c95b
DJ
12139@kindex set sysroot
12140@item set sysroot @var{path}
12141Use @var{path} as the system root for the program being debugged. Any
12142absolute shared library paths will be prefixed with @var{path}; many
12143runtime loaders store the absolute paths to the shared library in the
12144target program's memory. If you use @code{set sysroot} to find shared
12145libraries, they need to be laid out in the same way that they are on
12146the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12147under @var{path}.
12148
12149The @code{set solib-absolute-prefix} command is an alias for @code{set
12150sysroot}.
12151
12152@cindex default system root
59b7b46f 12153@cindex @samp{--with-sysroot}
f822c95b
DJ
12154You can set the default system root by using the configure-time
12155@samp{--with-sysroot} option. If the system root is inside
12156@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12157@samp{--exec-prefix}), then the default system root will be updated
12158automatically if the installed @value{GDBN} is moved to a new
12159location.
12160
12161@kindex show sysroot
12162@item show sysroot
f5ebfba0
DJ
12163Display the current shared library prefix.
12164
12165@kindex set solib-search-path
12166@item set solib-search-path @var{path}
f822c95b
DJ
12167If this variable is set, @var{path} is a colon-separated list of
12168directories to search for shared libraries. @samp{solib-search-path}
12169is used after @samp{sysroot} fails to locate the library, or if the
12170path to the library is relative instead of absolute. If you want to
12171use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12172@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12173finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12174it to a nonexistent directory may interfere with automatic loading
f822c95b 12175of shared library symbols.
f5ebfba0
DJ
12176
12177@kindex show solib-search-path
12178@item show solib-search-path
12179Display the current shared library search path.
12180@end table
12181
5b5d99cf
JB
12182
12183@node Separate Debug Files
12184@section Debugging Information in Separate Files
12185@cindex separate debugging information files
12186@cindex debugging information in separate files
12187@cindex @file{.debug} subdirectories
12188@cindex debugging information directory, global
12189@cindex global debugging information directory
c7e83d54
EZ
12190@cindex build ID, and separate debugging files
12191@cindex @file{.build-id} directory
5b5d99cf
JB
12192
12193@value{GDBN} allows you to put a program's debugging information in a
12194file separate from the executable itself, in a way that allows
12195@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12196Since debugging information can be very large---sometimes larger
12197than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12198information for their executables in separate files, which users can
12199install only when they need to debug a problem.
12200
c7e83d54
EZ
12201@value{GDBN} supports two ways of specifying the separate debug info
12202file:
5b5d99cf
JB
12203
12204@itemize @bullet
12205@item
c7e83d54
EZ
12206The executable contains a @dfn{debug link} that specifies the name of
12207the separate debug info file. The separate debug file's name is
12208usually @file{@var{executable}.debug}, where @var{executable} is the
12209name of the corresponding executable file without leading directories
12210(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12211debug link specifies a CRC32 checksum for the debug file, which
12212@value{GDBN} uses to validate that the executable and the debug file
12213came from the same build.
12214
12215@item
7e27a47a 12216The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12217also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12218only on some operating systems, notably those which use the ELF format
12219for binary files and the @sc{gnu} Binutils.) For more details about
12220this feature, see the description of the @option{--build-id}
12221command-line option in @ref{Options, , Command Line Options, ld.info,
12222The GNU Linker}. The debug info file's name is not specified
12223explicitly by the build ID, but can be computed from the build ID, see
12224below.
d3750b24
JK
12225@end itemize
12226
c7e83d54
EZ
12227Depending on the way the debug info file is specified, @value{GDBN}
12228uses two different methods of looking for the debug file:
d3750b24
JK
12229
12230@itemize @bullet
12231@item
c7e83d54
EZ
12232For the ``debug link'' method, @value{GDBN} looks up the named file in
12233the directory of the executable file, then in a subdirectory of that
12234directory named @file{.debug}, and finally under the global debug
12235directory, in a subdirectory whose name is identical to the leading
12236directories of the executable's absolute file name.
12237
12238@item
83f83d7f 12239For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12240@file{.build-id} subdirectory of the global debug directory for a file
12241named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12242first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12243are the rest of the bit string. (Real build ID strings are 32 or more
12244hex characters, not 10.)
c7e83d54
EZ
12245@end itemize
12246
12247So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12248@file{/usr/bin/ls}, which has a debug link that specifies the
12249file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12250@code{abcdef1234}. If the global debug directory is
12251@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12252debug information files, in the indicated order:
12253
12254@itemize @minus
12255@item
12256@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12257@item
c7e83d54 12258@file{/usr/bin/ls.debug}
5b5d99cf 12259@item
c7e83d54 12260@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12261@item
c7e83d54 12262@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12263@end itemize
5b5d99cf
JB
12264
12265You can set the global debugging info directory's name, and view the
12266name @value{GDBN} is currently using.
12267
12268@table @code
12269
12270@kindex set debug-file-directory
12271@item set debug-file-directory @var{directory}
12272Set the directory which @value{GDBN} searches for separate debugging
12273information files to @var{directory}.
12274
12275@kindex show debug-file-directory
12276@item show debug-file-directory
12277Show the directory @value{GDBN} searches for separate debugging
12278information files.
12279
12280@end table
12281
12282@cindex @code{.gnu_debuglink} sections
c7e83d54 12283@cindex debug link sections
5b5d99cf
JB
12284A debug link is a special section of the executable file named
12285@code{.gnu_debuglink}. The section must contain:
12286
12287@itemize
12288@item
12289A filename, with any leading directory components removed, followed by
12290a zero byte,
12291@item
12292zero to three bytes of padding, as needed to reach the next four-byte
12293boundary within the section, and
12294@item
12295a four-byte CRC checksum, stored in the same endianness used for the
12296executable file itself. The checksum is computed on the debugging
12297information file's full contents by the function given below, passing
12298zero as the @var{crc} argument.
12299@end itemize
12300
12301Any executable file format can carry a debug link, as long as it can
12302contain a section named @code{.gnu_debuglink} with the contents
12303described above.
12304
d3750b24 12305@cindex @code{.note.gnu.build-id} sections
c7e83d54 12306@cindex build ID sections
7e27a47a
EZ
12307The build ID is a special section in the executable file (and in other
12308ELF binary files that @value{GDBN} may consider). This section is
12309often named @code{.note.gnu.build-id}, but that name is not mandatory.
12310It contains unique identification for the built files---the ID remains
12311the same across multiple builds of the same build tree. The default
12312algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12313content for the build ID string. The same section with an identical
12314value is present in the original built binary with symbols, in its
12315stripped variant, and in the separate debugging information file.
d3750b24 12316
5b5d99cf
JB
12317The debugging information file itself should be an ordinary
12318executable, containing a full set of linker symbols, sections, and
12319debugging information. The sections of the debugging information file
c7e83d54
EZ
12320should have the same names, addresses, and sizes as the original file,
12321but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12322in an ordinary executable.
12323
7e27a47a 12324The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12325@samp{objcopy} utility that can produce
12326the separated executable / debugging information file pairs using the
12327following commands:
12328
12329@smallexample
12330@kbd{objcopy --only-keep-debug foo foo.debug}
12331@kbd{strip -g foo}
c7e83d54
EZ
12332@end smallexample
12333
12334@noindent
12335These commands remove the debugging
83f83d7f
JK
12336information from the executable file @file{foo} and place it in the file
12337@file{foo.debug}. You can use the first, second or both methods to link the
12338two files:
12339
12340@itemize @bullet
12341@item
12342The debug link method needs the following additional command to also leave
12343behind a debug link in @file{foo}:
12344
12345@smallexample
12346@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12347@end smallexample
12348
12349Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12350a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12351foo.debug} has the same functionality as the two @code{objcopy} commands and
12352the @code{ln -s} command above, together.
12353
12354@item
12355Build ID gets embedded into the main executable using @code{ld --build-id} or
12356the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12357compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12358utilities (Binutils) package since version 2.18.
83f83d7f
JK
12359@end itemize
12360
12361@noindent
d3750b24 12362
c7e83d54
EZ
12363Since there are many different ways to compute CRC's for the debug
12364link (different polynomials, reversals, byte ordering, etc.), the
12365simplest way to describe the CRC used in @code{.gnu_debuglink}
12366sections is to give the complete code for a function that computes it:
5b5d99cf 12367
4644b6e3 12368@kindex gnu_debuglink_crc32
5b5d99cf
JB
12369@smallexample
12370unsigned long
12371gnu_debuglink_crc32 (unsigned long crc,
12372 unsigned char *buf, size_t len)
12373@{
12374 static const unsigned long crc32_table[256] =
12375 @{
12376 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12377 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12378 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12379 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12380 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12381 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12382 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12383 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12384 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12385 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12386 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12387 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12388 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12389 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12390 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12391 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12392 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12393 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12394 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12395 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12396 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12397 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12398 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12399 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12400 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12401 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12402 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12403 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12404 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12405 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12406 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12407 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12408 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12409 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12410 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12411 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12412 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12413 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12414 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12415 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12416 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12417 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12418 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12419 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12420 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12421 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12422 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12423 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12424 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12425 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12426 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12427 0x2d02ef8d
12428 @};
12429 unsigned char *end;
12430
12431 crc = ~crc & 0xffffffff;
12432 for (end = buf + len; buf < end; ++buf)
12433 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12434 return ~crc & 0xffffffff;
5b5d99cf
JB
12435@}
12436@end smallexample
12437
c7e83d54
EZ
12438@noindent
12439This computation does not apply to the ``build ID'' method.
12440
5b5d99cf 12441
6d2ebf8b 12442@node Symbol Errors
79a6e687 12443@section Errors Reading Symbol Files
c906108c
SS
12444
12445While reading a symbol file, @value{GDBN} occasionally encounters problems,
12446such as symbol types it does not recognize, or known bugs in compiler
12447output. By default, @value{GDBN} does not notify you of such problems, since
12448they are relatively common and primarily of interest to people
12449debugging compilers. If you are interested in seeing information
12450about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12451only one message about each such type of problem, no matter how many
12452times the problem occurs; or you can ask @value{GDBN} to print more messages,
12453to see how many times the problems occur, with the @code{set
79a6e687
BW
12454complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12455Messages}).
c906108c
SS
12456
12457The messages currently printed, and their meanings, include:
12458
12459@table @code
12460@item inner block not inside outer block in @var{symbol}
12461
12462The symbol information shows where symbol scopes begin and end
12463(such as at the start of a function or a block of statements). This
12464error indicates that an inner scope block is not fully contained
12465in its outer scope blocks.
12466
12467@value{GDBN} circumvents the problem by treating the inner block as if it had
12468the same scope as the outer block. In the error message, @var{symbol}
12469may be shown as ``@code{(don't know)}'' if the outer block is not a
12470function.
12471
12472@item block at @var{address} out of order
12473
12474The symbol information for symbol scope blocks should occur in
12475order of increasing addresses. This error indicates that it does not
12476do so.
12477
12478@value{GDBN} does not circumvent this problem, and has trouble
12479locating symbols in the source file whose symbols it is reading. (You
12480can often determine what source file is affected by specifying
79a6e687
BW
12481@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12482Messages}.)
c906108c
SS
12483
12484@item bad block start address patched
12485
12486The symbol information for a symbol scope block has a start address
12487smaller than the address of the preceding source line. This is known
12488to occur in the SunOS 4.1.1 (and earlier) C compiler.
12489
12490@value{GDBN} circumvents the problem by treating the symbol scope block as
12491starting on the previous source line.
12492
12493@item bad string table offset in symbol @var{n}
12494
12495@cindex foo
12496Symbol number @var{n} contains a pointer into the string table which is
12497larger than the size of the string table.
12498
12499@value{GDBN} circumvents the problem by considering the symbol to have the
12500name @code{foo}, which may cause other problems if many symbols end up
12501with this name.
12502
12503@item unknown symbol type @code{0x@var{nn}}
12504
7a292a7a
SS
12505The symbol information contains new data types that @value{GDBN} does
12506not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12507uncomprehended information, in hexadecimal.
c906108c 12508
7a292a7a
SS
12509@value{GDBN} circumvents the error by ignoring this symbol information.
12510This usually allows you to debug your program, though certain symbols
c906108c 12511are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12512debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12513on @code{complain}, then go up to the function @code{read_dbx_symtab}
12514and examine @code{*bufp} to see the symbol.
c906108c
SS
12515
12516@item stub type has NULL name
c906108c 12517
7a292a7a 12518@value{GDBN} could not find the full definition for a struct or class.
c906108c 12519
7a292a7a 12520@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12521The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12522information that recent versions of the compiler should have output for
12523it.
c906108c
SS
12524
12525@item info mismatch between compiler and debugger
12526
12527@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12528
c906108c
SS
12529@end table
12530
6d2ebf8b 12531@node Targets
c906108c 12532@chapter Specifying a Debugging Target
7a292a7a 12533
c906108c 12534@cindex debugging target
c906108c 12535A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12536
12537Often, @value{GDBN} runs in the same host environment as your program;
12538in that case, the debugging target is specified as a side effect when
12539you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12540flexibility---for example, running @value{GDBN} on a physically separate
12541host, or controlling a standalone system over a serial port or a
53a5351d
JM
12542realtime system over a TCP/IP connection---you can use the @code{target}
12543command to specify one of the target types configured for @value{GDBN}
79a6e687 12544(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12545
a8f24a35
EZ
12546@cindex target architecture
12547It is possible to build @value{GDBN} for several different @dfn{target
12548architectures}. When @value{GDBN} is built like that, you can choose
12549one of the available architectures with the @kbd{set architecture}
12550command.
12551
12552@table @code
12553@kindex set architecture
12554@kindex show architecture
12555@item set architecture @var{arch}
12556This command sets the current target architecture to @var{arch}. The
12557value of @var{arch} can be @code{"auto"}, in addition to one of the
12558supported architectures.
12559
12560@item show architecture
12561Show the current target architecture.
9c16f35a
EZ
12562
12563@item set processor
12564@itemx processor
12565@kindex set processor
12566@kindex show processor
12567These are alias commands for, respectively, @code{set architecture}
12568and @code{show architecture}.
a8f24a35
EZ
12569@end table
12570
c906108c
SS
12571@menu
12572* Active Targets:: Active targets
12573* Target Commands:: Commands for managing targets
c906108c 12574* Byte Order:: Choosing target byte order
c906108c
SS
12575@end menu
12576
6d2ebf8b 12577@node Active Targets
79a6e687 12578@section Active Targets
7a292a7a 12579
c906108c
SS
12580@cindex stacking targets
12581@cindex active targets
12582@cindex multiple targets
12583
c906108c 12584There are three classes of targets: processes, core files, and
7a292a7a
SS
12585executable files. @value{GDBN} can work concurrently on up to three
12586active targets, one in each class. This allows you to (for example)
12587start a process and inspect its activity without abandoning your work on
12588a core file.
c906108c
SS
12589
12590For example, if you execute @samp{gdb a.out}, then the executable file
12591@code{a.out} is the only active target. If you designate a core file as
12592well---presumably from a prior run that crashed and coredumped---then
12593@value{GDBN} has two active targets and uses them in tandem, looking
12594first in the corefile target, then in the executable file, to satisfy
12595requests for memory addresses. (Typically, these two classes of target
12596are complementary, since core files contain only a program's
12597read-write memory---variables and so on---plus machine status, while
12598executable files contain only the program text and initialized data.)
c906108c
SS
12599
12600When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12601target as well. When a process target is active, all @value{GDBN}
12602commands requesting memory addresses refer to that target; addresses in
12603an active core file or executable file target are obscured while the
12604process target is active.
c906108c 12605
7a292a7a 12606Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12607core file or executable target (@pxref{Files, ,Commands to Specify
12608Files}). To specify as a target a process that is already running, use
12609the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12610Process}).
c906108c 12611
6d2ebf8b 12612@node Target Commands
79a6e687 12613@section Commands for Managing Targets
c906108c
SS
12614
12615@table @code
12616@item target @var{type} @var{parameters}
7a292a7a
SS
12617Connects the @value{GDBN} host environment to a target machine or
12618process. A target is typically a protocol for talking to debugging
12619facilities. You use the argument @var{type} to specify the type or
12620protocol of the target machine.
c906108c
SS
12621
12622Further @var{parameters} are interpreted by the target protocol, but
12623typically include things like device names or host names to connect
12624with, process numbers, and baud rates.
c906108c
SS
12625
12626The @code{target} command does not repeat if you press @key{RET} again
12627after executing the command.
12628
12629@kindex help target
12630@item help target
12631Displays the names of all targets available. To display targets
12632currently selected, use either @code{info target} or @code{info files}
79a6e687 12633(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12634
12635@item help target @var{name}
12636Describe a particular target, including any parameters necessary to
12637select it.
12638
12639@kindex set gnutarget
12640@item set gnutarget @var{args}
5d161b24 12641@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12642knows whether it is reading an @dfn{executable},
5d161b24
DB
12643a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12644with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12645with @code{gnutarget} the @code{target} refers to a program, not a machine.
12646
d4f3574e 12647@quotation
c906108c
SS
12648@emph{Warning:} To specify a file format with @code{set gnutarget},
12649you must know the actual BFD name.
d4f3574e 12650@end quotation
c906108c 12651
d4f3574e 12652@noindent
79a6e687 12653@xref{Files, , Commands to Specify Files}.
c906108c 12654
5d161b24 12655@kindex show gnutarget
c906108c
SS
12656@item show gnutarget
12657Use the @code{show gnutarget} command to display what file format
12658@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12659@value{GDBN} will determine the file format for each file automatically,
12660and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12661@end table
12662
4644b6e3 12663@cindex common targets
c906108c
SS
12664Here are some common targets (available, or not, depending on the GDB
12665configuration):
c906108c
SS
12666
12667@table @code
4644b6e3 12668@kindex target
c906108c 12669@item target exec @var{program}
4644b6e3 12670@cindex executable file target
c906108c
SS
12671An executable file. @samp{target exec @var{program}} is the same as
12672@samp{exec-file @var{program}}.
12673
c906108c 12674@item target core @var{filename}
4644b6e3 12675@cindex core dump file target
c906108c
SS
12676A core dump file. @samp{target core @var{filename}} is the same as
12677@samp{core-file @var{filename}}.
c906108c 12678
1a10341b 12679@item target remote @var{medium}
4644b6e3 12680@cindex remote target
1a10341b
JB
12681A remote system connected to @value{GDBN} via a serial line or network
12682connection. This command tells @value{GDBN} to use its own remote
12683protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12684
12685For example, if you have a board connected to @file{/dev/ttya} on the
12686machine running @value{GDBN}, you could say:
12687
12688@smallexample
12689target remote /dev/ttya
12690@end smallexample
12691
12692@code{target remote} supports the @code{load} command. This is only
12693useful if you have some other way of getting the stub to the target
12694system, and you can put it somewhere in memory where it won't get
12695clobbered by the download.
c906108c 12696
c906108c 12697@item target sim
4644b6e3 12698@cindex built-in simulator target
2df3850c 12699Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12700In general,
474c8240 12701@smallexample
104c1213
JM
12702 target sim
12703 load
12704 run
474c8240 12705@end smallexample
d4f3574e 12706@noindent
104c1213 12707works; however, you cannot assume that a specific memory map, device
d4f3574e 12708drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12709provide these. For info about any processor-specific simulator details,
12710see the appropriate section in @ref{Embedded Processors, ,Embedded
12711Processors}.
12712
c906108c
SS
12713@end table
12714
104c1213 12715Some configurations may include these targets as well:
c906108c
SS
12716
12717@table @code
12718
c906108c 12719@item target nrom @var{dev}
4644b6e3 12720@cindex NetROM ROM emulator target
c906108c
SS
12721NetROM ROM emulator. This target only supports downloading.
12722
c906108c
SS
12723@end table
12724
5d161b24 12725Different targets are available on different configurations of @value{GDBN};
c906108c 12726your configuration may have more or fewer targets.
c906108c 12727
721c2651
EZ
12728Many remote targets require you to download the executable's code once
12729you've successfully established a connection. You may wish to control
3d00d119
DJ
12730various aspects of this process.
12731
12732@table @code
721c2651
EZ
12733
12734@item set hash
12735@kindex set hash@r{, for remote monitors}
12736@cindex hash mark while downloading
12737This command controls whether a hash mark @samp{#} is displayed while
12738downloading a file to the remote monitor. If on, a hash mark is
12739displayed after each S-record is successfully downloaded to the
12740monitor.
12741
12742@item show hash
12743@kindex show hash@r{, for remote monitors}
12744Show the current status of displaying the hash mark.
12745
12746@item set debug monitor
12747@kindex set debug monitor
12748@cindex display remote monitor communications
12749Enable or disable display of communications messages between
12750@value{GDBN} and the remote monitor.
12751
12752@item show debug monitor
12753@kindex show debug monitor
12754Show the current status of displaying communications between
12755@value{GDBN} and the remote monitor.
a8f24a35 12756@end table
c906108c
SS
12757
12758@table @code
12759
12760@kindex load @var{filename}
12761@item load @var{filename}
8edfe269 12762@anchor{load}
c906108c
SS
12763Depending on what remote debugging facilities are configured into
12764@value{GDBN}, the @code{load} command may be available. Where it exists, it
12765is meant to make @var{filename} (an executable) available for debugging
12766on the remote system---by downloading, or dynamic linking, for example.
12767@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12768the @code{add-symbol-file} command.
12769
12770If your @value{GDBN} does not have a @code{load} command, attempting to
12771execute it gets the error message ``@code{You can't do that when your
12772target is @dots{}}''
c906108c
SS
12773
12774The file is loaded at whatever address is specified in the executable.
12775For some object file formats, you can specify the load address when you
12776link the program; for other formats, like a.out, the object file format
12777specifies a fixed address.
12778@c FIXME! This would be a good place for an xref to the GNU linker doc.
12779
68437a39
DJ
12780Depending on the remote side capabilities, @value{GDBN} may be able to
12781load programs into flash memory.
12782
c906108c
SS
12783@code{load} does not repeat if you press @key{RET} again after using it.
12784@end table
12785
6d2ebf8b 12786@node Byte Order
79a6e687 12787@section Choosing Target Byte Order
7a292a7a 12788
c906108c
SS
12789@cindex choosing target byte order
12790@cindex target byte order
c906108c 12791
172c2a43 12792Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12793offer the ability to run either big-endian or little-endian byte
12794orders. Usually the executable or symbol will include a bit to
12795designate the endian-ness, and you will not need to worry about
12796which to use. However, you may still find it useful to adjust
d4f3574e 12797@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12798
12799@table @code
4644b6e3 12800@kindex set endian
c906108c
SS
12801@item set endian big
12802Instruct @value{GDBN} to assume the target is big-endian.
12803
c906108c
SS
12804@item set endian little
12805Instruct @value{GDBN} to assume the target is little-endian.
12806
c906108c
SS
12807@item set endian auto
12808Instruct @value{GDBN} to use the byte order associated with the
12809executable.
12810
12811@item show endian
12812Display @value{GDBN}'s current idea of the target byte order.
12813
12814@end table
12815
12816Note that these commands merely adjust interpretation of symbolic
12817data on the host, and that they have absolutely no effect on the
12818target system.
12819
ea35711c
DJ
12820
12821@node Remote Debugging
12822@chapter Debugging Remote Programs
c906108c
SS
12823@cindex remote debugging
12824
12825If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12826@value{GDBN} in the usual way, it is often useful to use remote debugging.
12827For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12828or on a small system which does not have a general purpose operating system
12829powerful enough to run a full-featured debugger.
12830
12831Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12832to make this work with particular debugging targets. In addition,
5d161b24 12833@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12834but not specific to any particular target system) which you can use if you
12835write the remote stubs---the code that runs on the remote system to
12836communicate with @value{GDBN}.
12837
12838Other remote targets may be available in your
12839configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12840
6b2f586d 12841@menu
07f31aa6 12842* Connecting:: Connecting to a remote target
a6b151f1 12843* File Transfer:: Sending files to a remote system
6b2f586d 12844* Server:: Using the gdbserver program
79a6e687
BW
12845* Remote Configuration:: Remote configuration
12846* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12847@end menu
12848
07f31aa6 12849@node Connecting
79a6e687 12850@section Connecting to a Remote Target
07f31aa6
DJ
12851
12852On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12853your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12854Start up @value{GDBN} as usual, using the name of the local copy of your
12855program as the first argument.
12856
86941c27
JB
12857@cindex @code{target remote}
12858@value{GDBN} can communicate with the target over a serial line, or
12859over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12860each case, @value{GDBN} uses the same protocol for debugging your
12861program; only the medium carrying the debugging packets varies. The
12862@code{target remote} command establishes a connection to the target.
12863Its arguments indicate which medium to use:
12864
12865@table @code
12866
12867@item target remote @var{serial-device}
07f31aa6 12868@cindex serial line, @code{target remote}
86941c27
JB
12869Use @var{serial-device} to communicate with the target. For example,
12870to use a serial line connected to the device named @file{/dev/ttyb}:
12871
12872@smallexample
12873target remote /dev/ttyb
12874@end smallexample
12875
07f31aa6
DJ
12876If you're using a serial line, you may want to give @value{GDBN} the
12877@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12878(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12879@code{target} command.
07f31aa6 12880
86941c27
JB
12881@item target remote @code{@var{host}:@var{port}}
12882@itemx target remote @code{tcp:@var{host}:@var{port}}
12883@cindex @acronym{TCP} port, @code{target remote}
12884Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12885The @var{host} may be either a host name or a numeric @acronym{IP}
12886address; @var{port} must be a decimal number. The @var{host} could be
12887the target machine itself, if it is directly connected to the net, or
12888it might be a terminal server which in turn has a serial line to the
12889target.
07f31aa6 12890
86941c27
JB
12891For example, to connect to port 2828 on a terminal server named
12892@code{manyfarms}:
07f31aa6
DJ
12893
12894@smallexample
12895target remote manyfarms:2828
12896@end smallexample
12897
86941c27
JB
12898If your remote target is actually running on the same machine as your
12899debugger session (e.g.@: a simulator for your target running on the
12900same host), you can omit the hostname. For example, to connect to
12901port 1234 on your local machine:
07f31aa6
DJ
12902
12903@smallexample
12904target remote :1234
12905@end smallexample
12906@noindent
12907
12908Note that the colon is still required here.
12909
86941c27
JB
12910@item target remote @code{udp:@var{host}:@var{port}}
12911@cindex @acronym{UDP} port, @code{target remote}
12912Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12913connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12914
12915@smallexample
12916target remote udp:manyfarms:2828
12917@end smallexample
12918
86941c27
JB
12919When using a @acronym{UDP} connection for remote debugging, you should
12920keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12921can silently drop packets on busy or unreliable networks, which will
12922cause havoc with your debugging session.
12923
66b8c7f6
JB
12924@item target remote | @var{command}
12925@cindex pipe, @code{target remote} to
12926Run @var{command} in the background and communicate with it using a
12927pipe. The @var{command} is a shell command, to be parsed and expanded
12928by the system's command shell, @code{/bin/sh}; it should expect remote
12929protocol packets on its standard input, and send replies on its
12930standard output. You could use this to run a stand-alone simulator
12931that speaks the remote debugging protocol, to make net connections
12932using programs like @code{ssh}, or for other similar tricks.
12933
12934If @var{command} closes its standard output (perhaps by exiting),
12935@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12936program has already exited, this will have no effect.)
12937
86941c27 12938@end table
07f31aa6 12939
86941c27 12940Once the connection has been established, you can use all the usual
8edfe269
DJ
12941commands to examine and change data. The remote program is already
12942running; you can use @kbd{step} and @kbd{continue}, and you do not
12943need to use @kbd{run}.
07f31aa6
DJ
12944
12945@cindex interrupting remote programs
12946@cindex remote programs, interrupting
12947Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12948interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12949program. This may or may not succeed, depending in part on the hardware
12950and the serial drivers the remote system uses. If you type the
12951interrupt character once again, @value{GDBN} displays this prompt:
12952
12953@smallexample
12954Interrupted while waiting for the program.
12955Give up (and stop debugging it)? (y or n)
12956@end smallexample
12957
12958If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12959(If you decide you want to try again later, you can use @samp{target
12960remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12961goes back to waiting.
12962
12963@table @code
12964@kindex detach (remote)
12965@item detach
12966When you have finished debugging the remote program, you can use the
12967@code{detach} command to release it from @value{GDBN} control.
12968Detaching from the target normally resumes its execution, but the results
12969will depend on your particular remote stub. After the @code{detach}
12970command, @value{GDBN} is free to connect to another target.
12971
12972@kindex disconnect
12973@item disconnect
12974The @code{disconnect} command behaves like @code{detach}, except that
12975the target is generally not resumed. It will wait for @value{GDBN}
12976(this instance or another one) to connect and continue debugging. After
12977the @code{disconnect} command, @value{GDBN} is again free to connect to
12978another target.
09d4efe1
EZ
12979
12980@cindex send command to remote monitor
fad38dfa
EZ
12981@cindex extend @value{GDBN} for remote targets
12982@cindex add new commands for external monitor
09d4efe1
EZ
12983@kindex monitor
12984@item monitor @var{cmd}
fad38dfa
EZ
12985This command allows you to send arbitrary commands directly to the
12986remote monitor. Since @value{GDBN} doesn't care about the commands it
12987sends like this, this command is the way to extend @value{GDBN}---you
12988can add new commands that only the external monitor will understand
12989and implement.
07f31aa6
DJ
12990@end table
12991
a6b151f1
DJ
12992@node File Transfer
12993@section Sending files to a remote system
12994@cindex remote target, file transfer
12995@cindex file transfer
12996@cindex sending files to remote systems
12997
12998Some remote targets offer the ability to transfer files over the same
12999connection used to communicate with @value{GDBN}. This is convenient
13000for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
13001running @code{gdbserver} over a network interface. For other targets,
13002e.g.@: embedded devices with only a single serial port, this may be
13003the only way to upload or download files.
13004
13005Not all remote targets support these commands.
13006
13007@table @code
13008@kindex remote put
13009@item remote put @var{hostfile} @var{targetfile}
13010Copy file @var{hostfile} from the host system (the machine running
13011@value{GDBN}) to @var{targetfile} on the target system.
13012
13013@kindex remote get
13014@item remote get @var{targetfile} @var{hostfile}
13015Copy file @var{targetfile} from the target system to @var{hostfile}
13016on the host system.
13017
13018@kindex remote delete
13019@item remote delete @var{targetfile}
13020Delete @var{targetfile} from the target system.
13021
13022@end table
13023
6f05cf9f 13024@node Server
79a6e687 13025@section Using the @code{gdbserver} Program
6f05cf9f
AC
13026
13027@kindex gdbserver
13028@cindex remote connection without stubs
13029@code{gdbserver} is a control program for Unix-like systems, which
13030allows you to connect your program with a remote @value{GDBN} via
13031@code{target remote}---but without linking in the usual debugging stub.
13032
13033@code{gdbserver} is not a complete replacement for the debugging stubs,
13034because it requires essentially the same operating-system facilities
13035that @value{GDBN} itself does. In fact, a system that can run
13036@code{gdbserver} to connect to a remote @value{GDBN} could also run
13037@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
13038because it is a much smaller program than @value{GDBN} itself. It is
13039also easier to port than all of @value{GDBN}, so you may be able to get
13040started more quickly on a new system by using @code{gdbserver}.
13041Finally, if you develop code for real-time systems, you may find that
13042the tradeoffs involved in real-time operation make it more convenient to
13043do as much development work as possible on another system, for example
13044by cross-compiling. You can use @code{gdbserver} to make a similar
13045choice for debugging.
13046
13047@value{GDBN} and @code{gdbserver} communicate via either a serial line
13048or a TCP connection, using the standard @value{GDBN} remote serial
13049protocol.
13050
2d717e4f
DJ
13051@quotation
13052@emph{Warning:} @code{gdbserver} does not have any built-in security.
13053Do not run @code{gdbserver} connected to any public network; a
13054@value{GDBN} connection to @code{gdbserver} provides access to the
13055target system with the same privileges as the user running
13056@code{gdbserver}.
13057@end quotation
13058
13059@subsection Running @code{gdbserver}
13060@cindex arguments, to @code{gdbserver}
13061
13062Run @code{gdbserver} on the target system. You need a copy of the
13063program you want to debug, including any libraries it requires.
6f05cf9f
AC
13064@code{gdbserver} does not need your program's symbol table, so you can
13065strip the program if necessary to save space. @value{GDBN} on the host
13066system does all the symbol handling.
13067
13068To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 13069the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
13070syntax is:
13071
13072@smallexample
13073target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
13074@end smallexample
13075
13076@var{comm} is either a device name (to use a serial line) or a TCP
13077hostname and portnumber. For example, to debug Emacs with the argument
13078@samp{foo.txt} and communicate with @value{GDBN} over the serial port
13079@file{/dev/com1}:
13080
13081@smallexample
13082target> gdbserver /dev/com1 emacs foo.txt
13083@end smallexample
13084
13085@code{gdbserver} waits passively for the host @value{GDBN} to communicate
13086with it.
13087
13088To use a TCP connection instead of a serial line:
13089
13090@smallexample
13091target> gdbserver host:2345 emacs foo.txt
13092@end smallexample
13093
13094The only difference from the previous example is the first argument,
13095specifying that you are communicating with the host @value{GDBN} via
13096TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13097expect a TCP connection from machine @samp{host} to local TCP port 2345.
13098(Currently, the @samp{host} part is ignored.) You can choose any number
13099you want for the port number as long as it does not conflict with any
13100TCP ports already in use on the target system (for example, @code{23} is
13101reserved for @code{telnet}).@footnote{If you choose a port number that
13102conflicts with another service, @code{gdbserver} prints an error message
13103and exits.} You must use the same port number with the host @value{GDBN}
13104@code{target remote} command.
13105
2d717e4f
DJ
13106@subsubsection Attaching to a Running Program
13107
56460a61
DJ
13108On some targets, @code{gdbserver} can also attach to running programs.
13109This is accomplished via the @code{--attach} argument. The syntax is:
13110
13111@smallexample
2d717e4f 13112target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13113@end smallexample
13114
13115@var{pid} is the process ID of a currently running process. It isn't necessary
13116to point @code{gdbserver} at a binary for the running process.
13117
b1fe9455
DJ
13118@pindex pidof
13119@cindex attach to a program by name
13120You can debug processes by name instead of process ID if your target has the
13121@code{pidof} utility:
13122
13123@smallexample
2d717e4f 13124target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13125@end smallexample
13126
f822c95b 13127In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13128has multiple threads, most versions of @code{pidof} support the
13129@code{-s} option to only return the first process ID.
13130
2d717e4f
DJ
13131@subsubsection Multi-Process Mode for @code{gdbserver}
13132@cindex gdbserver, multiple processes
13133@cindex multiple processes with gdbserver
13134
13135When you connect to @code{gdbserver} using @code{target remote},
13136@code{gdbserver} debugs the specified program only once. When the
13137program exits, or you detach from it, @value{GDBN} closes the connection
13138and @code{gdbserver} exits.
13139
6e6c6f50 13140If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13141enters multi-process mode. When the debugged program exits, or you
13142detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13143though no program is running. The @code{run} and @code{attach}
13144commands instruct @code{gdbserver} to run or attach to a new program.
13145The @code{run} command uses @code{set remote exec-file} (@pxref{set
13146remote exec-file}) to select the program to run. Command line
13147arguments are supported, except for wildcard expansion and I/O
13148redirection (@pxref{Arguments}).
13149
13150To start @code{gdbserver} without supplying an initial command to run
13151or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13152Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13153the program you want to debug.
13154
13155@code{gdbserver} does not automatically exit in multi-process mode.
13156You can terminate it by using @code{monitor exit}
13157(@pxref{Monitor Commands for gdbserver}).
13158
13159@subsubsection Other Command-Line Arguments for @code{gdbserver}
13160
13161You can include @option{--debug} on the @code{gdbserver} command line.
13162@code{gdbserver} will display extra status information about the debugging
13163process. This option is intended for @code{gdbserver} development and
13164for bug reports to the developers.
13165
ccd213ac
DJ
13166The @option{--wrapper} option specifies a wrapper to launch programs
13167for debugging. The option should be followed by the name of the
13168wrapper, then any command-line arguments to pass to the wrapper, then
13169@kbd{--} indicating the end of the wrapper arguments.
13170
13171@code{gdbserver} runs the specified wrapper program with a combined
13172command line including the wrapper arguments, then the name of the
13173program to debug, then any arguments to the program. The wrapper
13174runs until it executes your program, and then @value{GDBN} gains control.
13175
13176You can use any program that eventually calls @code{execve} with
13177its arguments as a wrapper. Several standard Unix utilities do
13178this, e.g.@: @code{env} and @code{nohup}. Any Unix shell script ending
13179with @code{exec "$@@"} will also work.
13180
13181For example, you can use @code{env} to pass an environment variable to
13182the debugged program, without setting the variable in @code{gdbserver}'s
13183environment:
13184
13185@smallexample
13186$ gdbserver --wrapper env LD_PRELOAD=libtest.so -- :2222 ./testprog
13187@end smallexample
13188
2d717e4f
DJ
13189@subsection Connecting to @code{gdbserver}
13190
13191Run @value{GDBN} on the host system.
13192
13193First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13194your application using the @code{file} command before you connect. Use
13195@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13196was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13197
13198The symbol file and target libraries must exactly match the executable
13199and libraries on the target, with one exception: the files on the host
13200system should not be stripped, even if the files on the target system
13201are. Mismatched or missing files will lead to confusing results
13202during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13203files may also prevent @code{gdbserver} from debugging multi-threaded
13204programs.
13205
79a6e687 13206Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13207For TCP connections, you must start up @code{gdbserver} prior to using
13208the @code{target remote} command. Otherwise you may get an error whose
13209text depends on the host system, but which usually looks something like
2d717e4f 13210@samp{Connection refused}. Don't use the @code{load}
397ca115 13211command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13212already on the target.
07f31aa6 13213
79a6e687 13214@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13215@cindex monitor commands, for @code{gdbserver}
2d717e4f 13216@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13217
13218During a @value{GDBN} session using @code{gdbserver}, you can use the
13219@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13220Here are the available commands.
c74d0ad8
DJ
13221
13222@table @code
13223@item monitor help
13224List the available monitor commands.
13225
13226@item monitor set debug 0
13227@itemx monitor set debug 1
13228Disable or enable general debugging messages.
13229
13230@item monitor set remote-debug 0
13231@itemx monitor set remote-debug 1
13232Disable or enable specific debugging messages associated with the remote
13233protocol (@pxref{Remote Protocol}).
13234
2d717e4f
DJ
13235@item monitor exit
13236Tell gdbserver to exit immediately. This command should be followed by
13237@code{disconnect} to close the debugging session. @code{gdbserver} will
13238detach from any attached processes and kill any processes it created.
13239Use @code{monitor exit} to terminate @code{gdbserver} at the end
13240of a multi-process mode debug session.
13241
c74d0ad8
DJ
13242@end table
13243
79a6e687
BW
13244@node Remote Configuration
13245@section Remote Configuration
501eef12 13246
9c16f35a
EZ
13247@kindex set remote
13248@kindex show remote
13249This section documents the configuration options available when
13250debugging remote programs. For the options related to the File I/O
fc320d37 13251extensions of the remote protocol, see @ref{system,
9c16f35a 13252system-call-allowed}.
501eef12
AC
13253
13254@table @code
9c16f35a 13255@item set remoteaddresssize @var{bits}
d3e8051b 13256@cindex address size for remote targets
9c16f35a
EZ
13257@cindex bits in remote address
13258Set the maximum size of address in a memory packet to the specified
13259number of bits. @value{GDBN} will mask off the address bits above
13260that number, when it passes addresses to the remote target. The
13261default value is the number of bits in the target's address.
13262
13263@item show remoteaddresssize
13264Show the current value of remote address size in bits.
13265
13266@item set remotebaud @var{n}
13267@cindex baud rate for remote targets
13268Set the baud rate for the remote serial I/O to @var{n} baud. The
13269value is used to set the speed of the serial port used for debugging
13270remote targets.
13271
13272@item show remotebaud
13273Show the current speed of the remote connection.
13274
13275@item set remotebreak
13276@cindex interrupt remote programs
13277@cindex BREAK signal instead of Ctrl-C
9a6253be 13278@anchor{set remotebreak}
9c16f35a 13279If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13280when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13281on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13282character instead. The default is off, since most remote systems
13283expect to see @samp{Ctrl-C} as the interrupt signal.
13284
13285@item show remotebreak
13286Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13287interrupt the remote program.
13288
23776285
MR
13289@item set remoteflow on
13290@itemx set remoteflow off
13291@kindex set remoteflow
13292Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13293on the serial port used to communicate to the remote target.
13294
13295@item show remoteflow
13296@kindex show remoteflow
13297Show the current setting of hardware flow control.
13298
9c16f35a
EZ
13299@item set remotelogbase @var{base}
13300Set the base (a.k.a.@: radix) of logging serial protocol
13301communications to @var{base}. Supported values of @var{base} are:
13302@code{ascii}, @code{octal}, and @code{hex}. The default is
13303@code{ascii}.
13304
13305@item show remotelogbase
13306Show the current setting of the radix for logging remote serial
13307protocol.
13308
13309@item set remotelogfile @var{file}
13310@cindex record serial communications on file
13311Record remote serial communications on the named @var{file}. The
13312default is not to record at all.
13313
13314@item show remotelogfile.
13315Show the current setting of the file name on which to record the
13316serial communications.
13317
13318@item set remotetimeout @var{num}
13319@cindex timeout for serial communications
13320@cindex remote timeout
13321Set the timeout limit to wait for the remote target to respond to
13322@var{num} seconds. The default is 2 seconds.
13323
13324@item show remotetimeout
13325Show the current number of seconds to wait for the remote target
13326responses.
13327
13328@cindex limit hardware breakpoints and watchpoints
13329@cindex remote target, limit break- and watchpoints
501eef12
AC
13330@anchor{set remote hardware-watchpoint-limit}
13331@anchor{set remote hardware-breakpoint-limit}
13332@item set remote hardware-watchpoint-limit @var{limit}
13333@itemx set remote hardware-breakpoint-limit @var{limit}
13334Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13335watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13336
13337@item set remote exec-file @var{filename}
13338@itemx show remote exec-file
13339@anchor{set remote exec-file}
13340@cindex executable file, for remote target
13341Select the file used for @code{run} with @code{target
13342extended-remote}. This should be set to a filename valid on the
13343target system. If it is not set, the target will use a default
13344filename (e.g.@: the last program run).
501eef12
AC
13345@end table
13346
427c3a89
DJ
13347@cindex remote packets, enabling and disabling
13348The @value{GDBN} remote protocol autodetects the packets supported by
13349your debugging stub. If you need to override the autodetection, you
13350can use these commands to enable or disable individual packets. Each
13351packet can be set to @samp{on} (the remote target supports this
13352packet), @samp{off} (the remote target does not support this packet),
13353or @samp{auto} (detect remote target support for this packet). They
13354all default to @samp{auto}. For more information about each packet,
13355see @ref{Remote Protocol}.
13356
13357During normal use, you should not have to use any of these commands.
13358If you do, that may be a bug in your remote debugging stub, or a bug
13359in @value{GDBN}. You may want to report the problem to the
13360@value{GDBN} developers.
13361
cfa9d6d9
DJ
13362For each packet @var{name}, the command to enable or disable the
13363packet is @code{set remote @var{name}-packet}. The available settings
13364are:
427c3a89 13365
cfa9d6d9 13366@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13367@item Command Name
13368@tab Remote Packet
13369@tab Related Features
13370
cfa9d6d9 13371@item @code{fetch-register}
427c3a89
DJ
13372@tab @code{p}
13373@tab @code{info registers}
13374
cfa9d6d9 13375@item @code{set-register}
427c3a89
DJ
13376@tab @code{P}
13377@tab @code{set}
13378
cfa9d6d9 13379@item @code{binary-download}
427c3a89
DJ
13380@tab @code{X}
13381@tab @code{load}, @code{set}
13382
cfa9d6d9 13383@item @code{read-aux-vector}
427c3a89
DJ
13384@tab @code{qXfer:auxv:read}
13385@tab @code{info auxv}
13386
cfa9d6d9 13387@item @code{symbol-lookup}
427c3a89
DJ
13388@tab @code{qSymbol}
13389@tab Detecting multiple threads
13390
2d717e4f
DJ
13391@item @code{attach}
13392@tab @code{vAttach}
13393@tab @code{attach}
13394
cfa9d6d9 13395@item @code{verbose-resume}
427c3a89
DJ
13396@tab @code{vCont}
13397@tab Stepping or resuming multiple threads
13398
2d717e4f
DJ
13399@item @code{run}
13400@tab @code{vRun}
13401@tab @code{run}
13402
cfa9d6d9 13403@item @code{software-breakpoint}
427c3a89
DJ
13404@tab @code{Z0}
13405@tab @code{break}
13406
cfa9d6d9 13407@item @code{hardware-breakpoint}
427c3a89
DJ
13408@tab @code{Z1}
13409@tab @code{hbreak}
13410
cfa9d6d9 13411@item @code{write-watchpoint}
427c3a89
DJ
13412@tab @code{Z2}
13413@tab @code{watch}
13414
cfa9d6d9 13415@item @code{read-watchpoint}
427c3a89
DJ
13416@tab @code{Z3}
13417@tab @code{rwatch}
13418
cfa9d6d9 13419@item @code{access-watchpoint}
427c3a89
DJ
13420@tab @code{Z4}
13421@tab @code{awatch}
13422
cfa9d6d9
DJ
13423@item @code{target-features}
13424@tab @code{qXfer:features:read}
13425@tab @code{set architecture}
13426
13427@item @code{library-info}
13428@tab @code{qXfer:libraries:read}
13429@tab @code{info sharedlibrary}
13430
13431@item @code{memory-map}
13432@tab @code{qXfer:memory-map:read}
13433@tab @code{info mem}
13434
13435@item @code{read-spu-object}
13436@tab @code{qXfer:spu:read}
13437@tab @code{info spu}
13438
13439@item @code{write-spu-object}
13440@tab @code{qXfer:spu:write}
13441@tab @code{info spu}
13442
13443@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13444@tab @code{qGetTLSAddr}
13445@tab Displaying @code{__thread} variables
13446
13447@item @code{supported-packets}
13448@tab @code{qSupported}
13449@tab Remote communications parameters
13450
cfa9d6d9 13451@item @code{pass-signals}
89be2091
DJ
13452@tab @code{QPassSignals}
13453@tab @code{handle @var{signal}}
13454
a6b151f1
DJ
13455@item @code{hostio-close-packet}
13456@tab @code{vFile:close}
13457@tab @code{remote get}, @code{remote put}
13458
13459@item @code{hostio-open-packet}
13460@tab @code{vFile:open}
13461@tab @code{remote get}, @code{remote put}
13462
13463@item @code{hostio-pread-packet}
13464@tab @code{vFile:pread}
13465@tab @code{remote get}, @code{remote put}
13466
13467@item @code{hostio-pwrite-packet}
13468@tab @code{vFile:pwrite}
13469@tab @code{remote get}, @code{remote put}
13470
13471@item @code{hostio-unlink-packet}
13472@tab @code{vFile:unlink}
13473@tab @code{remote delete}
427c3a89
DJ
13474@end multitable
13475
79a6e687
BW
13476@node Remote Stub
13477@section Implementing a Remote Stub
7a292a7a 13478
8e04817f
AC
13479@cindex debugging stub, example
13480@cindex remote stub, example
13481@cindex stub example, remote debugging
13482The stub files provided with @value{GDBN} implement the target side of the
13483communication protocol, and the @value{GDBN} side is implemented in the
13484@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13485these subroutines to communicate, and ignore the details. (If you're
13486implementing your own stub file, you can still ignore the details: start
13487with one of the existing stub files. @file{sparc-stub.c} is the best
13488organized, and therefore the easiest to read.)
13489
104c1213
JM
13490@cindex remote serial debugging, overview
13491To debug a program running on another machine (the debugging
13492@dfn{target} machine), you must first arrange for all the usual
13493prerequisites for the program to run by itself. For example, for a C
13494program, you need:
c906108c 13495
104c1213
JM
13496@enumerate
13497@item
13498A startup routine to set up the C runtime environment; these usually
13499have a name like @file{crt0}. The startup routine may be supplied by
13500your hardware supplier, or you may have to write your own.
96baa820 13501
5d161b24 13502@item
d4f3574e 13503A C subroutine library to support your program's
104c1213 13504subroutine calls, notably managing input and output.
96baa820 13505
104c1213
JM
13506@item
13507A way of getting your program to the other machine---for example, a
13508download program. These are often supplied by the hardware
13509manufacturer, but you may have to write your own from hardware
13510documentation.
13511@end enumerate
96baa820 13512
104c1213
JM
13513The next step is to arrange for your program to use a serial port to
13514communicate with the machine where @value{GDBN} is running (the @dfn{host}
13515machine). In general terms, the scheme looks like this:
96baa820 13516
104c1213
JM
13517@table @emph
13518@item On the host,
13519@value{GDBN} already understands how to use this protocol; when everything
13520else is set up, you can simply use the @samp{target remote} command
13521(@pxref{Targets,,Specifying a Debugging Target}).
13522
13523@item On the target,
13524you must link with your program a few special-purpose subroutines that
13525implement the @value{GDBN} remote serial protocol. The file containing these
13526subroutines is called a @dfn{debugging stub}.
13527
13528On certain remote targets, you can use an auxiliary program
13529@code{gdbserver} instead of linking a stub into your program.
79a6e687 13530@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13531@end table
96baa820 13532
104c1213
JM
13533The debugging stub is specific to the architecture of the remote
13534machine; for example, use @file{sparc-stub.c} to debug programs on
13535@sc{sparc} boards.
96baa820 13536
104c1213
JM
13537@cindex remote serial stub list
13538These working remote stubs are distributed with @value{GDBN}:
96baa820 13539
104c1213
JM
13540@table @code
13541
13542@item i386-stub.c
41afff9a 13543@cindex @file{i386-stub.c}
104c1213
JM
13544@cindex Intel
13545@cindex i386
13546For Intel 386 and compatible architectures.
13547
13548@item m68k-stub.c
41afff9a 13549@cindex @file{m68k-stub.c}
104c1213
JM
13550@cindex Motorola 680x0
13551@cindex m680x0
13552For Motorola 680x0 architectures.
13553
13554@item sh-stub.c
41afff9a 13555@cindex @file{sh-stub.c}
172c2a43 13556@cindex Renesas
104c1213 13557@cindex SH
172c2a43 13558For Renesas SH architectures.
104c1213
JM
13559
13560@item sparc-stub.c
41afff9a 13561@cindex @file{sparc-stub.c}
104c1213
JM
13562@cindex Sparc
13563For @sc{sparc} architectures.
13564
13565@item sparcl-stub.c
41afff9a 13566@cindex @file{sparcl-stub.c}
104c1213
JM
13567@cindex Fujitsu
13568@cindex SparcLite
13569For Fujitsu @sc{sparclite} architectures.
13570
13571@end table
13572
13573The @file{README} file in the @value{GDBN} distribution may list other
13574recently added stubs.
13575
13576@menu
13577* Stub Contents:: What the stub can do for you
13578* Bootstrapping:: What you must do for the stub
13579* Debug Session:: Putting it all together
104c1213
JM
13580@end menu
13581
6d2ebf8b 13582@node Stub Contents
79a6e687 13583@subsection What the Stub Can Do for You
104c1213
JM
13584
13585@cindex remote serial stub
13586The debugging stub for your architecture supplies these three
13587subroutines:
13588
13589@table @code
13590@item set_debug_traps
4644b6e3 13591@findex set_debug_traps
104c1213
JM
13592@cindex remote serial stub, initialization
13593This routine arranges for @code{handle_exception} to run when your
13594program stops. You must call this subroutine explicitly near the
13595beginning of your program.
13596
13597@item handle_exception
4644b6e3 13598@findex handle_exception
104c1213
JM
13599@cindex remote serial stub, main routine
13600This is the central workhorse, but your program never calls it
13601explicitly---the setup code arranges for @code{handle_exception} to
13602run when a trap is triggered.
13603
13604@code{handle_exception} takes control when your program stops during
13605execution (for example, on a breakpoint), and mediates communications
13606with @value{GDBN} on the host machine. This is where the communications
13607protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13608representative on the target machine. It begins by sending summary
104c1213
JM
13609information on the state of your program, then continues to execute,
13610retrieving and transmitting any information @value{GDBN} needs, until you
13611execute a @value{GDBN} command that makes your program resume; at that point,
13612@code{handle_exception} returns control to your own code on the target
5d161b24 13613machine.
104c1213
JM
13614
13615@item breakpoint
13616@cindex @code{breakpoint} subroutine, remote
13617Use this auxiliary subroutine to make your program contain a
13618breakpoint. Depending on the particular situation, this may be the only
13619way for @value{GDBN} to get control. For instance, if your target
13620machine has some sort of interrupt button, you won't need to call this;
13621pressing the interrupt button transfers control to
13622@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13623simply receiving characters on the serial port may also trigger a trap;
13624again, in that situation, you don't need to call @code{breakpoint} from
13625your own program---simply running @samp{target remote} from the host
5d161b24 13626@value{GDBN} session gets control.
104c1213
JM
13627
13628Call @code{breakpoint} if none of these is true, or if you simply want
13629to make certain your program stops at a predetermined point for the
13630start of your debugging session.
13631@end table
13632
6d2ebf8b 13633@node Bootstrapping
79a6e687 13634@subsection What You Must Do for the Stub
104c1213
JM
13635
13636@cindex remote stub, support routines
13637The debugging stubs that come with @value{GDBN} are set up for a particular
13638chip architecture, but they have no information about the rest of your
13639debugging target machine.
13640
13641First of all you need to tell the stub how to communicate with the
13642serial port.
13643
13644@table @code
13645@item int getDebugChar()
4644b6e3 13646@findex getDebugChar
104c1213
JM
13647Write this subroutine to read a single character from the serial port.
13648It may be identical to @code{getchar} for your target system; a
13649different name is used to allow you to distinguish the two if you wish.
13650
13651@item void putDebugChar(int)
4644b6e3 13652@findex putDebugChar
104c1213 13653Write this subroutine to write a single character to the serial port.
5d161b24 13654It may be identical to @code{putchar} for your target system; a
104c1213
JM
13655different name is used to allow you to distinguish the two if you wish.
13656@end table
13657
13658@cindex control C, and remote debugging
13659@cindex interrupting remote targets
13660If you want @value{GDBN} to be able to stop your program while it is
13661running, you need to use an interrupt-driven serial driver, and arrange
13662for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13663character). That is the character which @value{GDBN} uses to tell the
13664remote system to stop.
13665
13666Getting the debugging target to return the proper status to @value{GDBN}
13667probably requires changes to the standard stub; one quick and dirty way
13668is to just execute a breakpoint instruction (the ``dirty'' part is that
13669@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13670
13671Other routines you need to supply are:
13672
13673@table @code
13674@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13675@findex exceptionHandler
104c1213
JM
13676Write this function to install @var{exception_address} in the exception
13677handling tables. You need to do this because the stub does not have any
13678way of knowing what the exception handling tables on your target system
13679are like (for example, the processor's table might be in @sc{rom},
13680containing entries which point to a table in @sc{ram}).
13681@var{exception_number} is the exception number which should be changed;
13682its meaning is architecture-dependent (for example, different numbers
13683might represent divide by zero, misaligned access, etc). When this
13684exception occurs, control should be transferred directly to
13685@var{exception_address}, and the processor state (stack, registers,
13686and so on) should be just as it is when a processor exception occurs. So if
13687you want to use a jump instruction to reach @var{exception_address}, it
13688should be a simple jump, not a jump to subroutine.
13689
13690For the 386, @var{exception_address} should be installed as an interrupt
13691gate so that interrupts are masked while the handler runs. The gate
13692should be at privilege level 0 (the most privileged level). The
13693@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13694help from @code{exceptionHandler}.
13695
13696@item void flush_i_cache()
4644b6e3 13697@findex flush_i_cache
d4f3574e 13698On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13699instruction cache, if any, on your target machine. If there is no
13700instruction cache, this subroutine may be a no-op.
13701
13702On target machines that have instruction caches, @value{GDBN} requires this
13703function to make certain that the state of your program is stable.
13704@end table
13705
13706@noindent
13707You must also make sure this library routine is available:
13708
13709@table @code
13710@item void *memset(void *, int, int)
4644b6e3 13711@findex memset
104c1213
JM
13712This is the standard library function @code{memset} that sets an area of
13713memory to a known value. If you have one of the free versions of
13714@code{libc.a}, @code{memset} can be found there; otherwise, you must
13715either obtain it from your hardware manufacturer, or write your own.
13716@end table
13717
13718If you do not use the GNU C compiler, you may need other standard
13719library subroutines as well; this varies from one stub to another,
13720but in general the stubs are likely to use any of the common library
e22ea452 13721subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13722
13723
6d2ebf8b 13724@node Debug Session
79a6e687 13725@subsection Putting it All Together
104c1213
JM
13726
13727@cindex remote serial debugging summary
13728In summary, when your program is ready to debug, you must follow these
13729steps.
13730
13731@enumerate
13732@item
6d2ebf8b 13733Make sure you have defined the supporting low-level routines
79a6e687 13734(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13735@display
13736@code{getDebugChar}, @code{putDebugChar},
13737@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13738@end display
13739
13740@item
13741Insert these lines near the top of your program:
13742
474c8240 13743@smallexample
104c1213
JM
13744set_debug_traps();
13745breakpoint();
474c8240 13746@end smallexample
104c1213
JM
13747
13748@item
13749For the 680x0 stub only, you need to provide a variable called
13750@code{exceptionHook}. Normally you just use:
13751
474c8240 13752@smallexample
104c1213 13753void (*exceptionHook)() = 0;
474c8240 13754@end smallexample
104c1213 13755
d4f3574e 13756@noindent
104c1213 13757but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13758function in your program, that function is called when
104c1213
JM
13759@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13760error). The function indicated by @code{exceptionHook} is called with
13761one parameter: an @code{int} which is the exception number.
13762
13763@item
13764Compile and link together: your program, the @value{GDBN} debugging stub for
13765your target architecture, and the supporting subroutines.
13766
13767@item
13768Make sure you have a serial connection between your target machine and
13769the @value{GDBN} host, and identify the serial port on the host.
13770
13771@item
13772@c The "remote" target now provides a `load' command, so we should
13773@c document that. FIXME.
13774Download your program to your target machine (or get it there by
13775whatever means the manufacturer provides), and start it.
13776
13777@item
07f31aa6 13778Start @value{GDBN} on the host, and connect to the target
79a6e687 13779(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13780
104c1213
JM
13781@end enumerate
13782
8e04817f
AC
13783@node Configurations
13784@chapter Configuration-Specific Information
104c1213 13785
8e04817f
AC
13786While nearly all @value{GDBN} commands are available for all native and
13787cross versions of the debugger, there are some exceptions. This chapter
13788describes things that are only available in certain configurations.
104c1213 13789
8e04817f
AC
13790There are three major categories of configurations: native
13791configurations, where the host and target are the same, embedded
13792operating system configurations, which are usually the same for several
13793different processor architectures, and bare embedded processors, which
13794are quite different from each other.
104c1213 13795
8e04817f
AC
13796@menu
13797* Native::
13798* Embedded OS::
13799* Embedded Processors::
13800* Architectures::
13801@end menu
104c1213 13802
8e04817f
AC
13803@node Native
13804@section Native
104c1213 13805
8e04817f
AC
13806This section describes details specific to particular native
13807configurations.
6cf7e474 13808
8e04817f
AC
13809@menu
13810* HP-UX:: HP-UX
7561d450 13811* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13812* SVR4 Process Information:: SVR4 process information
13813* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13814* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13815* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13816* Neutrino:: Features specific to QNX Neutrino
8e04817f 13817@end menu
6cf7e474 13818
8e04817f
AC
13819@node HP-UX
13820@subsection HP-UX
104c1213 13821
8e04817f
AC
13822On HP-UX systems, if you refer to a function or variable name that
13823begins with a dollar sign, @value{GDBN} searches for a user or system
13824name first, before it searches for a convenience variable.
104c1213 13825
9c16f35a 13826
7561d450
MK
13827@node BSD libkvm Interface
13828@subsection BSD libkvm Interface
13829
13830@cindex libkvm
13831@cindex kernel memory image
13832@cindex kernel crash dump
13833
13834BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13835interface that provides a uniform interface for accessing kernel virtual
13836memory images, including live systems and crash dumps. @value{GDBN}
13837uses this interface to allow you to debug live kernels and kernel crash
13838dumps on many native BSD configurations. This is implemented as a
13839special @code{kvm} debugging target. For debugging a live system, load
13840the currently running kernel into @value{GDBN} and connect to the
13841@code{kvm} target:
13842
13843@smallexample
13844(@value{GDBP}) @b{target kvm}
13845@end smallexample
13846
13847For debugging crash dumps, provide the file name of the crash dump as an
13848argument:
13849
13850@smallexample
13851(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13852@end smallexample
13853
13854Once connected to the @code{kvm} target, the following commands are
13855available:
13856
13857@table @code
13858@kindex kvm
13859@item kvm pcb
721c2651 13860Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13861
13862@item kvm proc
13863Set current context from proc address. This command isn't available on
13864modern FreeBSD systems.
13865@end table
13866
8e04817f 13867@node SVR4 Process Information
79a6e687 13868@subsection SVR4 Process Information
60bf7e09
EZ
13869@cindex /proc
13870@cindex examine process image
13871@cindex process info via @file{/proc}
104c1213 13872
60bf7e09
EZ
13873Many versions of SVR4 and compatible systems provide a facility called
13874@samp{/proc} that can be used to examine the image of a running
13875process using file-system subroutines. If @value{GDBN} is configured
13876for an operating system with this facility, the command @code{info
13877proc} is available to report information about the process running
13878your program, or about any process running on your system. @code{info
13879proc} works only on SVR4 systems that include the @code{procfs} code.
13880This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13881Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13882
8e04817f
AC
13883@table @code
13884@kindex info proc
60bf7e09 13885@cindex process ID
8e04817f 13886@item info proc
60bf7e09
EZ
13887@itemx info proc @var{process-id}
13888Summarize available information about any running process. If a
13889process ID is specified by @var{process-id}, display information about
13890that process; otherwise display information about the program being
13891debugged. The summary includes the debugged process ID, the command
13892line used to invoke it, its current working directory, and its
13893executable file's absolute file name.
13894
13895On some systems, @var{process-id} can be of the form
13896@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13897within a process. If the optional @var{pid} part is missing, it means
13898a thread from the process being debugged (the leading @samp{/} still
13899needs to be present, or else @value{GDBN} will interpret the number as
13900a process ID rather than a thread ID).
6cf7e474 13901
8e04817f 13902@item info proc mappings
60bf7e09
EZ
13903@cindex memory address space mappings
13904Report the memory address space ranges accessible in the program, with
13905information on whether the process has read, write, or execute access
13906rights to each range. On @sc{gnu}/Linux systems, each memory range
13907includes the object file which is mapped to that range, instead of the
13908memory access rights to that range.
13909
13910@item info proc stat
13911@itemx info proc status
13912@cindex process detailed status information
13913These subcommands are specific to @sc{gnu}/Linux systems. They show
13914the process-related information, including the user ID and group ID;
13915how many threads are there in the process; its virtual memory usage;
13916the signals that are pending, blocked, and ignored; its TTY; its
13917consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13918value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13919(type @kbd{man 5 proc} from your shell prompt).
13920
13921@item info proc all
13922Show all the information about the process described under all of the
13923above @code{info proc} subcommands.
13924
8e04817f
AC
13925@ignore
13926@comment These sub-options of 'info proc' were not included when
13927@comment procfs.c was re-written. Keep their descriptions around
13928@comment against the day when someone finds the time to put them back in.
13929@kindex info proc times
13930@item info proc times
13931Starting time, user CPU time, and system CPU time for your program and
13932its children.
6cf7e474 13933
8e04817f
AC
13934@kindex info proc id
13935@item info proc id
13936Report on the process IDs related to your program: its own process ID,
13937the ID of its parent, the process group ID, and the session ID.
8e04817f 13938@end ignore
721c2651
EZ
13939
13940@item set procfs-trace
13941@kindex set procfs-trace
13942@cindex @code{procfs} API calls
13943This command enables and disables tracing of @code{procfs} API calls.
13944
13945@item show procfs-trace
13946@kindex show procfs-trace
13947Show the current state of @code{procfs} API call tracing.
13948
13949@item set procfs-file @var{file}
13950@kindex set procfs-file
13951Tell @value{GDBN} to write @code{procfs} API trace to the named
13952@var{file}. @value{GDBN} appends the trace info to the previous
13953contents of the file. The default is to display the trace on the
13954standard output.
13955
13956@item show procfs-file
13957@kindex show procfs-file
13958Show the file to which @code{procfs} API trace is written.
13959
13960@item proc-trace-entry
13961@itemx proc-trace-exit
13962@itemx proc-untrace-entry
13963@itemx proc-untrace-exit
13964@kindex proc-trace-entry
13965@kindex proc-trace-exit
13966@kindex proc-untrace-entry
13967@kindex proc-untrace-exit
13968These commands enable and disable tracing of entries into and exits
13969from the @code{syscall} interface.
13970
13971@item info pidlist
13972@kindex info pidlist
13973@cindex process list, QNX Neutrino
13974For QNX Neutrino only, this command displays the list of all the
13975processes and all the threads within each process.
13976
13977@item info meminfo
13978@kindex info meminfo
13979@cindex mapinfo list, QNX Neutrino
13980For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13981@end table
104c1213 13982
8e04817f
AC
13983@node DJGPP Native
13984@subsection Features for Debugging @sc{djgpp} Programs
13985@cindex @sc{djgpp} debugging
13986@cindex native @sc{djgpp} debugging
13987@cindex MS-DOS-specific commands
104c1213 13988
514c4d71
EZ
13989@cindex DPMI
13990@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13991MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13992that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13993top of real-mode DOS systems and their emulations.
104c1213 13994
8e04817f
AC
13995@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13996defines a few commands specific to the @sc{djgpp} port. This
13997subsection describes those commands.
104c1213 13998
8e04817f
AC
13999@table @code
14000@kindex info dos
14001@item info dos
14002This is a prefix of @sc{djgpp}-specific commands which print
14003information about the target system and important OS structures.
f1251bdd 14004
8e04817f
AC
14005@kindex sysinfo
14006@cindex MS-DOS system info
14007@cindex free memory information (MS-DOS)
14008@item info dos sysinfo
14009This command displays assorted information about the underlying
14010platform: the CPU type and features, the OS version and flavor, the
14011DPMI version, and the available conventional and DPMI memory.
104c1213 14012
8e04817f
AC
14013@cindex GDT
14014@cindex LDT
14015@cindex IDT
14016@cindex segment descriptor tables
14017@cindex descriptor tables display
14018@item info dos gdt
14019@itemx info dos ldt
14020@itemx info dos idt
14021These 3 commands display entries from, respectively, Global, Local,
14022and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
14023tables are data structures which store a descriptor for each segment
14024that is currently in use. The segment's selector is an index into a
14025descriptor table; the table entry for that index holds the
14026descriptor's base address and limit, and its attributes and access
14027rights.
104c1213 14028
8e04817f
AC
14029A typical @sc{djgpp} program uses 3 segments: a code segment, a data
14030segment (used for both data and the stack), and a DOS segment (which
14031allows access to DOS/BIOS data structures and absolute addresses in
14032conventional memory). However, the DPMI host will usually define
14033additional segments in order to support the DPMI environment.
d4f3574e 14034
8e04817f
AC
14035@cindex garbled pointers
14036These commands allow to display entries from the descriptor tables.
14037Without an argument, all entries from the specified table are
14038displayed. An argument, which should be an integer expression, means
14039display a single entry whose index is given by the argument. For
14040example, here's a convenient way to display information about the
14041debugged program's data segment:
104c1213 14042
8e04817f
AC
14043@smallexample
14044@exdent @code{(@value{GDBP}) info dos ldt $ds}
14045@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
14046@end smallexample
104c1213 14047
8e04817f
AC
14048@noindent
14049This comes in handy when you want to see whether a pointer is outside
14050the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 14051
8e04817f
AC
14052@cindex page tables display (MS-DOS)
14053@item info dos pde
14054@itemx info dos pte
14055These two commands display entries from, respectively, the Page
14056Directory and the Page Tables. Page Directories and Page Tables are
14057data structures which control how virtual memory addresses are mapped
14058into physical addresses. A Page Table includes an entry for every
14059page of memory that is mapped into the program's address space; there
14060may be several Page Tables, each one holding up to 4096 entries. A
14061Page Directory has up to 4096 entries, one each for every Page Table
14062that is currently in use.
104c1213 14063
8e04817f
AC
14064Without an argument, @kbd{info dos pde} displays the entire Page
14065Directory, and @kbd{info dos pte} displays all the entries in all of
14066the Page Tables. An argument, an integer expression, given to the
14067@kbd{info dos pde} command means display only that entry from the Page
14068Directory table. An argument given to the @kbd{info dos pte} command
14069means display entries from a single Page Table, the one pointed to by
14070the specified entry in the Page Directory.
104c1213 14071
8e04817f
AC
14072@cindex direct memory access (DMA) on MS-DOS
14073These commands are useful when your program uses @dfn{DMA} (Direct
14074Memory Access), which needs physical addresses to program the DMA
14075controller.
104c1213 14076
8e04817f 14077These commands are supported only with some DPMI servers.
104c1213 14078
8e04817f
AC
14079@cindex physical address from linear address
14080@item info dos address-pte @var{addr}
14081This command displays the Page Table entry for a specified linear
514c4d71
EZ
14082address. The argument @var{addr} is a linear address which should
14083already have the appropriate segment's base address added to it,
14084because this command accepts addresses which may belong to @emph{any}
14085segment. For example, here's how to display the Page Table entry for
14086the page where a variable @code{i} is stored:
104c1213 14087
b383017d 14088@smallexample
8e04817f
AC
14089@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
14090@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 14091@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 14092@end smallexample
104c1213 14093
8e04817f
AC
14094@noindent
14095This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 14096whose physical base address is @code{0x02698000}, and shows all the
8e04817f 14097attributes of that page.
104c1213 14098
8e04817f
AC
14099Note that you must cast the addresses of variables to a @code{char *},
14100since otherwise the value of @code{__djgpp_base_address}, the base
14101address of all variables and functions in a @sc{djgpp} program, will
14102be added using the rules of C pointer arithmetics: if @code{i} is
14103declared an @code{int}, @value{GDBN} will add 4 times the value of
14104@code{__djgpp_base_address} to the address of @code{i}.
104c1213 14105
8e04817f
AC
14106Here's another example, it displays the Page Table entry for the
14107transfer buffer:
104c1213 14108
8e04817f
AC
14109@smallexample
14110@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
14111@exdent @code{Page Table entry for address 0x29110:}
14112@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14113@end smallexample
104c1213 14114
8e04817f
AC
14115@noindent
14116(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
141173rd member of the @code{_go32_info_block} structure.) The output
14118clearly shows that this DPMI server maps the addresses in conventional
14119memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14120linear (@code{0x29110}) addresses are identical.
104c1213 14121
8e04817f
AC
14122This command is supported only with some DPMI servers.
14123@end table
104c1213 14124
c45da7e6 14125@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14126In addition to native debugging, the DJGPP port supports remote
14127debugging via a serial data link. The following commands are specific
14128to remote serial debugging in the DJGPP port of @value{GDBN}.
14129
14130@table @code
14131@kindex set com1base
14132@kindex set com1irq
14133@kindex set com2base
14134@kindex set com2irq
14135@kindex set com3base
14136@kindex set com3irq
14137@kindex set com4base
14138@kindex set com4irq
14139@item set com1base @var{addr}
14140This command sets the base I/O port address of the @file{COM1} serial
14141port.
14142
14143@item set com1irq @var{irq}
14144This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14145for the @file{COM1} serial port.
14146
14147There are similar commands @samp{set com2base}, @samp{set com3irq},
14148etc.@: for setting the port address and the @code{IRQ} lines for the
14149other 3 COM ports.
14150
14151@kindex show com1base
14152@kindex show com1irq
14153@kindex show com2base
14154@kindex show com2irq
14155@kindex show com3base
14156@kindex show com3irq
14157@kindex show com4base
14158@kindex show com4irq
14159The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14160display the current settings of the base address and the @code{IRQ}
14161lines used by the COM ports.
c45da7e6
EZ
14162
14163@item info serial
14164@kindex info serial
14165@cindex DOS serial port status
14166This command prints the status of the 4 DOS serial ports. For each
14167port, it prints whether it's active or not, its I/O base address and
14168IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14169counts of various errors encountered so far.
a8f24a35
EZ
14170@end table
14171
14172
78c47bea 14173@node Cygwin Native
79a6e687 14174@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14175@cindex MS Windows debugging
14176@cindex native Cygwin debugging
14177@cindex Cygwin-specific commands
14178
be448670 14179@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14180DLLs with and without symbolic debugging information. There are various
14181additional Cygwin-specific commands, described in this section.
14182Working with DLLs that have no debugging symbols is described in
14183@ref{Non-debug DLL Symbols}.
78c47bea
PM
14184
14185@table @code
14186@kindex info w32
14187@item info w32
db2e3e2e 14188This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14189information about the target system and important OS structures.
14190
14191@item info w32 selector
14192This command displays information returned by
14193the Win32 API @code{GetThreadSelectorEntry} function.
14194It takes an optional argument that is evaluated to
14195a long value to give the information about this given selector.
14196Without argument, this command displays information
d3e8051b 14197about the six segment registers.
78c47bea
PM
14198
14199@kindex info dll
14200@item info dll
db2e3e2e 14201This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14202
14203@kindex dll-symbols
14204@item dll-symbols
14205This command loads symbols from a dll similarly to
14206add-sym command but without the need to specify a base address.
14207
be90c084 14208@kindex set cygwin-exceptions
e16b02ee
EZ
14209@cindex debugging the Cygwin DLL
14210@cindex Cygwin DLL, debugging
be90c084 14211@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14212If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14213happen inside the Cygwin DLL. If @var{mode} is @code{off},
14214@value{GDBN} will delay recognition of exceptions, and may ignore some
14215exceptions which seem to be caused by internal Cygwin DLL
14216``bookkeeping''. This option is meant primarily for debugging the
14217Cygwin DLL itself; the default value is @code{off} to avoid annoying
14218@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14219
14220@kindex show cygwin-exceptions
14221@item show cygwin-exceptions
e16b02ee
EZ
14222Displays whether @value{GDBN} will break on exceptions that happen
14223inside the Cygwin DLL itself.
be90c084 14224
b383017d 14225@kindex set new-console
78c47bea 14226@item set new-console @var{mode}
b383017d 14227If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14228be started in a new console on next start.
14229If @var{mode} is @code{off}i, the debuggee will
14230be started in the same console as the debugger.
14231
14232@kindex show new-console
14233@item show new-console
14234Displays whether a new console is used
14235when the debuggee is started.
14236
14237@kindex set new-group
14238@item set new-group @var{mode}
14239This boolean value controls whether the debuggee should
14240start a new group or stay in the same group as the debugger.
14241This affects the way the Windows OS handles
c8aa23ab 14242@samp{Ctrl-C}.
78c47bea
PM
14243
14244@kindex show new-group
14245@item show new-group
14246Displays current value of new-group boolean.
14247
14248@kindex set debugevents
14249@item set debugevents
219eec71
EZ
14250This boolean value adds debug output concerning kernel events related
14251to the debuggee seen by the debugger. This includes events that
14252signal thread and process creation and exit, DLL loading and
14253unloading, console interrupts, and debugging messages produced by the
14254Windows @code{OutputDebugString} API call.
78c47bea
PM
14255
14256@kindex set debugexec
14257@item set debugexec
b383017d 14258This boolean value adds debug output concerning execute events
219eec71 14259(such as resume thread) seen by the debugger.
78c47bea
PM
14260
14261@kindex set debugexceptions
14262@item set debugexceptions
219eec71
EZ
14263This boolean value adds debug output concerning exceptions in the
14264debuggee seen by the debugger.
78c47bea
PM
14265
14266@kindex set debugmemory
14267@item set debugmemory
219eec71
EZ
14268This boolean value adds debug output concerning debuggee memory reads
14269and writes by the debugger.
78c47bea
PM
14270
14271@kindex set shell
14272@item set shell
14273This boolean values specifies whether the debuggee is called
14274via a shell or directly (default value is on).
14275
14276@kindex show shell
14277@item show shell
14278Displays if the debuggee will be started with a shell.
14279
14280@end table
14281
be448670 14282@menu
79a6e687 14283* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14284@end menu
14285
79a6e687
BW
14286@node Non-debug DLL Symbols
14287@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14288@cindex DLLs with no debugging symbols
14289@cindex Minimal symbols and DLLs
14290
14291Very often on windows, some of the DLLs that your program relies on do
14292not include symbolic debugging information (for example,
db2e3e2e 14293@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14294symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14295information contained in the DLL's export table. This section
be448670
CF
14296describes working with such symbols, known internally to @value{GDBN} as
14297``minimal symbols''.
14298
14299Note that before the debugged program has started execution, no DLLs
db2e3e2e 14300will have been loaded. The easiest way around this problem is simply to
be448670 14301start the program --- either by setting a breakpoint or letting the
db2e3e2e 14302program run once to completion. It is also possible to force
be448670 14303@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14304see the shared library information in @ref{Files}, or the
db2e3e2e 14305@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14306explicitly loading symbols from a DLL with no debugging information will
14307cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14308which may adversely affect symbol lookup performance.
14309
79a6e687 14310@subsubsection DLL Name Prefixes
be448670
CF
14311
14312In keeping with the naming conventions used by the Microsoft debugging
14313tools, DLL export symbols are made available with a prefix based on the
14314DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14315also entered into the symbol table, so @code{CreateFileA} is often
14316sufficient. In some cases there will be name clashes within a program
14317(particularly if the executable itself includes full debugging symbols)
14318necessitating the use of the fully qualified name when referring to the
14319contents of the DLL. Use single-quotes around the name to avoid the
14320exclamation mark (``!'') being interpreted as a language operator.
14321
14322Note that the internal name of the DLL may be all upper-case, even
14323though the file name of the DLL is lower-case, or vice-versa. Since
14324symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14325some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14326@code{info variables} commands or even @code{maint print msymbols}
14327(@pxref{Symbols}). Here's an example:
be448670
CF
14328
14329@smallexample
f7dc1244 14330(@value{GDBP}) info function CreateFileA
be448670
CF
14331All functions matching regular expression "CreateFileA":
14332
14333Non-debugging symbols:
143340x77e885f4 CreateFileA
143350x77e885f4 KERNEL32!CreateFileA
14336@end smallexample
14337
14338@smallexample
f7dc1244 14339(@value{GDBP}) info function !
be448670
CF
14340All functions matching regular expression "!":
14341
14342Non-debugging symbols:
143430x6100114c cygwin1!__assert
143440x61004034 cygwin1!_dll_crt0@@0
143450x61004240 cygwin1!dll_crt0(per_process *)
14346[etc...]
14347@end smallexample
14348
79a6e687 14349@subsubsection Working with Minimal Symbols
be448670
CF
14350
14351Symbols extracted from a DLL's export table do not contain very much
14352type information. All that @value{GDBN} can do is guess whether a symbol
14353refers to a function or variable depending on the linker section that
14354contains the symbol. Also note that the actual contents of the memory
14355contained in a DLL are not available unless the program is running. This
14356means that you cannot examine the contents of a variable or disassemble
14357a function within a DLL without a running program.
14358
14359Variables are generally treated as pointers and dereferenced
14360automatically. For this reason, it is often necessary to prefix a
14361variable name with the address-of operator (``&'') and provide explicit
14362type information in the command. Here's an example of the type of
14363problem:
14364
14365@smallexample
f7dc1244 14366(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14367$1 = 268572168
14368@end smallexample
14369
14370@smallexample
f7dc1244 14371(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
143720x10021610: "\230y\""
14373@end smallexample
14374
14375And two possible solutions:
14376
14377@smallexample
f7dc1244 14378(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14379$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14380@end smallexample
14381
14382@smallexample
f7dc1244 14383(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 143840x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14385(@value{GDBP}) x/x 0x10021608
be448670 143860x10021608: 0x0022fd98
f7dc1244 14387(@value{GDBP}) x/s 0x0022fd98
be448670
CF
143880x22fd98: "/cygdrive/c/mydirectory/myprogram"
14389@end smallexample
14390
14391Setting a break point within a DLL is possible even before the program
14392starts execution. However, under these circumstances, @value{GDBN} can't
14393examine the initial instructions of the function in order to skip the
14394function's frame set-up code. You can work around this by using ``*&''
14395to set the breakpoint at a raw memory address:
14396
14397@smallexample
f7dc1244 14398(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14399Breakpoint 1 at 0x1e04eff0
14400@end smallexample
14401
14402The author of these extensions is not entirely convinced that setting a
14403break point within a shared DLL like @file{kernel32.dll} is completely
14404safe.
14405
14d6dd68 14406@node Hurd Native
79a6e687 14407@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14408@cindex @sc{gnu} Hurd debugging
14409
14410This subsection describes @value{GDBN} commands specific to the
14411@sc{gnu} Hurd native debugging.
14412
14413@table @code
14414@item set signals
14415@itemx set sigs
14416@kindex set signals@r{, Hurd command}
14417@kindex set sigs@r{, Hurd command}
14418This command toggles the state of inferior signal interception by
14419@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14420affected by this command. @code{sigs} is a shorthand alias for
14421@code{signals}.
14422
14423@item show signals
14424@itemx show sigs
14425@kindex show signals@r{, Hurd command}
14426@kindex show sigs@r{, Hurd command}
14427Show the current state of intercepting inferior's signals.
14428
14429@item set signal-thread
14430@itemx set sigthread
14431@kindex set signal-thread
14432@kindex set sigthread
14433This command tells @value{GDBN} which thread is the @code{libc} signal
14434thread. That thread is run when a signal is delivered to a running
14435process. @code{set sigthread} is the shorthand alias of @code{set
14436signal-thread}.
14437
14438@item show signal-thread
14439@itemx show sigthread
14440@kindex show signal-thread
14441@kindex show sigthread
14442These two commands show which thread will run when the inferior is
14443delivered a signal.
14444
14445@item set stopped
14446@kindex set stopped@r{, Hurd command}
14447This commands tells @value{GDBN} that the inferior process is stopped,
14448as with the @code{SIGSTOP} signal. The stopped process can be
14449continued by delivering a signal to it.
14450
14451@item show stopped
14452@kindex show stopped@r{, Hurd command}
14453This command shows whether @value{GDBN} thinks the debuggee is
14454stopped.
14455
14456@item set exceptions
14457@kindex set exceptions@r{, Hurd command}
14458Use this command to turn off trapping of exceptions in the inferior.
14459When exception trapping is off, neither breakpoints nor
14460single-stepping will work. To restore the default, set exception
14461trapping on.
14462
14463@item show exceptions
14464@kindex show exceptions@r{, Hurd command}
14465Show the current state of trapping exceptions in the inferior.
14466
14467@item set task pause
14468@kindex set task@r{, Hurd commands}
14469@cindex task attributes (@sc{gnu} Hurd)
14470@cindex pause current task (@sc{gnu} Hurd)
14471This command toggles task suspension when @value{GDBN} has control.
14472Setting it to on takes effect immediately, and the task is suspended
14473whenever @value{GDBN} gets control. Setting it to off will take
14474effect the next time the inferior is continued. If this option is set
14475to off, you can use @code{set thread default pause on} or @code{set
14476thread pause on} (see below) to pause individual threads.
14477
14478@item show task pause
14479@kindex show task@r{, Hurd commands}
14480Show the current state of task suspension.
14481
14482@item set task detach-suspend-count
14483@cindex task suspend count
14484@cindex detach from task, @sc{gnu} Hurd
14485This command sets the suspend count the task will be left with when
14486@value{GDBN} detaches from it.
14487
14488@item show task detach-suspend-count
14489Show the suspend count the task will be left with when detaching.
14490
14491@item set task exception-port
14492@itemx set task excp
14493@cindex task exception port, @sc{gnu} Hurd
14494This command sets the task exception port to which @value{GDBN} will
14495forward exceptions. The argument should be the value of the @dfn{send
14496rights} of the task. @code{set task excp} is a shorthand alias.
14497
14498@item set noninvasive
14499@cindex noninvasive task options
14500This command switches @value{GDBN} to a mode that is the least
14501invasive as far as interfering with the inferior is concerned. This
14502is the same as using @code{set task pause}, @code{set exceptions}, and
14503@code{set signals} to values opposite to the defaults.
14504
14505@item info send-rights
14506@itemx info receive-rights
14507@itemx info port-rights
14508@itemx info port-sets
14509@itemx info dead-names
14510@itemx info ports
14511@itemx info psets
14512@cindex send rights, @sc{gnu} Hurd
14513@cindex receive rights, @sc{gnu} Hurd
14514@cindex port rights, @sc{gnu} Hurd
14515@cindex port sets, @sc{gnu} Hurd
14516@cindex dead names, @sc{gnu} Hurd
14517These commands display information about, respectively, send rights,
14518receive rights, port rights, port sets, and dead names of a task.
14519There are also shorthand aliases: @code{info ports} for @code{info
14520port-rights} and @code{info psets} for @code{info port-sets}.
14521
14522@item set thread pause
14523@kindex set thread@r{, Hurd command}
14524@cindex thread properties, @sc{gnu} Hurd
14525@cindex pause current thread (@sc{gnu} Hurd)
14526This command toggles current thread suspension when @value{GDBN} has
14527control. Setting it to on takes effect immediately, and the current
14528thread is suspended whenever @value{GDBN} gets control. Setting it to
14529off will take effect the next time the inferior is continued.
14530Normally, this command has no effect, since when @value{GDBN} has
14531control, the whole task is suspended. However, if you used @code{set
14532task pause off} (see above), this command comes in handy to suspend
14533only the current thread.
14534
14535@item show thread pause
14536@kindex show thread@r{, Hurd command}
14537This command shows the state of current thread suspension.
14538
14539@item set thread run
d3e8051b 14540This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14541
14542@item show thread run
14543Show whether the current thread is allowed to run.
14544
14545@item set thread detach-suspend-count
14546@cindex thread suspend count, @sc{gnu} Hurd
14547@cindex detach from thread, @sc{gnu} Hurd
14548This command sets the suspend count @value{GDBN} will leave on a
14549thread when detaching. This number is relative to the suspend count
14550found by @value{GDBN} when it notices the thread; use @code{set thread
14551takeover-suspend-count} to force it to an absolute value.
14552
14553@item show thread detach-suspend-count
14554Show the suspend count @value{GDBN} will leave on the thread when
14555detaching.
14556
14557@item set thread exception-port
14558@itemx set thread excp
14559Set the thread exception port to which to forward exceptions. This
14560overrides the port set by @code{set task exception-port} (see above).
14561@code{set thread excp} is the shorthand alias.
14562
14563@item set thread takeover-suspend-count
14564Normally, @value{GDBN}'s thread suspend counts are relative to the
14565value @value{GDBN} finds when it notices each thread. This command
14566changes the suspend counts to be absolute instead.
14567
14568@item set thread default
14569@itemx show thread default
14570@cindex thread default settings, @sc{gnu} Hurd
14571Each of the above @code{set thread} commands has a @code{set thread
14572default} counterpart (e.g., @code{set thread default pause}, @code{set
14573thread default exception-port}, etc.). The @code{thread default}
14574variety of commands sets the default thread properties for all
14575threads; you can then change the properties of individual threads with
14576the non-default commands.
14577@end table
14578
14579
a64548ea
EZ
14580@node Neutrino
14581@subsection QNX Neutrino
14582@cindex QNX Neutrino
14583
14584@value{GDBN} provides the following commands specific to the QNX
14585Neutrino target:
14586
14587@table @code
14588@item set debug nto-debug
14589@kindex set debug nto-debug
14590When set to on, enables debugging messages specific to the QNX
14591Neutrino support.
14592
14593@item show debug nto-debug
14594@kindex show debug nto-debug
14595Show the current state of QNX Neutrino messages.
14596@end table
14597
14598
8e04817f
AC
14599@node Embedded OS
14600@section Embedded Operating Systems
104c1213 14601
8e04817f
AC
14602This section describes configurations involving the debugging of
14603embedded operating systems that are available for several different
14604architectures.
d4f3574e 14605
8e04817f
AC
14606@menu
14607* VxWorks:: Using @value{GDBN} with VxWorks
14608@end menu
104c1213 14609
8e04817f
AC
14610@value{GDBN} includes the ability to debug programs running on
14611various real-time operating systems.
104c1213 14612
8e04817f
AC
14613@node VxWorks
14614@subsection Using @value{GDBN} with VxWorks
104c1213 14615
8e04817f 14616@cindex VxWorks
104c1213 14617
8e04817f 14618@table @code
104c1213 14619
8e04817f
AC
14620@kindex target vxworks
14621@item target vxworks @var{machinename}
14622A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14623is the target system's machine name or IP address.
104c1213 14624
8e04817f 14625@end table
104c1213 14626
8e04817f
AC
14627On VxWorks, @code{load} links @var{filename} dynamically on the
14628current target system as well as adding its symbols in @value{GDBN}.
104c1213 14629
8e04817f
AC
14630@value{GDBN} enables developers to spawn and debug tasks running on networked
14631VxWorks targets from a Unix host. Already-running tasks spawned from
14632the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14633both the Unix host and on the VxWorks target. The program
14634@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14635installed with the name @code{vxgdb}, to distinguish it from a
14636@value{GDBN} for debugging programs on the host itself.)
104c1213 14637
8e04817f
AC
14638@table @code
14639@item VxWorks-timeout @var{args}
14640@kindex vxworks-timeout
14641All VxWorks-based targets now support the option @code{vxworks-timeout}.
14642This option is set by the user, and @var{args} represents the number of
14643seconds @value{GDBN} waits for responses to rpc's. You might use this if
14644your VxWorks target is a slow software simulator or is on the far side
14645of a thin network line.
14646@end table
104c1213 14647
8e04817f
AC
14648The following information on connecting to VxWorks was current when
14649this manual was produced; newer releases of VxWorks may use revised
14650procedures.
104c1213 14651
4644b6e3 14652@findex INCLUDE_RDB
8e04817f
AC
14653To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14654to include the remote debugging interface routines in the VxWorks
14655library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14656VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14657kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14658source debugging task @code{tRdbTask} when VxWorks is booted. For more
14659information on configuring and remaking VxWorks, see the manufacturer's
14660manual.
14661@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14662
8e04817f
AC
14663Once you have included @file{rdb.a} in your VxWorks system image and set
14664your Unix execution search path to find @value{GDBN}, you are ready to
14665run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14666@code{vxgdb}, depending on your installation).
104c1213 14667
8e04817f 14668@value{GDBN} comes up showing the prompt:
104c1213 14669
474c8240 14670@smallexample
8e04817f 14671(vxgdb)
474c8240 14672@end smallexample
104c1213 14673
8e04817f
AC
14674@menu
14675* VxWorks Connection:: Connecting to VxWorks
14676* VxWorks Download:: VxWorks download
14677* VxWorks Attach:: Running tasks
14678@end menu
104c1213 14679
8e04817f
AC
14680@node VxWorks Connection
14681@subsubsection Connecting to VxWorks
104c1213 14682
8e04817f
AC
14683The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14684network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14685
474c8240 14686@smallexample
8e04817f 14687(vxgdb) target vxworks tt
474c8240 14688@end smallexample
104c1213 14689
8e04817f
AC
14690@need 750
14691@value{GDBN} displays messages like these:
104c1213 14692
8e04817f
AC
14693@smallexample
14694Attaching remote machine across net...
14695Connected to tt.
14696@end smallexample
104c1213 14697
8e04817f
AC
14698@need 1000
14699@value{GDBN} then attempts to read the symbol tables of any object modules
14700loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14701these files by searching the directories listed in the command search
79a6e687 14702path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14703to find an object file, it displays a message such as:
5d161b24 14704
474c8240 14705@smallexample
8e04817f 14706prog.o: No such file or directory.
474c8240 14707@end smallexample
104c1213 14708
8e04817f
AC
14709When this happens, add the appropriate directory to the search path with
14710the @value{GDBN} command @code{path}, and execute the @code{target}
14711command again.
104c1213 14712
8e04817f 14713@node VxWorks Download
79a6e687 14714@subsubsection VxWorks Download
104c1213 14715
8e04817f
AC
14716@cindex download to VxWorks
14717If you have connected to the VxWorks target and you want to debug an
14718object that has not yet been loaded, you can use the @value{GDBN}
14719@code{load} command to download a file from Unix to VxWorks
14720incrementally. The object file given as an argument to the @code{load}
14721command is actually opened twice: first by the VxWorks target in order
14722to download the code, then by @value{GDBN} in order to read the symbol
14723table. This can lead to problems if the current working directories on
14724the two systems differ. If both systems have NFS mounted the same
14725filesystems, you can avoid these problems by using absolute paths.
14726Otherwise, it is simplest to set the working directory on both systems
14727to the directory in which the object file resides, and then to reference
14728the file by its name, without any path. For instance, a program
14729@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14730and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14731program, type this on VxWorks:
104c1213 14732
474c8240 14733@smallexample
8e04817f 14734-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14735@end smallexample
104c1213 14736
8e04817f
AC
14737@noindent
14738Then, in @value{GDBN}, type:
104c1213 14739
474c8240 14740@smallexample
8e04817f
AC
14741(vxgdb) cd @var{hostpath}/vw/demo/rdb
14742(vxgdb) load prog.o
474c8240 14743@end smallexample
104c1213 14744
8e04817f 14745@value{GDBN} displays a response similar to this:
104c1213 14746
8e04817f
AC
14747@smallexample
14748Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14749@end smallexample
104c1213 14750
8e04817f
AC
14751You can also use the @code{load} command to reload an object module
14752after editing and recompiling the corresponding source file. Note that
14753this makes @value{GDBN} delete all currently-defined breakpoints,
14754auto-displays, and convenience variables, and to clear the value
14755history. (This is necessary in order to preserve the integrity of
14756debugger's data structures that reference the target system's symbol
14757table.)
104c1213 14758
8e04817f 14759@node VxWorks Attach
79a6e687 14760@subsubsection Running Tasks
104c1213
JM
14761
14762@cindex running VxWorks tasks
14763You can also attach to an existing task using the @code{attach} command as
14764follows:
14765
474c8240 14766@smallexample
104c1213 14767(vxgdb) attach @var{task}
474c8240 14768@end smallexample
104c1213
JM
14769
14770@noindent
14771where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14772or suspended when you attach to it. Running tasks are suspended at
14773the time of attachment.
14774
6d2ebf8b 14775@node Embedded Processors
104c1213
JM
14776@section Embedded Processors
14777
14778This section goes into details specific to particular embedded
14779configurations.
14780
c45da7e6
EZ
14781@cindex send command to simulator
14782Whenever a specific embedded processor has a simulator, @value{GDBN}
14783allows to send an arbitrary command to the simulator.
14784
14785@table @code
14786@item sim @var{command}
14787@kindex sim@r{, a command}
14788Send an arbitrary @var{command} string to the simulator. Consult the
14789documentation for the specific simulator in use for information about
14790acceptable commands.
14791@end table
14792
7d86b5d5 14793
104c1213 14794@menu
c45da7e6 14795* ARM:: ARM RDI
172c2a43 14796* M32R/D:: Renesas M32R/D
104c1213 14797* M68K:: Motorola M68K
104c1213 14798* MIPS Embedded:: MIPS Embedded
a37295f9 14799* OpenRISC 1000:: OpenRisc 1000
104c1213 14800* PA:: HP PA Embedded
4acd40f3 14801* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14802* Sparclet:: Tsqware Sparclet
14803* Sparclite:: Fujitsu Sparclite
104c1213 14804* Z8000:: Zilog Z8000
a64548ea
EZ
14805* AVR:: Atmel AVR
14806* CRIS:: CRIS
14807* Super-H:: Renesas Super-H
104c1213
JM
14808@end menu
14809
6d2ebf8b 14810@node ARM
104c1213 14811@subsection ARM
c45da7e6 14812@cindex ARM RDI
104c1213
JM
14813
14814@table @code
8e04817f
AC
14815@kindex target rdi
14816@item target rdi @var{dev}
14817ARM Angel monitor, via RDI library interface to ADP protocol. You may
14818use this target to communicate with both boards running the Angel
14819monitor, or with the EmbeddedICE JTAG debug device.
14820
14821@kindex target rdp
14822@item target rdp @var{dev}
14823ARM Demon monitor.
14824
14825@end table
14826
e2f4edfd
EZ
14827@value{GDBN} provides the following ARM-specific commands:
14828
14829@table @code
14830@item set arm disassembler
14831@kindex set arm
14832This commands selects from a list of disassembly styles. The
14833@code{"std"} style is the standard style.
14834
14835@item show arm disassembler
14836@kindex show arm
14837Show the current disassembly style.
14838
14839@item set arm apcs32
14840@cindex ARM 32-bit mode
14841This command toggles ARM operation mode between 32-bit and 26-bit.
14842
14843@item show arm apcs32
14844Display the current usage of the ARM 32-bit mode.
14845
14846@item set arm fpu @var{fputype}
14847This command sets the ARM floating-point unit (FPU) type. The
14848argument @var{fputype} can be one of these:
14849
14850@table @code
14851@item auto
14852Determine the FPU type by querying the OS ABI.
14853@item softfpa
14854Software FPU, with mixed-endian doubles on little-endian ARM
14855processors.
14856@item fpa
14857GCC-compiled FPA co-processor.
14858@item softvfp
14859Software FPU with pure-endian doubles.
14860@item vfp
14861VFP co-processor.
14862@end table
14863
14864@item show arm fpu
14865Show the current type of the FPU.
14866
14867@item set arm abi
14868This command forces @value{GDBN} to use the specified ABI.
14869
14870@item show arm abi
14871Show the currently used ABI.
14872
14873@item set debug arm
14874Toggle whether to display ARM-specific debugging messages from the ARM
14875target support subsystem.
14876
14877@item show debug arm
14878Show whether ARM-specific debugging messages are enabled.
14879@end table
14880
c45da7e6
EZ
14881The following commands are available when an ARM target is debugged
14882using the RDI interface:
14883
14884@table @code
14885@item rdilogfile @r{[}@var{file}@r{]}
14886@kindex rdilogfile
14887@cindex ADP (Angel Debugger Protocol) logging
14888Set the filename for the ADP (Angel Debugger Protocol) packet log.
14889With an argument, sets the log file to the specified @var{file}. With
14890no argument, show the current log file name. The default log file is
14891@file{rdi.log}.
14892
14893@item rdilogenable @r{[}@var{arg}@r{]}
14894@kindex rdilogenable
14895Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14896enables logging, with an argument 0 or @code{"no"} disables it. With
14897no arguments displays the current setting. When logging is enabled,
14898ADP packets exchanged between @value{GDBN} and the RDI target device
14899are logged to a file.
14900
14901@item set rdiromatzero
14902@kindex set rdiromatzero
14903@cindex ROM at zero address, RDI
14904Tell @value{GDBN} whether the target has ROM at address 0. If on,
14905vector catching is disabled, so that zero address can be used. If off
14906(the default), vector catching is enabled. For this command to take
14907effect, it needs to be invoked prior to the @code{target rdi} command.
14908
14909@item show rdiromatzero
14910@kindex show rdiromatzero
14911Show the current setting of ROM at zero address.
14912
14913@item set rdiheartbeat
14914@kindex set rdiheartbeat
14915@cindex RDI heartbeat
14916Enable or disable RDI heartbeat packets. It is not recommended to
14917turn on this option, since it confuses ARM and EPI JTAG interface, as
14918well as the Angel monitor.
14919
14920@item show rdiheartbeat
14921@kindex show rdiheartbeat
14922Show the setting of RDI heartbeat packets.
14923@end table
14924
e2f4edfd 14925
8e04817f 14926@node M32R/D
ba04e063 14927@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14928
14929@table @code
8e04817f
AC
14930@kindex target m32r
14931@item target m32r @var{dev}
172c2a43 14932Renesas M32R/D ROM monitor.
8e04817f 14933
fb3e19c0
KI
14934@kindex target m32rsdi
14935@item target m32rsdi @var{dev}
14936Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14937@end table
14938
14939The following @value{GDBN} commands are specific to the M32R monitor:
14940
14941@table @code
14942@item set download-path @var{path}
14943@kindex set download-path
14944@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14945Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14946
14947@item show download-path
14948@kindex show download-path
14949Show the default path for downloadable @sc{srec} files.
fb3e19c0 14950
721c2651
EZ
14951@item set board-address @var{addr}
14952@kindex set board-address
14953@cindex M32-EVA target board address
14954Set the IP address for the M32R-EVA target board.
14955
14956@item show board-address
14957@kindex show board-address
14958Show the current IP address of the target board.
14959
14960@item set server-address @var{addr}
14961@kindex set server-address
14962@cindex download server address (M32R)
14963Set the IP address for the download server, which is the @value{GDBN}'s
14964host machine.
14965
14966@item show server-address
14967@kindex show server-address
14968Display the IP address of the download server.
14969
14970@item upload @r{[}@var{file}@r{]}
14971@kindex upload@r{, M32R}
14972Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14973upload capability. If no @var{file} argument is given, the current
14974executable file is uploaded.
14975
14976@item tload @r{[}@var{file}@r{]}
14977@kindex tload@r{, M32R}
14978Test the @code{upload} command.
8e04817f
AC
14979@end table
14980
ba04e063
EZ
14981The following commands are available for M32R/SDI:
14982
14983@table @code
14984@item sdireset
14985@kindex sdireset
14986@cindex reset SDI connection, M32R
14987This command resets the SDI connection.
14988
14989@item sdistatus
14990@kindex sdistatus
14991This command shows the SDI connection status.
14992
14993@item debug_chaos
14994@kindex debug_chaos
14995@cindex M32R/Chaos debugging
14996Instructs the remote that M32R/Chaos debugging is to be used.
14997
14998@item use_debug_dma
14999@kindex use_debug_dma
15000Instructs the remote to use the DEBUG_DMA method of accessing memory.
15001
15002@item use_mon_code
15003@kindex use_mon_code
15004Instructs the remote to use the MON_CODE method of accessing memory.
15005
15006@item use_ib_break
15007@kindex use_ib_break
15008Instructs the remote to set breakpoints by IB break.
15009
15010@item use_dbt_break
15011@kindex use_dbt_break
15012Instructs the remote to set breakpoints by DBT.
15013@end table
15014
8e04817f
AC
15015@node M68K
15016@subsection M68k
15017
7ce59000
DJ
15018The Motorola m68k configuration includes ColdFire support, and a
15019target command for the following ROM monitor.
8e04817f
AC
15020
15021@table @code
15022
8e04817f
AC
15023@kindex target dbug
15024@item target dbug @var{dev}
15025dBUG ROM monitor for Motorola ColdFire.
15026
8e04817f
AC
15027@end table
15028
8e04817f
AC
15029@node MIPS Embedded
15030@subsection MIPS Embedded
15031
15032@cindex MIPS boards
15033@value{GDBN} can use the MIPS remote debugging protocol to talk to a
15034MIPS board attached to a serial line. This is available when
15035you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 15036
8e04817f
AC
15037@need 1000
15038Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 15039
8e04817f
AC
15040@table @code
15041@item target mips @var{port}
15042@kindex target mips @var{port}
15043To run a program on the board, start up @code{@value{GDBP}} with the
15044name of your program as the argument. To connect to the board, use the
15045command @samp{target mips @var{port}}, where @var{port} is the name of
15046the serial port connected to the board. If the program has not already
15047been downloaded to the board, you may use the @code{load} command to
15048download it. You can then use all the usual @value{GDBN} commands.
104c1213 15049
8e04817f
AC
15050For example, this sequence connects to the target board through a serial
15051port, and loads and runs a program called @var{prog} through the
15052debugger:
104c1213 15053
474c8240 15054@smallexample
8e04817f
AC
15055host$ @value{GDBP} @var{prog}
15056@value{GDBN} is free software and @dots{}
15057(@value{GDBP}) target mips /dev/ttyb
15058(@value{GDBP}) load @var{prog}
15059(@value{GDBP}) run
474c8240 15060@end smallexample
104c1213 15061
8e04817f
AC
15062@item target mips @var{hostname}:@var{portnumber}
15063On some @value{GDBN} host configurations, you can specify a TCP
15064connection (for instance, to a serial line managed by a terminal
15065concentrator) instead of a serial port, using the syntax
15066@samp{@var{hostname}:@var{portnumber}}.
104c1213 15067
8e04817f
AC
15068@item target pmon @var{port}
15069@kindex target pmon @var{port}
15070PMON ROM monitor.
104c1213 15071
8e04817f
AC
15072@item target ddb @var{port}
15073@kindex target ddb @var{port}
15074NEC's DDB variant of PMON for Vr4300.
104c1213 15075
8e04817f
AC
15076@item target lsi @var{port}
15077@kindex target lsi @var{port}
15078LSI variant of PMON.
104c1213 15079
8e04817f
AC
15080@kindex target r3900
15081@item target r3900 @var{dev}
15082Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 15083
8e04817f
AC
15084@kindex target array
15085@item target array @var{dev}
15086Array Tech LSI33K RAID controller board.
104c1213 15087
8e04817f 15088@end table
104c1213 15089
104c1213 15090
8e04817f
AC
15091@noindent
15092@value{GDBN} also supports these special commands for MIPS targets:
104c1213 15093
8e04817f 15094@table @code
8e04817f
AC
15095@item set mipsfpu double
15096@itemx set mipsfpu single
15097@itemx set mipsfpu none
a64548ea 15098@itemx set mipsfpu auto
8e04817f
AC
15099@itemx show mipsfpu
15100@kindex set mipsfpu
15101@kindex show mipsfpu
15102@cindex MIPS remote floating point
15103@cindex floating point, MIPS remote
15104If your target board does not support the MIPS floating point
15105coprocessor, you should use the command @samp{set mipsfpu none} (if you
15106need this, you may wish to put the command in your @value{GDBN} init
15107file). This tells @value{GDBN} how to find the return value of
15108functions which return floating point values. It also allows
15109@value{GDBN} to avoid saving the floating point registers when calling
15110functions on the board. If you are using a floating point coprocessor
15111with only single precision floating point support, as on the @sc{r4650}
15112processor, use the command @samp{set mipsfpu single}. The default
15113double precision floating point coprocessor may be selected using
15114@samp{set mipsfpu double}.
104c1213 15115
8e04817f
AC
15116In previous versions the only choices were double precision or no
15117floating point, so @samp{set mipsfpu on} will select double precision
15118and @samp{set mipsfpu off} will select no floating point.
104c1213 15119
8e04817f
AC
15120As usual, you can inquire about the @code{mipsfpu} variable with
15121@samp{show mipsfpu}.
104c1213 15122
8e04817f
AC
15123@item set timeout @var{seconds}
15124@itemx set retransmit-timeout @var{seconds}
15125@itemx show timeout
15126@itemx show retransmit-timeout
15127@cindex @code{timeout}, MIPS protocol
15128@cindex @code{retransmit-timeout}, MIPS protocol
15129@kindex set timeout
15130@kindex show timeout
15131@kindex set retransmit-timeout
15132@kindex show retransmit-timeout
15133You can control the timeout used while waiting for a packet, in the MIPS
15134remote protocol, with the @code{set timeout @var{seconds}} command. The
15135default is 5 seconds. Similarly, you can control the timeout used while
15136waiting for an acknowledgement of a packet with the @code{set
15137retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15138You can inspect both values with @code{show timeout} and @code{show
15139retransmit-timeout}. (These commands are @emph{only} available when
15140@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15141
8e04817f
AC
15142The timeout set by @code{set timeout} does not apply when @value{GDBN}
15143is waiting for your program to stop. In that case, @value{GDBN} waits
15144forever because it has no way of knowing how long the program is going
15145to run before stopping.
ba04e063
EZ
15146
15147@item set syn-garbage-limit @var{num}
15148@kindex set syn-garbage-limit@r{, MIPS remote}
15149@cindex synchronize with remote MIPS target
15150Limit the maximum number of characters @value{GDBN} should ignore when
15151it tries to synchronize with the remote target. The default is 10
15152characters. Setting the limit to -1 means there's no limit.
15153
15154@item show syn-garbage-limit
15155@kindex show syn-garbage-limit@r{, MIPS remote}
15156Show the current limit on the number of characters to ignore when
15157trying to synchronize with the remote system.
15158
15159@item set monitor-prompt @var{prompt}
15160@kindex set monitor-prompt@r{, MIPS remote}
15161@cindex remote monitor prompt
15162Tell @value{GDBN} to expect the specified @var{prompt} string from the
15163remote monitor. The default depends on the target:
15164@table @asis
15165@item pmon target
15166@samp{PMON}
15167@item ddb target
15168@samp{NEC010}
15169@item lsi target
15170@samp{PMON>}
15171@end table
15172
15173@item show monitor-prompt
15174@kindex show monitor-prompt@r{, MIPS remote}
15175Show the current strings @value{GDBN} expects as the prompt from the
15176remote monitor.
15177
15178@item set monitor-warnings
15179@kindex set monitor-warnings@r{, MIPS remote}
15180Enable or disable monitor warnings about hardware breakpoints. This
15181has effect only for the @code{lsi} target. When on, @value{GDBN} will
15182display warning messages whose codes are returned by the @code{lsi}
15183PMON monitor for breakpoint commands.
15184
15185@item show monitor-warnings
15186@kindex show monitor-warnings@r{, MIPS remote}
15187Show the current setting of printing monitor warnings.
15188
15189@item pmon @var{command}
15190@kindex pmon@r{, MIPS remote}
15191@cindex send PMON command
15192This command allows sending an arbitrary @var{command} string to the
15193monitor. The monitor must be in debug mode for this to work.
8e04817f 15194@end table
104c1213 15195
a37295f9
MM
15196@node OpenRISC 1000
15197@subsection OpenRISC 1000
15198@cindex OpenRISC 1000
15199
15200@cindex or1k boards
15201See OR1k Architecture document (@uref{www.opencores.org}) for more information
15202about platform and commands.
15203
15204@table @code
15205
15206@kindex target jtag
15207@item target jtag jtag://@var{host}:@var{port}
15208
15209Connects to remote JTAG server.
15210JTAG remote server can be either an or1ksim or JTAG server,
15211connected via parallel port to the board.
15212
15213Example: @code{target jtag jtag://localhost:9999}
15214
15215@kindex or1ksim
15216@item or1ksim @var{command}
15217If connected to @code{or1ksim} OpenRISC 1000 Architectural
15218Simulator, proprietary commands can be executed.
15219
15220@kindex info or1k spr
15221@item info or1k spr
15222Displays spr groups.
15223
15224@item info or1k spr @var{group}
15225@itemx info or1k spr @var{groupno}
15226Displays register names in selected group.
15227
15228@item info or1k spr @var{group} @var{register}
15229@itemx info or1k spr @var{register}
15230@itemx info or1k spr @var{groupno} @var{registerno}
15231@itemx info or1k spr @var{registerno}
15232Shows information about specified spr register.
15233
15234@kindex spr
15235@item spr @var{group} @var{register} @var{value}
15236@itemx spr @var{register @var{value}}
15237@itemx spr @var{groupno} @var{registerno @var{value}}
15238@itemx spr @var{registerno @var{value}}
15239Writes @var{value} to specified spr register.
15240@end table
15241
15242Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15243It is very similar to @value{GDBN} trace, except it does not interfere with normal
15244program execution and is thus much faster. Hardware breakpoints/watchpoint
15245triggers can be set using:
15246@table @code
15247@item $LEA/$LDATA
15248Load effective address/data
15249@item $SEA/$SDATA
15250Store effective address/data
15251@item $AEA/$ADATA
15252Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15253@item $FETCH
15254Fetch data
15255@end table
15256
15257When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15258@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15259
15260@code{htrace} commands:
15261@cindex OpenRISC 1000 htrace
15262@table @code
15263@kindex hwatch
15264@item hwatch @var{conditional}
d3e8051b 15265Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15266or Data. For example:
15267
15268@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15269
15270@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15271
4644b6e3 15272@kindex htrace
a37295f9
MM
15273@item htrace info
15274Display information about current HW trace configuration.
15275
a37295f9
MM
15276@item htrace trigger @var{conditional}
15277Set starting criteria for HW trace.
15278
a37295f9
MM
15279@item htrace qualifier @var{conditional}
15280Set acquisition qualifier for HW trace.
15281
a37295f9
MM
15282@item htrace stop @var{conditional}
15283Set HW trace stopping criteria.
15284
f153cc92 15285@item htrace record [@var{data}]*
a37295f9
MM
15286Selects the data to be recorded, when qualifier is met and HW trace was
15287triggered.
15288
a37295f9 15289@item htrace enable
a37295f9
MM
15290@itemx htrace disable
15291Enables/disables the HW trace.
15292
f153cc92 15293@item htrace rewind [@var{filename}]
a37295f9
MM
15294Clears currently recorded trace data.
15295
15296If filename is specified, new trace file is made and any newly collected data
15297will be written there.
15298
f153cc92 15299@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15300Prints trace buffer, using current record configuration.
15301
a37295f9
MM
15302@item htrace mode continuous
15303Set continuous trace mode.
15304
a37295f9
MM
15305@item htrace mode suspend
15306Set suspend trace mode.
15307
15308@end table
15309
4acd40f3
TJB
15310@node PowerPC Embedded
15311@subsection PowerPC Embedded
104c1213 15312
55eddb0f
DJ
15313@value{GDBN} provides the following PowerPC-specific commands:
15314
104c1213 15315@table @code
55eddb0f
DJ
15316@kindex set powerpc
15317@item set powerpc soft-float
15318@itemx show powerpc soft-float
15319Force @value{GDBN} to use (or not use) a software floating point calling
15320convention. By default, @value{GDBN} selects the calling convention based
15321on the selected architecture and the provided executable file.
15322
15323@item set powerpc vector-abi
15324@itemx show powerpc vector-abi
15325Force @value{GDBN} to use the specified calling convention for vector
15326arguments and return values. The valid options are @samp{auto};
15327@samp{generic}, to avoid vector registers even if they are present;
15328@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15329registers. By default, @value{GDBN} selects the calling convention
15330based on the selected architecture and the provided executable file.
15331
8e04817f
AC
15332@kindex target dink32
15333@item target dink32 @var{dev}
15334DINK32 ROM monitor.
104c1213 15335
8e04817f
AC
15336@kindex target ppcbug
15337@item target ppcbug @var{dev}
15338@kindex target ppcbug1
15339@item target ppcbug1 @var{dev}
15340PPCBUG ROM monitor for PowerPC.
104c1213 15341
8e04817f
AC
15342@kindex target sds
15343@item target sds @var{dev}
15344SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15345@end table
8e04817f 15346
c45da7e6 15347@cindex SDS protocol
d52fb0e9 15348The following commands specific to the SDS protocol are supported
55eddb0f 15349by @value{GDBN}:
c45da7e6
EZ
15350
15351@table @code
15352@item set sdstimeout @var{nsec}
15353@kindex set sdstimeout
15354Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15355default is 2 seconds.
15356
15357@item show sdstimeout
15358@kindex show sdstimeout
15359Show the current value of the SDS timeout.
15360
15361@item sds @var{command}
15362@kindex sds@r{, a command}
15363Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15364@end table
15365
c45da7e6 15366
8e04817f
AC
15367@node PA
15368@subsection HP PA Embedded
104c1213
JM
15369
15370@table @code
15371
8e04817f
AC
15372@kindex target op50n
15373@item target op50n @var{dev}
15374OP50N monitor, running on an OKI HPPA board.
15375
15376@kindex target w89k
15377@item target w89k @var{dev}
15378W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15379
15380@end table
15381
8e04817f
AC
15382@node Sparclet
15383@subsection Tsqware Sparclet
104c1213 15384
8e04817f
AC
15385@cindex Sparclet
15386
15387@value{GDBN} enables developers to debug tasks running on
15388Sparclet targets from a Unix host.
15389@value{GDBN} uses code that runs on
15390both the Unix host and on the Sparclet target. The program
15391@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15392
8e04817f
AC
15393@table @code
15394@item remotetimeout @var{args}
15395@kindex remotetimeout
15396@value{GDBN} supports the option @code{remotetimeout}.
15397This option is set by the user, and @var{args} represents the number of
15398seconds @value{GDBN} waits for responses.
104c1213
JM
15399@end table
15400
8e04817f
AC
15401@cindex compiling, on Sparclet
15402When compiling for debugging, include the options @samp{-g} to get debug
15403information and @samp{-Ttext} to relocate the program to where you wish to
15404load it on the target. You may also want to add the options @samp{-n} or
15405@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15406
474c8240 15407@smallexample
8e04817f 15408sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15409@end smallexample
104c1213 15410
8e04817f 15411You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15412
474c8240 15413@smallexample
8e04817f 15414sparclet-aout-objdump --headers --syms prog
474c8240 15415@end smallexample
104c1213 15416
8e04817f
AC
15417@cindex running, on Sparclet
15418Once you have set
15419your Unix execution search path to find @value{GDBN}, you are ready to
15420run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15421(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15422
8e04817f
AC
15423@value{GDBN} comes up showing the prompt:
15424
474c8240 15425@smallexample
8e04817f 15426(gdbslet)
474c8240 15427@end smallexample
104c1213
JM
15428
15429@menu
8e04817f
AC
15430* Sparclet File:: Setting the file to debug
15431* Sparclet Connection:: Connecting to Sparclet
15432* Sparclet Download:: Sparclet download
15433* Sparclet Execution:: Running and debugging
104c1213
JM
15434@end menu
15435
8e04817f 15436@node Sparclet File
79a6e687 15437@subsubsection Setting File to Debug
104c1213 15438
8e04817f 15439The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15440
474c8240 15441@smallexample
8e04817f 15442(gdbslet) file prog
474c8240 15443@end smallexample
104c1213 15444
8e04817f
AC
15445@need 1000
15446@value{GDBN} then attempts to read the symbol table of @file{prog}.
15447@value{GDBN} locates
15448the file by searching the directories listed in the command search
15449path.
12c27660 15450If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15451files will be searched as well.
15452@value{GDBN} locates
15453the source files by searching the directories listed in the directory search
79a6e687 15454path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15455If it fails
15456to find a file, it displays a message such as:
104c1213 15457
474c8240 15458@smallexample
8e04817f 15459prog: No such file or directory.
474c8240 15460@end smallexample
104c1213 15461
8e04817f
AC
15462When this happens, add the appropriate directories to the search paths with
15463the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15464@code{target} command again.
104c1213 15465
8e04817f
AC
15466@node Sparclet Connection
15467@subsubsection Connecting to Sparclet
104c1213 15468
8e04817f
AC
15469The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15470To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15471
474c8240 15472@smallexample
8e04817f
AC
15473(gdbslet) target sparclet /dev/ttya
15474Remote target sparclet connected to /dev/ttya
15475main () at ../prog.c:3
474c8240 15476@end smallexample
104c1213 15477
8e04817f
AC
15478@need 750
15479@value{GDBN} displays messages like these:
104c1213 15480
474c8240 15481@smallexample
8e04817f 15482Connected to ttya.
474c8240 15483@end smallexample
104c1213 15484
8e04817f 15485@node Sparclet Download
79a6e687 15486@subsubsection Sparclet Download
104c1213 15487
8e04817f
AC
15488@cindex download to Sparclet
15489Once connected to the Sparclet target,
15490you can use the @value{GDBN}
15491@code{load} command to download the file from the host to the target.
15492The file name and load offset should be given as arguments to the @code{load}
15493command.
15494Since the file format is aout, the program must be loaded to the starting
15495address. You can use @code{objdump} to find out what this value is. The load
15496offset is an offset which is added to the VMA (virtual memory address)
15497of each of the file's sections.
15498For instance, if the program
15499@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15500and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15501
474c8240 15502@smallexample
8e04817f
AC
15503(gdbslet) load prog 0x12010000
15504Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15505@end smallexample
104c1213 15506
8e04817f
AC
15507If the code is loaded at a different address then what the program was linked
15508to, you may need to use the @code{section} and @code{add-symbol-file} commands
15509to tell @value{GDBN} where to map the symbol table.
15510
15511@node Sparclet Execution
79a6e687 15512@subsubsection Running and Debugging
8e04817f
AC
15513
15514@cindex running and debugging Sparclet programs
15515You can now begin debugging the task using @value{GDBN}'s execution control
15516commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15517manual for the list of commands.
15518
474c8240 15519@smallexample
8e04817f
AC
15520(gdbslet) b main
15521Breakpoint 1 at 0x12010000: file prog.c, line 3.
15522(gdbslet) run
15523Starting program: prog
15524Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
155253 char *symarg = 0;
15526(gdbslet) step
155274 char *execarg = "hello!";
15528(gdbslet)
474c8240 15529@end smallexample
8e04817f
AC
15530
15531@node Sparclite
15532@subsection Fujitsu Sparclite
104c1213
JM
15533
15534@table @code
15535
8e04817f
AC
15536@kindex target sparclite
15537@item target sparclite @var{dev}
15538Fujitsu sparclite boards, used only for the purpose of loading.
15539You must use an additional command to debug the program.
15540For example: target remote @var{dev} using @value{GDBN} standard
15541remote protocol.
104c1213
JM
15542
15543@end table
15544
8e04817f
AC
15545@node Z8000
15546@subsection Zilog Z8000
104c1213 15547
8e04817f
AC
15548@cindex Z8000
15549@cindex simulator, Z8000
15550@cindex Zilog Z8000 simulator
104c1213 15551
8e04817f
AC
15552When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15553a Z8000 simulator.
15554
15555For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15556unsegmented variant of the Z8000 architecture) or the Z8001 (the
15557segmented variant). The simulator recognizes which architecture is
15558appropriate by inspecting the object code.
104c1213 15559
8e04817f
AC
15560@table @code
15561@item target sim @var{args}
15562@kindex sim
15563@kindex target sim@r{, with Z8000}
15564Debug programs on a simulated CPU. If the simulator supports setup
15565options, specify them via @var{args}.
104c1213
JM
15566@end table
15567
8e04817f
AC
15568@noindent
15569After specifying this target, you can debug programs for the simulated
15570CPU in the same style as programs for your host computer; use the
15571@code{file} command to load a new program image, the @code{run} command
15572to run your program, and so on.
15573
15574As well as making available all the usual machine registers
15575(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15576additional items of information as specially named registers:
104c1213
JM
15577
15578@table @code
15579
8e04817f
AC
15580@item cycles
15581Counts clock-ticks in the simulator.
104c1213 15582
8e04817f
AC
15583@item insts
15584Counts instructions run in the simulator.
104c1213 15585
8e04817f
AC
15586@item time
15587Execution time in 60ths of a second.
104c1213 15588
8e04817f 15589@end table
104c1213 15590
8e04817f
AC
15591You can refer to these values in @value{GDBN} expressions with the usual
15592conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15593conditional breakpoint that suspends only after at least 5000
15594simulated clock ticks.
104c1213 15595
a64548ea
EZ
15596@node AVR
15597@subsection Atmel AVR
15598@cindex AVR
15599
15600When configured for debugging the Atmel AVR, @value{GDBN} supports the
15601following AVR-specific commands:
15602
15603@table @code
15604@item info io_registers
15605@kindex info io_registers@r{, AVR}
15606@cindex I/O registers (Atmel AVR)
15607This command displays information about the AVR I/O registers. For
15608each register, @value{GDBN} prints its number and value.
15609@end table
15610
15611@node CRIS
15612@subsection CRIS
15613@cindex CRIS
15614
15615When configured for debugging CRIS, @value{GDBN} provides the
15616following CRIS-specific commands:
15617
15618@table @code
15619@item set cris-version @var{ver}
15620@cindex CRIS version
e22e55c9
OF
15621Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15622The CRIS version affects register names and sizes. This command is useful in
15623case autodetection of the CRIS version fails.
a64548ea
EZ
15624
15625@item show cris-version
15626Show the current CRIS version.
15627
15628@item set cris-dwarf2-cfi
15629@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15630Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15631Change to @samp{off} when using @code{gcc-cris} whose version is below
15632@code{R59}.
a64548ea
EZ
15633
15634@item show cris-dwarf2-cfi
15635Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15636
15637@item set cris-mode @var{mode}
15638@cindex CRIS mode
15639Set the current CRIS mode to @var{mode}. It should only be changed when
15640debugging in guru mode, in which case it should be set to
15641@samp{guru} (the default is @samp{normal}).
15642
15643@item show cris-mode
15644Show the current CRIS mode.
a64548ea
EZ
15645@end table
15646
15647@node Super-H
15648@subsection Renesas Super-H
15649@cindex Super-H
15650
15651For the Renesas Super-H processor, @value{GDBN} provides these
15652commands:
15653
15654@table @code
15655@item regs
15656@kindex regs@r{, Super-H}
15657Show the values of all Super-H registers.
15658@end table
15659
15660
8e04817f
AC
15661@node Architectures
15662@section Architectures
104c1213 15663
8e04817f
AC
15664This section describes characteristics of architectures that affect
15665all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15666
8e04817f 15667@menu
9c16f35a 15668* i386::
8e04817f
AC
15669* A29K::
15670* Alpha::
15671* MIPS::
a64548ea 15672* HPPA:: HP PA architecture
23d964e7 15673* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15674* PowerPC::
8e04817f 15675@end menu
104c1213 15676
9c16f35a 15677@node i386
db2e3e2e 15678@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15679
15680@table @code
15681@item set struct-convention @var{mode}
15682@kindex set struct-convention
15683@cindex struct return convention
15684@cindex struct/union returned in registers
15685Set the convention used by the inferior to return @code{struct}s and
15686@code{union}s from functions to @var{mode}. Possible values of
15687@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15688default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15689are returned on the stack, while @code{"reg"} means that a
15690@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15691be returned in a register.
15692
15693@item show struct-convention
15694@kindex show struct-convention
15695Show the current setting of the convention to return @code{struct}s
15696from functions.
15697@end table
15698
8e04817f
AC
15699@node A29K
15700@subsection A29K
104c1213
JM
15701
15702@table @code
104c1213 15703
8e04817f
AC
15704@kindex set rstack_high_address
15705@cindex AMD 29K register stack
15706@cindex register stack, AMD29K
15707@item set rstack_high_address @var{address}
15708On AMD 29000 family processors, registers are saved in a separate
15709@dfn{register stack}. There is no way for @value{GDBN} to determine the
15710extent of this stack. Normally, @value{GDBN} just assumes that the
15711stack is ``large enough''. This may result in @value{GDBN} referencing
15712memory locations that do not exist. If necessary, you can get around
15713this problem by specifying the ending address of the register stack with
15714the @code{set rstack_high_address} command. The argument should be an
15715address, which you probably want to precede with @samp{0x} to specify in
15716hexadecimal.
104c1213 15717
8e04817f
AC
15718@kindex show rstack_high_address
15719@item show rstack_high_address
15720Display the current limit of the register stack, on AMD 29000 family
15721processors.
104c1213 15722
8e04817f 15723@end table
104c1213 15724
8e04817f
AC
15725@node Alpha
15726@subsection Alpha
104c1213 15727
8e04817f 15728See the following section.
104c1213 15729
8e04817f
AC
15730@node MIPS
15731@subsection MIPS
104c1213 15732
8e04817f
AC
15733@cindex stack on Alpha
15734@cindex stack on MIPS
15735@cindex Alpha stack
15736@cindex MIPS stack
15737Alpha- and MIPS-based computers use an unusual stack frame, which
15738sometimes requires @value{GDBN} to search backward in the object code to
15739find the beginning of a function.
104c1213 15740
8e04817f
AC
15741@cindex response time, MIPS debugging
15742To improve response time (especially for embedded applications, where
15743@value{GDBN} may be restricted to a slow serial line for this search)
15744you may want to limit the size of this search, using one of these
15745commands:
104c1213 15746
8e04817f
AC
15747@table @code
15748@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15749@item set heuristic-fence-post @var{limit}
15750Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15751search for the beginning of a function. A value of @var{0} (the
15752default) means there is no limit. However, except for @var{0}, the
15753larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15754and therefore the longer it takes to run. You should only need to use
15755this command when debugging a stripped executable.
104c1213 15756
8e04817f
AC
15757@item show heuristic-fence-post
15758Display the current limit.
15759@end table
104c1213
JM
15760
15761@noindent
8e04817f
AC
15762These commands are available @emph{only} when @value{GDBN} is configured
15763for debugging programs on Alpha or MIPS processors.
104c1213 15764
a64548ea
EZ
15765Several MIPS-specific commands are available when debugging MIPS
15766programs:
15767
15768@table @code
a64548ea
EZ
15769@item set mips abi @var{arg}
15770@kindex set mips abi
15771@cindex set ABI for MIPS
15772Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15773values of @var{arg} are:
15774
15775@table @samp
15776@item auto
15777The default ABI associated with the current binary (this is the
15778default).
15779@item o32
15780@item o64
15781@item n32
15782@item n64
15783@item eabi32
15784@item eabi64
15785@item auto
15786@end table
15787
15788@item show mips abi
15789@kindex show mips abi
15790Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15791
15792@item set mipsfpu
15793@itemx show mipsfpu
15794@xref{MIPS Embedded, set mipsfpu}.
15795
15796@item set mips mask-address @var{arg}
15797@kindex set mips mask-address
15798@cindex MIPS addresses, masking
15799This command determines whether the most-significant 32 bits of 64-bit
15800MIPS addresses are masked off. The argument @var{arg} can be
15801@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15802setting, which lets @value{GDBN} determine the correct value.
15803
15804@item show mips mask-address
15805@kindex show mips mask-address
15806Show whether the upper 32 bits of MIPS addresses are masked off or
15807not.
15808
15809@item set remote-mips64-transfers-32bit-regs
15810@kindex set remote-mips64-transfers-32bit-regs
15811This command controls compatibility with 64-bit MIPS targets that
15812transfer data in 32-bit quantities. If you have an old MIPS 64 target
15813that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15814and 64 bits for other registers, set this option to @samp{on}.
15815
15816@item show remote-mips64-transfers-32bit-regs
15817@kindex show remote-mips64-transfers-32bit-regs
15818Show the current setting of compatibility with older MIPS 64 targets.
15819
15820@item set debug mips
15821@kindex set debug mips
15822This command turns on and off debugging messages for the MIPS-specific
15823target code in @value{GDBN}.
15824
15825@item show debug mips
15826@kindex show debug mips
15827Show the current setting of MIPS debugging messages.
15828@end table
15829
15830
15831@node HPPA
15832@subsection HPPA
15833@cindex HPPA support
15834
d3e8051b 15835When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15836following special commands:
15837
15838@table @code
15839@item set debug hppa
15840@kindex set debug hppa
db2e3e2e 15841This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15842messages are to be displayed.
15843
15844@item show debug hppa
15845Show whether HPPA debugging messages are displayed.
15846
15847@item maint print unwind @var{address}
15848@kindex maint print unwind@r{, HPPA}
15849This command displays the contents of the unwind table entry at the
15850given @var{address}.
15851
15852@end table
15853
104c1213 15854
23d964e7
UW
15855@node SPU
15856@subsection Cell Broadband Engine SPU architecture
15857@cindex Cell Broadband Engine
15858@cindex SPU
15859
15860When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15861it provides the following special commands:
15862
15863@table @code
15864@item info spu event
15865@kindex info spu
15866Display SPU event facility status. Shows current event mask
15867and pending event status.
15868
15869@item info spu signal
15870Display SPU signal notification facility status. Shows pending
15871signal-control word and signal notification mode of both signal
15872notification channels.
15873
15874@item info spu mailbox
15875Display SPU mailbox facility status. Shows all pending entries,
15876in order of processing, in each of the SPU Write Outbound,
15877SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15878
15879@item info spu dma
15880Display MFC DMA status. Shows all pending commands in the MFC
15881DMA queue. For each entry, opcode, tag, class IDs, effective
15882and local store addresses and transfer size are shown.
15883
15884@item info spu proxydma
15885Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15886Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15887and local store addresses and transfer size are shown.
15888
15889@end table
15890
4acd40f3
TJB
15891@node PowerPC
15892@subsection PowerPC
15893@cindex PowerPC architecture
15894
15895When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15896pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15897numbers stored in the floating point registers. These values must be stored
15898in two consecutive registers, always starting at an even register like
15899@code{f0} or @code{f2}.
15900
15901The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15902by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15903@code{f2} and @code{f3} for @code{$dl1} and so on.
15904
23d964e7 15905
8e04817f
AC
15906@node Controlling GDB
15907@chapter Controlling @value{GDBN}
15908
15909You can alter the way @value{GDBN} interacts with you by using the
15910@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15911data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15912described here.
15913
15914@menu
15915* Prompt:: Prompt
15916* Editing:: Command editing
d620b259 15917* Command History:: Command history
8e04817f
AC
15918* Screen Size:: Screen size
15919* Numbers:: Numbers
1e698235 15920* ABI:: Configuring the current ABI
8e04817f
AC
15921* Messages/Warnings:: Optional warnings and messages
15922* Debugging Output:: Optional messages about internal happenings
15923@end menu
15924
15925@node Prompt
15926@section Prompt
104c1213 15927
8e04817f 15928@cindex prompt
104c1213 15929
8e04817f
AC
15930@value{GDBN} indicates its readiness to read a command by printing a string
15931called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15932can change the prompt string with the @code{set prompt} command. For
15933instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15934the prompt in one of the @value{GDBN} sessions so that you can always tell
15935which one you are talking to.
104c1213 15936
8e04817f
AC
15937@emph{Note:} @code{set prompt} does not add a space for you after the
15938prompt you set. This allows you to set a prompt which ends in a space
15939or a prompt that does not.
104c1213 15940
8e04817f
AC
15941@table @code
15942@kindex set prompt
15943@item set prompt @var{newprompt}
15944Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15945
8e04817f
AC
15946@kindex show prompt
15947@item show prompt
15948Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15949@end table
15950
8e04817f 15951@node Editing
79a6e687 15952@section Command Editing
8e04817f
AC
15953@cindex readline
15954@cindex command line editing
104c1213 15955
703663ab 15956@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15957@sc{gnu} library provides consistent behavior for programs which provide a
15958command line interface to the user. Advantages are @sc{gnu} Emacs-style
15959or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15960substitution, and a storage and recall of command history across
15961debugging sessions.
104c1213 15962
8e04817f
AC
15963You may control the behavior of command line editing in @value{GDBN} with the
15964command @code{set}.
104c1213 15965
8e04817f
AC
15966@table @code
15967@kindex set editing
15968@cindex editing
15969@item set editing
15970@itemx set editing on
15971Enable command line editing (enabled by default).
104c1213 15972
8e04817f
AC
15973@item set editing off
15974Disable command line editing.
104c1213 15975
8e04817f
AC
15976@kindex show editing
15977@item show editing
15978Show whether command line editing is enabled.
104c1213
JM
15979@end table
15980
703663ab
EZ
15981@xref{Command Line Editing}, for more details about the Readline
15982interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15983encouraged to read that chapter.
15984
d620b259 15985@node Command History
79a6e687 15986@section Command History
703663ab 15987@cindex command history
8e04817f
AC
15988
15989@value{GDBN} can keep track of the commands you type during your
15990debugging sessions, so that you can be certain of precisely what
15991happened. Use these commands to manage the @value{GDBN} command
15992history facility.
104c1213 15993
703663ab
EZ
15994@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15995package, to provide the history facility. @xref{Using History
15996Interactively}, for the detailed description of the History library.
15997
d620b259 15998To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15999the state which is seen by users, prefix it with @samp{server }
16000(@pxref{Server Prefix}). This
d620b259
NR
16001means that this command will not affect the command history, nor will it
16002affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
16003pressed on a line by itself.
16004
16005@cindex @code{server}, command prefix
16006The server prefix does not affect the recording of values into the value
16007history; to print a value without recording it into the value history,
16008use the @code{output} command instead of the @code{print} command.
16009
703663ab
EZ
16010Here is the description of @value{GDBN} commands related to command
16011history.
16012
104c1213 16013@table @code
8e04817f
AC
16014@cindex history substitution
16015@cindex history file
16016@kindex set history filename
4644b6e3 16017@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
16018@item set history filename @var{fname}
16019Set the name of the @value{GDBN} command history file to @var{fname}.
16020This is the file where @value{GDBN} reads an initial command history
16021list, and where it writes the command history from this session when it
16022exits. You can access this list through history expansion or through
16023the history command editing characters listed below. This file defaults
16024to the value of the environment variable @code{GDBHISTFILE}, or to
16025@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
16026is not set.
104c1213 16027
9c16f35a
EZ
16028@cindex save command history
16029@kindex set history save
8e04817f
AC
16030@item set history save
16031@itemx set history save on
16032Record command history in a file, whose name may be specified with the
16033@code{set history filename} command. By default, this option is disabled.
104c1213 16034
8e04817f
AC
16035@item set history save off
16036Stop recording command history in a file.
104c1213 16037
8e04817f 16038@cindex history size
9c16f35a 16039@kindex set history size
6fc08d32 16040@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
16041@item set history size @var{size}
16042Set the number of commands which @value{GDBN} keeps in its history list.
16043This defaults to the value of the environment variable
16044@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
16045@end table
16046
8e04817f 16047History expansion assigns special meaning to the character @kbd{!}.
703663ab 16048@xref{Event Designators}, for more details.
8e04817f 16049
703663ab 16050@cindex history expansion, turn on/off
8e04817f
AC
16051Since @kbd{!} is also the logical not operator in C, history expansion
16052is off by default. If you decide to enable history expansion with the
16053@code{set history expansion on} command, you may sometimes need to
16054follow @kbd{!} (when it is used as logical not, in an expression) with
16055a space or a tab to prevent it from being expanded. The readline
16056history facilities do not attempt substitution on the strings
16057@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
16058
16059The commands to control history expansion are:
104c1213
JM
16060
16061@table @code
8e04817f
AC
16062@item set history expansion on
16063@itemx set history expansion
703663ab 16064@kindex set history expansion
8e04817f 16065Enable history expansion. History expansion is off by default.
104c1213 16066
8e04817f
AC
16067@item set history expansion off
16068Disable history expansion.
104c1213 16069
8e04817f
AC
16070@c @group
16071@kindex show history
16072@item show history
16073@itemx show history filename
16074@itemx show history save
16075@itemx show history size
16076@itemx show history expansion
16077These commands display the state of the @value{GDBN} history parameters.
16078@code{show history} by itself displays all four states.
16079@c @end group
16080@end table
16081
16082@table @code
9c16f35a
EZ
16083@kindex show commands
16084@cindex show last commands
16085@cindex display command history
8e04817f
AC
16086@item show commands
16087Display the last ten commands in the command history.
104c1213 16088
8e04817f
AC
16089@item show commands @var{n}
16090Print ten commands centered on command number @var{n}.
16091
16092@item show commands +
16093Print ten commands just after the commands last printed.
104c1213
JM
16094@end table
16095
8e04817f 16096@node Screen Size
79a6e687 16097@section Screen Size
8e04817f
AC
16098@cindex size of screen
16099@cindex pauses in output
104c1213 16100
8e04817f
AC
16101Certain commands to @value{GDBN} may produce large amounts of
16102information output to the screen. To help you read all of it,
16103@value{GDBN} pauses and asks you for input at the end of each page of
16104output. Type @key{RET} when you want to continue the output, or @kbd{q}
16105to discard the remaining output. Also, the screen width setting
16106determines when to wrap lines of output. Depending on what is being
16107printed, @value{GDBN} tries to break the line at a readable place,
16108rather than simply letting it overflow onto the following line.
16109
16110Normally @value{GDBN} knows the size of the screen from the terminal
16111driver software. For example, on Unix @value{GDBN} uses the termcap data base
16112together with the value of the @code{TERM} environment variable and the
16113@code{stty rows} and @code{stty cols} settings. If this is not correct,
16114you can override it with the @code{set height} and @code{set
16115width} commands:
16116
16117@table @code
16118@kindex set height
16119@kindex set width
16120@kindex show width
16121@kindex show height
16122@item set height @var{lpp}
16123@itemx show height
16124@itemx set width @var{cpl}
16125@itemx show width
16126These @code{set} commands specify a screen height of @var{lpp} lines and
16127a screen width of @var{cpl} characters. The associated @code{show}
16128commands display the current settings.
104c1213 16129
8e04817f
AC
16130If you specify a height of zero lines, @value{GDBN} does not pause during
16131output no matter how long the output is. This is useful if output is to a
16132file or to an editor buffer.
104c1213 16133
8e04817f
AC
16134Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16135from wrapping its output.
9c16f35a
EZ
16136
16137@item set pagination on
16138@itemx set pagination off
16139@kindex set pagination
16140Turn the output pagination on or off; the default is on. Turning
16141pagination off is the alternative to @code{set height 0}.
16142
16143@item show pagination
16144@kindex show pagination
16145Show the current pagination mode.
104c1213
JM
16146@end table
16147
8e04817f
AC
16148@node Numbers
16149@section Numbers
16150@cindex number representation
16151@cindex entering numbers
104c1213 16152
8e04817f
AC
16153You can always enter numbers in octal, decimal, or hexadecimal in
16154@value{GDBN} by the usual conventions: octal numbers begin with
16155@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16156begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16157@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1615810; likewise, the default display for numbers---when no particular
16159format is specified---is base 10. You can change the default base for
16160both input and output with the commands described below.
104c1213 16161
8e04817f
AC
16162@table @code
16163@kindex set input-radix
16164@item set input-radix @var{base}
16165Set the default base for numeric input. Supported choices
16166for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16167specified either unambiguously or using the current input radix; for
8e04817f 16168example, any of
104c1213 16169
8e04817f 16170@smallexample
9c16f35a
EZ
16171set input-radix 012
16172set input-radix 10.
16173set input-radix 0xa
8e04817f 16174@end smallexample
104c1213 16175
8e04817f 16176@noindent
9c16f35a 16177sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16178leaves the input radix unchanged, no matter what it was, since
16179@samp{10}, being without any leading or trailing signs of its base, is
16180interpreted in the current radix. Thus, if the current radix is 16,
16181@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16182change the radix.
104c1213 16183
8e04817f
AC
16184@kindex set output-radix
16185@item set output-radix @var{base}
16186Set the default base for numeric display. Supported choices
16187for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16188specified either unambiguously or using the current input radix.
104c1213 16189
8e04817f
AC
16190@kindex show input-radix
16191@item show input-radix
16192Display the current default base for numeric input.
104c1213 16193
8e04817f
AC
16194@kindex show output-radix
16195@item show output-radix
16196Display the current default base for numeric display.
9c16f35a
EZ
16197
16198@item set radix @r{[}@var{base}@r{]}
16199@itemx show radix
16200@kindex set radix
16201@kindex show radix
16202These commands set and show the default base for both input and output
16203of numbers. @code{set radix} sets the radix of input and output to
16204the same base; without an argument, it resets the radix back to its
16205default value of 10.
16206
8e04817f 16207@end table
104c1213 16208
1e698235 16209@node ABI
79a6e687 16210@section Configuring the Current ABI
1e698235
DJ
16211
16212@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16213application automatically. However, sometimes you need to override its
16214conclusions. Use these commands to manage @value{GDBN}'s view of the
16215current ABI.
16216
98b45e30
DJ
16217@cindex OS ABI
16218@kindex set osabi
b4e9345d 16219@kindex show osabi
98b45e30
DJ
16220
16221One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16222system targets, either via remote debugging or native emulation.
98b45e30
DJ
16223@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16224but you can override its conclusion using the @code{set osabi} command.
16225One example where this is useful is in debugging of binaries which use
16226an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16227not have the same identifying marks that the standard C library for your
16228platform provides.
16229
16230@table @code
16231@item show osabi
16232Show the OS ABI currently in use.
16233
16234@item set osabi
16235With no argument, show the list of registered available OS ABI's.
16236
16237@item set osabi @var{abi}
16238Set the current OS ABI to @var{abi}.
16239@end table
16240
1e698235 16241@cindex float promotion
1e698235
DJ
16242
16243Generally, the way that an argument of type @code{float} is passed to a
16244function depends on whether the function is prototyped. For a prototyped
16245(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16246according to the architecture's convention for @code{float}. For unprototyped
16247(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16248@code{double} and then passed.
16249
16250Unfortunately, some forms of debug information do not reliably indicate whether
16251a function is prototyped. If @value{GDBN} calls a function that is not marked
16252as prototyped, it consults @kbd{set coerce-float-to-double}.
16253
16254@table @code
a8f24a35 16255@kindex set coerce-float-to-double
1e698235
DJ
16256@item set coerce-float-to-double
16257@itemx set coerce-float-to-double on
16258Arguments of type @code{float} will be promoted to @code{double} when passed
16259to an unprototyped function. This is the default setting.
16260
16261@item set coerce-float-to-double off
16262Arguments of type @code{float} will be passed directly to unprototyped
16263functions.
9c16f35a
EZ
16264
16265@kindex show coerce-float-to-double
16266@item show coerce-float-to-double
16267Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16268@end table
16269
f1212245
DJ
16270@kindex set cp-abi
16271@kindex show cp-abi
16272@value{GDBN} needs to know the ABI used for your program's C@t{++}
16273objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16274used to build your application. @value{GDBN} only fully supports
16275programs with a single C@t{++} ABI; if your program contains code using
16276multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16277program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16278Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16279before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16280``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16281use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16282``auto''.
16283
16284@table @code
16285@item show cp-abi
16286Show the C@t{++} ABI currently in use.
16287
16288@item set cp-abi
16289With no argument, show the list of supported C@t{++} ABI's.
16290
16291@item set cp-abi @var{abi}
16292@itemx set cp-abi auto
16293Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16294@end table
16295
8e04817f 16296@node Messages/Warnings
79a6e687 16297@section Optional Warnings and Messages
104c1213 16298
9c16f35a
EZ
16299@cindex verbose operation
16300@cindex optional warnings
8e04817f
AC
16301By default, @value{GDBN} is silent about its inner workings. If you are
16302running on a slow machine, you may want to use the @code{set verbose}
16303command. This makes @value{GDBN} tell you when it does a lengthy
16304internal operation, so you will not think it has crashed.
104c1213 16305
8e04817f
AC
16306Currently, the messages controlled by @code{set verbose} are those
16307which announce that the symbol table for a source file is being read;
79a6e687 16308see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16309
8e04817f
AC
16310@table @code
16311@kindex set verbose
16312@item set verbose on
16313Enables @value{GDBN} output of certain informational messages.
104c1213 16314
8e04817f
AC
16315@item set verbose off
16316Disables @value{GDBN} output of certain informational messages.
104c1213 16317
8e04817f
AC
16318@kindex show verbose
16319@item show verbose
16320Displays whether @code{set verbose} is on or off.
16321@end table
104c1213 16322
8e04817f
AC
16323By default, if @value{GDBN} encounters bugs in the symbol table of an
16324object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16325find this information useful (@pxref{Symbol Errors, ,Errors Reading
16326Symbol Files}).
104c1213 16327
8e04817f 16328@table @code
104c1213 16329
8e04817f
AC
16330@kindex set complaints
16331@item set complaints @var{limit}
16332Permits @value{GDBN} to output @var{limit} complaints about each type of
16333unusual symbols before becoming silent about the problem. Set
16334@var{limit} to zero to suppress all complaints; set it to a large number
16335to prevent complaints from being suppressed.
104c1213 16336
8e04817f
AC
16337@kindex show complaints
16338@item show complaints
16339Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16340
8e04817f 16341@end table
104c1213 16342
8e04817f
AC
16343By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16344lot of stupid questions to confirm certain commands. For example, if
16345you try to run a program which is already running:
104c1213 16346
474c8240 16347@smallexample
8e04817f
AC
16348(@value{GDBP}) run
16349The program being debugged has been started already.
16350Start it from the beginning? (y or n)
474c8240 16351@end smallexample
104c1213 16352
8e04817f
AC
16353If you are willing to unflinchingly face the consequences of your own
16354commands, you can disable this ``feature'':
104c1213 16355
8e04817f 16356@table @code
104c1213 16357
8e04817f
AC
16358@kindex set confirm
16359@cindex flinching
16360@cindex confirmation
16361@cindex stupid questions
16362@item set confirm off
16363Disables confirmation requests.
104c1213 16364
8e04817f
AC
16365@item set confirm on
16366Enables confirmation requests (the default).
104c1213 16367
8e04817f
AC
16368@kindex show confirm
16369@item show confirm
16370Displays state of confirmation requests.
16371
16372@end table
104c1213 16373
16026cd7
AS
16374@cindex command tracing
16375If you need to debug user-defined commands or sourced files you may find it
16376useful to enable @dfn{command tracing}. In this mode each command will be
16377printed as it is executed, prefixed with one or more @samp{+} symbols, the
16378quantity denoting the call depth of each command.
16379
16380@table @code
16381@kindex set trace-commands
16382@cindex command scripts, debugging
16383@item set trace-commands on
16384Enable command tracing.
16385@item set trace-commands off
16386Disable command tracing.
16387@item show trace-commands
16388Display the current state of command tracing.
16389@end table
16390
8e04817f 16391@node Debugging Output
79a6e687 16392@section Optional Messages about Internal Happenings
4644b6e3
EZ
16393@cindex optional debugging messages
16394
da316a69
EZ
16395@value{GDBN} has commands that enable optional debugging messages from
16396various @value{GDBN} subsystems; normally these commands are of
16397interest to @value{GDBN} maintainers, or when reporting a bug. This
16398section documents those commands.
16399
104c1213 16400@table @code
a8f24a35
EZ
16401@kindex set exec-done-display
16402@item set exec-done-display
16403Turns on or off the notification of asynchronous commands'
16404completion. When on, @value{GDBN} will print a message when an
16405asynchronous command finishes its execution. The default is off.
16406@kindex show exec-done-display
16407@item show exec-done-display
16408Displays the current setting of asynchronous command completion
16409notification.
4644b6e3
EZ
16410@kindex set debug
16411@cindex gdbarch debugging info
a8f24a35 16412@cindex architecture debugging info
8e04817f 16413@item set debug arch
a8f24a35 16414Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16415@kindex show debug
8e04817f
AC
16416@item show debug arch
16417Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16418@item set debug aix-thread
16419@cindex AIX threads
16420Display debugging messages about inner workings of the AIX thread
16421module.
16422@item show debug aix-thread
16423Show the current state of AIX thread debugging info display.
8e04817f 16424@item set debug event
4644b6e3 16425@cindex event debugging info
a8f24a35 16426Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16427default is off.
8e04817f
AC
16428@item show debug event
16429Displays the current state of displaying @value{GDBN} event debugging
16430info.
8e04817f 16431@item set debug expression
4644b6e3 16432@cindex expression debugging info
721c2651
EZ
16433Turns on or off display of debugging info about @value{GDBN}
16434expression parsing. The default is off.
8e04817f 16435@item show debug expression
721c2651
EZ
16436Displays the current state of displaying debugging info about
16437@value{GDBN} expression parsing.
7453dc06 16438@item set debug frame
4644b6e3 16439@cindex frame debugging info
7453dc06
AC
16440Turns on or off display of @value{GDBN} frame debugging info. The
16441default is off.
7453dc06
AC
16442@item show debug frame
16443Displays the current state of displaying @value{GDBN} frame debugging
16444info.
30e91e0b
RC
16445@item set debug infrun
16446@cindex inferior debugging info
16447Turns on or off display of @value{GDBN} debugging info for running the inferior.
16448The default is off. @file{infrun.c} contains GDB's runtime state machine used
16449for implementing operations such as single-stepping the inferior.
16450@item show debug infrun
16451Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16452@item set debug lin-lwp
16453@cindex @sc{gnu}/Linux LWP debug messages
16454@cindex Linux lightweight processes
721c2651 16455Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16456@item show debug lin-lwp
16457Show the current state of Linux LWP debugging messages.
b84876c2
PA
16458@item set debug lin-lwp-async
16459@cindex @sc{gnu}/Linux LWP async debug messages
16460@cindex Linux lightweight processes
16461Turns on or off debugging messages from the Linux LWP async debug support.
16462@item show debug lin-lwp-async
16463Show the current state of Linux LWP async debugging messages.
2b4855ab 16464@item set debug observer
4644b6e3 16465@cindex observer debugging info
2b4855ab
AC
16466Turns on or off display of @value{GDBN} observer debugging. This
16467includes info such as the notification of observable events.
2b4855ab
AC
16468@item show debug observer
16469Displays the current state of observer debugging.
8e04817f 16470@item set debug overload
4644b6e3 16471@cindex C@t{++} overload debugging info
8e04817f 16472Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16473info. This includes info such as ranking of functions, etc. The default
8e04817f 16474is off.
8e04817f
AC
16475@item show debug overload
16476Displays the current state of displaying @value{GDBN} C@t{++} overload
16477debugging info.
8e04817f
AC
16478@cindex packets, reporting on stdout
16479@cindex serial connections, debugging
605a56cb
DJ
16480@cindex debug remote protocol
16481@cindex remote protocol debugging
16482@cindex display remote packets
8e04817f
AC
16483@item set debug remote
16484Turns on or off display of reports on all packets sent back and forth across
16485the serial line to the remote machine. The info is printed on the
16486@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16487@item show debug remote
16488Displays the state of display of remote packets.
8e04817f
AC
16489@item set debug serial
16490Turns on or off display of @value{GDBN} serial debugging info. The
16491default is off.
8e04817f
AC
16492@item show debug serial
16493Displays the current state of displaying @value{GDBN} serial debugging
16494info.
c45da7e6
EZ
16495@item set debug solib-frv
16496@cindex FR-V shared-library debugging
16497Turns on or off debugging messages for FR-V shared-library code.
16498@item show debug solib-frv
16499Display the current state of FR-V shared-library code debugging
16500messages.
8e04817f 16501@item set debug target
4644b6e3 16502@cindex target debugging info
8e04817f
AC
16503Turns on or off display of @value{GDBN} target debugging info. This info
16504includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16505default is 0. Set it to 1 to track events, and to 2 to also track the
16506value of large memory transfers. Changes to this flag do not take effect
16507until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16508@item show debug target
16509Displays the current state of displaying @value{GDBN} target debugging
16510info.
75feb17d
DJ
16511@item set debug timestamp
16512@cindex timestampping debugging info
16513Turns on or off display of timestamps with @value{GDBN} debugging info.
16514When enabled, seconds and microseconds are displayed before each debugging
16515message.
16516@item show debug timestamp
16517Displays the current state of displaying timestamps with @value{GDBN}
16518debugging info.
c45da7e6 16519@item set debugvarobj
4644b6e3 16520@cindex variable object debugging info
8e04817f
AC
16521Turns on or off display of @value{GDBN} variable object debugging
16522info. The default is off.
c45da7e6 16523@item show debugvarobj
8e04817f
AC
16524Displays the current state of displaying @value{GDBN} variable object
16525debugging info.
e776119f
DJ
16526@item set debug xml
16527@cindex XML parser debugging
16528Turns on or off debugging messages for built-in XML parsers.
16529@item show debug xml
16530Displays the current state of XML debugging messages.
8e04817f 16531@end table
104c1213 16532
8e04817f
AC
16533@node Sequences
16534@chapter Canned Sequences of Commands
104c1213 16535
8e04817f 16536Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16537Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16538commands for execution as a unit: user-defined commands and command
16539files.
104c1213 16540
8e04817f 16541@menu
fcc73fe3
EZ
16542* Define:: How to define your own commands
16543* Hooks:: Hooks for user-defined commands
16544* Command Files:: How to write scripts of commands to be stored in a file
16545* Output:: Commands for controlled output
8e04817f 16546@end menu
104c1213 16547
8e04817f 16548@node Define
79a6e687 16549@section User-defined Commands
104c1213 16550
8e04817f 16551@cindex user-defined command
fcc73fe3 16552@cindex arguments, to user-defined commands
8e04817f
AC
16553A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16554which you assign a new name as a command. This is done with the
16555@code{define} command. User commands may accept up to 10 arguments
16556separated by whitespace. Arguments are accessed within the user command
c03c782f 16557via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16558
8e04817f
AC
16559@smallexample
16560define adder
16561 print $arg0 + $arg1 + $arg2
c03c782f 16562end
8e04817f 16563@end smallexample
104c1213
JM
16564
16565@noindent
8e04817f 16566To execute the command use:
104c1213 16567
8e04817f
AC
16568@smallexample
16569adder 1 2 3
16570@end smallexample
104c1213 16571
8e04817f
AC
16572@noindent
16573This defines the command @code{adder}, which prints the sum of
16574its three arguments. Note the arguments are text substitutions, so they may
16575reference variables, use complex expressions, or even perform inferior
16576functions calls.
104c1213 16577
fcc73fe3
EZ
16578@cindex argument count in user-defined commands
16579@cindex how many arguments (user-defined commands)
c03c782f
AS
16580In addition, @code{$argc} may be used to find out how many arguments have
16581been passed. This expands to a number in the range 0@dots{}10.
16582
16583@smallexample
16584define adder
16585 if $argc == 2
16586 print $arg0 + $arg1
16587 end
16588 if $argc == 3
16589 print $arg0 + $arg1 + $arg2
16590 end
16591end
16592@end smallexample
16593
104c1213 16594@table @code
104c1213 16595
8e04817f
AC
16596@kindex define
16597@item define @var{commandname}
16598Define a command named @var{commandname}. If there is already a command
16599by that name, you are asked to confirm that you want to redefine it.
104c1213 16600
8e04817f
AC
16601The definition of the command is made up of other @value{GDBN} command lines,
16602which are given following the @code{define} command. The end of these
16603commands is marked by a line containing @code{end}.
104c1213 16604
8e04817f 16605@kindex document
ca91424e 16606@kindex end@r{ (user-defined commands)}
8e04817f
AC
16607@item document @var{commandname}
16608Document the user-defined command @var{commandname}, so that it can be
16609accessed by @code{help}. The command @var{commandname} must already be
16610defined. This command reads lines of documentation just as @code{define}
16611reads the lines of the command definition, ending with @code{end}.
16612After the @code{document} command is finished, @code{help} on command
16613@var{commandname} displays the documentation you have written.
104c1213 16614
8e04817f
AC
16615You may use the @code{document} command again to change the
16616documentation of a command. Redefining the command with @code{define}
16617does not change the documentation.
104c1213 16618
c45da7e6
EZ
16619@kindex dont-repeat
16620@cindex don't repeat command
16621@item dont-repeat
16622Used inside a user-defined command, this tells @value{GDBN} that this
16623command should not be repeated when the user hits @key{RET}
16624(@pxref{Command Syntax, repeat last command}).
16625
8e04817f
AC
16626@kindex help user-defined
16627@item help user-defined
16628List all user-defined commands, with the first line of the documentation
16629(if any) for each.
104c1213 16630
8e04817f
AC
16631@kindex show user
16632@item show user
16633@itemx show user @var{commandname}
16634Display the @value{GDBN} commands used to define @var{commandname} (but
16635not its documentation). If no @var{commandname} is given, display the
16636definitions for all user-defined commands.
104c1213 16637
fcc73fe3 16638@cindex infinite recursion in user-defined commands
20f01a46
DH
16639@kindex show max-user-call-depth
16640@kindex set max-user-call-depth
16641@item show max-user-call-depth
5ca0cb28
DH
16642@itemx set max-user-call-depth
16643The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16644levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16645infinite recursion and aborts the command.
104c1213
JM
16646@end table
16647
fcc73fe3
EZ
16648In addition to the above commands, user-defined commands frequently
16649use control flow commands, described in @ref{Command Files}.
16650
8e04817f
AC
16651When user-defined commands are executed, the
16652commands of the definition are not printed. An error in any command
16653stops execution of the user-defined command.
104c1213 16654
8e04817f
AC
16655If used interactively, commands that would ask for confirmation proceed
16656without asking when used inside a user-defined command. Many @value{GDBN}
16657commands that normally print messages to say what they are doing omit the
16658messages when used in a user-defined command.
104c1213 16659
8e04817f 16660@node Hooks
79a6e687 16661@section User-defined Command Hooks
8e04817f
AC
16662@cindex command hooks
16663@cindex hooks, for commands
16664@cindex hooks, pre-command
104c1213 16665
8e04817f 16666@kindex hook
8e04817f
AC
16667You may define @dfn{hooks}, which are a special kind of user-defined
16668command. Whenever you run the command @samp{foo}, if the user-defined
16669command @samp{hook-foo} exists, it is executed (with no arguments)
16670before that command.
104c1213 16671
8e04817f
AC
16672@cindex hooks, post-command
16673@kindex hookpost
8e04817f
AC
16674A hook may also be defined which is run after the command you executed.
16675Whenever you run the command @samp{foo}, if the user-defined command
16676@samp{hookpost-foo} exists, it is executed (with no arguments) after
16677that command. Post-execution hooks may exist simultaneously with
16678pre-execution hooks, for the same command.
104c1213 16679
8e04817f 16680It is valid for a hook to call the command which it hooks. If this
9f1c6395 16681occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16682
8e04817f
AC
16683@c It would be nice if hookpost could be passed a parameter indicating
16684@c if the command it hooks executed properly or not. FIXME!
104c1213 16685
8e04817f
AC
16686@kindex stop@r{, a pseudo-command}
16687In addition, a pseudo-command, @samp{stop} exists. Defining
16688(@samp{hook-stop}) makes the associated commands execute every time
16689execution stops in your program: before breakpoint commands are run,
16690displays are printed, or the stack frame is printed.
104c1213 16691
8e04817f
AC
16692For example, to ignore @code{SIGALRM} signals while
16693single-stepping, but treat them normally during normal execution,
16694you could define:
104c1213 16695
474c8240 16696@smallexample
8e04817f
AC
16697define hook-stop
16698handle SIGALRM nopass
16699end
104c1213 16700
8e04817f
AC
16701define hook-run
16702handle SIGALRM pass
16703end
104c1213 16704
8e04817f 16705define hook-continue
d3e8051b 16706handle SIGALRM pass
8e04817f 16707end
474c8240 16708@end smallexample
104c1213 16709
d3e8051b 16710As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16711command, and to add extra text to the beginning and end of the message,
8e04817f 16712you could define:
104c1213 16713
474c8240 16714@smallexample
8e04817f
AC
16715define hook-echo
16716echo <<<---
16717end
104c1213 16718
8e04817f
AC
16719define hookpost-echo
16720echo --->>>\n
16721end
104c1213 16722
8e04817f
AC
16723(@value{GDBP}) echo Hello World
16724<<<---Hello World--->>>
16725(@value{GDBP})
104c1213 16726
474c8240 16727@end smallexample
104c1213 16728
8e04817f
AC
16729You can define a hook for any single-word command in @value{GDBN}, but
16730not for command aliases; you should define a hook for the basic command
c1468174 16731name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16732@c FIXME! So how does Joe User discover whether a command is an alias
16733@c or not?
16734If an error occurs during the execution of your hook, execution of
16735@value{GDBN} commands stops and @value{GDBN} issues a prompt
16736(before the command that you actually typed had a chance to run).
104c1213 16737
8e04817f
AC
16738If you try to define a hook which does not match any known command, you
16739get a warning from the @code{define} command.
c906108c 16740
8e04817f 16741@node Command Files
79a6e687 16742@section Command Files
c906108c 16743
8e04817f 16744@cindex command files
fcc73fe3 16745@cindex scripting commands
6fc08d32
EZ
16746A command file for @value{GDBN} is a text file made of lines that are
16747@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16748also be included. An empty line in a command file does nothing; it
16749does not mean to repeat the last command, as it would from the
16750terminal.
c906108c 16751
6fc08d32
EZ
16752You can request the execution of a command file with the @code{source}
16753command:
c906108c 16754
8e04817f
AC
16755@table @code
16756@kindex source
ca91424e 16757@cindex execute commands from a file
16026cd7 16758@item source [@code{-v}] @var{filename}
8e04817f 16759Execute the command file @var{filename}.
c906108c
SS
16760@end table
16761
fcc73fe3
EZ
16762The lines in a command file are generally executed sequentially,
16763unless the order of execution is changed by one of the
16764@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16765printed as they are executed. An error in any command terminates
16766execution of the command file and control is returned to the console.
c906108c 16767
4b505b12
AS
16768@value{GDBN} searches for @var{filename} in the current directory and then
16769on the search path (specified with the @samp{directory} command).
16770
16026cd7
AS
16771If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16772each command as it is executed. The option must be given before
16773@var{filename}, and is interpreted as part of the filename anywhere else.
16774
8e04817f
AC
16775Commands that would ask for confirmation if used interactively proceed
16776without asking when used in a command file. Many @value{GDBN} commands that
16777normally print messages to say what they are doing omit the messages
16778when called from command files.
c906108c 16779
8e04817f
AC
16780@value{GDBN} also accepts command input from standard input. In this
16781mode, normal output goes to standard output and error output goes to
16782standard error. Errors in a command file supplied on standard input do
6fc08d32 16783not terminate execution of the command file---execution continues with
8e04817f 16784the next command.
c906108c 16785
474c8240 16786@smallexample
8e04817f 16787gdb < cmds > log 2>&1
474c8240 16788@end smallexample
c906108c 16789
8e04817f
AC
16790(The syntax above will vary depending on the shell used.) This example
16791will execute commands from the file @file{cmds}. All output and errors
16792would be directed to @file{log}.
c906108c 16793
fcc73fe3
EZ
16794Since commands stored on command files tend to be more general than
16795commands typed interactively, they frequently need to deal with
16796complicated situations, such as different or unexpected values of
16797variables and symbols, changes in how the program being debugged is
16798built, etc. @value{GDBN} provides a set of flow-control commands to
16799deal with these complexities. Using these commands, you can write
16800complex scripts that loop over data structures, execute commands
16801conditionally, etc.
16802
16803@table @code
16804@kindex if
16805@kindex else
16806@item if
16807@itemx else
16808This command allows to include in your script conditionally executed
16809commands. The @code{if} command takes a single argument, which is an
16810expression to evaluate. It is followed by a series of commands that
16811are executed only if the expression is true (its value is nonzero).
16812There can then optionally be an @code{else} line, followed by a series
16813of commands that are only executed if the expression was false. The
16814end of the list is marked by a line containing @code{end}.
16815
16816@kindex while
16817@item while
16818This command allows to write loops. Its syntax is similar to
16819@code{if}: the command takes a single argument, which is an expression
16820to evaluate, and must be followed by the commands to execute, one per
16821line, terminated by an @code{end}. These commands are called the
16822@dfn{body} of the loop. The commands in the body of @code{while} are
16823executed repeatedly as long as the expression evaluates to true.
16824
16825@kindex loop_break
16826@item loop_break
16827This command exits the @code{while} loop in whose body it is included.
16828Execution of the script continues after that @code{while}s @code{end}
16829line.
16830
16831@kindex loop_continue
16832@item loop_continue
16833This command skips the execution of the rest of the body of commands
16834in the @code{while} loop in whose body it is included. Execution
16835branches to the beginning of the @code{while} loop, where it evaluates
16836the controlling expression.
ca91424e
EZ
16837
16838@kindex end@r{ (if/else/while commands)}
16839@item end
16840Terminate the block of commands that are the body of @code{if},
16841@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16842@end table
16843
16844
8e04817f 16845@node Output
79a6e687 16846@section Commands for Controlled Output
c906108c 16847
8e04817f
AC
16848During the execution of a command file or a user-defined command, normal
16849@value{GDBN} output is suppressed; the only output that appears is what is
16850explicitly printed by the commands in the definition. This section
16851describes three commands useful for generating exactly the output you
16852want.
c906108c
SS
16853
16854@table @code
8e04817f
AC
16855@kindex echo
16856@item echo @var{text}
16857@c I do not consider backslash-space a standard C escape sequence
16858@c because it is not in ANSI.
16859Print @var{text}. Nonprinting characters can be included in
16860@var{text} using C escape sequences, such as @samp{\n} to print a
16861newline. @strong{No newline is printed unless you specify one.}
16862In addition to the standard C escape sequences, a backslash followed
16863by a space stands for a space. This is useful for displaying a
16864string with spaces at the beginning or the end, since leading and
16865trailing spaces are otherwise trimmed from all arguments.
16866To print @samp{@w{ }and foo =@w{ }}, use the command
16867@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16868
8e04817f
AC
16869A backslash at the end of @var{text} can be used, as in C, to continue
16870the command onto subsequent lines. For example,
c906108c 16871
474c8240 16872@smallexample
8e04817f
AC
16873echo This is some text\n\
16874which is continued\n\
16875onto several lines.\n
474c8240 16876@end smallexample
c906108c 16877
8e04817f 16878produces the same output as
c906108c 16879
474c8240 16880@smallexample
8e04817f
AC
16881echo This is some text\n
16882echo which is continued\n
16883echo onto several lines.\n
474c8240 16884@end smallexample
c906108c 16885
8e04817f
AC
16886@kindex output
16887@item output @var{expression}
16888Print the value of @var{expression} and nothing but that value: no
16889newlines, no @samp{$@var{nn} = }. The value is not entered in the
16890value history either. @xref{Expressions, ,Expressions}, for more information
16891on expressions.
c906108c 16892
8e04817f
AC
16893@item output/@var{fmt} @var{expression}
16894Print the value of @var{expression} in format @var{fmt}. You can use
16895the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16896Formats}, for more information.
c906108c 16897
8e04817f 16898@kindex printf
82160952
EZ
16899@item printf @var{template}, @var{expressions}@dots{}
16900Print the values of one or more @var{expressions} under the control of
16901the string @var{template}. To print several values, make
16902@var{expressions} be a comma-separated list of individual expressions,
16903which may be either numbers or pointers. Their values are printed as
16904specified by @var{template}, exactly as a C program would do by
16905executing the code below:
c906108c 16906
474c8240 16907@smallexample
82160952 16908printf (@var{template}, @var{expressions}@dots{});
474c8240 16909@end smallexample
c906108c 16910
82160952
EZ
16911As in @code{C} @code{printf}, ordinary characters in @var{template}
16912are printed verbatim, while @dfn{conversion specification} introduced
16913by the @samp{%} character cause subsequent @var{expressions} to be
16914evaluated, their values converted and formatted according to type and
16915style information encoded in the conversion specifications, and then
16916printed.
16917
8e04817f 16918For example, you can print two values in hex like this:
c906108c 16919
8e04817f
AC
16920@smallexample
16921printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16922@end smallexample
c906108c 16923
82160952
EZ
16924@code{printf} supports all the standard @code{C} conversion
16925specifications, including the flags and modifiers between the @samp{%}
16926character and the conversion letter, with the following exceptions:
16927
16928@itemize @bullet
16929@item
16930The argument-ordering modifiers, such as @samp{2$}, are not supported.
16931
16932@item
16933The modifier @samp{*} is not supported for specifying precision or
16934width.
16935
16936@item
16937The @samp{'} flag (for separation of digits into groups according to
16938@code{LC_NUMERIC'}) is not supported.
16939
16940@item
16941The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16942supported.
16943
16944@item
16945The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16946
16947@item
16948The conversion letters @samp{a} and @samp{A} are not supported.
16949@end itemize
16950
16951@noindent
16952Note that the @samp{ll} type modifier is supported only if the
16953underlying @code{C} implementation used to build @value{GDBN} supports
16954the @code{long long int} type, and the @samp{L} type modifier is
16955supported only if @code{long double} type is available.
16956
16957As in @code{C}, @code{printf} supports simple backslash-escape
16958sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16959@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16960single character. Octal and hexadecimal escape sequences are not
16961supported.
1a619819
LM
16962
16963Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16964(@dfn{Decimal Floating Point}) types using the following length modifiers
16965together with a floating point specifier.
1a619819
LM
16966letters:
16967
16968@itemize @bullet
16969@item
16970@samp{H} for printing @code{Decimal32} types.
16971
16972@item
16973@samp{D} for printing @code{Decimal64} types.
16974
16975@item
16976@samp{DD} for printing @code{Decimal128} types.
16977@end itemize
16978
16979If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16980support for the three length modifiers for DFP types, other modifiers
3b784c4f 16981such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16982
16983In case there is no such @code{C} support, no additional modifiers will be
16984available and the value will be printed in the standard way.
16985
16986Here's an example of printing DFP types using the above conversion letters:
16987@smallexample
0aea4bf3 16988printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16989@end smallexample
16990
c906108c
SS
16991@end table
16992
21c294e6
AC
16993@node Interpreters
16994@chapter Command Interpreters
16995@cindex command interpreters
16996
16997@value{GDBN} supports multiple command interpreters, and some command
16998infrastructure to allow users or user interface writers to switch
16999between interpreters or run commands in other interpreters.
17000
17001@value{GDBN} currently supports two command interpreters, the console
17002interpreter (sometimes called the command-line interpreter or @sc{cli})
17003and the machine interface interpreter (or @sc{gdb/mi}). This manual
17004describes both of these interfaces in great detail.
17005
17006By default, @value{GDBN} will start with the console interpreter.
17007However, the user may choose to start @value{GDBN} with another
17008interpreter by specifying the @option{-i} or @option{--interpreter}
17009startup options. Defined interpreters include:
17010
17011@table @code
17012@item console
17013@cindex console interpreter
17014The traditional console or command-line interpreter. This is the most often
17015used interpreter with @value{GDBN}. With no interpreter specified at runtime,
17016@value{GDBN} will use this interpreter.
17017
17018@item mi
17019@cindex mi interpreter
17020The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
17021by programs wishing to use @value{GDBN} as a backend for a debugger GUI
17022or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
17023Interface}.
17024
17025@item mi2
17026@cindex mi2 interpreter
17027The current @sc{gdb/mi} interface.
17028
17029@item mi1
17030@cindex mi1 interpreter
17031The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
17032
17033@end table
17034
17035@cindex invoke another interpreter
17036The interpreter being used by @value{GDBN} may not be dynamically
17037switched at runtime. Although possible, this could lead to a very
17038precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
17039enters the command "interpreter-set console" in a console view,
17040@value{GDBN} would switch to using the console interpreter, rendering
17041the IDE inoperable!
17042
17043@kindex interpreter-exec
17044Although you may only choose a single interpreter at startup, you may execute
17045commands in any interpreter from the current interpreter using the appropriate
17046command. If you are running the console interpreter, simply use the
17047@code{interpreter-exec} command:
17048
17049@smallexample
17050interpreter-exec mi "-data-list-register-names"
17051@end smallexample
17052
17053@sc{gdb/mi} has a similar command, although it is only available in versions of
17054@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
17055
8e04817f
AC
17056@node TUI
17057@chapter @value{GDBN} Text User Interface
17058@cindex TUI
d0d5df6f 17059@cindex Text User Interface
c906108c 17060
8e04817f
AC
17061@menu
17062* TUI Overview:: TUI overview
17063* TUI Keys:: TUI key bindings
7cf36c78 17064* TUI Single Key Mode:: TUI single key mode
db2e3e2e 17065* TUI Commands:: TUI-specific commands
8e04817f
AC
17066* TUI Configuration:: TUI configuration variables
17067@end menu
c906108c 17068
46ba6afa 17069The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
17070interface which uses the @code{curses} library to show the source
17071file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
17072commands in separate text windows. The TUI mode is supported only
17073on platforms where a suitable version of the @code{curses} library
17074is available.
d0d5df6f 17075
46ba6afa
BW
17076@pindex @value{GDBTUI}
17077The TUI mode is enabled by default when you invoke @value{GDBN} as
17078either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
17079You can also switch in and out of TUI mode while @value{GDBN} runs by
17080using various TUI commands and key bindings, such as @kbd{C-x C-a}.
17081@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 17082
8e04817f 17083@node TUI Overview
79a6e687 17084@section TUI Overview
c906108c 17085
46ba6afa 17086In TUI mode, @value{GDBN} can display several text windows:
c906108c 17087
8e04817f
AC
17088@table @emph
17089@item command
17090This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
17091prompt and the @value{GDBN} output. The @value{GDBN} input is still
17092managed using readline.
c906108c 17093
8e04817f
AC
17094@item source
17095The source window shows the source file of the program. The current
46ba6afa 17096line and active breakpoints are displayed in this window.
c906108c 17097
8e04817f
AC
17098@item assembly
17099The assembly window shows the disassembly output of the program.
c906108c 17100
8e04817f 17101@item register
46ba6afa
BW
17102This window shows the processor registers. Registers are highlighted
17103when their values change.
c906108c
SS
17104@end table
17105
269c21fe 17106The source and assembly windows show the current program position
46ba6afa
BW
17107by highlighting the current line and marking it with a @samp{>} marker.
17108Breakpoints are indicated with two markers. The first marker
269c21fe
SC
17109indicates the breakpoint type:
17110
17111@table @code
17112@item B
17113Breakpoint which was hit at least once.
17114
17115@item b
17116Breakpoint which was never hit.
17117
17118@item H
17119Hardware breakpoint which was hit at least once.
17120
17121@item h
17122Hardware breakpoint which was never hit.
269c21fe
SC
17123@end table
17124
17125The second marker indicates whether the breakpoint is enabled or not:
17126
17127@table @code
17128@item +
17129Breakpoint is enabled.
17130
17131@item -
17132Breakpoint is disabled.
269c21fe
SC
17133@end table
17134
46ba6afa
BW
17135The source, assembly and register windows are updated when the current
17136thread changes, when the frame changes, or when the program counter
17137changes.
17138
17139These windows are not all visible at the same time. The command
17140window is always visible. The others can be arranged in several
17141layouts:
c906108c 17142
8e04817f
AC
17143@itemize @bullet
17144@item
46ba6afa 17145source only,
2df3850c 17146
8e04817f 17147@item
46ba6afa 17148assembly only,
8e04817f
AC
17149
17150@item
46ba6afa 17151source and assembly,
8e04817f
AC
17152
17153@item
46ba6afa 17154source and registers, or
c906108c 17155
8e04817f 17156@item
46ba6afa 17157assembly and registers.
8e04817f 17158@end itemize
c906108c 17159
46ba6afa 17160A status line above the command window shows the following information:
b7bb15bc
SC
17161
17162@table @emph
17163@item target
46ba6afa 17164Indicates the current @value{GDBN} target.
b7bb15bc
SC
17165(@pxref{Targets, ,Specifying a Debugging Target}).
17166
17167@item process
46ba6afa 17168Gives the current process or thread number.
b7bb15bc
SC
17169When no process is being debugged, this field is set to @code{No process}.
17170
17171@item function
17172Gives the current function name for the selected frame.
17173The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17174When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17175the string @code{??} is displayed.
17176
17177@item line
17178Indicates the current line number for the selected frame.
46ba6afa 17179When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17180
17181@item pc
17182Indicates the current program counter address.
b7bb15bc
SC
17183@end table
17184
8e04817f
AC
17185@node TUI Keys
17186@section TUI Key Bindings
17187@cindex TUI key bindings
c906108c 17188
8e04817f 17189The TUI installs several key bindings in the readline keymaps
46ba6afa 17190(@pxref{Command Line Editing}). The following key bindings
8e04817f 17191are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17192
8e04817f
AC
17193@table @kbd
17194@kindex C-x C-a
17195@item C-x C-a
17196@kindex C-x a
17197@itemx C-x a
17198@kindex C-x A
17199@itemx C-x A
46ba6afa
BW
17200Enter or leave the TUI mode. When leaving the TUI mode,
17201the curses window management stops and @value{GDBN} operates using
17202its standard mode, writing on the terminal directly. When reentering
17203the TUI mode, control is given back to the curses windows.
8e04817f 17204The screen is then refreshed.
c906108c 17205
8e04817f
AC
17206@kindex C-x 1
17207@item C-x 1
17208Use a TUI layout with only one window. The layout will
17209either be @samp{source} or @samp{assembly}. When the TUI mode
17210is not active, it will switch to the TUI mode.
2df3850c 17211
8e04817f 17212Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17213
8e04817f
AC
17214@kindex C-x 2
17215@item C-x 2
17216Use a TUI layout with at least two windows. When the current
46ba6afa 17217layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17218When a new layout is chosen, one window will always be common to the
17219previous layout and the new one.
c906108c 17220
8e04817f 17221Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17222
72ffddc9
SC
17223@kindex C-x o
17224@item C-x o
17225Change the active window. The TUI associates several key bindings
46ba6afa 17226(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17227gives the focus to the next TUI window.
17228
17229Think of it as the Emacs @kbd{C-x o} binding.
17230
7cf36c78
SC
17231@kindex C-x s
17232@item C-x s
46ba6afa
BW
17233Switch in and out of the TUI SingleKey mode that binds single
17234keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17235@end table
17236
46ba6afa 17237The following key bindings only work in the TUI mode:
5d161b24 17238
46ba6afa 17239@table @asis
8e04817f 17240@kindex PgUp
46ba6afa 17241@item @key{PgUp}
8e04817f 17242Scroll the active window one page up.
c906108c 17243
8e04817f 17244@kindex PgDn
46ba6afa 17245@item @key{PgDn}
8e04817f 17246Scroll the active window one page down.
c906108c 17247
8e04817f 17248@kindex Up
46ba6afa 17249@item @key{Up}
8e04817f 17250Scroll the active window one line up.
c906108c 17251
8e04817f 17252@kindex Down
46ba6afa 17253@item @key{Down}
8e04817f 17254Scroll the active window one line down.
c906108c 17255
8e04817f 17256@kindex Left
46ba6afa 17257@item @key{Left}
8e04817f 17258Scroll the active window one column left.
c906108c 17259
8e04817f 17260@kindex Right
46ba6afa 17261@item @key{Right}
8e04817f 17262Scroll the active window one column right.
c906108c 17263
8e04817f 17264@kindex C-L
46ba6afa 17265@item @kbd{C-L}
8e04817f 17266Refresh the screen.
8e04817f 17267@end table
c906108c 17268
46ba6afa
BW
17269Because the arrow keys scroll the active window in the TUI mode, they
17270are not available for their normal use by readline unless the command
17271window has the focus. When another window is active, you must use
17272other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17273and @kbd{C-f} to control the command window.
8e04817f 17274
7cf36c78
SC
17275@node TUI Single Key Mode
17276@section TUI Single Key Mode
17277@cindex TUI single key mode
17278
46ba6afa
BW
17279The TUI also provides a @dfn{SingleKey} mode, which binds several
17280frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17281switch into this mode, where the following key bindings are used:
7cf36c78
SC
17282
17283@table @kbd
17284@kindex c @r{(SingleKey TUI key)}
17285@item c
17286continue
17287
17288@kindex d @r{(SingleKey TUI key)}
17289@item d
17290down
17291
17292@kindex f @r{(SingleKey TUI key)}
17293@item f
17294finish
17295
17296@kindex n @r{(SingleKey TUI key)}
17297@item n
17298next
17299
17300@kindex q @r{(SingleKey TUI key)}
17301@item q
46ba6afa 17302exit the SingleKey mode.
7cf36c78
SC
17303
17304@kindex r @r{(SingleKey TUI key)}
17305@item r
17306run
17307
17308@kindex s @r{(SingleKey TUI key)}
17309@item s
17310step
17311
17312@kindex u @r{(SingleKey TUI key)}
17313@item u
17314up
17315
17316@kindex v @r{(SingleKey TUI key)}
17317@item v
17318info locals
17319
17320@kindex w @r{(SingleKey TUI key)}
17321@item w
17322where
7cf36c78
SC
17323@end table
17324
17325Other keys temporarily switch to the @value{GDBN} command prompt.
17326The key that was pressed is inserted in the editing buffer so that
17327it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17328with the TUI SingleKey mode. Once the command is entered the TUI
17329SingleKey mode is restored. The only way to permanently leave
7f9087cb 17330this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17331
17332
8e04817f 17333@node TUI Commands
db2e3e2e 17334@section TUI-specific Commands
8e04817f
AC
17335@cindex TUI commands
17336
17337The TUI has specific commands to control the text windows.
46ba6afa
BW
17338These commands are always available, even when @value{GDBN} is not in
17339the TUI mode. When @value{GDBN} is in the standard mode, most
17340of these commands will automatically switch to the TUI mode.
c906108c
SS
17341
17342@table @code
3d757584
SC
17343@item info win
17344@kindex info win
17345List and give the size of all displayed windows.
17346
8e04817f 17347@item layout next
4644b6e3 17348@kindex layout
8e04817f 17349Display the next layout.
2df3850c 17350
8e04817f 17351@item layout prev
8e04817f 17352Display the previous layout.
c906108c 17353
8e04817f 17354@item layout src
8e04817f 17355Display the source window only.
c906108c 17356
8e04817f 17357@item layout asm
8e04817f 17358Display the assembly window only.
c906108c 17359
8e04817f 17360@item layout split
8e04817f 17361Display the source and assembly window.
c906108c 17362
8e04817f 17363@item layout regs
8e04817f
AC
17364Display the register window together with the source or assembly window.
17365
46ba6afa 17366@item focus next
8e04817f 17367@kindex focus
46ba6afa
BW
17368Make the next window active for scrolling.
17369
17370@item focus prev
17371Make the previous window active for scrolling.
17372
17373@item focus src
17374Make the source window active for scrolling.
17375
17376@item focus asm
17377Make the assembly window active for scrolling.
17378
17379@item focus regs
17380Make the register window active for scrolling.
17381
17382@item focus cmd
17383Make the command window active for scrolling.
c906108c 17384
8e04817f
AC
17385@item refresh
17386@kindex refresh
7f9087cb 17387Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17388
6a1b180d
SC
17389@item tui reg float
17390@kindex tui reg
17391Show the floating point registers in the register window.
17392
17393@item tui reg general
17394Show the general registers in the register window.
17395
17396@item tui reg next
17397Show the next register group. The list of register groups as well as
17398their order is target specific. The predefined register groups are the
17399following: @code{general}, @code{float}, @code{system}, @code{vector},
17400@code{all}, @code{save}, @code{restore}.
17401
17402@item tui reg system
17403Show the system registers in the register window.
17404
8e04817f
AC
17405@item update
17406@kindex update
17407Update the source window and the current execution point.
c906108c 17408
8e04817f
AC
17409@item winheight @var{name} +@var{count}
17410@itemx winheight @var{name} -@var{count}
17411@kindex winheight
17412Change the height of the window @var{name} by @var{count}
17413lines. Positive counts increase the height, while negative counts
17414decrease it.
2df3850c 17415
46ba6afa
BW
17416@item tabset @var{nchars}
17417@kindex tabset
c45da7e6 17418Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17419@end table
17420
8e04817f 17421@node TUI Configuration
79a6e687 17422@section TUI Configuration Variables
8e04817f 17423@cindex TUI configuration variables
c906108c 17424
46ba6afa 17425Several configuration variables control the appearance of TUI windows.
c906108c 17426
8e04817f
AC
17427@table @code
17428@item set tui border-kind @var{kind}
17429@kindex set tui border-kind
17430Select the border appearance for the source, assembly and register windows.
17431The possible values are the following:
17432@table @code
17433@item space
17434Use a space character to draw the border.
c906108c 17435
8e04817f 17436@item ascii
46ba6afa 17437Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17438
8e04817f
AC
17439@item acs
17440Use the Alternate Character Set to draw the border. The border is
17441drawn using character line graphics if the terminal supports them.
8e04817f 17442@end table
c78b4128 17443
8e04817f
AC
17444@item set tui border-mode @var{mode}
17445@kindex set tui border-mode
46ba6afa
BW
17446@itemx set tui active-border-mode @var{mode}
17447@kindex set tui active-border-mode
17448Select the display attributes for the borders of the inactive windows
17449or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17450@table @code
17451@item normal
17452Use normal attributes to display the border.
c906108c 17453
8e04817f
AC
17454@item standout
17455Use standout mode.
c906108c 17456
8e04817f
AC
17457@item reverse
17458Use reverse video mode.
c906108c 17459
8e04817f
AC
17460@item half
17461Use half bright mode.
c906108c 17462
8e04817f
AC
17463@item half-standout
17464Use half bright and standout mode.
c906108c 17465
8e04817f
AC
17466@item bold
17467Use extra bright or bold mode.
c78b4128 17468
8e04817f
AC
17469@item bold-standout
17470Use extra bright or bold and standout mode.
8e04817f 17471@end table
8e04817f 17472@end table
c78b4128 17473
8e04817f
AC
17474@node Emacs
17475@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17476
8e04817f
AC
17477@cindex Emacs
17478@cindex @sc{gnu} Emacs
17479A special interface allows you to use @sc{gnu} Emacs to view (and
17480edit) the source files for the program you are debugging with
17481@value{GDBN}.
c906108c 17482
8e04817f
AC
17483To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17484executable file you want to debug as an argument. This command starts
17485@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17486created Emacs buffer.
17487@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17488
5e252a2e 17489Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17490things:
c906108c 17491
8e04817f
AC
17492@itemize @bullet
17493@item
5e252a2e
NR
17494All ``terminal'' input and output goes through an Emacs buffer, called
17495the GUD buffer.
c906108c 17496
8e04817f
AC
17497This applies both to @value{GDBN} commands and their output, and to the input
17498and output done by the program you are debugging.
bf0184be 17499
8e04817f
AC
17500This is useful because it means that you can copy the text of previous
17501commands and input them again; you can even use parts of the output
17502in this way.
bf0184be 17503
8e04817f
AC
17504All the facilities of Emacs' Shell mode are available for interacting
17505with your program. In particular, you can send signals the usual
17506way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17507stop.
bf0184be
ND
17508
17509@item
8e04817f 17510@value{GDBN} displays source code through Emacs.
bf0184be 17511
8e04817f
AC
17512Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17513source file for that frame and puts an arrow (@samp{=>}) at the
17514left margin of the current line. Emacs uses a separate buffer for
17515source display, and splits the screen to show both your @value{GDBN} session
17516and the source.
bf0184be 17517
8e04817f
AC
17518Explicit @value{GDBN} @code{list} or search commands still produce output as
17519usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17520@end itemize
17521
17522We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17523a graphical mode, enabled by default, which provides further buffers
17524that can control the execution and describe the state of your program.
17525@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17526
64fabec2
AC
17527If you specify an absolute file name when prompted for the @kbd{M-x
17528gdb} argument, then Emacs sets your current working directory to where
17529your program resides. If you only specify the file name, then Emacs
17530sets your current working directory to to the directory associated
17531with the previous buffer. In this case, @value{GDBN} may find your
17532program by searching your environment's @code{PATH} variable, but on
17533some operating systems it might not find the source. So, although the
17534@value{GDBN} input and output session proceeds normally, the auxiliary
17535buffer does not display the current source and line of execution.
17536
17537The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17538line of the GUD buffer and this serves as a default for the commands
17539that specify files for @value{GDBN} to operate on. @xref{Files,
17540,Commands to Specify Files}.
64fabec2
AC
17541
17542By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17543need to call @value{GDBN} by a different name (for example, if you
17544keep several configurations around, with different names) you can
17545customize the Emacs variable @code{gud-gdb-command-name} to run the
17546one you want.
8e04817f 17547
5e252a2e 17548In the GUD buffer, you can use these special Emacs commands in
8e04817f 17549addition to the standard Shell mode commands:
c906108c 17550
8e04817f
AC
17551@table @kbd
17552@item C-h m
5e252a2e 17553Describe the features of Emacs' GUD Mode.
c906108c 17554
64fabec2 17555@item C-c C-s
8e04817f
AC
17556Execute to another source line, like the @value{GDBN} @code{step} command; also
17557update the display window to show the current file and location.
c906108c 17558
64fabec2 17559@item C-c C-n
8e04817f
AC
17560Execute to next source line in this function, skipping all function
17561calls, like the @value{GDBN} @code{next} command. Then update the display window
17562to show the current file and location.
c906108c 17563
64fabec2 17564@item C-c C-i
8e04817f
AC
17565Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17566display window accordingly.
c906108c 17567
8e04817f
AC
17568@item C-c C-f
17569Execute until exit from the selected stack frame, like the @value{GDBN}
17570@code{finish} command.
c906108c 17571
64fabec2 17572@item C-c C-r
8e04817f
AC
17573Continue execution of your program, like the @value{GDBN} @code{continue}
17574command.
b433d00b 17575
64fabec2 17576@item C-c <
8e04817f
AC
17577Go up the number of frames indicated by the numeric argument
17578(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17579like the @value{GDBN} @code{up} command.
b433d00b 17580
64fabec2 17581@item C-c >
8e04817f
AC
17582Go down the number of frames indicated by the numeric argument, like the
17583@value{GDBN} @code{down} command.
8e04817f 17584@end table
c906108c 17585
7f9087cb 17586In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17587tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17588
5e252a2e
NR
17589In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17590separate frame which shows a backtrace when the GUD buffer is current.
17591Move point to any frame in the stack and type @key{RET} to make it
17592become the current frame and display the associated source in the
17593source buffer. Alternatively, click @kbd{Mouse-2} to make the
17594selected frame become the current one. In graphical mode, the
17595speedbar displays watch expressions.
64fabec2 17596
8e04817f
AC
17597If you accidentally delete the source-display buffer, an easy way to get
17598it back is to type the command @code{f} in the @value{GDBN} buffer, to
17599request a frame display; when you run under Emacs, this recreates
17600the source buffer if necessary to show you the context of the current
17601frame.
c906108c 17602
8e04817f
AC
17603The source files displayed in Emacs are in ordinary Emacs buffers
17604which are visiting the source files in the usual way. You can edit
17605the files with these buffers if you wish; but keep in mind that @value{GDBN}
17606communicates with Emacs in terms of line numbers. If you add or
17607delete lines from the text, the line numbers that @value{GDBN} knows cease
17608to correspond properly with the code.
b383017d 17609
5e252a2e
NR
17610A more detailed description of Emacs' interaction with @value{GDBN} is
17611given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17612Emacs Manual}).
c906108c 17613
8e04817f
AC
17614@c The following dropped because Epoch is nonstandard. Reactivate
17615@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17616@ignore
17617@kindex Emacs Epoch environment
17618@kindex Epoch
17619@kindex inspect
c906108c 17620
8e04817f
AC
17621Version 18 of @sc{gnu} Emacs has a built-in window system
17622called the @code{epoch}
17623environment. Users of this environment can use a new command,
17624@code{inspect} which performs identically to @code{print} except that
17625each value is printed in its own window.
17626@end ignore
c906108c 17627
922fbb7b
AC
17628
17629@node GDB/MI
17630@chapter The @sc{gdb/mi} Interface
17631
17632@unnumberedsec Function and Purpose
17633
17634@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17635@sc{gdb/mi} is a line based machine oriented text interface to
17636@value{GDBN} and is activated by specifying using the
17637@option{--interpreter} command line option (@pxref{Mode Options}). It
17638is specifically intended to support the development of systems which
17639use the debugger as just one small component of a larger system.
922fbb7b
AC
17640
17641This chapter is a specification of the @sc{gdb/mi} interface. It is written
17642in the form of a reference manual.
17643
17644Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17645features described below are incomplete and subject to change
17646(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17647
17648@unnumberedsec Notation and Terminology
17649
17650@cindex notational conventions, for @sc{gdb/mi}
17651This chapter uses the following notation:
17652
17653@itemize @bullet
17654@item
17655@code{|} separates two alternatives.
17656
17657@item
17658@code{[ @var{something} ]} indicates that @var{something} is optional:
17659it may or may not be given.
17660
17661@item
17662@code{( @var{group} )*} means that @var{group} inside the parentheses
17663may repeat zero or more times.
17664
17665@item
17666@code{( @var{group} )+} means that @var{group} inside the parentheses
17667may repeat one or more times.
17668
17669@item
17670@code{"@var{string}"} means a literal @var{string}.
17671@end itemize
17672
17673@ignore
17674@heading Dependencies
17675@end ignore
17676
922fbb7b
AC
17677@menu
17678* GDB/MI Command Syntax::
17679* GDB/MI Compatibility with CLI::
af6eff6f 17680* GDB/MI Development and Front Ends::
922fbb7b 17681* GDB/MI Output Records::
ef21caaf 17682* GDB/MI Simple Examples::
922fbb7b 17683* GDB/MI Command Description Format::
ef21caaf 17684* GDB/MI Breakpoint Commands::
a2c02241
NR
17685* GDB/MI Program Context::
17686* GDB/MI Thread Commands::
17687* GDB/MI Program Execution::
17688* GDB/MI Stack Manipulation::
17689* GDB/MI Variable Objects::
922fbb7b 17690* GDB/MI Data Manipulation::
a2c02241
NR
17691* GDB/MI Tracepoint Commands::
17692* GDB/MI Symbol Query::
351ff01a 17693* GDB/MI File Commands::
922fbb7b
AC
17694@ignore
17695* GDB/MI Kod Commands::
17696* GDB/MI Memory Overlay Commands::
17697* GDB/MI Signal Handling Commands::
17698@end ignore
922fbb7b 17699* GDB/MI Target Manipulation::
a6b151f1 17700* GDB/MI File Transfer Commands::
ef21caaf 17701* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17702@end menu
17703
17704@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17705@node GDB/MI Command Syntax
17706@section @sc{gdb/mi} Command Syntax
17707
17708@menu
17709* GDB/MI Input Syntax::
17710* GDB/MI Output Syntax::
922fbb7b
AC
17711@end menu
17712
17713@node GDB/MI Input Syntax
17714@subsection @sc{gdb/mi} Input Syntax
17715
17716@cindex input syntax for @sc{gdb/mi}
17717@cindex @sc{gdb/mi}, input syntax
17718@table @code
17719@item @var{command} @expansion{}
17720@code{@var{cli-command} | @var{mi-command}}
17721
17722@item @var{cli-command} @expansion{}
17723@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17724@var{cli-command} is any existing @value{GDBN} CLI command.
17725
17726@item @var{mi-command} @expansion{}
17727@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17728@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17729
17730@item @var{token} @expansion{}
17731"any sequence of digits"
17732
17733@item @var{option} @expansion{}
17734@code{"-" @var{parameter} [ " " @var{parameter} ]}
17735
17736@item @var{parameter} @expansion{}
17737@code{@var{non-blank-sequence} | @var{c-string}}
17738
17739@item @var{operation} @expansion{}
17740@emph{any of the operations described in this chapter}
17741
17742@item @var{non-blank-sequence} @expansion{}
17743@emph{anything, provided it doesn't contain special characters such as
17744"-", @var{nl}, """ and of course " "}
17745
17746@item @var{c-string} @expansion{}
17747@code{""" @var{seven-bit-iso-c-string-content} """}
17748
17749@item @var{nl} @expansion{}
17750@code{CR | CR-LF}
17751@end table
17752
17753@noindent
17754Notes:
17755
17756@itemize @bullet
17757@item
17758The CLI commands are still handled by the @sc{mi} interpreter; their
17759output is described below.
17760
17761@item
17762The @code{@var{token}}, when present, is passed back when the command
17763finishes.
17764
17765@item
17766Some @sc{mi} commands accept optional arguments as part of the parameter
17767list. Each option is identified by a leading @samp{-} (dash) and may be
17768followed by an optional argument parameter. Options occur first in the
17769parameter list and can be delimited from normal parameters using
17770@samp{--} (this is useful when some parameters begin with a dash).
17771@end itemize
17772
17773Pragmatics:
17774
17775@itemize @bullet
17776@item
17777We want easy access to the existing CLI syntax (for debugging).
17778
17779@item
17780We want it to be easy to spot a @sc{mi} operation.
17781@end itemize
17782
17783@node GDB/MI Output Syntax
17784@subsection @sc{gdb/mi} Output Syntax
17785
17786@cindex output syntax of @sc{gdb/mi}
17787@cindex @sc{gdb/mi}, output syntax
17788The output from @sc{gdb/mi} consists of zero or more out-of-band records
17789followed, optionally, by a single result record. This result record
17790is for the most recent command. The sequence of output records is
594fe323 17791terminated by @samp{(gdb)}.
922fbb7b
AC
17792
17793If an input command was prefixed with a @code{@var{token}} then the
17794corresponding output for that command will also be prefixed by that same
17795@var{token}.
17796
17797@table @code
17798@item @var{output} @expansion{}
594fe323 17799@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17800
17801@item @var{result-record} @expansion{}
17802@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17803
17804@item @var{out-of-band-record} @expansion{}
17805@code{@var{async-record} | @var{stream-record}}
17806
17807@item @var{async-record} @expansion{}
17808@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17809
17810@item @var{exec-async-output} @expansion{}
17811@code{[ @var{token} ] "*" @var{async-output}}
17812
17813@item @var{status-async-output} @expansion{}
17814@code{[ @var{token} ] "+" @var{async-output}}
17815
17816@item @var{notify-async-output} @expansion{}
17817@code{[ @var{token} ] "=" @var{async-output}}
17818
17819@item @var{async-output} @expansion{}
17820@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17821
17822@item @var{result-class} @expansion{}
17823@code{"done" | "running" | "connected" | "error" | "exit"}
17824
17825@item @var{async-class} @expansion{}
17826@code{"stopped" | @var{others}} (where @var{others} will be added
17827depending on the needs---this is still in development).
17828
17829@item @var{result} @expansion{}
17830@code{ @var{variable} "=" @var{value}}
17831
17832@item @var{variable} @expansion{}
17833@code{ @var{string} }
17834
17835@item @var{value} @expansion{}
17836@code{ @var{const} | @var{tuple} | @var{list} }
17837
17838@item @var{const} @expansion{}
17839@code{@var{c-string}}
17840
17841@item @var{tuple} @expansion{}
17842@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17843
17844@item @var{list} @expansion{}
17845@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17846@var{result} ( "," @var{result} )* "]" }
17847
17848@item @var{stream-record} @expansion{}
17849@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17850
17851@item @var{console-stream-output} @expansion{}
17852@code{"~" @var{c-string}}
17853
17854@item @var{target-stream-output} @expansion{}
17855@code{"@@" @var{c-string}}
17856
17857@item @var{log-stream-output} @expansion{}
17858@code{"&" @var{c-string}}
17859
17860@item @var{nl} @expansion{}
17861@code{CR | CR-LF}
17862
17863@item @var{token} @expansion{}
17864@emph{any sequence of digits}.
17865@end table
17866
17867@noindent
17868Notes:
17869
17870@itemize @bullet
17871@item
17872All output sequences end in a single line containing a period.
17873
17874@item
17875The @code{@var{token}} is from the corresponding request. If an execution
17876command is interrupted by the @samp{-exec-interrupt} command, the
17877@var{token} associated with the @samp{*stopped} message is the one of the
17878original execution command, not the one of the interrupt command.
17879
17880@item
17881@cindex status output in @sc{gdb/mi}
17882@var{status-async-output} contains on-going status information about the
17883progress of a slow operation. It can be discarded. All status output is
17884prefixed by @samp{+}.
17885
17886@item
17887@cindex async output in @sc{gdb/mi}
17888@var{exec-async-output} contains asynchronous state change on the target
17889(stopped, started, disappeared). All async output is prefixed by
17890@samp{*}.
17891
17892@item
17893@cindex notify output in @sc{gdb/mi}
17894@var{notify-async-output} contains supplementary information that the
17895client should handle (e.g., a new breakpoint information). All notify
17896output is prefixed by @samp{=}.
17897
17898@item
17899@cindex console output in @sc{gdb/mi}
17900@var{console-stream-output} is output that should be displayed as is in the
17901console. It is the textual response to a CLI command. All the console
17902output is prefixed by @samp{~}.
17903
17904@item
17905@cindex target output in @sc{gdb/mi}
17906@var{target-stream-output} is the output produced by the target program.
17907All the target output is prefixed by @samp{@@}.
17908
17909@item
17910@cindex log output in @sc{gdb/mi}
17911@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17912instance messages that should be displayed as part of an error log. All
17913the log output is prefixed by @samp{&}.
17914
17915@item
17916@cindex list output in @sc{gdb/mi}
17917New @sc{gdb/mi} commands should only output @var{lists} containing
17918@var{values}.
17919
17920
17921@end itemize
17922
17923@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17924details about the various output records.
17925
922fbb7b
AC
17926@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17927@node GDB/MI Compatibility with CLI
17928@section @sc{gdb/mi} Compatibility with CLI
17929
17930@cindex compatibility, @sc{gdb/mi} and CLI
17931@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17932
a2c02241
NR
17933For the developers convenience CLI commands can be entered directly,
17934but there may be some unexpected behaviour. For example, commands
17935that query the user will behave as if the user replied yes, breakpoint
17936command lists are not executed and some CLI commands, such as
17937@code{if}, @code{when} and @code{define}, prompt for further input with
17938@samp{>}, which is not valid MI output.
ef21caaf
NR
17939
17940This feature may be removed at some stage in the future and it is
a2c02241
NR
17941recommended that front ends use the @code{-interpreter-exec} command
17942(@pxref{-interpreter-exec}).
922fbb7b 17943
af6eff6f
NR
17944@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17945@node GDB/MI Development and Front Ends
17946@section @sc{gdb/mi} Development and Front Ends
17947@cindex @sc{gdb/mi} development
17948
17949The application which takes the MI output and presents the state of the
17950program being debugged to the user is called a @dfn{front end}.
17951
17952Although @sc{gdb/mi} is still incomplete, it is currently being used
17953by a variety of front ends to @value{GDBN}. This makes it difficult
17954to introduce new functionality without breaking existing usage. This
17955section tries to minimize the problems by describing how the protocol
17956might change.
17957
17958Some changes in MI need not break a carefully designed front end, and
17959for these the MI version will remain unchanged. The following is a
17960list of changes that may occur within one level, so front ends should
17961parse MI output in a way that can handle them:
17962
17963@itemize @bullet
17964@item
17965New MI commands may be added.
17966
17967@item
17968New fields may be added to the output of any MI command.
17969
36ece8b3
NR
17970@item
17971The range of values for fields with specified values, e.g.,
9f708cb2 17972@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17973
af6eff6f
NR
17974@c The format of field's content e.g type prefix, may change so parse it
17975@c at your own risk. Yes, in general?
17976
17977@c The order of fields may change? Shouldn't really matter but it might
17978@c resolve inconsistencies.
17979@end itemize
17980
17981If the changes are likely to break front ends, the MI version level
17982will be increased by one. This will allow the front end to parse the
17983output according to the MI version. Apart from mi0, new versions of
17984@value{GDBN} will not support old versions of MI and it will be the
17985responsibility of the front end to work with the new one.
17986
17987@c Starting with mi3, add a new command -mi-version that prints the MI
17988@c version?
17989
17990The best way to avoid unexpected changes in MI that might break your front
17991end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17992follow development on @email{gdb@@sourceware.org} and
17993@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17994@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17995Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17996called Debugger Machine Interface (DMI) that will become a standard
17997for all debuggers, not just @value{GDBN}.
17998@cindex mailing lists
17999
922fbb7b
AC
18000@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18001@node GDB/MI Output Records
18002@section @sc{gdb/mi} Output Records
18003
18004@menu
18005* GDB/MI Result Records::
18006* GDB/MI Stream Records::
18007* GDB/MI Out-of-band Records::
18008@end menu
18009
18010@node GDB/MI Result Records
18011@subsection @sc{gdb/mi} Result Records
18012
18013@cindex result records in @sc{gdb/mi}
18014@cindex @sc{gdb/mi}, result records
18015In addition to a number of out-of-band notifications, the response to a
18016@sc{gdb/mi} command includes one of the following result indications:
18017
18018@table @code
18019@findex ^done
18020@item "^done" [ "," @var{results} ]
18021The synchronous operation was successful, @code{@var{results}} are the return
18022values.
18023
18024@item "^running"
18025@findex ^running
18026@c Is this one correct? Should it be an out-of-band notification?
18027The asynchronous operation was successfully started. The target is
18028running.
18029
ef21caaf
NR
18030@item "^connected"
18031@findex ^connected
3f94c067 18032@value{GDBN} has connected to a remote target.
ef21caaf 18033
922fbb7b
AC
18034@item "^error" "," @var{c-string}
18035@findex ^error
18036The operation failed. The @code{@var{c-string}} contains the corresponding
18037error message.
ef21caaf
NR
18038
18039@item "^exit"
18040@findex ^exit
3f94c067 18041@value{GDBN} has terminated.
ef21caaf 18042
922fbb7b
AC
18043@end table
18044
18045@node GDB/MI Stream Records
18046@subsection @sc{gdb/mi} Stream Records
18047
18048@cindex @sc{gdb/mi}, stream records
18049@cindex stream records in @sc{gdb/mi}
18050@value{GDBN} internally maintains a number of output streams: the console, the
18051target, and the log. The output intended for each of these streams is
18052funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
18053
18054Each stream record begins with a unique @dfn{prefix character} which
18055identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
18056Syntax}). In addition to the prefix, each stream record contains a
18057@code{@var{string-output}}. This is either raw text (with an implicit new
18058line) or a quoted C string (which does not contain an implicit newline).
18059
18060@table @code
18061@item "~" @var{string-output}
18062The console output stream contains text that should be displayed in the
18063CLI console window. It contains the textual responses to CLI commands.
18064
18065@item "@@" @var{string-output}
18066The target output stream contains any textual output from the running
ef21caaf
NR
18067target. This is only present when GDB's event loop is truly
18068asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
18069
18070@item "&" @var{string-output}
18071The log stream contains debugging messages being produced by @value{GDBN}'s
18072internals.
18073@end table
18074
18075@node GDB/MI Out-of-band Records
18076@subsection @sc{gdb/mi} Out-of-band Records
18077
18078@cindex out-of-band records in @sc{gdb/mi}
18079@cindex @sc{gdb/mi}, out-of-band records
18080@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
18081additional changes that have occurred. Those changes can either be a
18082consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
18083target activity (e.g., target stopped).
18084
18085The following is a preliminary list of possible out-of-band records.
034dad6f 18086In particular, the @var{exec-async-output} records.
922fbb7b
AC
18087
18088@table @code
034dad6f
BR
18089@item *stopped,reason="@var{reason}"
18090@end table
18091
18092@var{reason} can be one of the following:
18093
18094@table @code
18095@item breakpoint-hit
18096A breakpoint was reached.
18097@item watchpoint-trigger
18098A watchpoint was triggered.
18099@item read-watchpoint-trigger
18100A read watchpoint was triggered.
18101@item access-watchpoint-trigger
18102An access watchpoint was triggered.
18103@item function-finished
18104An -exec-finish or similar CLI command was accomplished.
18105@item location-reached
18106An -exec-until or similar CLI command was accomplished.
18107@item watchpoint-scope
18108A watchpoint has gone out of scope.
18109@item end-stepping-range
18110An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
18111similar CLI command was accomplished.
18112@item exited-signalled
18113The inferior exited because of a signal.
18114@item exited
18115The inferior exited.
18116@item exited-normally
18117The inferior exited normally.
18118@item signal-received
18119A signal was received by the inferior.
922fbb7b
AC
18120@end table
18121
18122
ef21caaf
NR
18123@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18124@node GDB/MI Simple Examples
18125@section Simple Examples of @sc{gdb/mi} Interaction
18126@cindex @sc{gdb/mi}, simple examples
18127
18128This subsection presents several simple examples of interaction using
18129the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18130following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18131the output received from @sc{gdb/mi}.
18132
d3e8051b 18133Note the line breaks shown in the examples are here only for
ef21caaf
NR
18134readability, they don't appear in the real output.
18135
79a6e687 18136@subheading Setting a Breakpoint
ef21caaf
NR
18137
18138Setting a breakpoint generates synchronous output which contains detailed
18139information of the breakpoint.
18140
18141@smallexample
18142-> -break-insert main
18143<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18144 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18145 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18146<- (gdb)
18147@end smallexample
18148
18149@subheading Program Execution
18150
18151Program execution generates asynchronous records and MI gives the
18152reason that execution stopped.
18153
18154@smallexample
18155-> -exec-run
18156<- ^running
18157<- (gdb)
a47ec5fe 18158<- *stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
ef21caaf
NR
18159 frame=@{addr="0x08048564",func="main",
18160 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18161 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18162<- (gdb)
18163-> -exec-continue
18164<- ^running
18165<- (gdb)
18166<- *stopped,reason="exited-normally"
18167<- (gdb)
18168@end smallexample
18169
3f94c067 18170@subheading Quitting @value{GDBN}
ef21caaf 18171
3f94c067 18172Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18173
18174@smallexample
18175-> (gdb)
18176<- -gdb-exit
18177<- ^exit
18178@end smallexample
18179
a2c02241 18180@subheading A Bad Command
ef21caaf
NR
18181
18182Here's what happens if you pass a non-existent command:
18183
18184@smallexample
18185-> -rubbish
18186<- ^error,msg="Undefined MI command: rubbish"
594fe323 18187<- (gdb)
ef21caaf
NR
18188@end smallexample
18189
18190
922fbb7b
AC
18191@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18192@node GDB/MI Command Description Format
18193@section @sc{gdb/mi} Command Description Format
18194
18195The remaining sections describe blocks of commands. Each block of
18196commands is laid out in a fashion similar to this section.
18197
922fbb7b
AC
18198@subheading Motivation
18199
18200The motivation for this collection of commands.
18201
18202@subheading Introduction
18203
18204A brief introduction to this collection of commands as a whole.
18205
18206@subheading Commands
18207
18208For each command in the block, the following is described:
18209
18210@subsubheading Synopsis
18211
18212@smallexample
18213 -command @var{args}@dots{}
18214@end smallexample
18215
922fbb7b
AC
18216@subsubheading Result
18217
265eeb58 18218@subsubheading @value{GDBN} Command
922fbb7b 18219
265eeb58 18220The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18221
18222@subsubheading Example
18223
ef21caaf
NR
18224Example(s) formatted for readability. Some of the described commands have
18225not been implemented yet and these are labeled N.A.@: (not available).
18226
18227
922fbb7b 18228@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18229@node GDB/MI Breakpoint Commands
18230@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18231
18232@cindex breakpoint commands for @sc{gdb/mi}
18233@cindex @sc{gdb/mi}, breakpoint commands
18234This section documents @sc{gdb/mi} commands for manipulating
18235breakpoints.
18236
18237@subheading The @code{-break-after} Command
18238@findex -break-after
18239
18240@subsubheading Synopsis
18241
18242@smallexample
18243 -break-after @var{number} @var{count}
18244@end smallexample
18245
18246The breakpoint number @var{number} is not in effect until it has been
18247hit @var{count} times. To see how this is reflected in the output of
18248the @samp{-break-list} command, see the description of the
18249@samp{-break-list} command below.
18250
18251@subsubheading @value{GDBN} Command
18252
18253The corresponding @value{GDBN} command is @samp{ignore}.
18254
18255@subsubheading Example
18256
18257@smallexample
594fe323 18258(gdb)
922fbb7b 18259-break-insert main
a47ec5fe
AR
18260^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18261enabled="y",addr="0x000100d0",func="main",file="hello.c",
948d5102 18262fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18263(gdb)
922fbb7b
AC
18264-break-after 1 3
18265~
18266^done
594fe323 18267(gdb)
922fbb7b
AC
18268-break-list
18269^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18270hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18271@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18272@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18273@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18274@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18275@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18276body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18277addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18278line="5",times="0",ignore="3"@}]@}
594fe323 18279(gdb)
922fbb7b
AC
18280@end smallexample
18281
18282@ignore
18283@subheading The @code{-break-catch} Command
18284@findex -break-catch
18285
18286@subheading The @code{-break-commands} Command
18287@findex -break-commands
18288@end ignore
18289
18290
18291@subheading The @code{-break-condition} Command
18292@findex -break-condition
18293
18294@subsubheading Synopsis
18295
18296@smallexample
18297 -break-condition @var{number} @var{expr}
18298@end smallexample
18299
18300Breakpoint @var{number} will stop the program only if the condition in
18301@var{expr} is true. The condition becomes part of the
18302@samp{-break-list} output (see the description of the @samp{-break-list}
18303command below).
18304
18305@subsubheading @value{GDBN} Command
18306
18307The corresponding @value{GDBN} command is @samp{condition}.
18308
18309@subsubheading Example
18310
18311@smallexample
594fe323 18312(gdb)
922fbb7b
AC
18313-break-condition 1 1
18314^done
594fe323 18315(gdb)
922fbb7b
AC
18316-break-list
18317^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18318hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18319@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18320@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18321@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18322@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18323@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18324body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18325addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18326line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18327(gdb)
922fbb7b
AC
18328@end smallexample
18329
18330@subheading The @code{-break-delete} Command
18331@findex -break-delete
18332
18333@subsubheading Synopsis
18334
18335@smallexample
18336 -break-delete ( @var{breakpoint} )+
18337@end smallexample
18338
18339Delete the breakpoint(s) whose number(s) are specified in the argument
18340list. This is obviously reflected in the breakpoint list.
18341
79a6e687 18342@subsubheading @value{GDBN} Command
922fbb7b
AC
18343
18344The corresponding @value{GDBN} command is @samp{delete}.
18345
18346@subsubheading Example
18347
18348@smallexample
594fe323 18349(gdb)
922fbb7b
AC
18350-break-delete 1
18351^done
594fe323 18352(gdb)
922fbb7b
AC
18353-break-list
18354^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18355hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18356@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18357@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18358@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18359@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18360@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18361body=[]@}
594fe323 18362(gdb)
922fbb7b
AC
18363@end smallexample
18364
18365@subheading The @code{-break-disable} Command
18366@findex -break-disable
18367
18368@subsubheading Synopsis
18369
18370@smallexample
18371 -break-disable ( @var{breakpoint} )+
18372@end smallexample
18373
18374Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18375break list is now set to @samp{n} for the named @var{breakpoint}(s).
18376
18377@subsubheading @value{GDBN} Command
18378
18379The corresponding @value{GDBN} command is @samp{disable}.
18380
18381@subsubheading Example
18382
18383@smallexample
594fe323 18384(gdb)
922fbb7b
AC
18385-break-disable 2
18386^done
594fe323 18387(gdb)
922fbb7b
AC
18388-break-list
18389^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18390hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18391@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18392@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18393@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18394@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18395@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18396body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18397addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18398line="5",times="0"@}]@}
594fe323 18399(gdb)
922fbb7b
AC
18400@end smallexample
18401
18402@subheading The @code{-break-enable} Command
18403@findex -break-enable
18404
18405@subsubheading Synopsis
18406
18407@smallexample
18408 -break-enable ( @var{breakpoint} )+
18409@end smallexample
18410
18411Enable (previously disabled) @var{breakpoint}(s).
18412
18413@subsubheading @value{GDBN} Command
18414
18415The corresponding @value{GDBN} command is @samp{enable}.
18416
18417@subsubheading Example
18418
18419@smallexample
594fe323 18420(gdb)
922fbb7b
AC
18421-break-enable 2
18422^done
594fe323 18423(gdb)
922fbb7b
AC
18424-break-list
18425^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18426hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18427@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18428@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18429@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18430@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18431@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18432body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18433addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18434line="5",times="0"@}]@}
594fe323 18435(gdb)
922fbb7b
AC
18436@end smallexample
18437
18438@subheading The @code{-break-info} Command
18439@findex -break-info
18440
18441@subsubheading Synopsis
18442
18443@smallexample
18444 -break-info @var{breakpoint}
18445@end smallexample
18446
18447@c REDUNDANT???
18448Get information about a single breakpoint.
18449
79a6e687 18450@subsubheading @value{GDBN} Command
922fbb7b
AC
18451
18452The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18453
18454@subsubheading Example
18455N.A.
18456
18457@subheading The @code{-break-insert} Command
18458@findex -break-insert
18459
18460@subsubheading Synopsis
18461
18462@smallexample
afe8ab22 18463 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18464 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18465 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18466@end smallexample
18467
18468@noindent
afe8ab22 18469If specified, @var{location}, can be one of:
922fbb7b
AC
18470
18471@itemize @bullet
18472@item function
18473@c @item +offset
18474@c @item -offset
18475@c @item linenum
18476@item filename:linenum
18477@item filename:function
18478@item *address
18479@end itemize
18480
18481The possible optional parameters of this command are:
18482
18483@table @samp
18484@item -t
948d5102 18485Insert a temporary breakpoint.
922fbb7b
AC
18486@item -h
18487Insert a hardware breakpoint.
18488@item -c @var{condition}
18489Make the breakpoint conditional on @var{condition}.
18490@item -i @var{ignore-count}
18491Initialize the @var{ignore-count}.
afe8ab22
VP
18492@item -f
18493If @var{location} cannot be parsed (for example if it
18494refers to unknown files or functions), create a pending
18495breakpoint. Without this flag, @value{GDBN} will report
18496an error, and won't create a breakpoint, if @var{location}
18497cannot be parsed.
922fbb7b
AC
18498@end table
18499
18500@subsubheading Result
18501
18502The result is in the form:
18503
18504@smallexample
948d5102
NR
18505^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18506enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18507fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18508times="@var{times}"@}
922fbb7b
AC
18509@end smallexample
18510
18511@noindent
948d5102
NR
18512where @var{number} is the @value{GDBN} number for this breakpoint,
18513@var{funcname} is the name of the function where the breakpoint was
18514inserted, @var{filename} is the name of the source file which contains
18515this function, @var{lineno} is the source line number within that file
18516and @var{times} the number of times that the breakpoint has been hit
18517(always 0 for -break-insert but may be greater for -break-info or -break-list
18518which use the same output).
922fbb7b
AC
18519
18520Note: this format is open to change.
18521@c An out-of-band breakpoint instead of part of the result?
18522
18523@subsubheading @value{GDBN} Command
18524
18525The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18526@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18527
18528@subsubheading Example
18529
18530@smallexample
594fe323 18531(gdb)
922fbb7b 18532-break-insert main
948d5102
NR
18533^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18534fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18535(gdb)
922fbb7b 18536-break-insert -t foo
948d5102
NR
18537^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18538fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18539(gdb)
922fbb7b
AC
18540-break-list
18541^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18542hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18543@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18544@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18545@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18546@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18547@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18548body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18549addr="0x0001072c", func="main",file="recursive2.c",
18550fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18551bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18552addr="0x00010774",func="foo",file="recursive2.c",
18553fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18554(gdb)
922fbb7b
AC
18555-break-insert -r foo.*
18556~int foo(int, int);
948d5102
NR
18557^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18558"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18559(gdb)
922fbb7b
AC
18560@end smallexample
18561
18562@subheading The @code{-break-list} Command
18563@findex -break-list
18564
18565@subsubheading Synopsis
18566
18567@smallexample
18568 -break-list
18569@end smallexample
18570
18571Displays the list of inserted breakpoints, showing the following fields:
18572
18573@table @samp
18574@item Number
18575number of the breakpoint
18576@item Type
18577type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18578@item Disposition
18579should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18580or @samp{nokeep}
18581@item Enabled
18582is the breakpoint enabled or no: @samp{y} or @samp{n}
18583@item Address
18584memory location at which the breakpoint is set
18585@item What
18586logical location of the breakpoint, expressed by function name, file
18587name, line number
18588@item Times
18589number of times the breakpoint has been hit
18590@end table
18591
18592If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18593@code{body} field is an empty list.
18594
18595@subsubheading @value{GDBN} Command
18596
18597The corresponding @value{GDBN} command is @samp{info break}.
18598
18599@subsubheading Example
18600
18601@smallexample
594fe323 18602(gdb)
922fbb7b
AC
18603-break-list
18604^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18605hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18606@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18607@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18608@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18609@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18610@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18611body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18612addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18613bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18614addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18615line="13",times="0"@}]@}
594fe323 18616(gdb)
922fbb7b
AC
18617@end smallexample
18618
18619Here's an example of the result when there are no breakpoints:
18620
18621@smallexample
594fe323 18622(gdb)
922fbb7b
AC
18623-break-list
18624^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18625hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18626@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18627@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18628@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18629@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18630@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18631body=[]@}
594fe323 18632(gdb)
922fbb7b
AC
18633@end smallexample
18634
18635@subheading The @code{-break-watch} Command
18636@findex -break-watch
18637
18638@subsubheading Synopsis
18639
18640@smallexample
18641 -break-watch [ -a | -r ]
18642@end smallexample
18643
18644Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18645@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18646read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18647option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18648trigger only when the memory location is accessed for reading. Without
18649either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18650i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18651@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18652
18653Note that @samp{-break-list} will report a single list of watchpoints and
18654breakpoints inserted.
18655
18656@subsubheading @value{GDBN} Command
18657
18658The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18659@samp{rwatch}.
18660
18661@subsubheading Example
18662
18663Setting a watchpoint on a variable in the @code{main} function:
18664
18665@smallexample
594fe323 18666(gdb)
922fbb7b
AC
18667-break-watch x
18668^done,wpt=@{number="2",exp="x"@}
594fe323 18669(gdb)
922fbb7b
AC
18670-exec-continue
18671^running
0869d01b
NR
18672(gdb)
18673*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18674value=@{old="-268439212",new="55"@},
76ff342d 18675frame=@{func="main",args=[],file="recursive2.c",
948d5102 18676fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18677(gdb)
922fbb7b
AC
18678@end smallexample
18679
18680Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18681the program execution twice: first for the variable changing value, then
18682for the watchpoint going out of scope.
18683
18684@smallexample
594fe323 18685(gdb)
922fbb7b
AC
18686-break-watch C
18687^done,wpt=@{number="5",exp="C"@}
594fe323 18688(gdb)
922fbb7b
AC
18689-exec-continue
18690^running
0869d01b
NR
18691(gdb)
18692*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18693wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18694frame=@{func="callee4",args=[],
76ff342d
DJ
18695file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18696fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18697(gdb)
922fbb7b
AC
18698-exec-continue
18699^running
0869d01b
NR
18700(gdb)
18701*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18702frame=@{func="callee3",args=[@{name="strarg",
18703value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18704file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18705fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18706(gdb)
922fbb7b
AC
18707@end smallexample
18708
18709Listing breakpoints and watchpoints, at different points in the program
18710execution. Note that once the watchpoint goes out of scope, it is
18711deleted.
18712
18713@smallexample
594fe323 18714(gdb)
922fbb7b
AC
18715-break-watch C
18716^done,wpt=@{number="2",exp="C"@}
594fe323 18717(gdb)
922fbb7b
AC
18718-break-list
18719^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18720hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18721@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18722@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18723@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18724@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18725@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18726body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18727addr="0x00010734",func="callee4",
948d5102
NR
18728file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18729fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18730bkpt=@{number="2",type="watchpoint",disp="keep",
18731enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18732(gdb)
922fbb7b
AC
18733-exec-continue
18734^running
0869d01b
NR
18735(gdb)
18736*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18737value=@{old="-276895068",new="3"@},
18738frame=@{func="callee4",args=[],
76ff342d
DJ
18739file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18740fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18741(gdb)
922fbb7b
AC
18742-break-list
18743^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18744hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18745@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18746@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18747@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18748@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18749@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18750body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18751addr="0x00010734",func="callee4",
948d5102
NR
18752file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18753fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18754bkpt=@{number="2",type="watchpoint",disp="keep",
18755enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18756(gdb)
922fbb7b
AC
18757-exec-continue
18758^running
18759^done,reason="watchpoint-scope",wpnum="2",
18760frame=@{func="callee3",args=[@{name="strarg",
18761value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18762file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18763fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18764(gdb)
922fbb7b
AC
18765-break-list
18766^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18767hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18768@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18769@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18770@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18771@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18772@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18773body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18774addr="0x00010734",func="callee4",
948d5102
NR
18775file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18776fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18777times="1"@}]@}
594fe323 18778(gdb)
922fbb7b
AC
18779@end smallexample
18780
18781@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18782@node GDB/MI Program Context
18783@section @sc{gdb/mi} Program Context
922fbb7b 18784
a2c02241
NR
18785@subheading The @code{-exec-arguments} Command
18786@findex -exec-arguments
922fbb7b 18787
922fbb7b
AC
18788
18789@subsubheading Synopsis
18790
18791@smallexample
a2c02241 18792 -exec-arguments @var{args}
922fbb7b
AC
18793@end smallexample
18794
a2c02241
NR
18795Set the inferior program arguments, to be used in the next
18796@samp{-exec-run}.
922fbb7b 18797
a2c02241 18798@subsubheading @value{GDBN} Command
922fbb7b 18799
a2c02241 18800The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18801
a2c02241 18802@subsubheading Example
922fbb7b 18803
a2c02241
NR
18804@c FIXME!
18805Don't have one around.
922fbb7b 18806
a2c02241
NR
18807
18808@subheading The @code{-exec-show-arguments} Command
18809@findex -exec-show-arguments
18810
18811@subsubheading Synopsis
18812
18813@smallexample
18814 -exec-show-arguments
18815@end smallexample
18816
18817Print the arguments of the program.
922fbb7b
AC
18818
18819@subsubheading @value{GDBN} Command
18820
a2c02241 18821The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18822
18823@subsubheading Example
a2c02241 18824N.A.
922fbb7b 18825
922fbb7b 18826
a2c02241
NR
18827@subheading The @code{-environment-cd} Command
18828@findex -environment-cd
922fbb7b 18829
a2c02241 18830@subsubheading Synopsis
922fbb7b
AC
18831
18832@smallexample
a2c02241 18833 -environment-cd @var{pathdir}
922fbb7b
AC
18834@end smallexample
18835
a2c02241 18836Set @value{GDBN}'s working directory.
922fbb7b 18837
a2c02241 18838@subsubheading @value{GDBN} Command
922fbb7b 18839
a2c02241
NR
18840The corresponding @value{GDBN} command is @samp{cd}.
18841
18842@subsubheading Example
922fbb7b
AC
18843
18844@smallexample
594fe323 18845(gdb)
a2c02241
NR
18846-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18847^done
594fe323 18848(gdb)
922fbb7b
AC
18849@end smallexample
18850
18851
a2c02241
NR
18852@subheading The @code{-environment-directory} Command
18853@findex -environment-directory
922fbb7b
AC
18854
18855@subsubheading Synopsis
18856
18857@smallexample
a2c02241 18858 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18859@end smallexample
18860
a2c02241
NR
18861Add directories @var{pathdir} to beginning of search path for source files.
18862If the @samp{-r} option is used, the search path is reset to the default
18863search path. If directories @var{pathdir} are supplied in addition to the
18864@samp{-r} option, the search path is first reset and then addition
18865occurs as normal.
18866Multiple directories may be specified, separated by blanks. Specifying
18867multiple directories in a single command
18868results in the directories added to the beginning of the
18869search path in the same order they were presented in the command.
18870If blanks are needed as
18871part of a directory name, double-quotes should be used around
18872the name. In the command output, the path will show up separated
d3e8051b 18873by the system directory-separator character. The directory-separator
a2c02241
NR
18874character must not be used
18875in any directory name.
18876If no directories are specified, the current search path is displayed.
922fbb7b
AC
18877
18878@subsubheading @value{GDBN} Command
18879
a2c02241 18880The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18881
18882@subsubheading Example
18883
922fbb7b 18884@smallexample
594fe323 18885(gdb)
a2c02241
NR
18886-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18887^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18888(gdb)
a2c02241
NR
18889-environment-directory ""
18890^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18891(gdb)
a2c02241
NR
18892-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18893^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18894(gdb)
a2c02241
NR
18895-environment-directory -r
18896^done,source-path="$cdir:$cwd"
594fe323 18897(gdb)
922fbb7b
AC
18898@end smallexample
18899
18900
a2c02241
NR
18901@subheading The @code{-environment-path} Command
18902@findex -environment-path
922fbb7b
AC
18903
18904@subsubheading Synopsis
18905
18906@smallexample
a2c02241 18907 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18908@end smallexample
18909
a2c02241
NR
18910Add directories @var{pathdir} to beginning of search path for object files.
18911If the @samp{-r} option is used, the search path is reset to the original
18912search path that existed at gdb start-up. If directories @var{pathdir} are
18913supplied in addition to the
18914@samp{-r} option, the search path is first reset and then addition
18915occurs as normal.
18916Multiple directories may be specified, separated by blanks. Specifying
18917multiple directories in a single command
18918results in the directories added to the beginning of the
18919search path in the same order they were presented in the command.
18920If blanks are needed as
18921part of a directory name, double-quotes should be used around
18922the name. In the command output, the path will show up separated
d3e8051b 18923by the system directory-separator character. The directory-separator
a2c02241
NR
18924character must not be used
18925in any directory name.
18926If no directories are specified, the current path is displayed.
18927
922fbb7b
AC
18928
18929@subsubheading @value{GDBN} Command
18930
a2c02241 18931The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18932
18933@subsubheading Example
18934
922fbb7b 18935@smallexample
594fe323 18936(gdb)
a2c02241
NR
18937-environment-path
18938^done,path="/usr/bin"
594fe323 18939(gdb)
a2c02241
NR
18940-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18941^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18942(gdb)
a2c02241
NR
18943-environment-path -r /usr/local/bin
18944^done,path="/usr/local/bin:/usr/bin"
594fe323 18945(gdb)
922fbb7b
AC
18946@end smallexample
18947
18948
a2c02241
NR
18949@subheading The @code{-environment-pwd} Command
18950@findex -environment-pwd
922fbb7b
AC
18951
18952@subsubheading Synopsis
18953
18954@smallexample
a2c02241 18955 -environment-pwd
922fbb7b
AC
18956@end smallexample
18957
a2c02241 18958Show the current working directory.
922fbb7b 18959
79a6e687 18960@subsubheading @value{GDBN} Command
922fbb7b 18961
a2c02241 18962The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18963
18964@subsubheading Example
18965
922fbb7b 18966@smallexample
594fe323 18967(gdb)
a2c02241
NR
18968-environment-pwd
18969^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18970(gdb)
922fbb7b
AC
18971@end smallexample
18972
a2c02241
NR
18973@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18974@node GDB/MI Thread Commands
18975@section @sc{gdb/mi} Thread Commands
18976
18977
18978@subheading The @code{-thread-info} Command
18979@findex -thread-info
922fbb7b
AC
18980
18981@subsubheading Synopsis
18982
18983@smallexample
8e8901c5 18984 -thread-info [ @var{thread-id} ]
922fbb7b
AC
18985@end smallexample
18986
8e8901c5
VP
18987Reports information about either a specific thread, if
18988the @var{thread-id} parameter is present, or about all
18989threads. When printing information about all threads,
18990also reports the current thread.
18991
79a6e687 18992@subsubheading @value{GDBN} Command
922fbb7b 18993
8e8901c5
VP
18994The @samp{info thread} command prints the same information
18995about all threads.
922fbb7b
AC
18996
18997@subsubheading Example
922fbb7b
AC
18998
18999@smallexample
8e8901c5
VP
19000-thread-info
19001^done,threads=[
19002@{id="2",target-id="Thread 0xb7e14b90 (LWP 21257)",
19003 frame=@{level="0",addr="0xffffe410",func="__kernel_vsyscall",args=[]@},
19004@{id="1",target-id="Thread 0xb7e156b0 (LWP 21254)",
19005 frame=@{level="0",addr="0x0804891f",func="foo",args=[@{name="i",value="10"@}],
19006 file="/tmp/a.c",fullname="/tmp/a.c",line="158"@}@}],
19007current-thread-id="1"
19008(gdb)
922fbb7b
AC
19009@end smallexample
19010
a2c02241
NR
19011@subheading The @code{-thread-list-ids} Command
19012@findex -thread-list-ids
922fbb7b 19013
a2c02241 19014@subsubheading Synopsis
922fbb7b 19015
a2c02241
NR
19016@smallexample
19017 -thread-list-ids
19018@end smallexample
922fbb7b 19019
a2c02241
NR
19020Produces a list of the currently known @value{GDBN} thread ids. At the
19021end of the list it also prints the total number of such threads.
922fbb7b
AC
19022
19023@subsubheading @value{GDBN} Command
19024
a2c02241 19025Part of @samp{info threads} supplies the same information.
922fbb7b
AC
19026
19027@subsubheading Example
19028
a2c02241 19029No threads present, besides the main process:
922fbb7b
AC
19030
19031@smallexample
594fe323 19032(gdb)
a2c02241
NR
19033-thread-list-ids
19034^done,thread-ids=@{@},number-of-threads="0"
594fe323 19035(gdb)
922fbb7b
AC
19036@end smallexample
19037
922fbb7b 19038
a2c02241 19039Several threads:
922fbb7b
AC
19040
19041@smallexample
594fe323 19042(gdb)
a2c02241
NR
19043-thread-list-ids
19044^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19045number-of-threads="3"
594fe323 19046(gdb)
922fbb7b
AC
19047@end smallexample
19048
a2c02241
NR
19049
19050@subheading The @code{-thread-select} Command
19051@findex -thread-select
922fbb7b
AC
19052
19053@subsubheading Synopsis
19054
19055@smallexample
a2c02241 19056 -thread-select @var{threadnum}
922fbb7b
AC
19057@end smallexample
19058
a2c02241
NR
19059Make @var{threadnum} the current thread. It prints the number of the new
19060current thread, and the topmost frame for that thread.
922fbb7b
AC
19061
19062@subsubheading @value{GDBN} Command
19063
a2c02241 19064The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
19065
19066@subsubheading Example
922fbb7b
AC
19067
19068@smallexample
594fe323 19069(gdb)
a2c02241
NR
19070-exec-next
19071^running
594fe323 19072(gdb)
a2c02241
NR
19073*stopped,reason="end-stepping-range",thread-id="2",line="187",
19074file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 19075(gdb)
a2c02241
NR
19076-thread-list-ids
19077^done,
19078thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
19079number-of-threads="3"
594fe323 19080(gdb)
a2c02241
NR
19081-thread-select 3
19082^done,new-thread-id="3",
19083frame=@{level="0",func="vprintf",
19084args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
19085@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 19086(gdb)
922fbb7b
AC
19087@end smallexample
19088
a2c02241
NR
19089@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19090@node GDB/MI Program Execution
19091@section @sc{gdb/mi} Program Execution
922fbb7b 19092
ef21caaf 19093These are the asynchronous commands which generate the out-of-band
3f94c067 19094record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
19095asynchronously with remote targets and this interaction is mimicked in
19096other cases.
922fbb7b 19097
922fbb7b
AC
19098@subheading The @code{-exec-continue} Command
19099@findex -exec-continue
19100
19101@subsubheading Synopsis
19102
19103@smallexample
19104 -exec-continue
19105@end smallexample
19106
ef21caaf
NR
19107Resumes the execution of the inferior program until a breakpoint is
19108encountered, or until the inferior exits.
922fbb7b
AC
19109
19110@subsubheading @value{GDBN} Command
19111
19112The corresponding @value{GDBN} corresponding is @samp{continue}.
19113
19114@subsubheading Example
19115
19116@smallexample
19117-exec-continue
19118^running
594fe323 19119(gdb)
922fbb7b 19120@@Hello world
a47ec5fe
AR
19121*stopped,reason="breakpoint-hit",disp="keep",bkptno="2",frame=@{
19122func="foo",args=[],file="hello.c",fullname="/home/foo/bar/hello.c",
19123line="13"@}
594fe323 19124(gdb)
922fbb7b
AC
19125@end smallexample
19126
19127
19128@subheading The @code{-exec-finish} Command
19129@findex -exec-finish
19130
19131@subsubheading Synopsis
19132
19133@smallexample
19134 -exec-finish
19135@end smallexample
19136
ef21caaf
NR
19137Resumes the execution of the inferior program until the current
19138function is exited. Displays the results returned by the function.
922fbb7b
AC
19139
19140@subsubheading @value{GDBN} Command
19141
19142The corresponding @value{GDBN} command is @samp{finish}.
19143
19144@subsubheading Example
19145
19146Function returning @code{void}.
19147
19148@smallexample
19149-exec-finish
19150^running
594fe323 19151(gdb)
922fbb7b
AC
19152@@hello from foo
19153*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19154file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19155(gdb)
922fbb7b
AC
19156@end smallexample
19157
19158Function returning other than @code{void}. The name of the internal
19159@value{GDBN} variable storing the result is printed, together with the
19160value itself.
19161
19162@smallexample
19163-exec-finish
19164^running
594fe323 19165(gdb)
922fbb7b
AC
19166*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19167args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19168file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19169gdb-result-var="$1",return-value="0"
594fe323 19170(gdb)
922fbb7b
AC
19171@end smallexample
19172
19173
19174@subheading The @code{-exec-interrupt} Command
19175@findex -exec-interrupt
19176
19177@subsubheading Synopsis
19178
19179@smallexample
19180 -exec-interrupt
19181@end smallexample
19182
ef21caaf
NR
19183Interrupts the background execution of the target. Note how the token
19184associated with the stop message is the one for the execution command
19185that has been interrupted. The token for the interrupt itself only
19186appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19187interrupt a non-running program, an error message will be printed.
19188
19189@subsubheading @value{GDBN} Command
19190
19191The corresponding @value{GDBN} command is @samp{interrupt}.
19192
19193@subsubheading Example
19194
19195@smallexample
594fe323 19196(gdb)
922fbb7b
AC
19197111-exec-continue
19198111^running
19199
594fe323 19200(gdb)
922fbb7b
AC
19201222-exec-interrupt
19202222^done
594fe323 19203(gdb)
922fbb7b 19204111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19205frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19206fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19207(gdb)
922fbb7b 19208
594fe323 19209(gdb)
922fbb7b
AC
19210-exec-interrupt
19211^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19212(gdb)
922fbb7b
AC
19213@end smallexample
19214
19215
19216@subheading The @code{-exec-next} Command
19217@findex -exec-next
19218
19219@subsubheading Synopsis
19220
19221@smallexample
19222 -exec-next
19223@end smallexample
19224
ef21caaf
NR
19225Resumes execution of the inferior program, stopping when the beginning
19226of the next source line is reached.
922fbb7b
AC
19227
19228@subsubheading @value{GDBN} Command
19229
19230The corresponding @value{GDBN} command is @samp{next}.
19231
19232@subsubheading Example
19233
19234@smallexample
19235-exec-next
19236^running
594fe323 19237(gdb)
922fbb7b 19238*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19239(gdb)
922fbb7b
AC
19240@end smallexample
19241
19242
19243@subheading The @code{-exec-next-instruction} Command
19244@findex -exec-next-instruction
19245
19246@subsubheading Synopsis
19247
19248@smallexample
19249 -exec-next-instruction
19250@end smallexample
19251
ef21caaf
NR
19252Executes one machine instruction. If the instruction is a function
19253call, continues until the function returns. If the program stops at an
19254instruction in the middle of a source line, the address will be
19255printed as well.
922fbb7b
AC
19256
19257@subsubheading @value{GDBN} Command
19258
19259The corresponding @value{GDBN} command is @samp{nexti}.
19260
19261@subsubheading Example
19262
19263@smallexample
594fe323 19264(gdb)
922fbb7b
AC
19265-exec-next-instruction
19266^running
19267
594fe323 19268(gdb)
922fbb7b
AC
19269*stopped,reason="end-stepping-range",
19270addr="0x000100d4",line="5",file="hello.c"
594fe323 19271(gdb)
922fbb7b
AC
19272@end smallexample
19273
19274
19275@subheading The @code{-exec-return} Command
19276@findex -exec-return
19277
19278@subsubheading Synopsis
19279
19280@smallexample
19281 -exec-return
19282@end smallexample
19283
19284Makes current function return immediately. Doesn't execute the inferior.
19285Displays the new current frame.
19286
19287@subsubheading @value{GDBN} Command
19288
19289The corresponding @value{GDBN} command is @samp{return}.
19290
19291@subsubheading Example
19292
19293@smallexample
594fe323 19294(gdb)
922fbb7b
AC
19295200-break-insert callee4
19296200^done,bkpt=@{number="1",addr="0x00010734",
19297file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19298(gdb)
922fbb7b
AC
19299000-exec-run
19300000^running
594fe323 19301(gdb)
a47ec5fe 19302000*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
922fbb7b 19303frame=@{func="callee4",args=[],
76ff342d
DJ
19304file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19305fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19306(gdb)
922fbb7b
AC
19307205-break-delete
19308205^done
594fe323 19309(gdb)
922fbb7b
AC
19310111-exec-return
19311111^done,frame=@{level="0",func="callee3",
19312args=[@{name="strarg",
19313value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19314file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19315fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19316(gdb)
922fbb7b
AC
19317@end smallexample
19318
19319
19320@subheading The @code{-exec-run} Command
19321@findex -exec-run
19322
19323@subsubheading Synopsis
19324
19325@smallexample
19326 -exec-run
19327@end smallexample
19328
ef21caaf
NR
19329Starts execution of the inferior from the beginning. The inferior
19330executes until either a breakpoint is encountered or the program
19331exits. In the latter case the output will include an exit code, if
19332the program has exited exceptionally.
922fbb7b
AC
19333
19334@subsubheading @value{GDBN} Command
19335
19336The corresponding @value{GDBN} command is @samp{run}.
19337
ef21caaf 19338@subsubheading Examples
922fbb7b
AC
19339
19340@smallexample
594fe323 19341(gdb)
922fbb7b
AC
19342-break-insert main
19343^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19344(gdb)
922fbb7b
AC
19345-exec-run
19346^running
594fe323 19347(gdb)
a47ec5fe 19348*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",
76ff342d 19349frame=@{func="main",args=[],file="recursive2.c",
948d5102 19350fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19351(gdb)
922fbb7b
AC
19352@end smallexample
19353
ef21caaf
NR
19354@noindent
19355Program exited normally:
19356
19357@smallexample
594fe323 19358(gdb)
ef21caaf
NR
19359-exec-run
19360^running
594fe323 19361(gdb)
ef21caaf
NR
19362x = 55
19363*stopped,reason="exited-normally"
594fe323 19364(gdb)
ef21caaf
NR
19365@end smallexample
19366
19367@noindent
19368Program exited exceptionally:
19369
19370@smallexample
594fe323 19371(gdb)
ef21caaf
NR
19372-exec-run
19373^running
594fe323 19374(gdb)
ef21caaf
NR
19375x = 55
19376*stopped,reason="exited",exit-code="01"
594fe323 19377(gdb)
ef21caaf
NR
19378@end smallexample
19379
19380Another way the program can terminate is if it receives a signal such as
19381@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19382
19383@smallexample
594fe323 19384(gdb)
ef21caaf
NR
19385*stopped,reason="exited-signalled",signal-name="SIGINT",
19386signal-meaning="Interrupt"
19387@end smallexample
19388
922fbb7b 19389
a2c02241
NR
19390@c @subheading -exec-signal
19391
19392
19393@subheading The @code{-exec-step} Command
19394@findex -exec-step
922fbb7b
AC
19395
19396@subsubheading Synopsis
19397
19398@smallexample
a2c02241 19399 -exec-step
922fbb7b
AC
19400@end smallexample
19401
a2c02241
NR
19402Resumes execution of the inferior program, stopping when the beginning
19403of the next source line is reached, if the next source line is not a
19404function call. If it is, stop at the first instruction of the called
19405function.
922fbb7b
AC
19406
19407@subsubheading @value{GDBN} Command
19408
a2c02241 19409The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19410
19411@subsubheading Example
19412
19413Stepping into a function:
19414
19415@smallexample
19416-exec-step
19417^running
594fe323 19418(gdb)
922fbb7b
AC
19419*stopped,reason="end-stepping-range",
19420frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19421@{name="b",value="0"@}],file="recursive2.c",
948d5102 19422fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19423(gdb)
922fbb7b
AC
19424@end smallexample
19425
19426Regular stepping:
19427
19428@smallexample
19429-exec-step
19430^running
594fe323 19431(gdb)
922fbb7b 19432*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19433(gdb)
922fbb7b
AC
19434@end smallexample
19435
19436
19437@subheading The @code{-exec-step-instruction} Command
19438@findex -exec-step-instruction
19439
19440@subsubheading Synopsis
19441
19442@smallexample
19443 -exec-step-instruction
19444@end smallexample
19445
ef21caaf
NR
19446Resumes the inferior which executes one machine instruction. The
19447output, once @value{GDBN} has stopped, will vary depending on whether
19448we have stopped in the middle of a source line or not. In the former
19449case, the address at which the program stopped will be printed as
922fbb7b
AC
19450well.
19451
19452@subsubheading @value{GDBN} Command
19453
19454The corresponding @value{GDBN} command is @samp{stepi}.
19455
19456@subsubheading Example
19457
19458@smallexample
594fe323 19459(gdb)
922fbb7b
AC
19460-exec-step-instruction
19461^running
19462
594fe323 19463(gdb)
922fbb7b 19464*stopped,reason="end-stepping-range",
76ff342d 19465frame=@{func="foo",args=[],file="try.c",
948d5102 19466fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19467(gdb)
922fbb7b
AC
19468-exec-step-instruction
19469^running
19470
594fe323 19471(gdb)
922fbb7b 19472*stopped,reason="end-stepping-range",
76ff342d 19473frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19474fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19475(gdb)
922fbb7b
AC
19476@end smallexample
19477
19478
19479@subheading The @code{-exec-until} Command
19480@findex -exec-until
19481
19482@subsubheading Synopsis
19483
19484@smallexample
19485 -exec-until [ @var{location} ]
19486@end smallexample
19487
ef21caaf
NR
19488Executes the inferior until the @var{location} specified in the
19489argument is reached. If there is no argument, the inferior executes
19490until a source line greater than the current one is reached. The
19491reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19492
19493@subsubheading @value{GDBN} Command
19494
19495The corresponding @value{GDBN} command is @samp{until}.
19496
19497@subsubheading Example
19498
19499@smallexample
594fe323 19500(gdb)
922fbb7b
AC
19501-exec-until recursive2.c:6
19502^running
594fe323 19503(gdb)
922fbb7b
AC
19504x = 55
19505*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19506file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19507(gdb)
922fbb7b
AC
19508@end smallexample
19509
19510@ignore
19511@subheading -file-clear
19512Is this going away????
19513@end ignore
19514
351ff01a 19515@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19516@node GDB/MI Stack Manipulation
19517@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19518
922fbb7b 19519
a2c02241
NR
19520@subheading The @code{-stack-info-frame} Command
19521@findex -stack-info-frame
922fbb7b
AC
19522
19523@subsubheading Synopsis
19524
19525@smallexample
a2c02241 19526 -stack-info-frame
922fbb7b
AC
19527@end smallexample
19528
a2c02241 19529Get info on the selected frame.
922fbb7b
AC
19530
19531@subsubheading @value{GDBN} Command
19532
a2c02241
NR
19533The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19534(without arguments).
922fbb7b
AC
19535
19536@subsubheading Example
19537
19538@smallexample
594fe323 19539(gdb)
a2c02241
NR
19540-stack-info-frame
19541^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19542file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19543fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19544(gdb)
922fbb7b
AC
19545@end smallexample
19546
a2c02241
NR
19547@subheading The @code{-stack-info-depth} Command
19548@findex -stack-info-depth
922fbb7b
AC
19549
19550@subsubheading Synopsis
19551
19552@smallexample
a2c02241 19553 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19554@end smallexample
19555
a2c02241
NR
19556Return the depth of the stack. If the integer argument @var{max-depth}
19557is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19558
19559@subsubheading @value{GDBN} Command
19560
a2c02241 19561There's no equivalent @value{GDBN} command.
922fbb7b
AC
19562
19563@subsubheading Example
19564
a2c02241
NR
19565For a stack with frame levels 0 through 11:
19566
922fbb7b 19567@smallexample
594fe323 19568(gdb)
a2c02241
NR
19569-stack-info-depth
19570^done,depth="12"
594fe323 19571(gdb)
a2c02241
NR
19572-stack-info-depth 4
19573^done,depth="4"
594fe323 19574(gdb)
a2c02241
NR
19575-stack-info-depth 12
19576^done,depth="12"
594fe323 19577(gdb)
a2c02241
NR
19578-stack-info-depth 11
19579^done,depth="11"
594fe323 19580(gdb)
a2c02241
NR
19581-stack-info-depth 13
19582^done,depth="12"
594fe323 19583(gdb)
922fbb7b
AC
19584@end smallexample
19585
a2c02241
NR
19586@subheading The @code{-stack-list-arguments} Command
19587@findex -stack-list-arguments
922fbb7b
AC
19588
19589@subsubheading Synopsis
19590
19591@smallexample
a2c02241
NR
19592 -stack-list-arguments @var{show-values}
19593 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19594@end smallexample
19595
a2c02241
NR
19596Display a list of the arguments for the frames between @var{low-frame}
19597and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19598@var{high-frame} are not provided, list the arguments for the whole
19599call stack. If the two arguments are equal, show the single frame
19600at the corresponding level. It is an error if @var{low-frame} is
19601larger than the actual number of frames. On the other hand,
19602@var{high-frame} may be larger than the actual number of frames, in
19603which case only existing frames will be returned.
a2c02241
NR
19604
19605The @var{show-values} argument must have a value of 0 or 1. A value of
196060 means that only the names of the arguments are listed, a value of 1
19607means that both names and values of the arguments are printed.
922fbb7b
AC
19608
19609@subsubheading @value{GDBN} Command
19610
a2c02241
NR
19611@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19612@samp{gdb_get_args} command which partially overlaps with the
19613functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19614
19615@subsubheading Example
922fbb7b 19616
a2c02241 19617@smallexample
594fe323 19618(gdb)
a2c02241
NR
19619-stack-list-frames
19620^done,
19621stack=[
19622frame=@{level="0",addr="0x00010734",func="callee4",
19623file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19624fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19625frame=@{level="1",addr="0x0001076c",func="callee3",
19626file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19627fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19628frame=@{level="2",addr="0x0001078c",func="callee2",
19629file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19630fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19631frame=@{level="3",addr="0x000107b4",func="callee1",
19632file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19633fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19634frame=@{level="4",addr="0x000107e0",func="main",
19635file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19636fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19637(gdb)
a2c02241
NR
19638-stack-list-arguments 0
19639^done,
19640stack-args=[
19641frame=@{level="0",args=[]@},
19642frame=@{level="1",args=[name="strarg"]@},
19643frame=@{level="2",args=[name="intarg",name="strarg"]@},
19644frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19645frame=@{level="4",args=[]@}]
594fe323 19646(gdb)
a2c02241
NR
19647-stack-list-arguments 1
19648^done,
19649stack-args=[
19650frame=@{level="0",args=[]@},
19651frame=@{level="1",
19652 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19653frame=@{level="2",args=[
19654@{name="intarg",value="2"@},
19655@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19656@{frame=@{level="3",args=[
19657@{name="intarg",value="2"@},
19658@{name="strarg",value="0x11940 \"A string argument.\""@},
19659@{name="fltarg",value="3.5"@}]@},
19660frame=@{level="4",args=[]@}]
594fe323 19661(gdb)
a2c02241
NR
19662-stack-list-arguments 0 2 2
19663^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19664(gdb)
a2c02241
NR
19665-stack-list-arguments 1 2 2
19666^done,stack-args=[frame=@{level="2",
19667args=[@{name="intarg",value="2"@},
19668@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19669(gdb)
a2c02241
NR
19670@end smallexample
19671
19672@c @subheading -stack-list-exception-handlers
922fbb7b 19673
a2c02241
NR
19674
19675@subheading The @code{-stack-list-frames} Command
19676@findex -stack-list-frames
1abaf70c
BR
19677
19678@subsubheading Synopsis
19679
19680@smallexample
a2c02241 19681 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19682@end smallexample
19683
a2c02241
NR
19684List the frames currently on the stack. For each frame it displays the
19685following info:
19686
19687@table @samp
19688@item @var{level}
d3e8051b 19689The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19690@item @var{addr}
19691The @code{$pc} value for that frame.
19692@item @var{func}
19693Function name.
19694@item @var{file}
19695File name of the source file where the function lives.
19696@item @var{line}
19697Line number corresponding to the @code{$pc}.
19698@end table
19699
19700If invoked without arguments, this command prints a backtrace for the
19701whole stack. If given two integer arguments, it shows the frames whose
19702levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19703are equal, it shows the single frame at the corresponding level. It is
19704an error if @var{low-frame} is larger than the actual number of
a5451f4e 19705frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19706actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19707
19708@subsubheading @value{GDBN} Command
19709
a2c02241 19710The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19711
19712@subsubheading Example
19713
a2c02241
NR
19714Full stack backtrace:
19715
1abaf70c 19716@smallexample
594fe323 19717(gdb)
a2c02241
NR
19718-stack-list-frames
19719^done,stack=
19720[frame=@{level="0",addr="0x0001076c",func="foo",
19721 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19722frame=@{level="1",addr="0x000107a4",func="foo",
19723 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19724frame=@{level="2",addr="0x000107a4",func="foo",
19725 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19726frame=@{level="3",addr="0x000107a4",func="foo",
19727 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19728frame=@{level="4",addr="0x000107a4",func="foo",
19729 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19730frame=@{level="5",addr="0x000107a4",func="foo",
19731 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19732frame=@{level="6",addr="0x000107a4",func="foo",
19733 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19734frame=@{level="7",addr="0x000107a4",func="foo",
19735 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19736frame=@{level="8",addr="0x000107a4",func="foo",
19737 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19738frame=@{level="9",addr="0x000107a4",func="foo",
19739 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19740frame=@{level="10",addr="0x000107a4",func="foo",
19741 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19742frame=@{level="11",addr="0x00010738",func="main",
19743 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19744(gdb)
1abaf70c
BR
19745@end smallexample
19746
a2c02241 19747Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19748
a2c02241 19749@smallexample
594fe323 19750(gdb)
a2c02241
NR
19751-stack-list-frames 3 5
19752^done,stack=
19753[frame=@{level="3",addr="0x000107a4",func="foo",
19754 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19755frame=@{level="4",addr="0x000107a4",func="foo",
19756 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19757frame=@{level="5",addr="0x000107a4",func="foo",
19758 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19759(gdb)
a2c02241 19760@end smallexample
922fbb7b 19761
a2c02241 19762Show a single frame:
922fbb7b
AC
19763
19764@smallexample
594fe323 19765(gdb)
a2c02241
NR
19766-stack-list-frames 3 3
19767^done,stack=
19768[frame=@{level="3",addr="0x000107a4",func="foo",
19769 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19770(gdb)
922fbb7b
AC
19771@end smallexample
19772
922fbb7b 19773
a2c02241
NR
19774@subheading The @code{-stack-list-locals} Command
19775@findex -stack-list-locals
57c22c6c 19776
a2c02241 19777@subsubheading Synopsis
922fbb7b
AC
19778
19779@smallexample
a2c02241 19780 -stack-list-locals @var{print-values}
922fbb7b
AC
19781@end smallexample
19782
a2c02241
NR
19783Display the local variable names for the selected frame. If
19784@var{print-values} is 0 or @code{--no-values}, print only the names of
19785the variables; if it is 1 or @code{--all-values}, print also their
19786values; and if it is 2 or @code{--simple-values}, print the name,
19787type and value for simple data types and the name and type for arrays,
19788structures and unions. In this last case, a frontend can immediately
19789display the value of simple data types and create variable objects for
d3e8051b 19790other data types when the user wishes to explore their values in
a2c02241 19791more detail.
922fbb7b
AC
19792
19793@subsubheading @value{GDBN} Command
19794
a2c02241 19795@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19796
19797@subsubheading Example
922fbb7b
AC
19798
19799@smallexample
594fe323 19800(gdb)
a2c02241
NR
19801-stack-list-locals 0
19802^done,locals=[name="A",name="B",name="C"]
594fe323 19803(gdb)
a2c02241
NR
19804-stack-list-locals --all-values
19805^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19806 @{name="C",value="@{1, 2, 3@}"@}]
19807-stack-list-locals --simple-values
19808^done,locals=[@{name="A",type="int",value="1"@},
19809 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19810(gdb)
922fbb7b
AC
19811@end smallexample
19812
922fbb7b 19813
a2c02241
NR
19814@subheading The @code{-stack-select-frame} Command
19815@findex -stack-select-frame
922fbb7b
AC
19816
19817@subsubheading Synopsis
19818
19819@smallexample
a2c02241 19820 -stack-select-frame @var{framenum}
922fbb7b
AC
19821@end smallexample
19822
a2c02241
NR
19823Change the selected frame. Select a different frame @var{framenum} on
19824the stack.
922fbb7b
AC
19825
19826@subsubheading @value{GDBN} Command
19827
a2c02241
NR
19828The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19829@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19830
19831@subsubheading Example
19832
19833@smallexample
594fe323 19834(gdb)
a2c02241 19835-stack-select-frame 2
922fbb7b 19836^done
594fe323 19837(gdb)
922fbb7b
AC
19838@end smallexample
19839
19840@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19841@node GDB/MI Variable Objects
19842@section @sc{gdb/mi} Variable Objects
922fbb7b 19843
a1b5960f 19844@ignore
922fbb7b 19845
a2c02241 19846@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19847
a2c02241
NR
19848For the implementation of a variable debugger window (locals, watched
19849expressions, etc.), we are proposing the adaptation of the existing code
19850used by @code{Insight}.
922fbb7b 19851
a2c02241 19852The two main reasons for that are:
922fbb7b 19853
a2c02241
NR
19854@enumerate 1
19855@item
19856It has been proven in practice (it is already on its second generation).
922fbb7b 19857
a2c02241
NR
19858@item
19859It will shorten development time (needless to say how important it is
19860now).
19861@end enumerate
922fbb7b 19862
a2c02241
NR
19863The original interface was designed to be used by Tcl code, so it was
19864slightly changed so it could be used through @sc{gdb/mi}. This section
19865describes the @sc{gdb/mi} operations that will be available and gives some
19866hints about their use.
922fbb7b 19867
a2c02241
NR
19868@emph{Note}: In addition to the set of operations described here, we
19869expect the @sc{gui} implementation of a variable window to require, at
19870least, the following operations:
922fbb7b 19871
a2c02241
NR
19872@itemize @bullet
19873@item @code{-gdb-show} @code{output-radix}
19874@item @code{-stack-list-arguments}
19875@item @code{-stack-list-locals}
19876@item @code{-stack-select-frame}
19877@end itemize
922fbb7b 19878
a1b5960f
VP
19879@end ignore
19880
c8b2f53c 19881@subheading Introduction to Variable Objects
922fbb7b 19882
a2c02241 19883@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19884
19885Variable objects are "object-oriented" MI interface for examining and
19886changing values of expressions. Unlike some other MI interfaces that
19887work with expressions, variable objects are specifically designed for
19888simple and efficient presentation in the frontend. A variable object
19889is identified by string name. When a variable object is created, the
19890frontend specifies the expression for that variable object. The
19891expression can be a simple variable, or it can be an arbitrary complex
19892expression, and can even involve CPU registers. After creating a
19893variable object, the frontend can invoke other variable object
19894operations---for example to obtain or change the value of a variable
19895object, or to change display format.
19896
19897Variable objects have hierarchical tree structure. Any variable object
19898that corresponds to a composite type, such as structure in C, has
19899a number of child variable objects, for example corresponding to each
19900element of a structure. A child variable object can itself have
19901children, recursively. Recursion ends when we reach
25d5ea92
VP
19902leaf variable objects, which always have built-in types. Child variable
19903objects are created only by explicit request, so if a frontend
19904is not interested in the children of a particular variable object, no
19905child will be created.
c8b2f53c
VP
19906
19907For a leaf variable object it is possible to obtain its value as a
19908string, or set the value from a string. String value can be also
19909obtained for a non-leaf variable object, but it's generally a string
19910that only indicates the type of the object, and does not list its
19911contents. Assignment to a non-leaf variable object is not allowed.
19912
19913A frontend does not need to read the values of all variable objects each time
19914the program stops. Instead, MI provides an update command that lists all
19915variable objects whose values has changed since the last update
19916operation. This considerably reduces the amount of data that must
25d5ea92
VP
19917be transferred to the frontend. As noted above, children variable
19918objects are created on demand, and only leaf variable objects have a
19919real value. As result, gdb will read target memory only for leaf
19920variables that frontend has created.
19921
19922The automatic update is not always desirable. For example, a frontend
19923might want to keep a value of some expression for future reference,
19924and never update it. For another example, fetching memory is
19925relatively slow for embedded targets, so a frontend might want
19926to disable automatic update for the variables that are either not
19927visible on the screen, or ``closed''. This is possible using so
19928called ``frozen variable objects''. Such variable objects are never
19929implicitly updated.
922fbb7b 19930
a2c02241
NR
19931The following is the complete set of @sc{gdb/mi} operations defined to
19932access this functionality:
922fbb7b 19933
a2c02241
NR
19934@multitable @columnfractions .4 .6
19935@item @strong{Operation}
19936@tab @strong{Description}
922fbb7b 19937
a2c02241
NR
19938@item @code{-var-create}
19939@tab create a variable object
19940@item @code{-var-delete}
22d8a470 19941@tab delete the variable object and/or its children
a2c02241
NR
19942@item @code{-var-set-format}
19943@tab set the display format of this variable
19944@item @code{-var-show-format}
19945@tab show the display format of this variable
19946@item @code{-var-info-num-children}
19947@tab tells how many children this object has
19948@item @code{-var-list-children}
19949@tab return a list of the object's children
19950@item @code{-var-info-type}
19951@tab show the type of this variable object
19952@item @code{-var-info-expression}
02142340
VP
19953@tab print parent-relative expression that this variable object represents
19954@item @code{-var-info-path-expression}
19955@tab print full expression that this variable object represents
a2c02241
NR
19956@item @code{-var-show-attributes}
19957@tab is this variable editable? does it exist here?
19958@item @code{-var-evaluate-expression}
19959@tab get the value of this variable
19960@item @code{-var-assign}
19961@tab set the value of this variable
19962@item @code{-var-update}
19963@tab update the variable and its children
25d5ea92
VP
19964@item @code{-var-set-frozen}
19965@tab set frozeness attribute
a2c02241 19966@end multitable
922fbb7b 19967
a2c02241
NR
19968In the next subsection we describe each operation in detail and suggest
19969how it can be used.
922fbb7b 19970
a2c02241 19971@subheading Description And Use of Operations on Variable Objects
922fbb7b 19972
a2c02241
NR
19973@subheading The @code{-var-create} Command
19974@findex -var-create
ef21caaf 19975
a2c02241 19976@subsubheading Synopsis
ef21caaf 19977
a2c02241
NR
19978@smallexample
19979 -var-create @{@var{name} | "-"@}
19980 @{@var{frame-addr} | "*"@} @var{expression}
19981@end smallexample
19982
19983This operation creates a variable object, which allows the monitoring of
19984a variable, the result of an expression, a memory cell or a CPU
19985register.
ef21caaf 19986
a2c02241
NR
19987The @var{name} parameter is the string by which the object can be
19988referenced. It must be unique. If @samp{-} is specified, the varobj
19989system will generate a string ``varNNNNNN'' automatically. It will be
19990unique provided that one does not specify @var{name} on that format.
19991The command fails if a duplicate name is found.
ef21caaf 19992
a2c02241
NR
19993The frame under which the expression should be evaluated can be
19994specified by @var{frame-addr}. A @samp{*} indicates that the current
19995frame should be used.
922fbb7b 19996
a2c02241
NR
19997@var{expression} is any expression valid on the current language set (must not
19998begin with a @samp{*}), or one of the following:
922fbb7b 19999
a2c02241
NR
20000@itemize @bullet
20001@item
20002@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 20003
a2c02241
NR
20004@item
20005@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 20006
a2c02241
NR
20007@item
20008@samp{$@var{regname}} --- a CPU register name
20009@end itemize
922fbb7b 20010
a2c02241 20011@subsubheading Result
922fbb7b 20012
a2c02241
NR
20013This operation returns the name, number of children and the type of the
20014object created. Type is returned as a string as the ones generated by
20015the @value{GDBN} CLI:
922fbb7b
AC
20016
20017@smallexample
a2c02241 20018 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
20019@end smallexample
20020
a2c02241
NR
20021
20022@subheading The @code{-var-delete} Command
20023@findex -var-delete
922fbb7b
AC
20024
20025@subsubheading Synopsis
20026
20027@smallexample
22d8a470 20028 -var-delete [ -c ] @var{name}
922fbb7b
AC
20029@end smallexample
20030
a2c02241 20031Deletes a previously created variable object and all of its children.
22d8a470 20032With the @samp{-c} option, just deletes the children.
922fbb7b 20033
a2c02241 20034Returns an error if the object @var{name} is not found.
922fbb7b 20035
922fbb7b 20036
a2c02241
NR
20037@subheading The @code{-var-set-format} Command
20038@findex -var-set-format
922fbb7b 20039
a2c02241 20040@subsubheading Synopsis
922fbb7b
AC
20041
20042@smallexample
a2c02241 20043 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
20044@end smallexample
20045
a2c02241
NR
20046Sets the output format for the value of the object @var{name} to be
20047@var{format-spec}.
20048
de051565 20049@anchor{-var-set-format}
a2c02241
NR
20050The syntax for the @var{format-spec} is as follows:
20051
20052@smallexample
20053 @var{format-spec} @expansion{}
20054 @{binary | decimal | hexadecimal | octal | natural@}
20055@end smallexample
20056
c8b2f53c
VP
20057The natural format is the default format choosen automatically
20058based on the variable type (like decimal for an @code{int}, hex
20059for pointers, etc.).
20060
20061For a variable with children, the format is set only on the
20062variable itself, and the children are not affected.
a2c02241
NR
20063
20064@subheading The @code{-var-show-format} Command
20065@findex -var-show-format
922fbb7b
AC
20066
20067@subsubheading Synopsis
20068
20069@smallexample
a2c02241 20070 -var-show-format @var{name}
922fbb7b
AC
20071@end smallexample
20072
a2c02241 20073Returns the format used to display the value of the object @var{name}.
922fbb7b 20074
a2c02241
NR
20075@smallexample
20076 @var{format} @expansion{}
20077 @var{format-spec}
20078@end smallexample
922fbb7b 20079
922fbb7b 20080
a2c02241
NR
20081@subheading The @code{-var-info-num-children} Command
20082@findex -var-info-num-children
20083
20084@subsubheading Synopsis
20085
20086@smallexample
20087 -var-info-num-children @var{name}
20088@end smallexample
20089
20090Returns the number of children of a variable object @var{name}:
20091
20092@smallexample
20093 numchild=@var{n}
20094@end smallexample
20095
20096
20097@subheading The @code{-var-list-children} Command
20098@findex -var-list-children
20099
20100@subsubheading Synopsis
20101
20102@smallexample
20103 -var-list-children [@var{print-values}] @var{name}
20104@end smallexample
20105@anchor{-var-list-children}
20106
20107Return a list of the children of the specified variable object and
20108create variable objects for them, if they do not already exist. With
20109a single argument or if @var{print-values} has a value for of 0 or
20110@code{--no-values}, print only the names of the variables; if
20111@var{print-values} is 1 or @code{--all-values}, also print their
20112values; and if it is 2 or @code{--simple-values} print the name and
20113value for simple data types and just the name for arrays, structures
20114and unions.
922fbb7b
AC
20115
20116@subsubheading Example
20117
20118@smallexample
594fe323 20119(gdb)
a2c02241
NR
20120 -var-list-children n
20121 ^done,numchild=@var{n},children=[@{name=@var{name},
20122 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 20123(gdb)
a2c02241
NR
20124 -var-list-children --all-values n
20125 ^done,numchild=@var{n},children=[@{name=@var{name},
20126 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
20127@end smallexample
20128
922fbb7b 20129
a2c02241
NR
20130@subheading The @code{-var-info-type} Command
20131@findex -var-info-type
922fbb7b 20132
a2c02241
NR
20133@subsubheading Synopsis
20134
20135@smallexample
20136 -var-info-type @var{name}
20137@end smallexample
20138
20139Returns the type of the specified variable @var{name}. The type is
20140returned as a string in the same format as it is output by the
20141@value{GDBN} CLI:
20142
20143@smallexample
20144 type=@var{typename}
20145@end smallexample
20146
20147
20148@subheading The @code{-var-info-expression} Command
20149@findex -var-info-expression
922fbb7b
AC
20150
20151@subsubheading Synopsis
20152
20153@smallexample
a2c02241 20154 -var-info-expression @var{name}
922fbb7b
AC
20155@end smallexample
20156
02142340
VP
20157Returns a string that is suitable for presenting this
20158variable object in user interface. The string is generally
20159not valid expression in the current language, and cannot be evaluated.
20160
20161For example, if @code{a} is an array, and variable object
20162@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20163
a2c02241 20164@smallexample
02142340
VP
20165(gdb) -var-info-expression A.1
20166^done,lang="C",exp="1"
a2c02241 20167@end smallexample
922fbb7b 20168
a2c02241 20169@noindent
02142340
VP
20170Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20171
20172Note that the output of the @code{-var-list-children} command also
20173includes those expressions, so the @code{-var-info-expression} command
20174is of limited use.
20175
20176@subheading The @code{-var-info-path-expression} Command
20177@findex -var-info-path-expression
20178
20179@subsubheading Synopsis
20180
20181@smallexample
20182 -var-info-path-expression @var{name}
20183@end smallexample
20184
20185Returns an expression that can be evaluated in the current
20186context and will yield the same value that a variable object has.
20187Compare this with the @code{-var-info-expression} command, which
20188result can be used only for UI presentation. Typical use of
20189the @code{-var-info-path-expression} command is creating a
20190watchpoint from a variable object.
20191
20192For example, suppose @code{C} is a C@t{++} class, derived from class
20193@code{Base}, and that the @code{Base} class has a member called
20194@code{m_size}. Assume a variable @code{c} is has the type of
20195@code{C} and a variable object @code{C} was created for variable
20196@code{c}. Then, we'll get this output:
20197@smallexample
20198(gdb) -var-info-path-expression C.Base.public.m_size
20199^done,path_expr=((Base)c).m_size)
20200@end smallexample
922fbb7b 20201
a2c02241
NR
20202@subheading The @code{-var-show-attributes} Command
20203@findex -var-show-attributes
922fbb7b 20204
a2c02241 20205@subsubheading Synopsis
922fbb7b 20206
a2c02241
NR
20207@smallexample
20208 -var-show-attributes @var{name}
20209@end smallexample
922fbb7b 20210
a2c02241 20211List attributes of the specified variable object @var{name}:
922fbb7b
AC
20212
20213@smallexample
a2c02241 20214 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20215@end smallexample
20216
a2c02241
NR
20217@noindent
20218where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20219
20220@subheading The @code{-var-evaluate-expression} Command
20221@findex -var-evaluate-expression
20222
20223@subsubheading Synopsis
20224
20225@smallexample
de051565 20226 -var-evaluate-expression [-f @var{format-spec}] @var{name}
a2c02241
NR
20227@end smallexample
20228
20229Evaluates the expression that is represented by the specified variable
de051565
MK
20230object and returns its value as a string. The format of the string
20231can be specified with the @samp{-f} option. The possible values of
20232this option are the same as for @code{-var-set-format}
20233(@pxref{-var-set-format}). If the @samp{-f} option is not specified,
20234the current display format will be used. The current display format
20235can be changed using the @code{-var-set-format} command.
a2c02241
NR
20236
20237@smallexample
20238 value=@var{value}
20239@end smallexample
20240
20241Note that one must invoke @code{-var-list-children} for a variable
20242before the value of a child variable can be evaluated.
20243
20244@subheading The @code{-var-assign} Command
20245@findex -var-assign
20246
20247@subsubheading Synopsis
20248
20249@smallexample
20250 -var-assign @var{name} @var{expression}
20251@end smallexample
20252
20253Assigns the value of @var{expression} to the variable object specified
20254by @var{name}. The object must be @samp{editable}. If the variable's
20255value is altered by the assign, the variable will show up in any
20256subsequent @code{-var-update} list.
20257
20258@subsubheading Example
922fbb7b
AC
20259
20260@smallexample
594fe323 20261(gdb)
a2c02241
NR
20262-var-assign var1 3
20263^done,value="3"
594fe323 20264(gdb)
a2c02241
NR
20265-var-update *
20266^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20267(gdb)
922fbb7b
AC
20268@end smallexample
20269
a2c02241
NR
20270@subheading The @code{-var-update} Command
20271@findex -var-update
20272
20273@subsubheading Synopsis
20274
20275@smallexample
20276 -var-update [@var{print-values}] @{@var{name} | "*"@}
20277@end smallexample
20278
c8b2f53c
VP
20279Reevaluate the expressions corresponding to the variable object
20280@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20281list of variable objects whose values have changed; @var{name} must
20282be a root variable object. Here, ``changed'' means that the result of
20283@code{-var-evaluate-expression} before and after the
20284@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20285object names, all existing variable objects are updated, except
20286for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3 20287@var{print-values} determines whether both names and values, or just
de051565 20288names are printed. The possible values of this option are the same
36ece8b3
NR
20289as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20290recommended to use the @samp{--all-values} option, to reduce the
20291number of MI commands needed on each program stop.
c8b2f53c 20292
a2c02241
NR
20293
20294@subsubheading Example
922fbb7b
AC
20295
20296@smallexample
594fe323 20297(gdb)
a2c02241
NR
20298-var-assign var1 3
20299^done,value="3"
594fe323 20300(gdb)
a2c02241
NR
20301-var-update --all-values var1
20302^done,changelist=[@{name="var1",value="3",in_scope="true",
20303type_changed="false"@}]
594fe323 20304(gdb)
922fbb7b
AC
20305@end smallexample
20306
9f708cb2 20307@anchor{-var-update}
36ece8b3
NR
20308The field in_scope may take three values:
20309
20310@table @code
20311@item "true"
20312The variable object's current value is valid.
20313
20314@item "false"
20315The variable object does not currently hold a valid value but it may
20316hold one in the future if its associated expression comes back into
20317scope.
20318
20319@item "invalid"
20320The variable object no longer holds a valid value.
20321This can occur when the executable file being debugged has changed,
20322either through recompilation or by using the @value{GDBN} @code{file}
20323command. The front end should normally choose to delete these variable
20324objects.
20325@end table
20326
20327In the future new values may be added to this list so the front should
20328be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20329
25d5ea92
VP
20330@subheading The @code{-var-set-frozen} Command
20331@findex -var-set-frozen
9f708cb2 20332@anchor{-var-set-frozen}
25d5ea92
VP
20333
20334@subsubheading Synopsis
20335
20336@smallexample
9f708cb2 20337 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20338@end smallexample
20339
9f708cb2 20340Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20341@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20342frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20343frozen, then neither itself, nor any of its children, are
9f708cb2 20344implicitly updated by @code{-var-update} of
25d5ea92
VP
20345a parent variable or by @code{-var-update *}. Only
20346@code{-var-update} of the variable itself will update its value and
20347values of its children. After a variable object is unfrozen, it is
20348implicitly updated by all subsequent @code{-var-update} operations.
20349Unfreezing a variable does not update it, only subsequent
20350@code{-var-update} does.
20351
20352@subsubheading Example
20353
20354@smallexample
20355(gdb)
20356-var-set-frozen V 1
20357^done
20358(gdb)
20359@end smallexample
20360
20361
a2c02241
NR
20362@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20363@node GDB/MI Data Manipulation
20364@section @sc{gdb/mi} Data Manipulation
922fbb7b 20365
a2c02241
NR
20366@cindex data manipulation, in @sc{gdb/mi}
20367@cindex @sc{gdb/mi}, data manipulation
20368This section describes the @sc{gdb/mi} commands that manipulate data:
20369examine memory and registers, evaluate expressions, etc.
20370
20371@c REMOVED FROM THE INTERFACE.
20372@c @subheading -data-assign
20373@c Change the value of a program variable. Plenty of side effects.
79a6e687 20374@c @subsubheading GDB Command
a2c02241
NR
20375@c set variable
20376@c @subsubheading Example
20377@c N.A.
20378
20379@subheading The @code{-data-disassemble} Command
20380@findex -data-disassemble
922fbb7b
AC
20381
20382@subsubheading Synopsis
20383
20384@smallexample
a2c02241
NR
20385 -data-disassemble
20386 [ -s @var{start-addr} -e @var{end-addr} ]
20387 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20388 -- @var{mode}
922fbb7b
AC
20389@end smallexample
20390
a2c02241
NR
20391@noindent
20392Where:
20393
20394@table @samp
20395@item @var{start-addr}
20396is the beginning address (or @code{$pc})
20397@item @var{end-addr}
20398is the end address
20399@item @var{filename}
20400is the name of the file to disassemble
20401@item @var{linenum}
20402is the line number to disassemble around
20403@item @var{lines}
d3e8051b 20404is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20405the whole function will be disassembled, in case no @var{end-addr} is
20406specified. If @var{end-addr} is specified as a non-zero value, and
20407@var{lines} is lower than the number of disassembly lines between
20408@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20409displayed; if @var{lines} is higher than the number of lines between
20410@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20411are displayed.
20412@item @var{mode}
20413is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20414disassembly).
20415@end table
20416
20417@subsubheading Result
20418
20419The output for each instruction is composed of four fields:
20420
20421@itemize @bullet
20422@item Address
20423@item Func-name
20424@item Offset
20425@item Instruction
20426@end itemize
20427
20428Note that whatever included in the instruction field, is not manipulated
d3e8051b 20429directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20430
20431@subsubheading @value{GDBN} Command
20432
a2c02241 20433There's no direct mapping from this command to the CLI.
922fbb7b
AC
20434
20435@subsubheading Example
20436
a2c02241
NR
20437Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20438
922fbb7b 20439@smallexample
594fe323 20440(gdb)
a2c02241
NR
20441-data-disassemble -s $pc -e "$pc + 20" -- 0
20442^done,
20443asm_insns=[
20444@{address="0x000107c0",func-name="main",offset="4",
20445inst="mov 2, %o0"@},
20446@{address="0x000107c4",func-name="main",offset="8",
20447inst="sethi %hi(0x11800), %o2"@},
20448@{address="0x000107c8",func-name="main",offset="12",
20449inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20450@{address="0x000107cc",func-name="main",offset="16",
20451inst="sethi %hi(0x11800), %o2"@},
20452@{address="0x000107d0",func-name="main",offset="20",
20453inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20454(gdb)
a2c02241
NR
20455@end smallexample
20456
20457Disassemble the whole @code{main} function. Line 32 is part of
20458@code{main}.
20459
20460@smallexample
20461-data-disassemble -f basics.c -l 32 -- 0
20462^done,asm_insns=[
20463@{address="0x000107bc",func-name="main",offset="0",
20464inst="save %sp, -112, %sp"@},
20465@{address="0x000107c0",func-name="main",offset="4",
20466inst="mov 2, %o0"@},
20467@{address="0x000107c4",func-name="main",offset="8",
20468inst="sethi %hi(0x11800), %o2"@},
20469[@dots{}]
20470@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20471@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20472(gdb)
922fbb7b
AC
20473@end smallexample
20474
a2c02241 20475Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20476
a2c02241 20477@smallexample
594fe323 20478(gdb)
a2c02241
NR
20479-data-disassemble -f basics.c -l 32 -n 3 -- 0
20480^done,asm_insns=[
20481@{address="0x000107bc",func-name="main",offset="0",
20482inst="save %sp, -112, %sp"@},
20483@{address="0x000107c0",func-name="main",offset="4",
20484inst="mov 2, %o0"@},
20485@{address="0x000107c4",func-name="main",offset="8",
20486inst="sethi %hi(0x11800), %o2"@}]
594fe323 20487(gdb)
a2c02241
NR
20488@end smallexample
20489
20490Disassemble 3 instructions from the start of @code{main} in mixed mode:
20491
20492@smallexample
594fe323 20493(gdb)
a2c02241
NR
20494-data-disassemble -f basics.c -l 32 -n 3 -- 1
20495^done,asm_insns=[
20496src_and_asm_line=@{line="31",
20497file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20498 testsuite/gdb.mi/basics.c",line_asm_insn=[
20499@{address="0x000107bc",func-name="main",offset="0",
20500inst="save %sp, -112, %sp"@}]@},
20501src_and_asm_line=@{line="32",
20502file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20503 testsuite/gdb.mi/basics.c",line_asm_insn=[
20504@{address="0x000107c0",func-name="main",offset="4",
20505inst="mov 2, %o0"@},
20506@{address="0x000107c4",func-name="main",offset="8",
20507inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20508(gdb)
a2c02241
NR
20509@end smallexample
20510
20511
20512@subheading The @code{-data-evaluate-expression} Command
20513@findex -data-evaluate-expression
922fbb7b
AC
20514
20515@subsubheading Synopsis
20516
20517@smallexample
a2c02241 20518 -data-evaluate-expression @var{expr}
922fbb7b
AC
20519@end smallexample
20520
a2c02241
NR
20521Evaluate @var{expr} as an expression. The expression could contain an
20522inferior function call. The function call will execute synchronously.
20523If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20524
20525@subsubheading @value{GDBN} Command
20526
a2c02241
NR
20527The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20528@samp{call}. In @code{gdbtk} only, there's a corresponding
20529@samp{gdb_eval} command.
922fbb7b
AC
20530
20531@subsubheading Example
20532
a2c02241
NR
20533In the following example, the numbers that precede the commands are the
20534@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20535Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20536output.
20537
922fbb7b 20538@smallexample
a2c02241
NR
20539211-data-evaluate-expression A
20540211^done,value="1"
594fe323 20541(gdb)
a2c02241
NR
20542311-data-evaluate-expression &A
20543311^done,value="0xefffeb7c"
594fe323 20544(gdb)
a2c02241
NR
20545411-data-evaluate-expression A+3
20546411^done,value="4"
594fe323 20547(gdb)
a2c02241
NR
20548511-data-evaluate-expression "A + 3"
20549511^done,value="4"
594fe323 20550(gdb)
a2c02241 20551@end smallexample
922fbb7b
AC
20552
20553
a2c02241
NR
20554@subheading The @code{-data-list-changed-registers} Command
20555@findex -data-list-changed-registers
922fbb7b
AC
20556
20557@subsubheading Synopsis
20558
20559@smallexample
a2c02241 20560 -data-list-changed-registers
922fbb7b
AC
20561@end smallexample
20562
a2c02241 20563Display a list of the registers that have changed.
922fbb7b
AC
20564
20565@subsubheading @value{GDBN} Command
20566
a2c02241
NR
20567@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20568has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20569
20570@subsubheading Example
922fbb7b 20571
a2c02241 20572On a PPC MBX board:
922fbb7b
AC
20573
20574@smallexample
594fe323 20575(gdb)
a2c02241
NR
20576-exec-continue
20577^running
922fbb7b 20578
594fe323 20579(gdb)
a47ec5fe
AR
20580*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",frame=@{
20581func="main",args=[],file="try.c",fullname="/home/foo/bar/try.c",
20582line="5"@}
594fe323 20583(gdb)
a2c02241
NR
20584-data-list-changed-registers
20585^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20586"10","11","13","14","15","16","17","18","19","20","21","22","23",
20587"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20588(gdb)
a2c02241 20589@end smallexample
922fbb7b
AC
20590
20591
a2c02241
NR
20592@subheading The @code{-data-list-register-names} Command
20593@findex -data-list-register-names
922fbb7b
AC
20594
20595@subsubheading Synopsis
20596
20597@smallexample
a2c02241 20598 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20599@end smallexample
20600
a2c02241
NR
20601Show a list of register names for the current target. If no arguments
20602are given, it shows a list of the names of all the registers. If
20603integer numbers are given as arguments, it will print a list of the
20604names of the registers corresponding to the arguments. To ensure
20605consistency between a register name and its number, the output list may
20606include empty register names.
922fbb7b
AC
20607
20608@subsubheading @value{GDBN} Command
20609
a2c02241
NR
20610@value{GDBN} does not have a command which corresponds to
20611@samp{-data-list-register-names}. In @code{gdbtk} there is a
20612corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20613
20614@subsubheading Example
922fbb7b 20615
a2c02241
NR
20616For the PPC MBX board:
20617@smallexample
594fe323 20618(gdb)
a2c02241
NR
20619-data-list-register-names
20620^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20621"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20622"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20623"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20624"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20625"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20626"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20627(gdb)
a2c02241
NR
20628-data-list-register-names 1 2 3
20629^done,register-names=["r1","r2","r3"]
594fe323 20630(gdb)
a2c02241 20631@end smallexample
922fbb7b 20632
a2c02241
NR
20633@subheading The @code{-data-list-register-values} Command
20634@findex -data-list-register-values
922fbb7b
AC
20635
20636@subsubheading Synopsis
20637
20638@smallexample
a2c02241 20639 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20640@end smallexample
20641
a2c02241
NR
20642Display the registers' contents. @var{fmt} is the format according to
20643which the registers' contents are to be returned, followed by an optional
20644list of numbers specifying the registers to display. A missing list of
20645numbers indicates that the contents of all the registers must be returned.
20646
20647Allowed formats for @var{fmt} are:
20648
20649@table @code
20650@item x
20651Hexadecimal
20652@item o
20653Octal
20654@item t
20655Binary
20656@item d
20657Decimal
20658@item r
20659Raw
20660@item N
20661Natural
20662@end table
922fbb7b
AC
20663
20664@subsubheading @value{GDBN} Command
20665
a2c02241
NR
20666The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20667all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20668
20669@subsubheading Example
922fbb7b 20670
a2c02241
NR
20671For a PPC MBX board (note: line breaks are for readability only, they
20672don't appear in the actual output):
20673
20674@smallexample
594fe323 20675(gdb)
a2c02241
NR
20676-data-list-register-values r 64 65
20677^done,register-values=[@{number="64",value="0xfe00a300"@},
20678@{number="65",value="0x00029002"@}]
594fe323 20679(gdb)
a2c02241
NR
20680-data-list-register-values x
20681^done,register-values=[@{number="0",value="0xfe0043c8"@},
20682@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20683@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20684@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20685@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20686@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20687@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20688@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20689@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20690@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20691@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20692@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20693@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20694@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20695@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20696@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20697@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20698@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20699@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20700@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20701@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20702@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20703@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20704@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20705@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20706@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20707@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20708@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20709@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20710@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20711@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20712@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20713@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20714@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20715@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20716@{number="69",value="0x20002b03"@}]
594fe323 20717(gdb)
a2c02241 20718@end smallexample
922fbb7b 20719
a2c02241
NR
20720
20721@subheading The @code{-data-read-memory} Command
20722@findex -data-read-memory
922fbb7b
AC
20723
20724@subsubheading Synopsis
20725
20726@smallexample
a2c02241
NR
20727 -data-read-memory [ -o @var{byte-offset} ]
20728 @var{address} @var{word-format} @var{word-size}
20729 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20730@end smallexample
20731
a2c02241
NR
20732@noindent
20733where:
922fbb7b 20734
a2c02241
NR
20735@table @samp
20736@item @var{address}
20737An expression specifying the address of the first memory word to be
20738read. Complex expressions containing embedded white space should be
20739quoted using the C convention.
922fbb7b 20740
a2c02241
NR
20741@item @var{word-format}
20742The format to be used to print the memory words. The notation is the
20743same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20744,Output Formats}).
922fbb7b 20745
a2c02241
NR
20746@item @var{word-size}
20747The size of each memory word in bytes.
922fbb7b 20748
a2c02241
NR
20749@item @var{nr-rows}
20750The number of rows in the output table.
922fbb7b 20751
a2c02241
NR
20752@item @var{nr-cols}
20753The number of columns in the output table.
922fbb7b 20754
a2c02241
NR
20755@item @var{aschar}
20756If present, indicates that each row should include an @sc{ascii} dump. The
20757value of @var{aschar} is used as a padding character when a byte is not a
20758member of the printable @sc{ascii} character set (printable @sc{ascii}
20759characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20760
a2c02241
NR
20761@item @var{byte-offset}
20762An offset to add to the @var{address} before fetching memory.
20763@end table
922fbb7b 20764
a2c02241
NR
20765This command displays memory contents as a table of @var{nr-rows} by
20766@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20767@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20768(returned as @samp{total-bytes}). Should less than the requested number
20769of bytes be returned by the target, the missing words are identified
20770using @samp{N/A}. The number of bytes read from the target is returned
20771in @samp{nr-bytes} and the starting address used to read memory in
20772@samp{addr}.
20773
20774The address of the next/previous row or page is available in
20775@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20776@samp{prev-page}.
922fbb7b
AC
20777
20778@subsubheading @value{GDBN} Command
20779
a2c02241
NR
20780The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20781@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20782
20783@subsubheading Example
32e7087d 20784
a2c02241
NR
20785Read six bytes of memory starting at @code{bytes+6} but then offset by
20786@code{-6} bytes. Format as three rows of two columns. One byte per
20787word. Display each word in hex.
32e7087d
JB
20788
20789@smallexample
594fe323 20790(gdb)
a2c02241
NR
207919-data-read-memory -o -6 -- bytes+6 x 1 3 2
207929^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20793next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20794prev-page="0x0000138a",memory=[
20795@{addr="0x00001390",data=["0x00","0x01"]@},
20796@{addr="0x00001392",data=["0x02","0x03"]@},
20797@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20798(gdb)
32e7087d
JB
20799@end smallexample
20800
a2c02241
NR
20801Read two bytes of memory starting at address @code{shorts + 64} and
20802display as a single word formatted in decimal.
32e7087d 20803
32e7087d 20804@smallexample
594fe323 20805(gdb)
a2c02241
NR
208065-data-read-memory shorts+64 d 2 1 1
208075^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20808next-row="0x00001512",prev-row="0x0000150e",
20809next-page="0x00001512",prev-page="0x0000150e",memory=[
20810@{addr="0x00001510",data=["128"]@}]
594fe323 20811(gdb)
32e7087d
JB
20812@end smallexample
20813
a2c02241
NR
20814Read thirty two bytes of memory starting at @code{bytes+16} and format
20815as eight rows of four columns. Include a string encoding with @samp{x}
20816used as the non-printable character.
922fbb7b
AC
20817
20818@smallexample
594fe323 20819(gdb)
a2c02241
NR
208204-data-read-memory bytes+16 x 1 8 4 x
208214^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20822next-row="0x000013c0",prev-row="0x0000139c",
20823next-page="0x000013c0",prev-page="0x00001380",memory=[
20824@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20825@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20826@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20827@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20828@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20829@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20830@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20831@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20832(gdb)
922fbb7b
AC
20833@end smallexample
20834
a2c02241
NR
20835@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20836@node GDB/MI Tracepoint Commands
20837@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20838
a2c02241 20839The tracepoint commands are not yet implemented.
922fbb7b 20840
a2c02241 20841@c @subheading -trace-actions
922fbb7b 20842
a2c02241 20843@c @subheading -trace-delete
922fbb7b 20844
a2c02241 20845@c @subheading -trace-disable
922fbb7b 20846
a2c02241 20847@c @subheading -trace-dump
922fbb7b 20848
a2c02241 20849@c @subheading -trace-enable
922fbb7b 20850
a2c02241 20851@c @subheading -trace-exists
922fbb7b 20852
a2c02241 20853@c @subheading -trace-find
922fbb7b 20854
a2c02241 20855@c @subheading -trace-frame-number
922fbb7b 20856
a2c02241 20857@c @subheading -trace-info
922fbb7b 20858
a2c02241 20859@c @subheading -trace-insert
922fbb7b 20860
a2c02241 20861@c @subheading -trace-list
922fbb7b 20862
a2c02241 20863@c @subheading -trace-pass-count
922fbb7b 20864
a2c02241 20865@c @subheading -trace-save
922fbb7b 20866
a2c02241 20867@c @subheading -trace-start
922fbb7b 20868
a2c02241 20869@c @subheading -trace-stop
922fbb7b 20870
922fbb7b 20871
a2c02241
NR
20872@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20873@node GDB/MI Symbol Query
20874@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20875
20876
a2c02241
NR
20877@subheading The @code{-symbol-info-address} Command
20878@findex -symbol-info-address
922fbb7b
AC
20879
20880@subsubheading Synopsis
20881
20882@smallexample
a2c02241 20883 -symbol-info-address @var{symbol}
922fbb7b
AC
20884@end smallexample
20885
a2c02241 20886Describe where @var{symbol} is stored.
922fbb7b
AC
20887
20888@subsubheading @value{GDBN} Command
20889
a2c02241 20890The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20891
20892@subsubheading Example
20893N.A.
20894
20895
a2c02241
NR
20896@subheading The @code{-symbol-info-file} Command
20897@findex -symbol-info-file
922fbb7b
AC
20898
20899@subsubheading Synopsis
20900
20901@smallexample
a2c02241 20902 -symbol-info-file
922fbb7b
AC
20903@end smallexample
20904
a2c02241 20905Show the file for the symbol.
922fbb7b 20906
a2c02241 20907@subsubheading @value{GDBN} Command
922fbb7b 20908
a2c02241
NR
20909There's no equivalent @value{GDBN} command. @code{gdbtk} has
20910@samp{gdb_find_file}.
922fbb7b
AC
20911
20912@subsubheading Example
20913N.A.
20914
20915
a2c02241
NR
20916@subheading The @code{-symbol-info-function} Command
20917@findex -symbol-info-function
922fbb7b
AC
20918
20919@subsubheading Synopsis
20920
20921@smallexample
a2c02241 20922 -symbol-info-function
922fbb7b
AC
20923@end smallexample
20924
a2c02241 20925Show which function the symbol lives in.
922fbb7b
AC
20926
20927@subsubheading @value{GDBN} Command
20928
a2c02241 20929@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20930
20931@subsubheading Example
20932N.A.
20933
20934
a2c02241
NR
20935@subheading The @code{-symbol-info-line} Command
20936@findex -symbol-info-line
922fbb7b
AC
20937
20938@subsubheading Synopsis
20939
20940@smallexample
a2c02241 20941 -symbol-info-line
922fbb7b
AC
20942@end smallexample
20943
a2c02241 20944Show the core addresses of the code for a source line.
922fbb7b 20945
a2c02241 20946@subsubheading @value{GDBN} Command
922fbb7b 20947
a2c02241
NR
20948The corresponding @value{GDBN} command is @samp{info line}.
20949@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20950
20951@subsubheading Example
a2c02241 20952N.A.
922fbb7b
AC
20953
20954
a2c02241
NR
20955@subheading The @code{-symbol-info-symbol} Command
20956@findex -symbol-info-symbol
07f31aa6
DJ
20957
20958@subsubheading Synopsis
20959
a2c02241
NR
20960@smallexample
20961 -symbol-info-symbol @var{addr}
20962@end smallexample
07f31aa6 20963
a2c02241 20964Describe what symbol is at location @var{addr}.
07f31aa6 20965
a2c02241 20966@subsubheading @value{GDBN} Command
07f31aa6 20967
a2c02241 20968The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20969
20970@subsubheading Example
a2c02241 20971N.A.
07f31aa6
DJ
20972
20973
a2c02241
NR
20974@subheading The @code{-symbol-list-functions} Command
20975@findex -symbol-list-functions
922fbb7b
AC
20976
20977@subsubheading Synopsis
20978
20979@smallexample
a2c02241 20980 -symbol-list-functions
922fbb7b
AC
20981@end smallexample
20982
a2c02241 20983List the functions in the executable.
922fbb7b
AC
20984
20985@subsubheading @value{GDBN} Command
20986
a2c02241
NR
20987@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20988@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20989
20990@subsubheading Example
a2c02241 20991N.A.
922fbb7b
AC
20992
20993
a2c02241
NR
20994@subheading The @code{-symbol-list-lines} Command
20995@findex -symbol-list-lines
922fbb7b
AC
20996
20997@subsubheading Synopsis
20998
20999@smallexample
a2c02241 21000 -symbol-list-lines @var{filename}
922fbb7b
AC
21001@end smallexample
21002
a2c02241
NR
21003Print the list of lines that contain code and their associated program
21004addresses for the given source filename. The entries are sorted in
21005ascending PC order.
922fbb7b
AC
21006
21007@subsubheading @value{GDBN} Command
21008
a2c02241 21009There is no corresponding @value{GDBN} command.
922fbb7b
AC
21010
21011@subsubheading Example
a2c02241 21012@smallexample
594fe323 21013(gdb)
a2c02241
NR
21014-symbol-list-lines basics.c
21015^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 21016(gdb)
a2c02241 21017@end smallexample
922fbb7b
AC
21018
21019
a2c02241
NR
21020@subheading The @code{-symbol-list-types} Command
21021@findex -symbol-list-types
922fbb7b
AC
21022
21023@subsubheading Synopsis
21024
21025@smallexample
a2c02241 21026 -symbol-list-types
922fbb7b
AC
21027@end smallexample
21028
a2c02241 21029List all the type names.
922fbb7b
AC
21030
21031@subsubheading @value{GDBN} Command
21032
a2c02241
NR
21033The corresponding commands are @samp{info types} in @value{GDBN},
21034@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21035
21036@subsubheading Example
21037N.A.
21038
21039
a2c02241
NR
21040@subheading The @code{-symbol-list-variables} Command
21041@findex -symbol-list-variables
922fbb7b
AC
21042
21043@subsubheading Synopsis
21044
21045@smallexample
a2c02241 21046 -symbol-list-variables
922fbb7b
AC
21047@end smallexample
21048
a2c02241 21049List all the global and static variable names.
922fbb7b
AC
21050
21051@subsubheading @value{GDBN} Command
21052
a2c02241 21053@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
21054
21055@subsubheading Example
21056N.A.
21057
21058
a2c02241
NR
21059@subheading The @code{-symbol-locate} Command
21060@findex -symbol-locate
922fbb7b
AC
21061
21062@subsubheading Synopsis
21063
21064@smallexample
a2c02241 21065 -symbol-locate
922fbb7b
AC
21066@end smallexample
21067
922fbb7b
AC
21068@subsubheading @value{GDBN} Command
21069
a2c02241 21070@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
21071
21072@subsubheading Example
21073N.A.
21074
21075
a2c02241
NR
21076@subheading The @code{-symbol-type} Command
21077@findex -symbol-type
922fbb7b
AC
21078
21079@subsubheading Synopsis
21080
21081@smallexample
a2c02241 21082 -symbol-type @var{variable}
922fbb7b
AC
21083@end smallexample
21084
a2c02241 21085Show type of @var{variable}.
922fbb7b 21086
a2c02241 21087@subsubheading @value{GDBN} Command
922fbb7b 21088
a2c02241
NR
21089The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
21090@samp{gdb_obj_variable}.
21091
21092@subsubheading Example
21093N.A.
21094
21095
21096@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21097@node GDB/MI File Commands
21098@section @sc{gdb/mi} File Commands
21099
21100This section describes the GDB/MI commands to specify executable file names
21101and to read in and obtain symbol table information.
21102
21103@subheading The @code{-file-exec-and-symbols} Command
21104@findex -file-exec-and-symbols
21105
21106@subsubheading Synopsis
922fbb7b
AC
21107
21108@smallexample
a2c02241 21109 -file-exec-and-symbols @var{file}
922fbb7b
AC
21110@end smallexample
21111
a2c02241
NR
21112Specify the executable file to be debugged. This file is the one from
21113which the symbol table is also read. If no file is specified, the
21114command clears the executable and symbol information. If breakpoints
21115are set when using this command with no arguments, @value{GDBN} will produce
21116error messages. Otherwise, no output is produced, except a completion
21117notification.
21118
922fbb7b
AC
21119@subsubheading @value{GDBN} Command
21120
a2c02241 21121The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
21122
21123@subsubheading Example
21124
21125@smallexample
594fe323 21126(gdb)
a2c02241
NR
21127-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21128^done
594fe323 21129(gdb)
922fbb7b
AC
21130@end smallexample
21131
922fbb7b 21132
a2c02241
NR
21133@subheading The @code{-file-exec-file} Command
21134@findex -file-exec-file
922fbb7b
AC
21135
21136@subsubheading Synopsis
21137
21138@smallexample
a2c02241 21139 -file-exec-file @var{file}
922fbb7b
AC
21140@end smallexample
21141
a2c02241
NR
21142Specify the executable file to be debugged. Unlike
21143@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21144from this file. If used without argument, @value{GDBN} clears the information
21145about the executable file. No output is produced, except a completion
21146notification.
922fbb7b 21147
a2c02241
NR
21148@subsubheading @value{GDBN} Command
21149
21150The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21151
21152@subsubheading Example
a2c02241
NR
21153
21154@smallexample
594fe323 21155(gdb)
a2c02241
NR
21156-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21157^done
594fe323 21158(gdb)
a2c02241 21159@end smallexample
922fbb7b
AC
21160
21161
a2c02241
NR
21162@subheading The @code{-file-list-exec-sections} Command
21163@findex -file-list-exec-sections
922fbb7b
AC
21164
21165@subsubheading Synopsis
21166
21167@smallexample
a2c02241 21168 -file-list-exec-sections
922fbb7b
AC
21169@end smallexample
21170
a2c02241
NR
21171List the sections of the current executable file.
21172
922fbb7b
AC
21173@subsubheading @value{GDBN} Command
21174
a2c02241
NR
21175The @value{GDBN} command @samp{info file} shows, among the rest, the same
21176information as this command. @code{gdbtk} has a corresponding command
21177@samp{gdb_load_info}.
922fbb7b
AC
21178
21179@subsubheading Example
21180N.A.
21181
21182
a2c02241
NR
21183@subheading The @code{-file-list-exec-source-file} Command
21184@findex -file-list-exec-source-file
922fbb7b
AC
21185
21186@subsubheading Synopsis
21187
21188@smallexample
a2c02241 21189 -file-list-exec-source-file
922fbb7b
AC
21190@end smallexample
21191
a2c02241 21192List the line number, the current source file, and the absolute path
44288b44
NR
21193to the current source file for the current executable. The macro
21194information field has a value of @samp{1} or @samp{0} depending on
21195whether or not the file includes preprocessor macro information.
922fbb7b
AC
21196
21197@subsubheading @value{GDBN} Command
21198
a2c02241 21199The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21200
21201@subsubheading Example
21202
922fbb7b 21203@smallexample
594fe323 21204(gdb)
a2c02241 21205123-file-list-exec-source-file
44288b44 21206123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21207(gdb)
922fbb7b
AC
21208@end smallexample
21209
21210
a2c02241
NR
21211@subheading The @code{-file-list-exec-source-files} Command
21212@findex -file-list-exec-source-files
922fbb7b
AC
21213
21214@subsubheading Synopsis
21215
21216@smallexample
a2c02241 21217 -file-list-exec-source-files
922fbb7b
AC
21218@end smallexample
21219
a2c02241
NR
21220List the source files for the current executable.
21221
3f94c067
BW
21222It will always output the filename, but only when @value{GDBN} can find
21223the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21224
21225@subsubheading @value{GDBN} Command
21226
a2c02241
NR
21227The @value{GDBN} equivalent is @samp{info sources}.
21228@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21229
21230@subsubheading Example
922fbb7b 21231@smallexample
594fe323 21232(gdb)
a2c02241
NR
21233-file-list-exec-source-files
21234^done,files=[
21235@{file=foo.c,fullname=/home/foo.c@},
21236@{file=/home/bar.c,fullname=/home/bar.c@},
21237@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21238(gdb)
922fbb7b
AC
21239@end smallexample
21240
a2c02241
NR
21241@subheading The @code{-file-list-shared-libraries} Command
21242@findex -file-list-shared-libraries
922fbb7b 21243
a2c02241 21244@subsubheading Synopsis
922fbb7b 21245
a2c02241
NR
21246@smallexample
21247 -file-list-shared-libraries
21248@end smallexample
922fbb7b 21249
a2c02241 21250List the shared libraries in the program.
922fbb7b 21251
a2c02241 21252@subsubheading @value{GDBN} Command
922fbb7b 21253
a2c02241 21254The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21255
a2c02241
NR
21256@subsubheading Example
21257N.A.
922fbb7b
AC
21258
21259
a2c02241
NR
21260@subheading The @code{-file-list-symbol-files} Command
21261@findex -file-list-symbol-files
922fbb7b 21262
a2c02241 21263@subsubheading Synopsis
922fbb7b 21264
a2c02241
NR
21265@smallexample
21266 -file-list-symbol-files
21267@end smallexample
922fbb7b 21268
a2c02241 21269List symbol files.
922fbb7b 21270
a2c02241 21271@subsubheading @value{GDBN} Command
922fbb7b 21272
a2c02241 21273The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21274
a2c02241
NR
21275@subsubheading Example
21276N.A.
922fbb7b 21277
922fbb7b 21278
a2c02241
NR
21279@subheading The @code{-file-symbol-file} Command
21280@findex -file-symbol-file
922fbb7b 21281
a2c02241 21282@subsubheading Synopsis
922fbb7b 21283
a2c02241
NR
21284@smallexample
21285 -file-symbol-file @var{file}
21286@end smallexample
922fbb7b 21287
a2c02241
NR
21288Read symbol table info from the specified @var{file} argument. When
21289used without arguments, clears @value{GDBN}'s symbol table info. No output is
21290produced, except for a completion notification.
922fbb7b 21291
a2c02241 21292@subsubheading @value{GDBN} Command
922fbb7b 21293
a2c02241 21294The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21295
a2c02241 21296@subsubheading Example
922fbb7b 21297
a2c02241 21298@smallexample
594fe323 21299(gdb)
a2c02241
NR
21300-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21301^done
594fe323 21302(gdb)
a2c02241 21303@end smallexample
922fbb7b 21304
a2c02241 21305@ignore
a2c02241
NR
21306@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21307@node GDB/MI Memory Overlay Commands
21308@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21309
a2c02241 21310The memory overlay commands are not implemented.
922fbb7b 21311
a2c02241 21312@c @subheading -overlay-auto
922fbb7b 21313
a2c02241 21314@c @subheading -overlay-list-mapping-state
922fbb7b 21315
a2c02241 21316@c @subheading -overlay-list-overlays
922fbb7b 21317
a2c02241 21318@c @subheading -overlay-map
922fbb7b 21319
a2c02241 21320@c @subheading -overlay-off
922fbb7b 21321
a2c02241 21322@c @subheading -overlay-on
922fbb7b 21323
a2c02241 21324@c @subheading -overlay-unmap
922fbb7b 21325
a2c02241
NR
21326@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21327@node GDB/MI Signal Handling Commands
21328@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21329
a2c02241 21330Signal handling commands are not implemented.
922fbb7b 21331
a2c02241 21332@c @subheading -signal-handle
922fbb7b 21333
a2c02241 21334@c @subheading -signal-list-handle-actions
922fbb7b 21335
a2c02241
NR
21336@c @subheading -signal-list-signal-types
21337@end ignore
922fbb7b 21338
922fbb7b 21339
a2c02241
NR
21340@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21341@node GDB/MI Target Manipulation
21342@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21343
21344
a2c02241
NR
21345@subheading The @code{-target-attach} Command
21346@findex -target-attach
922fbb7b
AC
21347
21348@subsubheading Synopsis
21349
21350@smallexample
a2c02241 21351 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21352@end smallexample
21353
a2c02241 21354Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21355
79a6e687 21356@subsubheading @value{GDBN} Command
922fbb7b 21357
a2c02241 21358The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21359
a2c02241
NR
21360@subsubheading Example
21361N.A.
922fbb7b 21362
a2c02241
NR
21363
21364@subheading The @code{-target-compare-sections} Command
21365@findex -target-compare-sections
922fbb7b
AC
21366
21367@subsubheading Synopsis
21368
21369@smallexample
a2c02241 21370 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21371@end smallexample
21372
a2c02241
NR
21373Compare data of section @var{section} on target to the exec file.
21374Without the argument, all sections are compared.
922fbb7b 21375
a2c02241 21376@subsubheading @value{GDBN} Command
922fbb7b 21377
a2c02241 21378The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21379
a2c02241
NR
21380@subsubheading Example
21381N.A.
21382
21383
21384@subheading The @code{-target-detach} Command
21385@findex -target-detach
922fbb7b
AC
21386
21387@subsubheading Synopsis
21388
21389@smallexample
a2c02241 21390 -target-detach
922fbb7b
AC
21391@end smallexample
21392
a2c02241
NR
21393Detach from the remote target which normally resumes its execution.
21394There's no output.
21395
79a6e687 21396@subsubheading @value{GDBN} Command
a2c02241
NR
21397
21398The corresponding @value{GDBN} command is @samp{detach}.
21399
21400@subsubheading Example
922fbb7b
AC
21401
21402@smallexample
594fe323 21403(gdb)
a2c02241
NR
21404-target-detach
21405^done
594fe323 21406(gdb)
922fbb7b
AC
21407@end smallexample
21408
21409
a2c02241
NR
21410@subheading The @code{-target-disconnect} Command
21411@findex -target-disconnect
922fbb7b
AC
21412
21413@subsubheading Synopsis
21414
123dc839 21415@smallexample
a2c02241 21416 -target-disconnect
123dc839 21417@end smallexample
922fbb7b 21418
a2c02241
NR
21419Disconnect from the remote target. There's no output and the target is
21420generally not resumed.
21421
79a6e687 21422@subsubheading @value{GDBN} Command
a2c02241
NR
21423
21424The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21425
21426@subsubheading Example
922fbb7b
AC
21427
21428@smallexample
594fe323 21429(gdb)
a2c02241
NR
21430-target-disconnect
21431^done
594fe323 21432(gdb)
922fbb7b
AC
21433@end smallexample
21434
21435
a2c02241
NR
21436@subheading The @code{-target-download} Command
21437@findex -target-download
922fbb7b
AC
21438
21439@subsubheading Synopsis
21440
21441@smallexample
a2c02241 21442 -target-download
922fbb7b
AC
21443@end smallexample
21444
a2c02241
NR
21445Loads the executable onto the remote target.
21446It prints out an update message every half second, which includes the fields:
21447
21448@table @samp
21449@item section
21450The name of the section.
21451@item section-sent
21452The size of what has been sent so far for that section.
21453@item section-size
21454The size of the section.
21455@item total-sent
21456The total size of what was sent so far (the current and the previous sections).
21457@item total-size
21458The size of the overall executable to download.
21459@end table
21460
21461@noindent
21462Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21463@sc{gdb/mi} Output Syntax}).
21464
21465In addition, it prints the name and size of the sections, as they are
21466downloaded. These messages include the following fields:
21467
21468@table @samp
21469@item section
21470The name of the section.
21471@item section-size
21472The size of the section.
21473@item total-size
21474The size of the overall executable to download.
21475@end table
21476
21477@noindent
21478At the end, a summary is printed.
21479
21480@subsubheading @value{GDBN} Command
21481
21482The corresponding @value{GDBN} command is @samp{load}.
21483
21484@subsubheading Example
21485
21486Note: each status message appears on a single line. Here the messages
21487have been broken down so that they can fit onto a page.
922fbb7b
AC
21488
21489@smallexample
594fe323 21490(gdb)
a2c02241
NR
21491-target-download
21492+download,@{section=".text",section-size="6668",total-size="9880"@}
21493+download,@{section=".text",section-sent="512",section-size="6668",
21494total-sent="512",total-size="9880"@}
21495+download,@{section=".text",section-sent="1024",section-size="6668",
21496total-sent="1024",total-size="9880"@}
21497+download,@{section=".text",section-sent="1536",section-size="6668",
21498total-sent="1536",total-size="9880"@}
21499+download,@{section=".text",section-sent="2048",section-size="6668",
21500total-sent="2048",total-size="9880"@}
21501+download,@{section=".text",section-sent="2560",section-size="6668",
21502total-sent="2560",total-size="9880"@}
21503+download,@{section=".text",section-sent="3072",section-size="6668",
21504total-sent="3072",total-size="9880"@}
21505+download,@{section=".text",section-sent="3584",section-size="6668",
21506total-sent="3584",total-size="9880"@}
21507+download,@{section=".text",section-sent="4096",section-size="6668",
21508total-sent="4096",total-size="9880"@}
21509+download,@{section=".text",section-sent="4608",section-size="6668",
21510total-sent="4608",total-size="9880"@}
21511+download,@{section=".text",section-sent="5120",section-size="6668",
21512total-sent="5120",total-size="9880"@}
21513+download,@{section=".text",section-sent="5632",section-size="6668",
21514total-sent="5632",total-size="9880"@}
21515+download,@{section=".text",section-sent="6144",section-size="6668",
21516total-sent="6144",total-size="9880"@}
21517+download,@{section=".text",section-sent="6656",section-size="6668",
21518total-sent="6656",total-size="9880"@}
21519+download,@{section=".init",section-size="28",total-size="9880"@}
21520+download,@{section=".fini",section-size="28",total-size="9880"@}
21521+download,@{section=".data",section-size="3156",total-size="9880"@}
21522+download,@{section=".data",section-sent="512",section-size="3156",
21523total-sent="7236",total-size="9880"@}
21524+download,@{section=".data",section-sent="1024",section-size="3156",
21525total-sent="7748",total-size="9880"@}
21526+download,@{section=".data",section-sent="1536",section-size="3156",
21527total-sent="8260",total-size="9880"@}
21528+download,@{section=".data",section-sent="2048",section-size="3156",
21529total-sent="8772",total-size="9880"@}
21530+download,@{section=".data",section-sent="2560",section-size="3156",
21531total-sent="9284",total-size="9880"@}
21532+download,@{section=".data",section-sent="3072",section-size="3156",
21533total-sent="9796",total-size="9880"@}
21534^done,address="0x10004",load-size="9880",transfer-rate="6586",
21535write-rate="429"
594fe323 21536(gdb)
922fbb7b
AC
21537@end smallexample
21538
21539
a2c02241
NR
21540@subheading The @code{-target-exec-status} Command
21541@findex -target-exec-status
922fbb7b
AC
21542
21543@subsubheading Synopsis
21544
21545@smallexample
a2c02241 21546 -target-exec-status
922fbb7b
AC
21547@end smallexample
21548
a2c02241
NR
21549Provide information on the state of the target (whether it is running or
21550not, for instance).
922fbb7b 21551
a2c02241 21552@subsubheading @value{GDBN} Command
922fbb7b 21553
a2c02241
NR
21554There's no equivalent @value{GDBN} command.
21555
21556@subsubheading Example
21557N.A.
922fbb7b 21558
a2c02241
NR
21559
21560@subheading The @code{-target-list-available-targets} Command
21561@findex -target-list-available-targets
922fbb7b
AC
21562
21563@subsubheading Synopsis
21564
21565@smallexample
a2c02241 21566 -target-list-available-targets
922fbb7b
AC
21567@end smallexample
21568
a2c02241 21569List the possible targets to connect to.
922fbb7b 21570
a2c02241 21571@subsubheading @value{GDBN} Command
922fbb7b 21572
a2c02241 21573The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21574
a2c02241
NR
21575@subsubheading Example
21576N.A.
21577
21578
21579@subheading The @code{-target-list-current-targets} Command
21580@findex -target-list-current-targets
922fbb7b
AC
21581
21582@subsubheading Synopsis
21583
21584@smallexample
a2c02241 21585 -target-list-current-targets
922fbb7b
AC
21586@end smallexample
21587
a2c02241 21588Describe the current target.
922fbb7b 21589
a2c02241 21590@subsubheading @value{GDBN} Command
922fbb7b 21591
a2c02241
NR
21592The corresponding information is printed by @samp{info file} (among
21593other things).
922fbb7b 21594
a2c02241
NR
21595@subsubheading Example
21596N.A.
21597
21598
21599@subheading The @code{-target-list-parameters} Command
21600@findex -target-list-parameters
922fbb7b
AC
21601
21602@subsubheading Synopsis
21603
21604@smallexample
a2c02241 21605 -target-list-parameters
922fbb7b
AC
21606@end smallexample
21607
a2c02241
NR
21608@c ????
21609
21610@subsubheading @value{GDBN} Command
21611
21612No equivalent.
922fbb7b
AC
21613
21614@subsubheading Example
a2c02241
NR
21615N.A.
21616
21617
21618@subheading The @code{-target-select} Command
21619@findex -target-select
21620
21621@subsubheading Synopsis
922fbb7b
AC
21622
21623@smallexample
a2c02241 21624 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21625@end smallexample
21626
a2c02241 21627Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21628
a2c02241
NR
21629@table @samp
21630@item @var{type}
21631The type of target, for instance @samp{async}, @samp{remote}, etc.
21632@item @var{parameters}
21633Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21634Commands for Managing Targets}, for more details.
a2c02241
NR
21635@end table
21636
21637The output is a connection notification, followed by the address at
21638which the target program is, in the following form:
922fbb7b
AC
21639
21640@smallexample
a2c02241
NR
21641^connected,addr="@var{address}",func="@var{function name}",
21642 args=[@var{arg list}]
922fbb7b
AC
21643@end smallexample
21644
a2c02241
NR
21645@subsubheading @value{GDBN} Command
21646
21647The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21648
21649@subsubheading Example
922fbb7b 21650
265eeb58 21651@smallexample
594fe323 21652(gdb)
a2c02241
NR
21653-target-select async /dev/ttya
21654^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21655(gdb)
265eeb58 21656@end smallexample
ef21caaf 21657
a6b151f1
DJ
21658@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21659@node GDB/MI File Transfer Commands
21660@section @sc{gdb/mi} File Transfer Commands
21661
21662
21663@subheading The @code{-target-file-put} Command
21664@findex -target-file-put
21665
21666@subsubheading Synopsis
21667
21668@smallexample
21669 -target-file-put @var{hostfile} @var{targetfile}
21670@end smallexample
21671
21672Copy file @var{hostfile} from the host system (the machine running
21673@value{GDBN}) to @var{targetfile} on the target system.
21674
21675@subsubheading @value{GDBN} Command
21676
21677The corresponding @value{GDBN} command is @samp{remote put}.
21678
21679@subsubheading Example
21680
21681@smallexample
21682(gdb)
21683-target-file-put localfile remotefile
21684^done
21685(gdb)
21686@end smallexample
21687
21688
21689@subheading The @code{-target-file-put} Command
21690@findex -target-file-get
21691
21692@subsubheading Synopsis
21693
21694@smallexample
21695 -target-file-get @var{targetfile} @var{hostfile}
21696@end smallexample
21697
21698Copy file @var{targetfile} from the target system to @var{hostfile}
21699on the host system.
21700
21701@subsubheading @value{GDBN} Command
21702
21703The corresponding @value{GDBN} command is @samp{remote get}.
21704
21705@subsubheading Example
21706
21707@smallexample
21708(gdb)
21709-target-file-get remotefile localfile
21710^done
21711(gdb)
21712@end smallexample
21713
21714
21715@subheading The @code{-target-file-delete} Command
21716@findex -target-file-delete
21717
21718@subsubheading Synopsis
21719
21720@smallexample
21721 -target-file-delete @var{targetfile}
21722@end smallexample
21723
21724Delete @var{targetfile} from the target system.
21725
21726@subsubheading @value{GDBN} Command
21727
21728The corresponding @value{GDBN} command is @samp{remote delete}.
21729
21730@subsubheading Example
21731
21732@smallexample
21733(gdb)
21734-target-file-delete remotefile
21735^done
21736(gdb)
21737@end smallexample
21738
21739
ef21caaf
NR
21740@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21741@node GDB/MI Miscellaneous Commands
21742@section Miscellaneous @sc{gdb/mi} Commands
21743
21744@c @subheading -gdb-complete
21745
21746@subheading The @code{-gdb-exit} Command
21747@findex -gdb-exit
21748
21749@subsubheading Synopsis
21750
21751@smallexample
21752 -gdb-exit
21753@end smallexample
21754
21755Exit @value{GDBN} immediately.
21756
21757@subsubheading @value{GDBN} Command
21758
21759Approximately corresponds to @samp{quit}.
21760
21761@subsubheading Example
21762
21763@smallexample
594fe323 21764(gdb)
ef21caaf
NR
21765-gdb-exit
21766^exit
21767@end smallexample
21768
a2c02241
NR
21769
21770@subheading The @code{-exec-abort} Command
21771@findex -exec-abort
21772
21773@subsubheading Synopsis
21774
21775@smallexample
21776 -exec-abort
21777@end smallexample
21778
21779Kill the inferior running program.
21780
21781@subsubheading @value{GDBN} Command
21782
21783The corresponding @value{GDBN} command is @samp{kill}.
21784
21785@subsubheading Example
21786N.A.
21787
21788
ef21caaf
NR
21789@subheading The @code{-gdb-set} Command
21790@findex -gdb-set
21791
21792@subsubheading Synopsis
21793
21794@smallexample
21795 -gdb-set
21796@end smallexample
21797
21798Set an internal @value{GDBN} variable.
21799@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21800
21801@subsubheading @value{GDBN} Command
21802
21803The corresponding @value{GDBN} command is @samp{set}.
21804
21805@subsubheading Example
21806
21807@smallexample
594fe323 21808(gdb)
ef21caaf
NR
21809-gdb-set $foo=3
21810^done
594fe323 21811(gdb)
ef21caaf
NR
21812@end smallexample
21813
21814
21815@subheading The @code{-gdb-show} Command
21816@findex -gdb-show
21817
21818@subsubheading Synopsis
21819
21820@smallexample
21821 -gdb-show
21822@end smallexample
21823
21824Show the current value of a @value{GDBN} variable.
21825
79a6e687 21826@subsubheading @value{GDBN} Command
ef21caaf
NR
21827
21828The corresponding @value{GDBN} command is @samp{show}.
21829
21830@subsubheading Example
21831
21832@smallexample
594fe323 21833(gdb)
ef21caaf
NR
21834-gdb-show annotate
21835^done,value="0"
594fe323 21836(gdb)
ef21caaf
NR
21837@end smallexample
21838
21839@c @subheading -gdb-source
21840
21841
21842@subheading The @code{-gdb-version} Command
21843@findex -gdb-version
21844
21845@subsubheading Synopsis
21846
21847@smallexample
21848 -gdb-version
21849@end smallexample
21850
21851Show version information for @value{GDBN}. Used mostly in testing.
21852
21853@subsubheading @value{GDBN} Command
21854
21855The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21856default shows this information when you start an interactive session.
21857
21858@subsubheading Example
21859
21860@c This example modifies the actual output from GDB to avoid overfull
21861@c box in TeX.
21862@smallexample
594fe323 21863(gdb)
ef21caaf
NR
21864-gdb-version
21865~GNU gdb 5.2.1
21866~Copyright 2000 Free Software Foundation, Inc.
21867~GDB is free software, covered by the GNU General Public License, and
21868~you are welcome to change it and/or distribute copies of it under
21869~ certain conditions.
21870~Type "show copying" to see the conditions.
21871~There is absolutely no warranty for GDB. Type "show warranty" for
21872~ details.
21873~This GDB was configured as
21874 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21875^done
594fe323 21876(gdb)
ef21caaf
NR
21877@end smallexample
21878
084344da
VP
21879@subheading The @code{-list-features} Command
21880@findex -list-features
21881
21882Returns a list of particular features of the MI protocol that
21883this version of gdb implements. A feature can be a command,
21884or a new field in an output of some command, or even an
21885important bugfix. While a frontend can sometimes detect presence
21886of a feature at runtime, it is easier to perform detection at debugger
21887startup.
21888
21889The command returns a list of strings, with each string naming an
21890available feature. Each returned string is just a name, it does not
21891have any internal structure. The list of possible feature names
21892is given below.
21893
21894Example output:
21895
21896@smallexample
21897(gdb) -list-features
21898^done,result=["feature1","feature2"]
21899@end smallexample
21900
21901The current list of features is:
21902
21903@itemize @minus
21904@item
21905@samp{frozen-varobjs}---indicates presence of the
21906@code{-var-set-frozen} command, as well as possible presense of the
21907@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21908@item
21909@samp{pending-breakpoints}---indicates presence of the @code{-f}
21910option to the @code{-break-insert} command.
8e8901c5
VP
21911@item
21912@samp{thread-info}---indicates presence of the @code{-thread-info} command.
8b4ed427 21913
084344da
VP
21914@end itemize
21915
ef21caaf
NR
21916@subheading The @code{-interpreter-exec} Command
21917@findex -interpreter-exec
21918
21919@subheading Synopsis
21920
21921@smallexample
21922-interpreter-exec @var{interpreter} @var{command}
21923@end smallexample
a2c02241 21924@anchor{-interpreter-exec}
ef21caaf
NR
21925
21926Execute the specified @var{command} in the given @var{interpreter}.
21927
21928@subheading @value{GDBN} Command
21929
21930The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21931
21932@subheading Example
21933
21934@smallexample
594fe323 21935(gdb)
ef21caaf
NR
21936-interpreter-exec console "break main"
21937&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21938&"During symbol reading, bad structure-type format.\n"
21939~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21940^done
594fe323 21941(gdb)
ef21caaf
NR
21942@end smallexample
21943
21944@subheading The @code{-inferior-tty-set} Command
21945@findex -inferior-tty-set
21946
21947@subheading Synopsis
21948
21949@smallexample
21950-inferior-tty-set /dev/pts/1
21951@end smallexample
21952
21953Set terminal for future runs of the program being debugged.
21954
21955@subheading @value{GDBN} Command
21956
21957The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21958
21959@subheading Example
21960
21961@smallexample
594fe323 21962(gdb)
ef21caaf
NR
21963-inferior-tty-set /dev/pts/1
21964^done
594fe323 21965(gdb)
ef21caaf
NR
21966@end smallexample
21967
21968@subheading The @code{-inferior-tty-show} Command
21969@findex -inferior-tty-show
21970
21971@subheading Synopsis
21972
21973@smallexample
21974-inferior-tty-show
21975@end smallexample
21976
21977Show terminal for future runs of program being debugged.
21978
21979@subheading @value{GDBN} Command
21980
21981The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21982
21983@subheading Example
21984
21985@smallexample
594fe323 21986(gdb)
ef21caaf
NR
21987-inferior-tty-set /dev/pts/1
21988^done
594fe323 21989(gdb)
ef21caaf
NR
21990-inferior-tty-show
21991^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21992(gdb)
ef21caaf 21993@end smallexample
922fbb7b 21994
a4eefcd8
NR
21995@subheading The @code{-enable-timings} Command
21996@findex -enable-timings
21997
21998@subheading Synopsis
21999
22000@smallexample
22001-enable-timings [yes | no]
22002@end smallexample
22003
22004Toggle the printing of the wallclock, user and system times for an MI
22005command as a field in its output. This command is to help frontend
22006developers optimize the performance of their code. No argument is
22007equivalent to @samp{yes}.
22008
22009@subheading @value{GDBN} Command
22010
22011No equivalent.
22012
22013@subheading Example
22014
22015@smallexample
22016(gdb)
22017-enable-timings
22018^done
22019(gdb)
22020-break-insert main
22021^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
22022addr="0x080484ed",func="main",file="myprog.c",
22023fullname="/home/nickrob/myprog.c",line="73",times="0"@},
22024time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
22025(gdb)
22026-enable-timings no
22027^done
22028(gdb)
22029-exec-run
22030^running
22031(gdb)
a47ec5fe 22032*stopped,reason="breakpoint-hit",disp="keep",bkptno="1",thread-id="0",
a4eefcd8
NR
22033frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
22034@{name="argv",value="0xbfb60364"@}],file="myprog.c",
22035fullname="/home/nickrob/myprog.c",line="73"@}
22036(gdb)
22037@end smallexample
22038
922fbb7b
AC
22039@node Annotations
22040@chapter @value{GDBN} Annotations
22041
086432e2
AC
22042This chapter describes annotations in @value{GDBN}. Annotations were
22043designed to interface @value{GDBN} to graphical user interfaces or other
22044similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
22045relatively high level.
22046
d3e8051b 22047The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
22048(@pxref{GDB/MI}).
22049
922fbb7b
AC
22050@ignore
22051This is Edition @value{EDITION}, @value{DATE}.
22052@end ignore
22053
22054@menu
22055* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 22056* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
22057* Prompting:: Annotations marking @value{GDBN}'s need for input.
22058* Errors:: Annotations for error messages.
922fbb7b
AC
22059* Invalidation:: Some annotations describe things now invalid.
22060* Annotations for Running::
22061 Whether the program is running, how it stopped, etc.
22062* Source Annotations:: Annotations describing source code.
922fbb7b
AC
22063@end menu
22064
22065@node Annotations Overview
22066@section What is an Annotation?
22067@cindex annotations
22068
922fbb7b
AC
22069Annotations start with a newline character, two @samp{control-z}
22070characters, and the name of the annotation. If there is no additional
22071information associated with this annotation, the name of the annotation
22072is followed immediately by a newline. If there is additional
22073information, the name of the annotation is followed by a space, the
22074additional information, and a newline. The additional information
22075cannot contain newline characters.
22076
22077Any output not beginning with a newline and two @samp{control-z}
22078characters denotes literal output from @value{GDBN}. Currently there is
22079no need for @value{GDBN} to output a newline followed by two
22080@samp{control-z} characters, but if there was such a need, the
22081annotations could be extended with an @samp{escape} annotation which
22082means those three characters as output.
22083
086432e2
AC
22084The annotation @var{level}, which is specified using the
22085@option{--annotate} command line option (@pxref{Mode Options}), controls
22086how much information @value{GDBN} prints together with its prompt,
22087values of expressions, source lines, and other types of output. Level 0
d3e8051b 22088is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
22089subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
22090for programs that control @value{GDBN}, and level 2 annotations have
22091been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
22092Interface, annotate, GDB's Obsolete Annotations}).
22093
22094@table @code
22095@kindex set annotate
22096@item set annotate @var{level}
e09f16f9 22097The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 22098annotations to the specified @var{level}.
9c16f35a
EZ
22099
22100@item show annotate
22101@kindex show annotate
22102Show the current annotation level.
09d4efe1
EZ
22103@end table
22104
22105This chapter describes level 3 annotations.
086432e2 22106
922fbb7b
AC
22107A simple example of starting up @value{GDBN} with annotations is:
22108
22109@smallexample
086432e2
AC
22110$ @kbd{gdb --annotate=3}
22111GNU gdb 6.0
22112Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
22113GDB is free software, covered by the GNU General Public License,
22114and you are welcome to change it and/or distribute copies of it
22115under certain conditions.
22116Type "show copying" to see the conditions.
22117There is absolutely no warranty for GDB. Type "show warranty"
22118for details.
086432e2 22119This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
22120
22121^Z^Zpre-prompt
f7dc1244 22122(@value{GDBP})
922fbb7b 22123^Z^Zprompt
086432e2 22124@kbd{quit}
922fbb7b
AC
22125
22126^Z^Zpost-prompt
b383017d 22127$
922fbb7b
AC
22128@end smallexample
22129
22130Here @samp{quit} is input to @value{GDBN}; the rest is output from
22131@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
22132denotes a @samp{control-z} character) are annotations; the rest is
22133output from @value{GDBN}.
22134
9e6c4bd5
NR
22135@node Server Prefix
22136@section The Server Prefix
22137@cindex server prefix
22138
22139If you prefix a command with @samp{server } then it will not affect
22140the command history, nor will it affect @value{GDBN}'s notion of which
22141command to repeat if @key{RET} is pressed on a line by itself. This
22142means that commands can be run behind a user's back by a front-end in
22143a transparent manner.
22144
22145The server prefix does not affect the recording of values into the value
22146history; to print a value without recording it into the value history,
22147use the @code{output} command instead of the @code{print} command.
22148
922fbb7b
AC
22149@node Prompting
22150@section Annotation for @value{GDBN} Input
22151
22152@cindex annotations for prompts
22153When @value{GDBN} prompts for input, it annotates this fact so it is possible
22154to know when to send output, when the output from a given command is
22155over, etc.
22156
22157Different kinds of input each have a different @dfn{input type}. Each
22158input type has three annotations: a @code{pre-} annotation, which
22159denotes the beginning of any prompt which is being output, a plain
22160annotation, which denotes the end of the prompt, and then a @code{post-}
22161annotation which denotes the end of any echo which may (or may not) be
22162associated with the input. For example, the @code{prompt} input type
22163features the following annotations:
22164
22165@smallexample
22166^Z^Zpre-prompt
22167^Z^Zprompt
22168^Z^Zpost-prompt
22169@end smallexample
22170
22171The input types are
22172
22173@table @code
e5ac9b53
EZ
22174@findex pre-prompt annotation
22175@findex prompt annotation
22176@findex post-prompt annotation
922fbb7b
AC
22177@item prompt
22178When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22179
e5ac9b53
EZ
22180@findex pre-commands annotation
22181@findex commands annotation
22182@findex post-commands annotation
922fbb7b
AC
22183@item commands
22184When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22185command. The annotations are repeated for each command which is input.
22186
e5ac9b53
EZ
22187@findex pre-overload-choice annotation
22188@findex overload-choice annotation
22189@findex post-overload-choice annotation
922fbb7b
AC
22190@item overload-choice
22191When @value{GDBN} wants the user to select between various overloaded functions.
22192
e5ac9b53
EZ
22193@findex pre-query annotation
22194@findex query annotation
22195@findex post-query annotation
922fbb7b
AC
22196@item query
22197When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22198
e5ac9b53
EZ
22199@findex pre-prompt-for-continue annotation
22200@findex prompt-for-continue annotation
22201@findex post-prompt-for-continue annotation
922fbb7b
AC
22202@item prompt-for-continue
22203When @value{GDBN} is asking the user to press return to continue. Note: Don't
22204expect this to work well; instead use @code{set height 0} to disable
22205prompting. This is because the counting of lines is buggy in the
22206presence of annotations.
22207@end table
22208
22209@node Errors
22210@section Errors
22211@cindex annotations for errors, warnings and interrupts
22212
e5ac9b53 22213@findex quit annotation
922fbb7b
AC
22214@smallexample
22215^Z^Zquit
22216@end smallexample
22217
22218This annotation occurs right before @value{GDBN} responds to an interrupt.
22219
e5ac9b53 22220@findex error annotation
922fbb7b
AC
22221@smallexample
22222^Z^Zerror
22223@end smallexample
22224
22225This annotation occurs right before @value{GDBN} responds to an error.
22226
22227Quit and error annotations indicate that any annotations which @value{GDBN} was
22228in the middle of may end abruptly. For example, if a
22229@code{value-history-begin} annotation is followed by a @code{error}, one
22230cannot expect to receive the matching @code{value-history-end}. One
22231cannot expect not to receive it either, however; an error annotation
22232does not necessarily mean that @value{GDBN} is immediately returning all the way
22233to the top level.
22234
e5ac9b53 22235@findex error-begin annotation
922fbb7b
AC
22236A quit or error annotation may be preceded by
22237
22238@smallexample
22239^Z^Zerror-begin
22240@end smallexample
22241
22242Any output between that and the quit or error annotation is the error
22243message.
22244
22245Warning messages are not yet annotated.
22246@c If we want to change that, need to fix warning(), type_error(),
22247@c range_error(), and possibly other places.
22248
922fbb7b
AC
22249@node Invalidation
22250@section Invalidation Notices
22251
22252@cindex annotations for invalidation messages
22253The following annotations say that certain pieces of state may have
22254changed.
22255
22256@table @code
e5ac9b53 22257@findex frames-invalid annotation
922fbb7b
AC
22258@item ^Z^Zframes-invalid
22259
22260The frames (for example, output from the @code{backtrace} command) may
22261have changed.
22262
e5ac9b53 22263@findex breakpoints-invalid annotation
922fbb7b
AC
22264@item ^Z^Zbreakpoints-invalid
22265
22266The breakpoints may have changed. For example, the user just added or
22267deleted a breakpoint.
22268@end table
22269
22270@node Annotations for Running
22271@section Running the Program
22272@cindex annotations for running programs
22273
e5ac9b53
EZ
22274@findex starting annotation
22275@findex stopping annotation
922fbb7b 22276When the program starts executing due to a @value{GDBN} command such as
b383017d 22277@code{step} or @code{continue},
922fbb7b
AC
22278
22279@smallexample
22280^Z^Zstarting
22281@end smallexample
22282
b383017d 22283is output. When the program stops,
922fbb7b
AC
22284
22285@smallexample
22286^Z^Zstopped
22287@end smallexample
22288
22289is output. Before the @code{stopped} annotation, a variety of
22290annotations describe how the program stopped.
22291
22292@table @code
e5ac9b53 22293@findex exited annotation
922fbb7b
AC
22294@item ^Z^Zexited @var{exit-status}
22295The program exited, and @var{exit-status} is the exit status (zero for
22296successful exit, otherwise nonzero).
22297
e5ac9b53
EZ
22298@findex signalled annotation
22299@findex signal-name annotation
22300@findex signal-name-end annotation
22301@findex signal-string annotation
22302@findex signal-string-end annotation
922fbb7b
AC
22303@item ^Z^Zsignalled
22304The program exited with a signal. After the @code{^Z^Zsignalled}, the
22305annotation continues:
22306
22307@smallexample
22308@var{intro-text}
22309^Z^Zsignal-name
22310@var{name}
22311^Z^Zsignal-name-end
22312@var{middle-text}
22313^Z^Zsignal-string
22314@var{string}
22315^Z^Zsignal-string-end
22316@var{end-text}
22317@end smallexample
22318
22319@noindent
22320where @var{name} is the name of the signal, such as @code{SIGILL} or
22321@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22322as @code{Illegal Instruction} or @code{Segmentation fault}.
22323@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22324user's benefit and have no particular format.
22325
e5ac9b53 22326@findex signal annotation
922fbb7b
AC
22327@item ^Z^Zsignal
22328The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22329just saying that the program received the signal, not that it was
22330terminated with it.
22331
e5ac9b53 22332@findex breakpoint annotation
922fbb7b
AC
22333@item ^Z^Zbreakpoint @var{number}
22334The program hit breakpoint number @var{number}.
22335
e5ac9b53 22336@findex watchpoint annotation
922fbb7b
AC
22337@item ^Z^Zwatchpoint @var{number}
22338The program hit watchpoint number @var{number}.
22339@end table
22340
22341@node Source Annotations
22342@section Displaying Source
22343@cindex annotations for source display
22344
e5ac9b53 22345@findex source annotation
922fbb7b
AC
22346The following annotation is used instead of displaying source code:
22347
22348@smallexample
22349^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22350@end smallexample
22351
22352where @var{filename} is an absolute file name indicating which source
22353file, @var{line} is the line number within that file (where 1 is the
22354first line in the file), @var{character} is the character position
22355within the file (where 0 is the first character in the file) (for most
22356debug formats this will necessarily point to the beginning of a line),
22357@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22358line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22359@var{addr} is the address in the target program associated with the
22360source which is being displayed. @var{addr} is in the form @samp{0x}
22361followed by one or more lowercase hex digits (note that this does not
22362depend on the language).
22363
8e04817f
AC
22364@node GDB Bugs
22365@chapter Reporting Bugs in @value{GDBN}
22366@cindex bugs in @value{GDBN}
22367@cindex reporting bugs in @value{GDBN}
c906108c 22368
8e04817f 22369Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22370
8e04817f
AC
22371Reporting a bug may help you by bringing a solution to your problem, or it
22372may not. But in any case the principal function of a bug report is to help
22373the entire community by making the next version of @value{GDBN} work better. Bug
22374reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22375
8e04817f
AC
22376In order for a bug report to serve its purpose, you must include the
22377information that enables us to fix the bug.
c4555f82
SC
22378
22379@menu
8e04817f
AC
22380* Bug Criteria:: Have you found a bug?
22381* Bug Reporting:: How to report bugs
c4555f82
SC
22382@end menu
22383
8e04817f 22384@node Bug Criteria
79a6e687 22385@section Have You Found a Bug?
8e04817f 22386@cindex bug criteria
c4555f82 22387
8e04817f 22388If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22389
22390@itemize @bullet
8e04817f
AC
22391@cindex fatal signal
22392@cindex debugger crash
22393@cindex crash of debugger
c4555f82 22394@item
8e04817f
AC
22395If the debugger gets a fatal signal, for any input whatever, that is a
22396@value{GDBN} bug. Reliable debuggers never crash.
22397
22398@cindex error on valid input
22399@item
22400If @value{GDBN} produces an error message for valid input, that is a
22401bug. (Note that if you're cross debugging, the problem may also be
22402somewhere in the connection to the target.)
c4555f82 22403
8e04817f 22404@cindex invalid input
c4555f82 22405@item
8e04817f
AC
22406If @value{GDBN} does not produce an error message for invalid input,
22407that is a bug. However, you should note that your idea of
22408``invalid input'' might be our idea of ``an extension'' or ``support
22409for traditional practice''.
22410
22411@item
22412If you are an experienced user of debugging tools, your suggestions
22413for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22414@end itemize
22415
8e04817f 22416@node Bug Reporting
79a6e687 22417@section How to Report Bugs
8e04817f
AC
22418@cindex bug reports
22419@cindex @value{GDBN} bugs, reporting
22420
22421A number of companies and individuals offer support for @sc{gnu} products.
22422If you obtained @value{GDBN} from a support organization, we recommend you
22423contact that organization first.
22424
22425You can find contact information for many support companies and
22426individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22427distribution.
22428@c should add a web page ref...
22429
129188f6 22430In any event, we also recommend that you submit bug reports for
d3e8051b 22431@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22432@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22433page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22434be used.
8e04817f
AC
22435
22436@strong{Do not send bug reports to @samp{info-gdb}, or to
22437@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22438not want to receive bug reports. Those that do have arranged to receive
22439@samp{bug-gdb}.
22440
22441The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22442serves as a repeater. The mailing list and the newsgroup carry exactly
22443the same messages. Often people think of posting bug reports to the
22444newsgroup instead of mailing them. This appears to work, but it has one
22445problem which can be crucial: a newsgroup posting often lacks a mail
22446path back to the sender. Thus, if we need to ask for more information,
22447we may be unable to reach you. For this reason, it is better to send
22448bug reports to the mailing list.
c4555f82 22449
8e04817f
AC
22450The fundamental principle of reporting bugs usefully is this:
22451@strong{report all the facts}. If you are not sure whether to state a
22452fact or leave it out, state it!
c4555f82 22453
8e04817f
AC
22454Often people omit facts because they think they know what causes the
22455problem and assume that some details do not matter. Thus, you might
22456assume that the name of the variable you use in an example does not matter.
22457Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22458stray memory reference which happens to fetch from the location where that
22459name is stored in memory; perhaps, if the name were different, the contents
22460of that location would fool the debugger into doing the right thing despite
22461the bug. Play it safe and give a specific, complete example. That is the
22462easiest thing for you to do, and the most helpful.
c4555f82 22463
8e04817f
AC
22464Keep in mind that the purpose of a bug report is to enable us to fix the
22465bug. It may be that the bug has been reported previously, but neither
22466you nor we can know that unless your bug report is complete and
22467self-contained.
c4555f82 22468
8e04817f
AC
22469Sometimes people give a few sketchy facts and ask, ``Does this ring a
22470bell?'' Those bug reports are useless, and we urge everyone to
22471@emph{refuse to respond to them} except to chide the sender to report
22472bugs properly.
22473
22474To enable us to fix the bug, you should include all these things:
c4555f82
SC
22475
22476@itemize @bullet
22477@item
8e04817f
AC
22478The version of @value{GDBN}. @value{GDBN} announces it if you start
22479with no arguments; you can also print it at any time using @code{show
22480version}.
c4555f82 22481
8e04817f
AC
22482Without this, we will not know whether there is any point in looking for
22483the bug in the current version of @value{GDBN}.
c4555f82
SC
22484
22485@item
8e04817f
AC
22486The type of machine you are using, and the operating system name and
22487version number.
c4555f82
SC
22488
22489@item
c1468174 22490What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22491``@value{GCC}--2.8.1''.
c4555f82
SC
22492
22493@item
8e04817f 22494What compiler (and its version) was used to compile the program you are
c1468174 22495debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22496C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22497to get this information; for other compilers, see the documentation for
22498those compilers.
c4555f82 22499
8e04817f
AC
22500@item
22501The command arguments you gave the compiler to compile your example and
22502observe the bug. For example, did you use @samp{-O}? To guarantee
22503you will not omit something important, list them all. A copy of the
22504Makefile (or the output from make) is sufficient.
c4555f82 22505
8e04817f
AC
22506If we were to try to guess the arguments, we would probably guess wrong
22507and then we might not encounter the bug.
c4555f82 22508
8e04817f
AC
22509@item
22510A complete input script, and all necessary source files, that will
22511reproduce the bug.
c4555f82 22512
8e04817f
AC
22513@item
22514A description of what behavior you observe that you believe is
22515incorrect. For example, ``It gets a fatal signal.''
c4555f82 22516
8e04817f
AC
22517Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22518will certainly notice it. But if the bug is incorrect output, we might
22519not notice unless it is glaringly wrong. You might as well not give us
22520a chance to make a mistake.
c4555f82 22521
8e04817f
AC
22522Even if the problem you experience is a fatal signal, you should still
22523say so explicitly. Suppose something strange is going on, such as, your
22524copy of @value{GDBN} is out of synch, or you have encountered a bug in
22525the C library on your system. (This has happened!) Your copy might
22526crash and ours would not. If you told us to expect a crash, then when
22527ours fails to crash, we would know that the bug was not happening for
22528us. If you had not told us to expect a crash, then we would not be able
22529to draw any conclusion from our observations.
c4555f82 22530
e0c07bf0
MC
22531@pindex script
22532@cindex recording a session script
22533To collect all this information, you can use a session recording program
22534such as @command{script}, which is available on many Unix systems.
22535Just run your @value{GDBN} session inside @command{script} and then
22536include the @file{typescript} file with your bug report.
22537
22538Another way to record a @value{GDBN} session is to run @value{GDBN}
22539inside Emacs and then save the entire buffer to a file.
22540
8e04817f
AC
22541@item
22542If you wish to suggest changes to the @value{GDBN} source, send us context
22543diffs. If you even discuss something in the @value{GDBN} source, refer to
22544it by context, not by line number.
c4555f82 22545
8e04817f
AC
22546The line numbers in our development sources will not match those in your
22547sources. Your line numbers would convey no useful information to us.
c4555f82 22548
8e04817f 22549@end itemize
c4555f82 22550
8e04817f 22551Here are some things that are not necessary:
c4555f82 22552
8e04817f
AC
22553@itemize @bullet
22554@item
22555A description of the envelope of the bug.
c4555f82 22556
8e04817f
AC
22557Often people who encounter a bug spend a lot of time investigating
22558which changes to the input file will make the bug go away and which
22559changes will not affect it.
c4555f82 22560
8e04817f
AC
22561This is often time consuming and not very useful, because the way we
22562will find the bug is by running a single example under the debugger
22563with breakpoints, not by pure deduction from a series of examples.
22564We recommend that you save your time for something else.
c4555f82 22565
8e04817f
AC
22566Of course, if you can find a simpler example to report @emph{instead}
22567of the original one, that is a convenience for us. Errors in the
22568output will be easier to spot, running under the debugger will take
22569less time, and so on.
c4555f82 22570
8e04817f
AC
22571However, simplification is not vital; if you do not want to do this,
22572report the bug anyway and send us the entire test case you used.
c4555f82 22573
8e04817f
AC
22574@item
22575A patch for the bug.
c4555f82 22576
8e04817f
AC
22577A patch for the bug does help us if it is a good one. But do not omit
22578the necessary information, such as the test case, on the assumption that
22579a patch is all we need. We might see problems with your patch and decide
22580to fix the problem another way, or we might not understand it at all.
c4555f82 22581
8e04817f
AC
22582Sometimes with a program as complicated as @value{GDBN} it is very hard to
22583construct an example that will make the program follow a certain path
22584through the code. If you do not send us the example, we will not be able
22585to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22586
8e04817f
AC
22587And if we cannot understand what bug you are trying to fix, or why your
22588patch should be an improvement, we will not install it. A test case will
22589help us to understand.
c4555f82 22590
8e04817f
AC
22591@item
22592A guess about what the bug is or what it depends on.
c4555f82 22593
8e04817f
AC
22594Such guesses are usually wrong. Even we cannot guess right about such
22595things without first using the debugger to find the facts.
22596@end itemize
c4555f82 22597
8e04817f
AC
22598@c The readline documentation is distributed with the readline code
22599@c and consists of the two following files:
22600@c rluser.texinfo
22601@c inc-hist.texinfo
22602@c Use -I with makeinfo to point to the appropriate directory,
22603@c environment var TEXINPUTS with TeX.
5bdf8622 22604@include rluser.texi
8e04817f 22605@include inc-hist.texinfo
c4555f82 22606
c4555f82 22607
8e04817f
AC
22608@node Formatting Documentation
22609@appendix Formatting Documentation
c4555f82 22610
8e04817f
AC
22611@cindex @value{GDBN} reference card
22612@cindex reference card
22613The @value{GDBN} 4 release includes an already-formatted reference card, ready
22614for printing with PostScript or Ghostscript, in the @file{gdb}
22615subdirectory of the main source directory@footnote{In
22616@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22617release.}. If you can use PostScript or Ghostscript with your printer,
22618you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22619
8e04817f
AC
22620The release also includes the source for the reference card. You
22621can format it, using @TeX{}, by typing:
c4555f82 22622
474c8240 22623@smallexample
8e04817f 22624make refcard.dvi
474c8240 22625@end smallexample
c4555f82 22626
8e04817f
AC
22627The @value{GDBN} reference card is designed to print in @dfn{landscape}
22628mode on US ``letter'' size paper;
22629that is, on a sheet 11 inches wide by 8.5 inches
22630high. You will need to specify this form of printing as an option to
22631your @sc{dvi} output program.
c4555f82 22632
8e04817f 22633@cindex documentation
c4555f82 22634
8e04817f
AC
22635All the documentation for @value{GDBN} comes as part of the machine-readable
22636distribution. The documentation is written in Texinfo format, which is
22637a documentation system that uses a single source file to produce both
22638on-line information and a printed manual. You can use one of the Info
22639formatting commands to create the on-line version of the documentation
22640and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22641
8e04817f
AC
22642@value{GDBN} includes an already formatted copy of the on-line Info
22643version of this manual in the @file{gdb} subdirectory. The main Info
22644file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22645subordinate files matching @samp{gdb.info*} in the same directory. If
22646necessary, you can print out these files, or read them with any editor;
22647but they are easier to read using the @code{info} subsystem in @sc{gnu}
22648Emacs or the standalone @code{info} program, available as part of the
22649@sc{gnu} Texinfo distribution.
c4555f82 22650
8e04817f
AC
22651If you want to format these Info files yourself, you need one of the
22652Info formatting programs, such as @code{texinfo-format-buffer} or
22653@code{makeinfo}.
c4555f82 22654
8e04817f
AC
22655If you have @code{makeinfo} installed, and are in the top level
22656@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22657version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22658
474c8240 22659@smallexample
8e04817f
AC
22660cd gdb
22661make gdb.info
474c8240 22662@end smallexample
c4555f82 22663
8e04817f
AC
22664If you want to typeset and print copies of this manual, you need @TeX{},
22665a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22666Texinfo definitions file.
c4555f82 22667
8e04817f
AC
22668@TeX{} is a typesetting program; it does not print files directly, but
22669produces output files called @sc{dvi} files. To print a typeset
22670document, you need a program to print @sc{dvi} files. If your system
22671has @TeX{} installed, chances are it has such a program. The precise
22672command to use depends on your system; @kbd{lpr -d} is common; another
22673(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22674require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22675
8e04817f
AC
22676@TeX{} also requires a macro definitions file called
22677@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22678written in Texinfo format. On its own, @TeX{} cannot either read or
22679typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22680and is located in the @file{gdb-@var{version-number}/texinfo}
22681directory.
c4555f82 22682
8e04817f 22683If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22684typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22685subdirectory of the main source directory (for example, to
22686@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22687
474c8240 22688@smallexample
8e04817f 22689make gdb.dvi
474c8240 22690@end smallexample
c4555f82 22691
8e04817f 22692Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22693
8e04817f
AC
22694@node Installing GDB
22695@appendix Installing @value{GDBN}
8e04817f 22696@cindex installation
c4555f82 22697
7fa2210b
DJ
22698@menu
22699* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22700* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22701* Separate Objdir:: Compiling @value{GDBN} in another directory
22702* Config Names:: Specifying names for hosts and targets
22703* Configure Options:: Summary of options for configure
22704@end menu
22705
22706@node Requirements
79a6e687 22707@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22708@cindex building @value{GDBN}, requirements for
22709
22710Building @value{GDBN} requires various tools and packages to be available.
22711Other packages will be used only if they are found.
22712
79a6e687 22713@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22714@table @asis
22715@item ISO C90 compiler
22716@value{GDBN} is written in ISO C90. It should be buildable with any
22717working C90 compiler, e.g.@: GCC.
22718
22719@end table
22720
79a6e687 22721@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22722@table @asis
22723@item Expat
123dc839 22724@anchor{Expat}
7fa2210b
DJ
22725@value{GDBN} can use the Expat XML parsing library. This library may be
22726included with your operating system distribution; if it is not, you
22727can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22728The @file{configure} script will search for this library in several
7fa2210b
DJ
22729standard locations; if it is installed in an unusual path, you can
22730use the @option{--with-libexpat-prefix} option to specify its location.
22731
9cceb671
DJ
22732Expat is used for:
22733
22734@itemize @bullet
22735@item
22736Remote protocol memory maps (@pxref{Memory Map Format})
22737@item
22738Target descriptions (@pxref{Target Descriptions})
22739@item
22740Remote shared library lists (@pxref{Library List Format})
22741@item
22742MS-Windows shared libraries (@pxref{Shared Libraries})
22743@end itemize
7fa2210b 22744
31fffb02
CS
22745@item zlib
22746@cindex compressed debug sections
22747@value{GDBN} will use the @samp{zlib} library, if available, to read
22748compressed debug sections. Some linkers, such as GNU gold, are capable
22749of producing binaries with compressed debug sections. If @value{GDBN}
22750is compiled with @samp{zlib}, it will be able to read the debug
22751information in such binaries.
22752
22753The @samp{zlib} library is likely included with your operating system
22754distribution; if it is not, you can get the latest version from
22755@url{http://zlib.net}.
22756
7fa2210b
DJ
22757@end table
22758
22759@node Running Configure
db2e3e2e 22760@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22761@cindex configuring @value{GDBN}
db2e3e2e 22762@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22763of preparing @value{GDBN} for installation; you can then use @code{make} to
22764build the @code{gdb} program.
22765@iftex
22766@c irrelevant in info file; it's as current as the code it lives with.
22767@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22768look at the @file{README} file in the sources; we may have improved the
22769installation procedures since publishing this manual.}
22770@end iftex
c4555f82 22771
8e04817f
AC
22772The @value{GDBN} distribution includes all the source code you need for
22773@value{GDBN} in a single directory, whose name is usually composed by
22774appending the version number to @samp{gdb}.
c4555f82 22775
8e04817f
AC
22776For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22777@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22778
8e04817f
AC
22779@table @code
22780@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22781script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22782
8e04817f
AC
22783@item gdb-@value{GDBVN}/gdb
22784the source specific to @value{GDBN} itself
c4555f82 22785
8e04817f
AC
22786@item gdb-@value{GDBVN}/bfd
22787source for the Binary File Descriptor library
c906108c 22788
8e04817f
AC
22789@item gdb-@value{GDBVN}/include
22790@sc{gnu} include files
c906108c 22791
8e04817f
AC
22792@item gdb-@value{GDBVN}/libiberty
22793source for the @samp{-liberty} free software library
c906108c 22794
8e04817f
AC
22795@item gdb-@value{GDBVN}/opcodes
22796source for the library of opcode tables and disassemblers
c906108c 22797
8e04817f
AC
22798@item gdb-@value{GDBVN}/readline
22799source for the @sc{gnu} command-line interface
c906108c 22800
8e04817f
AC
22801@item gdb-@value{GDBVN}/glob
22802source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22803
8e04817f
AC
22804@item gdb-@value{GDBVN}/mmalloc
22805source for the @sc{gnu} memory-mapped malloc package
22806@end table
c906108c 22807
db2e3e2e 22808The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22809from the @file{gdb-@var{version-number}} source directory, which in
22810this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22811
8e04817f 22812First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22813if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22814identifier for the platform on which @value{GDBN} will run as an
22815argument.
c906108c 22816
8e04817f 22817For example:
c906108c 22818
474c8240 22819@smallexample
8e04817f
AC
22820cd gdb-@value{GDBVN}
22821./configure @var{host}
22822make
474c8240 22823@end smallexample
c906108c 22824
8e04817f
AC
22825@noindent
22826where @var{host} is an identifier such as @samp{sun4} or
22827@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22828(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22829correct value by examining your system.)
c906108c 22830
8e04817f
AC
22831Running @samp{configure @var{host}} and then running @code{make} builds the
22832@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22833libraries, then @code{gdb} itself. The configured source files, and the
22834binaries, are left in the corresponding source directories.
c906108c 22835
8e04817f 22836@need 750
db2e3e2e 22837@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22838system does not recognize this automatically when you run a different
22839shell, you may need to run @code{sh} on it explicitly:
c906108c 22840
474c8240 22841@smallexample
8e04817f 22842sh configure @var{host}
474c8240 22843@end smallexample
c906108c 22844
db2e3e2e 22845If you run @file{configure} from a directory that contains source
8e04817f 22846directories for multiple libraries or programs, such as the
db2e3e2e
BW
22847@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22848@file{configure}
8e04817f
AC
22849creates configuration files for every directory level underneath (unless
22850you tell it not to, with the @samp{--norecursion} option).
22851
db2e3e2e 22852You should run the @file{configure} script from the top directory in the
94e91d6d 22853source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22854@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22855that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22856if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22857of the @file{gdb-@var{version-number}} directory, you will omit the
22858configuration of @file{bfd}, @file{readline}, and other sibling
22859directories of the @file{gdb} subdirectory. This leads to build errors
22860about missing include files such as @file{bfd/bfd.h}.
c906108c 22861
8e04817f
AC
22862You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22863However, you should make sure that the shell on your path (named by
22864the @samp{SHELL} environment variable) is publicly readable. Remember
22865that @value{GDBN} uses the shell to start your program---some systems refuse to
22866let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22867
8e04817f 22868@node Separate Objdir
79a6e687 22869@section Compiling @value{GDBN} in Another Directory
c906108c 22870
8e04817f
AC
22871If you want to run @value{GDBN} versions for several host or target machines,
22872you need a different @code{gdb} compiled for each combination of
db2e3e2e 22873host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22874allowing you to generate each configuration in a separate subdirectory,
22875rather than in the source directory. If your @code{make} program
22876handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22877@code{make} in each of these directories builds the @code{gdb}
22878program specified there.
c906108c 22879
db2e3e2e 22880To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22881with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22882(You also need to specify a path to find @file{configure}
22883itself from your working directory. If the path to @file{configure}
8e04817f
AC
22884would be the same as the argument to @samp{--srcdir}, you can leave out
22885the @samp{--srcdir} option; it is assumed.)
c906108c 22886
8e04817f
AC
22887For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22888separate directory for a Sun 4 like this:
c906108c 22889
474c8240 22890@smallexample
8e04817f
AC
22891@group
22892cd gdb-@value{GDBVN}
22893mkdir ../gdb-sun4
22894cd ../gdb-sun4
22895../gdb-@value{GDBVN}/configure sun4
22896make
22897@end group
474c8240 22898@end smallexample
c906108c 22899
db2e3e2e 22900When @file{configure} builds a configuration using a remote source
8e04817f
AC
22901directory, it creates a tree for the binaries with the same structure
22902(and using the same names) as the tree under the source directory. In
22903the example, you'd find the Sun 4 library @file{libiberty.a} in the
22904directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22905@file{gdb-sun4/gdb}.
c906108c 22906
94e91d6d
MC
22907Make sure that your path to the @file{configure} script has just one
22908instance of @file{gdb} in it. If your path to @file{configure} looks
22909like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22910one subdirectory of @value{GDBN}, not the whole package. This leads to
22911build errors about missing include files such as @file{bfd/bfd.h}.
22912
8e04817f
AC
22913One popular reason to build several @value{GDBN} configurations in separate
22914directories is to configure @value{GDBN} for cross-compiling (where
22915@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22916programs that run on another machine---the @dfn{target}).
22917You specify a cross-debugging target by
db2e3e2e 22918giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22919
8e04817f
AC
22920When you run @code{make} to build a program or library, you must run
22921it in a configured directory---whatever directory you were in when you
db2e3e2e 22922called @file{configure} (or one of its subdirectories).
c906108c 22923
db2e3e2e 22924The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22925directory also runs recursively. If you type @code{make} in a source
22926directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22927directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22928will build all the required libraries, and then build GDB.
c906108c 22929
8e04817f
AC
22930When you have multiple hosts or targets configured in separate
22931directories, you can run @code{make} on them in parallel (for example,
22932if they are NFS-mounted on each of the hosts); they will not interfere
22933with each other.
c906108c 22934
8e04817f 22935@node Config Names
79a6e687 22936@section Specifying Names for Hosts and Targets
c906108c 22937
db2e3e2e 22938The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22939script are based on a three-part naming scheme, but some short predefined
22940aliases are also supported. The full naming scheme encodes three pieces
22941of information in the following pattern:
c906108c 22942
474c8240 22943@smallexample
8e04817f 22944@var{architecture}-@var{vendor}-@var{os}
474c8240 22945@end smallexample
c906108c 22946
8e04817f
AC
22947For example, you can use the alias @code{sun4} as a @var{host} argument,
22948or as the value for @var{target} in a @code{--target=@var{target}}
22949option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22950
db2e3e2e 22951The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22952any query facility to list all supported host and target names or
db2e3e2e 22953aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22954@code{config.sub} to map abbreviations to full names; you can read the
22955script, if you wish, or you can use it to test your guesses on
22956abbreviations---for example:
c906108c 22957
8e04817f
AC
22958@smallexample
22959% sh config.sub i386-linux
22960i386-pc-linux-gnu
22961% sh config.sub alpha-linux
22962alpha-unknown-linux-gnu
22963% sh config.sub hp9k700
22964hppa1.1-hp-hpux
22965% sh config.sub sun4
22966sparc-sun-sunos4.1.1
22967% sh config.sub sun3
22968m68k-sun-sunos4.1.1
22969% sh config.sub i986v
22970Invalid configuration `i986v': machine `i986v' not recognized
22971@end smallexample
c906108c 22972
8e04817f
AC
22973@noindent
22974@code{config.sub} is also distributed in the @value{GDBN} source
22975directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22976
8e04817f 22977@node Configure Options
db2e3e2e 22978@section @file{configure} Options
c906108c 22979
db2e3e2e
BW
22980Here is a summary of the @file{configure} options and arguments that
22981are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22982several other options not listed here. @inforef{What Configure
db2e3e2e 22983Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22984
474c8240 22985@smallexample
8e04817f
AC
22986configure @r{[}--help@r{]}
22987 @r{[}--prefix=@var{dir}@r{]}
22988 @r{[}--exec-prefix=@var{dir}@r{]}
22989 @r{[}--srcdir=@var{dirname}@r{]}
22990 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22991 @r{[}--target=@var{target}@r{]}
22992 @var{host}
474c8240 22993@end smallexample
c906108c 22994
8e04817f
AC
22995@noindent
22996You may introduce options with a single @samp{-} rather than
22997@samp{--} if you prefer; but you may abbreviate option names if you use
22998@samp{--}.
c906108c 22999
8e04817f
AC
23000@table @code
23001@item --help
db2e3e2e 23002Display a quick summary of how to invoke @file{configure}.
c906108c 23003
8e04817f
AC
23004@item --prefix=@var{dir}
23005Configure the source to install programs and files under directory
23006@file{@var{dir}}.
c906108c 23007
8e04817f
AC
23008@item --exec-prefix=@var{dir}
23009Configure the source to install programs under directory
23010@file{@var{dir}}.
c906108c 23011
8e04817f
AC
23012@c avoid splitting the warning from the explanation:
23013@need 2000
23014@item --srcdir=@var{dirname}
23015@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
23016@code{make} that implements the @code{VPATH} feature.}@*
23017Use this option to make configurations in directories separate from the
23018@value{GDBN} source directories. Among other things, you can use this to
23019build (or maintain) several configurations simultaneously, in separate
db2e3e2e 23020directories. @file{configure} writes configuration-specific files in
8e04817f 23021the current directory, but arranges for them to use the source in the
db2e3e2e 23022directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
23023the working directory in parallel to the source directories below
23024@var{dirname}.
c906108c 23025
8e04817f 23026@item --norecursion
db2e3e2e 23027Configure only the directory level where @file{configure} is executed; do not
8e04817f 23028propagate configuration to subdirectories.
c906108c 23029
8e04817f
AC
23030@item --target=@var{target}
23031Configure @value{GDBN} for cross-debugging programs running on the specified
23032@var{target}. Without this option, @value{GDBN} is configured to debug
23033programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 23034
8e04817f 23035There is no convenient way to generate a list of all available targets.
c906108c 23036
8e04817f
AC
23037@item @var{host} @dots{}
23038Configure @value{GDBN} to run on the specified @var{host}.
c906108c 23039
8e04817f
AC
23040There is no convenient way to generate a list of all available hosts.
23041@end table
c906108c 23042
8e04817f
AC
23043There are many other options available as well, but they are generally
23044needed for special purposes only.
c906108c 23045
8e04817f
AC
23046@node Maintenance Commands
23047@appendix Maintenance Commands
23048@cindex maintenance commands
23049@cindex internal commands
c906108c 23050
8e04817f 23051In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
23052includes a number of commands intended for @value{GDBN} developers,
23053that are not documented elsewhere in this manual. These commands are
da316a69
EZ
23054provided here for reference. (For commands that turn on debugging
23055messages, see @ref{Debugging Output}.)
c906108c 23056
8e04817f 23057@table @code
09d4efe1
EZ
23058@kindex maint agent
23059@item maint agent @var{expression}
23060Translate the given @var{expression} into remote agent bytecodes.
23061This command is useful for debugging the Agent Expression mechanism
23062(@pxref{Agent Expressions}).
23063
8e04817f
AC
23064@kindex maint info breakpoints
23065@item @anchor{maint info breakpoints}maint info breakpoints
23066Using the same format as @samp{info breakpoints}, display both the
23067breakpoints you've set explicitly, and those @value{GDBN} is using for
23068internal purposes. Internal breakpoints are shown with negative
23069breakpoint numbers. The type column identifies what kind of breakpoint
23070is shown:
c906108c 23071
8e04817f
AC
23072@table @code
23073@item breakpoint
23074Normal, explicitly set breakpoint.
c906108c 23075
8e04817f
AC
23076@item watchpoint
23077Normal, explicitly set watchpoint.
c906108c 23078
8e04817f
AC
23079@item longjmp
23080Internal breakpoint, used to handle correctly stepping through
23081@code{longjmp} calls.
c906108c 23082
8e04817f
AC
23083@item longjmp resume
23084Internal breakpoint at the target of a @code{longjmp}.
c906108c 23085
8e04817f
AC
23086@item until
23087Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 23088
8e04817f
AC
23089@item finish
23090Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 23091
8e04817f
AC
23092@item shlib events
23093Shared library events.
c906108c 23094
8e04817f 23095@end table
c906108c 23096
09d4efe1
EZ
23097@kindex maint check-symtabs
23098@item maint check-symtabs
23099Check the consistency of psymtabs and symtabs.
23100
23101@kindex maint cplus first_component
23102@item maint cplus first_component @var{name}
23103Print the first C@t{++} class/namespace component of @var{name}.
23104
23105@kindex maint cplus namespace
23106@item maint cplus namespace
23107Print the list of possible C@t{++} namespaces.
23108
23109@kindex maint demangle
23110@item maint demangle @var{name}
d3e8051b 23111Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
23112
23113@kindex maint deprecate
23114@kindex maint undeprecate
23115@cindex deprecated commands
23116@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
23117@itemx maint undeprecate @var{command}
23118Deprecate or undeprecate the named @var{command}. Deprecated commands
23119cause @value{GDBN} to issue a warning when you use them. The optional
23120argument @var{replacement} says which newer command should be used in
23121favor of the deprecated one; if it is given, @value{GDBN} will mention
23122the replacement as part of the warning.
23123
23124@kindex maint dump-me
23125@item maint dump-me
721c2651 23126@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 23127Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
23128This is supported only on systems which support aborting a program
23129with the @code{SIGQUIT} signal.
09d4efe1 23130
8d30a00d
AC
23131@kindex maint internal-error
23132@kindex maint internal-warning
09d4efe1
EZ
23133@item maint internal-error @r{[}@var{message-text}@r{]}
23134@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
23135Cause @value{GDBN} to call the internal function @code{internal_error}
23136or @code{internal_warning} and hence behave as though an internal error
23137or internal warning has been detected. In addition to reporting the
23138internal problem, these functions give the user the opportunity to
23139either quit @value{GDBN} or create a core file of the current
23140@value{GDBN} session.
23141
09d4efe1
EZ
23142These commands take an optional parameter @var{message-text} that is
23143used as the text of the error or warning message.
23144
d3e8051b 23145Here's an example of using @code{internal-error}:
09d4efe1 23146
8d30a00d 23147@smallexample
f7dc1244 23148(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23149@dots{}/maint.c:121: internal-error: testing, 1, 2
23150A problem internal to GDB has been detected. Further
23151debugging may prove unreliable.
23152Quit this debugging session? (y or n) @kbd{n}
23153Create a core file? (y or n) @kbd{n}
f7dc1244 23154(@value{GDBP})
8d30a00d
AC
23155@end smallexample
23156
09d4efe1
EZ
23157@kindex maint packet
23158@item maint packet @var{text}
23159If @value{GDBN} is talking to an inferior via the serial protocol,
23160then this command sends the string @var{text} to the inferior, and
23161displays the response packet. @value{GDBN} supplies the initial
23162@samp{$} character, the terminating @samp{#} character, and the
23163checksum.
23164
23165@kindex maint print architecture
23166@item maint print architecture @r{[}@var{file}@r{]}
23167Print the entire architecture configuration. The optional argument
23168@var{file} names the file where the output goes.
8d30a00d 23169
81adfced
DJ
23170@kindex maint print c-tdesc
23171@item maint print c-tdesc
23172Print the current target description (@pxref{Target Descriptions}) as
23173a C source file. The created source file can be used in @value{GDBN}
23174when an XML parser is not available to parse the description.
23175
00905d52
AC
23176@kindex maint print dummy-frames
23177@item maint print dummy-frames
00905d52
AC
23178Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23179
23180@smallexample
f7dc1244 23181(@value{GDBP}) @kbd{b add}
00905d52 23182@dots{}
f7dc1244 23183(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23184Breakpoint 2, add (a=2, b=3) at @dots{}
2318558 return (a + b);
23186The program being debugged stopped while in a function called from GDB.
23187@dots{}
f7dc1244 23188(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
231890x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23190 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23191 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23192(@value{GDBP})
00905d52
AC
23193@end smallexample
23194
23195Takes an optional file parameter.
23196
0680b120
AC
23197@kindex maint print registers
23198@kindex maint print raw-registers
23199@kindex maint print cooked-registers
617073a9 23200@kindex maint print register-groups
09d4efe1
EZ
23201@item maint print registers @r{[}@var{file}@r{]}
23202@itemx maint print raw-registers @r{[}@var{file}@r{]}
23203@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23204@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23205Print @value{GDBN}'s internal register data structures.
23206
617073a9
AC
23207The command @code{maint print raw-registers} includes the contents of
23208the raw register cache; the command @code{maint print cooked-registers}
23209includes the (cooked) value of all registers; and the command
23210@code{maint print register-groups} includes the groups that each
23211register is a member of. @xref{Registers,, Registers, gdbint,
23212@value{GDBN} Internals}.
0680b120 23213
09d4efe1
EZ
23214These commands take an optional parameter, a file name to which to
23215write the information.
0680b120 23216
617073a9 23217@kindex maint print reggroups
09d4efe1
EZ
23218@item maint print reggroups @r{[}@var{file}@r{]}
23219Print @value{GDBN}'s internal register group data structures. The
23220optional argument @var{file} tells to what file to write the
23221information.
617073a9 23222
09d4efe1 23223The register groups info looks like this:
617073a9
AC
23224
23225@smallexample
f7dc1244 23226(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23227 Group Type
23228 general user
23229 float user
23230 all user
23231 vector user
23232 system user
23233 save internal
23234 restore internal
617073a9
AC
23235@end smallexample
23236
09d4efe1
EZ
23237@kindex flushregs
23238@item flushregs
23239This command forces @value{GDBN} to flush its internal register cache.
23240
23241@kindex maint print objfiles
23242@cindex info for known object files
23243@item maint print objfiles
23244Print a dump of all known object files. For each object file, this
23245command prints its name, address in memory, and all of its psymtabs
23246and symtabs.
23247
23248@kindex maint print statistics
23249@cindex bcache statistics
23250@item maint print statistics
23251This command prints, for each object file in the program, various data
23252about that object file followed by the byte cache (@dfn{bcache})
23253statistics for the object file. The objfile data includes the number
d3e8051b 23254of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23255defined by the objfile, the number of as yet unexpanded psym tables,
23256the number of line tables and string tables, and the amount of memory
23257used by the various tables. The bcache statistics include the counts,
23258sizes, and counts of duplicates of all and unique objects, max,
23259average, and median entry size, total memory used and its overhead and
23260savings, and various measures of the hash table size and chain
23261lengths.
23262
c7ba131e
JB
23263@kindex maint print target-stack
23264@cindex target stack description
23265@item maint print target-stack
23266A @dfn{target} is an interface between the debugger and a particular
23267kind of file or process. Targets can be stacked in @dfn{strata},
23268so that more than one target can potentially respond to a request.
23269In particular, memory accesses will walk down the stack of targets
23270until they find a target that is interested in handling that particular
23271address.
23272
23273This command prints a short description of each layer that was pushed on
23274the @dfn{target stack}, starting from the top layer down to the bottom one.
23275
09d4efe1
EZ
23276@kindex maint print type
23277@cindex type chain of a data type
23278@item maint print type @var{expr}
23279Print the type chain for a type specified by @var{expr}. The argument
23280can be either a type name or a symbol. If it is a symbol, the type of
23281that symbol is described. The type chain produced by this command is
23282a recursive definition of the data type as stored in @value{GDBN}'s
23283data structures, including its flags and contained types.
23284
23285@kindex maint set dwarf2 max-cache-age
23286@kindex maint show dwarf2 max-cache-age
23287@item maint set dwarf2 max-cache-age
23288@itemx maint show dwarf2 max-cache-age
23289Control the DWARF 2 compilation unit cache.
23290
23291@cindex DWARF 2 compilation units cache
23292In object files with inter-compilation-unit references, such as those
23293produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23294reader needs to frequently refer to previously read compilation units.
23295This setting controls how long a compilation unit will remain in the
23296cache if it is not referenced. A higher limit means that cached
23297compilation units will be stored in memory longer, and more total
23298memory will be used. Setting it to zero disables caching, which will
23299slow down @value{GDBN} startup, but reduce memory consumption.
23300
e7ba9c65
DJ
23301@kindex maint set profile
23302@kindex maint show profile
23303@cindex profiling GDB
23304@item maint set profile
23305@itemx maint show profile
23306Control profiling of @value{GDBN}.
23307
23308Profiling will be disabled until you use the @samp{maint set profile}
23309command to enable it. When you enable profiling, the system will begin
23310collecting timing and execution count data; when you disable profiling or
23311exit @value{GDBN}, the results will be written to a log file. Remember that
23312if you use profiling, @value{GDBN} will overwrite the profiling log file
23313(often called @file{gmon.out}). If you have a record of important profiling
23314data in a @file{gmon.out} file, be sure to move it to a safe location.
23315
23316Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23317compiled with the @samp{-pg} compiler option.
e7ba9c65 23318
b84876c2
PA
23319@kindex maint set linux-async
23320@kindex maint show linux-async
23321@cindex asynchronous support
23322@item maint set linux-async
23323@itemx maint show linux-async
23324Control the GNU/Linux native asynchronous support of @value{GDBN}.
23325
23326GNU/Linux native asynchronous support will be disabled until you use
23327the @samp{maint set linux-async} command to enable it.
23328
09d4efe1
EZ
23329@kindex maint show-debug-regs
23330@cindex x86 hardware debug registers
23331@item maint show-debug-regs
23332Control whether to show variables that mirror the x86 hardware debug
23333registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23334enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23335removes a hardware breakpoint or watchpoint, and when the inferior
23336triggers a hardware-assisted breakpoint or watchpoint.
23337
23338@kindex maint space
23339@cindex memory used by commands
23340@item maint space
23341Control whether to display memory usage for each command. If set to a
23342nonzero value, @value{GDBN} will display how much memory each command
23343took, following the command's own output. This can also be requested
23344by invoking @value{GDBN} with the @option{--statistics} command-line
23345switch (@pxref{Mode Options}).
23346
23347@kindex maint time
23348@cindex time of command execution
23349@item maint time
23350Control whether to display the execution time for each command. If
23351set to a nonzero value, @value{GDBN} will display how much time it
23352took to execute each command, following the command's own output.
23353This can also be requested by invoking @value{GDBN} with the
23354@option{--statistics} command-line switch (@pxref{Mode Options}).
23355
23356@kindex maint translate-address
23357@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23358Find the symbol stored at the location specified by the address
23359@var{addr} and an optional section name @var{section}. If found,
23360@value{GDBN} prints the name of the closest symbol and an offset from
23361the symbol's location to the specified address. This is similar to
23362the @code{info address} command (@pxref{Symbols}), except that this
23363command also allows to find symbols in other sections.
ae038cb0 23364
8e04817f 23365@end table
c906108c 23366
9c16f35a
EZ
23367The following command is useful for non-interactive invocations of
23368@value{GDBN}, such as in the test suite.
23369
23370@table @code
23371@item set watchdog @var{nsec}
23372@kindex set watchdog
23373@cindex watchdog timer
23374@cindex timeout for commands
23375Set the maximum number of seconds @value{GDBN} will wait for the
23376target operation to finish. If this time expires, @value{GDBN}
23377reports and error and the command is aborted.
23378
23379@item show watchdog
23380Show the current setting of the target wait timeout.
23381@end table
c906108c 23382
e0ce93ac 23383@node Remote Protocol
8e04817f 23384@appendix @value{GDBN} Remote Serial Protocol
c906108c 23385
ee2d5c50
AC
23386@menu
23387* Overview::
23388* Packets::
23389* Stop Reply Packets::
23390* General Query Packets::
23391* Register Packet Format::
9d29849a 23392* Tracepoint Packets::
a6b151f1 23393* Host I/O Packets::
9a6253be 23394* Interrupts::
ee2d5c50 23395* Examples::
79a6e687 23396* File-I/O Remote Protocol Extension::
cfa9d6d9 23397* Library List Format::
79a6e687 23398* Memory Map Format::
ee2d5c50
AC
23399@end menu
23400
23401@node Overview
23402@section Overview
23403
8e04817f
AC
23404There may be occasions when you need to know something about the
23405protocol---for example, if there is only one serial port to your target
23406machine, you might want your program to do something special if it
23407recognizes a packet meant for @value{GDBN}.
c906108c 23408
d2c6833e 23409In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23410transmitted and received data, respectively.
c906108c 23411
8e04817f
AC
23412@cindex protocol, @value{GDBN} remote serial
23413@cindex serial protocol, @value{GDBN} remote
23414@cindex remote serial protocol
23415All @value{GDBN} commands and responses (other than acknowledgments) are
23416sent as a @var{packet}. A @var{packet} is introduced with the character
23417@samp{$}, the actual @var{packet-data}, and the terminating character
23418@samp{#} followed by a two-digit @var{checksum}:
c906108c 23419
474c8240 23420@smallexample
8e04817f 23421@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23422@end smallexample
8e04817f 23423@noindent
c906108c 23424
8e04817f
AC
23425@cindex checksum, for @value{GDBN} remote
23426@noindent
23427The two-digit @var{checksum} is computed as the modulo 256 sum of all
23428characters between the leading @samp{$} and the trailing @samp{#} (an
23429eight bit unsigned checksum).
c906108c 23430
8e04817f
AC
23431Implementors should note that prior to @value{GDBN} 5.0 the protocol
23432specification also included an optional two-digit @var{sequence-id}:
c906108c 23433
474c8240 23434@smallexample
8e04817f 23435@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23436@end smallexample
c906108c 23437
8e04817f
AC
23438@cindex sequence-id, for @value{GDBN} remote
23439@noindent
23440That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23441has never output @var{sequence-id}s. Stubs that handle packets added
23442since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23443
8e04817f
AC
23444@cindex acknowledgment, for @value{GDBN} remote
23445When either the host or the target machine receives a packet, the first
23446response expected is an acknowledgment: either @samp{+} (to indicate
23447the package was received correctly) or @samp{-} (to request
23448retransmission):
c906108c 23449
474c8240 23450@smallexample
d2c6833e
AC
23451-> @code{$}@var{packet-data}@code{#}@var{checksum}
23452<- @code{+}
474c8240 23453@end smallexample
8e04817f 23454@noindent
53a5351d 23455
8e04817f
AC
23456The host (@value{GDBN}) sends @var{command}s, and the target (the
23457debugging stub incorporated in your program) sends a @var{response}. In
23458the case of step and continue @var{command}s, the response is only sent
23459when the operation has completed (the target has again stopped).
c906108c 23460
8e04817f
AC
23461@var{packet-data} consists of a sequence of characters with the
23462exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23463exceptions).
c906108c 23464
ee2d5c50 23465@cindex remote protocol, field separator
0876f84a 23466Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23467@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23468@sc{hex} with leading zeros suppressed.
c906108c 23469
8e04817f
AC
23470Implementors should note that prior to @value{GDBN} 5.0, the character
23471@samp{:} could not appear as the third character in a packet (as it
23472would potentially conflict with the @var{sequence-id}).
c906108c 23473
0876f84a
DJ
23474@cindex remote protocol, binary data
23475@anchor{Binary Data}
23476Binary data in most packets is encoded either as two hexadecimal
23477digits per byte of binary data. This allowed the traditional remote
23478protocol to work over connections which were only seven-bit clean.
23479Some packets designed more recently assume an eight-bit clean
23480connection, and use a more efficient encoding to send and receive
23481binary data.
23482
23483The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23484as an escape character. Any escaped byte is transmitted as the escape
23485character followed by the original character XORed with @code{0x20}.
23486For example, the byte @code{0x7d} would be transmitted as the two
23487bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23488@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23489@samp{@}}) must always be escaped. Responses sent by the stub
23490must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23491is not interpreted as the start of a run-length encoded sequence
23492(described next).
23493
1d3811f6
DJ
23494Response @var{data} can be run-length encoded to save space.
23495Run-length encoding replaces runs of identical characters with one
23496instance of the repeated character, followed by a @samp{*} and a
23497repeat count. The repeat count is itself sent encoded, to avoid
23498binary characters in @var{data}: a value of @var{n} is sent as
23499@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23500produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23501code 32) for a repeat count of 3. (This is because run-length
23502encoding starts to win for counts 3 or more.) Thus, for example,
23503@samp{0* } is a run-length encoding of ``0000'': the space character
23504after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
235053}} more times.
23506
23507The printable characters @samp{#} and @samp{$} or with a numeric value
23508greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23509seven repeats (@samp{$}) can be expanded using a repeat count of only
23510five (@samp{"}). For example, @samp{00000000} can be encoded as
23511@samp{0*"00}.
c906108c 23512
8e04817f
AC
23513The error response returned for some packets includes a two character
23514error number. That number is not well defined.
c906108c 23515
f8da2bff 23516@cindex empty response, for unsupported packets
8e04817f
AC
23517For any @var{command} not supported by the stub, an empty response
23518(@samp{$#00}) should be returned. That way it is possible to extend the
23519protocol. A newer @value{GDBN} can tell if a packet is supported based
23520on that response.
c906108c 23521
b383017d
RM
23522A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23523@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23524optional.
c906108c 23525
ee2d5c50
AC
23526@node Packets
23527@section Packets
23528
23529The following table provides a complete list of all currently defined
23530@var{command}s and their corresponding response @var{data}.
79a6e687 23531@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23532I/O extension of the remote protocol.
ee2d5c50 23533
b8ff78ce
JB
23534Each packet's description has a template showing the packet's overall
23535syntax, followed by an explanation of the packet's meaning. We
23536include spaces in some of the templates for clarity; these are not
23537part of the packet's syntax. No @value{GDBN} packet uses spaces to
23538separate its components. For example, a template like @samp{foo
23539@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23540bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23541@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23542@samp{foo} and the @var{bar}, or between the @var{bar} and the
23543@var{baz}.
23544
8ffe2530
JB
23545Note that all packet forms beginning with an upper- or lower-case
23546letter, other than those described here, are reserved for future use.
23547
b8ff78ce 23548Here are the packet descriptions.
ee2d5c50 23549
b8ff78ce 23550@table @samp
ee2d5c50 23551
b8ff78ce
JB
23552@item !
23553@cindex @samp{!} packet
2d717e4f 23554@anchor{extended mode}
8e04817f
AC
23555Enable extended mode. In extended mode, the remote server is made
23556persistent. The @samp{R} packet is used to restart the program being
23557debugged.
ee2d5c50
AC
23558
23559Reply:
23560@table @samp
23561@item OK
8e04817f 23562The remote target both supports and has enabled extended mode.
ee2d5c50 23563@end table
c906108c 23564
b8ff78ce
JB
23565@item ?
23566@cindex @samp{?} packet
ee2d5c50
AC
23567Indicate the reason the target halted. The reply is the same as for
23568step and continue.
c906108c 23569
ee2d5c50
AC
23570Reply:
23571@xref{Stop Reply Packets}, for the reply specifications.
23572
b8ff78ce
JB
23573@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23574@cindex @samp{A} packet
23575Initialized @code{argv[]} array passed into program. @var{arglen}
23576specifies the number of bytes in the hex encoded byte stream
23577@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23578
23579Reply:
23580@table @samp
23581@item OK
b8ff78ce
JB
23582The arguments were set.
23583@item E @var{NN}
23584An error occurred.
ee2d5c50
AC
23585@end table
23586
b8ff78ce
JB
23587@item b @var{baud}
23588@cindex @samp{b} packet
23589(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23590Change the serial line speed to @var{baud}.
23591
23592JTC: @emph{When does the transport layer state change? When it's
23593received, or after the ACK is transmitted. In either case, there are
23594problems if the command or the acknowledgment packet is dropped.}
23595
23596Stan: @emph{If people really wanted to add something like this, and get
23597it working for the first time, they ought to modify ser-unix.c to send
23598some kind of out-of-band message to a specially-setup stub and have the
23599switch happen "in between" packets, so that from remote protocol's point
23600of view, nothing actually happened.}
23601
b8ff78ce
JB
23602@item B @var{addr},@var{mode}
23603@cindex @samp{B} packet
8e04817f 23604Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23605breakpoint at @var{addr}.
23606
b8ff78ce 23607Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23608(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23609
4f553f88 23610@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23611@cindex @samp{c} packet
23612Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23613resume at current address.
c906108c 23614
ee2d5c50
AC
23615Reply:
23616@xref{Stop Reply Packets}, for the reply specifications.
23617
4f553f88 23618@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23619@cindex @samp{C} packet
8e04817f 23620Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23621@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23622
ee2d5c50
AC
23623Reply:
23624@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23625
b8ff78ce
JB
23626@item d
23627@cindex @samp{d} packet
ee2d5c50
AC
23628Toggle debug flag.
23629
b8ff78ce
JB
23630Don't use this packet; instead, define a general set packet
23631(@pxref{General Query Packets}).
ee2d5c50 23632
b8ff78ce
JB
23633@item D
23634@cindex @samp{D} packet
ee2d5c50 23635Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23636before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23637
23638Reply:
23639@table @samp
10fac096
NW
23640@item OK
23641for success
b8ff78ce 23642@item E @var{NN}
10fac096 23643for an error
ee2d5c50 23644@end table
c906108c 23645
b8ff78ce
JB
23646@item F @var{RC},@var{EE},@var{CF};@var{XX}
23647@cindex @samp{F} packet
23648A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23649This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23650Remote Protocol Extension}, for the specification.
ee2d5c50 23651
b8ff78ce 23652@item g
ee2d5c50 23653@anchor{read registers packet}
b8ff78ce 23654@cindex @samp{g} packet
ee2d5c50
AC
23655Read general registers.
23656
23657Reply:
23658@table @samp
23659@item @var{XX@dots{}}
8e04817f
AC
23660Each byte of register data is described by two hex digits. The bytes
23661with the register are transmitted in target byte order. The size of
b8ff78ce 23662each register and their position within the @samp{g} packet are
4a9bb1df
UW
23663determined by the @value{GDBN} internal gdbarch functions
23664@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23665specification of several standard @samp{g} packets is specified below.
23666@item E @var{NN}
ee2d5c50
AC
23667for an error.
23668@end table
c906108c 23669
b8ff78ce
JB
23670@item G @var{XX@dots{}}
23671@cindex @samp{G} packet
23672Write general registers. @xref{read registers packet}, for a
23673description of the @var{XX@dots{}} data.
ee2d5c50
AC
23674
23675Reply:
23676@table @samp
23677@item OK
23678for success
b8ff78ce 23679@item E @var{NN}
ee2d5c50
AC
23680for an error
23681@end table
23682
b8ff78ce
JB
23683@item H @var{c} @var{t}
23684@cindex @samp{H} packet
8e04817f 23685Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23686@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23687should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23688operations. The thread designator @var{t} may be @samp{-1}, meaning all
23689the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23690
23691Reply:
23692@table @samp
23693@item OK
23694for success
b8ff78ce 23695@item E @var{NN}
ee2d5c50
AC
23696for an error
23697@end table
c906108c 23698
8e04817f
AC
23699@c FIXME: JTC:
23700@c 'H': How restrictive (or permissive) is the thread model. If a
23701@c thread is selected and stopped, are other threads allowed
23702@c to continue to execute? As I mentioned above, I think the
23703@c semantics of each command when a thread is selected must be
23704@c described. For example:
23705@c
23706@c 'g': If the stub supports threads and a specific thread is
23707@c selected, returns the register block from that thread;
23708@c otherwise returns current registers.
23709@c
23710@c 'G' If the stub supports threads and a specific thread is
23711@c selected, sets the registers of the register block of
23712@c that thread; otherwise sets current registers.
c906108c 23713
b8ff78ce 23714@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23715@anchor{cycle step packet}
b8ff78ce
JB
23716@cindex @samp{i} packet
23717Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23718present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23719step starting at that address.
c906108c 23720
b8ff78ce
JB
23721@item I
23722@cindex @samp{I} packet
23723Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23724step packet}.
ee2d5c50 23725
b8ff78ce
JB
23726@item k
23727@cindex @samp{k} packet
23728Kill request.
c906108c 23729
ac282366 23730FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23731thread context has been selected (i.e.@: does 'k' kill only that
23732thread?)}.
c906108c 23733
b8ff78ce
JB
23734@item m @var{addr},@var{length}
23735@cindex @samp{m} packet
8e04817f 23736Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23737Note that @var{addr} may not be aligned to any particular boundary.
23738
23739The stub need not use any particular size or alignment when gathering
23740data from memory for the response; even if @var{addr} is word-aligned
23741and @var{length} is a multiple of the word size, the stub is free to
23742use byte accesses, or not. For this reason, this packet may not be
23743suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23744@cindex alignment of remote memory accesses
23745@cindex size of remote memory accesses
23746@cindex memory, alignment and size of remote accesses
c906108c 23747
ee2d5c50
AC
23748Reply:
23749@table @samp
23750@item @var{XX@dots{}}
599b237a 23751Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23752number. The reply may contain fewer bytes than requested if the
23753server was able to read only part of the region of memory.
23754@item E @var{NN}
ee2d5c50
AC
23755@var{NN} is errno
23756@end table
23757
b8ff78ce
JB
23758@item M @var{addr},@var{length}:@var{XX@dots{}}
23759@cindex @samp{M} packet
8e04817f 23760Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23761@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23762hexadecimal number.
ee2d5c50
AC
23763
23764Reply:
23765@table @samp
23766@item OK
23767for success
b8ff78ce 23768@item E @var{NN}
8e04817f
AC
23769for an error (this includes the case where only part of the data was
23770written).
ee2d5c50 23771@end table
c906108c 23772
b8ff78ce
JB
23773@item p @var{n}
23774@cindex @samp{p} packet
23775Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23776@xref{read registers packet}, for a description of how the returned
23777register value is encoded.
ee2d5c50
AC
23778
23779Reply:
23780@table @samp
2e868123
AC
23781@item @var{XX@dots{}}
23782the register's value
b8ff78ce 23783@item E @var{NN}
2e868123
AC
23784for an error
23785@item
23786Indicating an unrecognized @var{query}.
ee2d5c50
AC
23787@end table
23788
b8ff78ce 23789@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23790@anchor{write register packet}
b8ff78ce
JB
23791@cindex @samp{P} packet
23792Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23793number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23794digits for each byte in the register (target byte order).
c906108c 23795
ee2d5c50
AC
23796Reply:
23797@table @samp
23798@item OK
23799for success
b8ff78ce 23800@item E @var{NN}
ee2d5c50
AC
23801for an error
23802@end table
23803
5f3bebba
JB
23804@item q @var{name} @var{params}@dots{}
23805@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23806@cindex @samp{q} packet
b8ff78ce 23807@cindex @samp{Q} packet
5f3bebba
JB
23808General query (@samp{q}) and set (@samp{Q}). These packets are
23809described fully in @ref{General Query Packets}.
c906108c 23810
b8ff78ce
JB
23811@item r
23812@cindex @samp{r} packet
8e04817f 23813Reset the entire system.
c906108c 23814
b8ff78ce 23815Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23816
b8ff78ce
JB
23817@item R @var{XX}
23818@cindex @samp{R} packet
8e04817f 23819Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23820This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23821
8e04817f 23822The @samp{R} packet has no reply.
ee2d5c50 23823
4f553f88 23824@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23825@cindex @samp{s} packet
23826Single step. @var{addr} is the address at which to resume. If
23827@var{addr} is omitted, resume at same address.
c906108c 23828
ee2d5c50
AC
23829Reply:
23830@xref{Stop Reply Packets}, for the reply specifications.
23831
4f553f88 23832@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23833@anchor{step with signal packet}
b8ff78ce
JB
23834@cindex @samp{S} packet
23835Step with signal. This is analogous to the @samp{C} packet, but
23836requests a single-step, rather than a normal resumption of execution.
c906108c 23837
ee2d5c50
AC
23838Reply:
23839@xref{Stop Reply Packets}, for the reply specifications.
23840
b8ff78ce
JB
23841@item t @var{addr}:@var{PP},@var{MM}
23842@cindex @samp{t} packet
8e04817f 23843Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23844@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23845@var{addr} must be at least 3 digits.
c906108c 23846
b8ff78ce
JB
23847@item T @var{XX}
23848@cindex @samp{T} packet
ee2d5c50 23849Find out if the thread XX is alive.
c906108c 23850
ee2d5c50
AC
23851Reply:
23852@table @samp
23853@item OK
23854thread is still alive
b8ff78ce 23855@item E @var{NN}
ee2d5c50
AC
23856thread is dead
23857@end table
23858
b8ff78ce
JB
23859@item v
23860Packets starting with @samp{v} are identified by a multi-letter name,
23861up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23862
2d717e4f
DJ
23863@item vAttach;@var{pid}
23864@cindex @samp{vAttach} packet
23865Attach to a new process with the specified process ID. @var{pid} is a
1fddbabb
PA
23866hexadecimal integer identifying the process. If the stub is currently
23867controlling a process, it is killed. The attached process is stopped.
2d717e4f
DJ
23868
23869This packet is only available in extended mode (@pxref{extended mode}).
23870
23871Reply:
23872@table @samp
23873@item E @var{nn}
23874for an error
23875@item @r{Any stop packet}
23876for success (@pxref{Stop Reply Packets})
23877@end table
23878
b8ff78ce
JB
23879@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23880@cindex @samp{vCont} packet
23881Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23882If an action is specified with no @var{tid}, then it is applied to any
23883threads that don't have a specific action specified; if no default action is
23884specified then other threads should remain stopped. Specifying multiple
23885default actions is an error; specifying no actions is also an error.
23886Thread IDs are specified in hexadecimal. Currently supported actions are:
23887
b8ff78ce 23888@table @samp
86d30acc
DJ
23889@item c
23890Continue.
b8ff78ce 23891@item C @var{sig}
86d30acc
DJ
23892Continue with signal @var{sig}. @var{sig} should be two hex digits.
23893@item s
23894Step.
b8ff78ce 23895@item S @var{sig}
86d30acc
DJ
23896Step with signal @var{sig}. @var{sig} should be two hex digits.
23897@end table
23898
23899The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23900not supported in @samp{vCont}.
86d30acc
DJ
23901
23902Reply:
23903@xref{Stop Reply Packets}, for the reply specifications.
23904
b8ff78ce
JB
23905@item vCont?
23906@cindex @samp{vCont?} packet
d3e8051b 23907Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23908
23909Reply:
23910@table @samp
b8ff78ce
JB
23911@item vCont@r{[};@var{action}@dots{}@r{]}
23912The @samp{vCont} packet is supported. Each @var{action} is a supported
23913command in the @samp{vCont} packet.
86d30acc 23914@item
b8ff78ce 23915The @samp{vCont} packet is not supported.
86d30acc 23916@end table
ee2d5c50 23917
a6b151f1
DJ
23918@item vFile:@var{operation}:@var{parameter}@dots{}
23919@cindex @samp{vFile} packet
23920Perform a file operation on the target system. For details,
23921see @ref{Host I/O Packets}.
23922
68437a39
DJ
23923@item vFlashErase:@var{addr},@var{length}
23924@cindex @samp{vFlashErase} packet
23925Direct the stub to erase @var{length} bytes of flash starting at
23926@var{addr}. The region may enclose any number of flash blocks, but
23927its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23928flash block size appearing in the memory map (@pxref{Memory Map
23929Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23930together, and sends a @samp{vFlashDone} request after each group; the
23931stub is allowed to delay erase operation until the @samp{vFlashDone}
23932packet is received.
23933
23934Reply:
23935@table @samp
23936@item OK
23937for success
23938@item E @var{NN}
23939for an error
23940@end table
23941
23942@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23943@cindex @samp{vFlashWrite} packet
23944Direct the stub to write data to flash address @var{addr}. The data
23945is passed in binary form using the same encoding as for the @samp{X}
23946packet (@pxref{Binary Data}). The memory ranges specified by
23947@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23948not overlap, and must appear in order of increasing addresses
23949(although @samp{vFlashErase} packets for higher addresses may already
23950have been received; the ordering is guaranteed only between
23951@samp{vFlashWrite} packets). If a packet writes to an address that was
23952neither erased by a preceding @samp{vFlashErase} packet nor by some other
23953target-specific method, the results are unpredictable.
23954
23955
23956Reply:
23957@table @samp
23958@item OK
23959for success
23960@item E.memtype
23961for vFlashWrite addressing non-flash memory
23962@item E @var{NN}
23963for an error
23964@end table
23965
23966@item vFlashDone
23967@cindex @samp{vFlashDone} packet
23968Indicate to the stub that flash programming operation is finished.
23969The stub is permitted to delay or batch the effects of a group of
23970@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23971@samp{vFlashDone} packet is received. The contents of the affected
23972regions of flash memory are unpredictable until the @samp{vFlashDone}
23973request is completed.
23974
2d717e4f
DJ
23975@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23976@cindex @samp{vRun} packet
23977Run the program @var{filename}, passing it each @var{argument} on its
23978command line. The file and arguments are hex-encoded strings. If
23979@var{filename} is an empty string, the stub may use a default program
23980(e.g.@: the last program run). The program is created in the stopped
1fddbabb 23981state. If the stub is currently controlling a process, it is killed.
2d717e4f
DJ
23982
23983This packet is only available in extended mode (@pxref{extended mode}).
23984
23985Reply:
23986@table @samp
23987@item E @var{nn}
23988for an error
23989@item @r{Any stop packet}
23990for success (@pxref{Stop Reply Packets})
23991@end table
23992
b8ff78ce 23993@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23994@anchor{X packet}
b8ff78ce
JB
23995@cindex @samp{X} packet
23996Write data to memory, where the data is transmitted in binary.
23997@var{addr} is address, @var{length} is number of bytes,
0876f84a 23998@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23999
ee2d5c50
AC
24000Reply:
24001@table @samp
24002@item OK
24003for success
b8ff78ce 24004@item E @var{NN}
ee2d5c50
AC
24005for an error
24006@end table
24007
b8ff78ce
JB
24008@item z @var{type},@var{addr},@var{length}
24009@itemx Z @var{type},@var{addr},@var{length}
2f870471 24010@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
24011@cindex @samp{z} packet
24012@cindex @samp{Z} packets
24013Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
24014watchpoint starting at address @var{address} and covering the next
24015@var{length} bytes.
ee2d5c50 24016
2f870471
AC
24017Each breakpoint and watchpoint packet @var{type} is documented
24018separately.
24019
512217c7
AC
24020@emph{Implementation notes: A remote target shall return an empty string
24021for an unrecognized breakpoint or watchpoint packet @var{type}. A
24022remote target shall support either both or neither of a given
b8ff78ce 24023@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
24024avoid potential problems with duplicate packets, the operations should
24025be implemented in an idempotent way.}
24026
b8ff78ce
JB
24027@item z0,@var{addr},@var{length}
24028@itemx Z0,@var{addr},@var{length}
24029@cindex @samp{z0} packet
24030@cindex @samp{Z0} packet
24031Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
24032@var{addr} of size @var{length}.
2f870471
AC
24033
24034A memory breakpoint is implemented by replacing the instruction at
24035@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 24036@var{length} is used by targets that indicates the size of the
2f870471
AC
24037breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
24038@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 24039
2f870471
AC
24040@emph{Implementation note: It is possible for a target to copy or move
24041code that contains memory breakpoints (e.g., when implementing
24042overlays). The behavior of this packet, in the presence of such a
24043target, is not defined.}
c906108c 24044
ee2d5c50
AC
24045Reply:
24046@table @samp
2f870471
AC
24047@item OK
24048success
24049@item
24050not supported
b8ff78ce 24051@item E @var{NN}
ee2d5c50 24052for an error
2f870471
AC
24053@end table
24054
b8ff78ce
JB
24055@item z1,@var{addr},@var{length}
24056@itemx Z1,@var{addr},@var{length}
24057@cindex @samp{z1} packet
24058@cindex @samp{Z1} packet
24059Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
24060address @var{addr} of size @var{length}.
2f870471
AC
24061
24062A hardware breakpoint is implemented using a mechanism that is not
24063dependant on being able to modify the target's memory.
24064
24065@emph{Implementation note: A hardware breakpoint is not affected by code
24066movement.}
24067
24068Reply:
24069@table @samp
ee2d5c50 24070@item OK
2f870471
AC
24071success
24072@item
24073not supported
b8ff78ce 24074@item E @var{NN}
2f870471
AC
24075for an error
24076@end table
24077
b8ff78ce
JB
24078@item z2,@var{addr},@var{length}
24079@itemx Z2,@var{addr},@var{length}
24080@cindex @samp{z2} packet
24081@cindex @samp{Z2} packet
24082Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
24083
24084Reply:
24085@table @samp
24086@item OK
24087success
24088@item
24089not supported
b8ff78ce 24090@item E @var{NN}
2f870471
AC
24091for an error
24092@end table
24093
b8ff78ce
JB
24094@item z3,@var{addr},@var{length}
24095@itemx Z3,@var{addr},@var{length}
24096@cindex @samp{z3} packet
24097@cindex @samp{Z3} packet
24098Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
24099
24100Reply:
24101@table @samp
24102@item OK
24103success
24104@item
24105not supported
b8ff78ce 24106@item E @var{NN}
2f870471
AC
24107for an error
24108@end table
24109
b8ff78ce
JB
24110@item z4,@var{addr},@var{length}
24111@itemx Z4,@var{addr},@var{length}
24112@cindex @samp{z4} packet
24113@cindex @samp{Z4} packet
24114Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
24115
24116Reply:
24117@table @samp
24118@item OK
24119success
24120@item
24121not supported
b8ff78ce 24122@item E @var{NN}
2f870471 24123for an error
ee2d5c50
AC
24124@end table
24125
24126@end table
c906108c 24127
ee2d5c50
AC
24128@node Stop Reply Packets
24129@section Stop Reply Packets
24130@cindex stop reply packets
c906108c 24131
8e04817f
AC
24132The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
24133receive any of the below as a reply. In the case of the @samp{C},
24134@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 24135when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
24136number} is defined by the header @file{include/gdb/signals.h} in the
24137@value{GDBN} source code.
c906108c 24138
b8ff78ce
JB
24139As in the description of request packets, we include spaces in the
24140reply templates for clarity; these are not part of the reply packet's
24141syntax. No @value{GDBN} stop reply packet uses spaces to separate its
24142components.
c906108c 24143
b8ff78ce 24144@table @samp
ee2d5c50 24145
b8ff78ce 24146@item S @var{AA}
599b237a 24147The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24148number). This is equivalent to a @samp{T} response with no
24149@var{n}:@var{r} pairs.
c906108c 24150
b8ff78ce
JB
24151@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
24152@cindex @samp{T} packet reply
599b237a 24153The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
24154number). This is equivalent to an @samp{S} response, except that the
24155@samp{@var{n}:@var{r}} pairs can carry values of important registers
24156and other information directly in the stop reply packet, reducing
24157round-trip latency. Single-step and breakpoint traps are reported
24158this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24159
24160@itemize @bullet
b8ff78ce 24161@item
599b237a 24162If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24163corresponding @var{r} gives that register's value. @var{r} is a
24164series of bytes in target byte order, with each byte given by a
24165two-digit hex number.
cfa9d6d9 24166
b8ff78ce
JB
24167@item
24168If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24169hex.
cfa9d6d9 24170
b8ff78ce 24171@item
cfa9d6d9
DJ
24172If @var{n} is a recognized @dfn{stop reason}, it describes a more
24173specific event that stopped the target. The currently defined stop
24174reasons are listed below. @var{aa} should be @samp{05}, the trap
24175signal. At most one stop reason should be present.
24176
b8ff78ce
JB
24177@item
24178Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24179and go on to the next; this allows us to extend the protocol in the
24180future.
cfa9d6d9
DJ
24181@end itemize
24182
24183The currently defined stop reasons are:
24184
24185@table @samp
24186@item watch
24187@itemx rwatch
24188@itemx awatch
24189The packet indicates a watchpoint hit, and @var{r} is the data address, in
24190hex.
24191
24192@cindex shared library events, remote reply
24193@item library
24194The packet indicates that the loaded libraries have changed.
24195@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24196list of loaded libraries. @var{r} is ignored.
24197@end table
ee2d5c50 24198
b8ff78ce 24199@item W @var{AA}
8e04817f 24200The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24201applicable to certain targets.
24202
b8ff78ce 24203@item X @var{AA}
8e04817f 24204The process terminated with signal @var{AA}.
c906108c 24205
b8ff78ce
JB
24206@item O @var{XX}@dots{}
24207@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24208written as the program's console output. This can happen at any time
24209while the program is running and the debugger should continue to wait
24210for @samp{W}, @samp{T}, etc.
0ce1b118 24211
b8ff78ce 24212@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24213@var{call-id} is the identifier which says which host system call should
24214be called. This is just the name of the function. Translation into the
24215correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24216@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24217system calls.
24218
b8ff78ce
JB
24219@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24220this very system call.
0ce1b118 24221
b8ff78ce
JB
24222The target replies with this packet when it expects @value{GDBN} to
24223call a host system call on behalf of the target. @value{GDBN} replies
24224with an appropriate @samp{F} packet and keeps up waiting for the next
24225reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24226or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24227Protocol Extension}, for more details.
0ce1b118 24228
ee2d5c50
AC
24229@end table
24230
24231@node General Query Packets
24232@section General Query Packets
9c16f35a 24233@cindex remote query requests
c906108c 24234
5f3bebba
JB
24235Packets starting with @samp{q} are @dfn{general query packets};
24236packets starting with @samp{Q} are @dfn{general set packets}. General
24237query and set packets are a semi-unified form for retrieving and
24238sending information to and from the stub.
24239
24240The initial letter of a query or set packet is followed by a name
24241indicating what sort of thing the packet applies to. For example,
24242@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24243definitions with the stub. These packet names follow some
24244conventions:
24245
24246@itemize @bullet
24247@item
24248The name must not contain commas, colons or semicolons.
24249@item
24250Most @value{GDBN} query and set packets have a leading upper case
24251letter.
24252@item
24253The names of custom vendor packets should use a company prefix, in
24254lower case, followed by a period. For example, packets designed at
24255the Acme Corporation might begin with @samp{qacme.foo} (for querying
24256foos) or @samp{Qacme.bar} (for setting bars).
24257@end itemize
24258
aa56d27a
JB
24259The name of a query or set packet should be separated from any
24260parameters by a @samp{:}; the parameters themselves should be
24261separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24262full packet name, and check for a separator or the end of the packet,
24263in case two packet names share a common prefix. New packets should not begin
24264with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24265packets predate these conventions, and have arguments without any terminator
24266for the packet name; we suspect they are in widespread use in places that
24267are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24268existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24269packet.}.
c906108c 24270
b8ff78ce
JB
24271Like the descriptions of the other packets, each description here
24272has a template showing the packet's overall syntax, followed by an
24273explanation of the packet's meaning. We include spaces in some of the
24274templates for clarity; these are not part of the packet's syntax. No
24275@value{GDBN} packet uses spaces to separate its components.
24276
5f3bebba
JB
24277Here are the currently defined query and set packets:
24278
b8ff78ce 24279@table @samp
c906108c 24280
b8ff78ce 24281@item qC
9c16f35a 24282@cindex current thread, remote request
b8ff78ce 24283@cindex @samp{qC} packet
ee2d5c50
AC
24284Return the current thread id.
24285
24286Reply:
24287@table @samp
b8ff78ce 24288@item QC @var{pid}
599b237a 24289Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24290@item @r{(anything else)}
ee2d5c50
AC
24291Any other reply implies the old pid.
24292@end table
24293
b8ff78ce 24294@item qCRC:@var{addr},@var{length}
ff2587ec 24295@cindex CRC of memory block, remote request
b8ff78ce
JB
24296@cindex @samp{qCRC} packet
24297Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24298Reply:
24299@table @samp
b8ff78ce 24300@item E @var{NN}
ff2587ec 24301An error (such as memory fault)
b8ff78ce
JB
24302@item C @var{crc32}
24303The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24304@end table
24305
b8ff78ce
JB
24306@item qfThreadInfo
24307@itemx qsThreadInfo
9c16f35a 24308@cindex list active threads, remote request
b8ff78ce
JB
24309@cindex @samp{qfThreadInfo} packet
24310@cindex @samp{qsThreadInfo} packet
24311Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24312may be too many active threads to fit into one reply packet, this query
24313works iteratively: it may require more than one query/reply sequence to
24314obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24315be the @samp{qfThreadInfo} query; subsequent queries in the
24316sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24317
b8ff78ce 24318NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24319
24320Reply:
24321@table @samp
b8ff78ce 24322@item m @var{id}
ee2d5c50 24323A single thread id
b8ff78ce 24324@item m @var{id},@var{id}@dots{}
ee2d5c50 24325a comma-separated list of thread ids
b8ff78ce
JB
24326@item l
24327(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24328@end table
24329
24330In response to each query, the target will reply with a list of one or
e1aac25b
JB
24331more thread ids, in big-endian unsigned hex, separated by commas.
24332@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24333ids (using the @samp{qs} form of the query), until the target responds
24334with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24335
b8ff78ce 24336@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24337@cindex get thread-local storage address, remote request
b8ff78ce 24338@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24339Fetch the address associated with thread local storage specified
24340by @var{thread-id}, @var{offset}, and @var{lm}.
24341
24342@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24343thread for which to fetch the TLS address.
24344
24345@var{offset} is the (big endian, hex encoded) offset associated with the
24346thread local variable. (This offset is obtained from the debug
24347information associated with the variable.)
24348
db2e3e2e 24349@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24350the load module associated with the thread local storage. For example,
24351a @sc{gnu}/Linux system will pass the link map address of the shared
24352object associated with the thread local storage under consideration.
24353Other operating environments may choose to represent the load module
24354differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24355
24356Reply:
b8ff78ce
JB
24357@table @samp
24358@item @var{XX}@dots{}
ff2587ec
WZ
24359Hex encoded (big endian) bytes representing the address of the thread
24360local storage requested.
24361
b8ff78ce
JB
24362@item E @var{nn}
24363An error occurred. @var{nn} are hex digits.
ff2587ec 24364
b8ff78ce
JB
24365@item
24366An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24367@end table
24368
b8ff78ce 24369@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24370Obtain thread information from RTOS. Where: @var{startflag} (one hex
24371digit) is one to indicate the first query and zero to indicate a
24372subsequent query; @var{threadcount} (two hex digits) is the maximum
24373number of threads the response packet can contain; and @var{nextthread}
24374(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24375returned in the response as @var{argthread}.
ee2d5c50 24376
b8ff78ce 24377Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24378
24379Reply:
24380@table @samp
b8ff78ce 24381@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24382Where: @var{count} (two hex digits) is the number of threads being
24383returned; @var{done} (one hex digit) is zero to indicate more threads
24384and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24385digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24386is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24387digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24388@end table
c906108c 24389
b8ff78ce 24390@item qOffsets
9c16f35a 24391@cindex section offsets, remote request
b8ff78ce 24392@cindex @samp{qOffsets} packet
31d99776
DJ
24393Get section offsets that the target used when relocating the downloaded
24394image.
c906108c 24395
ee2d5c50
AC
24396Reply:
24397@table @samp
31d99776
DJ
24398@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24399Relocate the @code{Text} section by @var{xxx} from its original address.
24400Relocate the @code{Data} section by @var{yyy} from its original address.
24401If the object file format provides segment information (e.g.@: @sc{elf}
24402@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24403segments by the supplied offsets.
24404
24405@emph{Note: while a @code{Bss} offset may be included in the response,
24406@value{GDBN} ignores this and instead applies the @code{Data} offset
24407to the @code{Bss} section.}
24408
24409@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24410Relocate the first segment of the object file, which conventionally
24411contains program code, to a starting address of @var{xxx}. If
24412@samp{DataSeg} is specified, relocate the second segment, which
24413conventionally contains modifiable data, to a starting address of
24414@var{yyy}. @value{GDBN} will report an error if the object file
24415does not contain segment information, or does not contain at least
24416as many segments as mentioned in the reply. Extra segments are
24417kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24418@end table
24419
b8ff78ce 24420@item qP @var{mode} @var{threadid}
9c16f35a 24421@cindex thread information, remote request
b8ff78ce 24422@cindex @samp{qP} packet
8e04817f
AC
24423Returns information on @var{threadid}. Where: @var{mode} is a hex
24424encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24425
aa56d27a
JB
24426Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24427(see below).
24428
b8ff78ce 24429Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24430
89be2091
DJ
24431@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24432@cindex pass signals to inferior, remote request
24433@cindex @samp{QPassSignals} packet
23181151 24434@anchor{QPassSignals}
89be2091
DJ
24435Each listed @var{signal} should be passed directly to the inferior process.
24436Signals are numbered identically to continue packets and stop replies
24437(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24438strictly greater than the previous item. These signals do not need to stop
24439the inferior, or be reported to @value{GDBN}. All other signals should be
24440reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24441combine; any earlier @samp{QPassSignals} list is completely replaced by the
24442new list. This packet improves performance when using @samp{handle
24443@var{signal} nostop noprint pass}.
24444
24445Reply:
24446@table @samp
24447@item OK
24448The request succeeded.
24449
24450@item E @var{nn}
24451An error occurred. @var{nn} are hex digits.
24452
24453@item
24454An empty reply indicates that @samp{QPassSignals} is not supported by
24455the stub.
24456@end table
24457
24458Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24459command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24460This packet is not probed by default; the remote stub must request it,
24461by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24462
b8ff78ce 24463@item qRcmd,@var{command}
ff2587ec 24464@cindex execute remote command, remote request
b8ff78ce 24465@cindex @samp{qRcmd} packet
ff2587ec 24466@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24467execution. Invalid commands should be reported using the output
24468string. Before the final result packet, the target may also respond
24469with a number of intermediate @samp{O@var{output}} console output
24470packets. @emph{Implementors should note that providing access to a
24471stubs's interpreter may have security implications}.
fa93a9d8 24472
ff2587ec
WZ
24473Reply:
24474@table @samp
24475@item OK
24476A command response with no output.
24477@item @var{OUTPUT}
24478A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24479@item E @var{NN}
ff2587ec 24480Indicate a badly formed request.
b8ff78ce
JB
24481@item
24482An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24483@end table
fa93a9d8 24484
aa56d27a
JB
24485(Note that the @code{qRcmd} packet's name is separated from the
24486command by a @samp{,}, not a @samp{:}, contrary to the naming
24487conventions above. Please don't use this packet as a model for new
24488packets.)
24489
be2a5f71
DJ
24490@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24491@cindex supported packets, remote query
24492@cindex features of the remote protocol
24493@cindex @samp{qSupported} packet
0876f84a 24494@anchor{qSupported}
be2a5f71
DJ
24495Tell the remote stub about features supported by @value{GDBN}, and
24496query the stub for features it supports. This packet allows
24497@value{GDBN} and the remote stub to take advantage of each others'
24498features. @samp{qSupported} also consolidates multiple feature probes
24499at startup, to improve @value{GDBN} performance---a single larger
24500packet performs better than multiple smaller probe packets on
24501high-latency links. Some features may enable behavior which must not
24502be on by default, e.g.@: because it would confuse older clients or
24503stubs. Other features may describe packets which could be
24504automatically probed for, but are not. These features must be
24505reported before @value{GDBN} will use them. This ``default
24506unsupported'' behavior is not appropriate for all packets, but it
24507helps to keep the initial connection time under control with new
24508versions of @value{GDBN} which support increasing numbers of packets.
24509
24510Reply:
24511@table @samp
24512@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24513The stub supports or does not support each returned @var{stubfeature},
24514depending on the form of each @var{stubfeature} (see below for the
24515possible forms).
24516@item
24517An empty reply indicates that @samp{qSupported} is not recognized,
24518or that no features needed to be reported to @value{GDBN}.
24519@end table
24520
24521The allowed forms for each feature (either a @var{gdbfeature} in the
24522@samp{qSupported} packet, or a @var{stubfeature} in the response)
24523are:
24524
24525@table @samp
24526@item @var{name}=@var{value}
24527The remote protocol feature @var{name} is supported, and associated
24528with the specified @var{value}. The format of @var{value} depends
24529on the feature, but it must not include a semicolon.
24530@item @var{name}+
24531The remote protocol feature @var{name} is supported, and does not
24532need an associated value.
24533@item @var{name}-
24534The remote protocol feature @var{name} is not supported.
24535@item @var{name}?
24536The remote protocol feature @var{name} may be supported, and
24537@value{GDBN} should auto-detect support in some other way when it is
24538needed. This form will not be used for @var{gdbfeature} notifications,
24539but may be used for @var{stubfeature} responses.
24540@end table
24541
24542Whenever the stub receives a @samp{qSupported} request, the
24543supplied set of @value{GDBN} features should override any previous
24544request. This allows @value{GDBN} to put the stub in a known
24545state, even if the stub had previously been communicating with
24546a different version of @value{GDBN}.
24547
24548No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24549are defined yet. Stubs should ignore any unknown values for
24550@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24551packet supports receiving packets of unlimited length (earlier
24552versions of @value{GDBN} may reject overly long responses). Values
24553for @var{gdbfeature} may be defined in the future to let the stub take
24554advantage of new features in @value{GDBN}, e.g.@: incompatible
24555improvements in the remote protocol---support for unlimited length
24556responses would be a @var{gdbfeature} example, if it were not implied by
24557the @samp{qSupported} query. The stub's reply should be independent
24558of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24559describes all the features it supports, and then the stub replies with
24560all the features it supports.
24561
24562Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24563responses, as long as each response uses one of the standard forms.
24564
24565Some features are flags. A stub which supports a flag feature
24566should respond with a @samp{+} form response. Other features
24567require values, and the stub should respond with an @samp{=}
24568form response.
24569
24570Each feature has a default value, which @value{GDBN} will use if
24571@samp{qSupported} is not available or if the feature is not mentioned
24572in the @samp{qSupported} response. The default values are fixed; a
24573stub is free to omit any feature responses that match the defaults.
24574
24575Not all features can be probed, but for those which can, the probing
24576mechanism is useful: in some cases, a stub's internal
24577architecture may not allow the protocol layer to know some information
24578about the underlying target in advance. This is especially common in
24579stubs which may be configured for multiple targets.
24580
24581These are the currently defined stub features and their properties:
24582
cfa9d6d9 24583@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24584@c NOTE: The first row should be @headitem, but we do not yet require
24585@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24586@item Feature Name
be2a5f71
DJ
24587@tab Value Required
24588@tab Default
24589@tab Probe Allowed
24590
24591@item @samp{PacketSize}
24592@tab Yes
24593@tab @samp{-}
24594@tab No
24595
0876f84a
DJ
24596@item @samp{qXfer:auxv:read}
24597@tab No
24598@tab @samp{-}
24599@tab Yes
24600
23181151
DJ
24601@item @samp{qXfer:features:read}
24602@tab No
24603@tab @samp{-}
24604@tab Yes
24605
cfa9d6d9
DJ
24606@item @samp{qXfer:libraries:read}
24607@tab No
24608@tab @samp{-}
24609@tab Yes
24610
68437a39
DJ
24611@item @samp{qXfer:memory-map:read}
24612@tab No
24613@tab @samp{-}
24614@tab Yes
24615
0e7f50da
UW
24616@item @samp{qXfer:spu:read}
24617@tab No
24618@tab @samp{-}
24619@tab Yes
24620
24621@item @samp{qXfer:spu:write}
24622@tab No
24623@tab @samp{-}
24624@tab Yes
24625
89be2091
DJ
24626@item @samp{QPassSignals}
24627@tab No
24628@tab @samp{-}
24629@tab Yes
24630
be2a5f71
DJ
24631@end multitable
24632
24633These are the currently defined stub features, in more detail:
24634
24635@table @samp
24636@cindex packet size, remote protocol
24637@item PacketSize=@var{bytes}
24638The remote stub can accept packets up to at least @var{bytes} in
24639length. @value{GDBN} will send packets up to this size for bulk
24640transfers, and will never send larger packets. This is a limit on the
24641data characters in the packet, including the frame and checksum.
24642There is no trailing NUL byte in a remote protocol packet; if the stub
24643stores packets in a NUL-terminated format, it should allow an extra
24644byte in its buffer for the NUL. If this stub feature is not supported,
24645@value{GDBN} guesses based on the size of the @samp{g} packet response.
24646
0876f84a
DJ
24647@item qXfer:auxv:read
24648The remote stub understands the @samp{qXfer:auxv:read} packet
24649(@pxref{qXfer auxiliary vector read}).
24650
23181151
DJ
24651@item qXfer:features:read
24652The remote stub understands the @samp{qXfer:features:read} packet
24653(@pxref{qXfer target description read}).
24654
cfa9d6d9
DJ
24655@item qXfer:libraries:read
24656The remote stub understands the @samp{qXfer:libraries:read} packet
24657(@pxref{qXfer library list read}).
24658
23181151
DJ
24659@item qXfer:memory-map:read
24660The remote stub understands the @samp{qXfer:memory-map:read} packet
24661(@pxref{qXfer memory map read}).
24662
0e7f50da
UW
24663@item qXfer:spu:read
24664The remote stub understands the @samp{qXfer:spu:read} packet
24665(@pxref{qXfer spu read}).
24666
24667@item qXfer:spu:write
24668The remote stub understands the @samp{qXfer:spu:write} packet
24669(@pxref{qXfer spu write}).
24670
23181151
DJ
24671@item QPassSignals
24672The remote stub understands the @samp{QPassSignals} packet
24673(@pxref{QPassSignals}).
24674
be2a5f71
DJ
24675@end table
24676
b8ff78ce 24677@item qSymbol::
ff2587ec 24678@cindex symbol lookup, remote request
b8ff78ce 24679@cindex @samp{qSymbol} packet
ff2587ec
WZ
24680Notify the target that @value{GDBN} is prepared to serve symbol lookup
24681requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24682
24683Reply:
ff2587ec 24684@table @samp
b8ff78ce 24685@item OK
ff2587ec 24686The target does not need to look up any (more) symbols.
b8ff78ce 24687@item qSymbol:@var{sym_name}
ff2587ec
WZ
24688The target requests the value of symbol @var{sym_name} (hex encoded).
24689@value{GDBN} may provide the value by using the
b8ff78ce
JB
24690@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24691below.
ff2587ec 24692@end table
83761cbd 24693
b8ff78ce 24694@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24695Set the value of @var{sym_name} to @var{sym_value}.
24696
24697@var{sym_name} (hex encoded) is the name of a symbol whose value the
24698target has previously requested.
24699
24700@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24701@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24702will be empty.
24703
24704Reply:
24705@table @samp
b8ff78ce 24706@item OK
ff2587ec 24707The target does not need to look up any (more) symbols.
b8ff78ce 24708@item qSymbol:@var{sym_name}
ff2587ec
WZ
24709The target requests the value of a new symbol @var{sym_name} (hex
24710encoded). @value{GDBN} will continue to supply the values of symbols
24711(if available), until the target ceases to request them.
fa93a9d8 24712@end table
0abb7bc7 24713
9d29849a
JB
24714@item QTDP
24715@itemx QTFrame
24716@xref{Tracepoint Packets}.
24717
b8ff78ce 24718@item qThreadExtraInfo,@var{id}
ff2587ec 24719@cindex thread attributes info, remote request
b8ff78ce
JB
24720@cindex @samp{qThreadExtraInfo} packet
24721Obtain a printable string description of a thread's attributes from
24722the target OS. @var{id} is a thread-id in big-endian hex. This
24723string may contain anything that the target OS thinks is interesting
24724for @value{GDBN} to tell the user about the thread. The string is
24725displayed in @value{GDBN}'s @code{info threads} display. Some
24726examples of possible thread extra info strings are @samp{Runnable}, or
24727@samp{Blocked on Mutex}.
ff2587ec
WZ
24728
24729Reply:
24730@table @samp
b8ff78ce
JB
24731@item @var{XX}@dots{}
24732Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24733comprising the printable string containing the extra information about
24734the thread's attributes.
ff2587ec 24735@end table
814e32d7 24736
aa56d27a
JB
24737(Note that the @code{qThreadExtraInfo} packet's name is separated from
24738the command by a @samp{,}, not a @samp{:}, contrary to the naming
24739conventions above. Please don't use this packet as a model for new
24740packets.)
24741
9d29849a
JB
24742@item QTStart
24743@itemx QTStop
24744@itemx QTinit
24745@itemx QTro
24746@itemx qTStatus
24747@xref{Tracepoint Packets}.
24748
0876f84a
DJ
24749@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24750@cindex read special object, remote request
24751@cindex @samp{qXfer} packet
68437a39 24752@anchor{qXfer read}
0876f84a
DJ
24753Read uninterpreted bytes from the target's special data area
24754identified by the keyword @var{object}. Request @var{length} bytes
24755starting at @var{offset} bytes into the data. The content and
0e7f50da 24756encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24757additional details about what data to access.
24758
24759Here are the specific requests of this form defined so far. All
24760@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24761formats, listed below.
24762
24763@table @samp
24764@item qXfer:auxv:read::@var{offset},@var{length}
24765@anchor{qXfer auxiliary vector read}
24766Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24767auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24768
24769This packet is not probed by default; the remote stub must request it,
89be2091 24770by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24771
23181151
DJ
24772@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24773@anchor{qXfer target description read}
24774Access the @dfn{target description}. @xref{Target Descriptions}. The
24775annex specifies which XML document to access. The main description is
24776always loaded from the @samp{target.xml} annex.
24777
24778This packet is not probed by default; the remote stub must request it,
24779by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24780
cfa9d6d9
DJ
24781@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24782@anchor{qXfer library list read}
24783Access the target's list of loaded libraries. @xref{Library List Format}.
24784The annex part of the generic @samp{qXfer} packet must be empty
24785(@pxref{qXfer read}).
24786
24787Targets which maintain a list of libraries in the program's memory do
24788not need to implement this packet; it is designed for platforms where
24789the operating system manages the list of loaded libraries.
24790
24791This packet is not probed by default; the remote stub must request it,
24792by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24793
68437a39
DJ
24794@item qXfer:memory-map:read::@var{offset},@var{length}
24795@anchor{qXfer memory map read}
79a6e687 24796Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24797annex part of the generic @samp{qXfer} packet must be empty
24798(@pxref{qXfer read}).
24799
0e7f50da
UW
24800This packet is not probed by default; the remote stub must request it,
24801by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24802
24803@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24804@anchor{qXfer spu read}
24805Read contents of an @code{spufs} file on the target system. The
24806annex specifies which file to read; it must be of the form
24807@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24808in the target process, and @var{name} identifes the @code{spufs} file
24809in that context to be accessed.
24810
68437a39
DJ
24811This packet is not probed by default; the remote stub must request it,
24812by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24813@end table
24814
0876f84a
DJ
24815Reply:
24816@table @samp
24817@item m @var{data}
24818Data @var{data} (@pxref{Binary Data}) has been read from the
24819target. There may be more data at a higher address (although
24820it is permitted to return @samp{m} even for the last valid
24821block of data, as long as at least one byte of data was read).
24822@var{data} may have fewer bytes than the @var{length} in the
24823request.
24824
24825@item l @var{data}
24826Data @var{data} (@pxref{Binary Data}) has been read from the target.
24827There is no more data to be read. @var{data} may have fewer bytes
24828than the @var{length} in the request.
24829
24830@item l
24831The @var{offset} in the request is at the end of the data.
24832There is no more data to be read.
24833
24834@item E00
24835The request was malformed, or @var{annex} was invalid.
24836
24837@item E @var{nn}
24838The offset was invalid, or there was an error encountered reading the data.
24839@var{nn} is a hex-encoded @code{errno} value.
24840
24841@item
24842An empty reply indicates the @var{object} string was not recognized by
24843the stub, or that the object does not support reading.
24844@end table
24845
24846@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24847@cindex write data into object, remote request
24848Write uninterpreted bytes into the target's special data area
24849identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24850into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24851(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24852is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24853to access.
24854
0e7f50da
UW
24855Here are the specific requests of this form defined so far. All
24856@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24857formats, listed below.
24858
24859@table @samp
24860@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24861@anchor{qXfer spu write}
24862Write @var{data} to an @code{spufs} file on the target system. The
24863annex specifies which file to write; it must be of the form
24864@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24865in the target process, and @var{name} identifes the @code{spufs} file
24866in that context to be accessed.
24867
24868This packet is not probed by default; the remote stub must request it,
24869by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24870@end table
0876f84a
DJ
24871
24872Reply:
24873@table @samp
24874@item @var{nn}
24875@var{nn} (hex encoded) is the number of bytes written.
24876This may be fewer bytes than supplied in the request.
24877
24878@item E00
24879The request was malformed, or @var{annex} was invalid.
24880
24881@item E @var{nn}
24882The offset was invalid, or there was an error encountered writing the data.
24883@var{nn} is a hex-encoded @code{errno} value.
24884
24885@item
24886An empty reply indicates the @var{object} string was not
24887recognized by the stub, or that the object does not support writing.
24888@end table
24889
24890@item qXfer:@var{object}:@var{operation}:@dots{}
24891Requests of this form may be added in the future. When a stub does
24892not recognize the @var{object} keyword, or its support for
24893@var{object} does not recognize the @var{operation} keyword, the stub
24894must respond with an empty packet.
24895
ee2d5c50
AC
24896@end table
24897
24898@node Register Packet Format
24899@section Register Packet Format
eb12ee30 24900
b8ff78ce 24901The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24902In the below, some thirty-two bit registers are transferred as
24903sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24904to fill the space allocated. Register bytes are transferred in target
24905byte order. The two nibbles within a register byte are transferred
ee2d5c50 24906most-significant - least-significant.
eb12ee30 24907
ee2d5c50 24908@table @r
eb12ee30 24909
8e04817f 24910@item MIPS32
ee2d5c50 24911
599b237a 24912All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2491332 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24914registers; fsr; fir; fp.
eb12ee30 24915
8e04817f 24916@item MIPS64
ee2d5c50 24917
599b237a 24918All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24919thirty-two bit registers such as @code{sr}). The ordering is the same
24920as @code{MIPS32}.
eb12ee30 24921
ee2d5c50
AC
24922@end table
24923
9d29849a
JB
24924@node Tracepoint Packets
24925@section Tracepoint Packets
24926@cindex tracepoint packets
24927@cindex packets, tracepoint
24928
24929Here we describe the packets @value{GDBN} uses to implement
24930tracepoints (@pxref{Tracepoints}).
24931
24932@table @samp
24933
24934@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24935Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24936is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24937the tracepoint is disabled. @var{step} is the tracepoint's step
24938count, and @var{pass} is its pass count. If the trailing @samp{-} is
24939present, further @samp{QTDP} packets will follow to specify this
24940tracepoint's actions.
24941
24942Replies:
24943@table @samp
24944@item OK
24945The packet was understood and carried out.
24946@item
24947The packet was not recognized.
24948@end table
24949
24950@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24951Define actions to be taken when a tracepoint is hit. @var{n} and
24952@var{addr} must be the same as in the initial @samp{QTDP} packet for
24953this tracepoint. This packet may only be sent immediately after
24954another @samp{QTDP} packet that ended with a @samp{-}. If the
24955trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24956specifying more actions for this tracepoint.
24957
24958In the series of action packets for a given tracepoint, at most one
24959can have an @samp{S} before its first @var{action}. If such a packet
24960is sent, it and the following packets define ``while-stepping''
24961actions. Any prior packets define ordinary actions --- that is, those
24962taken when the tracepoint is first hit. If no action packet has an
24963@samp{S}, then all the packets in the series specify ordinary
24964tracepoint actions.
24965
24966The @samp{@var{action}@dots{}} portion of the packet is a series of
24967actions, concatenated without separators. Each action has one of the
24968following forms:
24969
24970@table @samp
24971
24972@item R @var{mask}
24973Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24974a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24975@var{i} should be collected. (The least significant bit is numbered
24976zero.) Note that @var{mask} may be any number of digits long; it may
24977not fit in a 32-bit word.
24978
24979@item M @var{basereg},@var{offset},@var{len}
24980Collect @var{len} bytes of memory starting at the address in register
24981number @var{basereg}, plus @var{offset}. If @var{basereg} is
24982@samp{-1}, then the range has a fixed address: @var{offset} is the
24983address of the lowest byte to collect. The @var{basereg},
599b237a 24984@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24985values (the @samp{-1} value for @var{basereg} is a special case).
24986
24987@item X @var{len},@var{expr}
24988Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24989it directs. @var{expr} is an agent expression, as described in
24990@ref{Agent Expressions}. Each byte of the expression is encoded as a
24991two-digit hex number in the packet; @var{len} is the number of bytes
24992in the expression (and thus one-half the number of hex digits in the
24993packet).
24994
24995@end table
24996
24997Any number of actions may be packed together in a single @samp{QTDP}
24998packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24999length (400 bytes, for many stubs). There may be only one @samp{R}
25000action per tracepoint, and it must precede any @samp{M} or @samp{X}
25001actions. Any registers referred to by @samp{M} and @samp{X} actions
25002must be collected by a preceding @samp{R} action. (The
25003``while-stepping'' actions are treated as if they were attached to a
25004separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
25005
25006Replies:
25007@table @samp
25008@item OK
25009The packet was understood and carried out.
25010@item
25011The packet was not recognized.
25012@end table
25013
25014@item QTFrame:@var{n}
25015Select the @var{n}'th tracepoint frame from the buffer, and use the
25016register and memory contents recorded there to answer subsequent
25017request packets from @value{GDBN}.
25018
25019A successful reply from the stub indicates that the stub has found the
25020requested frame. The response is a series of parts, concatenated
25021without separators, describing the frame we selected. Each part has
25022one of the following forms:
25023
25024@table @samp
25025@item F @var{f}
25026The selected frame is number @var{n} in the trace frame buffer;
599b237a 25027@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
25028was no frame matching the criteria in the request packet.
25029
25030@item T @var{t}
25031The selected trace frame records a hit of tracepoint number @var{t};
599b237a 25032@var{t} is a hexadecimal number.
9d29849a
JB
25033
25034@end table
25035
25036@item QTFrame:pc:@var{addr}
25037Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25038currently selected frame whose PC is @var{addr};
599b237a 25039@var{addr} is a hexadecimal number.
9d29849a
JB
25040
25041@item QTFrame:tdp:@var{t}
25042Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25043currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 25044is a hexadecimal number.
9d29849a
JB
25045
25046@item QTFrame:range:@var{start}:@var{end}
25047Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
25048currently selected frame whose PC is between @var{start} (inclusive)
599b237a 25049and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
25050numbers.
25051
25052@item QTFrame:outside:@var{start}:@var{end}
25053Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
25054frame @emph{outside} the given range of addresses.
25055
25056@item QTStart
25057Begin the tracepoint experiment. Begin collecting data from tracepoint
25058hits in the trace frame buffer.
25059
25060@item QTStop
25061End the tracepoint experiment. Stop collecting trace frames.
25062
25063@item QTinit
25064Clear the table of tracepoints, and empty the trace frame buffer.
25065
25066@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
25067Establish the given ranges of memory as ``transparent''. The stub
25068will answer requests for these ranges from memory's current contents,
25069if they were not collected as part of the tracepoint hit.
25070
25071@value{GDBN} uses this to mark read-only regions of memory, like those
25072containing program code. Since these areas never change, they should
25073still have the same contents they did when the tracepoint was hit, so
25074there's no reason for the stub to refuse to provide their contents.
25075
25076@item qTStatus
25077Ask the stub if there is a trace experiment running right now.
25078
25079Replies:
25080@table @samp
25081@item T0
25082There is no trace experiment running.
25083@item T1
25084There is a trace experiment running.
25085@end table
25086
25087@end table
25088
25089
a6b151f1
DJ
25090@node Host I/O Packets
25091@section Host I/O Packets
25092@cindex Host I/O, remote protocol
25093@cindex file transfer, remote protocol
25094
25095The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
25096operations on the far side of a remote link. For example, Host I/O is
25097used to upload and download files to a remote target with its own
25098filesystem. Host I/O uses the same constant values and data structure
25099layout as the target-initiated File-I/O protocol. However, the
25100Host I/O packets are structured differently. The target-initiated
25101protocol relies on target memory to store parameters and buffers.
25102Host I/O requests are initiated by @value{GDBN}, and the
25103target's memory is not involved. @xref{File-I/O Remote Protocol
25104Extension}, for more details on the target-initiated protocol.
25105
25106The Host I/O request packets all encode a single operation along with
25107its arguments. They have this format:
25108
25109@table @samp
25110
25111@item vFile:@var{operation}: @var{parameter}@dots{}
25112@var{operation} is the name of the particular request; the target
25113should compare the entire packet name up to the second colon when checking
25114for a supported operation. The format of @var{parameter} depends on
25115the operation. Numbers are always passed in hexadecimal. Negative
25116numbers have an explicit minus sign (i.e.@: two's complement is not
25117used). Strings (e.g.@: filenames) are encoded as a series of
25118hexadecimal bytes. The last argument to a system call may be a
25119buffer of escaped binary data (@pxref{Binary Data}).
25120
25121@end table
25122
25123The valid responses to Host I/O packets are:
25124
25125@table @samp
25126
25127@item F @var{result} [, @var{errno}] [; @var{attachment}]
25128@var{result} is the integer value returned by this operation, usually
25129non-negative for success and -1 for errors. If an error has occured,
25130@var{errno} will be included in the result. @var{errno} will have a
25131value defined by the File-I/O protocol (@pxref{Errno Values}). For
25132operations which return data, @var{attachment} supplies the data as a
25133binary buffer. Binary buffers in response packets are escaped in the
25134normal way (@pxref{Binary Data}). See the individual packet
25135documentation for the interpretation of @var{result} and
25136@var{attachment}.
25137
25138@item
25139An empty response indicates that this operation is not recognized.
25140
25141@end table
25142
25143These are the supported Host I/O operations:
25144
25145@table @samp
25146@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
25147Open a file at @var{pathname} and return a file descriptor for it, or
25148return -1 if an error occurs. @var{pathname} is a string,
25149@var{flags} is an integer indicating a mask of open flags
25150(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
25151of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 25152@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
25153
25154@item vFile:close: @var{fd}
25155Close the open file corresponding to @var{fd} and return 0, or
25156-1 if an error occurs.
25157
25158@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25159Read data from the open file corresponding to @var{fd}. Up to
25160@var{count} bytes will be read from the file, starting at @var{offset}
25161relative to the start of the file. The target may read fewer bytes;
25162common reasons include packet size limits and an end-of-file
25163condition. The number of bytes read is returned. Zero should only be
25164returned for a successful read at the end of the file, or if
25165@var{count} was zero.
25166
25167The data read should be returned as a binary attachment on success.
25168If zero bytes were read, the response should include an empty binary
25169attachment (i.e.@: a trailing semicolon). The return value is the
25170number of target bytes read; the binary attachment may be longer if
25171some characters were escaped.
25172
25173@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25174Write @var{data} (a binary buffer) to the open file corresponding
25175to @var{fd}. Start the write at @var{offset} from the start of the
25176file. Unlike many @code{write} system calls, there is no
25177separate @var{count} argument; the length of @var{data} in the
25178packet is used. @samp{vFile:write} returns the number of bytes written,
25179which may be shorter than the length of @var{data}, or -1 if an
25180error occurred.
25181
25182@item vFile:unlink: @var{pathname}
25183Delete the file at @var{pathname} on the target. Return 0,
25184or -1 if an error occurs. @var{pathname} is a string.
25185
25186@end table
25187
9a6253be
KB
25188@node Interrupts
25189@section Interrupts
25190@cindex interrupts (remote protocol)
25191
25192When a program on the remote target is running, @value{GDBN} may
25193attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25194control of which is specified via @value{GDBN}'s @samp{remotebreak}
25195setting (@pxref{set remotebreak}).
25196
25197The precise meaning of @code{BREAK} is defined by the transport
25198mechanism and may, in fact, be undefined. @value{GDBN} does
25199not currently define a @code{BREAK} mechanism for any of the network
25200interfaces.
25201
25202@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25203transport mechanisms. It is represented by sending the single byte
25204@code{0x03} without any of the usual packet overhead described in
25205the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25206transmitted as part of a packet, it is considered to be packet data
25207and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25208(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25209@code{0x03} as part of its packet.
25210
25211Stubs are not required to recognize these interrupt mechanisms and the
25212precise meaning associated with receipt of the interrupt is
25213implementation defined. If the stub is successful at interrupting the
25214running program, it is expected that it will send one of the Stop
25215Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25216of successfully stopping the program. Interrupts received while the
25217program is stopped will be discarded.
25218
ee2d5c50
AC
25219@node Examples
25220@section Examples
eb12ee30 25221
8e04817f
AC
25222Example sequence of a target being re-started. Notice how the restart
25223does not get any direct output:
eb12ee30 25224
474c8240 25225@smallexample
d2c6833e
AC
25226-> @code{R00}
25227<- @code{+}
8e04817f 25228@emph{target restarts}
d2c6833e 25229-> @code{?}
8e04817f 25230<- @code{+}
d2c6833e
AC
25231<- @code{T001:1234123412341234}
25232-> @code{+}
474c8240 25233@end smallexample
eb12ee30 25234
8e04817f 25235Example sequence of a target being stepped by a single instruction:
eb12ee30 25236
474c8240 25237@smallexample
d2c6833e 25238-> @code{G1445@dots{}}
8e04817f 25239<- @code{+}
d2c6833e
AC
25240-> @code{s}
25241<- @code{+}
25242@emph{time passes}
25243<- @code{T001:1234123412341234}
8e04817f 25244-> @code{+}
d2c6833e 25245-> @code{g}
8e04817f 25246<- @code{+}
d2c6833e
AC
25247<- @code{1455@dots{}}
25248-> @code{+}
474c8240 25249@end smallexample
eb12ee30 25250
79a6e687
BW
25251@node File-I/O Remote Protocol Extension
25252@section File-I/O Remote Protocol Extension
0ce1b118
CV
25253@cindex File-I/O remote protocol extension
25254
25255@menu
25256* File-I/O Overview::
79a6e687
BW
25257* Protocol Basics::
25258* The F Request Packet::
25259* The F Reply Packet::
25260* The Ctrl-C Message::
0ce1b118 25261* Console I/O::
79a6e687 25262* List of Supported Calls::
db2e3e2e 25263* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25264* Constants::
25265* File-I/O Examples::
25266@end menu
25267
25268@node File-I/O Overview
25269@subsection File-I/O Overview
25270@cindex file-i/o overview
25271
9c16f35a 25272The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25273target to use the host's file system and console I/O to perform various
0ce1b118 25274system calls. System calls on the target system are translated into a
fc320d37
SL
25275remote protocol packet to the host system, which then performs the needed
25276actions and returns a response packet to the target system.
0ce1b118
CV
25277This simulates file system operations even on targets that lack file systems.
25278
fc320d37
SL
25279The protocol is defined to be independent of both the host and target systems.
25280It uses its own internal representation of datatypes and values. Both
0ce1b118 25281@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25282translating the system-dependent value representations into the internal
25283protocol representations when data is transmitted.
0ce1b118 25284
fc320d37
SL
25285The communication is synchronous. A system call is possible only when
25286@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25287or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25288the target is stopped to allow deterministic access to the target's
fc320d37
SL
25289memory. Therefore File-I/O is not interruptible by target signals. On
25290the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25291(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25292
25293The target's request to perform a host system call does not finish
25294the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25295after finishing the system call, the target returns to continuing the
25296previous activity (continue, step). No additional continue or step
25297request from @value{GDBN} is required.
25298
25299@smallexample
f7dc1244 25300(@value{GDBP}) continue
0ce1b118
CV
25301 <- target requests 'system call X'
25302 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25303 -> @value{GDBN} returns result
25304 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25305 <- target hits breakpoint and sends a Txx packet
25306@end smallexample
25307
fc320d37
SL
25308The protocol only supports I/O on the console and to regular files on
25309the host file system. Character or block special devices, pipes,
25310named pipes, sockets or any other communication method on the host
0ce1b118
CV
25311system are not supported by this protocol.
25312
79a6e687
BW
25313@node Protocol Basics
25314@subsection Protocol Basics
0ce1b118
CV
25315@cindex protocol basics, file-i/o
25316
fc320d37
SL
25317The File-I/O protocol uses the @code{F} packet as the request as well
25318as reply packet. Since a File-I/O system call can only occur when
25319@value{GDBN} is waiting for a response from the continuing or stepping target,
25320the File-I/O request is a reply that @value{GDBN} has to expect as a result
25321of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25322This @code{F} packet contains all information needed to allow @value{GDBN}
25323to call the appropriate host system call:
25324
25325@itemize @bullet
b383017d 25326@item
0ce1b118
CV
25327A unique identifier for the requested system call.
25328
25329@item
25330All parameters to the system call. Pointers are given as addresses
25331in the target memory address space. Pointers to strings are given as
b383017d 25332pointer/length pair. Numerical values are given as they are.
db2e3e2e 25333Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25334
25335@end itemize
25336
fc320d37 25337At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25338
25339@itemize @bullet
b383017d 25340@item
fc320d37
SL
25341If the parameters include pointer values to data needed as input to a
25342system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25343standard @code{m} packet request. This additional communication has to be
25344expected by the target implementation and is handled as any other @code{m}
25345packet.
25346
25347@item
25348@value{GDBN} translates all value from protocol representation to host
25349representation as needed. Datatypes are coerced into the host types.
25350
25351@item
fc320d37 25352@value{GDBN} calls the system call.
0ce1b118
CV
25353
25354@item
25355It then coerces datatypes back to protocol representation.
25356
25357@item
fc320d37
SL
25358If the system call is expected to return data in buffer space specified
25359by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25360target using a @code{M} or @code{X} packet. This packet has to be expected
25361by the target implementation and is handled as any other @code{M} or @code{X}
25362packet.
25363
25364@end itemize
25365
25366Eventually @value{GDBN} replies with another @code{F} packet which contains all
25367necessary information for the target to continue. This at least contains
25368
25369@itemize @bullet
25370@item
25371Return value.
25372
25373@item
25374@code{errno}, if has been changed by the system call.
25375
25376@item
25377``Ctrl-C'' flag.
25378
25379@end itemize
25380
25381After having done the needed type and value coercion, the target continues
25382the latest continue or step action.
25383
79a6e687
BW
25384@node The F Request Packet
25385@subsection The @code{F} Request Packet
0ce1b118
CV
25386@cindex file-i/o request packet
25387@cindex @code{F} request packet
25388
25389The @code{F} request packet has the following format:
25390
25391@table @samp
fc320d37 25392@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25393
25394@var{call-id} is the identifier to indicate the host system call to be called.
25395This is just the name of the function.
25396
fc320d37
SL
25397@var{parameter@dots{}} are the parameters to the system call.
25398Parameters are hexadecimal integer values, either the actual values in case
25399of scalar datatypes, pointers to target buffer space in case of compound
25400datatypes and unspecified memory areas, or pointer/length pairs in case
25401of string parameters. These are appended to the @var{call-id} as a
25402comma-delimited list. All values are transmitted in ASCII
25403string representation, pointer/length pairs separated by a slash.
0ce1b118 25404
b383017d 25405@end table
0ce1b118 25406
fc320d37 25407
0ce1b118 25408
79a6e687
BW
25409@node The F Reply Packet
25410@subsection The @code{F} Reply Packet
0ce1b118
CV
25411@cindex file-i/o reply packet
25412@cindex @code{F} reply packet
25413
25414The @code{F} reply packet has the following format:
25415
25416@table @samp
25417
d3bdde98 25418@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25419
25420@var{retcode} is the return code of the system call as hexadecimal value.
25421
db2e3e2e
BW
25422@var{errno} is the @code{errno} set by the call, in protocol-specific
25423representation.
0ce1b118
CV
25424This parameter can be omitted if the call was successful.
25425
fc320d37
SL
25426@var{Ctrl-C flag} is only sent if the user requested a break. In this
25427case, @var{errno} must be sent as well, even if the call was successful.
25428The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25429
25430@smallexample
25431F0,0,C
25432@end smallexample
25433
25434@noindent
fc320d37 25435or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25436
25437@smallexample
25438F-1,4,C
25439@end smallexample
25440
25441@noindent
db2e3e2e 25442assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25443
25444@end table
25445
0ce1b118 25446
79a6e687
BW
25447@node The Ctrl-C Message
25448@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25449@cindex ctrl-c message, in file-i/o protocol
25450
c8aa23ab 25451If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25452reply packet (@pxref{The F Reply Packet}),
fc320d37 25453the target should behave as if it had
0ce1b118 25454gotten a break message. The meaning for the target is ``system call
fc320d37 25455interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25456(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25457packet.
fc320d37
SL
25458
25459It's important for the target to know in which
25460state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25461
25462@itemize @bullet
25463@item
25464The system call hasn't been performed on the host yet.
25465
25466@item
25467The system call on the host has been finished.
25468
25469@end itemize
25470
25471These two states can be distinguished by the target by the value of the
25472returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25473call hasn't been performed. This is equivalent to the @code{EINTR} handling
25474on POSIX systems. In any other case, the target may presume that the
fc320d37 25475system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25476as if the break message arrived right after the system call.
25477
fc320d37 25478@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25479yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25480@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25481before the user requests a break, the full action must be finished by
25482@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25483The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25484or the full action has been completed.
25485
25486@node Console I/O
25487@subsection Console I/O
25488@cindex console i/o as part of file-i/o
25489
d3e8051b 25490By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25491descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25492on the @value{GDBN} console is handled as any other file output operation
25493(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25494by @value{GDBN} so that after the target read request from file descriptor
254950 all following typing is buffered until either one of the following
25496conditions is met:
25497
25498@itemize @bullet
25499@item
c8aa23ab 25500The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25501@code{read}
25502system call is treated as finished.
25503
25504@item
7f9087cb 25505The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25506newline.
0ce1b118
CV
25507
25508@item
c8aa23ab
EZ
25509The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25510character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25511
25512@end itemize
25513
fc320d37
SL
25514If the user has typed more characters than fit in the buffer given to
25515the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25516either another @code{read(0, @dots{})} is requested by the target, or debugging
25517is stopped at the user's request.
0ce1b118 25518
0ce1b118 25519
79a6e687
BW
25520@node List of Supported Calls
25521@subsection List of Supported Calls
0ce1b118
CV
25522@cindex list of supported file-i/o calls
25523
25524@menu
25525* open::
25526* close::
25527* read::
25528* write::
25529* lseek::
25530* rename::
25531* unlink::
25532* stat/fstat::
25533* gettimeofday::
25534* isatty::
25535* system::
25536@end menu
25537
25538@node open
25539@unnumberedsubsubsec open
25540@cindex open, file-i/o system call
25541
fc320d37
SL
25542@table @asis
25543@item Synopsis:
0ce1b118 25544@smallexample
0ce1b118
CV
25545int open(const char *pathname, int flags);
25546int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25547@end smallexample
25548
fc320d37
SL
25549@item Request:
25550@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25551
0ce1b118 25552@noindent
fc320d37 25553@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25554
25555@table @code
b383017d 25556@item O_CREAT
0ce1b118
CV
25557If the file does not exist it will be created. The host
25558rules apply as far as file ownership and time stamps
25559are concerned.
25560
b383017d 25561@item O_EXCL
fc320d37 25562When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25563an error and open() fails.
25564
b383017d 25565@item O_TRUNC
0ce1b118 25566If the file already exists and the open mode allows
fc320d37
SL
25567writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25568truncated to zero length.
0ce1b118 25569
b383017d 25570@item O_APPEND
0ce1b118
CV
25571The file is opened in append mode.
25572
b383017d 25573@item O_RDONLY
0ce1b118
CV
25574The file is opened for reading only.
25575
b383017d 25576@item O_WRONLY
0ce1b118
CV
25577The file is opened for writing only.
25578
b383017d 25579@item O_RDWR
0ce1b118 25580The file is opened for reading and writing.
fc320d37 25581@end table
0ce1b118
CV
25582
25583@noindent
fc320d37 25584Other bits are silently ignored.
0ce1b118 25585
0ce1b118
CV
25586
25587@noindent
fc320d37 25588@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25589
25590@table @code
b383017d 25591@item S_IRUSR
0ce1b118
CV
25592User has read permission.
25593
b383017d 25594@item S_IWUSR
0ce1b118
CV
25595User has write permission.
25596
b383017d 25597@item S_IRGRP
0ce1b118
CV
25598Group has read permission.
25599
b383017d 25600@item S_IWGRP
0ce1b118
CV
25601Group has write permission.
25602
b383017d 25603@item S_IROTH
0ce1b118
CV
25604Others have read permission.
25605
b383017d 25606@item S_IWOTH
0ce1b118 25607Others have write permission.
fc320d37 25608@end table
0ce1b118
CV
25609
25610@noindent
fc320d37 25611Other bits are silently ignored.
0ce1b118 25612
0ce1b118 25613
fc320d37
SL
25614@item Return value:
25615@code{open} returns the new file descriptor or -1 if an error
25616occurred.
0ce1b118 25617
fc320d37 25618@item Errors:
0ce1b118
CV
25619
25620@table @code
b383017d 25621@item EEXIST
fc320d37 25622@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25623
b383017d 25624@item EISDIR
fc320d37 25625@var{pathname} refers to a directory.
0ce1b118 25626
b383017d 25627@item EACCES
0ce1b118
CV
25628The requested access is not allowed.
25629
25630@item ENAMETOOLONG
fc320d37 25631@var{pathname} was too long.
0ce1b118 25632
b383017d 25633@item ENOENT
fc320d37 25634A directory component in @var{pathname} does not exist.
0ce1b118 25635
b383017d 25636@item ENODEV
fc320d37 25637@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25638
b383017d 25639@item EROFS
fc320d37 25640@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25641write access was requested.
25642
b383017d 25643@item EFAULT
fc320d37 25644@var{pathname} is an invalid pointer value.
0ce1b118 25645
b383017d 25646@item ENOSPC
0ce1b118
CV
25647No space on device to create the file.
25648
b383017d 25649@item EMFILE
0ce1b118
CV
25650The process already has the maximum number of files open.
25651
b383017d 25652@item ENFILE
0ce1b118
CV
25653The limit on the total number of files open on the system
25654has been reached.
25655
b383017d 25656@item EINTR
0ce1b118
CV
25657The call was interrupted by the user.
25658@end table
25659
fc320d37
SL
25660@end table
25661
0ce1b118
CV
25662@node close
25663@unnumberedsubsubsec close
25664@cindex close, file-i/o system call
25665
fc320d37
SL
25666@table @asis
25667@item Synopsis:
0ce1b118 25668@smallexample
0ce1b118 25669int close(int fd);
fc320d37 25670@end smallexample
0ce1b118 25671
fc320d37
SL
25672@item Request:
25673@samp{Fclose,@var{fd}}
0ce1b118 25674
fc320d37
SL
25675@item Return value:
25676@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25677
fc320d37 25678@item Errors:
0ce1b118
CV
25679
25680@table @code
b383017d 25681@item EBADF
fc320d37 25682@var{fd} isn't a valid open file descriptor.
0ce1b118 25683
b383017d 25684@item EINTR
0ce1b118
CV
25685The call was interrupted by the user.
25686@end table
25687
fc320d37
SL
25688@end table
25689
0ce1b118
CV
25690@node read
25691@unnumberedsubsubsec read
25692@cindex read, file-i/o system call
25693
fc320d37
SL
25694@table @asis
25695@item Synopsis:
0ce1b118 25696@smallexample
0ce1b118 25697int read(int fd, void *buf, unsigned int count);
fc320d37 25698@end smallexample
0ce1b118 25699
fc320d37
SL
25700@item Request:
25701@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25702
fc320d37 25703@item Return value:
0ce1b118
CV
25704On success, the number of bytes read is returned.
25705Zero indicates end of file. If count is zero, read
b383017d 25706returns zero as well. On error, -1 is returned.
0ce1b118 25707
fc320d37 25708@item Errors:
0ce1b118
CV
25709
25710@table @code
b383017d 25711@item EBADF
fc320d37 25712@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25713reading.
25714
b383017d 25715@item EFAULT
fc320d37 25716@var{bufptr} is an invalid pointer value.
0ce1b118 25717
b383017d 25718@item EINTR
0ce1b118
CV
25719The call was interrupted by the user.
25720@end table
25721
fc320d37
SL
25722@end table
25723
0ce1b118
CV
25724@node write
25725@unnumberedsubsubsec write
25726@cindex write, file-i/o system call
25727
fc320d37
SL
25728@table @asis
25729@item Synopsis:
0ce1b118 25730@smallexample
0ce1b118 25731int write(int fd, const void *buf, unsigned int count);
fc320d37 25732@end smallexample
0ce1b118 25733
fc320d37
SL
25734@item Request:
25735@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25736
fc320d37 25737@item Return value:
0ce1b118
CV
25738On success, the number of bytes written are returned.
25739Zero indicates nothing was written. On error, -1
25740is returned.
25741
fc320d37 25742@item Errors:
0ce1b118
CV
25743
25744@table @code
b383017d 25745@item EBADF
fc320d37 25746@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25747writing.
25748
b383017d 25749@item EFAULT
fc320d37 25750@var{bufptr} is an invalid pointer value.
0ce1b118 25751
b383017d 25752@item EFBIG
0ce1b118 25753An attempt was made to write a file that exceeds the
db2e3e2e 25754host-specific maximum file size allowed.
0ce1b118 25755
b383017d 25756@item ENOSPC
0ce1b118
CV
25757No space on device to write the data.
25758
b383017d 25759@item EINTR
0ce1b118
CV
25760The call was interrupted by the user.
25761@end table
25762
fc320d37
SL
25763@end table
25764
0ce1b118
CV
25765@node lseek
25766@unnumberedsubsubsec lseek
25767@cindex lseek, file-i/o system call
25768
fc320d37
SL
25769@table @asis
25770@item Synopsis:
0ce1b118 25771@smallexample
0ce1b118 25772long lseek (int fd, long offset, int flag);
0ce1b118
CV
25773@end smallexample
25774
fc320d37
SL
25775@item Request:
25776@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25777
25778@var{flag} is one of:
0ce1b118
CV
25779
25780@table @code
b383017d 25781@item SEEK_SET
fc320d37 25782The offset is set to @var{offset} bytes.
0ce1b118 25783
b383017d 25784@item SEEK_CUR
fc320d37 25785The offset is set to its current location plus @var{offset}
0ce1b118
CV
25786bytes.
25787
b383017d 25788@item SEEK_END
fc320d37 25789The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25790bytes.
25791@end table
25792
fc320d37 25793@item Return value:
0ce1b118
CV
25794On success, the resulting unsigned offset in bytes from
25795the beginning of the file is returned. Otherwise, a
25796value of -1 is returned.
25797
fc320d37 25798@item Errors:
0ce1b118
CV
25799
25800@table @code
b383017d 25801@item EBADF
fc320d37 25802@var{fd} is not a valid open file descriptor.
0ce1b118 25803
b383017d 25804@item ESPIPE
fc320d37 25805@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25806
b383017d 25807@item EINVAL
fc320d37 25808@var{flag} is not a proper value.
0ce1b118 25809
b383017d 25810@item EINTR
0ce1b118
CV
25811The call was interrupted by the user.
25812@end table
25813
fc320d37
SL
25814@end table
25815
0ce1b118
CV
25816@node rename
25817@unnumberedsubsubsec rename
25818@cindex rename, file-i/o system call
25819
fc320d37
SL
25820@table @asis
25821@item Synopsis:
0ce1b118 25822@smallexample
0ce1b118 25823int rename(const char *oldpath, const char *newpath);
fc320d37 25824@end smallexample
0ce1b118 25825
fc320d37
SL
25826@item Request:
25827@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25828
fc320d37 25829@item Return value:
0ce1b118
CV
25830On success, zero is returned. On error, -1 is returned.
25831
fc320d37 25832@item Errors:
0ce1b118
CV
25833
25834@table @code
b383017d 25835@item EISDIR
fc320d37 25836@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25837directory.
25838
b383017d 25839@item EEXIST
fc320d37 25840@var{newpath} is a non-empty directory.
0ce1b118 25841
b383017d 25842@item EBUSY
fc320d37 25843@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25844process.
25845
b383017d 25846@item EINVAL
0ce1b118
CV
25847An attempt was made to make a directory a subdirectory
25848of itself.
25849
b383017d 25850@item ENOTDIR
fc320d37
SL
25851A component used as a directory in @var{oldpath} or new
25852path is not a directory. Or @var{oldpath} is a directory
25853and @var{newpath} exists but is not a directory.
0ce1b118 25854
b383017d 25855@item EFAULT
fc320d37 25856@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25857
b383017d 25858@item EACCES
0ce1b118
CV
25859No access to the file or the path of the file.
25860
25861@item ENAMETOOLONG
b383017d 25862
fc320d37 25863@var{oldpath} or @var{newpath} was too long.
0ce1b118 25864
b383017d 25865@item ENOENT
fc320d37 25866A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25867
b383017d 25868@item EROFS
0ce1b118
CV
25869The file is on a read-only filesystem.
25870
b383017d 25871@item ENOSPC
0ce1b118
CV
25872The device containing the file has no room for the new
25873directory entry.
25874
b383017d 25875@item EINTR
0ce1b118
CV
25876The call was interrupted by the user.
25877@end table
25878
fc320d37
SL
25879@end table
25880
0ce1b118
CV
25881@node unlink
25882@unnumberedsubsubsec unlink
25883@cindex unlink, file-i/o system call
25884
fc320d37
SL
25885@table @asis
25886@item Synopsis:
0ce1b118 25887@smallexample
0ce1b118 25888int unlink(const char *pathname);
fc320d37 25889@end smallexample
0ce1b118 25890
fc320d37
SL
25891@item Request:
25892@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25893
fc320d37 25894@item Return value:
0ce1b118
CV
25895On success, zero is returned. On error, -1 is returned.
25896
fc320d37 25897@item Errors:
0ce1b118
CV
25898
25899@table @code
b383017d 25900@item EACCES
0ce1b118
CV
25901No access to the file or the path of the file.
25902
b383017d 25903@item EPERM
0ce1b118
CV
25904The system does not allow unlinking of directories.
25905
b383017d 25906@item EBUSY
fc320d37 25907The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25908being used by another process.
25909
b383017d 25910@item EFAULT
fc320d37 25911@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25912
25913@item ENAMETOOLONG
fc320d37 25914@var{pathname} was too long.
0ce1b118 25915
b383017d 25916@item ENOENT
fc320d37 25917A directory component in @var{pathname} does not exist.
0ce1b118 25918
b383017d 25919@item ENOTDIR
0ce1b118
CV
25920A component of the path is not a directory.
25921
b383017d 25922@item EROFS
0ce1b118
CV
25923The file is on a read-only filesystem.
25924
b383017d 25925@item EINTR
0ce1b118
CV
25926The call was interrupted by the user.
25927@end table
25928
fc320d37
SL
25929@end table
25930
0ce1b118
CV
25931@node stat/fstat
25932@unnumberedsubsubsec stat/fstat
25933@cindex fstat, file-i/o system call
25934@cindex stat, file-i/o system call
25935
fc320d37
SL
25936@table @asis
25937@item Synopsis:
0ce1b118 25938@smallexample
0ce1b118
CV
25939int stat(const char *pathname, struct stat *buf);
25940int fstat(int fd, struct stat *buf);
fc320d37 25941@end smallexample
0ce1b118 25942
fc320d37
SL
25943@item Request:
25944@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25945@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25946
fc320d37 25947@item Return value:
0ce1b118
CV
25948On success, zero is returned. On error, -1 is returned.
25949
fc320d37 25950@item Errors:
0ce1b118
CV
25951
25952@table @code
b383017d 25953@item EBADF
fc320d37 25954@var{fd} is not a valid open file.
0ce1b118 25955
b383017d 25956@item ENOENT
fc320d37 25957A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25958path is an empty string.
25959
b383017d 25960@item ENOTDIR
0ce1b118
CV
25961A component of the path is not a directory.
25962
b383017d 25963@item EFAULT
fc320d37 25964@var{pathnameptr} is an invalid pointer value.
0ce1b118 25965
b383017d 25966@item EACCES
0ce1b118
CV
25967No access to the file or the path of the file.
25968
25969@item ENAMETOOLONG
fc320d37 25970@var{pathname} was too long.
0ce1b118 25971
b383017d 25972@item EINTR
0ce1b118
CV
25973The call was interrupted by the user.
25974@end table
25975
fc320d37
SL
25976@end table
25977
0ce1b118
CV
25978@node gettimeofday
25979@unnumberedsubsubsec gettimeofday
25980@cindex gettimeofday, file-i/o system call
25981
fc320d37
SL
25982@table @asis
25983@item Synopsis:
0ce1b118 25984@smallexample
0ce1b118 25985int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25986@end smallexample
0ce1b118 25987
fc320d37
SL
25988@item Request:
25989@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25990
fc320d37 25991@item Return value:
0ce1b118
CV
25992On success, 0 is returned, -1 otherwise.
25993
fc320d37 25994@item Errors:
0ce1b118
CV
25995
25996@table @code
b383017d 25997@item EINVAL
fc320d37 25998@var{tz} is a non-NULL pointer.
0ce1b118 25999
b383017d 26000@item EFAULT
fc320d37
SL
26001@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
26002@end table
26003
0ce1b118
CV
26004@end table
26005
26006@node isatty
26007@unnumberedsubsubsec isatty
26008@cindex isatty, file-i/o system call
26009
fc320d37
SL
26010@table @asis
26011@item Synopsis:
0ce1b118 26012@smallexample
0ce1b118 26013int isatty(int fd);
fc320d37 26014@end smallexample
0ce1b118 26015
fc320d37
SL
26016@item Request:
26017@samp{Fisatty,@var{fd}}
0ce1b118 26018
fc320d37
SL
26019@item Return value:
26020Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 26021
fc320d37 26022@item Errors:
0ce1b118
CV
26023
26024@table @code
b383017d 26025@item EINTR
0ce1b118
CV
26026The call was interrupted by the user.
26027@end table
26028
fc320d37
SL
26029@end table
26030
26031Note that the @code{isatty} call is treated as a special case: it returns
260321 to the target if the file descriptor is attached
26033to the @value{GDBN} console, 0 otherwise. Implementing through system calls
26034would require implementing @code{ioctl} and would be more complex than
26035needed.
26036
26037
0ce1b118
CV
26038@node system
26039@unnumberedsubsubsec system
26040@cindex system, file-i/o system call
26041
fc320d37
SL
26042@table @asis
26043@item Synopsis:
0ce1b118 26044@smallexample
0ce1b118 26045int system(const char *command);
fc320d37 26046@end smallexample
0ce1b118 26047
fc320d37
SL
26048@item Request:
26049@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 26050
fc320d37 26051@item Return value:
5600ea19
NS
26052If @var{len} is zero, the return value indicates whether a shell is
26053available. A zero return value indicates a shell is not available.
26054For non-zero @var{len}, the value returned is -1 on error and the
26055return status of the command otherwise. Only the exit status of the
26056command is returned, which is extracted from the host's @code{system}
26057return value by calling @code{WEXITSTATUS(retval)}. In case
26058@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 26059
fc320d37 26060@item Errors:
0ce1b118
CV
26061
26062@table @code
b383017d 26063@item EINTR
0ce1b118
CV
26064The call was interrupted by the user.
26065@end table
26066
fc320d37
SL
26067@end table
26068
26069@value{GDBN} takes over the full task of calling the necessary host calls
26070to perform the @code{system} call. The return value of @code{system} on
26071the host is simplified before it's returned
26072to the target. Any termination signal information from the child process
26073is discarded, and the return value consists
26074entirely of the exit status of the called command.
26075
26076Due to security concerns, the @code{system} call is by default refused
26077by @value{GDBN}. The user has to allow this call explicitly with the
26078@code{set remote system-call-allowed 1} command.
26079
26080@table @code
26081@item set remote system-call-allowed
26082@kindex set remote system-call-allowed
26083Control whether to allow the @code{system} calls in the File I/O
26084protocol for the remote target. The default is zero (disabled).
26085
26086@item show remote system-call-allowed
26087@kindex show remote system-call-allowed
26088Show whether the @code{system} calls are allowed in the File I/O
26089protocol.
26090@end table
26091
db2e3e2e
BW
26092@node Protocol-specific Representation of Datatypes
26093@subsection Protocol-specific Representation of Datatypes
26094@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
26095
26096@menu
79a6e687
BW
26097* Integral Datatypes::
26098* Pointer Values::
26099* Memory Transfer::
0ce1b118
CV
26100* struct stat::
26101* struct timeval::
26102@end menu
26103
79a6e687
BW
26104@node Integral Datatypes
26105@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
26106@cindex integral datatypes, in file-i/o protocol
26107
fc320d37
SL
26108The integral datatypes used in the system calls are @code{int},
26109@code{unsigned int}, @code{long}, @code{unsigned long},
26110@code{mode_t}, and @code{time_t}.
0ce1b118 26111
fc320d37 26112@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
26113implemented as 32 bit values in this protocol.
26114
fc320d37 26115@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 26116
0ce1b118
CV
26117@xref{Limits}, for corresponding MIN and MAX values (similar to those
26118in @file{limits.h}) to allow range checking on host and target.
26119
26120@code{time_t} datatypes are defined as seconds since the Epoch.
26121
26122All integral datatypes transferred as part of a memory read or write of a
26123structured datatype e.g.@: a @code{struct stat} have to be given in big endian
26124byte order.
26125
79a6e687
BW
26126@node Pointer Values
26127@unnumberedsubsubsec Pointer Values
0ce1b118
CV
26128@cindex pointer values, in file-i/o protocol
26129
26130Pointers to target data are transmitted as they are. An exception
26131is made for pointers to buffers for which the length isn't
26132transmitted as part of the function call, namely strings. Strings
26133are transmitted as a pointer/length pair, both as hex values, e.g.@:
26134
26135@smallexample
26136@code{1aaf/12}
26137@end smallexample
26138
26139@noindent
26140which is a pointer to data of length 18 bytes at position 0x1aaf.
26141The length is defined as the full string length in bytes, including
fc320d37
SL
26142the trailing null byte. For example, the string @code{"hello world"}
26143at address 0x123456 is transmitted as
0ce1b118
CV
26144
26145@smallexample
fc320d37 26146@code{123456/d}
0ce1b118
CV
26147@end smallexample
26148
79a6e687
BW
26149@node Memory Transfer
26150@unnumberedsubsubsec Memory Transfer
fc320d37
SL
26151@cindex memory transfer, in file-i/o protocol
26152
26153Structured data which is transferred using a memory read or write (for
db2e3e2e 26154example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
26155with all scalar multibyte datatypes being big endian. Translation to
26156this representation needs to be done both by the target before the @code{F}
26157packet is sent, and by @value{GDBN} before
26158it transfers memory to the target. Transferred pointers to structured
26159data should point to the already-coerced data at any time.
0ce1b118 26160
0ce1b118
CV
26161
26162@node struct stat
26163@unnumberedsubsubsec struct stat
26164@cindex struct stat, in file-i/o protocol
26165
fc320d37
SL
26166The buffer of type @code{struct stat} used by the target and @value{GDBN}
26167is defined as follows:
0ce1b118
CV
26168
26169@smallexample
26170struct stat @{
26171 unsigned int st_dev; /* device */
26172 unsigned int st_ino; /* inode */
26173 mode_t st_mode; /* protection */
26174 unsigned int st_nlink; /* number of hard links */
26175 unsigned int st_uid; /* user ID of owner */
26176 unsigned int st_gid; /* group ID of owner */
26177 unsigned int st_rdev; /* device type (if inode device) */
26178 unsigned long st_size; /* total size, in bytes */
26179 unsigned long st_blksize; /* blocksize for filesystem I/O */
26180 unsigned long st_blocks; /* number of blocks allocated */
26181 time_t st_atime; /* time of last access */
26182 time_t st_mtime; /* time of last modification */
26183 time_t st_ctime; /* time of last change */
26184@};
26185@end smallexample
26186
fc320d37 26187The integral datatypes conform to the definitions given in the
79a6e687 26188appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26189structure is of size 64 bytes.
26190
26191The values of several fields have a restricted meaning and/or
26192range of values.
26193
fc320d37 26194@table @code
0ce1b118 26195
fc320d37
SL
26196@item st_dev
26197A value of 0 represents a file, 1 the console.
0ce1b118 26198
fc320d37
SL
26199@item st_ino
26200No valid meaning for the target. Transmitted unchanged.
0ce1b118 26201
fc320d37
SL
26202@item st_mode
26203Valid mode bits are described in @ref{Constants}. Any other
26204bits have currently no meaning for the target.
0ce1b118 26205
fc320d37
SL
26206@item st_uid
26207@itemx st_gid
26208@itemx st_rdev
26209No valid meaning for the target. Transmitted unchanged.
0ce1b118 26210
fc320d37
SL
26211@item st_atime
26212@itemx st_mtime
26213@itemx st_ctime
26214These values have a host and file system dependent
26215accuracy. Especially on Windows hosts, the file system may not
26216support exact timing values.
26217@end table
0ce1b118 26218
fc320d37
SL
26219The target gets a @code{struct stat} of the above representation and is
26220responsible for coercing it to the target representation before
0ce1b118
CV
26221continuing.
26222
fc320d37
SL
26223Note that due to size differences between the host, target, and protocol
26224representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26225get truncated on the target.
26226
26227@node struct timeval
26228@unnumberedsubsubsec struct timeval
26229@cindex struct timeval, in file-i/o protocol
26230
fc320d37 26231The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26232is defined as follows:
26233
26234@smallexample
b383017d 26235struct timeval @{
0ce1b118
CV
26236 time_t tv_sec; /* second */
26237 long tv_usec; /* microsecond */
26238@};
26239@end smallexample
26240
fc320d37 26241The integral datatypes conform to the definitions given in the
79a6e687 26242appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26243structure is of size 8 bytes.
26244
26245@node Constants
26246@subsection Constants
26247@cindex constants, in file-i/o protocol
26248
26249The following values are used for the constants inside of the
fc320d37 26250protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26251values before and after the call as needed.
26252
26253@menu
79a6e687
BW
26254* Open Flags::
26255* mode_t Values::
26256* Errno Values::
26257* Lseek Flags::
0ce1b118
CV
26258* Limits::
26259@end menu
26260
79a6e687
BW
26261@node Open Flags
26262@unnumberedsubsubsec Open Flags
0ce1b118
CV
26263@cindex open flags, in file-i/o protocol
26264
26265All values are given in hexadecimal representation.
26266
26267@smallexample
26268 O_RDONLY 0x0
26269 O_WRONLY 0x1
26270 O_RDWR 0x2
26271 O_APPEND 0x8
26272 O_CREAT 0x200
26273 O_TRUNC 0x400
26274 O_EXCL 0x800
26275@end smallexample
26276
79a6e687
BW
26277@node mode_t Values
26278@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26279@cindex mode_t values, in file-i/o protocol
26280
26281All values are given in octal representation.
26282
26283@smallexample
26284 S_IFREG 0100000
26285 S_IFDIR 040000
26286 S_IRUSR 0400
26287 S_IWUSR 0200
26288 S_IXUSR 0100
26289 S_IRGRP 040
26290 S_IWGRP 020
26291 S_IXGRP 010
26292 S_IROTH 04
26293 S_IWOTH 02
26294 S_IXOTH 01
26295@end smallexample
26296
79a6e687
BW
26297@node Errno Values
26298@unnumberedsubsubsec Errno Values
0ce1b118
CV
26299@cindex errno values, in file-i/o protocol
26300
26301All values are given in decimal representation.
26302
26303@smallexample
26304 EPERM 1
26305 ENOENT 2
26306 EINTR 4
26307 EBADF 9
26308 EACCES 13
26309 EFAULT 14
26310 EBUSY 16
26311 EEXIST 17
26312 ENODEV 19
26313 ENOTDIR 20
26314 EISDIR 21
26315 EINVAL 22
26316 ENFILE 23
26317 EMFILE 24
26318 EFBIG 27
26319 ENOSPC 28
26320 ESPIPE 29
26321 EROFS 30
26322 ENAMETOOLONG 91
26323 EUNKNOWN 9999
26324@end smallexample
26325
fc320d37 26326 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26327 any error value not in the list of supported error numbers.
26328
79a6e687
BW
26329@node Lseek Flags
26330@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26331@cindex lseek flags, in file-i/o protocol
26332
26333@smallexample
26334 SEEK_SET 0
26335 SEEK_CUR 1
26336 SEEK_END 2
26337@end smallexample
26338
26339@node Limits
26340@unnumberedsubsubsec Limits
26341@cindex limits, in file-i/o protocol
26342
26343All values are given in decimal representation.
26344
26345@smallexample
26346 INT_MIN -2147483648
26347 INT_MAX 2147483647
26348 UINT_MAX 4294967295
26349 LONG_MIN -9223372036854775808
26350 LONG_MAX 9223372036854775807
26351 ULONG_MAX 18446744073709551615
26352@end smallexample
26353
26354@node File-I/O Examples
26355@subsection File-I/O Examples
26356@cindex file-i/o examples
26357
26358Example sequence of a write call, file descriptor 3, buffer is at target
26359address 0x1234, 6 bytes should be written:
26360
26361@smallexample
26362<- @code{Fwrite,3,1234,6}
26363@emph{request memory read from target}
26364-> @code{m1234,6}
26365<- XXXXXX
26366@emph{return "6 bytes written"}
26367-> @code{F6}
26368@end smallexample
26369
26370Example sequence of a read call, file descriptor 3, buffer is at target
26371address 0x1234, 6 bytes should be read:
26372
26373@smallexample
26374<- @code{Fread,3,1234,6}
26375@emph{request memory write to target}
26376-> @code{X1234,6:XXXXXX}
26377@emph{return "6 bytes read"}
26378-> @code{F6}
26379@end smallexample
26380
26381Example sequence of a read call, call fails on the host due to invalid
fc320d37 26382file descriptor (@code{EBADF}):
0ce1b118
CV
26383
26384@smallexample
26385<- @code{Fread,3,1234,6}
26386-> @code{F-1,9}
26387@end smallexample
26388
c8aa23ab 26389Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26390host is called:
26391
26392@smallexample
26393<- @code{Fread,3,1234,6}
26394-> @code{F-1,4,C}
26395<- @code{T02}
26396@end smallexample
26397
c8aa23ab 26398Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26399host is called:
26400
26401@smallexample
26402<- @code{Fread,3,1234,6}
26403-> @code{X1234,6:XXXXXX}
26404<- @code{T02}
26405@end smallexample
26406
cfa9d6d9
DJ
26407@node Library List Format
26408@section Library List Format
26409@cindex library list format, remote protocol
26410
26411On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26412same process as your application to manage libraries. In this case,
26413@value{GDBN} can use the loader's symbol table and normal memory
26414operations to maintain a list of shared libraries. On other
26415platforms, the operating system manages loaded libraries.
26416@value{GDBN} can not retrieve the list of currently loaded libraries
26417through memory operations, so it uses the @samp{qXfer:libraries:read}
26418packet (@pxref{qXfer library list read}) instead. The remote stub
26419queries the target's operating system and reports which libraries
26420are loaded.
26421
26422The @samp{qXfer:libraries:read} packet returns an XML document which
26423lists loaded libraries and their offsets. Each library has an
1fddbabb
PA
26424associated name and one or more segment or section base addresses,
26425which report where the library was loaded in memory.
26426
26427For the common case of libraries that are fully linked binaries, the
26428library should have a list of segments. If the target supports
26429dynamic linking of a relocatable object file, its library XML element
26430should instead include a list of allocated sections. The segment or
26431section bases are start addresses, not relocation offsets; they do not
26432depend on the library's link-time base addresses.
cfa9d6d9 26433
9cceb671
DJ
26434@value{GDBN} must be linked with the Expat library to support XML
26435library lists. @xref{Expat}.
26436
cfa9d6d9
DJ
26437A simple memory map, with one loaded library relocated by a single
26438offset, looks like this:
26439
26440@smallexample
26441<library-list>
26442 <library name="/lib/libc.so.6">
26443 <segment address="0x10000000"/>
26444 </library>
26445</library-list>
26446@end smallexample
26447
1fddbabb
PA
26448Another simple memory map, with one loaded library with three
26449allocated sections (.text, .data, .bss), looks like this:
26450
26451@smallexample
26452<library-list>
26453 <library name="sharedlib.o">
26454 <section address="0x10000000"/>
26455 <section address="0x20000000"/>
26456 <section address="0x30000000"/>
26457 </library>
26458</library-list>
26459@end smallexample
26460
cfa9d6d9
DJ
26461The format of a library list is described by this DTD:
26462
26463@smallexample
26464<!-- library-list: Root element with versioning -->
26465<!ELEMENT library-list (library)*>
26466<!ATTLIST library-list version CDATA #FIXED "1.0">
1fddbabb 26467<!ELEMENT library (segment*, section*)>
cfa9d6d9
DJ
26468<!ATTLIST library name CDATA #REQUIRED>
26469<!ELEMENT segment EMPTY>
26470<!ATTLIST segment address CDATA #REQUIRED>
1fddbabb
PA
26471<!ELEMENT section EMPTY>
26472<!ATTLIST section address CDATA #REQUIRED>
cfa9d6d9
DJ
26473@end smallexample
26474
1fddbabb
PA
26475In addition, segments and section descriptors cannot be mixed within a
26476single library element, and you must supply at least one segment or
26477section for each library.
26478
79a6e687
BW
26479@node Memory Map Format
26480@section Memory Map Format
68437a39
DJ
26481@cindex memory map format
26482
26483To be able to write into flash memory, @value{GDBN} needs to obtain a
26484memory map from the target. This section describes the format of the
26485memory map.
26486
26487The memory map is obtained using the @samp{qXfer:memory-map:read}
26488(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26489lists memory regions.
26490
26491@value{GDBN} must be linked with the Expat library to support XML
26492memory maps. @xref{Expat}.
26493
26494The top-level structure of the document is shown below:
68437a39
DJ
26495
26496@smallexample
26497<?xml version="1.0"?>
26498<!DOCTYPE memory-map
26499 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26500 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26501<memory-map>
26502 region...
26503</memory-map>
26504@end smallexample
26505
26506Each region can be either:
26507
26508@itemize
26509
26510@item
26511A region of RAM starting at @var{addr} and extending for @var{length}
26512bytes from there:
26513
26514@smallexample
26515<memory type="ram" start="@var{addr}" length="@var{length}"/>
26516@end smallexample
26517
26518
26519@item
26520A region of read-only memory:
26521
26522@smallexample
26523<memory type="rom" start="@var{addr}" length="@var{length}"/>
26524@end smallexample
26525
26526
26527@item
26528A region of flash memory, with erasure blocks @var{blocksize}
26529bytes in length:
26530
26531@smallexample
26532<memory type="flash" start="@var{addr}" length="@var{length}">
26533 <property name="blocksize">@var{blocksize}</property>
26534</memory>
26535@end smallexample
26536
26537@end itemize
26538
26539Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26540by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26541packets to write to addresses in such ranges.
26542
26543The formal DTD for memory map format is given below:
26544
26545@smallexample
26546<!-- ................................................... -->
26547<!-- Memory Map XML DTD ................................ -->
26548<!-- File: memory-map.dtd .............................. -->
26549<!-- .................................... .............. -->
26550<!-- memory-map.dtd -->
26551<!-- memory-map: Root element with versioning -->
26552<!ELEMENT memory-map (memory | property)>
26553<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26554<!ELEMENT memory (property)>
26555<!-- memory: Specifies a memory region,
26556 and its type, or device. -->
26557<!ATTLIST memory type CDATA #REQUIRED
26558 start CDATA #REQUIRED
26559 length CDATA #REQUIRED
26560 device CDATA #IMPLIED>
26561<!-- property: Generic attribute tag -->
26562<!ELEMENT property (#PCDATA | property)*>
26563<!ATTLIST property name CDATA #REQUIRED>
26564@end smallexample
26565
f418dd93
DJ
26566@include agentexpr.texi
26567
23181151
DJ
26568@node Target Descriptions
26569@appendix Target Descriptions
26570@cindex target descriptions
26571
26572@strong{Warning:} target descriptions are still under active development,
26573and the contents and format may change between @value{GDBN} releases.
26574The format is expected to stabilize in the future.
26575
26576One of the challenges of using @value{GDBN} to debug embedded systems
26577is that there are so many minor variants of each processor
26578architecture in use. It is common practice for vendors to start with
26579a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26580and then make changes to adapt it to a particular market niche. Some
26581architectures have hundreds of variants, available from dozens of
26582vendors. This leads to a number of problems:
26583
26584@itemize @bullet
26585@item
26586With so many different customized processors, it is difficult for
26587the @value{GDBN} maintainers to keep up with the changes.
26588@item
26589Since individual variants may have short lifetimes or limited
26590audiences, it may not be worthwhile to carry information about every
26591variant in the @value{GDBN} source tree.
26592@item
26593When @value{GDBN} does support the architecture of the embedded system
26594at hand, the task of finding the correct architecture name to give the
26595@command{set architecture} command can be error-prone.
26596@end itemize
26597
26598To address these problems, the @value{GDBN} remote protocol allows a
26599target system to not only identify itself to @value{GDBN}, but to
26600actually describe its own features. This lets @value{GDBN} support
26601processor variants it has never seen before --- to the extent that the
26602descriptions are accurate, and that @value{GDBN} understands them.
26603
9cceb671
DJ
26604@value{GDBN} must be linked with the Expat library to support XML
26605target descriptions. @xref{Expat}.
123dc839 26606
23181151
DJ
26607@menu
26608* Retrieving Descriptions:: How descriptions are fetched from a target.
26609* Target Description Format:: The contents of a target description.
123dc839
DJ
26610* Predefined Target Types:: Standard types available for target
26611 descriptions.
26612* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26613@end menu
26614
26615@node Retrieving Descriptions
26616@section Retrieving Descriptions
26617
26618Target descriptions can be read from the target automatically, or
26619specified by the user manually. The default behavior is to read the
26620description from the target. @value{GDBN} retrieves it via the remote
26621protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26622qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26623@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26624XML document, of the form described in @ref{Target Description
26625Format}.
26626
26627Alternatively, you can specify a file to read for the target description.
26628If a file is set, the target will not be queried. The commands to
26629specify a file are:
26630
26631@table @code
26632@cindex set tdesc filename
26633@item set tdesc filename @var{path}
26634Read the target description from @var{path}.
26635
26636@cindex unset tdesc filename
26637@item unset tdesc filename
26638Do not read the XML target description from a file. @value{GDBN}
26639will use the description supplied by the current target.
26640
26641@cindex show tdesc filename
26642@item show tdesc filename
26643Show the filename to read for a target description, if any.
26644@end table
26645
26646
26647@node Target Description Format
26648@section Target Description Format
26649@cindex target descriptions, XML format
26650
26651A target description annex is an @uref{http://www.w3.org/XML/, XML}
26652document which complies with the Document Type Definition provided in
26653the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26654means you can use generally available tools like @command{xmllint} to
26655check that your feature descriptions are well-formed and valid.
26656However, to help people unfamiliar with XML write descriptions for
26657their targets, we also describe the grammar here.
26658
123dc839
DJ
26659Target descriptions can identify the architecture of the remote target
26660and (for some architectures) provide information about custom register
26661sets. @value{GDBN} can use this information to autoconfigure for your
26662target, or to warn you if you connect to an unsupported target.
23181151
DJ
26663
26664Here is a simple target description:
26665
123dc839 26666@smallexample
1780a0ed 26667<target version="1.0">
23181151
DJ
26668 <architecture>i386:x86-64</architecture>
26669</target>
123dc839 26670@end smallexample
23181151
DJ
26671
26672@noindent
26673This minimal description only says that the target uses
26674the x86-64 architecture.
26675
123dc839
DJ
26676A target description has the following overall form, with [ ] marking
26677optional elements and @dots{} marking repeatable elements. The elements
26678are explained further below.
23181151 26679
123dc839 26680@smallexample
23181151
DJ
26681<?xml version="1.0"?>
26682<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26683<target version="1.0">
123dc839
DJ
26684 @r{[}@var{architecture}@r{]}
26685 @r{[}@var{feature}@dots{}@r{]}
23181151 26686</target>
123dc839 26687@end smallexample
23181151
DJ
26688
26689@noindent
26690The description is generally insensitive to whitespace and line
26691breaks, under the usual common-sense rules. The XML version
26692declaration and document type declaration can generally be omitted
26693(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26694useful for XML validation tools. The @samp{version} attribute for
26695@samp{<target>} may also be omitted, but we recommend
26696including it; if future versions of @value{GDBN} use an incompatible
26697revision of @file{gdb-target.dtd}, they will detect and report
26698the version mismatch.
23181151 26699
108546a0
DJ
26700@subsection Inclusion
26701@cindex target descriptions, inclusion
26702@cindex XInclude
26703@ifnotinfo
26704@cindex <xi:include>
26705@end ifnotinfo
26706
26707It can sometimes be valuable to split a target description up into
26708several different annexes, either for organizational purposes, or to
26709share files between different possible target descriptions. You can
26710divide a description into multiple files by replacing any element of
26711the target description with an inclusion directive of the form:
26712
123dc839 26713@smallexample
108546a0 26714<xi:include href="@var{document}"/>
123dc839 26715@end smallexample
108546a0
DJ
26716
26717@noindent
26718When @value{GDBN} encounters an element of this form, it will retrieve
26719the named XML @var{document}, and replace the inclusion directive with
26720the contents of that document. If the current description was read
26721using @samp{qXfer}, then so will be the included document;
26722@var{document} will be interpreted as the name of an annex. If the
26723current description was read from a file, @value{GDBN} will look for
26724@var{document} as a file in the same directory where it found the
26725original description.
26726
123dc839
DJ
26727@subsection Architecture
26728@cindex <architecture>
26729
26730An @samp{<architecture>} element has this form:
26731
26732@smallexample
26733 <architecture>@var{arch}</architecture>
26734@end smallexample
26735
26736@var{arch} is an architecture name from the same selection
26737accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26738Debugging Target}).
26739
26740@subsection Features
26741@cindex <feature>
26742
26743Each @samp{<feature>} describes some logical portion of the target
26744system. Features are currently used to describe available CPU
26745registers and the types of their contents. A @samp{<feature>} element
26746has this form:
26747
26748@smallexample
26749<feature name="@var{name}">
26750 @r{[}@var{type}@dots{}@r{]}
26751 @var{reg}@dots{}
26752</feature>
26753@end smallexample
26754
26755@noindent
26756Each feature's name should be unique within the description. The name
26757of a feature does not matter unless @value{GDBN} has some special
26758knowledge of the contents of that feature; if it does, the feature
26759should have its standard name. @xref{Standard Target Features}.
26760
26761@subsection Types
26762
26763Any register's value is a collection of bits which @value{GDBN} must
26764interpret. The default interpretation is a two's complement integer,
26765but other types can be requested by name in the register description.
26766Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26767Target Types}), and the description can define additional composite types.
26768
26769Each type element must have an @samp{id} attribute, which gives
26770a unique (within the containing @samp{<feature>}) name to the type.
26771Types must be defined before they are used.
26772
26773@cindex <vector>
26774Some targets offer vector registers, which can be treated as arrays
26775of scalar elements. These types are written as @samp{<vector>} elements,
26776specifying the array element type, @var{type}, and the number of elements,
26777@var{count}:
26778
26779@smallexample
26780<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26781@end smallexample
26782
26783@cindex <union>
26784If a register's value is usefully viewed in multiple ways, define it
26785with a union type containing the useful representations. The
26786@samp{<union>} element contains one or more @samp{<field>} elements,
26787each of which has a @var{name} and a @var{type}:
26788
26789@smallexample
26790<union id="@var{id}">
26791 <field name="@var{name}" type="@var{type}"/>
26792 @dots{}
26793</union>
26794@end smallexample
26795
26796@subsection Registers
26797@cindex <reg>
26798
26799Each register is represented as an element with this form:
26800
26801@smallexample
26802<reg name="@var{name}"
26803 bitsize="@var{size}"
26804 @r{[}regnum="@var{num}"@r{]}
26805 @r{[}save-restore="@var{save-restore}"@r{]}
26806 @r{[}type="@var{type}"@r{]}
26807 @r{[}group="@var{group}"@r{]}/>
26808@end smallexample
26809
26810@noindent
26811The components are as follows:
26812
26813@table @var
26814
26815@item name
26816The register's name; it must be unique within the target description.
26817
26818@item bitsize
26819The register's size, in bits.
26820
26821@item regnum
26822The register's number. If omitted, a register's number is one greater
26823than that of the previous register (either in the current feature or in
26824a preceeding feature); the first register in the target description
26825defaults to zero. This register number is used to read or write
26826the register; e.g.@: it is used in the remote @code{p} and @code{P}
26827packets, and registers appear in the @code{g} and @code{G} packets
26828in order of increasing register number.
26829
26830@item save-restore
26831Whether the register should be preserved across inferior function
26832calls; this must be either @code{yes} or @code{no}. The default is
26833@code{yes}, which is appropriate for most registers except for
26834some system control registers; this is not related to the target's
26835ABI.
26836
26837@item type
26838The type of the register. @var{type} may be a predefined type, a type
26839defined in the current feature, or one of the special types @code{int}
26840and @code{float}. @code{int} is an integer type of the correct size
26841for @var{bitsize}, and @code{float} is a floating point type (in the
26842architecture's normal floating point format) of the correct size for
26843@var{bitsize}. The default is @code{int}.
26844
26845@item group
26846The register group to which this register belongs. @var{group} must
26847be either @code{general}, @code{float}, or @code{vector}. If no
26848@var{group} is specified, @value{GDBN} will not display the register
26849in @code{info registers}.
26850
26851@end table
26852
26853@node Predefined Target Types
26854@section Predefined Target Types
26855@cindex target descriptions, predefined types
26856
26857Type definitions in the self-description can build up composite types
26858from basic building blocks, but can not define fundamental types. Instead,
26859standard identifiers are provided by @value{GDBN} for the fundamental
26860types. The currently supported types are:
26861
26862@table @code
26863
26864@item int8
26865@itemx int16
26866@itemx int32
26867@itemx int64
7cc46491 26868@itemx int128
123dc839
DJ
26869Signed integer types holding the specified number of bits.
26870
26871@item uint8
26872@itemx uint16
26873@itemx uint32
26874@itemx uint64
7cc46491 26875@itemx uint128
123dc839
DJ
26876Unsigned integer types holding the specified number of bits.
26877
26878@item code_ptr
26879@itemx data_ptr
26880Pointers to unspecified code and data. The program counter and
26881any dedicated return address register may be marked as code
26882pointers; printing a code pointer converts it into a symbolic
26883address. The stack pointer and any dedicated address registers
26884may be marked as data pointers.
26885
6e3bbd1a
PB
26886@item ieee_single
26887Single precision IEEE floating point.
26888
26889@item ieee_double
26890Double precision IEEE floating point.
26891
123dc839
DJ
26892@item arm_fpa_ext
26893The 12-byte extended precision format used by ARM FPA registers.
26894
26895@end table
26896
26897@node Standard Target Features
26898@section Standard Target Features
26899@cindex target descriptions, standard features
26900
26901A target description must contain either no registers or all the
26902target's registers. If the description contains no registers, then
26903@value{GDBN} will assume a default register layout, selected based on
26904the architecture. If the description contains any registers, the
26905default layout will not be used; the standard registers must be
26906described in the target description, in such a way that @value{GDBN}
26907can recognize them.
26908
26909This is accomplished by giving specific names to feature elements
26910which contain standard registers. @value{GDBN} will look for features
26911with those names and verify that they contain the expected registers;
26912if any known feature is missing required registers, or if any required
26913feature is missing, @value{GDBN} will reject the target
26914description. You can add additional registers to any of the
26915standard features --- @value{GDBN} will display them just as if
26916they were added to an unrecognized feature.
26917
26918This section lists the known features and their expected contents.
26919Sample XML documents for these features are included in the
26920@value{GDBN} source tree, in the directory @file{gdb/features}.
26921
26922Names recognized by @value{GDBN} should include the name of the
26923company or organization which selected the name, and the overall
26924architecture to which the feature applies; so e.g.@: the feature
26925containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26926
ff6f572f
DJ
26927The names of registers are not case sensitive for the purpose
26928of recognizing standard features, but @value{GDBN} will only display
26929registers using the capitalization used in the description.
26930
e9c17194
VP
26931@menu
26932* ARM Features::
1e26b4f8 26933* MIPS Features::
e9c17194 26934* M68K Features::
1e26b4f8 26935* PowerPC Features::
e9c17194
VP
26936@end menu
26937
26938
26939@node ARM Features
123dc839
DJ
26940@subsection ARM Features
26941@cindex target descriptions, ARM features
26942
26943The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26944It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26945@samp{lr}, @samp{pc}, and @samp{cpsr}.
26946
26947The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26948should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26949
ff6f572f
DJ
26950The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26951it should contain at least registers @samp{wR0} through @samp{wR15} and
26952@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26953@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26954
1e26b4f8 26955@node MIPS Features
f8b73d13
DJ
26956@subsection MIPS Features
26957@cindex target descriptions, MIPS features
26958
26959The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26960It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26961@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26962on the target.
26963
26964The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26965contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26966registers. They may be 32-bit or 64-bit depending on the target.
26967
26968The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26969it may be optional in a future version of @value{GDBN}. It should
26970contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26971@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26972
822b6570
DJ
26973The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26974contain a single register, @samp{restart}, which is used by the
26975Linux kernel to control restartable syscalls.
26976
e9c17194
VP
26977@node M68K Features
26978@subsection M68K Features
26979@cindex target descriptions, M68K features
26980
26981@table @code
26982@item @samp{org.gnu.gdb.m68k.core}
26983@itemx @samp{org.gnu.gdb.coldfire.core}
26984@itemx @samp{org.gnu.gdb.fido.core}
26985One of those features must be always present.
26986The feature that is present determines which flavor of m86k is
26987used. The feature that is present should contain registers
26988@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26989@samp{sp}, @samp{ps} and @samp{pc}.
26990
26991@item @samp{org.gnu.gdb.coldfire.fp}
26992This feature is optional. If present, it should contain registers
26993@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26994@samp{fpiaddr}.
26995@end table
26996
1e26b4f8 26997@node PowerPC Features
7cc46491
DJ
26998@subsection PowerPC Features
26999@cindex target descriptions, PowerPC features
27000
27001The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
27002targets. It should contain registers @samp{r0} through @samp{r31},
27003@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
27004@samp{xer}. They may be 32-bit or 64-bit depending on the target.
27005
27006The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
27007contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
27008
27009The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
27010contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
27011and @samp{vrsave}.
27012
27013The @samp{org.gnu.gdb.power.spe} feature is optional. It should
27014contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
27015@samp{spefscr}. SPE targets should provide 32-bit registers in
27016@samp{org.gnu.gdb.power.core} and provide the upper halves in
27017@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
27018these to present registers @samp{ev0} through @samp{ev31} to the
27019user.
27020
aab4e0ec 27021@include gpl.texi
eb12ee30 27022
2154891a 27023@raisesections
6826cf00 27024@include fdl.texi
2154891a 27025@lowersections
6826cf00 27026
6d2ebf8b 27027@node Index
c906108c
SS
27028@unnumbered Index
27029
27030@printindex cp
27031
27032@tex
27033% I think something like @colophon should be in texinfo. In the
27034% meantime:
27035\long\def\colophon{\hbox to0pt{}\vfill
27036\centerline{The body of this manual is set in}
27037\centerline{\fontname\tenrm,}
27038\centerline{with headings in {\bf\fontname\tenbf}}
27039\centerline{and examples in {\tt\fontname\tentt}.}
27040\centerline{{\it\fontname\tenit\/},}
27041\centerline{{\bf\fontname\tenbf}, and}
27042\centerline{{\sl\fontname\tensl\/}}
27043\centerline{are used for emphasis.}\vfill}
27044\page\colophon
27045% Blame: doc@cygnus.com, 1991.
27046@end tex
27047
c906108c 27048@bye
This page took 2.693344 seconds and 4 git commands to generate.