* valarith.c (value_binop): Handle unsigned BINOP_REM division by zero.
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c 944
19837790
MS
945@item -pid @var{number}
946@itemx -p @var{number}
947@cindex @code{--pid}
948@cindex @code{-p}
949Connect to process ID @var{number}, as with the @code{attach} command.
c906108c
SS
950
951@item -command @var{file}
952@itemx -x @var{file}
d700128c
EZ
953@cindex @code{--command}
954@cindex @code{-x}
c906108c
SS
955Execute @value{GDBN} commands from file @var{file}. @xref{Command
956Files,, Command files}.
957
8a5a3c82
AS
958@item -eval-command @var{command}
959@itemx -ex @var{command}
960@cindex @code{--eval-command}
961@cindex @code{-ex}
962Execute a single @value{GDBN} command.
963
964This option may be used multiple times to call multiple commands. It may
965also be interleaved with @samp{-command} as required.
966
967@smallexample
968@value{GDBP} -ex 'target sim' -ex 'load' \
969 -x setbreakpoints -ex 'run' a.out
970@end smallexample
971
c906108c
SS
972@item -directory @var{directory}
973@itemx -d @var{directory}
d700128c
EZ
974@cindex @code{--directory}
975@cindex @code{-d}
4b505b12 976Add @var{directory} to the path to search for source and script files.
c906108c 977
c906108c
SS
978@item -r
979@itemx -readnow
d700128c
EZ
980@cindex @code{--readnow}
981@cindex @code{-r}
c906108c
SS
982Read each symbol file's entire symbol table immediately, rather than
983the default, which is to read it incrementally as it is needed.
984This makes startup slower, but makes future operations faster.
53a5351d 985
c906108c
SS
986@end table
987
6d2ebf8b 988@node Mode Options
79a6e687 989@subsection Choosing Modes
c906108c
SS
990
991You can run @value{GDBN} in various alternative modes---for example, in
992batch mode or quiet mode.
993
994@table @code
995@item -nx
996@itemx -n
d700128c
EZ
997@cindex @code{--nx}
998@cindex @code{-n}
96565e91 999Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1000@value{GDBN} executes the commands in these files after all the command
1001options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1002Files}.
c906108c
SS
1003
1004@item -quiet
d700128c 1005@itemx -silent
c906108c 1006@itemx -q
d700128c
EZ
1007@cindex @code{--quiet}
1008@cindex @code{--silent}
1009@cindex @code{-q}
c906108c
SS
1010``Quiet''. Do not print the introductory and copyright messages. These
1011messages are also suppressed in batch mode.
1012
1013@item -batch
d700128c 1014@cindex @code{--batch}
c906108c
SS
1015Run in batch mode. Exit with status @code{0} after processing all the
1016command files specified with @samp{-x} (and all commands from
1017initialization files, if not inhibited with @samp{-n}). Exit with
1018nonzero status if an error occurs in executing the @value{GDBN} commands
1019in the command files.
1020
2df3850c
JM
1021Batch mode may be useful for running @value{GDBN} as a filter, for
1022example to download and run a program on another computer; in order to
1023make this more useful, the message
c906108c 1024
474c8240 1025@smallexample
c906108c 1026Program exited normally.
474c8240 1027@end smallexample
c906108c
SS
1028
1029@noindent
2df3850c
JM
1030(which is ordinarily issued whenever a program running under
1031@value{GDBN} control terminates) is not issued when running in batch
1032mode.
1033
1a088d06
AS
1034@item -batch-silent
1035@cindex @code{--batch-silent}
1036Run in batch mode exactly like @samp{-batch}, but totally silently. All
1037@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1038unaffected). This is much quieter than @samp{-silent} and would be useless
1039for an interactive session.
1040
1041This is particularly useful when using targets that give @samp{Loading section}
1042messages, for example.
1043
1044Note that targets that give their output via @value{GDBN}, as opposed to
1045writing directly to @code{stdout}, will also be made silent.
1046
4b0ad762
AS
1047@item -return-child-result
1048@cindex @code{--return-child-result}
1049The return code from @value{GDBN} will be the return code from the child
1050process (the process being debugged), with the following exceptions:
1051
1052@itemize @bullet
1053@item
1054@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1055internal error. In this case the exit code is the same as it would have been
1056without @samp{-return-child-result}.
1057@item
1058The user quits with an explicit value. E.g., @samp{quit 1}.
1059@item
1060The child process never runs, or is not allowed to terminate, in which case
1061the exit code will be -1.
1062@end itemize
1063
1064This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1065when @value{GDBN} is being used as a remote program loader or simulator
1066interface.
1067
2df3850c
JM
1068@item -nowindows
1069@itemx -nw
d700128c
EZ
1070@cindex @code{--nowindows}
1071@cindex @code{-nw}
2df3850c 1072``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1073(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1074interface. If no GUI is available, this option has no effect.
1075
1076@item -windows
1077@itemx -w
d700128c
EZ
1078@cindex @code{--windows}
1079@cindex @code{-w}
2df3850c
JM
1080If @value{GDBN} includes a GUI, then this option requires it to be
1081used if possible.
c906108c
SS
1082
1083@item -cd @var{directory}
d700128c 1084@cindex @code{--cd}
c906108c
SS
1085Run @value{GDBN} using @var{directory} as its working directory,
1086instead of the current directory.
1087
c906108c
SS
1088@item -fullname
1089@itemx -f
d700128c
EZ
1090@cindex @code{--fullname}
1091@cindex @code{-f}
7a292a7a
SS
1092@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1093subprocess. It tells @value{GDBN} to output the full file name and line
1094number in a standard, recognizable fashion each time a stack frame is
1095displayed (which includes each time your program stops). This
1096recognizable format looks like two @samp{\032} characters, followed by
1097the file name, line number and character position separated by colons,
1098and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1099@samp{\032} characters as a signal to display the source code for the
1100frame.
c906108c 1101
d700128c
EZ
1102@item -epoch
1103@cindex @code{--epoch}
1104The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1105@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1106routines so as to allow Epoch to display values of expressions in a
1107separate window.
1108
1109@item -annotate @var{level}
1110@cindex @code{--annotate}
1111This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1112effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1113(@pxref{Annotations}). The annotation @var{level} controls how much
1114information @value{GDBN} prints together with its prompt, values of
1115expressions, source lines, and other types of output. Level 0 is the
1116normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1117@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1118that control @value{GDBN}, and level 2 has been deprecated.
1119
265eeb58 1120The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1121(@pxref{GDB/MI}).
d700128c 1122
aa26fa3a
TT
1123@item --args
1124@cindex @code{--args}
1125Change interpretation of command line so that arguments following the
1126executable file are passed as command line arguments to the inferior.
1127This option stops option processing.
1128
2df3850c
JM
1129@item -baud @var{bps}
1130@itemx -b @var{bps}
d700128c
EZ
1131@cindex @code{--baud}
1132@cindex @code{-b}
c906108c
SS
1133Set the line speed (baud rate or bits per second) of any serial
1134interface used by @value{GDBN} for remote debugging.
c906108c 1135
f47b1503
AS
1136@item -l @var{timeout}
1137@cindex @code{-l}
1138Set the timeout (in seconds) of any communication used by @value{GDBN}
1139for remote debugging.
1140
c906108c 1141@item -tty @var{device}
d700128c
EZ
1142@itemx -t @var{device}
1143@cindex @code{--tty}
1144@cindex @code{-t}
c906108c
SS
1145Run using @var{device} for your program's standard input and output.
1146@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1147
53a5351d 1148@c resolve the situation of these eventually
c4555f82
SC
1149@item -tui
1150@cindex @code{--tui}
d0d5df6f
AC
1151Activate the @dfn{Text User Interface} when starting. The Text User
1152Interface manages several text windows on the terminal, showing
1153source, assembly, registers and @value{GDBN} command outputs
1154(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1155Text User Interface can be enabled by invoking the program
46ba6afa 1156@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1157Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1158
1159@c @item -xdb
d700128c 1160@c @cindex @code{--xdb}
53a5351d
JM
1161@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1162@c For information, see the file @file{xdb_trans.html}, which is usually
1163@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1164@c systems.
1165
d700128c
EZ
1166@item -interpreter @var{interp}
1167@cindex @code{--interpreter}
1168Use the interpreter @var{interp} for interface with the controlling
1169program or device. This option is meant to be set by programs which
94bbb2c0 1170communicate with @value{GDBN} using it as a back end.
21c294e6 1171@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1172
da0f9dcd 1173@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1174@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1175The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1176previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1177selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1178@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1179
1180@item -write
1181@cindex @code{--write}
1182Open the executable and core files for both reading and writing. This
1183is equivalent to the @samp{set write on} command inside @value{GDBN}
1184(@pxref{Patching}).
1185
1186@item -statistics
1187@cindex @code{--statistics}
1188This option causes @value{GDBN} to print statistics about time and
1189memory usage after it completes each command and returns to the prompt.
1190
1191@item -version
1192@cindex @code{--version}
1193This option causes @value{GDBN} to print its version number and
1194no-warranty blurb, and exit.
1195
c906108c
SS
1196@end table
1197
6fc08d32 1198@node Startup
79a6e687 1199@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1200@cindex @value{GDBN} startup
1201
1202Here's the description of what @value{GDBN} does during session startup:
1203
1204@enumerate
1205@item
1206Sets up the command interpreter as specified by the command line
1207(@pxref{Mode Options, interpreter}).
1208
1209@item
1210@cindex init file
1211Reads the @dfn{init file} (if any) in your home directory@footnote{On
1212DOS/Windows systems, the home directory is the one pointed to by the
1213@code{HOME} environment variable.} and executes all the commands in
1214that file.
1215
1216@item
1217Processes command line options and operands.
1218
1219@item
1220Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1221working directory. This is only done if the current directory is
1222different from your home directory. Thus, you can have more than one
1223init file, one generic in your home directory, and another, specific
1224to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1225@value{GDBN}.
1226
1227@item
1228Reads command files specified by the @samp{-x} option. @xref{Command
1229Files}, for more details about @value{GDBN} command files.
1230
1231@item
1232Reads the command history recorded in the @dfn{history file}.
d620b259 1233@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1234files where @value{GDBN} records it.
1235@end enumerate
1236
1237Init files use the same syntax as @dfn{command files} (@pxref{Command
1238Files}) and are processed by @value{GDBN} in the same way. The init
1239file in your home directory can set options (such as @samp{set
1240complaints}) that affect subsequent processing of command line options
1241and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1242option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1243
1244@cindex init file name
1245@cindex @file{.gdbinit}
119b882a 1246@cindex @file{gdb.ini}
8807d78b 1247The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1248The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1249the limitations of file names imposed by DOS filesystems. The Windows
1250ports of @value{GDBN} use the standard name, but if they find a
1251@file{gdb.ini} file, they warn you about that and suggest to rename
1252the file to the standard name.
1253
6fc08d32 1254
6d2ebf8b 1255@node Quitting GDB
c906108c
SS
1256@section Quitting @value{GDBN}
1257@cindex exiting @value{GDBN}
1258@cindex leaving @value{GDBN}
1259
1260@table @code
1261@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1262@kindex q @r{(@code{quit})}
96a2c332
SS
1263@item quit @r{[}@var{expression}@r{]}
1264@itemx q
1265To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1266@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1267do not supply @var{expression}, @value{GDBN} will terminate normally;
1268otherwise it will terminate using the result of @var{expression} as the
1269error code.
c906108c
SS
1270@end table
1271
1272@cindex interrupt
c8aa23ab 1273An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1274terminates the action of any @value{GDBN} command that is in progress and
1275returns to @value{GDBN} command level. It is safe to type the interrupt
1276character at any time because @value{GDBN} does not allow it to take effect
1277until a time when it is safe.
1278
c906108c
SS
1279If you have been using @value{GDBN} to control an attached process or
1280device, you can release it with the @code{detach} command
79a6e687 1281(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1282
6d2ebf8b 1283@node Shell Commands
79a6e687 1284@section Shell Commands
c906108c
SS
1285
1286If you need to execute occasional shell commands during your
1287debugging session, there is no need to leave or suspend @value{GDBN}; you can
1288just use the @code{shell} command.
1289
1290@table @code
1291@kindex shell
1292@cindex shell escape
1293@item shell @var{command string}
1294Invoke a standard shell to execute @var{command string}.
c906108c 1295If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1296shell to run. Otherwise @value{GDBN} uses the default shell
1297(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1298@end table
1299
1300The utility @code{make} is often needed in development environments.
1301You do not have to use the @code{shell} command for this purpose in
1302@value{GDBN}:
1303
1304@table @code
1305@kindex make
1306@cindex calling make
1307@item make @var{make-args}
1308Execute the @code{make} program with the specified
1309arguments. This is equivalent to @samp{shell make @var{make-args}}.
1310@end table
1311
79a6e687
BW
1312@node Logging Output
1313@section Logging Output
0fac0b41 1314@cindex logging @value{GDBN} output
9c16f35a 1315@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1316
1317You may want to save the output of @value{GDBN} commands to a file.
1318There are several commands to control @value{GDBN}'s logging.
1319
1320@table @code
1321@kindex set logging
1322@item set logging on
1323Enable logging.
1324@item set logging off
1325Disable logging.
9c16f35a 1326@cindex logging file name
0fac0b41
DJ
1327@item set logging file @var{file}
1328Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1329@item set logging overwrite [on|off]
1330By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1331you want @code{set logging on} to overwrite the logfile instead.
1332@item set logging redirect [on|off]
1333By default, @value{GDBN} output will go to both the terminal and the logfile.
1334Set @code{redirect} if you want output to go only to the log file.
1335@kindex show logging
1336@item show logging
1337Show the current values of the logging settings.
1338@end table
1339
6d2ebf8b 1340@node Commands
c906108c
SS
1341@chapter @value{GDBN} Commands
1342
1343You can abbreviate a @value{GDBN} command to the first few letters of the command
1344name, if that abbreviation is unambiguous; and you can repeat certain
1345@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1346key to get @value{GDBN} to fill out the rest of a word in a command (or to
1347show you the alternatives available, if there is more than one possibility).
1348
1349@menu
1350* Command Syntax:: How to give commands to @value{GDBN}
1351* Completion:: Command completion
1352* Help:: How to ask @value{GDBN} for help
1353@end menu
1354
6d2ebf8b 1355@node Command Syntax
79a6e687 1356@section Command Syntax
c906108c
SS
1357
1358A @value{GDBN} command is a single line of input. There is no limit on
1359how long it can be. It starts with a command name, which is followed by
1360arguments whose meaning depends on the command name. For example, the
1361command @code{step} accepts an argument which is the number of times to
1362step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1363with no arguments. Some commands do not allow any arguments.
c906108c
SS
1364
1365@cindex abbreviation
1366@value{GDBN} command names may always be truncated if that abbreviation is
1367unambiguous. Other possible command abbreviations are listed in the
1368documentation for individual commands. In some cases, even ambiguous
1369abbreviations are allowed; for example, @code{s} is specially defined as
1370equivalent to @code{step} even though there are other commands whose
1371names start with @code{s}. You can test abbreviations by using them as
1372arguments to the @code{help} command.
1373
1374@cindex repeating commands
41afff9a 1375@kindex RET @r{(repeat last command)}
c906108c 1376A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1377repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1378will not repeat this way; these are commands whose unintentional
1379repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1380repeat. User-defined commands can disable this feature; see
1381@ref{Define, dont-repeat}.
c906108c
SS
1382
1383The @code{list} and @code{x} commands, when you repeat them with
1384@key{RET}, construct new arguments rather than repeating
1385exactly as typed. This permits easy scanning of source or memory.
1386
1387@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1388output, in a way similar to the common utility @code{more}
79a6e687 1389(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1390@key{RET} too many in this situation, @value{GDBN} disables command
1391repetition after any command that generates this sort of display.
1392
41afff9a 1393@kindex # @r{(a comment)}
c906108c
SS
1394@cindex comment
1395Any text from a @kbd{#} to the end of the line is a comment; it does
1396nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1397Files,,Command Files}).
c906108c 1398
88118b3a 1399@cindex repeating command sequences
c8aa23ab
EZ
1400@kindex Ctrl-o @r{(operate-and-get-next)}
1401The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1402commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1403then fetches the next line relative to the current line from the history
1404for editing.
1405
6d2ebf8b 1406@node Completion
79a6e687 1407@section Command Completion
c906108c
SS
1408
1409@cindex completion
1410@cindex word completion
1411@value{GDBN} can fill in the rest of a word in a command for you, if there is
1412only one possibility; it can also show you what the valid possibilities
1413are for the next word in a command, at any time. This works for @value{GDBN}
1414commands, @value{GDBN} subcommands, and the names of symbols in your program.
1415
1416Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1417of a word. If there is only one possibility, @value{GDBN} fills in the
1418word, and waits for you to finish the command (or press @key{RET} to
1419enter it). For example, if you type
1420
1421@c FIXME "@key" does not distinguish its argument sufficiently to permit
1422@c complete accuracy in these examples; space introduced for clarity.
1423@c If texinfo enhancements make it unnecessary, it would be nice to
1424@c replace " @key" by "@key" in the following...
474c8240 1425@smallexample
c906108c 1426(@value{GDBP}) info bre @key{TAB}
474c8240 1427@end smallexample
c906108c
SS
1428
1429@noindent
1430@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1431the only @code{info} subcommand beginning with @samp{bre}:
1432
474c8240 1433@smallexample
c906108c 1434(@value{GDBP}) info breakpoints
474c8240 1435@end smallexample
c906108c
SS
1436
1437@noindent
1438You can either press @key{RET} at this point, to run the @code{info
1439breakpoints} command, or backspace and enter something else, if
1440@samp{breakpoints} does not look like the command you expected. (If you
1441were sure you wanted @code{info breakpoints} in the first place, you
1442might as well just type @key{RET} immediately after @samp{info bre},
1443to exploit command abbreviations rather than command completion).
1444
1445If there is more than one possibility for the next word when you press
1446@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1447characters and try again, or just press @key{TAB} a second time;
1448@value{GDBN} displays all the possible completions for that word. For
1449example, you might want to set a breakpoint on a subroutine whose name
1450begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1451just sounds the bell. Typing @key{TAB} again displays all the
1452function names in your program that begin with those characters, for
1453example:
1454
474c8240 1455@smallexample
c906108c
SS
1456(@value{GDBP}) b make_ @key{TAB}
1457@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1458make_a_section_from_file make_environ
1459make_abs_section make_function_type
1460make_blockvector make_pointer_type
1461make_cleanup make_reference_type
c906108c
SS
1462make_command make_symbol_completion_list
1463(@value{GDBP}) b make_
474c8240 1464@end smallexample
c906108c
SS
1465
1466@noindent
1467After displaying the available possibilities, @value{GDBN} copies your
1468partial input (@samp{b make_} in the example) so you can finish the
1469command.
1470
1471If you just want to see the list of alternatives in the first place, you
b37052ae 1472can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1473means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1474key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1475one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1476
1477@cindex quotes in commands
1478@cindex completion of quoted strings
1479Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1480parentheses or other characters that @value{GDBN} normally excludes from
1481its notion of a word. To permit word completion to work in this
1482situation, you may enclose words in @code{'} (single quote marks) in
1483@value{GDBN} commands.
c906108c 1484
c906108c 1485The most likely situation where you might need this is in typing the
b37052ae
EZ
1486name of a C@t{++} function. This is because C@t{++} allows function
1487overloading (multiple definitions of the same function, distinguished
1488by argument type). For example, when you want to set a breakpoint you
1489may need to distinguish whether you mean the version of @code{name}
1490that takes an @code{int} parameter, @code{name(int)}, or the version
1491that takes a @code{float} parameter, @code{name(float)}. To use the
1492word-completion facilities in this situation, type a single quote
1493@code{'} at the beginning of the function name. This alerts
1494@value{GDBN} that it may need to consider more information than usual
1495when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1496
474c8240 1497@smallexample
96a2c332 1498(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1499bubble(double,double) bubble(int,int)
1500(@value{GDBP}) b 'bubble(
474c8240 1501@end smallexample
c906108c
SS
1502
1503In some cases, @value{GDBN} can tell that completing a name requires using
1504quotes. When this happens, @value{GDBN} inserts the quote for you (while
1505completing as much as it can) if you do not type the quote in the first
1506place:
1507
474c8240 1508@smallexample
c906108c
SS
1509(@value{GDBP}) b bub @key{TAB}
1510@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1511(@value{GDBP}) b 'bubble(
474c8240 1512@end smallexample
c906108c
SS
1513
1514@noindent
1515In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1516you have not yet started typing the argument list when you ask for
1517completion on an overloaded symbol.
1518
79a6e687
BW
1519For more information about overloaded functions, see @ref{C Plus Plus
1520Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1521overload-resolution off} to disable overload resolution;
79a6e687 1522see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1523
1524
6d2ebf8b 1525@node Help
79a6e687 1526@section Getting Help
c906108c
SS
1527@cindex online documentation
1528@kindex help
1529
5d161b24 1530You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1531using the command @code{help}.
1532
1533@table @code
41afff9a 1534@kindex h @r{(@code{help})}
c906108c
SS
1535@item help
1536@itemx h
1537You can use @code{help} (abbreviated @code{h}) with no arguments to
1538display a short list of named classes of commands:
1539
1540@smallexample
1541(@value{GDBP}) help
1542List of classes of commands:
1543
2df3850c 1544aliases -- Aliases of other commands
c906108c 1545breakpoints -- Making program stop at certain points
2df3850c 1546data -- Examining data
c906108c 1547files -- Specifying and examining files
2df3850c
JM
1548internals -- Maintenance commands
1549obscure -- Obscure features
1550running -- Running the program
1551stack -- Examining the stack
c906108c
SS
1552status -- Status inquiries
1553support -- Support facilities
12c27660 1554tracepoints -- Tracing of program execution without
96a2c332 1555 stopping the program
c906108c 1556user-defined -- User-defined commands
c906108c 1557
5d161b24 1558Type "help" followed by a class name for a list of
c906108c 1559commands in that class.
5d161b24 1560Type "help" followed by command name for full
c906108c
SS
1561documentation.
1562Command name abbreviations are allowed if unambiguous.
1563(@value{GDBP})
1564@end smallexample
96a2c332 1565@c the above line break eliminates huge line overfull...
c906108c
SS
1566
1567@item help @var{class}
1568Using one of the general help classes as an argument, you can get a
1569list of the individual commands in that class. For example, here is the
1570help display for the class @code{status}:
1571
1572@smallexample
1573(@value{GDBP}) help status
1574Status inquiries.
1575
1576List of commands:
1577
1578@c Line break in "show" line falsifies real output, but needed
1579@c to fit in smallbook page size.
2df3850c 1580info -- Generic command for showing things
12c27660 1581 about the program being debugged
2df3850c 1582show -- Generic command for showing things
12c27660 1583 about the debugger
c906108c 1584
5d161b24 1585Type "help" followed by command name for full
c906108c
SS
1586documentation.
1587Command name abbreviations are allowed if unambiguous.
1588(@value{GDBP})
1589@end smallexample
1590
1591@item help @var{command}
1592With a command name as @code{help} argument, @value{GDBN} displays a
1593short paragraph on how to use that command.
1594
6837a0a2
DB
1595@kindex apropos
1596@item apropos @var{args}
09d4efe1 1597The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1598commands, and their documentation, for the regular expression specified in
1599@var{args}. It prints out all matches found. For example:
1600
1601@smallexample
1602apropos reload
1603@end smallexample
1604
b37052ae
EZ
1605@noindent
1606results in:
6837a0a2
DB
1607
1608@smallexample
6d2ebf8b
SS
1609@c @group
1610set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1611 multiple times in one run
6d2ebf8b 1612show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1613 multiple times in one run
6d2ebf8b 1614@c @end group
6837a0a2
DB
1615@end smallexample
1616
c906108c
SS
1617@kindex complete
1618@item complete @var{args}
1619The @code{complete @var{args}} command lists all the possible completions
1620for the beginning of a command. Use @var{args} to specify the beginning of the
1621command you want completed. For example:
1622
1623@smallexample
1624complete i
1625@end smallexample
1626
1627@noindent results in:
1628
1629@smallexample
1630@group
2df3850c
JM
1631if
1632ignore
c906108c
SS
1633info
1634inspect
c906108c
SS
1635@end group
1636@end smallexample
1637
1638@noindent This is intended for use by @sc{gnu} Emacs.
1639@end table
1640
1641In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1642and @code{show} to inquire about the state of your program, or the state
1643of @value{GDBN} itself. Each command supports many topics of inquiry; this
1644manual introduces each of them in the appropriate context. The listings
1645under @code{info} and under @code{show} in the Index point to
1646all the sub-commands. @xref{Index}.
1647
1648@c @group
1649@table @code
1650@kindex info
41afff9a 1651@kindex i @r{(@code{info})}
c906108c
SS
1652@item info
1653This command (abbreviated @code{i}) is for describing the state of your
1654program. For example, you can list the arguments given to your program
1655with @code{info args}, list the registers currently in use with @code{info
1656registers}, or list the breakpoints you have set with @code{info breakpoints}.
1657You can get a complete list of the @code{info} sub-commands with
1658@w{@code{help info}}.
1659
1660@kindex set
1661@item set
5d161b24 1662You can assign the result of an expression to an environment variable with
c906108c
SS
1663@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1664@code{set prompt $}.
1665
1666@kindex show
1667@item show
5d161b24 1668In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1669@value{GDBN} itself.
1670You can change most of the things you can @code{show}, by using the
1671related command @code{set}; for example, you can control what number
1672system is used for displays with @code{set radix}, or simply inquire
1673which is currently in use with @code{show radix}.
1674
1675@kindex info set
1676To display all the settable parameters and their current
1677values, you can use @code{show} with no arguments; you may also use
1678@code{info set}. Both commands produce the same display.
1679@c FIXME: "info set" violates the rule that "info" is for state of
1680@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1681@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1682@end table
1683@c @end group
1684
1685Here are three miscellaneous @code{show} subcommands, all of which are
1686exceptional in lacking corresponding @code{set} commands:
1687
1688@table @code
1689@kindex show version
9c16f35a 1690@cindex @value{GDBN} version number
c906108c
SS
1691@item show version
1692Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1693information in @value{GDBN} bug-reports. If multiple versions of
1694@value{GDBN} are in use at your site, you may need to determine which
1695version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1696commands are introduced, and old ones may wither away. Also, many
1697system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1698variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1699The version number is the same as the one announced when you start
1700@value{GDBN}.
c906108c
SS
1701
1702@kindex show copying
09d4efe1 1703@kindex info copying
9c16f35a 1704@cindex display @value{GDBN} copyright
c906108c 1705@item show copying
09d4efe1 1706@itemx info copying
c906108c
SS
1707Display information about permission for copying @value{GDBN}.
1708
1709@kindex show warranty
09d4efe1 1710@kindex info warranty
c906108c 1711@item show warranty
09d4efe1 1712@itemx info warranty
2df3850c 1713Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1714if your version of @value{GDBN} comes with one.
2df3850c 1715
c906108c
SS
1716@end table
1717
6d2ebf8b 1718@node Running
c906108c
SS
1719@chapter Running Programs Under @value{GDBN}
1720
1721When you run a program under @value{GDBN}, you must first generate
1722debugging information when you compile it.
7a292a7a
SS
1723
1724You may start @value{GDBN} with its arguments, if any, in an environment
1725of your choice. If you are doing native debugging, you may redirect
1726your program's input and output, debug an already running process, or
1727kill a child process.
c906108c
SS
1728
1729@menu
1730* Compilation:: Compiling for debugging
1731* Starting:: Starting your program
c906108c
SS
1732* Arguments:: Your program's arguments
1733* Environment:: Your program's environment
c906108c
SS
1734
1735* Working Directory:: Your program's working directory
1736* Input/Output:: Your program's input and output
1737* Attach:: Debugging an already-running process
1738* Kill Process:: Killing the child process
c906108c
SS
1739
1740* Threads:: Debugging programs with multiple threads
1741* Processes:: Debugging programs with multiple processes
5c95884b 1742* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1743@end menu
1744
6d2ebf8b 1745@node Compilation
79a6e687 1746@section Compiling for Debugging
c906108c
SS
1747
1748In order to debug a program effectively, you need to generate
1749debugging information when you compile it. This debugging information
1750is stored in the object file; it describes the data type of each
1751variable or function and the correspondence between source line numbers
1752and addresses in the executable code.
1753
1754To request debugging information, specify the @samp{-g} option when you run
1755the compiler.
1756
514c4d71
EZ
1757Programs that are to be shipped to your customers are compiled with
1758optimizations, using the @samp{-O} compiler option. However, many
1759compilers are unable to handle the @samp{-g} and @samp{-O} options
1760together. Using those compilers, you cannot generate optimized
c906108c
SS
1761executables containing debugging information.
1762
514c4d71 1763@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1764without @samp{-O}, making it possible to debug optimized code. We
1765recommend that you @emph{always} use @samp{-g} whenever you compile a
1766program. You may think your program is correct, but there is no sense
1767in pushing your luck.
c906108c
SS
1768
1769@cindex optimized code, debugging
1770@cindex debugging optimized code
1771When you debug a program compiled with @samp{-g -O}, remember that the
1772optimizer is rearranging your code; the debugger shows you what is
1773really there. Do not be too surprised when the execution path does not
1774exactly match your source file! An extreme example: if you define a
1775variable, but never use it, @value{GDBN} never sees that
1776variable---because the compiler optimizes it out of existence.
1777
1778Some things do not work as well with @samp{-g -O} as with just
1779@samp{-g}, particularly on machines with instruction scheduling. If in
1780doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1781please report it to us as a bug (including a test case!).
15387254 1782@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1783
1784Older versions of the @sc{gnu} C compiler permitted a variant option
1785@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1786format; if your @sc{gnu} C compiler has this option, do not use it.
1787
514c4d71
EZ
1788@value{GDBN} knows about preprocessor macros and can show you their
1789expansion (@pxref{Macros}). Most compilers do not include information
1790about preprocessor macros in the debugging information if you specify
1791the @option{-g} flag alone, because this information is rather large.
1792Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1793provides macro information if you specify the options
1794@option{-gdwarf-2} and @option{-g3}; the former option requests
1795debugging information in the Dwarf 2 format, and the latter requests
1796``extra information''. In the future, we hope to find more compact
1797ways to represent macro information, so that it can be included with
1798@option{-g} alone.
1799
c906108c 1800@need 2000
6d2ebf8b 1801@node Starting
79a6e687 1802@section Starting your Program
c906108c
SS
1803@cindex starting
1804@cindex running
1805
1806@table @code
1807@kindex run
41afff9a 1808@kindex r @r{(@code{run})}
c906108c
SS
1809@item run
1810@itemx r
7a292a7a
SS
1811Use the @code{run} command to start your program under @value{GDBN}.
1812You must first specify the program name (except on VxWorks) with an
1813argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1814@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1815(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1816
1817@end table
1818
c906108c
SS
1819If you are running your program in an execution environment that
1820supports processes, @code{run} creates an inferior process and makes
1821that process run your program. (In environments without processes,
1822@code{run} jumps to the start of your program.)
1823
1824The execution of a program is affected by certain information it
1825receives from its superior. @value{GDBN} provides ways to specify this
1826information, which you must do @emph{before} starting your program. (You
1827can change it after starting your program, but such changes only affect
1828your program the next time you start it.) This information may be
1829divided into four categories:
1830
1831@table @asis
1832@item The @emph{arguments.}
1833Specify the arguments to give your program as the arguments of the
1834@code{run} command. If a shell is available on your target, the shell
1835is used to pass the arguments, so that you may use normal conventions
1836(such as wildcard expansion or variable substitution) in describing
1837the arguments.
1838In Unix systems, you can control which shell is used with the
1839@code{SHELL} environment variable.
79a6e687 1840@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1841
1842@item The @emph{environment.}
1843Your program normally inherits its environment from @value{GDBN}, but you can
1844use the @value{GDBN} commands @code{set environment} and @code{unset
1845environment} to change parts of the environment that affect
79a6e687 1846your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1847
1848@item The @emph{working directory.}
1849Your program inherits its working directory from @value{GDBN}. You can set
1850the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1851@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1852
1853@item The @emph{standard input and output.}
1854Your program normally uses the same device for standard input and
1855standard output as @value{GDBN} is using. You can redirect input and output
1856in the @code{run} command line, or you can use the @code{tty} command to
1857set a different device for your program.
79a6e687 1858@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1859
1860@cindex pipes
1861@emph{Warning:} While input and output redirection work, you cannot use
1862pipes to pass the output of the program you are debugging to another
1863program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1864wrong program.
1865@end table
c906108c
SS
1866
1867When you issue the @code{run} command, your program begins to execute
79a6e687 1868immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1869of how to arrange for your program to stop. Once your program has
1870stopped, you may call functions in your program, using the @code{print}
1871or @code{call} commands. @xref{Data, ,Examining Data}.
1872
1873If the modification time of your symbol file has changed since the last
1874time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1875table, and reads it again. When it does this, @value{GDBN} tries to retain
1876your current breakpoints.
1877
4e8b0763
JB
1878@table @code
1879@kindex start
1880@item start
1881@cindex run to main procedure
1882The name of the main procedure can vary from language to language.
1883With C or C@t{++}, the main procedure name is always @code{main}, but
1884other languages such as Ada do not require a specific name for their
1885main procedure. The debugger provides a convenient way to start the
1886execution of the program and to stop at the beginning of the main
1887procedure, depending on the language used.
1888
1889The @samp{start} command does the equivalent of setting a temporary
1890breakpoint at the beginning of the main procedure and then invoking
1891the @samp{run} command.
1892
f018e82f
EZ
1893@cindex elaboration phase
1894Some programs contain an @dfn{elaboration} phase where some startup code is
1895executed before the main procedure is called. This depends on the
1896languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1897constructors for static and global objects are executed before
1898@code{main} is called. It is therefore possible that the debugger stops
1899before reaching the main procedure. However, the temporary breakpoint
1900will remain to halt execution.
1901
1902Specify the arguments to give to your program as arguments to the
1903@samp{start} command. These arguments will be given verbatim to the
1904underlying @samp{run} command. Note that the same arguments will be
1905reused if no argument is provided during subsequent calls to
1906@samp{start} or @samp{run}.
1907
1908It is sometimes necessary to debug the program during elaboration. In
1909these cases, using the @code{start} command would stop the execution of
1910your program too late, as the program would have already completed the
1911elaboration phase. Under these circumstances, insert breakpoints in your
1912elaboration code before running your program.
1913@end table
1914
6d2ebf8b 1915@node Arguments
79a6e687 1916@section Your Program's Arguments
c906108c
SS
1917
1918@cindex arguments (to your program)
1919The arguments to your program can be specified by the arguments of the
5d161b24 1920@code{run} command.
c906108c
SS
1921They are passed to a shell, which expands wildcard characters and
1922performs redirection of I/O, and thence to your program. Your
1923@code{SHELL} environment variable (if it exists) specifies what shell
1924@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1925the default shell (@file{/bin/sh} on Unix).
1926
1927On non-Unix systems, the program is usually invoked directly by
1928@value{GDBN}, which emulates I/O redirection via the appropriate system
1929calls, and the wildcard characters are expanded by the startup code of
1930the program, not by the shell.
c906108c
SS
1931
1932@code{run} with no arguments uses the same arguments used by the previous
1933@code{run}, or those set by the @code{set args} command.
1934
c906108c 1935@table @code
41afff9a 1936@kindex set args
c906108c
SS
1937@item set args
1938Specify the arguments to be used the next time your program is run. If
1939@code{set args} has no arguments, @code{run} executes your program
1940with no arguments. Once you have run your program with arguments,
1941using @code{set args} before the next @code{run} is the only way to run
1942it again without arguments.
1943
1944@kindex show args
1945@item show args
1946Show the arguments to give your program when it is started.
1947@end table
1948
6d2ebf8b 1949@node Environment
79a6e687 1950@section Your Program's Environment
c906108c
SS
1951
1952@cindex environment (of your program)
1953The @dfn{environment} consists of a set of environment variables and
1954their values. Environment variables conventionally record such things as
1955your user name, your home directory, your terminal type, and your search
1956path for programs to run. Usually you set up environment variables with
1957the shell and they are inherited by all the other programs you run. When
1958debugging, it can be useful to try running your program with a modified
1959environment without having to start @value{GDBN} over again.
1960
1961@table @code
1962@kindex path
1963@item path @var{directory}
1964Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1965(the search path for executables) that will be passed to your program.
1966The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1967You may specify several directory names, separated by whitespace or by a
1968system-dependent separator character (@samp{:} on Unix, @samp{;} on
1969MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1970is moved to the front, so it is searched sooner.
c906108c
SS
1971
1972You can use the string @samp{$cwd} to refer to whatever is the current
1973working directory at the time @value{GDBN} searches the path. If you
1974use @samp{.} instead, it refers to the directory where you executed the
1975@code{path} command. @value{GDBN} replaces @samp{.} in the
1976@var{directory} argument (with the current path) before adding
1977@var{directory} to the search path.
1978@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1979@c document that, since repeating it would be a no-op.
1980
1981@kindex show paths
1982@item show paths
1983Display the list of search paths for executables (the @code{PATH}
1984environment variable).
1985
1986@kindex show environment
1987@item show environment @r{[}@var{varname}@r{]}
1988Print the value of environment variable @var{varname} to be given to
1989your program when it starts. If you do not supply @var{varname},
1990print the names and values of all environment variables to be given to
1991your program. You can abbreviate @code{environment} as @code{env}.
1992
1993@kindex set environment
53a5351d 1994@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1995Set environment variable @var{varname} to @var{value}. The value
1996changes for your program only, not for @value{GDBN} itself. @var{value} may
1997be any string; the values of environment variables are just strings, and
1998any interpretation is supplied by your program itself. The @var{value}
1999parameter is optional; if it is eliminated, the variable is set to a
2000null value.
2001@c "any string" here does not include leading, trailing
2002@c blanks. Gnu asks: does anyone care?
2003
2004For example, this command:
2005
474c8240 2006@smallexample
c906108c 2007set env USER = foo
474c8240 2008@end smallexample
c906108c
SS
2009
2010@noindent
d4f3574e 2011tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2012@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2013are not actually required.)
2014
2015@kindex unset environment
2016@item unset environment @var{varname}
2017Remove variable @var{varname} from the environment to be passed to your
2018program. This is different from @samp{set env @var{varname} =};
2019@code{unset environment} removes the variable from the environment,
2020rather than assigning it an empty value.
2021@end table
2022
d4f3574e
SS
2023@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2024the shell indicated
c906108c
SS
2025by your @code{SHELL} environment variable if it exists (or
2026@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2027that runs an initialization file---such as @file{.cshrc} for C-shell, or
2028@file{.bashrc} for BASH---any variables you set in that file affect
2029your program. You may wish to move setting of environment variables to
2030files that are only run when you sign on, such as @file{.login} or
2031@file{.profile}.
2032
6d2ebf8b 2033@node Working Directory
79a6e687 2034@section Your Program's Working Directory
c906108c
SS
2035
2036@cindex working directory (of your program)
2037Each time you start your program with @code{run}, it inherits its
2038working directory from the current working directory of @value{GDBN}.
2039The @value{GDBN} working directory is initially whatever it inherited
2040from its parent process (typically the shell), but you can specify a new
2041working directory in @value{GDBN} with the @code{cd} command.
2042
2043The @value{GDBN} working directory also serves as a default for the commands
2044that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2045Specify Files}.
c906108c
SS
2046
2047@table @code
2048@kindex cd
721c2651 2049@cindex change working directory
c906108c
SS
2050@item cd @var{directory}
2051Set the @value{GDBN} working directory to @var{directory}.
2052
2053@kindex pwd
2054@item pwd
2055Print the @value{GDBN} working directory.
2056@end table
2057
60bf7e09
EZ
2058It is generally impossible to find the current working directory of
2059the process being debugged (since a program can change its directory
2060during its run). If you work on a system where @value{GDBN} is
2061configured with the @file{/proc} support, you can use the @code{info
2062proc} command (@pxref{SVR4 Process Information}) to find out the
2063current working directory of the debuggee.
2064
6d2ebf8b 2065@node Input/Output
79a6e687 2066@section Your Program's Input and Output
c906108c
SS
2067
2068@cindex redirection
2069@cindex i/o
2070@cindex terminal
2071By default, the program you run under @value{GDBN} does input and output to
5d161b24 2072the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2073to its own terminal modes to interact with you, but it records the terminal
2074modes your program was using and switches back to them when you continue
2075running your program.
2076
2077@table @code
2078@kindex info terminal
2079@item info terminal
2080Displays information recorded by @value{GDBN} about the terminal modes your
2081program is using.
2082@end table
2083
2084You can redirect your program's input and/or output using shell
2085redirection with the @code{run} command. For example,
2086
474c8240 2087@smallexample
c906108c 2088run > outfile
474c8240 2089@end smallexample
c906108c
SS
2090
2091@noindent
2092starts your program, diverting its output to the file @file{outfile}.
2093
2094@kindex tty
2095@cindex controlling terminal
2096Another way to specify where your program should do input and output is
2097with the @code{tty} command. This command accepts a file name as
2098argument, and causes this file to be the default for future @code{run}
2099commands. It also resets the controlling terminal for the child
2100process, for future @code{run} commands. For example,
2101
474c8240 2102@smallexample
c906108c 2103tty /dev/ttyb
474c8240 2104@end smallexample
c906108c
SS
2105
2106@noindent
2107directs that processes started with subsequent @code{run} commands
2108default to do input and output on the terminal @file{/dev/ttyb} and have
2109that as their controlling terminal.
2110
2111An explicit redirection in @code{run} overrides the @code{tty} command's
2112effect on the input/output device, but not its effect on the controlling
2113terminal.
2114
2115When you use the @code{tty} command or redirect input in the @code{run}
2116command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2117for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2118for @code{set inferior-tty}.
2119
2120@cindex inferior tty
2121@cindex set inferior controlling terminal
2122You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2123display the name of the terminal that will be used for future runs of your
2124program.
2125
2126@table @code
2127@item set inferior-tty /dev/ttyb
2128@kindex set inferior-tty
2129Set the tty for the program being debugged to /dev/ttyb.
2130
2131@item show inferior-tty
2132@kindex show inferior-tty
2133Show the current tty for the program being debugged.
2134@end table
c906108c 2135
6d2ebf8b 2136@node Attach
79a6e687 2137@section Debugging an Already-running Process
c906108c
SS
2138@kindex attach
2139@cindex attach
2140
2141@table @code
2142@item attach @var{process-id}
2143This command attaches to a running process---one that was started
2144outside @value{GDBN}. (@code{info files} shows your active
2145targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2146find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2147or with the @samp{jobs -l} shell command.
2148
2149@code{attach} does not repeat if you press @key{RET} a second time after
2150executing the command.
2151@end table
2152
2153To use @code{attach}, your program must be running in an environment
2154which supports processes; for example, @code{attach} does not work for
2155programs on bare-board targets that lack an operating system. You must
2156also have permission to send the process a signal.
2157
2158When you use @code{attach}, the debugger finds the program running in
2159the process first by looking in the current working directory, then (if
2160the program is not found) by using the source file search path
79a6e687 2161(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2162the @code{file} command to load the program. @xref{Files, ,Commands to
2163Specify Files}.
2164
2165The first thing @value{GDBN} does after arranging to debug the specified
2166process is to stop it. You can examine and modify an attached process
53a5351d
JM
2167with all the @value{GDBN} commands that are ordinarily available when
2168you start processes with @code{run}. You can insert breakpoints; you
2169can step and continue; you can modify storage. If you would rather the
2170process continue running, you may use the @code{continue} command after
c906108c
SS
2171attaching @value{GDBN} to the process.
2172
2173@table @code
2174@kindex detach
2175@item detach
2176When you have finished debugging the attached process, you can use the
2177@code{detach} command to release it from @value{GDBN} control. Detaching
2178the process continues its execution. After the @code{detach} command,
2179that process and @value{GDBN} become completely independent once more, and you
2180are ready to @code{attach} another process or start one with @code{run}.
2181@code{detach} does not repeat if you press @key{RET} again after
2182executing the command.
2183@end table
2184
159fcc13
JK
2185If you exit @value{GDBN} while you have an attached process, you detach
2186that process. If you use the @code{run} command, you kill that process.
2187By default, @value{GDBN} asks for confirmation if you try to do either of these
2188things; you can control whether or not you need to confirm by using the
2189@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2190Messages}).
c906108c 2191
6d2ebf8b 2192@node Kill Process
79a6e687 2193@section Killing the Child Process
c906108c
SS
2194
2195@table @code
2196@kindex kill
2197@item kill
2198Kill the child process in which your program is running under @value{GDBN}.
2199@end table
2200
2201This command is useful if you wish to debug a core dump instead of a
2202running process. @value{GDBN} ignores any core dump file while your program
2203is running.
2204
2205On some operating systems, a program cannot be executed outside @value{GDBN}
2206while you have breakpoints set on it inside @value{GDBN}. You can use the
2207@code{kill} command in this situation to permit running your program
2208outside the debugger.
2209
2210The @code{kill} command is also useful if you wish to recompile and
2211relink your program, since on many systems it is impossible to modify an
2212executable file while it is running in a process. In this case, when you
2213next type @code{run}, @value{GDBN} notices that the file has changed, and
2214reads the symbol table again (while trying to preserve your current
2215breakpoint settings).
2216
6d2ebf8b 2217@node Threads
79a6e687 2218@section Debugging Programs with Multiple Threads
c906108c
SS
2219
2220@cindex threads of execution
2221@cindex multiple threads
2222@cindex switching threads
2223In some operating systems, such as HP-UX and Solaris, a single program
2224may have more than one @dfn{thread} of execution. The precise semantics
2225of threads differ from one operating system to another, but in general
2226the threads of a single program are akin to multiple processes---except
2227that they share one address space (that is, they can all examine and
2228modify the same variables). On the other hand, each thread has its own
2229registers and execution stack, and perhaps private memory.
2230
2231@value{GDBN} provides these facilities for debugging multi-thread
2232programs:
2233
2234@itemize @bullet
2235@item automatic notification of new threads
2236@item @samp{thread @var{threadno}}, a command to switch among threads
2237@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2238@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2239a command to apply a command to a list of threads
2240@item thread-specific breakpoints
93815fbf
VP
2241@item @samp{set print thread-events}, which controls printing of
2242messages on thread start and exit.
c906108c
SS
2243@end itemize
2244
c906108c
SS
2245@quotation
2246@emph{Warning:} These facilities are not yet available on every
2247@value{GDBN} configuration where the operating system supports threads.
2248If your @value{GDBN} does not support threads, these commands have no
2249effect. For example, a system without thread support shows no output
2250from @samp{info threads}, and always rejects the @code{thread} command,
2251like this:
2252
2253@smallexample
2254(@value{GDBP}) info threads
2255(@value{GDBP}) thread 1
2256Thread ID 1 not known. Use the "info threads" command to
2257see the IDs of currently known threads.
2258@end smallexample
2259@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2260@c doesn't support threads"?
2261@end quotation
c906108c
SS
2262
2263@cindex focus of debugging
2264@cindex current thread
2265The @value{GDBN} thread debugging facility allows you to observe all
2266threads while your program runs---but whenever @value{GDBN} takes
2267control, one thread in particular is always the focus of debugging.
2268This thread is called the @dfn{current thread}. Debugging commands show
2269program information from the perspective of the current thread.
2270
41afff9a 2271@cindex @code{New} @var{systag} message
c906108c
SS
2272@cindex thread identifier (system)
2273@c FIXME-implementors!! It would be more helpful if the [New...] message
2274@c included GDB's numeric thread handle, so you could just go to that
2275@c thread without first checking `info threads'.
2276Whenever @value{GDBN} detects a new thread in your program, it displays
2277the target system's identification for the thread with a message in the
2278form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2279whose form varies depending on the particular system. For example, on
8807d78b 2280@sc{gnu}/Linux, you might see
c906108c 2281
474c8240 2282@smallexample
8807d78b 2283[New Thread 46912507313328 (LWP 25582)]
474c8240 2284@end smallexample
c906108c
SS
2285
2286@noindent
2287when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2288the @var{systag} is simply something like @samp{process 368}, with no
2289further qualifier.
2290
2291@c FIXME!! (1) Does the [New...] message appear even for the very first
2292@c thread of a program, or does it only appear for the
6ca652b0 2293@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2294@c program?
2295@c (2) *Is* there necessarily a first thread always? Or do some
2296@c multithread systems permit starting a program with multiple
5d161b24 2297@c threads ab initio?
c906108c
SS
2298
2299@cindex thread number
2300@cindex thread identifier (GDB)
2301For debugging purposes, @value{GDBN} associates its own thread
2302number---always a single integer---with each thread in your program.
2303
2304@table @code
2305@kindex info threads
2306@item info threads
2307Display a summary of all threads currently in your
2308program. @value{GDBN} displays for each thread (in this order):
2309
2310@enumerate
09d4efe1
EZ
2311@item
2312the thread number assigned by @value{GDBN}
c906108c 2313
09d4efe1
EZ
2314@item
2315the target system's thread identifier (@var{systag})
c906108c 2316
09d4efe1
EZ
2317@item
2318the current stack frame summary for that thread
c906108c
SS
2319@end enumerate
2320
2321@noindent
2322An asterisk @samp{*} to the left of the @value{GDBN} thread number
2323indicates the current thread.
2324
5d161b24 2325For example,
c906108c
SS
2326@end table
2327@c end table here to get a little more width for example
2328
2329@smallexample
2330(@value{GDBP}) info threads
2331 3 process 35 thread 27 0x34e5 in sigpause ()
2332 2 process 35 thread 23 0x34e5 in sigpause ()
2333* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2334 at threadtest.c:68
2335@end smallexample
53a5351d
JM
2336
2337On HP-UX systems:
c906108c 2338
4644b6e3
EZ
2339@cindex debugging multithreaded programs (on HP-UX)
2340@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2341For debugging purposes, @value{GDBN} associates its own thread
2342number---a small integer assigned in thread-creation order---with each
2343thread in your program.
2344
41afff9a
EZ
2345@cindex @code{New} @var{systag} message, on HP-UX
2346@cindex thread identifier (system), on HP-UX
c906108c
SS
2347@c FIXME-implementors!! It would be more helpful if the [New...] message
2348@c included GDB's numeric thread handle, so you could just go to that
2349@c thread without first checking `info threads'.
2350Whenever @value{GDBN} detects a new thread in your program, it displays
2351both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2352form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2353whose form varies depending on the particular system. For example, on
2354HP-UX, you see
2355
474c8240 2356@smallexample
c906108c 2357[New thread 2 (system thread 26594)]
474c8240 2358@end smallexample
c906108c
SS
2359
2360@noindent
5d161b24 2361when @value{GDBN} notices a new thread.
c906108c
SS
2362
2363@table @code
4644b6e3 2364@kindex info threads (HP-UX)
c906108c
SS
2365@item info threads
2366Display a summary of all threads currently in your
2367program. @value{GDBN} displays for each thread (in this order):
2368
2369@enumerate
2370@item the thread number assigned by @value{GDBN}
2371
2372@item the target system's thread identifier (@var{systag})
2373
2374@item the current stack frame summary for that thread
2375@end enumerate
2376
2377@noindent
2378An asterisk @samp{*} to the left of the @value{GDBN} thread number
2379indicates the current thread.
2380
5d161b24 2381For example,
c906108c
SS
2382@end table
2383@c end table here to get a little more width for example
2384
474c8240 2385@smallexample
c906108c 2386(@value{GDBP}) info threads
6d2ebf8b
SS
2387 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2388 at quicksort.c:137
2389 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2390 from /usr/lib/libc.2
2391 1 system thread 27905 0x7b003498 in _brk () \@*
2392 from /usr/lib/libc.2
474c8240 2393@end smallexample
c906108c 2394
c45da7e6
EZ
2395On Solaris, you can display more information about user threads with a
2396Solaris-specific command:
2397
2398@table @code
2399@item maint info sol-threads
2400@kindex maint info sol-threads
2401@cindex thread info (Solaris)
2402Display info on Solaris user threads.
2403@end table
2404
c906108c
SS
2405@table @code
2406@kindex thread @var{threadno}
2407@item thread @var{threadno}
2408Make thread number @var{threadno} the current thread. The command
2409argument @var{threadno} is the internal @value{GDBN} thread number, as
2410shown in the first field of the @samp{info threads} display.
2411@value{GDBN} responds by displaying the system identifier of the thread
2412you selected, and its current stack frame summary:
2413
2414@smallexample
2415@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2416(@value{GDBP}) thread 2
c906108c 2417[Switching to process 35 thread 23]
c906108c
SS
24180x34e5 in sigpause ()
2419@end smallexample
2420
2421@noindent
2422As with the @samp{[New @dots{}]} message, the form of the text after
2423@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2424threads.
c906108c 2425
9c16f35a 2426@kindex thread apply
638ac427 2427@cindex apply command to several threads
839c27b7
EZ
2428@item thread apply [@var{threadno}] [@var{all}] @var{command}
2429The @code{thread apply} command allows you to apply the named
2430@var{command} to one or more threads. Specify the numbers of the
2431threads that you want affected with the command argument
2432@var{threadno}. It can be a single thread number, one of the numbers
2433shown in the first field of the @samp{info threads} display; or it
2434could be a range of thread numbers, as in @code{2-4}. To apply a
2435command to all threads, type @kbd{thread apply all @var{command}}.
93815fbf
VP
2436
2437@kindex set print thread-events
2438@cindex print messages on thread start and exit
2439@item set print thread-events
2440@itemx set print thread-events on
2441@itemx set print thread-events off
2442The @code{set print thread-events} command allows you to enable or
2443disable printing of messages when @value{GDBN} notices that new threads have
2444started or that threads have exited. By default, these messages will
2445be printed if detection of these events is supported by the target.
2446Note that these messages cannot be disabled on all targets.
2447
2448@kindex show print thread-events
2449@item show print thread-events
2450Show whether messages will be printed when @value{GDBN} detects that threads
2451have started and exited.
c906108c
SS
2452@end table
2453
2454@cindex automatic thread selection
2455@cindex switching threads automatically
2456@cindex threads, automatic switching
2457Whenever @value{GDBN} stops your program, due to a breakpoint or a
2458signal, it automatically selects the thread where that breakpoint or
2459signal happened. @value{GDBN} alerts you to the context switch with a
2460message of the form @samp{[Switching to @var{systag}]} to identify the
2461thread.
2462
79a6e687 2463@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2464more information about how @value{GDBN} behaves when you stop and start
2465programs with multiple threads.
2466
79a6e687 2467@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2468watchpoints in programs with multiple threads.
c906108c 2469
6d2ebf8b 2470@node Processes
79a6e687 2471@section Debugging Programs with Multiple Processes
c906108c
SS
2472
2473@cindex fork, debugging programs which call
2474@cindex multiple processes
2475@cindex processes, multiple
53a5351d
JM
2476On most systems, @value{GDBN} has no special support for debugging
2477programs which create additional processes using the @code{fork}
2478function. When a program forks, @value{GDBN} will continue to debug the
2479parent process and the child process will run unimpeded. If you have
2480set a breakpoint in any code which the child then executes, the child
2481will get a @code{SIGTRAP} signal which (unless it catches the signal)
2482will cause it to terminate.
c906108c
SS
2483
2484However, if you want to debug the child process there is a workaround
2485which isn't too painful. Put a call to @code{sleep} in the code which
2486the child process executes after the fork. It may be useful to sleep
2487only if a certain environment variable is set, or a certain file exists,
2488so that the delay need not occur when you don't want to run @value{GDBN}
2489on the child. While the child is sleeping, use the @code{ps} program to
2490get its process ID. Then tell @value{GDBN} (a new invocation of
2491@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2492the child process (@pxref{Attach}). From that point on you can debug
c906108c 2493the child process just like any other process which you attached to.
c906108c 2494
b51970ac
DJ
2495On some systems, @value{GDBN} provides support for debugging programs that
2496create additional processes using the @code{fork} or @code{vfork} functions.
2497Currently, the only platforms with this feature are HP-UX (11.x and later
a6b151f1 2498only?) and @sc{gnu}/Linux (kernel version 2.5.60 and later).
c906108c
SS
2499
2500By default, when a program forks, @value{GDBN} will continue to debug
2501the parent process and the child process will run unimpeded.
2502
2503If you want to follow the child process instead of the parent process,
2504use the command @w{@code{set follow-fork-mode}}.
2505
2506@table @code
2507@kindex set follow-fork-mode
2508@item set follow-fork-mode @var{mode}
2509Set the debugger response to a program call of @code{fork} or
2510@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2511process. The @var{mode} argument can be:
c906108c
SS
2512
2513@table @code
2514@item parent
2515The original process is debugged after a fork. The child process runs
2df3850c 2516unimpeded. This is the default.
c906108c
SS
2517
2518@item child
2519The new process is debugged after a fork. The parent process runs
2520unimpeded.
2521
c906108c
SS
2522@end table
2523
9c16f35a 2524@kindex show follow-fork-mode
c906108c 2525@item show follow-fork-mode
2df3850c 2526Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2527@end table
2528
5c95884b
MS
2529@cindex debugging multiple processes
2530On Linux, if you want to debug both the parent and child processes, use the
2531command @w{@code{set detach-on-fork}}.
2532
2533@table @code
2534@kindex set detach-on-fork
2535@item set detach-on-fork @var{mode}
2536Tells gdb whether to detach one of the processes after a fork, or
2537retain debugger control over them both.
2538
2539@table @code
2540@item on
2541The child process (or parent process, depending on the value of
2542@code{follow-fork-mode}) will be detached and allowed to run
2543independently. This is the default.
2544
2545@item off
2546Both processes will be held under the control of @value{GDBN}.
2547One process (child or parent, depending on the value of
2548@code{follow-fork-mode}) is debugged as usual, while the other
2549is held suspended.
2550
2551@end table
2552
11310833
NR
2553@kindex show detach-on-fork
2554@item show detach-on-fork
2555Show whether detach-on-fork mode is on/off.
5c95884b
MS
2556@end table
2557
11310833 2558If you choose to set @samp{detach-on-fork} mode off, then
5c95884b
MS
2559@value{GDBN} will retain control of all forked processes (including
2560nested forks). You can list the forked processes under the control of
2561@value{GDBN} by using the @w{@code{info forks}} command, and switch
2562from one fork to another by using the @w{@code{fork}} command.
2563
2564@table @code
2565@kindex info forks
2566@item info forks
2567Print a list of all forked processes under the control of @value{GDBN}.
2568The listing will include a fork id, a process id, and the current
2569position (program counter) of the process.
2570
5c95884b
MS
2571@kindex fork @var{fork-id}
2572@item fork @var{fork-id}
2573Make fork number @var{fork-id} the current process. The argument
2574@var{fork-id} is the internal fork number assigned by @value{GDBN},
2575as shown in the first field of the @samp{info forks} display.
2576
11310833
NR
2577@kindex process @var{process-id}
2578@item process @var{process-id}
2579Make process number @var{process-id} the current process. The
2580argument @var{process-id} must be one that is listed in the output of
2581@samp{info forks}.
2582
5c95884b
MS
2583@end table
2584
2585To quit debugging one of the forked processes, you can either detach
f73adfeb 2586from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2587run independently), or delete (and kill) it using the
b8db102d 2588@w{@code{delete fork}} command.
5c95884b
MS
2589
2590@table @code
f73adfeb
AS
2591@kindex detach fork @var{fork-id}
2592@item detach fork @var{fork-id}
5c95884b
MS
2593Detach from the process identified by @value{GDBN} fork number
2594@var{fork-id}, and remove it from the fork list. The process will be
2595allowed to run independently.
2596
b8db102d
MS
2597@kindex delete fork @var{fork-id}
2598@item delete fork @var{fork-id}
5c95884b
MS
2599Kill the process identified by @value{GDBN} fork number @var{fork-id},
2600and remove it from the fork list.
2601
2602@end table
2603
c906108c
SS
2604If you ask to debug a child process and a @code{vfork} is followed by an
2605@code{exec}, @value{GDBN} executes the new target up to the first
2606breakpoint in the new target. If you have a breakpoint set on
2607@code{main} in your original program, the breakpoint will also be set on
2608the child process's @code{main}.
2609
2610When a child process is spawned by @code{vfork}, you cannot debug the
2611child or parent until an @code{exec} call completes.
2612
2613If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2614call executes, the new target restarts. To restart the parent process,
2615use the @code{file} command with the parent executable name as its
2616argument.
2617
2618You can use the @code{catch} command to make @value{GDBN} stop whenever
2619a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2620Catchpoints, ,Setting Catchpoints}.
c906108c 2621
5c95884b 2622@node Checkpoint/Restart
79a6e687 2623@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2624
2625@cindex checkpoint
2626@cindex restart
2627@cindex bookmark
2628@cindex snapshot of a process
2629@cindex rewind program state
2630
2631On certain operating systems@footnote{Currently, only
2632@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2633program's state, called a @dfn{checkpoint}, and come back to it
2634later.
2635
2636Returning to a checkpoint effectively undoes everything that has
2637happened in the program since the @code{checkpoint} was saved. This
2638includes changes in memory, registers, and even (within some limits)
2639system state. Effectively, it is like going back in time to the
2640moment when the checkpoint was saved.
2641
2642Thus, if you're stepping thru a program and you think you're
2643getting close to the point where things go wrong, you can save
2644a checkpoint. Then, if you accidentally go too far and miss
2645the critical statement, instead of having to restart your program
2646from the beginning, you can just go back to the checkpoint and
2647start again from there.
2648
2649This can be especially useful if it takes a lot of time or
2650steps to reach the point where you think the bug occurs.
2651
2652To use the @code{checkpoint}/@code{restart} method of debugging:
2653
2654@table @code
2655@kindex checkpoint
2656@item checkpoint
2657Save a snapshot of the debugged program's current execution state.
2658The @code{checkpoint} command takes no arguments, but each checkpoint
2659is assigned a small integer id, similar to a breakpoint id.
2660
2661@kindex info checkpoints
2662@item info checkpoints
2663List the checkpoints that have been saved in the current debugging
2664session. For each checkpoint, the following information will be
2665listed:
2666
2667@table @code
2668@item Checkpoint ID
2669@item Process ID
2670@item Code Address
2671@item Source line, or label
2672@end table
2673
2674@kindex restart @var{checkpoint-id}
2675@item restart @var{checkpoint-id}
2676Restore the program state that was saved as checkpoint number
2677@var{checkpoint-id}. All program variables, registers, stack frames
2678etc.@: will be returned to the values that they had when the checkpoint
2679was saved. In essence, gdb will ``wind back the clock'' to the point
2680in time when the checkpoint was saved.
2681
2682Note that breakpoints, @value{GDBN} variables, command history etc.
2683are not affected by restoring a checkpoint. In general, a checkpoint
2684only restores things that reside in the program being debugged, not in
2685the debugger.
2686
b8db102d
MS
2687@kindex delete checkpoint @var{checkpoint-id}
2688@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2689Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2690
2691@end table
2692
2693Returning to a previously saved checkpoint will restore the user state
2694of the program being debugged, plus a significant subset of the system
2695(OS) state, including file pointers. It won't ``un-write'' data from
2696a file, but it will rewind the file pointer to the previous location,
2697so that the previously written data can be overwritten. For files
2698opened in read mode, the pointer will also be restored so that the
2699previously read data can be read again.
2700
2701Of course, characters that have been sent to a printer (or other
2702external device) cannot be ``snatched back'', and characters received
2703from eg.@: a serial device can be removed from internal program buffers,
2704but they cannot be ``pushed back'' into the serial pipeline, ready to
2705be received again. Similarly, the actual contents of files that have
2706been changed cannot be restored (at this time).
2707
2708However, within those constraints, you actually can ``rewind'' your
2709program to a previously saved point in time, and begin debugging it
2710again --- and you can change the course of events so as to debug a
2711different execution path this time.
2712
2713@cindex checkpoints and process id
2714Finally, there is one bit of internal program state that will be
2715different when you return to a checkpoint --- the program's process
2716id. Each checkpoint will have a unique process id (or @var{pid}),
2717and each will be different from the program's original @var{pid}.
2718If your program has saved a local copy of its process id, this could
2719potentially pose a problem.
2720
79a6e687 2721@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2722
2723On some systems such as @sc{gnu}/Linux, address space randomization
2724is performed on new processes for security reasons. This makes it
2725difficult or impossible to set a breakpoint, or watchpoint, on an
2726absolute address if you have to restart the program, since the
2727absolute location of a symbol will change from one execution to the
2728next.
2729
2730A checkpoint, however, is an @emph{identical} copy of a process.
2731Therefore if you create a checkpoint at (eg.@:) the start of main,
2732and simply return to that checkpoint instead of restarting the
2733process, you can avoid the effects of address randomization and
2734your symbols will all stay in the same place.
2735
6d2ebf8b 2736@node Stopping
c906108c
SS
2737@chapter Stopping and Continuing
2738
2739The principal purposes of using a debugger are so that you can stop your
2740program before it terminates; or so that, if your program runs into
2741trouble, you can investigate and find out why.
2742
7a292a7a
SS
2743Inside @value{GDBN}, your program may stop for any of several reasons,
2744such as a signal, a breakpoint, or reaching a new line after a
2745@value{GDBN} command such as @code{step}. You may then examine and
2746change variables, set new breakpoints or remove old ones, and then
2747continue execution. Usually, the messages shown by @value{GDBN} provide
2748ample explanation of the status of your program---but you can also
2749explicitly request this information at any time.
c906108c
SS
2750
2751@table @code
2752@kindex info program
2753@item info program
2754Display information about the status of your program: whether it is
7a292a7a 2755running or not, what process it is, and why it stopped.
c906108c
SS
2756@end table
2757
2758@menu
2759* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2760* Continuing and Stepping:: Resuming execution
c906108c 2761* Signals:: Signals
c906108c 2762* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2763@end menu
2764
6d2ebf8b 2765@node Breakpoints
79a6e687 2766@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2767
2768@cindex breakpoints
2769A @dfn{breakpoint} makes your program stop whenever a certain point in
2770the program is reached. For each breakpoint, you can add conditions to
2771control in finer detail whether your program stops. You can set
2772breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2773Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2774should stop by line number, function name or exact address in the
2775program.
2776
09d4efe1
EZ
2777On some systems, you can set breakpoints in shared libraries before
2778the executable is run. There is a minor limitation on HP-UX systems:
2779you must wait until the executable is run in order to set breakpoints
2780in shared library routines that are not called directly by the program
2781(for example, routines that are arguments in a @code{pthread_create}
2782call).
c906108c
SS
2783
2784@cindex watchpoints
fd60e0df 2785@cindex data breakpoints
c906108c
SS
2786@cindex memory tracing
2787@cindex breakpoint on memory address
2788@cindex breakpoint on variable modification
2789A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2790when the value of an expression changes. The expression may be a value
0ced0c34 2791of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2792combined by operators, such as @samp{a + b}. This is sometimes called
2793@dfn{data breakpoints}. You must use a different command to set
79a6e687 2794watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2795from that, you can manage a watchpoint like any other breakpoint: you
2796enable, disable, and delete both breakpoints and watchpoints using the
2797same commands.
c906108c
SS
2798
2799You can arrange to have values from your program displayed automatically
2800whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2801Automatic Display}.
c906108c
SS
2802
2803@cindex catchpoints
2804@cindex breakpoint on events
2805A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2806when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2807exception or the loading of a library. As with watchpoints, you use a
2808different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2809Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2810other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2811@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2812
2813@cindex breakpoint numbers
2814@cindex numbers for breakpoints
2815@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2816catchpoint when you create it; these numbers are successive integers
2817starting with one. In many of the commands for controlling various
2818features of breakpoints you use the breakpoint number to say which
2819breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2820@dfn{disabled}; if disabled, it has no effect on your program until you
2821enable it again.
2822
c5394b80
JM
2823@cindex breakpoint ranges
2824@cindex ranges of breakpoints
2825Some @value{GDBN} commands accept a range of breakpoints on which to
2826operate. A breakpoint range is either a single breakpoint number, like
2827@samp{5}, or two such numbers, in increasing order, separated by a
2828hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2829all breakpoints in that range are operated on.
c5394b80 2830
c906108c
SS
2831@menu
2832* Set Breaks:: Setting breakpoints
2833* Set Watchpoints:: Setting watchpoints
2834* Set Catchpoints:: Setting catchpoints
2835* Delete Breaks:: Deleting breakpoints
2836* Disabling:: Disabling breakpoints
2837* Conditions:: Break conditions
2838* Break Commands:: Breakpoint command lists
c906108c 2839* Breakpoint Menus:: Breakpoint menus
d4f3574e 2840* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2841* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2842@end menu
2843
6d2ebf8b 2844@node Set Breaks
79a6e687 2845@subsection Setting Breakpoints
c906108c 2846
5d161b24 2847@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2848@c consider in particular declaration with/without initialization.
2849@c
2850@c FIXME 2 is there stuff on this already? break at fun start, already init?
2851
2852@kindex break
41afff9a
EZ
2853@kindex b @r{(@code{break})}
2854@vindex $bpnum@r{, convenience variable}
c906108c
SS
2855@cindex latest breakpoint
2856Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2857@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2858number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2859Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2860convenience variables.
2861
c906108c 2862@table @code
2a25a5ba
EZ
2863@item break @var{location}
2864Set a breakpoint at the given @var{location}, which can specify a
2865function name, a line number, or an address of an instruction.
2866(@xref{Specify Location}, for a list of all the possible ways to
2867specify a @var{location}.) The breakpoint will stop your program just
2868before it executes any of the code in the specified @var{location}.
2869
c906108c 2870When using source languages that permit overloading of symbols, such as
2a25a5ba 2871C@t{++}, a function name may refer to more than one possible place to break.
79a6e687 2872@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c 2873
c906108c
SS
2874@item break
2875When called without any arguments, @code{break} sets a breakpoint at
2876the next instruction to be executed in the selected stack frame
2877(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2878innermost, this makes your program stop as soon as control
2879returns to that frame. This is similar to the effect of a
2880@code{finish} command in the frame inside the selected frame---except
2881that @code{finish} does not leave an active breakpoint. If you use
2882@code{break} without an argument in the innermost frame, @value{GDBN} stops
2883the next time it reaches the current location; this may be useful
2884inside loops.
2885
2886@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2887least one instruction has been executed. If it did not do this, you
2888would be unable to proceed past a breakpoint without first disabling the
2889breakpoint. This rule applies whether or not the breakpoint already
2890existed when your program stopped.
2891
2892@item break @dots{} if @var{cond}
2893Set a breakpoint with condition @var{cond}; evaluate the expression
2894@var{cond} each time the breakpoint is reached, and stop only if the
2895value is nonzero---that is, if @var{cond} evaluates as true.
2896@samp{@dots{}} stands for one of the possible arguments described
2897above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2898,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2899
2900@kindex tbreak
2901@item tbreak @var{args}
2902Set a breakpoint enabled only for one stop. @var{args} are the
2903same as for the @code{break} command, and the breakpoint is set in the same
2904way, but the breakpoint is automatically deleted after the first time your
79a6e687 2905program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2906
c906108c 2907@kindex hbreak
ba04e063 2908@cindex hardware breakpoints
c906108c 2909@item hbreak @var{args}
d4f3574e
SS
2910Set a hardware-assisted breakpoint. @var{args} are the same as for the
2911@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2912breakpoint requires hardware support and some target hardware may not
2913have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2914debugging, so you can set a breakpoint at an instruction without
2915changing the instruction. This can be used with the new trap-generation
09d4efe1 2916provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2917will generate traps when a program accesses some data or instruction
2918address that is assigned to the debug registers. However the hardware
2919breakpoint registers can take a limited number of breakpoints. For
2920example, on the DSU, only two data breakpoints can be set at a time, and
2921@value{GDBN} will reject this command if more than two are used. Delete
2922or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2923(@pxref{Disabling, ,Disabling Breakpoints}).
2924@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2925For remote targets, you can restrict the number of hardware
2926breakpoints @value{GDBN} will use, see @ref{set remote
2927hardware-breakpoint-limit}.
501eef12 2928
c906108c
SS
2929@kindex thbreak
2930@item thbreak @var{args}
2931Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2932are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2933the same way. However, like the @code{tbreak} command,
c906108c
SS
2934the breakpoint is automatically deleted after the
2935first time your program stops there. Also, like the @code{hbreak}
5d161b24 2936command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2937may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2938See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2939
2940@kindex rbreak
2941@cindex regular expression
c45da7e6
EZ
2942@cindex breakpoints in functions matching a regexp
2943@cindex set breakpoints in many functions
c906108c 2944@item rbreak @var{regex}
c906108c 2945Set breakpoints on all functions matching the regular expression
11cf8741
JM
2946@var{regex}. This command sets an unconditional breakpoint on all
2947matches, printing a list of all breakpoints it set. Once these
2948breakpoints are set, they are treated just like the breakpoints set with
2949the @code{break} command. You can delete them, disable them, or make
2950them conditional the same way as any other breakpoint.
2951
2952The syntax of the regular expression is the standard one used with tools
2953like @file{grep}. Note that this is different from the syntax used by
2954shells, so for instance @code{foo*} matches all functions that include
2955an @code{fo} followed by zero or more @code{o}s. There is an implicit
2956@code{.*} leading and trailing the regular expression you supply, so to
2957match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2958
f7dc1244 2959@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2960When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2961breakpoints on overloaded functions that are not members of any special
2962classes.
c906108c 2963
f7dc1244
EZ
2964@cindex set breakpoints on all functions
2965The @code{rbreak} command can be used to set breakpoints in
2966@strong{all} the functions in a program, like this:
2967
2968@smallexample
2969(@value{GDBP}) rbreak .
2970@end smallexample
2971
c906108c
SS
2972@kindex info breakpoints
2973@cindex @code{$_} and @code{info breakpoints}
2974@item info breakpoints @r{[}@var{n}@r{]}
2975@itemx info break @r{[}@var{n}@r{]}
2976@itemx info watchpoints @r{[}@var{n}@r{]}
2977Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2978not deleted. Optional argument @var{n} means print information only
2979about the specified breakpoint (or watchpoint or catchpoint). For
2980each breakpoint, following columns are printed:
c906108c
SS
2981
2982@table @emph
2983@item Breakpoint Numbers
2984@item Type
2985Breakpoint, watchpoint, or catchpoint.
2986@item Disposition
2987Whether the breakpoint is marked to be disabled or deleted when hit.
2988@item Enabled or Disabled
2989Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
fe6fbf8b 2990that are not enabled. An optional @samp{(p)} suffix marks pending
3b784c4f 2991breakpoints---breakpoints for which address is either not yet
fe6fbf8b
VP
2992resolved, pending load of a shared library, or for which address was
2993in a shared library that was since unloaded. Such breakpoint won't
2994fire until a shared library that has the symbol or line referred by
2995breakpoint is loaded. See below for details.
c906108c 2996@item Address
fe6fbf8b
VP
2997Where the breakpoint is in your program, as a memory address. For a
2998pending breakpoint whose address is not yet known, this field will
2999contain @samp{<PENDING>}. A breakpoint with several locations will
3b784c4f 3000have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3001@item What
3002Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3003line number. For a pending breakpoint, the original string passed to
3004the breakpoint command will be listed as it cannot be resolved until
3005the appropriate shared library is loaded in the future.
c906108c
SS
3006@end table
3007
3008@noindent
3009If a breakpoint is conditional, @code{info break} shows the condition on
3010the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3011are listed after that. A pending breakpoint is allowed to have a condition
3012specified for it. The condition is not parsed for validity until a shared
3013library is loaded that allows the pending breakpoint to resolve to a
3014valid location.
c906108c
SS
3015
3016@noindent
3017@code{info break} with a breakpoint
3018number @var{n} as argument lists only that breakpoint. The
3019convenience variable @code{$_} and the default examining-address for
3020the @code{x} command are set to the address of the last breakpoint
79a6e687 3021listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3022
3023@noindent
3024@code{info break} displays a count of the number of times the breakpoint
3025has been hit. This is especially useful in conjunction with the
3026@code{ignore} command. You can ignore a large number of breakpoint
3027hits, look at the breakpoint info to see how many times the breakpoint
3028was hit, and then run again, ignoring one less than that number. This
3029will get you quickly to the last hit of that breakpoint.
3030@end table
3031
3032@value{GDBN} allows you to set any number of breakpoints at the same place in
3033your program. There is nothing silly or meaningless about this. When
3034the breakpoints are conditional, this is even useful
79a6e687 3035(@pxref{Conditions, ,Break Conditions}).
c906108c 3036
fcda367b 3037It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3038in your program. Examples of this situation are:
3039
3040@itemize @bullet
3041
3042@item
3043For a C@t{++} constructor, the @value{NGCC} compiler generates several
3044instances of the function body, used in different cases.
3045
3046@item
3047For a C@t{++} template function, a given line in the function can
3048correspond to any number of instantiations.
3049
3050@item
3051For an inlined function, a given source line can correspond to
3052several places where that function is inlined.
3053
3054@end itemize
3055
3056In all those cases, @value{GDBN} will insert a breakpoint at all
3057the relevant locations.
3058
3b784c4f
EZ
3059A breakpoint with multiple locations is displayed in the breakpoint
3060table using several rows---one header row, followed by one row for
3061each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3062address column. The rows for individual locations contain the actual
3063addresses for locations, and show the functions to which those
3064locations belong. The number column for a location is of the form
fe6fbf8b
VP
3065@var{breakpoint-number}.@var{location-number}.
3066
3067For example:
3b784c4f 3068
fe6fbf8b
VP
3069@smallexample
3070Num Type Disp Enb Address What
30711 breakpoint keep y <MULTIPLE>
3072 stop only if i==1
3073 breakpoint already hit 1 time
30741.1 y 0x080486a2 in void foo<int>() at t.cc:8
30751.2 y 0x080486ca in void foo<double>() at t.cc:8
3076@end smallexample
3077
3078Each location can be individually enabled or disabled by passing
3079@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3080@code{enable} and @code{disable} commands. Note that you cannot
3081delete the individual locations from the list, you can only delete the
16bfc218 3082entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3083the @kbd{delete @var{num}} command, where @var{num} is the number of
3084the parent breakpoint, 1 in the above example). Disabling or enabling
3085the parent breakpoint (@pxref{Disabling}) affects all of the locations
3086that belong to that breakpoint.
fe6fbf8b 3087
2650777c 3088@cindex pending breakpoints
fe6fbf8b 3089It's quite common to have a breakpoint inside a shared library.
3b784c4f 3090Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3091and possibly repeatedly, as the program is executed. To support
3092this use case, @value{GDBN} updates breakpoint locations whenever
3093any shared library is loaded or unloaded. Typically, you would
fcda367b 3094set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3095debugging session, when the library is not loaded, and when the
3096symbols from the library are not available. When you try to set
3097breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3098a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3099is not yet resolved.
3100
3101After the program is run, whenever a new shared library is loaded,
3102@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3103shared library contains the symbol or line referred to by some
3104pending breakpoint, that breakpoint is resolved and becomes an
3105ordinary breakpoint. When a library is unloaded, all breakpoints
3106that refer to its symbols or source lines become pending again.
3107
3108This logic works for breakpoints with multiple locations, too. For
3109example, if you have a breakpoint in a C@t{++} template function, and
3110a newly loaded shared library has an instantiation of that template,
3111a new location is added to the list of locations for the breakpoint.
3112
3113Except for having unresolved address, pending breakpoints do not
3114differ from regular breakpoints. You can set conditions or commands,
3115enable and disable them and perform other breakpoint operations.
3116
3117@value{GDBN} provides some additional commands for controlling what
3118happens when the @samp{break} command cannot resolve breakpoint
3119address specification to an address:
dd79a6cf
JJ
3120
3121@kindex set breakpoint pending
3122@kindex show breakpoint pending
3123@table @code
3124@item set breakpoint pending auto
3125This is the default behavior. When @value{GDBN} cannot find the breakpoint
3126location, it queries you whether a pending breakpoint should be created.
3127
3128@item set breakpoint pending on
3129This indicates that an unrecognized breakpoint location should automatically
3130result in a pending breakpoint being created.
3131
3132@item set breakpoint pending off
3133This indicates that pending breakpoints are not to be created. Any
3134unrecognized breakpoint location results in an error. This setting does
3135not affect any pending breakpoints previously created.
3136
3137@item show breakpoint pending
3138Show the current behavior setting for creating pending breakpoints.
3139@end table
2650777c 3140
fe6fbf8b
VP
3141The settings above only affect the @code{break} command and its
3142variants. Once breakpoint is set, it will be automatically updated
3143as shared libraries are loaded and unloaded.
2650777c 3144
765dc015
VP
3145@cindex automatic hardware breakpoints
3146For some targets, @value{GDBN} can automatically decide if hardware or
3147software breakpoints should be used, depending on whether the
3148breakpoint address is read-only or read-write. This applies to
3149breakpoints set with the @code{break} command as well as to internal
3150breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3151breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3152breakpoints.
3153
3154You can control this automatic behaviour with the following commands::
3155
3156@kindex set breakpoint auto-hw
3157@kindex show breakpoint auto-hw
3158@table @code
3159@item set breakpoint auto-hw on
3160This is the default behavior. When @value{GDBN} sets a breakpoint, it
3161will try to use the target memory map to decide if software or hardware
3162breakpoint must be used.
3163
3164@item set breakpoint auto-hw off
3165This indicates @value{GDBN} should not automatically select breakpoint
3166type. If the target provides a memory map, @value{GDBN} will warn when
3167trying to set software breakpoint at a read-only address.
3168@end table
3169
3170
c906108c
SS
3171@cindex negative breakpoint numbers
3172@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3173@value{GDBN} itself sometimes sets breakpoints in your program for
3174special purposes, such as proper handling of @code{longjmp} (in C
3175programs). These internal breakpoints are assigned negative numbers,
3176starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3177You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3178@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3179
3180
6d2ebf8b 3181@node Set Watchpoints
79a6e687 3182@subsection Setting Watchpoints
c906108c
SS
3183
3184@cindex setting watchpoints
c906108c
SS
3185You can use a watchpoint to stop execution whenever the value of an
3186expression changes, without having to predict a particular place where
fd60e0df
EZ
3187this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3188The expression may be as simple as the value of a single variable, or
3189as complex as many variables combined by operators. Examples include:
3190
3191@itemize @bullet
3192@item
3193A reference to the value of a single variable.
3194
3195@item
3196An address cast to an appropriate data type. For example,
3197@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3198address (assuming an @code{int} occupies 4 bytes).
3199
3200@item
3201An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3202expression can use any operators valid in the program's native
3203language (@pxref{Languages}).
3204@end itemize
c906108c 3205
82f2d802
EZ
3206@cindex software watchpoints
3207@cindex hardware watchpoints
c906108c 3208Depending on your system, watchpoints may be implemented in software or
2df3850c 3209hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3210program and testing the variable's value each time, which is hundreds of
3211times slower than normal execution. (But this may still be worth it, to
3212catch errors where you have no clue what part of your program is the
3213culprit.)
3214
37e4754d 3215On some systems, such as HP-UX, PowerPC, @sc{gnu}/Linux and most other
82f2d802
EZ
3216x86-based targets, @value{GDBN} includes support for hardware
3217watchpoints, which do not slow down the running of your program.
c906108c
SS
3218
3219@table @code
3220@kindex watch
d8b2a693 3221@item watch @var{expr} @r{[}thread @var{threadnum}@r{]}
fd60e0df
EZ
3222Set a watchpoint for an expression. @value{GDBN} will break when the
3223expression @var{expr} is written into by the program and its value
3224changes. The simplest (and the most popular) use of this command is
3225to watch the value of a single variable:
3226
3227@smallexample
3228(@value{GDBP}) watch foo
3229@end smallexample
c906108c 3230
d8b2a693
JB
3231If the command includes a @code{@r{[}thread @var{threadnum}@r{]}}
3232clause, @value{GDBN} breaks only when the thread identified by
3233@var{threadnum} changes the value of @var{expr}. If any other threads
3234change the value of @var{expr}, @value{GDBN} will not break. Note
3235that watchpoints restricted to a single thread in this way only work
3236with Hardware Watchpoints.
3237
c906108c 3238@kindex rwatch
d8b2a693 3239@item rwatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3240Set a watchpoint that will break when the value of @var{expr} is read
3241by the program.
c906108c
SS
3242
3243@kindex awatch
d8b2a693 3244@item awatch @var{expr} @r{[}thread @var{threadnum}@r{]}
09d4efe1
EZ
3245Set a watchpoint that will break when @var{expr} is either read from
3246or written into by the program.
c906108c 3247
45ac1734 3248@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3249@item info watchpoints
3250This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3251it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3252@end table
3253
3254@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3255watchpoints execute very quickly, and the debugger reports a change in
3256value at the exact instruction where the change occurs. If @value{GDBN}
3257cannot set a hardware watchpoint, it sets a software watchpoint, which
3258executes more slowly and reports the change in value at the next
82f2d802
EZ
3259@emph{statement}, not the instruction, after the change occurs.
3260
82f2d802
EZ
3261@cindex use only software watchpoints
3262You can force @value{GDBN} to use only software watchpoints with the
3263@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3264zero, @value{GDBN} will never try to use hardware watchpoints, even if
3265the underlying system supports them. (Note that hardware-assisted
3266watchpoints that were set @emph{before} setting
3267@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3268mechanism of watching expression values.)
c906108c 3269
9c16f35a
EZ
3270@table @code
3271@item set can-use-hw-watchpoints
3272@kindex set can-use-hw-watchpoints
3273Set whether or not to use hardware watchpoints.
3274
3275@item show can-use-hw-watchpoints
3276@kindex show can-use-hw-watchpoints
3277Show the current mode of using hardware watchpoints.
3278@end table
3279
3280For remote targets, you can restrict the number of hardware
3281watchpoints @value{GDBN} will use, see @ref{set remote
3282hardware-breakpoint-limit}.
3283
c906108c
SS
3284When you issue the @code{watch} command, @value{GDBN} reports
3285
474c8240 3286@smallexample
c906108c 3287Hardware watchpoint @var{num}: @var{expr}
474c8240 3288@end smallexample
c906108c
SS
3289
3290@noindent
3291if it was able to set a hardware watchpoint.
3292
7be570e7
JM
3293Currently, the @code{awatch} and @code{rwatch} commands can only set
3294hardware watchpoints, because accesses to data that don't change the
3295value of the watched expression cannot be detected without examining
3296every instruction as it is being executed, and @value{GDBN} does not do
3297that currently. If @value{GDBN} finds that it is unable to set a
3298hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3299will print a message like this:
3300
3301@smallexample
3302Expression cannot be implemented with read/access watchpoint.
3303@end smallexample
3304
3305Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3306data type of the watched expression is wider than what a hardware
3307watchpoint on the target machine can handle. For example, some systems
3308can only watch regions that are up to 4 bytes wide; on such systems you
3309cannot set hardware watchpoints for an expression that yields a
3310double-precision floating-point number (which is typically 8 bytes
3311wide). As a work-around, it might be possible to break the large region
3312into a series of smaller ones and watch them with separate watchpoints.
3313
3314If you set too many hardware watchpoints, @value{GDBN} might be unable
3315to insert all of them when you resume the execution of your program.
3316Since the precise number of active watchpoints is unknown until such
3317time as the program is about to be resumed, @value{GDBN} might not be
3318able to warn you about this when you set the watchpoints, and the
3319warning will be printed only when the program is resumed:
3320
3321@smallexample
3322Hardware watchpoint @var{num}: Could not insert watchpoint
3323@end smallexample
3324
3325@noindent
3326If this happens, delete or disable some of the watchpoints.
3327
fd60e0df
EZ
3328Watching complex expressions that reference many variables can also
3329exhaust the resources available for hardware-assisted watchpoints.
3330That's because @value{GDBN} needs to watch every variable in the
3331expression with separately allocated resources.
3332
7be570e7
JM
3333The SPARClite DSU will generate traps when a program accesses some data
3334or instruction address that is assigned to the debug registers. For the
3335data addresses, DSU facilitates the @code{watch} command. However the
3336hardware breakpoint registers can only take two data watchpoints, and
3337both watchpoints must be the same kind. For example, you can set two
3338watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3339@strong{or} two with @code{awatch} commands, but you cannot set one
3340watchpoint with one command and the other with a different command.
c906108c
SS
3341@value{GDBN} will reject the command if you try to mix watchpoints.
3342Delete or disable unused watchpoint commands before setting new ones.
3343
3344If you call a function interactively using @code{print} or @code{call},
2df3850c 3345any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3346kind of breakpoint or the call completes.
3347
7be570e7
JM
3348@value{GDBN} automatically deletes watchpoints that watch local
3349(automatic) variables, or expressions that involve such variables, when
3350they go out of scope, that is, when the execution leaves the block in
3351which these variables were defined. In particular, when the program
3352being debugged terminates, @emph{all} local variables go out of scope,
3353and so only watchpoints that watch global variables remain set. If you
3354rerun the program, you will need to set all such watchpoints again. One
3355way of doing that would be to set a code breakpoint at the entry to the
3356@code{main} function and when it breaks, set all the watchpoints.
3357
c906108c
SS
3358@cindex watchpoints and threads
3359@cindex threads and watchpoints
d983da9c
DJ
3360In multi-threaded programs, watchpoints will detect changes to the
3361watched expression from every thread.
3362
3363@quotation
3364@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3365have only limited usefulness. If @value{GDBN} creates a software
3366watchpoint, it can only watch the value of an expression @emph{in a
3367single thread}. If you are confident that the expression can only
3368change due to the current thread's activity (and if you are also
3369confident that no other thread can become current), then you can use
3370software watchpoints as usual. However, @value{GDBN} may not notice
3371when a non-current thread's activity changes the expression. (Hardware
3372watchpoints, in contrast, watch an expression in all threads.)
c906108c 3373@end quotation
c906108c 3374
501eef12
AC
3375@xref{set remote hardware-watchpoint-limit}.
3376
6d2ebf8b 3377@node Set Catchpoints
79a6e687 3378@subsection Setting Catchpoints
d4f3574e 3379@cindex catchpoints, setting
c906108c
SS
3380@cindex exception handlers
3381@cindex event handling
3382
3383You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3384kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3385shared library. Use the @code{catch} command to set a catchpoint.
3386
3387@table @code
3388@kindex catch
3389@item catch @var{event}
3390Stop when @var{event} occurs. @var{event} can be any of the following:
3391@table @code
3392@item throw
4644b6e3 3393@cindex stop on C@t{++} exceptions
b37052ae 3394The throwing of a C@t{++} exception.
c906108c
SS
3395
3396@item catch
b37052ae 3397The catching of a C@t{++} exception.
c906108c 3398
8936fcda
JB
3399@item exception
3400@cindex Ada exception catching
3401@cindex catch Ada exceptions
3402An Ada exception being raised. If an exception name is specified
3403at the end of the command (eg @code{catch exception Program_Error}),
3404the debugger will stop only when this specific exception is raised.
3405Otherwise, the debugger stops execution when any Ada exception is raised.
3406
3407@item exception unhandled
3408An exception that was raised but is not handled by the program.
3409
3410@item assert
3411A failed Ada assertion.
3412
c906108c 3413@item exec
4644b6e3 3414@cindex break on fork/exec
5ee187d7
DJ
3415A call to @code{exec}. This is currently only available for HP-UX
3416and @sc{gnu}/Linux.
c906108c
SS
3417
3418@item fork
5ee187d7
DJ
3419A call to @code{fork}. This is currently only available for HP-UX
3420and @sc{gnu}/Linux.
c906108c
SS
3421
3422@item vfork
5ee187d7
DJ
3423A call to @code{vfork}. This is currently only available for HP-UX
3424and @sc{gnu}/Linux.
c906108c
SS
3425
3426@item load
3427@itemx load @var{libname}
4644b6e3 3428@cindex break on load/unload of shared library
c906108c
SS
3429The dynamic loading of any shared library, or the loading of the library
3430@var{libname}. This is currently only available for HP-UX.
3431
3432@item unload
3433@itemx unload @var{libname}
c906108c
SS
3434The unloading of any dynamically loaded shared library, or the unloading
3435of the library @var{libname}. This is currently only available for HP-UX.
3436@end table
3437
3438@item tcatch @var{event}
3439Set a catchpoint that is enabled only for one stop. The catchpoint is
3440automatically deleted after the first time the event is caught.
3441
3442@end table
3443
3444Use the @code{info break} command to list the current catchpoints.
3445
b37052ae 3446There are currently some limitations to C@t{++} exception handling
c906108c
SS
3447(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3448
3449@itemize @bullet
3450@item
3451If you call a function interactively, @value{GDBN} normally returns
3452control to you when the function has finished executing. If the call
3453raises an exception, however, the call may bypass the mechanism that
3454returns control to you and cause your program either to abort or to
3455simply continue running until it hits a breakpoint, catches a signal
3456that @value{GDBN} is listening for, or exits. This is the case even if
3457you set a catchpoint for the exception; catchpoints on exceptions are
3458disabled within interactive calls.
3459
3460@item
3461You cannot raise an exception interactively.
3462
3463@item
3464You cannot install an exception handler interactively.
3465@end itemize
3466
3467@cindex raise exceptions
3468Sometimes @code{catch} is not the best way to debug exception handling:
3469if you need to know exactly where an exception is raised, it is better to
3470stop @emph{before} the exception handler is called, since that way you
3471can see the stack before any unwinding takes place. If you set a
3472breakpoint in an exception handler instead, it may not be easy to find
3473out where the exception was raised.
3474
3475To stop just before an exception handler is called, you need some
b37052ae 3476knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3477raised by calling a library function named @code{__raise_exception}
3478which has the following ANSI C interface:
3479
474c8240 3480@smallexample
c906108c 3481 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3482 @var{id} is the exception identifier. */
3483 void __raise_exception (void **addr, void *id);
474c8240 3484@end smallexample
c906108c
SS
3485
3486@noindent
3487To make the debugger catch all exceptions before any stack
3488unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3489(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3490
79a6e687 3491With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3492that depends on the value of @var{id}, you can stop your program when
3493a specific exception is raised. You can use multiple conditional
3494breakpoints to stop your program when any of a number of exceptions are
3495raised.
3496
3497
6d2ebf8b 3498@node Delete Breaks
79a6e687 3499@subsection Deleting Breakpoints
c906108c
SS
3500
3501@cindex clearing breakpoints, watchpoints, catchpoints
3502@cindex deleting breakpoints, watchpoints, catchpoints
3503It is often necessary to eliminate a breakpoint, watchpoint, or
3504catchpoint once it has done its job and you no longer want your program
3505to stop there. This is called @dfn{deleting} the breakpoint. A
3506breakpoint that has been deleted no longer exists; it is forgotten.
3507
3508With the @code{clear} command you can delete breakpoints according to
3509where they are in your program. With the @code{delete} command you can
3510delete individual breakpoints, watchpoints, or catchpoints by specifying
3511their breakpoint numbers.
3512
3513It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3514automatically ignores breakpoints on the first instruction to be executed
3515when you continue execution without changing the execution address.
3516
3517@table @code
3518@kindex clear
3519@item clear
3520Delete any breakpoints at the next instruction to be executed in the
79a6e687 3521selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3522the innermost frame is selected, this is a good way to delete a
3523breakpoint where your program just stopped.
3524
2a25a5ba
EZ
3525@item clear @var{location}
3526Delete any breakpoints set at the specified @var{location}.
3527@xref{Specify Location}, for the various forms of @var{location}; the
3528most useful ones are listed below:
3529
3530@table @code
c906108c
SS
3531@item clear @var{function}
3532@itemx clear @var{filename}:@var{function}
09d4efe1 3533Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3534
3535@item clear @var{linenum}
3536@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3537Delete any breakpoints set at or within the code of the specified
3538@var{linenum} of the specified @var{filename}.
2a25a5ba 3539@end table
c906108c
SS
3540
3541@cindex delete breakpoints
3542@kindex delete
41afff9a 3543@kindex d @r{(@code{delete})}
c5394b80
JM
3544@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3545Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3546ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3547breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3548confirm off}). You can abbreviate this command as @code{d}.
3549@end table
3550
6d2ebf8b 3551@node Disabling
79a6e687 3552@subsection Disabling Breakpoints
c906108c 3553
4644b6e3 3554@cindex enable/disable a breakpoint
c906108c
SS
3555Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3556prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3557it had been deleted, but remembers the information on the breakpoint so
3558that you can @dfn{enable} it again later.
3559
3560You disable and enable breakpoints, watchpoints, and catchpoints with
3561the @code{enable} and @code{disable} commands, optionally specifying one
3562or more breakpoint numbers as arguments. Use @code{info break} or
3563@code{info watch} to print a list of breakpoints, watchpoints, and
3564catchpoints if you do not know which numbers to use.
3565
3b784c4f
EZ
3566Disabling and enabling a breakpoint that has multiple locations
3567affects all of its locations.
3568
c906108c
SS
3569A breakpoint, watchpoint, or catchpoint can have any of four different
3570states of enablement:
3571
3572@itemize @bullet
3573@item
3574Enabled. The breakpoint stops your program. A breakpoint set
3575with the @code{break} command starts out in this state.
3576@item
3577Disabled. The breakpoint has no effect on your program.
3578@item
3579Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3580disabled.
c906108c
SS
3581@item
3582Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3583immediately after it does so it is deleted permanently. A breakpoint
3584set with the @code{tbreak} command starts out in this state.
c906108c
SS
3585@end itemize
3586
3587You can use the following commands to enable or disable breakpoints,
3588watchpoints, and catchpoints:
3589
3590@table @code
c906108c 3591@kindex disable
41afff9a 3592@kindex dis @r{(@code{disable})}
c5394b80 3593@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3594Disable the specified breakpoints---or all breakpoints, if none are
3595listed. A disabled breakpoint has no effect but is not forgotten. All
3596options such as ignore-counts, conditions and commands are remembered in
3597case the breakpoint is enabled again later. You may abbreviate
3598@code{disable} as @code{dis}.
3599
c906108c 3600@kindex enable
c5394b80 3601@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3602Enable the specified breakpoints (or all defined breakpoints). They
3603become effective once again in stopping your program.
3604
c5394b80 3605@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3606Enable the specified breakpoints temporarily. @value{GDBN} disables any
3607of these breakpoints immediately after stopping your program.
3608
c5394b80 3609@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3610Enable the specified breakpoints to work once, then die. @value{GDBN}
3611deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3612Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3613@end table
3614
d4f3574e
SS
3615@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3616@c confusing: tbreak is also initially enabled.
c906108c 3617Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3618,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3619subsequently, they become disabled or enabled only when you use one of
3620the commands above. (The command @code{until} can set and delete a
3621breakpoint of its own, but it does not change the state of your other
3622breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3623Stepping}.)
c906108c 3624
6d2ebf8b 3625@node Conditions
79a6e687 3626@subsection Break Conditions
c906108c
SS
3627@cindex conditional breakpoints
3628@cindex breakpoint conditions
3629
3630@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3631@c in particular for a watchpoint?
c906108c
SS
3632The simplest sort of breakpoint breaks every time your program reaches a
3633specified place. You can also specify a @dfn{condition} for a
3634breakpoint. A condition is just a Boolean expression in your
3635programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3636a condition evaluates the expression each time your program reaches it,
3637and your program stops only if the condition is @emph{true}.
3638
3639This is the converse of using assertions for program validation; in that
3640situation, you want to stop when the assertion is violated---that is,
3641when the condition is false. In C, if you want to test an assertion expressed
3642by the condition @var{assert}, you should set the condition
3643@samp{! @var{assert}} on the appropriate breakpoint.
3644
3645Conditions are also accepted for watchpoints; you may not need them,
3646since a watchpoint is inspecting the value of an expression anyhow---but
3647it might be simpler, say, to just set a watchpoint on a variable name,
3648and specify a condition that tests whether the new value is an interesting
3649one.
3650
3651Break conditions can have side effects, and may even call functions in
3652your program. This can be useful, for example, to activate functions
3653that log program progress, or to use your own print functions to
3654format special data structures. The effects are completely predictable
3655unless there is another enabled breakpoint at the same address. (In
3656that case, @value{GDBN} might see the other breakpoint first and stop your
3657program without checking the condition of this one.) Note that
d4f3574e
SS
3658breakpoint commands are usually more convenient and flexible than break
3659conditions for the
c906108c 3660purpose of performing side effects when a breakpoint is reached
79a6e687 3661(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3662
3663Break conditions can be specified when a breakpoint is set, by using
3664@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3665Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3666with the @code{condition} command.
53a5351d 3667
c906108c
SS
3668You can also use the @code{if} keyword with the @code{watch} command.
3669The @code{catch} command does not recognize the @code{if} keyword;
3670@code{condition} is the only way to impose a further condition on a
3671catchpoint.
c906108c
SS
3672
3673@table @code
3674@kindex condition
3675@item condition @var{bnum} @var{expression}
3676Specify @var{expression} as the break condition for breakpoint,
3677watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3678breakpoint @var{bnum} stops your program only if the value of
3679@var{expression} is true (nonzero, in C). When you use
3680@code{condition}, @value{GDBN} checks @var{expression} immediately for
3681syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3682referents in the context of your breakpoint. If @var{expression} uses
3683symbols not referenced in the context of the breakpoint, @value{GDBN}
3684prints an error message:
3685
474c8240 3686@smallexample
d4f3574e 3687No symbol "foo" in current context.
474c8240 3688@end smallexample
d4f3574e
SS
3689
3690@noindent
c906108c
SS
3691@value{GDBN} does
3692not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3693command (or a command that sets a breakpoint with a condition, like
3694@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3695
3696@item condition @var{bnum}
3697Remove the condition from breakpoint number @var{bnum}. It becomes
3698an ordinary unconditional breakpoint.
3699@end table
3700
3701@cindex ignore count (of breakpoint)
3702A special case of a breakpoint condition is to stop only when the
3703breakpoint has been reached a certain number of times. This is so
3704useful that there is a special way to do it, using the @dfn{ignore
3705count} of the breakpoint. Every breakpoint has an ignore count, which
3706is an integer. Most of the time, the ignore count is zero, and
3707therefore has no effect. But if your program reaches a breakpoint whose
3708ignore count is positive, then instead of stopping, it just decrements
3709the ignore count by one and continues. As a result, if the ignore count
3710value is @var{n}, the breakpoint does not stop the next @var{n} times
3711your program reaches it.
3712
3713@table @code
3714@kindex ignore
3715@item ignore @var{bnum} @var{count}
3716Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3717The next @var{count} times the breakpoint is reached, your program's
3718execution does not stop; other than to decrement the ignore count, @value{GDBN}
3719takes no action.
3720
3721To make the breakpoint stop the next time it is reached, specify
3722a count of zero.
3723
3724When you use @code{continue} to resume execution of your program from a
3725breakpoint, you can specify an ignore count directly as an argument to
3726@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3727Stepping,,Continuing and Stepping}.
c906108c
SS
3728
3729If a breakpoint has a positive ignore count and a condition, the
3730condition is not checked. Once the ignore count reaches zero,
3731@value{GDBN} resumes checking the condition.
3732
3733You could achieve the effect of the ignore count with a condition such
3734as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3735is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3736Variables}.
c906108c
SS
3737@end table
3738
3739Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3740
3741
6d2ebf8b 3742@node Break Commands
79a6e687 3743@subsection Breakpoint Command Lists
c906108c
SS
3744
3745@cindex breakpoint commands
3746You can give any breakpoint (or watchpoint or catchpoint) a series of
3747commands to execute when your program stops due to that breakpoint. For
3748example, you might want to print the values of certain expressions, or
3749enable other breakpoints.
3750
3751@table @code
3752@kindex commands
ca91424e 3753@kindex end@r{ (breakpoint commands)}
c906108c
SS
3754@item commands @r{[}@var{bnum}@r{]}
3755@itemx @dots{} @var{command-list} @dots{}
3756@itemx end
3757Specify a list of commands for breakpoint number @var{bnum}. The commands
3758themselves appear on the following lines. Type a line containing just
3759@code{end} to terminate the commands.
3760
3761To remove all commands from a breakpoint, type @code{commands} and
3762follow it immediately with @code{end}; that is, give no commands.
3763
3764With no @var{bnum} argument, @code{commands} refers to the last
3765breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3766recently encountered).
3767@end table
3768
3769Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3770disabled within a @var{command-list}.
3771
3772You can use breakpoint commands to start your program up again. Simply
3773use the @code{continue} command, or @code{step}, or any other command
3774that resumes execution.
3775
3776Any other commands in the command list, after a command that resumes
3777execution, are ignored. This is because any time you resume execution
3778(even with a simple @code{next} or @code{step}), you may encounter
3779another breakpoint---which could have its own command list, leading to
3780ambiguities about which list to execute.
3781
3782@kindex silent
3783If the first command you specify in a command list is @code{silent}, the
3784usual message about stopping at a breakpoint is not printed. This may
3785be desirable for breakpoints that are to print a specific message and
3786then continue. If none of the remaining commands print anything, you
3787see no sign that the breakpoint was reached. @code{silent} is
3788meaningful only at the beginning of a breakpoint command list.
3789
3790The commands @code{echo}, @code{output}, and @code{printf} allow you to
3791print precisely controlled output, and are often useful in silent
79a6e687 3792breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3793
3794For example, here is how you could use breakpoint commands to print the
3795value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3796
474c8240 3797@smallexample
c906108c
SS
3798break foo if x>0
3799commands
3800silent
3801printf "x is %d\n",x
3802cont
3803end
474c8240 3804@end smallexample
c906108c
SS
3805
3806One application for breakpoint commands is to compensate for one bug so
3807you can test for another. Put a breakpoint just after the erroneous line
3808of code, give it a condition to detect the case in which something
3809erroneous has been done, and give it commands to assign correct values
3810to any variables that need them. End with the @code{continue} command
3811so that your program does not stop, and start with the @code{silent}
3812command so that no output is produced. Here is an example:
3813
474c8240 3814@smallexample
c906108c
SS
3815break 403
3816commands
3817silent
3818set x = y + 4
3819cont
3820end
474c8240 3821@end smallexample
c906108c 3822
6d2ebf8b 3823@node Breakpoint Menus
79a6e687 3824@subsection Breakpoint Menus
c906108c
SS
3825@cindex overloading
3826@cindex symbol overloading
3827
b383017d 3828Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3829single function name
c906108c
SS
3830to be defined several times, for application in different contexts.
3831This is called @dfn{overloading}. When a function name is overloaded,
3832@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3833a breakpoint. You can use explicit signature of the function, as in
3834@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3835particular version of the function you want. Otherwise, @value{GDBN} offers
3836you a menu of numbered choices for different possible breakpoints, and
3837waits for your selection with the prompt @samp{>}. The first two
3838options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3839sets a breakpoint at each definition of @var{function}, and typing
3840@kbd{0} aborts the @code{break} command without setting any new
3841breakpoints.
3842
3843For example, the following session excerpt shows an attempt to set a
3844breakpoint at the overloaded symbol @code{String::after}.
3845We choose three particular definitions of that function name:
3846
3847@c FIXME! This is likely to change to show arg type lists, at least
3848@smallexample
3849@group
3850(@value{GDBP}) b String::after
3851[0] cancel
3852[1] all
3853[2] file:String.cc; line number:867
3854[3] file:String.cc; line number:860
3855[4] file:String.cc; line number:875
3856[5] file:String.cc; line number:853
3857[6] file:String.cc; line number:846
3858[7] file:String.cc; line number:735
3859> 2 4 6
3860Breakpoint 1 at 0xb26c: file String.cc, line 867.
3861Breakpoint 2 at 0xb344: file String.cc, line 875.
3862Breakpoint 3 at 0xafcc: file String.cc, line 846.
3863Multiple breakpoints were set.
3864Use the "delete" command to delete unwanted
3865 breakpoints.
3866(@value{GDBP})
3867@end group
3868@end smallexample
c906108c
SS
3869
3870@c @ifclear BARETARGET
6d2ebf8b 3871@node Error in Breakpoints
d4f3574e 3872@subsection ``Cannot insert breakpoints''
c906108c
SS
3873@c
3874@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3875@c
d4f3574e
SS
3876Under some operating systems, breakpoints cannot be used in a program if
3877any other process is running that program. In this situation,
5d161b24 3878attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3879@value{GDBN} to print an error message:
3880
474c8240 3881@smallexample
d4f3574e
SS
3882Cannot insert breakpoints.
3883The same program may be running in another process.
474c8240 3884@end smallexample
d4f3574e
SS
3885
3886When this happens, you have three ways to proceed:
3887
3888@enumerate
3889@item
3890Remove or disable the breakpoints, then continue.
3891
3892@item
5d161b24 3893Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3894name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3895that @value{GDBN} should run your program under that name.
d4f3574e
SS
3896Then start your program again.
3897
3898@item
3899Relink your program so that the text segment is nonsharable, using the
3900linker option @samp{-N}. The operating system limitation may not apply
3901to nonsharable executables.
3902@end enumerate
c906108c
SS
3903@c @end ifclear
3904
d4f3574e
SS
3905A similar message can be printed if you request too many active
3906hardware-assisted breakpoints and watchpoints:
3907
3908@c FIXME: the precise wording of this message may change; the relevant
3909@c source change is not committed yet (Sep 3, 1999).
3910@smallexample
3911Stopped; cannot insert breakpoints.
3912You may have requested too many hardware breakpoints and watchpoints.
3913@end smallexample
3914
3915@noindent
3916This message is printed when you attempt to resume the program, since
3917only then @value{GDBN} knows exactly how many hardware breakpoints and
3918watchpoints it needs to insert.
3919
3920When this message is printed, you need to disable or remove some of the
3921hardware-assisted breakpoints and watchpoints, and then continue.
3922
79a6e687 3923@node Breakpoint-related Warnings
1485d690
KB
3924@subsection ``Breakpoint address adjusted...''
3925@cindex breakpoint address adjusted
3926
3927Some processor architectures place constraints on the addresses at
3928which breakpoints may be placed. For architectures thus constrained,
3929@value{GDBN} will attempt to adjust the breakpoint's address to comply
3930with the constraints dictated by the architecture.
3931
3932One example of such an architecture is the Fujitsu FR-V. The FR-V is
3933a VLIW architecture in which a number of RISC-like instructions may be
3934bundled together for parallel execution. The FR-V architecture
3935constrains the location of a breakpoint instruction within such a
3936bundle to the instruction with the lowest address. @value{GDBN}
3937honors this constraint by adjusting a breakpoint's address to the
3938first in the bundle.
3939
3940It is not uncommon for optimized code to have bundles which contain
3941instructions from different source statements, thus it may happen that
3942a breakpoint's address will be adjusted from one source statement to
3943another. Since this adjustment may significantly alter @value{GDBN}'s
3944breakpoint related behavior from what the user expects, a warning is
3945printed when the breakpoint is first set and also when the breakpoint
3946is hit.
3947
3948A warning like the one below is printed when setting a breakpoint
3949that's been subject to address adjustment:
3950
3951@smallexample
3952warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3953@end smallexample
3954
3955Such warnings are printed both for user settable and @value{GDBN}'s
3956internal breakpoints. If you see one of these warnings, you should
3957verify that a breakpoint set at the adjusted address will have the
3958desired affect. If not, the breakpoint in question may be removed and
b383017d 3959other breakpoints may be set which will have the desired behavior.
1485d690
KB
3960E.g., it may be sufficient to place the breakpoint at a later
3961instruction. A conditional breakpoint may also be useful in some
3962cases to prevent the breakpoint from triggering too often.
3963
3964@value{GDBN} will also issue a warning when stopping at one of these
3965adjusted breakpoints:
3966
3967@smallexample
3968warning: Breakpoint 1 address previously adjusted from 0x00010414
3969to 0x00010410.
3970@end smallexample
3971
3972When this warning is encountered, it may be too late to take remedial
3973action except in cases where the breakpoint is hit earlier or more
3974frequently than expected.
d4f3574e 3975
6d2ebf8b 3976@node Continuing and Stepping
79a6e687 3977@section Continuing and Stepping
c906108c
SS
3978
3979@cindex stepping
3980@cindex continuing
3981@cindex resuming execution
3982@dfn{Continuing} means resuming program execution until your program
3983completes normally. In contrast, @dfn{stepping} means executing just
3984one more ``step'' of your program, where ``step'' may mean either one
3985line of source code, or one machine instruction (depending on what
7a292a7a
SS
3986particular command you use). Either when continuing or when stepping,
3987your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3988it stops due to a signal, you may want to use @code{handle}, or use
3989@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3990
3991@table @code
3992@kindex continue
41afff9a
EZ
3993@kindex c @r{(@code{continue})}
3994@kindex fg @r{(resume foreground execution)}
c906108c
SS
3995@item continue @r{[}@var{ignore-count}@r{]}
3996@itemx c @r{[}@var{ignore-count}@r{]}
3997@itemx fg @r{[}@var{ignore-count}@r{]}
3998Resume program execution, at the address where your program last stopped;
3999any breakpoints set at that address are bypassed. The optional argument
4000@var{ignore-count} allows you to specify a further number of times to
4001ignore a breakpoint at this location; its effect is like that of
79a6e687 4002@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
4003
4004The argument @var{ignore-count} is meaningful only when your program
4005stopped due to a breakpoint. At other times, the argument to
4006@code{continue} is ignored.
4007
d4f3574e
SS
4008The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
4009debugged program is deemed to be the foreground program) are provided
4010purely for convenience, and have exactly the same behavior as
4011@code{continue}.
c906108c
SS
4012@end table
4013
4014To resume execution at a different place, you can use @code{return}
79a6e687 4015(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4016calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4017Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4018
4019A typical technique for using stepping is to set a breakpoint
79a6e687 4020(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4021beginning of the function or the section of your program where a problem
4022is believed to lie, run your program until it stops at that breakpoint,
4023and then step through the suspect area, examining the variables that are
4024interesting, until you see the problem happen.
4025
4026@table @code
4027@kindex step
41afff9a 4028@kindex s @r{(@code{step})}
c906108c
SS
4029@item step
4030Continue running your program until control reaches a different source
4031line, then stop it and return control to @value{GDBN}. This command is
4032abbreviated @code{s}.
4033
4034@quotation
4035@c "without debugging information" is imprecise; actually "without line
4036@c numbers in the debugging information". (gcc -g1 has debugging info but
4037@c not line numbers). But it seems complex to try to make that
4038@c distinction here.
4039@emph{Warning:} If you use the @code{step} command while control is
4040within a function that was compiled without debugging information,
4041execution proceeds until control reaches a function that does have
4042debugging information. Likewise, it will not step into a function which
4043is compiled without debugging information. To step through functions
4044without debugging information, use the @code{stepi} command, described
4045below.
4046@end quotation
4047
4a92d011
EZ
4048The @code{step} command only stops at the first instruction of a source
4049line. This prevents the multiple stops that could otherwise occur in
4050@code{switch} statements, @code{for} loops, etc. @code{step} continues
4051to stop if a function that has debugging information is called within
4052the line. In other words, @code{step} @emph{steps inside} any functions
4053called within the line.
c906108c 4054
d4f3574e
SS
4055Also, the @code{step} command only enters a function if there is line
4056number information for the function. Otherwise it acts like the
5d161b24 4057@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4058on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4059was any debugging information about the routine.
c906108c
SS
4060
4061@item step @var{count}
4062Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4063breakpoint is reached, or a signal not related to stepping occurs before
4064@var{count} steps, stepping stops right away.
c906108c
SS
4065
4066@kindex next
41afff9a 4067@kindex n @r{(@code{next})}
c906108c
SS
4068@item next @r{[}@var{count}@r{]}
4069Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4070This is similar to @code{step}, but function calls that appear within
4071the line of code are executed without stopping. Execution stops when
4072control reaches a different line of code at the original stack level
4073that was executing when you gave the @code{next} command. This command
4074is abbreviated @code{n}.
c906108c
SS
4075
4076An argument @var{count} is a repeat count, as for @code{step}.
4077
4078
4079@c FIX ME!! Do we delete this, or is there a way it fits in with
4080@c the following paragraph? --- Vctoria
4081@c
4082@c @code{next} within a function that lacks debugging information acts like
4083@c @code{step}, but any function calls appearing within the code of the
4084@c function are executed without stopping.
4085
d4f3574e
SS
4086The @code{next} command only stops at the first instruction of a
4087source line. This prevents multiple stops that could otherwise occur in
4a92d011 4088@code{switch} statements, @code{for} loops, etc.
c906108c 4089
b90a5f51
CF
4090@kindex set step-mode
4091@item set step-mode
4092@cindex functions without line info, and stepping
4093@cindex stepping into functions with no line info
4094@itemx set step-mode on
4a92d011 4095The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4096stop at the first instruction of a function which contains no debug line
4097information rather than stepping over it.
4098
4a92d011
EZ
4099This is useful in cases where you may be interested in inspecting the
4100machine instructions of a function which has no symbolic info and do not
4101want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4102
4103@item set step-mode off
4a92d011 4104Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4105debug information. This is the default.
4106
9c16f35a
EZ
4107@item show step-mode
4108Show whether @value{GDBN} will stop in or step over functions without
4109source line debug information.
4110
c906108c
SS
4111@kindex finish
4112@item finish
4113Continue running until just after function in the selected stack frame
4114returns. Print the returned value (if any).
4115
4116Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4117,Returning from a Function}).
c906108c
SS
4118
4119@kindex until
41afff9a 4120@kindex u @r{(@code{until})}
09d4efe1 4121@cindex run until specified location
c906108c
SS
4122@item until
4123@itemx u
4124Continue running until a source line past the current line, in the
4125current stack frame, is reached. This command is used to avoid single
4126stepping through a loop more than once. It is like the @code{next}
4127command, except that when @code{until} encounters a jump, it
4128automatically continues execution until the program counter is greater
4129than the address of the jump.
4130
4131This means that when you reach the end of a loop after single stepping
4132though it, @code{until} makes your program continue execution until it
4133exits the loop. In contrast, a @code{next} command at the end of a loop
4134simply steps back to the beginning of the loop, which forces you to step
4135through the next iteration.
4136
4137@code{until} always stops your program if it attempts to exit the current
4138stack frame.
4139
4140@code{until} may produce somewhat counterintuitive results if the order
4141of machine code does not match the order of the source lines. For
4142example, in the following excerpt from a debugging session, the @code{f}
4143(@code{frame}) command shows that execution is stopped at line
4144@code{206}; yet when we use @code{until}, we get to line @code{195}:
4145
474c8240 4146@smallexample
c906108c
SS
4147(@value{GDBP}) f
4148#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4149206 expand_input();
4150(@value{GDBP}) until
4151195 for ( ; argc > 0; NEXTARG) @{
474c8240 4152@end smallexample
c906108c
SS
4153
4154This happened because, for execution efficiency, the compiler had
4155generated code for the loop closure test at the end, rather than the
4156start, of the loop---even though the test in a C @code{for}-loop is
4157written before the body of the loop. The @code{until} command appeared
4158to step back to the beginning of the loop when it advanced to this
4159expression; however, it has not really gone to an earlier
4160statement---not in terms of the actual machine code.
4161
4162@code{until} with no argument works by means of single
4163instruction stepping, and hence is slower than @code{until} with an
4164argument.
4165
4166@item until @var{location}
4167@itemx u @var{location}
4168Continue running your program until either the specified location is
4169reached, or the current stack frame returns. @var{location} is any of
2a25a5ba
EZ
4170the forms described in @ref{Specify Location}.
4171This form of the command uses temporary breakpoints, and
c60eb6f1
EZ
4172hence is quicker than @code{until} without an argument. The specified
4173location is actually reached only if it is in the current frame. This
4174implies that @code{until} can be used to skip over recursive function
4175invocations. For instance in the code below, if the current location is
4176line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4177line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4178invocations have returned.
4179
4180@smallexample
418194 int factorial (int value)
418295 @{
418396 if (value > 1) @{
418497 value *= factorial (value - 1);
418598 @}
418699 return (value);
4187100 @}
4188@end smallexample
4189
4190
4191@kindex advance @var{location}
4192@itemx advance @var{location}
09d4efe1 4193Continue running the program up to the given @var{location}. An argument is
2a25a5ba
EZ
4194required, which should be of one of the forms described in
4195@ref{Specify Location}.
4196Execution will also stop upon exit from the current stack
c60eb6f1
EZ
4197frame. This command is similar to @code{until}, but @code{advance} will
4198not skip over recursive function calls, and the target location doesn't
4199have to be in the same frame as the current one.
4200
c906108c
SS
4201
4202@kindex stepi
41afff9a 4203@kindex si @r{(@code{stepi})}
c906108c 4204@item stepi
96a2c332 4205@itemx stepi @var{arg}
c906108c
SS
4206@itemx si
4207Execute one machine instruction, then stop and return to the debugger.
4208
4209It is often useful to do @samp{display/i $pc} when stepping by machine
4210instructions. This makes @value{GDBN} automatically display the next
4211instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4212Display,, Automatic Display}.
c906108c
SS
4213
4214An argument is a repeat count, as in @code{step}.
4215
4216@need 750
4217@kindex nexti
41afff9a 4218@kindex ni @r{(@code{nexti})}
c906108c 4219@item nexti
96a2c332 4220@itemx nexti @var{arg}
c906108c
SS
4221@itemx ni
4222Execute one machine instruction, but if it is a function call,
4223proceed until the function returns.
4224
4225An argument is a repeat count, as in @code{next}.
4226@end table
4227
6d2ebf8b 4228@node Signals
c906108c
SS
4229@section Signals
4230@cindex signals
4231
4232A signal is an asynchronous event that can happen in a program. The
4233operating system defines the possible kinds of signals, and gives each
4234kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4235signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4236@code{SIGSEGV} is the signal a program gets from referencing a place in
4237memory far away from all the areas in use; @code{SIGALRM} occurs when
4238the alarm clock timer goes off (which happens only if your program has
4239requested an alarm).
4240
4241@cindex fatal signals
4242Some signals, including @code{SIGALRM}, are a normal part of the
4243functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4244errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4245program has not specified in advance some other way to handle the signal.
4246@code{SIGINT} does not indicate an error in your program, but it is normally
4247fatal so it can carry out the purpose of the interrupt: to kill the program.
4248
4249@value{GDBN} has the ability to detect any occurrence of a signal in your
4250program. You can tell @value{GDBN} in advance what to do for each kind of
4251signal.
4252
4253@cindex handling signals
24f93129
EZ
4254Normally, @value{GDBN} is set up to let the non-erroneous signals like
4255@code{SIGALRM} be silently passed to your program
4256(so as not to interfere with their role in the program's functioning)
c906108c
SS
4257but to stop your program immediately whenever an error signal happens.
4258You can change these settings with the @code{handle} command.
4259
4260@table @code
4261@kindex info signals
09d4efe1 4262@kindex info handle
c906108c 4263@item info signals
96a2c332 4264@itemx info handle
c906108c
SS
4265Print a table of all the kinds of signals and how @value{GDBN} has been told to
4266handle each one. You can use this to see the signal numbers of all
4267the defined types of signals.
4268
45ac1734
EZ
4269@item info signals @var{sig}
4270Similar, but print information only about the specified signal number.
4271
d4f3574e 4272@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4273
4274@kindex handle
45ac1734 4275@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4276Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4277can be the number of a signal or its name (with or without the
24f93129 4278@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4279@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4280known signals. Optional arguments @var{keywords}, described below,
4281say what change to make.
c906108c
SS
4282@end table
4283
4284@c @group
4285The keywords allowed by the @code{handle} command can be abbreviated.
4286Their full names are:
4287
4288@table @code
4289@item nostop
4290@value{GDBN} should not stop your program when this signal happens. It may
4291still print a message telling you that the signal has come in.
4292
4293@item stop
4294@value{GDBN} should stop your program when this signal happens. This implies
4295the @code{print} keyword as well.
4296
4297@item print
4298@value{GDBN} should print a message when this signal happens.
4299
4300@item noprint
4301@value{GDBN} should not mention the occurrence of the signal at all. This
4302implies the @code{nostop} keyword as well.
4303
4304@item pass
5ece1a18 4305@itemx noignore
c906108c
SS
4306@value{GDBN} should allow your program to see this signal; your program
4307can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4308and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4309
4310@item nopass
5ece1a18 4311@itemx ignore
c906108c 4312@value{GDBN} should not allow your program to see this signal.
5ece1a18 4313@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4314@end table
4315@c @end group
4316
d4f3574e
SS
4317When a signal stops your program, the signal is not visible to the
4318program until you
c906108c
SS
4319continue. Your program sees the signal then, if @code{pass} is in
4320effect for the signal in question @emph{at that time}. In other words,
4321after @value{GDBN} reports a signal, you can use the @code{handle}
4322command with @code{pass} or @code{nopass} to control whether your
4323program sees that signal when you continue.
4324
24f93129
EZ
4325The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4326non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4327@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4328erroneous signals.
4329
c906108c
SS
4330You can also use the @code{signal} command to prevent your program from
4331seeing a signal, or cause it to see a signal it normally would not see,
4332or to give it any signal at any time. For example, if your program stopped
4333due to some sort of memory reference error, you might store correct
4334values into the erroneous variables and continue, hoping to see more
4335execution; but your program would probably terminate immediately as
4336a result of the fatal signal once it saw the signal. To prevent this,
4337you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4338Program a Signal}.
c906108c 4339
6d2ebf8b 4340@node Thread Stops
79a6e687 4341@section Stopping and Starting Multi-thread Programs
c906108c
SS
4342
4343When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4344Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4345breakpoints on all threads, or on a particular thread.
4346
4347@table @code
4348@cindex breakpoints and threads
4349@cindex thread breakpoints
4350@kindex break @dots{} thread @var{threadno}
4351@item break @var{linespec} thread @var{threadno}
4352@itemx break @var{linespec} thread @var{threadno} if @dots{}
4353@var{linespec} specifies source lines; there are several ways of
2a25a5ba
EZ
4354writing them (@pxref{Specify Location}), but the effect is always to
4355specify some source line.
c906108c
SS
4356
4357Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4358to specify that you only want @value{GDBN} to stop the program when a
4359particular thread reaches this breakpoint. @var{threadno} is one of the
4360numeric thread identifiers assigned by @value{GDBN}, shown in the first
4361column of the @samp{info threads} display.
4362
4363If you do not specify @samp{thread @var{threadno}} when you set a
4364breakpoint, the breakpoint applies to @emph{all} threads of your
4365program.
4366
4367You can use the @code{thread} qualifier on conditional breakpoints as
4368well; in this case, place @samp{thread @var{threadno}} before the
4369breakpoint condition, like this:
4370
4371@smallexample
2df3850c 4372(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4373@end smallexample
4374
4375@end table
4376
4377@cindex stopped threads
4378@cindex threads, stopped
4379Whenever your program stops under @value{GDBN} for any reason,
4380@emph{all} threads of execution stop, not just the current thread. This
4381allows you to examine the overall state of the program, including
4382switching between threads, without worrying that things may change
4383underfoot.
4384
36d86913
MC
4385@cindex thread breakpoints and system calls
4386@cindex system calls and thread breakpoints
4387@cindex premature return from system calls
4388There is an unfortunate side effect. If one thread stops for a
4389breakpoint, or for some other reason, and another thread is blocked in a
4390system call, then the system call may return prematurely. This is a
4391consequence of the interaction between multiple threads and the signals
4392that @value{GDBN} uses to implement breakpoints and other events that
4393stop execution.
4394
4395To handle this problem, your program should check the return value of
4396each system call and react appropriately. This is good programming
4397style anyways.
4398
4399For example, do not write code like this:
4400
4401@smallexample
4402 sleep (10);
4403@end smallexample
4404
4405The call to @code{sleep} will return early if a different thread stops
4406at a breakpoint or for some other reason.
4407
4408Instead, write this:
4409
4410@smallexample
4411 int unslept = 10;
4412 while (unslept > 0)
4413 unslept = sleep (unslept);
4414@end smallexample
4415
4416A system call is allowed to return early, so the system is still
4417conforming to its specification. But @value{GDBN} does cause your
4418multi-threaded program to behave differently than it would without
4419@value{GDBN}.
4420
4421Also, @value{GDBN} uses internal breakpoints in the thread library to
4422monitor certain events such as thread creation and thread destruction.
4423When such an event happens, a system call in another thread may return
4424prematurely, even though your program does not appear to stop.
4425
c906108c
SS
4426@cindex continuing threads
4427@cindex threads, continuing
4428Conversely, whenever you restart the program, @emph{all} threads start
4429executing. @emph{This is true even when single-stepping} with commands
5d161b24 4430like @code{step} or @code{next}.
c906108c
SS
4431
4432In particular, @value{GDBN} cannot single-step all threads in lockstep.
4433Since thread scheduling is up to your debugging target's operating
4434system (not controlled by @value{GDBN}), other threads may
4435execute more than one statement while the current thread completes a
4436single step. Moreover, in general other threads stop in the middle of a
4437statement, rather than at a clean statement boundary, when the program
4438stops.
4439
4440You might even find your program stopped in another thread after
4441continuing or even single-stepping. This happens whenever some other
4442thread runs into a breakpoint, a signal, or an exception before the
4443first thread completes whatever you requested.
4444
4445On some OSes, you can lock the OS scheduler and thus allow only a single
4446thread to run.
4447
4448@table @code
4449@item set scheduler-locking @var{mode}
9c16f35a
EZ
4450@cindex scheduler locking mode
4451@cindex lock scheduler
c906108c
SS
4452Set the scheduler locking mode. If it is @code{off}, then there is no
4453locking and any thread may run at any time. If @code{on}, then only the
4454current thread may run when the inferior is resumed. The @code{step}
4455mode optimizes for single-stepping. It stops other threads from
4456``seizing the prompt'' by preempting the current thread while you are
4457stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4458when you step. They are more likely to run when you @samp{next} over a
c906108c 4459function call, and they are completely free to run when you use commands
d4f3574e 4460like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4461thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4462@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4463
4464@item show scheduler-locking
4465Display the current scheduler locking mode.
4466@end table
4467
c906108c 4468
6d2ebf8b 4469@node Stack
c906108c
SS
4470@chapter Examining the Stack
4471
4472When your program has stopped, the first thing you need to know is where it
4473stopped and how it got there.
4474
4475@cindex call stack
5d161b24
DB
4476Each time your program performs a function call, information about the call
4477is generated.
4478That information includes the location of the call in your program,
4479the arguments of the call,
c906108c 4480and the local variables of the function being called.
5d161b24 4481The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4482The stack frames are allocated in a region of memory called the @dfn{call
4483stack}.
4484
4485When your program stops, the @value{GDBN} commands for examining the
4486stack allow you to see all of this information.
4487
4488@cindex selected frame
4489One of the stack frames is @dfn{selected} by @value{GDBN} and many
4490@value{GDBN} commands refer implicitly to the selected frame. In
4491particular, whenever you ask @value{GDBN} for the value of a variable in
4492your program, the value is found in the selected frame. There are
4493special @value{GDBN} commands to select whichever frame you are
79a6e687 4494interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4495
4496When your program stops, @value{GDBN} automatically selects the
5d161b24 4497currently executing frame and describes it briefly, similar to the
79a6e687 4498@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4499
4500@menu
4501* Frames:: Stack frames
4502* Backtrace:: Backtraces
4503* Selection:: Selecting a frame
4504* Frame Info:: Information on a frame
c906108c
SS
4505
4506@end menu
4507
6d2ebf8b 4508@node Frames
79a6e687 4509@section Stack Frames
c906108c 4510
d4f3574e 4511@cindex frame, definition
c906108c
SS
4512@cindex stack frame
4513The call stack is divided up into contiguous pieces called @dfn{stack
4514frames}, or @dfn{frames} for short; each frame is the data associated
4515with one call to one function. The frame contains the arguments given
4516to the function, the function's local variables, and the address at
4517which the function is executing.
4518
4519@cindex initial frame
4520@cindex outermost frame
4521@cindex innermost frame
4522When your program is started, the stack has only one frame, that of the
4523function @code{main}. This is called the @dfn{initial} frame or the
4524@dfn{outermost} frame. Each time a function is called, a new frame is
4525made. Each time a function returns, the frame for that function invocation
4526is eliminated. If a function is recursive, there can be many frames for
4527the same function. The frame for the function in which execution is
4528actually occurring is called the @dfn{innermost} frame. This is the most
4529recently created of all the stack frames that still exist.
4530
4531@cindex frame pointer
4532Inside your program, stack frames are identified by their addresses. A
4533stack frame consists of many bytes, each of which has its own address; each
4534kind of computer has a convention for choosing one byte whose
4535address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4536in a register called the @dfn{frame pointer register}
4537(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4538
4539@cindex frame number
4540@value{GDBN} assigns numbers to all existing stack frames, starting with
4541zero for the innermost frame, one for the frame that called it,
4542and so on upward. These numbers do not really exist in your program;
4543they are assigned by @value{GDBN} to give you a way of designating stack
4544frames in @value{GDBN} commands.
4545
6d2ebf8b
SS
4546@c The -fomit-frame-pointer below perennially causes hbox overflow
4547@c underflow problems.
c906108c
SS
4548@cindex frameless execution
4549Some compilers provide a way to compile functions so that they operate
e22ea452 4550without stack frames. (For example, the @value{NGCC} option
474c8240 4551@smallexample
6d2ebf8b 4552@samp{-fomit-frame-pointer}
474c8240 4553@end smallexample
6d2ebf8b 4554generates functions without a frame.)
c906108c
SS
4555This is occasionally done with heavily used library functions to save
4556the frame setup time. @value{GDBN} has limited facilities for dealing
4557with these function invocations. If the innermost function invocation
4558has no stack frame, @value{GDBN} nevertheless regards it as though
4559it had a separate frame, which is numbered zero as usual, allowing
4560correct tracing of the function call chain. However, @value{GDBN} has
4561no provision for frameless functions elsewhere in the stack.
4562
4563@table @code
d4f3574e 4564@kindex frame@r{, command}
41afff9a 4565@cindex current stack frame
c906108c 4566@item frame @var{args}
5d161b24 4567The @code{frame} command allows you to move from one stack frame to another,
c906108c 4568and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4569address of the frame or the stack frame number. Without an argument,
4570@code{frame} prints the current stack frame.
c906108c
SS
4571
4572@kindex select-frame
41afff9a 4573@cindex selecting frame silently
c906108c
SS
4574@item select-frame
4575The @code{select-frame} command allows you to move from one stack frame
4576to another without printing the frame. This is the silent version of
4577@code{frame}.
4578@end table
4579
6d2ebf8b 4580@node Backtrace
c906108c
SS
4581@section Backtraces
4582
09d4efe1
EZ
4583@cindex traceback
4584@cindex call stack traces
c906108c
SS
4585A backtrace is a summary of how your program got where it is. It shows one
4586line per frame, for many frames, starting with the currently executing
4587frame (frame zero), followed by its caller (frame one), and on up the
4588stack.
4589
4590@table @code
4591@kindex backtrace
41afff9a 4592@kindex bt @r{(@code{backtrace})}
c906108c
SS
4593@item backtrace
4594@itemx bt
4595Print a backtrace of the entire stack: one line per frame for all
4596frames in the stack.
4597
4598You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4599character, normally @kbd{Ctrl-c}.
c906108c
SS
4600
4601@item backtrace @var{n}
4602@itemx bt @var{n}
4603Similar, but print only the innermost @var{n} frames.
4604
4605@item backtrace -@var{n}
4606@itemx bt -@var{n}
4607Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4608
4609@item backtrace full
0f061b69 4610@itemx bt full
dd74f6ae
NR
4611@itemx bt full @var{n}
4612@itemx bt full -@var{n}
e7109c7e 4613Print the values of the local variables also. @var{n} specifies the
286ba84d 4614number of frames to print, as described above.
c906108c
SS
4615@end table
4616
4617@kindex where
4618@kindex info stack
c906108c
SS
4619The names @code{where} and @code{info stack} (abbreviated @code{info s})
4620are additional aliases for @code{backtrace}.
4621
839c27b7
EZ
4622@cindex multiple threads, backtrace
4623In a multi-threaded program, @value{GDBN} by default shows the
4624backtrace only for the current thread. To display the backtrace for
4625several or all of the threads, use the command @code{thread apply}
4626(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4627apply all backtrace}, @value{GDBN} will display the backtrace for all
4628the threads; this is handy when you debug a core dump of a
4629multi-threaded program.
4630
c906108c
SS
4631Each line in the backtrace shows the frame number and the function name.
4632The program counter value is also shown---unless you use @code{set
4633print address off}. The backtrace also shows the source file name and
4634line number, as well as the arguments to the function. The program
4635counter value is omitted if it is at the beginning of the code for that
4636line number.
4637
4638Here is an example of a backtrace. It was made with the command
4639@samp{bt 3}, so it shows the innermost three frames.
4640
4641@smallexample
4642@group
5d161b24 4643#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4644 at builtin.c:993
4645#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4646#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4647 at macro.c:71
4648(More stack frames follow...)
4649@end group
4650@end smallexample
4651
4652@noindent
4653The display for frame zero does not begin with a program counter
4654value, indicating that your program has stopped at the beginning of the
4655code for line @code{993} of @code{builtin.c}.
4656
18999be5
EZ
4657@cindex value optimized out, in backtrace
4658@cindex function call arguments, optimized out
4659If your program was compiled with optimizations, some compilers will
4660optimize away arguments passed to functions if those arguments are
4661never used after the call. Such optimizations generate code that
4662passes arguments through registers, but doesn't store those arguments
4663in the stack frame. @value{GDBN} has no way of displaying such
4664arguments in stack frames other than the innermost one. Here's what
4665such a backtrace might look like:
4666
4667@smallexample
4668@group
4669#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4670 at builtin.c:993
4671#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4672#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4673 at macro.c:71
4674(More stack frames follow...)
4675@end group
4676@end smallexample
4677
4678@noindent
4679The values of arguments that were not saved in their stack frames are
4680shown as @samp{<value optimized out>}.
4681
4682If you need to display the values of such optimized-out arguments,
4683either deduce that from other variables whose values depend on the one
4684you are interested in, or recompile without optimizations.
4685
a8f24a35
EZ
4686@cindex backtrace beyond @code{main} function
4687@cindex program entry point
4688@cindex startup code, and backtrace
25d29d70
AC
4689Most programs have a standard user entry point---a place where system
4690libraries and startup code transition into user code. For C this is
d416eeec
EZ
4691@code{main}@footnote{
4692Note that embedded programs (the so-called ``free-standing''
4693environment) are not required to have a @code{main} function as the
4694entry point. They could even have multiple entry points.}.
4695When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4696it will terminate the backtrace, to avoid tracing into highly
4697system-specific (and generally uninteresting) code.
4698
4699If you need to examine the startup code, or limit the number of levels
4700in a backtrace, you can change this behavior:
95f90d25
DJ
4701
4702@table @code
25d29d70
AC
4703@item set backtrace past-main
4704@itemx set backtrace past-main on
4644b6e3 4705@kindex set backtrace
25d29d70
AC
4706Backtraces will continue past the user entry point.
4707
4708@item set backtrace past-main off
95f90d25
DJ
4709Backtraces will stop when they encounter the user entry point. This is the
4710default.
4711
25d29d70 4712@item show backtrace past-main
4644b6e3 4713@kindex show backtrace
25d29d70
AC
4714Display the current user entry point backtrace policy.
4715
2315ffec
RC
4716@item set backtrace past-entry
4717@itemx set backtrace past-entry on
a8f24a35 4718Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4719This entry point is encoded by the linker when the application is built,
4720and is likely before the user entry point @code{main} (or equivalent) is called.
4721
4722@item set backtrace past-entry off
d3e8051b 4723Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4724application. This is the default.
4725
4726@item show backtrace past-entry
4727Display the current internal entry point backtrace policy.
4728
25d29d70
AC
4729@item set backtrace limit @var{n}
4730@itemx set backtrace limit 0
4731@cindex backtrace limit
4732Limit the backtrace to @var{n} levels. A value of zero means
4733unlimited.
95f90d25 4734
25d29d70
AC
4735@item show backtrace limit
4736Display the current limit on backtrace levels.
95f90d25
DJ
4737@end table
4738
6d2ebf8b 4739@node Selection
79a6e687 4740@section Selecting a Frame
c906108c
SS
4741
4742Most commands for examining the stack and other data in your program work on
4743whichever stack frame is selected at the moment. Here are the commands for
4744selecting a stack frame; all of them finish by printing a brief description
4745of the stack frame just selected.
4746
4747@table @code
d4f3574e 4748@kindex frame@r{, selecting}
41afff9a 4749@kindex f @r{(@code{frame})}
c906108c
SS
4750@item frame @var{n}
4751@itemx f @var{n}
4752Select frame number @var{n}. Recall that frame zero is the innermost
4753(currently executing) frame, frame one is the frame that called the
4754innermost one, and so on. The highest-numbered frame is the one for
4755@code{main}.
4756
4757@item frame @var{addr}
4758@itemx f @var{addr}
4759Select the frame at address @var{addr}. This is useful mainly if the
4760chaining of stack frames has been damaged by a bug, making it
4761impossible for @value{GDBN} to assign numbers properly to all frames. In
4762addition, this can be useful when your program has multiple stacks and
4763switches between them.
4764
c906108c
SS
4765On the SPARC architecture, @code{frame} needs two addresses to
4766select an arbitrary frame: a frame pointer and a stack pointer.
4767
4768On the MIPS and Alpha architecture, it needs two addresses: a stack
4769pointer and a program counter.
4770
4771On the 29k architecture, it needs three addresses: a register stack
4772pointer, a program counter, and a memory stack pointer.
c906108c
SS
4773
4774@kindex up
4775@item up @var{n}
4776Move @var{n} frames up the stack. For positive numbers @var{n}, this
4777advances toward the outermost frame, to higher frame numbers, to frames
4778that have existed longer. @var{n} defaults to one.
4779
4780@kindex down
41afff9a 4781@kindex do @r{(@code{down})}
c906108c
SS
4782@item down @var{n}
4783Move @var{n} frames down the stack. For positive numbers @var{n}, this
4784advances toward the innermost frame, to lower frame numbers, to frames
4785that were created more recently. @var{n} defaults to one. You may
4786abbreviate @code{down} as @code{do}.
4787@end table
4788
4789All of these commands end by printing two lines of output describing the
4790frame. The first line shows the frame number, the function name, the
4791arguments, and the source file and line number of execution in that
5d161b24 4792frame. The second line shows the text of that source line.
c906108c
SS
4793
4794@need 1000
4795For example:
4796
4797@smallexample
4798@group
4799(@value{GDBP}) up
4800#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4801 at env.c:10
480210 read_input_file (argv[i]);
4803@end group
4804@end smallexample
4805
4806After such a printout, the @code{list} command with no arguments
4807prints ten lines centered on the point of execution in the frame.
87885426
FN
4808You can also edit the program at the point of execution with your favorite
4809editing program by typing @code{edit}.
79a6e687 4810@xref{List, ,Printing Source Lines},
87885426 4811for details.
c906108c
SS
4812
4813@table @code
4814@kindex down-silently
4815@kindex up-silently
4816@item up-silently @var{n}
4817@itemx down-silently @var{n}
4818These two commands are variants of @code{up} and @code{down},
4819respectively; they differ in that they do their work silently, without
4820causing display of the new frame. They are intended primarily for use
4821in @value{GDBN} command scripts, where the output might be unnecessary and
4822distracting.
4823@end table
4824
6d2ebf8b 4825@node Frame Info
79a6e687 4826@section Information About a Frame
c906108c
SS
4827
4828There are several other commands to print information about the selected
4829stack frame.
4830
4831@table @code
4832@item frame
4833@itemx f
4834When used without any argument, this command does not change which
4835frame is selected, but prints a brief description of the currently
4836selected stack frame. It can be abbreviated @code{f}. With an
4837argument, this command is used to select a stack frame.
79a6e687 4838@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4839
4840@kindex info frame
41afff9a 4841@kindex info f @r{(@code{info frame})}
c906108c
SS
4842@item info frame
4843@itemx info f
4844This command prints a verbose description of the selected stack frame,
4845including:
4846
4847@itemize @bullet
5d161b24
DB
4848@item
4849the address of the frame
c906108c
SS
4850@item
4851the address of the next frame down (called by this frame)
4852@item
4853the address of the next frame up (caller of this frame)
4854@item
4855the language in which the source code corresponding to this frame is written
4856@item
4857the address of the frame's arguments
4858@item
d4f3574e
SS
4859the address of the frame's local variables
4860@item
c906108c
SS
4861the program counter saved in it (the address of execution in the caller frame)
4862@item
4863which registers were saved in the frame
4864@end itemize
4865
4866@noindent The verbose description is useful when
4867something has gone wrong that has made the stack format fail to fit
4868the usual conventions.
4869
4870@item info frame @var{addr}
4871@itemx info f @var{addr}
4872Print a verbose description of the frame at address @var{addr}, without
4873selecting that frame. The selected frame remains unchanged by this
4874command. This requires the same kind of address (more than one for some
4875architectures) that you specify in the @code{frame} command.
79a6e687 4876@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4877
4878@kindex info args
4879@item info args
4880Print the arguments of the selected frame, each on a separate line.
4881
4882@item info locals
4883@kindex info locals
4884Print the local variables of the selected frame, each on a separate
4885line. These are all variables (declared either static or automatic)
4886accessible at the point of execution of the selected frame.
4887
c906108c 4888@kindex info catch
d4f3574e
SS
4889@cindex catch exceptions, list active handlers
4890@cindex exception handlers, how to list
c906108c
SS
4891@item info catch
4892Print a list of all the exception handlers that are active in the
4893current stack frame at the current point of execution. To see other
4894exception handlers, visit the associated frame (using the @code{up},
4895@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4896@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4897
c906108c
SS
4898@end table
4899
c906108c 4900
6d2ebf8b 4901@node Source
c906108c
SS
4902@chapter Examining Source Files
4903
4904@value{GDBN} can print parts of your program's source, since the debugging
4905information recorded in the program tells @value{GDBN} what source files were
4906used to build it. When your program stops, @value{GDBN} spontaneously prints
4907the line where it stopped. Likewise, when you select a stack frame
79a6e687 4908(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4909execution in that frame has stopped. You can print other portions of
4910source files by explicit command.
4911
7a292a7a 4912If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4913prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4914@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4915
4916@menu
4917* List:: Printing source lines
2a25a5ba 4918* Specify Location:: How to specify code locations
87885426 4919* Edit:: Editing source files
c906108c 4920* Search:: Searching source files
c906108c
SS
4921* Source Path:: Specifying source directories
4922* Machine Code:: Source and machine code
4923@end menu
4924
6d2ebf8b 4925@node List
79a6e687 4926@section Printing Source Lines
c906108c
SS
4927
4928@kindex list
41afff9a 4929@kindex l @r{(@code{list})}
c906108c 4930To print lines from a source file, use the @code{list} command
5d161b24 4931(abbreviated @code{l}). By default, ten lines are printed.
2a25a5ba
EZ
4932There are several ways to specify what part of the file you want to
4933print; see @ref{Specify Location}, for the full list.
c906108c
SS
4934
4935Here are the forms of the @code{list} command most commonly used:
4936
4937@table @code
4938@item list @var{linenum}
4939Print lines centered around line number @var{linenum} in the
4940current source file.
4941
4942@item list @var{function}
4943Print lines centered around the beginning of function
4944@var{function}.
4945
4946@item list
4947Print more lines. If the last lines printed were printed with a
4948@code{list} command, this prints lines following the last lines
4949printed; however, if the last line printed was a solitary line printed
4950as part of displaying a stack frame (@pxref{Stack, ,Examining the
4951Stack}), this prints lines centered around that line.
4952
4953@item list -
4954Print lines just before the lines last printed.
4955@end table
4956
9c16f35a 4957@cindex @code{list}, how many lines to display
c906108c
SS
4958By default, @value{GDBN} prints ten source lines with any of these forms of
4959the @code{list} command. You can change this using @code{set listsize}:
4960
4961@table @code
4962@kindex set listsize
4963@item set listsize @var{count}
4964Make the @code{list} command display @var{count} source lines (unless
4965the @code{list} argument explicitly specifies some other number).
4966
4967@kindex show listsize
4968@item show listsize
4969Display the number of lines that @code{list} prints.
4970@end table
4971
4972Repeating a @code{list} command with @key{RET} discards the argument,
4973so it is equivalent to typing just @code{list}. This is more useful
4974than listing the same lines again. An exception is made for an
4975argument of @samp{-}; that argument is preserved in repetition so that
4976each repetition moves up in the source file.
4977
c906108c
SS
4978In general, the @code{list} command expects you to supply zero, one or two
4979@dfn{linespecs}. Linespecs specify source lines; there are several ways
2a25a5ba
EZ
4980of writing them (@pxref{Specify Location}), but the effect is always
4981to specify some source line.
4982
c906108c
SS
4983Here is a complete description of the possible arguments for @code{list}:
4984
4985@table @code
4986@item list @var{linespec}
4987Print lines centered around the line specified by @var{linespec}.
4988
4989@item list @var{first},@var{last}
4990Print lines from @var{first} to @var{last}. Both arguments are
2a25a5ba
EZ
4991linespecs. When a @code{list} command has two linespecs, and the
4992source file of the second linespec is omitted, this refers to
4993the same source file as the first linespec.
c906108c
SS
4994
4995@item list ,@var{last}
4996Print lines ending with @var{last}.
4997
4998@item list @var{first},
4999Print lines starting with @var{first}.
5000
5001@item list +
5002Print lines just after the lines last printed.
5003
5004@item list -
5005Print lines just before the lines last printed.
5006
5007@item list
5008As described in the preceding table.
5009@end table
5010
2a25a5ba
EZ
5011@node Specify Location
5012@section Specifying a Location
5013@cindex specifying location
5014@cindex linespec
c906108c 5015
2a25a5ba
EZ
5016Several @value{GDBN} commands accept arguments that specify a location
5017of your program's code. Since @value{GDBN} is a source-level
5018debugger, a location usually specifies some line in the source code;
5019for that reason, locations are also known as @dfn{linespecs}.
c906108c 5020
2a25a5ba
EZ
5021Here are all the different ways of specifying a code location that
5022@value{GDBN} understands:
c906108c 5023
2a25a5ba
EZ
5024@table @code
5025@item @var{linenum}
5026Specifies the line number @var{linenum} of the current source file.
c906108c 5027
2a25a5ba
EZ
5028@item -@var{offset}
5029@itemx +@var{offset}
5030Specifies the line @var{offset} lines before or after the @dfn{current
5031line}. For the @code{list} command, the current line is the last one
5032printed; for the breakpoint commands, this is the line at which
5033execution stopped in the currently selected @dfn{stack frame}
5034(@pxref{Frames, ,Frames}, for a description of stack frames.) When
5035used as the second of the two linespecs in a @code{list} command,
5036this specifies the line @var{offset} lines up or down from the first
5037linespec.
5038
5039@item @var{filename}:@var{linenum}
5040Specifies the line @var{linenum} in the source file @var{filename}.
c906108c
SS
5041
5042@item @var{function}
5043Specifies the line that begins the body of the function @var{function}.
2a25a5ba 5044For example, in C, this is the line with the open brace.
c906108c
SS
5045
5046@item @var{filename}:@var{function}
2a25a5ba
EZ
5047Specifies the line that begins the body of the function @var{function}
5048in the file @var{filename}. You only need the file name with a
5049function name to avoid ambiguity when there are identically named
5050functions in different source files.
c906108c
SS
5051
5052@item *@var{address}
2a25a5ba
EZ
5053Specifies the program address @var{address}. For line-oriented
5054commands, such as @code{list} and @code{edit}, this specifies a source
5055line that contains @var{address}. For @code{break} and other
5056breakpoint oriented commands, this can be used to set breakpoints in
5057parts of your program which do not have debugging information or
5058source files.
5059
5060Here @var{address} may be any expression valid in the current working
5061language (@pxref{Languages, working language}) that specifies a code
5fa54e5d
EZ
5062address. In addition, as a convenience, @value{GDBN} extends the
5063semantics of expressions used in locations to cover the situations
5064that frequently happen during debugging. Here are the various forms
5065of @var{address}:
2a25a5ba
EZ
5066
5067@table @code
5068@item @var{expression}
5069Any expression valid in the current working language.
5070
5071@item @var{funcaddr}
5072An address of a function or procedure derived from its name. In C,
5073C@t{++}, Java, Objective-C, Fortran, minimal, and assembly, this is
5074simply the function's name @var{function} (and actually a special case
5075of a valid expression). In Pascal and Modula-2, this is
5076@code{&@var{function}}. In Ada, this is @code{@var{function}'Address}
5077(although the Pascal form also works).
5078
5079This form specifies the address of the function's first instruction,
5080before the stack frame and arguments have been set up.
5081
5082@item '@var{filename}'::@var{funcaddr}
5083Like @var{funcaddr} above, but also specifies the name of the source
5084file explicitly. This is useful if the name of the function does not
5085specify the function unambiguously, e.g., if there are several
5086functions with identical names in different source files.
c906108c
SS
5087@end table
5088
2a25a5ba
EZ
5089@end table
5090
5091
87885426 5092@node Edit
79a6e687 5093@section Editing Source Files
87885426
FN
5094@cindex editing source files
5095
5096@kindex edit
5097@kindex e @r{(@code{edit})}
5098To edit the lines in a source file, use the @code{edit} command.
5099The editing program of your choice
5100is invoked with the current line set to
5101the active line in the program.
5102Alternatively, there are several ways to specify what part of the file you
2a25a5ba 5103want to print if you want to see other parts of the program:
87885426
FN
5104
5105@table @code
2a25a5ba
EZ
5106@item edit @var{location}
5107Edit the source file specified by @code{location}. Editing starts at
5108that @var{location}, e.g., at the specified source line of the
5109specified file. @xref{Specify Location}, for all the possible forms
5110of the @var{location} argument; here are the forms of the @code{edit}
5111command most commonly used:
87885426 5112
2a25a5ba 5113@table @code
87885426
FN
5114@item edit @var{number}
5115Edit the current source file with @var{number} as the active line number.
5116
5117@item edit @var{function}
5118Edit the file containing @var{function} at the beginning of its definition.
2a25a5ba 5119@end table
87885426 5120
87885426
FN
5121@end table
5122
79a6e687 5123@subsection Choosing your Editor
87885426
FN
5124You can customize @value{GDBN} to use any editor you want
5125@footnote{
5126The only restriction is that your editor (say @code{ex}), recognizes the
5127following command-line syntax:
10998722 5128@smallexample
87885426 5129ex +@var{number} file
10998722 5130@end smallexample
15387254
EZ
5131The optional numeric value +@var{number} specifies the number of the line in
5132the file where to start editing.}.
5133By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5134by setting the environment variable @code{EDITOR} before using
5135@value{GDBN}. For example, to configure @value{GDBN} to use the
5136@code{vi} editor, you could use these commands with the @code{sh} shell:
5137@smallexample
87885426
FN
5138EDITOR=/usr/bin/vi
5139export EDITOR
15387254 5140gdb @dots{}
10998722 5141@end smallexample
87885426 5142or in the @code{csh} shell,
10998722 5143@smallexample
87885426 5144setenv EDITOR /usr/bin/vi
15387254 5145gdb @dots{}
10998722 5146@end smallexample
87885426 5147
6d2ebf8b 5148@node Search
79a6e687 5149@section Searching Source Files
15387254 5150@cindex searching source files
c906108c
SS
5151
5152There are two commands for searching through the current source file for a
5153regular expression.
5154
5155@table @code
5156@kindex search
5157@kindex forward-search
5158@item forward-search @var{regexp}
5159@itemx search @var{regexp}
5160The command @samp{forward-search @var{regexp}} checks each line,
5161starting with the one following the last line listed, for a match for
5d161b24 5162@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5163synonym @samp{search @var{regexp}} or abbreviate the command name as
5164@code{fo}.
5165
09d4efe1 5166@kindex reverse-search
c906108c
SS
5167@item reverse-search @var{regexp}
5168The command @samp{reverse-search @var{regexp}} checks each line, starting
5169with the one before the last line listed and going backward, for a match
5170for @var{regexp}. It lists the line that is found. You can abbreviate
5171this command as @code{rev}.
5172@end table
c906108c 5173
6d2ebf8b 5174@node Source Path
79a6e687 5175@section Specifying Source Directories
c906108c
SS
5176
5177@cindex source path
5178@cindex directories for source files
5179Executable programs sometimes do not record the directories of the source
5180files from which they were compiled, just the names. Even when they do,
5181the directories could be moved between the compilation and your debugging
5182session. @value{GDBN} has a list of directories to search for source files;
5183this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5184it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5185in the list, until it finds a file with the desired name.
5186
5187For example, suppose an executable references the file
5188@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5189@file{/mnt/cross}. The file is first looked up literally; if this
5190fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5191fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5192message is printed. @value{GDBN} does not look up the parts of the
5193source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5194Likewise, the subdirectories of the source path are not searched: if
5195the source path is @file{/mnt/cross}, and the binary refers to
5196@file{foo.c}, @value{GDBN} would not find it under
5197@file{/mnt/cross/usr/src/foo-1.0/lib}.
5198
5199Plain file names, relative file names with leading directories, file
5200names containing dots, etc.@: are all treated as described above; for
5201instance, if the source path is @file{/mnt/cross}, and the source file
5202is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5203@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5204that---@file{/mnt/cross/foo.c}.
5205
5206Note that the executable search path is @emph{not} used to locate the
cd852561 5207source files.
c906108c
SS
5208
5209Whenever you reset or rearrange the source path, @value{GDBN} clears out
5210any information it has cached about where source files are found and where
5211each line is in the file.
5212
5213@kindex directory
5214@kindex dir
d4f3574e
SS
5215When you start @value{GDBN}, its source path includes only @samp{cdir}
5216and @samp{cwd}, in that order.
c906108c
SS
5217To add other directories, use the @code{directory} command.
5218
4b505b12
AS
5219The search path is used to find both program source files and @value{GDBN}
5220script files (read using the @samp{-command} option and @samp{source} command).
5221
30daae6c
JB
5222In addition to the source path, @value{GDBN} provides a set of commands
5223that manage a list of source path substitution rules. A @dfn{substitution
5224rule} specifies how to rewrite source directories stored in the program's
5225debug information in case the sources were moved to a different
5226directory between compilation and debugging. A rule is made of
5227two strings, the first specifying what needs to be rewritten in
5228the path, and the second specifying how it should be rewritten.
5229In @ref{set substitute-path}, we name these two parts @var{from} and
5230@var{to} respectively. @value{GDBN} does a simple string replacement
5231of @var{from} with @var{to} at the start of the directory part of the
5232source file name, and uses that result instead of the original file
5233name to look up the sources.
5234
5235Using the previous example, suppose the @file{foo-1.0} tree has been
5236moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5237@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5238@file{/mnt/cross}. The first lookup will then be
5239@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5240of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5241substitution rule, use the @code{set substitute-path} command
5242(@pxref{set substitute-path}).
5243
5244To avoid unexpected substitution results, a rule is applied only if the
5245@var{from} part of the directory name ends at a directory separator.
5246For instance, a rule substituting @file{/usr/source} into
5247@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5248not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5249is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5250not be applied to @file{/root/usr/source/baz.c} either.
5251
5252In many cases, you can achieve the same result using the @code{directory}
5253command. However, @code{set substitute-path} can be more efficient in
5254the case where the sources are organized in a complex tree with multiple
5255subdirectories. With the @code{directory} command, you need to add each
5256subdirectory of your project. If you moved the entire tree while
5257preserving its internal organization, then @code{set substitute-path}
5258allows you to direct the debugger to all the sources with one single
5259command.
5260
5261@code{set substitute-path} is also more than just a shortcut command.
5262The source path is only used if the file at the original location no
5263longer exists. On the other hand, @code{set substitute-path} modifies
5264the debugger behavior to look at the rewritten location instead. So, if
5265for any reason a source file that is not relevant to your executable is
5266located at the original location, a substitution rule is the only
3f94c067 5267method available to point @value{GDBN} at the new location.
30daae6c 5268
c906108c
SS
5269@table @code
5270@item directory @var{dirname} @dots{}
5271@item dir @var{dirname} @dots{}
5272Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5273directory names may be given to this command, separated by @samp{:}
5274(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5275part of absolute file names) or
c906108c
SS
5276whitespace. You may specify a directory that is already in the source
5277path; this moves it forward, so @value{GDBN} searches it sooner.
5278
5279@kindex cdir
5280@kindex cwd
41afff9a 5281@vindex $cdir@r{, convenience variable}
d3e8051b 5282@vindex $cwd@r{, convenience variable}
c906108c
SS
5283@cindex compilation directory
5284@cindex current directory
5285@cindex working directory
5286@cindex directory, current
5287@cindex directory, compilation
5288You can use the string @samp{$cdir} to refer to the compilation
5289directory (if one is recorded), and @samp{$cwd} to refer to the current
5290working directory. @samp{$cwd} is not the same as @samp{.}---the former
5291tracks the current working directory as it changes during your @value{GDBN}
5292session, while the latter is immediately expanded to the current
5293directory at the time you add an entry to the source path.
5294
5295@item directory
cd852561 5296Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5297
5298@c RET-repeat for @code{directory} is explicitly disabled, but since
5299@c repeating it would be a no-op we do not say that. (thanks to RMS)
5300
5301@item show directories
5302@kindex show directories
5303Print the source path: show which directories it contains.
30daae6c
JB
5304
5305@anchor{set substitute-path}
5306@item set substitute-path @var{from} @var{to}
5307@kindex set substitute-path
5308Define a source path substitution rule, and add it at the end of the
5309current list of existing substitution rules. If a rule with the same
5310@var{from} was already defined, then the old rule is also deleted.
5311
5312For example, if the file @file{/foo/bar/baz.c} was moved to
5313@file{/mnt/cross/baz.c}, then the command
5314
5315@smallexample
5316(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5317@end smallexample
5318
5319@noindent
5320will tell @value{GDBN} to replace @samp{/usr/src} with
5321@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5322@file{baz.c} even though it was moved.
5323
5324In the case when more than one substitution rule have been defined,
5325the rules are evaluated one by one in the order where they have been
5326defined. The first one matching, if any, is selected to perform
5327the substitution.
5328
5329For instance, if we had entered the following commands:
5330
5331@smallexample
5332(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5333(@value{GDBP}) set substitute-path /usr/src /mnt/src
5334@end smallexample
5335
5336@noindent
5337@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5338@file{/mnt/include/defs.h} by using the first rule. However, it would
5339use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5340@file{/mnt/src/lib/foo.c}.
5341
5342
5343@item unset substitute-path [path]
5344@kindex unset substitute-path
5345If a path is specified, search the current list of substitution rules
5346for a rule that would rewrite that path. Delete that rule if found.
5347A warning is emitted by the debugger if no rule could be found.
5348
5349If no path is specified, then all substitution rules are deleted.
5350
5351@item show substitute-path [path]
5352@kindex show substitute-path
5353If a path is specified, then print the source path substitution rule
5354which would rewrite that path, if any.
5355
5356If no path is specified, then print all existing source path substitution
5357rules.
5358
c906108c
SS
5359@end table
5360
5361If your source path is cluttered with directories that are no longer of
5362interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5363versions of source. You can correct the situation as follows:
5364
5365@enumerate
5366@item
cd852561 5367Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5368
5369@item
5370Use @code{directory} with suitable arguments to reinstall the
5371directories you want in the source path. You can add all the
5372directories in one command.
5373@end enumerate
5374
6d2ebf8b 5375@node Machine Code
79a6e687 5376@section Source and Machine Code
15387254 5377@cindex source line and its code address
c906108c
SS
5378
5379You can use the command @code{info line} to map source lines to program
5380addresses (and vice versa), and the command @code{disassemble} to display
5381a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5382mode, the @code{info line} command causes the arrow to point to the
5d161b24 5383line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5384well as hex.
5385
5386@table @code
5387@kindex info line
5388@item info line @var{linespec}
5389Print the starting and ending addresses of the compiled code for
5390source line @var{linespec}. You can specify source lines in any of
2a25a5ba 5391the ways documented in @ref{Specify Location}.
c906108c
SS
5392@end table
5393
5394For example, we can use @code{info line} to discover the location of
5395the object code for the first line of function
5396@code{m4_changequote}:
5397
d4f3574e
SS
5398@c FIXME: I think this example should also show the addresses in
5399@c symbolic form, as they usually would be displayed.
c906108c 5400@smallexample
96a2c332 5401(@value{GDBP}) info line m4_changequote
c906108c
SS
5402Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5403@end smallexample
5404
5405@noindent
15387254 5406@cindex code address and its source line
c906108c
SS
5407We can also inquire (using @code{*@var{addr}} as the form for
5408@var{linespec}) what source line covers a particular address:
5409@smallexample
5410(@value{GDBP}) info line *0x63ff
5411Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5412@end smallexample
5413
5414@cindex @code{$_} and @code{info line}
15387254 5415@cindex @code{x} command, default address
41afff9a 5416@kindex x@r{(examine), and} info line
c906108c
SS
5417After @code{info line}, the default address for the @code{x} command
5418is changed to the starting address of the line, so that @samp{x/i} is
5419sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5420,Examining Memory}). Also, this address is saved as the value of the
c906108c 5421convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5422Variables}).
c906108c
SS
5423
5424@table @code
5425@kindex disassemble
5426@cindex assembly instructions
5427@cindex instructions, assembly
5428@cindex machine instructions
5429@cindex listing machine instructions
5430@item disassemble
5431This specialized command dumps a range of memory as machine
5432instructions. The default memory range is the function surrounding the
5433program counter of the selected frame. A single argument to this
5434command is a program counter value; @value{GDBN} dumps the function
5435surrounding this value. Two arguments specify a range of addresses
5436(first inclusive, second exclusive) to dump.
5437@end table
5438
c906108c
SS
5439The following example shows the disassembly of a range of addresses of
5440HP PA-RISC 2.0 code:
5441
5442@smallexample
5443(@value{GDBP}) disas 0x32c4 0x32e4
5444Dump of assembler code from 0x32c4 to 0x32e4:
54450x32c4 <main+204>: addil 0,dp
54460x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
54470x32cc <main+212>: ldil 0x3000,r31
54480x32d0 <main+216>: ble 0x3f8(sr4,r31)
54490x32d4 <main+220>: ldo 0(r31),rp
54500x32d8 <main+224>: addil -0x800,dp
54510x32dc <main+228>: ldo 0x588(r1),r26
54520x32e0 <main+232>: ldil 0x3000,r31
5453End of assembler dump.
5454@end smallexample
c906108c
SS
5455
5456Some architectures have more than one commonly-used set of instruction
5457mnemonics or other syntax.
5458
76d17f34
EZ
5459For programs that were dynamically linked and use shared libraries,
5460instructions that call functions or branch to locations in the shared
5461libraries might show a seemingly bogus location---it's actually a
5462location of the relocation table. On some architectures, @value{GDBN}
5463might be able to resolve these to actual function names.
5464
c906108c 5465@table @code
d4f3574e 5466@kindex set disassembly-flavor
d4f3574e
SS
5467@cindex Intel disassembly flavor
5468@cindex AT&T disassembly flavor
5469@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5470Select the instruction set to use when disassembling the
5471program via the @code{disassemble} or @code{x/i} commands.
5472
5473Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5474can set @var{instruction-set} to either @code{intel} or @code{att}.
5475The default is @code{att}, the AT&T flavor used by default by Unix
5476assemblers for x86-based targets.
9c16f35a
EZ
5477
5478@kindex show disassembly-flavor
5479@item show disassembly-flavor
5480Show the current setting of the disassembly flavor.
c906108c
SS
5481@end table
5482
5483
6d2ebf8b 5484@node Data
c906108c
SS
5485@chapter Examining Data
5486
5487@cindex printing data
5488@cindex examining data
5489@kindex print
5490@kindex inspect
5491@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5492@c document because it is nonstandard... Under Epoch it displays in a
5493@c different window or something like that.
5494The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5495command (abbreviated @code{p}), or its synonym @code{inspect}. It
5496evaluates and prints the value of an expression of the language your
5497program is written in (@pxref{Languages, ,Using @value{GDBN} with
5498Different Languages}).
c906108c
SS
5499
5500@table @code
d4f3574e
SS
5501@item print @var{expr}
5502@itemx print /@var{f} @var{expr}
5503@var{expr} is an expression (in the source language). By default the
5504value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5505you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5506@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5507Formats}.
c906108c
SS
5508
5509@item print
5510@itemx print /@var{f}
15387254 5511@cindex reprint the last value
d4f3574e 5512If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5513@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5514conveniently inspect the same value in an alternative format.
5515@end table
5516
5517A more low-level way of examining data is with the @code{x} command.
5518It examines data in memory at a specified address and prints it in a
79a6e687 5519specified format. @xref{Memory, ,Examining Memory}.
c906108c 5520
7a292a7a 5521If you are interested in information about types, or about how the
d4f3574e
SS
5522fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5523command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5524Table}.
c906108c
SS
5525
5526@menu
5527* Expressions:: Expressions
5528* Variables:: Program variables
5529* Arrays:: Artificial arrays
5530* Output Formats:: Output formats
5531* Memory:: Examining memory
5532* Auto Display:: Automatic display
5533* Print Settings:: Print settings
5534* Value History:: Value history
5535* Convenience Vars:: Convenience variables
5536* Registers:: Registers
c906108c 5537* Floating Point Hardware:: Floating point hardware
53c69bd7 5538* Vector Unit:: Vector Unit
721c2651 5539* OS Information:: Auxiliary data provided by operating system
29e57380 5540* Memory Region Attributes:: Memory region attributes
16d9dec6 5541* Dump/Restore Files:: Copy between memory and a file
384ee23f 5542* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5543* Character Sets:: Debugging programs that use a different
5544 character set than GDB does
09d4efe1 5545* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5546@end menu
5547
6d2ebf8b 5548@node Expressions
c906108c
SS
5549@section Expressions
5550
5551@cindex expressions
5552@code{print} and many other @value{GDBN} commands accept an expression and
5553compute its value. Any kind of constant, variable or operator defined
5554by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5555@value{GDBN}. This includes conditional expressions, function calls,
5556casts, and string constants. It also includes preprocessor macros, if
5557you compiled your program to include this information; see
5558@ref{Compilation}.
c906108c 5559
15387254 5560@cindex arrays in expressions
d4f3574e
SS
5561@value{GDBN} supports array constants in expressions input by
5562the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5563you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5564memory that is @code{malloc}ed in the target program.
c906108c 5565
c906108c
SS
5566Because C is so widespread, most of the expressions shown in examples in
5567this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5568Languages}, for information on how to use expressions in other
5569languages.
5570
5571In this section, we discuss operators that you can use in @value{GDBN}
5572expressions regardless of your programming language.
5573
15387254 5574@cindex casts, in expressions
c906108c
SS
5575Casts are supported in all languages, not just in C, because it is so
5576useful to cast a number into a pointer in order to examine a structure
5577at that address in memory.
5578@c FIXME: casts supported---Mod2 true?
c906108c
SS
5579
5580@value{GDBN} supports these operators, in addition to those common
5581to programming languages:
5582
5583@table @code
5584@item @@
5585@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5586@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5587
5588@item ::
5589@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5590function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5591
5592@cindex @{@var{type}@}
5593@cindex type casting memory
5594@cindex memory, viewing as typed object
5595@cindex casts, to view memory
5596@item @{@var{type}@} @var{addr}
5597Refers to an object of type @var{type} stored at address @var{addr} in
5598memory. @var{addr} may be any expression whose value is an integer or
5599pointer (but parentheses are required around binary operators, just as in
5600a cast). This construct is allowed regardless of what kind of data is
5601normally supposed to reside at @var{addr}.
5602@end table
5603
6d2ebf8b 5604@node Variables
79a6e687 5605@section Program Variables
c906108c
SS
5606
5607The most common kind of expression to use is the name of a variable
5608in your program.
5609
5610Variables in expressions are understood in the selected stack frame
79a6e687 5611(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5612
5613@itemize @bullet
5614@item
5615global (or file-static)
5616@end itemize
5617
5d161b24 5618@noindent or
c906108c
SS
5619
5620@itemize @bullet
5621@item
5622visible according to the scope rules of the
5623programming language from the point of execution in that frame
5d161b24 5624@end itemize
c906108c
SS
5625
5626@noindent This means that in the function
5627
474c8240 5628@smallexample
c906108c
SS
5629foo (a)
5630 int a;
5631@{
5632 bar (a);
5633 @{
5634 int b = test ();
5635 bar (b);
5636 @}
5637@}
474c8240 5638@end smallexample
c906108c
SS
5639
5640@noindent
5641you can examine and use the variable @code{a} whenever your program is
5642executing within the function @code{foo}, but you can only use or
5643examine the variable @code{b} while your program is executing inside
5644the block where @code{b} is declared.
5645
5646@cindex variable name conflict
5647There is an exception: you can refer to a variable or function whose
5648scope is a single source file even if the current execution point is not
5649in this file. But it is possible to have more than one such variable or
5650function with the same name (in different source files). If that
5651happens, referring to that name has unpredictable effects. If you wish,
5652you can specify a static variable in a particular function or file,
15387254 5653using the colon-colon (@code{::}) notation:
c906108c 5654
d4f3574e 5655@cindex colon-colon, context for variables/functions
12c27660 5656@ifnotinfo
c906108c 5657@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5658@cindex @code{::}, context for variables/functions
12c27660 5659@end ifnotinfo
474c8240 5660@smallexample
c906108c
SS
5661@var{file}::@var{variable}
5662@var{function}::@var{variable}
474c8240 5663@end smallexample
c906108c
SS
5664
5665@noindent
5666Here @var{file} or @var{function} is the name of the context for the
5667static @var{variable}. In the case of file names, you can use quotes to
5668make sure @value{GDBN} parses the file name as a single word---for example,
5669to print a global value of @code{x} defined in @file{f2.c}:
5670
474c8240 5671@smallexample
c906108c 5672(@value{GDBP}) p 'f2.c'::x
474c8240 5673@end smallexample
c906108c 5674
b37052ae 5675@cindex C@t{++} scope resolution
c906108c 5676This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5677use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5678scope resolution operator in @value{GDBN} expressions.
5679@c FIXME: Um, so what happens in one of those rare cases where it's in
5680@c conflict?? --mew
c906108c
SS
5681
5682@cindex wrong values
5683@cindex variable values, wrong
15387254
EZ
5684@cindex function entry/exit, wrong values of variables
5685@cindex optimized code, wrong values of variables
c906108c
SS
5686@quotation
5687@emph{Warning:} Occasionally, a local variable may appear to have the
5688wrong value at certain points in a function---just after entry to a new
5689scope, and just before exit.
5690@end quotation
5691You may see this problem when you are stepping by machine instructions.
5692This is because, on most machines, it takes more than one instruction to
5693set up a stack frame (including local variable definitions); if you are
5694stepping by machine instructions, variables may appear to have the wrong
5695values until the stack frame is completely built. On exit, it usually
5696also takes more than one machine instruction to destroy a stack frame;
5697after you begin stepping through that group of instructions, local
5698variable definitions may be gone.
5699
5700This may also happen when the compiler does significant optimizations.
5701To be sure of always seeing accurate values, turn off all optimization
5702when compiling.
5703
d4f3574e
SS
5704@cindex ``No symbol "foo" in current context''
5705Another possible effect of compiler optimizations is to optimize
5706unused variables out of existence, or assign variables to registers (as
5707opposed to memory addresses). Depending on the support for such cases
5708offered by the debug info format used by the compiler, @value{GDBN}
5709might not be able to display values for such local variables. If that
5710happens, @value{GDBN} will print a message like this:
5711
474c8240 5712@smallexample
d4f3574e 5713No symbol "foo" in current context.
474c8240 5714@end smallexample
d4f3574e
SS
5715
5716To solve such problems, either recompile without optimizations, or use a
5717different debug info format, if the compiler supports several such
15387254 5718formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5719usually supports the @option{-gstabs+} option. @option{-gstabs+}
5720produces debug info in a format that is superior to formats such as
5721COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5722an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5723for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5724Compiler Collection (GCC)}.
79a6e687 5725@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5726that are best suited to C@t{++} programs.
d4f3574e 5727
ab1adacd
EZ
5728If you ask to print an object whose contents are unknown to
5729@value{GDBN}, e.g., because its data type is not completely specified
5730by the debug information, @value{GDBN} will say @samp{<incomplete
5731type>}. @xref{Symbols, incomplete type}, for more about this.
5732
3a60f64e
JK
5733Strings are identified as arrays of @code{char} values without specified
5734signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5735printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5736@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5737defines literal string type @code{"char"} as @code{char} without a sign.
5738For program code
5739
5740@smallexample
5741char var0[] = "A";
5742signed char var1[] = "A";
5743@end smallexample
5744
5745You get during debugging
5746@smallexample
5747(gdb) print var0
5748$1 = "A"
5749(gdb) print var1
5750$2 = @{65 'A', 0 '\0'@}
5751@end smallexample
5752
6d2ebf8b 5753@node Arrays
79a6e687 5754@section Artificial Arrays
c906108c
SS
5755
5756@cindex artificial array
15387254 5757@cindex arrays
41afff9a 5758@kindex @@@r{, referencing memory as an array}
c906108c
SS
5759It is often useful to print out several successive objects of the
5760same type in memory; a section of an array, or an array of
5761dynamically determined size for which only a pointer exists in the
5762program.
5763
5764You can do this by referring to a contiguous span of memory as an
5765@dfn{artificial array}, using the binary operator @samp{@@}. The left
5766operand of @samp{@@} should be the first element of the desired array
5767and be an individual object. The right operand should be the desired length
5768of the array. The result is an array value whose elements are all of
5769the type of the left argument. The first element is actually the left
5770argument; the second element comes from bytes of memory immediately
5771following those that hold the first element, and so on. Here is an
5772example. If a program says
5773
474c8240 5774@smallexample
c906108c 5775int *array = (int *) malloc (len * sizeof (int));
474c8240 5776@end smallexample
c906108c
SS
5777
5778@noindent
5779you can print the contents of @code{array} with
5780
474c8240 5781@smallexample
c906108c 5782p *array@@len
474c8240 5783@end smallexample
c906108c
SS
5784
5785The left operand of @samp{@@} must reside in memory. Array values made
5786with @samp{@@} in this way behave just like other arrays in terms of
5787subscripting, and are coerced to pointers when used in expressions.
5788Artificial arrays most often appear in expressions via the value history
79a6e687 5789(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5790
5791Another way to create an artificial array is to use a cast.
5792This re-interprets a value as if it were an array.
5793The value need not be in memory:
474c8240 5794@smallexample
c906108c
SS
5795(@value{GDBP}) p/x (short[2])0x12345678
5796$1 = @{0x1234, 0x5678@}
474c8240 5797@end smallexample
c906108c
SS
5798
5799As a convenience, if you leave the array length out (as in
c3f6f71d 5800@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5801the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5802@smallexample
c906108c
SS
5803(@value{GDBP}) p/x (short[])0x12345678
5804$2 = @{0x1234, 0x5678@}
474c8240 5805@end smallexample
c906108c
SS
5806
5807Sometimes the artificial array mechanism is not quite enough; in
5808moderately complex data structures, the elements of interest may not
5809actually be adjacent---for example, if you are interested in the values
5810of pointers in an array. One useful work-around in this situation is
5811to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5812Variables}) as a counter in an expression that prints the first
c906108c
SS
5813interesting value, and then repeat that expression via @key{RET}. For
5814instance, suppose you have an array @code{dtab} of pointers to
5815structures, and you are interested in the values of a field @code{fv}
5816in each structure. Here is an example of what you might type:
5817
474c8240 5818@smallexample
c906108c
SS
5819set $i = 0
5820p dtab[$i++]->fv
5821@key{RET}
5822@key{RET}
5823@dots{}
474c8240 5824@end smallexample
c906108c 5825
6d2ebf8b 5826@node Output Formats
79a6e687 5827@section Output Formats
c906108c
SS
5828
5829@cindex formatted output
5830@cindex output formats
5831By default, @value{GDBN} prints a value according to its data type. Sometimes
5832this is not what you want. For example, you might want to print a number
5833in hex, or a pointer in decimal. Or you might want to view data in memory
5834at a certain address as a character string or as an instruction. To do
5835these things, specify an @dfn{output format} when you print a value.
5836
5837The simplest use of output formats is to say how to print a value
5838already computed. This is done by starting the arguments of the
5839@code{print} command with a slash and a format letter. The format
5840letters supported are:
5841
5842@table @code
5843@item x
5844Regard the bits of the value as an integer, and print the integer in
5845hexadecimal.
5846
5847@item d
5848Print as integer in signed decimal.
5849
5850@item u
5851Print as integer in unsigned decimal.
5852
5853@item o
5854Print as integer in octal.
5855
5856@item t
5857Print as integer in binary. The letter @samp{t} stands for ``two''.
5858@footnote{@samp{b} cannot be used because these format letters are also
5859used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5860see @ref{Memory,,Examining Memory}.}
c906108c
SS
5861
5862@item a
5863@cindex unknown address, locating
3d67e040 5864@cindex locate address
c906108c
SS
5865Print as an address, both absolute in hexadecimal and as an offset from
5866the nearest preceding symbol. You can use this format used to discover
5867where (in what function) an unknown address is located:
5868
474c8240 5869@smallexample
c906108c
SS
5870(@value{GDBP}) p/a 0x54320
5871$3 = 0x54320 <_initialize_vx+396>
474c8240 5872@end smallexample
c906108c 5873
3d67e040
EZ
5874@noindent
5875The command @code{info symbol 0x54320} yields similar results.
5876@xref{Symbols, info symbol}.
5877
c906108c 5878@item c
51274035
EZ
5879Regard as an integer and print it as a character constant. This
5880prints both the numerical value and its character representation. The
5881character representation is replaced with the octal escape @samp{\nnn}
5882for characters outside the 7-bit @sc{ascii} range.
c906108c 5883
ea37ba09
DJ
5884Without this format, @value{GDBN} displays @code{char},
5885@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5886constants. Single-byte members of vectors are displayed as integer
5887data.
5888
c906108c
SS
5889@item f
5890Regard the bits of the value as a floating point number and print
5891using typical floating point syntax.
ea37ba09
DJ
5892
5893@item s
5894@cindex printing strings
5895@cindex printing byte arrays
5896Regard as a string, if possible. With this format, pointers to single-byte
5897data are displayed as null-terminated strings and arrays of single-byte data
5898are displayed as fixed-length strings. Other values are displayed in their
5899natural types.
5900
5901Without this format, @value{GDBN} displays pointers to and arrays of
5902@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5903strings. Single-byte members of a vector are displayed as an integer
5904array.
c906108c
SS
5905@end table
5906
5907For example, to print the program counter in hex (@pxref{Registers}), type
5908
474c8240 5909@smallexample
c906108c 5910p/x $pc
474c8240 5911@end smallexample
c906108c
SS
5912
5913@noindent
5914Note that no space is required before the slash; this is because command
5915names in @value{GDBN} cannot contain a slash.
5916
5917To reprint the last value in the value history with a different format,
5918you can use the @code{print} command with just a format and no
5919expression. For example, @samp{p/x} reprints the last value in hex.
5920
6d2ebf8b 5921@node Memory
79a6e687 5922@section Examining Memory
c906108c
SS
5923
5924You can use the command @code{x} (for ``examine'') to examine memory in
5925any of several formats, independently of your program's data types.
5926
5927@cindex examining memory
5928@table @code
41afff9a 5929@kindex x @r{(examine memory)}
c906108c
SS
5930@item x/@var{nfu} @var{addr}
5931@itemx x @var{addr}
5932@itemx x
5933Use the @code{x} command to examine memory.
5934@end table
5935
5936@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5937much memory to display and how to format it; @var{addr} is an
5938expression giving the address where you want to start displaying memory.
5939If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5940Several commands set convenient defaults for @var{addr}.
5941
5942@table @r
5943@item @var{n}, the repeat count
5944The repeat count is a decimal integer; the default is 1. It specifies
5945how much memory (counting by units @var{u}) to display.
5946@c This really is **decimal**; unaffected by 'set radix' as of GDB
5947@c 4.1.2.
5948
5949@item @var{f}, the display format
51274035
EZ
5950The display format is one of the formats used by @code{print}
5951(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5952@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5953The default is @samp{x} (hexadecimal) initially. The default changes
5954each time you use either @code{x} or @code{print}.
c906108c
SS
5955
5956@item @var{u}, the unit size
5957The unit size is any of
5958
5959@table @code
5960@item b
5961Bytes.
5962@item h
5963Halfwords (two bytes).
5964@item w
5965Words (four bytes). This is the initial default.
5966@item g
5967Giant words (eight bytes).
5968@end table
5969
5970Each time you specify a unit size with @code{x}, that size becomes the
5971default unit the next time you use @code{x}. (For the @samp{s} and
5972@samp{i} formats, the unit size is ignored and is normally not written.)
5973
5974@item @var{addr}, starting display address
5975@var{addr} is the address where you want @value{GDBN} to begin displaying
5976memory. The expression need not have a pointer value (though it may);
5977it is always interpreted as an integer address of a byte of memory.
5978@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5979@var{addr} is usually just after the last address examined---but several
5980other commands also set the default address: @code{info breakpoints} (to
5981the address of the last breakpoint listed), @code{info line} (to the
5982starting address of a line), and @code{print} (if you use it to display
5983a value from memory).
5984@end table
5985
5986For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5987(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5988starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5989words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5990@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5991
5992Since the letters indicating unit sizes are all distinct from the
5993letters specifying output formats, you do not have to remember whether
5994unit size or format comes first; either order works. The output
5995specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5996(However, the count @var{n} must come first; @samp{wx4} does not work.)
5997
5998Even though the unit size @var{u} is ignored for the formats @samp{s}
5999and @samp{i}, you might still want to use a count @var{n}; for example,
6000@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
6001including any operands. For convenience, especially when used with
6002the @code{display} command, the @samp{i} format also prints branch delay
6003slot instructions, if any, beyond the count specified, which immediately
6004follow the last instruction that is within the count. The command
6005@code{disassemble} gives an alternative way of inspecting machine
6006instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
6007
6008All the defaults for the arguments to @code{x} are designed to make it
6009easy to continue scanning memory with minimal specifications each time
6010you use @code{x}. For example, after you have inspected three machine
6011instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
6012with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
6013the repeat count @var{n} is used again; the other arguments default as
6014for successive uses of @code{x}.
6015
6016@cindex @code{$_}, @code{$__}, and value history
6017The addresses and contents printed by the @code{x} command are not saved
6018in the value history because there is often too much of them and they
6019would get in the way. Instead, @value{GDBN} makes these values available for
6020subsequent use in expressions as values of the convenience variables
6021@code{$_} and @code{$__}. After an @code{x} command, the last address
6022examined is available for use in expressions in the convenience variable
6023@code{$_}. The contents of that address, as examined, are available in
6024the convenience variable @code{$__}.
6025
6026If the @code{x} command has a repeat count, the address and contents saved
6027are from the last memory unit printed; this is not the same as the last
6028address printed if several units were printed on the last line of output.
6029
09d4efe1
EZ
6030@cindex remote memory comparison
6031@cindex verify remote memory image
6032When you are debugging a program running on a remote target machine
ea35711c 6033(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
6034remote machine's memory against the executable file you downloaded to
6035the target. The @code{compare-sections} command is provided for such
6036situations.
6037
6038@table @code
6039@kindex compare-sections
6040@item compare-sections @r{[}@var{section-name}@r{]}
6041Compare the data of a loadable section @var{section-name} in the
6042executable file of the program being debugged with the same section in
6043the remote machine's memory, and report any mismatches. With no
6044arguments, compares all loadable sections. This command's
6045availability depends on the target's support for the @code{"qCRC"}
6046remote request.
6047@end table
6048
6d2ebf8b 6049@node Auto Display
79a6e687 6050@section Automatic Display
c906108c
SS
6051@cindex automatic display
6052@cindex display of expressions
6053
6054If you find that you want to print the value of an expression frequently
6055(to see how it changes), you might want to add it to the @dfn{automatic
6056display list} so that @value{GDBN} prints its value each time your program stops.
6057Each expression added to the list is given a number to identify it;
6058to remove an expression from the list, you specify that number.
6059The automatic display looks like this:
6060
474c8240 6061@smallexample
c906108c
SS
60622: foo = 38
60633: bar[5] = (struct hack *) 0x3804
474c8240 6064@end smallexample
c906108c
SS
6065
6066@noindent
6067This display shows item numbers, expressions and their current values. As with
6068displays you request manually using @code{x} or @code{print}, you can
6069specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6070whether to use @code{print} or @code{x} depending your format
6071specification---it uses @code{x} if you specify either the @samp{i}
6072or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6073
6074@table @code
6075@kindex display
d4f3574e
SS
6076@item display @var{expr}
6077Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6078each time your program stops. @xref{Expressions, ,Expressions}.
6079
6080@code{display} does not repeat if you press @key{RET} again after using it.
6081
d4f3574e 6082@item display/@var{fmt} @var{expr}
c906108c 6083For @var{fmt} specifying only a display format and not a size or
d4f3574e 6084count, add the expression @var{expr} to the auto-display list but
c906108c 6085arrange to display it each time in the specified format @var{fmt}.
79a6e687 6086@xref{Output Formats,,Output Formats}.
c906108c
SS
6087
6088@item display/@var{fmt} @var{addr}
6089For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6090number of units, add the expression @var{addr} as a memory address to
6091be examined each time your program stops. Examining means in effect
79a6e687 6092doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6093@end table
6094
6095For example, @samp{display/i $pc} can be helpful, to see the machine
6096instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6097is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6098
6099@table @code
6100@kindex delete display
6101@kindex undisplay
6102@item undisplay @var{dnums}@dots{}
6103@itemx delete display @var{dnums}@dots{}
6104Remove item numbers @var{dnums} from the list of expressions to display.
6105
6106@code{undisplay} does not repeat if you press @key{RET} after using it.
6107(Otherwise you would just get the error @samp{No display number @dots{}}.)
6108
6109@kindex disable display
6110@item disable display @var{dnums}@dots{}
6111Disable the display of item numbers @var{dnums}. A disabled display
6112item is not printed automatically, but is not forgotten. It may be
6113enabled again later.
6114
6115@kindex enable display
6116@item enable display @var{dnums}@dots{}
6117Enable display of item numbers @var{dnums}. It becomes effective once
6118again in auto display of its expression, until you specify otherwise.
6119
6120@item display
6121Display the current values of the expressions on the list, just as is
6122done when your program stops.
6123
6124@kindex info display
6125@item info display
6126Print the list of expressions previously set up to display
6127automatically, each one with its item number, but without showing the
6128values. This includes disabled expressions, which are marked as such.
6129It also includes expressions which would not be displayed right now
6130because they refer to automatic variables not currently available.
6131@end table
6132
15387254 6133@cindex display disabled out of scope
c906108c
SS
6134If a display expression refers to local variables, then it does not make
6135sense outside the lexical context for which it was set up. Such an
6136expression is disabled when execution enters a context where one of its
6137variables is not defined. For example, if you give the command
6138@code{display last_char} while inside a function with an argument
6139@code{last_char}, @value{GDBN} displays this argument while your program
6140continues to stop inside that function. When it stops elsewhere---where
6141there is no variable @code{last_char}---the display is disabled
6142automatically. The next time your program stops where @code{last_char}
6143is meaningful, you can enable the display expression once again.
6144
6d2ebf8b 6145@node Print Settings
79a6e687 6146@section Print Settings
c906108c
SS
6147
6148@cindex format options
6149@cindex print settings
6150@value{GDBN} provides the following ways to control how arrays, structures,
6151and symbols are printed.
6152
6153@noindent
6154These settings are useful for debugging programs in any language:
6155
6156@table @code
4644b6e3 6157@kindex set print
c906108c
SS
6158@item set print address
6159@itemx set print address on
4644b6e3 6160@cindex print/don't print memory addresses
c906108c
SS
6161@value{GDBN} prints memory addresses showing the location of stack
6162traces, structure values, pointer values, breakpoints, and so forth,
6163even when it also displays the contents of those addresses. The default
6164is @code{on}. For example, this is what a stack frame display looks like with
6165@code{set print address on}:
6166
6167@smallexample
6168@group
6169(@value{GDBP}) f
6170#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6171 at input.c:530
6172530 if (lquote != def_lquote)
6173@end group
6174@end smallexample
6175
6176@item set print address off
6177Do not print addresses when displaying their contents. For example,
6178this is the same stack frame displayed with @code{set print address off}:
6179
6180@smallexample
6181@group
6182(@value{GDBP}) set print addr off
6183(@value{GDBP}) f
6184#0 set_quotes (lq="<<", rq=">>") at input.c:530
6185530 if (lquote != def_lquote)
6186@end group
6187@end smallexample
6188
6189You can use @samp{set print address off} to eliminate all machine
6190dependent displays from the @value{GDBN} interface. For example, with
6191@code{print address off}, you should get the same text for backtraces on
6192all machines---whether or not they involve pointer arguments.
6193
4644b6e3 6194@kindex show print
c906108c
SS
6195@item show print address
6196Show whether or not addresses are to be printed.
6197@end table
6198
6199When @value{GDBN} prints a symbolic address, it normally prints the
6200closest earlier symbol plus an offset. If that symbol does not uniquely
6201identify the address (for example, it is a name whose scope is a single
6202source file), you may need to clarify. One way to do this is with
6203@code{info line}, for example @samp{info line *0x4537}. Alternately,
6204you can set @value{GDBN} to print the source file and line number when
6205it prints a symbolic address:
6206
6207@table @code
c906108c 6208@item set print symbol-filename on
9c16f35a
EZ
6209@cindex source file and line of a symbol
6210@cindex symbol, source file and line
c906108c
SS
6211Tell @value{GDBN} to print the source file name and line number of a
6212symbol in the symbolic form of an address.
6213
6214@item set print symbol-filename off
6215Do not print source file name and line number of a symbol. This is the
6216default.
6217
c906108c
SS
6218@item show print symbol-filename
6219Show whether or not @value{GDBN} will print the source file name and
6220line number of a symbol in the symbolic form of an address.
6221@end table
6222
6223Another situation where it is helpful to show symbol filenames and line
6224numbers is when disassembling code; @value{GDBN} shows you the line
6225number and source file that corresponds to each instruction.
6226
6227Also, you may wish to see the symbolic form only if the address being
6228printed is reasonably close to the closest earlier symbol:
6229
6230@table @code
c906108c 6231@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6232@cindex maximum value for offset of closest symbol
c906108c
SS
6233Tell @value{GDBN} to only display the symbolic form of an address if the
6234offset between the closest earlier symbol and the address is less than
5d161b24 6235@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6236to always print the symbolic form of an address if any symbol precedes it.
6237
c906108c
SS
6238@item show print max-symbolic-offset
6239Ask how large the maximum offset is that @value{GDBN} prints in a
6240symbolic address.
6241@end table
6242
6243@cindex wild pointer, interpreting
6244@cindex pointer, finding referent
6245If you have a pointer and you are not sure where it points, try
6246@samp{set print symbol-filename on}. Then you can determine the name
6247and source file location of the variable where it points, using
6248@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6249For example, here @value{GDBN} shows that a variable @code{ptt} points
6250at another variable @code{t}, defined in @file{hi2.c}:
6251
474c8240 6252@smallexample
c906108c
SS
6253(@value{GDBP}) set print symbol-filename on
6254(@value{GDBP}) p/a ptt
6255$4 = 0xe008 <t in hi2.c>
474c8240 6256@end smallexample
c906108c
SS
6257
6258@quotation
6259@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6260does not show the symbol name and filename of the referent, even with
6261the appropriate @code{set print} options turned on.
6262@end quotation
6263
6264Other settings control how different kinds of objects are printed:
6265
6266@table @code
c906108c
SS
6267@item set print array
6268@itemx set print array on
4644b6e3 6269@cindex pretty print arrays
c906108c
SS
6270Pretty print arrays. This format is more convenient to read,
6271but uses more space. The default is off.
6272
6273@item set print array off
6274Return to compressed format for arrays.
6275
c906108c
SS
6276@item show print array
6277Show whether compressed or pretty format is selected for displaying
6278arrays.
6279
3c9c013a
JB
6280@cindex print array indexes
6281@item set print array-indexes
6282@itemx set print array-indexes on
6283Print the index of each element when displaying arrays. May be more
6284convenient to locate a given element in the array or quickly find the
6285index of a given element in that printed array. The default is off.
6286
6287@item set print array-indexes off
6288Stop printing element indexes when displaying arrays.
6289
6290@item show print array-indexes
6291Show whether the index of each element is printed when displaying
6292arrays.
6293
c906108c 6294@item set print elements @var{number-of-elements}
4644b6e3 6295@cindex number of array elements to print
9c16f35a 6296@cindex limit on number of printed array elements
c906108c
SS
6297Set a limit on how many elements of an array @value{GDBN} will print.
6298If @value{GDBN} is printing a large array, it stops printing after it has
6299printed the number of elements set by the @code{set print elements} command.
6300This limit also applies to the display of strings.
d4f3574e 6301When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6302Setting @var{number-of-elements} to zero means that the printing is unlimited.
6303
c906108c
SS
6304@item show print elements
6305Display the number of elements of a large array that @value{GDBN} will print.
6306If the number is 0, then the printing is unlimited.
6307
b4740add
JB
6308@item set print frame-arguments @var{value}
6309@cindex printing frame argument values
6310@cindex print all frame argument values
6311@cindex print frame argument values for scalars only
6312@cindex do not print frame argument values
6313This command allows to control how the values of arguments are printed
6314when the debugger prints a frame (@pxref{Frames}). The possible
6315values are:
6316
6317@table @code
6318@item all
6319The values of all arguments are printed. This is the default.
6320
6321@item scalars
6322Print the value of an argument only if it is a scalar. The value of more
6323complex arguments such as arrays, structures, unions, etc, is replaced
6324by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6325
6326@smallexample
6327#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6328 at frame-args.c:23
6329@end smallexample
6330
6331@item none
6332None of the argument values are printed. Instead, the value of each argument
6333is replaced by @code{@dots{}}. In this case, the example above now becomes:
6334
6335@smallexample
6336#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6337 at frame-args.c:23
6338@end smallexample
6339@end table
6340
6341By default, all argument values are always printed. But this command
6342can be useful in several cases. For instance, it can be used to reduce
6343the amount of information printed in each frame, making the backtrace
6344more readable. Also, this command can be used to improve performance
6345when displaying Ada frames, because the computation of large arguments
6346can sometimes be CPU-intensive, especiallly in large applications.
6347Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6348avoids this computation, thus speeding up the display of each Ada frame.
6349
6350@item show print frame-arguments
6351Show how the value of arguments should be displayed when printing a frame.
6352
9c16f35a
EZ
6353@item set print repeats
6354@cindex repeated array elements
6355Set the threshold for suppressing display of repeated array
d3e8051b 6356elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6357array exceeds the threshold, @value{GDBN} prints the string
6358@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6359identical repetitions, instead of displaying the identical elements
6360themselves. Setting the threshold to zero will cause all elements to
6361be individually printed. The default threshold is 10.
6362
6363@item show print repeats
6364Display the current threshold for printing repeated identical
6365elements.
6366
c906108c 6367@item set print null-stop
4644b6e3 6368@cindex @sc{null} elements in arrays
c906108c 6369Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6370@sc{null} is encountered. This is useful when large arrays actually
c906108c 6371contain only short strings.
d4f3574e 6372The default is off.
c906108c 6373
9c16f35a
EZ
6374@item show print null-stop
6375Show whether @value{GDBN} stops printing an array on the first
6376@sc{null} character.
6377
c906108c 6378@item set print pretty on
9c16f35a
EZ
6379@cindex print structures in indented form
6380@cindex indentation in structure display
5d161b24 6381Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6382per line, like this:
6383
6384@smallexample
6385@group
6386$1 = @{
6387 next = 0x0,
6388 flags = @{
6389 sweet = 1,
6390 sour = 1
6391 @},
6392 meat = 0x54 "Pork"
6393@}
6394@end group
6395@end smallexample
6396
6397@item set print pretty off
6398Cause @value{GDBN} to print structures in a compact format, like this:
6399
6400@smallexample
6401@group
6402$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6403meat = 0x54 "Pork"@}
6404@end group
6405@end smallexample
6406
6407@noindent
6408This is the default format.
6409
c906108c
SS
6410@item show print pretty
6411Show which format @value{GDBN} is using to print structures.
6412
c906108c 6413@item set print sevenbit-strings on
4644b6e3
EZ
6414@cindex eight-bit characters in strings
6415@cindex octal escapes in strings
c906108c
SS
6416Print using only seven-bit characters; if this option is set,
6417@value{GDBN} displays any eight-bit characters (in strings or
6418character values) using the notation @code{\}@var{nnn}. This setting is
6419best if you are working in English (@sc{ascii}) and you use the
6420high-order bit of characters as a marker or ``meta'' bit.
6421
6422@item set print sevenbit-strings off
6423Print full eight-bit characters. This allows the use of more
6424international character sets, and is the default.
6425
c906108c
SS
6426@item show print sevenbit-strings
6427Show whether or not @value{GDBN} is printing only seven-bit characters.
6428
c906108c 6429@item set print union on
4644b6e3 6430@cindex unions in structures, printing
9c16f35a
EZ
6431Tell @value{GDBN} to print unions which are contained in structures
6432and other unions. This is the default setting.
c906108c
SS
6433
6434@item set print union off
9c16f35a
EZ
6435Tell @value{GDBN} not to print unions which are contained in
6436structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6437instead.
c906108c 6438
c906108c
SS
6439@item show print union
6440Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6441structures and other unions.
c906108c
SS
6442
6443For example, given the declarations
6444
6445@smallexample
6446typedef enum @{Tree, Bug@} Species;
6447typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6448typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6449 Bug_forms;
6450
6451struct thing @{
6452 Species it;
6453 union @{
6454 Tree_forms tree;
6455 Bug_forms bug;
6456 @} form;
6457@};
6458
6459struct thing foo = @{Tree, @{Acorn@}@};
6460@end smallexample
6461
6462@noindent
6463with @code{set print union on} in effect @samp{p foo} would print
6464
6465@smallexample
6466$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6467@end smallexample
6468
6469@noindent
6470and with @code{set print union off} in effect it would print
6471
6472@smallexample
6473$1 = @{it = Tree, form = @{...@}@}
6474@end smallexample
9c16f35a
EZ
6475
6476@noindent
6477@code{set print union} affects programs written in C-like languages
6478and in Pascal.
c906108c
SS
6479@end table
6480
c906108c
SS
6481@need 1000
6482@noindent
b37052ae 6483These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6484
6485@table @code
4644b6e3 6486@cindex demangling C@t{++} names
c906108c
SS
6487@item set print demangle
6488@itemx set print demangle on
b37052ae 6489Print C@t{++} names in their source form rather than in the encoded
c906108c 6490(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6491linkage. The default is on.
c906108c 6492
c906108c 6493@item show print demangle
b37052ae 6494Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6495
c906108c
SS
6496@item set print asm-demangle
6497@itemx set print asm-demangle on
b37052ae 6498Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6499in assembler code printouts such as instruction disassemblies.
6500The default is off.
6501
c906108c 6502@item show print asm-demangle
b37052ae 6503Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6504or demangled form.
6505
b37052ae
EZ
6506@cindex C@t{++} symbol decoding style
6507@cindex symbol decoding style, C@t{++}
a8f24a35 6508@kindex set demangle-style
c906108c
SS
6509@item set demangle-style @var{style}
6510Choose among several encoding schemes used by different compilers to
b37052ae 6511represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6512
6513@table @code
6514@item auto
6515Allow @value{GDBN} to choose a decoding style by inspecting your program.
6516
6517@item gnu
b37052ae 6518Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6519This is the default.
c906108c
SS
6520
6521@item hp
b37052ae 6522Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6523
6524@item lucid
b37052ae 6525Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6526
6527@item arm
b37052ae 6528Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6529@strong{Warning:} this setting alone is not sufficient to allow
6530debugging @code{cfront}-generated executables. @value{GDBN} would
6531require further enhancement to permit that.
6532
6533@end table
6534If you omit @var{style}, you will see a list of possible formats.
6535
c906108c 6536@item show demangle-style
b37052ae 6537Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6538
c906108c
SS
6539@item set print object
6540@itemx set print object on
4644b6e3 6541@cindex derived type of an object, printing
9c16f35a 6542@cindex display derived types
c906108c
SS
6543When displaying a pointer to an object, identify the @emph{actual}
6544(derived) type of the object rather than the @emph{declared} type, using
6545the virtual function table.
6546
6547@item set print object off
6548Display only the declared type of objects, without reference to the
6549virtual function table. This is the default setting.
6550
c906108c
SS
6551@item show print object
6552Show whether actual, or declared, object types are displayed.
6553
c906108c
SS
6554@item set print static-members
6555@itemx set print static-members on
4644b6e3 6556@cindex static members of C@t{++} objects
b37052ae 6557Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6558
6559@item set print static-members off
b37052ae 6560Do not print static members when displaying a C@t{++} object.
c906108c 6561
c906108c 6562@item show print static-members
9c16f35a
EZ
6563Show whether C@t{++} static members are printed or not.
6564
6565@item set print pascal_static-members
6566@itemx set print pascal_static-members on
d3e8051b
EZ
6567@cindex static members of Pascal objects
6568@cindex Pascal objects, static members display
9c16f35a
EZ
6569Print static members when displaying a Pascal object. The default is on.
6570
6571@item set print pascal_static-members off
6572Do not print static members when displaying a Pascal object.
6573
6574@item show print pascal_static-members
6575Show whether Pascal static members are printed or not.
c906108c
SS
6576
6577@c These don't work with HP ANSI C++ yet.
c906108c
SS
6578@item set print vtbl
6579@itemx set print vtbl on
4644b6e3 6580@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6581@cindex virtual functions (C@t{++}) display
6582@cindex VTBL display
b37052ae 6583Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6584(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6585ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6586
6587@item set print vtbl off
b37052ae 6588Do not pretty print C@t{++} virtual function tables.
c906108c 6589
c906108c 6590@item show print vtbl
b37052ae 6591Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6592@end table
c906108c 6593
6d2ebf8b 6594@node Value History
79a6e687 6595@section Value History
c906108c
SS
6596
6597@cindex value history
9c16f35a 6598@cindex history of values printed by @value{GDBN}
5d161b24
DB
6599Values printed by the @code{print} command are saved in the @value{GDBN}
6600@dfn{value history}. This allows you to refer to them in other expressions.
6601Values are kept until the symbol table is re-read or discarded
6602(for example with the @code{file} or @code{symbol-file} commands).
6603When the symbol table changes, the value history is discarded,
6604since the values may contain pointers back to the types defined in the
c906108c
SS
6605symbol table.
6606
6607@cindex @code{$}
6608@cindex @code{$$}
6609@cindex history number
6610The values printed are given @dfn{history numbers} by which you can
6611refer to them. These are successive integers starting with one.
6612@code{print} shows you the history number assigned to a value by
6613printing @samp{$@var{num} = } before the value; here @var{num} is the
6614history number.
6615
6616To refer to any previous value, use @samp{$} followed by the value's
6617history number. The way @code{print} labels its output is designed to
6618remind you of this. Just @code{$} refers to the most recent value in
6619the history, and @code{$$} refers to the value before that.
6620@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6621is the value just prior to @code{$$}, @code{$$1} is equivalent to
6622@code{$$}, and @code{$$0} is equivalent to @code{$}.
6623
6624For example, suppose you have just printed a pointer to a structure and
6625want to see the contents of the structure. It suffices to type
6626
474c8240 6627@smallexample
c906108c 6628p *$
474c8240 6629@end smallexample
c906108c
SS
6630
6631If you have a chain of structures where the component @code{next} points
6632to the next one, you can print the contents of the next one with this:
6633
474c8240 6634@smallexample
c906108c 6635p *$.next
474c8240 6636@end smallexample
c906108c
SS
6637
6638@noindent
6639You can print successive links in the chain by repeating this
6640command---which you can do by just typing @key{RET}.
6641
6642Note that the history records values, not expressions. If the value of
6643@code{x} is 4 and you type these commands:
6644
474c8240 6645@smallexample
c906108c
SS
6646print x
6647set x=5
474c8240 6648@end smallexample
c906108c
SS
6649
6650@noindent
6651then the value recorded in the value history by the @code{print} command
6652remains 4 even though the value of @code{x} has changed.
6653
6654@table @code
6655@kindex show values
6656@item show values
6657Print the last ten values in the value history, with their item numbers.
6658This is like @samp{p@ $$9} repeated ten times, except that @code{show
6659values} does not change the history.
6660
6661@item show values @var{n}
6662Print ten history values centered on history item number @var{n}.
6663
6664@item show values +
6665Print ten history values just after the values last printed. If no more
6666values are available, @code{show values +} produces no display.
6667@end table
6668
6669Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6670same effect as @samp{show values +}.
6671
6d2ebf8b 6672@node Convenience Vars
79a6e687 6673@section Convenience Variables
c906108c
SS
6674
6675@cindex convenience variables
9c16f35a 6676@cindex user-defined variables
c906108c
SS
6677@value{GDBN} provides @dfn{convenience variables} that you can use within
6678@value{GDBN} to hold on to a value and refer to it later. These variables
6679exist entirely within @value{GDBN}; they are not part of your program, and
6680setting a convenience variable has no direct effect on further execution
6681of your program. That is why you can use them freely.
6682
6683Convenience variables are prefixed with @samp{$}. Any name preceded by
6684@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6685the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6686(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6687by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6688
6689You can save a value in a convenience variable with an assignment
6690expression, just as you would set a variable in your program.
6691For example:
6692
474c8240 6693@smallexample
c906108c 6694set $foo = *object_ptr
474c8240 6695@end smallexample
c906108c
SS
6696
6697@noindent
6698would save in @code{$foo} the value contained in the object pointed to by
6699@code{object_ptr}.
6700
6701Using a convenience variable for the first time creates it, but its
6702value is @code{void} until you assign a new value. You can alter the
6703value with another assignment at any time.
6704
6705Convenience variables have no fixed types. You can assign a convenience
6706variable any type of value, including structures and arrays, even if
6707that variable already has a value of a different type. The convenience
6708variable, when used as an expression, has the type of its current value.
6709
6710@table @code
6711@kindex show convenience
9c16f35a 6712@cindex show all user variables
c906108c
SS
6713@item show convenience
6714Print a list of convenience variables used so far, and their values.
d4f3574e 6715Abbreviated @code{show conv}.
53e5f3cf
AS
6716
6717@kindex init-if-undefined
6718@cindex convenience variables, initializing
6719@item init-if-undefined $@var{variable} = @var{expression}
6720Set a convenience variable if it has not already been set. This is useful
6721for user-defined commands that keep some state. It is similar, in concept,
6722to using local static variables with initializers in C (except that
6723convenience variables are global). It can also be used to allow users to
6724override default values used in a command script.
6725
6726If the variable is already defined then the expression is not evaluated so
6727any side-effects do not occur.
c906108c
SS
6728@end table
6729
6730One of the ways to use a convenience variable is as a counter to be
6731incremented or a pointer to be advanced. For example, to print
6732a field from successive elements of an array of structures:
6733
474c8240 6734@smallexample
c906108c
SS
6735set $i = 0
6736print bar[$i++]->contents
474c8240 6737@end smallexample
c906108c 6738
d4f3574e
SS
6739@noindent
6740Repeat that command by typing @key{RET}.
c906108c
SS
6741
6742Some convenience variables are created automatically by @value{GDBN} and given
6743values likely to be useful.
6744
6745@table @code
41afff9a 6746@vindex $_@r{, convenience variable}
c906108c
SS
6747@item $_
6748The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6749the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6750commands which provide a default address for @code{x} to examine also
6751set @code{$_} to that address; these commands include @code{info line}
6752and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6753except when set by the @code{x} command, in which case it is a pointer
6754to the type of @code{$__}.
6755
41afff9a 6756@vindex $__@r{, convenience variable}
c906108c
SS
6757@item $__
6758The variable @code{$__} is automatically set by the @code{x} command
6759to the value found in the last address examined. Its type is chosen
6760to match the format in which the data was printed.
6761
6762@item $_exitcode
41afff9a 6763@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6764The variable @code{$_exitcode} is automatically set to the exit code when
6765the program being debugged terminates.
6766@end table
6767
53a5351d
JM
6768On HP-UX systems, if you refer to a function or variable name that
6769begins with a dollar sign, @value{GDBN} searches for a user or system
6770name first, before it searches for a convenience variable.
c906108c 6771
6d2ebf8b 6772@node Registers
c906108c
SS
6773@section Registers
6774
6775@cindex registers
6776You can refer to machine register contents, in expressions, as variables
6777with names starting with @samp{$}. The names of registers are different
6778for each machine; use @code{info registers} to see the names used on
6779your machine.
6780
6781@table @code
6782@kindex info registers
6783@item info registers
6784Print the names and values of all registers except floating-point
c85508ee 6785and vector registers (in the selected stack frame).
c906108c
SS
6786
6787@kindex info all-registers
6788@cindex floating point registers
6789@item info all-registers
6790Print the names and values of all registers, including floating-point
c85508ee 6791and vector registers (in the selected stack frame).
c906108c
SS
6792
6793@item info registers @var{regname} @dots{}
6794Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6795As discussed in detail below, register values are normally relative to
6796the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6797the machine you are using, with or without the initial @samp{$}.
6798@end table
6799
e09f16f9
EZ
6800@cindex stack pointer register
6801@cindex program counter register
6802@cindex process status register
6803@cindex frame pointer register
6804@cindex standard registers
c906108c
SS
6805@value{GDBN} has four ``standard'' register names that are available (in
6806expressions) on most machines---whenever they do not conflict with an
6807architecture's canonical mnemonics for registers. The register names
6808@code{$pc} and @code{$sp} are used for the program counter register and
6809the stack pointer. @code{$fp} is used for a register that contains a
6810pointer to the current stack frame, and @code{$ps} is used for a
6811register that contains the processor status. For example,
6812you could print the program counter in hex with
6813
474c8240 6814@smallexample
c906108c 6815p/x $pc
474c8240 6816@end smallexample
c906108c
SS
6817
6818@noindent
6819or print the instruction to be executed next with
6820
474c8240 6821@smallexample
c906108c 6822x/i $pc
474c8240 6823@end smallexample
c906108c
SS
6824
6825@noindent
6826or add four to the stack pointer@footnote{This is a way of removing
6827one word from the stack, on machines where stacks grow downward in
6828memory (most machines, nowadays). This assumes that the innermost
6829stack frame is selected; setting @code{$sp} is not allowed when other
6830stack frames are selected. To pop entire frames off the stack,
6831regardless of machine architecture, use @code{return};
79a6e687 6832see @ref{Returning, ,Returning from a Function}.} with
c906108c 6833
474c8240 6834@smallexample
c906108c 6835set $sp += 4
474c8240 6836@end smallexample
c906108c
SS
6837
6838Whenever possible, these four standard register names are available on
6839your machine even though the machine has different canonical mnemonics,
6840so long as there is no conflict. The @code{info registers} command
6841shows the canonical names. For example, on the SPARC, @code{info
6842registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6843can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6844is an alias for the @sc{eflags} register.
c906108c
SS
6845
6846@value{GDBN} always considers the contents of an ordinary register as an
6847integer when the register is examined in this way. Some machines have
6848special registers which can hold nothing but floating point; these
6849registers are considered to have floating point values. There is no way
6850to refer to the contents of an ordinary register as floating point value
6851(although you can @emph{print} it as a floating point value with
6852@samp{print/f $@var{regname}}).
6853
6854Some registers have distinct ``raw'' and ``virtual'' data formats. This
6855means that the data format in which the register contents are saved by
6856the operating system is not the same one that your program normally
6857sees. For example, the registers of the 68881 floating point
6858coprocessor are always saved in ``extended'' (raw) format, but all C
6859programs expect to work with ``double'' (virtual) format. In such
5d161b24 6860cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6861that makes sense for your program), but the @code{info registers} command
6862prints the data in both formats.
6863
36b80e65
EZ
6864@cindex SSE registers (x86)
6865@cindex MMX registers (x86)
6866Some machines have special registers whose contents can be interpreted
6867in several different ways. For example, modern x86-based machines
6868have SSE and MMX registers that can hold several values packed
6869together in several different formats. @value{GDBN} refers to such
6870registers in @code{struct} notation:
6871
6872@smallexample
6873(@value{GDBP}) print $xmm1
6874$1 = @{
6875 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6876 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6877 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6878 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6879 v4_int32 = @{0, 20657912, 11, 13@},
6880 v2_int64 = @{88725056443645952, 55834574859@},
6881 uint128 = 0x0000000d0000000b013b36f800000000
6882@}
6883@end smallexample
6884
6885@noindent
6886To set values of such registers, you need to tell @value{GDBN} which
6887view of the register you wish to change, as if you were assigning
6888value to a @code{struct} member:
6889
6890@smallexample
6891 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6892@end smallexample
6893
c906108c 6894Normally, register values are relative to the selected stack frame
79a6e687 6895(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6896value that the register would contain if all stack frames farther in
6897were exited and their saved registers restored. In order to see the
6898true contents of hardware registers, you must select the innermost
6899frame (with @samp{frame 0}).
6900
6901However, @value{GDBN} must deduce where registers are saved, from the machine
6902code generated by your compiler. If some registers are not saved, or if
6903@value{GDBN} is unable to locate the saved registers, the selected stack
6904frame makes no difference.
6905
6d2ebf8b 6906@node Floating Point Hardware
79a6e687 6907@section Floating Point Hardware
c906108c
SS
6908@cindex floating point
6909
6910Depending on the configuration, @value{GDBN} may be able to give
6911you more information about the status of the floating point hardware.
6912
6913@table @code
6914@kindex info float
6915@item info float
6916Display hardware-dependent information about the floating
6917point unit. The exact contents and layout vary depending on the
6918floating point chip. Currently, @samp{info float} is supported on
6919the ARM and x86 machines.
6920@end table
c906108c 6921
e76f1f2e
AC
6922@node Vector Unit
6923@section Vector Unit
6924@cindex vector unit
6925
6926Depending on the configuration, @value{GDBN} may be able to give you
6927more information about the status of the vector unit.
6928
6929@table @code
6930@kindex info vector
6931@item info vector
6932Display information about the vector unit. The exact contents and
6933layout vary depending on the hardware.
6934@end table
6935
721c2651 6936@node OS Information
79a6e687 6937@section Operating System Auxiliary Information
721c2651
EZ
6938@cindex OS information
6939
6940@value{GDBN} provides interfaces to useful OS facilities that can help
6941you debug your program.
6942
6943@cindex @code{ptrace} system call
6944@cindex @code{struct user} contents
6945When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6946machines), it interfaces with the inferior via the @code{ptrace}
6947system call. The operating system creates a special sata structure,
6948called @code{struct user}, for this interface. You can use the
6949command @code{info udot} to display the contents of this data
6950structure.
6951
6952@table @code
6953@item info udot
6954@kindex info udot
6955Display the contents of the @code{struct user} maintained by the OS
6956kernel for the program being debugged. @value{GDBN} displays the
6957contents of @code{struct user} as a list of hex numbers, similar to
6958the @code{examine} command.
6959@end table
6960
b383017d
RM
6961@cindex auxiliary vector
6962@cindex vector, auxiliary
b383017d
RM
6963Some operating systems supply an @dfn{auxiliary vector} to programs at
6964startup. This is akin to the arguments and environment that you
6965specify for a program, but contains a system-dependent variety of
6966binary values that tell system libraries important details about the
6967hardware, operating system, and process. Each value's purpose is
6968identified by an integer tag; the meanings are well-known but system-specific.
6969Depending on the configuration and operating system facilities,
9c16f35a
EZ
6970@value{GDBN} may be able to show you this information. For remote
6971targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6972support of the @samp{qXfer:auxv:read} packet, see
6973@ref{qXfer auxiliary vector read}.
b383017d
RM
6974
6975@table @code
6976@kindex info auxv
6977@item info auxv
6978Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6979live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6980numerically, and also shows names and text descriptions for recognized
6981tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6982pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6983most appropriate form for a recognized tag, and in hexadecimal for
6984an unrecognized tag.
6985@end table
6986
721c2651 6987
29e57380 6988@node Memory Region Attributes
79a6e687 6989@section Memory Region Attributes
29e57380
C
6990@cindex memory region attributes
6991
b383017d 6992@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6993required by regions of your target's memory. @value{GDBN} uses
6994attributes to determine whether to allow certain types of memory
6995accesses; whether to use specific width accesses; and whether to cache
6996target memory. By default the description of memory regions is
6997fetched from the target (if the current target supports this), but the
6998user can override the fetched regions.
29e57380
C
6999
7000Defined memory regions can be individually enabled and disabled. When a
7001memory region is disabled, @value{GDBN} uses the default attributes when
7002accessing memory in that region. Similarly, if no memory regions have
7003been defined, @value{GDBN} uses the default attributes when accessing
7004all memory.
7005
b383017d 7006When a memory region is defined, it is given a number to identify it;
29e57380
C
7007to enable, disable, or remove a memory region, you specify that number.
7008
7009@table @code
7010@kindex mem
bfac230e 7011@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
7012Define a memory region bounded by @var{lower} and @var{upper} with
7013attributes @var{attributes}@dots{}, and add it to the list of regions
7014monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 7015case: it is treated as the target's maximum memory address.
bfac230e 7016(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 7017
fd79ecee
DJ
7018@item mem auto
7019Discard any user changes to the memory regions and use target-supplied
7020regions, if available, or no regions if the target does not support.
7021
29e57380
C
7022@kindex delete mem
7023@item delete mem @var{nums}@dots{}
09d4efe1
EZ
7024Remove memory regions @var{nums}@dots{} from the list of regions
7025monitored by @value{GDBN}.
29e57380
C
7026
7027@kindex disable mem
7028@item disable mem @var{nums}@dots{}
09d4efe1 7029Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 7030A disabled memory region is not forgotten.
29e57380
C
7031It may be enabled again later.
7032
7033@kindex enable mem
7034@item enable mem @var{nums}@dots{}
09d4efe1 7035Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
7036
7037@kindex info mem
7038@item info mem
7039Print a table of all defined memory regions, with the following columns
09d4efe1 7040for each region:
29e57380
C
7041
7042@table @emph
7043@item Memory Region Number
7044@item Enabled or Disabled.
b383017d 7045Enabled memory regions are marked with @samp{y}.
29e57380
C
7046Disabled memory regions are marked with @samp{n}.
7047
7048@item Lo Address
7049The address defining the inclusive lower bound of the memory region.
7050
7051@item Hi Address
7052The address defining the exclusive upper bound of the memory region.
7053
7054@item Attributes
7055The list of attributes set for this memory region.
7056@end table
7057@end table
7058
7059
7060@subsection Attributes
7061
b383017d 7062@subsubsection Memory Access Mode
29e57380
C
7063The access mode attributes set whether @value{GDBN} may make read or
7064write accesses to a memory region.
7065
7066While these attributes prevent @value{GDBN} from performing invalid
7067memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7068etc.@: from accessing memory.
29e57380
C
7069
7070@table @code
7071@item ro
7072Memory is read only.
7073@item wo
7074Memory is write only.
7075@item rw
6ca652b0 7076Memory is read/write. This is the default.
29e57380
C
7077@end table
7078
7079@subsubsection Memory Access Size
d3e8051b 7080The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7081accesses in the memory region. Often memory mapped device registers
7082require specific sized accesses. If no access size attribute is
7083specified, @value{GDBN} may use accesses of any size.
7084
7085@table @code
7086@item 8
7087Use 8 bit memory accesses.
7088@item 16
7089Use 16 bit memory accesses.
7090@item 32
7091Use 32 bit memory accesses.
7092@item 64
7093Use 64 bit memory accesses.
7094@end table
7095
7096@c @subsubsection Hardware/Software Breakpoints
7097@c The hardware/software breakpoint attributes set whether @value{GDBN}
7098@c will use hardware or software breakpoints for the internal breakpoints
7099@c used by the step, next, finish, until, etc. commands.
7100@c
7101@c @table @code
7102@c @item hwbreak
b383017d 7103@c Always use hardware breakpoints
29e57380
C
7104@c @item swbreak (default)
7105@c @end table
7106
7107@subsubsection Data Cache
7108The data cache attributes set whether @value{GDBN} will cache target
7109memory. While this generally improves performance by reducing debug
7110protocol overhead, it can lead to incorrect results because @value{GDBN}
7111does not know about volatile variables or memory mapped device
7112registers.
7113
7114@table @code
7115@item cache
b383017d 7116Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7117@item nocache
7118Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7119@end table
7120
4b5752d0
VP
7121@subsection Memory Access Checking
7122@value{GDBN} can be instructed to refuse accesses to memory that is
7123not explicitly described. This can be useful if accessing such
7124regions has undesired effects for a specific target, or to provide
7125better error checking. The following commands control this behaviour.
7126
7127@table @code
7128@kindex set mem inaccessible-by-default
7129@item set mem inaccessible-by-default [on|off]
7130If @code{on} is specified, make @value{GDBN} treat memory not
7131explicitly described by the memory ranges as non-existent and refuse accesses
7132to such memory. The checks are only performed if there's at least one
7133memory range defined. If @code{off} is specified, make @value{GDBN}
7134treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7135The default value is @code{on}.
4b5752d0
VP
7136@kindex show mem inaccessible-by-default
7137@item show mem inaccessible-by-default
7138Show the current handling of accesses to unknown memory.
7139@end table
7140
7141
29e57380 7142@c @subsubsection Memory Write Verification
b383017d 7143@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7144@c will re-reads data after each write to verify the write was successful.
7145@c
7146@c @table @code
7147@c @item verify
7148@c @item noverify (default)
7149@c @end table
7150
16d9dec6 7151@node Dump/Restore Files
79a6e687 7152@section Copy Between Memory and a File
16d9dec6
MS
7153@cindex dump/restore files
7154@cindex append data to a file
7155@cindex dump data to a file
7156@cindex restore data from a file
16d9dec6 7157
df5215a6
JB
7158You can use the commands @code{dump}, @code{append}, and
7159@code{restore} to copy data between target memory and a file. The
7160@code{dump} and @code{append} commands write data to a file, and the
7161@code{restore} command reads data from a file back into the inferior's
7162memory. Files may be in binary, Motorola S-record, Intel hex, or
7163Tektronix Hex format; however, @value{GDBN} can only append to binary
7164files.
7165
7166@table @code
7167
7168@kindex dump
7169@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7170@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7171Dump the contents of memory from @var{start_addr} to @var{end_addr},
7172or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7173
df5215a6 7174The @var{format} parameter may be any one of:
16d9dec6 7175@table @code
df5215a6
JB
7176@item binary
7177Raw binary form.
7178@item ihex
7179Intel hex format.
7180@item srec
7181Motorola S-record format.
7182@item tekhex
7183Tektronix Hex format.
7184@end table
7185
7186@value{GDBN} uses the same definitions of these formats as the
7187@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7188@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7189form.
7190
7191@kindex append
7192@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7193@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7194Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7195or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7196(@value{GDBN} can only append data to files in raw binary form.)
7197
7198@kindex restore
7199@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7200Restore the contents of file @var{filename} into memory. The
7201@code{restore} command can automatically recognize any known @sc{bfd}
7202file format, except for raw binary. To restore a raw binary file you
7203must specify the optional keyword @code{binary} after the filename.
16d9dec6 7204
b383017d 7205If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7206contained in the file. Binary files always start at address zero, so
7207they will be restored at address @var{bias}. Other bfd files have
7208a built-in location; they will be restored at offset @var{bias}
7209from that location.
7210
7211If @var{start} and/or @var{end} are non-zero, then only data between
7212file offset @var{start} and file offset @var{end} will be restored.
b383017d 7213These offsets are relative to the addresses in the file, before
16d9dec6
MS
7214the @var{bias} argument is applied.
7215
7216@end table
7217
384ee23f
EZ
7218@node Core File Generation
7219@section How to Produce a Core File from Your Program
7220@cindex dump core from inferior
7221
7222A @dfn{core file} or @dfn{core dump} is a file that records the memory
7223image of a running process and its process status (register values
7224etc.). Its primary use is post-mortem debugging of a program that
7225crashed while it ran outside a debugger. A program that crashes
7226automatically produces a core file, unless this feature is disabled by
7227the user. @xref{Files}, for information on invoking @value{GDBN} in
7228the post-mortem debugging mode.
7229
7230Occasionally, you may wish to produce a core file of the program you
7231are debugging in order to preserve a snapshot of its state.
7232@value{GDBN} has a special command for that.
7233
7234@table @code
7235@kindex gcore
7236@kindex generate-core-file
7237@item generate-core-file [@var{file}]
7238@itemx gcore [@var{file}]
7239Produce a core dump of the inferior process. The optional argument
7240@var{file} specifies the file name where to put the core dump. If not
7241specified, the file name defaults to @file{core.@var{pid}}, where
7242@var{pid} is the inferior process ID.
7243
7244Note that this command is implemented only for some systems (as of
7245this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7246@end table
7247
a0eb71c5
KB
7248@node Character Sets
7249@section Character Sets
7250@cindex character sets
7251@cindex charset
7252@cindex translating between character sets
7253@cindex host character set
7254@cindex target character set
7255
7256If the program you are debugging uses a different character set to
7257represent characters and strings than the one @value{GDBN} uses itself,
7258@value{GDBN} can automatically translate between the character sets for
7259you. The character set @value{GDBN} uses we call the @dfn{host
7260character set}; the one the inferior program uses we call the
7261@dfn{target character set}.
7262
7263For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7264uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7265remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7266running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7267then the host character set is Latin-1, and the target character set is
7268@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7269target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7270@sc{ebcdic} and Latin 1 as you print character or string values, or use
7271character and string literals in expressions.
7272
7273@value{GDBN} has no way to automatically recognize which character set
7274the inferior program uses; you must tell it, using the @code{set
7275target-charset} command, described below.
7276
7277Here are the commands for controlling @value{GDBN}'s character set
7278support:
7279
7280@table @code
7281@item set target-charset @var{charset}
7282@kindex set target-charset
7283Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7284character set names @value{GDBN} recognizes below, but if you type
7285@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7286list the target character sets it supports.
a0eb71c5
KB
7287@end table
7288
7289@table @code
7290@item set host-charset @var{charset}
7291@kindex set host-charset
7292Set the current host character set to @var{charset}.
7293
7294By default, @value{GDBN} uses a host character set appropriate to the
7295system it is running on; you can override that default using the
7296@code{set host-charset} command.
7297
7298@value{GDBN} can only use certain character sets as its host character
7299set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7300indicate which can be host character sets, but if you type
7301@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7302list the host character sets it supports.
a0eb71c5
KB
7303
7304@item set charset @var{charset}
7305@kindex set charset
e33d66ec
EZ
7306Set the current host and target character sets to @var{charset}. As
7307above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7308@value{GDBN} will list the name of the character sets that can be used
7309for both host and target.
7310
a0eb71c5
KB
7311
7312@item show charset
a0eb71c5 7313@kindex show charset
b383017d 7314Show the names of the current host and target charsets.
e33d66ec
EZ
7315
7316@itemx show host-charset
a0eb71c5 7317@kindex show host-charset
b383017d 7318Show the name of the current host charset.
e33d66ec
EZ
7319
7320@itemx show target-charset
a0eb71c5 7321@kindex show target-charset
b383017d 7322Show the name of the current target charset.
a0eb71c5
KB
7323
7324@end table
7325
7326@value{GDBN} currently includes support for the following character
7327sets:
7328
7329@table @code
7330
7331@item ASCII
7332@cindex ASCII character set
7333Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7334character set.
7335
7336@item ISO-8859-1
7337@cindex ISO 8859-1 character set
7338@cindex ISO Latin 1 character set
e33d66ec 7339The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7340characters needed for French, German, and Spanish. @value{GDBN} can use
7341this as its host character set.
7342
7343@item EBCDIC-US
7344@itemx IBM1047
7345@cindex EBCDIC character set
7346@cindex IBM1047 character set
7347Variants of the @sc{ebcdic} character set, used on some of IBM's
7348mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7349@value{GDBN} cannot use these as its host character set.
7350
7351@end table
7352
7353Note that these are all single-byte character sets. More work inside
3f94c067 7354@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7355encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7356
7357Here is an example of @value{GDBN}'s character set support in action.
7358Assume that the following source code has been placed in the file
7359@file{charset-test.c}:
7360
7361@smallexample
7362#include <stdio.h>
7363
7364char ascii_hello[]
7365 = @{72, 101, 108, 108, 111, 44, 32, 119,
7366 111, 114, 108, 100, 33, 10, 0@};
7367char ibm1047_hello[]
7368 = @{200, 133, 147, 147, 150, 107, 64, 166,
7369 150, 153, 147, 132, 90, 37, 0@};
7370
7371main ()
7372@{
7373 printf ("Hello, world!\n");
7374@}
10998722 7375@end smallexample
a0eb71c5
KB
7376
7377In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7378containing the string @samp{Hello, world!} followed by a newline,
7379encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7380
7381We compile the program, and invoke the debugger on it:
7382
7383@smallexample
7384$ gcc -g charset-test.c -o charset-test
7385$ gdb -nw charset-test
7386GNU gdb 2001-12-19-cvs
7387Copyright 2001 Free Software Foundation, Inc.
7388@dots{}
f7dc1244 7389(@value{GDBP})
10998722 7390@end smallexample
a0eb71c5
KB
7391
7392We can use the @code{show charset} command to see what character sets
7393@value{GDBN} is currently using to interpret and display characters and
7394strings:
7395
7396@smallexample
f7dc1244 7397(@value{GDBP}) show charset
e33d66ec 7398The current host and target character set is `ISO-8859-1'.
f7dc1244 7399(@value{GDBP})
10998722 7400@end smallexample
a0eb71c5
KB
7401
7402For the sake of printing this manual, let's use @sc{ascii} as our
7403initial character set:
7404@smallexample
f7dc1244
EZ
7405(@value{GDBP}) set charset ASCII
7406(@value{GDBP}) show charset
e33d66ec 7407The current host and target character set is `ASCII'.
f7dc1244 7408(@value{GDBP})
10998722 7409@end smallexample
a0eb71c5
KB
7410
7411Let's assume that @sc{ascii} is indeed the correct character set for our
7412host system --- in other words, let's assume that if @value{GDBN} prints
7413characters using the @sc{ascii} character set, our terminal will display
7414them properly. Since our current target character set is also
7415@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7416
7417@smallexample
f7dc1244 7418(@value{GDBP}) print ascii_hello
a0eb71c5 7419$1 = 0x401698 "Hello, world!\n"
f7dc1244 7420(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7421$2 = 72 'H'
f7dc1244 7422(@value{GDBP})
10998722 7423@end smallexample
a0eb71c5
KB
7424
7425@value{GDBN} uses the target character set for character and string
7426literals you use in expressions:
7427
7428@smallexample
f7dc1244 7429(@value{GDBP}) print '+'
a0eb71c5 7430$3 = 43 '+'
f7dc1244 7431(@value{GDBP})
10998722 7432@end smallexample
a0eb71c5
KB
7433
7434The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7435character.
7436
7437@value{GDBN} relies on the user to tell it which character set the
7438target program uses. If we print @code{ibm1047_hello} while our target
7439character set is still @sc{ascii}, we get jibberish:
7440
7441@smallexample
f7dc1244 7442(@value{GDBP}) print ibm1047_hello
a0eb71c5 7443$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7444(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7445$5 = 200 '\310'
f7dc1244 7446(@value{GDBP})
10998722 7447@end smallexample
a0eb71c5 7448
e33d66ec 7449If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7450@value{GDBN} tells us the character sets it supports:
7451
7452@smallexample
f7dc1244 7453(@value{GDBP}) set target-charset
b383017d 7454ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7455(@value{GDBP}) set target-charset
10998722 7456@end smallexample
a0eb71c5
KB
7457
7458We can select @sc{ibm1047} as our target character set, and examine the
7459program's strings again. Now the @sc{ascii} string is wrong, but
7460@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7461target character set, @sc{ibm1047}, to the host character set,
7462@sc{ascii}, and they display correctly:
7463
7464@smallexample
f7dc1244
EZ
7465(@value{GDBP}) set target-charset IBM1047
7466(@value{GDBP}) show charset
e33d66ec
EZ
7467The current host character set is `ASCII'.
7468The current target character set is `IBM1047'.
f7dc1244 7469(@value{GDBP}) print ascii_hello
a0eb71c5 7470$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7471(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7472$7 = 72 '\110'
f7dc1244 7473(@value{GDBP}) print ibm1047_hello
a0eb71c5 7474$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7475(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7476$9 = 200 'H'
f7dc1244 7477(@value{GDBP})
10998722 7478@end smallexample
a0eb71c5
KB
7479
7480As above, @value{GDBN} uses the target character set for character and
7481string literals you use in expressions:
7482
7483@smallexample
f7dc1244 7484(@value{GDBP}) print '+'
a0eb71c5 7485$10 = 78 '+'
f7dc1244 7486(@value{GDBP})
10998722 7487@end smallexample
a0eb71c5 7488
e33d66ec 7489The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7490character.
7491
09d4efe1
EZ
7492@node Caching Remote Data
7493@section Caching Data of Remote Targets
7494@cindex caching data of remote targets
7495
7496@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7497remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7498performance, because it reduces the overhead of the remote protocol by
7499bundling memory reads and writes into large chunks. Unfortunately,
7500@value{GDBN} does not currently know anything about volatile
7501registers, and thus data caching will produce incorrect results when
7502volatile registers are in use.
7503
7504@table @code
7505@kindex set remotecache
7506@item set remotecache on
7507@itemx set remotecache off
7508Set caching state for remote targets. When @code{ON}, use data
7509caching. By default, this option is @code{OFF}.
7510
7511@kindex show remotecache
7512@item show remotecache
7513Show the current state of data caching for remote targets.
7514
7515@kindex info dcache
7516@item info dcache
7517Print the information about the data cache performance. The
7518information displayed includes: the dcache width and depth; and for
7519each cache line, how many times it was referenced, and its data and
7520state (dirty, bad, ok, etc.). This command is useful for debugging
7521the data cache operation.
7522@end table
7523
a0eb71c5 7524
e2e0bcd1
JB
7525@node Macros
7526@chapter C Preprocessor Macros
7527
49efadf5 7528Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7529``preprocessor macros'' which expand into strings of tokens.
7530@value{GDBN} can evaluate expressions containing macro invocations, show
7531the result of macro expansion, and show a macro's definition, including
7532where it was defined.
7533
7534You may need to compile your program specially to provide @value{GDBN}
7535with information about preprocessor macros. Most compilers do not
7536include macros in their debugging information, even when you compile
7537with the @option{-g} flag. @xref{Compilation}.
7538
7539A program may define a macro at one point, remove that definition later,
7540and then provide a different definition after that. Thus, at different
7541points in the program, a macro may have different definitions, or have
7542no definition at all. If there is a current stack frame, @value{GDBN}
7543uses the macros in scope at that frame's source code line. Otherwise,
7544@value{GDBN} uses the macros in scope at the current listing location;
7545see @ref{List}.
7546
7547At the moment, @value{GDBN} does not support the @code{##}
7548token-splicing operator, the @code{#} stringification operator, or
7549variable-arity macros.
7550
7551Whenever @value{GDBN} evaluates an expression, it always expands any
7552macro invocations present in the expression. @value{GDBN} also provides
7553the following commands for working with macros explicitly.
7554
7555@table @code
7556
7557@kindex macro expand
7558@cindex macro expansion, showing the results of preprocessor
7559@cindex preprocessor macro expansion, showing the results of
7560@cindex expanding preprocessor macros
7561@item macro expand @var{expression}
7562@itemx macro exp @var{expression}
7563Show the results of expanding all preprocessor macro invocations in
7564@var{expression}. Since @value{GDBN} simply expands macros, but does
7565not parse the result, @var{expression} need not be a valid expression;
7566it can be any string of tokens.
7567
09d4efe1 7568@kindex macro exp1
e2e0bcd1
JB
7569@item macro expand-once @var{expression}
7570@itemx macro exp1 @var{expression}
4644b6e3 7571@cindex expand macro once
e2e0bcd1
JB
7572@i{(This command is not yet implemented.)} Show the results of
7573expanding those preprocessor macro invocations that appear explicitly in
7574@var{expression}. Macro invocations appearing in that expansion are
7575left unchanged. This command allows you to see the effect of a
7576particular macro more clearly, without being confused by further
7577expansions. Since @value{GDBN} simply expands macros, but does not
7578parse the result, @var{expression} need not be a valid expression; it
7579can be any string of tokens.
7580
475b0867 7581@kindex info macro
e2e0bcd1
JB
7582@cindex macro definition, showing
7583@cindex definition, showing a macro's
475b0867 7584@item info macro @var{macro}
e2e0bcd1
JB
7585Show the definition of the macro named @var{macro}, and describe the
7586source location where that definition was established.
7587
7588@kindex macro define
7589@cindex user-defined macros
7590@cindex defining macros interactively
7591@cindex macros, user-defined
7592@item macro define @var{macro} @var{replacement-list}
7593@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7594@i{(This command is not yet implemented.)} Introduce a definition for a
7595preprocessor macro named @var{macro}, invocations of which are replaced
7596by the tokens given in @var{replacement-list}. The first form of this
7597command defines an ``object-like'' macro, which takes no arguments; the
7598second form defines a ``function-like'' macro, which takes the arguments
7599given in @var{arglist}.
7600
7601A definition introduced by this command is in scope in every expression
7602evaluated in @value{GDBN}, until it is removed with the @command{macro
7603undef} command, described below. The definition overrides all
7604definitions for @var{macro} present in the program being debugged, as
7605well as any previous user-supplied definition.
7606
7607@kindex macro undef
7608@item macro undef @var{macro}
7609@i{(This command is not yet implemented.)} Remove any user-supplied
7610definition for the macro named @var{macro}. This command only affects
7611definitions provided with the @command{macro define} command, described
7612above; it cannot remove definitions present in the program being
7613debugged.
7614
09d4efe1
EZ
7615@kindex macro list
7616@item macro list
7617@i{(This command is not yet implemented.)} List all the macros
7618defined using the @code{macro define} command.
e2e0bcd1
JB
7619@end table
7620
7621@cindex macros, example of debugging with
7622Here is a transcript showing the above commands in action. First, we
7623show our source files:
7624
7625@smallexample
7626$ cat sample.c
7627#include <stdio.h>
7628#include "sample.h"
7629
7630#define M 42
7631#define ADD(x) (M + x)
7632
7633main ()
7634@{
7635#define N 28
7636 printf ("Hello, world!\n");
7637#undef N
7638 printf ("We're so creative.\n");
7639#define N 1729
7640 printf ("Goodbye, world!\n");
7641@}
7642$ cat sample.h
7643#define Q <
7644$
7645@end smallexample
7646
7647Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7648We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7649compiler includes information about preprocessor macros in the debugging
7650information.
7651
7652@smallexample
7653$ gcc -gdwarf-2 -g3 sample.c -o sample
7654$
7655@end smallexample
7656
7657Now, we start @value{GDBN} on our sample program:
7658
7659@smallexample
7660$ gdb -nw sample
7661GNU gdb 2002-05-06-cvs
7662Copyright 2002 Free Software Foundation, Inc.
7663GDB is free software, @dots{}
f7dc1244 7664(@value{GDBP})
e2e0bcd1
JB
7665@end smallexample
7666
7667We can expand macros and examine their definitions, even when the
7668program is not running. @value{GDBN} uses the current listing position
7669to decide which macro definitions are in scope:
7670
7671@smallexample
f7dc1244 7672(@value{GDBP}) list main
e2e0bcd1
JB
76733
76744 #define M 42
76755 #define ADD(x) (M + x)
76766
76777 main ()
76788 @{
76799 #define N 28
768010 printf ("Hello, world!\n");
768111 #undef N
768212 printf ("We're so creative.\n");
f7dc1244 7683(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7684Defined at /home/jimb/gdb/macros/play/sample.c:5
7685#define ADD(x) (M + x)
f7dc1244 7686(@value{GDBP}) info macro Q
e2e0bcd1
JB
7687Defined at /home/jimb/gdb/macros/play/sample.h:1
7688 included at /home/jimb/gdb/macros/play/sample.c:2
7689#define Q <
f7dc1244 7690(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7691expands to: (42 + 1)
f7dc1244 7692(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7693expands to: once (M + 1)
f7dc1244 7694(@value{GDBP})
e2e0bcd1
JB
7695@end smallexample
7696
7697In the example above, note that @command{macro expand-once} expands only
7698the macro invocation explicit in the original text --- the invocation of
7699@code{ADD} --- but does not expand the invocation of the macro @code{M},
7700which was introduced by @code{ADD}.
7701
3f94c067
BW
7702Once the program is running, @value{GDBN} uses the macro definitions in
7703force at the source line of the current stack frame:
e2e0bcd1
JB
7704
7705@smallexample
f7dc1244 7706(@value{GDBP}) break main
e2e0bcd1 7707Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7708(@value{GDBP}) run
b383017d 7709Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7710
7711Breakpoint 1, main () at sample.c:10
771210 printf ("Hello, world!\n");
f7dc1244 7713(@value{GDBP})
e2e0bcd1
JB
7714@end smallexample
7715
7716At line 10, the definition of the macro @code{N} at line 9 is in force:
7717
7718@smallexample
f7dc1244 7719(@value{GDBP}) info macro N
e2e0bcd1
JB
7720Defined at /home/jimb/gdb/macros/play/sample.c:9
7721#define N 28
f7dc1244 7722(@value{GDBP}) macro expand N Q M
e2e0bcd1 7723expands to: 28 < 42
f7dc1244 7724(@value{GDBP}) print N Q M
e2e0bcd1 7725$1 = 1
f7dc1244 7726(@value{GDBP})
e2e0bcd1
JB
7727@end smallexample
7728
7729As we step over directives that remove @code{N}'s definition, and then
7730give it a new definition, @value{GDBN} finds the definition (or lack
7731thereof) in force at each point:
7732
7733@smallexample
f7dc1244 7734(@value{GDBP}) next
e2e0bcd1
JB
7735Hello, world!
773612 printf ("We're so creative.\n");
f7dc1244 7737(@value{GDBP}) info macro N
e2e0bcd1
JB
7738The symbol `N' has no definition as a C/C++ preprocessor macro
7739at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7740(@value{GDBP}) next
e2e0bcd1
JB
7741We're so creative.
774214 printf ("Goodbye, world!\n");
f7dc1244 7743(@value{GDBP}) info macro N
e2e0bcd1
JB
7744Defined at /home/jimb/gdb/macros/play/sample.c:13
7745#define N 1729
f7dc1244 7746(@value{GDBP}) macro expand N Q M
e2e0bcd1 7747expands to: 1729 < 42
f7dc1244 7748(@value{GDBP}) print N Q M
e2e0bcd1 7749$2 = 0
f7dc1244 7750(@value{GDBP})
e2e0bcd1
JB
7751@end smallexample
7752
7753
b37052ae
EZ
7754@node Tracepoints
7755@chapter Tracepoints
7756@c This chapter is based on the documentation written by Michael
7757@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7758
7759@cindex tracepoints
7760In some applications, it is not feasible for the debugger to interrupt
7761the program's execution long enough for the developer to learn
7762anything helpful about its behavior. If the program's correctness
7763depends on its real-time behavior, delays introduced by a debugger
7764might cause the program to change its behavior drastically, or perhaps
7765fail, even when the code itself is correct. It is useful to be able
7766to observe the program's behavior without interrupting it.
7767
7768Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7769specify locations in the program, called @dfn{tracepoints}, and
7770arbitrary expressions to evaluate when those tracepoints are reached.
7771Later, using the @code{tfind} command, you can examine the values
7772those expressions had when the program hit the tracepoints. The
7773expressions may also denote objects in memory---structures or arrays,
7774for example---whose values @value{GDBN} should record; while visiting
7775a particular tracepoint, you may inspect those objects as if they were
7776in memory at that moment. However, because @value{GDBN} records these
7777values without interacting with you, it can do so quickly and
7778unobtrusively, hopefully not disturbing the program's behavior.
7779
7780The tracepoint facility is currently available only for remote
9d29849a
JB
7781targets. @xref{Targets}. In addition, your remote target must know
7782how to collect trace data. This functionality is implemented in the
7783remote stub; however, none of the stubs distributed with @value{GDBN}
7784support tracepoints as of this writing. The format of the remote
7785packets used to implement tracepoints are described in @ref{Tracepoint
7786Packets}.
b37052ae
EZ
7787
7788This chapter describes the tracepoint commands and features.
7789
7790@menu
b383017d
RM
7791* Set Tracepoints::
7792* Analyze Collected Data::
7793* Tracepoint Variables::
b37052ae
EZ
7794@end menu
7795
7796@node Set Tracepoints
7797@section Commands to Set Tracepoints
7798
7799Before running such a @dfn{trace experiment}, an arbitrary number of
7800tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7801tracepoint has a number assigned to it by @value{GDBN}. Like with
7802breakpoints, tracepoint numbers are successive integers starting from
7803one. Many of the commands associated with tracepoints take the
7804tracepoint number as their argument, to identify which tracepoint to
7805work on.
7806
7807For each tracepoint, you can specify, in advance, some arbitrary set
7808of data that you want the target to collect in the trace buffer when
7809it hits that tracepoint. The collected data can include registers,
7810local variables, or global data. Later, you can use @value{GDBN}
7811commands to examine the values these data had at the time the
7812tracepoint was hit.
7813
7814This section describes commands to set tracepoints and associated
7815conditions and actions.
7816
7817@menu
b383017d
RM
7818* Create and Delete Tracepoints::
7819* Enable and Disable Tracepoints::
7820* Tracepoint Passcounts::
7821* Tracepoint Actions::
7822* Listing Tracepoints::
79a6e687 7823* Starting and Stopping Trace Experiments::
b37052ae
EZ
7824@end menu
7825
7826@node Create and Delete Tracepoints
7827@subsection Create and Delete Tracepoints
7828
7829@table @code
7830@cindex set tracepoint
7831@kindex trace
7832@item trace
7833The @code{trace} command is very similar to the @code{break} command.
7834Its argument can be a source line, a function name, or an address in
7835the target program. @xref{Set Breaks}. The @code{trace} command
7836defines a tracepoint, which is a point in the target program where the
7837debugger will briefly stop, collect some data, and then allow the
7838program to continue. Setting a tracepoint or changing its commands
7839doesn't take effect until the next @code{tstart} command; thus, you
7840cannot change the tracepoint attributes once a trace experiment is
7841running.
7842
7843Here are some examples of using the @code{trace} command:
7844
7845@smallexample
7846(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7847
7848(@value{GDBP}) @b{trace +2} // 2 lines forward
7849
7850(@value{GDBP}) @b{trace my_function} // first source line of function
7851
7852(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7853
7854(@value{GDBP}) @b{trace *0x2117c4} // an address
7855@end smallexample
7856
7857@noindent
7858You can abbreviate @code{trace} as @code{tr}.
7859
7860@vindex $tpnum
7861@cindex last tracepoint number
7862@cindex recent tracepoint number
7863@cindex tracepoint number
7864The convenience variable @code{$tpnum} records the tracepoint number
7865of the most recently set tracepoint.
7866
7867@kindex delete tracepoint
7868@cindex tracepoint deletion
7869@item delete tracepoint @r{[}@var{num}@r{]}
7870Permanently delete one or more tracepoints. With no argument, the
7871default is to delete all tracepoints.
7872
7873Examples:
7874
7875@smallexample
7876(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7877
7878(@value{GDBP}) @b{delete trace} // remove all tracepoints
7879@end smallexample
7880
7881@noindent
7882You can abbreviate this command as @code{del tr}.
7883@end table
7884
7885@node Enable and Disable Tracepoints
7886@subsection Enable and Disable Tracepoints
7887
7888@table @code
7889@kindex disable tracepoint
7890@item disable tracepoint @r{[}@var{num}@r{]}
7891Disable tracepoint @var{num}, or all tracepoints if no argument
7892@var{num} is given. A disabled tracepoint will have no effect during
7893the next trace experiment, but it is not forgotten. You can re-enable
7894a disabled tracepoint using the @code{enable tracepoint} command.
7895
7896@kindex enable tracepoint
7897@item enable tracepoint @r{[}@var{num}@r{]}
7898Enable tracepoint @var{num}, or all tracepoints. The enabled
7899tracepoints will become effective the next time a trace experiment is
7900run.
7901@end table
7902
7903@node Tracepoint Passcounts
7904@subsection Tracepoint Passcounts
7905
7906@table @code
7907@kindex passcount
7908@cindex tracepoint pass count
7909@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7910Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7911automatically stop a trace experiment. If a tracepoint's passcount is
7912@var{n}, then the trace experiment will be automatically stopped on
7913the @var{n}'th time that tracepoint is hit. If the tracepoint number
7914@var{num} is not specified, the @code{passcount} command sets the
7915passcount of the most recently defined tracepoint. If no passcount is
7916given, the trace experiment will run until stopped explicitly by the
7917user.
7918
7919Examples:
7920
7921@smallexample
b383017d 7922(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7923@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7924
7925(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7926@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7927(@value{GDBP}) @b{trace foo}
7928(@value{GDBP}) @b{pass 3}
7929(@value{GDBP}) @b{trace bar}
7930(@value{GDBP}) @b{pass 2}
7931(@value{GDBP}) @b{trace baz}
7932(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7933@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7934@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7935@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7936@end smallexample
7937@end table
7938
7939@node Tracepoint Actions
7940@subsection Tracepoint Action Lists
7941
7942@table @code
7943@kindex actions
7944@cindex tracepoint actions
7945@item actions @r{[}@var{num}@r{]}
7946This command will prompt for a list of actions to be taken when the
7947tracepoint is hit. If the tracepoint number @var{num} is not
7948specified, this command sets the actions for the one that was most
7949recently defined (so that you can define a tracepoint and then say
7950@code{actions} without bothering about its number). You specify the
7951actions themselves on the following lines, one action at a time, and
7952terminate the actions list with a line containing just @code{end}. So
7953far, the only defined actions are @code{collect} and
7954@code{while-stepping}.
7955
7956@cindex remove actions from a tracepoint
7957To remove all actions from a tracepoint, type @samp{actions @var{num}}
7958and follow it immediately with @samp{end}.
7959
7960@smallexample
7961(@value{GDBP}) @b{collect @var{data}} // collect some data
7962
6826cf00 7963(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7964
6826cf00 7965(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7966@end smallexample
7967
7968In the following example, the action list begins with @code{collect}
7969commands indicating the things to be collected when the tracepoint is
7970hit. Then, in order to single-step and collect additional data
7971following the tracepoint, a @code{while-stepping} command is used,
7972followed by the list of things to be collected while stepping. The
7973@code{while-stepping} command is terminated by its own separate
7974@code{end} command. Lastly, the action list is terminated by an
7975@code{end} command.
7976
7977@smallexample
7978(@value{GDBP}) @b{trace foo}
7979(@value{GDBP}) @b{actions}
7980Enter actions for tracepoint 1, one per line:
7981> collect bar,baz
7982> collect $regs
7983> while-stepping 12
7984 > collect $fp, $sp
7985 > end
7986end
7987@end smallexample
7988
7989@kindex collect @r{(tracepoints)}
7990@item collect @var{expr1}, @var{expr2}, @dots{}
7991Collect values of the given expressions when the tracepoint is hit.
7992This command accepts a comma-separated list of any valid expressions.
7993In addition to global, static, or local variables, the following
7994special arguments are supported:
7995
7996@table @code
7997@item $regs
7998collect all registers
7999
8000@item $args
8001collect all function arguments
8002
8003@item $locals
8004collect all local variables.
8005@end table
8006
8007You can give several consecutive @code{collect} commands, each one
8008with a single argument, or one @code{collect} command with several
8009arguments separated by commas: the effect is the same.
8010
f5c37c66
EZ
8011The command @code{info scope} (@pxref{Symbols, info scope}) is
8012particularly useful for figuring out what data to collect.
8013
b37052ae
EZ
8014@kindex while-stepping @r{(tracepoints)}
8015@item while-stepping @var{n}
8016Perform @var{n} single-step traces after the tracepoint, collecting
8017new data at each step. The @code{while-stepping} command is
8018followed by the list of what to collect while stepping (followed by
8019its own @code{end} command):
8020
8021@smallexample
8022> while-stepping 12
8023 > collect $regs, myglobal
8024 > end
8025>
8026@end smallexample
8027
8028@noindent
8029You may abbreviate @code{while-stepping} as @code{ws} or
8030@code{stepping}.
8031@end table
8032
8033@node Listing Tracepoints
8034@subsection Listing Tracepoints
8035
8036@table @code
8037@kindex info tracepoints
09d4efe1 8038@kindex info tp
b37052ae
EZ
8039@cindex information about tracepoints
8040@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 8041Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 8042a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
8043defined so far. For each tracepoint, the following information is
8044shown:
8045
8046@itemize @bullet
8047@item
8048its number
8049@item
8050whether it is enabled or disabled
8051@item
8052its address
8053@item
8054its passcount as given by the @code{passcount @var{n}} command
8055@item
8056its step count as given by the @code{while-stepping @var{n}} command
8057@item
8058where in the source files is the tracepoint set
8059@item
8060its action list as given by the @code{actions} command
8061@end itemize
8062
8063@smallexample
8064(@value{GDBP}) @b{info trace}
8065Num Enb Address PassC StepC What
80661 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80672 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80683 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8069(@value{GDBP})
8070@end smallexample
8071
8072@noindent
8073This command can be abbreviated @code{info tp}.
8074@end table
8075
79a6e687
BW
8076@node Starting and Stopping Trace Experiments
8077@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8078
8079@table @code
8080@kindex tstart
8081@cindex start a new trace experiment
8082@cindex collected data discarded
8083@item tstart
8084This command takes no arguments. It starts the trace experiment, and
8085begins collecting data. This has the side effect of discarding all
8086the data collected in the trace buffer during the previous trace
8087experiment.
8088
8089@kindex tstop
8090@cindex stop a running trace experiment
8091@item tstop
8092This command takes no arguments. It ends the trace experiment, and
8093stops collecting data.
8094
68c71a2e 8095@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8096automatically if any tracepoint's passcount is reached
8097(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8098
8099@kindex tstatus
8100@cindex status of trace data collection
8101@cindex trace experiment, status of
8102@item tstatus
8103This command displays the status of the current trace data
8104collection.
8105@end table
8106
8107Here is an example of the commands we described so far:
8108
8109@smallexample
8110(@value{GDBP}) @b{trace gdb_c_test}
8111(@value{GDBP}) @b{actions}
8112Enter actions for tracepoint #1, one per line.
8113> collect $regs,$locals,$args
8114> while-stepping 11
8115 > collect $regs
8116 > end
8117> end
8118(@value{GDBP}) @b{tstart}
8119 [time passes @dots{}]
8120(@value{GDBP}) @b{tstop}
8121@end smallexample
8122
8123
8124@node Analyze Collected Data
79a6e687 8125@section Using the Collected Data
b37052ae
EZ
8126
8127After the tracepoint experiment ends, you use @value{GDBN} commands
8128for examining the trace data. The basic idea is that each tracepoint
8129collects a trace @dfn{snapshot} every time it is hit and another
8130snapshot every time it single-steps. All these snapshots are
8131consecutively numbered from zero and go into a buffer, and you can
8132examine them later. The way you examine them is to @dfn{focus} on a
8133specific trace snapshot. When the remote stub is focused on a trace
8134snapshot, it will respond to all @value{GDBN} requests for memory and
8135registers by reading from the buffer which belongs to that snapshot,
8136rather than from @emph{real} memory or registers of the program being
8137debugged. This means that @strong{all} @value{GDBN} commands
8138(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8139behave as if we were currently debugging the program state as it was
8140when the tracepoint occurred. Any requests for data that are not in
8141the buffer will fail.
8142
8143@menu
8144* tfind:: How to select a trace snapshot
8145* tdump:: How to display all data for a snapshot
8146* save-tracepoints:: How to save tracepoints for a future run
8147@end menu
8148
8149@node tfind
8150@subsection @code{tfind @var{n}}
8151
8152@kindex tfind
8153@cindex select trace snapshot
8154@cindex find trace snapshot
8155The basic command for selecting a trace snapshot from the buffer is
8156@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8157counting from zero. If no argument @var{n} is given, the next
8158snapshot is selected.
8159
8160Here are the various forms of using the @code{tfind} command.
8161
8162@table @code
8163@item tfind start
8164Find the first snapshot in the buffer. This is a synonym for
8165@code{tfind 0} (since 0 is the number of the first snapshot).
8166
8167@item tfind none
8168Stop debugging trace snapshots, resume @emph{live} debugging.
8169
8170@item tfind end
8171Same as @samp{tfind none}.
8172
8173@item tfind
8174No argument means find the next trace snapshot.
8175
8176@item tfind -
8177Find the previous trace snapshot before the current one. This permits
8178retracing earlier steps.
8179
8180@item tfind tracepoint @var{num}
8181Find the next snapshot associated with tracepoint @var{num}. Search
8182proceeds forward from the last examined trace snapshot. If no
8183argument @var{num} is given, it means find the next snapshot collected
8184for the same tracepoint as the current snapshot.
8185
8186@item tfind pc @var{addr}
8187Find the next snapshot associated with the value @var{addr} of the
8188program counter. Search proceeds forward from the last examined trace
8189snapshot. If no argument @var{addr} is given, it means find the next
8190snapshot with the same value of PC as the current snapshot.
8191
8192@item tfind outside @var{addr1}, @var{addr2}
8193Find the next snapshot whose PC is outside the given range of
8194addresses.
8195
8196@item tfind range @var{addr1}, @var{addr2}
8197Find the next snapshot whose PC is between @var{addr1} and
8198@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8199
8200@item tfind line @r{[}@var{file}:@r{]}@var{n}
8201Find the next snapshot associated with the source line @var{n}. If
8202the optional argument @var{file} is given, refer to line @var{n} in
8203that source file. Search proceeds forward from the last examined
8204trace snapshot. If no argument @var{n} is given, it means find the
8205next line other than the one currently being examined; thus saying
8206@code{tfind line} repeatedly can appear to have the same effect as
8207stepping from line to line in a @emph{live} debugging session.
8208@end table
8209
8210The default arguments for the @code{tfind} commands are specifically
8211designed to make it easy to scan through the trace buffer. For
8212instance, @code{tfind} with no argument selects the next trace
8213snapshot, and @code{tfind -} with no argument selects the previous
8214trace snapshot. So, by giving one @code{tfind} command, and then
8215simply hitting @key{RET} repeatedly you can examine all the trace
8216snapshots in order. Or, by saying @code{tfind -} and then hitting
8217@key{RET} repeatedly you can examine the snapshots in reverse order.
8218The @code{tfind line} command with no argument selects the snapshot
8219for the next source line executed. The @code{tfind pc} command with
8220no argument selects the next snapshot with the same program counter
8221(PC) as the current frame. The @code{tfind tracepoint} command with
8222no argument selects the next trace snapshot collected by the same
8223tracepoint as the current one.
8224
8225In addition to letting you scan through the trace buffer manually,
8226these commands make it easy to construct @value{GDBN} scripts that
8227scan through the trace buffer and print out whatever collected data
8228you are interested in. Thus, if we want to examine the PC, FP, and SP
8229registers from each trace frame in the buffer, we can say this:
8230
8231@smallexample
8232(@value{GDBP}) @b{tfind start}
8233(@value{GDBP}) @b{while ($trace_frame != -1)}
8234> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8235 $trace_frame, $pc, $sp, $fp
8236> tfind
8237> end
8238
8239Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8240Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8241Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8242Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8243Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8244Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8245Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8246Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8247Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8248Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8249Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8250@end smallexample
8251
8252Or, if we want to examine the variable @code{X} at each source line in
8253the buffer:
8254
8255@smallexample
8256(@value{GDBP}) @b{tfind start}
8257(@value{GDBP}) @b{while ($trace_frame != -1)}
8258> printf "Frame %d, X == %d\n", $trace_frame, X
8259> tfind line
8260> end
8261
8262Frame 0, X = 1
8263Frame 7, X = 2
8264Frame 13, X = 255
8265@end smallexample
8266
8267@node tdump
8268@subsection @code{tdump}
8269@kindex tdump
8270@cindex dump all data collected at tracepoint
8271@cindex tracepoint data, display
8272
8273This command takes no arguments. It prints all the data collected at
8274the current trace snapshot.
8275
8276@smallexample
8277(@value{GDBP}) @b{trace 444}
8278(@value{GDBP}) @b{actions}
8279Enter actions for tracepoint #2, one per line:
8280> collect $regs, $locals, $args, gdb_long_test
8281> end
8282
8283(@value{GDBP}) @b{tstart}
8284
8285(@value{GDBP}) @b{tfind line 444}
8286#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8287at gdb_test.c:444
8288444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8289
8290(@value{GDBP}) @b{tdump}
8291Data collected at tracepoint 2, trace frame 1:
8292d0 0xc4aa0085 -995491707
8293d1 0x18 24
8294d2 0x80 128
8295d3 0x33 51
8296d4 0x71aea3d 119204413
8297d5 0x22 34
8298d6 0xe0 224
8299d7 0x380035 3670069
8300a0 0x19e24a 1696330
8301a1 0x3000668 50333288
8302a2 0x100 256
8303a3 0x322000 3284992
8304a4 0x3000698 50333336
8305a5 0x1ad3cc 1758156
8306fp 0x30bf3c 0x30bf3c
8307sp 0x30bf34 0x30bf34
8308ps 0x0 0
8309pc 0x20b2c8 0x20b2c8
8310fpcontrol 0x0 0
8311fpstatus 0x0 0
8312fpiaddr 0x0 0
8313p = 0x20e5b4 "gdb-test"
8314p1 = (void *) 0x11
8315p2 = (void *) 0x22
8316p3 = (void *) 0x33
8317p4 = (void *) 0x44
8318p5 = (void *) 0x55
8319p6 = (void *) 0x66
8320gdb_long_test = 17 '\021'
8321
8322(@value{GDBP})
8323@end smallexample
8324
8325@node save-tracepoints
8326@subsection @code{save-tracepoints @var{filename}}
8327@kindex save-tracepoints
8328@cindex save tracepoints for future sessions
8329
8330This command saves all current tracepoint definitions together with
8331their actions and passcounts, into a file @file{@var{filename}}
8332suitable for use in a later debugging session. To read the saved
8333tracepoint definitions, use the @code{source} command (@pxref{Command
8334Files}).
8335
8336@node Tracepoint Variables
8337@section Convenience Variables for Tracepoints
8338@cindex tracepoint variables
8339@cindex convenience variables for tracepoints
8340
8341@table @code
8342@vindex $trace_frame
8343@item (int) $trace_frame
8344The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8345snapshot is selected.
8346
8347@vindex $tracepoint
8348@item (int) $tracepoint
8349The tracepoint for the current trace snapshot.
8350
8351@vindex $trace_line
8352@item (int) $trace_line
8353The line number for the current trace snapshot.
8354
8355@vindex $trace_file
8356@item (char []) $trace_file
8357The source file for the current trace snapshot.
8358
8359@vindex $trace_func
8360@item (char []) $trace_func
8361The name of the function containing @code{$tracepoint}.
8362@end table
8363
8364Note: @code{$trace_file} is not suitable for use in @code{printf},
8365use @code{output} instead.
8366
8367Here's a simple example of using these convenience variables for
8368stepping through all the trace snapshots and printing some of their
8369data.
8370
8371@smallexample
8372(@value{GDBP}) @b{tfind start}
8373
8374(@value{GDBP}) @b{while $trace_frame != -1}
8375> output $trace_file
8376> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8377> tfind
8378> end
8379@end smallexample
8380
df0cd8c5
JB
8381@node Overlays
8382@chapter Debugging Programs That Use Overlays
8383@cindex overlays
8384
8385If your program is too large to fit completely in your target system's
8386memory, you can sometimes use @dfn{overlays} to work around this
8387problem. @value{GDBN} provides some support for debugging programs that
8388use overlays.
8389
8390@menu
8391* How Overlays Work:: A general explanation of overlays.
8392* Overlay Commands:: Managing overlays in @value{GDBN}.
8393* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8394 mapped by asking the inferior.
8395* Overlay Sample Program:: A sample program using overlays.
8396@end menu
8397
8398@node How Overlays Work
8399@section How Overlays Work
8400@cindex mapped overlays
8401@cindex unmapped overlays
8402@cindex load address, overlay's
8403@cindex mapped address
8404@cindex overlay area
8405
8406Suppose you have a computer whose instruction address space is only 64
8407kilobytes long, but which has much more memory which can be accessed by
8408other means: special instructions, segment registers, or memory
8409management hardware, for example. Suppose further that you want to
8410adapt a program which is larger than 64 kilobytes to run on this system.
8411
8412One solution is to identify modules of your program which are relatively
8413independent, and need not call each other directly; call these modules
8414@dfn{overlays}. Separate the overlays from the main program, and place
8415their machine code in the larger memory. Place your main program in
8416instruction memory, but leave at least enough space there to hold the
8417largest overlay as well.
8418
8419Now, to call a function located in an overlay, you must first copy that
8420overlay's machine code from the large memory into the space set aside
8421for it in the instruction memory, and then jump to its entry point
8422there.
8423
c928edc0
AC
8424@c NB: In the below the mapped area's size is greater or equal to the
8425@c size of all overlays. This is intentional to remind the developer
8426@c that overlays don't necessarily need to be the same size.
8427
474c8240 8428@smallexample
df0cd8c5 8429@group
c928edc0
AC
8430 Data Instruction Larger
8431Address Space Address Space Address Space
8432+-----------+ +-----------+ +-----------+
8433| | | | | |
8434+-----------+ +-----------+ +-----------+<-- overlay 1
8435| program | | main | .----| overlay 1 | load address
8436| variables | | program | | +-----------+
8437| and heap | | | | | |
8438+-----------+ | | | +-----------+<-- overlay 2
8439| | +-----------+ | | | load address
8440+-----------+ | | | .-| overlay 2 |
8441 | | | | | |
8442 mapped --->+-----------+ | | +-----------+
8443 address | | | | | |
8444 | overlay | <-' | | |
8445 | area | <---' +-----------+<-- overlay 3
8446 | | <---. | | load address
8447 +-----------+ `--| overlay 3 |
8448 | | | |
8449 +-----------+ | |
8450 +-----------+
8451 | |
8452 +-----------+
8453
8454 @anchor{A code overlay}A code overlay
df0cd8c5 8455@end group
474c8240 8456@end smallexample
df0cd8c5 8457
c928edc0
AC
8458The diagram (@pxref{A code overlay}) shows a system with separate data
8459and instruction address spaces. To map an overlay, the program copies
8460its code from the larger address space to the instruction address space.
8461Since the overlays shown here all use the same mapped address, only one
8462may be mapped at a time. For a system with a single address space for
8463data and instructions, the diagram would be similar, except that the
8464program variables and heap would share an address space with the main
8465program and the overlay area.
df0cd8c5
JB
8466
8467An overlay loaded into instruction memory and ready for use is called a
8468@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8469instruction memory. An overlay not present (or only partially present)
8470in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8471is its address in the larger memory. The mapped address is also called
8472the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8473called the @dfn{load memory address}, or @dfn{LMA}.
8474
8475Unfortunately, overlays are not a completely transparent way to adapt a
8476program to limited instruction memory. They introduce a new set of
8477global constraints you must keep in mind as you design your program:
8478
8479@itemize @bullet
8480
8481@item
8482Before calling or returning to a function in an overlay, your program
8483must make sure that overlay is actually mapped. Otherwise, the call or
8484return will transfer control to the right address, but in the wrong
8485overlay, and your program will probably crash.
8486
8487@item
8488If the process of mapping an overlay is expensive on your system, you
8489will need to choose your overlays carefully to minimize their effect on
8490your program's performance.
8491
8492@item
8493The executable file you load onto your system must contain each
8494overlay's instructions, appearing at the overlay's load address, not its
8495mapped address. However, each overlay's instructions must be relocated
8496and its symbols defined as if the overlay were at its mapped address.
8497You can use GNU linker scripts to specify different load and relocation
8498addresses for pieces of your program; see @ref{Overlay Description,,,
8499ld.info, Using ld: the GNU linker}.
8500
8501@item
8502The procedure for loading executable files onto your system must be able
8503to load their contents into the larger address space as well as the
8504instruction and data spaces.
8505
8506@end itemize
8507
8508The overlay system described above is rather simple, and could be
8509improved in many ways:
8510
8511@itemize @bullet
8512
8513@item
8514If your system has suitable bank switch registers or memory management
8515hardware, you could use those facilities to make an overlay's load area
8516contents simply appear at their mapped address in instruction space.
8517This would probably be faster than copying the overlay to its mapped
8518area in the usual way.
8519
8520@item
8521If your overlays are small enough, you could set aside more than one
8522overlay area, and have more than one overlay mapped at a time.
8523
8524@item
8525You can use overlays to manage data, as well as instructions. In
8526general, data overlays are even less transparent to your design than
8527code overlays: whereas code overlays only require care when you call or
8528return to functions, data overlays require care every time you access
8529the data. Also, if you change the contents of a data overlay, you
8530must copy its contents back out to its load address before you can copy a
8531different data overlay into the same mapped area.
8532
8533@end itemize
8534
8535
8536@node Overlay Commands
8537@section Overlay Commands
8538
8539To use @value{GDBN}'s overlay support, each overlay in your program must
8540correspond to a separate section of the executable file. The section's
8541virtual memory address and load memory address must be the overlay's
8542mapped and load addresses. Identifying overlays with sections allows
8543@value{GDBN} to determine the appropriate address of a function or
8544variable, depending on whether the overlay is mapped or not.
8545
8546@value{GDBN}'s overlay commands all start with the word @code{overlay};
8547you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8548
8549@table @code
8550@item overlay off
4644b6e3 8551@kindex overlay
df0cd8c5
JB
8552Disable @value{GDBN}'s overlay support. When overlay support is
8553disabled, @value{GDBN} assumes that all functions and variables are
8554always present at their mapped addresses. By default, @value{GDBN}'s
8555overlay support is disabled.
8556
8557@item overlay manual
df0cd8c5
JB
8558@cindex manual overlay debugging
8559Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8560relies on you to tell it which overlays are mapped, and which are not,
8561using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8562commands described below.
8563
8564@item overlay map-overlay @var{overlay}
8565@itemx overlay map @var{overlay}
df0cd8c5
JB
8566@cindex map an overlay
8567Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8568be the name of the object file section containing the overlay. When an
8569overlay is mapped, @value{GDBN} assumes it can find the overlay's
8570functions and variables at their mapped addresses. @value{GDBN} assumes
8571that any other overlays whose mapped ranges overlap that of
8572@var{overlay} are now unmapped.
8573
8574@item overlay unmap-overlay @var{overlay}
8575@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8576@cindex unmap an overlay
8577Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8578must be the name of the object file section containing the overlay.
8579When an overlay is unmapped, @value{GDBN} assumes it can find the
8580overlay's functions and variables at their load addresses.
8581
8582@item overlay auto
df0cd8c5
JB
8583Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8584consults a data structure the overlay manager maintains in the inferior
8585to see which overlays are mapped. For details, see @ref{Automatic
8586Overlay Debugging}.
8587
8588@item overlay load-target
8589@itemx overlay load
df0cd8c5
JB
8590@cindex reloading the overlay table
8591Re-read the overlay table from the inferior. Normally, @value{GDBN}
8592re-reads the table @value{GDBN} automatically each time the inferior
8593stops, so this command should only be necessary if you have changed the
8594overlay mapping yourself using @value{GDBN}. This command is only
8595useful when using automatic overlay debugging.
8596
8597@item overlay list-overlays
8598@itemx overlay list
8599@cindex listing mapped overlays
8600Display a list of the overlays currently mapped, along with their mapped
8601addresses, load addresses, and sizes.
8602
8603@end table
8604
8605Normally, when @value{GDBN} prints a code address, it includes the name
8606of the function the address falls in:
8607
474c8240 8608@smallexample
f7dc1244 8609(@value{GDBP}) print main
df0cd8c5 8610$3 = @{int ()@} 0x11a0 <main>
474c8240 8611@end smallexample
df0cd8c5
JB
8612@noindent
8613When overlay debugging is enabled, @value{GDBN} recognizes code in
8614unmapped overlays, and prints the names of unmapped functions with
8615asterisks around them. For example, if @code{foo} is a function in an
8616unmapped overlay, @value{GDBN} prints it this way:
8617
474c8240 8618@smallexample
f7dc1244 8619(@value{GDBP}) overlay list
df0cd8c5 8620No sections are mapped.
f7dc1244 8621(@value{GDBP}) print foo
df0cd8c5 8622$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8623@end smallexample
df0cd8c5
JB
8624@noindent
8625When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8626name normally:
8627
474c8240 8628@smallexample
f7dc1244 8629(@value{GDBP}) overlay list
b383017d 8630Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8631 mapped at 0x1016 - 0x104a
f7dc1244 8632(@value{GDBP}) print foo
df0cd8c5 8633$6 = @{int (int)@} 0x1016 <foo>
474c8240 8634@end smallexample
df0cd8c5
JB
8635
8636When overlay debugging is enabled, @value{GDBN} can find the correct
8637address for functions and variables in an overlay, whether or not the
8638overlay is mapped. This allows most @value{GDBN} commands, like
8639@code{break} and @code{disassemble}, to work normally, even on unmapped
8640code. However, @value{GDBN}'s breakpoint support has some limitations:
8641
8642@itemize @bullet
8643@item
8644@cindex breakpoints in overlays
8645@cindex overlays, setting breakpoints in
8646You can set breakpoints in functions in unmapped overlays, as long as
8647@value{GDBN} can write to the overlay at its load address.
8648@item
8649@value{GDBN} can not set hardware or simulator-based breakpoints in
8650unmapped overlays. However, if you set a breakpoint at the end of your
8651overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8652you are using manual overlay management), @value{GDBN} will re-set its
8653breakpoints properly.
8654@end itemize
8655
8656
8657@node Automatic Overlay Debugging
8658@section Automatic Overlay Debugging
8659@cindex automatic overlay debugging
8660
8661@value{GDBN} can automatically track which overlays are mapped and which
8662are not, given some simple co-operation from the overlay manager in the
8663inferior. If you enable automatic overlay debugging with the
8664@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8665looks in the inferior's memory for certain variables describing the
8666current state of the overlays.
8667
8668Here are the variables your overlay manager must define to support
8669@value{GDBN}'s automatic overlay debugging:
8670
8671@table @asis
8672
8673@item @code{_ovly_table}:
8674This variable must be an array of the following structures:
8675
474c8240 8676@smallexample
df0cd8c5
JB
8677struct
8678@{
8679 /* The overlay's mapped address. */
8680 unsigned long vma;
8681
8682 /* The size of the overlay, in bytes. */
8683 unsigned long size;
8684
8685 /* The overlay's load address. */
8686 unsigned long lma;
8687
8688 /* Non-zero if the overlay is currently mapped;
8689 zero otherwise. */
8690 unsigned long mapped;
8691@}
474c8240 8692@end smallexample
df0cd8c5
JB
8693
8694@item @code{_novlys}:
8695This variable must be a four-byte signed integer, holding the total
8696number of elements in @code{_ovly_table}.
8697
8698@end table
8699
8700To decide whether a particular overlay is mapped or not, @value{GDBN}
8701looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8702@code{lma} members equal the VMA and LMA of the overlay's section in the
8703executable file. When @value{GDBN} finds a matching entry, it consults
8704the entry's @code{mapped} member to determine whether the overlay is
8705currently mapped.
8706
81d46470 8707In addition, your overlay manager may define a function called
def71bfa 8708@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8709will silently set a breakpoint there. If the overlay manager then
8710calls this function whenever it has changed the overlay table, this
8711will enable @value{GDBN} to accurately keep track of which overlays
8712are in program memory, and update any breakpoints that may be set
b383017d 8713in overlays. This will allow breakpoints to work even if the
81d46470
MS
8714overlays are kept in ROM or other non-writable memory while they
8715are not being executed.
df0cd8c5
JB
8716
8717@node Overlay Sample Program
8718@section Overlay Sample Program
8719@cindex overlay example program
8720
8721When linking a program which uses overlays, you must place the overlays
8722at their load addresses, while relocating them to run at their mapped
8723addresses. To do this, you must write a linker script (@pxref{Overlay
8724Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8725since linker scripts are specific to a particular host system, target
8726architecture, and target memory layout, this manual cannot provide
8727portable sample code demonstrating @value{GDBN}'s overlay support.
8728
8729However, the @value{GDBN} source distribution does contain an overlaid
8730program, with linker scripts for a few systems, as part of its test
8731suite. The program consists of the following files from
8732@file{gdb/testsuite/gdb.base}:
8733
8734@table @file
8735@item overlays.c
8736The main program file.
8737@item ovlymgr.c
8738A simple overlay manager, used by @file{overlays.c}.
8739@item foo.c
8740@itemx bar.c
8741@itemx baz.c
8742@itemx grbx.c
8743Overlay modules, loaded and used by @file{overlays.c}.
8744@item d10v.ld
8745@itemx m32r.ld
8746Linker scripts for linking the test program on the @code{d10v-elf}
8747and @code{m32r-elf} targets.
8748@end table
8749
8750You can build the test program using the @code{d10v-elf} GCC
8751cross-compiler like this:
8752
474c8240 8753@smallexample
df0cd8c5
JB
8754$ d10v-elf-gcc -g -c overlays.c
8755$ d10v-elf-gcc -g -c ovlymgr.c
8756$ d10v-elf-gcc -g -c foo.c
8757$ d10v-elf-gcc -g -c bar.c
8758$ d10v-elf-gcc -g -c baz.c
8759$ d10v-elf-gcc -g -c grbx.c
8760$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8761 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8762@end smallexample
df0cd8c5
JB
8763
8764The build process is identical for any other architecture, except that
8765you must substitute the appropriate compiler and linker script for the
8766target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8767
8768
6d2ebf8b 8769@node Languages
c906108c
SS
8770@chapter Using @value{GDBN} with Different Languages
8771@cindex languages
8772
c906108c
SS
8773Although programming languages generally have common aspects, they are
8774rarely expressed in the same manner. For instance, in ANSI C,
8775dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8776Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8777represented (and displayed) differently. Hex numbers in C appear as
c906108c 8778@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8779
8780@cindex working language
8781Language-specific information is built into @value{GDBN} for some languages,
8782allowing you to express operations like the above in your program's
8783native language, and allowing @value{GDBN} to output values in a manner
8784consistent with the syntax of your program's native language. The
8785language you use to build expressions is called the @dfn{working
8786language}.
8787
8788@menu
8789* Setting:: Switching between source languages
8790* Show:: Displaying the language
c906108c 8791* Checks:: Type and range checks
79a6e687
BW
8792* Supported Languages:: Supported languages
8793* Unsupported Languages:: Unsupported languages
c906108c
SS
8794@end menu
8795
6d2ebf8b 8796@node Setting
79a6e687 8797@section Switching Between Source Languages
c906108c
SS
8798
8799There are two ways to control the working language---either have @value{GDBN}
8800set it automatically, or select it manually yourself. You can use the
8801@code{set language} command for either purpose. On startup, @value{GDBN}
8802defaults to setting the language automatically. The working language is
8803used to determine how expressions you type are interpreted, how values
8804are printed, etc.
8805
8806In addition to the working language, every source file that
8807@value{GDBN} knows about has its own working language. For some object
8808file formats, the compiler might indicate which language a particular
8809source file is in. However, most of the time @value{GDBN} infers the
8810language from the name of the file. The language of a source file
b37052ae 8811controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8812show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8813set the language of a source file from within @value{GDBN}, but you can
8814set the language associated with a filename extension. @xref{Show, ,
79a6e687 8815Displaying the Language}.
c906108c
SS
8816
8817This is most commonly a problem when you use a program, such
5d161b24 8818as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8819another language. In that case, make the
8820program use @code{#line} directives in its C output; that way
8821@value{GDBN} will know the correct language of the source code of the original
8822program, and will display that source code, not the generated C code.
8823
8824@menu
8825* Filenames:: Filename extensions and languages.
8826* Manually:: Setting the working language manually
8827* Automatically:: Having @value{GDBN} infer the source language
8828@end menu
8829
6d2ebf8b 8830@node Filenames
79a6e687 8831@subsection List of Filename Extensions and Languages
c906108c
SS
8832
8833If a source file name ends in one of the following extensions, then
8834@value{GDBN} infers that its language is the one indicated.
8835
8836@table @file
e07c999f
PH
8837@item .ada
8838@itemx .ads
8839@itemx .adb
8840@itemx .a
8841Ada source file.
c906108c
SS
8842
8843@item .c
8844C source file
8845
8846@item .C
8847@itemx .cc
8848@itemx .cp
8849@itemx .cpp
8850@itemx .cxx
8851@itemx .c++
b37052ae 8852C@t{++} source file
c906108c 8853
b37303ee
AF
8854@item .m
8855Objective-C source file
8856
c906108c
SS
8857@item .f
8858@itemx .F
8859Fortran source file
8860
c906108c
SS
8861@item .mod
8862Modula-2 source file
c906108c
SS
8863
8864@item .s
8865@itemx .S
8866Assembler source file. This actually behaves almost like C, but
8867@value{GDBN} does not skip over function prologues when stepping.
8868@end table
8869
8870In addition, you may set the language associated with a filename
79a6e687 8871extension. @xref{Show, , Displaying the Language}.
c906108c 8872
6d2ebf8b 8873@node Manually
79a6e687 8874@subsection Setting the Working Language
c906108c
SS
8875
8876If you allow @value{GDBN} to set the language automatically,
8877expressions are interpreted the same way in your debugging session and
8878your program.
8879
8880@kindex set language
8881If you wish, you may set the language manually. To do this, issue the
8882command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8883a language, such as
c906108c 8884@code{c} or @code{modula-2}.
c906108c
SS
8885For a list of the supported languages, type @samp{set language}.
8886
c906108c
SS
8887Setting the language manually prevents @value{GDBN} from updating the working
8888language automatically. This can lead to confusion if you try
8889to debug a program when the working language is not the same as the
8890source language, when an expression is acceptable to both
8891languages---but means different things. For instance, if the current
8892source file were written in C, and @value{GDBN} was parsing Modula-2, a
8893command such as:
8894
474c8240 8895@smallexample
c906108c 8896print a = b + c
474c8240 8897@end smallexample
c906108c
SS
8898
8899@noindent
8900might not have the effect you intended. In C, this means to add
8901@code{b} and @code{c} and place the result in @code{a}. The result
8902printed would be the value of @code{a}. In Modula-2, this means to compare
8903@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8904
6d2ebf8b 8905@node Automatically
79a6e687 8906@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8907
8908To have @value{GDBN} set the working language automatically, use
8909@samp{set language local} or @samp{set language auto}. @value{GDBN}
8910then infers the working language. That is, when your program stops in a
8911frame (usually by encountering a breakpoint), @value{GDBN} sets the
8912working language to the language recorded for the function in that
8913frame. If the language for a frame is unknown (that is, if the function
8914or block corresponding to the frame was defined in a source file that
8915does not have a recognized extension), the current working language is
8916not changed, and @value{GDBN} issues a warning.
8917
8918This may not seem necessary for most programs, which are written
8919entirely in one source language. However, program modules and libraries
8920written in one source language can be used by a main program written in
8921a different source language. Using @samp{set language auto} in this
8922case frees you from having to set the working language manually.
8923
6d2ebf8b 8924@node Show
79a6e687 8925@section Displaying the Language
c906108c
SS
8926
8927The following commands help you find out which language is the
8928working language, and also what language source files were written in.
8929
c906108c
SS
8930@table @code
8931@item show language
9c16f35a 8932@kindex show language
c906108c
SS
8933Display the current working language. This is the
8934language you can use with commands such as @code{print} to
8935build and compute expressions that may involve variables in your program.
8936
8937@item info frame
4644b6e3 8938@kindex info frame@r{, show the source language}
5d161b24 8939Display the source language for this frame. This language becomes the
c906108c 8940working language if you use an identifier from this frame.
79a6e687 8941@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8942information listed here.
8943
8944@item info source
4644b6e3 8945@kindex info source@r{, show the source language}
c906108c 8946Display the source language of this source file.
5d161b24 8947@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8948information listed here.
8949@end table
8950
8951In unusual circumstances, you may have source files with extensions
8952not in the standard list. You can then set the extension associated
8953with a language explicitly:
8954
c906108c 8955@table @code
09d4efe1 8956@item set extension-language @var{ext} @var{language}
9c16f35a 8957@kindex set extension-language
09d4efe1
EZ
8958Tell @value{GDBN} that source files with extension @var{ext} are to be
8959assumed as written in the source language @var{language}.
c906108c
SS
8960
8961@item info extensions
9c16f35a 8962@kindex info extensions
c906108c
SS
8963List all the filename extensions and the associated languages.
8964@end table
8965
6d2ebf8b 8966@node Checks
79a6e687 8967@section Type and Range Checking
c906108c
SS
8968
8969@quotation
8970@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8971checking are included, but they do not yet have any effect. This
8972section documents the intended facilities.
8973@end quotation
8974@c FIXME remove warning when type/range code added
8975
8976Some languages are designed to guard you against making seemingly common
8977errors through a series of compile- and run-time checks. These include
8978checking the type of arguments to functions and operators, and making
8979sure mathematical overflows are caught at run time. Checks such as
8980these help to ensure a program's correctness once it has been compiled
8981by eliminating type mismatches, and providing active checks for range
8982errors when your program is running.
8983
8984@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8985Although @value{GDBN} does not check the statements in your program,
8986it can check expressions entered directly into @value{GDBN} for
8987evaluation via the @code{print} command, for example. As with the
8988working language, @value{GDBN} can also decide whether or not to check
8989automatically based on your program's source language.
79a6e687 8990@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8991settings of supported languages.
c906108c
SS
8992
8993@menu
8994* Type Checking:: An overview of type checking
8995* Range Checking:: An overview of range checking
8996@end menu
8997
8998@cindex type checking
8999@cindex checks, type
6d2ebf8b 9000@node Type Checking
79a6e687 9001@subsection An Overview of Type Checking
c906108c
SS
9002
9003Some languages, such as Modula-2, are strongly typed, meaning that the
9004arguments to operators and functions have to be of the correct type,
9005otherwise an error occurs. These checks prevent type mismatch
9006errors from ever causing any run-time problems. For example,
9007
9008@smallexample
90091 + 2 @result{} 3
9010@exdent but
9011@error{} 1 + 2.3
9012@end smallexample
9013
9014The second example fails because the @code{CARDINAL} 1 is not
9015type-compatible with the @code{REAL} 2.3.
9016
5d161b24
DB
9017For the expressions you use in @value{GDBN} commands, you can tell the
9018@value{GDBN} type checker to skip checking;
9019to treat any mismatches as errors and abandon the expression;
9020or to only issue warnings when type mismatches occur,
c906108c
SS
9021but evaluate the expression anyway. When you choose the last of
9022these, @value{GDBN} evaluates expressions like the second example above, but
9023also issues a warning.
9024
5d161b24
DB
9025Even if you turn type checking off, there may be other reasons
9026related to type that prevent @value{GDBN} from evaluating an expression.
9027For instance, @value{GDBN} does not know how to add an @code{int} and
9028a @code{struct foo}. These particular type errors have nothing to do
9029with the language in use, and usually arise from expressions, such as
c906108c
SS
9030the one described above, which make little sense to evaluate anyway.
9031
9032Each language defines to what degree it is strict about type. For
9033instance, both Modula-2 and C require the arguments to arithmetical
9034operators to be numbers. In C, enumerated types and pointers can be
9035represented as numbers, so that they are valid arguments to mathematical
79a6e687 9036operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
9037details on specific languages.
9038
9039@value{GDBN} provides some additional commands for controlling the type checker:
9040
c906108c
SS
9041@kindex set check type
9042@kindex show check type
9043@table @code
9044@item set check type auto
9045Set type checking on or off based on the current working language.
79a6e687 9046@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9047each language.
9048
9049@item set check type on
9050@itemx set check type off
9051Set type checking on or off, overriding the default setting for the
9052current working language. Issue a warning if the setting does not
9053match the language default. If any type mismatches occur in
d4f3574e 9054evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
9055message and aborts evaluation of the expression.
9056
9057@item set check type warn
9058Cause the type checker to issue warnings, but to always attempt to
9059evaluate the expression. Evaluating the expression may still
9060be impossible for other reasons. For example, @value{GDBN} cannot add
9061numbers and structures.
9062
9063@item show type
5d161b24 9064Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9065is setting it automatically.
9066@end table
9067
9068@cindex range checking
9069@cindex checks, range
6d2ebf8b 9070@node Range Checking
79a6e687 9071@subsection An Overview of Range Checking
c906108c
SS
9072
9073In some languages (such as Modula-2), it is an error to exceed the
9074bounds of a type; this is enforced with run-time checks. Such range
9075checking is meant to ensure program correctness by making sure
9076computations do not overflow, or indices on an array element access do
9077not exceed the bounds of the array.
9078
9079For expressions you use in @value{GDBN} commands, you can tell
9080@value{GDBN} to treat range errors in one of three ways: ignore them,
9081always treat them as errors and abandon the expression, or issue
9082warnings but evaluate the expression anyway.
9083
9084A range error can result from numerical overflow, from exceeding an
9085array index bound, or when you type a constant that is not a member
9086of any type. Some languages, however, do not treat overflows as an
9087error. In many implementations of C, mathematical overflow causes the
9088result to ``wrap around'' to lower values---for example, if @var{m} is
9089the largest integer value, and @var{s} is the smallest, then
9090
474c8240 9091@smallexample
c906108c 9092@var{m} + 1 @result{} @var{s}
474c8240 9093@end smallexample
c906108c
SS
9094
9095This, too, is specific to individual languages, and in some cases
79a6e687
BW
9096specific to individual compilers or machines. @xref{Supported Languages, ,
9097Supported Languages}, for further details on specific languages.
c906108c
SS
9098
9099@value{GDBN} provides some additional commands for controlling the range checker:
9100
c906108c
SS
9101@kindex set check range
9102@kindex show check range
9103@table @code
9104@item set check range auto
9105Set range checking on or off based on the current working language.
79a6e687 9106@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9107each language.
9108
9109@item set check range on
9110@itemx set check range off
9111Set range checking on or off, overriding the default setting for the
9112current working language. A warning is issued if the setting does not
c3f6f71d
JM
9113match the language default. If a range error occurs and range checking is on,
9114then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9115
9116@item set check range warn
9117Output messages when the @value{GDBN} range checker detects a range error,
9118but attempt to evaluate the expression anyway. Evaluating the
9119expression may still be impossible for other reasons, such as accessing
9120memory that the process does not own (a typical example from many Unix
9121systems).
9122
9123@item show range
9124Show the current setting of the range checker, and whether or not it is
9125being set automatically by @value{GDBN}.
9126@end table
c906108c 9127
79a6e687
BW
9128@node Supported Languages
9129@section Supported Languages
c906108c 9130
9c16f35a
EZ
9131@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9132assembly, Modula-2, and Ada.
cce74817 9133@c This is false ...
c906108c
SS
9134Some @value{GDBN} features may be used in expressions regardless of the
9135language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9136and the @samp{@{type@}addr} construct (@pxref{Expressions,
9137,Expressions}) can be used with the constructs of any supported
9138language.
9139
9140The following sections detail to what degree each source language is
9141supported by @value{GDBN}. These sections are not meant to be language
9142tutorials or references, but serve only as a reference guide to what the
9143@value{GDBN} expression parser accepts, and what input and output
9144formats should look like for different languages. There are many good
9145books written on each of these languages; please look to these for a
9146language reference or tutorial.
9147
c906108c 9148@menu
b37303ee 9149* C:: C and C@t{++}
b383017d 9150* Objective-C:: Objective-C
09d4efe1 9151* Fortran:: Fortran
9c16f35a 9152* Pascal:: Pascal
b37303ee 9153* Modula-2:: Modula-2
e07c999f 9154* Ada:: Ada
c906108c
SS
9155@end menu
9156
6d2ebf8b 9157@node C
b37052ae 9158@subsection C and C@t{++}
7a292a7a 9159
b37052ae
EZ
9160@cindex C and C@t{++}
9161@cindex expressions in C or C@t{++}
c906108c 9162
b37052ae 9163Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9164to both languages. Whenever this is the case, we discuss those languages
9165together.
9166
41afff9a
EZ
9167@cindex C@t{++}
9168@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9169@cindex @sc{gnu} C@t{++}
9170The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9171compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9172effectively, you must compile your C@t{++} programs with a supported
9173C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9174compiler (@code{aCC}).
9175
0179ffac
DC
9176For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9177format; if it doesn't work on your system, try the stabs+ debugging
9178format. You can select those formats explicitly with the @code{g++}
9179command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9180@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9181gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9182
c906108c 9183@menu
b37052ae
EZ
9184* C Operators:: C and C@t{++} operators
9185* C Constants:: C and C@t{++} constants
79a6e687 9186* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9187* C Defaults:: Default settings for C and C@t{++}
9188* C Checks:: C and C@t{++} type and range checks
c906108c 9189* Debugging C:: @value{GDBN} and C
79a6e687 9190* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
febe4383 9191* Decimal Floating Point:: Numbers in Decimal Floating Point format
c906108c 9192@end menu
c906108c 9193
6d2ebf8b 9194@node C Operators
79a6e687 9195@subsubsection C and C@t{++} Operators
7a292a7a 9196
b37052ae 9197@cindex C and C@t{++} operators
c906108c
SS
9198
9199Operators must be defined on values of specific types. For instance,
9200@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9201often defined on groups of types.
c906108c 9202
b37052ae 9203For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9204
9205@itemize @bullet
53a5351d 9206
c906108c 9207@item
c906108c 9208@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9209specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9210
9211@item
d4f3574e
SS
9212@emph{Floating-point types} include @code{float}, @code{double}, and
9213@code{long double} (if supported by the target platform).
c906108c
SS
9214
9215@item
53a5351d 9216@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9217
9218@item
9219@emph{Scalar types} include all of the above.
53a5351d 9220
c906108c
SS
9221@end itemize
9222
9223@noindent
9224The following operators are supported. They are listed here
9225in order of increasing precedence:
9226
9227@table @code
9228@item ,
9229The comma or sequencing operator. Expressions in a comma-separated list
9230are evaluated from left to right, with the result of the entire
9231expression being the last expression evaluated.
9232
9233@item =
9234Assignment. The value of an assignment expression is the value
9235assigned. Defined on scalar types.
9236
9237@item @var{op}=
9238Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9239and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9240@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9241@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9242@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9243
9244@item ?:
9245The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9246of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9247integral type.
9248
9249@item ||
9250Logical @sc{or}. Defined on integral types.
9251
9252@item &&
9253Logical @sc{and}. Defined on integral types.
9254
9255@item |
9256Bitwise @sc{or}. Defined on integral types.
9257
9258@item ^
9259Bitwise exclusive-@sc{or}. Defined on integral types.
9260
9261@item &
9262Bitwise @sc{and}. Defined on integral types.
9263
9264@item ==@r{, }!=
9265Equality and inequality. Defined on scalar types. The value of these
9266expressions is 0 for false and non-zero for true.
9267
9268@item <@r{, }>@r{, }<=@r{, }>=
9269Less than, greater than, less than or equal, greater than or equal.
9270Defined on scalar types. The value of these expressions is 0 for false
9271and non-zero for true.
9272
9273@item <<@r{, }>>
9274left shift, and right shift. Defined on integral types.
9275
9276@item @@
9277The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9278
9279@item +@r{, }-
9280Addition and subtraction. Defined on integral types, floating-point types and
9281pointer types.
9282
9283@item *@r{, }/@r{, }%
9284Multiplication, division, and modulus. Multiplication and division are
9285defined on integral and floating-point types. Modulus is defined on
9286integral types.
9287
9288@item ++@r{, }--
9289Increment and decrement. When appearing before a variable, the
9290operation is performed before the variable is used in an expression;
9291when appearing after it, the variable's value is used before the
9292operation takes place.
9293
9294@item *
9295Pointer dereferencing. Defined on pointer types. Same precedence as
9296@code{++}.
9297
9298@item &
9299Address operator. Defined on variables. Same precedence as @code{++}.
9300
b37052ae
EZ
9301For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9302allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
b17828ca 9303to examine the address
b37052ae 9304where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9305stored.
c906108c
SS
9306
9307@item -
9308Negative. Defined on integral and floating-point types. Same
9309precedence as @code{++}.
9310
9311@item !
9312Logical negation. Defined on integral types. Same precedence as
9313@code{++}.
9314
9315@item ~
9316Bitwise complement operator. Defined on integral types. Same precedence as
9317@code{++}.
9318
9319
9320@item .@r{, }->
9321Structure member, and pointer-to-structure member. For convenience,
9322@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9323pointer based on the stored type information.
9324Defined on @code{struct} and @code{union} data.
9325
c906108c
SS
9326@item .*@r{, }->*
9327Dereferences of pointers to members.
c906108c
SS
9328
9329@item []
9330Array indexing. @code{@var{a}[@var{i}]} is defined as
9331@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9332
9333@item ()
9334Function parameter list. Same precedence as @code{->}.
9335
c906108c 9336@item ::
b37052ae 9337C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9338and @code{class} types.
c906108c
SS
9339
9340@item ::
7a292a7a
SS
9341Doubled colons also represent the @value{GDBN} scope operator
9342(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9343above.
c906108c
SS
9344@end table
9345
c906108c
SS
9346If an operator is redefined in the user code, @value{GDBN} usually
9347attempts to invoke the redefined version instead of using the operator's
9348predefined meaning.
c906108c 9349
6d2ebf8b 9350@node C Constants
79a6e687 9351@subsubsection C and C@t{++} Constants
c906108c 9352
b37052ae 9353@cindex C and C@t{++} constants
c906108c 9354
b37052ae 9355@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9356following ways:
c906108c
SS
9357
9358@itemize @bullet
9359@item
9360Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9361specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9362by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9363@samp{l}, specifying that the constant should be treated as a
9364@code{long} value.
9365
9366@item
9367Floating point constants are a sequence of digits, followed by a decimal
9368point, followed by a sequence of digits, and optionally followed by an
9369exponent. An exponent is of the form:
9370@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9371sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9372A floating-point constant may also end with a letter @samp{f} or
9373@samp{F}, specifying that the constant should be treated as being of
9374the @code{float} (as opposed to the default @code{double}) type; or with
9375a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9376constant.
c906108c
SS
9377
9378@item
9379Enumerated constants consist of enumerated identifiers, or their
9380integral equivalents.
9381
9382@item
9383Character constants are a single character surrounded by single quotes
9384(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9385(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9386be represented by a letter or by @dfn{escape sequences}, which are of
9387the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9388of the character's ordinal value; or of the form @samp{\@var{x}}, where
9389@samp{@var{x}} is a predefined special character---for example,
9390@samp{\n} for newline.
9391
9392@item
96a2c332
SS
9393String constants are a sequence of character constants surrounded by
9394double quotes (@code{"}). Any valid character constant (as described
9395above) may appear. Double quotes within the string must be preceded by
9396a backslash, so for instance @samp{"a\"b'c"} is a string of five
9397characters.
c906108c
SS
9398
9399@item
9400Pointer constants are an integral value. You can also write pointers
9401to constants using the C operator @samp{&}.
9402
9403@item
9404Array constants are comma-separated lists surrounded by braces @samp{@{}
9405and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9406integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9407and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9408@end itemize
9409
79a6e687
BW
9410@node C Plus Plus Expressions
9411@subsubsection C@t{++} Expressions
b37052ae
EZ
9412
9413@cindex expressions in C@t{++}
9414@value{GDBN} expression handling can interpret most C@t{++} expressions.
9415
0179ffac
DC
9416@cindex debugging C@t{++} programs
9417@cindex C@t{++} compilers
9418@cindex debug formats and C@t{++}
9419@cindex @value{NGCC} and C@t{++}
c906108c 9420@quotation
b37052ae 9421@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9422proper compiler and the proper debug format. Currently, @value{GDBN}
9423works best when debugging C@t{++} code that is compiled with
9424@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9425@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9426stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9427stabs+ as their default debug format, so you usually don't need to
9428specify a debug format explicitly. Other compilers and/or debug formats
9429are likely to work badly or not at all when using @value{GDBN} to debug
9430C@t{++} code.
c906108c 9431@end quotation
c906108c
SS
9432
9433@enumerate
9434
9435@cindex member functions
9436@item
9437Member function calls are allowed; you can use expressions like
9438
474c8240 9439@smallexample
c906108c 9440count = aml->GetOriginal(x, y)
474c8240 9441@end smallexample
c906108c 9442
41afff9a 9443@vindex this@r{, inside C@t{++} member functions}
b37052ae 9444@cindex namespace in C@t{++}
c906108c
SS
9445@item
9446While a member function is active (in the selected stack frame), your
9447expressions have the same namespace available as the member function;
9448that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9449pointer @code{this} following the same rules as C@t{++}.
c906108c 9450
c906108c 9451@cindex call overloaded functions
d4f3574e 9452@cindex overloaded functions, calling
b37052ae 9453@cindex type conversions in C@t{++}
c906108c
SS
9454@item
9455You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9456call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9457perform overload resolution involving user-defined type conversions,
9458calls to constructors, or instantiations of templates that do not exist
9459in the program. It also cannot handle ellipsis argument lists or
9460default arguments.
9461
9462It does perform integral conversions and promotions, floating-point
9463promotions, arithmetic conversions, pointer conversions, conversions of
9464class objects to base classes, and standard conversions such as those of
9465functions or arrays to pointers; it requires an exact match on the
9466number of function arguments.
9467
9468Overload resolution is always performed, unless you have specified
79a6e687
BW
9469@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9470,@value{GDBN} Features for C@t{++}}.
c906108c 9471
d4f3574e 9472You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9473explicit function signature to call an overloaded function, as in
9474@smallexample
9475p 'foo(char,int)'('x', 13)
9476@end smallexample
d4f3574e 9477
c906108c 9478The @value{GDBN} command-completion facility can simplify this;
79a6e687 9479see @ref{Completion, ,Command Completion}.
c906108c 9480
c906108c
SS
9481@cindex reference declarations
9482@item
b37052ae
EZ
9483@value{GDBN} understands variables declared as C@t{++} references; you can use
9484them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9485dereferenced.
9486
9487In the parameter list shown when @value{GDBN} displays a frame, the values of
9488reference variables are not displayed (unlike other variables); this
9489avoids clutter, since references are often used for large structures.
9490The @emph{address} of a reference variable is always shown, unless
9491you have specified @samp{set print address off}.
9492
9493@item
b37052ae 9494@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9495expressions can use it just as expressions in your program do. Since
9496one scope may be defined in another, you can use @code{::} repeatedly if
9497necessary, for example in an expression like
9498@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9499resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9500debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9501@end enumerate
9502
b37052ae 9503In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9504calling virtual functions correctly, printing out virtual bases of
9505objects, calling functions in a base subobject, casting objects, and
9506invoking user-defined operators.
c906108c 9507
6d2ebf8b 9508@node C Defaults
79a6e687 9509@subsubsection C and C@t{++} Defaults
7a292a7a 9510
b37052ae 9511@cindex C and C@t{++} defaults
c906108c 9512
c906108c
SS
9513If you allow @value{GDBN} to set type and range checking automatically, they
9514both default to @code{off} whenever the working language changes to
b37052ae 9515C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9516selects the working language.
c906108c
SS
9517
9518If you allow @value{GDBN} to set the language automatically, it
9519recognizes source files whose names end with @file{.c}, @file{.C}, or
9520@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9521these files, it sets the working language to C or C@t{++}.
79a6e687 9522@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9523for further details.
9524
c906108c
SS
9525@c Type checking is (a) primarily motivated by Modula-2, and (b)
9526@c unimplemented. If (b) changes, it might make sense to let this node
9527@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9528
6d2ebf8b 9529@node C Checks
79a6e687 9530@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9531
b37052ae 9532@cindex C and C@t{++} checks
c906108c 9533
b37052ae 9534By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9535is not used. However, if you turn type checking on, @value{GDBN}
9536considers two variables type equivalent if:
9537
9538@itemize @bullet
9539@item
9540The two variables are structured and have the same structure, union, or
9541enumerated tag.
9542
9543@item
9544The two variables have the same type name, or types that have been
9545declared equivalent through @code{typedef}.
9546
9547@ignore
9548@c leaving this out because neither J Gilmore nor R Pesch understand it.
9549@c FIXME--beers?
9550@item
9551The two @code{struct}, @code{union}, or @code{enum} variables are
9552declared in the same declaration. (Note: this may not be true for all C
9553compilers.)
9554@end ignore
9555@end itemize
9556
9557Range checking, if turned on, is done on mathematical operations. Array
9558indices are not checked, since they are often used to index a pointer
9559that is not itself an array.
c906108c 9560
6d2ebf8b 9561@node Debugging C
c906108c 9562@subsubsection @value{GDBN} and C
c906108c
SS
9563
9564The @code{set print union} and @code{show print union} commands apply to
9565the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9566inside a @code{struct} or @code{class} is also printed. Otherwise, it
9567appears as @samp{@{...@}}.
c906108c
SS
9568
9569The @code{@@} operator aids in the debugging of dynamic arrays, formed
9570with pointers and a memory allocation function. @xref{Expressions,
9571,Expressions}.
9572
79a6e687
BW
9573@node Debugging C Plus Plus
9574@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9575
b37052ae 9576@cindex commands for C@t{++}
7a292a7a 9577
b37052ae
EZ
9578Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9579designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9580
9581@table @code
9582@cindex break in overloaded functions
9583@item @r{breakpoint menus}
9584When you want a breakpoint in a function whose name is overloaded,
9585@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9586you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9587
b37052ae 9588@cindex overloading in C@t{++}
c906108c
SS
9589@item rbreak @var{regex}
9590Setting breakpoints using regular expressions is helpful for setting
9591breakpoints on overloaded functions that are not members of any special
9592classes.
79a6e687 9593@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9594
b37052ae 9595@cindex C@t{++} exception handling
c906108c
SS
9596@item catch throw
9597@itemx catch catch
b37052ae 9598Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9599Catchpoints, , Setting Catchpoints}.
c906108c
SS
9600
9601@cindex inheritance
9602@item ptype @var{typename}
9603Print inheritance relationships as well as other information for type
9604@var{typename}.
9605@xref{Symbols, ,Examining the Symbol Table}.
9606
b37052ae 9607@cindex C@t{++} symbol display
c906108c
SS
9608@item set print demangle
9609@itemx show print demangle
9610@itemx set print asm-demangle
9611@itemx show print asm-demangle
b37052ae
EZ
9612Control whether C@t{++} symbols display in their source form, both when
9613displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9614@xref{Print Settings, ,Print Settings}.
c906108c
SS
9615
9616@item set print object
9617@itemx show print object
9618Choose whether to print derived (actual) or declared types of objects.
79a6e687 9619@xref{Print Settings, ,Print Settings}.
c906108c
SS
9620
9621@item set print vtbl
9622@itemx show print vtbl
9623Control the format for printing virtual function tables.
79a6e687 9624@xref{Print Settings, ,Print Settings}.
c906108c 9625(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9626ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9627
9628@kindex set overload-resolution
d4f3574e 9629@cindex overloaded functions, overload resolution
c906108c 9630@item set overload-resolution on
b37052ae 9631Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9632is on. For overloaded functions, @value{GDBN} evaluates the arguments
9633and searches for a function whose signature matches the argument types,
79a6e687
BW
9634using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9635Expressions, ,C@t{++} Expressions}, for details).
9636If it cannot find a match, it emits a message.
c906108c
SS
9637
9638@item set overload-resolution off
b37052ae 9639Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9640overloaded functions that are not class member functions, @value{GDBN}
9641chooses the first function of the specified name that it finds in the
9642symbol table, whether or not its arguments are of the correct type. For
9643overloaded functions that are class member functions, @value{GDBN}
9644searches for a function whose signature @emph{exactly} matches the
9645argument types.
c906108c 9646
9c16f35a
EZ
9647@kindex show overload-resolution
9648@item show overload-resolution
9649Show the current setting of overload resolution.
9650
c906108c
SS
9651@item @r{Overloaded symbol names}
9652You can specify a particular definition of an overloaded symbol, using
b37052ae 9653the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9654@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9655also use the @value{GDBN} command-line word completion facilities to list the
9656available choices, or to finish the type list for you.
79a6e687 9657@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9658@end table
c906108c 9659
febe4383
TJB
9660@node Decimal Floating Point
9661@subsubsection Decimal Floating Point format
9662@cindex decimal floating point format
9663
9664@value{GDBN} can examine, set and perform computations with numbers in
9665decimal floating point format, which in the C language correspond to the
9666@code{_Decimal32}, @code{_Decimal64} and @code{_Decimal128} types as
9667specified by the extension to support decimal floating-point arithmetic.
9668
9669There are two encodings in use, depending on the architecture: BID (Binary
9670Integer Decimal) for x86 and x86-64, and DPD (Densely Packed Decimal) for
9671PowerPC. @value{GDBN} will use the appropriate encoding for the configured
9672target.
9673
9674Because of a limitation in @file{libdecnumber}, the library used by @value{GDBN}
9675to manipulate decimal floating point numbers, it is not possible to convert
9676(using a cast, for example) integers wider than 32-bit to decimal float.
9677
9678In addition, in order to imitate @value{GDBN}'s behaviour with binary floating
9679point computations, error checking in decimal float operations ignores
9680underflow, overflow and divide by zero exceptions.
9681
4acd40f3
TJB
9682In the PowerPC architecture, @value{GDBN} provides a set of pseudo-registers
9683to inspect @code{_Decimal128} values stored in floating point registers. See
9684@ref{PowerPC,,PowerPC} for more details.
9685
b37303ee
AF
9686@node Objective-C
9687@subsection Objective-C
9688
9689@cindex Objective-C
9690This section provides information about some commands and command
721c2651
EZ
9691options that are useful for debugging Objective-C code. See also
9692@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9693few more commands specific to Objective-C support.
b37303ee
AF
9694
9695@menu
b383017d
RM
9696* Method Names in Commands::
9697* The Print Command with Objective-C::
b37303ee
AF
9698@end menu
9699
c8f4133a 9700@node Method Names in Commands
b37303ee
AF
9701@subsubsection Method Names in Commands
9702
9703The following commands have been extended to accept Objective-C method
9704names as line specifications:
9705
9706@kindex clear@r{, and Objective-C}
9707@kindex break@r{, and Objective-C}
9708@kindex info line@r{, and Objective-C}
9709@kindex jump@r{, and Objective-C}
9710@kindex list@r{, and Objective-C}
9711@itemize
9712@item @code{clear}
9713@item @code{break}
9714@item @code{info line}
9715@item @code{jump}
9716@item @code{list}
9717@end itemize
9718
9719A fully qualified Objective-C method name is specified as
9720
9721@smallexample
9722-[@var{Class} @var{methodName}]
9723@end smallexample
9724
c552b3bb
JM
9725where the minus sign is used to indicate an instance method and a
9726plus sign (not shown) is used to indicate a class method. The class
9727name @var{Class} and method name @var{methodName} are enclosed in
9728brackets, similar to the way messages are specified in Objective-C
9729source code. For example, to set a breakpoint at the @code{create}
9730instance method of class @code{Fruit} in the program currently being
9731debugged, enter:
b37303ee
AF
9732
9733@smallexample
9734break -[Fruit create]
9735@end smallexample
9736
9737To list ten program lines around the @code{initialize} class method,
9738enter:
9739
9740@smallexample
9741list +[NSText initialize]
9742@end smallexample
9743
c552b3bb
JM
9744In the current version of @value{GDBN}, the plus or minus sign is
9745required. In future versions of @value{GDBN}, the plus or minus
9746sign will be optional, but you can use it to narrow the search. It
9747is also possible to specify just a method name:
b37303ee
AF
9748
9749@smallexample
9750break create
9751@end smallexample
9752
9753You must specify the complete method name, including any colons. If
9754your program's source files contain more than one @code{create} method,
9755you'll be presented with a numbered list of classes that implement that
9756method. Indicate your choice by number, or type @samp{0} to exit if
9757none apply.
9758
9759As another example, to clear a breakpoint established at the
9760@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9761
9762@smallexample
9763clear -[NSWindow makeKeyAndOrderFront:]
9764@end smallexample
9765
9766@node The Print Command with Objective-C
9767@subsubsection The Print Command With Objective-C
721c2651 9768@cindex Objective-C, print objects
c552b3bb
JM
9769@kindex print-object
9770@kindex po @r{(@code{print-object})}
b37303ee 9771
c552b3bb 9772The print command has also been extended to accept methods. For example:
b37303ee
AF
9773
9774@smallexample
c552b3bb 9775print -[@var{object} hash]
b37303ee
AF
9776@end smallexample
9777
9778@cindex print an Objective-C object description
c552b3bb
JM
9779@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9780@noindent
9781will tell @value{GDBN} to send the @code{hash} message to @var{object}
9782and print the result. Also, an additional command has been added,
9783@code{print-object} or @code{po} for short, which is meant to print
9784the description of an object. However, this command may only work
9785with certain Objective-C libraries that have a particular hook
9786function, @code{_NSPrintForDebugger}, defined.
b37303ee 9787
09d4efe1
EZ
9788@node Fortran
9789@subsection Fortran
9790@cindex Fortran-specific support in @value{GDBN}
9791
814e32d7
WZ
9792@value{GDBN} can be used to debug programs written in Fortran, but it
9793currently supports only the features of Fortran 77 language.
9794
9795@cindex trailing underscore, in Fortran symbols
9796Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9797among them) append an underscore to the names of variables and
9798functions. When you debug programs compiled by those compilers, you
9799will need to refer to variables and functions with a trailing
9800underscore.
9801
9802@menu
9803* Fortran Operators:: Fortran operators and expressions
9804* Fortran Defaults:: Default settings for Fortran
79a6e687 9805* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9806@end menu
9807
9808@node Fortran Operators
79a6e687 9809@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9810
9811@cindex Fortran operators and expressions
9812
9813Operators must be defined on values of specific types. For instance,
9814@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9815arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9816
9817@table @code
9818@item **
9819The exponentiation operator. It raises the first operand to the power
9820of the second one.
9821
9822@item :
9823The range operator. Normally used in the form of array(low:high) to
9824represent a section of array.
9825@end table
9826
9827@node Fortran Defaults
9828@subsubsection Fortran Defaults
9829
9830@cindex Fortran Defaults
9831
9832Fortran symbols are usually case-insensitive, so @value{GDBN} by
9833default uses case-insensitive matches for Fortran symbols. You can
9834change that with the @samp{set case-insensitive} command, see
9835@ref{Symbols}, for the details.
9836
79a6e687
BW
9837@node Special Fortran Commands
9838@subsubsection Special Fortran Commands
814e32d7
WZ
9839
9840@cindex Special Fortran commands
9841
db2e3e2e
BW
9842@value{GDBN} has some commands to support Fortran-specific features,
9843such as displaying common blocks.
814e32d7 9844
09d4efe1
EZ
9845@table @code
9846@cindex @code{COMMON} blocks, Fortran
9847@kindex info common
9848@item info common @r{[}@var{common-name}@r{]}
9849This command prints the values contained in the Fortran @code{COMMON}
9850block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9851all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9852printed.
9853@end table
9854
9c16f35a
EZ
9855@node Pascal
9856@subsection Pascal
9857
9858@cindex Pascal support in @value{GDBN}, limitations
9859Debugging Pascal programs which use sets, subranges, file variables, or
9860nested functions does not currently work. @value{GDBN} does not support
9861entering expressions, printing values, or similar features using Pascal
9862syntax.
9863
9864The Pascal-specific command @code{set print pascal_static-members}
9865controls whether static members of Pascal objects are displayed.
9866@xref{Print Settings, pascal_static-members}.
9867
09d4efe1 9868@node Modula-2
c906108c 9869@subsection Modula-2
7a292a7a 9870
d4f3574e 9871@cindex Modula-2, @value{GDBN} support
c906108c
SS
9872
9873The extensions made to @value{GDBN} to support Modula-2 only support
9874output from the @sc{gnu} Modula-2 compiler (which is currently being
9875developed). Other Modula-2 compilers are not currently supported, and
9876attempting to debug executables produced by them is most likely
9877to give an error as @value{GDBN} reads in the executable's symbol
9878table.
9879
9880@cindex expressions in Modula-2
9881@menu
9882* M2 Operators:: Built-in operators
9883* Built-In Func/Proc:: Built-in functions and procedures
9884* M2 Constants:: Modula-2 constants
72019c9c 9885* M2 Types:: Modula-2 types
c906108c
SS
9886* M2 Defaults:: Default settings for Modula-2
9887* Deviations:: Deviations from standard Modula-2
9888* M2 Checks:: Modula-2 type and range checks
9889* M2 Scope:: The scope operators @code{::} and @code{.}
9890* GDB/M2:: @value{GDBN} and Modula-2
9891@end menu
9892
6d2ebf8b 9893@node M2 Operators
c906108c
SS
9894@subsubsection Operators
9895@cindex Modula-2 operators
9896
9897Operators must be defined on values of specific types. For instance,
9898@code{+} is defined on numbers, but not on structures. Operators are
9899often defined on groups of types. For the purposes of Modula-2, the
9900following definitions hold:
9901
9902@itemize @bullet
9903
9904@item
9905@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9906their subranges.
9907
9908@item
9909@emph{Character types} consist of @code{CHAR} and its subranges.
9910
9911@item
9912@emph{Floating-point types} consist of @code{REAL}.
9913
9914@item
9915@emph{Pointer types} consist of anything declared as @code{POINTER TO
9916@var{type}}.
9917
9918@item
9919@emph{Scalar types} consist of all of the above.
9920
9921@item
9922@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9923
9924@item
9925@emph{Boolean types} consist of @code{BOOLEAN}.
9926@end itemize
9927
9928@noindent
9929The following operators are supported, and appear in order of
9930increasing precedence:
9931
9932@table @code
9933@item ,
9934Function argument or array index separator.
9935
9936@item :=
9937Assignment. The value of @var{var} @code{:=} @var{value} is
9938@var{value}.
9939
9940@item <@r{, }>
9941Less than, greater than on integral, floating-point, or enumerated
9942types.
9943
9944@item <=@r{, }>=
96a2c332 9945Less than or equal to, greater than or equal to
c906108c
SS
9946on integral, floating-point and enumerated types, or set inclusion on
9947set types. Same precedence as @code{<}.
9948
9949@item =@r{, }<>@r{, }#
9950Equality and two ways of expressing inequality, valid on scalar types.
9951Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9952available for inequality, since @code{#} conflicts with the script
9953comment character.
9954
9955@item IN
9956Set membership. Defined on set types and the types of their members.
9957Same precedence as @code{<}.
9958
9959@item OR
9960Boolean disjunction. Defined on boolean types.
9961
9962@item AND@r{, }&
d4f3574e 9963Boolean conjunction. Defined on boolean types.
c906108c
SS
9964
9965@item @@
9966The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9967
9968@item +@r{, }-
9969Addition and subtraction on integral and floating-point types, or union
9970and difference on set types.
9971
9972@item *
9973Multiplication on integral and floating-point types, or set intersection
9974on set types.
9975
9976@item /
9977Division on floating-point types, or symmetric set difference on set
9978types. Same precedence as @code{*}.
9979
9980@item DIV@r{, }MOD
9981Integer division and remainder. Defined on integral types. Same
9982precedence as @code{*}.
9983
9984@item -
9985Negative. Defined on @code{INTEGER} and @code{REAL} data.
9986
9987@item ^
9988Pointer dereferencing. Defined on pointer types.
9989
9990@item NOT
9991Boolean negation. Defined on boolean types. Same precedence as
9992@code{^}.
9993
9994@item .
9995@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9996precedence as @code{^}.
9997
9998@item []
9999Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
10000
10001@item ()
10002Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
10003as @code{^}.
10004
10005@item ::@r{, }.
10006@value{GDBN} and Modula-2 scope operators.
10007@end table
10008
10009@quotation
72019c9c 10010@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
10011treats the use of the operator @code{IN}, or the use of operators
10012@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
10013@code{<=}, and @code{>=} on sets as an error.
10014@end quotation
10015
cb51c4e0 10016
6d2ebf8b 10017@node Built-In Func/Proc
79a6e687 10018@subsubsection Built-in Functions and Procedures
cb51c4e0 10019@cindex Modula-2 built-ins
c906108c
SS
10020
10021Modula-2 also makes available several built-in procedures and functions.
10022In describing these, the following metavariables are used:
10023
10024@table @var
10025
10026@item a
10027represents an @code{ARRAY} variable.
10028
10029@item c
10030represents a @code{CHAR} constant or variable.
10031
10032@item i
10033represents a variable or constant of integral type.
10034
10035@item m
10036represents an identifier that belongs to a set. Generally used in the
10037same function with the metavariable @var{s}. The type of @var{s} should
10038be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
10039
10040@item n
10041represents a variable or constant of integral or floating-point type.
10042
10043@item r
10044represents a variable or constant of floating-point type.
10045
10046@item t
10047represents a type.
10048
10049@item v
10050represents a variable.
10051
10052@item x
10053represents a variable or constant of one of many types. See the
10054explanation of the function for details.
10055@end table
10056
10057All Modula-2 built-in procedures also return a result, described below.
10058
10059@table @code
10060@item ABS(@var{n})
10061Returns the absolute value of @var{n}.
10062
10063@item CAP(@var{c})
10064If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 10065equivalent, otherwise it returns its argument.
c906108c
SS
10066
10067@item CHR(@var{i})
10068Returns the character whose ordinal value is @var{i}.
10069
10070@item DEC(@var{v})
c3f6f71d 10071Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10072
10073@item DEC(@var{v},@var{i})
10074Decrements the value in the variable @var{v} by @var{i}. Returns the
10075new value.
10076
10077@item EXCL(@var{m},@var{s})
10078Removes the element @var{m} from the set @var{s}. Returns the new
10079set.
10080
10081@item FLOAT(@var{i})
10082Returns the floating point equivalent of the integer @var{i}.
10083
10084@item HIGH(@var{a})
10085Returns the index of the last member of @var{a}.
10086
10087@item INC(@var{v})
c3f6f71d 10088Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10089
10090@item INC(@var{v},@var{i})
10091Increments the value in the variable @var{v} by @var{i}. Returns the
10092new value.
10093
10094@item INCL(@var{m},@var{s})
10095Adds the element @var{m} to the set @var{s} if it is not already
10096there. Returns the new set.
10097
10098@item MAX(@var{t})
10099Returns the maximum value of the type @var{t}.
10100
10101@item MIN(@var{t})
10102Returns the minimum value of the type @var{t}.
10103
10104@item ODD(@var{i})
10105Returns boolean TRUE if @var{i} is an odd number.
10106
10107@item ORD(@var{x})
10108Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10109value of a character is its @sc{ascii} value (on machines supporting the
10110@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10111integral, character and enumerated types.
10112
10113@item SIZE(@var{x})
10114Returns the size of its argument. @var{x} can be a variable or a type.
10115
10116@item TRUNC(@var{r})
10117Returns the integral part of @var{r}.
10118
844781a1
GM
10119@item TSIZE(@var{x})
10120Returns the size of its argument. @var{x} can be a variable or a type.
10121
c906108c
SS
10122@item VAL(@var{t},@var{i})
10123Returns the member of the type @var{t} whose ordinal value is @var{i}.
10124@end table
10125
10126@quotation
10127@emph{Warning:} Sets and their operations are not yet supported, so
10128@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10129an error.
10130@end quotation
10131
10132@cindex Modula-2 constants
6d2ebf8b 10133@node M2 Constants
c906108c
SS
10134@subsubsection Constants
10135
10136@value{GDBN} allows you to express the constants of Modula-2 in the following
10137ways:
10138
10139@itemize @bullet
10140
10141@item
10142Integer constants are simply a sequence of digits. When used in an
10143expression, a constant is interpreted to be type-compatible with the
10144rest of the expression. Hexadecimal integers are specified by a
10145trailing @samp{H}, and octal integers by a trailing @samp{B}.
10146
10147@item
10148Floating point constants appear as a sequence of digits, followed by a
10149decimal point and another sequence of digits. An optional exponent can
10150then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10151@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10152digits of the floating point constant must be valid decimal (base 10)
10153digits.
10154
10155@item
10156Character constants consist of a single character enclosed by a pair of
10157like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10158also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10159followed by a @samp{C}.
10160
10161@item
10162String constants consist of a sequence of characters enclosed by a
10163pair of like quotes, either single (@code{'}) or double (@code{"}).
10164Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10165Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10166sequences.
10167
10168@item
10169Enumerated constants consist of an enumerated identifier.
10170
10171@item
10172Boolean constants consist of the identifiers @code{TRUE} and
10173@code{FALSE}.
10174
10175@item
10176Pointer constants consist of integral values only.
10177
10178@item
10179Set constants are not yet supported.
10180@end itemize
10181
72019c9c
GM
10182@node M2 Types
10183@subsubsection Modula-2 Types
10184@cindex Modula-2 types
10185
10186Currently @value{GDBN} can print the following data types in Modula-2
10187syntax: array types, record types, set types, pointer types, procedure
10188types, enumerated types, subrange types and base types. You can also
10189print the contents of variables declared using these type.
10190This section gives a number of simple source code examples together with
10191sample @value{GDBN} sessions.
10192
10193The first example contains the following section of code:
10194
10195@smallexample
10196VAR
10197 s: SET OF CHAR ;
10198 r: [20..40] ;
10199@end smallexample
10200
10201@noindent
10202and you can request @value{GDBN} to interrogate the type and value of
10203@code{r} and @code{s}.
10204
10205@smallexample
10206(@value{GDBP}) print s
10207@{'A'..'C', 'Z'@}
10208(@value{GDBP}) ptype s
10209SET OF CHAR
10210(@value{GDBP}) print r
1021121
10212(@value{GDBP}) ptype r
10213[20..40]
10214@end smallexample
10215
10216@noindent
10217Likewise if your source code declares @code{s} as:
10218
10219@smallexample
10220VAR
10221 s: SET ['A'..'Z'] ;
10222@end smallexample
10223
10224@noindent
10225then you may query the type of @code{s} by:
10226
10227@smallexample
10228(@value{GDBP}) ptype s
10229type = SET ['A'..'Z']
10230@end smallexample
10231
10232@noindent
10233Note that at present you cannot interactively manipulate set
10234expressions using the debugger.
10235
10236The following example shows how you might declare an array in Modula-2
10237and how you can interact with @value{GDBN} to print its type and contents:
10238
10239@smallexample
10240VAR
10241 s: ARRAY [-10..10] OF CHAR ;
10242@end smallexample
10243
10244@smallexample
10245(@value{GDBP}) ptype s
10246ARRAY [-10..10] OF CHAR
10247@end smallexample
10248
10249Note that the array handling is not yet complete and although the type
10250is printed correctly, expression handling still assumes that all
10251arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10252above.
72019c9c
GM
10253
10254Here are some more type related Modula-2 examples:
10255
10256@smallexample
10257TYPE
10258 colour = (blue, red, yellow, green) ;
10259 t = [blue..yellow] ;
10260VAR
10261 s: t ;
10262BEGIN
10263 s := blue ;
10264@end smallexample
10265
10266@noindent
10267The @value{GDBN} interaction shows how you can query the data type
10268and value of a variable.
10269
10270@smallexample
10271(@value{GDBP}) print s
10272$1 = blue
10273(@value{GDBP}) ptype t
10274type = [blue..yellow]
10275@end smallexample
10276
10277@noindent
10278In this example a Modula-2 array is declared and its contents
10279displayed. Observe that the contents are written in the same way as
10280their @code{C} counterparts.
10281
10282@smallexample
10283VAR
10284 s: ARRAY [1..5] OF CARDINAL ;
10285BEGIN
10286 s[1] := 1 ;
10287@end smallexample
10288
10289@smallexample
10290(@value{GDBP}) print s
10291$1 = @{1, 0, 0, 0, 0@}
10292(@value{GDBP}) ptype s
10293type = ARRAY [1..5] OF CARDINAL
10294@end smallexample
10295
10296The Modula-2 language interface to @value{GDBN} also understands
10297pointer types as shown in this example:
10298
10299@smallexample
10300VAR
10301 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10302BEGIN
10303 NEW(s) ;
10304 s^[1] := 1 ;
10305@end smallexample
10306
10307@noindent
10308and you can request that @value{GDBN} describes the type of @code{s}.
10309
10310@smallexample
10311(@value{GDBP}) ptype s
10312type = POINTER TO ARRAY [1..5] OF CARDINAL
10313@end smallexample
10314
10315@value{GDBN} handles compound types as we can see in this example.
10316Here we combine array types, record types, pointer types and subrange
10317types:
10318
10319@smallexample
10320TYPE
10321 foo = RECORD
10322 f1: CARDINAL ;
10323 f2: CHAR ;
10324 f3: myarray ;
10325 END ;
10326
10327 myarray = ARRAY myrange OF CARDINAL ;
10328 myrange = [-2..2] ;
10329VAR
10330 s: POINTER TO ARRAY myrange OF foo ;
10331@end smallexample
10332
10333@noindent
10334and you can ask @value{GDBN} to describe the type of @code{s} as shown
10335below.
10336
10337@smallexample
10338(@value{GDBP}) ptype s
10339type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10340 f1 : CARDINAL;
10341 f2 : CHAR;
10342 f3 : ARRAY [-2..2] OF CARDINAL;
10343END
10344@end smallexample
10345
6d2ebf8b 10346@node M2 Defaults
79a6e687 10347@subsubsection Modula-2 Defaults
c906108c
SS
10348@cindex Modula-2 defaults
10349
10350If type and range checking are set automatically by @value{GDBN}, they
10351both default to @code{on} whenever the working language changes to
d4f3574e 10352Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10353selected the working language.
10354
10355If you allow @value{GDBN} to set the language automatically, then entering
10356code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10357working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10358Infer the Source Language}, for further details.
c906108c 10359
6d2ebf8b 10360@node Deviations
79a6e687 10361@subsubsection Deviations from Standard Modula-2
c906108c
SS
10362@cindex Modula-2, deviations from
10363
10364A few changes have been made to make Modula-2 programs easier to debug.
10365This is done primarily via loosening its type strictness:
10366
10367@itemize @bullet
10368@item
10369Unlike in standard Modula-2, pointer constants can be formed by
10370integers. This allows you to modify pointer variables during
10371debugging. (In standard Modula-2, the actual address contained in a
10372pointer variable is hidden from you; it can only be modified
10373through direct assignment to another pointer variable or expression that
10374returned a pointer.)
10375
10376@item
10377C escape sequences can be used in strings and characters to represent
10378non-printable characters. @value{GDBN} prints out strings with these
10379escape sequences embedded. Single non-printable characters are
10380printed using the @samp{CHR(@var{nnn})} format.
10381
10382@item
10383The assignment operator (@code{:=}) returns the value of its right-hand
10384argument.
10385
10386@item
10387All built-in procedures both modify @emph{and} return their argument.
10388@end itemize
10389
6d2ebf8b 10390@node M2 Checks
79a6e687 10391@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10392@cindex Modula-2 checks
10393
10394@quotation
10395@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10396range checking.
10397@end quotation
10398@c FIXME remove warning when type/range checks added
10399
10400@value{GDBN} considers two Modula-2 variables type equivalent if:
10401
10402@itemize @bullet
10403@item
10404They are of types that have been declared equivalent via a @code{TYPE
10405@var{t1} = @var{t2}} statement
10406
10407@item
10408They have been declared on the same line. (Note: This is true of the
10409@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10410@end itemize
10411
10412As long as type checking is enabled, any attempt to combine variables
10413whose types are not equivalent is an error.
10414
10415Range checking is done on all mathematical operations, assignment, array
10416index bounds, and all built-in functions and procedures.
10417
6d2ebf8b 10418@node M2 Scope
79a6e687 10419@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10420@cindex scope
41afff9a 10421@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10422@cindex colon, doubled as scope operator
10423@ifinfo
41afff9a 10424@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10425@c Info cannot handle :: but TeX can.
10426@end ifinfo
10427@iftex
41afff9a 10428@vindex ::@r{, in Modula-2}
c906108c
SS
10429@end iftex
10430
10431There are a few subtle differences between the Modula-2 scope operator
10432(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10433similar syntax:
10434
474c8240 10435@smallexample
c906108c
SS
10436
10437@var{module} . @var{id}
10438@var{scope} :: @var{id}
474c8240 10439@end smallexample
c906108c
SS
10440
10441@noindent
10442where @var{scope} is the name of a module or a procedure,
10443@var{module} the name of a module, and @var{id} is any declared
10444identifier within your program, except another module.
10445
10446Using the @code{::} operator makes @value{GDBN} search the scope
10447specified by @var{scope} for the identifier @var{id}. If it is not
10448found in the specified scope, then @value{GDBN} searches all scopes
10449enclosing the one specified by @var{scope}.
10450
10451Using the @code{.} operator makes @value{GDBN} search the current scope for
10452the identifier specified by @var{id} that was imported from the
10453definition module specified by @var{module}. With this operator, it is
10454an error if the identifier @var{id} was not imported from definition
10455module @var{module}, or if @var{id} is not an identifier in
10456@var{module}.
10457
6d2ebf8b 10458@node GDB/M2
c906108c
SS
10459@subsubsection @value{GDBN} and Modula-2
10460
10461Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10462Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10463specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10464@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10465apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10466analogue in Modula-2.
10467
10468The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10469with any language, is not useful with Modula-2. Its
c906108c 10470intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10471created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10472address can be specified by an integral constant, the construct
d4f3574e 10473@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10474
10475@cindex @code{#} in Modula-2
10476In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10477interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10478
e07c999f
PH
10479@node Ada
10480@subsection Ada
10481@cindex Ada
10482
10483The extensions made to @value{GDBN} for Ada only support
10484output from the @sc{gnu} Ada (GNAT) compiler.
10485Other Ada compilers are not currently supported, and
10486attempting to debug executables produced by them is most likely
10487to be difficult.
10488
10489
10490@cindex expressions in Ada
10491@menu
10492* Ada Mode Intro:: General remarks on the Ada syntax
10493 and semantics supported by Ada mode
10494 in @value{GDBN}.
10495* Omissions from Ada:: Restrictions on the Ada expression syntax.
10496* Additions to Ada:: Extensions of the Ada expression syntax.
10497* Stopping Before Main Program:: Debugging the program during elaboration.
10498* Ada Glitches:: Known peculiarities of Ada mode.
10499@end menu
10500
10501@node Ada Mode Intro
10502@subsubsection Introduction
10503@cindex Ada mode, general
10504
10505The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10506syntax, with some extensions.
10507The philosophy behind the design of this subset is
10508
10509@itemize @bullet
10510@item
10511That @value{GDBN} should provide basic literals and access to operations for
10512arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10513leaving more sophisticated computations to subprograms written into the
10514program (which therefore may be called from @value{GDBN}).
10515
10516@item
10517That type safety and strict adherence to Ada language restrictions
10518are not particularly important to the @value{GDBN} user.
10519
10520@item
10521That brevity is important to the @value{GDBN} user.
10522@end itemize
10523
10524Thus, for brevity, the debugger acts as if there were
10525implicit @code{with} and @code{use} clauses in effect for all user-written
10526packages, making it unnecessary to fully qualify most names with
10527their packages, regardless of context. Where this causes ambiguity,
10528@value{GDBN} asks the user's intent.
10529
10530The debugger will start in Ada mode if it detects an Ada main program.
10531As for other languages, it will enter Ada mode when stopped in a program that
10532was translated from an Ada source file.
10533
10534While in Ada mode, you may use `@t{--}' for comments. This is useful
10535mostly for documenting command files. The standard @value{GDBN} comment
10536(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10537middle (to allow based literals).
10538
10539The debugger supports limited overloading. Given a subprogram call in which
10540the function symbol has multiple definitions, it will use the number of
10541actual parameters and some information about their types to attempt to narrow
10542the set of definitions. It also makes very limited use of context, preferring
10543procedures to functions in the context of the @code{call} command, and
10544functions to procedures elsewhere.
10545
10546@node Omissions from Ada
10547@subsubsection Omissions from Ada
10548@cindex Ada, omissions from
10549
10550Here are the notable omissions from the subset:
10551
10552@itemize @bullet
10553@item
10554Only a subset of the attributes are supported:
10555
10556@itemize @minus
10557@item
10558@t{'First}, @t{'Last}, and @t{'Length}
10559 on array objects (not on types and subtypes).
10560
10561@item
10562@t{'Min} and @t{'Max}.
10563
10564@item
10565@t{'Pos} and @t{'Val}.
10566
10567@item
10568@t{'Tag}.
10569
10570@item
10571@t{'Range} on array objects (not subtypes), but only as the right
10572operand of the membership (@code{in}) operator.
10573
10574@item
10575@t{'Access}, @t{'Unchecked_Access}, and
10576@t{'Unrestricted_Access} (a GNAT extension).
10577
10578@item
10579@t{'Address}.
10580@end itemize
10581
10582@item
10583The names in
10584@code{Characters.Latin_1} are not available and
10585concatenation is not implemented. Thus, escape characters in strings are
10586not currently available.
10587
10588@item
10589Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10590equality of representations. They will generally work correctly
10591for strings and arrays whose elements have integer or enumeration types.
10592They may not work correctly for arrays whose element
10593types have user-defined equality, for arrays of real values
10594(in particular, IEEE-conformant floating point, because of negative
10595zeroes and NaNs), and for arrays whose elements contain unused bits with
10596indeterminate values.
10597
10598@item
10599The other component-by-component array operations (@code{and}, @code{or},
10600@code{xor}, @code{not}, and relational tests other than equality)
10601are not implemented.
10602
10603@item
860701dc
PH
10604@cindex array aggregates (Ada)
10605@cindex record aggregates (Ada)
10606@cindex aggregates (Ada)
10607There is limited support for array and record aggregates. They are
10608permitted only on the right sides of assignments, as in these examples:
10609
10610@smallexample
10611set An_Array := (1, 2, 3, 4, 5, 6)
10612set An_Array := (1, others => 0)
10613set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10614set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10615set A_Record := (1, "Peter", True);
10616set A_Record := (Name => "Peter", Id => 1, Alive => True)
10617@end smallexample
10618
10619Changing a
10620discriminant's value by assigning an aggregate has an
10621undefined effect if that discriminant is used within the record.
10622However, you can first modify discriminants by directly assigning to
10623them (which normally would not be allowed in Ada), and then performing an
10624aggregate assignment. For example, given a variable @code{A_Rec}
10625declared to have a type such as:
10626
10627@smallexample
10628type Rec (Len : Small_Integer := 0) is record
10629 Id : Integer;
10630 Vals : IntArray (1 .. Len);
10631end record;
10632@end smallexample
10633
10634you can assign a value with a different size of @code{Vals} with two
10635assignments:
10636
10637@smallexample
10638set A_Rec.Len := 4
10639set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10640@end smallexample
10641
10642As this example also illustrates, @value{GDBN} is very loose about the usual
10643rules concerning aggregates. You may leave out some of the
10644components of an array or record aggregate (such as the @code{Len}
10645component in the assignment to @code{A_Rec} above); they will retain their
10646original values upon assignment. You may freely use dynamic values as
10647indices in component associations. You may even use overlapping or
10648redundant component associations, although which component values are
10649assigned in such cases is not defined.
e07c999f
PH
10650
10651@item
10652Calls to dispatching subprograms are not implemented.
10653
10654@item
10655The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10656than that of real Ada. It makes only limited use of the context in
10657which a subexpression appears to resolve its meaning, and it is much
10658looser in its rules for allowing type matches. As a result, some
10659function calls will be ambiguous, and the user will be asked to choose
10660the proper resolution.
e07c999f
PH
10661
10662@item
10663The @code{new} operator is not implemented.
10664
10665@item
10666Entry calls are not implemented.
10667
10668@item
10669Aside from printing, arithmetic operations on the native VAX floating-point
10670formats are not supported.
10671
10672@item
10673It is not possible to slice a packed array.
10674@end itemize
10675
10676@node Additions to Ada
10677@subsubsection Additions to Ada
10678@cindex Ada, deviations from
10679
10680As it does for other languages, @value{GDBN} makes certain generic
10681extensions to Ada (@pxref{Expressions}):
10682
10683@itemize @bullet
10684@item
ae21e955
BW
10685If the expression @var{E} is a variable residing in memory (typically
10686a local variable or array element) and @var{N} is a positive integer,
10687then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10688@var{N}-1 adjacent variables following it in memory as an array. In
10689Ada, this operator is generally not necessary, since its prime use is
10690in displaying parts of an array, and slicing will usually do this in
10691Ada. However, there are occasional uses when debugging programs in
10692which certain debugging information has been optimized away.
e07c999f
PH
10693
10694@item
ae21e955
BW
10695@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10696appears in function or file @var{B}.'' When @var{B} is a file name,
10697you must typically surround it in single quotes.
e07c999f
PH
10698
10699@item
10700The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10701@var{type} that appears at address @var{addr}.''
10702
10703@item
10704A name starting with @samp{$} is a convenience variable
10705(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10706@end itemize
10707
ae21e955
BW
10708In addition, @value{GDBN} provides a few other shortcuts and outright
10709additions specific to Ada:
e07c999f
PH
10710
10711@itemize @bullet
10712@item
10713The assignment statement is allowed as an expression, returning
10714its right-hand operand as its value. Thus, you may enter
10715
10716@smallexample
10717set x := y + 3
10718print A(tmp := y + 1)
10719@end smallexample
10720
10721@item
10722The semicolon is allowed as an ``operator,'' returning as its value
10723the value of its right-hand operand.
10724This allows, for example,
10725complex conditional breaks:
10726
10727@smallexample
10728break f
10729condition 1 (report(i); k += 1; A(k) > 100)
10730@end smallexample
10731
10732@item
10733Rather than use catenation and symbolic character names to introduce special
10734characters into strings, one may instead use a special bracket notation,
10735which is also used to print strings. A sequence of characters of the form
10736@samp{["@var{XX}"]} within a string or character literal denotes the
10737(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10738sequence of characters @samp{["""]} also denotes a single quotation mark
10739in strings. For example,
10740@smallexample
10741 "One line.["0a"]Next line.["0a"]"
10742@end smallexample
10743@noindent
ae21e955
BW
10744contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10745after each period.
e07c999f
PH
10746
10747@item
10748The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10749@t{'Max} is optional (and is ignored in any case). For example, it is valid
10750to write
10751
10752@smallexample
10753print 'max(x, y)
10754@end smallexample
10755
10756@item
10757When printing arrays, @value{GDBN} uses positional notation when the
10758array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10759For example, a one-dimensional array of three integers with a lower bound
10760of 3 might print as
e07c999f
PH
10761
10762@smallexample
10763(3 => 10, 17, 1)
10764@end smallexample
10765
10766@noindent
10767That is, in contrast to valid Ada, only the first component has a @code{=>}
10768clause.
10769
10770@item
10771You may abbreviate attributes in expressions with any unique,
10772multi-character subsequence of
10773their names (an exact match gets preference).
10774For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10775in place of @t{a'length}.
10776
10777@item
10778@cindex quoting Ada internal identifiers
10779Since Ada is case-insensitive, the debugger normally maps identifiers you type
10780to lower case. The GNAT compiler uses upper-case characters for
10781some of its internal identifiers, which are normally of no interest to users.
10782For the rare occasions when you actually have to look at them,
10783enclose them in angle brackets to avoid the lower-case mapping.
10784For example,
10785@smallexample
10786@value{GDBP} print <JMPBUF_SAVE>[0]
10787@end smallexample
10788
10789@item
10790Printing an object of class-wide type or dereferencing an
10791access-to-class-wide value will display all the components of the object's
10792specific type (as indicated by its run-time tag). Likewise, component
10793selection on such a value will operate on the specific type of the
10794object.
10795
10796@end itemize
10797
10798@node Stopping Before Main Program
10799@subsubsection Stopping at the Very Beginning
10800
10801@cindex breakpointing Ada elaboration code
10802It is sometimes necessary to debug the program during elaboration, and
10803before reaching the main procedure.
10804As defined in the Ada Reference
10805Manual, the elaboration code is invoked from a procedure called
10806@code{adainit}. To run your program up to the beginning of
10807elaboration, simply use the following two commands:
10808@code{tbreak adainit} and @code{run}.
10809
10810@node Ada Glitches
10811@subsubsection Known Peculiarities of Ada Mode
10812@cindex Ada, problems
10813
10814Besides the omissions listed previously (@pxref{Omissions from Ada}),
10815we know of several problems with and limitations of Ada mode in
10816@value{GDBN},
10817some of which will be fixed with planned future releases of the debugger
10818and the GNU Ada compiler.
10819
10820@itemize @bullet
10821@item
10822Currently, the debugger
10823has insufficient information to determine whether certain pointers represent
10824pointers to objects or the objects themselves.
10825Thus, the user may have to tack an extra @code{.all} after an expression
10826to get it printed properly.
10827
10828@item
10829Static constants that the compiler chooses not to materialize as objects in
10830storage are invisible to the debugger.
10831
10832@item
10833Named parameter associations in function argument lists are ignored (the
10834argument lists are treated as positional).
10835
10836@item
10837Many useful library packages are currently invisible to the debugger.
10838
10839@item
10840Fixed-point arithmetic, conversions, input, and output is carried out using
10841floating-point arithmetic, and may give results that only approximate those on
10842the host machine.
10843
10844@item
10845The type of the @t{'Address} attribute may not be @code{System.Address}.
10846
10847@item
10848The GNAT compiler never generates the prefix @code{Standard} for any of
10849the standard symbols defined by the Ada language. @value{GDBN} knows about
10850this: it will strip the prefix from names when you use it, and will never
10851look for a name you have so qualified among local symbols, nor match against
10852symbols in other packages or subprograms. If you have
10853defined entities anywhere in your program other than parameters and
10854local variables whose simple names match names in @code{Standard},
10855GNAT's lack of qualification here can cause confusion. When this happens,
10856you can usually resolve the confusion
10857by qualifying the problematic names with package
10858@code{Standard} explicitly.
10859@end itemize
10860
79a6e687
BW
10861@node Unsupported Languages
10862@section Unsupported Languages
4e562065
JB
10863
10864@cindex unsupported languages
10865@cindex minimal language
10866In addition to the other fully-supported programming languages,
10867@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10868It does not represent a real programming language, but provides a set
10869of capabilities close to what the C or assembly languages provide.
10870This should allow most simple operations to be performed while debugging
10871an application that uses a language currently not supported by @value{GDBN}.
10872
10873If the language is set to @code{auto}, @value{GDBN} will automatically
10874select this language if the current frame corresponds to an unsupported
10875language.
10876
6d2ebf8b 10877@node Symbols
c906108c
SS
10878@chapter Examining the Symbol Table
10879
d4f3574e 10880The commands described in this chapter allow you to inquire about the
c906108c
SS
10881symbols (names of variables, functions and types) defined in your
10882program. This information is inherent in the text of your program and
10883does not change as your program executes. @value{GDBN} finds it in your
10884program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10885(@pxref{File Options, ,Choosing Files}), or by one of the
10886file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10887
10888@cindex symbol names
10889@cindex names of symbols
10890@cindex quoting names
10891Occasionally, you may need to refer to symbols that contain unusual
10892characters, which @value{GDBN} ordinarily treats as word delimiters. The
10893most frequent case is in referring to static variables in other
79a6e687 10894source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10895are recorded in object files as debugging symbols, but @value{GDBN} would
10896ordinarily parse a typical file name, like @file{foo.c}, as the three words
10897@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10898@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10899
474c8240 10900@smallexample
c906108c 10901p 'foo.c'::x
474c8240 10902@end smallexample
c906108c
SS
10903
10904@noindent
10905looks up the value of @code{x} in the scope of the file @file{foo.c}.
10906
10907@table @code
a8f24a35
EZ
10908@cindex case-insensitive symbol names
10909@cindex case sensitivity in symbol names
10910@kindex set case-sensitive
10911@item set case-sensitive on
10912@itemx set case-sensitive off
10913@itemx set case-sensitive auto
10914Normally, when @value{GDBN} looks up symbols, it matches their names
10915with case sensitivity determined by the current source language.
10916Occasionally, you may wish to control that. The command @code{set
10917case-sensitive} lets you do that by specifying @code{on} for
10918case-sensitive matches or @code{off} for case-insensitive ones. If
10919you specify @code{auto}, case sensitivity is reset to the default
10920suitable for the source language. The default is case-sensitive
10921matches for all languages except for Fortran, for which the default is
10922case-insensitive matches.
10923
9c16f35a
EZ
10924@kindex show case-sensitive
10925@item show case-sensitive
a8f24a35
EZ
10926This command shows the current setting of case sensitivity for symbols
10927lookups.
10928
c906108c 10929@kindex info address
b37052ae 10930@cindex address of a symbol
c906108c
SS
10931@item info address @var{symbol}
10932Describe where the data for @var{symbol} is stored. For a register
10933variable, this says which register it is kept in. For a non-register
10934local variable, this prints the stack-frame offset at which the variable
10935is always stored.
10936
10937Note the contrast with @samp{print &@var{symbol}}, which does not work
10938at all for a register variable, and for a stack local variable prints
10939the exact address of the current instantiation of the variable.
10940
3d67e040 10941@kindex info symbol
b37052ae 10942@cindex symbol from address
9c16f35a 10943@cindex closest symbol and offset for an address
3d67e040
EZ
10944@item info symbol @var{addr}
10945Print the name of a symbol which is stored at the address @var{addr}.
10946If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10947nearest symbol and an offset from it:
10948
474c8240 10949@smallexample
3d67e040
EZ
10950(@value{GDBP}) info symbol 0x54320
10951_initialize_vx + 396 in section .text
474c8240 10952@end smallexample
3d67e040
EZ
10953
10954@noindent
10955This is the opposite of the @code{info address} command. You can use
10956it to find out the name of a variable or a function given its address.
10957
c906108c 10958@kindex whatis
62f3a2ba
FF
10959@item whatis [@var{arg}]
10960Print the data type of @var{arg}, which can be either an expression or
10961a data type. With no argument, print the data type of @code{$}, the
10962last value in the value history. If @var{arg} is an expression, it is
10963not actually evaluated, and any side-effecting operations (such as
10964assignments or function calls) inside it do not take place. If
10965@var{arg} is a type name, it may be the name of a type or typedef, or
10966for C code it may have the form @samp{class @var{class-name}},
10967@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10968@samp{enum @var{enum-tag}}.
c906108c
SS
10969@xref{Expressions, ,Expressions}.
10970
c906108c 10971@kindex ptype
62f3a2ba
FF
10972@item ptype [@var{arg}]
10973@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10974detailed description of the type, instead of just the name of the type.
10975@xref{Expressions, ,Expressions}.
c906108c
SS
10976
10977For example, for this variable declaration:
10978
474c8240 10979@smallexample
c906108c 10980struct complex @{double real; double imag;@} v;
474c8240 10981@end smallexample
c906108c
SS
10982
10983@noindent
10984the two commands give this output:
10985
474c8240 10986@smallexample
c906108c
SS
10987@group
10988(@value{GDBP}) whatis v
10989type = struct complex
10990(@value{GDBP}) ptype v
10991type = struct complex @{
10992 double real;
10993 double imag;
10994@}
10995@end group
474c8240 10996@end smallexample
c906108c
SS
10997
10998@noindent
10999As with @code{whatis}, using @code{ptype} without an argument refers to
11000the type of @code{$}, the last value in the value history.
11001
ab1adacd
EZ
11002@cindex incomplete type
11003Sometimes, programs use opaque data types or incomplete specifications
11004of complex data structure. If the debug information included in the
11005program does not allow @value{GDBN} to display a full declaration of
11006the data type, it will say @samp{<incomplete type>}. For example,
11007given these declarations:
11008
11009@smallexample
11010 struct foo;
11011 struct foo *fooptr;
11012@end smallexample
11013
11014@noindent
11015but no definition for @code{struct foo} itself, @value{GDBN} will say:
11016
11017@smallexample
ddb50cd7 11018 (@value{GDBP}) ptype foo
ab1adacd
EZ
11019 $1 = <incomplete type>
11020@end smallexample
11021
11022@noindent
11023``Incomplete type'' is C terminology for data types that are not
11024completely specified.
11025
c906108c
SS
11026@kindex info types
11027@item info types @var{regexp}
11028@itemx info types
09d4efe1
EZ
11029Print a brief description of all types whose names match the regular
11030expression @var{regexp} (or all types in your program, if you supply
11031no argument). Each complete typename is matched as though it were a
11032complete line; thus, @samp{i type value} gives information on all
11033types in your program whose names include the string @code{value}, but
11034@samp{i type ^value$} gives information only on types whose complete
11035name is @code{value}.
c906108c
SS
11036
11037This command differs from @code{ptype} in two ways: first, like
11038@code{whatis}, it does not print a detailed description; second, it
11039lists all source files where a type is defined.
11040
b37052ae
EZ
11041@kindex info scope
11042@cindex local variables
09d4efe1 11043@item info scope @var{location}
b37052ae 11044List all the variables local to a particular scope. This command
09d4efe1
EZ
11045accepts a @var{location} argument---a function name, a source line, or
11046an address preceded by a @samp{*}, and prints all the variables local
2a25a5ba
EZ
11047to the scope defined by that location. (@xref{Specify Location}, for
11048details about supported forms of @var{location}.) For example:
b37052ae
EZ
11049
11050@smallexample
11051(@value{GDBP}) @b{info scope command_line_handler}
11052Scope for command_line_handler:
11053Symbol rl is an argument at stack/frame offset 8, length 4.
11054Symbol linebuffer is in static storage at address 0x150a18, length 4.
11055Symbol linelength is in static storage at address 0x150a1c, length 4.
11056Symbol p is a local variable in register $esi, length 4.
11057Symbol p1 is a local variable in register $ebx, length 4.
11058Symbol nline is a local variable in register $edx, length 4.
11059Symbol repeat is a local variable at frame offset -8, length 4.
11060@end smallexample
11061
f5c37c66
EZ
11062@noindent
11063This command is especially useful for determining what data to collect
11064during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
11065collect}.
11066
c906108c
SS
11067@kindex info source
11068@item info source
919d772c
JB
11069Show information about the current source file---that is, the source file for
11070the function containing the current point of execution:
11071@itemize @bullet
11072@item
11073the name of the source file, and the directory containing it,
11074@item
11075the directory it was compiled in,
11076@item
11077its length, in lines,
11078@item
11079which programming language it is written in,
11080@item
11081whether the executable includes debugging information for that file, and
11082if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
11083@item
11084whether the debugging information includes information about
11085preprocessor macros.
11086@end itemize
11087
c906108c
SS
11088
11089@kindex info sources
11090@item info sources
11091Print the names of all source files in your program for which there is
11092debugging information, organized into two lists: files whose symbols
11093have already been read, and files whose symbols will be read when needed.
11094
11095@kindex info functions
11096@item info functions
11097Print the names and data types of all defined functions.
11098
11099@item info functions @var{regexp}
11100Print the names and data types of all defined functions
11101whose names contain a match for regular expression @var{regexp}.
11102Thus, @samp{info fun step} finds all functions whose names
11103include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11104start with @code{step}. If a function name contains characters
c1468174 11105that conflict with the regular expression language (e.g.@:
1c5dfdad 11106@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11107
11108@kindex info variables
11109@item info variables
11110Print the names and data types of all variables that are declared
6ca652b0 11111outside of functions (i.e.@: excluding local variables).
c906108c
SS
11112
11113@item info variables @var{regexp}
11114Print the names and data types of all variables (except for local
11115variables) whose names contain a match for regular expression
11116@var{regexp}.
11117
b37303ee 11118@kindex info classes
721c2651 11119@cindex Objective-C, classes and selectors
b37303ee
AF
11120@item info classes
11121@itemx info classes @var{regexp}
11122Display all Objective-C classes in your program, or
11123(with the @var{regexp} argument) all those matching a particular regular
11124expression.
11125
11126@kindex info selectors
11127@item info selectors
11128@itemx info selectors @var{regexp}
11129Display all Objective-C selectors in your program, or
11130(with the @var{regexp} argument) all those matching a particular regular
11131expression.
11132
c906108c
SS
11133@ignore
11134This was never implemented.
11135@kindex info methods
11136@item info methods
11137@itemx info methods @var{regexp}
11138The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11139methods within C@t{++} program, or (with the @var{regexp} argument) a
11140specific set of methods found in the various C@t{++} classes. Many
11141C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11142from the @code{ptype} command can be overwhelming and hard to use. The
11143@code{info-methods} command filters the methods, printing only those
11144which match the regular-expression @var{regexp}.
11145@end ignore
11146
c906108c
SS
11147@cindex reloading symbols
11148Some systems allow individual object files that make up your program to
7a292a7a
SS
11149be replaced without stopping and restarting your program. For example,
11150in VxWorks you can simply recompile a defective object file and keep on
11151running. If you are running on one of these systems, you can allow
11152@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11153
11154@table @code
11155@kindex set symbol-reloading
11156@item set symbol-reloading on
11157Replace symbol definitions for the corresponding source file when an
11158object file with a particular name is seen again.
11159
11160@item set symbol-reloading off
6d2ebf8b
SS
11161Do not replace symbol definitions when encountering object files of the
11162same name more than once. This is the default state; if you are not
11163running on a system that permits automatic relinking of modules, you
11164should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11165may discard symbols when linking large programs, that may contain
11166several modules (from different directories or libraries) with the same
11167name.
c906108c
SS
11168
11169@kindex show symbol-reloading
11170@item show symbol-reloading
11171Show the current @code{on} or @code{off} setting.
11172@end table
c906108c 11173
9c16f35a 11174@cindex opaque data types
c906108c
SS
11175@kindex set opaque-type-resolution
11176@item set opaque-type-resolution on
11177Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11178declared as a pointer to a @code{struct}, @code{class}, or
11179@code{union}---for example, @code{struct MyType *}---that is used in one
11180source file although the full declaration of @code{struct MyType} is in
11181another source file. The default is on.
11182
11183A change in the setting of this subcommand will not take effect until
11184the next time symbols for a file are loaded.
11185
11186@item set opaque-type-resolution off
11187Tell @value{GDBN} not to resolve opaque types. In this case, the type
11188is printed as follows:
11189@smallexample
11190@{<no data fields>@}
11191@end smallexample
11192
11193@kindex show opaque-type-resolution
11194@item show opaque-type-resolution
11195Show whether opaque types are resolved or not.
c906108c
SS
11196
11197@kindex maint print symbols
11198@cindex symbol dump
11199@kindex maint print psymbols
11200@cindex partial symbol dump
11201@item maint print symbols @var{filename}
11202@itemx maint print psymbols @var{filename}
11203@itemx maint print msymbols @var{filename}
11204Write a dump of debugging symbol data into the file @var{filename}.
11205These commands are used to debug the @value{GDBN} symbol-reading code. Only
11206symbols with debugging data are included. If you use @samp{maint print
11207symbols}, @value{GDBN} includes all the symbols for which it has already
11208collected full details: that is, @var{filename} reflects symbols for
11209only those files whose symbols @value{GDBN} has read. You can use the
11210command @code{info sources} to find out which files these are. If you
11211use @samp{maint print psymbols} instead, the dump shows information about
11212symbols that @value{GDBN} only knows partially---that is, symbols defined in
11213files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11214@samp{maint print msymbols} dumps just the minimal symbol information
11215required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11216@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11217@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11218
5e7b2f39
JB
11219@kindex maint info symtabs
11220@kindex maint info psymtabs
44ea7b70
JB
11221@cindex listing @value{GDBN}'s internal symbol tables
11222@cindex symbol tables, listing @value{GDBN}'s internal
11223@cindex full symbol tables, listing @value{GDBN}'s internal
11224@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11225@item maint info symtabs @r{[} @var{regexp} @r{]}
11226@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11227
11228List the @code{struct symtab} or @code{struct partial_symtab}
11229structures whose names match @var{regexp}. If @var{regexp} is not
11230given, list them all. The output includes expressions which you can
11231copy into a @value{GDBN} debugging this one to examine a particular
11232structure in more detail. For example:
11233
11234@smallexample
5e7b2f39 11235(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11236@{ objfile /home/gnu/build/gdb/gdb
11237 ((struct objfile *) 0x82e69d0)
b383017d 11238 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11239 ((struct partial_symtab *) 0x8474b10)
11240 readin no
11241 fullname (null)
11242 text addresses 0x814d3c8 -- 0x8158074
11243 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11244 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11245 dependencies (none)
11246 @}
11247@}
5e7b2f39 11248(@value{GDBP}) maint info symtabs
44ea7b70
JB
11249(@value{GDBP})
11250@end smallexample
11251@noindent
11252We see that there is one partial symbol table whose filename contains
11253the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11254and we see that @value{GDBN} has not read in any symtabs yet at all.
11255If we set a breakpoint on a function, that will cause @value{GDBN} to
11256read the symtab for the compilation unit containing that function:
11257
11258@smallexample
11259(@value{GDBP}) break dwarf2_psymtab_to_symtab
11260Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11261line 1574.
5e7b2f39 11262(@value{GDBP}) maint info symtabs
b383017d 11263@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11264 ((struct objfile *) 0x82e69d0)
b383017d 11265 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11266 ((struct symtab *) 0x86c1f38)
11267 dirname (null)
11268 fullname (null)
11269 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11270 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11271 debugformat DWARF 2
11272 @}
11273@}
b383017d 11274(@value{GDBP})
44ea7b70 11275@end smallexample
c906108c
SS
11276@end table
11277
44ea7b70 11278
6d2ebf8b 11279@node Altering
c906108c
SS
11280@chapter Altering Execution
11281
11282Once you think you have found an error in your program, you might want to
11283find out for certain whether correcting the apparent error would lead to
11284correct results in the rest of the run. You can find the answer by
11285experiment, using the @value{GDBN} features for altering execution of the
11286program.
11287
11288For example, you can store new values into variables or memory
7a292a7a
SS
11289locations, give your program a signal, restart it at a different
11290address, or even return prematurely from a function.
c906108c
SS
11291
11292@menu
11293* Assignment:: Assignment to variables
11294* Jumping:: Continuing at a different address
c906108c 11295* Signaling:: Giving your program a signal
c906108c
SS
11296* Returning:: Returning from a function
11297* Calling:: Calling your program's functions
11298* Patching:: Patching your program
11299@end menu
11300
6d2ebf8b 11301@node Assignment
79a6e687 11302@section Assignment to Variables
c906108c
SS
11303
11304@cindex assignment
11305@cindex setting variables
11306To alter the value of a variable, evaluate an assignment expression.
11307@xref{Expressions, ,Expressions}. For example,
11308
474c8240 11309@smallexample
c906108c 11310print x=4
474c8240 11311@end smallexample
c906108c
SS
11312
11313@noindent
11314stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11315value of the assignment expression (which is 4).
c906108c
SS
11316@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11317information on operators in supported languages.
c906108c
SS
11318
11319@kindex set variable
11320@cindex variables, setting
11321If you are not interested in seeing the value of the assignment, use the
11322@code{set} command instead of the @code{print} command. @code{set} is
11323really the same as @code{print} except that the expression's value is
11324not printed and is not put in the value history (@pxref{Value History,
79a6e687 11325,Value History}). The expression is evaluated only for its effects.
c906108c 11326
c906108c
SS
11327If the beginning of the argument string of the @code{set} command
11328appears identical to a @code{set} subcommand, use the @code{set
11329variable} command instead of just @code{set}. This command is identical
11330to @code{set} except for its lack of subcommands. For example, if your
11331program has a variable @code{width}, you get an error if you try to set
11332a new value with just @samp{set width=13}, because @value{GDBN} has the
11333command @code{set width}:
11334
474c8240 11335@smallexample
c906108c
SS
11336(@value{GDBP}) whatis width
11337type = double
11338(@value{GDBP}) p width
11339$4 = 13
11340(@value{GDBP}) set width=47
11341Invalid syntax in expression.
474c8240 11342@end smallexample
c906108c
SS
11343
11344@noindent
11345The invalid expression, of course, is @samp{=47}. In
11346order to actually set the program's variable @code{width}, use
11347
474c8240 11348@smallexample
c906108c 11349(@value{GDBP}) set var width=47
474c8240 11350@end smallexample
53a5351d 11351
c906108c
SS
11352Because the @code{set} command has many subcommands that can conflict
11353with the names of program variables, it is a good idea to use the
11354@code{set variable} command instead of just @code{set}. For example, if
11355your program has a variable @code{g}, you run into problems if you try
11356to set a new value with just @samp{set g=4}, because @value{GDBN} has
11357the command @code{set gnutarget}, abbreviated @code{set g}:
11358
474c8240 11359@smallexample
c906108c
SS
11360@group
11361(@value{GDBP}) whatis g
11362type = double
11363(@value{GDBP}) p g
11364$1 = 1
11365(@value{GDBP}) set g=4
2df3850c 11366(@value{GDBP}) p g
c906108c
SS
11367$2 = 1
11368(@value{GDBP}) r
11369The program being debugged has been started already.
11370Start it from the beginning? (y or n) y
11371Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11372"/home/smith/cc_progs/a.out": can't open to read symbols:
11373 Invalid bfd target.
c906108c
SS
11374(@value{GDBP}) show g
11375The current BFD target is "=4".
11376@end group
474c8240 11377@end smallexample
c906108c
SS
11378
11379@noindent
11380The program variable @code{g} did not change, and you silently set the
11381@code{gnutarget} to an invalid value. In order to set the variable
11382@code{g}, use
11383
474c8240 11384@smallexample
c906108c 11385(@value{GDBP}) set var g=4
474c8240 11386@end smallexample
c906108c
SS
11387
11388@value{GDBN} allows more implicit conversions in assignments than C; you can
11389freely store an integer value into a pointer variable or vice versa,
11390and you can convert any structure to any other structure that is the
11391same length or shorter.
11392@comment FIXME: how do structs align/pad in these conversions?
11393@comment /doc@cygnus.com 18dec1990
11394
11395To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11396construct to generate a value of specified type at a specified address
11397(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11398to memory location @code{0x83040} as an integer (which implies a certain size
11399and representation in memory), and
11400
474c8240 11401@smallexample
c906108c 11402set @{int@}0x83040 = 4
474c8240 11403@end smallexample
c906108c
SS
11404
11405@noindent
11406stores the value 4 into that memory location.
11407
6d2ebf8b 11408@node Jumping
79a6e687 11409@section Continuing at a Different Address
c906108c
SS
11410
11411Ordinarily, when you continue your program, you do so at the place where
11412it stopped, with the @code{continue} command. You can instead continue at
11413an address of your own choosing, with the following commands:
11414
11415@table @code
11416@kindex jump
11417@item jump @var{linespec}
2a25a5ba
EZ
11418@itemx jump @var{location}
11419Resume execution at line @var{linespec} or at address given by
11420@var{location}. Execution stops again immediately if there is a
11421breakpoint there. @xref{Specify Location}, for a description of the
11422different forms of @var{linespec} and @var{location}. It is common
11423practice to use the @code{tbreak} command in conjunction with
11424@code{jump}. @xref{Set Breaks, ,Setting Breakpoints}.
c906108c
SS
11425
11426The @code{jump} command does not change the current stack frame, or
11427the stack pointer, or the contents of any memory location or any
11428register other than the program counter. If line @var{linespec} is in
11429a different function from the one currently executing, the results may
11430be bizarre if the two functions expect different patterns of arguments or
11431of local variables. For this reason, the @code{jump} command requests
11432confirmation if the specified line is not in the function currently
11433executing. However, even bizarre results are predictable if you are
11434well acquainted with the machine-language code of your program.
c906108c
SS
11435@end table
11436
c906108c 11437@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11438On many systems, you can get much the same effect as the @code{jump}
11439command by storing a new value into the register @code{$pc}. The
11440difference is that this does not start your program running; it only
11441changes the address of where it @emph{will} run when you continue. For
11442example,
c906108c 11443
474c8240 11444@smallexample
c906108c 11445set $pc = 0x485
474c8240 11446@end smallexample
c906108c
SS
11447
11448@noindent
11449makes the next @code{continue} command or stepping command execute at
11450address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11451@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11452
11453The most common occasion to use the @code{jump} command is to back
11454up---perhaps with more breakpoints set---over a portion of a program
11455that has already executed, in order to examine its execution in more
11456detail.
11457
c906108c 11458@c @group
6d2ebf8b 11459@node Signaling
79a6e687 11460@section Giving your Program a Signal
9c16f35a 11461@cindex deliver a signal to a program
c906108c
SS
11462
11463@table @code
11464@kindex signal
11465@item signal @var{signal}
11466Resume execution where your program stopped, but immediately give it the
11467signal @var{signal}. @var{signal} can be the name or the number of a
11468signal. For example, on many systems @code{signal 2} and @code{signal
11469SIGINT} are both ways of sending an interrupt signal.
11470
11471Alternatively, if @var{signal} is zero, continue execution without
11472giving a signal. This is useful when your program stopped on account of
11473a signal and would ordinary see the signal when resumed with the
11474@code{continue} command; @samp{signal 0} causes it to resume without a
11475signal.
11476
11477@code{signal} does not repeat when you press @key{RET} a second time
11478after executing the command.
11479@end table
11480@c @end group
11481
11482Invoking the @code{signal} command is not the same as invoking the
11483@code{kill} utility from the shell. Sending a signal with @code{kill}
11484causes @value{GDBN} to decide what to do with the signal depending on
11485the signal handling tables (@pxref{Signals}). The @code{signal} command
11486passes the signal directly to your program.
11487
c906108c 11488
6d2ebf8b 11489@node Returning
79a6e687 11490@section Returning from a Function
c906108c
SS
11491
11492@table @code
11493@cindex returning from a function
11494@kindex return
11495@item return
11496@itemx return @var{expression}
11497You can cancel execution of a function call with the @code{return}
11498command. If you give an
11499@var{expression} argument, its value is used as the function's return
11500value.
11501@end table
11502
11503When you use @code{return}, @value{GDBN} discards the selected stack frame
11504(and all frames within it). You can think of this as making the
11505discarded frame return prematurely. If you wish to specify a value to
11506be returned, give that value as the argument to @code{return}.
11507
11508This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11509Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11510innermost remaining frame. That frame becomes selected. The
11511specified value is stored in the registers used for returning values
11512of functions.
11513
11514The @code{return} command does not resume execution; it leaves the
11515program stopped in the state that would exist if the function had just
11516returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11517and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11518selected stack frame returns naturally.
11519
6d2ebf8b 11520@node Calling
79a6e687 11521@section Calling Program Functions
c906108c 11522
f8568604 11523@table @code
c906108c 11524@cindex calling functions
f8568604
EZ
11525@cindex inferior functions, calling
11526@item print @var{expr}
d3e8051b 11527Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11528@var{expr} may include calls to functions in the program being
11529debugged.
11530
c906108c 11531@kindex call
c906108c
SS
11532@item call @var{expr}
11533Evaluate the expression @var{expr} without displaying @code{void}
11534returned values.
c906108c
SS
11535
11536You can use this variant of the @code{print} command if you want to
f8568604
EZ
11537execute a function from your program that does not return anything
11538(a.k.a.@: @dfn{a void function}), but without cluttering the output
11539with @code{void} returned values that @value{GDBN} will otherwise
11540print. If the result is not void, it is printed and saved in the
11541value history.
11542@end table
11543
9c16f35a
EZ
11544It is possible for the function you call via the @code{print} or
11545@code{call} command to generate a signal (e.g., if there's a bug in
11546the function, or if you passed it incorrect arguments). What happens
11547in that case is controlled by the @code{set unwindonsignal} command.
11548
11549@table @code
11550@item set unwindonsignal
11551@kindex set unwindonsignal
11552@cindex unwind stack in called functions
11553@cindex call dummy stack unwinding
11554Set unwinding of the stack if a signal is received while in a function
11555that @value{GDBN} called in the program being debugged. If set to on,
11556@value{GDBN} unwinds the stack it created for the call and restores
11557the context to what it was before the call. If set to off (the
11558default), @value{GDBN} stops in the frame where the signal was
11559received.
11560
11561@item show unwindonsignal
11562@kindex show unwindonsignal
11563Show the current setting of stack unwinding in the functions called by
11564@value{GDBN}.
11565@end table
11566
f8568604
EZ
11567@cindex weak alias functions
11568Sometimes, a function you wish to call is actually a @dfn{weak alias}
11569for another function. In such case, @value{GDBN} might not pick up
11570the type information, including the types of the function arguments,
11571which causes @value{GDBN} to call the inferior function incorrectly.
11572As a result, the called function will function erroneously and may
11573even crash. A solution to that is to use the name of the aliased
11574function instead.
c906108c 11575
6d2ebf8b 11576@node Patching
79a6e687 11577@section Patching Programs
7a292a7a 11578
c906108c
SS
11579@cindex patching binaries
11580@cindex writing into executables
c906108c 11581@cindex writing into corefiles
c906108c 11582
7a292a7a
SS
11583By default, @value{GDBN} opens the file containing your program's
11584executable code (or the corefile) read-only. This prevents accidental
11585alterations to machine code; but it also prevents you from intentionally
11586patching your program's binary.
c906108c
SS
11587
11588If you'd like to be able to patch the binary, you can specify that
11589explicitly with the @code{set write} command. For example, you might
11590want to turn on internal debugging flags, or even to make emergency
11591repairs.
11592
11593@table @code
11594@kindex set write
11595@item set write on
11596@itemx set write off
7a292a7a
SS
11597If you specify @samp{set write on}, @value{GDBN} opens executable and
11598core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11599off} (the default), @value{GDBN} opens them read-only.
11600
11601If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11602@code{exec-file} or @code{core-file} command) after changing @code{set
11603write}, for your new setting to take effect.
c906108c
SS
11604
11605@item show write
11606@kindex show write
7a292a7a
SS
11607Display whether executable files and core files are opened for writing
11608as well as reading.
c906108c
SS
11609@end table
11610
6d2ebf8b 11611@node GDB Files
c906108c
SS
11612@chapter @value{GDBN} Files
11613
7a292a7a
SS
11614@value{GDBN} needs to know the file name of the program to be debugged,
11615both in order to read its symbol table and in order to start your
11616program. To debug a core dump of a previous run, you must also tell
11617@value{GDBN} the name of the core dump file.
c906108c
SS
11618
11619@menu
11620* Files:: Commands to specify files
5b5d99cf 11621* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11622* Symbol Errors:: Errors reading symbol files
11623@end menu
11624
6d2ebf8b 11625@node Files
79a6e687 11626@section Commands to Specify Files
c906108c 11627
7a292a7a 11628@cindex symbol table
c906108c 11629@cindex core dump file
7a292a7a
SS
11630
11631You may want to specify executable and core dump file names. The usual
11632way to do this is at start-up time, using the arguments to
11633@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11634Out of @value{GDBN}}).
c906108c
SS
11635
11636Occasionally it is necessary to change to a different file during a
397ca115
EZ
11637@value{GDBN} session. Or you may run @value{GDBN} and forget to
11638specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11639via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11640Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11641new files are useful.
c906108c
SS
11642
11643@table @code
11644@cindex executable file
11645@kindex file
11646@item file @var{filename}
11647Use @var{filename} as the program to be debugged. It is read for its
11648symbols and for the contents of pure memory. It is also the program
11649executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11650directory and the file is not found in the @value{GDBN} working directory,
11651@value{GDBN} uses the environment variable @code{PATH} as a list of
11652directories to search, just as the shell does when looking for a program
11653to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11654and your program, using the @code{path} command.
11655
fc8be69e
EZ
11656@cindex unlinked object files
11657@cindex patching object files
11658You can load unlinked object @file{.o} files into @value{GDBN} using
11659the @code{file} command. You will not be able to ``run'' an object
11660file, but you can disassemble functions and inspect variables. Also,
11661if the underlying BFD functionality supports it, you could use
11662@kbd{gdb -write} to patch object files using this technique. Note
11663that @value{GDBN} can neither interpret nor modify relocations in this
11664case, so branches and some initialized variables will appear to go to
11665the wrong place. But this feature is still handy from time to time.
11666
c906108c
SS
11667@item file
11668@code{file} with no argument makes @value{GDBN} discard any information it
11669has on both executable file and the symbol table.
11670
11671@kindex exec-file
11672@item exec-file @r{[} @var{filename} @r{]}
11673Specify that the program to be run (but not the symbol table) is found
11674in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11675if necessary to locate your program. Omitting @var{filename} means to
11676discard information on the executable file.
11677
11678@kindex symbol-file
11679@item symbol-file @r{[} @var{filename} @r{]}
11680Read symbol table information from file @var{filename}. @code{PATH} is
11681searched when necessary. Use the @code{file} command to get both symbol
11682table and program to run from the same file.
11683
11684@code{symbol-file} with no argument clears out @value{GDBN} information on your
11685program's symbol table.
11686
ae5a43e0
DJ
11687The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11688some breakpoints and auto-display expressions. This is because they may
11689contain pointers to the internal data recording symbols and data types,
11690which are part of the old symbol table data being discarded inside
11691@value{GDBN}.
c906108c
SS
11692
11693@code{symbol-file} does not repeat if you press @key{RET} again after
11694executing it once.
11695
11696When @value{GDBN} is configured for a particular environment, it
11697understands debugging information in whatever format is the standard
11698generated for that environment; you may use either a @sc{gnu} compiler, or
11699other compilers that adhere to the local conventions.
c906108c 11700Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11701using @code{@value{NGCC}} you can generate debugging information for
c906108c 11702optimized code.
c906108c
SS
11703
11704For most kinds of object files, with the exception of old SVR3 systems
11705using COFF, the @code{symbol-file} command does not normally read the
11706symbol table in full right away. Instead, it scans the symbol table
11707quickly to find which source files and which symbols are present. The
11708details are read later, one source file at a time, as they are needed.
11709
11710The purpose of this two-stage reading strategy is to make @value{GDBN}
11711start up faster. For the most part, it is invisible except for
11712occasional pauses while the symbol table details for a particular source
11713file are being read. (The @code{set verbose} command can turn these
11714pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11715Warnings and Messages}.)
c906108c 11716
c906108c
SS
11717We have not implemented the two-stage strategy for COFF yet. When the
11718symbol table is stored in COFF format, @code{symbol-file} reads the
11719symbol table data in full right away. Note that ``stabs-in-COFF''
11720still does the two-stage strategy, since the debug info is actually
11721in stabs format.
11722
11723@kindex readnow
11724@cindex reading symbols immediately
11725@cindex symbols, reading immediately
a94ab193
EZ
11726@item symbol-file @var{filename} @r{[} -readnow @r{]}
11727@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11728You can override the @value{GDBN} two-stage strategy for reading symbol
11729tables by using the @samp{-readnow} option with any of the commands that
11730load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11731entire symbol table available.
c906108c 11732
c906108c
SS
11733@c FIXME: for now no mention of directories, since this seems to be in
11734@c flux. 13mar1992 status is that in theory GDB would look either in
11735@c current dir or in same dir as myprog; but issues like competing
11736@c GDB's, or clutter in system dirs, mean that in practice right now
11737@c only current dir is used. FFish says maybe a special GDB hierarchy
11738@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11739@c files.
11740
c906108c 11741@kindex core-file
09d4efe1 11742@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11743@itemx core
c906108c
SS
11744Specify the whereabouts of a core dump file to be used as the ``contents
11745of memory''. Traditionally, core files contain only some parts of the
11746address space of the process that generated them; @value{GDBN} can access the
11747executable file itself for other parts.
11748
11749@code{core-file} with no argument specifies that no core file is
11750to be used.
11751
11752Note that the core file is ignored when your program is actually running
7a292a7a
SS
11753under @value{GDBN}. So, if you have been running your program and you
11754wish to debug a core file instead, you must kill the subprocess in which
11755the program is running. To do this, use the @code{kill} command
79a6e687 11756(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11757
c906108c
SS
11758@kindex add-symbol-file
11759@cindex dynamic linking
11760@item add-symbol-file @var{filename} @var{address}
a94ab193 11761@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11762@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11763The @code{add-symbol-file} command reads additional symbol table
11764information from the file @var{filename}. You would use this command
11765when @var{filename} has been dynamically loaded (by some other means)
11766into the program that is running. @var{address} should be the memory
11767address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11768this out for itself. You can additionally specify an arbitrary number
11769of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11770section name and base address for that section. You can specify any
11771@var{address} as an expression.
c906108c
SS
11772
11773The symbol table of the file @var{filename} is added to the symbol table
11774originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11775@code{add-symbol-file} command any number of times; the new symbol data
11776thus read keeps adding to the old. To discard all old symbol data
11777instead, use the @code{symbol-file} command without any arguments.
c906108c 11778
17d9d558
JB
11779@cindex relocatable object files, reading symbols from
11780@cindex object files, relocatable, reading symbols from
11781@cindex reading symbols from relocatable object files
11782@cindex symbols, reading from relocatable object files
11783@cindex @file{.o} files, reading symbols from
11784Although @var{filename} is typically a shared library file, an
11785executable file, or some other object file which has been fully
11786relocated for loading into a process, you can also load symbolic
11787information from relocatable @file{.o} files, as long as:
11788
11789@itemize @bullet
11790@item
11791the file's symbolic information refers only to linker symbols defined in
11792that file, not to symbols defined by other object files,
11793@item
11794every section the file's symbolic information refers to has actually
11795been loaded into the inferior, as it appears in the file, and
11796@item
11797you can determine the address at which every section was loaded, and
11798provide these to the @code{add-symbol-file} command.
11799@end itemize
11800
11801@noindent
11802Some embedded operating systems, like Sun Chorus and VxWorks, can load
11803relocatable files into an already running program; such systems
11804typically make the requirements above easy to meet. However, it's
11805important to recognize that many native systems use complex link
49efadf5 11806procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11807assembly, for example) that make the requirements difficult to meet. In
11808general, one cannot assume that using @code{add-symbol-file} to read a
11809relocatable object file's symbolic information will have the same effect
11810as linking the relocatable object file into the program in the normal
11811way.
11812
c906108c
SS
11813@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11814
c45da7e6
EZ
11815@kindex add-symbol-file-from-memory
11816@cindex @code{syscall DSO}
11817@cindex load symbols from memory
11818@item add-symbol-file-from-memory @var{address}
11819Load symbols from the given @var{address} in a dynamically loaded
11820object file whose image is mapped directly into the inferior's memory.
11821For example, the Linux kernel maps a @code{syscall DSO} into each
11822process's address space; this DSO provides kernel-specific code for
11823some system calls. The argument can be any expression whose
11824evaluation yields the address of the file's shared object file header.
11825For this command to work, you must have used @code{symbol-file} or
11826@code{exec-file} commands in advance.
11827
09d4efe1
EZ
11828@kindex add-shared-symbol-files
11829@kindex assf
11830@item add-shared-symbol-files @var{library-file}
11831@itemx assf @var{library-file}
11832The @code{add-shared-symbol-files} command can currently be used only
11833in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11834alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11835@value{GDBN} automatically looks for shared libraries, however if
11836@value{GDBN} does not find yours, you can invoke
11837@code{add-shared-symbol-files}. It takes one argument: the shared
11838library's file name. @code{assf} is a shorthand alias for
11839@code{add-shared-symbol-files}.
c906108c 11840
c906108c 11841@kindex section
09d4efe1
EZ
11842@item section @var{section} @var{addr}
11843The @code{section} command changes the base address of the named
11844@var{section} of the exec file to @var{addr}. This can be used if the
11845exec file does not contain section addresses, (such as in the
11846@code{a.out} format), or when the addresses specified in the file
11847itself are wrong. Each section must be changed separately. The
11848@code{info files} command, described below, lists all the sections and
11849their addresses.
c906108c
SS
11850
11851@kindex info files
11852@kindex info target
11853@item info files
11854@itemx info target
7a292a7a
SS
11855@code{info files} and @code{info target} are synonymous; both print the
11856current target (@pxref{Targets, ,Specifying a Debugging Target}),
11857including the names of the executable and core dump files currently in
11858use by @value{GDBN}, and the files from which symbols were loaded. The
11859command @code{help target} lists all possible targets rather than
11860current ones.
11861
fe95c787
MS
11862@kindex maint info sections
11863@item maint info sections
11864Another command that can give you extra information about program sections
11865is @code{maint info sections}. In addition to the section information
11866displayed by @code{info files}, this command displays the flags and file
11867offset of each section in the executable and core dump files. In addition,
11868@code{maint info sections} provides the following command options (which
11869may be arbitrarily combined):
11870
11871@table @code
11872@item ALLOBJ
11873Display sections for all loaded object files, including shared libraries.
11874@item @var{sections}
6600abed 11875Display info only for named @var{sections}.
fe95c787
MS
11876@item @var{section-flags}
11877Display info only for sections for which @var{section-flags} are true.
11878The section flags that @value{GDBN} currently knows about are:
11879@table @code
11880@item ALLOC
11881Section will have space allocated in the process when loaded.
11882Set for all sections except those containing debug information.
11883@item LOAD
11884Section will be loaded from the file into the child process memory.
11885Set for pre-initialized code and data, clear for @code{.bss} sections.
11886@item RELOC
11887Section needs to be relocated before loading.
11888@item READONLY
11889Section cannot be modified by the child process.
11890@item CODE
11891Section contains executable code only.
6600abed 11892@item DATA
fe95c787
MS
11893Section contains data only (no executable code).
11894@item ROM
11895Section will reside in ROM.
11896@item CONSTRUCTOR
11897Section contains data for constructor/destructor lists.
11898@item HAS_CONTENTS
11899Section is not empty.
11900@item NEVER_LOAD
11901An instruction to the linker to not output the section.
11902@item COFF_SHARED_LIBRARY
11903A notification to the linker that the section contains
11904COFF shared library information.
11905@item IS_COMMON
11906Section contains common symbols.
11907@end table
11908@end table
6763aef9 11909@kindex set trust-readonly-sections
9c16f35a 11910@cindex read-only sections
6763aef9
MS
11911@item set trust-readonly-sections on
11912Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11913really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11914In that case, @value{GDBN} can fetch values from these sections
11915out of the object file, rather than from the target program.
11916For some targets (notably embedded ones), this can be a significant
11917enhancement to debugging performance.
11918
11919The default is off.
11920
11921@item set trust-readonly-sections off
15110bc3 11922Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11923the contents of the section might change while the program is running,
11924and must therefore be fetched from the target when needed.
9c16f35a
EZ
11925
11926@item show trust-readonly-sections
11927Show the current setting of trusting readonly sections.
c906108c
SS
11928@end table
11929
11930All file-specifying commands allow both absolute and relative file names
11931as arguments. @value{GDBN} always converts the file name to an absolute file
11932name and remembers it that way.
11933
c906108c 11934@cindex shared libraries
9cceb671
DJ
11935@anchor{Shared Libraries}
11936@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11937and IBM RS/6000 AIX shared libraries.
53a5351d 11938
9cceb671
DJ
11939On MS-Windows @value{GDBN} must be linked with the Expat library to support
11940shared libraries. @xref{Expat}.
11941
c906108c
SS
11942@value{GDBN} automatically loads symbol definitions from shared libraries
11943when you use the @code{run} command, or when you examine a core file.
11944(Before you issue the @code{run} command, @value{GDBN} does not understand
11945references to a function in a shared library, however---unless you are
11946debugging a core file).
53a5351d
JM
11947
11948On HP-UX, if the program loads a library explicitly, @value{GDBN}
11949automatically loads the symbols at the time of the @code{shl_load} call.
11950
c906108c
SS
11951@c FIXME: some @value{GDBN} release may permit some refs to undef
11952@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11953@c FIXME...lib; check this from time to time when updating manual
11954
b7209cb4
FF
11955There are times, however, when you may wish to not automatically load
11956symbol definitions from shared libraries, such as when they are
11957particularly large or there are many of them.
11958
11959To control the automatic loading of shared library symbols, use the
11960commands:
11961
11962@table @code
11963@kindex set auto-solib-add
11964@item set auto-solib-add @var{mode}
11965If @var{mode} is @code{on}, symbols from all shared object libraries
11966will be loaded automatically when the inferior begins execution, you
11967attach to an independently started inferior, or when the dynamic linker
11968informs @value{GDBN} that a new library has been loaded. If @var{mode}
11969is @code{off}, symbols must be loaded manually, using the
11970@code{sharedlibrary} command. The default value is @code{on}.
11971
dcaf7c2c
EZ
11972@cindex memory used for symbol tables
11973If your program uses lots of shared libraries with debug info that
11974takes large amounts of memory, you can decrease the @value{GDBN}
11975memory footprint by preventing it from automatically loading the
11976symbols from shared libraries. To that end, type @kbd{set
11977auto-solib-add off} before running the inferior, then load each
11978library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11979@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11980the libraries whose symbols you want to be loaded.
11981
b7209cb4
FF
11982@kindex show auto-solib-add
11983@item show auto-solib-add
11984Display the current autoloading mode.
11985@end table
11986
c45da7e6 11987@cindex load shared library
b7209cb4
FF
11988To explicitly load shared library symbols, use the @code{sharedlibrary}
11989command:
11990
c906108c
SS
11991@table @code
11992@kindex info sharedlibrary
11993@kindex info share
11994@item info share
11995@itemx info sharedlibrary
11996Print the names of the shared libraries which are currently loaded.
11997
11998@kindex sharedlibrary
11999@kindex share
12000@item sharedlibrary @var{regex}
12001@itemx share @var{regex}
c906108c
SS
12002Load shared object library symbols for files matching a
12003Unix regular expression.
12004As with files loaded automatically, it only loads shared libraries
12005required by your program for a core file or after typing @code{run}. If
12006@var{regex} is omitted all shared libraries required by your program are
12007loaded.
c45da7e6
EZ
12008
12009@item nosharedlibrary
12010@kindex nosharedlibrary
12011@cindex unload symbols from shared libraries
12012Unload all shared object library symbols. This discards all symbols
12013that have been loaded from all shared libraries. Symbols from shared
12014libraries that were loaded by explicit user requests are not
12015discarded.
c906108c
SS
12016@end table
12017
721c2651
EZ
12018Sometimes you may wish that @value{GDBN} stops and gives you control
12019when any of shared library events happen. Use the @code{set
12020stop-on-solib-events} command for this:
12021
12022@table @code
12023@item set stop-on-solib-events
12024@kindex set stop-on-solib-events
12025This command controls whether @value{GDBN} should give you control
12026when the dynamic linker notifies it about some shared library event.
12027The most common event of interest is loading or unloading of a new
12028shared library.
12029
12030@item show stop-on-solib-events
12031@kindex show stop-on-solib-events
12032Show whether @value{GDBN} stops and gives you control when shared
12033library events happen.
12034@end table
12035
f5ebfba0
DJ
12036Shared libraries are also supported in many cross or remote debugging
12037configurations. A copy of the target's libraries need to be present on the
12038host system; they need to be the same as the target libraries, although the
12039copies on the target can be stripped as long as the copies on the host are
12040not.
12041
59b7b46f
EZ
12042@cindex where to look for shared libraries
12043For remote debugging, you need to tell @value{GDBN} where the target
12044libraries are, so that it can load the correct copies---otherwise, it
12045may try to load the host's libraries. @value{GDBN} has two variables
12046to specify the search directories for target libraries.
f5ebfba0
DJ
12047
12048@table @code
59b7b46f 12049@cindex prefix for shared library file names
f822c95b 12050@cindex system root, alternate
f5ebfba0 12051@kindex set solib-absolute-prefix
f822c95b
DJ
12052@kindex set sysroot
12053@item set sysroot @var{path}
12054Use @var{path} as the system root for the program being debugged. Any
12055absolute shared library paths will be prefixed with @var{path}; many
12056runtime loaders store the absolute paths to the shared library in the
12057target program's memory. If you use @code{set sysroot} to find shared
12058libraries, they need to be laid out in the same way that they are on
12059the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
12060under @var{path}.
12061
12062The @code{set solib-absolute-prefix} command is an alias for @code{set
12063sysroot}.
12064
12065@cindex default system root
59b7b46f 12066@cindex @samp{--with-sysroot}
f822c95b
DJ
12067You can set the default system root by using the configure-time
12068@samp{--with-sysroot} option. If the system root is inside
12069@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
12070@samp{--exec-prefix}), then the default system root will be updated
12071automatically if the installed @value{GDBN} is moved to a new
12072location.
12073
12074@kindex show sysroot
12075@item show sysroot
f5ebfba0
DJ
12076Display the current shared library prefix.
12077
12078@kindex set solib-search-path
12079@item set solib-search-path @var{path}
f822c95b
DJ
12080If this variable is set, @var{path} is a colon-separated list of
12081directories to search for shared libraries. @samp{solib-search-path}
12082is used after @samp{sysroot} fails to locate the library, or if the
12083path to the library is relative instead of absolute. If you want to
12084use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12085@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12086finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12087it to a nonexistent directory may interfere with automatic loading
f822c95b 12088of shared library symbols.
f5ebfba0
DJ
12089
12090@kindex show solib-search-path
12091@item show solib-search-path
12092Display the current shared library search path.
12093@end table
12094
5b5d99cf
JB
12095
12096@node Separate Debug Files
12097@section Debugging Information in Separate Files
12098@cindex separate debugging information files
12099@cindex debugging information in separate files
12100@cindex @file{.debug} subdirectories
12101@cindex debugging information directory, global
12102@cindex global debugging information directory
c7e83d54
EZ
12103@cindex build ID, and separate debugging files
12104@cindex @file{.build-id} directory
5b5d99cf
JB
12105
12106@value{GDBN} allows you to put a program's debugging information in a
12107file separate from the executable itself, in a way that allows
12108@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12109Since debugging information can be very large---sometimes larger
12110than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12111information for their executables in separate files, which users can
12112install only when they need to debug a problem.
12113
c7e83d54
EZ
12114@value{GDBN} supports two ways of specifying the separate debug info
12115file:
5b5d99cf
JB
12116
12117@itemize @bullet
12118@item
c7e83d54
EZ
12119The executable contains a @dfn{debug link} that specifies the name of
12120the separate debug info file. The separate debug file's name is
12121usually @file{@var{executable}.debug}, where @var{executable} is the
12122name of the corresponding executable file without leading directories
12123(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12124debug link specifies a CRC32 checksum for the debug file, which
12125@value{GDBN} uses to validate that the executable and the debug file
12126came from the same build.
12127
12128@item
7e27a47a 12129The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12130also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12131only on some operating systems, notably those which use the ELF format
12132for binary files and the @sc{gnu} Binutils.) For more details about
12133this feature, see the description of the @option{--build-id}
12134command-line option in @ref{Options, , Command Line Options, ld.info,
12135The GNU Linker}. The debug info file's name is not specified
12136explicitly by the build ID, but can be computed from the build ID, see
12137below.
d3750b24
JK
12138@end itemize
12139
c7e83d54
EZ
12140Depending on the way the debug info file is specified, @value{GDBN}
12141uses two different methods of looking for the debug file:
d3750b24
JK
12142
12143@itemize @bullet
12144@item
c7e83d54
EZ
12145For the ``debug link'' method, @value{GDBN} looks up the named file in
12146the directory of the executable file, then in a subdirectory of that
12147directory named @file{.debug}, and finally under the global debug
12148directory, in a subdirectory whose name is identical to the leading
12149directories of the executable's absolute file name.
12150
12151@item
83f83d7f 12152For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12153@file{.build-id} subdirectory of the global debug directory for a file
12154named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12155first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12156are the rest of the bit string. (Real build ID strings are 32 or more
12157hex characters, not 10.)
c7e83d54
EZ
12158@end itemize
12159
12160So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12161@file{/usr/bin/ls}, which has a debug link that specifies the
12162file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12163@code{abcdef1234}. If the global debug directory is
12164@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12165debug information files, in the indicated order:
12166
12167@itemize @minus
12168@item
12169@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12170@item
c7e83d54 12171@file{/usr/bin/ls.debug}
5b5d99cf 12172@item
c7e83d54 12173@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12174@item
c7e83d54 12175@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12176@end itemize
5b5d99cf
JB
12177
12178You can set the global debugging info directory's name, and view the
12179name @value{GDBN} is currently using.
12180
12181@table @code
12182
12183@kindex set debug-file-directory
12184@item set debug-file-directory @var{directory}
12185Set the directory which @value{GDBN} searches for separate debugging
12186information files to @var{directory}.
12187
12188@kindex show debug-file-directory
12189@item show debug-file-directory
12190Show the directory @value{GDBN} searches for separate debugging
12191information files.
12192
12193@end table
12194
12195@cindex @code{.gnu_debuglink} sections
c7e83d54 12196@cindex debug link sections
5b5d99cf
JB
12197A debug link is a special section of the executable file named
12198@code{.gnu_debuglink}. The section must contain:
12199
12200@itemize
12201@item
12202A filename, with any leading directory components removed, followed by
12203a zero byte,
12204@item
12205zero to three bytes of padding, as needed to reach the next four-byte
12206boundary within the section, and
12207@item
12208a four-byte CRC checksum, stored in the same endianness used for the
12209executable file itself. The checksum is computed on the debugging
12210information file's full contents by the function given below, passing
12211zero as the @var{crc} argument.
12212@end itemize
12213
12214Any executable file format can carry a debug link, as long as it can
12215contain a section named @code{.gnu_debuglink} with the contents
12216described above.
12217
d3750b24 12218@cindex @code{.note.gnu.build-id} sections
c7e83d54 12219@cindex build ID sections
7e27a47a
EZ
12220The build ID is a special section in the executable file (and in other
12221ELF binary files that @value{GDBN} may consider). This section is
12222often named @code{.note.gnu.build-id}, but that name is not mandatory.
12223It contains unique identification for the built files---the ID remains
12224the same across multiple builds of the same build tree. The default
12225algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12226content for the build ID string. The same section with an identical
12227value is present in the original built binary with symbols, in its
12228stripped variant, and in the separate debugging information file.
d3750b24 12229
5b5d99cf
JB
12230The debugging information file itself should be an ordinary
12231executable, containing a full set of linker symbols, sections, and
12232debugging information. The sections of the debugging information file
c7e83d54
EZ
12233should have the same names, addresses, and sizes as the original file,
12234but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12235in an ordinary executable.
12236
7e27a47a 12237The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12238@samp{objcopy} utility that can produce
12239the separated executable / debugging information file pairs using the
12240following commands:
12241
12242@smallexample
12243@kbd{objcopy --only-keep-debug foo foo.debug}
12244@kbd{strip -g foo}
c7e83d54
EZ
12245@end smallexample
12246
12247@noindent
12248These commands remove the debugging
83f83d7f
JK
12249information from the executable file @file{foo} and place it in the file
12250@file{foo.debug}. You can use the first, second or both methods to link the
12251two files:
12252
12253@itemize @bullet
12254@item
12255The debug link method needs the following additional command to also leave
12256behind a debug link in @file{foo}:
12257
12258@smallexample
12259@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12260@end smallexample
12261
12262Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12263a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12264foo.debug} has the same functionality as the two @code{objcopy} commands and
12265the @code{ln -s} command above, together.
12266
12267@item
12268Build ID gets embedded into the main executable using @code{ld --build-id} or
12269the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12270compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12271utilities (Binutils) package since version 2.18.
83f83d7f
JK
12272@end itemize
12273
12274@noindent
d3750b24 12275
c7e83d54
EZ
12276Since there are many different ways to compute CRC's for the debug
12277link (different polynomials, reversals, byte ordering, etc.), the
12278simplest way to describe the CRC used in @code{.gnu_debuglink}
12279sections is to give the complete code for a function that computes it:
5b5d99cf 12280
4644b6e3 12281@kindex gnu_debuglink_crc32
5b5d99cf
JB
12282@smallexample
12283unsigned long
12284gnu_debuglink_crc32 (unsigned long crc,
12285 unsigned char *buf, size_t len)
12286@{
12287 static const unsigned long crc32_table[256] =
12288 @{
12289 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12290 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12291 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12292 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12293 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12294 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12295 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12296 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12297 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12298 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12299 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12300 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12301 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12302 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12303 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12304 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12305 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12306 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12307 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12308 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12309 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12310 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12311 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12312 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12313 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12314 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12315 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12316 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12317 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12318 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12319 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12320 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12321 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12322 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12323 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12324 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12325 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12326 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12327 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12328 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12329 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12330 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12331 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12332 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12333 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12334 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12335 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12336 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12337 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12338 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12339 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12340 0x2d02ef8d
12341 @};
12342 unsigned char *end;
12343
12344 crc = ~crc & 0xffffffff;
12345 for (end = buf + len; buf < end; ++buf)
12346 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12347 return ~crc & 0xffffffff;
5b5d99cf
JB
12348@}
12349@end smallexample
12350
c7e83d54
EZ
12351@noindent
12352This computation does not apply to the ``build ID'' method.
12353
5b5d99cf 12354
6d2ebf8b 12355@node Symbol Errors
79a6e687 12356@section Errors Reading Symbol Files
c906108c
SS
12357
12358While reading a symbol file, @value{GDBN} occasionally encounters problems,
12359such as symbol types it does not recognize, or known bugs in compiler
12360output. By default, @value{GDBN} does not notify you of such problems, since
12361they are relatively common and primarily of interest to people
12362debugging compilers. If you are interested in seeing information
12363about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12364only one message about each such type of problem, no matter how many
12365times the problem occurs; or you can ask @value{GDBN} to print more messages,
12366to see how many times the problems occur, with the @code{set
79a6e687
BW
12367complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12368Messages}).
c906108c
SS
12369
12370The messages currently printed, and their meanings, include:
12371
12372@table @code
12373@item inner block not inside outer block in @var{symbol}
12374
12375The symbol information shows where symbol scopes begin and end
12376(such as at the start of a function or a block of statements). This
12377error indicates that an inner scope block is not fully contained
12378in its outer scope blocks.
12379
12380@value{GDBN} circumvents the problem by treating the inner block as if it had
12381the same scope as the outer block. In the error message, @var{symbol}
12382may be shown as ``@code{(don't know)}'' if the outer block is not a
12383function.
12384
12385@item block at @var{address} out of order
12386
12387The symbol information for symbol scope blocks should occur in
12388order of increasing addresses. This error indicates that it does not
12389do so.
12390
12391@value{GDBN} does not circumvent this problem, and has trouble
12392locating symbols in the source file whose symbols it is reading. (You
12393can often determine what source file is affected by specifying
79a6e687
BW
12394@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12395Messages}.)
c906108c
SS
12396
12397@item bad block start address patched
12398
12399The symbol information for a symbol scope block has a start address
12400smaller than the address of the preceding source line. This is known
12401to occur in the SunOS 4.1.1 (and earlier) C compiler.
12402
12403@value{GDBN} circumvents the problem by treating the symbol scope block as
12404starting on the previous source line.
12405
12406@item bad string table offset in symbol @var{n}
12407
12408@cindex foo
12409Symbol number @var{n} contains a pointer into the string table which is
12410larger than the size of the string table.
12411
12412@value{GDBN} circumvents the problem by considering the symbol to have the
12413name @code{foo}, which may cause other problems if many symbols end up
12414with this name.
12415
12416@item unknown symbol type @code{0x@var{nn}}
12417
7a292a7a
SS
12418The symbol information contains new data types that @value{GDBN} does
12419not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12420uncomprehended information, in hexadecimal.
c906108c 12421
7a292a7a
SS
12422@value{GDBN} circumvents the error by ignoring this symbol information.
12423This usually allows you to debug your program, though certain symbols
c906108c 12424are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12425debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12426on @code{complain}, then go up to the function @code{read_dbx_symtab}
12427and examine @code{*bufp} to see the symbol.
c906108c
SS
12428
12429@item stub type has NULL name
c906108c 12430
7a292a7a 12431@value{GDBN} could not find the full definition for a struct or class.
c906108c 12432
7a292a7a 12433@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12434The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12435information that recent versions of the compiler should have output for
12436it.
c906108c
SS
12437
12438@item info mismatch between compiler and debugger
12439
12440@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12441
c906108c
SS
12442@end table
12443
6d2ebf8b 12444@node Targets
c906108c 12445@chapter Specifying a Debugging Target
7a292a7a 12446
c906108c 12447@cindex debugging target
c906108c 12448A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12449
12450Often, @value{GDBN} runs in the same host environment as your program;
12451in that case, the debugging target is specified as a side effect when
12452you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12453flexibility---for example, running @value{GDBN} on a physically separate
12454host, or controlling a standalone system over a serial port or a
53a5351d
JM
12455realtime system over a TCP/IP connection---you can use the @code{target}
12456command to specify one of the target types configured for @value{GDBN}
79a6e687 12457(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12458
a8f24a35
EZ
12459@cindex target architecture
12460It is possible to build @value{GDBN} for several different @dfn{target
12461architectures}. When @value{GDBN} is built like that, you can choose
12462one of the available architectures with the @kbd{set architecture}
12463command.
12464
12465@table @code
12466@kindex set architecture
12467@kindex show architecture
12468@item set architecture @var{arch}
12469This command sets the current target architecture to @var{arch}. The
12470value of @var{arch} can be @code{"auto"}, in addition to one of the
12471supported architectures.
12472
12473@item show architecture
12474Show the current target architecture.
9c16f35a
EZ
12475
12476@item set processor
12477@itemx processor
12478@kindex set processor
12479@kindex show processor
12480These are alias commands for, respectively, @code{set architecture}
12481and @code{show architecture}.
a8f24a35
EZ
12482@end table
12483
c906108c
SS
12484@menu
12485* Active Targets:: Active targets
12486* Target Commands:: Commands for managing targets
c906108c 12487* Byte Order:: Choosing target byte order
c906108c
SS
12488@end menu
12489
6d2ebf8b 12490@node Active Targets
79a6e687 12491@section Active Targets
7a292a7a 12492
c906108c
SS
12493@cindex stacking targets
12494@cindex active targets
12495@cindex multiple targets
12496
c906108c 12497There are three classes of targets: processes, core files, and
7a292a7a
SS
12498executable files. @value{GDBN} can work concurrently on up to three
12499active targets, one in each class. This allows you to (for example)
12500start a process and inspect its activity without abandoning your work on
12501a core file.
c906108c
SS
12502
12503For example, if you execute @samp{gdb a.out}, then the executable file
12504@code{a.out} is the only active target. If you designate a core file as
12505well---presumably from a prior run that crashed and coredumped---then
12506@value{GDBN} has two active targets and uses them in tandem, looking
12507first in the corefile target, then in the executable file, to satisfy
12508requests for memory addresses. (Typically, these two classes of target
12509are complementary, since core files contain only a program's
12510read-write memory---variables and so on---plus machine status, while
12511executable files contain only the program text and initialized data.)
c906108c
SS
12512
12513When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12514target as well. When a process target is active, all @value{GDBN}
12515commands requesting memory addresses refer to that target; addresses in
12516an active core file or executable file target are obscured while the
12517process target is active.
c906108c 12518
7a292a7a 12519Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12520core file or executable target (@pxref{Files, ,Commands to Specify
12521Files}). To specify as a target a process that is already running, use
12522the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12523Process}).
c906108c 12524
6d2ebf8b 12525@node Target Commands
79a6e687 12526@section Commands for Managing Targets
c906108c
SS
12527
12528@table @code
12529@item target @var{type} @var{parameters}
7a292a7a
SS
12530Connects the @value{GDBN} host environment to a target machine or
12531process. A target is typically a protocol for talking to debugging
12532facilities. You use the argument @var{type} to specify the type or
12533protocol of the target machine.
c906108c
SS
12534
12535Further @var{parameters} are interpreted by the target protocol, but
12536typically include things like device names or host names to connect
12537with, process numbers, and baud rates.
c906108c
SS
12538
12539The @code{target} command does not repeat if you press @key{RET} again
12540after executing the command.
12541
12542@kindex help target
12543@item help target
12544Displays the names of all targets available. To display targets
12545currently selected, use either @code{info target} or @code{info files}
79a6e687 12546(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12547
12548@item help target @var{name}
12549Describe a particular target, including any parameters necessary to
12550select it.
12551
12552@kindex set gnutarget
12553@item set gnutarget @var{args}
5d161b24 12554@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12555knows whether it is reading an @dfn{executable},
5d161b24
DB
12556a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12557with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12558with @code{gnutarget} the @code{target} refers to a program, not a machine.
12559
d4f3574e 12560@quotation
c906108c
SS
12561@emph{Warning:} To specify a file format with @code{set gnutarget},
12562you must know the actual BFD name.
d4f3574e 12563@end quotation
c906108c 12564
d4f3574e 12565@noindent
79a6e687 12566@xref{Files, , Commands to Specify Files}.
c906108c 12567
5d161b24 12568@kindex show gnutarget
c906108c
SS
12569@item show gnutarget
12570Use the @code{show gnutarget} command to display what file format
12571@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12572@value{GDBN} will determine the file format for each file automatically,
12573and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12574@end table
12575
4644b6e3 12576@cindex common targets
c906108c
SS
12577Here are some common targets (available, or not, depending on the GDB
12578configuration):
c906108c
SS
12579
12580@table @code
4644b6e3 12581@kindex target
c906108c 12582@item target exec @var{program}
4644b6e3 12583@cindex executable file target
c906108c
SS
12584An executable file. @samp{target exec @var{program}} is the same as
12585@samp{exec-file @var{program}}.
12586
c906108c 12587@item target core @var{filename}
4644b6e3 12588@cindex core dump file target
c906108c
SS
12589A core dump file. @samp{target core @var{filename}} is the same as
12590@samp{core-file @var{filename}}.
c906108c 12591
1a10341b 12592@item target remote @var{medium}
4644b6e3 12593@cindex remote target
1a10341b
JB
12594A remote system connected to @value{GDBN} via a serial line or network
12595connection. This command tells @value{GDBN} to use its own remote
12596protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12597
12598For example, if you have a board connected to @file{/dev/ttya} on the
12599machine running @value{GDBN}, you could say:
12600
12601@smallexample
12602target remote /dev/ttya
12603@end smallexample
12604
12605@code{target remote} supports the @code{load} command. This is only
12606useful if you have some other way of getting the stub to the target
12607system, and you can put it somewhere in memory where it won't get
12608clobbered by the download.
c906108c 12609
c906108c 12610@item target sim
4644b6e3 12611@cindex built-in simulator target
2df3850c 12612Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12613In general,
474c8240 12614@smallexample
104c1213
JM
12615 target sim
12616 load
12617 run
474c8240 12618@end smallexample
d4f3574e 12619@noindent
104c1213 12620works; however, you cannot assume that a specific memory map, device
d4f3574e 12621drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12622provide these. For info about any processor-specific simulator details,
12623see the appropriate section in @ref{Embedded Processors, ,Embedded
12624Processors}.
12625
c906108c
SS
12626@end table
12627
104c1213 12628Some configurations may include these targets as well:
c906108c
SS
12629
12630@table @code
12631
c906108c 12632@item target nrom @var{dev}
4644b6e3 12633@cindex NetROM ROM emulator target
c906108c
SS
12634NetROM ROM emulator. This target only supports downloading.
12635
c906108c
SS
12636@end table
12637
5d161b24 12638Different targets are available on different configurations of @value{GDBN};
c906108c 12639your configuration may have more or fewer targets.
c906108c 12640
721c2651
EZ
12641Many remote targets require you to download the executable's code once
12642you've successfully established a connection. You may wish to control
3d00d119
DJ
12643various aspects of this process.
12644
12645@table @code
721c2651
EZ
12646
12647@item set hash
12648@kindex set hash@r{, for remote monitors}
12649@cindex hash mark while downloading
12650This command controls whether a hash mark @samp{#} is displayed while
12651downloading a file to the remote monitor. If on, a hash mark is
12652displayed after each S-record is successfully downloaded to the
12653monitor.
12654
12655@item show hash
12656@kindex show hash@r{, for remote monitors}
12657Show the current status of displaying the hash mark.
12658
12659@item set debug monitor
12660@kindex set debug monitor
12661@cindex display remote monitor communications
12662Enable or disable display of communications messages between
12663@value{GDBN} and the remote monitor.
12664
12665@item show debug monitor
12666@kindex show debug monitor
12667Show the current status of displaying communications between
12668@value{GDBN} and the remote monitor.
a8f24a35 12669@end table
c906108c
SS
12670
12671@table @code
12672
12673@kindex load @var{filename}
12674@item load @var{filename}
c906108c
SS
12675Depending on what remote debugging facilities are configured into
12676@value{GDBN}, the @code{load} command may be available. Where it exists, it
12677is meant to make @var{filename} (an executable) available for debugging
12678on the remote system---by downloading, or dynamic linking, for example.
12679@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12680the @code{add-symbol-file} command.
12681
12682If your @value{GDBN} does not have a @code{load} command, attempting to
12683execute it gets the error message ``@code{You can't do that when your
12684target is @dots{}}''
c906108c
SS
12685
12686The file is loaded at whatever address is specified in the executable.
12687For some object file formats, you can specify the load address when you
12688link the program; for other formats, like a.out, the object file format
12689specifies a fixed address.
12690@c FIXME! This would be a good place for an xref to the GNU linker doc.
12691
68437a39
DJ
12692Depending on the remote side capabilities, @value{GDBN} may be able to
12693load programs into flash memory.
12694
c906108c
SS
12695@code{load} does not repeat if you press @key{RET} again after using it.
12696@end table
12697
6d2ebf8b 12698@node Byte Order
79a6e687 12699@section Choosing Target Byte Order
7a292a7a 12700
c906108c
SS
12701@cindex choosing target byte order
12702@cindex target byte order
c906108c 12703
172c2a43 12704Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12705offer the ability to run either big-endian or little-endian byte
12706orders. Usually the executable or symbol will include a bit to
12707designate the endian-ness, and you will not need to worry about
12708which to use. However, you may still find it useful to adjust
d4f3574e 12709@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12710
12711@table @code
4644b6e3 12712@kindex set endian
c906108c
SS
12713@item set endian big
12714Instruct @value{GDBN} to assume the target is big-endian.
12715
c906108c
SS
12716@item set endian little
12717Instruct @value{GDBN} to assume the target is little-endian.
12718
c906108c
SS
12719@item set endian auto
12720Instruct @value{GDBN} to use the byte order associated with the
12721executable.
12722
12723@item show endian
12724Display @value{GDBN}'s current idea of the target byte order.
12725
12726@end table
12727
12728Note that these commands merely adjust interpretation of symbolic
12729data on the host, and that they have absolutely no effect on the
12730target system.
12731
ea35711c
DJ
12732
12733@node Remote Debugging
12734@chapter Debugging Remote Programs
c906108c
SS
12735@cindex remote debugging
12736
12737If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12738@value{GDBN} in the usual way, it is often useful to use remote debugging.
12739For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12740or on a small system which does not have a general purpose operating system
12741powerful enough to run a full-featured debugger.
12742
12743Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12744to make this work with particular debugging targets. In addition,
5d161b24 12745@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12746but not specific to any particular target system) which you can use if you
12747write the remote stubs---the code that runs on the remote system to
12748communicate with @value{GDBN}.
12749
12750Other remote targets may be available in your
12751configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12752
6b2f586d 12753@menu
07f31aa6 12754* Connecting:: Connecting to a remote target
a6b151f1 12755* File Transfer:: Sending files to a remote system
6b2f586d 12756* Server:: Using the gdbserver program
79a6e687
BW
12757* Remote Configuration:: Remote configuration
12758* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12759@end menu
12760
07f31aa6 12761@node Connecting
79a6e687 12762@section Connecting to a Remote Target
07f31aa6
DJ
12763
12764On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12765your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12766Start up @value{GDBN} as usual, using the name of the local copy of your
12767program as the first argument.
12768
86941c27
JB
12769@cindex @code{target remote}
12770@value{GDBN} can communicate with the target over a serial line, or
12771over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12772each case, @value{GDBN} uses the same protocol for debugging your
12773program; only the medium carrying the debugging packets varies. The
12774@code{target remote} command establishes a connection to the target.
12775Its arguments indicate which medium to use:
12776
12777@table @code
12778
12779@item target remote @var{serial-device}
07f31aa6 12780@cindex serial line, @code{target remote}
86941c27
JB
12781Use @var{serial-device} to communicate with the target. For example,
12782to use a serial line connected to the device named @file{/dev/ttyb}:
12783
12784@smallexample
12785target remote /dev/ttyb
12786@end smallexample
12787
07f31aa6
DJ
12788If you're using a serial line, you may want to give @value{GDBN} the
12789@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12790(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12791@code{target} command.
07f31aa6 12792
86941c27
JB
12793@item target remote @code{@var{host}:@var{port}}
12794@itemx target remote @code{tcp:@var{host}:@var{port}}
12795@cindex @acronym{TCP} port, @code{target remote}
12796Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12797The @var{host} may be either a host name or a numeric @acronym{IP}
12798address; @var{port} must be a decimal number. The @var{host} could be
12799the target machine itself, if it is directly connected to the net, or
12800it might be a terminal server which in turn has a serial line to the
12801target.
07f31aa6 12802
86941c27
JB
12803For example, to connect to port 2828 on a terminal server named
12804@code{manyfarms}:
07f31aa6
DJ
12805
12806@smallexample
12807target remote manyfarms:2828
12808@end smallexample
12809
86941c27
JB
12810If your remote target is actually running on the same machine as your
12811debugger session (e.g.@: a simulator for your target running on the
12812same host), you can omit the hostname. For example, to connect to
12813port 1234 on your local machine:
07f31aa6
DJ
12814
12815@smallexample
12816target remote :1234
12817@end smallexample
12818@noindent
12819
12820Note that the colon is still required here.
12821
86941c27
JB
12822@item target remote @code{udp:@var{host}:@var{port}}
12823@cindex @acronym{UDP} port, @code{target remote}
12824Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12825connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12826
12827@smallexample
12828target remote udp:manyfarms:2828
12829@end smallexample
12830
86941c27
JB
12831When using a @acronym{UDP} connection for remote debugging, you should
12832keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12833can silently drop packets on busy or unreliable networks, which will
12834cause havoc with your debugging session.
12835
66b8c7f6
JB
12836@item target remote | @var{command}
12837@cindex pipe, @code{target remote} to
12838Run @var{command} in the background and communicate with it using a
12839pipe. The @var{command} is a shell command, to be parsed and expanded
12840by the system's command shell, @code{/bin/sh}; it should expect remote
12841protocol packets on its standard input, and send replies on its
12842standard output. You could use this to run a stand-alone simulator
12843that speaks the remote debugging protocol, to make net connections
12844using programs like @code{ssh}, or for other similar tricks.
12845
12846If @var{command} closes its standard output (perhaps by exiting),
12847@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12848program has already exited, this will have no effect.)
12849
86941c27 12850@end table
07f31aa6 12851
86941c27
JB
12852Once the connection has been established, you can use all the usual
12853commands to examine and change data and to step and continue the
12854remote program.
07f31aa6
DJ
12855
12856@cindex interrupting remote programs
12857@cindex remote programs, interrupting
12858Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12859interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12860program. This may or may not succeed, depending in part on the hardware
12861and the serial drivers the remote system uses. If you type the
12862interrupt character once again, @value{GDBN} displays this prompt:
12863
12864@smallexample
12865Interrupted while waiting for the program.
12866Give up (and stop debugging it)? (y or n)
12867@end smallexample
12868
12869If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12870(If you decide you want to try again later, you can use @samp{target
12871remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12872goes back to waiting.
12873
12874@table @code
12875@kindex detach (remote)
12876@item detach
12877When you have finished debugging the remote program, you can use the
12878@code{detach} command to release it from @value{GDBN} control.
12879Detaching from the target normally resumes its execution, but the results
12880will depend on your particular remote stub. After the @code{detach}
12881command, @value{GDBN} is free to connect to another target.
12882
12883@kindex disconnect
12884@item disconnect
12885The @code{disconnect} command behaves like @code{detach}, except that
12886the target is generally not resumed. It will wait for @value{GDBN}
12887(this instance or another one) to connect and continue debugging. After
12888the @code{disconnect} command, @value{GDBN} is again free to connect to
12889another target.
09d4efe1
EZ
12890
12891@cindex send command to remote monitor
fad38dfa
EZ
12892@cindex extend @value{GDBN} for remote targets
12893@cindex add new commands for external monitor
09d4efe1
EZ
12894@kindex monitor
12895@item monitor @var{cmd}
fad38dfa
EZ
12896This command allows you to send arbitrary commands directly to the
12897remote monitor. Since @value{GDBN} doesn't care about the commands it
12898sends like this, this command is the way to extend @value{GDBN}---you
12899can add new commands that only the external monitor will understand
12900and implement.
07f31aa6
DJ
12901@end table
12902
a6b151f1
DJ
12903@node File Transfer
12904@section Sending files to a remote system
12905@cindex remote target, file transfer
12906@cindex file transfer
12907@cindex sending files to remote systems
12908
12909Some remote targets offer the ability to transfer files over the same
12910connection used to communicate with @value{GDBN}. This is convenient
12911for targets accessible through other means, e.g.@: @sc{gnu}/Linux systems
12912running @code{gdbserver} over a network interface. For other targets,
12913e.g.@: embedded devices with only a single serial port, this may be
12914the only way to upload or download files.
12915
12916Not all remote targets support these commands.
12917
12918@table @code
12919@kindex remote put
12920@item remote put @var{hostfile} @var{targetfile}
12921Copy file @var{hostfile} from the host system (the machine running
12922@value{GDBN}) to @var{targetfile} on the target system.
12923
12924@kindex remote get
12925@item remote get @var{targetfile} @var{hostfile}
12926Copy file @var{targetfile} from the target system to @var{hostfile}
12927on the host system.
12928
12929@kindex remote delete
12930@item remote delete @var{targetfile}
12931Delete @var{targetfile} from the target system.
12932
12933@end table
12934
6f05cf9f 12935@node Server
79a6e687 12936@section Using the @code{gdbserver} Program
6f05cf9f
AC
12937
12938@kindex gdbserver
12939@cindex remote connection without stubs
12940@code{gdbserver} is a control program for Unix-like systems, which
12941allows you to connect your program with a remote @value{GDBN} via
12942@code{target remote}---but without linking in the usual debugging stub.
12943
12944@code{gdbserver} is not a complete replacement for the debugging stubs,
12945because it requires essentially the same operating-system facilities
12946that @value{GDBN} itself does. In fact, a system that can run
12947@code{gdbserver} to connect to a remote @value{GDBN} could also run
12948@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12949because it is a much smaller program than @value{GDBN} itself. It is
12950also easier to port than all of @value{GDBN}, so you may be able to get
12951started more quickly on a new system by using @code{gdbserver}.
12952Finally, if you develop code for real-time systems, you may find that
12953the tradeoffs involved in real-time operation make it more convenient to
12954do as much development work as possible on another system, for example
12955by cross-compiling. You can use @code{gdbserver} to make a similar
12956choice for debugging.
12957
12958@value{GDBN} and @code{gdbserver} communicate via either a serial line
12959or a TCP connection, using the standard @value{GDBN} remote serial
12960protocol.
12961
2d717e4f
DJ
12962@quotation
12963@emph{Warning:} @code{gdbserver} does not have any built-in security.
12964Do not run @code{gdbserver} connected to any public network; a
12965@value{GDBN} connection to @code{gdbserver} provides access to the
12966target system with the same privileges as the user running
12967@code{gdbserver}.
12968@end quotation
12969
12970@subsection Running @code{gdbserver}
12971@cindex arguments, to @code{gdbserver}
12972
12973Run @code{gdbserver} on the target system. You need a copy of the
12974program you want to debug, including any libraries it requires.
6f05cf9f
AC
12975@code{gdbserver} does not need your program's symbol table, so you can
12976strip the program if necessary to save space. @value{GDBN} on the host
12977system does all the symbol handling.
12978
12979To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12980the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12981syntax is:
12982
12983@smallexample
12984target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12985@end smallexample
12986
12987@var{comm} is either a device name (to use a serial line) or a TCP
12988hostname and portnumber. For example, to debug Emacs with the argument
12989@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12990@file{/dev/com1}:
12991
12992@smallexample
12993target> gdbserver /dev/com1 emacs foo.txt
12994@end smallexample
12995
12996@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12997with it.
12998
12999To use a TCP connection instead of a serial line:
13000
13001@smallexample
13002target> gdbserver host:2345 emacs foo.txt
13003@end smallexample
13004
13005The only difference from the previous example is the first argument,
13006specifying that you are communicating with the host @value{GDBN} via
13007TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
13008expect a TCP connection from machine @samp{host} to local TCP port 2345.
13009(Currently, the @samp{host} part is ignored.) You can choose any number
13010you want for the port number as long as it does not conflict with any
13011TCP ports already in use on the target system (for example, @code{23} is
13012reserved for @code{telnet}).@footnote{If you choose a port number that
13013conflicts with another service, @code{gdbserver} prints an error message
13014and exits.} You must use the same port number with the host @value{GDBN}
13015@code{target remote} command.
13016
2d717e4f
DJ
13017@subsubsection Attaching to a Running Program
13018
56460a61
DJ
13019On some targets, @code{gdbserver} can also attach to running programs.
13020This is accomplished via the @code{--attach} argument. The syntax is:
13021
13022@smallexample
2d717e4f 13023target> gdbserver --attach @var{comm} @var{pid}
56460a61
DJ
13024@end smallexample
13025
13026@var{pid} is the process ID of a currently running process. It isn't necessary
13027to point @code{gdbserver} at a binary for the running process.
13028
b1fe9455
DJ
13029@pindex pidof
13030@cindex attach to a program by name
13031You can debug processes by name instead of process ID if your target has the
13032@code{pidof} utility:
13033
13034@smallexample
2d717e4f 13035target> gdbserver --attach @var{comm} `pidof @var{program}`
b1fe9455
DJ
13036@end smallexample
13037
f822c95b 13038In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
13039has multiple threads, most versions of @code{pidof} support the
13040@code{-s} option to only return the first process ID.
13041
2d717e4f
DJ
13042@subsubsection Multi-Process Mode for @code{gdbserver}
13043@cindex gdbserver, multiple processes
13044@cindex multiple processes with gdbserver
13045
13046When you connect to @code{gdbserver} using @code{target remote},
13047@code{gdbserver} debugs the specified program only once. When the
13048program exits, or you detach from it, @value{GDBN} closes the connection
13049and @code{gdbserver} exits.
13050
6e6c6f50 13051If you connect using @kbd{target extended-remote}, @code{gdbserver}
2d717e4f
DJ
13052enters multi-process mode. When the debugged program exits, or you
13053detach from it, @value{GDBN} stays connected to @code{gdbserver} even
13054though no program is running. The @code{run} and @code{attach}
13055commands instruct @code{gdbserver} to run or attach to a new program.
13056The @code{run} command uses @code{set remote exec-file} (@pxref{set
13057remote exec-file}) to select the program to run. Command line
13058arguments are supported, except for wildcard expansion and I/O
13059redirection (@pxref{Arguments}).
13060
13061To start @code{gdbserver} without supplying an initial command to run
13062or process ID to attach, use the @option{--multi} command line option.
6e6c6f50 13063Then you can connect using @kbd{target extended-remote} and start
2d717e4f
DJ
13064the program you want to debug.
13065
13066@code{gdbserver} does not automatically exit in multi-process mode.
13067You can terminate it by using @code{monitor exit}
13068(@pxref{Monitor Commands for gdbserver}).
13069
13070@subsubsection Other Command-Line Arguments for @code{gdbserver}
13071
13072You can include @option{--debug} on the @code{gdbserver} command line.
13073@code{gdbserver} will display extra status information about the debugging
13074process. This option is intended for @code{gdbserver} development and
13075for bug reports to the developers.
13076
13077@subsection Connecting to @code{gdbserver}
13078
13079Run @value{GDBN} on the host system.
13080
13081First make sure you have the necessary symbol files. Load symbols for
f822c95b
DJ
13082your application using the @code{file} command before you connect. Use
13083@code{set sysroot} to locate target libraries (unless your @value{GDBN}
2d717e4f 13084was compiled with the correct sysroot using @code{--with-sysroot}).
f822c95b
DJ
13085
13086The symbol file and target libraries must exactly match the executable
13087and libraries on the target, with one exception: the files on the host
13088system should not be stripped, even if the files on the target system
13089are. Mismatched or missing files will lead to confusing results
13090during debugging. On @sc{gnu}/Linux targets, mismatched or missing
13091files may also prevent @code{gdbserver} from debugging multi-threaded
13092programs.
13093
79a6e687 13094Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
13095For TCP connections, you must start up @code{gdbserver} prior to using
13096the @code{target remote} command. Otherwise you may get an error whose
13097text depends on the host system, but which usually looks something like
2d717e4f 13098@samp{Connection refused}. Don't use the @code{load}
397ca115 13099command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 13100already on the target.
07f31aa6 13101
79a6e687 13102@subsection Monitor Commands for @code{gdbserver}
c74d0ad8 13103@cindex monitor commands, for @code{gdbserver}
2d717e4f 13104@anchor{Monitor Commands for gdbserver}
c74d0ad8
DJ
13105
13106During a @value{GDBN} session using @code{gdbserver}, you can use the
13107@code{monitor} command to send special requests to @code{gdbserver}.
2d717e4f 13108Here are the available commands.
c74d0ad8
DJ
13109
13110@table @code
13111@item monitor help
13112List the available monitor commands.
13113
13114@item monitor set debug 0
13115@itemx monitor set debug 1
13116Disable or enable general debugging messages.
13117
13118@item monitor set remote-debug 0
13119@itemx monitor set remote-debug 1
13120Disable or enable specific debugging messages associated with the remote
13121protocol (@pxref{Remote Protocol}).
13122
2d717e4f
DJ
13123@item monitor exit
13124Tell gdbserver to exit immediately. This command should be followed by
13125@code{disconnect} to close the debugging session. @code{gdbserver} will
13126detach from any attached processes and kill any processes it created.
13127Use @code{monitor exit} to terminate @code{gdbserver} at the end
13128of a multi-process mode debug session.
13129
c74d0ad8
DJ
13130@end table
13131
79a6e687
BW
13132@node Remote Configuration
13133@section Remote Configuration
501eef12 13134
9c16f35a
EZ
13135@kindex set remote
13136@kindex show remote
13137This section documents the configuration options available when
13138debugging remote programs. For the options related to the File I/O
fc320d37 13139extensions of the remote protocol, see @ref{system,
9c16f35a 13140system-call-allowed}.
501eef12
AC
13141
13142@table @code
9c16f35a 13143@item set remoteaddresssize @var{bits}
d3e8051b 13144@cindex address size for remote targets
9c16f35a
EZ
13145@cindex bits in remote address
13146Set the maximum size of address in a memory packet to the specified
13147number of bits. @value{GDBN} will mask off the address bits above
13148that number, when it passes addresses to the remote target. The
13149default value is the number of bits in the target's address.
13150
13151@item show remoteaddresssize
13152Show the current value of remote address size in bits.
13153
13154@item set remotebaud @var{n}
13155@cindex baud rate for remote targets
13156Set the baud rate for the remote serial I/O to @var{n} baud. The
13157value is used to set the speed of the serial port used for debugging
13158remote targets.
13159
13160@item show remotebaud
13161Show the current speed of the remote connection.
13162
13163@item set remotebreak
13164@cindex interrupt remote programs
13165@cindex BREAK signal instead of Ctrl-C
9a6253be 13166@anchor{set remotebreak}
9c16f35a 13167If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 13168when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 13169on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13170character instead. The default is off, since most remote systems
13171expect to see @samp{Ctrl-C} as the interrupt signal.
13172
13173@item show remotebreak
13174Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13175interrupt the remote program.
13176
23776285
MR
13177@item set remoteflow on
13178@itemx set remoteflow off
13179@kindex set remoteflow
13180Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13181on the serial port used to communicate to the remote target.
13182
13183@item show remoteflow
13184@kindex show remoteflow
13185Show the current setting of hardware flow control.
13186
9c16f35a
EZ
13187@item set remotelogbase @var{base}
13188Set the base (a.k.a.@: radix) of logging serial protocol
13189communications to @var{base}. Supported values of @var{base} are:
13190@code{ascii}, @code{octal}, and @code{hex}. The default is
13191@code{ascii}.
13192
13193@item show remotelogbase
13194Show the current setting of the radix for logging remote serial
13195protocol.
13196
13197@item set remotelogfile @var{file}
13198@cindex record serial communications on file
13199Record remote serial communications on the named @var{file}. The
13200default is not to record at all.
13201
13202@item show remotelogfile.
13203Show the current setting of the file name on which to record the
13204serial communications.
13205
13206@item set remotetimeout @var{num}
13207@cindex timeout for serial communications
13208@cindex remote timeout
13209Set the timeout limit to wait for the remote target to respond to
13210@var{num} seconds. The default is 2 seconds.
13211
13212@item show remotetimeout
13213Show the current number of seconds to wait for the remote target
13214responses.
13215
13216@cindex limit hardware breakpoints and watchpoints
13217@cindex remote target, limit break- and watchpoints
501eef12
AC
13218@anchor{set remote hardware-watchpoint-limit}
13219@anchor{set remote hardware-breakpoint-limit}
13220@item set remote hardware-watchpoint-limit @var{limit}
13221@itemx set remote hardware-breakpoint-limit @var{limit}
13222Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13223watchpoints. A limit of -1, the default, is treated as unlimited.
2d717e4f
DJ
13224
13225@item set remote exec-file @var{filename}
13226@itemx show remote exec-file
13227@anchor{set remote exec-file}
13228@cindex executable file, for remote target
13229Select the file used for @code{run} with @code{target
13230extended-remote}. This should be set to a filename valid on the
13231target system. If it is not set, the target will use a default
13232filename (e.g.@: the last program run).
501eef12
AC
13233@end table
13234
427c3a89
DJ
13235@cindex remote packets, enabling and disabling
13236The @value{GDBN} remote protocol autodetects the packets supported by
13237your debugging stub. If you need to override the autodetection, you
13238can use these commands to enable or disable individual packets. Each
13239packet can be set to @samp{on} (the remote target supports this
13240packet), @samp{off} (the remote target does not support this packet),
13241or @samp{auto} (detect remote target support for this packet). They
13242all default to @samp{auto}. For more information about each packet,
13243see @ref{Remote Protocol}.
13244
13245During normal use, you should not have to use any of these commands.
13246If you do, that may be a bug in your remote debugging stub, or a bug
13247in @value{GDBN}. You may want to report the problem to the
13248@value{GDBN} developers.
13249
cfa9d6d9
DJ
13250For each packet @var{name}, the command to enable or disable the
13251packet is @code{set remote @var{name}-packet}. The available settings
13252are:
427c3a89 13253
cfa9d6d9 13254@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13255@item Command Name
13256@tab Remote Packet
13257@tab Related Features
13258
cfa9d6d9 13259@item @code{fetch-register}
427c3a89
DJ
13260@tab @code{p}
13261@tab @code{info registers}
13262
cfa9d6d9 13263@item @code{set-register}
427c3a89
DJ
13264@tab @code{P}
13265@tab @code{set}
13266
cfa9d6d9 13267@item @code{binary-download}
427c3a89
DJ
13268@tab @code{X}
13269@tab @code{load}, @code{set}
13270
cfa9d6d9 13271@item @code{read-aux-vector}
427c3a89
DJ
13272@tab @code{qXfer:auxv:read}
13273@tab @code{info auxv}
13274
cfa9d6d9 13275@item @code{symbol-lookup}
427c3a89
DJ
13276@tab @code{qSymbol}
13277@tab Detecting multiple threads
13278
2d717e4f
DJ
13279@item @code{attach}
13280@tab @code{vAttach}
13281@tab @code{attach}
13282
cfa9d6d9 13283@item @code{verbose-resume}
427c3a89
DJ
13284@tab @code{vCont}
13285@tab Stepping or resuming multiple threads
13286
2d717e4f
DJ
13287@item @code{run}
13288@tab @code{vRun}
13289@tab @code{run}
13290
cfa9d6d9 13291@item @code{software-breakpoint}
427c3a89
DJ
13292@tab @code{Z0}
13293@tab @code{break}
13294
cfa9d6d9 13295@item @code{hardware-breakpoint}
427c3a89
DJ
13296@tab @code{Z1}
13297@tab @code{hbreak}
13298
cfa9d6d9 13299@item @code{write-watchpoint}
427c3a89
DJ
13300@tab @code{Z2}
13301@tab @code{watch}
13302
cfa9d6d9 13303@item @code{read-watchpoint}
427c3a89
DJ
13304@tab @code{Z3}
13305@tab @code{rwatch}
13306
cfa9d6d9 13307@item @code{access-watchpoint}
427c3a89
DJ
13308@tab @code{Z4}
13309@tab @code{awatch}
13310
cfa9d6d9
DJ
13311@item @code{target-features}
13312@tab @code{qXfer:features:read}
13313@tab @code{set architecture}
13314
13315@item @code{library-info}
13316@tab @code{qXfer:libraries:read}
13317@tab @code{info sharedlibrary}
13318
13319@item @code{memory-map}
13320@tab @code{qXfer:memory-map:read}
13321@tab @code{info mem}
13322
13323@item @code{read-spu-object}
13324@tab @code{qXfer:spu:read}
13325@tab @code{info spu}
13326
13327@item @code{write-spu-object}
13328@tab @code{qXfer:spu:write}
13329@tab @code{info spu}
13330
13331@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13332@tab @code{qGetTLSAddr}
13333@tab Displaying @code{__thread} variables
13334
13335@item @code{supported-packets}
13336@tab @code{qSupported}
13337@tab Remote communications parameters
13338
cfa9d6d9 13339@item @code{pass-signals}
89be2091
DJ
13340@tab @code{QPassSignals}
13341@tab @code{handle @var{signal}}
13342
a6b151f1
DJ
13343@item @code{hostio-close-packet}
13344@tab @code{vFile:close}
13345@tab @code{remote get}, @code{remote put}
13346
13347@item @code{hostio-open-packet}
13348@tab @code{vFile:open}
13349@tab @code{remote get}, @code{remote put}
13350
13351@item @code{hostio-pread-packet}
13352@tab @code{vFile:pread}
13353@tab @code{remote get}, @code{remote put}
13354
13355@item @code{hostio-pwrite-packet}
13356@tab @code{vFile:pwrite}
13357@tab @code{remote get}, @code{remote put}
13358
13359@item @code{hostio-unlink-packet}
13360@tab @code{vFile:unlink}
13361@tab @code{remote delete}
427c3a89
DJ
13362@end multitable
13363
79a6e687
BW
13364@node Remote Stub
13365@section Implementing a Remote Stub
7a292a7a 13366
8e04817f
AC
13367@cindex debugging stub, example
13368@cindex remote stub, example
13369@cindex stub example, remote debugging
13370The stub files provided with @value{GDBN} implement the target side of the
13371communication protocol, and the @value{GDBN} side is implemented in the
13372@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13373these subroutines to communicate, and ignore the details. (If you're
13374implementing your own stub file, you can still ignore the details: start
13375with one of the existing stub files. @file{sparc-stub.c} is the best
13376organized, and therefore the easiest to read.)
13377
104c1213
JM
13378@cindex remote serial debugging, overview
13379To debug a program running on another machine (the debugging
13380@dfn{target} machine), you must first arrange for all the usual
13381prerequisites for the program to run by itself. For example, for a C
13382program, you need:
c906108c 13383
104c1213
JM
13384@enumerate
13385@item
13386A startup routine to set up the C runtime environment; these usually
13387have a name like @file{crt0}. The startup routine may be supplied by
13388your hardware supplier, or you may have to write your own.
96baa820 13389
5d161b24 13390@item
d4f3574e 13391A C subroutine library to support your program's
104c1213 13392subroutine calls, notably managing input and output.
96baa820 13393
104c1213
JM
13394@item
13395A way of getting your program to the other machine---for example, a
13396download program. These are often supplied by the hardware
13397manufacturer, but you may have to write your own from hardware
13398documentation.
13399@end enumerate
96baa820 13400
104c1213
JM
13401The next step is to arrange for your program to use a serial port to
13402communicate with the machine where @value{GDBN} is running (the @dfn{host}
13403machine). In general terms, the scheme looks like this:
96baa820 13404
104c1213
JM
13405@table @emph
13406@item On the host,
13407@value{GDBN} already understands how to use this protocol; when everything
13408else is set up, you can simply use the @samp{target remote} command
13409(@pxref{Targets,,Specifying a Debugging Target}).
13410
13411@item On the target,
13412you must link with your program a few special-purpose subroutines that
13413implement the @value{GDBN} remote serial protocol. The file containing these
13414subroutines is called a @dfn{debugging stub}.
13415
13416On certain remote targets, you can use an auxiliary program
13417@code{gdbserver} instead of linking a stub into your program.
79a6e687 13418@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13419@end table
96baa820 13420
104c1213
JM
13421The debugging stub is specific to the architecture of the remote
13422machine; for example, use @file{sparc-stub.c} to debug programs on
13423@sc{sparc} boards.
96baa820 13424
104c1213
JM
13425@cindex remote serial stub list
13426These working remote stubs are distributed with @value{GDBN}:
96baa820 13427
104c1213
JM
13428@table @code
13429
13430@item i386-stub.c
41afff9a 13431@cindex @file{i386-stub.c}
104c1213
JM
13432@cindex Intel
13433@cindex i386
13434For Intel 386 and compatible architectures.
13435
13436@item m68k-stub.c
41afff9a 13437@cindex @file{m68k-stub.c}
104c1213
JM
13438@cindex Motorola 680x0
13439@cindex m680x0
13440For Motorola 680x0 architectures.
13441
13442@item sh-stub.c
41afff9a 13443@cindex @file{sh-stub.c}
172c2a43 13444@cindex Renesas
104c1213 13445@cindex SH
172c2a43 13446For Renesas SH architectures.
104c1213
JM
13447
13448@item sparc-stub.c
41afff9a 13449@cindex @file{sparc-stub.c}
104c1213
JM
13450@cindex Sparc
13451For @sc{sparc} architectures.
13452
13453@item sparcl-stub.c
41afff9a 13454@cindex @file{sparcl-stub.c}
104c1213
JM
13455@cindex Fujitsu
13456@cindex SparcLite
13457For Fujitsu @sc{sparclite} architectures.
13458
13459@end table
13460
13461The @file{README} file in the @value{GDBN} distribution may list other
13462recently added stubs.
13463
13464@menu
13465* Stub Contents:: What the stub can do for you
13466* Bootstrapping:: What you must do for the stub
13467* Debug Session:: Putting it all together
104c1213
JM
13468@end menu
13469
6d2ebf8b 13470@node Stub Contents
79a6e687 13471@subsection What the Stub Can Do for You
104c1213
JM
13472
13473@cindex remote serial stub
13474The debugging stub for your architecture supplies these three
13475subroutines:
13476
13477@table @code
13478@item set_debug_traps
4644b6e3 13479@findex set_debug_traps
104c1213
JM
13480@cindex remote serial stub, initialization
13481This routine arranges for @code{handle_exception} to run when your
13482program stops. You must call this subroutine explicitly near the
13483beginning of your program.
13484
13485@item handle_exception
4644b6e3 13486@findex handle_exception
104c1213
JM
13487@cindex remote serial stub, main routine
13488This is the central workhorse, but your program never calls it
13489explicitly---the setup code arranges for @code{handle_exception} to
13490run when a trap is triggered.
13491
13492@code{handle_exception} takes control when your program stops during
13493execution (for example, on a breakpoint), and mediates communications
13494with @value{GDBN} on the host machine. This is where the communications
13495protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13496representative on the target machine. It begins by sending summary
104c1213
JM
13497information on the state of your program, then continues to execute,
13498retrieving and transmitting any information @value{GDBN} needs, until you
13499execute a @value{GDBN} command that makes your program resume; at that point,
13500@code{handle_exception} returns control to your own code on the target
5d161b24 13501machine.
104c1213
JM
13502
13503@item breakpoint
13504@cindex @code{breakpoint} subroutine, remote
13505Use this auxiliary subroutine to make your program contain a
13506breakpoint. Depending on the particular situation, this may be the only
13507way for @value{GDBN} to get control. For instance, if your target
13508machine has some sort of interrupt button, you won't need to call this;
13509pressing the interrupt button transfers control to
13510@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13511simply receiving characters on the serial port may also trigger a trap;
13512again, in that situation, you don't need to call @code{breakpoint} from
13513your own program---simply running @samp{target remote} from the host
5d161b24 13514@value{GDBN} session gets control.
104c1213
JM
13515
13516Call @code{breakpoint} if none of these is true, or if you simply want
13517to make certain your program stops at a predetermined point for the
13518start of your debugging session.
13519@end table
13520
6d2ebf8b 13521@node Bootstrapping
79a6e687 13522@subsection What You Must Do for the Stub
104c1213
JM
13523
13524@cindex remote stub, support routines
13525The debugging stubs that come with @value{GDBN} are set up for a particular
13526chip architecture, but they have no information about the rest of your
13527debugging target machine.
13528
13529First of all you need to tell the stub how to communicate with the
13530serial port.
13531
13532@table @code
13533@item int getDebugChar()
4644b6e3 13534@findex getDebugChar
104c1213
JM
13535Write this subroutine to read a single character from the serial port.
13536It may be identical to @code{getchar} for your target system; a
13537different name is used to allow you to distinguish the two if you wish.
13538
13539@item void putDebugChar(int)
4644b6e3 13540@findex putDebugChar
104c1213 13541Write this subroutine to write a single character to the serial port.
5d161b24 13542It may be identical to @code{putchar} for your target system; a
104c1213
JM
13543different name is used to allow you to distinguish the two if you wish.
13544@end table
13545
13546@cindex control C, and remote debugging
13547@cindex interrupting remote targets
13548If you want @value{GDBN} to be able to stop your program while it is
13549running, you need to use an interrupt-driven serial driver, and arrange
13550for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13551character). That is the character which @value{GDBN} uses to tell the
13552remote system to stop.
13553
13554Getting the debugging target to return the proper status to @value{GDBN}
13555probably requires changes to the standard stub; one quick and dirty way
13556is to just execute a breakpoint instruction (the ``dirty'' part is that
13557@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13558
13559Other routines you need to supply are:
13560
13561@table @code
13562@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13563@findex exceptionHandler
104c1213
JM
13564Write this function to install @var{exception_address} in the exception
13565handling tables. You need to do this because the stub does not have any
13566way of knowing what the exception handling tables on your target system
13567are like (for example, the processor's table might be in @sc{rom},
13568containing entries which point to a table in @sc{ram}).
13569@var{exception_number} is the exception number which should be changed;
13570its meaning is architecture-dependent (for example, different numbers
13571might represent divide by zero, misaligned access, etc). When this
13572exception occurs, control should be transferred directly to
13573@var{exception_address}, and the processor state (stack, registers,
13574and so on) should be just as it is when a processor exception occurs. So if
13575you want to use a jump instruction to reach @var{exception_address}, it
13576should be a simple jump, not a jump to subroutine.
13577
13578For the 386, @var{exception_address} should be installed as an interrupt
13579gate so that interrupts are masked while the handler runs. The gate
13580should be at privilege level 0 (the most privileged level). The
13581@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13582help from @code{exceptionHandler}.
13583
13584@item void flush_i_cache()
4644b6e3 13585@findex flush_i_cache
d4f3574e 13586On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13587instruction cache, if any, on your target machine. If there is no
13588instruction cache, this subroutine may be a no-op.
13589
13590On target machines that have instruction caches, @value{GDBN} requires this
13591function to make certain that the state of your program is stable.
13592@end table
13593
13594@noindent
13595You must also make sure this library routine is available:
13596
13597@table @code
13598@item void *memset(void *, int, int)
4644b6e3 13599@findex memset
104c1213
JM
13600This is the standard library function @code{memset} that sets an area of
13601memory to a known value. If you have one of the free versions of
13602@code{libc.a}, @code{memset} can be found there; otherwise, you must
13603either obtain it from your hardware manufacturer, or write your own.
13604@end table
13605
13606If you do not use the GNU C compiler, you may need other standard
13607library subroutines as well; this varies from one stub to another,
13608but in general the stubs are likely to use any of the common library
e22ea452 13609subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13610
13611
6d2ebf8b 13612@node Debug Session
79a6e687 13613@subsection Putting it All Together
104c1213
JM
13614
13615@cindex remote serial debugging summary
13616In summary, when your program is ready to debug, you must follow these
13617steps.
13618
13619@enumerate
13620@item
6d2ebf8b 13621Make sure you have defined the supporting low-level routines
79a6e687 13622(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13623@display
13624@code{getDebugChar}, @code{putDebugChar},
13625@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13626@end display
13627
13628@item
13629Insert these lines near the top of your program:
13630
474c8240 13631@smallexample
104c1213
JM
13632set_debug_traps();
13633breakpoint();
474c8240 13634@end smallexample
104c1213
JM
13635
13636@item
13637For the 680x0 stub only, you need to provide a variable called
13638@code{exceptionHook}. Normally you just use:
13639
474c8240 13640@smallexample
104c1213 13641void (*exceptionHook)() = 0;
474c8240 13642@end smallexample
104c1213 13643
d4f3574e 13644@noindent
104c1213 13645but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13646function in your program, that function is called when
104c1213
JM
13647@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13648error). The function indicated by @code{exceptionHook} is called with
13649one parameter: an @code{int} which is the exception number.
13650
13651@item
13652Compile and link together: your program, the @value{GDBN} debugging stub for
13653your target architecture, and the supporting subroutines.
13654
13655@item
13656Make sure you have a serial connection between your target machine and
13657the @value{GDBN} host, and identify the serial port on the host.
13658
13659@item
13660@c The "remote" target now provides a `load' command, so we should
13661@c document that. FIXME.
13662Download your program to your target machine (or get it there by
13663whatever means the manufacturer provides), and start it.
13664
13665@item
07f31aa6 13666Start @value{GDBN} on the host, and connect to the target
79a6e687 13667(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13668
104c1213
JM
13669@end enumerate
13670
8e04817f
AC
13671@node Configurations
13672@chapter Configuration-Specific Information
104c1213 13673
8e04817f
AC
13674While nearly all @value{GDBN} commands are available for all native and
13675cross versions of the debugger, there are some exceptions. This chapter
13676describes things that are only available in certain configurations.
104c1213 13677
8e04817f
AC
13678There are three major categories of configurations: native
13679configurations, where the host and target are the same, embedded
13680operating system configurations, which are usually the same for several
13681different processor architectures, and bare embedded processors, which
13682are quite different from each other.
104c1213 13683
8e04817f
AC
13684@menu
13685* Native::
13686* Embedded OS::
13687* Embedded Processors::
13688* Architectures::
13689@end menu
104c1213 13690
8e04817f
AC
13691@node Native
13692@section Native
104c1213 13693
8e04817f
AC
13694This section describes details specific to particular native
13695configurations.
6cf7e474 13696
8e04817f
AC
13697@menu
13698* HP-UX:: HP-UX
7561d450 13699* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13700* SVR4 Process Information:: SVR4 process information
13701* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13702* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13703* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13704* Neutrino:: Features specific to QNX Neutrino
8e04817f 13705@end menu
6cf7e474 13706
8e04817f
AC
13707@node HP-UX
13708@subsection HP-UX
104c1213 13709
8e04817f
AC
13710On HP-UX systems, if you refer to a function or variable name that
13711begins with a dollar sign, @value{GDBN} searches for a user or system
13712name first, before it searches for a convenience variable.
104c1213 13713
9c16f35a 13714
7561d450
MK
13715@node BSD libkvm Interface
13716@subsection BSD libkvm Interface
13717
13718@cindex libkvm
13719@cindex kernel memory image
13720@cindex kernel crash dump
13721
13722BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13723interface that provides a uniform interface for accessing kernel virtual
13724memory images, including live systems and crash dumps. @value{GDBN}
13725uses this interface to allow you to debug live kernels and kernel crash
13726dumps on many native BSD configurations. This is implemented as a
13727special @code{kvm} debugging target. For debugging a live system, load
13728the currently running kernel into @value{GDBN} and connect to the
13729@code{kvm} target:
13730
13731@smallexample
13732(@value{GDBP}) @b{target kvm}
13733@end smallexample
13734
13735For debugging crash dumps, provide the file name of the crash dump as an
13736argument:
13737
13738@smallexample
13739(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13740@end smallexample
13741
13742Once connected to the @code{kvm} target, the following commands are
13743available:
13744
13745@table @code
13746@kindex kvm
13747@item kvm pcb
721c2651 13748Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13749
13750@item kvm proc
13751Set current context from proc address. This command isn't available on
13752modern FreeBSD systems.
13753@end table
13754
8e04817f 13755@node SVR4 Process Information
79a6e687 13756@subsection SVR4 Process Information
60bf7e09
EZ
13757@cindex /proc
13758@cindex examine process image
13759@cindex process info via @file{/proc}
104c1213 13760
60bf7e09
EZ
13761Many versions of SVR4 and compatible systems provide a facility called
13762@samp{/proc} that can be used to examine the image of a running
13763process using file-system subroutines. If @value{GDBN} is configured
13764for an operating system with this facility, the command @code{info
13765proc} is available to report information about the process running
13766your program, or about any process running on your system. @code{info
13767proc} works only on SVR4 systems that include the @code{procfs} code.
13768This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13769Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13770
8e04817f
AC
13771@table @code
13772@kindex info proc
60bf7e09 13773@cindex process ID
8e04817f 13774@item info proc
60bf7e09
EZ
13775@itemx info proc @var{process-id}
13776Summarize available information about any running process. If a
13777process ID is specified by @var{process-id}, display information about
13778that process; otherwise display information about the program being
13779debugged. The summary includes the debugged process ID, the command
13780line used to invoke it, its current working directory, and its
13781executable file's absolute file name.
13782
13783On some systems, @var{process-id} can be of the form
13784@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13785within a process. If the optional @var{pid} part is missing, it means
13786a thread from the process being debugged (the leading @samp{/} still
13787needs to be present, or else @value{GDBN} will interpret the number as
13788a process ID rather than a thread ID).
6cf7e474 13789
8e04817f 13790@item info proc mappings
60bf7e09
EZ
13791@cindex memory address space mappings
13792Report the memory address space ranges accessible in the program, with
13793information on whether the process has read, write, or execute access
13794rights to each range. On @sc{gnu}/Linux systems, each memory range
13795includes the object file which is mapped to that range, instead of the
13796memory access rights to that range.
13797
13798@item info proc stat
13799@itemx info proc status
13800@cindex process detailed status information
13801These subcommands are specific to @sc{gnu}/Linux systems. They show
13802the process-related information, including the user ID and group ID;
13803how many threads are there in the process; its virtual memory usage;
13804the signals that are pending, blocked, and ignored; its TTY; its
13805consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13806value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13807(type @kbd{man 5 proc} from your shell prompt).
13808
13809@item info proc all
13810Show all the information about the process described under all of the
13811above @code{info proc} subcommands.
13812
8e04817f
AC
13813@ignore
13814@comment These sub-options of 'info proc' were not included when
13815@comment procfs.c was re-written. Keep their descriptions around
13816@comment against the day when someone finds the time to put them back in.
13817@kindex info proc times
13818@item info proc times
13819Starting time, user CPU time, and system CPU time for your program and
13820its children.
6cf7e474 13821
8e04817f
AC
13822@kindex info proc id
13823@item info proc id
13824Report on the process IDs related to your program: its own process ID,
13825the ID of its parent, the process group ID, and the session ID.
8e04817f 13826@end ignore
721c2651
EZ
13827
13828@item set procfs-trace
13829@kindex set procfs-trace
13830@cindex @code{procfs} API calls
13831This command enables and disables tracing of @code{procfs} API calls.
13832
13833@item show procfs-trace
13834@kindex show procfs-trace
13835Show the current state of @code{procfs} API call tracing.
13836
13837@item set procfs-file @var{file}
13838@kindex set procfs-file
13839Tell @value{GDBN} to write @code{procfs} API trace to the named
13840@var{file}. @value{GDBN} appends the trace info to the previous
13841contents of the file. The default is to display the trace on the
13842standard output.
13843
13844@item show procfs-file
13845@kindex show procfs-file
13846Show the file to which @code{procfs} API trace is written.
13847
13848@item proc-trace-entry
13849@itemx proc-trace-exit
13850@itemx proc-untrace-entry
13851@itemx proc-untrace-exit
13852@kindex proc-trace-entry
13853@kindex proc-trace-exit
13854@kindex proc-untrace-entry
13855@kindex proc-untrace-exit
13856These commands enable and disable tracing of entries into and exits
13857from the @code{syscall} interface.
13858
13859@item info pidlist
13860@kindex info pidlist
13861@cindex process list, QNX Neutrino
13862For QNX Neutrino only, this command displays the list of all the
13863processes and all the threads within each process.
13864
13865@item info meminfo
13866@kindex info meminfo
13867@cindex mapinfo list, QNX Neutrino
13868For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13869@end table
104c1213 13870
8e04817f
AC
13871@node DJGPP Native
13872@subsection Features for Debugging @sc{djgpp} Programs
13873@cindex @sc{djgpp} debugging
13874@cindex native @sc{djgpp} debugging
13875@cindex MS-DOS-specific commands
104c1213 13876
514c4d71
EZ
13877@cindex DPMI
13878@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13879MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13880that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13881top of real-mode DOS systems and their emulations.
104c1213 13882
8e04817f
AC
13883@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13884defines a few commands specific to the @sc{djgpp} port. This
13885subsection describes those commands.
104c1213 13886
8e04817f
AC
13887@table @code
13888@kindex info dos
13889@item info dos
13890This is a prefix of @sc{djgpp}-specific commands which print
13891information about the target system and important OS structures.
f1251bdd 13892
8e04817f
AC
13893@kindex sysinfo
13894@cindex MS-DOS system info
13895@cindex free memory information (MS-DOS)
13896@item info dos sysinfo
13897This command displays assorted information about the underlying
13898platform: the CPU type and features, the OS version and flavor, the
13899DPMI version, and the available conventional and DPMI memory.
104c1213 13900
8e04817f
AC
13901@cindex GDT
13902@cindex LDT
13903@cindex IDT
13904@cindex segment descriptor tables
13905@cindex descriptor tables display
13906@item info dos gdt
13907@itemx info dos ldt
13908@itemx info dos idt
13909These 3 commands display entries from, respectively, Global, Local,
13910and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13911tables are data structures which store a descriptor for each segment
13912that is currently in use. The segment's selector is an index into a
13913descriptor table; the table entry for that index holds the
13914descriptor's base address and limit, and its attributes and access
13915rights.
104c1213 13916
8e04817f
AC
13917A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13918segment (used for both data and the stack), and a DOS segment (which
13919allows access to DOS/BIOS data structures and absolute addresses in
13920conventional memory). However, the DPMI host will usually define
13921additional segments in order to support the DPMI environment.
d4f3574e 13922
8e04817f
AC
13923@cindex garbled pointers
13924These commands allow to display entries from the descriptor tables.
13925Without an argument, all entries from the specified table are
13926displayed. An argument, which should be an integer expression, means
13927display a single entry whose index is given by the argument. For
13928example, here's a convenient way to display information about the
13929debugged program's data segment:
104c1213 13930
8e04817f
AC
13931@smallexample
13932@exdent @code{(@value{GDBP}) info dos ldt $ds}
13933@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13934@end smallexample
104c1213 13935
8e04817f
AC
13936@noindent
13937This comes in handy when you want to see whether a pointer is outside
13938the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13939
8e04817f
AC
13940@cindex page tables display (MS-DOS)
13941@item info dos pde
13942@itemx info dos pte
13943These two commands display entries from, respectively, the Page
13944Directory and the Page Tables. Page Directories and Page Tables are
13945data structures which control how virtual memory addresses are mapped
13946into physical addresses. A Page Table includes an entry for every
13947page of memory that is mapped into the program's address space; there
13948may be several Page Tables, each one holding up to 4096 entries. A
13949Page Directory has up to 4096 entries, one each for every Page Table
13950that is currently in use.
104c1213 13951
8e04817f
AC
13952Without an argument, @kbd{info dos pde} displays the entire Page
13953Directory, and @kbd{info dos pte} displays all the entries in all of
13954the Page Tables. An argument, an integer expression, given to the
13955@kbd{info dos pde} command means display only that entry from the Page
13956Directory table. An argument given to the @kbd{info dos pte} command
13957means display entries from a single Page Table, the one pointed to by
13958the specified entry in the Page Directory.
104c1213 13959
8e04817f
AC
13960@cindex direct memory access (DMA) on MS-DOS
13961These commands are useful when your program uses @dfn{DMA} (Direct
13962Memory Access), which needs physical addresses to program the DMA
13963controller.
104c1213 13964
8e04817f 13965These commands are supported only with some DPMI servers.
104c1213 13966
8e04817f
AC
13967@cindex physical address from linear address
13968@item info dos address-pte @var{addr}
13969This command displays the Page Table entry for a specified linear
514c4d71
EZ
13970address. The argument @var{addr} is a linear address which should
13971already have the appropriate segment's base address added to it,
13972because this command accepts addresses which may belong to @emph{any}
13973segment. For example, here's how to display the Page Table entry for
13974the page where a variable @code{i} is stored:
104c1213 13975
b383017d 13976@smallexample
8e04817f
AC
13977@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13978@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13979@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13980@end smallexample
104c1213 13981
8e04817f
AC
13982@noindent
13983This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13984whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13985attributes of that page.
104c1213 13986
8e04817f
AC
13987Note that you must cast the addresses of variables to a @code{char *},
13988since otherwise the value of @code{__djgpp_base_address}, the base
13989address of all variables and functions in a @sc{djgpp} program, will
13990be added using the rules of C pointer arithmetics: if @code{i} is
13991declared an @code{int}, @value{GDBN} will add 4 times the value of
13992@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13993
8e04817f
AC
13994Here's another example, it displays the Page Table entry for the
13995transfer buffer:
104c1213 13996
8e04817f
AC
13997@smallexample
13998@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13999@exdent @code{Page Table entry for address 0x29110:}
14000@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
14001@end smallexample
104c1213 14002
8e04817f
AC
14003@noindent
14004(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
140053rd member of the @code{_go32_info_block} structure.) The output
14006clearly shows that this DPMI server maps the addresses in conventional
14007memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
14008linear (@code{0x29110}) addresses are identical.
104c1213 14009
8e04817f
AC
14010This command is supported only with some DPMI servers.
14011@end table
104c1213 14012
c45da7e6 14013@cindex DOS serial data link, remote debugging
a8f24a35
EZ
14014In addition to native debugging, the DJGPP port supports remote
14015debugging via a serial data link. The following commands are specific
14016to remote serial debugging in the DJGPP port of @value{GDBN}.
14017
14018@table @code
14019@kindex set com1base
14020@kindex set com1irq
14021@kindex set com2base
14022@kindex set com2irq
14023@kindex set com3base
14024@kindex set com3irq
14025@kindex set com4base
14026@kindex set com4irq
14027@item set com1base @var{addr}
14028This command sets the base I/O port address of the @file{COM1} serial
14029port.
14030
14031@item set com1irq @var{irq}
14032This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
14033for the @file{COM1} serial port.
14034
14035There are similar commands @samp{set com2base}, @samp{set com3irq},
14036etc.@: for setting the port address and the @code{IRQ} lines for the
14037other 3 COM ports.
14038
14039@kindex show com1base
14040@kindex show com1irq
14041@kindex show com2base
14042@kindex show com2irq
14043@kindex show com3base
14044@kindex show com3irq
14045@kindex show com4base
14046@kindex show com4irq
14047The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
14048display the current settings of the base address and the @code{IRQ}
14049lines used by the COM ports.
c45da7e6
EZ
14050
14051@item info serial
14052@kindex info serial
14053@cindex DOS serial port status
14054This command prints the status of the 4 DOS serial ports. For each
14055port, it prints whether it's active or not, its I/O base address and
14056IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
14057counts of various errors encountered so far.
a8f24a35
EZ
14058@end table
14059
14060
78c47bea 14061@node Cygwin Native
79a6e687 14062@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
14063@cindex MS Windows debugging
14064@cindex native Cygwin debugging
14065@cindex Cygwin-specific commands
14066
be448670 14067@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
14068DLLs with and without symbolic debugging information. There are various
14069additional Cygwin-specific commands, described in this section.
14070Working with DLLs that have no debugging symbols is described in
14071@ref{Non-debug DLL Symbols}.
78c47bea
PM
14072
14073@table @code
14074@kindex info w32
14075@item info w32
db2e3e2e 14076This is a prefix of MS Windows-specific commands which print
78c47bea
PM
14077information about the target system and important OS structures.
14078
14079@item info w32 selector
14080This command displays information returned by
14081the Win32 API @code{GetThreadSelectorEntry} function.
14082It takes an optional argument that is evaluated to
14083a long value to give the information about this given selector.
14084Without argument, this command displays information
d3e8051b 14085about the six segment registers.
78c47bea
PM
14086
14087@kindex info dll
14088@item info dll
db2e3e2e 14089This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
14090
14091@kindex dll-symbols
14092@item dll-symbols
14093This command loads symbols from a dll similarly to
14094add-sym command but without the need to specify a base address.
14095
be90c084 14096@kindex set cygwin-exceptions
e16b02ee
EZ
14097@cindex debugging the Cygwin DLL
14098@cindex Cygwin DLL, debugging
be90c084 14099@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
14100If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
14101happen inside the Cygwin DLL. If @var{mode} is @code{off},
14102@value{GDBN} will delay recognition of exceptions, and may ignore some
14103exceptions which seem to be caused by internal Cygwin DLL
14104``bookkeeping''. This option is meant primarily for debugging the
14105Cygwin DLL itself; the default value is @code{off} to avoid annoying
14106@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
14107
14108@kindex show cygwin-exceptions
14109@item show cygwin-exceptions
e16b02ee
EZ
14110Displays whether @value{GDBN} will break on exceptions that happen
14111inside the Cygwin DLL itself.
be90c084 14112
b383017d 14113@kindex set new-console
78c47bea 14114@item set new-console @var{mode}
b383017d 14115If @var{mode} is @code{on} the debuggee will
78c47bea
PM
14116be started in a new console on next start.
14117If @var{mode} is @code{off}i, the debuggee will
14118be started in the same console as the debugger.
14119
14120@kindex show new-console
14121@item show new-console
14122Displays whether a new console is used
14123when the debuggee is started.
14124
14125@kindex set new-group
14126@item set new-group @var{mode}
14127This boolean value controls whether the debuggee should
14128start a new group or stay in the same group as the debugger.
14129This affects the way the Windows OS handles
c8aa23ab 14130@samp{Ctrl-C}.
78c47bea
PM
14131
14132@kindex show new-group
14133@item show new-group
14134Displays current value of new-group boolean.
14135
14136@kindex set debugevents
14137@item set debugevents
219eec71
EZ
14138This boolean value adds debug output concerning kernel events related
14139to the debuggee seen by the debugger. This includes events that
14140signal thread and process creation and exit, DLL loading and
14141unloading, console interrupts, and debugging messages produced by the
14142Windows @code{OutputDebugString} API call.
78c47bea
PM
14143
14144@kindex set debugexec
14145@item set debugexec
b383017d 14146This boolean value adds debug output concerning execute events
219eec71 14147(such as resume thread) seen by the debugger.
78c47bea
PM
14148
14149@kindex set debugexceptions
14150@item set debugexceptions
219eec71
EZ
14151This boolean value adds debug output concerning exceptions in the
14152debuggee seen by the debugger.
78c47bea
PM
14153
14154@kindex set debugmemory
14155@item set debugmemory
219eec71
EZ
14156This boolean value adds debug output concerning debuggee memory reads
14157and writes by the debugger.
78c47bea
PM
14158
14159@kindex set shell
14160@item set shell
14161This boolean values specifies whether the debuggee is called
14162via a shell or directly (default value is on).
14163
14164@kindex show shell
14165@item show shell
14166Displays if the debuggee will be started with a shell.
14167
14168@end table
14169
be448670 14170@menu
79a6e687 14171* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
14172@end menu
14173
79a6e687
BW
14174@node Non-debug DLL Symbols
14175@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
14176@cindex DLLs with no debugging symbols
14177@cindex Minimal symbols and DLLs
14178
14179Very often on windows, some of the DLLs that your program relies on do
14180not include symbolic debugging information (for example,
db2e3e2e 14181@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 14182symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 14183information contained in the DLL's export table. This section
be448670
CF
14184describes working with such symbols, known internally to @value{GDBN} as
14185``minimal symbols''.
14186
14187Note that before the debugged program has started execution, no DLLs
db2e3e2e 14188will have been loaded. The easiest way around this problem is simply to
be448670 14189start the program --- either by setting a breakpoint or letting the
db2e3e2e 14190program run once to completion. It is also possible to force
be448670 14191@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 14192see the shared library information in @ref{Files}, or the
db2e3e2e 14193@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
14194explicitly loading symbols from a DLL with no debugging information will
14195cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
14196which may adversely affect symbol lookup performance.
14197
79a6e687 14198@subsubsection DLL Name Prefixes
be448670
CF
14199
14200In keeping with the naming conventions used by the Microsoft debugging
14201tools, DLL export symbols are made available with a prefix based on the
14202DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
14203also entered into the symbol table, so @code{CreateFileA} is often
14204sufficient. In some cases there will be name clashes within a program
14205(particularly if the executable itself includes full debugging symbols)
14206necessitating the use of the fully qualified name when referring to the
14207contents of the DLL. Use single-quotes around the name to avoid the
14208exclamation mark (``!'') being interpreted as a language operator.
14209
14210Note that the internal name of the DLL may be all upper-case, even
14211though the file name of the DLL is lower-case, or vice-versa. Since
14212symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14213some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14214@code{info variables} commands or even @code{maint print msymbols}
14215(@pxref{Symbols}). Here's an example:
be448670
CF
14216
14217@smallexample
f7dc1244 14218(@value{GDBP}) info function CreateFileA
be448670
CF
14219All functions matching regular expression "CreateFileA":
14220
14221Non-debugging symbols:
142220x77e885f4 CreateFileA
142230x77e885f4 KERNEL32!CreateFileA
14224@end smallexample
14225
14226@smallexample
f7dc1244 14227(@value{GDBP}) info function !
be448670
CF
14228All functions matching regular expression "!":
14229
14230Non-debugging symbols:
142310x6100114c cygwin1!__assert
142320x61004034 cygwin1!_dll_crt0@@0
142330x61004240 cygwin1!dll_crt0(per_process *)
14234[etc...]
14235@end smallexample
14236
79a6e687 14237@subsubsection Working with Minimal Symbols
be448670
CF
14238
14239Symbols extracted from a DLL's export table do not contain very much
14240type information. All that @value{GDBN} can do is guess whether a symbol
14241refers to a function or variable depending on the linker section that
14242contains the symbol. Also note that the actual contents of the memory
14243contained in a DLL are not available unless the program is running. This
14244means that you cannot examine the contents of a variable or disassemble
14245a function within a DLL without a running program.
14246
14247Variables are generally treated as pointers and dereferenced
14248automatically. For this reason, it is often necessary to prefix a
14249variable name with the address-of operator (``&'') and provide explicit
14250type information in the command. Here's an example of the type of
14251problem:
14252
14253@smallexample
f7dc1244 14254(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14255$1 = 268572168
14256@end smallexample
14257
14258@smallexample
f7dc1244 14259(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
142600x10021610: "\230y\""
14261@end smallexample
14262
14263And two possible solutions:
14264
14265@smallexample
f7dc1244 14266(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14267$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14268@end smallexample
14269
14270@smallexample
f7dc1244 14271(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 142720x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14273(@value{GDBP}) x/x 0x10021608
be448670 142740x10021608: 0x0022fd98
f7dc1244 14275(@value{GDBP}) x/s 0x0022fd98
be448670
CF
142760x22fd98: "/cygdrive/c/mydirectory/myprogram"
14277@end smallexample
14278
14279Setting a break point within a DLL is possible even before the program
14280starts execution. However, under these circumstances, @value{GDBN} can't
14281examine the initial instructions of the function in order to skip the
14282function's frame set-up code. You can work around this by using ``*&''
14283to set the breakpoint at a raw memory address:
14284
14285@smallexample
f7dc1244 14286(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14287Breakpoint 1 at 0x1e04eff0
14288@end smallexample
14289
14290The author of these extensions is not entirely convinced that setting a
14291break point within a shared DLL like @file{kernel32.dll} is completely
14292safe.
14293
14d6dd68 14294@node Hurd Native
79a6e687 14295@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14296@cindex @sc{gnu} Hurd debugging
14297
14298This subsection describes @value{GDBN} commands specific to the
14299@sc{gnu} Hurd native debugging.
14300
14301@table @code
14302@item set signals
14303@itemx set sigs
14304@kindex set signals@r{, Hurd command}
14305@kindex set sigs@r{, Hurd command}
14306This command toggles the state of inferior signal interception by
14307@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14308affected by this command. @code{sigs} is a shorthand alias for
14309@code{signals}.
14310
14311@item show signals
14312@itemx show sigs
14313@kindex show signals@r{, Hurd command}
14314@kindex show sigs@r{, Hurd command}
14315Show the current state of intercepting inferior's signals.
14316
14317@item set signal-thread
14318@itemx set sigthread
14319@kindex set signal-thread
14320@kindex set sigthread
14321This command tells @value{GDBN} which thread is the @code{libc} signal
14322thread. That thread is run when a signal is delivered to a running
14323process. @code{set sigthread} is the shorthand alias of @code{set
14324signal-thread}.
14325
14326@item show signal-thread
14327@itemx show sigthread
14328@kindex show signal-thread
14329@kindex show sigthread
14330These two commands show which thread will run when the inferior is
14331delivered a signal.
14332
14333@item set stopped
14334@kindex set stopped@r{, Hurd command}
14335This commands tells @value{GDBN} that the inferior process is stopped,
14336as with the @code{SIGSTOP} signal. The stopped process can be
14337continued by delivering a signal to it.
14338
14339@item show stopped
14340@kindex show stopped@r{, Hurd command}
14341This command shows whether @value{GDBN} thinks the debuggee is
14342stopped.
14343
14344@item set exceptions
14345@kindex set exceptions@r{, Hurd command}
14346Use this command to turn off trapping of exceptions in the inferior.
14347When exception trapping is off, neither breakpoints nor
14348single-stepping will work. To restore the default, set exception
14349trapping on.
14350
14351@item show exceptions
14352@kindex show exceptions@r{, Hurd command}
14353Show the current state of trapping exceptions in the inferior.
14354
14355@item set task pause
14356@kindex set task@r{, Hurd commands}
14357@cindex task attributes (@sc{gnu} Hurd)
14358@cindex pause current task (@sc{gnu} Hurd)
14359This command toggles task suspension when @value{GDBN} has control.
14360Setting it to on takes effect immediately, and the task is suspended
14361whenever @value{GDBN} gets control. Setting it to off will take
14362effect the next time the inferior is continued. If this option is set
14363to off, you can use @code{set thread default pause on} or @code{set
14364thread pause on} (see below) to pause individual threads.
14365
14366@item show task pause
14367@kindex show task@r{, Hurd commands}
14368Show the current state of task suspension.
14369
14370@item set task detach-suspend-count
14371@cindex task suspend count
14372@cindex detach from task, @sc{gnu} Hurd
14373This command sets the suspend count the task will be left with when
14374@value{GDBN} detaches from it.
14375
14376@item show task detach-suspend-count
14377Show the suspend count the task will be left with when detaching.
14378
14379@item set task exception-port
14380@itemx set task excp
14381@cindex task exception port, @sc{gnu} Hurd
14382This command sets the task exception port to which @value{GDBN} will
14383forward exceptions. The argument should be the value of the @dfn{send
14384rights} of the task. @code{set task excp} is a shorthand alias.
14385
14386@item set noninvasive
14387@cindex noninvasive task options
14388This command switches @value{GDBN} to a mode that is the least
14389invasive as far as interfering with the inferior is concerned. This
14390is the same as using @code{set task pause}, @code{set exceptions}, and
14391@code{set signals} to values opposite to the defaults.
14392
14393@item info send-rights
14394@itemx info receive-rights
14395@itemx info port-rights
14396@itemx info port-sets
14397@itemx info dead-names
14398@itemx info ports
14399@itemx info psets
14400@cindex send rights, @sc{gnu} Hurd
14401@cindex receive rights, @sc{gnu} Hurd
14402@cindex port rights, @sc{gnu} Hurd
14403@cindex port sets, @sc{gnu} Hurd
14404@cindex dead names, @sc{gnu} Hurd
14405These commands display information about, respectively, send rights,
14406receive rights, port rights, port sets, and dead names of a task.
14407There are also shorthand aliases: @code{info ports} for @code{info
14408port-rights} and @code{info psets} for @code{info port-sets}.
14409
14410@item set thread pause
14411@kindex set thread@r{, Hurd command}
14412@cindex thread properties, @sc{gnu} Hurd
14413@cindex pause current thread (@sc{gnu} Hurd)
14414This command toggles current thread suspension when @value{GDBN} has
14415control. Setting it to on takes effect immediately, and the current
14416thread is suspended whenever @value{GDBN} gets control. Setting it to
14417off will take effect the next time the inferior is continued.
14418Normally, this command has no effect, since when @value{GDBN} has
14419control, the whole task is suspended. However, if you used @code{set
14420task pause off} (see above), this command comes in handy to suspend
14421only the current thread.
14422
14423@item show thread pause
14424@kindex show thread@r{, Hurd command}
14425This command shows the state of current thread suspension.
14426
14427@item set thread run
d3e8051b 14428This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14429
14430@item show thread run
14431Show whether the current thread is allowed to run.
14432
14433@item set thread detach-suspend-count
14434@cindex thread suspend count, @sc{gnu} Hurd
14435@cindex detach from thread, @sc{gnu} Hurd
14436This command sets the suspend count @value{GDBN} will leave on a
14437thread when detaching. This number is relative to the suspend count
14438found by @value{GDBN} when it notices the thread; use @code{set thread
14439takeover-suspend-count} to force it to an absolute value.
14440
14441@item show thread detach-suspend-count
14442Show the suspend count @value{GDBN} will leave on the thread when
14443detaching.
14444
14445@item set thread exception-port
14446@itemx set thread excp
14447Set the thread exception port to which to forward exceptions. This
14448overrides the port set by @code{set task exception-port} (see above).
14449@code{set thread excp} is the shorthand alias.
14450
14451@item set thread takeover-suspend-count
14452Normally, @value{GDBN}'s thread suspend counts are relative to the
14453value @value{GDBN} finds when it notices each thread. This command
14454changes the suspend counts to be absolute instead.
14455
14456@item set thread default
14457@itemx show thread default
14458@cindex thread default settings, @sc{gnu} Hurd
14459Each of the above @code{set thread} commands has a @code{set thread
14460default} counterpart (e.g., @code{set thread default pause}, @code{set
14461thread default exception-port}, etc.). The @code{thread default}
14462variety of commands sets the default thread properties for all
14463threads; you can then change the properties of individual threads with
14464the non-default commands.
14465@end table
14466
14467
a64548ea
EZ
14468@node Neutrino
14469@subsection QNX Neutrino
14470@cindex QNX Neutrino
14471
14472@value{GDBN} provides the following commands specific to the QNX
14473Neutrino target:
14474
14475@table @code
14476@item set debug nto-debug
14477@kindex set debug nto-debug
14478When set to on, enables debugging messages specific to the QNX
14479Neutrino support.
14480
14481@item show debug nto-debug
14482@kindex show debug nto-debug
14483Show the current state of QNX Neutrino messages.
14484@end table
14485
14486
8e04817f
AC
14487@node Embedded OS
14488@section Embedded Operating Systems
104c1213 14489
8e04817f
AC
14490This section describes configurations involving the debugging of
14491embedded operating systems that are available for several different
14492architectures.
d4f3574e 14493
8e04817f
AC
14494@menu
14495* VxWorks:: Using @value{GDBN} with VxWorks
14496@end menu
104c1213 14497
8e04817f
AC
14498@value{GDBN} includes the ability to debug programs running on
14499various real-time operating systems.
104c1213 14500
8e04817f
AC
14501@node VxWorks
14502@subsection Using @value{GDBN} with VxWorks
104c1213 14503
8e04817f 14504@cindex VxWorks
104c1213 14505
8e04817f 14506@table @code
104c1213 14507
8e04817f
AC
14508@kindex target vxworks
14509@item target vxworks @var{machinename}
14510A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14511is the target system's machine name or IP address.
104c1213 14512
8e04817f 14513@end table
104c1213 14514
8e04817f
AC
14515On VxWorks, @code{load} links @var{filename} dynamically on the
14516current target system as well as adding its symbols in @value{GDBN}.
104c1213 14517
8e04817f
AC
14518@value{GDBN} enables developers to spawn and debug tasks running on networked
14519VxWorks targets from a Unix host. Already-running tasks spawned from
14520the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14521both the Unix host and on the VxWorks target. The program
14522@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14523installed with the name @code{vxgdb}, to distinguish it from a
14524@value{GDBN} for debugging programs on the host itself.)
104c1213 14525
8e04817f
AC
14526@table @code
14527@item VxWorks-timeout @var{args}
14528@kindex vxworks-timeout
14529All VxWorks-based targets now support the option @code{vxworks-timeout}.
14530This option is set by the user, and @var{args} represents the number of
14531seconds @value{GDBN} waits for responses to rpc's. You might use this if
14532your VxWorks target is a slow software simulator or is on the far side
14533of a thin network line.
14534@end table
104c1213 14535
8e04817f
AC
14536The following information on connecting to VxWorks was current when
14537this manual was produced; newer releases of VxWorks may use revised
14538procedures.
104c1213 14539
4644b6e3 14540@findex INCLUDE_RDB
8e04817f
AC
14541To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14542to include the remote debugging interface routines in the VxWorks
14543library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14544VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14545kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14546source debugging task @code{tRdbTask} when VxWorks is booted. For more
14547information on configuring and remaking VxWorks, see the manufacturer's
14548manual.
14549@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14550
8e04817f
AC
14551Once you have included @file{rdb.a} in your VxWorks system image and set
14552your Unix execution search path to find @value{GDBN}, you are ready to
14553run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14554@code{vxgdb}, depending on your installation).
104c1213 14555
8e04817f 14556@value{GDBN} comes up showing the prompt:
104c1213 14557
474c8240 14558@smallexample
8e04817f 14559(vxgdb)
474c8240 14560@end smallexample
104c1213 14561
8e04817f
AC
14562@menu
14563* VxWorks Connection:: Connecting to VxWorks
14564* VxWorks Download:: VxWorks download
14565* VxWorks Attach:: Running tasks
14566@end menu
104c1213 14567
8e04817f
AC
14568@node VxWorks Connection
14569@subsubsection Connecting to VxWorks
104c1213 14570
8e04817f
AC
14571The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14572network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14573
474c8240 14574@smallexample
8e04817f 14575(vxgdb) target vxworks tt
474c8240 14576@end smallexample
104c1213 14577
8e04817f
AC
14578@need 750
14579@value{GDBN} displays messages like these:
104c1213 14580
8e04817f
AC
14581@smallexample
14582Attaching remote machine across net...
14583Connected to tt.
14584@end smallexample
104c1213 14585
8e04817f
AC
14586@need 1000
14587@value{GDBN} then attempts to read the symbol tables of any object modules
14588loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14589these files by searching the directories listed in the command search
79a6e687 14590path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14591to find an object file, it displays a message such as:
5d161b24 14592
474c8240 14593@smallexample
8e04817f 14594prog.o: No such file or directory.
474c8240 14595@end smallexample
104c1213 14596
8e04817f
AC
14597When this happens, add the appropriate directory to the search path with
14598the @value{GDBN} command @code{path}, and execute the @code{target}
14599command again.
104c1213 14600
8e04817f 14601@node VxWorks Download
79a6e687 14602@subsubsection VxWorks Download
104c1213 14603
8e04817f
AC
14604@cindex download to VxWorks
14605If you have connected to the VxWorks target and you want to debug an
14606object that has not yet been loaded, you can use the @value{GDBN}
14607@code{load} command to download a file from Unix to VxWorks
14608incrementally. The object file given as an argument to the @code{load}
14609command is actually opened twice: first by the VxWorks target in order
14610to download the code, then by @value{GDBN} in order to read the symbol
14611table. This can lead to problems if the current working directories on
14612the two systems differ. If both systems have NFS mounted the same
14613filesystems, you can avoid these problems by using absolute paths.
14614Otherwise, it is simplest to set the working directory on both systems
14615to the directory in which the object file resides, and then to reference
14616the file by its name, without any path. For instance, a program
14617@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14618and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14619program, type this on VxWorks:
104c1213 14620
474c8240 14621@smallexample
8e04817f 14622-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14623@end smallexample
104c1213 14624
8e04817f
AC
14625@noindent
14626Then, in @value{GDBN}, type:
104c1213 14627
474c8240 14628@smallexample
8e04817f
AC
14629(vxgdb) cd @var{hostpath}/vw/demo/rdb
14630(vxgdb) load prog.o
474c8240 14631@end smallexample
104c1213 14632
8e04817f 14633@value{GDBN} displays a response similar to this:
104c1213 14634
8e04817f
AC
14635@smallexample
14636Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14637@end smallexample
104c1213 14638
8e04817f
AC
14639You can also use the @code{load} command to reload an object module
14640after editing and recompiling the corresponding source file. Note that
14641this makes @value{GDBN} delete all currently-defined breakpoints,
14642auto-displays, and convenience variables, and to clear the value
14643history. (This is necessary in order to preserve the integrity of
14644debugger's data structures that reference the target system's symbol
14645table.)
104c1213 14646
8e04817f 14647@node VxWorks Attach
79a6e687 14648@subsubsection Running Tasks
104c1213
JM
14649
14650@cindex running VxWorks tasks
14651You can also attach to an existing task using the @code{attach} command as
14652follows:
14653
474c8240 14654@smallexample
104c1213 14655(vxgdb) attach @var{task}
474c8240 14656@end smallexample
104c1213
JM
14657
14658@noindent
14659where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14660or suspended when you attach to it. Running tasks are suspended at
14661the time of attachment.
14662
6d2ebf8b 14663@node Embedded Processors
104c1213
JM
14664@section Embedded Processors
14665
14666This section goes into details specific to particular embedded
14667configurations.
14668
c45da7e6
EZ
14669@cindex send command to simulator
14670Whenever a specific embedded processor has a simulator, @value{GDBN}
14671allows to send an arbitrary command to the simulator.
14672
14673@table @code
14674@item sim @var{command}
14675@kindex sim@r{, a command}
14676Send an arbitrary @var{command} string to the simulator. Consult the
14677documentation for the specific simulator in use for information about
14678acceptable commands.
14679@end table
14680
7d86b5d5 14681
104c1213 14682@menu
c45da7e6 14683* ARM:: ARM RDI
172c2a43 14684* M32R/D:: Renesas M32R/D
104c1213 14685* M68K:: Motorola M68K
104c1213 14686* MIPS Embedded:: MIPS Embedded
a37295f9 14687* OpenRISC 1000:: OpenRisc 1000
104c1213 14688* PA:: HP PA Embedded
4acd40f3 14689* PowerPC Embedded:: PowerPC Embedded
104c1213
JM
14690* Sparclet:: Tsqware Sparclet
14691* Sparclite:: Fujitsu Sparclite
104c1213 14692* Z8000:: Zilog Z8000
a64548ea
EZ
14693* AVR:: Atmel AVR
14694* CRIS:: CRIS
14695* Super-H:: Renesas Super-H
104c1213
JM
14696@end menu
14697
6d2ebf8b 14698@node ARM
104c1213 14699@subsection ARM
c45da7e6 14700@cindex ARM RDI
104c1213
JM
14701
14702@table @code
8e04817f
AC
14703@kindex target rdi
14704@item target rdi @var{dev}
14705ARM Angel monitor, via RDI library interface to ADP protocol. You may
14706use this target to communicate with both boards running the Angel
14707monitor, or with the EmbeddedICE JTAG debug device.
14708
14709@kindex target rdp
14710@item target rdp @var{dev}
14711ARM Demon monitor.
14712
14713@end table
14714
e2f4edfd
EZ
14715@value{GDBN} provides the following ARM-specific commands:
14716
14717@table @code
14718@item set arm disassembler
14719@kindex set arm
14720This commands selects from a list of disassembly styles. The
14721@code{"std"} style is the standard style.
14722
14723@item show arm disassembler
14724@kindex show arm
14725Show the current disassembly style.
14726
14727@item set arm apcs32
14728@cindex ARM 32-bit mode
14729This command toggles ARM operation mode between 32-bit and 26-bit.
14730
14731@item show arm apcs32
14732Display the current usage of the ARM 32-bit mode.
14733
14734@item set arm fpu @var{fputype}
14735This command sets the ARM floating-point unit (FPU) type. The
14736argument @var{fputype} can be one of these:
14737
14738@table @code
14739@item auto
14740Determine the FPU type by querying the OS ABI.
14741@item softfpa
14742Software FPU, with mixed-endian doubles on little-endian ARM
14743processors.
14744@item fpa
14745GCC-compiled FPA co-processor.
14746@item softvfp
14747Software FPU with pure-endian doubles.
14748@item vfp
14749VFP co-processor.
14750@end table
14751
14752@item show arm fpu
14753Show the current type of the FPU.
14754
14755@item set arm abi
14756This command forces @value{GDBN} to use the specified ABI.
14757
14758@item show arm abi
14759Show the currently used ABI.
14760
14761@item set debug arm
14762Toggle whether to display ARM-specific debugging messages from the ARM
14763target support subsystem.
14764
14765@item show debug arm
14766Show whether ARM-specific debugging messages are enabled.
14767@end table
14768
c45da7e6
EZ
14769The following commands are available when an ARM target is debugged
14770using the RDI interface:
14771
14772@table @code
14773@item rdilogfile @r{[}@var{file}@r{]}
14774@kindex rdilogfile
14775@cindex ADP (Angel Debugger Protocol) logging
14776Set the filename for the ADP (Angel Debugger Protocol) packet log.
14777With an argument, sets the log file to the specified @var{file}. With
14778no argument, show the current log file name. The default log file is
14779@file{rdi.log}.
14780
14781@item rdilogenable @r{[}@var{arg}@r{]}
14782@kindex rdilogenable
14783Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14784enables logging, with an argument 0 or @code{"no"} disables it. With
14785no arguments displays the current setting. When logging is enabled,
14786ADP packets exchanged between @value{GDBN} and the RDI target device
14787are logged to a file.
14788
14789@item set rdiromatzero
14790@kindex set rdiromatzero
14791@cindex ROM at zero address, RDI
14792Tell @value{GDBN} whether the target has ROM at address 0. If on,
14793vector catching is disabled, so that zero address can be used. If off
14794(the default), vector catching is enabled. For this command to take
14795effect, it needs to be invoked prior to the @code{target rdi} command.
14796
14797@item show rdiromatzero
14798@kindex show rdiromatzero
14799Show the current setting of ROM at zero address.
14800
14801@item set rdiheartbeat
14802@kindex set rdiheartbeat
14803@cindex RDI heartbeat
14804Enable or disable RDI heartbeat packets. It is not recommended to
14805turn on this option, since it confuses ARM and EPI JTAG interface, as
14806well as the Angel monitor.
14807
14808@item show rdiheartbeat
14809@kindex show rdiheartbeat
14810Show the setting of RDI heartbeat packets.
14811@end table
14812
e2f4edfd 14813
8e04817f 14814@node M32R/D
ba04e063 14815@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14816
14817@table @code
8e04817f
AC
14818@kindex target m32r
14819@item target m32r @var{dev}
172c2a43 14820Renesas M32R/D ROM monitor.
8e04817f 14821
fb3e19c0
KI
14822@kindex target m32rsdi
14823@item target m32rsdi @var{dev}
14824Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14825@end table
14826
14827The following @value{GDBN} commands are specific to the M32R monitor:
14828
14829@table @code
14830@item set download-path @var{path}
14831@kindex set download-path
14832@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14833Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14834
14835@item show download-path
14836@kindex show download-path
14837Show the default path for downloadable @sc{srec} files.
fb3e19c0 14838
721c2651
EZ
14839@item set board-address @var{addr}
14840@kindex set board-address
14841@cindex M32-EVA target board address
14842Set the IP address for the M32R-EVA target board.
14843
14844@item show board-address
14845@kindex show board-address
14846Show the current IP address of the target board.
14847
14848@item set server-address @var{addr}
14849@kindex set server-address
14850@cindex download server address (M32R)
14851Set the IP address for the download server, which is the @value{GDBN}'s
14852host machine.
14853
14854@item show server-address
14855@kindex show server-address
14856Display the IP address of the download server.
14857
14858@item upload @r{[}@var{file}@r{]}
14859@kindex upload@r{, M32R}
14860Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14861upload capability. If no @var{file} argument is given, the current
14862executable file is uploaded.
14863
14864@item tload @r{[}@var{file}@r{]}
14865@kindex tload@r{, M32R}
14866Test the @code{upload} command.
8e04817f
AC
14867@end table
14868
ba04e063
EZ
14869The following commands are available for M32R/SDI:
14870
14871@table @code
14872@item sdireset
14873@kindex sdireset
14874@cindex reset SDI connection, M32R
14875This command resets the SDI connection.
14876
14877@item sdistatus
14878@kindex sdistatus
14879This command shows the SDI connection status.
14880
14881@item debug_chaos
14882@kindex debug_chaos
14883@cindex M32R/Chaos debugging
14884Instructs the remote that M32R/Chaos debugging is to be used.
14885
14886@item use_debug_dma
14887@kindex use_debug_dma
14888Instructs the remote to use the DEBUG_DMA method of accessing memory.
14889
14890@item use_mon_code
14891@kindex use_mon_code
14892Instructs the remote to use the MON_CODE method of accessing memory.
14893
14894@item use_ib_break
14895@kindex use_ib_break
14896Instructs the remote to set breakpoints by IB break.
14897
14898@item use_dbt_break
14899@kindex use_dbt_break
14900Instructs the remote to set breakpoints by DBT.
14901@end table
14902
8e04817f
AC
14903@node M68K
14904@subsection M68k
14905
7ce59000
DJ
14906The Motorola m68k configuration includes ColdFire support, and a
14907target command for the following ROM monitor.
8e04817f
AC
14908
14909@table @code
14910
8e04817f
AC
14911@kindex target dbug
14912@item target dbug @var{dev}
14913dBUG ROM monitor for Motorola ColdFire.
14914
8e04817f
AC
14915@end table
14916
8e04817f
AC
14917@node MIPS Embedded
14918@subsection MIPS Embedded
14919
14920@cindex MIPS boards
14921@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14922MIPS board attached to a serial line. This is available when
14923you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14924
8e04817f
AC
14925@need 1000
14926Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14927
8e04817f
AC
14928@table @code
14929@item target mips @var{port}
14930@kindex target mips @var{port}
14931To run a program on the board, start up @code{@value{GDBP}} with the
14932name of your program as the argument. To connect to the board, use the
14933command @samp{target mips @var{port}}, where @var{port} is the name of
14934the serial port connected to the board. If the program has not already
14935been downloaded to the board, you may use the @code{load} command to
14936download it. You can then use all the usual @value{GDBN} commands.
104c1213 14937
8e04817f
AC
14938For example, this sequence connects to the target board through a serial
14939port, and loads and runs a program called @var{prog} through the
14940debugger:
104c1213 14941
474c8240 14942@smallexample
8e04817f
AC
14943host$ @value{GDBP} @var{prog}
14944@value{GDBN} is free software and @dots{}
14945(@value{GDBP}) target mips /dev/ttyb
14946(@value{GDBP}) load @var{prog}
14947(@value{GDBP}) run
474c8240 14948@end smallexample
104c1213 14949
8e04817f
AC
14950@item target mips @var{hostname}:@var{portnumber}
14951On some @value{GDBN} host configurations, you can specify a TCP
14952connection (for instance, to a serial line managed by a terminal
14953concentrator) instead of a serial port, using the syntax
14954@samp{@var{hostname}:@var{portnumber}}.
104c1213 14955
8e04817f
AC
14956@item target pmon @var{port}
14957@kindex target pmon @var{port}
14958PMON ROM monitor.
104c1213 14959
8e04817f
AC
14960@item target ddb @var{port}
14961@kindex target ddb @var{port}
14962NEC's DDB variant of PMON for Vr4300.
104c1213 14963
8e04817f
AC
14964@item target lsi @var{port}
14965@kindex target lsi @var{port}
14966LSI variant of PMON.
104c1213 14967
8e04817f
AC
14968@kindex target r3900
14969@item target r3900 @var{dev}
14970Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14971
8e04817f
AC
14972@kindex target array
14973@item target array @var{dev}
14974Array Tech LSI33K RAID controller board.
104c1213 14975
8e04817f 14976@end table
104c1213 14977
104c1213 14978
8e04817f
AC
14979@noindent
14980@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14981
8e04817f 14982@table @code
8e04817f
AC
14983@item set mipsfpu double
14984@itemx set mipsfpu single
14985@itemx set mipsfpu none
a64548ea 14986@itemx set mipsfpu auto
8e04817f
AC
14987@itemx show mipsfpu
14988@kindex set mipsfpu
14989@kindex show mipsfpu
14990@cindex MIPS remote floating point
14991@cindex floating point, MIPS remote
14992If your target board does not support the MIPS floating point
14993coprocessor, you should use the command @samp{set mipsfpu none} (if you
14994need this, you may wish to put the command in your @value{GDBN} init
14995file). This tells @value{GDBN} how to find the return value of
14996functions which return floating point values. It also allows
14997@value{GDBN} to avoid saving the floating point registers when calling
14998functions on the board. If you are using a floating point coprocessor
14999with only single precision floating point support, as on the @sc{r4650}
15000processor, use the command @samp{set mipsfpu single}. The default
15001double precision floating point coprocessor may be selected using
15002@samp{set mipsfpu double}.
104c1213 15003
8e04817f
AC
15004In previous versions the only choices were double precision or no
15005floating point, so @samp{set mipsfpu on} will select double precision
15006and @samp{set mipsfpu off} will select no floating point.
104c1213 15007
8e04817f
AC
15008As usual, you can inquire about the @code{mipsfpu} variable with
15009@samp{show mipsfpu}.
104c1213 15010
8e04817f
AC
15011@item set timeout @var{seconds}
15012@itemx set retransmit-timeout @var{seconds}
15013@itemx show timeout
15014@itemx show retransmit-timeout
15015@cindex @code{timeout}, MIPS protocol
15016@cindex @code{retransmit-timeout}, MIPS protocol
15017@kindex set timeout
15018@kindex show timeout
15019@kindex set retransmit-timeout
15020@kindex show retransmit-timeout
15021You can control the timeout used while waiting for a packet, in the MIPS
15022remote protocol, with the @code{set timeout @var{seconds}} command. The
15023default is 5 seconds. Similarly, you can control the timeout used while
15024waiting for an acknowledgement of a packet with the @code{set
15025retransmit-timeout @var{seconds}} command. The default is 3 seconds.
15026You can inspect both values with @code{show timeout} and @code{show
15027retransmit-timeout}. (These commands are @emph{only} available when
15028@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 15029
8e04817f
AC
15030The timeout set by @code{set timeout} does not apply when @value{GDBN}
15031is waiting for your program to stop. In that case, @value{GDBN} waits
15032forever because it has no way of knowing how long the program is going
15033to run before stopping.
ba04e063
EZ
15034
15035@item set syn-garbage-limit @var{num}
15036@kindex set syn-garbage-limit@r{, MIPS remote}
15037@cindex synchronize with remote MIPS target
15038Limit the maximum number of characters @value{GDBN} should ignore when
15039it tries to synchronize with the remote target. The default is 10
15040characters. Setting the limit to -1 means there's no limit.
15041
15042@item show syn-garbage-limit
15043@kindex show syn-garbage-limit@r{, MIPS remote}
15044Show the current limit on the number of characters to ignore when
15045trying to synchronize with the remote system.
15046
15047@item set monitor-prompt @var{prompt}
15048@kindex set monitor-prompt@r{, MIPS remote}
15049@cindex remote monitor prompt
15050Tell @value{GDBN} to expect the specified @var{prompt} string from the
15051remote monitor. The default depends on the target:
15052@table @asis
15053@item pmon target
15054@samp{PMON}
15055@item ddb target
15056@samp{NEC010}
15057@item lsi target
15058@samp{PMON>}
15059@end table
15060
15061@item show monitor-prompt
15062@kindex show monitor-prompt@r{, MIPS remote}
15063Show the current strings @value{GDBN} expects as the prompt from the
15064remote monitor.
15065
15066@item set monitor-warnings
15067@kindex set monitor-warnings@r{, MIPS remote}
15068Enable or disable monitor warnings about hardware breakpoints. This
15069has effect only for the @code{lsi} target. When on, @value{GDBN} will
15070display warning messages whose codes are returned by the @code{lsi}
15071PMON monitor for breakpoint commands.
15072
15073@item show monitor-warnings
15074@kindex show monitor-warnings@r{, MIPS remote}
15075Show the current setting of printing monitor warnings.
15076
15077@item pmon @var{command}
15078@kindex pmon@r{, MIPS remote}
15079@cindex send PMON command
15080This command allows sending an arbitrary @var{command} string to the
15081monitor. The monitor must be in debug mode for this to work.
8e04817f 15082@end table
104c1213 15083
a37295f9
MM
15084@node OpenRISC 1000
15085@subsection OpenRISC 1000
15086@cindex OpenRISC 1000
15087
15088@cindex or1k boards
15089See OR1k Architecture document (@uref{www.opencores.org}) for more information
15090about platform and commands.
15091
15092@table @code
15093
15094@kindex target jtag
15095@item target jtag jtag://@var{host}:@var{port}
15096
15097Connects to remote JTAG server.
15098JTAG remote server can be either an or1ksim or JTAG server,
15099connected via parallel port to the board.
15100
15101Example: @code{target jtag jtag://localhost:9999}
15102
15103@kindex or1ksim
15104@item or1ksim @var{command}
15105If connected to @code{or1ksim} OpenRISC 1000 Architectural
15106Simulator, proprietary commands can be executed.
15107
15108@kindex info or1k spr
15109@item info or1k spr
15110Displays spr groups.
15111
15112@item info or1k spr @var{group}
15113@itemx info or1k spr @var{groupno}
15114Displays register names in selected group.
15115
15116@item info or1k spr @var{group} @var{register}
15117@itemx info or1k spr @var{register}
15118@itemx info or1k spr @var{groupno} @var{registerno}
15119@itemx info or1k spr @var{registerno}
15120Shows information about specified spr register.
15121
15122@kindex spr
15123@item spr @var{group} @var{register} @var{value}
15124@itemx spr @var{register @var{value}}
15125@itemx spr @var{groupno} @var{registerno @var{value}}
15126@itemx spr @var{registerno @var{value}}
15127Writes @var{value} to specified spr register.
15128@end table
15129
15130Some implementations of OpenRISC 1000 Architecture also have hardware trace.
15131It is very similar to @value{GDBN} trace, except it does not interfere with normal
15132program execution and is thus much faster. Hardware breakpoints/watchpoint
15133triggers can be set using:
15134@table @code
15135@item $LEA/$LDATA
15136Load effective address/data
15137@item $SEA/$SDATA
15138Store effective address/data
15139@item $AEA/$ADATA
15140Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
15141@item $FETCH
15142Fetch data
15143@end table
15144
15145When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
15146@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
15147
15148@code{htrace} commands:
15149@cindex OpenRISC 1000 htrace
15150@table @code
15151@kindex hwatch
15152@item hwatch @var{conditional}
d3e8051b 15153Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
15154or Data. For example:
15155
15156@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15157
15158@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
15159
4644b6e3 15160@kindex htrace
a37295f9
MM
15161@item htrace info
15162Display information about current HW trace configuration.
15163
a37295f9
MM
15164@item htrace trigger @var{conditional}
15165Set starting criteria for HW trace.
15166
a37295f9
MM
15167@item htrace qualifier @var{conditional}
15168Set acquisition qualifier for HW trace.
15169
a37295f9
MM
15170@item htrace stop @var{conditional}
15171Set HW trace stopping criteria.
15172
f153cc92 15173@item htrace record [@var{data}]*
a37295f9
MM
15174Selects the data to be recorded, when qualifier is met and HW trace was
15175triggered.
15176
a37295f9 15177@item htrace enable
a37295f9
MM
15178@itemx htrace disable
15179Enables/disables the HW trace.
15180
f153cc92 15181@item htrace rewind [@var{filename}]
a37295f9
MM
15182Clears currently recorded trace data.
15183
15184If filename is specified, new trace file is made and any newly collected data
15185will be written there.
15186
f153cc92 15187@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
15188Prints trace buffer, using current record configuration.
15189
a37295f9
MM
15190@item htrace mode continuous
15191Set continuous trace mode.
15192
a37295f9
MM
15193@item htrace mode suspend
15194Set suspend trace mode.
15195
15196@end table
15197
4acd40f3
TJB
15198@node PowerPC Embedded
15199@subsection PowerPC Embedded
104c1213 15200
55eddb0f
DJ
15201@value{GDBN} provides the following PowerPC-specific commands:
15202
104c1213 15203@table @code
55eddb0f
DJ
15204@kindex set powerpc
15205@item set powerpc soft-float
15206@itemx show powerpc soft-float
15207Force @value{GDBN} to use (or not use) a software floating point calling
15208convention. By default, @value{GDBN} selects the calling convention based
15209on the selected architecture and the provided executable file.
15210
15211@item set powerpc vector-abi
15212@itemx show powerpc vector-abi
15213Force @value{GDBN} to use the specified calling convention for vector
15214arguments and return values. The valid options are @samp{auto};
15215@samp{generic}, to avoid vector registers even if they are present;
15216@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15217registers. By default, @value{GDBN} selects the calling convention
15218based on the selected architecture and the provided executable file.
15219
8e04817f
AC
15220@kindex target dink32
15221@item target dink32 @var{dev}
15222DINK32 ROM monitor.
104c1213 15223
8e04817f
AC
15224@kindex target ppcbug
15225@item target ppcbug @var{dev}
15226@kindex target ppcbug1
15227@item target ppcbug1 @var{dev}
15228PPCBUG ROM monitor for PowerPC.
104c1213 15229
8e04817f
AC
15230@kindex target sds
15231@item target sds @var{dev}
15232SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15233@end table
8e04817f 15234
c45da7e6 15235@cindex SDS protocol
d52fb0e9 15236The following commands specific to the SDS protocol are supported
55eddb0f 15237by @value{GDBN}:
c45da7e6
EZ
15238
15239@table @code
15240@item set sdstimeout @var{nsec}
15241@kindex set sdstimeout
15242Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15243default is 2 seconds.
15244
15245@item show sdstimeout
15246@kindex show sdstimeout
15247Show the current value of the SDS timeout.
15248
15249@item sds @var{command}
15250@kindex sds@r{, a command}
15251Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15252@end table
15253
c45da7e6 15254
8e04817f
AC
15255@node PA
15256@subsection HP PA Embedded
104c1213
JM
15257
15258@table @code
15259
8e04817f
AC
15260@kindex target op50n
15261@item target op50n @var{dev}
15262OP50N monitor, running on an OKI HPPA board.
15263
15264@kindex target w89k
15265@item target w89k @var{dev}
15266W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15267
15268@end table
15269
8e04817f
AC
15270@node Sparclet
15271@subsection Tsqware Sparclet
104c1213 15272
8e04817f
AC
15273@cindex Sparclet
15274
15275@value{GDBN} enables developers to debug tasks running on
15276Sparclet targets from a Unix host.
15277@value{GDBN} uses code that runs on
15278both the Unix host and on the Sparclet target. The program
15279@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15280
8e04817f
AC
15281@table @code
15282@item remotetimeout @var{args}
15283@kindex remotetimeout
15284@value{GDBN} supports the option @code{remotetimeout}.
15285This option is set by the user, and @var{args} represents the number of
15286seconds @value{GDBN} waits for responses.
104c1213
JM
15287@end table
15288
8e04817f
AC
15289@cindex compiling, on Sparclet
15290When compiling for debugging, include the options @samp{-g} to get debug
15291information and @samp{-Ttext} to relocate the program to where you wish to
15292load it on the target. You may also want to add the options @samp{-n} or
15293@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15294
474c8240 15295@smallexample
8e04817f 15296sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15297@end smallexample
104c1213 15298
8e04817f 15299You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15300
474c8240 15301@smallexample
8e04817f 15302sparclet-aout-objdump --headers --syms prog
474c8240 15303@end smallexample
104c1213 15304
8e04817f
AC
15305@cindex running, on Sparclet
15306Once you have set
15307your Unix execution search path to find @value{GDBN}, you are ready to
15308run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15309(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15310
8e04817f
AC
15311@value{GDBN} comes up showing the prompt:
15312
474c8240 15313@smallexample
8e04817f 15314(gdbslet)
474c8240 15315@end smallexample
104c1213
JM
15316
15317@menu
8e04817f
AC
15318* Sparclet File:: Setting the file to debug
15319* Sparclet Connection:: Connecting to Sparclet
15320* Sparclet Download:: Sparclet download
15321* Sparclet Execution:: Running and debugging
104c1213
JM
15322@end menu
15323
8e04817f 15324@node Sparclet File
79a6e687 15325@subsubsection Setting File to Debug
104c1213 15326
8e04817f 15327The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15328
474c8240 15329@smallexample
8e04817f 15330(gdbslet) file prog
474c8240 15331@end smallexample
104c1213 15332
8e04817f
AC
15333@need 1000
15334@value{GDBN} then attempts to read the symbol table of @file{prog}.
15335@value{GDBN} locates
15336the file by searching the directories listed in the command search
15337path.
12c27660 15338If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15339files will be searched as well.
15340@value{GDBN} locates
15341the source files by searching the directories listed in the directory search
79a6e687 15342path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15343If it fails
15344to find a file, it displays a message such as:
104c1213 15345
474c8240 15346@smallexample
8e04817f 15347prog: No such file or directory.
474c8240 15348@end smallexample
104c1213 15349
8e04817f
AC
15350When this happens, add the appropriate directories to the search paths with
15351the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15352@code{target} command again.
104c1213 15353
8e04817f
AC
15354@node Sparclet Connection
15355@subsubsection Connecting to Sparclet
104c1213 15356
8e04817f
AC
15357The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15358To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15359
474c8240 15360@smallexample
8e04817f
AC
15361(gdbslet) target sparclet /dev/ttya
15362Remote target sparclet connected to /dev/ttya
15363main () at ../prog.c:3
474c8240 15364@end smallexample
104c1213 15365
8e04817f
AC
15366@need 750
15367@value{GDBN} displays messages like these:
104c1213 15368
474c8240 15369@smallexample
8e04817f 15370Connected to ttya.
474c8240 15371@end smallexample
104c1213 15372
8e04817f 15373@node Sparclet Download
79a6e687 15374@subsubsection Sparclet Download
104c1213 15375
8e04817f
AC
15376@cindex download to Sparclet
15377Once connected to the Sparclet target,
15378you can use the @value{GDBN}
15379@code{load} command to download the file from the host to the target.
15380The file name and load offset should be given as arguments to the @code{load}
15381command.
15382Since the file format is aout, the program must be loaded to the starting
15383address. You can use @code{objdump} to find out what this value is. The load
15384offset is an offset which is added to the VMA (virtual memory address)
15385of each of the file's sections.
15386For instance, if the program
15387@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15388and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15389
474c8240 15390@smallexample
8e04817f
AC
15391(gdbslet) load prog 0x12010000
15392Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15393@end smallexample
104c1213 15394
8e04817f
AC
15395If the code is loaded at a different address then what the program was linked
15396to, you may need to use the @code{section} and @code{add-symbol-file} commands
15397to tell @value{GDBN} where to map the symbol table.
15398
15399@node Sparclet Execution
79a6e687 15400@subsubsection Running and Debugging
8e04817f
AC
15401
15402@cindex running and debugging Sparclet programs
15403You can now begin debugging the task using @value{GDBN}'s execution control
15404commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15405manual for the list of commands.
15406
474c8240 15407@smallexample
8e04817f
AC
15408(gdbslet) b main
15409Breakpoint 1 at 0x12010000: file prog.c, line 3.
15410(gdbslet) run
15411Starting program: prog
15412Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
154133 char *symarg = 0;
15414(gdbslet) step
154154 char *execarg = "hello!";
15416(gdbslet)
474c8240 15417@end smallexample
8e04817f
AC
15418
15419@node Sparclite
15420@subsection Fujitsu Sparclite
104c1213
JM
15421
15422@table @code
15423
8e04817f
AC
15424@kindex target sparclite
15425@item target sparclite @var{dev}
15426Fujitsu sparclite boards, used only for the purpose of loading.
15427You must use an additional command to debug the program.
15428For example: target remote @var{dev} using @value{GDBN} standard
15429remote protocol.
104c1213
JM
15430
15431@end table
15432
8e04817f
AC
15433@node Z8000
15434@subsection Zilog Z8000
104c1213 15435
8e04817f
AC
15436@cindex Z8000
15437@cindex simulator, Z8000
15438@cindex Zilog Z8000 simulator
104c1213 15439
8e04817f
AC
15440When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15441a Z8000 simulator.
15442
15443For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15444unsegmented variant of the Z8000 architecture) or the Z8001 (the
15445segmented variant). The simulator recognizes which architecture is
15446appropriate by inspecting the object code.
104c1213 15447
8e04817f
AC
15448@table @code
15449@item target sim @var{args}
15450@kindex sim
15451@kindex target sim@r{, with Z8000}
15452Debug programs on a simulated CPU. If the simulator supports setup
15453options, specify them via @var{args}.
104c1213
JM
15454@end table
15455
8e04817f
AC
15456@noindent
15457After specifying this target, you can debug programs for the simulated
15458CPU in the same style as programs for your host computer; use the
15459@code{file} command to load a new program image, the @code{run} command
15460to run your program, and so on.
15461
15462As well as making available all the usual machine registers
15463(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15464additional items of information as specially named registers:
104c1213
JM
15465
15466@table @code
15467
8e04817f
AC
15468@item cycles
15469Counts clock-ticks in the simulator.
104c1213 15470
8e04817f
AC
15471@item insts
15472Counts instructions run in the simulator.
104c1213 15473
8e04817f
AC
15474@item time
15475Execution time in 60ths of a second.
104c1213 15476
8e04817f 15477@end table
104c1213 15478
8e04817f
AC
15479You can refer to these values in @value{GDBN} expressions with the usual
15480conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15481conditional breakpoint that suspends only after at least 5000
15482simulated clock ticks.
104c1213 15483
a64548ea
EZ
15484@node AVR
15485@subsection Atmel AVR
15486@cindex AVR
15487
15488When configured for debugging the Atmel AVR, @value{GDBN} supports the
15489following AVR-specific commands:
15490
15491@table @code
15492@item info io_registers
15493@kindex info io_registers@r{, AVR}
15494@cindex I/O registers (Atmel AVR)
15495This command displays information about the AVR I/O registers. For
15496each register, @value{GDBN} prints its number and value.
15497@end table
15498
15499@node CRIS
15500@subsection CRIS
15501@cindex CRIS
15502
15503When configured for debugging CRIS, @value{GDBN} provides the
15504following CRIS-specific commands:
15505
15506@table @code
15507@item set cris-version @var{ver}
15508@cindex CRIS version
e22e55c9
OF
15509Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15510The CRIS version affects register names and sizes. This command is useful in
15511case autodetection of the CRIS version fails.
a64548ea
EZ
15512
15513@item show cris-version
15514Show the current CRIS version.
15515
15516@item set cris-dwarf2-cfi
15517@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15518Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15519Change to @samp{off} when using @code{gcc-cris} whose version is below
15520@code{R59}.
a64548ea
EZ
15521
15522@item show cris-dwarf2-cfi
15523Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15524
15525@item set cris-mode @var{mode}
15526@cindex CRIS mode
15527Set the current CRIS mode to @var{mode}. It should only be changed when
15528debugging in guru mode, in which case it should be set to
15529@samp{guru} (the default is @samp{normal}).
15530
15531@item show cris-mode
15532Show the current CRIS mode.
a64548ea
EZ
15533@end table
15534
15535@node Super-H
15536@subsection Renesas Super-H
15537@cindex Super-H
15538
15539For the Renesas Super-H processor, @value{GDBN} provides these
15540commands:
15541
15542@table @code
15543@item regs
15544@kindex regs@r{, Super-H}
15545Show the values of all Super-H registers.
15546@end table
15547
15548
8e04817f
AC
15549@node Architectures
15550@section Architectures
104c1213 15551
8e04817f
AC
15552This section describes characteristics of architectures that affect
15553all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15554
8e04817f 15555@menu
9c16f35a 15556* i386::
8e04817f
AC
15557* A29K::
15558* Alpha::
15559* MIPS::
a64548ea 15560* HPPA:: HP PA architecture
23d964e7 15561* SPU:: Cell Broadband Engine SPU architecture
4acd40f3 15562* PowerPC::
8e04817f 15563@end menu
104c1213 15564
9c16f35a 15565@node i386
db2e3e2e 15566@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15567
15568@table @code
15569@item set struct-convention @var{mode}
15570@kindex set struct-convention
15571@cindex struct return convention
15572@cindex struct/union returned in registers
15573Set the convention used by the inferior to return @code{struct}s and
15574@code{union}s from functions to @var{mode}. Possible values of
15575@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15576default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15577are returned on the stack, while @code{"reg"} means that a
15578@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15579be returned in a register.
15580
15581@item show struct-convention
15582@kindex show struct-convention
15583Show the current setting of the convention to return @code{struct}s
15584from functions.
15585@end table
15586
8e04817f
AC
15587@node A29K
15588@subsection A29K
104c1213
JM
15589
15590@table @code
104c1213 15591
8e04817f
AC
15592@kindex set rstack_high_address
15593@cindex AMD 29K register stack
15594@cindex register stack, AMD29K
15595@item set rstack_high_address @var{address}
15596On AMD 29000 family processors, registers are saved in a separate
15597@dfn{register stack}. There is no way for @value{GDBN} to determine the
15598extent of this stack. Normally, @value{GDBN} just assumes that the
15599stack is ``large enough''. This may result in @value{GDBN} referencing
15600memory locations that do not exist. If necessary, you can get around
15601this problem by specifying the ending address of the register stack with
15602the @code{set rstack_high_address} command. The argument should be an
15603address, which you probably want to precede with @samp{0x} to specify in
15604hexadecimal.
104c1213 15605
8e04817f
AC
15606@kindex show rstack_high_address
15607@item show rstack_high_address
15608Display the current limit of the register stack, on AMD 29000 family
15609processors.
104c1213 15610
8e04817f 15611@end table
104c1213 15612
8e04817f
AC
15613@node Alpha
15614@subsection Alpha
104c1213 15615
8e04817f 15616See the following section.
104c1213 15617
8e04817f
AC
15618@node MIPS
15619@subsection MIPS
104c1213 15620
8e04817f
AC
15621@cindex stack on Alpha
15622@cindex stack on MIPS
15623@cindex Alpha stack
15624@cindex MIPS stack
15625Alpha- and MIPS-based computers use an unusual stack frame, which
15626sometimes requires @value{GDBN} to search backward in the object code to
15627find the beginning of a function.
104c1213 15628
8e04817f
AC
15629@cindex response time, MIPS debugging
15630To improve response time (especially for embedded applications, where
15631@value{GDBN} may be restricted to a slow serial line for this search)
15632you may want to limit the size of this search, using one of these
15633commands:
104c1213 15634
8e04817f
AC
15635@table @code
15636@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15637@item set heuristic-fence-post @var{limit}
15638Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15639search for the beginning of a function. A value of @var{0} (the
15640default) means there is no limit. However, except for @var{0}, the
15641larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15642and therefore the longer it takes to run. You should only need to use
15643this command when debugging a stripped executable.
104c1213 15644
8e04817f
AC
15645@item show heuristic-fence-post
15646Display the current limit.
15647@end table
104c1213
JM
15648
15649@noindent
8e04817f
AC
15650These commands are available @emph{only} when @value{GDBN} is configured
15651for debugging programs on Alpha or MIPS processors.
104c1213 15652
a64548ea
EZ
15653Several MIPS-specific commands are available when debugging MIPS
15654programs:
15655
15656@table @code
a64548ea
EZ
15657@item set mips abi @var{arg}
15658@kindex set mips abi
15659@cindex set ABI for MIPS
15660Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15661values of @var{arg} are:
15662
15663@table @samp
15664@item auto
15665The default ABI associated with the current binary (this is the
15666default).
15667@item o32
15668@item o64
15669@item n32
15670@item n64
15671@item eabi32
15672@item eabi64
15673@item auto
15674@end table
15675
15676@item show mips abi
15677@kindex show mips abi
15678Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15679
15680@item set mipsfpu
15681@itemx show mipsfpu
15682@xref{MIPS Embedded, set mipsfpu}.
15683
15684@item set mips mask-address @var{arg}
15685@kindex set mips mask-address
15686@cindex MIPS addresses, masking
15687This command determines whether the most-significant 32 bits of 64-bit
15688MIPS addresses are masked off. The argument @var{arg} can be
15689@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15690setting, which lets @value{GDBN} determine the correct value.
15691
15692@item show mips mask-address
15693@kindex show mips mask-address
15694Show whether the upper 32 bits of MIPS addresses are masked off or
15695not.
15696
15697@item set remote-mips64-transfers-32bit-regs
15698@kindex set remote-mips64-transfers-32bit-regs
15699This command controls compatibility with 64-bit MIPS targets that
15700transfer data in 32-bit quantities. If you have an old MIPS 64 target
15701that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15702and 64 bits for other registers, set this option to @samp{on}.
15703
15704@item show remote-mips64-transfers-32bit-regs
15705@kindex show remote-mips64-transfers-32bit-regs
15706Show the current setting of compatibility with older MIPS 64 targets.
15707
15708@item set debug mips
15709@kindex set debug mips
15710This command turns on and off debugging messages for the MIPS-specific
15711target code in @value{GDBN}.
15712
15713@item show debug mips
15714@kindex show debug mips
15715Show the current setting of MIPS debugging messages.
15716@end table
15717
15718
15719@node HPPA
15720@subsection HPPA
15721@cindex HPPA support
15722
d3e8051b 15723When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15724following special commands:
15725
15726@table @code
15727@item set debug hppa
15728@kindex set debug hppa
db2e3e2e 15729This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15730messages are to be displayed.
15731
15732@item show debug hppa
15733Show whether HPPA debugging messages are displayed.
15734
15735@item maint print unwind @var{address}
15736@kindex maint print unwind@r{, HPPA}
15737This command displays the contents of the unwind table entry at the
15738given @var{address}.
15739
15740@end table
15741
104c1213 15742
23d964e7
UW
15743@node SPU
15744@subsection Cell Broadband Engine SPU architecture
15745@cindex Cell Broadband Engine
15746@cindex SPU
15747
15748When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15749it provides the following special commands:
15750
15751@table @code
15752@item info spu event
15753@kindex info spu
15754Display SPU event facility status. Shows current event mask
15755and pending event status.
15756
15757@item info spu signal
15758Display SPU signal notification facility status. Shows pending
15759signal-control word and signal notification mode of both signal
15760notification channels.
15761
15762@item info spu mailbox
15763Display SPU mailbox facility status. Shows all pending entries,
15764in order of processing, in each of the SPU Write Outbound,
15765SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15766
15767@item info spu dma
15768Display MFC DMA status. Shows all pending commands in the MFC
15769DMA queue. For each entry, opcode, tag, class IDs, effective
15770and local store addresses and transfer size are shown.
15771
15772@item info spu proxydma
15773Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15774Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15775and local store addresses and transfer size are shown.
15776
15777@end table
15778
4acd40f3
TJB
15779@node PowerPC
15780@subsection PowerPC
15781@cindex PowerPC architecture
15782
15783When @value{GDBN} is debugging the PowerPC architecture, it provides a set of
15784pseudo-registers to enable inspection of 128-bit wide Decimal Floating Point
15785numbers stored in the floating point registers. These values must be stored
15786in two consecutive registers, always starting at an even register like
15787@code{f0} or @code{f2}.
15788
15789The pseudo-registers go from @code{$dl0} through @code{$dl15}, and are formed
15790by joining the even/odd register pairs @code{f0} and @code{f1} for @code{$dl0},
15791@code{f2} and @code{f3} for @code{$dl1} and so on.
15792
23d964e7 15793
8e04817f
AC
15794@node Controlling GDB
15795@chapter Controlling @value{GDBN}
15796
15797You can alter the way @value{GDBN} interacts with you by using the
15798@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15799data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15800described here.
15801
15802@menu
15803* Prompt:: Prompt
15804* Editing:: Command editing
d620b259 15805* Command History:: Command history
8e04817f
AC
15806* Screen Size:: Screen size
15807* Numbers:: Numbers
1e698235 15808* ABI:: Configuring the current ABI
8e04817f
AC
15809* Messages/Warnings:: Optional warnings and messages
15810* Debugging Output:: Optional messages about internal happenings
15811@end menu
15812
15813@node Prompt
15814@section Prompt
104c1213 15815
8e04817f 15816@cindex prompt
104c1213 15817
8e04817f
AC
15818@value{GDBN} indicates its readiness to read a command by printing a string
15819called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15820can change the prompt string with the @code{set prompt} command. For
15821instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15822the prompt in one of the @value{GDBN} sessions so that you can always tell
15823which one you are talking to.
104c1213 15824
8e04817f
AC
15825@emph{Note:} @code{set prompt} does not add a space for you after the
15826prompt you set. This allows you to set a prompt which ends in a space
15827or a prompt that does not.
104c1213 15828
8e04817f
AC
15829@table @code
15830@kindex set prompt
15831@item set prompt @var{newprompt}
15832Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15833
8e04817f
AC
15834@kindex show prompt
15835@item show prompt
15836Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15837@end table
15838
8e04817f 15839@node Editing
79a6e687 15840@section Command Editing
8e04817f
AC
15841@cindex readline
15842@cindex command line editing
104c1213 15843
703663ab 15844@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15845@sc{gnu} library provides consistent behavior for programs which provide a
15846command line interface to the user. Advantages are @sc{gnu} Emacs-style
15847or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15848substitution, and a storage and recall of command history across
15849debugging sessions.
104c1213 15850
8e04817f
AC
15851You may control the behavior of command line editing in @value{GDBN} with the
15852command @code{set}.
104c1213 15853
8e04817f
AC
15854@table @code
15855@kindex set editing
15856@cindex editing
15857@item set editing
15858@itemx set editing on
15859Enable command line editing (enabled by default).
104c1213 15860
8e04817f
AC
15861@item set editing off
15862Disable command line editing.
104c1213 15863
8e04817f
AC
15864@kindex show editing
15865@item show editing
15866Show whether command line editing is enabled.
104c1213
JM
15867@end table
15868
703663ab
EZ
15869@xref{Command Line Editing}, for more details about the Readline
15870interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15871encouraged to read that chapter.
15872
d620b259 15873@node Command History
79a6e687 15874@section Command History
703663ab 15875@cindex command history
8e04817f
AC
15876
15877@value{GDBN} can keep track of the commands you type during your
15878debugging sessions, so that you can be certain of precisely what
15879happened. Use these commands to manage the @value{GDBN} command
15880history facility.
104c1213 15881
703663ab
EZ
15882@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15883package, to provide the history facility. @xref{Using History
15884Interactively}, for the detailed description of the History library.
15885
d620b259 15886To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15887the state which is seen by users, prefix it with @samp{server }
15888(@pxref{Server Prefix}). This
d620b259
NR
15889means that this command will not affect the command history, nor will it
15890affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15891pressed on a line by itself.
15892
15893@cindex @code{server}, command prefix
15894The server prefix does not affect the recording of values into the value
15895history; to print a value without recording it into the value history,
15896use the @code{output} command instead of the @code{print} command.
15897
703663ab
EZ
15898Here is the description of @value{GDBN} commands related to command
15899history.
15900
104c1213 15901@table @code
8e04817f
AC
15902@cindex history substitution
15903@cindex history file
15904@kindex set history filename
4644b6e3 15905@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15906@item set history filename @var{fname}
15907Set the name of the @value{GDBN} command history file to @var{fname}.
15908This is the file where @value{GDBN} reads an initial command history
15909list, and where it writes the command history from this session when it
15910exits. You can access this list through history expansion or through
15911the history command editing characters listed below. This file defaults
15912to the value of the environment variable @code{GDBHISTFILE}, or to
15913@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15914is not set.
104c1213 15915
9c16f35a
EZ
15916@cindex save command history
15917@kindex set history save
8e04817f
AC
15918@item set history save
15919@itemx set history save on
15920Record command history in a file, whose name may be specified with the
15921@code{set history filename} command. By default, this option is disabled.
104c1213 15922
8e04817f
AC
15923@item set history save off
15924Stop recording command history in a file.
104c1213 15925
8e04817f 15926@cindex history size
9c16f35a 15927@kindex set history size
6fc08d32 15928@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15929@item set history size @var{size}
15930Set the number of commands which @value{GDBN} keeps in its history list.
15931This defaults to the value of the environment variable
15932@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15933@end table
15934
8e04817f 15935History expansion assigns special meaning to the character @kbd{!}.
703663ab 15936@xref{Event Designators}, for more details.
8e04817f 15937
703663ab 15938@cindex history expansion, turn on/off
8e04817f
AC
15939Since @kbd{!} is also the logical not operator in C, history expansion
15940is off by default. If you decide to enable history expansion with the
15941@code{set history expansion on} command, you may sometimes need to
15942follow @kbd{!} (when it is used as logical not, in an expression) with
15943a space or a tab to prevent it from being expanded. The readline
15944history facilities do not attempt substitution on the strings
15945@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15946
15947The commands to control history expansion are:
104c1213
JM
15948
15949@table @code
8e04817f
AC
15950@item set history expansion on
15951@itemx set history expansion
703663ab 15952@kindex set history expansion
8e04817f 15953Enable history expansion. History expansion is off by default.
104c1213 15954
8e04817f
AC
15955@item set history expansion off
15956Disable history expansion.
104c1213 15957
8e04817f
AC
15958@c @group
15959@kindex show history
15960@item show history
15961@itemx show history filename
15962@itemx show history save
15963@itemx show history size
15964@itemx show history expansion
15965These commands display the state of the @value{GDBN} history parameters.
15966@code{show history} by itself displays all four states.
15967@c @end group
15968@end table
15969
15970@table @code
9c16f35a
EZ
15971@kindex show commands
15972@cindex show last commands
15973@cindex display command history
8e04817f
AC
15974@item show commands
15975Display the last ten commands in the command history.
104c1213 15976
8e04817f
AC
15977@item show commands @var{n}
15978Print ten commands centered on command number @var{n}.
15979
15980@item show commands +
15981Print ten commands just after the commands last printed.
104c1213
JM
15982@end table
15983
8e04817f 15984@node Screen Size
79a6e687 15985@section Screen Size
8e04817f
AC
15986@cindex size of screen
15987@cindex pauses in output
104c1213 15988
8e04817f
AC
15989Certain commands to @value{GDBN} may produce large amounts of
15990information output to the screen. To help you read all of it,
15991@value{GDBN} pauses and asks you for input at the end of each page of
15992output. Type @key{RET} when you want to continue the output, or @kbd{q}
15993to discard the remaining output. Also, the screen width setting
15994determines when to wrap lines of output. Depending on what is being
15995printed, @value{GDBN} tries to break the line at a readable place,
15996rather than simply letting it overflow onto the following line.
15997
15998Normally @value{GDBN} knows the size of the screen from the terminal
15999driver software. For example, on Unix @value{GDBN} uses the termcap data base
16000together with the value of the @code{TERM} environment variable and the
16001@code{stty rows} and @code{stty cols} settings. If this is not correct,
16002you can override it with the @code{set height} and @code{set
16003width} commands:
16004
16005@table @code
16006@kindex set height
16007@kindex set width
16008@kindex show width
16009@kindex show height
16010@item set height @var{lpp}
16011@itemx show height
16012@itemx set width @var{cpl}
16013@itemx show width
16014These @code{set} commands specify a screen height of @var{lpp} lines and
16015a screen width of @var{cpl} characters. The associated @code{show}
16016commands display the current settings.
104c1213 16017
8e04817f
AC
16018If you specify a height of zero lines, @value{GDBN} does not pause during
16019output no matter how long the output is. This is useful if output is to a
16020file or to an editor buffer.
104c1213 16021
8e04817f
AC
16022Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
16023from wrapping its output.
9c16f35a
EZ
16024
16025@item set pagination on
16026@itemx set pagination off
16027@kindex set pagination
16028Turn the output pagination on or off; the default is on. Turning
16029pagination off is the alternative to @code{set height 0}.
16030
16031@item show pagination
16032@kindex show pagination
16033Show the current pagination mode.
104c1213
JM
16034@end table
16035
8e04817f
AC
16036@node Numbers
16037@section Numbers
16038@cindex number representation
16039@cindex entering numbers
104c1213 16040
8e04817f
AC
16041You can always enter numbers in octal, decimal, or hexadecimal in
16042@value{GDBN} by the usual conventions: octal numbers begin with
16043@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
16044begin with @samp{0x}. Numbers that neither begin with @samp{0} or
16045@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1604610; likewise, the default display for numbers---when no particular
16047format is specified---is base 10. You can change the default base for
16048both input and output with the commands described below.
104c1213 16049
8e04817f
AC
16050@table @code
16051@kindex set input-radix
16052@item set input-radix @var{base}
16053Set the default base for numeric input. Supported choices
16054for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16055specified either unambiguously or using the current input radix; for
8e04817f 16056example, any of
104c1213 16057
8e04817f 16058@smallexample
9c16f35a
EZ
16059set input-radix 012
16060set input-radix 10.
16061set input-radix 0xa
8e04817f 16062@end smallexample
104c1213 16063
8e04817f 16064@noindent
9c16f35a 16065sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
16066leaves the input radix unchanged, no matter what it was, since
16067@samp{10}, being without any leading or trailing signs of its base, is
16068interpreted in the current radix. Thus, if the current radix is 16,
16069@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
16070change the radix.
104c1213 16071
8e04817f
AC
16072@kindex set output-radix
16073@item set output-radix @var{base}
16074Set the default base for numeric display. Supported choices
16075for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 16076specified either unambiguously or using the current input radix.
104c1213 16077
8e04817f
AC
16078@kindex show input-radix
16079@item show input-radix
16080Display the current default base for numeric input.
104c1213 16081
8e04817f
AC
16082@kindex show output-radix
16083@item show output-radix
16084Display the current default base for numeric display.
9c16f35a
EZ
16085
16086@item set radix @r{[}@var{base}@r{]}
16087@itemx show radix
16088@kindex set radix
16089@kindex show radix
16090These commands set and show the default base for both input and output
16091of numbers. @code{set radix} sets the radix of input and output to
16092the same base; without an argument, it resets the radix back to its
16093default value of 10.
16094
8e04817f 16095@end table
104c1213 16096
1e698235 16097@node ABI
79a6e687 16098@section Configuring the Current ABI
1e698235
DJ
16099
16100@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
16101application automatically. However, sometimes you need to override its
16102conclusions. Use these commands to manage @value{GDBN}'s view of the
16103current ABI.
16104
98b45e30
DJ
16105@cindex OS ABI
16106@kindex set osabi
b4e9345d 16107@kindex show osabi
98b45e30
DJ
16108
16109One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 16110system targets, either via remote debugging or native emulation.
98b45e30
DJ
16111@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
16112but you can override its conclusion using the @code{set osabi} command.
16113One example where this is useful is in debugging of binaries which use
16114an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
16115not have the same identifying marks that the standard C library for your
16116platform provides.
16117
16118@table @code
16119@item show osabi
16120Show the OS ABI currently in use.
16121
16122@item set osabi
16123With no argument, show the list of registered available OS ABI's.
16124
16125@item set osabi @var{abi}
16126Set the current OS ABI to @var{abi}.
16127@end table
16128
1e698235 16129@cindex float promotion
1e698235
DJ
16130
16131Generally, the way that an argument of type @code{float} is passed to a
16132function depends on whether the function is prototyped. For a prototyped
16133(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
16134according to the architecture's convention for @code{float}. For unprototyped
16135(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
16136@code{double} and then passed.
16137
16138Unfortunately, some forms of debug information do not reliably indicate whether
16139a function is prototyped. If @value{GDBN} calls a function that is not marked
16140as prototyped, it consults @kbd{set coerce-float-to-double}.
16141
16142@table @code
a8f24a35 16143@kindex set coerce-float-to-double
1e698235
DJ
16144@item set coerce-float-to-double
16145@itemx set coerce-float-to-double on
16146Arguments of type @code{float} will be promoted to @code{double} when passed
16147to an unprototyped function. This is the default setting.
16148
16149@item set coerce-float-to-double off
16150Arguments of type @code{float} will be passed directly to unprototyped
16151functions.
9c16f35a
EZ
16152
16153@kindex show coerce-float-to-double
16154@item show coerce-float-to-double
16155Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
16156@end table
16157
f1212245
DJ
16158@kindex set cp-abi
16159@kindex show cp-abi
16160@value{GDBN} needs to know the ABI used for your program's C@t{++}
16161objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
16162used to build your application. @value{GDBN} only fully supports
16163programs with a single C@t{++} ABI; if your program contains code using
16164multiple C@t{++} ABI's or if @value{GDBN} can not identify your
16165program's ABI correctly, you can tell @value{GDBN} which ABI to use.
16166Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
16167before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
16168``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
16169use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
16170``auto''.
16171
16172@table @code
16173@item show cp-abi
16174Show the C@t{++} ABI currently in use.
16175
16176@item set cp-abi
16177With no argument, show the list of supported C@t{++} ABI's.
16178
16179@item set cp-abi @var{abi}
16180@itemx set cp-abi auto
16181Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
16182@end table
16183
8e04817f 16184@node Messages/Warnings
79a6e687 16185@section Optional Warnings and Messages
104c1213 16186
9c16f35a
EZ
16187@cindex verbose operation
16188@cindex optional warnings
8e04817f
AC
16189By default, @value{GDBN} is silent about its inner workings. If you are
16190running on a slow machine, you may want to use the @code{set verbose}
16191command. This makes @value{GDBN} tell you when it does a lengthy
16192internal operation, so you will not think it has crashed.
104c1213 16193
8e04817f
AC
16194Currently, the messages controlled by @code{set verbose} are those
16195which announce that the symbol table for a source file is being read;
79a6e687 16196see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 16197
8e04817f
AC
16198@table @code
16199@kindex set verbose
16200@item set verbose on
16201Enables @value{GDBN} output of certain informational messages.
104c1213 16202
8e04817f
AC
16203@item set verbose off
16204Disables @value{GDBN} output of certain informational messages.
104c1213 16205
8e04817f
AC
16206@kindex show verbose
16207@item show verbose
16208Displays whether @code{set verbose} is on or off.
16209@end table
104c1213 16210
8e04817f
AC
16211By default, if @value{GDBN} encounters bugs in the symbol table of an
16212object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
16213find this information useful (@pxref{Symbol Errors, ,Errors Reading
16214Symbol Files}).
104c1213 16215
8e04817f 16216@table @code
104c1213 16217
8e04817f
AC
16218@kindex set complaints
16219@item set complaints @var{limit}
16220Permits @value{GDBN} to output @var{limit} complaints about each type of
16221unusual symbols before becoming silent about the problem. Set
16222@var{limit} to zero to suppress all complaints; set it to a large number
16223to prevent complaints from being suppressed.
104c1213 16224
8e04817f
AC
16225@kindex show complaints
16226@item show complaints
16227Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16228
8e04817f 16229@end table
104c1213 16230
8e04817f
AC
16231By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16232lot of stupid questions to confirm certain commands. For example, if
16233you try to run a program which is already running:
104c1213 16234
474c8240 16235@smallexample
8e04817f
AC
16236(@value{GDBP}) run
16237The program being debugged has been started already.
16238Start it from the beginning? (y or n)
474c8240 16239@end smallexample
104c1213 16240
8e04817f
AC
16241If you are willing to unflinchingly face the consequences of your own
16242commands, you can disable this ``feature'':
104c1213 16243
8e04817f 16244@table @code
104c1213 16245
8e04817f
AC
16246@kindex set confirm
16247@cindex flinching
16248@cindex confirmation
16249@cindex stupid questions
16250@item set confirm off
16251Disables confirmation requests.
104c1213 16252
8e04817f
AC
16253@item set confirm on
16254Enables confirmation requests (the default).
104c1213 16255
8e04817f
AC
16256@kindex show confirm
16257@item show confirm
16258Displays state of confirmation requests.
16259
16260@end table
104c1213 16261
16026cd7
AS
16262@cindex command tracing
16263If you need to debug user-defined commands or sourced files you may find it
16264useful to enable @dfn{command tracing}. In this mode each command will be
16265printed as it is executed, prefixed with one or more @samp{+} symbols, the
16266quantity denoting the call depth of each command.
16267
16268@table @code
16269@kindex set trace-commands
16270@cindex command scripts, debugging
16271@item set trace-commands on
16272Enable command tracing.
16273@item set trace-commands off
16274Disable command tracing.
16275@item show trace-commands
16276Display the current state of command tracing.
16277@end table
16278
8e04817f 16279@node Debugging Output
79a6e687 16280@section Optional Messages about Internal Happenings
4644b6e3
EZ
16281@cindex optional debugging messages
16282
da316a69
EZ
16283@value{GDBN} has commands that enable optional debugging messages from
16284various @value{GDBN} subsystems; normally these commands are of
16285interest to @value{GDBN} maintainers, or when reporting a bug. This
16286section documents those commands.
16287
104c1213 16288@table @code
a8f24a35
EZ
16289@kindex set exec-done-display
16290@item set exec-done-display
16291Turns on or off the notification of asynchronous commands'
16292completion. When on, @value{GDBN} will print a message when an
16293asynchronous command finishes its execution. The default is off.
16294@kindex show exec-done-display
16295@item show exec-done-display
16296Displays the current setting of asynchronous command completion
16297notification.
4644b6e3
EZ
16298@kindex set debug
16299@cindex gdbarch debugging info
a8f24a35 16300@cindex architecture debugging info
8e04817f 16301@item set debug arch
a8f24a35 16302Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16303@kindex show debug
8e04817f
AC
16304@item show debug arch
16305Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16306@item set debug aix-thread
16307@cindex AIX threads
16308Display debugging messages about inner workings of the AIX thread
16309module.
16310@item show debug aix-thread
16311Show the current state of AIX thread debugging info display.
8e04817f 16312@item set debug event
4644b6e3 16313@cindex event debugging info
a8f24a35 16314Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16315default is off.
8e04817f
AC
16316@item show debug event
16317Displays the current state of displaying @value{GDBN} event debugging
16318info.
8e04817f 16319@item set debug expression
4644b6e3 16320@cindex expression debugging info
721c2651
EZ
16321Turns on or off display of debugging info about @value{GDBN}
16322expression parsing. The default is off.
8e04817f 16323@item show debug expression
721c2651
EZ
16324Displays the current state of displaying debugging info about
16325@value{GDBN} expression parsing.
7453dc06 16326@item set debug frame
4644b6e3 16327@cindex frame debugging info
7453dc06
AC
16328Turns on or off display of @value{GDBN} frame debugging info. The
16329default is off.
7453dc06
AC
16330@item show debug frame
16331Displays the current state of displaying @value{GDBN} frame debugging
16332info.
30e91e0b
RC
16333@item set debug infrun
16334@cindex inferior debugging info
16335Turns on or off display of @value{GDBN} debugging info for running the inferior.
16336The default is off. @file{infrun.c} contains GDB's runtime state machine used
16337for implementing operations such as single-stepping the inferior.
16338@item show debug infrun
16339Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16340@item set debug lin-lwp
16341@cindex @sc{gnu}/Linux LWP debug messages
16342@cindex Linux lightweight processes
721c2651 16343Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16344@item show debug lin-lwp
16345Show the current state of Linux LWP debugging messages.
2b4855ab 16346@item set debug observer
4644b6e3 16347@cindex observer debugging info
2b4855ab
AC
16348Turns on or off display of @value{GDBN} observer debugging. This
16349includes info such as the notification of observable events.
2b4855ab
AC
16350@item show debug observer
16351Displays the current state of observer debugging.
8e04817f 16352@item set debug overload
4644b6e3 16353@cindex C@t{++} overload debugging info
8e04817f 16354Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16355info. This includes info such as ranking of functions, etc. The default
8e04817f 16356is off.
8e04817f
AC
16357@item show debug overload
16358Displays the current state of displaying @value{GDBN} C@t{++} overload
16359debugging info.
8e04817f
AC
16360@cindex packets, reporting on stdout
16361@cindex serial connections, debugging
605a56cb
DJ
16362@cindex debug remote protocol
16363@cindex remote protocol debugging
16364@cindex display remote packets
8e04817f
AC
16365@item set debug remote
16366Turns on or off display of reports on all packets sent back and forth across
16367the serial line to the remote machine. The info is printed on the
16368@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16369@item show debug remote
16370Displays the state of display of remote packets.
8e04817f
AC
16371@item set debug serial
16372Turns on or off display of @value{GDBN} serial debugging info. The
16373default is off.
8e04817f
AC
16374@item show debug serial
16375Displays the current state of displaying @value{GDBN} serial debugging
16376info.
c45da7e6
EZ
16377@item set debug solib-frv
16378@cindex FR-V shared-library debugging
16379Turns on or off debugging messages for FR-V shared-library code.
16380@item show debug solib-frv
16381Display the current state of FR-V shared-library code debugging
16382messages.
8e04817f 16383@item set debug target
4644b6e3 16384@cindex target debugging info
8e04817f
AC
16385Turns on or off display of @value{GDBN} target debugging info. This info
16386includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16387default is 0. Set it to 1 to track events, and to 2 to also track the
16388value of large memory transfers. Changes to this flag do not take effect
16389until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16390@item show debug target
16391Displays the current state of displaying @value{GDBN} target debugging
16392info.
c45da7e6 16393@item set debugvarobj
4644b6e3 16394@cindex variable object debugging info
8e04817f
AC
16395Turns on or off display of @value{GDBN} variable object debugging
16396info. The default is off.
c45da7e6 16397@item show debugvarobj
8e04817f
AC
16398Displays the current state of displaying @value{GDBN} variable object
16399debugging info.
e776119f
DJ
16400@item set debug xml
16401@cindex XML parser debugging
16402Turns on or off debugging messages for built-in XML parsers.
16403@item show debug xml
16404Displays the current state of XML debugging messages.
8e04817f 16405@end table
104c1213 16406
8e04817f
AC
16407@node Sequences
16408@chapter Canned Sequences of Commands
104c1213 16409
8e04817f 16410Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16411Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16412commands for execution as a unit: user-defined commands and command
16413files.
104c1213 16414
8e04817f 16415@menu
fcc73fe3
EZ
16416* Define:: How to define your own commands
16417* Hooks:: Hooks for user-defined commands
16418* Command Files:: How to write scripts of commands to be stored in a file
16419* Output:: Commands for controlled output
8e04817f 16420@end menu
104c1213 16421
8e04817f 16422@node Define
79a6e687 16423@section User-defined Commands
104c1213 16424
8e04817f 16425@cindex user-defined command
fcc73fe3 16426@cindex arguments, to user-defined commands
8e04817f
AC
16427A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16428which you assign a new name as a command. This is done with the
16429@code{define} command. User commands may accept up to 10 arguments
16430separated by whitespace. Arguments are accessed within the user command
c03c782f 16431via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16432
8e04817f
AC
16433@smallexample
16434define adder
16435 print $arg0 + $arg1 + $arg2
c03c782f 16436end
8e04817f 16437@end smallexample
104c1213
JM
16438
16439@noindent
8e04817f 16440To execute the command use:
104c1213 16441
8e04817f
AC
16442@smallexample
16443adder 1 2 3
16444@end smallexample
104c1213 16445
8e04817f
AC
16446@noindent
16447This defines the command @code{adder}, which prints the sum of
16448its three arguments. Note the arguments are text substitutions, so they may
16449reference variables, use complex expressions, or even perform inferior
16450functions calls.
104c1213 16451
fcc73fe3
EZ
16452@cindex argument count in user-defined commands
16453@cindex how many arguments (user-defined commands)
c03c782f
AS
16454In addition, @code{$argc} may be used to find out how many arguments have
16455been passed. This expands to a number in the range 0@dots{}10.
16456
16457@smallexample
16458define adder
16459 if $argc == 2
16460 print $arg0 + $arg1
16461 end
16462 if $argc == 3
16463 print $arg0 + $arg1 + $arg2
16464 end
16465end
16466@end smallexample
16467
104c1213 16468@table @code
104c1213 16469
8e04817f
AC
16470@kindex define
16471@item define @var{commandname}
16472Define a command named @var{commandname}. If there is already a command
16473by that name, you are asked to confirm that you want to redefine it.
104c1213 16474
8e04817f
AC
16475The definition of the command is made up of other @value{GDBN} command lines,
16476which are given following the @code{define} command. The end of these
16477commands is marked by a line containing @code{end}.
104c1213 16478
8e04817f 16479@kindex document
ca91424e 16480@kindex end@r{ (user-defined commands)}
8e04817f
AC
16481@item document @var{commandname}
16482Document the user-defined command @var{commandname}, so that it can be
16483accessed by @code{help}. The command @var{commandname} must already be
16484defined. This command reads lines of documentation just as @code{define}
16485reads the lines of the command definition, ending with @code{end}.
16486After the @code{document} command is finished, @code{help} on command
16487@var{commandname} displays the documentation you have written.
104c1213 16488
8e04817f
AC
16489You may use the @code{document} command again to change the
16490documentation of a command. Redefining the command with @code{define}
16491does not change the documentation.
104c1213 16492
c45da7e6
EZ
16493@kindex dont-repeat
16494@cindex don't repeat command
16495@item dont-repeat
16496Used inside a user-defined command, this tells @value{GDBN} that this
16497command should not be repeated when the user hits @key{RET}
16498(@pxref{Command Syntax, repeat last command}).
16499
8e04817f
AC
16500@kindex help user-defined
16501@item help user-defined
16502List all user-defined commands, with the first line of the documentation
16503(if any) for each.
104c1213 16504
8e04817f
AC
16505@kindex show user
16506@item show user
16507@itemx show user @var{commandname}
16508Display the @value{GDBN} commands used to define @var{commandname} (but
16509not its documentation). If no @var{commandname} is given, display the
16510definitions for all user-defined commands.
104c1213 16511
fcc73fe3 16512@cindex infinite recursion in user-defined commands
20f01a46
DH
16513@kindex show max-user-call-depth
16514@kindex set max-user-call-depth
16515@item show max-user-call-depth
5ca0cb28
DH
16516@itemx set max-user-call-depth
16517The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16518levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16519infinite recursion and aborts the command.
104c1213
JM
16520@end table
16521
fcc73fe3
EZ
16522In addition to the above commands, user-defined commands frequently
16523use control flow commands, described in @ref{Command Files}.
16524
8e04817f
AC
16525When user-defined commands are executed, the
16526commands of the definition are not printed. An error in any command
16527stops execution of the user-defined command.
104c1213 16528
8e04817f
AC
16529If used interactively, commands that would ask for confirmation proceed
16530without asking when used inside a user-defined command. Many @value{GDBN}
16531commands that normally print messages to say what they are doing omit the
16532messages when used in a user-defined command.
104c1213 16533
8e04817f 16534@node Hooks
79a6e687 16535@section User-defined Command Hooks
8e04817f
AC
16536@cindex command hooks
16537@cindex hooks, for commands
16538@cindex hooks, pre-command
104c1213 16539
8e04817f 16540@kindex hook
8e04817f
AC
16541You may define @dfn{hooks}, which are a special kind of user-defined
16542command. Whenever you run the command @samp{foo}, if the user-defined
16543command @samp{hook-foo} exists, it is executed (with no arguments)
16544before that command.
104c1213 16545
8e04817f
AC
16546@cindex hooks, post-command
16547@kindex hookpost
8e04817f
AC
16548A hook may also be defined which is run after the command you executed.
16549Whenever you run the command @samp{foo}, if the user-defined command
16550@samp{hookpost-foo} exists, it is executed (with no arguments) after
16551that command. Post-execution hooks may exist simultaneously with
16552pre-execution hooks, for the same command.
104c1213 16553
8e04817f 16554It is valid for a hook to call the command which it hooks. If this
9f1c6395 16555occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16556
8e04817f
AC
16557@c It would be nice if hookpost could be passed a parameter indicating
16558@c if the command it hooks executed properly or not. FIXME!
104c1213 16559
8e04817f
AC
16560@kindex stop@r{, a pseudo-command}
16561In addition, a pseudo-command, @samp{stop} exists. Defining
16562(@samp{hook-stop}) makes the associated commands execute every time
16563execution stops in your program: before breakpoint commands are run,
16564displays are printed, or the stack frame is printed.
104c1213 16565
8e04817f
AC
16566For example, to ignore @code{SIGALRM} signals while
16567single-stepping, but treat them normally during normal execution,
16568you could define:
104c1213 16569
474c8240 16570@smallexample
8e04817f
AC
16571define hook-stop
16572handle SIGALRM nopass
16573end
104c1213 16574
8e04817f
AC
16575define hook-run
16576handle SIGALRM pass
16577end
104c1213 16578
8e04817f 16579define hook-continue
d3e8051b 16580handle SIGALRM pass
8e04817f 16581end
474c8240 16582@end smallexample
104c1213 16583
d3e8051b 16584As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16585command, and to add extra text to the beginning and end of the message,
8e04817f 16586you could define:
104c1213 16587
474c8240 16588@smallexample
8e04817f
AC
16589define hook-echo
16590echo <<<---
16591end
104c1213 16592
8e04817f
AC
16593define hookpost-echo
16594echo --->>>\n
16595end
104c1213 16596
8e04817f
AC
16597(@value{GDBP}) echo Hello World
16598<<<---Hello World--->>>
16599(@value{GDBP})
104c1213 16600
474c8240 16601@end smallexample
104c1213 16602
8e04817f
AC
16603You can define a hook for any single-word command in @value{GDBN}, but
16604not for command aliases; you should define a hook for the basic command
c1468174 16605name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16606@c FIXME! So how does Joe User discover whether a command is an alias
16607@c or not?
16608If an error occurs during the execution of your hook, execution of
16609@value{GDBN} commands stops and @value{GDBN} issues a prompt
16610(before the command that you actually typed had a chance to run).
104c1213 16611
8e04817f
AC
16612If you try to define a hook which does not match any known command, you
16613get a warning from the @code{define} command.
c906108c 16614
8e04817f 16615@node Command Files
79a6e687 16616@section Command Files
c906108c 16617
8e04817f 16618@cindex command files
fcc73fe3 16619@cindex scripting commands
6fc08d32
EZ
16620A command file for @value{GDBN} is a text file made of lines that are
16621@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16622also be included. An empty line in a command file does nothing; it
16623does not mean to repeat the last command, as it would from the
16624terminal.
c906108c 16625
6fc08d32
EZ
16626You can request the execution of a command file with the @code{source}
16627command:
c906108c 16628
8e04817f
AC
16629@table @code
16630@kindex source
ca91424e 16631@cindex execute commands from a file
16026cd7 16632@item source [@code{-v}] @var{filename}
8e04817f 16633Execute the command file @var{filename}.
c906108c
SS
16634@end table
16635
fcc73fe3
EZ
16636The lines in a command file are generally executed sequentially,
16637unless the order of execution is changed by one of the
16638@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16639printed as they are executed. An error in any command terminates
16640execution of the command file and control is returned to the console.
c906108c 16641
4b505b12
AS
16642@value{GDBN} searches for @var{filename} in the current directory and then
16643on the search path (specified with the @samp{directory} command).
16644
16026cd7
AS
16645If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16646each command as it is executed. The option must be given before
16647@var{filename}, and is interpreted as part of the filename anywhere else.
16648
8e04817f
AC
16649Commands that would ask for confirmation if used interactively proceed
16650without asking when used in a command file. Many @value{GDBN} commands that
16651normally print messages to say what they are doing omit the messages
16652when called from command files.
c906108c 16653
8e04817f
AC
16654@value{GDBN} also accepts command input from standard input. In this
16655mode, normal output goes to standard output and error output goes to
16656standard error. Errors in a command file supplied on standard input do
6fc08d32 16657not terminate execution of the command file---execution continues with
8e04817f 16658the next command.
c906108c 16659
474c8240 16660@smallexample
8e04817f 16661gdb < cmds > log 2>&1
474c8240 16662@end smallexample
c906108c 16663
8e04817f
AC
16664(The syntax above will vary depending on the shell used.) This example
16665will execute commands from the file @file{cmds}. All output and errors
16666would be directed to @file{log}.
c906108c 16667
fcc73fe3
EZ
16668Since commands stored on command files tend to be more general than
16669commands typed interactively, they frequently need to deal with
16670complicated situations, such as different or unexpected values of
16671variables and symbols, changes in how the program being debugged is
16672built, etc. @value{GDBN} provides a set of flow-control commands to
16673deal with these complexities. Using these commands, you can write
16674complex scripts that loop over data structures, execute commands
16675conditionally, etc.
16676
16677@table @code
16678@kindex if
16679@kindex else
16680@item if
16681@itemx else
16682This command allows to include in your script conditionally executed
16683commands. The @code{if} command takes a single argument, which is an
16684expression to evaluate. It is followed by a series of commands that
16685are executed only if the expression is true (its value is nonzero).
16686There can then optionally be an @code{else} line, followed by a series
16687of commands that are only executed if the expression was false. The
16688end of the list is marked by a line containing @code{end}.
16689
16690@kindex while
16691@item while
16692This command allows to write loops. Its syntax is similar to
16693@code{if}: the command takes a single argument, which is an expression
16694to evaluate, and must be followed by the commands to execute, one per
16695line, terminated by an @code{end}. These commands are called the
16696@dfn{body} of the loop. The commands in the body of @code{while} are
16697executed repeatedly as long as the expression evaluates to true.
16698
16699@kindex loop_break
16700@item loop_break
16701This command exits the @code{while} loop in whose body it is included.
16702Execution of the script continues after that @code{while}s @code{end}
16703line.
16704
16705@kindex loop_continue
16706@item loop_continue
16707This command skips the execution of the rest of the body of commands
16708in the @code{while} loop in whose body it is included. Execution
16709branches to the beginning of the @code{while} loop, where it evaluates
16710the controlling expression.
ca91424e
EZ
16711
16712@kindex end@r{ (if/else/while commands)}
16713@item end
16714Terminate the block of commands that are the body of @code{if},
16715@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16716@end table
16717
16718
8e04817f 16719@node Output
79a6e687 16720@section Commands for Controlled Output
c906108c 16721
8e04817f
AC
16722During the execution of a command file or a user-defined command, normal
16723@value{GDBN} output is suppressed; the only output that appears is what is
16724explicitly printed by the commands in the definition. This section
16725describes three commands useful for generating exactly the output you
16726want.
c906108c
SS
16727
16728@table @code
8e04817f
AC
16729@kindex echo
16730@item echo @var{text}
16731@c I do not consider backslash-space a standard C escape sequence
16732@c because it is not in ANSI.
16733Print @var{text}. Nonprinting characters can be included in
16734@var{text} using C escape sequences, such as @samp{\n} to print a
16735newline. @strong{No newline is printed unless you specify one.}
16736In addition to the standard C escape sequences, a backslash followed
16737by a space stands for a space. This is useful for displaying a
16738string with spaces at the beginning or the end, since leading and
16739trailing spaces are otherwise trimmed from all arguments.
16740To print @samp{@w{ }and foo =@w{ }}, use the command
16741@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16742
8e04817f
AC
16743A backslash at the end of @var{text} can be used, as in C, to continue
16744the command onto subsequent lines. For example,
c906108c 16745
474c8240 16746@smallexample
8e04817f
AC
16747echo This is some text\n\
16748which is continued\n\
16749onto several lines.\n
474c8240 16750@end smallexample
c906108c 16751
8e04817f 16752produces the same output as
c906108c 16753
474c8240 16754@smallexample
8e04817f
AC
16755echo This is some text\n
16756echo which is continued\n
16757echo onto several lines.\n
474c8240 16758@end smallexample
c906108c 16759
8e04817f
AC
16760@kindex output
16761@item output @var{expression}
16762Print the value of @var{expression} and nothing but that value: no
16763newlines, no @samp{$@var{nn} = }. The value is not entered in the
16764value history either. @xref{Expressions, ,Expressions}, for more information
16765on expressions.
c906108c 16766
8e04817f
AC
16767@item output/@var{fmt} @var{expression}
16768Print the value of @var{expression} in format @var{fmt}. You can use
16769the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16770Formats}, for more information.
c906108c 16771
8e04817f 16772@kindex printf
82160952
EZ
16773@item printf @var{template}, @var{expressions}@dots{}
16774Print the values of one or more @var{expressions} under the control of
16775the string @var{template}. To print several values, make
16776@var{expressions} be a comma-separated list of individual expressions,
16777which may be either numbers or pointers. Their values are printed as
16778specified by @var{template}, exactly as a C program would do by
16779executing the code below:
c906108c 16780
474c8240 16781@smallexample
82160952 16782printf (@var{template}, @var{expressions}@dots{});
474c8240 16783@end smallexample
c906108c 16784
82160952
EZ
16785As in @code{C} @code{printf}, ordinary characters in @var{template}
16786are printed verbatim, while @dfn{conversion specification} introduced
16787by the @samp{%} character cause subsequent @var{expressions} to be
16788evaluated, their values converted and formatted according to type and
16789style information encoded in the conversion specifications, and then
16790printed.
16791
8e04817f 16792For example, you can print two values in hex like this:
c906108c 16793
8e04817f
AC
16794@smallexample
16795printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16796@end smallexample
c906108c 16797
82160952
EZ
16798@code{printf} supports all the standard @code{C} conversion
16799specifications, including the flags and modifiers between the @samp{%}
16800character and the conversion letter, with the following exceptions:
16801
16802@itemize @bullet
16803@item
16804The argument-ordering modifiers, such as @samp{2$}, are not supported.
16805
16806@item
16807The modifier @samp{*} is not supported for specifying precision or
16808width.
16809
16810@item
16811The @samp{'} flag (for separation of digits into groups according to
16812@code{LC_NUMERIC'}) is not supported.
16813
16814@item
16815The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16816supported.
16817
16818@item
16819The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16820
16821@item
16822The conversion letters @samp{a} and @samp{A} are not supported.
16823@end itemize
16824
16825@noindent
16826Note that the @samp{ll} type modifier is supported only if the
16827underlying @code{C} implementation used to build @value{GDBN} supports
16828the @code{long long int} type, and the @samp{L} type modifier is
16829supported only if @code{long double} type is available.
16830
16831As in @code{C}, @code{printf} supports simple backslash-escape
16832sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16833@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16834single character. Octal and hexadecimal escape sequences are not
16835supported.
1a619819
LM
16836
16837Additionally, @code{printf} supports conversion specifications for DFP
0aea4bf3
LM
16838(@dfn{Decimal Floating Point}) types using the following length modifiers
16839together with a floating point specifier.
1a619819
LM
16840letters:
16841
16842@itemize @bullet
16843@item
16844@samp{H} for printing @code{Decimal32} types.
16845
16846@item
16847@samp{D} for printing @code{Decimal64} types.
16848
16849@item
16850@samp{DD} for printing @code{Decimal128} types.
16851@end itemize
16852
16853If the underlying @code{C} implementation used to build @value{GDBN} has
0aea4bf3 16854support for the three length modifiers for DFP types, other modifiers
3b784c4f 16855such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16856
16857In case there is no such @code{C} support, no additional modifiers will be
16858available and the value will be printed in the standard way.
16859
16860Here's an example of printing DFP types using the above conversion letters:
16861@smallexample
0aea4bf3 16862printf "D32: %Hf - D64: %Df - D128: %DDf\n",1.2345df,1.2E10dd,1.2E1dl
1a619819
LM
16863@end smallexample
16864
c906108c
SS
16865@end table
16866
21c294e6
AC
16867@node Interpreters
16868@chapter Command Interpreters
16869@cindex command interpreters
16870
16871@value{GDBN} supports multiple command interpreters, and some command
16872infrastructure to allow users or user interface writers to switch
16873between interpreters or run commands in other interpreters.
16874
16875@value{GDBN} currently supports two command interpreters, the console
16876interpreter (sometimes called the command-line interpreter or @sc{cli})
16877and the machine interface interpreter (or @sc{gdb/mi}). This manual
16878describes both of these interfaces in great detail.
16879
16880By default, @value{GDBN} will start with the console interpreter.
16881However, the user may choose to start @value{GDBN} with another
16882interpreter by specifying the @option{-i} or @option{--interpreter}
16883startup options. Defined interpreters include:
16884
16885@table @code
16886@item console
16887@cindex console interpreter
16888The traditional console or command-line interpreter. This is the most often
16889used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16890@value{GDBN} will use this interpreter.
16891
16892@item mi
16893@cindex mi interpreter
16894The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16895by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16896or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16897Interface}.
16898
16899@item mi2
16900@cindex mi2 interpreter
16901The current @sc{gdb/mi} interface.
16902
16903@item mi1
16904@cindex mi1 interpreter
16905The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16906
16907@end table
16908
16909@cindex invoke another interpreter
16910The interpreter being used by @value{GDBN} may not be dynamically
16911switched at runtime. Although possible, this could lead to a very
16912precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16913enters the command "interpreter-set console" in a console view,
16914@value{GDBN} would switch to using the console interpreter, rendering
16915the IDE inoperable!
16916
16917@kindex interpreter-exec
16918Although you may only choose a single interpreter at startup, you may execute
16919commands in any interpreter from the current interpreter using the appropriate
16920command. If you are running the console interpreter, simply use the
16921@code{interpreter-exec} command:
16922
16923@smallexample
16924interpreter-exec mi "-data-list-register-names"
16925@end smallexample
16926
16927@sc{gdb/mi} has a similar command, although it is only available in versions of
16928@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16929
8e04817f
AC
16930@node TUI
16931@chapter @value{GDBN} Text User Interface
16932@cindex TUI
d0d5df6f 16933@cindex Text User Interface
c906108c 16934
8e04817f
AC
16935@menu
16936* TUI Overview:: TUI overview
16937* TUI Keys:: TUI key bindings
7cf36c78 16938* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16939* TUI Commands:: TUI-specific commands
8e04817f
AC
16940* TUI Configuration:: TUI configuration variables
16941@end menu
c906108c 16942
46ba6afa 16943The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16944interface which uses the @code{curses} library to show the source
16945file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16946commands in separate text windows. The TUI mode is supported only
16947on platforms where a suitable version of the @code{curses} library
16948is available.
d0d5df6f 16949
46ba6afa
BW
16950@pindex @value{GDBTUI}
16951The TUI mode is enabled by default when you invoke @value{GDBN} as
16952either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16953You can also switch in and out of TUI mode while @value{GDBN} runs by
16954using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16955@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16956
8e04817f 16957@node TUI Overview
79a6e687 16958@section TUI Overview
c906108c 16959
46ba6afa 16960In TUI mode, @value{GDBN} can display several text windows:
c906108c 16961
8e04817f
AC
16962@table @emph
16963@item command
16964This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16965prompt and the @value{GDBN} output. The @value{GDBN} input is still
16966managed using readline.
c906108c 16967
8e04817f
AC
16968@item source
16969The source window shows the source file of the program. The current
46ba6afa 16970line and active breakpoints are displayed in this window.
c906108c 16971
8e04817f
AC
16972@item assembly
16973The assembly window shows the disassembly output of the program.
c906108c 16974
8e04817f 16975@item register
46ba6afa
BW
16976This window shows the processor registers. Registers are highlighted
16977when their values change.
c906108c
SS
16978@end table
16979
269c21fe 16980The source and assembly windows show the current program position
46ba6afa
BW
16981by highlighting the current line and marking it with a @samp{>} marker.
16982Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16983indicates the breakpoint type:
16984
16985@table @code
16986@item B
16987Breakpoint which was hit at least once.
16988
16989@item b
16990Breakpoint which was never hit.
16991
16992@item H
16993Hardware breakpoint which was hit at least once.
16994
16995@item h
16996Hardware breakpoint which was never hit.
269c21fe
SC
16997@end table
16998
16999The second marker indicates whether the breakpoint is enabled or not:
17000
17001@table @code
17002@item +
17003Breakpoint is enabled.
17004
17005@item -
17006Breakpoint is disabled.
269c21fe
SC
17007@end table
17008
46ba6afa
BW
17009The source, assembly and register windows are updated when the current
17010thread changes, when the frame changes, or when the program counter
17011changes.
17012
17013These windows are not all visible at the same time. The command
17014window is always visible. The others can be arranged in several
17015layouts:
c906108c 17016
8e04817f
AC
17017@itemize @bullet
17018@item
46ba6afa 17019source only,
2df3850c 17020
8e04817f 17021@item
46ba6afa 17022assembly only,
8e04817f
AC
17023
17024@item
46ba6afa 17025source and assembly,
8e04817f
AC
17026
17027@item
46ba6afa 17028source and registers, or
c906108c 17029
8e04817f 17030@item
46ba6afa 17031assembly and registers.
8e04817f 17032@end itemize
c906108c 17033
46ba6afa 17034A status line above the command window shows the following information:
b7bb15bc
SC
17035
17036@table @emph
17037@item target
46ba6afa 17038Indicates the current @value{GDBN} target.
b7bb15bc
SC
17039(@pxref{Targets, ,Specifying a Debugging Target}).
17040
17041@item process
46ba6afa 17042Gives the current process or thread number.
b7bb15bc
SC
17043When no process is being debugged, this field is set to @code{No process}.
17044
17045@item function
17046Gives the current function name for the selected frame.
17047The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 17048When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
17049the string @code{??} is displayed.
17050
17051@item line
17052Indicates the current line number for the selected frame.
46ba6afa 17053When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
17054
17055@item pc
17056Indicates the current program counter address.
b7bb15bc
SC
17057@end table
17058
8e04817f
AC
17059@node TUI Keys
17060@section TUI Key Bindings
17061@cindex TUI key bindings
c906108c 17062
8e04817f 17063The TUI installs several key bindings in the readline keymaps
46ba6afa 17064(@pxref{Command Line Editing}). The following key bindings
8e04817f 17065are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 17066
8e04817f
AC
17067@table @kbd
17068@kindex C-x C-a
17069@item C-x C-a
17070@kindex C-x a
17071@itemx C-x a
17072@kindex C-x A
17073@itemx C-x A
46ba6afa
BW
17074Enter or leave the TUI mode. When leaving the TUI mode,
17075the curses window management stops and @value{GDBN} operates using
17076its standard mode, writing on the terminal directly. When reentering
17077the TUI mode, control is given back to the curses windows.
8e04817f 17078The screen is then refreshed.
c906108c 17079
8e04817f
AC
17080@kindex C-x 1
17081@item C-x 1
17082Use a TUI layout with only one window. The layout will
17083either be @samp{source} or @samp{assembly}. When the TUI mode
17084is not active, it will switch to the TUI mode.
2df3850c 17085
8e04817f 17086Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 17087
8e04817f
AC
17088@kindex C-x 2
17089@item C-x 2
17090Use a TUI layout with at least two windows. When the current
46ba6afa 17091layout already has two windows, the next layout with two windows is used.
8e04817f
AC
17092When a new layout is chosen, one window will always be common to the
17093previous layout and the new one.
c906108c 17094
8e04817f 17095Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 17096
72ffddc9
SC
17097@kindex C-x o
17098@item C-x o
17099Change the active window. The TUI associates several key bindings
46ba6afa 17100(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
17101gives the focus to the next TUI window.
17102
17103Think of it as the Emacs @kbd{C-x o} binding.
17104
7cf36c78
SC
17105@kindex C-x s
17106@item C-x s
46ba6afa
BW
17107Switch in and out of the TUI SingleKey mode that binds single
17108keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
17109@end table
17110
46ba6afa 17111The following key bindings only work in the TUI mode:
5d161b24 17112
46ba6afa 17113@table @asis
8e04817f 17114@kindex PgUp
46ba6afa 17115@item @key{PgUp}
8e04817f 17116Scroll the active window one page up.
c906108c 17117
8e04817f 17118@kindex PgDn
46ba6afa 17119@item @key{PgDn}
8e04817f 17120Scroll the active window one page down.
c906108c 17121
8e04817f 17122@kindex Up
46ba6afa 17123@item @key{Up}
8e04817f 17124Scroll the active window one line up.
c906108c 17125
8e04817f 17126@kindex Down
46ba6afa 17127@item @key{Down}
8e04817f 17128Scroll the active window one line down.
c906108c 17129
8e04817f 17130@kindex Left
46ba6afa 17131@item @key{Left}
8e04817f 17132Scroll the active window one column left.
c906108c 17133
8e04817f 17134@kindex Right
46ba6afa 17135@item @key{Right}
8e04817f 17136Scroll the active window one column right.
c906108c 17137
8e04817f 17138@kindex C-L
46ba6afa 17139@item @kbd{C-L}
8e04817f 17140Refresh the screen.
8e04817f 17141@end table
c906108c 17142
46ba6afa
BW
17143Because the arrow keys scroll the active window in the TUI mode, they
17144are not available for their normal use by readline unless the command
17145window has the focus. When another window is active, you must use
17146other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
17147and @kbd{C-f} to control the command window.
8e04817f 17148
7cf36c78
SC
17149@node TUI Single Key Mode
17150@section TUI Single Key Mode
17151@cindex TUI single key mode
17152
46ba6afa
BW
17153The TUI also provides a @dfn{SingleKey} mode, which binds several
17154frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
17155switch into this mode, where the following key bindings are used:
7cf36c78
SC
17156
17157@table @kbd
17158@kindex c @r{(SingleKey TUI key)}
17159@item c
17160continue
17161
17162@kindex d @r{(SingleKey TUI key)}
17163@item d
17164down
17165
17166@kindex f @r{(SingleKey TUI key)}
17167@item f
17168finish
17169
17170@kindex n @r{(SingleKey TUI key)}
17171@item n
17172next
17173
17174@kindex q @r{(SingleKey TUI key)}
17175@item q
46ba6afa 17176exit the SingleKey mode.
7cf36c78
SC
17177
17178@kindex r @r{(SingleKey TUI key)}
17179@item r
17180run
17181
17182@kindex s @r{(SingleKey TUI key)}
17183@item s
17184step
17185
17186@kindex u @r{(SingleKey TUI key)}
17187@item u
17188up
17189
17190@kindex v @r{(SingleKey TUI key)}
17191@item v
17192info locals
17193
17194@kindex w @r{(SingleKey TUI key)}
17195@item w
17196where
7cf36c78
SC
17197@end table
17198
17199Other keys temporarily switch to the @value{GDBN} command prompt.
17200The key that was pressed is inserted in the editing buffer so that
17201it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
17202with the TUI SingleKey mode. Once the command is entered the TUI
17203SingleKey mode is restored. The only way to permanently leave
7f9087cb 17204this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
17205
17206
8e04817f 17207@node TUI Commands
db2e3e2e 17208@section TUI-specific Commands
8e04817f
AC
17209@cindex TUI commands
17210
17211The TUI has specific commands to control the text windows.
46ba6afa
BW
17212These commands are always available, even when @value{GDBN} is not in
17213the TUI mode. When @value{GDBN} is in the standard mode, most
17214of these commands will automatically switch to the TUI mode.
c906108c
SS
17215
17216@table @code
3d757584
SC
17217@item info win
17218@kindex info win
17219List and give the size of all displayed windows.
17220
8e04817f 17221@item layout next
4644b6e3 17222@kindex layout
8e04817f 17223Display the next layout.
2df3850c 17224
8e04817f 17225@item layout prev
8e04817f 17226Display the previous layout.
c906108c 17227
8e04817f 17228@item layout src
8e04817f 17229Display the source window only.
c906108c 17230
8e04817f 17231@item layout asm
8e04817f 17232Display the assembly window only.
c906108c 17233
8e04817f 17234@item layout split
8e04817f 17235Display the source and assembly window.
c906108c 17236
8e04817f 17237@item layout regs
8e04817f
AC
17238Display the register window together with the source or assembly window.
17239
46ba6afa 17240@item focus next
8e04817f 17241@kindex focus
46ba6afa
BW
17242Make the next window active for scrolling.
17243
17244@item focus prev
17245Make the previous window active for scrolling.
17246
17247@item focus src
17248Make the source window active for scrolling.
17249
17250@item focus asm
17251Make the assembly window active for scrolling.
17252
17253@item focus regs
17254Make the register window active for scrolling.
17255
17256@item focus cmd
17257Make the command window active for scrolling.
c906108c 17258
8e04817f
AC
17259@item refresh
17260@kindex refresh
7f9087cb 17261Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17262
6a1b180d
SC
17263@item tui reg float
17264@kindex tui reg
17265Show the floating point registers in the register window.
17266
17267@item tui reg general
17268Show the general registers in the register window.
17269
17270@item tui reg next
17271Show the next register group. The list of register groups as well as
17272their order is target specific. The predefined register groups are the
17273following: @code{general}, @code{float}, @code{system}, @code{vector},
17274@code{all}, @code{save}, @code{restore}.
17275
17276@item tui reg system
17277Show the system registers in the register window.
17278
8e04817f
AC
17279@item update
17280@kindex update
17281Update the source window and the current execution point.
c906108c 17282
8e04817f
AC
17283@item winheight @var{name} +@var{count}
17284@itemx winheight @var{name} -@var{count}
17285@kindex winheight
17286Change the height of the window @var{name} by @var{count}
17287lines. Positive counts increase the height, while negative counts
17288decrease it.
2df3850c 17289
46ba6afa
BW
17290@item tabset @var{nchars}
17291@kindex tabset
c45da7e6 17292Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17293@end table
17294
8e04817f 17295@node TUI Configuration
79a6e687 17296@section TUI Configuration Variables
8e04817f 17297@cindex TUI configuration variables
c906108c 17298
46ba6afa 17299Several configuration variables control the appearance of TUI windows.
c906108c 17300
8e04817f
AC
17301@table @code
17302@item set tui border-kind @var{kind}
17303@kindex set tui border-kind
17304Select the border appearance for the source, assembly and register windows.
17305The possible values are the following:
17306@table @code
17307@item space
17308Use a space character to draw the border.
c906108c 17309
8e04817f 17310@item ascii
46ba6afa 17311Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17312
8e04817f
AC
17313@item acs
17314Use the Alternate Character Set to draw the border. The border is
17315drawn using character line graphics if the terminal supports them.
8e04817f 17316@end table
c78b4128 17317
8e04817f
AC
17318@item set tui border-mode @var{mode}
17319@kindex set tui border-mode
46ba6afa
BW
17320@itemx set tui active-border-mode @var{mode}
17321@kindex set tui active-border-mode
17322Select the display attributes for the borders of the inactive windows
17323or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17324@table @code
17325@item normal
17326Use normal attributes to display the border.
c906108c 17327
8e04817f
AC
17328@item standout
17329Use standout mode.
c906108c 17330
8e04817f
AC
17331@item reverse
17332Use reverse video mode.
c906108c 17333
8e04817f
AC
17334@item half
17335Use half bright mode.
c906108c 17336
8e04817f
AC
17337@item half-standout
17338Use half bright and standout mode.
c906108c 17339
8e04817f
AC
17340@item bold
17341Use extra bright or bold mode.
c78b4128 17342
8e04817f
AC
17343@item bold-standout
17344Use extra bright or bold and standout mode.
8e04817f 17345@end table
8e04817f 17346@end table
c78b4128 17347
8e04817f
AC
17348@node Emacs
17349@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17350
8e04817f
AC
17351@cindex Emacs
17352@cindex @sc{gnu} Emacs
17353A special interface allows you to use @sc{gnu} Emacs to view (and
17354edit) the source files for the program you are debugging with
17355@value{GDBN}.
c906108c 17356
8e04817f
AC
17357To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17358executable file you want to debug as an argument. This command starts
17359@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17360created Emacs buffer.
17361@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17362
5e252a2e 17363Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17364things:
c906108c 17365
8e04817f
AC
17366@itemize @bullet
17367@item
5e252a2e
NR
17368All ``terminal'' input and output goes through an Emacs buffer, called
17369the GUD buffer.
c906108c 17370
8e04817f
AC
17371This applies both to @value{GDBN} commands and their output, and to the input
17372and output done by the program you are debugging.
bf0184be 17373
8e04817f
AC
17374This is useful because it means that you can copy the text of previous
17375commands and input them again; you can even use parts of the output
17376in this way.
bf0184be 17377
8e04817f
AC
17378All the facilities of Emacs' Shell mode are available for interacting
17379with your program. In particular, you can send signals the usual
17380way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17381stop.
bf0184be
ND
17382
17383@item
8e04817f 17384@value{GDBN} displays source code through Emacs.
bf0184be 17385
8e04817f
AC
17386Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17387source file for that frame and puts an arrow (@samp{=>}) at the
17388left margin of the current line. Emacs uses a separate buffer for
17389source display, and splits the screen to show both your @value{GDBN} session
17390and the source.
bf0184be 17391
8e04817f
AC
17392Explicit @value{GDBN} @code{list} or search commands still produce output as
17393usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17394@end itemize
17395
17396We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17397a graphical mode, enabled by default, which provides further buffers
17398that can control the execution and describe the state of your program.
17399@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17400
64fabec2
AC
17401If you specify an absolute file name when prompted for the @kbd{M-x
17402gdb} argument, then Emacs sets your current working directory to where
17403your program resides. If you only specify the file name, then Emacs
17404sets your current working directory to to the directory associated
17405with the previous buffer. In this case, @value{GDBN} may find your
17406program by searching your environment's @code{PATH} variable, but on
17407some operating systems it might not find the source. So, although the
17408@value{GDBN} input and output session proceeds normally, the auxiliary
17409buffer does not display the current source and line of execution.
17410
17411The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17412line of the GUD buffer and this serves as a default for the commands
17413that specify files for @value{GDBN} to operate on. @xref{Files,
17414,Commands to Specify Files}.
64fabec2
AC
17415
17416By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17417need to call @value{GDBN} by a different name (for example, if you
17418keep several configurations around, with different names) you can
17419customize the Emacs variable @code{gud-gdb-command-name} to run the
17420one you want.
8e04817f 17421
5e252a2e 17422In the GUD buffer, you can use these special Emacs commands in
8e04817f 17423addition to the standard Shell mode commands:
c906108c 17424
8e04817f
AC
17425@table @kbd
17426@item C-h m
5e252a2e 17427Describe the features of Emacs' GUD Mode.
c906108c 17428
64fabec2 17429@item C-c C-s
8e04817f
AC
17430Execute to another source line, like the @value{GDBN} @code{step} command; also
17431update the display window to show the current file and location.
c906108c 17432
64fabec2 17433@item C-c C-n
8e04817f
AC
17434Execute to next source line in this function, skipping all function
17435calls, like the @value{GDBN} @code{next} command. Then update the display window
17436to show the current file and location.
c906108c 17437
64fabec2 17438@item C-c C-i
8e04817f
AC
17439Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17440display window accordingly.
c906108c 17441
8e04817f
AC
17442@item C-c C-f
17443Execute until exit from the selected stack frame, like the @value{GDBN}
17444@code{finish} command.
c906108c 17445
64fabec2 17446@item C-c C-r
8e04817f
AC
17447Continue execution of your program, like the @value{GDBN} @code{continue}
17448command.
b433d00b 17449
64fabec2 17450@item C-c <
8e04817f
AC
17451Go up the number of frames indicated by the numeric argument
17452(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17453like the @value{GDBN} @code{up} command.
b433d00b 17454
64fabec2 17455@item C-c >
8e04817f
AC
17456Go down the number of frames indicated by the numeric argument, like the
17457@value{GDBN} @code{down} command.
8e04817f 17458@end table
c906108c 17459
7f9087cb 17460In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17461tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17462
5e252a2e
NR
17463In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17464separate frame which shows a backtrace when the GUD buffer is current.
17465Move point to any frame in the stack and type @key{RET} to make it
17466become the current frame and display the associated source in the
17467source buffer. Alternatively, click @kbd{Mouse-2} to make the
17468selected frame become the current one. In graphical mode, the
17469speedbar displays watch expressions.
64fabec2 17470
8e04817f
AC
17471If you accidentally delete the source-display buffer, an easy way to get
17472it back is to type the command @code{f} in the @value{GDBN} buffer, to
17473request a frame display; when you run under Emacs, this recreates
17474the source buffer if necessary to show you the context of the current
17475frame.
c906108c 17476
8e04817f
AC
17477The source files displayed in Emacs are in ordinary Emacs buffers
17478which are visiting the source files in the usual way. You can edit
17479the files with these buffers if you wish; but keep in mind that @value{GDBN}
17480communicates with Emacs in terms of line numbers. If you add or
17481delete lines from the text, the line numbers that @value{GDBN} knows cease
17482to correspond properly with the code.
b383017d 17483
5e252a2e
NR
17484A more detailed description of Emacs' interaction with @value{GDBN} is
17485given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17486Emacs Manual}).
c906108c 17487
8e04817f
AC
17488@c The following dropped because Epoch is nonstandard. Reactivate
17489@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17490@ignore
17491@kindex Emacs Epoch environment
17492@kindex Epoch
17493@kindex inspect
c906108c 17494
8e04817f
AC
17495Version 18 of @sc{gnu} Emacs has a built-in window system
17496called the @code{epoch}
17497environment. Users of this environment can use a new command,
17498@code{inspect} which performs identically to @code{print} except that
17499each value is printed in its own window.
17500@end ignore
c906108c 17501
922fbb7b
AC
17502
17503@node GDB/MI
17504@chapter The @sc{gdb/mi} Interface
17505
17506@unnumberedsec Function and Purpose
17507
17508@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17509@sc{gdb/mi} is a line based machine oriented text interface to
17510@value{GDBN} and is activated by specifying using the
17511@option{--interpreter} command line option (@pxref{Mode Options}). It
17512is specifically intended to support the development of systems which
17513use the debugger as just one small component of a larger system.
922fbb7b
AC
17514
17515This chapter is a specification of the @sc{gdb/mi} interface. It is written
17516in the form of a reference manual.
17517
17518Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17519features described below are incomplete and subject to change
17520(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17521
17522@unnumberedsec Notation and Terminology
17523
17524@cindex notational conventions, for @sc{gdb/mi}
17525This chapter uses the following notation:
17526
17527@itemize @bullet
17528@item
17529@code{|} separates two alternatives.
17530
17531@item
17532@code{[ @var{something} ]} indicates that @var{something} is optional:
17533it may or may not be given.
17534
17535@item
17536@code{( @var{group} )*} means that @var{group} inside the parentheses
17537may repeat zero or more times.
17538
17539@item
17540@code{( @var{group} )+} means that @var{group} inside the parentheses
17541may repeat one or more times.
17542
17543@item
17544@code{"@var{string}"} means a literal @var{string}.
17545@end itemize
17546
17547@ignore
17548@heading Dependencies
17549@end ignore
17550
922fbb7b
AC
17551@menu
17552* GDB/MI Command Syntax::
17553* GDB/MI Compatibility with CLI::
af6eff6f 17554* GDB/MI Development and Front Ends::
922fbb7b 17555* GDB/MI Output Records::
ef21caaf 17556* GDB/MI Simple Examples::
922fbb7b 17557* GDB/MI Command Description Format::
ef21caaf 17558* GDB/MI Breakpoint Commands::
a2c02241
NR
17559* GDB/MI Program Context::
17560* GDB/MI Thread Commands::
17561* GDB/MI Program Execution::
17562* GDB/MI Stack Manipulation::
17563* GDB/MI Variable Objects::
922fbb7b 17564* GDB/MI Data Manipulation::
a2c02241
NR
17565* GDB/MI Tracepoint Commands::
17566* GDB/MI Symbol Query::
351ff01a 17567* GDB/MI File Commands::
922fbb7b
AC
17568@ignore
17569* GDB/MI Kod Commands::
17570* GDB/MI Memory Overlay Commands::
17571* GDB/MI Signal Handling Commands::
17572@end ignore
922fbb7b 17573* GDB/MI Target Manipulation::
a6b151f1 17574* GDB/MI File Transfer Commands::
ef21caaf 17575* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17576@end menu
17577
17578@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17579@node GDB/MI Command Syntax
17580@section @sc{gdb/mi} Command Syntax
17581
17582@menu
17583* GDB/MI Input Syntax::
17584* GDB/MI Output Syntax::
922fbb7b
AC
17585@end menu
17586
17587@node GDB/MI Input Syntax
17588@subsection @sc{gdb/mi} Input Syntax
17589
17590@cindex input syntax for @sc{gdb/mi}
17591@cindex @sc{gdb/mi}, input syntax
17592@table @code
17593@item @var{command} @expansion{}
17594@code{@var{cli-command} | @var{mi-command}}
17595
17596@item @var{cli-command} @expansion{}
17597@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17598@var{cli-command} is any existing @value{GDBN} CLI command.
17599
17600@item @var{mi-command} @expansion{}
17601@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17602@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17603
17604@item @var{token} @expansion{}
17605"any sequence of digits"
17606
17607@item @var{option} @expansion{}
17608@code{"-" @var{parameter} [ " " @var{parameter} ]}
17609
17610@item @var{parameter} @expansion{}
17611@code{@var{non-blank-sequence} | @var{c-string}}
17612
17613@item @var{operation} @expansion{}
17614@emph{any of the operations described in this chapter}
17615
17616@item @var{non-blank-sequence} @expansion{}
17617@emph{anything, provided it doesn't contain special characters such as
17618"-", @var{nl}, """ and of course " "}
17619
17620@item @var{c-string} @expansion{}
17621@code{""" @var{seven-bit-iso-c-string-content} """}
17622
17623@item @var{nl} @expansion{}
17624@code{CR | CR-LF}
17625@end table
17626
17627@noindent
17628Notes:
17629
17630@itemize @bullet
17631@item
17632The CLI commands are still handled by the @sc{mi} interpreter; their
17633output is described below.
17634
17635@item
17636The @code{@var{token}}, when present, is passed back when the command
17637finishes.
17638
17639@item
17640Some @sc{mi} commands accept optional arguments as part of the parameter
17641list. Each option is identified by a leading @samp{-} (dash) and may be
17642followed by an optional argument parameter. Options occur first in the
17643parameter list and can be delimited from normal parameters using
17644@samp{--} (this is useful when some parameters begin with a dash).
17645@end itemize
17646
17647Pragmatics:
17648
17649@itemize @bullet
17650@item
17651We want easy access to the existing CLI syntax (for debugging).
17652
17653@item
17654We want it to be easy to spot a @sc{mi} operation.
17655@end itemize
17656
17657@node GDB/MI Output Syntax
17658@subsection @sc{gdb/mi} Output Syntax
17659
17660@cindex output syntax of @sc{gdb/mi}
17661@cindex @sc{gdb/mi}, output syntax
17662The output from @sc{gdb/mi} consists of zero or more out-of-band records
17663followed, optionally, by a single result record. This result record
17664is for the most recent command. The sequence of output records is
594fe323 17665terminated by @samp{(gdb)}.
922fbb7b
AC
17666
17667If an input command was prefixed with a @code{@var{token}} then the
17668corresponding output for that command will also be prefixed by that same
17669@var{token}.
17670
17671@table @code
17672@item @var{output} @expansion{}
594fe323 17673@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17674
17675@item @var{result-record} @expansion{}
17676@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17677
17678@item @var{out-of-band-record} @expansion{}
17679@code{@var{async-record} | @var{stream-record}}
17680
17681@item @var{async-record} @expansion{}
17682@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17683
17684@item @var{exec-async-output} @expansion{}
17685@code{[ @var{token} ] "*" @var{async-output}}
17686
17687@item @var{status-async-output} @expansion{}
17688@code{[ @var{token} ] "+" @var{async-output}}
17689
17690@item @var{notify-async-output} @expansion{}
17691@code{[ @var{token} ] "=" @var{async-output}}
17692
17693@item @var{async-output} @expansion{}
17694@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17695
17696@item @var{result-class} @expansion{}
17697@code{"done" | "running" | "connected" | "error" | "exit"}
17698
17699@item @var{async-class} @expansion{}
17700@code{"stopped" | @var{others}} (where @var{others} will be added
17701depending on the needs---this is still in development).
17702
17703@item @var{result} @expansion{}
17704@code{ @var{variable} "=" @var{value}}
17705
17706@item @var{variable} @expansion{}
17707@code{ @var{string} }
17708
17709@item @var{value} @expansion{}
17710@code{ @var{const} | @var{tuple} | @var{list} }
17711
17712@item @var{const} @expansion{}
17713@code{@var{c-string}}
17714
17715@item @var{tuple} @expansion{}
17716@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17717
17718@item @var{list} @expansion{}
17719@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17720@var{result} ( "," @var{result} )* "]" }
17721
17722@item @var{stream-record} @expansion{}
17723@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17724
17725@item @var{console-stream-output} @expansion{}
17726@code{"~" @var{c-string}}
17727
17728@item @var{target-stream-output} @expansion{}
17729@code{"@@" @var{c-string}}
17730
17731@item @var{log-stream-output} @expansion{}
17732@code{"&" @var{c-string}}
17733
17734@item @var{nl} @expansion{}
17735@code{CR | CR-LF}
17736
17737@item @var{token} @expansion{}
17738@emph{any sequence of digits}.
17739@end table
17740
17741@noindent
17742Notes:
17743
17744@itemize @bullet
17745@item
17746All output sequences end in a single line containing a period.
17747
17748@item
17749The @code{@var{token}} is from the corresponding request. If an execution
17750command is interrupted by the @samp{-exec-interrupt} command, the
17751@var{token} associated with the @samp{*stopped} message is the one of the
17752original execution command, not the one of the interrupt command.
17753
17754@item
17755@cindex status output in @sc{gdb/mi}
17756@var{status-async-output} contains on-going status information about the
17757progress of a slow operation. It can be discarded. All status output is
17758prefixed by @samp{+}.
17759
17760@item
17761@cindex async output in @sc{gdb/mi}
17762@var{exec-async-output} contains asynchronous state change on the target
17763(stopped, started, disappeared). All async output is prefixed by
17764@samp{*}.
17765
17766@item
17767@cindex notify output in @sc{gdb/mi}
17768@var{notify-async-output} contains supplementary information that the
17769client should handle (e.g., a new breakpoint information). All notify
17770output is prefixed by @samp{=}.
17771
17772@item
17773@cindex console output in @sc{gdb/mi}
17774@var{console-stream-output} is output that should be displayed as is in the
17775console. It is the textual response to a CLI command. All the console
17776output is prefixed by @samp{~}.
17777
17778@item
17779@cindex target output in @sc{gdb/mi}
17780@var{target-stream-output} is the output produced by the target program.
17781All the target output is prefixed by @samp{@@}.
17782
17783@item
17784@cindex log output in @sc{gdb/mi}
17785@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17786instance messages that should be displayed as part of an error log. All
17787the log output is prefixed by @samp{&}.
17788
17789@item
17790@cindex list output in @sc{gdb/mi}
17791New @sc{gdb/mi} commands should only output @var{lists} containing
17792@var{values}.
17793
17794
17795@end itemize
17796
17797@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17798details about the various output records.
17799
922fbb7b
AC
17800@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17801@node GDB/MI Compatibility with CLI
17802@section @sc{gdb/mi} Compatibility with CLI
17803
17804@cindex compatibility, @sc{gdb/mi} and CLI
17805@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17806
a2c02241
NR
17807For the developers convenience CLI commands can be entered directly,
17808but there may be some unexpected behaviour. For example, commands
17809that query the user will behave as if the user replied yes, breakpoint
17810command lists are not executed and some CLI commands, such as
17811@code{if}, @code{when} and @code{define}, prompt for further input with
17812@samp{>}, which is not valid MI output.
ef21caaf
NR
17813
17814This feature may be removed at some stage in the future and it is
a2c02241
NR
17815recommended that front ends use the @code{-interpreter-exec} command
17816(@pxref{-interpreter-exec}).
922fbb7b 17817
af6eff6f
NR
17818@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17819@node GDB/MI Development and Front Ends
17820@section @sc{gdb/mi} Development and Front Ends
17821@cindex @sc{gdb/mi} development
17822
17823The application which takes the MI output and presents the state of the
17824program being debugged to the user is called a @dfn{front end}.
17825
17826Although @sc{gdb/mi} is still incomplete, it is currently being used
17827by a variety of front ends to @value{GDBN}. This makes it difficult
17828to introduce new functionality without breaking existing usage. This
17829section tries to minimize the problems by describing how the protocol
17830might change.
17831
17832Some changes in MI need not break a carefully designed front end, and
17833for these the MI version will remain unchanged. The following is a
17834list of changes that may occur within one level, so front ends should
17835parse MI output in a way that can handle them:
17836
17837@itemize @bullet
17838@item
17839New MI commands may be added.
17840
17841@item
17842New fields may be added to the output of any MI command.
17843
36ece8b3
NR
17844@item
17845The range of values for fields with specified values, e.g.,
9f708cb2 17846@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17847
af6eff6f
NR
17848@c The format of field's content e.g type prefix, may change so parse it
17849@c at your own risk. Yes, in general?
17850
17851@c The order of fields may change? Shouldn't really matter but it might
17852@c resolve inconsistencies.
17853@end itemize
17854
17855If the changes are likely to break front ends, the MI version level
17856will be increased by one. This will allow the front end to parse the
17857output according to the MI version. Apart from mi0, new versions of
17858@value{GDBN} will not support old versions of MI and it will be the
17859responsibility of the front end to work with the new one.
17860
17861@c Starting with mi3, add a new command -mi-version that prints the MI
17862@c version?
17863
17864The best way to avoid unexpected changes in MI that might break your front
17865end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17866follow development on @email{gdb@@sourceware.org} and
17867@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17868@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17869Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17870called Debugger Machine Interface (DMI) that will become a standard
17871for all debuggers, not just @value{GDBN}.
17872@cindex mailing lists
17873
922fbb7b
AC
17874@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17875@node GDB/MI Output Records
17876@section @sc{gdb/mi} Output Records
17877
17878@menu
17879* GDB/MI Result Records::
17880* GDB/MI Stream Records::
17881* GDB/MI Out-of-band Records::
17882@end menu
17883
17884@node GDB/MI Result Records
17885@subsection @sc{gdb/mi} Result Records
17886
17887@cindex result records in @sc{gdb/mi}
17888@cindex @sc{gdb/mi}, result records
17889In addition to a number of out-of-band notifications, the response to a
17890@sc{gdb/mi} command includes one of the following result indications:
17891
17892@table @code
17893@findex ^done
17894@item "^done" [ "," @var{results} ]
17895The synchronous operation was successful, @code{@var{results}} are the return
17896values.
17897
17898@item "^running"
17899@findex ^running
17900@c Is this one correct? Should it be an out-of-band notification?
17901The asynchronous operation was successfully started. The target is
17902running.
17903
ef21caaf
NR
17904@item "^connected"
17905@findex ^connected
3f94c067 17906@value{GDBN} has connected to a remote target.
ef21caaf 17907
922fbb7b
AC
17908@item "^error" "," @var{c-string}
17909@findex ^error
17910The operation failed. The @code{@var{c-string}} contains the corresponding
17911error message.
ef21caaf
NR
17912
17913@item "^exit"
17914@findex ^exit
3f94c067 17915@value{GDBN} has terminated.
ef21caaf 17916
922fbb7b
AC
17917@end table
17918
17919@node GDB/MI Stream Records
17920@subsection @sc{gdb/mi} Stream Records
17921
17922@cindex @sc{gdb/mi}, stream records
17923@cindex stream records in @sc{gdb/mi}
17924@value{GDBN} internally maintains a number of output streams: the console, the
17925target, and the log. The output intended for each of these streams is
17926funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17927
17928Each stream record begins with a unique @dfn{prefix character} which
17929identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17930Syntax}). In addition to the prefix, each stream record contains a
17931@code{@var{string-output}}. This is either raw text (with an implicit new
17932line) or a quoted C string (which does not contain an implicit newline).
17933
17934@table @code
17935@item "~" @var{string-output}
17936The console output stream contains text that should be displayed in the
17937CLI console window. It contains the textual responses to CLI commands.
17938
17939@item "@@" @var{string-output}
17940The target output stream contains any textual output from the running
ef21caaf
NR
17941target. This is only present when GDB's event loop is truly
17942asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17943
17944@item "&" @var{string-output}
17945The log stream contains debugging messages being produced by @value{GDBN}'s
17946internals.
17947@end table
17948
17949@node GDB/MI Out-of-band Records
17950@subsection @sc{gdb/mi} Out-of-band Records
17951
17952@cindex out-of-band records in @sc{gdb/mi}
17953@cindex @sc{gdb/mi}, out-of-band records
17954@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17955additional changes that have occurred. Those changes can either be a
17956consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17957target activity (e.g., target stopped).
17958
17959The following is a preliminary list of possible out-of-band records.
034dad6f 17960In particular, the @var{exec-async-output} records.
922fbb7b
AC
17961
17962@table @code
034dad6f
BR
17963@item *stopped,reason="@var{reason}"
17964@end table
17965
17966@var{reason} can be one of the following:
17967
17968@table @code
17969@item breakpoint-hit
17970A breakpoint was reached.
17971@item watchpoint-trigger
17972A watchpoint was triggered.
17973@item read-watchpoint-trigger
17974A read watchpoint was triggered.
17975@item access-watchpoint-trigger
17976An access watchpoint was triggered.
17977@item function-finished
17978An -exec-finish or similar CLI command was accomplished.
17979@item location-reached
17980An -exec-until or similar CLI command was accomplished.
17981@item watchpoint-scope
17982A watchpoint has gone out of scope.
17983@item end-stepping-range
17984An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17985similar CLI command was accomplished.
17986@item exited-signalled
17987The inferior exited because of a signal.
17988@item exited
17989The inferior exited.
17990@item exited-normally
17991The inferior exited normally.
17992@item signal-received
17993A signal was received by the inferior.
922fbb7b
AC
17994@end table
17995
17996
ef21caaf
NR
17997@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17998@node GDB/MI Simple Examples
17999@section Simple Examples of @sc{gdb/mi} Interaction
18000@cindex @sc{gdb/mi}, simple examples
18001
18002This subsection presents several simple examples of interaction using
18003the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
18004following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
18005the output received from @sc{gdb/mi}.
18006
d3e8051b 18007Note the line breaks shown in the examples are here only for
ef21caaf
NR
18008readability, they don't appear in the real output.
18009
79a6e687 18010@subheading Setting a Breakpoint
ef21caaf
NR
18011
18012Setting a breakpoint generates synchronous output which contains detailed
18013information of the breakpoint.
18014
18015@smallexample
18016-> -break-insert main
18017<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
18018 enabled="y",addr="0x08048564",func="main",file="myprog.c",
18019 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
18020<- (gdb)
18021@end smallexample
18022
18023@subheading Program Execution
18024
18025Program execution generates asynchronous records and MI gives the
18026reason that execution stopped.
18027
18028@smallexample
18029-> -exec-run
18030<- ^running
18031<- (gdb)
18032<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
18033 frame=@{addr="0x08048564",func="main",
18034 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
18035 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
18036<- (gdb)
18037-> -exec-continue
18038<- ^running
18039<- (gdb)
18040<- *stopped,reason="exited-normally"
18041<- (gdb)
18042@end smallexample
18043
3f94c067 18044@subheading Quitting @value{GDBN}
ef21caaf 18045
3f94c067 18046Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
18047
18048@smallexample
18049-> (gdb)
18050<- -gdb-exit
18051<- ^exit
18052@end smallexample
18053
a2c02241 18054@subheading A Bad Command
ef21caaf
NR
18055
18056Here's what happens if you pass a non-existent command:
18057
18058@smallexample
18059-> -rubbish
18060<- ^error,msg="Undefined MI command: rubbish"
594fe323 18061<- (gdb)
ef21caaf
NR
18062@end smallexample
18063
18064
922fbb7b
AC
18065@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18066@node GDB/MI Command Description Format
18067@section @sc{gdb/mi} Command Description Format
18068
18069The remaining sections describe blocks of commands. Each block of
18070commands is laid out in a fashion similar to this section.
18071
922fbb7b
AC
18072@subheading Motivation
18073
18074The motivation for this collection of commands.
18075
18076@subheading Introduction
18077
18078A brief introduction to this collection of commands as a whole.
18079
18080@subheading Commands
18081
18082For each command in the block, the following is described:
18083
18084@subsubheading Synopsis
18085
18086@smallexample
18087 -command @var{args}@dots{}
18088@end smallexample
18089
922fbb7b
AC
18090@subsubheading Result
18091
265eeb58 18092@subsubheading @value{GDBN} Command
922fbb7b 18093
265eeb58 18094The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
18095
18096@subsubheading Example
18097
ef21caaf
NR
18098Example(s) formatted for readability. Some of the described commands have
18099not been implemented yet and these are labeled N.A.@: (not available).
18100
18101
922fbb7b 18102@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
18103@node GDB/MI Breakpoint Commands
18104@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
18105
18106@cindex breakpoint commands for @sc{gdb/mi}
18107@cindex @sc{gdb/mi}, breakpoint commands
18108This section documents @sc{gdb/mi} commands for manipulating
18109breakpoints.
18110
18111@subheading The @code{-break-after} Command
18112@findex -break-after
18113
18114@subsubheading Synopsis
18115
18116@smallexample
18117 -break-after @var{number} @var{count}
18118@end smallexample
18119
18120The breakpoint number @var{number} is not in effect until it has been
18121hit @var{count} times. To see how this is reflected in the output of
18122the @samp{-break-list} command, see the description of the
18123@samp{-break-list} command below.
18124
18125@subsubheading @value{GDBN} Command
18126
18127The corresponding @value{GDBN} command is @samp{ignore}.
18128
18129@subsubheading Example
18130
18131@smallexample
594fe323 18132(gdb)
922fbb7b 18133-break-insert main
948d5102
NR
18134^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
18135fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 18136(gdb)
922fbb7b
AC
18137-break-after 1 3
18138~
18139^done
594fe323 18140(gdb)
922fbb7b
AC
18141-break-list
18142^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18143hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18144@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18145@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18146@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18147@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18148@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18149body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18150addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18151line="5",times="0",ignore="3"@}]@}
594fe323 18152(gdb)
922fbb7b
AC
18153@end smallexample
18154
18155@ignore
18156@subheading The @code{-break-catch} Command
18157@findex -break-catch
18158
18159@subheading The @code{-break-commands} Command
18160@findex -break-commands
18161@end ignore
18162
18163
18164@subheading The @code{-break-condition} Command
18165@findex -break-condition
18166
18167@subsubheading Synopsis
18168
18169@smallexample
18170 -break-condition @var{number} @var{expr}
18171@end smallexample
18172
18173Breakpoint @var{number} will stop the program only if the condition in
18174@var{expr} is true. The condition becomes part of the
18175@samp{-break-list} output (see the description of the @samp{-break-list}
18176command below).
18177
18178@subsubheading @value{GDBN} Command
18179
18180The corresponding @value{GDBN} command is @samp{condition}.
18181
18182@subsubheading Example
18183
18184@smallexample
594fe323 18185(gdb)
922fbb7b
AC
18186-break-condition 1 1
18187^done
594fe323 18188(gdb)
922fbb7b
AC
18189-break-list
18190^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18191hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18192@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18193@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18194@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18195@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18196@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18197body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18198addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18199line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 18200(gdb)
922fbb7b
AC
18201@end smallexample
18202
18203@subheading The @code{-break-delete} Command
18204@findex -break-delete
18205
18206@subsubheading Synopsis
18207
18208@smallexample
18209 -break-delete ( @var{breakpoint} )+
18210@end smallexample
18211
18212Delete the breakpoint(s) whose number(s) are specified in the argument
18213list. This is obviously reflected in the breakpoint list.
18214
79a6e687 18215@subsubheading @value{GDBN} Command
922fbb7b
AC
18216
18217The corresponding @value{GDBN} command is @samp{delete}.
18218
18219@subsubheading Example
18220
18221@smallexample
594fe323 18222(gdb)
922fbb7b
AC
18223-break-delete 1
18224^done
594fe323 18225(gdb)
922fbb7b
AC
18226-break-list
18227^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18228hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18229@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18230@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18231@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18232@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18233@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18234body=[]@}
594fe323 18235(gdb)
922fbb7b
AC
18236@end smallexample
18237
18238@subheading The @code{-break-disable} Command
18239@findex -break-disable
18240
18241@subsubheading Synopsis
18242
18243@smallexample
18244 -break-disable ( @var{breakpoint} )+
18245@end smallexample
18246
18247Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18248break list is now set to @samp{n} for the named @var{breakpoint}(s).
18249
18250@subsubheading @value{GDBN} Command
18251
18252The corresponding @value{GDBN} command is @samp{disable}.
18253
18254@subsubheading Example
18255
18256@smallexample
594fe323 18257(gdb)
922fbb7b
AC
18258-break-disable 2
18259^done
594fe323 18260(gdb)
922fbb7b
AC
18261-break-list
18262^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18263hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18264@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18265@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18266@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18267@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18268@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18269body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18270addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18271line="5",times="0"@}]@}
594fe323 18272(gdb)
922fbb7b
AC
18273@end smallexample
18274
18275@subheading The @code{-break-enable} Command
18276@findex -break-enable
18277
18278@subsubheading Synopsis
18279
18280@smallexample
18281 -break-enable ( @var{breakpoint} )+
18282@end smallexample
18283
18284Enable (previously disabled) @var{breakpoint}(s).
18285
18286@subsubheading @value{GDBN} Command
18287
18288The corresponding @value{GDBN} command is @samp{enable}.
18289
18290@subsubheading Example
18291
18292@smallexample
594fe323 18293(gdb)
922fbb7b
AC
18294-break-enable 2
18295^done
594fe323 18296(gdb)
922fbb7b
AC
18297-break-list
18298^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18299hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18300@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18301@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18302@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18303@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18304@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18305body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18306addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18307line="5",times="0"@}]@}
594fe323 18308(gdb)
922fbb7b
AC
18309@end smallexample
18310
18311@subheading The @code{-break-info} Command
18312@findex -break-info
18313
18314@subsubheading Synopsis
18315
18316@smallexample
18317 -break-info @var{breakpoint}
18318@end smallexample
18319
18320@c REDUNDANT???
18321Get information about a single breakpoint.
18322
79a6e687 18323@subsubheading @value{GDBN} Command
922fbb7b
AC
18324
18325The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18326
18327@subsubheading Example
18328N.A.
18329
18330@subheading The @code{-break-insert} Command
18331@findex -break-insert
18332
18333@subsubheading Synopsis
18334
18335@smallexample
afe8ab22 18336 -break-insert [ -t ] [ -h ] [ -f ]
922fbb7b 18337 [ -c @var{condition} ] [ -i @var{ignore-count} ]
afe8ab22 18338 [ -p @var{thread} ] [ @var{location} ]
922fbb7b
AC
18339@end smallexample
18340
18341@noindent
afe8ab22 18342If specified, @var{location}, can be one of:
922fbb7b
AC
18343
18344@itemize @bullet
18345@item function
18346@c @item +offset
18347@c @item -offset
18348@c @item linenum
18349@item filename:linenum
18350@item filename:function
18351@item *address
18352@end itemize
18353
18354The possible optional parameters of this command are:
18355
18356@table @samp
18357@item -t
948d5102 18358Insert a temporary breakpoint.
922fbb7b
AC
18359@item -h
18360Insert a hardware breakpoint.
18361@item -c @var{condition}
18362Make the breakpoint conditional on @var{condition}.
18363@item -i @var{ignore-count}
18364Initialize the @var{ignore-count}.
afe8ab22
VP
18365@item -f
18366If @var{location} cannot be parsed (for example if it
18367refers to unknown files or functions), create a pending
18368breakpoint. Without this flag, @value{GDBN} will report
18369an error, and won't create a breakpoint, if @var{location}
18370cannot be parsed.
922fbb7b
AC
18371@end table
18372
18373@subsubheading Result
18374
18375The result is in the form:
18376
18377@smallexample
948d5102
NR
18378^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18379enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18380fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18381times="@var{times}"@}
922fbb7b
AC
18382@end smallexample
18383
18384@noindent
948d5102
NR
18385where @var{number} is the @value{GDBN} number for this breakpoint,
18386@var{funcname} is the name of the function where the breakpoint was
18387inserted, @var{filename} is the name of the source file which contains
18388this function, @var{lineno} is the source line number within that file
18389and @var{times} the number of times that the breakpoint has been hit
18390(always 0 for -break-insert but may be greater for -break-info or -break-list
18391which use the same output).
922fbb7b
AC
18392
18393Note: this format is open to change.
18394@c An out-of-band breakpoint instead of part of the result?
18395
18396@subsubheading @value{GDBN} Command
18397
18398The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18399@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18400
18401@subsubheading Example
18402
18403@smallexample
594fe323 18404(gdb)
922fbb7b 18405-break-insert main
948d5102
NR
18406^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18407fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18408(gdb)
922fbb7b 18409-break-insert -t foo
948d5102
NR
18410^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18411fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18412(gdb)
922fbb7b
AC
18413-break-list
18414^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18415hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18416@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18417@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18418@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18419@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18420@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18421body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18422addr="0x0001072c", func="main",file="recursive2.c",
18423fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18424bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18425addr="0x00010774",func="foo",file="recursive2.c",
18426fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18427(gdb)
922fbb7b
AC
18428-break-insert -r foo.*
18429~int foo(int, int);
948d5102
NR
18430^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18431"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18432(gdb)
922fbb7b
AC
18433@end smallexample
18434
18435@subheading The @code{-break-list} Command
18436@findex -break-list
18437
18438@subsubheading Synopsis
18439
18440@smallexample
18441 -break-list
18442@end smallexample
18443
18444Displays the list of inserted breakpoints, showing the following fields:
18445
18446@table @samp
18447@item Number
18448number of the breakpoint
18449@item Type
18450type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18451@item Disposition
18452should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18453or @samp{nokeep}
18454@item Enabled
18455is the breakpoint enabled or no: @samp{y} or @samp{n}
18456@item Address
18457memory location at which the breakpoint is set
18458@item What
18459logical location of the breakpoint, expressed by function name, file
18460name, line number
18461@item Times
18462number of times the breakpoint has been hit
18463@end table
18464
18465If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18466@code{body} field is an empty list.
18467
18468@subsubheading @value{GDBN} Command
18469
18470The corresponding @value{GDBN} command is @samp{info break}.
18471
18472@subsubheading Example
18473
18474@smallexample
594fe323 18475(gdb)
922fbb7b
AC
18476-break-list
18477^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18478hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18479@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18480@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18481@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18482@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18483@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18484body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18485addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18486bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18487addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18488line="13",times="0"@}]@}
594fe323 18489(gdb)
922fbb7b
AC
18490@end smallexample
18491
18492Here's an example of the result when there are no breakpoints:
18493
18494@smallexample
594fe323 18495(gdb)
922fbb7b
AC
18496-break-list
18497^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18498hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18499@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18500@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18501@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18502@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18503@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18504body=[]@}
594fe323 18505(gdb)
922fbb7b
AC
18506@end smallexample
18507
18508@subheading The @code{-break-watch} Command
18509@findex -break-watch
18510
18511@subsubheading Synopsis
18512
18513@smallexample
18514 -break-watch [ -a | -r ]
18515@end smallexample
18516
18517Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18518@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18519read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18520option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18521trigger only when the memory location is accessed for reading. Without
18522either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18523i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18524@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18525
18526Note that @samp{-break-list} will report a single list of watchpoints and
18527breakpoints inserted.
18528
18529@subsubheading @value{GDBN} Command
18530
18531The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18532@samp{rwatch}.
18533
18534@subsubheading Example
18535
18536Setting a watchpoint on a variable in the @code{main} function:
18537
18538@smallexample
594fe323 18539(gdb)
922fbb7b
AC
18540-break-watch x
18541^done,wpt=@{number="2",exp="x"@}
594fe323 18542(gdb)
922fbb7b
AC
18543-exec-continue
18544^running
0869d01b
NR
18545(gdb)
18546*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18547value=@{old="-268439212",new="55"@},
76ff342d 18548frame=@{func="main",args=[],file="recursive2.c",
948d5102 18549fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18550(gdb)
922fbb7b
AC
18551@end smallexample
18552
18553Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18554the program execution twice: first for the variable changing value, then
18555for the watchpoint going out of scope.
18556
18557@smallexample
594fe323 18558(gdb)
922fbb7b
AC
18559-break-watch C
18560^done,wpt=@{number="5",exp="C"@}
594fe323 18561(gdb)
922fbb7b
AC
18562-exec-continue
18563^running
0869d01b
NR
18564(gdb)
18565*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18566wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18567frame=@{func="callee4",args=[],
76ff342d
DJ
18568file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18569fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18570(gdb)
922fbb7b
AC
18571-exec-continue
18572^running
0869d01b
NR
18573(gdb)
18574*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18575frame=@{func="callee3",args=[@{name="strarg",
18576value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18577file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18578fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18579(gdb)
922fbb7b
AC
18580@end smallexample
18581
18582Listing breakpoints and watchpoints, at different points in the program
18583execution. Note that once the watchpoint goes out of scope, it is
18584deleted.
18585
18586@smallexample
594fe323 18587(gdb)
922fbb7b
AC
18588-break-watch C
18589^done,wpt=@{number="2",exp="C"@}
594fe323 18590(gdb)
922fbb7b
AC
18591-break-list
18592^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18593hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18594@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18595@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18596@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18597@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18598@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18599body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18600addr="0x00010734",func="callee4",
948d5102
NR
18601file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18602fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18603bkpt=@{number="2",type="watchpoint",disp="keep",
18604enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18605(gdb)
922fbb7b
AC
18606-exec-continue
18607^running
0869d01b
NR
18608(gdb)
18609*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18610value=@{old="-276895068",new="3"@},
18611frame=@{func="callee4",args=[],
76ff342d
DJ
18612file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18613fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18614(gdb)
922fbb7b
AC
18615-break-list
18616^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18617hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18618@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18619@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18620@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18621@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18622@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18623body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18624addr="0x00010734",func="callee4",
948d5102
NR
18625file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18626fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18627bkpt=@{number="2",type="watchpoint",disp="keep",
18628enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18629(gdb)
922fbb7b
AC
18630-exec-continue
18631^running
18632^done,reason="watchpoint-scope",wpnum="2",
18633frame=@{func="callee3",args=[@{name="strarg",
18634value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18635file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18636fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18637(gdb)
922fbb7b
AC
18638-break-list
18639^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18640hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18641@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18642@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18643@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18644@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18645@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18646body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18647addr="0x00010734",func="callee4",
948d5102
NR
18648file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18649fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18650times="1"@}]@}
594fe323 18651(gdb)
922fbb7b
AC
18652@end smallexample
18653
18654@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18655@node GDB/MI Program Context
18656@section @sc{gdb/mi} Program Context
922fbb7b 18657
a2c02241
NR
18658@subheading The @code{-exec-arguments} Command
18659@findex -exec-arguments
922fbb7b 18660
922fbb7b
AC
18661
18662@subsubheading Synopsis
18663
18664@smallexample
a2c02241 18665 -exec-arguments @var{args}
922fbb7b
AC
18666@end smallexample
18667
a2c02241
NR
18668Set the inferior program arguments, to be used in the next
18669@samp{-exec-run}.
922fbb7b 18670
a2c02241 18671@subsubheading @value{GDBN} Command
922fbb7b 18672
a2c02241 18673The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18674
a2c02241 18675@subsubheading Example
922fbb7b 18676
a2c02241
NR
18677@c FIXME!
18678Don't have one around.
922fbb7b 18679
a2c02241
NR
18680
18681@subheading The @code{-exec-show-arguments} Command
18682@findex -exec-show-arguments
18683
18684@subsubheading Synopsis
18685
18686@smallexample
18687 -exec-show-arguments
18688@end smallexample
18689
18690Print the arguments of the program.
922fbb7b
AC
18691
18692@subsubheading @value{GDBN} Command
18693
a2c02241 18694The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18695
18696@subsubheading Example
a2c02241 18697N.A.
922fbb7b 18698
922fbb7b 18699
a2c02241
NR
18700@subheading The @code{-environment-cd} Command
18701@findex -environment-cd
922fbb7b 18702
a2c02241 18703@subsubheading Synopsis
922fbb7b
AC
18704
18705@smallexample
a2c02241 18706 -environment-cd @var{pathdir}
922fbb7b
AC
18707@end smallexample
18708
a2c02241 18709Set @value{GDBN}'s working directory.
922fbb7b 18710
a2c02241 18711@subsubheading @value{GDBN} Command
922fbb7b 18712
a2c02241
NR
18713The corresponding @value{GDBN} command is @samp{cd}.
18714
18715@subsubheading Example
922fbb7b
AC
18716
18717@smallexample
594fe323 18718(gdb)
a2c02241
NR
18719-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18720^done
594fe323 18721(gdb)
922fbb7b
AC
18722@end smallexample
18723
18724
a2c02241
NR
18725@subheading The @code{-environment-directory} Command
18726@findex -environment-directory
922fbb7b
AC
18727
18728@subsubheading Synopsis
18729
18730@smallexample
a2c02241 18731 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18732@end smallexample
18733
a2c02241
NR
18734Add directories @var{pathdir} to beginning of search path for source files.
18735If the @samp{-r} option is used, the search path is reset to the default
18736search path. If directories @var{pathdir} are supplied in addition to the
18737@samp{-r} option, the search path is first reset and then addition
18738occurs as normal.
18739Multiple directories may be specified, separated by blanks. Specifying
18740multiple directories in a single command
18741results in the directories added to the beginning of the
18742search path in the same order they were presented in the command.
18743If blanks are needed as
18744part of a directory name, double-quotes should be used around
18745the name. In the command output, the path will show up separated
d3e8051b 18746by the system directory-separator character. The directory-separator
a2c02241
NR
18747character must not be used
18748in any directory name.
18749If no directories are specified, the current search path is displayed.
922fbb7b
AC
18750
18751@subsubheading @value{GDBN} Command
18752
a2c02241 18753The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18754
18755@subsubheading Example
18756
922fbb7b 18757@smallexample
594fe323 18758(gdb)
a2c02241
NR
18759-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18760^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18761(gdb)
a2c02241
NR
18762-environment-directory ""
18763^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18764(gdb)
a2c02241
NR
18765-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18766^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18767(gdb)
a2c02241
NR
18768-environment-directory -r
18769^done,source-path="$cdir:$cwd"
594fe323 18770(gdb)
922fbb7b
AC
18771@end smallexample
18772
18773
a2c02241
NR
18774@subheading The @code{-environment-path} Command
18775@findex -environment-path
922fbb7b
AC
18776
18777@subsubheading Synopsis
18778
18779@smallexample
a2c02241 18780 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18781@end smallexample
18782
a2c02241
NR
18783Add directories @var{pathdir} to beginning of search path for object files.
18784If the @samp{-r} option is used, the search path is reset to the original
18785search path that existed at gdb start-up. If directories @var{pathdir} are
18786supplied in addition to the
18787@samp{-r} option, the search path is first reset and then addition
18788occurs as normal.
18789Multiple directories may be specified, separated by blanks. Specifying
18790multiple directories in a single command
18791results in the directories added to the beginning of the
18792search path in the same order they were presented in the command.
18793If blanks are needed as
18794part of a directory name, double-quotes should be used around
18795the name. In the command output, the path will show up separated
d3e8051b 18796by the system directory-separator character. The directory-separator
a2c02241
NR
18797character must not be used
18798in any directory name.
18799If no directories are specified, the current path is displayed.
18800
922fbb7b
AC
18801
18802@subsubheading @value{GDBN} Command
18803
a2c02241 18804The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18805
18806@subsubheading Example
18807
922fbb7b 18808@smallexample
594fe323 18809(gdb)
a2c02241
NR
18810-environment-path
18811^done,path="/usr/bin"
594fe323 18812(gdb)
a2c02241
NR
18813-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18814^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18815(gdb)
a2c02241
NR
18816-environment-path -r /usr/local/bin
18817^done,path="/usr/local/bin:/usr/bin"
594fe323 18818(gdb)
922fbb7b
AC
18819@end smallexample
18820
18821
a2c02241
NR
18822@subheading The @code{-environment-pwd} Command
18823@findex -environment-pwd
922fbb7b
AC
18824
18825@subsubheading Synopsis
18826
18827@smallexample
a2c02241 18828 -environment-pwd
922fbb7b
AC
18829@end smallexample
18830
a2c02241 18831Show the current working directory.
922fbb7b 18832
79a6e687 18833@subsubheading @value{GDBN} Command
922fbb7b 18834
a2c02241 18835The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18836
18837@subsubheading Example
18838
922fbb7b 18839@smallexample
594fe323 18840(gdb)
a2c02241
NR
18841-environment-pwd
18842^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18843(gdb)
922fbb7b
AC
18844@end smallexample
18845
a2c02241
NR
18846@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18847@node GDB/MI Thread Commands
18848@section @sc{gdb/mi} Thread Commands
18849
18850
18851@subheading The @code{-thread-info} Command
18852@findex -thread-info
922fbb7b
AC
18853
18854@subsubheading Synopsis
18855
18856@smallexample
a2c02241 18857 -thread-info
922fbb7b
AC
18858@end smallexample
18859
79a6e687 18860@subsubheading @value{GDBN} Command
922fbb7b 18861
a2c02241 18862No equivalent.
922fbb7b
AC
18863
18864@subsubheading Example
a2c02241 18865N.A.
922fbb7b
AC
18866
18867
a2c02241
NR
18868@subheading The @code{-thread-list-all-threads} Command
18869@findex -thread-list-all-threads
922fbb7b
AC
18870
18871@subsubheading Synopsis
18872
18873@smallexample
a2c02241 18874 -thread-list-all-threads
922fbb7b
AC
18875@end smallexample
18876
a2c02241 18877@subsubheading @value{GDBN} Command
922fbb7b 18878
a2c02241 18879The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18880
a2c02241
NR
18881@subsubheading Example
18882N.A.
922fbb7b 18883
922fbb7b 18884
a2c02241
NR
18885@subheading The @code{-thread-list-ids} Command
18886@findex -thread-list-ids
922fbb7b 18887
a2c02241 18888@subsubheading Synopsis
922fbb7b 18889
a2c02241
NR
18890@smallexample
18891 -thread-list-ids
18892@end smallexample
922fbb7b 18893
a2c02241
NR
18894Produces a list of the currently known @value{GDBN} thread ids. At the
18895end of the list it also prints the total number of such threads.
922fbb7b
AC
18896
18897@subsubheading @value{GDBN} Command
18898
a2c02241 18899Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18900
18901@subsubheading Example
18902
a2c02241 18903No threads present, besides the main process:
922fbb7b
AC
18904
18905@smallexample
594fe323 18906(gdb)
a2c02241
NR
18907-thread-list-ids
18908^done,thread-ids=@{@},number-of-threads="0"
594fe323 18909(gdb)
922fbb7b
AC
18910@end smallexample
18911
922fbb7b 18912
a2c02241 18913Several threads:
922fbb7b
AC
18914
18915@smallexample
594fe323 18916(gdb)
a2c02241
NR
18917-thread-list-ids
18918^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18919number-of-threads="3"
594fe323 18920(gdb)
922fbb7b
AC
18921@end smallexample
18922
a2c02241
NR
18923
18924@subheading The @code{-thread-select} Command
18925@findex -thread-select
922fbb7b
AC
18926
18927@subsubheading Synopsis
18928
18929@smallexample
a2c02241 18930 -thread-select @var{threadnum}
922fbb7b
AC
18931@end smallexample
18932
a2c02241
NR
18933Make @var{threadnum} the current thread. It prints the number of the new
18934current thread, and the topmost frame for that thread.
922fbb7b
AC
18935
18936@subsubheading @value{GDBN} Command
18937
a2c02241 18938The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18939
18940@subsubheading Example
922fbb7b
AC
18941
18942@smallexample
594fe323 18943(gdb)
a2c02241
NR
18944-exec-next
18945^running
594fe323 18946(gdb)
a2c02241
NR
18947*stopped,reason="end-stepping-range",thread-id="2",line="187",
18948file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18949(gdb)
a2c02241
NR
18950-thread-list-ids
18951^done,
18952thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18953number-of-threads="3"
594fe323 18954(gdb)
a2c02241
NR
18955-thread-select 3
18956^done,new-thread-id="3",
18957frame=@{level="0",func="vprintf",
18958args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18959@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18960(gdb)
922fbb7b
AC
18961@end smallexample
18962
a2c02241
NR
18963@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18964@node GDB/MI Program Execution
18965@section @sc{gdb/mi} Program Execution
922fbb7b 18966
ef21caaf 18967These are the asynchronous commands which generate the out-of-band
3f94c067 18968record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18969asynchronously with remote targets and this interaction is mimicked in
18970other cases.
922fbb7b 18971
922fbb7b
AC
18972@subheading The @code{-exec-continue} Command
18973@findex -exec-continue
18974
18975@subsubheading Synopsis
18976
18977@smallexample
18978 -exec-continue
18979@end smallexample
18980
ef21caaf
NR
18981Resumes the execution of the inferior program until a breakpoint is
18982encountered, or until the inferior exits.
922fbb7b
AC
18983
18984@subsubheading @value{GDBN} Command
18985
18986The corresponding @value{GDBN} corresponding is @samp{continue}.
18987
18988@subsubheading Example
18989
18990@smallexample
18991-exec-continue
18992^running
594fe323 18993(gdb)
922fbb7b
AC
18994@@Hello world
18995*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18996file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18997(gdb)
922fbb7b
AC
18998@end smallexample
18999
19000
19001@subheading The @code{-exec-finish} Command
19002@findex -exec-finish
19003
19004@subsubheading Synopsis
19005
19006@smallexample
19007 -exec-finish
19008@end smallexample
19009
ef21caaf
NR
19010Resumes the execution of the inferior program until the current
19011function is exited. Displays the results returned by the function.
922fbb7b
AC
19012
19013@subsubheading @value{GDBN} Command
19014
19015The corresponding @value{GDBN} command is @samp{finish}.
19016
19017@subsubheading Example
19018
19019Function returning @code{void}.
19020
19021@smallexample
19022-exec-finish
19023^running
594fe323 19024(gdb)
922fbb7b
AC
19025@@hello from foo
19026*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 19027file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 19028(gdb)
922fbb7b
AC
19029@end smallexample
19030
19031Function returning other than @code{void}. The name of the internal
19032@value{GDBN} variable storing the result is printed, together with the
19033value itself.
19034
19035@smallexample
19036-exec-finish
19037^running
594fe323 19038(gdb)
922fbb7b
AC
19039*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
19040args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 19041file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 19042gdb-result-var="$1",return-value="0"
594fe323 19043(gdb)
922fbb7b
AC
19044@end smallexample
19045
19046
19047@subheading The @code{-exec-interrupt} Command
19048@findex -exec-interrupt
19049
19050@subsubheading Synopsis
19051
19052@smallexample
19053 -exec-interrupt
19054@end smallexample
19055
ef21caaf
NR
19056Interrupts the background execution of the target. Note how the token
19057associated with the stop message is the one for the execution command
19058that has been interrupted. The token for the interrupt itself only
19059appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
19060interrupt a non-running program, an error message will be printed.
19061
19062@subsubheading @value{GDBN} Command
19063
19064The corresponding @value{GDBN} command is @samp{interrupt}.
19065
19066@subsubheading Example
19067
19068@smallexample
594fe323 19069(gdb)
922fbb7b
AC
19070111-exec-continue
19071111^running
19072
594fe323 19073(gdb)
922fbb7b
AC
19074222-exec-interrupt
19075222^done
594fe323 19076(gdb)
922fbb7b 19077111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 19078frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 19079fullname="/home/foo/bar/try.c",line="13"@}
594fe323 19080(gdb)
922fbb7b 19081
594fe323 19082(gdb)
922fbb7b
AC
19083-exec-interrupt
19084^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 19085(gdb)
922fbb7b
AC
19086@end smallexample
19087
19088
19089@subheading The @code{-exec-next} Command
19090@findex -exec-next
19091
19092@subsubheading Synopsis
19093
19094@smallexample
19095 -exec-next
19096@end smallexample
19097
ef21caaf
NR
19098Resumes execution of the inferior program, stopping when the beginning
19099of the next source line is reached.
922fbb7b
AC
19100
19101@subsubheading @value{GDBN} Command
19102
19103The corresponding @value{GDBN} command is @samp{next}.
19104
19105@subsubheading Example
19106
19107@smallexample
19108-exec-next
19109^running
594fe323 19110(gdb)
922fbb7b 19111*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 19112(gdb)
922fbb7b
AC
19113@end smallexample
19114
19115
19116@subheading The @code{-exec-next-instruction} Command
19117@findex -exec-next-instruction
19118
19119@subsubheading Synopsis
19120
19121@smallexample
19122 -exec-next-instruction
19123@end smallexample
19124
ef21caaf
NR
19125Executes one machine instruction. If the instruction is a function
19126call, continues until the function returns. If the program stops at an
19127instruction in the middle of a source line, the address will be
19128printed as well.
922fbb7b
AC
19129
19130@subsubheading @value{GDBN} Command
19131
19132The corresponding @value{GDBN} command is @samp{nexti}.
19133
19134@subsubheading Example
19135
19136@smallexample
594fe323 19137(gdb)
922fbb7b
AC
19138-exec-next-instruction
19139^running
19140
594fe323 19141(gdb)
922fbb7b
AC
19142*stopped,reason="end-stepping-range",
19143addr="0x000100d4",line="5",file="hello.c"
594fe323 19144(gdb)
922fbb7b
AC
19145@end smallexample
19146
19147
19148@subheading The @code{-exec-return} Command
19149@findex -exec-return
19150
19151@subsubheading Synopsis
19152
19153@smallexample
19154 -exec-return
19155@end smallexample
19156
19157Makes current function return immediately. Doesn't execute the inferior.
19158Displays the new current frame.
19159
19160@subsubheading @value{GDBN} Command
19161
19162The corresponding @value{GDBN} command is @samp{return}.
19163
19164@subsubheading Example
19165
19166@smallexample
594fe323 19167(gdb)
922fbb7b
AC
19168200-break-insert callee4
19169200^done,bkpt=@{number="1",addr="0x00010734",
19170file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19171(gdb)
922fbb7b
AC
19172000-exec-run
19173000^running
594fe323 19174(gdb)
922fbb7b
AC
19175000*stopped,reason="breakpoint-hit",bkptno="1",
19176frame=@{func="callee4",args=[],
76ff342d
DJ
19177file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19178fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 19179(gdb)
922fbb7b
AC
19180205-break-delete
19181205^done
594fe323 19182(gdb)
922fbb7b
AC
19183111-exec-return
19184111^done,frame=@{level="0",func="callee3",
19185args=[@{name="strarg",
19186value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
19187file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19188fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 19189(gdb)
922fbb7b
AC
19190@end smallexample
19191
19192
19193@subheading The @code{-exec-run} Command
19194@findex -exec-run
19195
19196@subsubheading Synopsis
19197
19198@smallexample
19199 -exec-run
19200@end smallexample
19201
ef21caaf
NR
19202Starts execution of the inferior from the beginning. The inferior
19203executes until either a breakpoint is encountered or the program
19204exits. In the latter case the output will include an exit code, if
19205the program has exited exceptionally.
922fbb7b
AC
19206
19207@subsubheading @value{GDBN} Command
19208
19209The corresponding @value{GDBN} command is @samp{run}.
19210
ef21caaf 19211@subsubheading Examples
922fbb7b
AC
19212
19213@smallexample
594fe323 19214(gdb)
922fbb7b
AC
19215-break-insert main
19216^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 19217(gdb)
922fbb7b
AC
19218-exec-run
19219^running
594fe323 19220(gdb)
922fbb7b 19221*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 19222frame=@{func="main",args=[],file="recursive2.c",
948d5102 19223fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 19224(gdb)
922fbb7b
AC
19225@end smallexample
19226
ef21caaf
NR
19227@noindent
19228Program exited normally:
19229
19230@smallexample
594fe323 19231(gdb)
ef21caaf
NR
19232-exec-run
19233^running
594fe323 19234(gdb)
ef21caaf
NR
19235x = 55
19236*stopped,reason="exited-normally"
594fe323 19237(gdb)
ef21caaf
NR
19238@end smallexample
19239
19240@noindent
19241Program exited exceptionally:
19242
19243@smallexample
594fe323 19244(gdb)
ef21caaf
NR
19245-exec-run
19246^running
594fe323 19247(gdb)
ef21caaf
NR
19248x = 55
19249*stopped,reason="exited",exit-code="01"
594fe323 19250(gdb)
ef21caaf
NR
19251@end smallexample
19252
19253Another way the program can terminate is if it receives a signal such as
19254@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19255
19256@smallexample
594fe323 19257(gdb)
ef21caaf
NR
19258*stopped,reason="exited-signalled",signal-name="SIGINT",
19259signal-meaning="Interrupt"
19260@end smallexample
19261
922fbb7b 19262
a2c02241
NR
19263@c @subheading -exec-signal
19264
19265
19266@subheading The @code{-exec-step} Command
19267@findex -exec-step
922fbb7b
AC
19268
19269@subsubheading Synopsis
19270
19271@smallexample
a2c02241 19272 -exec-step
922fbb7b
AC
19273@end smallexample
19274
a2c02241
NR
19275Resumes execution of the inferior program, stopping when the beginning
19276of the next source line is reached, if the next source line is not a
19277function call. If it is, stop at the first instruction of the called
19278function.
922fbb7b
AC
19279
19280@subsubheading @value{GDBN} Command
19281
a2c02241 19282The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19283
19284@subsubheading Example
19285
19286Stepping into a function:
19287
19288@smallexample
19289-exec-step
19290^running
594fe323 19291(gdb)
922fbb7b
AC
19292*stopped,reason="end-stepping-range",
19293frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19294@{name="b",value="0"@}],file="recursive2.c",
948d5102 19295fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19296(gdb)
922fbb7b
AC
19297@end smallexample
19298
19299Regular stepping:
19300
19301@smallexample
19302-exec-step
19303^running
594fe323 19304(gdb)
922fbb7b 19305*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19306(gdb)
922fbb7b
AC
19307@end smallexample
19308
19309
19310@subheading The @code{-exec-step-instruction} Command
19311@findex -exec-step-instruction
19312
19313@subsubheading Synopsis
19314
19315@smallexample
19316 -exec-step-instruction
19317@end smallexample
19318
ef21caaf
NR
19319Resumes the inferior which executes one machine instruction. The
19320output, once @value{GDBN} has stopped, will vary depending on whether
19321we have stopped in the middle of a source line or not. In the former
19322case, the address at which the program stopped will be printed as
922fbb7b
AC
19323well.
19324
19325@subsubheading @value{GDBN} Command
19326
19327The corresponding @value{GDBN} command is @samp{stepi}.
19328
19329@subsubheading Example
19330
19331@smallexample
594fe323 19332(gdb)
922fbb7b
AC
19333-exec-step-instruction
19334^running
19335
594fe323 19336(gdb)
922fbb7b 19337*stopped,reason="end-stepping-range",
76ff342d 19338frame=@{func="foo",args=[],file="try.c",
948d5102 19339fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19340(gdb)
922fbb7b
AC
19341-exec-step-instruction
19342^running
19343
594fe323 19344(gdb)
922fbb7b 19345*stopped,reason="end-stepping-range",
76ff342d 19346frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19347fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19348(gdb)
922fbb7b
AC
19349@end smallexample
19350
19351
19352@subheading The @code{-exec-until} Command
19353@findex -exec-until
19354
19355@subsubheading Synopsis
19356
19357@smallexample
19358 -exec-until [ @var{location} ]
19359@end smallexample
19360
ef21caaf
NR
19361Executes the inferior until the @var{location} specified in the
19362argument is reached. If there is no argument, the inferior executes
19363until a source line greater than the current one is reached. The
19364reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19365
19366@subsubheading @value{GDBN} Command
19367
19368The corresponding @value{GDBN} command is @samp{until}.
19369
19370@subsubheading Example
19371
19372@smallexample
594fe323 19373(gdb)
922fbb7b
AC
19374-exec-until recursive2.c:6
19375^running
594fe323 19376(gdb)
922fbb7b
AC
19377x = 55
19378*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19379file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19380(gdb)
922fbb7b
AC
19381@end smallexample
19382
19383@ignore
19384@subheading -file-clear
19385Is this going away????
19386@end ignore
19387
351ff01a 19388@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19389@node GDB/MI Stack Manipulation
19390@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19391
922fbb7b 19392
a2c02241
NR
19393@subheading The @code{-stack-info-frame} Command
19394@findex -stack-info-frame
922fbb7b
AC
19395
19396@subsubheading Synopsis
19397
19398@smallexample
a2c02241 19399 -stack-info-frame
922fbb7b
AC
19400@end smallexample
19401
a2c02241 19402Get info on the selected frame.
922fbb7b
AC
19403
19404@subsubheading @value{GDBN} Command
19405
a2c02241
NR
19406The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19407(without arguments).
922fbb7b
AC
19408
19409@subsubheading Example
19410
19411@smallexample
594fe323 19412(gdb)
a2c02241
NR
19413-stack-info-frame
19414^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19415file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19416fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19417(gdb)
922fbb7b
AC
19418@end smallexample
19419
a2c02241
NR
19420@subheading The @code{-stack-info-depth} Command
19421@findex -stack-info-depth
922fbb7b
AC
19422
19423@subsubheading Synopsis
19424
19425@smallexample
a2c02241 19426 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19427@end smallexample
19428
a2c02241
NR
19429Return the depth of the stack. If the integer argument @var{max-depth}
19430is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19431
19432@subsubheading @value{GDBN} Command
19433
a2c02241 19434There's no equivalent @value{GDBN} command.
922fbb7b
AC
19435
19436@subsubheading Example
19437
a2c02241
NR
19438For a stack with frame levels 0 through 11:
19439
922fbb7b 19440@smallexample
594fe323 19441(gdb)
a2c02241
NR
19442-stack-info-depth
19443^done,depth="12"
594fe323 19444(gdb)
a2c02241
NR
19445-stack-info-depth 4
19446^done,depth="4"
594fe323 19447(gdb)
a2c02241
NR
19448-stack-info-depth 12
19449^done,depth="12"
594fe323 19450(gdb)
a2c02241
NR
19451-stack-info-depth 11
19452^done,depth="11"
594fe323 19453(gdb)
a2c02241
NR
19454-stack-info-depth 13
19455^done,depth="12"
594fe323 19456(gdb)
922fbb7b
AC
19457@end smallexample
19458
a2c02241
NR
19459@subheading The @code{-stack-list-arguments} Command
19460@findex -stack-list-arguments
922fbb7b
AC
19461
19462@subsubheading Synopsis
19463
19464@smallexample
a2c02241
NR
19465 -stack-list-arguments @var{show-values}
19466 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19467@end smallexample
19468
a2c02241
NR
19469Display a list of the arguments for the frames between @var{low-frame}
19470and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19471@var{high-frame} are not provided, list the arguments for the whole
19472call stack. If the two arguments are equal, show the single frame
19473at the corresponding level. It is an error if @var{low-frame} is
19474larger than the actual number of frames. On the other hand,
19475@var{high-frame} may be larger than the actual number of frames, in
19476which case only existing frames will be returned.
a2c02241
NR
19477
19478The @var{show-values} argument must have a value of 0 or 1. A value of
194790 means that only the names of the arguments are listed, a value of 1
19480means that both names and values of the arguments are printed.
922fbb7b
AC
19481
19482@subsubheading @value{GDBN} Command
19483
a2c02241
NR
19484@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19485@samp{gdb_get_args} command which partially overlaps with the
19486functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19487
19488@subsubheading Example
922fbb7b 19489
a2c02241 19490@smallexample
594fe323 19491(gdb)
a2c02241
NR
19492-stack-list-frames
19493^done,
19494stack=[
19495frame=@{level="0",addr="0x00010734",func="callee4",
19496file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19497fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19498frame=@{level="1",addr="0x0001076c",func="callee3",
19499file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19500fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19501frame=@{level="2",addr="0x0001078c",func="callee2",
19502file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19503fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19504frame=@{level="3",addr="0x000107b4",func="callee1",
19505file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19506fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19507frame=@{level="4",addr="0x000107e0",func="main",
19508file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19509fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19510(gdb)
a2c02241
NR
19511-stack-list-arguments 0
19512^done,
19513stack-args=[
19514frame=@{level="0",args=[]@},
19515frame=@{level="1",args=[name="strarg"]@},
19516frame=@{level="2",args=[name="intarg",name="strarg"]@},
19517frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19518frame=@{level="4",args=[]@}]
594fe323 19519(gdb)
a2c02241
NR
19520-stack-list-arguments 1
19521^done,
19522stack-args=[
19523frame=@{level="0",args=[]@},
19524frame=@{level="1",
19525 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19526frame=@{level="2",args=[
19527@{name="intarg",value="2"@},
19528@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19529@{frame=@{level="3",args=[
19530@{name="intarg",value="2"@},
19531@{name="strarg",value="0x11940 \"A string argument.\""@},
19532@{name="fltarg",value="3.5"@}]@},
19533frame=@{level="4",args=[]@}]
594fe323 19534(gdb)
a2c02241
NR
19535-stack-list-arguments 0 2 2
19536^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19537(gdb)
a2c02241
NR
19538-stack-list-arguments 1 2 2
19539^done,stack-args=[frame=@{level="2",
19540args=[@{name="intarg",value="2"@},
19541@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19542(gdb)
a2c02241
NR
19543@end smallexample
19544
19545@c @subheading -stack-list-exception-handlers
922fbb7b 19546
a2c02241
NR
19547
19548@subheading The @code{-stack-list-frames} Command
19549@findex -stack-list-frames
1abaf70c
BR
19550
19551@subsubheading Synopsis
19552
19553@smallexample
a2c02241 19554 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19555@end smallexample
19556
a2c02241
NR
19557List the frames currently on the stack. For each frame it displays the
19558following info:
19559
19560@table @samp
19561@item @var{level}
d3e8051b 19562The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19563@item @var{addr}
19564The @code{$pc} value for that frame.
19565@item @var{func}
19566Function name.
19567@item @var{file}
19568File name of the source file where the function lives.
19569@item @var{line}
19570Line number corresponding to the @code{$pc}.
19571@end table
19572
19573If invoked without arguments, this command prints a backtrace for the
19574whole stack. If given two integer arguments, it shows the frames whose
19575levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19576are equal, it shows the single frame at the corresponding level. It is
19577an error if @var{low-frame} is larger than the actual number of
a5451f4e 19578frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19579actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19580
19581@subsubheading @value{GDBN} Command
19582
a2c02241 19583The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19584
19585@subsubheading Example
19586
a2c02241
NR
19587Full stack backtrace:
19588
1abaf70c 19589@smallexample
594fe323 19590(gdb)
a2c02241
NR
19591-stack-list-frames
19592^done,stack=
19593[frame=@{level="0",addr="0x0001076c",func="foo",
19594 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19595frame=@{level="1",addr="0x000107a4",func="foo",
19596 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19597frame=@{level="2",addr="0x000107a4",func="foo",
19598 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19599frame=@{level="3",addr="0x000107a4",func="foo",
19600 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19601frame=@{level="4",addr="0x000107a4",func="foo",
19602 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19603frame=@{level="5",addr="0x000107a4",func="foo",
19604 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19605frame=@{level="6",addr="0x000107a4",func="foo",
19606 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19607frame=@{level="7",addr="0x000107a4",func="foo",
19608 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19609frame=@{level="8",addr="0x000107a4",func="foo",
19610 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19611frame=@{level="9",addr="0x000107a4",func="foo",
19612 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19613frame=@{level="10",addr="0x000107a4",func="foo",
19614 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19615frame=@{level="11",addr="0x00010738",func="main",
19616 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19617(gdb)
1abaf70c
BR
19618@end smallexample
19619
a2c02241 19620Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19621
a2c02241 19622@smallexample
594fe323 19623(gdb)
a2c02241
NR
19624-stack-list-frames 3 5
19625^done,stack=
19626[frame=@{level="3",addr="0x000107a4",func="foo",
19627 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19628frame=@{level="4",addr="0x000107a4",func="foo",
19629 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19630frame=@{level="5",addr="0x000107a4",func="foo",
19631 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19632(gdb)
a2c02241 19633@end smallexample
922fbb7b 19634
a2c02241 19635Show a single frame:
922fbb7b
AC
19636
19637@smallexample
594fe323 19638(gdb)
a2c02241
NR
19639-stack-list-frames 3 3
19640^done,stack=
19641[frame=@{level="3",addr="0x000107a4",func="foo",
19642 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19643(gdb)
922fbb7b
AC
19644@end smallexample
19645
922fbb7b 19646
a2c02241
NR
19647@subheading The @code{-stack-list-locals} Command
19648@findex -stack-list-locals
57c22c6c 19649
a2c02241 19650@subsubheading Synopsis
922fbb7b
AC
19651
19652@smallexample
a2c02241 19653 -stack-list-locals @var{print-values}
922fbb7b
AC
19654@end smallexample
19655
a2c02241
NR
19656Display the local variable names for the selected frame. If
19657@var{print-values} is 0 or @code{--no-values}, print only the names of
19658the variables; if it is 1 or @code{--all-values}, print also their
19659values; and if it is 2 or @code{--simple-values}, print the name,
19660type and value for simple data types and the name and type for arrays,
19661structures and unions. In this last case, a frontend can immediately
19662display the value of simple data types and create variable objects for
d3e8051b 19663other data types when the user wishes to explore their values in
a2c02241 19664more detail.
922fbb7b
AC
19665
19666@subsubheading @value{GDBN} Command
19667
a2c02241 19668@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19669
19670@subsubheading Example
922fbb7b
AC
19671
19672@smallexample
594fe323 19673(gdb)
a2c02241
NR
19674-stack-list-locals 0
19675^done,locals=[name="A",name="B",name="C"]
594fe323 19676(gdb)
a2c02241
NR
19677-stack-list-locals --all-values
19678^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19679 @{name="C",value="@{1, 2, 3@}"@}]
19680-stack-list-locals --simple-values
19681^done,locals=[@{name="A",type="int",value="1"@},
19682 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19683(gdb)
922fbb7b
AC
19684@end smallexample
19685
922fbb7b 19686
a2c02241
NR
19687@subheading The @code{-stack-select-frame} Command
19688@findex -stack-select-frame
922fbb7b
AC
19689
19690@subsubheading Synopsis
19691
19692@smallexample
a2c02241 19693 -stack-select-frame @var{framenum}
922fbb7b
AC
19694@end smallexample
19695
a2c02241
NR
19696Change the selected frame. Select a different frame @var{framenum} on
19697the stack.
922fbb7b
AC
19698
19699@subsubheading @value{GDBN} Command
19700
a2c02241
NR
19701The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19702@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19703
19704@subsubheading Example
19705
19706@smallexample
594fe323 19707(gdb)
a2c02241 19708-stack-select-frame 2
922fbb7b 19709^done
594fe323 19710(gdb)
922fbb7b
AC
19711@end smallexample
19712
19713@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19714@node GDB/MI Variable Objects
19715@section @sc{gdb/mi} Variable Objects
922fbb7b 19716
a1b5960f 19717@ignore
922fbb7b 19718
a2c02241 19719@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19720
a2c02241
NR
19721For the implementation of a variable debugger window (locals, watched
19722expressions, etc.), we are proposing the adaptation of the existing code
19723used by @code{Insight}.
922fbb7b 19724
a2c02241 19725The two main reasons for that are:
922fbb7b 19726
a2c02241
NR
19727@enumerate 1
19728@item
19729It has been proven in practice (it is already on its second generation).
922fbb7b 19730
a2c02241
NR
19731@item
19732It will shorten development time (needless to say how important it is
19733now).
19734@end enumerate
922fbb7b 19735
a2c02241
NR
19736The original interface was designed to be used by Tcl code, so it was
19737slightly changed so it could be used through @sc{gdb/mi}. This section
19738describes the @sc{gdb/mi} operations that will be available and gives some
19739hints about their use.
922fbb7b 19740
a2c02241
NR
19741@emph{Note}: In addition to the set of operations described here, we
19742expect the @sc{gui} implementation of a variable window to require, at
19743least, the following operations:
922fbb7b 19744
a2c02241
NR
19745@itemize @bullet
19746@item @code{-gdb-show} @code{output-radix}
19747@item @code{-stack-list-arguments}
19748@item @code{-stack-list-locals}
19749@item @code{-stack-select-frame}
19750@end itemize
922fbb7b 19751
a1b5960f
VP
19752@end ignore
19753
c8b2f53c 19754@subheading Introduction to Variable Objects
922fbb7b 19755
a2c02241 19756@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19757
19758Variable objects are "object-oriented" MI interface for examining and
19759changing values of expressions. Unlike some other MI interfaces that
19760work with expressions, variable objects are specifically designed for
19761simple and efficient presentation in the frontend. A variable object
19762is identified by string name. When a variable object is created, the
19763frontend specifies the expression for that variable object. The
19764expression can be a simple variable, or it can be an arbitrary complex
19765expression, and can even involve CPU registers. After creating a
19766variable object, the frontend can invoke other variable object
19767operations---for example to obtain or change the value of a variable
19768object, or to change display format.
19769
19770Variable objects have hierarchical tree structure. Any variable object
19771that corresponds to a composite type, such as structure in C, has
19772a number of child variable objects, for example corresponding to each
19773element of a structure. A child variable object can itself have
19774children, recursively. Recursion ends when we reach
25d5ea92
VP
19775leaf variable objects, which always have built-in types. Child variable
19776objects are created only by explicit request, so if a frontend
19777is not interested in the children of a particular variable object, no
19778child will be created.
c8b2f53c
VP
19779
19780For a leaf variable object it is possible to obtain its value as a
19781string, or set the value from a string. String value can be also
19782obtained for a non-leaf variable object, but it's generally a string
19783that only indicates the type of the object, and does not list its
19784contents. Assignment to a non-leaf variable object is not allowed.
19785
19786A frontend does not need to read the values of all variable objects each time
19787the program stops. Instead, MI provides an update command that lists all
19788variable objects whose values has changed since the last update
19789operation. This considerably reduces the amount of data that must
25d5ea92
VP
19790be transferred to the frontend. As noted above, children variable
19791objects are created on demand, and only leaf variable objects have a
19792real value. As result, gdb will read target memory only for leaf
19793variables that frontend has created.
19794
19795The automatic update is not always desirable. For example, a frontend
19796might want to keep a value of some expression for future reference,
19797and never update it. For another example, fetching memory is
19798relatively slow for embedded targets, so a frontend might want
19799to disable automatic update for the variables that are either not
19800visible on the screen, or ``closed''. This is possible using so
19801called ``frozen variable objects''. Such variable objects are never
19802implicitly updated.
922fbb7b 19803
a2c02241
NR
19804The following is the complete set of @sc{gdb/mi} operations defined to
19805access this functionality:
922fbb7b 19806
a2c02241
NR
19807@multitable @columnfractions .4 .6
19808@item @strong{Operation}
19809@tab @strong{Description}
922fbb7b 19810
a2c02241
NR
19811@item @code{-var-create}
19812@tab create a variable object
19813@item @code{-var-delete}
22d8a470 19814@tab delete the variable object and/or its children
a2c02241
NR
19815@item @code{-var-set-format}
19816@tab set the display format of this variable
19817@item @code{-var-show-format}
19818@tab show the display format of this variable
19819@item @code{-var-info-num-children}
19820@tab tells how many children this object has
19821@item @code{-var-list-children}
19822@tab return a list of the object's children
19823@item @code{-var-info-type}
19824@tab show the type of this variable object
19825@item @code{-var-info-expression}
02142340
VP
19826@tab print parent-relative expression that this variable object represents
19827@item @code{-var-info-path-expression}
19828@tab print full expression that this variable object represents
a2c02241
NR
19829@item @code{-var-show-attributes}
19830@tab is this variable editable? does it exist here?
19831@item @code{-var-evaluate-expression}
19832@tab get the value of this variable
19833@item @code{-var-assign}
19834@tab set the value of this variable
19835@item @code{-var-update}
19836@tab update the variable and its children
25d5ea92
VP
19837@item @code{-var-set-frozen}
19838@tab set frozeness attribute
a2c02241 19839@end multitable
922fbb7b 19840
a2c02241
NR
19841In the next subsection we describe each operation in detail and suggest
19842how it can be used.
922fbb7b 19843
a2c02241 19844@subheading Description And Use of Operations on Variable Objects
922fbb7b 19845
a2c02241
NR
19846@subheading The @code{-var-create} Command
19847@findex -var-create
ef21caaf 19848
a2c02241 19849@subsubheading Synopsis
ef21caaf 19850
a2c02241
NR
19851@smallexample
19852 -var-create @{@var{name} | "-"@}
19853 @{@var{frame-addr} | "*"@} @var{expression}
19854@end smallexample
19855
19856This operation creates a variable object, which allows the monitoring of
19857a variable, the result of an expression, a memory cell or a CPU
19858register.
ef21caaf 19859
a2c02241
NR
19860The @var{name} parameter is the string by which the object can be
19861referenced. It must be unique. If @samp{-} is specified, the varobj
19862system will generate a string ``varNNNNNN'' automatically. It will be
19863unique provided that one does not specify @var{name} on that format.
19864The command fails if a duplicate name is found.
ef21caaf 19865
a2c02241
NR
19866The frame under which the expression should be evaluated can be
19867specified by @var{frame-addr}. A @samp{*} indicates that the current
19868frame should be used.
922fbb7b 19869
a2c02241
NR
19870@var{expression} is any expression valid on the current language set (must not
19871begin with a @samp{*}), or one of the following:
922fbb7b 19872
a2c02241
NR
19873@itemize @bullet
19874@item
19875@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19876
a2c02241
NR
19877@item
19878@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19879
a2c02241
NR
19880@item
19881@samp{$@var{regname}} --- a CPU register name
19882@end itemize
922fbb7b 19883
a2c02241 19884@subsubheading Result
922fbb7b 19885
a2c02241
NR
19886This operation returns the name, number of children and the type of the
19887object created. Type is returned as a string as the ones generated by
19888the @value{GDBN} CLI:
922fbb7b
AC
19889
19890@smallexample
a2c02241 19891 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19892@end smallexample
19893
a2c02241
NR
19894
19895@subheading The @code{-var-delete} Command
19896@findex -var-delete
922fbb7b
AC
19897
19898@subsubheading Synopsis
19899
19900@smallexample
22d8a470 19901 -var-delete [ -c ] @var{name}
922fbb7b
AC
19902@end smallexample
19903
a2c02241 19904Deletes a previously created variable object and all of its children.
22d8a470 19905With the @samp{-c} option, just deletes the children.
922fbb7b 19906
a2c02241 19907Returns an error if the object @var{name} is not found.
922fbb7b 19908
922fbb7b 19909
a2c02241
NR
19910@subheading The @code{-var-set-format} Command
19911@findex -var-set-format
922fbb7b 19912
a2c02241 19913@subsubheading Synopsis
922fbb7b
AC
19914
19915@smallexample
a2c02241 19916 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19917@end smallexample
19918
a2c02241
NR
19919Sets the output format for the value of the object @var{name} to be
19920@var{format-spec}.
19921
19922The syntax for the @var{format-spec} is as follows:
19923
19924@smallexample
19925 @var{format-spec} @expansion{}
19926 @{binary | decimal | hexadecimal | octal | natural@}
19927@end smallexample
19928
c8b2f53c
VP
19929The natural format is the default format choosen automatically
19930based on the variable type (like decimal for an @code{int}, hex
19931for pointers, etc.).
19932
19933For a variable with children, the format is set only on the
19934variable itself, and the children are not affected.
a2c02241
NR
19935
19936@subheading The @code{-var-show-format} Command
19937@findex -var-show-format
922fbb7b
AC
19938
19939@subsubheading Synopsis
19940
19941@smallexample
a2c02241 19942 -var-show-format @var{name}
922fbb7b
AC
19943@end smallexample
19944
a2c02241 19945Returns the format used to display the value of the object @var{name}.
922fbb7b 19946
a2c02241
NR
19947@smallexample
19948 @var{format} @expansion{}
19949 @var{format-spec}
19950@end smallexample
922fbb7b 19951
922fbb7b 19952
a2c02241
NR
19953@subheading The @code{-var-info-num-children} Command
19954@findex -var-info-num-children
19955
19956@subsubheading Synopsis
19957
19958@smallexample
19959 -var-info-num-children @var{name}
19960@end smallexample
19961
19962Returns the number of children of a variable object @var{name}:
19963
19964@smallexample
19965 numchild=@var{n}
19966@end smallexample
19967
19968
19969@subheading The @code{-var-list-children} Command
19970@findex -var-list-children
19971
19972@subsubheading Synopsis
19973
19974@smallexample
19975 -var-list-children [@var{print-values}] @var{name}
19976@end smallexample
19977@anchor{-var-list-children}
19978
19979Return a list of the children of the specified variable object and
19980create variable objects for them, if they do not already exist. With
19981a single argument or if @var{print-values} has a value for of 0 or
19982@code{--no-values}, print only the names of the variables; if
19983@var{print-values} is 1 or @code{--all-values}, also print their
19984values; and if it is 2 or @code{--simple-values} print the name and
19985value for simple data types and just the name for arrays, structures
19986and unions.
922fbb7b
AC
19987
19988@subsubheading Example
19989
19990@smallexample
594fe323 19991(gdb)
a2c02241
NR
19992 -var-list-children n
19993 ^done,numchild=@var{n},children=[@{name=@var{name},
19994 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19995(gdb)
a2c02241
NR
19996 -var-list-children --all-values n
19997 ^done,numchild=@var{n},children=[@{name=@var{name},
19998 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19999@end smallexample
20000
922fbb7b 20001
a2c02241
NR
20002@subheading The @code{-var-info-type} Command
20003@findex -var-info-type
922fbb7b 20004
a2c02241
NR
20005@subsubheading Synopsis
20006
20007@smallexample
20008 -var-info-type @var{name}
20009@end smallexample
20010
20011Returns the type of the specified variable @var{name}. The type is
20012returned as a string in the same format as it is output by the
20013@value{GDBN} CLI:
20014
20015@smallexample
20016 type=@var{typename}
20017@end smallexample
20018
20019
20020@subheading The @code{-var-info-expression} Command
20021@findex -var-info-expression
922fbb7b
AC
20022
20023@subsubheading Synopsis
20024
20025@smallexample
a2c02241 20026 -var-info-expression @var{name}
922fbb7b
AC
20027@end smallexample
20028
02142340
VP
20029Returns a string that is suitable for presenting this
20030variable object in user interface. The string is generally
20031not valid expression in the current language, and cannot be evaluated.
20032
20033For example, if @code{a} is an array, and variable object
20034@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 20035
a2c02241 20036@smallexample
02142340
VP
20037(gdb) -var-info-expression A.1
20038^done,lang="C",exp="1"
a2c02241 20039@end smallexample
922fbb7b 20040
a2c02241 20041@noindent
02142340
VP
20042Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
20043
20044Note that the output of the @code{-var-list-children} command also
20045includes those expressions, so the @code{-var-info-expression} command
20046is of limited use.
20047
20048@subheading The @code{-var-info-path-expression} Command
20049@findex -var-info-path-expression
20050
20051@subsubheading Synopsis
20052
20053@smallexample
20054 -var-info-path-expression @var{name}
20055@end smallexample
20056
20057Returns an expression that can be evaluated in the current
20058context and will yield the same value that a variable object has.
20059Compare this with the @code{-var-info-expression} command, which
20060result can be used only for UI presentation. Typical use of
20061the @code{-var-info-path-expression} command is creating a
20062watchpoint from a variable object.
20063
20064For example, suppose @code{C} is a C@t{++} class, derived from class
20065@code{Base}, and that the @code{Base} class has a member called
20066@code{m_size}. Assume a variable @code{c} is has the type of
20067@code{C} and a variable object @code{C} was created for variable
20068@code{c}. Then, we'll get this output:
20069@smallexample
20070(gdb) -var-info-path-expression C.Base.public.m_size
20071^done,path_expr=((Base)c).m_size)
20072@end smallexample
922fbb7b 20073
a2c02241
NR
20074@subheading The @code{-var-show-attributes} Command
20075@findex -var-show-attributes
922fbb7b 20076
a2c02241 20077@subsubheading Synopsis
922fbb7b 20078
a2c02241
NR
20079@smallexample
20080 -var-show-attributes @var{name}
20081@end smallexample
922fbb7b 20082
a2c02241 20083List attributes of the specified variable object @var{name}:
922fbb7b
AC
20084
20085@smallexample
a2c02241 20086 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
20087@end smallexample
20088
a2c02241
NR
20089@noindent
20090where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
20091
20092@subheading The @code{-var-evaluate-expression} Command
20093@findex -var-evaluate-expression
20094
20095@subsubheading Synopsis
20096
20097@smallexample
20098 -var-evaluate-expression @var{name}
20099@end smallexample
20100
20101Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
20102object and returns its value as a string. The format of the
20103string can be changed using the @code{-var-set-format} command.
a2c02241
NR
20104
20105@smallexample
20106 value=@var{value}
20107@end smallexample
20108
20109Note that one must invoke @code{-var-list-children} for a variable
20110before the value of a child variable can be evaluated.
20111
20112@subheading The @code{-var-assign} Command
20113@findex -var-assign
20114
20115@subsubheading Synopsis
20116
20117@smallexample
20118 -var-assign @var{name} @var{expression}
20119@end smallexample
20120
20121Assigns the value of @var{expression} to the variable object specified
20122by @var{name}. The object must be @samp{editable}. If the variable's
20123value is altered by the assign, the variable will show up in any
20124subsequent @code{-var-update} list.
20125
20126@subsubheading Example
922fbb7b
AC
20127
20128@smallexample
594fe323 20129(gdb)
a2c02241
NR
20130-var-assign var1 3
20131^done,value="3"
594fe323 20132(gdb)
a2c02241
NR
20133-var-update *
20134^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 20135(gdb)
922fbb7b
AC
20136@end smallexample
20137
a2c02241
NR
20138@subheading The @code{-var-update} Command
20139@findex -var-update
20140
20141@subsubheading Synopsis
20142
20143@smallexample
20144 -var-update [@var{print-values}] @{@var{name} | "*"@}
20145@end smallexample
20146
c8b2f53c
VP
20147Reevaluate the expressions corresponding to the variable object
20148@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
20149list of variable objects whose values have changed; @var{name} must
20150be a root variable object. Here, ``changed'' means that the result of
20151@code{-var-evaluate-expression} before and after the
20152@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
20153object names, all existing variable objects are updated, except
20154for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
20155@var{print-values} determines whether both names and values, or just
20156names are printed. The possible values of this options are the same
20157as for @code{-var-list-children} (@pxref{-var-list-children}). It is
20158recommended to use the @samp{--all-values} option, to reduce the
20159number of MI commands needed on each program stop.
c8b2f53c 20160
a2c02241
NR
20161
20162@subsubheading Example
922fbb7b
AC
20163
20164@smallexample
594fe323 20165(gdb)
a2c02241
NR
20166-var-assign var1 3
20167^done,value="3"
594fe323 20168(gdb)
a2c02241
NR
20169-var-update --all-values var1
20170^done,changelist=[@{name="var1",value="3",in_scope="true",
20171type_changed="false"@}]
594fe323 20172(gdb)
922fbb7b
AC
20173@end smallexample
20174
9f708cb2 20175@anchor{-var-update}
36ece8b3
NR
20176The field in_scope may take three values:
20177
20178@table @code
20179@item "true"
20180The variable object's current value is valid.
20181
20182@item "false"
20183The variable object does not currently hold a valid value but it may
20184hold one in the future if its associated expression comes back into
20185scope.
20186
20187@item "invalid"
20188The variable object no longer holds a valid value.
20189This can occur when the executable file being debugged has changed,
20190either through recompilation or by using the @value{GDBN} @code{file}
20191command. The front end should normally choose to delete these variable
20192objects.
20193@end table
20194
20195In the future new values may be added to this list so the front should
20196be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
20197
25d5ea92
VP
20198@subheading The @code{-var-set-frozen} Command
20199@findex -var-set-frozen
9f708cb2 20200@anchor{-var-set-frozen}
25d5ea92
VP
20201
20202@subsubheading Synopsis
20203
20204@smallexample
9f708cb2 20205 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
20206@end smallexample
20207
9f708cb2 20208Set the frozenness flag on the variable object @var{name}. The
25d5ea92 20209@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 20210frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 20211frozen, then neither itself, nor any of its children, are
9f708cb2 20212implicitly updated by @code{-var-update} of
25d5ea92
VP
20213a parent variable or by @code{-var-update *}. Only
20214@code{-var-update} of the variable itself will update its value and
20215values of its children. After a variable object is unfrozen, it is
20216implicitly updated by all subsequent @code{-var-update} operations.
20217Unfreezing a variable does not update it, only subsequent
20218@code{-var-update} does.
20219
20220@subsubheading Example
20221
20222@smallexample
20223(gdb)
20224-var-set-frozen V 1
20225^done
20226(gdb)
20227@end smallexample
20228
20229
a2c02241
NR
20230@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20231@node GDB/MI Data Manipulation
20232@section @sc{gdb/mi} Data Manipulation
922fbb7b 20233
a2c02241
NR
20234@cindex data manipulation, in @sc{gdb/mi}
20235@cindex @sc{gdb/mi}, data manipulation
20236This section describes the @sc{gdb/mi} commands that manipulate data:
20237examine memory and registers, evaluate expressions, etc.
20238
20239@c REMOVED FROM THE INTERFACE.
20240@c @subheading -data-assign
20241@c Change the value of a program variable. Plenty of side effects.
79a6e687 20242@c @subsubheading GDB Command
a2c02241
NR
20243@c set variable
20244@c @subsubheading Example
20245@c N.A.
20246
20247@subheading The @code{-data-disassemble} Command
20248@findex -data-disassemble
922fbb7b
AC
20249
20250@subsubheading Synopsis
20251
20252@smallexample
a2c02241
NR
20253 -data-disassemble
20254 [ -s @var{start-addr} -e @var{end-addr} ]
20255 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20256 -- @var{mode}
922fbb7b
AC
20257@end smallexample
20258
a2c02241
NR
20259@noindent
20260Where:
20261
20262@table @samp
20263@item @var{start-addr}
20264is the beginning address (or @code{$pc})
20265@item @var{end-addr}
20266is the end address
20267@item @var{filename}
20268is the name of the file to disassemble
20269@item @var{linenum}
20270is the line number to disassemble around
20271@item @var{lines}
d3e8051b 20272is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20273the whole function will be disassembled, in case no @var{end-addr} is
20274specified. If @var{end-addr} is specified as a non-zero value, and
20275@var{lines} is lower than the number of disassembly lines between
20276@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20277displayed; if @var{lines} is higher than the number of lines between
20278@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20279are displayed.
20280@item @var{mode}
20281is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20282disassembly).
20283@end table
20284
20285@subsubheading Result
20286
20287The output for each instruction is composed of four fields:
20288
20289@itemize @bullet
20290@item Address
20291@item Func-name
20292@item Offset
20293@item Instruction
20294@end itemize
20295
20296Note that whatever included in the instruction field, is not manipulated
d3e8051b 20297directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20298
20299@subsubheading @value{GDBN} Command
20300
a2c02241 20301There's no direct mapping from this command to the CLI.
922fbb7b
AC
20302
20303@subsubheading Example
20304
a2c02241
NR
20305Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20306
922fbb7b 20307@smallexample
594fe323 20308(gdb)
a2c02241
NR
20309-data-disassemble -s $pc -e "$pc + 20" -- 0
20310^done,
20311asm_insns=[
20312@{address="0x000107c0",func-name="main",offset="4",
20313inst="mov 2, %o0"@},
20314@{address="0x000107c4",func-name="main",offset="8",
20315inst="sethi %hi(0x11800), %o2"@},
20316@{address="0x000107c8",func-name="main",offset="12",
20317inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20318@{address="0x000107cc",func-name="main",offset="16",
20319inst="sethi %hi(0x11800), %o2"@},
20320@{address="0x000107d0",func-name="main",offset="20",
20321inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20322(gdb)
a2c02241
NR
20323@end smallexample
20324
20325Disassemble the whole @code{main} function. Line 32 is part of
20326@code{main}.
20327
20328@smallexample
20329-data-disassemble -f basics.c -l 32 -- 0
20330^done,asm_insns=[
20331@{address="0x000107bc",func-name="main",offset="0",
20332inst="save %sp, -112, %sp"@},
20333@{address="0x000107c0",func-name="main",offset="4",
20334inst="mov 2, %o0"@},
20335@{address="0x000107c4",func-name="main",offset="8",
20336inst="sethi %hi(0x11800), %o2"@},
20337[@dots{}]
20338@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20339@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20340(gdb)
922fbb7b
AC
20341@end smallexample
20342
a2c02241 20343Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20344
a2c02241 20345@smallexample
594fe323 20346(gdb)
a2c02241
NR
20347-data-disassemble -f basics.c -l 32 -n 3 -- 0
20348^done,asm_insns=[
20349@{address="0x000107bc",func-name="main",offset="0",
20350inst="save %sp, -112, %sp"@},
20351@{address="0x000107c0",func-name="main",offset="4",
20352inst="mov 2, %o0"@},
20353@{address="0x000107c4",func-name="main",offset="8",
20354inst="sethi %hi(0x11800), %o2"@}]
594fe323 20355(gdb)
a2c02241
NR
20356@end smallexample
20357
20358Disassemble 3 instructions from the start of @code{main} in mixed mode:
20359
20360@smallexample
594fe323 20361(gdb)
a2c02241
NR
20362-data-disassemble -f basics.c -l 32 -n 3 -- 1
20363^done,asm_insns=[
20364src_and_asm_line=@{line="31",
20365file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20366 testsuite/gdb.mi/basics.c",line_asm_insn=[
20367@{address="0x000107bc",func-name="main",offset="0",
20368inst="save %sp, -112, %sp"@}]@},
20369src_and_asm_line=@{line="32",
20370file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20371 testsuite/gdb.mi/basics.c",line_asm_insn=[
20372@{address="0x000107c0",func-name="main",offset="4",
20373inst="mov 2, %o0"@},
20374@{address="0x000107c4",func-name="main",offset="8",
20375inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20376(gdb)
a2c02241
NR
20377@end smallexample
20378
20379
20380@subheading The @code{-data-evaluate-expression} Command
20381@findex -data-evaluate-expression
922fbb7b
AC
20382
20383@subsubheading Synopsis
20384
20385@smallexample
a2c02241 20386 -data-evaluate-expression @var{expr}
922fbb7b
AC
20387@end smallexample
20388
a2c02241
NR
20389Evaluate @var{expr} as an expression. The expression could contain an
20390inferior function call. The function call will execute synchronously.
20391If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20392
20393@subsubheading @value{GDBN} Command
20394
a2c02241
NR
20395The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20396@samp{call}. In @code{gdbtk} only, there's a corresponding
20397@samp{gdb_eval} command.
922fbb7b
AC
20398
20399@subsubheading Example
20400
a2c02241
NR
20401In the following example, the numbers that precede the commands are the
20402@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20403Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20404output.
20405
922fbb7b 20406@smallexample
a2c02241
NR
20407211-data-evaluate-expression A
20408211^done,value="1"
594fe323 20409(gdb)
a2c02241
NR
20410311-data-evaluate-expression &A
20411311^done,value="0xefffeb7c"
594fe323 20412(gdb)
a2c02241
NR
20413411-data-evaluate-expression A+3
20414411^done,value="4"
594fe323 20415(gdb)
a2c02241
NR
20416511-data-evaluate-expression "A + 3"
20417511^done,value="4"
594fe323 20418(gdb)
a2c02241 20419@end smallexample
922fbb7b
AC
20420
20421
a2c02241
NR
20422@subheading The @code{-data-list-changed-registers} Command
20423@findex -data-list-changed-registers
922fbb7b
AC
20424
20425@subsubheading Synopsis
20426
20427@smallexample
a2c02241 20428 -data-list-changed-registers
922fbb7b
AC
20429@end smallexample
20430
a2c02241 20431Display a list of the registers that have changed.
922fbb7b
AC
20432
20433@subsubheading @value{GDBN} Command
20434
a2c02241
NR
20435@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20436has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20437
20438@subsubheading Example
922fbb7b 20439
a2c02241 20440On a PPC MBX board:
922fbb7b
AC
20441
20442@smallexample
594fe323 20443(gdb)
a2c02241
NR
20444-exec-continue
20445^running
922fbb7b 20446
594fe323 20447(gdb)
a2c02241
NR
20448*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20449args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20450(gdb)
a2c02241
NR
20451-data-list-changed-registers
20452^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20453"10","11","13","14","15","16","17","18","19","20","21","22","23",
20454"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20455(gdb)
a2c02241 20456@end smallexample
922fbb7b
AC
20457
20458
a2c02241
NR
20459@subheading The @code{-data-list-register-names} Command
20460@findex -data-list-register-names
922fbb7b
AC
20461
20462@subsubheading Synopsis
20463
20464@smallexample
a2c02241 20465 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20466@end smallexample
20467
a2c02241
NR
20468Show a list of register names for the current target. If no arguments
20469are given, it shows a list of the names of all the registers. If
20470integer numbers are given as arguments, it will print a list of the
20471names of the registers corresponding to the arguments. To ensure
20472consistency between a register name and its number, the output list may
20473include empty register names.
922fbb7b
AC
20474
20475@subsubheading @value{GDBN} Command
20476
a2c02241
NR
20477@value{GDBN} does not have a command which corresponds to
20478@samp{-data-list-register-names}. In @code{gdbtk} there is a
20479corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20480
20481@subsubheading Example
922fbb7b 20482
a2c02241
NR
20483For the PPC MBX board:
20484@smallexample
594fe323 20485(gdb)
a2c02241
NR
20486-data-list-register-names
20487^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20488"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20489"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20490"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20491"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20492"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20493"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20494(gdb)
a2c02241
NR
20495-data-list-register-names 1 2 3
20496^done,register-names=["r1","r2","r3"]
594fe323 20497(gdb)
a2c02241 20498@end smallexample
922fbb7b 20499
a2c02241
NR
20500@subheading The @code{-data-list-register-values} Command
20501@findex -data-list-register-values
922fbb7b
AC
20502
20503@subsubheading Synopsis
20504
20505@smallexample
a2c02241 20506 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20507@end smallexample
20508
a2c02241
NR
20509Display the registers' contents. @var{fmt} is the format according to
20510which the registers' contents are to be returned, followed by an optional
20511list of numbers specifying the registers to display. A missing list of
20512numbers indicates that the contents of all the registers must be returned.
20513
20514Allowed formats for @var{fmt} are:
20515
20516@table @code
20517@item x
20518Hexadecimal
20519@item o
20520Octal
20521@item t
20522Binary
20523@item d
20524Decimal
20525@item r
20526Raw
20527@item N
20528Natural
20529@end table
922fbb7b
AC
20530
20531@subsubheading @value{GDBN} Command
20532
a2c02241
NR
20533The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20534all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20535
20536@subsubheading Example
922fbb7b 20537
a2c02241
NR
20538For a PPC MBX board (note: line breaks are for readability only, they
20539don't appear in the actual output):
20540
20541@smallexample
594fe323 20542(gdb)
a2c02241
NR
20543-data-list-register-values r 64 65
20544^done,register-values=[@{number="64",value="0xfe00a300"@},
20545@{number="65",value="0x00029002"@}]
594fe323 20546(gdb)
a2c02241
NR
20547-data-list-register-values x
20548^done,register-values=[@{number="0",value="0xfe0043c8"@},
20549@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20550@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20551@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20552@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20553@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20554@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20555@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20556@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20557@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20558@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20559@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20560@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20561@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20562@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20563@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20564@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20565@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20566@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20567@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20568@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20569@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20570@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20571@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20572@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20573@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20574@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20575@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20576@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20577@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20578@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20579@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20580@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20581@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20582@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20583@{number="69",value="0x20002b03"@}]
594fe323 20584(gdb)
a2c02241 20585@end smallexample
922fbb7b 20586
a2c02241
NR
20587
20588@subheading The @code{-data-read-memory} Command
20589@findex -data-read-memory
922fbb7b
AC
20590
20591@subsubheading Synopsis
20592
20593@smallexample
a2c02241
NR
20594 -data-read-memory [ -o @var{byte-offset} ]
20595 @var{address} @var{word-format} @var{word-size}
20596 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20597@end smallexample
20598
a2c02241
NR
20599@noindent
20600where:
922fbb7b 20601
a2c02241
NR
20602@table @samp
20603@item @var{address}
20604An expression specifying the address of the first memory word to be
20605read. Complex expressions containing embedded white space should be
20606quoted using the C convention.
922fbb7b 20607
a2c02241
NR
20608@item @var{word-format}
20609The format to be used to print the memory words. The notation is the
20610same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20611,Output Formats}).
922fbb7b 20612
a2c02241
NR
20613@item @var{word-size}
20614The size of each memory word in bytes.
922fbb7b 20615
a2c02241
NR
20616@item @var{nr-rows}
20617The number of rows in the output table.
922fbb7b 20618
a2c02241
NR
20619@item @var{nr-cols}
20620The number of columns in the output table.
922fbb7b 20621
a2c02241
NR
20622@item @var{aschar}
20623If present, indicates that each row should include an @sc{ascii} dump. The
20624value of @var{aschar} is used as a padding character when a byte is not a
20625member of the printable @sc{ascii} character set (printable @sc{ascii}
20626characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20627
a2c02241
NR
20628@item @var{byte-offset}
20629An offset to add to the @var{address} before fetching memory.
20630@end table
922fbb7b 20631
a2c02241
NR
20632This command displays memory contents as a table of @var{nr-rows} by
20633@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20634@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20635(returned as @samp{total-bytes}). Should less than the requested number
20636of bytes be returned by the target, the missing words are identified
20637using @samp{N/A}. The number of bytes read from the target is returned
20638in @samp{nr-bytes} and the starting address used to read memory in
20639@samp{addr}.
20640
20641The address of the next/previous row or page is available in
20642@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20643@samp{prev-page}.
922fbb7b
AC
20644
20645@subsubheading @value{GDBN} Command
20646
a2c02241
NR
20647The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20648@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20649
20650@subsubheading Example
32e7087d 20651
a2c02241
NR
20652Read six bytes of memory starting at @code{bytes+6} but then offset by
20653@code{-6} bytes. Format as three rows of two columns. One byte per
20654word. Display each word in hex.
32e7087d
JB
20655
20656@smallexample
594fe323 20657(gdb)
a2c02241
NR
206589-data-read-memory -o -6 -- bytes+6 x 1 3 2
206599^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20660next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20661prev-page="0x0000138a",memory=[
20662@{addr="0x00001390",data=["0x00","0x01"]@},
20663@{addr="0x00001392",data=["0x02","0x03"]@},
20664@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20665(gdb)
32e7087d
JB
20666@end smallexample
20667
a2c02241
NR
20668Read two bytes of memory starting at address @code{shorts + 64} and
20669display as a single word formatted in decimal.
32e7087d 20670
32e7087d 20671@smallexample
594fe323 20672(gdb)
a2c02241
NR
206735-data-read-memory shorts+64 d 2 1 1
206745^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20675next-row="0x00001512",prev-row="0x0000150e",
20676next-page="0x00001512",prev-page="0x0000150e",memory=[
20677@{addr="0x00001510",data=["128"]@}]
594fe323 20678(gdb)
32e7087d
JB
20679@end smallexample
20680
a2c02241
NR
20681Read thirty two bytes of memory starting at @code{bytes+16} and format
20682as eight rows of four columns. Include a string encoding with @samp{x}
20683used as the non-printable character.
922fbb7b
AC
20684
20685@smallexample
594fe323 20686(gdb)
a2c02241
NR
206874-data-read-memory bytes+16 x 1 8 4 x
206884^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20689next-row="0x000013c0",prev-row="0x0000139c",
20690next-page="0x000013c0",prev-page="0x00001380",memory=[
20691@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20692@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20693@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20694@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20695@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20696@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20697@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20698@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20699(gdb)
922fbb7b
AC
20700@end smallexample
20701
a2c02241
NR
20702@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20703@node GDB/MI Tracepoint Commands
20704@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20705
a2c02241 20706The tracepoint commands are not yet implemented.
922fbb7b 20707
a2c02241 20708@c @subheading -trace-actions
922fbb7b 20709
a2c02241 20710@c @subheading -trace-delete
922fbb7b 20711
a2c02241 20712@c @subheading -trace-disable
922fbb7b 20713
a2c02241 20714@c @subheading -trace-dump
922fbb7b 20715
a2c02241 20716@c @subheading -trace-enable
922fbb7b 20717
a2c02241 20718@c @subheading -trace-exists
922fbb7b 20719
a2c02241 20720@c @subheading -trace-find
922fbb7b 20721
a2c02241 20722@c @subheading -trace-frame-number
922fbb7b 20723
a2c02241 20724@c @subheading -trace-info
922fbb7b 20725
a2c02241 20726@c @subheading -trace-insert
922fbb7b 20727
a2c02241 20728@c @subheading -trace-list
922fbb7b 20729
a2c02241 20730@c @subheading -trace-pass-count
922fbb7b 20731
a2c02241 20732@c @subheading -trace-save
922fbb7b 20733
a2c02241 20734@c @subheading -trace-start
922fbb7b 20735
a2c02241 20736@c @subheading -trace-stop
922fbb7b 20737
922fbb7b 20738
a2c02241
NR
20739@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20740@node GDB/MI Symbol Query
20741@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20742
20743
a2c02241
NR
20744@subheading The @code{-symbol-info-address} Command
20745@findex -symbol-info-address
922fbb7b
AC
20746
20747@subsubheading Synopsis
20748
20749@smallexample
a2c02241 20750 -symbol-info-address @var{symbol}
922fbb7b
AC
20751@end smallexample
20752
a2c02241 20753Describe where @var{symbol} is stored.
922fbb7b
AC
20754
20755@subsubheading @value{GDBN} Command
20756
a2c02241 20757The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20758
20759@subsubheading Example
20760N.A.
20761
20762
a2c02241
NR
20763@subheading The @code{-symbol-info-file} Command
20764@findex -symbol-info-file
922fbb7b
AC
20765
20766@subsubheading Synopsis
20767
20768@smallexample
a2c02241 20769 -symbol-info-file
922fbb7b
AC
20770@end smallexample
20771
a2c02241 20772Show the file for the symbol.
922fbb7b 20773
a2c02241 20774@subsubheading @value{GDBN} Command
922fbb7b 20775
a2c02241
NR
20776There's no equivalent @value{GDBN} command. @code{gdbtk} has
20777@samp{gdb_find_file}.
922fbb7b
AC
20778
20779@subsubheading Example
20780N.A.
20781
20782
a2c02241
NR
20783@subheading The @code{-symbol-info-function} Command
20784@findex -symbol-info-function
922fbb7b
AC
20785
20786@subsubheading Synopsis
20787
20788@smallexample
a2c02241 20789 -symbol-info-function
922fbb7b
AC
20790@end smallexample
20791
a2c02241 20792Show which function the symbol lives in.
922fbb7b
AC
20793
20794@subsubheading @value{GDBN} Command
20795
a2c02241 20796@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20797
20798@subsubheading Example
20799N.A.
20800
20801
a2c02241
NR
20802@subheading The @code{-symbol-info-line} Command
20803@findex -symbol-info-line
922fbb7b
AC
20804
20805@subsubheading Synopsis
20806
20807@smallexample
a2c02241 20808 -symbol-info-line
922fbb7b
AC
20809@end smallexample
20810
a2c02241 20811Show the core addresses of the code for a source line.
922fbb7b 20812
a2c02241 20813@subsubheading @value{GDBN} Command
922fbb7b 20814
a2c02241
NR
20815The corresponding @value{GDBN} command is @samp{info line}.
20816@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20817
20818@subsubheading Example
a2c02241 20819N.A.
922fbb7b
AC
20820
20821
a2c02241
NR
20822@subheading The @code{-symbol-info-symbol} Command
20823@findex -symbol-info-symbol
07f31aa6
DJ
20824
20825@subsubheading Synopsis
20826
a2c02241
NR
20827@smallexample
20828 -symbol-info-symbol @var{addr}
20829@end smallexample
07f31aa6 20830
a2c02241 20831Describe what symbol is at location @var{addr}.
07f31aa6 20832
a2c02241 20833@subsubheading @value{GDBN} Command
07f31aa6 20834
a2c02241 20835The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20836
20837@subsubheading Example
a2c02241 20838N.A.
07f31aa6
DJ
20839
20840
a2c02241
NR
20841@subheading The @code{-symbol-list-functions} Command
20842@findex -symbol-list-functions
922fbb7b
AC
20843
20844@subsubheading Synopsis
20845
20846@smallexample
a2c02241 20847 -symbol-list-functions
922fbb7b
AC
20848@end smallexample
20849
a2c02241 20850List the functions in the executable.
922fbb7b
AC
20851
20852@subsubheading @value{GDBN} Command
20853
a2c02241
NR
20854@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20855@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20856
20857@subsubheading Example
a2c02241 20858N.A.
922fbb7b
AC
20859
20860
a2c02241
NR
20861@subheading The @code{-symbol-list-lines} Command
20862@findex -symbol-list-lines
922fbb7b
AC
20863
20864@subsubheading Synopsis
20865
20866@smallexample
a2c02241 20867 -symbol-list-lines @var{filename}
922fbb7b
AC
20868@end smallexample
20869
a2c02241
NR
20870Print the list of lines that contain code and their associated program
20871addresses for the given source filename. The entries are sorted in
20872ascending PC order.
922fbb7b
AC
20873
20874@subsubheading @value{GDBN} Command
20875
a2c02241 20876There is no corresponding @value{GDBN} command.
922fbb7b
AC
20877
20878@subsubheading Example
a2c02241 20879@smallexample
594fe323 20880(gdb)
a2c02241
NR
20881-symbol-list-lines basics.c
20882^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20883(gdb)
a2c02241 20884@end smallexample
922fbb7b
AC
20885
20886
a2c02241
NR
20887@subheading The @code{-symbol-list-types} Command
20888@findex -symbol-list-types
922fbb7b
AC
20889
20890@subsubheading Synopsis
20891
20892@smallexample
a2c02241 20893 -symbol-list-types
922fbb7b
AC
20894@end smallexample
20895
a2c02241 20896List all the type names.
922fbb7b
AC
20897
20898@subsubheading @value{GDBN} Command
20899
a2c02241
NR
20900The corresponding commands are @samp{info types} in @value{GDBN},
20901@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20902
20903@subsubheading Example
20904N.A.
20905
20906
a2c02241
NR
20907@subheading The @code{-symbol-list-variables} Command
20908@findex -symbol-list-variables
922fbb7b
AC
20909
20910@subsubheading Synopsis
20911
20912@smallexample
a2c02241 20913 -symbol-list-variables
922fbb7b
AC
20914@end smallexample
20915
a2c02241 20916List all the global and static variable names.
922fbb7b
AC
20917
20918@subsubheading @value{GDBN} Command
20919
a2c02241 20920@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20921
20922@subsubheading Example
20923N.A.
20924
20925
a2c02241
NR
20926@subheading The @code{-symbol-locate} Command
20927@findex -symbol-locate
922fbb7b
AC
20928
20929@subsubheading Synopsis
20930
20931@smallexample
a2c02241 20932 -symbol-locate
922fbb7b
AC
20933@end smallexample
20934
922fbb7b
AC
20935@subsubheading @value{GDBN} Command
20936
a2c02241 20937@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20938
20939@subsubheading Example
20940N.A.
20941
20942
a2c02241
NR
20943@subheading The @code{-symbol-type} Command
20944@findex -symbol-type
922fbb7b
AC
20945
20946@subsubheading Synopsis
20947
20948@smallexample
a2c02241 20949 -symbol-type @var{variable}
922fbb7b
AC
20950@end smallexample
20951
a2c02241 20952Show type of @var{variable}.
922fbb7b 20953
a2c02241 20954@subsubheading @value{GDBN} Command
922fbb7b 20955
a2c02241
NR
20956The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20957@samp{gdb_obj_variable}.
20958
20959@subsubheading Example
20960N.A.
20961
20962
20963@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20964@node GDB/MI File Commands
20965@section @sc{gdb/mi} File Commands
20966
20967This section describes the GDB/MI commands to specify executable file names
20968and to read in and obtain symbol table information.
20969
20970@subheading The @code{-file-exec-and-symbols} Command
20971@findex -file-exec-and-symbols
20972
20973@subsubheading Synopsis
922fbb7b
AC
20974
20975@smallexample
a2c02241 20976 -file-exec-and-symbols @var{file}
922fbb7b
AC
20977@end smallexample
20978
a2c02241
NR
20979Specify the executable file to be debugged. This file is the one from
20980which the symbol table is also read. If no file is specified, the
20981command clears the executable and symbol information. If breakpoints
20982are set when using this command with no arguments, @value{GDBN} will produce
20983error messages. Otherwise, no output is produced, except a completion
20984notification.
20985
922fbb7b
AC
20986@subsubheading @value{GDBN} Command
20987
a2c02241 20988The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20989
20990@subsubheading Example
20991
20992@smallexample
594fe323 20993(gdb)
a2c02241
NR
20994-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20995^done
594fe323 20996(gdb)
922fbb7b
AC
20997@end smallexample
20998
922fbb7b 20999
a2c02241
NR
21000@subheading The @code{-file-exec-file} Command
21001@findex -file-exec-file
922fbb7b
AC
21002
21003@subsubheading Synopsis
21004
21005@smallexample
a2c02241 21006 -file-exec-file @var{file}
922fbb7b
AC
21007@end smallexample
21008
a2c02241
NR
21009Specify the executable file to be debugged. Unlike
21010@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
21011from this file. If used without argument, @value{GDBN} clears the information
21012about the executable file. No output is produced, except a completion
21013notification.
922fbb7b 21014
a2c02241
NR
21015@subsubheading @value{GDBN} Command
21016
21017The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
21018
21019@subsubheading Example
a2c02241
NR
21020
21021@smallexample
594fe323 21022(gdb)
a2c02241
NR
21023-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21024^done
594fe323 21025(gdb)
a2c02241 21026@end smallexample
922fbb7b
AC
21027
21028
a2c02241
NR
21029@subheading The @code{-file-list-exec-sections} Command
21030@findex -file-list-exec-sections
922fbb7b
AC
21031
21032@subsubheading Synopsis
21033
21034@smallexample
a2c02241 21035 -file-list-exec-sections
922fbb7b
AC
21036@end smallexample
21037
a2c02241
NR
21038List the sections of the current executable file.
21039
922fbb7b
AC
21040@subsubheading @value{GDBN} Command
21041
a2c02241
NR
21042The @value{GDBN} command @samp{info file} shows, among the rest, the same
21043information as this command. @code{gdbtk} has a corresponding command
21044@samp{gdb_load_info}.
922fbb7b
AC
21045
21046@subsubheading Example
21047N.A.
21048
21049
a2c02241
NR
21050@subheading The @code{-file-list-exec-source-file} Command
21051@findex -file-list-exec-source-file
922fbb7b
AC
21052
21053@subsubheading Synopsis
21054
21055@smallexample
a2c02241 21056 -file-list-exec-source-file
922fbb7b
AC
21057@end smallexample
21058
a2c02241 21059List the line number, the current source file, and the absolute path
44288b44
NR
21060to the current source file for the current executable. The macro
21061information field has a value of @samp{1} or @samp{0} depending on
21062whether or not the file includes preprocessor macro information.
922fbb7b
AC
21063
21064@subsubheading @value{GDBN} Command
21065
a2c02241 21066The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
21067
21068@subsubheading Example
21069
922fbb7b 21070@smallexample
594fe323 21071(gdb)
a2c02241 21072123-file-list-exec-source-file
44288b44 21073123^done,line="1",file="foo.c",fullname="/home/bar/foo.c,macro-info="1"
594fe323 21074(gdb)
922fbb7b
AC
21075@end smallexample
21076
21077
a2c02241
NR
21078@subheading The @code{-file-list-exec-source-files} Command
21079@findex -file-list-exec-source-files
922fbb7b
AC
21080
21081@subsubheading Synopsis
21082
21083@smallexample
a2c02241 21084 -file-list-exec-source-files
922fbb7b
AC
21085@end smallexample
21086
a2c02241
NR
21087List the source files for the current executable.
21088
3f94c067
BW
21089It will always output the filename, but only when @value{GDBN} can find
21090the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
21091
21092@subsubheading @value{GDBN} Command
21093
a2c02241
NR
21094The @value{GDBN} equivalent is @samp{info sources}.
21095@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
21096
21097@subsubheading Example
922fbb7b 21098@smallexample
594fe323 21099(gdb)
a2c02241
NR
21100-file-list-exec-source-files
21101^done,files=[
21102@{file=foo.c,fullname=/home/foo.c@},
21103@{file=/home/bar.c,fullname=/home/bar.c@},
21104@{file=gdb_could_not_find_fullpath.c@}]
594fe323 21105(gdb)
922fbb7b
AC
21106@end smallexample
21107
a2c02241
NR
21108@subheading The @code{-file-list-shared-libraries} Command
21109@findex -file-list-shared-libraries
922fbb7b 21110
a2c02241 21111@subsubheading Synopsis
922fbb7b 21112
a2c02241
NR
21113@smallexample
21114 -file-list-shared-libraries
21115@end smallexample
922fbb7b 21116
a2c02241 21117List the shared libraries in the program.
922fbb7b 21118
a2c02241 21119@subsubheading @value{GDBN} Command
922fbb7b 21120
a2c02241 21121The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 21122
a2c02241
NR
21123@subsubheading Example
21124N.A.
922fbb7b
AC
21125
21126
a2c02241
NR
21127@subheading The @code{-file-list-symbol-files} Command
21128@findex -file-list-symbol-files
922fbb7b 21129
a2c02241 21130@subsubheading Synopsis
922fbb7b 21131
a2c02241
NR
21132@smallexample
21133 -file-list-symbol-files
21134@end smallexample
922fbb7b 21135
a2c02241 21136List symbol files.
922fbb7b 21137
a2c02241 21138@subsubheading @value{GDBN} Command
922fbb7b 21139
a2c02241 21140The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 21141
a2c02241
NR
21142@subsubheading Example
21143N.A.
922fbb7b 21144
922fbb7b 21145
a2c02241
NR
21146@subheading The @code{-file-symbol-file} Command
21147@findex -file-symbol-file
922fbb7b 21148
a2c02241 21149@subsubheading Synopsis
922fbb7b 21150
a2c02241
NR
21151@smallexample
21152 -file-symbol-file @var{file}
21153@end smallexample
922fbb7b 21154
a2c02241
NR
21155Read symbol table info from the specified @var{file} argument. When
21156used without arguments, clears @value{GDBN}'s symbol table info. No output is
21157produced, except for a completion notification.
922fbb7b 21158
a2c02241 21159@subsubheading @value{GDBN} Command
922fbb7b 21160
a2c02241 21161The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 21162
a2c02241 21163@subsubheading Example
922fbb7b 21164
a2c02241 21165@smallexample
594fe323 21166(gdb)
a2c02241
NR
21167-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
21168^done
594fe323 21169(gdb)
a2c02241 21170@end smallexample
922fbb7b 21171
a2c02241 21172@ignore
a2c02241
NR
21173@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21174@node GDB/MI Memory Overlay Commands
21175@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 21176
a2c02241 21177The memory overlay commands are not implemented.
922fbb7b 21178
a2c02241 21179@c @subheading -overlay-auto
922fbb7b 21180
a2c02241 21181@c @subheading -overlay-list-mapping-state
922fbb7b 21182
a2c02241 21183@c @subheading -overlay-list-overlays
922fbb7b 21184
a2c02241 21185@c @subheading -overlay-map
922fbb7b 21186
a2c02241 21187@c @subheading -overlay-off
922fbb7b 21188
a2c02241 21189@c @subheading -overlay-on
922fbb7b 21190
a2c02241 21191@c @subheading -overlay-unmap
922fbb7b 21192
a2c02241
NR
21193@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21194@node GDB/MI Signal Handling Commands
21195@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 21196
a2c02241 21197Signal handling commands are not implemented.
922fbb7b 21198
a2c02241 21199@c @subheading -signal-handle
922fbb7b 21200
a2c02241 21201@c @subheading -signal-list-handle-actions
922fbb7b 21202
a2c02241
NR
21203@c @subheading -signal-list-signal-types
21204@end ignore
922fbb7b 21205
922fbb7b 21206
a2c02241
NR
21207@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21208@node GDB/MI Target Manipulation
21209@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
21210
21211
a2c02241
NR
21212@subheading The @code{-target-attach} Command
21213@findex -target-attach
922fbb7b
AC
21214
21215@subsubheading Synopsis
21216
21217@smallexample
a2c02241 21218 -target-attach @var{pid} | @var{file}
922fbb7b
AC
21219@end smallexample
21220
a2c02241 21221Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 21222
79a6e687 21223@subsubheading @value{GDBN} Command
922fbb7b 21224
a2c02241 21225The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 21226
a2c02241
NR
21227@subsubheading Example
21228N.A.
922fbb7b 21229
a2c02241
NR
21230
21231@subheading The @code{-target-compare-sections} Command
21232@findex -target-compare-sections
922fbb7b
AC
21233
21234@subsubheading Synopsis
21235
21236@smallexample
a2c02241 21237 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21238@end smallexample
21239
a2c02241
NR
21240Compare data of section @var{section} on target to the exec file.
21241Without the argument, all sections are compared.
922fbb7b 21242
a2c02241 21243@subsubheading @value{GDBN} Command
922fbb7b 21244
a2c02241 21245The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21246
a2c02241
NR
21247@subsubheading Example
21248N.A.
21249
21250
21251@subheading The @code{-target-detach} Command
21252@findex -target-detach
922fbb7b
AC
21253
21254@subsubheading Synopsis
21255
21256@smallexample
a2c02241 21257 -target-detach
922fbb7b
AC
21258@end smallexample
21259
a2c02241
NR
21260Detach from the remote target which normally resumes its execution.
21261There's no output.
21262
79a6e687 21263@subsubheading @value{GDBN} Command
a2c02241
NR
21264
21265The corresponding @value{GDBN} command is @samp{detach}.
21266
21267@subsubheading Example
922fbb7b
AC
21268
21269@smallexample
594fe323 21270(gdb)
a2c02241
NR
21271-target-detach
21272^done
594fe323 21273(gdb)
922fbb7b
AC
21274@end smallexample
21275
21276
a2c02241
NR
21277@subheading The @code{-target-disconnect} Command
21278@findex -target-disconnect
922fbb7b
AC
21279
21280@subsubheading Synopsis
21281
123dc839 21282@smallexample
a2c02241 21283 -target-disconnect
123dc839 21284@end smallexample
922fbb7b 21285
a2c02241
NR
21286Disconnect from the remote target. There's no output and the target is
21287generally not resumed.
21288
79a6e687 21289@subsubheading @value{GDBN} Command
a2c02241
NR
21290
21291The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21292
21293@subsubheading Example
922fbb7b
AC
21294
21295@smallexample
594fe323 21296(gdb)
a2c02241
NR
21297-target-disconnect
21298^done
594fe323 21299(gdb)
922fbb7b
AC
21300@end smallexample
21301
21302
a2c02241
NR
21303@subheading The @code{-target-download} Command
21304@findex -target-download
922fbb7b
AC
21305
21306@subsubheading Synopsis
21307
21308@smallexample
a2c02241 21309 -target-download
922fbb7b
AC
21310@end smallexample
21311
a2c02241
NR
21312Loads the executable onto the remote target.
21313It prints out an update message every half second, which includes the fields:
21314
21315@table @samp
21316@item section
21317The name of the section.
21318@item section-sent
21319The size of what has been sent so far for that section.
21320@item section-size
21321The size of the section.
21322@item total-sent
21323The total size of what was sent so far (the current and the previous sections).
21324@item total-size
21325The size of the overall executable to download.
21326@end table
21327
21328@noindent
21329Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21330@sc{gdb/mi} Output Syntax}).
21331
21332In addition, it prints the name and size of the sections, as they are
21333downloaded. These messages include the following fields:
21334
21335@table @samp
21336@item section
21337The name of the section.
21338@item section-size
21339The size of the section.
21340@item total-size
21341The size of the overall executable to download.
21342@end table
21343
21344@noindent
21345At the end, a summary is printed.
21346
21347@subsubheading @value{GDBN} Command
21348
21349The corresponding @value{GDBN} command is @samp{load}.
21350
21351@subsubheading Example
21352
21353Note: each status message appears on a single line. Here the messages
21354have been broken down so that they can fit onto a page.
922fbb7b
AC
21355
21356@smallexample
594fe323 21357(gdb)
a2c02241
NR
21358-target-download
21359+download,@{section=".text",section-size="6668",total-size="9880"@}
21360+download,@{section=".text",section-sent="512",section-size="6668",
21361total-sent="512",total-size="9880"@}
21362+download,@{section=".text",section-sent="1024",section-size="6668",
21363total-sent="1024",total-size="9880"@}
21364+download,@{section=".text",section-sent="1536",section-size="6668",
21365total-sent="1536",total-size="9880"@}
21366+download,@{section=".text",section-sent="2048",section-size="6668",
21367total-sent="2048",total-size="9880"@}
21368+download,@{section=".text",section-sent="2560",section-size="6668",
21369total-sent="2560",total-size="9880"@}
21370+download,@{section=".text",section-sent="3072",section-size="6668",
21371total-sent="3072",total-size="9880"@}
21372+download,@{section=".text",section-sent="3584",section-size="6668",
21373total-sent="3584",total-size="9880"@}
21374+download,@{section=".text",section-sent="4096",section-size="6668",
21375total-sent="4096",total-size="9880"@}
21376+download,@{section=".text",section-sent="4608",section-size="6668",
21377total-sent="4608",total-size="9880"@}
21378+download,@{section=".text",section-sent="5120",section-size="6668",
21379total-sent="5120",total-size="9880"@}
21380+download,@{section=".text",section-sent="5632",section-size="6668",
21381total-sent="5632",total-size="9880"@}
21382+download,@{section=".text",section-sent="6144",section-size="6668",
21383total-sent="6144",total-size="9880"@}
21384+download,@{section=".text",section-sent="6656",section-size="6668",
21385total-sent="6656",total-size="9880"@}
21386+download,@{section=".init",section-size="28",total-size="9880"@}
21387+download,@{section=".fini",section-size="28",total-size="9880"@}
21388+download,@{section=".data",section-size="3156",total-size="9880"@}
21389+download,@{section=".data",section-sent="512",section-size="3156",
21390total-sent="7236",total-size="9880"@}
21391+download,@{section=".data",section-sent="1024",section-size="3156",
21392total-sent="7748",total-size="9880"@}
21393+download,@{section=".data",section-sent="1536",section-size="3156",
21394total-sent="8260",total-size="9880"@}
21395+download,@{section=".data",section-sent="2048",section-size="3156",
21396total-sent="8772",total-size="9880"@}
21397+download,@{section=".data",section-sent="2560",section-size="3156",
21398total-sent="9284",total-size="9880"@}
21399+download,@{section=".data",section-sent="3072",section-size="3156",
21400total-sent="9796",total-size="9880"@}
21401^done,address="0x10004",load-size="9880",transfer-rate="6586",
21402write-rate="429"
594fe323 21403(gdb)
922fbb7b
AC
21404@end smallexample
21405
21406
a2c02241
NR
21407@subheading The @code{-target-exec-status} Command
21408@findex -target-exec-status
922fbb7b
AC
21409
21410@subsubheading Synopsis
21411
21412@smallexample
a2c02241 21413 -target-exec-status
922fbb7b
AC
21414@end smallexample
21415
a2c02241
NR
21416Provide information on the state of the target (whether it is running or
21417not, for instance).
922fbb7b 21418
a2c02241 21419@subsubheading @value{GDBN} Command
922fbb7b 21420
a2c02241
NR
21421There's no equivalent @value{GDBN} command.
21422
21423@subsubheading Example
21424N.A.
922fbb7b 21425
a2c02241
NR
21426
21427@subheading The @code{-target-list-available-targets} Command
21428@findex -target-list-available-targets
922fbb7b
AC
21429
21430@subsubheading Synopsis
21431
21432@smallexample
a2c02241 21433 -target-list-available-targets
922fbb7b
AC
21434@end smallexample
21435
a2c02241 21436List the possible targets to connect to.
922fbb7b 21437
a2c02241 21438@subsubheading @value{GDBN} Command
922fbb7b 21439
a2c02241 21440The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21441
a2c02241
NR
21442@subsubheading Example
21443N.A.
21444
21445
21446@subheading The @code{-target-list-current-targets} Command
21447@findex -target-list-current-targets
922fbb7b
AC
21448
21449@subsubheading Synopsis
21450
21451@smallexample
a2c02241 21452 -target-list-current-targets
922fbb7b
AC
21453@end smallexample
21454
a2c02241 21455Describe the current target.
922fbb7b 21456
a2c02241 21457@subsubheading @value{GDBN} Command
922fbb7b 21458
a2c02241
NR
21459The corresponding information is printed by @samp{info file} (among
21460other things).
922fbb7b 21461
a2c02241
NR
21462@subsubheading Example
21463N.A.
21464
21465
21466@subheading The @code{-target-list-parameters} Command
21467@findex -target-list-parameters
922fbb7b
AC
21468
21469@subsubheading Synopsis
21470
21471@smallexample
a2c02241 21472 -target-list-parameters
922fbb7b
AC
21473@end smallexample
21474
a2c02241
NR
21475@c ????
21476
21477@subsubheading @value{GDBN} Command
21478
21479No equivalent.
922fbb7b
AC
21480
21481@subsubheading Example
a2c02241
NR
21482N.A.
21483
21484
21485@subheading The @code{-target-select} Command
21486@findex -target-select
21487
21488@subsubheading Synopsis
922fbb7b
AC
21489
21490@smallexample
a2c02241 21491 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21492@end smallexample
21493
a2c02241 21494Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21495
a2c02241
NR
21496@table @samp
21497@item @var{type}
21498The type of target, for instance @samp{async}, @samp{remote}, etc.
21499@item @var{parameters}
21500Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21501Commands for Managing Targets}, for more details.
a2c02241
NR
21502@end table
21503
21504The output is a connection notification, followed by the address at
21505which the target program is, in the following form:
922fbb7b
AC
21506
21507@smallexample
a2c02241
NR
21508^connected,addr="@var{address}",func="@var{function name}",
21509 args=[@var{arg list}]
922fbb7b
AC
21510@end smallexample
21511
a2c02241
NR
21512@subsubheading @value{GDBN} Command
21513
21514The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21515
21516@subsubheading Example
922fbb7b 21517
265eeb58 21518@smallexample
594fe323 21519(gdb)
a2c02241
NR
21520-target-select async /dev/ttya
21521^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21522(gdb)
265eeb58 21523@end smallexample
ef21caaf 21524
a6b151f1
DJ
21525@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21526@node GDB/MI File Transfer Commands
21527@section @sc{gdb/mi} File Transfer Commands
21528
21529
21530@subheading The @code{-target-file-put} Command
21531@findex -target-file-put
21532
21533@subsubheading Synopsis
21534
21535@smallexample
21536 -target-file-put @var{hostfile} @var{targetfile}
21537@end smallexample
21538
21539Copy file @var{hostfile} from the host system (the machine running
21540@value{GDBN}) to @var{targetfile} on the target system.
21541
21542@subsubheading @value{GDBN} Command
21543
21544The corresponding @value{GDBN} command is @samp{remote put}.
21545
21546@subsubheading Example
21547
21548@smallexample
21549(gdb)
21550-target-file-put localfile remotefile
21551^done
21552(gdb)
21553@end smallexample
21554
21555
21556@subheading The @code{-target-file-put} Command
21557@findex -target-file-get
21558
21559@subsubheading Synopsis
21560
21561@smallexample
21562 -target-file-get @var{targetfile} @var{hostfile}
21563@end smallexample
21564
21565Copy file @var{targetfile} from the target system to @var{hostfile}
21566on the host system.
21567
21568@subsubheading @value{GDBN} Command
21569
21570The corresponding @value{GDBN} command is @samp{remote get}.
21571
21572@subsubheading Example
21573
21574@smallexample
21575(gdb)
21576-target-file-get remotefile localfile
21577^done
21578(gdb)
21579@end smallexample
21580
21581
21582@subheading The @code{-target-file-delete} Command
21583@findex -target-file-delete
21584
21585@subsubheading Synopsis
21586
21587@smallexample
21588 -target-file-delete @var{targetfile}
21589@end smallexample
21590
21591Delete @var{targetfile} from the target system.
21592
21593@subsubheading @value{GDBN} Command
21594
21595The corresponding @value{GDBN} command is @samp{remote delete}.
21596
21597@subsubheading Example
21598
21599@smallexample
21600(gdb)
21601-target-file-delete remotefile
21602^done
21603(gdb)
21604@end smallexample
21605
21606
ef21caaf
NR
21607@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21608@node GDB/MI Miscellaneous Commands
21609@section Miscellaneous @sc{gdb/mi} Commands
21610
21611@c @subheading -gdb-complete
21612
21613@subheading The @code{-gdb-exit} Command
21614@findex -gdb-exit
21615
21616@subsubheading Synopsis
21617
21618@smallexample
21619 -gdb-exit
21620@end smallexample
21621
21622Exit @value{GDBN} immediately.
21623
21624@subsubheading @value{GDBN} Command
21625
21626Approximately corresponds to @samp{quit}.
21627
21628@subsubheading Example
21629
21630@smallexample
594fe323 21631(gdb)
ef21caaf
NR
21632-gdb-exit
21633^exit
21634@end smallexample
21635
a2c02241
NR
21636
21637@subheading The @code{-exec-abort} Command
21638@findex -exec-abort
21639
21640@subsubheading Synopsis
21641
21642@smallexample
21643 -exec-abort
21644@end smallexample
21645
21646Kill the inferior running program.
21647
21648@subsubheading @value{GDBN} Command
21649
21650The corresponding @value{GDBN} command is @samp{kill}.
21651
21652@subsubheading Example
21653N.A.
21654
21655
ef21caaf
NR
21656@subheading The @code{-gdb-set} Command
21657@findex -gdb-set
21658
21659@subsubheading Synopsis
21660
21661@smallexample
21662 -gdb-set
21663@end smallexample
21664
21665Set an internal @value{GDBN} variable.
21666@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21667
21668@subsubheading @value{GDBN} Command
21669
21670The corresponding @value{GDBN} command is @samp{set}.
21671
21672@subsubheading Example
21673
21674@smallexample
594fe323 21675(gdb)
ef21caaf
NR
21676-gdb-set $foo=3
21677^done
594fe323 21678(gdb)
ef21caaf
NR
21679@end smallexample
21680
21681
21682@subheading The @code{-gdb-show} Command
21683@findex -gdb-show
21684
21685@subsubheading Synopsis
21686
21687@smallexample
21688 -gdb-show
21689@end smallexample
21690
21691Show the current value of a @value{GDBN} variable.
21692
79a6e687 21693@subsubheading @value{GDBN} Command
ef21caaf
NR
21694
21695The corresponding @value{GDBN} command is @samp{show}.
21696
21697@subsubheading Example
21698
21699@smallexample
594fe323 21700(gdb)
ef21caaf
NR
21701-gdb-show annotate
21702^done,value="0"
594fe323 21703(gdb)
ef21caaf
NR
21704@end smallexample
21705
21706@c @subheading -gdb-source
21707
21708
21709@subheading The @code{-gdb-version} Command
21710@findex -gdb-version
21711
21712@subsubheading Synopsis
21713
21714@smallexample
21715 -gdb-version
21716@end smallexample
21717
21718Show version information for @value{GDBN}. Used mostly in testing.
21719
21720@subsubheading @value{GDBN} Command
21721
21722The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21723default shows this information when you start an interactive session.
21724
21725@subsubheading Example
21726
21727@c This example modifies the actual output from GDB to avoid overfull
21728@c box in TeX.
21729@smallexample
594fe323 21730(gdb)
ef21caaf
NR
21731-gdb-version
21732~GNU gdb 5.2.1
21733~Copyright 2000 Free Software Foundation, Inc.
21734~GDB is free software, covered by the GNU General Public License, and
21735~you are welcome to change it and/or distribute copies of it under
21736~ certain conditions.
21737~Type "show copying" to see the conditions.
21738~There is absolutely no warranty for GDB. Type "show warranty" for
21739~ details.
21740~This GDB was configured as
21741 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21742^done
594fe323 21743(gdb)
ef21caaf
NR
21744@end smallexample
21745
084344da
VP
21746@subheading The @code{-list-features} Command
21747@findex -list-features
21748
21749Returns a list of particular features of the MI protocol that
21750this version of gdb implements. A feature can be a command,
21751or a new field in an output of some command, or even an
21752important bugfix. While a frontend can sometimes detect presence
21753of a feature at runtime, it is easier to perform detection at debugger
21754startup.
21755
21756The command returns a list of strings, with each string naming an
21757available feature. Each returned string is just a name, it does not
21758have any internal structure. The list of possible feature names
21759is given below.
21760
21761Example output:
21762
21763@smallexample
21764(gdb) -list-features
21765^done,result=["feature1","feature2"]
21766@end smallexample
21767
21768The current list of features is:
21769
21770@itemize @minus
21771@item
21772@samp{frozen-varobjs}---indicates presence of the
21773@code{-var-set-frozen} command, as well as possible presense of the
21774@code{frozen} field in the output of @code{-varobj-create}.
8b4ed427
VP
21775@item
21776@samp{pending-breakpoints}---indicates presence of the @code{-f}
21777option to the @code{-break-insert} command.
21778
084344da
VP
21779@end itemize
21780
ef21caaf
NR
21781@subheading The @code{-interpreter-exec} Command
21782@findex -interpreter-exec
21783
21784@subheading Synopsis
21785
21786@smallexample
21787-interpreter-exec @var{interpreter} @var{command}
21788@end smallexample
a2c02241 21789@anchor{-interpreter-exec}
ef21caaf
NR
21790
21791Execute the specified @var{command} in the given @var{interpreter}.
21792
21793@subheading @value{GDBN} Command
21794
21795The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21796
21797@subheading Example
21798
21799@smallexample
594fe323 21800(gdb)
ef21caaf
NR
21801-interpreter-exec console "break main"
21802&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21803&"During symbol reading, bad structure-type format.\n"
21804~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21805^done
594fe323 21806(gdb)
ef21caaf
NR
21807@end smallexample
21808
21809@subheading The @code{-inferior-tty-set} Command
21810@findex -inferior-tty-set
21811
21812@subheading Synopsis
21813
21814@smallexample
21815-inferior-tty-set /dev/pts/1
21816@end smallexample
21817
21818Set terminal for future runs of the program being debugged.
21819
21820@subheading @value{GDBN} Command
21821
21822The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21823
21824@subheading Example
21825
21826@smallexample
594fe323 21827(gdb)
ef21caaf
NR
21828-inferior-tty-set /dev/pts/1
21829^done
594fe323 21830(gdb)
ef21caaf
NR
21831@end smallexample
21832
21833@subheading The @code{-inferior-tty-show} Command
21834@findex -inferior-tty-show
21835
21836@subheading Synopsis
21837
21838@smallexample
21839-inferior-tty-show
21840@end smallexample
21841
21842Show terminal for future runs of program being debugged.
21843
21844@subheading @value{GDBN} Command
21845
21846The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21847
21848@subheading Example
21849
21850@smallexample
594fe323 21851(gdb)
ef21caaf
NR
21852-inferior-tty-set /dev/pts/1
21853^done
594fe323 21854(gdb)
ef21caaf
NR
21855-inferior-tty-show
21856^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21857(gdb)
ef21caaf 21858@end smallexample
922fbb7b 21859
a4eefcd8
NR
21860@subheading The @code{-enable-timings} Command
21861@findex -enable-timings
21862
21863@subheading Synopsis
21864
21865@smallexample
21866-enable-timings [yes | no]
21867@end smallexample
21868
21869Toggle the printing of the wallclock, user and system times for an MI
21870command as a field in its output. This command is to help frontend
21871developers optimize the performance of their code. No argument is
21872equivalent to @samp{yes}.
21873
21874@subheading @value{GDBN} Command
21875
21876No equivalent.
21877
21878@subheading Example
21879
21880@smallexample
21881(gdb)
21882-enable-timings
21883^done
21884(gdb)
21885-break-insert main
21886^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21887addr="0x080484ed",func="main",file="myprog.c",
21888fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21889time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21890(gdb)
21891-enable-timings no
21892^done
21893(gdb)
21894-exec-run
21895^running
21896(gdb)
21897*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21898frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21899@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21900fullname="/home/nickrob/myprog.c",line="73"@}
21901(gdb)
21902@end smallexample
21903
922fbb7b
AC
21904@node Annotations
21905@chapter @value{GDBN} Annotations
21906
086432e2
AC
21907This chapter describes annotations in @value{GDBN}. Annotations were
21908designed to interface @value{GDBN} to graphical user interfaces or other
21909similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21910relatively high level.
21911
d3e8051b 21912The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21913(@pxref{GDB/MI}).
21914
922fbb7b
AC
21915@ignore
21916This is Edition @value{EDITION}, @value{DATE}.
21917@end ignore
21918
21919@menu
21920* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21921* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21922* Prompting:: Annotations marking @value{GDBN}'s need for input.
21923* Errors:: Annotations for error messages.
922fbb7b
AC
21924* Invalidation:: Some annotations describe things now invalid.
21925* Annotations for Running::
21926 Whether the program is running, how it stopped, etc.
21927* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21928@end menu
21929
21930@node Annotations Overview
21931@section What is an Annotation?
21932@cindex annotations
21933
922fbb7b
AC
21934Annotations start with a newline character, two @samp{control-z}
21935characters, and the name of the annotation. If there is no additional
21936information associated with this annotation, the name of the annotation
21937is followed immediately by a newline. If there is additional
21938information, the name of the annotation is followed by a space, the
21939additional information, and a newline. The additional information
21940cannot contain newline characters.
21941
21942Any output not beginning with a newline and two @samp{control-z}
21943characters denotes literal output from @value{GDBN}. Currently there is
21944no need for @value{GDBN} to output a newline followed by two
21945@samp{control-z} characters, but if there was such a need, the
21946annotations could be extended with an @samp{escape} annotation which
21947means those three characters as output.
21948
086432e2
AC
21949The annotation @var{level}, which is specified using the
21950@option{--annotate} command line option (@pxref{Mode Options}), controls
21951how much information @value{GDBN} prints together with its prompt,
21952values of expressions, source lines, and other types of output. Level 0
d3e8051b 21953is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21954subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21955for programs that control @value{GDBN}, and level 2 annotations have
21956been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21957Interface, annotate, GDB's Obsolete Annotations}).
21958
21959@table @code
21960@kindex set annotate
21961@item set annotate @var{level}
e09f16f9 21962The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21963annotations to the specified @var{level}.
9c16f35a
EZ
21964
21965@item show annotate
21966@kindex show annotate
21967Show the current annotation level.
09d4efe1
EZ
21968@end table
21969
21970This chapter describes level 3 annotations.
086432e2 21971
922fbb7b
AC
21972A simple example of starting up @value{GDBN} with annotations is:
21973
21974@smallexample
086432e2
AC
21975$ @kbd{gdb --annotate=3}
21976GNU gdb 6.0
21977Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21978GDB is free software, covered by the GNU General Public License,
21979and you are welcome to change it and/or distribute copies of it
21980under certain conditions.
21981Type "show copying" to see the conditions.
21982There is absolutely no warranty for GDB. Type "show warranty"
21983for details.
086432e2 21984This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21985
21986^Z^Zpre-prompt
f7dc1244 21987(@value{GDBP})
922fbb7b 21988^Z^Zprompt
086432e2 21989@kbd{quit}
922fbb7b
AC
21990
21991^Z^Zpost-prompt
b383017d 21992$
922fbb7b
AC
21993@end smallexample
21994
21995Here @samp{quit} is input to @value{GDBN}; the rest is output from
21996@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21997denotes a @samp{control-z} character) are annotations; the rest is
21998output from @value{GDBN}.
21999
9e6c4bd5
NR
22000@node Server Prefix
22001@section The Server Prefix
22002@cindex server prefix
22003
22004If you prefix a command with @samp{server } then it will not affect
22005the command history, nor will it affect @value{GDBN}'s notion of which
22006command to repeat if @key{RET} is pressed on a line by itself. This
22007means that commands can be run behind a user's back by a front-end in
22008a transparent manner.
22009
22010The server prefix does not affect the recording of values into the value
22011history; to print a value without recording it into the value history,
22012use the @code{output} command instead of the @code{print} command.
22013
922fbb7b
AC
22014@node Prompting
22015@section Annotation for @value{GDBN} Input
22016
22017@cindex annotations for prompts
22018When @value{GDBN} prompts for input, it annotates this fact so it is possible
22019to know when to send output, when the output from a given command is
22020over, etc.
22021
22022Different kinds of input each have a different @dfn{input type}. Each
22023input type has three annotations: a @code{pre-} annotation, which
22024denotes the beginning of any prompt which is being output, a plain
22025annotation, which denotes the end of the prompt, and then a @code{post-}
22026annotation which denotes the end of any echo which may (or may not) be
22027associated with the input. For example, the @code{prompt} input type
22028features the following annotations:
22029
22030@smallexample
22031^Z^Zpre-prompt
22032^Z^Zprompt
22033^Z^Zpost-prompt
22034@end smallexample
22035
22036The input types are
22037
22038@table @code
e5ac9b53
EZ
22039@findex pre-prompt annotation
22040@findex prompt annotation
22041@findex post-prompt annotation
922fbb7b
AC
22042@item prompt
22043When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
22044
e5ac9b53
EZ
22045@findex pre-commands annotation
22046@findex commands annotation
22047@findex post-commands annotation
922fbb7b
AC
22048@item commands
22049When @value{GDBN} prompts for a set of commands, like in the @code{commands}
22050command. The annotations are repeated for each command which is input.
22051
e5ac9b53
EZ
22052@findex pre-overload-choice annotation
22053@findex overload-choice annotation
22054@findex post-overload-choice annotation
922fbb7b
AC
22055@item overload-choice
22056When @value{GDBN} wants the user to select between various overloaded functions.
22057
e5ac9b53
EZ
22058@findex pre-query annotation
22059@findex query annotation
22060@findex post-query annotation
922fbb7b
AC
22061@item query
22062When @value{GDBN} wants the user to confirm a potentially dangerous operation.
22063
e5ac9b53
EZ
22064@findex pre-prompt-for-continue annotation
22065@findex prompt-for-continue annotation
22066@findex post-prompt-for-continue annotation
922fbb7b
AC
22067@item prompt-for-continue
22068When @value{GDBN} is asking the user to press return to continue. Note: Don't
22069expect this to work well; instead use @code{set height 0} to disable
22070prompting. This is because the counting of lines is buggy in the
22071presence of annotations.
22072@end table
22073
22074@node Errors
22075@section Errors
22076@cindex annotations for errors, warnings and interrupts
22077
e5ac9b53 22078@findex quit annotation
922fbb7b
AC
22079@smallexample
22080^Z^Zquit
22081@end smallexample
22082
22083This annotation occurs right before @value{GDBN} responds to an interrupt.
22084
e5ac9b53 22085@findex error annotation
922fbb7b
AC
22086@smallexample
22087^Z^Zerror
22088@end smallexample
22089
22090This annotation occurs right before @value{GDBN} responds to an error.
22091
22092Quit and error annotations indicate that any annotations which @value{GDBN} was
22093in the middle of may end abruptly. For example, if a
22094@code{value-history-begin} annotation is followed by a @code{error}, one
22095cannot expect to receive the matching @code{value-history-end}. One
22096cannot expect not to receive it either, however; an error annotation
22097does not necessarily mean that @value{GDBN} is immediately returning all the way
22098to the top level.
22099
e5ac9b53 22100@findex error-begin annotation
922fbb7b
AC
22101A quit or error annotation may be preceded by
22102
22103@smallexample
22104^Z^Zerror-begin
22105@end smallexample
22106
22107Any output between that and the quit or error annotation is the error
22108message.
22109
22110Warning messages are not yet annotated.
22111@c If we want to change that, need to fix warning(), type_error(),
22112@c range_error(), and possibly other places.
22113
922fbb7b
AC
22114@node Invalidation
22115@section Invalidation Notices
22116
22117@cindex annotations for invalidation messages
22118The following annotations say that certain pieces of state may have
22119changed.
22120
22121@table @code
e5ac9b53 22122@findex frames-invalid annotation
922fbb7b
AC
22123@item ^Z^Zframes-invalid
22124
22125The frames (for example, output from the @code{backtrace} command) may
22126have changed.
22127
e5ac9b53 22128@findex breakpoints-invalid annotation
922fbb7b
AC
22129@item ^Z^Zbreakpoints-invalid
22130
22131The breakpoints may have changed. For example, the user just added or
22132deleted a breakpoint.
22133@end table
22134
22135@node Annotations for Running
22136@section Running the Program
22137@cindex annotations for running programs
22138
e5ac9b53
EZ
22139@findex starting annotation
22140@findex stopping annotation
922fbb7b 22141When the program starts executing due to a @value{GDBN} command such as
b383017d 22142@code{step} or @code{continue},
922fbb7b
AC
22143
22144@smallexample
22145^Z^Zstarting
22146@end smallexample
22147
b383017d 22148is output. When the program stops,
922fbb7b
AC
22149
22150@smallexample
22151^Z^Zstopped
22152@end smallexample
22153
22154is output. Before the @code{stopped} annotation, a variety of
22155annotations describe how the program stopped.
22156
22157@table @code
e5ac9b53 22158@findex exited annotation
922fbb7b
AC
22159@item ^Z^Zexited @var{exit-status}
22160The program exited, and @var{exit-status} is the exit status (zero for
22161successful exit, otherwise nonzero).
22162
e5ac9b53
EZ
22163@findex signalled annotation
22164@findex signal-name annotation
22165@findex signal-name-end annotation
22166@findex signal-string annotation
22167@findex signal-string-end annotation
922fbb7b
AC
22168@item ^Z^Zsignalled
22169The program exited with a signal. After the @code{^Z^Zsignalled}, the
22170annotation continues:
22171
22172@smallexample
22173@var{intro-text}
22174^Z^Zsignal-name
22175@var{name}
22176^Z^Zsignal-name-end
22177@var{middle-text}
22178^Z^Zsignal-string
22179@var{string}
22180^Z^Zsignal-string-end
22181@var{end-text}
22182@end smallexample
22183
22184@noindent
22185where @var{name} is the name of the signal, such as @code{SIGILL} or
22186@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
22187as @code{Illegal Instruction} or @code{Segmentation fault}.
22188@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
22189user's benefit and have no particular format.
22190
e5ac9b53 22191@findex signal annotation
922fbb7b
AC
22192@item ^Z^Zsignal
22193The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
22194just saying that the program received the signal, not that it was
22195terminated with it.
22196
e5ac9b53 22197@findex breakpoint annotation
922fbb7b
AC
22198@item ^Z^Zbreakpoint @var{number}
22199The program hit breakpoint number @var{number}.
22200
e5ac9b53 22201@findex watchpoint annotation
922fbb7b
AC
22202@item ^Z^Zwatchpoint @var{number}
22203The program hit watchpoint number @var{number}.
22204@end table
22205
22206@node Source Annotations
22207@section Displaying Source
22208@cindex annotations for source display
22209
e5ac9b53 22210@findex source annotation
922fbb7b
AC
22211The following annotation is used instead of displaying source code:
22212
22213@smallexample
22214^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
22215@end smallexample
22216
22217where @var{filename} is an absolute file name indicating which source
22218file, @var{line} is the line number within that file (where 1 is the
22219first line in the file), @var{character} is the character position
22220within the file (where 0 is the first character in the file) (for most
22221debug formats this will necessarily point to the beginning of a line),
22222@var{middle} is @samp{middle} if @var{addr} is in the middle of the
22223line, or @samp{beg} if @var{addr} is at the beginning of the line, and
22224@var{addr} is the address in the target program associated with the
22225source which is being displayed. @var{addr} is in the form @samp{0x}
22226followed by one or more lowercase hex digits (note that this does not
22227depend on the language).
22228
8e04817f
AC
22229@node GDB Bugs
22230@chapter Reporting Bugs in @value{GDBN}
22231@cindex bugs in @value{GDBN}
22232@cindex reporting bugs in @value{GDBN}
c906108c 22233
8e04817f 22234Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 22235
8e04817f
AC
22236Reporting a bug may help you by bringing a solution to your problem, or it
22237may not. But in any case the principal function of a bug report is to help
22238the entire community by making the next version of @value{GDBN} work better. Bug
22239reports are your contribution to the maintenance of @value{GDBN}.
c906108c 22240
8e04817f
AC
22241In order for a bug report to serve its purpose, you must include the
22242information that enables us to fix the bug.
c4555f82
SC
22243
22244@menu
8e04817f
AC
22245* Bug Criteria:: Have you found a bug?
22246* Bug Reporting:: How to report bugs
c4555f82
SC
22247@end menu
22248
8e04817f 22249@node Bug Criteria
79a6e687 22250@section Have You Found a Bug?
8e04817f 22251@cindex bug criteria
c4555f82 22252
8e04817f 22253If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
22254
22255@itemize @bullet
8e04817f
AC
22256@cindex fatal signal
22257@cindex debugger crash
22258@cindex crash of debugger
c4555f82 22259@item
8e04817f
AC
22260If the debugger gets a fatal signal, for any input whatever, that is a
22261@value{GDBN} bug. Reliable debuggers never crash.
22262
22263@cindex error on valid input
22264@item
22265If @value{GDBN} produces an error message for valid input, that is a
22266bug. (Note that if you're cross debugging, the problem may also be
22267somewhere in the connection to the target.)
c4555f82 22268
8e04817f 22269@cindex invalid input
c4555f82 22270@item
8e04817f
AC
22271If @value{GDBN} does not produce an error message for invalid input,
22272that is a bug. However, you should note that your idea of
22273``invalid input'' might be our idea of ``an extension'' or ``support
22274for traditional practice''.
22275
22276@item
22277If you are an experienced user of debugging tools, your suggestions
22278for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
22279@end itemize
22280
8e04817f 22281@node Bug Reporting
79a6e687 22282@section How to Report Bugs
8e04817f
AC
22283@cindex bug reports
22284@cindex @value{GDBN} bugs, reporting
22285
22286A number of companies and individuals offer support for @sc{gnu} products.
22287If you obtained @value{GDBN} from a support organization, we recommend you
22288contact that organization first.
22289
22290You can find contact information for many support companies and
22291individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
22292distribution.
22293@c should add a web page ref...
22294
129188f6 22295In any event, we also recommend that you submit bug reports for
d3e8051b 22296@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
22297@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
22298page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
22299be used.
8e04817f
AC
22300
22301@strong{Do not send bug reports to @samp{info-gdb}, or to
22302@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
22303not want to receive bug reports. Those that do have arranged to receive
22304@samp{bug-gdb}.
22305
22306The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
22307serves as a repeater. The mailing list and the newsgroup carry exactly
22308the same messages. Often people think of posting bug reports to the
22309newsgroup instead of mailing them. This appears to work, but it has one
22310problem which can be crucial: a newsgroup posting often lacks a mail
22311path back to the sender. Thus, if we need to ask for more information,
22312we may be unable to reach you. For this reason, it is better to send
22313bug reports to the mailing list.
c4555f82 22314
8e04817f
AC
22315The fundamental principle of reporting bugs usefully is this:
22316@strong{report all the facts}. If you are not sure whether to state a
22317fact or leave it out, state it!
c4555f82 22318
8e04817f
AC
22319Often people omit facts because they think they know what causes the
22320problem and assume that some details do not matter. Thus, you might
22321assume that the name of the variable you use in an example does not matter.
22322Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22323stray memory reference which happens to fetch from the location where that
22324name is stored in memory; perhaps, if the name were different, the contents
22325of that location would fool the debugger into doing the right thing despite
22326the bug. Play it safe and give a specific, complete example. That is the
22327easiest thing for you to do, and the most helpful.
c4555f82 22328
8e04817f
AC
22329Keep in mind that the purpose of a bug report is to enable us to fix the
22330bug. It may be that the bug has been reported previously, but neither
22331you nor we can know that unless your bug report is complete and
22332self-contained.
c4555f82 22333
8e04817f
AC
22334Sometimes people give a few sketchy facts and ask, ``Does this ring a
22335bell?'' Those bug reports are useless, and we urge everyone to
22336@emph{refuse to respond to them} except to chide the sender to report
22337bugs properly.
22338
22339To enable us to fix the bug, you should include all these things:
c4555f82
SC
22340
22341@itemize @bullet
22342@item
8e04817f
AC
22343The version of @value{GDBN}. @value{GDBN} announces it if you start
22344with no arguments; you can also print it at any time using @code{show
22345version}.
c4555f82 22346
8e04817f
AC
22347Without this, we will not know whether there is any point in looking for
22348the bug in the current version of @value{GDBN}.
c4555f82
SC
22349
22350@item
8e04817f
AC
22351The type of machine you are using, and the operating system name and
22352version number.
c4555f82
SC
22353
22354@item
c1468174 22355What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22356``@value{GCC}--2.8.1''.
c4555f82
SC
22357
22358@item
8e04817f 22359What compiler (and its version) was used to compile the program you are
c1468174 22360debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22361C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22362to get this information; for other compilers, see the documentation for
22363those compilers.
c4555f82 22364
8e04817f
AC
22365@item
22366The command arguments you gave the compiler to compile your example and
22367observe the bug. For example, did you use @samp{-O}? To guarantee
22368you will not omit something important, list them all. A copy of the
22369Makefile (or the output from make) is sufficient.
c4555f82 22370
8e04817f
AC
22371If we were to try to guess the arguments, we would probably guess wrong
22372and then we might not encounter the bug.
c4555f82 22373
8e04817f
AC
22374@item
22375A complete input script, and all necessary source files, that will
22376reproduce the bug.
c4555f82 22377
8e04817f
AC
22378@item
22379A description of what behavior you observe that you believe is
22380incorrect. For example, ``It gets a fatal signal.''
c4555f82 22381
8e04817f
AC
22382Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22383will certainly notice it. But if the bug is incorrect output, we might
22384not notice unless it is glaringly wrong. You might as well not give us
22385a chance to make a mistake.
c4555f82 22386
8e04817f
AC
22387Even if the problem you experience is a fatal signal, you should still
22388say so explicitly. Suppose something strange is going on, such as, your
22389copy of @value{GDBN} is out of synch, or you have encountered a bug in
22390the C library on your system. (This has happened!) Your copy might
22391crash and ours would not. If you told us to expect a crash, then when
22392ours fails to crash, we would know that the bug was not happening for
22393us. If you had not told us to expect a crash, then we would not be able
22394to draw any conclusion from our observations.
c4555f82 22395
e0c07bf0
MC
22396@pindex script
22397@cindex recording a session script
22398To collect all this information, you can use a session recording program
22399such as @command{script}, which is available on many Unix systems.
22400Just run your @value{GDBN} session inside @command{script} and then
22401include the @file{typescript} file with your bug report.
22402
22403Another way to record a @value{GDBN} session is to run @value{GDBN}
22404inside Emacs and then save the entire buffer to a file.
22405
8e04817f
AC
22406@item
22407If you wish to suggest changes to the @value{GDBN} source, send us context
22408diffs. If you even discuss something in the @value{GDBN} source, refer to
22409it by context, not by line number.
c4555f82 22410
8e04817f
AC
22411The line numbers in our development sources will not match those in your
22412sources. Your line numbers would convey no useful information to us.
c4555f82 22413
8e04817f 22414@end itemize
c4555f82 22415
8e04817f 22416Here are some things that are not necessary:
c4555f82 22417
8e04817f
AC
22418@itemize @bullet
22419@item
22420A description of the envelope of the bug.
c4555f82 22421
8e04817f
AC
22422Often people who encounter a bug spend a lot of time investigating
22423which changes to the input file will make the bug go away and which
22424changes will not affect it.
c4555f82 22425
8e04817f
AC
22426This is often time consuming and not very useful, because the way we
22427will find the bug is by running a single example under the debugger
22428with breakpoints, not by pure deduction from a series of examples.
22429We recommend that you save your time for something else.
c4555f82 22430
8e04817f
AC
22431Of course, if you can find a simpler example to report @emph{instead}
22432of the original one, that is a convenience for us. Errors in the
22433output will be easier to spot, running under the debugger will take
22434less time, and so on.
c4555f82 22435
8e04817f
AC
22436However, simplification is not vital; if you do not want to do this,
22437report the bug anyway and send us the entire test case you used.
c4555f82 22438
8e04817f
AC
22439@item
22440A patch for the bug.
c4555f82 22441
8e04817f
AC
22442A patch for the bug does help us if it is a good one. But do not omit
22443the necessary information, such as the test case, on the assumption that
22444a patch is all we need. We might see problems with your patch and decide
22445to fix the problem another way, or we might not understand it at all.
c4555f82 22446
8e04817f
AC
22447Sometimes with a program as complicated as @value{GDBN} it is very hard to
22448construct an example that will make the program follow a certain path
22449through the code. If you do not send us the example, we will not be able
22450to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22451
8e04817f
AC
22452And if we cannot understand what bug you are trying to fix, or why your
22453patch should be an improvement, we will not install it. A test case will
22454help us to understand.
c4555f82 22455
8e04817f
AC
22456@item
22457A guess about what the bug is or what it depends on.
c4555f82 22458
8e04817f
AC
22459Such guesses are usually wrong. Even we cannot guess right about such
22460things without first using the debugger to find the facts.
22461@end itemize
c4555f82 22462
8e04817f
AC
22463@c The readline documentation is distributed with the readline code
22464@c and consists of the two following files:
22465@c rluser.texinfo
22466@c inc-hist.texinfo
22467@c Use -I with makeinfo to point to the appropriate directory,
22468@c environment var TEXINPUTS with TeX.
5bdf8622 22469@include rluser.texi
8e04817f 22470@include inc-hist.texinfo
c4555f82 22471
c4555f82 22472
8e04817f
AC
22473@node Formatting Documentation
22474@appendix Formatting Documentation
c4555f82 22475
8e04817f
AC
22476@cindex @value{GDBN} reference card
22477@cindex reference card
22478The @value{GDBN} 4 release includes an already-formatted reference card, ready
22479for printing with PostScript or Ghostscript, in the @file{gdb}
22480subdirectory of the main source directory@footnote{In
22481@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22482release.}. If you can use PostScript or Ghostscript with your printer,
22483you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22484
8e04817f
AC
22485The release also includes the source for the reference card. You
22486can format it, using @TeX{}, by typing:
c4555f82 22487
474c8240 22488@smallexample
8e04817f 22489make refcard.dvi
474c8240 22490@end smallexample
c4555f82 22491
8e04817f
AC
22492The @value{GDBN} reference card is designed to print in @dfn{landscape}
22493mode on US ``letter'' size paper;
22494that is, on a sheet 11 inches wide by 8.5 inches
22495high. You will need to specify this form of printing as an option to
22496your @sc{dvi} output program.
c4555f82 22497
8e04817f 22498@cindex documentation
c4555f82 22499
8e04817f
AC
22500All the documentation for @value{GDBN} comes as part of the machine-readable
22501distribution. The documentation is written in Texinfo format, which is
22502a documentation system that uses a single source file to produce both
22503on-line information and a printed manual. You can use one of the Info
22504formatting commands to create the on-line version of the documentation
22505and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22506
8e04817f
AC
22507@value{GDBN} includes an already formatted copy of the on-line Info
22508version of this manual in the @file{gdb} subdirectory. The main Info
22509file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22510subordinate files matching @samp{gdb.info*} in the same directory. If
22511necessary, you can print out these files, or read them with any editor;
22512but they are easier to read using the @code{info} subsystem in @sc{gnu}
22513Emacs or the standalone @code{info} program, available as part of the
22514@sc{gnu} Texinfo distribution.
c4555f82 22515
8e04817f
AC
22516If you want to format these Info files yourself, you need one of the
22517Info formatting programs, such as @code{texinfo-format-buffer} or
22518@code{makeinfo}.
c4555f82 22519
8e04817f
AC
22520If you have @code{makeinfo} installed, and are in the top level
22521@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22522version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22523
474c8240 22524@smallexample
8e04817f
AC
22525cd gdb
22526make gdb.info
474c8240 22527@end smallexample
c4555f82 22528
8e04817f
AC
22529If you want to typeset and print copies of this manual, you need @TeX{},
22530a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22531Texinfo definitions file.
c4555f82 22532
8e04817f
AC
22533@TeX{} is a typesetting program; it does not print files directly, but
22534produces output files called @sc{dvi} files. To print a typeset
22535document, you need a program to print @sc{dvi} files. If your system
22536has @TeX{} installed, chances are it has such a program. The precise
22537command to use depends on your system; @kbd{lpr -d} is common; another
22538(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22539require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22540
8e04817f
AC
22541@TeX{} also requires a macro definitions file called
22542@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22543written in Texinfo format. On its own, @TeX{} cannot either read or
22544typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22545and is located in the @file{gdb-@var{version-number}/texinfo}
22546directory.
c4555f82 22547
8e04817f 22548If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22549typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22550subdirectory of the main source directory (for example, to
22551@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22552
474c8240 22553@smallexample
8e04817f 22554make gdb.dvi
474c8240 22555@end smallexample
c4555f82 22556
8e04817f 22557Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22558
8e04817f
AC
22559@node Installing GDB
22560@appendix Installing @value{GDBN}
8e04817f 22561@cindex installation
c4555f82 22562
7fa2210b
DJ
22563@menu
22564* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22565* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22566* Separate Objdir:: Compiling @value{GDBN} in another directory
22567* Config Names:: Specifying names for hosts and targets
22568* Configure Options:: Summary of options for configure
22569@end menu
22570
22571@node Requirements
79a6e687 22572@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22573@cindex building @value{GDBN}, requirements for
22574
22575Building @value{GDBN} requires various tools and packages to be available.
22576Other packages will be used only if they are found.
22577
79a6e687 22578@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22579@table @asis
22580@item ISO C90 compiler
22581@value{GDBN} is written in ISO C90. It should be buildable with any
22582working C90 compiler, e.g.@: GCC.
22583
22584@end table
22585
79a6e687 22586@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22587@table @asis
22588@item Expat
123dc839 22589@anchor{Expat}
7fa2210b
DJ
22590@value{GDBN} can use the Expat XML parsing library. This library may be
22591included with your operating system distribution; if it is not, you
22592can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22593The @file{configure} script will search for this library in several
7fa2210b
DJ
22594standard locations; if it is installed in an unusual path, you can
22595use the @option{--with-libexpat-prefix} option to specify its location.
22596
9cceb671
DJ
22597Expat is used for:
22598
22599@itemize @bullet
22600@item
22601Remote protocol memory maps (@pxref{Memory Map Format})
22602@item
22603Target descriptions (@pxref{Target Descriptions})
22604@item
22605Remote shared library lists (@pxref{Library List Format})
22606@item
22607MS-Windows shared libraries (@pxref{Shared Libraries})
22608@end itemize
7fa2210b
DJ
22609
22610@end table
22611
22612@node Running Configure
db2e3e2e 22613@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22614@cindex configuring @value{GDBN}
db2e3e2e 22615@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22616of preparing @value{GDBN} for installation; you can then use @code{make} to
22617build the @code{gdb} program.
22618@iftex
22619@c irrelevant in info file; it's as current as the code it lives with.
22620@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22621look at the @file{README} file in the sources; we may have improved the
22622installation procedures since publishing this manual.}
22623@end iftex
c4555f82 22624
8e04817f
AC
22625The @value{GDBN} distribution includes all the source code you need for
22626@value{GDBN} in a single directory, whose name is usually composed by
22627appending the version number to @samp{gdb}.
c4555f82 22628
8e04817f
AC
22629For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22630@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22631
8e04817f
AC
22632@table @code
22633@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22634script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22635
8e04817f
AC
22636@item gdb-@value{GDBVN}/gdb
22637the source specific to @value{GDBN} itself
c4555f82 22638
8e04817f
AC
22639@item gdb-@value{GDBVN}/bfd
22640source for the Binary File Descriptor library
c906108c 22641
8e04817f
AC
22642@item gdb-@value{GDBVN}/include
22643@sc{gnu} include files
c906108c 22644
8e04817f
AC
22645@item gdb-@value{GDBVN}/libiberty
22646source for the @samp{-liberty} free software library
c906108c 22647
8e04817f
AC
22648@item gdb-@value{GDBVN}/opcodes
22649source for the library of opcode tables and disassemblers
c906108c 22650
8e04817f
AC
22651@item gdb-@value{GDBVN}/readline
22652source for the @sc{gnu} command-line interface
c906108c 22653
8e04817f
AC
22654@item gdb-@value{GDBVN}/glob
22655source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22656
8e04817f
AC
22657@item gdb-@value{GDBVN}/mmalloc
22658source for the @sc{gnu} memory-mapped malloc package
22659@end table
c906108c 22660
db2e3e2e 22661The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22662from the @file{gdb-@var{version-number}} source directory, which in
22663this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22664
8e04817f 22665First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22666if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22667identifier for the platform on which @value{GDBN} will run as an
22668argument.
c906108c 22669
8e04817f 22670For example:
c906108c 22671
474c8240 22672@smallexample
8e04817f
AC
22673cd gdb-@value{GDBVN}
22674./configure @var{host}
22675make
474c8240 22676@end smallexample
c906108c 22677
8e04817f
AC
22678@noindent
22679where @var{host} is an identifier such as @samp{sun4} or
22680@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22681(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22682correct value by examining your system.)
c906108c 22683
8e04817f
AC
22684Running @samp{configure @var{host}} and then running @code{make} builds the
22685@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22686libraries, then @code{gdb} itself. The configured source files, and the
22687binaries, are left in the corresponding source directories.
c906108c 22688
8e04817f 22689@need 750
db2e3e2e 22690@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22691system does not recognize this automatically when you run a different
22692shell, you may need to run @code{sh} on it explicitly:
c906108c 22693
474c8240 22694@smallexample
8e04817f 22695sh configure @var{host}
474c8240 22696@end smallexample
c906108c 22697
db2e3e2e 22698If you run @file{configure} from a directory that contains source
8e04817f 22699directories for multiple libraries or programs, such as the
db2e3e2e
BW
22700@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22701@file{configure}
8e04817f
AC
22702creates configuration files for every directory level underneath (unless
22703you tell it not to, with the @samp{--norecursion} option).
22704
db2e3e2e 22705You should run the @file{configure} script from the top directory in the
94e91d6d 22706source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22707@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22708that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22709if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22710of the @file{gdb-@var{version-number}} directory, you will omit the
22711configuration of @file{bfd}, @file{readline}, and other sibling
22712directories of the @file{gdb} subdirectory. This leads to build errors
22713about missing include files such as @file{bfd/bfd.h}.
c906108c 22714
8e04817f
AC
22715You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22716However, you should make sure that the shell on your path (named by
22717the @samp{SHELL} environment variable) is publicly readable. Remember
22718that @value{GDBN} uses the shell to start your program---some systems refuse to
22719let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22720
8e04817f 22721@node Separate Objdir
79a6e687 22722@section Compiling @value{GDBN} in Another Directory
c906108c 22723
8e04817f
AC
22724If you want to run @value{GDBN} versions for several host or target machines,
22725you need a different @code{gdb} compiled for each combination of
db2e3e2e 22726host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22727allowing you to generate each configuration in a separate subdirectory,
22728rather than in the source directory. If your @code{make} program
22729handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22730@code{make} in each of these directories builds the @code{gdb}
22731program specified there.
c906108c 22732
db2e3e2e 22733To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22734with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22735(You also need to specify a path to find @file{configure}
22736itself from your working directory. If the path to @file{configure}
8e04817f
AC
22737would be the same as the argument to @samp{--srcdir}, you can leave out
22738the @samp{--srcdir} option; it is assumed.)
c906108c 22739
8e04817f
AC
22740For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22741separate directory for a Sun 4 like this:
c906108c 22742
474c8240 22743@smallexample
8e04817f
AC
22744@group
22745cd gdb-@value{GDBVN}
22746mkdir ../gdb-sun4
22747cd ../gdb-sun4
22748../gdb-@value{GDBVN}/configure sun4
22749make
22750@end group
474c8240 22751@end smallexample
c906108c 22752
db2e3e2e 22753When @file{configure} builds a configuration using a remote source
8e04817f
AC
22754directory, it creates a tree for the binaries with the same structure
22755(and using the same names) as the tree under the source directory. In
22756the example, you'd find the Sun 4 library @file{libiberty.a} in the
22757directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22758@file{gdb-sun4/gdb}.
c906108c 22759
94e91d6d
MC
22760Make sure that your path to the @file{configure} script has just one
22761instance of @file{gdb} in it. If your path to @file{configure} looks
22762like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22763one subdirectory of @value{GDBN}, not the whole package. This leads to
22764build errors about missing include files such as @file{bfd/bfd.h}.
22765
8e04817f
AC
22766One popular reason to build several @value{GDBN} configurations in separate
22767directories is to configure @value{GDBN} for cross-compiling (where
22768@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22769programs that run on another machine---the @dfn{target}).
22770You specify a cross-debugging target by
db2e3e2e 22771giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22772
8e04817f
AC
22773When you run @code{make} to build a program or library, you must run
22774it in a configured directory---whatever directory you were in when you
db2e3e2e 22775called @file{configure} (or one of its subdirectories).
c906108c 22776
db2e3e2e 22777The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22778directory also runs recursively. If you type @code{make} in a source
22779directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22780directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22781will build all the required libraries, and then build GDB.
c906108c 22782
8e04817f
AC
22783When you have multiple hosts or targets configured in separate
22784directories, you can run @code{make} on them in parallel (for example,
22785if they are NFS-mounted on each of the hosts); they will not interfere
22786with each other.
c906108c 22787
8e04817f 22788@node Config Names
79a6e687 22789@section Specifying Names for Hosts and Targets
c906108c 22790
db2e3e2e 22791The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22792script are based on a three-part naming scheme, but some short predefined
22793aliases are also supported. The full naming scheme encodes three pieces
22794of information in the following pattern:
c906108c 22795
474c8240 22796@smallexample
8e04817f 22797@var{architecture}-@var{vendor}-@var{os}
474c8240 22798@end smallexample
c906108c 22799
8e04817f
AC
22800For example, you can use the alias @code{sun4} as a @var{host} argument,
22801or as the value for @var{target} in a @code{--target=@var{target}}
22802option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22803
db2e3e2e 22804The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22805any query facility to list all supported host and target names or
db2e3e2e 22806aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22807@code{config.sub} to map abbreviations to full names; you can read the
22808script, if you wish, or you can use it to test your guesses on
22809abbreviations---for example:
c906108c 22810
8e04817f
AC
22811@smallexample
22812% sh config.sub i386-linux
22813i386-pc-linux-gnu
22814% sh config.sub alpha-linux
22815alpha-unknown-linux-gnu
22816% sh config.sub hp9k700
22817hppa1.1-hp-hpux
22818% sh config.sub sun4
22819sparc-sun-sunos4.1.1
22820% sh config.sub sun3
22821m68k-sun-sunos4.1.1
22822% sh config.sub i986v
22823Invalid configuration `i986v': machine `i986v' not recognized
22824@end smallexample
c906108c 22825
8e04817f
AC
22826@noindent
22827@code{config.sub} is also distributed in the @value{GDBN} source
22828directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22829
8e04817f 22830@node Configure Options
db2e3e2e 22831@section @file{configure} Options
c906108c 22832
db2e3e2e
BW
22833Here is a summary of the @file{configure} options and arguments that
22834are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22835several other options not listed here. @inforef{What Configure
db2e3e2e 22836Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22837
474c8240 22838@smallexample
8e04817f
AC
22839configure @r{[}--help@r{]}
22840 @r{[}--prefix=@var{dir}@r{]}
22841 @r{[}--exec-prefix=@var{dir}@r{]}
22842 @r{[}--srcdir=@var{dirname}@r{]}
22843 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22844 @r{[}--target=@var{target}@r{]}
22845 @var{host}
474c8240 22846@end smallexample
c906108c 22847
8e04817f
AC
22848@noindent
22849You may introduce options with a single @samp{-} rather than
22850@samp{--} if you prefer; but you may abbreviate option names if you use
22851@samp{--}.
c906108c 22852
8e04817f
AC
22853@table @code
22854@item --help
db2e3e2e 22855Display a quick summary of how to invoke @file{configure}.
c906108c 22856
8e04817f
AC
22857@item --prefix=@var{dir}
22858Configure the source to install programs and files under directory
22859@file{@var{dir}}.
c906108c 22860
8e04817f
AC
22861@item --exec-prefix=@var{dir}
22862Configure the source to install programs under directory
22863@file{@var{dir}}.
c906108c 22864
8e04817f
AC
22865@c avoid splitting the warning from the explanation:
22866@need 2000
22867@item --srcdir=@var{dirname}
22868@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22869@code{make} that implements the @code{VPATH} feature.}@*
22870Use this option to make configurations in directories separate from the
22871@value{GDBN} source directories. Among other things, you can use this to
22872build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22873directories. @file{configure} writes configuration-specific files in
8e04817f 22874the current directory, but arranges for them to use the source in the
db2e3e2e 22875directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22876the working directory in parallel to the source directories below
22877@var{dirname}.
c906108c 22878
8e04817f 22879@item --norecursion
db2e3e2e 22880Configure only the directory level where @file{configure} is executed; do not
8e04817f 22881propagate configuration to subdirectories.
c906108c 22882
8e04817f
AC
22883@item --target=@var{target}
22884Configure @value{GDBN} for cross-debugging programs running on the specified
22885@var{target}. Without this option, @value{GDBN} is configured to debug
22886programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22887
8e04817f 22888There is no convenient way to generate a list of all available targets.
c906108c 22889
8e04817f
AC
22890@item @var{host} @dots{}
22891Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22892
8e04817f
AC
22893There is no convenient way to generate a list of all available hosts.
22894@end table
c906108c 22895
8e04817f
AC
22896There are many other options available as well, but they are generally
22897needed for special purposes only.
c906108c 22898
8e04817f
AC
22899@node Maintenance Commands
22900@appendix Maintenance Commands
22901@cindex maintenance commands
22902@cindex internal commands
c906108c 22903
8e04817f 22904In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22905includes a number of commands intended for @value{GDBN} developers,
22906that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22907provided here for reference. (For commands that turn on debugging
22908messages, see @ref{Debugging Output}.)
c906108c 22909
8e04817f 22910@table @code
09d4efe1
EZ
22911@kindex maint agent
22912@item maint agent @var{expression}
22913Translate the given @var{expression} into remote agent bytecodes.
22914This command is useful for debugging the Agent Expression mechanism
22915(@pxref{Agent Expressions}).
22916
8e04817f
AC
22917@kindex maint info breakpoints
22918@item @anchor{maint info breakpoints}maint info breakpoints
22919Using the same format as @samp{info breakpoints}, display both the
22920breakpoints you've set explicitly, and those @value{GDBN} is using for
22921internal purposes. Internal breakpoints are shown with negative
22922breakpoint numbers. The type column identifies what kind of breakpoint
22923is shown:
c906108c 22924
8e04817f
AC
22925@table @code
22926@item breakpoint
22927Normal, explicitly set breakpoint.
c906108c 22928
8e04817f
AC
22929@item watchpoint
22930Normal, explicitly set watchpoint.
c906108c 22931
8e04817f
AC
22932@item longjmp
22933Internal breakpoint, used to handle correctly stepping through
22934@code{longjmp} calls.
c906108c 22935
8e04817f
AC
22936@item longjmp resume
22937Internal breakpoint at the target of a @code{longjmp}.
c906108c 22938
8e04817f
AC
22939@item until
22940Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22941
8e04817f
AC
22942@item finish
22943Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22944
8e04817f
AC
22945@item shlib events
22946Shared library events.
c906108c 22947
8e04817f 22948@end table
c906108c 22949
09d4efe1
EZ
22950@kindex maint check-symtabs
22951@item maint check-symtabs
22952Check the consistency of psymtabs and symtabs.
22953
22954@kindex maint cplus first_component
22955@item maint cplus first_component @var{name}
22956Print the first C@t{++} class/namespace component of @var{name}.
22957
22958@kindex maint cplus namespace
22959@item maint cplus namespace
22960Print the list of possible C@t{++} namespaces.
22961
22962@kindex maint demangle
22963@item maint demangle @var{name}
d3e8051b 22964Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22965
22966@kindex maint deprecate
22967@kindex maint undeprecate
22968@cindex deprecated commands
22969@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22970@itemx maint undeprecate @var{command}
22971Deprecate or undeprecate the named @var{command}. Deprecated commands
22972cause @value{GDBN} to issue a warning when you use them. The optional
22973argument @var{replacement} says which newer command should be used in
22974favor of the deprecated one; if it is given, @value{GDBN} will mention
22975the replacement as part of the warning.
22976
22977@kindex maint dump-me
22978@item maint dump-me
721c2651 22979@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22980Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22981This is supported only on systems which support aborting a program
22982with the @code{SIGQUIT} signal.
09d4efe1 22983
8d30a00d
AC
22984@kindex maint internal-error
22985@kindex maint internal-warning
09d4efe1
EZ
22986@item maint internal-error @r{[}@var{message-text}@r{]}
22987@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22988Cause @value{GDBN} to call the internal function @code{internal_error}
22989or @code{internal_warning} and hence behave as though an internal error
22990or internal warning has been detected. In addition to reporting the
22991internal problem, these functions give the user the opportunity to
22992either quit @value{GDBN} or create a core file of the current
22993@value{GDBN} session.
22994
09d4efe1
EZ
22995These commands take an optional parameter @var{message-text} that is
22996used as the text of the error or warning message.
22997
d3e8051b 22998Here's an example of using @code{internal-error}:
09d4efe1 22999
8d30a00d 23000@smallexample
f7dc1244 23001(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
23002@dots{}/maint.c:121: internal-error: testing, 1, 2
23003A problem internal to GDB has been detected. Further
23004debugging may prove unreliable.
23005Quit this debugging session? (y or n) @kbd{n}
23006Create a core file? (y or n) @kbd{n}
f7dc1244 23007(@value{GDBP})
8d30a00d
AC
23008@end smallexample
23009
09d4efe1
EZ
23010@kindex maint packet
23011@item maint packet @var{text}
23012If @value{GDBN} is talking to an inferior via the serial protocol,
23013then this command sends the string @var{text} to the inferior, and
23014displays the response packet. @value{GDBN} supplies the initial
23015@samp{$} character, the terminating @samp{#} character, and the
23016checksum.
23017
23018@kindex maint print architecture
23019@item maint print architecture @r{[}@var{file}@r{]}
23020Print the entire architecture configuration. The optional argument
23021@var{file} names the file where the output goes.
8d30a00d 23022
81adfced
DJ
23023@kindex maint print c-tdesc
23024@item maint print c-tdesc
23025Print the current target description (@pxref{Target Descriptions}) as
23026a C source file. The created source file can be used in @value{GDBN}
23027when an XML parser is not available to parse the description.
23028
00905d52
AC
23029@kindex maint print dummy-frames
23030@item maint print dummy-frames
00905d52
AC
23031Prints the contents of @value{GDBN}'s internal dummy-frame stack.
23032
23033@smallexample
f7dc1244 23034(@value{GDBP}) @kbd{b add}
00905d52 23035@dots{}
f7dc1244 23036(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
23037Breakpoint 2, add (a=2, b=3) at @dots{}
2303858 return (a + b);
23039The program being debugged stopped while in a function called from GDB.
23040@dots{}
f7dc1244 23041(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
230420x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
23043 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
23044 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 23045(@value{GDBP})
00905d52
AC
23046@end smallexample
23047
23048Takes an optional file parameter.
23049
0680b120
AC
23050@kindex maint print registers
23051@kindex maint print raw-registers
23052@kindex maint print cooked-registers
617073a9 23053@kindex maint print register-groups
09d4efe1
EZ
23054@item maint print registers @r{[}@var{file}@r{]}
23055@itemx maint print raw-registers @r{[}@var{file}@r{]}
23056@itemx maint print cooked-registers @r{[}@var{file}@r{]}
23057@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
23058Print @value{GDBN}'s internal register data structures.
23059
617073a9
AC
23060The command @code{maint print raw-registers} includes the contents of
23061the raw register cache; the command @code{maint print cooked-registers}
23062includes the (cooked) value of all registers; and the command
23063@code{maint print register-groups} includes the groups that each
23064register is a member of. @xref{Registers,, Registers, gdbint,
23065@value{GDBN} Internals}.
0680b120 23066
09d4efe1
EZ
23067These commands take an optional parameter, a file name to which to
23068write the information.
0680b120 23069
617073a9 23070@kindex maint print reggroups
09d4efe1
EZ
23071@item maint print reggroups @r{[}@var{file}@r{]}
23072Print @value{GDBN}'s internal register group data structures. The
23073optional argument @var{file} tells to what file to write the
23074information.
617073a9 23075
09d4efe1 23076The register groups info looks like this:
617073a9
AC
23077
23078@smallexample
f7dc1244 23079(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
23080 Group Type
23081 general user
23082 float user
23083 all user
23084 vector user
23085 system user
23086 save internal
23087 restore internal
617073a9
AC
23088@end smallexample
23089
09d4efe1
EZ
23090@kindex flushregs
23091@item flushregs
23092This command forces @value{GDBN} to flush its internal register cache.
23093
23094@kindex maint print objfiles
23095@cindex info for known object files
23096@item maint print objfiles
23097Print a dump of all known object files. For each object file, this
23098command prints its name, address in memory, and all of its psymtabs
23099and symtabs.
23100
23101@kindex maint print statistics
23102@cindex bcache statistics
23103@item maint print statistics
23104This command prints, for each object file in the program, various data
23105about that object file followed by the byte cache (@dfn{bcache})
23106statistics for the object file. The objfile data includes the number
d3e8051b 23107of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
23108defined by the objfile, the number of as yet unexpanded psym tables,
23109the number of line tables and string tables, and the amount of memory
23110used by the various tables. The bcache statistics include the counts,
23111sizes, and counts of duplicates of all and unique objects, max,
23112average, and median entry size, total memory used and its overhead and
23113savings, and various measures of the hash table size and chain
23114lengths.
23115
c7ba131e
JB
23116@kindex maint print target-stack
23117@cindex target stack description
23118@item maint print target-stack
23119A @dfn{target} is an interface between the debugger and a particular
23120kind of file or process. Targets can be stacked in @dfn{strata},
23121so that more than one target can potentially respond to a request.
23122In particular, memory accesses will walk down the stack of targets
23123until they find a target that is interested in handling that particular
23124address.
23125
23126This command prints a short description of each layer that was pushed on
23127the @dfn{target stack}, starting from the top layer down to the bottom one.
23128
09d4efe1
EZ
23129@kindex maint print type
23130@cindex type chain of a data type
23131@item maint print type @var{expr}
23132Print the type chain for a type specified by @var{expr}. The argument
23133can be either a type name or a symbol. If it is a symbol, the type of
23134that symbol is described. The type chain produced by this command is
23135a recursive definition of the data type as stored in @value{GDBN}'s
23136data structures, including its flags and contained types.
23137
23138@kindex maint set dwarf2 max-cache-age
23139@kindex maint show dwarf2 max-cache-age
23140@item maint set dwarf2 max-cache-age
23141@itemx maint show dwarf2 max-cache-age
23142Control the DWARF 2 compilation unit cache.
23143
23144@cindex DWARF 2 compilation units cache
23145In object files with inter-compilation-unit references, such as those
23146produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
23147reader needs to frequently refer to previously read compilation units.
23148This setting controls how long a compilation unit will remain in the
23149cache if it is not referenced. A higher limit means that cached
23150compilation units will be stored in memory longer, and more total
23151memory will be used. Setting it to zero disables caching, which will
23152slow down @value{GDBN} startup, but reduce memory consumption.
23153
e7ba9c65
DJ
23154@kindex maint set profile
23155@kindex maint show profile
23156@cindex profiling GDB
23157@item maint set profile
23158@itemx maint show profile
23159Control profiling of @value{GDBN}.
23160
23161Profiling will be disabled until you use the @samp{maint set profile}
23162command to enable it. When you enable profiling, the system will begin
23163collecting timing and execution count data; when you disable profiling or
23164exit @value{GDBN}, the results will be written to a log file. Remember that
23165if you use profiling, @value{GDBN} will overwrite the profiling log file
23166(often called @file{gmon.out}). If you have a record of important profiling
23167data in a @file{gmon.out} file, be sure to move it to a safe location.
23168
23169Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 23170compiled with the @samp{-pg} compiler option.
e7ba9c65 23171
09d4efe1
EZ
23172@kindex maint show-debug-regs
23173@cindex x86 hardware debug registers
23174@item maint show-debug-regs
23175Control whether to show variables that mirror the x86 hardware debug
23176registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 23177enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
23178removes a hardware breakpoint or watchpoint, and when the inferior
23179triggers a hardware-assisted breakpoint or watchpoint.
23180
23181@kindex maint space
23182@cindex memory used by commands
23183@item maint space
23184Control whether to display memory usage for each command. If set to a
23185nonzero value, @value{GDBN} will display how much memory each command
23186took, following the command's own output. This can also be requested
23187by invoking @value{GDBN} with the @option{--statistics} command-line
23188switch (@pxref{Mode Options}).
23189
23190@kindex maint time
23191@cindex time of command execution
23192@item maint time
23193Control whether to display the execution time for each command. If
23194set to a nonzero value, @value{GDBN} will display how much time it
23195took to execute each command, following the command's own output.
23196This can also be requested by invoking @value{GDBN} with the
23197@option{--statistics} command-line switch (@pxref{Mode Options}).
23198
23199@kindex maint translate-address
23200@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
23201Find the symbol stored at the location specified by the address
23202@var{addr} and an optional section name @var{section}. If found,
23203@value{GDBN} prints the name of the closest symbol and an offset from
23204the symbol's location to the specified address. This is similar to
23205the @code{info address} command (@pxref{Symbols}), except that this
23206command also allows to find symbols in other sections.
ae038cb0 23207
8e04817f 23208@end table
c906108c 23209
9c16f35a
EZ
23210The following command is useful for non-interactive invocations of
23211@value{GDBN}, such as in the test suite.
23212
23213@table @code
23214@item set watchdog @var{nsec}
23215@kindex set watchdog
23216@cindex watchdog timer
23217@cindex timeout for commands
23218Set the maximum number of seconds @value{GDBN} will wait for the
23219target operation to finish. If this time expires, @value{GDBN}
23220reports and error and the command is aborted.
23221
23222@item show watchdog
23223Show the current setting of the target wait timeout.
23224@end table
c906108c 23225
e0ce93ac 23226@node Remote Protocol
8e04817f 23227@appendix @value{GDBN} Remote Serial Protocol
c906108c 23228
ee2d5c50
AC
23229@menu
23230* Overview::
23231* Packets::
23232* Stop Reply Packets::
23233* General Query Packets::
23234* Register Packet Format::
9d29849a 23235* Tracepoint Packets::
a6b151f1 23236* Host I/O Packets::
9a6253be 23237* Interrupts::
ee2d5c50 23238* Examples::
79a6e687 23239* File-I/O Remote Protocol Extension::
cfa9d6d9 23240* Library List Format::
79a6e687 23241* Memory Map Format::
ee2d5c50
AC
23242@end menu
23243
23244@node Overview
23245@section Overview
23246
8e04817f
AC
23247There may be occasions when you need to know something about the
23248protocol---for example, if there is only one serial port to your target
23249machine, you might want your program to do something special if it
23250recognizes a packet meant for @value{GDBN}.
c906108c 23251
d2c6833e 23252In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 23253transmitted and received data, respectively.
c906108c 23254
8e04817f
AC
23255@cindex protocol, @value{GDBN} remote serial
23256@cindex serial protocol, @value{GDBN} remote
23257@cindex remote serial protocol
23258All @value{GDBN} commands and responses (other than acknowledgments) are
23259sent as a @var{packet}. A @var{packet} is introduced with the character
23260@samp{$}, the actual @var{packet-data}, and the terminating character
23261@samp{#} followed by a two-digit @var{checksum}:
c906108c 23262
474c8240 23263@smallexample
8e04817f 23264@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 23265@end smallexample
8e04817f 23266@noindent
c906108c 23267
8e04817f
AC
23268@cindex checksum, for @value{GDBN} remote
23269@noindent
23270The two-digit @var{checksum} is computed as the modulo 256 sum of all
23271characters between the leading @samp{$} and the trailing @samp{#} (an
23272eight bit unsigned checksum).
c906108c 23273
8e04817f
AC
23274Implementors should note that prior to @value{GDBN} 5.0 the protocol
23275specification also included an optional two-digit @var{sequence-id}:
c906108c 23276
474c8240 23277@smallexample
8e04817f 23278@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 23279@end smallexample
c906108c 23280
8e04817f
AC
23281@cindex sequence-id, for @value{GDBN} remote
23282@noindent
23283That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
23284has never output @var{sequence-id}s. Stubs that handle packets added
23285since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 23286
8e04817f
AC
23287@cindex acknowledgment, for @value{GDBN} remote
23288When either the host or the target machine receives a packet, the first
23289response expected is an acknowledgment: either @samp{+} (to indicate
23290the package was received correctly) or @samp{-} (to request
23291retransmission):
c906108c 23292
474c8240 23293@smallexample
d2c6833e
AC
23294-> @code{$}@var{packet-data}@code{#}@var{checksum}
23295<- @code{+}
474c8240 23296@end smallexample
8e04817f 23297@noindent
53a5351d 23298
8e04817f
AC
23299The host (@value{GDBN}) sends @var{command}s, and the target (the
23300debugging stub incorporated in your program) sends a @var{response}. In
23301the case of step and continue @var{command}s, the response is only sent
23302when the operation has completed (the target has again stopped).
c906108c 23303
8e04817f
AC
23304@var{packet-data} consists of a sequence of characters with the
23305exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
23306exceptions).
c906108c 23307
ee2d5c50 23308@cindex remote protocol, field separator
0876f84a 23309Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 23310@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 23311@sc{hex} with leading zeros suppressed.
c906108c 23312
8e04817f
AC
23313Implementors should note that prior to @value{GDBN} 5.0, the character
23314@samp{:} could not appear as the third character in a packet (as it
23315would potentially conflict with the @var{sequence-id}).
c906108c 23316
0876f84a
DJ
23317@cindex remote protocol, binary data
23318@anchor{Binary Data}
23319Binary data in most packets is encoded either as two hexadecimal
23320digits per byte of binary data. This allowed the traditional remote
23321protocol to work over connections which were only seven-bit clean.
23322Some packets designed more recently assume an eight-bit clean
23323connection, and use a more efficient encoding to send and receive
23324binary data.
23325
23326The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23327as an escape character. Any escaped byte is transmitted as the escape
23328character followed by the original character XORed with @code{0x20}.
23329For example, the byte @code{0x7d} would be transmitted as the two
23330bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23331@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23332@samp{@}}) must always be escaped. Responses sent by the stub
23333must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23334is not interpreted as the start of a run-length encoded sequence
23335(described next).
23336
1d3811f6
DJ
23337Response @var{data} can be run-length encoded to save space.
23338Run-length encoding replaces runs of identical characters with one
23339instance of the repeated character, followed by a @samp{*} and a
23340repeat count. The repeat count is itself sent encoded, to avoid
23341binary characters in @var{data}: a value of @var{n} is sent as
23342@code{@var{n}+29}. For a repeat count greater or equal to 3, this
23343produces a printable @sc{ascii} character, e.g.@: a space (@sc{ascii}
23344code 32) for a repeat count of 3. (This is because run-length
23345encoding starts to win for counts 3 or more.) Thus, for example,
23346@samp{0* } is a run-length encoding of ``0000'': the space character
23347after @samp{*} means repeat the leading @code{0} @w{@code{32 - 29 =
233483}} more times.
23349
23350The printable characters @samp{#} and @samp{$} or with a numeric value
23351greater than 126 must not be used. Runs of six repeats (@samp{#}) or
23352seven repeats (@samp{$}) can be expanded using a repeat count of only
23353five (@samp{"}). For example, @samp{00000000} can be encoded as
23354@samp{0*"00}.
c906108c 23355
8e04817f
AC
23356The error response returned for some packets includes a two character
23357error number. That number is not well defined.
c906108c 23358
f8da2bff 23359@cindex empty response, for unsupported packets
8e04817f
AC
23360For any @var{command} not supported by the stub, an empty response
23361(@samp{$#00}) should be returned. That way it is possible to extend the
23362protocol. A newer @value{GDBN} can tell if a packet is supported based
23363on that response.
c906108c 23364
b383017d
RM
23365A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23366@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23367optional.
c906108c 23368
ee2d5c50
AC
23369@node Packets
23370@section Packets
23371
23372The following table provides a complete list of all currently defined
23373@var{command}s and their corresponding response @var{data}.
79a6e687 23374@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23375I/O extension of the remote protocol.
ee2d5c50 23376
b8ff78ce
JB
23377Each packet's description has a template showing the packet's overall
23378syntax, followed by an explanation of the packet's meaning. We
23379include spaces in some of the templates for clarity; these are not
23380part of the packet's syntax. No @value{GDBN} packet uses spaces to
23381separate its components. For example, a template like @samp{foo
23382@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23383bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23384@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23385@samp{foo} and the @var{bar}, or between the @var{bar} and the
23386@var{baz}.
23387
8ffe2530
JB
23388Note that all packet forms beginning with an upper- or lower-case
23389letter, other than those described here, are reserved for future use.
23390
b8ff78ce 23391Here are the packet descriptions.
ee2d5c50 23392
b8ff78ce 23393@table @samp
ee2d5c50 23394
b8ff78ce
JB
23395@item !
23396@cindex @samp{!} packet
2d717e4f 23397@anchor{extended mode}
8e04817f
AC
23398Enable extended mode. In extended mode, the remote server is made
23399persistent. The @samp{R} packet is used to restart the program being
23400debugged.
ee2d5c50
AC
23401
23402Reply:
23403@table @samp
23404@item OK
8e04817f 23405The remote target both supports and has enabled extended mode.
ee2d5c50 23406@end table
c906108c 23407
b8ff78ce
JB
23408@item ?
23409@cindex @samp{?} packet
ee2d5c50
AC
23410Indicate the reason the target halted. The reply is the same as for
23411step and continue.
c906108c 23412
ee2d5c50
AC
23413Reply:
23414@xref{Stop Reply Packets}, for the reply specifications.
23415
b8ff78ce
JB
23416@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23417@cindex @samp{A} packet
23418Initialized @code{argv[]} array passed into program. @var{arglen}
23419specifies the number of bytes in the hex encoded byte stream
23420@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23421
23422Reply:
23423@table @samp
23424@item OK
b8ff78ce
JB
23425The arguments were set.
23426@item E @var{NN}
23427An error occurred.
ee2d5c50
AC
23428@end table
23429
b8ff78ce
JB
23430@item b @var{baud}
23431@cindex @samp{b} packet
23432(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23433Change the serial line speed to @var{baud}.
23434
23435JTC: @emph{When does the transport layer state change? When it's
23436received, or after the ACK is transmitted. In either case, there are
23437problems if the command or the acknowledgment packet is dropped.}
23438
23439Stan: @emph{If people really wanted to add something like this, and get
23440it working for the first time, they ought to modify ser-unix.c to send
23441some kind of out-of-band message to a specially-setup stub and have the
23442switch happen "in between" packets, so that from remote protocol's point
23443of view, nothing actually happened.}
23444
b8ff78ce
JB
23445@item B @var{addr},@var{mode}
23446@cindex @samp{B} packet
8e04817f 23447Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23448breakpoint at @var{addr}.
23449
b8ff78ce 23450Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23451(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23452
4f553f88 23453@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23454@cindex @samp{c} packet
23455Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23456resume at current address.
c906108c 23457
ee2d5c50
AC
23458Reply:
23459@xref{Stop Reply Packets}, for the reply specifications.
23460
4f553f88 23461@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23462@cindex @samp{C} packet
8e04817f 23463Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23464@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23465
ee2d5c50
AC
23466Reply:
23467@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23468
b8ff78ce
JB
23469@item d
23470@cindex @samp{d} packet
ee2d5c50
AC
23471Toggle debug flag.
23472
b8ff78ce
JB
23473Don't use this packet; instead, define a general set packet
23474(@pxref{General Query Packets}).
ee2d5c50 23475
b8ff78ce
JB
23476@item D
23477@cindex @samp{D} packet
ee2d5c50 23478Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23479before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23480
23481Reply:
23482@table @samp
10fac096
NW
23483@item OK
23484for success
b8ff78ce 23485@item E @var{NN}
10fac096 23486for an error
ee2d5c50 23487@end table
c906108c 23488
b8ff78ce
JB
23489@item F @var{RC},@var{EE},@var{CF};@var{XX}
23490@cindex @samp{F} packet
23491A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23492This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23493Remote Protocol Extension}, for the specification.
ee2d5c50 23494
b8ff78ce 23495@item g
ee2d5c50 23496@anchor{read registers packet}
b8ff78ce 23497@cindex @samp{g} packet
ee2d5c50
AC
23498Read general registers.
23499
23500Reply:
23501@table @samp
23502@item @var{XX@dots{}}
8e04817f
AC
23503Each byte of register data is described by two hex digits. The bytes
23504with the register are transmitted in target byte order. The size of
b8ff78ce 23505each register and their position within the @samp{g} packet are
4a9bb1df
UW
23506determined by the @value{GDBN} internal gdbarch functions
23507@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23508specification of several standard @samp{g} packets is specified below.
23509@item E @var{NN}
ee2d5c50
AC
23510for an error.
23511@end table
c906108c 23512
b8ff78ce
JB
23513@item G @var{XX@dots{}}
23514@cindex @samp{G} packet
23515Write general registers. @xref{read registers packet}, for a
23516description of the @var{XX@dots{}} data.
ee2d5c50
AC
23517
23518Reply:
23519@table @samp
23520@item OK
23521for success
b8ff78ce 23522@item E @var{NN}
ee2d5c50
AC
23523for an error
23524@end table
23525
b8ff78ce
JB
23526@item H @var{c} @var{t}
23527@cindex @samp{H} packet
8e04817f 23528Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23529@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23530should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23531operations. The thread designator @var{t} may be @samp{-1}, meaning all
23532the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23533
23534Reply:
23535@table @samp
23536@item OK
23537for success
b8ff78ce 23538@item E @var{NN}
ee2d5c50
AC
23539for an error
23540@end table
c906108c 23541
8e04817f
AC
23542@c FIXME: JTC:
23543@c 'H': How restrictive (or permissive) is the thread model. If a
23544@c thread is selected and stopped, are other threads allowed
23545@c to continue to execute? As I mentioned above, I think the
23546@c semantics of each command when a thread is selected must be
23547@c described. For example:
23548@c
23549@c 'g': If the stub supports threads and a specific thread is
23550@c selected, returns the register block from that thread;
23551@c otherwise returns current registers.
23552@c
23553@c 'G' If the stub supports threads and a specific thread is
23554@c selected, sets the registers of the register block of
23555@c that thread; otherwise sets current registers.
c906108c 23556
b8ff78ce 23557@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23558@anchor{cycle step packet}
b8ff78ce
JB
23559@cindex @samp{i} packet
23560Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23561present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23562step starting at that address.
c906108c 23563
b8ff78ce
JB
23564@item I
23565@cindex @samp{I} packet
23566Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23567step packet}.
ee2d5c50 23568
b8ff78ce
JB
23569@item k
23570@cindex @samp{k} packet
23571Kill request.
c906108c 23572
ac282366 23573FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23574thread context has been selected (i.e.@: does 'k' kill only that
23575thread?)}.
c906108c 23576
b8ff78ce
JB
23577@item m @var{addr},@var{length}
23578@cindex @samp{m} packet
8e04817f 23579Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23580Note that @var{addr} may not be aligned to any particular boundary.
23581
23582The stub need not use any particular size or alignment when gathering
23583data from memory for the response; even if @var{addr} is word-aligned
23584and @var{length} is a multiple of the word size, the stub is free to
23585use byte accesses, or not. For this reason, this packet may not be
23586suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23587@cindex alignment of remote memory accesses
23588@cindex size of remote memory accesses
23589@cindex memory, alignment and size of remote accesses
c906108c 23590
ee2d5c50
AC
23591Reply:
23592@table @samp
23593@item @var{XX@dots{}}
599b237a 23594Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23595number. The reply may contain fewer bytes than requested if the
23596server was able to read only part of the region of memory.
23597@item E @var{NN}
ee2d5c50
AC
23598@var{NN} is errno
23599@end table
23600
b8ff78ce
JB
23601@item M @var{addr},@var{length}:@var{XX@dots{}}
23602@cindex @samp{M} packet
8e04817f 23603Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23604@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23605hexadecimal number.
ee2d5c50
AC
23606
23607Reply:
23608@table @samp
23609@item OK
23610for success
b8ff78ce 23611@item E @var{NN}
8e04817f
AC
23612for an error (this includes the case where only part of the data was
23613written).
ee2d5c50 23614@end table
c906108c 23615
b8ff78ce
JB
23616@item p @var{n}
23617@cindex @samp{p} packet
23618Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23619@xref{read registers packet}, for a description of how the returned
23620register value is encoded.
ee2d5c50
AC
23621
23622Reply:
23623@table @samp
2e868123
AC
23624@item @var{XX@dots{}}
23625the register's value
b8ff78ce 23626@item E @var{NN}
2e868123
AC
23627for an error
23628@item
23629Indicating an unrecognized @var{query}.
ee2d5c50
AC
23630@end table
23631
b8ff78ce 23632@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23633@anchor{write register packet}
b8ff78ce
JB
23634@cindex @samp{P} packet
23635Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23636number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23637digits for each byte in the register (target byte order).
c906108c 23638
ee2d5c50
AC
23639Reply:
23640@table @samp
23641@item OK
23642for success
b8ff78ce 23643@item E @var{NN}
ee2d5c50
AC
23644for an error
23645@end table
23646
5f3bebba
JB
23647@item q @var{name} @var{params}@dots{}
23648@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23649@cindex @samp{q} packet
b8ff78ce 23650@cindex @samp{Q} packet
5f3bebba
JB
23651General query (@samp{q}) and set (@samp{Q}). These packets are
23652described fully in @ref{General Query Packets}.
c906108c 23653
b8ff78ce
JB
23654@item r
23655@cindex @samp{r} packet
8e04817f 23656Reset the entire system.
c906108c 23657
b8ff78ce 23658Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23659
b8ff78ce
JB
23660@item R @var{XX}
23661@cindex @samp{R} packet
8e04817f 23662Restart the program being debugged. @var{XX}, while needed, is ignored.
2d717e4f 23663This packet is only available in extended mode (@pxref{extended mode}).
ee2d5c50 23664
8e04817f 23665The @samp{R} packet has no reply.
ee2d5c50 23666
4f553f88 23667@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23668@cindex @samp{s} packet
23669Single step. @var{addr} is the address at which to resume. If
23670@var{addr} is omitted, resume at same address.
c906108c 23671
ee2d5c50
AC
23672Reply:
23673@xref{Stop Reply Packets}, for the reply specifications.
23674
4f553f88 23675@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23676@anchor{step with signal packet}
b8ff78ce
JB
23677@cindex @samp{S} packet
23678Step with signal. This is analogous to the @samp{C} packet, but
23679requests a single-step, rather than a normal resumption of execution.
c906108c 23680
ee2d5c50
AC
23681Reply:
23682@xref{Stop Reply Packets}, for the reply specifications.
23683
b8ff78ce
JB
23684@item t @var{addr}:@var{PP},@var{MM}
23685@cindex @samp{t} packet
8e04817f 23686Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23687@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23688@var{addr} must be at least 3 digits.
c906108c 23689
b8ff78ce
JB
23690@item T @var{XX}
23691@cindex @samp{T} packet
ee2d5c50 23692Find out if the thread XX is alive.
c906108c 23693
ee2d5c50
AC
23694Reply:
23695@table @samp
23696@item OK
23697thread is still alive
b8ff78ce 23698@item E @var{NN}
ee2d5c50
AC
23699thread is dead
23700@end table
23701
b8ff78ce
JB
23702@item v
23703Packets starting with @samp{v} are identified by a multi-letter name,
23704up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23705
2d717e4f
DJ
23706@item vAttach;@var{pid}
23707@cindex @samp{vAttach} packet
23708Attach to a new process with the specified process ID. @var{pid} is a
23709hexadecimal integer identifying the process. If the stub is currently
23710controlling a process, it is killed. The attached process is stopped.
23711
23712This packet is only available in extended mode (@pxref{extended mode}).
23713
23714Reply:
23715@table @samp
23716@item E @var{nn}
23717for an error
23718@item @r{Any stop packet}
23719for success (@pxref{Stop Reply Packets})
23720@end table
23721
b8ff78ce
JB
23722@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23723@cindex @samp{vCont} packet
23724Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23725If an action is specified with no @var{tid}, then it is applied to any
23726threads that don't have a specific action specified; if no default action is
23727specified then other threads should remain stopped. Specifying multiple
23728default actions is an error; specifying no actions is also an error.
23729Thread IDs are specified in hexadecimal. Currently supported actions are:
23730
b8ff78ce 23731@table @samp
86d30acc
DJ
23732@item c
23733Continue.
b8ff78ce 23734@item C @var{sig}
86d30acc
DJ
23735Continue with signal @var{sig}. @var{sig} should be two hex digits.
23736@item s
23737Step.
b8ff78ce 23738@item S @var{sig}
86d30acc
DJ
23739Step with signal @var{sig}. @var{sig} should be two hex digits.
23740@end table
23741
23742The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23743not supported in @samp{vCont}.
86d30acc
DJ
23744
23745Reply:
23746@xref{Stop Reply Packets}, for the reply specifications.
23747
b8ff78ce
JB
23748@item vCont?
23749@cindex @samp{vCont?} packet
d3e8051b 23750Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23751
23752Reply:
23753@table @samp
b8ff78ce
JB
23754@item vCont@r{[};@var{action}@dots{}@r{]}
23755The @samp{vCont} packet is supported. Each @var{action} is a supported
23756command in the @samp{vCont} packet.
86d30acc 23757@item
b8ff78ce 23758The @samp{vCont} packet is not supported.
86d30acc 23759@end table
ee2d5c50 23760
a6b151f1
DJ
23761@item vFile:@var{operation}:@var{parameter}@dots{}
23762@cindex @samp{vFile} packet
23763Perform a file operation on the target system. For details,
23764see @ref{Host I/O Packets}.
23765
68437a39
DJ
23766@item vFlashErase:@var{addr},@var{length}
23767@cindex @samp{vFlashErase} packet
23768Direct the stub to erase @var{length} bytes of flash starting at
23769@var{addr}. The region may enclose any number of flash blocks, but
23770its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23771flash block size appearing in the memory map (@pxref{Memory Map
23772Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23773together, and sends a @samp{vFlashDone} request after each group; the
23774stub is allowed to delay erase operation until the @samp{vFlashDone}
23775packet is received.
23776
23777Reply:
23778@table @samp
23779@item OK
23780for success
23781@item E @var{NN}
23782for an error
23783@end table
23784
23785@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23786@cindex @samp{vFlashWrite} packet
23787Direct the stub to write data to flash address @var{addr}. The data
23788is passed in binary form using the same encoding as for the @samp{X}
23789packet (@pxref{Binary Data}). The memory ranges specified by
23790@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23791not overlap, and must appear in order of increasing addresses
23792(although @samp{vFlashErase} packets for higher addresses may already
23793have been received; the ordering is guaranteed only between
23794@samp{vFlashWrite} packets). If a packet writes to an address that was
23795neither erased by a preceding @samp{vFlashErase} packet nor by some other
23796target-specific method, the results are unpredictable.
23797
23798
23799Reply:
23800@table @samp
23801@item OK
23802for success
23803@item E.memtype
23804for vFlashWrite addressing non-flash memory
23805@item E @var{NN}
23806for an error
23807@end table
23808
23809@item vFlashDone
23810@cindex @samp{vFlashDone} packet
23811Indicate to the stub that flash programming operation is finished.
23812The stub is permitted to delay or batch the effects of a group of
23813@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23814@samp{vFlashDone} packet is received. The contents of the affected
23815regions of flash memory are unpredictable until the @samp{vFlashDone}
23816request is completed.
23817
2d717e4f
DJ
23818@item vRun;@var{filename}@r{[};@var{argument}@r{]}@dots{}
23819@cindex @samp{vRun} packet
23820Run the program @var{filename}, passing it each @var{argument} on its
23821command line. The file and arguments are hex-encoded strings. If
23822@var{filename} is an empty string, the stub may use a default program
23823(e.g.@: the last program run). The program is created in the stopped
23824state. If the stub is currently controlling a process, it is killed.
23825
23826This packet is only available in extended mode (@pxref{extended mode}).
23827
23828Reply:
23829@table @samp
23830@item E @var{nn}
23831for an error
23832@item @r{Any stop packet}
23833for success (@pxref{Stop Reply Packets})
23834@end table
23835
b8ff78ce 23836@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23837@anchor{X packet}
b8ff78ce
JB
23838@cindex @samp{X} packet
23839Write data to memory, where the data is transmitted in binary.
23840@var{addr} is address, @var{length} is number of bytes,
0876f84a 23841@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23842
ee2d5c50
AC
23843Reply:
23844@table @samp
23845@item OK
23846for success
b8ff78ce 23847@item E @var{NN}
ee2d5c50
AC
23848for an error
23849@end table
23850
b8ff78ce
JB
23851@item z @var{type},@var{addr},@var{length}
23852@itemx Z @var{type},@var{addr},@var{length}
2f870471 23853@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23854@cindex @samp{z} packet
23855@cindex @samp{Z} packets
23856Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23857watchpoint starting at address @var{address} and covering the next
23858@var{length} bytes.
ee2d5c50 23859
2f870471
AC
23860Each breakpoint and watchpoint packet @var{type} is documented
23861separately.
23862
512217c7
AC
23863@emph{Implementation notes: A remote target shall return an empty string
23864for an unrecognized breakpoint or watchpoint packet @var{type}. A
23865remote target shall support either both or neither of a given
b8ff78ce 23866@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23867avoid potential problems with duplicate packets, the operations should
23868be implemented in an idempotent way.}
23869
b8ff78ce
JB
23870@item z0,@var{addr},@var{length}
23871@itemx Z0,@var{addr},@var{length}
23872@cindex @samp{z0} packet
23873@cindex @samp{Z0} packet
23874Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23875@var{addr} of size @var{length}.
2f870471
AC
23876
23877A memory breakpoint is implemented by replacing the instruction at
23878@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23879@var{length} is used by targets that indicates the size of the
2f870471
AC
23880breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23881@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23882
2f870471
AC
23883@emph{Implementation note: It is possible for a target to copy or move
23884code that contains memory breakpoints (e.g., when implementing
23885overlays). The behavior of this packet, in the presence of such a
23886target, is not defined.}
c906108c 23887
ee2d5c50
AC
23888Reply:
23889@table @samp
2f870471
AC
23890@item OK
23891success
23892@item
23893not supported
b8ff78ce 23894@item E @var{NN}
ee2d5c50 23895for an error
2f870471
AC
23896@end table
23897
b8ff78ce
JB
23898@item z1,@var{addr},@var{length}
23899@itemx Z1,@var{addr},@var{length}
23900@cindex @samp{z1} packet
23901@cindex @samp{Z1} packet
23902Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23903address @var{addr} of size @var{length}.
2f870471
AC
23904
23905A hardware breakpoint is implemented using a mechanism that is not
23906dependant on being able to modify the target's memory.
23907
23908@emph{Implementation note: A hardware breakpoint is not affected by code
23909movement.}
23910
23911Reply:
23912@table @samp
ee2d5c50 23913@item OK
2f870471
AC
23914success
23915@item
23916not supported
b8ff78ce 23917@item E @var{NN}
2f870471
AC
23918for an error
23919@end table
23920
b8ff78ce
JB
23921@item z2,@var{addr},@var{length}
23922@itemx Z2,@var{addr},@var{length}
23923@cindex @samp{z2} packet
23924@cindex @samp{Z2} packet
23925Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23926
23927Reply:
23928@table @samp
23929@item OK
23930success
23931@item
23932not supported
b8ff78ce 23933@item E @var{NN}
2f870471
AC
23934for an error
23935@end table
23936
b8ff78ce
JB
23937@item z3,@var{addr},@var{length}
23938@itemx Z3,@var{addr},@var{length}
23939@cindex @samp{z3} packet
23940@cindex @samp{Z3} packet
23941Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23942
23943Reply:
23944@table @samp
23945@item OK
23946success
23947@item
23948not supported
b8ff78ce 23949@item E @var{NN}
2f870471
AC
23950for an error
23951@end table
23952
b8ff78ce
JB
23953@item z4,@var{addr},@var{length}
23954@itemx Z4,@var{addr},@var{length}
23955@cindex @samp{z4} packet
23956@cindex @samp{Z4} packet
23957Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23958
23959Reply:
23960@table @samp
23961@item OK
23962success
23963@item
23964not supported
b8ff78ce 23965@item E @var{NN}
2f870471 23966for an error
ee2d5c50
AC
23967@end table
23968
23969@end table
c906108c 23970
ee2d5c50
AC
23971@node Stop Reply Packets
23972@section Stop Reply Packets
23973@cindex stop reply packets
c906108c 23974
8e04817f
AC
23975The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23976receive any of the below as a reply. In the case of the @samp{C},
23977@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23978when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23979number} is defined by the header @file{include/gdb/signals.h} in the
23980@value{GDBN} source code.
c906108c 23981
b8ff78ce
JB
23982As in the description of request packets, we include spaces in the
23983reply templates for clarity; these are not part of the reply packet's
23984syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23985components.
c906108c 23986
b8ff78ce 23987@table @samp
ee2d5c50 23988
b8ff78ce 23989@item S @var{AA}
599b237a 23990The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23991number). This is equivalent to a @samp{T} response with no
23992@var{n}:@var{r} pairs.
c906108c 23993
b8ff78ce
JB
23994@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23995@cindex @samp{T} packet reply
599b237a 23996The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23997number). This is equivalent to an @samp{S} response, except that the
23998@samp{@var{n}:@var{r}} pairs can carry values of important registers
23999and other information directly in the stop reply packet, reducing
24000round-trip latency. Single-step and breakpoint traps are reported
24001this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
24002
24003@itemize @bullet
b8ff78ce 24004@item
599b237a 24005If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
24006corresponding @var{r} gives that register's value. @var{r} is a
24007series of bytes in target byte order, with each byte given by a
24008two-digit hex number.
cfa9d6d9 24009
b8ff78ce
JB
24010@item
24011If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
24012hex.
cfa9d6d9 24013
b8ff78ce 24014@item
cfa9d6d9
DJ
24015If @var{n} is a recognized @dfn{stop reason}, it describes a more
24016specific event that stopped the target. The currently defined stop
24017reasons are listed below. @var{aa} should be @samp{05}, the trap
24018signal. At most one stop reason should be present.
24019
b8ff78ce
JB
24020@item
24021Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
24022and go on to the next; this allows us to extend the protocol in the
24023future.
cfa9d6d9
DJ
24024@end itemize
24025
24026The currently defined stop reasons are:
24027
24028@table @samp
24029@item watch
24030@itemx rwatch
24031@itemx awatch
24032The packet indicates a watchpoint hit, and @var{r} is the data address, in
24033hex.
24034
24035@cindex shared library events, remote reply
24036@item library
24037The packet indicates that the loaded libraries have changed.
24038@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
24039list of loaded libraries. @var{r} is ignored.
24040@end table
ee2d5c50 24041
b8ff78ce 24042@item W @var{AA}
8e04817f 24043The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
24044applicable to certain targets.
24045
b8ff78ce 24046@item X @var{AA}
8e04817f 24047The process terminated with signal @var{AA}.
c906108c 24048
b8ff78ce
JB
24049@item O @var{XX}@dots{}
24050@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
24051written as the program's console output. This can happen at any time
24052while the program is running and the debugger should continue to wait
24053for @samp{W}, @samp{T}, etc.
0ce1b118 24054
b8ff78ce 24055@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
24056@var{call-id} is the identifier which says which host system call should
24057be called. This is just the name of the function. Translation into the
24058correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 24059@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
24060system calls.
24061
b8ff78ce
JB
24062@samp{@var{parameter}@dots{}} is a list of parameters as defined for
24063this very system call.
0ce1b118 24064
b8ff78ce
JB
24065The target replies with this packet when it expects @value{GDBN} to
24066call a host system call on behalf of the target. @value{GDBN} replies
24067with an appropriate @samp{F} packet and keeps up waiting for the next
24068reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
24069or @samp{s} action is expected to be continued. @xref{File-I/O Remote
24070Protocol Extension}, for more details.
0ce1b118 24071
ee2d5c50
AC
24072@end table
24073
24074@node General Query Packets
24075@section General Query Packets
9c16f35a 24076@cindex remote query requests
c906108c 24077
5f3bebba
JB
24078Packets starting with @samp{q} are @dfn{general query packets};
24079packets starting with @samp{Q} are @dfn{general set packets}. General
24080query and set packets are a semi-unified form for retrieving and
24081sending information to and from the stub.
24082
24083The initial letter of a query or set packet is followed by a name
24084indicating what sort of thing the packet applies to. For example,
24085@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
24086definitions with the stub. These packet names follow some
24087conventions:
24088
24089@itemize @bullet
24090@item
24091The name must not contain commas, colons or semicolons.
24092@item
24093Most @value{GDBN} query and set packets have a leading upper case
24094letter.
24095@item
24096The names of custom vendor packets should use a company prefix, in
24097lower case, followed by a period. For example, packets designed at
24098the Acme Corporation might begin with @samp{qacme.foo} (for querying
24099foos) or @samp{Qacme.bar} (for setting bars).
24100@end itemize
24101
aa56d27a
JB
24102The name of a query or set packet should be separated from any
24103parameters by a @samp{:}; the parameters themselves should be
24104separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
24105full packet name, and check for a separator or the end of the packet,
24106in case two packet names share a common prefix. New packets should not begin
24107with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
24108packets predate these conventions, and have arguments without any terminator
24109for the packet name; we suspect they are in widespread use in places that
24110are difficult to upgrade. The @samp{qC} packet has no arguments, but some
24111existing stubs (e.g.@: RedBoot) are known to not check for the end of the
24112packet.}.
c906108c 24113
b8ff78ce
JB
24114Like the descriptions of the other packets, each description here
24115has a template showing the packet's overall syntax, followed by an
24116explanation of the packet's meaning. We include spaces in some of the
24117templates for clarity; these are not part of the packet's syntax. No
24118@value{GDBN} packet uses spaces to separate its components.
24119
5f3bebba
JB
24120Here are the currently defined query and set packets:
24121
b8ff78ce 24122@table @samp
c906108c 24123
b8ff78ce 24124@item qC
9c16f35a 24125@cindex current thread, remote request
b8ff78ce 24126@cindex @samp{qC} packet
ee2d5c50
AC
24127Return the current thread id.
24128
24129Reply:
24130@table @samp
b8ff78ce 24131@item QC @var{pid}
599b237a 24132Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 24133@item @r{(anything else)}
ee2d5c50
AC
24134Any other reply implies the old pid.
24135@end table
24136
b8ff78ce 24137@item qCRC:@var{addr},@var{length}
ff2587ec 24138@cindex CRC of memory block, remote request
b8ff78ce
JB
24139@cindex @samp{qCRC} packet
24140Compute the CRC checksum of a block of memory.
ff2587ec
WZ
24141Reply:
24142@table @samp
b8ff78ce 24143@item E @var{NN}
ff2587ec 24144An error (such as memory fault)
b8ff78ce
JB
24145@item C @var{crc32}
24146The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
24147@end table
24148
b8ff78ce
JB
24149@item qfThreadInfo
24150@itemx qsThreadInfo
9c16f35a 24151@cindex list active threads, remote request
b8ff78ce
JB
24152@cindex @samp{qfThreadInfo} packet
24153@cindex @samp{qsThreadInfo} packet
24154Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
24155may be too many active threads to fit into one reply packet, this query
24156works iteratively: it may require more than one query/reply sequence to
24157obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
24158be the @samp{qfThreadInfo} query; subsequent queries in the
24159sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 24160
b8ff78ce 24161NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
24162
24163Reply:
24164@table @samp
b8ff78ce 24165@item m @var{id}
ee2d5c50 24166A single thread id
b8ff78ce 24167@item m @var{id},@var{id}@dots{}
ee2d5c50 24168a comma-separated list of thread ids
b8ff78ce
JB
24169@item l
24170(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
24171@end table
24172
24173In response to each query, the target will reply with a list of one or
e1aac25b
JB
24174more thread ids, in big-endian unsigned hex, separated by commas.
24175@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
24176ids (using the @samp{qs} form of the query), until the target responds
24177with @samp{l} (lower-case el, for @dfn{last}).
c906108c 24178
b8ff78ce 24179@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 24180@cindex get thread-local storage address, remote request
b8ff78ce 24181@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
24182Fetch the address associated with thread local storage specified
24183by @var{thread-id}, @var{offset}, and @var{lm}.
24184
24185@var{thread-id} is the (big endian, hex encoded) thread id associated with the
24186thread for which to fetch the TLS address.
24187
24188@var{offset} is the (big endian, hex encoded) offset associated with the
24189thread local variable. (This offset is obtained from the debug
24190information associated with the variable.)
24191
db2e3e2e 24192@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
24193the load module associated with the thread local storage. For example,
24194a @sc{gnu}/Linux system will pass the link map address of the shared
24195object associated with the thread local storage under consideration.
24196Other operating environments may choose to represent the load module
24197differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
24198
24199Reply:
b8ff78ce
JB
24200@table @samp
24201@item @var{XX}@dots{}
ff2587ec
WZ
24202Hex encoded (big endian) bytes representing the address of the thread
24203local storage requested.
24204
b8ff78ce
JB
24205@item E @var{nn}
24206An error occurred. @var{nn} are hex digits.
ff2587ec 24207
b8ff78ce
JB
24208@item
24209An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
24210@end table
24211
b8ff78ce 24212@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
24213Obtain thread information from RTOS. Where: @var{startflag} (one hex
24214digit) is one to indicate the first query and zero to indicate a
24215subsequent query; @var{threadcount} (two hex digits) is the maximum
24216number of threads the response packet can contain; and @var{nextthread}
24217(eight hex digits), for subsequent queries (@var{startflag} is zero), is
24218returned in the response as @var{argthread}.
ee2d5c50 24219
b8ff78ce 24220Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
24221
24222Reply:
24223@table @samp
b8ff78ce 24224@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
24225Where: @var{count} (two hex digits) is the number of threads being
24226returned; @var{done} (one hex digit) is zero to indicate more threads
24227and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 24228digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 24229is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 24230digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 24231@end table
c906108c 24232
b8ff78ce 24233@item qOffsets
9c16f35a 24234@cindex section offsets, remote request
b8ff78ce 24235@cindex @samp{qOffsets} packet
31d99776
DJ
24236Get section offsets that the target used when relocating the downloaded
24237image.
c906108c 24238
ee2d5c50
AC
24239Reply:
24240@table @samp
31d99776
DJ
24241@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
24242Relocate the @code{Text} section by @var{xxx} from its original address.
24243Relocate the @code{Data} section by @var{yyy} from its original address.
24244If the object file format provides segment information (e.g.@: @sc{elf}
24245@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
24246segments by the supplied offsets.
24247
24248@emph{Note: while a @code{Bss} offset may be included in the response,
24249@value{GDBN} ignores this and instead applies the @code{Data} offset
24250to the @code{Bss} section.}
24251
24252@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
24253Relocate the first segment of the object file, which conventionally
24254contains program code, to a starting address of @var{xxx}. If
24255@samp{DataSeg} is specified, relocate the second segment, which
24256conventionally contains modifiable data, to a starting address of
24257@var{yyy}. @value{GDBN} will report an error if the object file
24258does not contain segment information, or does not contain at least
24259as many segments as mentioned in the reply. Extra segments are
24260kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
24261@end table
24262
b8ff78ce 24263@item qP @var{mode} @var{threadid}
9c16f35a 24264@cindex thread information, remote request
b8ff78ce 24265@cindex @samp{qP} packet
8e04817f
AC
24266Returns information on @var{threadid}. Where: @var{mode} is a hex
24267encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 24268
aa56d27a
JB
24269Don't use this packet; use the @samp{qThreadExtraInfo} query instead
24270(see below).
24271
b8ff78ce 24272Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 24273
89be2091
DJ
24274@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
24275@cindex pass signals to inferior, remote request
24276@cindex @samp{QPassSignals} packet
23181151 24277@anchor{QPassSignals}
89be2091
DJ
24278Each listed @var{signal} should be passed directly to the inferior process.
24279Signals are numbered identically to continue packets and stop replies
24280(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
24281strictly greater than the previous item. These signals do not need to stop
24282the inferior, or be reported to @value{GDBN}. All other signals should be
24283reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
24284combine; any earlier @samp{QPassSignals} list is completely replaced by the
24285new list. This packet improves performance when using @samp{handle
24286@var{signal} nostop noprint pass}.
24287
24288Reply:
24289@table @samp
24290@item OK
24291The request succeeded.
24292
24293@item E @var{nn}
24294An error occurred. @var{nn} are hex digits.
24295
24296@item
24297An empty reply indicates that @samp{QPassSignals} is not supported by
24298the stub.
24299@end table
24300
24301Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 24302command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
24303This packet is not probed by default; the remote stub must request it,
24304by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24305
b8ff78ce 24306@item qRcmd,@var{command}
ff2587ec 24307@cindex execute remote command, remote request
b8ff78ce 24308@cindex @samp{qRcmd} packet
ff2587ec 24309@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
24310execution. Invalid commands should be reported using the output
24311string. Before the final result packet, the target may also respond
24312with a number of intermediate @samp{O@var{output}} console output
24313packets. @emph{Implementors should note that providing access to a
24314stubs's interpreter may have security implications}.
fa93a9d8 24315
ff2587ec
WZ
24316Reply:
24317@table @samp
24318@item OK
24319A command response with no output.
24320@item @var{OUTPUT}
24321A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 24322@item E @var{NN}
ff2587ec 24323Indicate a badly formed request.
b8ff78ce
JB
24324@item
24325An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 24326@end table
fa93a9d8 24327
aa56d27a
JB
24328(Note that the @code{qRcmd} packet's name is separated from the
24329command by a @samp{,}, not a @samp{:}, contrary to the naming
24330conventions above. Please don't use this packet as a model for new
24331packets.)
24332
be2a5f71
DJ
24333@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
24334@cindex supported packets, remote query
24335@cindex features of the remote protocol
24336@cindex @samp{qSupported} packet
0876f84a 24337@anchor{qSupported}
be2a5f71
DJ
24338Tell the remote stub about features supported by @value{GDBN}, and
24339query the stub for features it supports. This packet allows
24340@value{GDBN} and the remote stub to take advantage of each others'
24341features. @samp{qSupported} also consolidates multiple feature probes
24342at startup, to improve @value{GDBN} performance---a single larger
24343packet performs better than multiple smaller probe packets on
24344high-latency links. Some features may enable behavior which must not
24345be on by default, e.g.@: because it would confuse older clients or
24346stubs. Other features may describe packets which could be
24347automatically probed for, but are not. These features must be
24348reported before @value{GDBN} will use them. This ``default
24349unsupported'' behavior is not appropriate for all packets, but it
24350helps to keep the initial connection time under control with new
24351versions of @value{GDBN} which support increasing numbers of packets.
24352
24353Reply:
24354@table @samp
24355@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
24356The stub supports or does not support each returned @var{stubfeature},
24357depending on the form of each @var{stubfeature} (see below for the
24358possible forms).
24359@item
24360An empty reply indicates that @samp{qSupported} is not recognized,
24361or that no features needed to be reported to @value{GDBN}.
24362@end table
24363
24364The allowed forms for each feature (either a @var{gdbfeature} in the
24365@samp{qSupported} packet, or a @var{stubfeature} in the response)
24366are:
24367
24368@table @samp
24369@item @var{name}=@var{value}
24370The remote protocol feature @var{name} is supported, and associated
24371with the specified @var{value}. The format of @var{value} depends
24372on the feature, but it must not include a semicolon.
24373@item @var{name}+
24374The remote protocol feature @var{name} is supported, and does not
24375need an associated value.
24376@item @var{name}-
24377The remote protocol feature @var{name} is not supported.
24378@item @var{name}?
24379The remote protocol feature @var{name} may be supported, and
24380@value{GDBN} should auto-detect support in some other way when it is
24381needed. This form will not be used for @var{gdbfeature} notifications,
24382but may be used for @var{stubfeature} responses.
24383@end table
24384
24385Whenever the stub receives a @samp{qSupported} request, the
24386supplied set of @value{GDBN} features should override any previous
24387request. This allows @value{GDBN} to put the stub in a known
24388state, even if the stub had previously been communicating with
24389a different version of @value{GDBN}.
24390
24391No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24392are defined yet. Stubs should ignore any unknown values for
24393@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24394packet supports receiving packets of unlimited length (earlier
24395versions of @value{GDBN} may reject overly long responses). Values
24396for @var{gdbfeature} may be defined in the future to let the stub take
24397advantage of new features in @value{GDBN}, e.g.@: incompatible
24398improvements in the remote protocol---support for unlimited length
24399responses would be a @var{gdbfeature} example, if it were not implied by
24400the @samp{qSupported} query. The stub's reply should be independent
24401of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24402describes all the features it supports, and then the stub replies with
24403all the features it supports.
24404
24405Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24406responses, as long as each response uses one of the standard forms.
24407
24408Some features are flags. A stub which supports a flag feature
24409should respond with a @samp{+} form response. Other features
24410require values, and the stub should respond with an @samp{=}
24411form response.
24412
24413Each feature has a default value, which @value{GDBN} will use if
24414@samp{qSupported} is not available or if the feature is not mentioned
24415in the @samp{qSupported} response. The default values are fixed; a
24416stub is free to omit any feature responses that match the defaults.
24417
24418Not all features can be probed, but for those which can, the probing
24419mechanism is useful: in some cases, a stub's internal
24420architecture may not allow the protocol layer to know some information
24421about the underlying target in advance. This is especially common in
24422stubs which may be configured for multiple targets.
24423
24424These are the currently defined stub features and their properties:
24425
cfa9d6d9 24426@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24427@c NOTE: The first row should be @headitem, but we do not yet require
24428@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24429@item Feature Name
be2a5f71
DJ
24430@tab Value Required
24431@tab Default
24432@tab Probe Allowed
24433
24434@item @samp{PacketSize}
24435@tab Yes
24436@tab @samp{-}
24437@tab No
24438
0876f84a
DJ
24439@item @samp{qXfer:auxv:read}
24440@tab No
24441@tab @samp{-}
24442@tab Yes
24443
23181151
DJ
24444@item @samp{qXfer:features:read}
24445@tab No
24446@tab @samp{-}
24447@tab Yes
24448
cfa9d6d9
DJ
24449@item @samp{qXfer:libraries:read}
24450@tab No
24451@tab @samp{-}
24452@tab Yes
24453
68437a39
DJ
24454@item @samp{qXfer:memory-map:read}
24455@tab No
24456@tab @samp{-}
24457@tab Yes
24458
0e7f50da
UW
24459@item @samp{qXfer:spu:read}
24460@tab No
24461@tab @samp{-}
24462@tab Yes
24463
24464@item @samp{qXfer:spu:write}
24465@tab No
24466@tab @samp{-}
24467@tab Yes
24468
89be2091
DJ
24469@item @samp{QPassSignals}
24470@tab No
24471@tab @samp{-}
24472@tab Yes
24473
be2a5f71
DJ
24474@end multitable
24475
24476These are the currently defined stub features, in more detail:
24477
24478@table @samp
24479@cindex packet size, remote protocol
24480@item PacketSize=@var{bytes}
24481The remote stub can accept packets up to at least @var{bytes} in
24482length. @value{GDBN} will send packets up to this size for bulk
24483transfers, and will never send larger packets. This is a limit on the
24484data characters in the packet, including the frame and checksum.
24485There is no trailing NUL byte in a remote protocol packet; if the stub
24486stores packets in a NUL-terminated format, it should allow an extra
24487byte in its buffer for the NUL. If this stub feature is not supported,
24488@value{GDBN} guesses based on the size of the @samp{g} packet response.
24489
0876f84a
DJ
24490@item qXfer:auxv:read
24491The remote stub understands the @samp{qXfer:auxv:read} packet
24492(@pxref{qXfer auxiliary vector read}).
24493
23181151
DJ
24494@item qXfer:features:read
24495The remote stub understands the @samp{qXfer:features:read} packet
24496(@pxref{qXfer target description read}).
24497
cfa9d6d9
DJ
24498@item qXfer:libraries:read
24499The remote stub understands the @samp{qXfer:libraries:read} packet
24500(@pxref{qXfer library list read}).
24501
23181151
DJ
24502@item qXfer:memory-map:read
24503The remote stub understands the @samp{qXfer:memory-map:read} packet
24504(@pxref{qXfer memory map read}).
24505
0e7f50da
UW
24506@item qXfer:spu:read
24507The remote stub understands the @samp{qXfer:spu:read} packet
24508(@pxref{qXfer spu read}).
24509
24510@item qXfer:spu:write
24511The remote stub understands the @samp{qXfer:spu:write} packet
24512(@pxref{qXfer spu write}).
24513
23181151
DJ
24514@item QPassSignals
24515The remote stub understands the @samp{QPassSignals} packet
24516(@pxref{QPassSignals}).
24517
be2a5f71
DJ
24518@end table
24519
b8ff78ce 24520@item qSymbol::
ff2587ec 24521@cindex symbol lookup, remote request
b8ff78ce 24522@cindex @samp{qSymbol} packet
ff2587ec
WZ
24523Notify the target that @value{GDBN} is prepared to serve symbol lookup
24524requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24525
24526Reply:
ff2587ec 24527@table @samp
b8ff78ce 24528@item OK
ff2587ec 24529The target does not need to look up any (more) symbols.
b8ff78ce 24530@item qSymbol:@var{sym_name}
ff2587ec
WZ
24531The target requests the value of symbol @var{sym_name} (hex encoded).
24532@value{GDBN} may provide the value by using the
b8ff78ce
JB
24533@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24534below.
ff2587ec 24535@end table
83761cbd 24536
b8ff78ce 24537@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24538Set the value of @var{sym_name} to @var{sym_value}.
24539
24540@var{sym_name} (hex encoded) is the name of a symbol whose value the
24541target has previously requested.
24542
24543@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24544@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24545will be empty.
24546
24547Reply:
24548@table @samp
b8ff78ce 24549@item OK
ff2587ec 24550The target does not need to look up any (more) symbols.
b8ff78ce 24551@item qSymbol:@var{sym_name}
ff2587ec
WZ
24552The target requests the value of a new symbol @var{sym_name} (hex
24553encoded). @value{GDBN} will continue to supply the values of symbols
24554(if available), until the target ceases to request them.
fa93a9d8 24555@end table
0abb7bc7 24556
9d29849a
JB
24557@item QTDP
24558@itemx QTFrame
24559@xref{Tracepoint Packets}.
24560
b8ff78ce 24561@item qThreadExtraInfo,@var{id}
ff2587ec 24562@cindex thread attributes info, remote request
b8ff78ce
JB
24563@cindex @samp{qThreadExtraInfo} packet
24564Obtain a printable string description of a thread's attributes from
24565the target OS. @var{id} is a thread-id in big-endian hex. This
24566string may contain anything that the target OS thinks is interesting
24567for @value{GDBN} to tell the user about the thread. The string is
24568displayed in @value{GDBN}'s @code{info threads} display. Some
24569examples of possible thread extra info strings are @samp{Runnable}, or
24570@samp{Blocked on Mutex}.
ff2587ec
WZ
24571
24572Reply:
24573@table @samp
b8ff78ce
JB
24574@item @var{XX}@dots{}
24575Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24576comprising the printable string containing the extra information about
24577the thread's attributes.
ff2587ec 24578@end table
814e32d7 24579
aa56d27a
JB
24580(Note that the @code{qThreadExtraInfo} packet's name is separated from
24581the command by a @samp{,}, not a @samp{:}, contrary to the naming
24582conventions above. Please don't use this packet as a model for new
24583packets.)
24584
9d29849a
JB
24585@item QTStart
24586@itemx QTStop
24587@itemx QTinit
24588@itemx QTro
24589@itemx qTStatus
24590@xref{Tracepoint Packets}.
24591
0876f84a
DJ
24592@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24593@cindex read special object, remote request
24594@cindex @samp{qXfer} packet
68437a39 24595@anchor{qXfer read}
0876f84a
DJ
24596Read uninterpreted bytes from the target's special data area
24597identified by the keyword @var{object}. Request @var{length} bytes
24598starting at @var{offset} bytes into the data. The content and
0e7f50da 24599encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24600additional details about what data to access.
24601
24602Here are the specific requests of this form defined so far. All
24603@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24604formats, listed below.
24605
24606@table @samp
24607@item qXfer:auxv:read::@var{offset},@var{length}
24608@anchor{qXfer auxiliary vector read}
24609Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24610auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24611
24612This packet is not probed by default; the remote stub must request it,
89be2091 24613by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24614
23181151
DJ
24615@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24616@anchor{qXfer target description read}
24617Access the @dfn{target description}. @xref{Target Descriptions}. The
24618annex specifies which XML document to access. The main description is
24619always loaded from the @samp{target.xml} annex.
24620
24621This packet is not probed by default; the remote stub must request it,
24622by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24623
cfa9d6d9
DJ
24624@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24625@anchor{qXfer library list read}
24626Access the target's list of loaded libraries. @xref{Library List Format}.
24627The annex part of the generic @samp{qXfer} packet must be empty
24628(@pxref{qXfer read}).
24629
24630Targets which maintain a list of libraries in the program's memory do
24631not need to implement this packet; it is designed for platforms where
24632the operating system manages the list of loaded libraries.
24633
24634This packet is not probed by default; the remote stub must request it,
24635by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24636
68437a39
DJ
24637@item qXfer:memory-map:read::@var{offset},@var{length}
24638@anchor{qXfer memory map read}
79a6e687 24639Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24640annex part of the generic @samp{qXfer} packet must be empty
24641(@pxref{qXfer read}).
24642
0e7f50da
UW
24643This packet is not probed by default; the remote stub must request it,
24644by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24645
24646@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24647@anchor{qXfer spu read}
24648Read contents of an @code{spufs} file on the target system. The
24649annex specifies which file to read; it must be of the form
24650@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24651in the target process, and @var{name} identifes the @code{spufs} file
24652in that context to be accessed.
24653
68437a39
DJ
24654This packet is not probed by default; the remote stub must request it,
24655by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24656@end table
24657
0876f84a
DJ
24658Reply:
24659@table @samp
24660@item m @var{data}
24661Data @var{data} (@pxref{Binary Data}) has been read from the
24662target. There may be more data at a higher address (although
24663it is permitted to return @samp{m} even for the last valid
24664block of data, as long as at least one byte of data was read).
24665@var{data} may have fewer bytes than the @var{length} in the
24666request.
24667
24668@item l @var{data}
24669Data @var{data} (@pxref{Binary Data}) has been read from the target.
24670There is no more data to be read. @var{data} may have fewer bytes
24671than the @var{length} in the request.
24672
24673@item l
24674The @var{offset} in the request is at the end of the data.
24675There is no more data to be read.
24676
24677@item E00
24678The request was malformed, or @var{annex} was invalid.
24679
24680@item E @var{nn}
24681The offset was invalid, or there was an error encountered reading the data.
24682@var{nn} is a hex-encoded @code{errno} value.
24683
24684@item
24685An empty reply indicates the @var{object} string was not recognized by
24686the stub, or that the object does not support reading.
24687@end table
24688
24689@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24690@cindex write data into object, remote request
24691Write uninterpreted bytes into the target's special data area
24692identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24693into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24694(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24695is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24696to access.
24697
0e7f50da
UW
24698Here are the specific requests of this form defined so far. All
24699@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24700formats, listed below.
24701
24702@table @samp
24703@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24704@anchor{qXfer spu write}
24705Write @var{data} to an @code{spufs} file on the target system. The
24706annex specifies which file to write; it must be of the form
24707@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24708in the target process, and @var{name} identifes the @code{spufs} file
24709in that context to be accessed.
24710
24711This packet is not probed by default; the remote stub must request it,
24712by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24713@end table
0876f84a
DJ
24714
24715Reply:
24716@table @samp
24717@item @var{nn}
24718@var{nn} (hex encoded) is the number of bytes written.
24719This may be fewer bytes than supplied in the request.
24720
24721@item E00
24722The request was malformed, or @var{annex} was invalid.
24723
24724@item E @var{nn}
24725The offset was invalid, or there was an error encountered writing the data.
24726@var{nn} is a hex-encoded @code{errno} value.
24727
24728@item
24729An empty reply indicates the @var{object} string was not
24730recognized by the stub, or that the object does not support writing.
24731@end table
24732
24733@item qXfer:@var{object}:@var{operation}:@dots{}
24734Requests of this form may be added in the future. When a stub does
24735not recognize the @var{object} keyword, or its support for
24736@var{object} does not recognize the @var{operation} keyword, the stub
24737must respond with an empty packet.
24738
ee2d5c50
AC
24739@end table
24740
24741@node Register Packet Format
24742@section Register Packet Format
eb12ee30 24743
b8ff78ce 24744The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24745In the below, some thirty-two bit registers are transferred as
24746sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24747to fill the space allocated. Register bytes are transferred in target
24748byte order. The two nibbles within a register byte are transferred
ee2d5c50 24749most-significant - least-significant.
eb12ee30 24750
ee2d5c50 24751@table @r
eb12ee30 24752
8e04817f 24753@item MIPS32
ee2d5c50 24754
599b237a 24755All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2475632 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24757registers; fsr; fir; fp.
eb12ee30 24758
8e04817f 24759@item MIPS64
ee2d5c50 24760
599b237a 24761All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24762thirty-two bit registers such as @code{sr}). The ordering is the same
24763as @code{MIPS32}.
eb12ee30 24764
ee2d5c50
AC
24765@end table
24766
9d29849a
JB
24767@node Tracepoint Packets
24768@section Tracepoint Packets
24769@cindex tracepoint packets
24770@cindex packets, tracepoint
24771
24772Here we describe the packets @value{GDBN} uses to implement
24773tracepoints (@pxref{Tracepoints}).
24774
24775@table @samp
24776
24777@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24778Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24779is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24780the tracepoint is disabled. @var{step} is the tracepoint's step
24781count, and @var{pass} is its pass count. If the trailing @samp{-} is
24782present, further @samp{QTDP} packets will follow to specify this
24783tracepoint's actions.
24784
24785Replies:
24786@table @samp
24787@item OK
24788The packet was understood and carried out.
24789@item
24790The packet was not recognized.
24791@end table
24792
24793@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24794Define actions to be taken when a tracepoint is hit. @var{n} and
24795@var{addr} must be the same as in the initial @samp{QTDP} packet for
24796this tracepoint. This packet may only be sent immediately after
24797another @samp{QTDP} packet that ended with a @samp{-}. If the
24798trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24799specifying more actions for this tracepoint.
24800
24801In the series of action packets for a given tracepoint, at most one
24802can have an @samp{S} before its first @var{action}. If such a packet
24803is sent, it and the following packets define ``while-stepping''
24804actions. Any prior packets define ordinary actions --- that is, those
24805taken when the tracepoint is first hit. If no action packet has an
24806@samp{S}, then all the packets in the series specify ordinary
24807tracepoint actions.
24808
24809The @samp{@var{action}@dots{}} portion of the packet is a series of
24810actions, concatenated without separators. Each action has one of the
24811following forms:
24812
24813@table @samp
24814
24815@item R @var{mask}
24816Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24817a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24818@var{i} should be collected. (The least significant bit is numbered
24819zero.) Note that @var{mask} may be any number of digits long; it may
24820not fit in a 32-bit word.
24821
24822@item M @var{basereg},@var{offset},@var{len}
24823Collect @var{len} bytes of memory starting at the address in register
24824number @var{basereg}, plus @var{offset}. If @var{basereg} is
24825@samp{-1}, then the range has a fixed address: @var{offset} is the
24826address of the lowest byte to collect. The @var{basereg},
599b237a 24827@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24828values (the @samp{-1} value for @var{basereg} is a special case).
24829
24830@item X @var{len},@var{expr}
24831Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24832it directs. @var{expr} is an agent expression, as described in
24833@ref{Agent Expressions}. Each byte of the expression is encoded as a
24834two-digit hex number in the packet; @var{len} is the number of bytes
24835in the expression (and thus one-half the number of hex digits in the
24836packet).
24837
24838@end table
24839
24840Any number of actions may be packed together in a single @samp{QTDP}
24841packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24842length (400 bytes, for many stubs). There may be only one @samp{R}
24843action per tracepoint, and it must precede any @samp{M} or @samp{X}
24844actions. Any registers referred to by @samp{M} and @samp{X} actions
24845must be collected by a preceding @samp{R} action. (The
24846``while-stepping'' actions are treated as if they were attached to a
24847separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24848
24849Replies:
24850@table @samp
24851@item OK
24852The packet was understood and carried out.
24853@item
24854The packet was not recognized.
24855@end table
24856
24857@item QTFrame:@var{n}
24858Select the @var{n}'th tracepoint frame from the buffer, and use the
24859register and memory contents recorded there to answer subsequent
24860request packets from @value{GDBN}.
24861
24862A successful reply from the stub indicates that the stub has found the
24863requested frame. The response is a series of parts, concatenated
24864without separators, describing the frame we selected. Each part has
24865one of the following forms:
24866
24867@table @samp
24868@item F @var{f}
24869The selected frame is number @var{n} in the trace frame buffer;
599b237a 24870@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24871was no frame matching the criteria in the request packet.
24872
24873@item T @var{t}
24874The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24875@var{t} is a hexadecimal number.
9d29849a
JB
24876
24877@end table
24878
24879@item QTFrame:pc:@var{addr}
24880Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24881currently selected frame whose PC is @var{addr};
599b237a 24882@var{addr} is a hexadecimal number.
9d29849a
JB
24883
24884@item QTFrame:tdp:@var{t}
24885Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24886currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24887is a hexadecimal number.
9d29849a
JB
24888
24889@item QTFrame:range:@var{start}:@var{end}
24890Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24891currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24892and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24893numbers.
24894
24895@item QTFrame:outside:@var{start}:@var{end}
24896Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24897frame @emph{outside} the given range of addresses.
24898
24899@item QTStart
24900Begin the tracepoint experiment. Begin collecting data from tracepoint
24901hits in the trace frame buffer.
24902
24903@item QTStop
24904End the tracepoint experiment. Stop collecting trace frames.
24905
24906@item QTinit
24907Clear the table of tracepoints, and empty the trace frame buffer.
24908
24909@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24910Establish the given ranges of memory as ``transparent''. The stub
24911will answer requests for these ranges from memory's current contents,
24912if they were not collected as part of the tracepoint hit.
24913
24914@value{GDBN} uses this to mark read-only regions of memory, like those
24915containing program code. Since these areas never change, they should
24916still have the same contents they did when the tracepoint was hit, so
24917there's no reason for the stub to refuse to provide their contents.
24918
24919@item qTStatus
24920Ask the stub if there is a trace experiment running right now.
24921
24922Replies:
24923@table @samp
24924@item T0
24925There is no trace experiment running.
24926@item T1
24927There is a trace experiment running.
24928@end table
24929
24930@end table
24931
24932
a6b151f1
DJ
24933@node Host I/O Packets
24934@section Host I/O Packets
24935@cindex Host I/O, remote protocol
24936@cindex file transfer, remote protocol
24937
24938The @dfn{Host I/O} packets allow @value{GDBN} to perform I/O
24939operations on the far side of a remote link. For example, Host I/O is
24940used to upload and download files to a remote target with its own
24941filesystem. Host I/O uses the same constant values and data structure
24942layout as the target-initiated File-I/O protocol. However, the
24943Host I/O packets are structured differently. The target-initiated
24944protocol relies on target memory to store parameters and buffers.
24945Host I/O requests are initiated by @value{GDBN}, and the
24946target's memory is not involved. @xref{File-I/O Remote Protocol
24947Extension}, for more details on the target-initiated protocol.
24948
24949The Host I/O request packets all encode a single operation along with
24950its arguments. They have this format:
24951
24952@table @samp
24953
24954@item vFile:@var{operation}: @var{parameter}@dots{}
24955@var{operation} is the name of the particular request; the target
24956should compare the entire packet name up to the second colon when checking
24957for a supported operation. The format of @var{parameter} depends on
24958the operation. Numbers are always passed in hexadecimal. Negative
24959numbers have an explicit minus sign (i.e.@: two's complement is not
24960used). Strings (e.g.@: filenames) are encoded as a series of
24961hexadecimal bytes. The last argument to a system call may be a
24962buffer of escaped binary data (@pxref{Binary Data}).
24963
24964@end table
24965
24966The valid responses to Host I/O packets are:
24967
24968@table @samp
24969
24970@item F @var{result} [, @var{errno}] [; @var{attachment}]
24971@var{result} is the integer value returned by this operation, usually
24972non-negative for success and -1 for errors. If an error has occured,
24973@var{errno} will be included in the result. @var{errno} will have a
24974value defined by the File-I/O protocol (@pxref{Errno Values}). For
24975operations which return data, @var{attachment} supplies the data as a
24976binary buffer. Binary buffers in response packets are escaped in the
24977normal way (@pxref{Binary Data}). See the individual packet
24978documentation for the interpretation of @var{result} and
24979@var{attachment}.
24980
24981@item
24982An empty response indicates that this operation is not recognized.
24983
24984@end table
24985
24986These are the supported Host I/O operations:
24987
24988@table @samp
24989@item vFile:open: @var{pathname}, @var{flags}, @var{mode}
24990Open a file at @var{pathname} and return a file descriptor for it, or
24991return -1 if an error occurs. @var{pathname} is a string,
24992@var{flags} is an integer indicating a mask of open flags
24993(@pxref{Open Flags}), and @var{mode} is an integer indicating a mask
24994of mode bits to use if the file is created (@pxref{mode_t Values}).
c1c25a1a 24995@xref{open}, for details of the open flags and mode values.
a6b151f1
DJ
24996
24997@item vFile:close: @var{fd}
24998Close the open file corresponding to @var{fd} and return 0, or
24999-1 if an error occurs.
25000
25001@item vFile:pread: @var{fd}, @var{count}, @var{offset}
25002Read data from the open file corresponding to @var{fd}. Up to
25003@var{count} bytes will be read from the file, starting at @var{offset}
25004relative to the start of the file. The target may read fewer bytes;
25005common reasons include packet size limits and an end-of-file
25006condition. The number of bytes read is returned. Zero should only be
25007returned for a successful read at the end of the file, or if
25008@var{count} was zero.
25009
25010The data read should be returned as a binary attachment on success.
25011If zero bytes were read, the response should include an empty binary
25012attachment (i.e.@: a trailing semicolon). The return value is the
25013number of target bytes read; the binary attachment may be longer if
25014some characters were escaped.
25015
25016@item vFile:pwrite: @var{fd}, @var{offset}, @var{data}
25017Write @var{data} (a binary buffer) to the open file corresponding
25018to @var{fd}. Start the write at @var{offset} from the start of the
25019file. Unlike many @code{write} system calls, there is no
25020separate @var{count} argument; the length of @var{data} in the
25021packet is used. @samp{vFile:write} returns the number of bytes written,
25022which may be shorter than the length of @var{data}, or -1 if an
25023error occurred.
25024
25025@item vFile:unlink: @var{pathname}
25026Delete the file at @var{pathname} on the target. Return 0,
25027or -1 if an error occurs. @var{pathname} is a string.
25028
25029@end table
25030
9a6253be
KB
25031@node Interrupts
25032@section Interrupts
25033@cindex interrupts (remote protocol)
25034
25035When a program on the remote target is running, @value{GDBN} may
25036attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
25037control of which is specified via @value{GDBN}'s @samp{remotebreak}
25038setting (@pxref{set remotebreak}).
25039
25040The precise meaning of @code{BREAK} is defined by the transport
25041mechanism and may, in fact, be undefined. @value{GDBN} does
25042not currently define a @code{BREAK} mechanism for any of the network
25043interfaces.
25044
25045@samp{Ctrl-C}, on the other hand, is defined and implemented for all
25046transport mechanisms. It is represented by sending the single byte
25047@code{0x03} without any of the usual packet overhead described in
25048the Overview section (@pxref{Overview}). When a @code{0x03} byte is
25049transmitted as part of a packet, it is considered to be packet data
25050and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 25051(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
25052@code{0x03} as part of its packet.
25053
25054Stubs are not required to recognize these interrupt mechanisms and the
25055precise meaning associated with receipt of the interrupt is
25056implementation defined. If the stub is successful at interrupting the
25057running program, it is expected that it will send one of the Stop
25058Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
25059of successfully stopping the program. Interrupts received while the
25060program is stopped will be discarded.
25061
ee2d5c50
AC
25062@node Examples
25063@section Examples
eb12ee30 25064
8e04817f
AC
25065Example sequence of a target being re-started. Notice how the restart
25066does not get any direct output:
eb12ee30 25067
474c8240 25068@smallexample
d2c6833e
AC
25069-> @code{R00}
25070<- @code{+}
8e04817f 25071@emph{target restarts}
d2c6833e 25072-> @code{?}
8e04817f 25073<- @code{+}
d2c6833e
AC
25074<- @code{T001:1234123412341234}
25075-> @code{+}
474c8240 25076@end smallexample
eb12ee30 25077
8e04817f 25078Example sequence of a target being stepped by a single instruction:
eb12ee30 25079
474c8240 25080@smallexample
d2c6833e 25081-> @code{G1445@dots{}}
8e04817f 25082<- @code{+}
d2c6833e
AC
25083-> @code{s}
25084<- @code{+}
25085@emph{time passes}
25086<- @code{T001:1234123412341234}
8e04817f 25087-> @code{+}
d2c6833e 25088-> @code{g}
8e04817f 25089<- @code{+}
d2c6833e
AC
25090<- @code{1455@dots{}}
25091-> @code{+}
474c8240 25092@end smallexample
eb12ee30 25093
79a6e687
BW
25094@node File-I/O Remote Protocol Extension
25095@section File-I/O Remote Protocol Extension
0ce1b118
CV
25096@cindex File-I/O remote protocol extension
25097
25098@menu
25099* File-I/O Overview::
79a6e687
BW
25100* Protocol Basics::
25101* The F Request Packet::
25102* The F Reply Packet::
25103* The Ctrl-C Message::
0ce1b118 25104* Console I/O::
79a6e687 25105* List of Supported Calls::
db2e3e2e 25106* Protocol-specific Representation of Datatypes::
0ce1b118
CV
25107* Constants::
25108* File-I/O Examples::
25109@end menu
25110
25111@node File-I/O Overview
25112@subsection File-I/O Overview
25113@cindex file-i/o overview
25114
9c16f35a 25115The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 25116target to use the host's file system and console I/O to perform various
0ce1b118 25117system calls. System calls on the target system are translated into a
fc320d37
SL
25118remote protocol packet to the host system, which then performs the needed
25119actions and returns a response packet to the target system.
0ce1b118
CV
25120This simulates file system operations even on targets that lack file systems.
25121
fc320d37
SL
25122The protocol is defined to be independent of both the host and target systems.
25123It uses its own internal representation of datatypes and values. Both
0ce1b118 25124@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
25125translating the system-dependent value representations into the internal
25126protocol representations when data is transmitted.
0ce1b118 25127
fc320d37
SL
25128The communication is synchronous. A system call is possible only when
25129@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
25130or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 25131the target is stopped to allow deterministic access to the target's
fc320d37
SL
25132memory. Therefore File-I/O is not interruptible by target signals. On
25133the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 25134(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
25135
25136The target's request to perform a host system call does not finish
25137the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
25138after finishing the system call, the target returns to continuing the
25139previous activity (continue, step). No additional continue or step
25140request from @value{GDBN} is required.
25141
25142@smallexample
f7dc1244 25143(@value{GDBP}) continue
0ce1b118
CV
25144 <- target requests 'system call X'
25145 target is stopped, @value{GDBN} executes system call
3f94c067
BW
25146 -> @value{GDBN} returns result
25147 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
25148 <- target hits breakpoint and sends a Txx packet
25149@end smallexample
25150
fc320d37
SL
25151The protocol only supports I/O on the console and to regular files on
25152the host file system. Character or block special devices, pipes,
25153named pipes, sockets or any other communication method on the host
0ce1b118
CV
25154system are not supported by this protocol.
25155
79a6e687
BW
25156@node Protocol Basics
25157@subsection Protocol Basics
0ce1b118
CV
25158@cindex protocol basics, file-i/o
25159
fc320d37
SL
25160The File-I/O protocol uses the @code{F} packet as the request as well
25161as reply packet. Since a File-I/O system call can only occur when
25162@value{GDBN} is waiting for a response from the continuing or stepping target,
25163the File-I/O request is a reply that @value{GDBN} has to expect as a result
25164of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
25165This @code{F} packet contains all information needed to allow @value{GDBN}
25166to call the appropriate host system call:
25167
25168@itemize @bullet
b383017d 25169@item
0ce1b118
CV
25170A unique identifier for the requested system call.
25171
25172@item
25173All parameters to the system call. Pointers are given as addresses
25174in the target memory address space. Pointers to strings are given as
b383017d 25175pointer/length pair. Numerical values are given as they are.
db2e3e2e 25176Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
25177
25178@end itemize
25179
fc320d37 25180At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
25181
25182@itemize @bullet
b383017d 25183@item
fc320d37
SL
25184If the parameters include pointer values to data needed as input to a
25185system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
25186standard @code{m} packet request. This additional communication has to be
25187expected by the target implementation and is handled as any other @code{m}
25188packet.
25189
25190@item
25191@value{GDBN} translates all value from protocol representation to host
25192representation as needed. Datatypes are coerced into the host types.
25193
25194@item
fc320d37 25195@value{GDBN} calls the system call.
0ce1b118
CV
25196
25197@item
25198It then coerces datatypes back to protocol representation.
25199
25200@item
fc320d37
SL
25201If the system call is expected to return data in buffer space specified
25202by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
25203target using a @code{M} or @code{X} packet. This packet has to be expected
25204by the target implementation and is handled as any other @code{M} or @code{X}
25205packet.
25206
25207@end itemize
25208
25209Eventually @value{GDBN} replies with another @code{F} packet which contains all
25210necessary information for the target to continue. This at least contains
25211
25212@itemize @bullet
25213@item
25214Return value.
25215
25216@item
25217@code{errno}, if has been changed by the system call.
25218
25219@item
25220``Ctrl-C'' flag.
25221
25222@end itemize
25223
25224After having done the needed type and value coercion, the target continues
25225the latest continue or step action.
25226
79a6e687
BW
25227@node The F Request Packet
25228@subsection The @code{F} Request Packet
0ce1b118
CV
25229@cindex file-i/o request packet
25230@cindex @code{F} request packet
25231
25232The @code{F} request packet has the following format:
25233
25234@table @samp
fc320d37 25235@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
25236
25237@var{call-id} is the identifier to indicate the host system call to be called.
25238This is just the name of the function.
25239
fc320d37
SL
25240@var{parameter@dots{}} are the parameters to the system call.
25241Parameters are hexadecimal integer values, either the actual values in case
25242of scalar datatypes, pointers to target buffer space in case of compound
25243datatypes and unspecified memory areas, or pointer/length pairs in case
25244of string parameters. These are appended to the @var{call-id} as a
25245comma-delimited list. All values are transmitted in ASCII
25246string representation, pointer/length pairs separated by a slash.
0ce1b118 25247
b383017d 25248@end table
0ce1b118 25249
fc320d37 25250
0ce1b118 25251
79a6e687
BW
25252@node The F Reply Packet
25253@subsection The @code{F} Reply Packet
0ce1b118
CV
25254@cindex file-i/o reply packet
25255@cindex @code{F} reply packet
25256
25257The @code{F} reply packet has the following format:
25258
25259@table @samp
25260
d3bdde98 25261@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
25262
25263@var{retcode} is the return code of the system call as hexadecimal value.
25264
db2e3e2e
BW
25265@var{errno} is the @code{errno} set by the call, in protocol-specific
25266representation.
0ce1b118
CV
25267This parameter can be omitted if the call was successful.
25268
fc320d37
SL
25269@var{Ctrl-C flag} is only sent if the user requested a break. In this
25270case, @var{errno} must be sent as well, even if the call was successful.
25271The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
25272
25273@smallexample
25274F0,0,C
25275@end smallexample
25276
25277@noindent
fc320d37 25278or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
25279
25280@smallexample
25281F-1,4,C
25282@end smallexample
25283
25284@noindent
db2e3e2e 25285assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
25286
25287@end table
25288
0ce1b118 25289
79a6e687
BW
25290@node The Ctrl-C Message
25291@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
25292@cindex ctrl-c message, in file-i/o protocol
25293
c8aa23ab 25294If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 25295reply packet (@pxref{The F Reply Packet}),
fc320d37 25296the target should behave as if it had
0ce1b118 25297gotten a break message. The meaning for the target is ``system call
fc320d37 25298interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 25299(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 25300packet.
fc320d37
SL
25301
25302It's important for the target to know in which
25303state the system call was interrupted. There are two possible cases:
0ce1b118
CV
25304
25305@itemize @bullet
25306@item
25307The system call hasn't been performed on the host yet.
25308
25309@item
25310The system call on the host has been finished.
25311
25312@end itemize
25313
25314These two states can be distinguished by the target by the value of the
25315returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
25316call hasn't been performed. This is equivalent to the @code{EINTR} handling
25317on POSIX systems. In any other case, the target may presume that the
fc320d37 25318system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
25319as if the break message arrived right after the system call.
25320
fc320d37 25321@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
25322yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
25323@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
25324before the user requests a break, the full action must be finished by
25325@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
25326The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
25327or the full action has been completed.
25328
25329@node Console I/O
25330@subsection Console I/O
25331@cindex console i/o as part of file-i/o
25332
d3e8051b 25333By default and if not explicitly closed by the target system, the file
0ce1b118
CV
25334descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
25335on the @value{GDBN} console is handled as any other file output operation
25336(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
25337by @value{GDBN} so that after the target read request from file descriptor
253380 all following typing is buffered until either one of the following
25339conditions is met:
25340
25341@itemize @bullet
25342@item
c8aa23ab 25343The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
25344@code{read}
25345system call is treated as finished.
25346
25347@item
7f9087cb 25348The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 25349newline.
0ce1b118
CV
25350
25351@item
c8aa23ab
EZ
25352The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
25353character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
25354
25355@end itemize
25356
fc320d37
SL
25357If the user has typed more characters than fit in the buffer given to
25358the @code{read} call, the trailing characters are buffered in @value{GDBN} until
25359either another @code{read(0, @dots{})} is requested by the target, or debugging
25360is stopped at the user's request.
0ce1b118 25361
0ce1b118 25362
79a6e687
BW
25363@node List of Supported Calls
25364@subsection List of Supported Calls
0ce1b118
CV
25365@cindex list of supported file-i/o calls
25366
25367@menu
25368* open::
25369* close::
25370* read::
25371* write::
25372* lseek::
25373* rename::
25374* unlink::
25375* stat/fstat::
25376* gettimeofday::
25377* isatty::
25378* system::
25379@end menu
25380
25381@node open
25382@unnumberedsubsubsec open
25383@cindex open, file-i/o system call
25384
fc320d37
SL
25385@table @asis
25386@item Synopsis:
0ce1b118 25387@smallexample
0ce1b118
CV
25388int open(const char *pathname, int flags);
25389int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
25390@end smallexample
25391
fc320d37
SL
25392@item Request:
25393@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
25394
0ce1b118 25395@noindent
fc320d37 25396@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25397
25398@table @code
b383017d 25399@item O_CREAT
0ce1b118
CV
25400If the file does not exist it will be created. The host
25401rules apply as far as file ownership and time stamps
25402are concerned.
25403
b383017d 25404@item O_EXCL
fc320d37 25405When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
25406an error and open() fails.
25407
b383017d 25408@item O_TRUNC
0ce1b118 25409If the file already exists and the open mode allows
fc320d37
SL
25410writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
25411truncated to zero length.
0ce1b118 25412
b383017d 25413@item O_APPEND
0ce1b118
CV
25414The file is opened in append mode.
25415
b383017d 25416@item O_RDONLY
0ce1b118
CV
25417The file is opened for reading only.
25418
b383017d 25419@item O_WRONLY
0ce1b118
CV
25420The file is opened for writing only.
25421
b383017d 25422@item O_RDWR
0ce1b118 25423The file is opened for reading and writing.
fc320d37 25424@end table
0ce1b118
CV
25425
25426@noindent
fc320d37 25427Other bits are silently ignored.
0ce1b118 25428
0ce1b118
CV
25429
25430@noindent
fc320d37 25431@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
25432
25433@table @code
b383017d 25434@item S_IRUSR
0ce1b118
CV
25435User has read permission.
25436
b383017d 25437@item S_IWUSR
0ce1b118
CV
25438User has write permission.
25439
b383017d 25440@item S_IRGRP
0ce1b118
CV
25441Group has read permission.
25442
b383017d 25443@item S_IWGRP
0ce1b118
CV
25444Group has write permission.
25445
b383017d 25446@item S_IROTH
0ce1b118
CV
25447Others have read permission.
25448
b383017d 25449@item S_IWOTH
0ce1b118 25450Others have write permission.
fc320d37 25451@end table
0ce1b118
CV
25452
25453@noindent
fc320d37 25454Other bits are silently ignored.
0ce1b118 25455
0ce1b118 25456
fc320d37
SL
25457@item Return value:
25458@code{open} returns the new file descriptor or -1 if an error
25459occurred.
0ce1b118 25460
fc320d37 25461@item Errors:
0ce1b118
CV
25462
25463@table @code
b383017d 25464@item EEXIST
fc320d37 25465@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25466
b383017d 25467@item EISDIR
fc320d37 25468@var{pathname} refers to a directory.
0ce1b118 25469
b383017d 25470@item EACCES
0ce1b118
CV
25471The requested access is not allowed.
25472
25473@item ENAMETOOLONG
fc320d37 25474@var{pathname} was too long.
0ce1b118 25475
b383017d 25476@item ENOENT
fc320d37 25477A directory component in @var{pathname} does not exist.
0ce1b118 25478
b383017d 25479@item ENODEV
fc320d37 25480@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25481
b383017d 25482@item EROFS
fc320d37 25483@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25484write access was requested.
25485
b383017d 25486@item EFAULT
fc320d37 25487@var{pathname} is an invalid pointer value.
0ce1b118 25488
b383017d 25489@item ENOSPC
0ce1b118
CV
25490No space on device to create the file.
25491
b383017d 25492@item EMFILE
0ce1b118
CV
25493The process already has the maximum number of files open.
25494
b383017d 25495@item ENFILE
0ce1b118
CV
25496The limit on the total number of files open on the system
25497has been reached.
25498
b383017d 25499@item EINTR
0ce1b118
CV
25500The call was interrupted by the user.
25501@end table
25502
fc320d37
SL
25503@end table
25504
0ce1b118
CV
25505@node close
25506@unnumberedsubsubsec close
25507@cindex close, file-i/o system call
25508
fc320d37
SL
25509@table @asis
25510@item Synopsis:
0ce1b118 25511@smallexample
0ce1b118 25512int close(int fd);
fc320d37 25513@end smallexample
0ce1b118 25514
fc320d37
SL
25515@item Request:
25516@samp{Fclose,@var{fd}}
0ce1b118 25517
fc320d37
SL
25518@item Return value:
25519@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25520
fc320d37 25521@item Errors:
0ce1b118
CV
25522
25523@table @code
b383017d 25524@item EBADF
fc320d37 25525@var{fd} isn't a valid open file descriptor.
0ce1b118 25526
b383017d 25527@item EINTR
0ce1b118
CV
25528The call was interrupted by the user.
25529@end table
25530
fc320d37
SL
25531@end table
25532
0ce1b118
CV
25533@node read
25534@unnumberedsubsubsec read
25535@cindex read, file-i/o system call
25536
fc320d37
SL
25537@table @asis
25538@item Synopsis:
0ce1b118 25539@smallexample
0ce1b118 25540int read(int fd, void *buf, unsigned int count);
fc320d37 25541@end smallexample
0ce1b118 25542
fc320d37
SL
25543@item Request:
25544@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25545
fc320d37 25546@item Return value:
0ce1b118
CV
25547On success, the number of bytes read is returned.
25548Zero indicates end of file. If count is zero, read
b383017d 25549returns zero as well. On error, -1 is returned.
0ce1b118 25550
fc320d37 25551@item Errors:
0ce1b118
CV
25552
25553@table @code
b383017d 25554@item EBADF
fc320d37 25555@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25556reading.
25557
b383017d 25558@item EFAULT
fc320d37 25559@var{bufptr} is an invalid pointer value.
0ce1b118 25560
b383017d 25561@item EINTR
0ce1b118
CV
25562The call was interrupted by the user.
25563@end table
25564
fc320d37
SL
25565@end table
25566
0ce1b118
CV
25567@node write
25568@unnumberedsubsubsec write
25569@cindex write, file-i/o system call
25570
fc320d37
SL
25571@table @asis
25572@item Synopsis:
0ce1b118 25573@smallexample
0ce1b118 25574int write(int fd, const void *buf, unsigned int count);
fc320d37 25575@end smallexample
0ce1b118 25576
fc320d37
SL
25577@item Request:
25578@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25579
fc320d37 25580@item Return value:
0ce1b118
CV
25581On success, the number of bytes written are returned.
25582Zero indicates nothing was written. On error, -1
25583is returned.
25584
fc320d37 25585@item Errors:
0ce1b118
CV
25586
25587@table @code
b383017d 25588@item EBADF
fc320d37 25589@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25590writing.
25591
b383017d 25592@item EFAULT
fc320d37 25593@var{bufptr} is an invalid pointer value.
0ce1b118 25594
b383017d 25595@item EFBIG
0ce1b118 25596An attempt was made to write a file that exceeds the
db2e3e2e 25597host-specific maximum file size allowed.
0ce1b118 25598
b383017d 25599@item ENOSPC
0ce1b118
CV
25600No space on device to write the data.
25601
b383017d 25602@item EINTR
0ce1b118
CV
25603The call was interrupted by the user.
25604@end table
25605
fc320d37
SL
25606@end table
25607
0ce1b118
CV
25608@node lseek
25609@unnumberedsubsubsec lseek
25610@cindex lseek, file-i/o system call
25611
fc320d37
SL
25612@table @asis
25613@item Synopsis:
0ce1b118 25614@smallexample
0ce1b118 25615long lseek (int fd, long offset, int flag);
0ce1b118
CV
25616@end smallexample
25617
fc320d37
SL
25618@item Request:
25619@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25620
25621@var{flag} is one of:
0ce1b118
CV
25622
25623@table @code
b383017d 25624@item SEEK_SET
fc320d37 25625The offset is set to @var{offset} bytes.
0ce1b118 25626
b383017d 25627@item SEEK_CUR
fc320d37 25628The offset is set to its current location plus @var{offset}
0ce1b118
CV
25629bytes.
25630
b383017d 25631@item SEEK_END
fc320d37 25632The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25633bytes.
25634@end table
25635
fc320d37 25636@item Return value:
0ce1b118
CV
25637On success, the resulting unsigned offset in bytes from
25638the beginning of the file is returned. Otherwise, a
25639value of -1 is returned.
25640
fc320d37 25641@item Errors:
0ce1b118
CV
25642
25643@table @code
b383017d 25644@item EBADF
fc320d37 25645@var{fd} is not a valid open file descriptor.
0ce1b118 25646
b383017d 25647@item ESPIPE
fc320d37 25648@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25649
b383017d 25650@item EINVAL
fc320d37 25651@var{flag} is not a proper value.
0ce1b118 25652
b383017d 25653@item EINTR
0ce1b118
CV
25654The call was interrupted by the user.
25655@end table
25656
fc320d37
SL
25657@end table
25658
0ce1b118
CV
25659@node rename
25660@unnumberedsubsubsec rename
25661@cindex rename, file-i/o system call
25662
fc320d37
SL
25663@table @asis
25664@item Synopsis:
0ce1b118 25665@smallexample
0ce1b118 25666int rename(const char *oldpath, const char *newpath);
fc320d37 25667@end smallexample
0ce1b118 25668
fc320d37
SL
25669@item Request:
25670@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25671
fc320d37 25672@item Return value:
0ce1b118
CV
25673On success, zero is returned. On error, -1 is returned.
25674
fc320d37 25675@item Errors:
0ce1b118
CV
25676
25677@table @code
b383017d 25678@item EISDIR
fc320d37 25679@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25680directory.
25681
b383017d 25682@item EEXIST
fc320d37 25683@var{newpath} is a non-empty directory.
0ce1b118 25684
b383017d 25685@item EBUSY
fc320d37 25686@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25687process.
25688
b383017d 25689@item EINVAL
0ce1b118
CV
25690An attempt was made to make a directory a subdirectory
25691of itself.
25692
b383017d 25693@item ENOTDIR
fc320d37
SL
25694A component used as a directory in @var{oldpath} or new
25695path is not a directory. Or @var{oldpath} is a directory
25696and @var{newpath} exists but is not a directory.
0ce1b118 25697
b383017d 25698@item EFAULT
fc320d37 25699@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25700
b383017d 25701@item EACCES
0ce1b118
CV
25702No access to the file or the path of the file.
25703
25704@item ENAMETOOLONG
b383017d 25705
fc320d37 25706@var{oldpath} or @var{newpath} was too long.
0ce1b118 25707
b383017d 25708@item ENOENT
fc320d37 25709A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25710
b383017d 25711@item EROFS
0ce1b118
CV
25712The file is on a read-only filesystem.
25713
b383017d 25714@item ENOSPC
0ce1b118
CV
25715The device containing the file has no room for the new
25716directory entry.
25717
b383017d 25718@item EINTR
0ce1b118
CV
25719The call was interrupted by the user.
25720@end table
25721
fc320d37
SL
25722@end table
25723
0ce1b118
CV
25724@node unlink
25725@unnumberedsubsubsec unlink
25726@cindex unlink, file-i/o system call
25727
fc320d37
SL
25728@table @asis
25729@item Synopsis:
0ce1b118 25730@smallexample
0ce1b118 25731int unlink(const char *pathname);
fc320d37 25732@end smallexample
0ce1b118 25733
fc320d37
SL
25734@item Request:
25735@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25736
fc320d37 25737@item Return value:
0ce1b118
CV
25738On success, zero is returned. On error, -1 is returned.
25739
fc320d37 25740@item Errors:
0ce1b118
CV
25741
25742@table @code
b383017d 25743@item EACCES
0ce1b118
CV
25744No access to the file or the path of the file.
25745
b383017d 25746@item EPERM
0ce1b118
CV
25747The system does not allow unlinking of directories.
25748
b383017d 25749@item EBUSY
fc320d37 25750The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25751being used by another process.
25752
b383017d 25753@item EFAULT
fc320d37 25754@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25755
25756@item ENAMETOOLONG
fc320d37 25757@var{pathname} was too long.
0ce1b118 25758
b383017d 25759@item ENOENT
fc320d37 25760A directory component in @var{pathname} does not exist.
0ce1b118 25761
b383017d 25762@item ENOTDIR
0ce1b118
CV
25763A component of the path is not a directory.
25764
b383017d 25765@item EROFS
0ce1b118
CV
25766The file is on a read-only filesystem.
25767
b383017d 25768@item EINTR
0ce1b118
CV
25769The call was interrupted by the user.
25770@end table
25771
fc320d37
SL
25772@end table
25773
0ce1b118
CV
25774@node stat/fstat
25775@unnumberedsubsubsec stat/fstat
25776@cindex fstat, file-i/o system call
25777@cindex stat, file-i/o system call
25778
fc320d37
SL
25779@table @asis
25780@item Synopsis:
0ce1b118 25781@smallexample
0ce1b118
CV
25782int stat(const char *pathname, struct stat *buf);
25783int fstat(int fd, struct stat *buf);
fc320d37 25784@end smallexample
0ce1b118 25785
fc320d37
SL
25786@item Request:
25787@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25788@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25789
fc320d37 25790@item Return value:
0ce1b118
CV
25791On success, zero is returned. On error, -1 is returned.
25792
fc320d37 25793@item Errors:
0ce1b118
CV
25794
25795@table @code
b383017d 25796@item EBADF
fc320d37 25797@var{fd} is not a valid open file.
0ce1b118 25798
b383017d 25799@item ENOENT
fc320d37 25800A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25801path is an empty string.
25802
b383017d 25803@item ENOTDIR
0ce1b118
CV
25804A component of the path is not a directory.
25805
b383017d 25806@item EFAULT
fc320d37 25807@var{pathnameptr} is an invalid pointer value.
0ce1b118 25808
b383017d 25809@item EACCES
0ce1b118
CV
25810No access to the file or the path of the file.
25811
25812@item ENAMETOOLONG
fc320d37 25813@var{pathname} was too long.
0ce1b118 25814
b383017d 25815@item EINTR
0ce1b118
CV
25816The call was interrupted by the user.
25817@end table
25818
fc320d37
SL
25819@end table
25820
0ce1b118
CV
25821@node gettimeofday
25822@unnumberedsubsubsec gettimeofday
25823@cindex gettimeofday, file-i/o system call
25824
fc320d37
SL
25825@table @asis
25826@item Synopsis:
0ce1b118 25827@smallexample
0ce1b118 25828int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25829@end smallexample
0ce1b118 25830
fc320d37
SL
25831@item Request:
25832@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25833
fc320d37 25834@item Return value:
0ce1b118
CV
25835On success, 0 is returned, -1 otherwise.
25836
fc320d37 25837@item Errors:
0ce1b118
CV
25838
25839@table @code
b383017d 25840@item EINVAL
fc320d37 25841@var{tz} is a non-NULL pointer.
0ce1b118 25842
b383017d 25843@item EFAULT
fc320d37
SL
25844@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25845@end table
25846
0ce1b118
CV
25847@end table
25848
25849@node isatty
25850@unnumberedsubsubsec isatty
25851@cindex isatty, file-i/o system call
25852
fc320d37
SL
25853@table @asis
25854@item Synopsis:
0ce1b118 25855@smallexample
0ce1b118 25856int isatty(int fd);
fc320d37 25857@end smallexample
0ce1b118 25858
fc320d37
SL
25859@item Request:
25860@samp{Fisatty,@var{fd}}
0ce1b118 25861
fc320d37
SL
25862@item Return value:
25863Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25864
fc320d37 25865@item Errors:
0ce1b118
CV
25866
25867@table @code
b383017d 25868@item EINTR
0ce1b118
CV
25869The call was interrupted by the user.
25870@end table
25871
fc320d37
SL
25872@end table
25873
25874Note that the @code{isatty} call is treated as a special case: it returns
258751 to the target if the file descriptor is attached
25876to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25877would require implementing @code{ioctl} and would be more complex than
25878needed.
25879
25880
0ce1b118
CV
25881@node system
25882@unnumberedsubsubsec system
25883@cindex system, file-i/o system call
25884
fc320d37
SL
25885@table @asis
25886@item Synopsis:
0ce1b118 25887@smallexample
0ce1b118 25888int system(const char *command);
fc320d37 25889@end smallexample
0ce1b118 25890
fc320d37
SL
25891@item Request:
25892@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25893
fc320d37 25894@item Return value:
5600ea19
NS
25895If @var{len} is zero, the return value indicates whether a shell is
25896available. A zero return value indicates a shell is not available.
25897For non-zero @var{len}, the value returned is -1 on error and the
25898return status of the command otherwise. Only the exit status of the
25899command is returned, which is extracted from the host's @code{system}
25900return value by calling @code{WEXITSTATUS(retval)}. In case
25901@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25902
fc320d37 25903@item Errors:
0ce1b118
CV
25904
25905@table @code
b383017d 25906@item EINTR
0ce1b118
CV
25907The call was interrupted by the user.
25908@end table
25909
fc320d37
SL
25910@end table
25911
25912@value{GDBN} takes over the full task of calling the necessary host calls
25913to perform the @code{system} call. The return value of @code{system} on
25914the host is simplified before it's returned
25915to the target. Any termination signal information from the child process
25916is discarded, and the return value consists
25917entirely of the exit status of the called command.
25918
25919Due to security concerns, the @code{system} call is by default refused
25920by @value{GDBN}. The user has to allow this call explicitly with the
25921@code{set remote system-call-allowed 1} command.
25922
25923@table @code
25924@item set remote system-call-allowed
25925@kindex set remote system-call-allowed
25926Control whether to allow the @code{system} calls in the File I/O
25927protocol for the remote target. The default is zero (disabled).
25928
25929@item show remote system-call-allowed
25930@kindex show remote system-call-allowed
25931Show whether the @code{system} calls are allowed in the File I/O
25932protocol.
25933@end table
25934
db2e3e2e
BW
25935@node Protocol-specific Representation of Datatypes
25936@subsection Protocol-specific Representation of Datatypes
25937@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25938
25939@menu
79a6e687
BW
25940* Integral Datatypes::
25941* Pointer Values::
25942* Memory Transfer::
0ce1b118
CV
25943* struct stat::
25944* struct timeval::
25945@end menu
25946
79a6e687
BW
25947@node Integral Datatypes
25948@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25949@cindex integral datatypes, in file-i/o protocol
25950
fc320d37
SL
25951The integral datatypes used in the system calls are @code{int},
25952@code{unsigned int}, @code{long}, @code{unsigned long},
25953@code{mode_t}, and @code{time_t}.
0ce1b118 25954
fc320d37 25955@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25956implemented as 32 bit values in this protocol.
25957
fc320d37 25958@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25959
0ce1b118
CV
25960@xref{Limits}, for corresponding MIN and MAX values (similar to those
25961in @file{limits.h}) to allow range checking on host and target.
25962
25963@code{time_t} datatypes are defined as seconds since the Epoch.
25964
25965All integral datatypes transferred as part of a memory read or write of a
25966structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25967byte order.
25968
79a6e687
BW
25969@node Pointer Values
25970@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25971@cindex pointer values, in file-i/o protocol
25972
25973Pointers to target data are transmitted as they are. An exception
25974is made for pointers to buffers for which the length isn't
25975transmitted as part of the function call, namely strings. Strings
25976are transmitted as a pointer/length pair, both as hex values, e.g.@:
25977
25978@smallexample
25979@code{1aaf/12}
25980@end smallexample
25981
25982@noindent
25983which is a pointer to data of length 18 bytes at position 0x1aaf.
25984The length is defined as the full string length in bytes, including
fc320d37
SL
25985the trailing null byte. For example, the string @code{"hello world"}
25986at address 0x123456 is transmitted as
0ce1b118
CV
25987
25988@smallexample
fc320d37 25989@code{123456/d}
0ce1b118
CV
25990@end smallexample
25991
79a6e687
BW
25992@node Memory Transfer
25993@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25994@cindex memory transfer, in file-i/o protocol
25995
25996Structured data which is transferred using a memory read or write (for
db2e3e2e 25997example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25998with all scalar multibyte datatypes being big endian. Translation to
25999this representation needs to be done both by the target before the @code{F}
26000packet is sent, and by @value{GDBN} before
26001it transfers memory to the target. Transferred pointers to structured
26002data should point to the already-coerced data at any time.
0ce1b118 26003
0ce1b118
CV
26004
26005@node struct stat
26006@unnumberedsubsubsec struct stat
26007@cindex struct stat, in file-i/o protocol
26008
fc320d37
SL
26009The buffer of type @code{struct stat} used by the target and @value{GDBN}
26010is defined as follows:
0ce1b118
CV
26011
26012@smallexample
26013struct stat @{
26014 unsigned int st_dev; /* device */
26015 unsigned int st_ino; /* inode */
26016 mode_t st_mode; /* protection */
26017 unsigned int st_nlink; /* number of hard links */
26018 unsigned int st_uid; /* user ID of owner */
26019 unsigned int st_gid; /* group ID of owner */
26020 unsigned int st_rdev; /* device type (if inode device) */
26021 unsigned long st_size; /* total size, in bytes */
26022 unsigned long st_blksize; /* blocksize for filesystem I/O */
26023 unsigned long st_blocks; /* number of blocks allocated */
26024 time_t st_atime; /* time of last access */
26025 time_t st_mtime; /* time of last modification */
26026 time_t st_ctime; /* time of last change */
26027@};
26028@end smallexample
26029
fc320d37 26030The integral datatypes conform to the definitions given in the
79a6e687 26031appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26032structure is of size 64 bytes.
26033
26034The values of several fields have a restricted meaning and/or
26035range of values.
26036
fc320d37 26037@table @code
0ce1b118 26038
fc320d37
SL
26039@item st_dev
26040A value of 0 represents a file, 1 the console.
0ce1b118 26041
fc320d37
SL
26042@item st_ino
26043No valid meaning for the target. Transmitted unchanged.
0ce1b118 26044
fc320d37
SL
26045@item st_mode
26046Valid mode bits are described in @ref{Constants}. Any other
26047bits have currently no meaning for the target.
0ce1b118 26048
fc320d37
SL
26049@item st_uid
26050@itemx st_gid
26051@itemx st_rdev
26052No valid meaning for the target. Transmitted unchanged.
0ce1b118 26053
fc320d37
SL
26054@item st_atime
26055@itemx st_mtime
26056@itemx st_ctime
26057These values have a host and file system dependent
26058accuracy. Especially on Windows hosts, the file system may not
26059support exact timing values.
26060@end table
0ce1b118 26061
fc320d37
SL
26062The target gets a @code{struct stat} of the above representation and is
26063responsible for coercing it to the target representation before
0ce1b118
CV
26064continuing.
26065
fc320d37
SL
26066Note that due to size differences between the host, target, and protocol
26067representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
26068get truncated on the target.
26069
26070@node struct timeval
26071@unnumberedsubsubsec struct timeval
26072@cindex struct timeval, in file-i/o protocol
26073
fc320d37 26074The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
26075is defined as follows:
26076
26077@smallexample
b383017d 26078struct timeval @{
0ce1b118
CV
26079 time_t tv_sec; /* second */
26080 long tv_usec; /* microsecond */
26081@};
26082@end smallexample
26083
fc320d37 26084The integral datatypes conform to the definitions given in the
79a6e687 26085appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
26086structure is of size 8 bytes.
26087
26088@node Constants
26089@subsection Constants
26090@cindex constants, in file-i/o protocol
26091
26092The following values are used for the constants inside of the
fc320d37 26093protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
26094values before and after the call as needed.
26095
26096@menu
79a6e687
BW
26097* Open Flags::
26098* mode_t Values::
26099* Errno Values::
26100* Lseek Flags::
0ce1b118
CV
26101* Limits::
26102@end menu
26103
79a6e687
BW
26104@node Open Flags
26105@unnumberedsubsubsec Open Flags
0ce1b118
CV
26106@cindex open flags, in file-i/o protocol
26107
26108All values are given in hexadecimal representation.
26109
26110@smallexample
26111 O_RDONLY 0x0
26112 O_WRONLY 0x1
26113 O_RDWR 0x2
26114 O_APPEND 0x8
26115 O_CREAT 0x200
26116 O_TRUNC 0x400
26117 O_EXCL 0x800
26118@end smallexample
26119
79a6e687
BW
26120@node mode_t Values
26121@unnumberedsubsubsec mode_t Values
0ce1b118
CV
26122@cindex mode_t values, in file-i/o protocol
26123
26124All values are given in octal representation.
26125
26126@smallexample
26127 S_IFREG 0100000
26128 S_IFDIR 040000
26129 S_IRUSR 0400
26130 S_IWUSR 0200
26131 S_IXUSR 0100
26132 S_IRGRP 040
26133 S_IWGRP 020
26134 S_IXGRP 010
26135 S_IROTH 04
26136 S_IWOTH 02
26137 S_IXOTH 01
26138@end smallexample
26139
79a6e687
BW
26140@node Errno Values
26141@unnumberedsubsubsec Errno Values
0ce1b118
CV
26142@cindex errno values, in file-i/o protocol
26143
26144All values are given in decimal representation.
26145
26146@smallexample
26147 EPERM 1
26148 ENOENT 2
26149 EINTR 4
26150 EBADF 9
26151 EACCES 13
26152 EFAULT 14
26153 EBUSY 16
26154 EEXIST 17
26155 ENODEV 19
26156 ENOTDIR 20
26157 EISDIR 21
26158 EINVAL 22
26159 ENFILE 23
26160 EMFILE 24
26161 EFBIG 27
26162 ENOSPC 28
26163 ESPIPE 29
26164 EROFS 30
26165 ENAMETOOLONG 91
26166 EUNKNOWN 9999
26167@end smallexample
26168
fc320d37 26169 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
26170 any error value not in the list of supported error numbers.
26171
79a6e687
BW
26172@node Lseek Flags
26173@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
26174@cindex lseek flags, in file-i/o protocol
26175
26176@smallexample
26177 SEEK_SET 0
26178 SEEK_CUR 1
26179 SEEK_END 2
26180@end smallexample
26181
26182@node Limits
26183@unnumberedsubsubsec Limits
26184@cindex limits, in file-i/o protocol
26185
26186All values are given in decimal representation.
26187
26188@smallexample
26189 INT_MIN -2147483648
26190 INT_MAX 2147483647
26191 UINT_MAX 4294967295
26192 LONG_MIN -9223372036854775808
26193 LONG_MAX 9223372036854775807
26194 ULONG_MAX 18446744073709551615
26195@end smallexample
26196
26197@node File-I/O Examples
26198@subsection File-I/O Examples
26199@cindex file-i/o examples
26200
26201Example sequence of a write call, file descriptor 3, buffer is at target
26202address 0x1234, 6 bytes should be written:
26203
26204@smallexample
26205<- @code{Fwrite,3,1234,6}
26206@emph{request memory read from target}
26207-> @code{m1234,6}
26208<- XXXXXX
26209@emph{return "6 bytes written"}
26210-> @code{F6}
26211@end smallexample
26212
26213Example sequence of a read call, file descriptor 3, buffer is at target
26214address 0x1234, 6 bytes should be read:
26215
26216@smallexample
26217<- @code{Fread,3,1234,6}
26218@emph{request memory write to target}
26219-> @code{X1234,6:XXXXXX}
26220@emph{return "6 bytes read"}
26221-> @code{F6}
26222@end smallexample
26223
26224Example sequence of a read call, call fails on the host due to invalid
fc320d37 26225file descriptor (@code{EBADF}):
0ce1b118
CV
26226
26227@smallexample
26228<- @code{Fread,3,1234,6}
26229-> @code{F-1,9}
26230@end smallexample
26231
c8aa23ab 26232Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
26233host is called:
26234
26235@smallexample
26236<- @code{Fread,3,1234,6}
26237-> @code{F-1,4,C}
26238<- @code{T02}
26239@end smallexample
26240
c8aa23ab 26241Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
26242host is called:
26243
26244@smallexample
26245<- @code{Fread,3,1234,6}
26246-> @code{X1234,6:XXXXXX}
26247<- @code{T02}
26248@end smallexample
26249
cfa9d6d9
DJ
26250@node Library List Format
26251@section Library List Format
26252@cindex library list format, remote protocol
26253
26254On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
26255same process as your application to manage libraries. In this case,
26256@value{GDBN} can use the loader's symbol table and normal memory
26257operations to maintain a list of shared libraries. On other
26258platforms, the operating system manages loaded libraries.
26259@value{GDBN} can not retrieve the list of currently loaded libraries
26260through memory operations, so it uses the @samp{qXfer:libraries:read}
26261packet (@pxref{qXfer library list read}) instead. The remote stub
26262queries the target's operating system and reports which libraries
26263are loaded.
26264
26265The @samp{qXfer:libraries:read} packet returns an XML document which
26266lists loaded libraries and their offsets. Each library has an
26267associated name and one or more segment base addresses, which report
26268where the library was loaded in memory. The segment bases are start
26269addresses, not relocation offsets; they do not depend on the library's
26270link-time base addresses.
26271
9cceb671
DJ
26272@value{GDBN} must be linked with the Expat library to support XML
26273library lists. @xref{Expat}.
26274
cfa9d6d9
DJ
26275A simple memory map, with one loaded library relocated by a single
26276offset, looks like this:
26277
26278@smallexample
26279<library-list>
26280 <library name="/lib/libc.so.6">
26281 <segment address="0x10000000"/>
26282 </library>
26283</library-list>
26284@end smallexample
26285
26286The format of a library list is described by this DTD:
26287
26288@smallexample
26289<!-- library-list: Root element with versioning -->
26290<!ELEMENT library-list (library)*>
26291<!ATTLIST library-list version CDATA #FIXED "1.0">
26292<!ELEMENT library (segment)*>
26293<!ATTLIST library name CDATA #REQUIRED>
26294<!ELEMENT segment EMPTY>
26295<!ATTLIST segment address CDATA #REQUIRED>
26296@end smallexample
26297
79a6e687
BW
26298@node Memory Map Format
26299@section Memory Map Format
68437a39
DJ
26300@cindex memory map format
26301
26302To be able to write into flash memory, @value{GDBN} needs to obtain a
26303memory map from the target. This section describes the format of the
26304memory map.
26305
26306The memory map is obtained using the @samp{qXfer:memory-map:read}
26307(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
26308lists memory regions.
26309
26310@value{GDBN} must be linked with the Expat library to support XML
26311memory maps. @xref{Expat}.
26312
26313The top-level structure of the document is shown below:
68437a39
DJ
26314
26315@smallexample
26316<?xml version="1.0"?>
26317<!DOCTYPE memory-map
26318 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
26319 "http://sourceware.org/gdb/gdb-memory-map.dtd">
26320<memory-map>
26321 region...
26322</memory-map>
26323@end smallexample
26324
26325Each region can be either:
26326
26327@itemize
26328
26329@item
26330A region of RAM starting at @var{addr} and extending for @var{length}
26331bytes from there:
26332
26333@smallexample
26334<memory type="ram" start="@var{addr}" length="@var{length}"/>
26335@end smallexample
26336
26337
26338@item
26339A region of read-only memory:
26340
26341@smallexample
26342<memory type="rom" start="@var{addr}" length="@var{length}"/>
26343@end smallexample
26344
26345
26346@item
26347A region of flash memory, with erasure blocks @var{blocksize}
26348bytes in length:
26349
26350@smallexample
26351<memory type="flash" start="@var{addr}" length="@var{length}">
26352 <property name="blocksize">@var{blocksize}</property>
26353</memory>
26354@end smallexample
26355
26356@end itemize
26357
26358Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
26359by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
26360packets to write to addresses in such ranges.
26361
26362The formal DTD for memory map format is given below:
26363
26364@smallexample
26365<!-- ................................................... -->
26366<!-- Memory Map XML DTD ................................ -->
26367<!-- File: memory-map.dtd .............................. -->
26368<!-- .................................... .............. -->
26369<!-- memory-map.dtd -->
26370<!-- memory-map: Root element with versioning -->
26371<!ELEMENT memory-map (memory | property)>
26372<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
26373<!ELEMENT memory (property)>
26374<!-- memory: Specifies a memory region,
26375 and its type, or device. -->
26376<!ATTLIST memory type CDATA #REQUIRED
26377 start CDATA #REQUIRED
26378 length CDATA #REQUIRED
26379 device CDATA #IMPLIED>
26380<!-- property: Generic attribute tag -->
26381<!ELEMENT property (#PCDATA | property)*>
26382<!ATTLIST property name CDATA #REQUIRED>
26383@end smallexample
26384
f418dd93
DJ
26385@include agentexpr.texi
26386
23181151
DJ
26387@node Target Descriptions
26388@appendix Target Descriptions
26389@cindex target descriptions
26390
26391@strong{Warning:} target descriptions are still under active development,
26392and the contents and format may change between @value{GDBN} releases.
26393The format is expected to stabilize in the future.
26394
26395One of the challenges of using @value{GDBN} to debug embedded systems
26396is that there are so many minor variants of each processor
26397architecture in use. It is common practice for vendors to start with
26398a standard processor core --- ARM, PowerPC, or MIPS, for example ---
26399and then make changes to adapt it to a particular market niche. Some
26400architectures have hundreds of variants, available from dozens of
26401vendors. This leads to a number of problems:
26402
26403@itemize @bullet
26404@item
26405With so many different customized processors, it is difficult for
26406the @value{GDBN} maintainers to keep up with the changes.
26407@item
26408Since individual variants may have short lifetimes or limited
26409audiences, it may not be worthwhile to carry information about every
26410variant in the @value{GDBN} source tree.
26411@item
26412When @value{GDBN} does support the architecture of the embedded system
26413at hand, the task of finding the correct architecture name to give the
26414@command{set architecture} command can be error-prone.
26415@end itemize
26416
26417To address these problems, the @value{GDBN} remote protocol allows a
26418target system to not only identify itself to @value{GDBN}, but to
26419actually describe its own features. This lets @value{GDBN} support
26420processor variants it has never seen before --- to the extent that the
26421descriptions are accurate, and that @value{GDBN} understands them.
26422
9cceb671
DJ
26423@value{GDBN} must be linked with the Expat library to support XML
26424target descriptions. @xref{Expat}.
123dc839 26425
23181151
DJ
26426@menu
26427* Retrieving Descriptions:: How descriptions are fetched from a target.
26428* Target Description Format:: The contents of a target description.
123dc839
DJ
26429* Predefined Target Types:: Standard types available for target
26430 descriptions.
26431* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
26432@end menu
26433
26434@node Retrieving Descriptions
26435@section Retrieving Descriptions
26436
26437Target descriptions can be read from the target automatically, or
26438specified by the user manually. The default behavior is to read the
26439description from the target. @value{GDBN} retrieves it via the remote
26440protocol using @samp{qXfer} requests (@pxref{General Query Packets,
26441qXfer}). The @var{annex} in the @samp{qXfer} packet will be
26442@samp{target.xml}. The contents of the @samp{target.xml} annex are an
26443XML document, of the form described in @ref{Target Description
26444Format}.
26445
26446Alternatively, you can specify a file to read for the target description.
26447If a file is set, the target will not be queried. The commands to
26448specify a file are:
26449
26450@table @code
26451@cindex set tdesc filename
26452@item set tdesc filename @var{path}
26453Read the target description from @var{path}.
26454
26455@cindex unset tdesc filename
26456@item unset tdesc filename
26457Do not read the XML target description from a file. @value{GDBN}
26458will use the description supplied by the current target.
26459
26460@cindex show tdesc filename
26461@item show tdesc filename
26462Show the filename to read for a target description, if any.
26463@end table
26464
26465
26466@node Target Description Format
26467@section Target Description Format
26468@cindex target descriptions, XML format
26469
26470A target description annex is an @uref{http://www.w3.org/XML/, XML}
26471document which complies with the Document Type Definition provided in
26472the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26473means you can use generally available tools like @command{xmllint} to
26474check that your feature descriptions are well-formed and valid.
26475However, to help people unfamiliar with XML write descriptions for
26476their targets, we also describe the grammar here.
26477
123dc839
DJ
26478Target descriptions can identify the architecture of the remote target
26479and (for some architectures) provide information about custom register
26480sets. @value{GDBN} can use this information to autoconfigure for your
26481target, or to warn you if you connect to an unsupported target.
23181151
DJ
26482
26483Here is a simple target description:
26484
123dc839 26485@smallexample
1780a0ed 26486<target version="1.0">
23181151
DJ
26487 <architecture>i386:x86-64</architecture>
26488</target>
123dc839 26489@end smallexample
23181151
DJ
26490
26491@noindent
26492This minimal description only says that the target uses
26493the x86-64 architecture.
26494
123dc839
DJ
26495A target description has the following overall form, with [ ] marking
26496optional elements and @dots{} marking repeatable elements. The elements
26497are explained further below.
23181151 26498
123dc839 26499@smallexample
23181151
DJ
26500<?xml version="1.0"?>
26501<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26502<target version="1.0">
123dc839
DJ
26503 @r{[}@var{architecture}@r{]}
26504 @r{[}@var{feature}@dots{}@r{]}
23181151 26505</target>
123dc839 26506@end smallexample
23181151
DJ
26507
26508@noindent
26509The description is generally insensitive to whitespace and line
26510breaks, under the usual common-sense rules. The XML version
26511declaration and document type declaration can generally be omitted
26512(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26513useful for XML validation tools. The @samp{version} attribute for
26514@samp{<target>} may also be omitted, but we recommend
26515including it; if future versions of @value{GDBN} use an incompatible
26516revision of @file{gdb-target.dtd}, they will detect and report
26517the version mismatch.
23181151 26518
108546a0
DJ
26519@subsection Inclusion
26520@cindex target descriptions, inclusion
26521@cindex XInclude
26522@ifnotinfo
26523@cindex <xi:include>
26524@end ifnotinfo
26525
26526It can sometimes be valuable to split a target description up into
26527several different annexes, either for organizational purposes, or to
26528share files between different possible target descriptions. You can
26529divide a description into multiple files by replacing any element of
26530the target description with an inclusion directive of the form:
26531
123dc839 26532@smallexample
108546a0 26533<xi:include href="@var{document}"/>
123dc839 26534@end smallexample
108546a0
DJ
26535
26536@noindent
26537When @value{GDBN} encounters an element of this form, it will retrieve
26538the named XML @var{document}, and replace the inclusion directive with
26539the contents of that document. If the current description was read
26540using @samp{qXfer}, then so will be the included document;
26541@var{document} will be interpreted as the name of an annex. If the
26542current description was read from a file, @value{GDBN} will look for
26543@var{document} as a file in the same directory where it found the
26544original description.
26545
123dc839
DJ
26546@subsection Architecture
26547@cindex <architecture>
26548
26549An @samp{<architecture>} element has this form:
26550
26551@smallexample
26552 <architecture>@var{arch}</architecture>
26553@end smallexample
26554
26555@var{arch} is an architecture name from the same selection
26556accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26557Debugging Target}).
26558
26559@subsection Features
26560@cindex <feature>
26561
26562Each @samp{<feature>} describes some logical portion of the target
26563system. Features are currently used to describe available CPU
26564registers and the types of their contents. A @samp{<feature>} element
26565has this form:
26566
26567@smallexample
26568<feature name="@var{name}">
26569 @r{[}@var{type}@dots{}@r{]}
26570 @var{reg}@dots{}
26571</feature>
26572@end smallexample
26573
26574@noindent
26575Each feature's name should be unique within the description. The name
26576of a feature does not matter unless @value{GDBN} has some special
26577knowledge of the contents of that feature; if it does, the feature
26578should have its standard name. @xref{Standard Target Features}.
26579
26580@subsection Types
26581
26582Any register's value is a collection of bits which @value{GDBN} must
26583interpret. The default interpretation is a two's complement integer,
26584but other types can be requested by name in the register description.
26585Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26586Target Types}), and the description can define additional composite types.
26587
26588Each type element must have an @samp{id} attribute, which gives
26589a unique (within the containing @samp{<feature>}) name to the type.
26590Types must be defined before they are used.
26591
26592@cindex <vector>
26593Some targets offer vector registers, which can be treated as arrays
26594of scalar elements. These types are written as @samp{<vector>} elements,
26595specifying the array element type, @var{type}, and the number of elements,
26596@var{count}:
26597
26598@smallexample
26599<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26600@end smallexample
26601
26602@cindex <union>
26603If a register's value is usefully viewed in multiple ways, define it
26604with a union type containing the useful representations. The
26605@samp{<union>} element contains one or more @samp{<field>} elements,
26606each of which has a @var{name} and a @var{type}:
26607
26608@smallexample
26609<union id="@var{id}">
26610 <field name="@var{name}" type="@var{type}"/>
26611 @dots{}
26612</union>
26613@end smallexample
26614
26615@subsection Registers
26616@cindex <reg>
26617
26618Each register is represented as an element with this form:
26619
26620@smallexample
26621<reg name="@var{name}"
26622 bitsize="@var{size}"
26623 @r{[}regnum="@var{num}"@r{]}
26624 @r{[}save-restore="@var{save-restore}"@r{]}
26625 @r{[}type="@var{type}"@r{]}
26626 @r{[}group="@var{group}"@r{]}/>
26627@end smallexample
26628
26629@noindent
26630The components are as follows:
26631
26632@table @var
26633
26634@item name
26635The register's name; it must be unique within the target description.
26636
26637@item bitsize
26638The register's size, in bits.
26639
26640@item regnum
26641The register's number. If omitted, a register's number is one greater
26642than that of the previous register (either in the current feature or in
26643a preceeding feature); the first register in the target description
26644defaults to zero. This register number is used to read or write
26645the register; e.g.@: it is used in the remote @code{p} and @code{P}
26646packets, and registers appear in the @code{g} and @code{G} packets
26647in order of increasing register number.
26648
26649@item save-restore
26650Whether the register should be preserved across inferior function
26651calls; this must be either @code{yes} or @code{no}. The default is
26652@code{yes}, which is appropriate for most registers except for
26653some system control registers; this is not related to the target's
26654ABI.
26655
26656@item type
26657The type of the register. @var{type} may be a predefined type, a type
26658defined in the current feature, or one of the special types @code{int}
26659and @code{float}. @code{int} is an integer type of the correct size
26660for @var{bitsize}, and @code{float} is a floating point type (in the
26661architecture's normal floating point format) of the correct size for
26662@var{bitsize}. The default is @code{int}.
26663
26664@item group
26665The register group to which this register belongs. @var{group} must
26666be either @code{general}, @code{float}, or @code{vector}. If no
26667@var{group} is specified, @value{GDBN} will not display the register
26668in @code{info registers}.
26669
26670@end table
26671
26672@node Predefined Target Types
26673@section Predefined Target Types
26674@cindex target descriptions, predefined types
26675
26676Type definitions in the self-description can build up composite types
26677from basic building blocks, but can not define fundamental types. Instead,
26678standard identifiers are provided by @value{GDBN} for the fundamental
26679types. The currently supported types are:
26680
26681@table @code
26682
26683@item int8
26684@itemx int16
26685@itemx int32
26686@itemx int64
7cc46491 26687@itemx int128
123dc839
DJ
26688Signed integer types holding the specified number of bits.
26689
26690@item uint8
26691@itemx uint16
26692@itemx uint32
26693@itemx uint64
7cc46491 26694@itemx uint128
123dc839
DJ
26695Unsigned integer types holding the specified number of bits.
26696
26697@item code_ptr
26698@itemx data_ptr
26699Pointers to unspecified code and data. The program counter and
26700any dedicated return address register may be marked as code
26701pointers; printing a code pointer converts it into a symbolic
26702address. The stack pointer and any dedicated address registers
26703may be marked as data pointers.
26704
6e3bbd1a
PB
26705@item ieee_single
26706Single precision IEEE floating point.
26707
26708@item ieee_double
26709Double precision IEEE floating point.
26710
123dc839
DJ
26711@item arm_fpa_ext
26712The 12-byte extended precision format used by ARM FPA registers.
26713
26714@end table
26715
26716@node Standard Target Features
26717@section Standard Target Features
26718@cindex target descriptions, standard features
26719
26720A target description must contain either no registers or all the
26721target's registers. If the description contains no registers, then
26722@value{GDBN} will assume a default register layout, selected based on
26723the architecture. If the description contains any registers, the
26724default layout will not be used; the standard registers must be
26725described in the target description, in such a way that @value{GDBN}
26726can recognize them.
26727
26728This is accomplished by giving specific names to feature elements
26729which contain standard registers. @value{GDBN} will look for features
26730with those names and verify that they contain the expected registers;
26731if any known feature is missing required registers, or if any required
26732feature is missing, @value{GDBN} will reject the target
26733description. You can add additional registers to any of the
26734standard features --- @value{GDBN} will display them just as if
26735they were added to an unrecognized feature.
26736
26737This section lists the known features and their expected contents.
26738Sample XML documents for these features are included in the
26739@value{GDBN} source tree, in the directory @file{gdb/features}.
26740
26741Names recognized by @value{GDBN} should include the name of the
26742company or organization which selected the name, and the overall
26743architecture to which the feature applies; so e.g.@: the feature
26744containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26745
ff6f572f
DJ
26746The names of registers are not case sensitive for the purpose
26747of recognizing standard features, but @value{GDBN} will only display
26748registers using the capitalization used in the description.
26749
e9c17194
VP
26750@menu
26751* ARM Features::
26752* M68K Features::
26753@end menu
26754
26755
26756@node ARM Features
123dc839
DJ
26757@subsection ARM Features
26758@cindex target descriptions, ARM features
26759
26760The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26761It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26762@samp{lr}, @samp{pc}, and @samp{cpsr}.
26763
26764The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26765should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26766
ff6f572f
DJ
26767The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26768it should contain at least registers @samp{wR0} through @samp{wR15} and
26769@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26770@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26771
f8b73d13
DJ
26772@subsection MIPS Features
26773@cindex target descriptions, MIPS features
26774
26775The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26776It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26777@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26778on the target.
26779
26780The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26781contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26782registers. They may be 32-bit or 64-bit depending on the target.
26783
26784The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26785it may be optional in a future version of @value{GDBN}. It should
26786contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26787@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26788
822b6570
DJ
26789The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26790contain a single register, @samp{restart}, which is used by the
26791Linux kernel to control restartable syscalls.
26792
e9c17194
VP
26793@node M68K Features
26794@subsection M68K Features
26795@cindex target descriptions, M68K features
26796
26797@table @code
26798@item @samp{org.gnu.gdb.m68k.core}
26799@itemx @samp{org.gnu.gdb.coldfire.core}
26800@itemx @samp{org.gnu.gdb.fido.core}
26801One of those features must be always present.
26802The feature that is present determines which flavor of m86k is
26803used. The feature that is present should contain registers
26804@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26805@samp{sp}, @samp{ps} and @samp{pc}.
26806
26807@item @samp{org.gnu.gdb.coldfire.fp}
26808This feature is optional. If present, it should contain registers
26809@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26810@samp{fpiaddr}.
26811@end table
26812
7cc46491
DJ
26813@subsection PowerPC Features
26814@cindex target descriptions, PowerPC features
26815
26816The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26817targets. It should contain registers @samp{r0} through @samp{r31},
26818@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26819@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26820
26821The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26822contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26823
26824The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26825contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26826and @samp{vrsave}.
26827
26828The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26829contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26830@samp{spefscr}. SPE targets should provide 32-bit registers in
26831@samp{org.gnu.gdb.power.core} and provide the upper halves in
26832@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26833these to present registers @samp{ev0} through @samp{ev31} to the
26834user.
26835
aab4e0ec 26836@include gpl.texi
eb12ee30 26837
2154891a 26838@raisesections
6826cf00 26839@include fdl.texi
2154891a 26840@lowersections
6826cf00 26841
6d2ebf8b 26842@node Index
c906108c
SS
26843@unnumbered Index
26844
26845@printindex cp
26846
26847@tex
26848% I think something like @colophon should be in texinfo. In the
26849% meantime:
26850\long\def\colophon{\hbox to0pt{}\vfill
26851\centerline{The body of this manual is set in}
26852\centerline{\fontname\tenrm,}
26853\centerline{with headings in {\bf\fontname\tenbf}}
26854\centerline{and examples in {\tt\fontname\tentt}.}
26855\centerline{{\it\fontname\tenit\/},}
26856\centerline{{\bf\fontname\tenbf}, and}
26857\centerline{{\sl\fontname\tensl\/}}
26858\centerline{are used for emphasis.}\vfill}
26859\page\colophon
26860% Blame: doc@cygnus.com, 1991.
26861@end tex
26862
c906108c 26863@bye
This page took 2.835113 seconds and 4 git commands to generate.