* infrun.c (handle_inferior_event): Don't
[deliverable/binutils-gdb.git] / gdb / doc / gdb.texinfo
CommitLineData
c906108c 1\input texinfo @c -*-texinfo-*-
c02a867d 2@c Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
b620eb07 3@c 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
c906108c
SS
4@c Free Software Foundation, Inc.
5@c
5d161b24 6@c %**start of header
c906108c
SS
7@c makeinfo ignores cmds prev to setfilename, so its arg cannot make use
8@c of @set vars. However, you can override filename with makeinfo -o.
9@setfilename gdb.info
10@c
11@include gdb-cfg.texi
12@c
c906108c 13@settitle Debugging with @value{GDBN}
c906108c
SS
14@setchapternewpage odd
15@c %**end of header
16
17@iftex
18@c @smallbook
19@c @cropmarks
20@end iftex
21
22@finalout
23@syncodeindex ky cp
24
41afff9a 25@c readline appendices use @vindex, @findex and @ftable,
48e934c6 26@c annotate.texi and gdbmi use @findex.
c906108c 27@syncodeindex vr cp
41afff9a 28@syncodeindex fn cp
c906108c
SS
29
30@c !!set GDB manual's edition---not the same as GDB version!
9fe8321b 31@c This is updated by GNU Press.
e9c75b65 32@set EDITION Ninth
c906108c 33
87885426
FN
34@c !!set GDB edit command default editor
35@set EDITOR /bin/ex
c906108c 36
6c0e9fb3 37@c THIS MANUAL REQUIRES TEXINFO 4.0 OR LATER.
c906108c 38
c906108c 39@c This is a dir.info fragment to support semi-automated addition of
6d2ebf8b 40@c manuals to an info tree.
03727ca6 41@dircategory Software development
96a2c332 42@direntry
03727ca6 43* Gdb: (gdb). The GNU debugger.
96a2c332
SS
44@end direntry
45
c906108c
SS
46@ifinfo
47This file documents the @sc{gnu} debugger @value{GDBN}.
48
49
9fe8321b
AC
50This is the @value{EDITION} Edition, of @cite{Debugging with
51@value{GDBN}: the @sc{gnu} Source-Level Debugger} for @value{GDBN}
52Version @value{GDBVN}.
c906108c 53
8a037dd7 54Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,@*
b620eb07 55 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006@*
7d51c7de 56 Free Software Foundation, Inc.
c906108c 57
e9c75b65
EZ
58Permission is granted to copy, distribute and/or modify this document
59under the terms of the GNU Free Documentation License, Version 1.1 or
60any later version published by the Free Software Foundation; with the
959acfd1
EZ
61Invariant Sections being ``Free Software'' and ``Free Software Needs
62Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
63and with the Back-Cover Texts as in (a) below.
c906108c 64
b8533aec
DJ
65(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
66this GNU Manual. Buying copies from GNU Press supports the FSF in
67developing GNU and promoting software freedom.''
c906108c
SS
68@end ifinfo
69
70@titlepage
71@title Debugging with @value{GDBN}
72@subtitle The @sc{gnu} Source-Level Debugger
c906108c 73@sp 1
c906108c 74@subtitle @value{EDITION} Edition, for @value{GDBN} version @value{GDBVN}
9e9c5ae7 75@author Richard Stallman, Roland Pesch, Stan Shebs, et al.
c906108c 76@page
c906108c
SS
77@tex
78{\parskip=0pt
53a5351d 79\hfill (Send bugs and comments on @value{GDBN} to bug-gdb\@gnu.org.)\par
c906108c
SS
80\hfill {\it Debugging with @value{GDBN}}\par
81\hfill \TeX{}info \texinfoversion\par
82}
83@end tex
53a5351d 84
c906108c 85@vskip 0pt plus 1filll
8a037dd7 86Copyright @copyright{} 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
b620eb07 871996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006
7d51c7de 88Free Software Foundation, Inc.
c906108c 89@sp 2
c906108c 90Published by the Free Software Foundation @*
c02a867d
EZ
9151 Franklin Street, Fifth Floor,
92Boston, MA 02110-1301, USA@*
6d2ebf8b 93ISBN 1-882114-77-9 @*
e9c75b65
EZ
94
95Permission is granted to copy, distribute and/or modify this document
96under the terms of the GNU Free Documentation License, Version 1.1 or
97any later version published by the Free Software Foundation; with the
959acfd1
EZ
98Invariant Sections being ``Free Software'' and ``Free Software Needs
99Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
100and with the Back-Cover Texts as in (a) below.
e9c75b65 101
b8533aec
DJ
102(a) The FSF's Back-Cover Text is: ``You are free to copy and modify
103this GNU Manual. Buying copies from GNU Press supports the FSF in
104developing GNU and promoting software freedom.''
3fb6a982
JB
105@page
106This edition of the GDB manual is dedicated to the memory of Fred
107Fish. Fred was a long-standing contributor to GDB and to Free
108software in general. We will miss him.
c906108c
SS
109@end titlepage
110@page
111
6c0e9fb3 112@ifnottex
6d2ebf8b
SS
113@node Top, Summary, (dir), (dir)
114
c906108c
SS
115@top Debugging with @value{GDBN}
116
117This file describes @value{GDBN}, the @sc{gnu} symbolic debugger.
118
9fe8321b 119This is the @value{EDITION} Edition, for @value{GDBN} Version
c906108c
SS
120@value{GDBVN}.
121
b620eb07 122Copyright (C) 1988-2006 Free Software Foundation, Inc.
6d2ebf8b 123
3fb6a982
JB
124This edition of the GDB manual is dedicated to the memory of Fred
125Fish. Fred was a long-standing contributor to GDB and to Free
126software in general. We will miss him.
127
6d2ebf8b
SS
128@menu
129* Summary:: Summary of @value{GDBN}
130* Sample Session:: A sample @value{GDBN} session
131
132* Invocation:: Getting in and out of @value{GDBN}
133* Commands:: @value{GDBN} commands
134* Running:: Running programs under @value{GDBN}
135* Stopping:: Stopping and continuing
136* Stack:: Examining the stack
137* Source:: Examining source files
138* Data:: Examining data
e2e0bcd1 139* Macros:: Preprocessor Macros
b37052ae 140* Tracepoints:: Debugging remote targets non-intrusively
df0cd8c5 141* Overlays:: Debugging programs that use overlays
6d2ebf8b
SS
142
143* Languages:: Using @value{GDBN} with different languages
144
145* Symbols:: Examining the symbol table
146* Altering:: Altering execution
147* GDB Files:: @value{GDBN} files
148* Targets:: Specifying a debugging target
6b2f586d 149* Remote Debugging:: Debugging remote programs
6d2ebf8b
SS
150* Configurations:: Configuration-specific information
151* Controlling GDB:: Controlling @value{GDBN}
152* Sequences:: Canned sequences of commands
21c294e6 153* Interpreters:: Command Interpreters
c8f4133a 154* TUI:: @value{GDBN} Text User Interface
6d2ebf8b 155* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
7162c0ca 156* GDB/MI:: @value{GDBN}'s Machine Interface.
c8f4133a 157* Annotations:: @value{GDBN}'s annotation interface.
6d2ebf8b
SS
158
159* GDB Bugs:: Reporting bugs in @value{GDBN}
6d2ebf8b
SS
160
161* Command Line Editing:: Command Line Editing
162* Using History Interactively:: Using History Interactively
0869d01b 163* Formatting Documentation:: How to format and print @value{GDBN} documentation
6d2ebf8b 164* Installing GDB:: Installing GDB
eb12ee30 165* Maintenance Commands:: Maintenance Commands
e0ce93ac 166* Remote Protocol:: GDB Remote Serial Protocol
f418dd93 167* Agent Expressions:: The GDB Agent Expression Mechanism
23181151
DJ
168* Target Descriptions:: How targets can describe themselves to
169 @value{GDBN}
aab4e0ec
AC
170* Copying:: GNU General Public License says
171 how you can copy and share GDB
6826cf00 172* GNU Free Documentation License:: The license for this documentation
6d2ebf8b
SS
173* Index:: Index
174@end menu
175
6c0e9fb3 176@end ifnottex
c906108c 177
449f3b6c 178@contents
449f3b6c 179
6d2ebf8b 180@node Summary
c906108c
SS
181@unnumbered Summary of @value{GDBN}
182
183The purpose of a debugger such as @value{GDBN} is to allow you to see what is
184going on ``inside'' another program while it executes---or what another
185program was doing at the moment it crashed.
186
187@value{GDBN} can do four main kinds of things (plus other things in support of
188these) to help you catch bugs in the act:
189
190@itemize @bullet
191@item
192Start your program, specifying anything that might affect its behavior.
193
194@item
195Make your program stop on specified conditions.
196
197@item
198Examine what has happened, when your program has stopped.
199
200@item
201Change things in your program, so you can experiment with correcting the
202effects of one bug and go on to learn about another.
203@end itemize
204
49efadf5 205You can use @value{GDBN} to debug programs written in C and C@t{++}.
79a6e687 206For more information, see @ref{Supported Languages,,Supported Languages}.
c906108c
SS
207For more information, see @ref{C,,C and C++}.
208
cce74817 209@cindex Modula-2
e632838e
AC
210Support for Modula-2 is partial. For information on Modula-2, see
211@ref{Modula-2,,Modula-2}.
c906108c 212
cce74817
JM
213@cindex Pascal
214Debugging Pascal programs which use sets, subranges, file variables, or
215nested functions does not currently work. @value{GDBN} does not support
216entering expressions, printing values, or similar features using Pascal
217syntax.
c906108c 218
c906108c
SS
219@cindex Fortran
220@value{GDBN} can be used to debug programs written in Fortran, although
53a5351d 221it may be necessary to refer to some variables with a trailing
cce74817 222underscore.
c906108c 223
b37303ee
AF
224@value{GDBN} can be used to debug programs written in Objective-C,
225using either the Apple/NeXT or the GNU Objective-C runtime.
226
c906108c
SS
227@menu
228* Free Software:: Freely redistributable software
229* Contributors:: Contributors to GDB
230@end menu
231
6d2ebf8b 232@node Free Software
79a6e687 233@unnumberedsec Free Software
c906108c 234
5d161b24 235@value{GDBN} is @dfn{free software}, protected by the @sc{gnu}
c906108c
SS
236General Public License
237(GPL). The GPL gives you the freedom to copy or adapt a licensed
238program---but every person getting a copy also gets with it the
239freedom to modify that copy (which means that they must get access to
240the source code), and the freedom to distribute further copies.
241Typical software companies use copyrights to limit your freedoms; the
242Free Software Foundation uses the GPL to preserve these freedoms.
243
244Fundamentally, the General Public License is a license which says that
245you have these freedoms and that you cannot take these freedoms away
246from anyone else.
247
2666264b 248@unnumberedsec Free Software Needs Free Documentation
959acfd1
EZ
249
250The biggest deficiency in the free software community today is not in
251the software---it is the lack of good free documentation that we can
252include with the free software. Many of our most important
253programs do not come with free reference manuals and free introductory
254texts. Documentation is an essential part of any software package;
255when an important free software package does not come with a free
256manual and a free tutorial, that is a major gap. We have many such
257gaps today.
258
259Consider Perl, for instance. The tutorial manuals that people
260normally use are non-free. How did this come about? Because the
261authors of those manuals published them with restrictive terms---no
262copying, no modification, source files not available---which exclude
263them from the free software world.
264
265That wasn't the first time this sort of thing happened, and it was far
266from the last. Many times we have heard a GNU user eagerly describe a
267manual that he is writing, his intended contribution to the community,
268only to learn that he had ruined everything by signing a publication
269contract to make it non-free.
270
271Free documentation, like free software, is a matter of freedom, not
272price. The problem with the non-free manual is not that publishers
273charge a price for printed copies---that in itself is fine. (The Free
274Software Foundation sells printed copies of manuals, too.) The
275problem is the restrictions on the use of the manual. Free manuals
276are available in source code form, and give you permission to copy and
277modify. Non-free manuals do not allow this.
278
279The criteria of freedom for a free manual are roughly the same as for
280free software. Redistribution (including the normal kinds of
281commercial redistribution) must be permitted, so that the manual can
282accompany every copy of the program, both on-line and on paper.
283
284Permission for modification of the technical content is crucial too.
285When people modify the software, adding or changing features, if they
286are conscientious they will change the manual too---so they can
287provide accurate and clear documentation for the modified program. A
288manual that leaves you no choice but to write a new manual to document
289a changed version of the program is not really available to our
290community.
291
292Some kinds of limits on the way modification is handled are
293acceptable. For example, requirements to preserve the original
294author's copyright notice, the distribution terms, or the list of
295authors, are ok. It is also no problem to require modified versions
296to include notice that they were modified. Even entire sections that
297may not be deleted or changed are acceptable, as long as they deal
298with nontechnical topics (like this one). These kinds of restrictions
299are acceptable because they don't obstruct the community's normal use
300of the manual.
301
302However, it must be possible to modify all the @emph{technical}
303content of the manual, and then distribute the result in all the usual
304media, through all the usual channels. Otherwise, the restrictions
305obstruct the use of the manual, it is not free, and we need another
306manual to replace it.
307
308Please spread the word about this issue. Our community continues to
309lose manuals to proprietary publishing. If we spread the word that
310free software needs free reference manuals and free tutorials, perhaps
311the next person who wants to contribute by writing documentation will
312realize, before it is too late, that only free manuals contribute to
313the free software community.
314
315If you are writing documentation, please insist on publishing it under
316the GNU Free Documentation License or another free documentation
317license. Remember that this decision requires your approval---you
318don't have to let the publisher decide. Some commercial publishers
319will use a free license if you insist, but they will not propose the
320option; it is up to you to raise the issue and say firmly that this is
321what you want. If the publisher you are dealing with refuses, please
322try other publishers. If you're not sure whether a proposed license
42584a72 323is free, write to @email{licensing@@gnu.org}.
959acfd1
EZ
324
325You can encourage commercial publishers to sell more free, copylefted
326manuals and tutorials by buying them, and particularly by buying
327copies from the publishers that paid for their writing or for major
328improvements. Meanwhile, try to avoid buying non-free documentation
329at all. Check the distribution terms of a manual before you buy it,
330and insist that whoever seeks your business must respect your freedom.
72c9928d
EZ
331Check the history of the book, and try to reward the publishers that
332have paid or pay the authors to work on it.
959acfd1
EZ
333
334The Free Software Foundation maintains a list of free documentation
335published by other publishers, at
336@url{http://www.fsf.org/doc/other-free-books.html}.
337
6d2ebf8b 338@node Contributors
96a2c332
SS
339@unnumberedsec Contributors to @value{GDBN}
340
341Richard Stallman was the original author of @value{GDBN}, and of many
342other @sc{gnu} programs. Many others have contributed to its
343development. This section attempts to credit major contributors. One
344of the virtues of free software is that everyone is free to contribute
345to it; with regret, we cannot actually acknowledge everyone here. The
346file @file{ChangeLog} in the @value{GDBN} distribution approximates a
c906108c
SS
347blow-by-blow account.
348
349Changes much prior to version 2.0 are lost in the mists of time.
350
351@quotation
352@emph{Plea:} Additions to this section are particularly welcome. If you
353or your friends (or enemies, to be evenhanded) have been unfairly
354omitted from this list, we would like to add your names!
355@end quotation
356
357So that they may not regard their many labors as thankless, we
358particularly thank those who shepherded @value{GDBN} through major
359releases:
7ba3cf9c 360Andrew Cagney (releases 6.3, 6.2, 6.1, 6.0, 5.3, 5.2, 5.1 and 5.0);
c906108c
SS
361Jim Blandy (release 4.18);
362Jason Molenda (release 4.17);
363Stan Shebs (release 4.14);
364Fred Fish (releases 4.16, 4.15, 4.13, 4.12, 4.11, 4.10, and 4.9);
365Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4);
366John Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9);
367Jim Kingdon (releases 3.5, 3.4, and 3.3);
368and Randy Smith (releases 3.2, 3.1, and 3.0).
369
370Richard Stallman, assisted at various times by Peter TerMaat, Chris
371Hanson, and Richard Mlynarik, handled releases through 2.8.
372
b37052ae
EZ
373Michael Tiemann is the author of most of the @sc{gnu} C@t{++} support
374in @value{GDBN}, with significant additional contributions from Per
375Bothner and Daniel Berlin. James Clark wrote the @sc{gnu} C@t{++}
376demangler. Early work on C@t{++} was by Peter TerMaat (who also did
377much general update work leading to release 3.0).
c906108c 378
b37052ae 379@value{GDBN} uses the BFD subroutine library to examine multiple
c906108c
SS
380object-file formats; BFD was a joint project of David V.
381Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.
382
383David Johnson wrote the original COFF support; Pace Willison did
384the original support for encapsulated COFF.
385
0179ffac 386Brent Benson of Harris Computer Systems contributed DWARF 2 support.
c906108c
SS
387
388Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
389Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
390support.
391Jean-Daniel Fekete contributed Sun 386i support.
392Chris Hanson improved the HP9000 support.
393Noboyuki Hikichi and Tomoyuki Hasei contributed Sony/News OS 3 support.
394David Johnson contributed Encore Umax support.
395Jyrki Kuoppala contributed Altos 3068 support.
396Jeff Law contributed HP PA and SOM support.
397Keith Packard contributed NS32K support.
398Doug Rabson contributed Acorn Risc Machine support.
399Bob Rusk contributed Harris Nighthawk CX-UX support.
400Chris Smith contributed Convex support (and Fortran debugging).
401Jonathan Stone contributed Pyramid support.
402Michael Tiemann contributed SPARC support.
403Tim Tucker contributed support for the Gould NP1 and Gould Powernode.
404Pace Willison contributed Intel 386 support.
405Jay Vosburgh contributed Symmetry support.
a37295f9 406Marko Mlinar contributed OpenRISC 1000 support.
c906108c 407
1104b9e7 408Andreas Schwab contributed M68K @sc{gnu}/Linux support.
c906108c
SS
409
410Rich Schaefer and Peter Schauer helped with support of SunOS shared
411libraries.
412
413Jay Fenlason and Roland McGrath ensured that @value{GDBN} and GAS agree
414about several machine instruction sets.
415
416Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
417remote debugging. Intel Corporation, Wind River Systems, AMD, and ARM
418contributed remote debugging modules for the i960, VxWorks, A29K UDI,
419and RDI targets, respectively.
420
421Brian Fox is the author of the readline libraries providing
422command-line editing and command history.
423
7a292a7a
SS
424Andrew Beers of SUNY Buffalo wrote the language-switching code, the
425Modula-2 support, and contributed the Languages chapter of this manual.
c906108c 426
5d161b24 427Fred Fish wrote most of the support for Unix System Vr4.
b37052ae 428He also enhanced the command-completion support to cover C@t{++} overloaded
c906108c 429symbols.
c906108c 430
f24c5e49
KI
431Hitachi America (now Renesas America), Ltd. sponsored the support for
432H8/300, H8/500, and Super-H processors.
c906108c
SS
433
434NEC sponsored the support for the v850, Vr4xxx, and Vr5xxx processors.
435
f24c5e49
KI
436Mitsubishi (now Renesas) sponsored the support for D10V, D30V, and M32R/D
437processors.
c906108c
SS
438
439Toshiba sponsored the support for the TX39 Mips processor.
440
441Matsushita sponsored the support for the MN10200 and MN10300 processors.
442
96a2c332 443Fujitsu sponsored the support for SPARClite and FR30 processors.
c906108c
SS
444
445Kung Hsu, Jeff Law, and Rick Sladkey added support for hardware
446watchpoints.
447
448Michael Snyder added support for tracepoints.
449
450Stu Grossman wrote gdbserver.
451
452Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made
96a2c332 453nearly innumerable bug fixes and cleanups throughout @value{GDBN}.
c906108c
SS
454
455The following people at the Hewlett-Packard Company contributed
456support for the PA-RISC 2.0 architecture, HP-UX 10.20, 10.30, and 11.0
b37052ae 457(narrow mode), HP's implementation of kernel threads, HP's aC@t{++}
d0d5df6f
AC
458compiler, and the Text User Interface (nee Terminal User Interface):
459Ben Krepp, Richard Title, John Bishop, Susan Macchia, Kathy Mann,
460Satish Pai, India Paul, Steve Rehrauer, and Elena Zannoni. Kim Haase
461provided HP-specific information in this manual.
c906108c 462
b37052ae
EZ
463DJ Delorie ported @value{GDBN} to MS-DOS, for the DJGPP project.
464Robert Hoehne made significant contributions to the DJGPP port.
465
96a2c332
SS
466Cygnus Solutions has sponsored @value{GDBN} maintenance and much of its
467development since 1991. Cygnus engineers who have worked on @value{GDBN}
2df3850c
JM
468fulltime include Mark Alexander, Jim Blandy, Per Bothner, Kevin
469Buettner, Edith Epstein, Chris Faylor, Fred Fish, Martin Hunt, Jim
470Ingham, John Gilmore, Stu Grossman, Kung Hsu, Jim Kingdon, John Metzler,
471Fernando Nasser, Geoffrey Noer, Dawn Perchik, Rich Pixley, Zdenek
472Radouch, Keith Seitz, Stan Shebs, David Taylor, and Elena Zannoni. In
473addition, Dave Brolley, Ian Carmichael, Steve Chamberlain, Nick Clifton,
474JT Conklin, Stan Cox, DJ Delorie, Ulrich Drepper, Frank Eigler, Doug
475Evans, Sean Fagan, David Henkel-Wallace, Richard Henderson, Jeff
476Holcomb, Jeff Law, Jim Lemke, Tom Lord, Bob Manson, Michael Meissner,
477Jason Merrill, Catherine Moore, Drew Moseley, Ken Raeburn, Gavin
478Romig-Koch, Rob Savoye, Jamie Smith, Mike Stump, Ian Taylor, Angela
479Thomas, Michael Tiemann, Tom Tromey, Ron Unrau, Jim Wilson, and David
480Zuhn have made contributions both large and small.
c906108c 481
ffed4509
AC
482Andrew Cagney, Fernando Nasser, and Elena Zannoni, while working for
483Cygnus Solutions, implemented the original @sc{gdb/mi} interface.
484
e2e0bcd1
JB
485Jim Blandy added support for preprocessor macros, while working for Red
486Hat.
c906108c 487
a9967aef
AC
488Andrew Cagney designed @value{GDBN}'s architecture vector. Many
489people including Andrew Cagney, Stephane Carrez, Randolph Chung, Nick
490Duffek, Richard Henderson, Mark Kettenis, Grace Sainsbury, Kei
491Sakamoto, Yoshinori Sato, Michael Snyder, Andreas Schwab, Jason
492Thorpe, Corinna Vinschen, Ulrich Weigand, and Elena Zannoni, helped
493with the migration of old architectures to this new framework.
494
c5e30d01
AC
495Andrew Cagney completely re-designed and re-implemented @value{GDBN}'s
496unwinder framework, this consisting of a fresh new design featuring
497frame IDs, independent frame sniffers, and the sentinel frame. Mark
498Kettenis implemented the @sc{dwarf 2} unwinder, Jeff Johnston the
499libunwind unwinder, and Andrew Cagney the dummy, sentinel, tramp, and
db2e3e2e 500trad unwinders. The architecture-specific changes, each involving a
c5e30d01
AC
501complete rewrite of the architecture's frame code, were carried out by
502Jim Blandy, Joel Brobecker, Kevin Buettner, Andrew Cagney, Stephane
503Carrez, Randolph Chung, Orjan Friberg, Richard Henderson, Daniel
504Jacobowitz, Jeff Johnston, Mark Kettenis, Theodore A. Roth, Kei
505Sakamoto, Yoshinori Sato, Michael Snyder, Corinna Vinschen, and Ulrich
506Weigand.
507
ca3bf3bd
DJ
508Christian Zankel, Ross Morley, Bob Wilson, and Maxim Grigoriev from
509Tensilica, Inc.@: contributed support for Xtensa processors. Others
510who have worked on the Xtensa port of @value{GDBN} in the past include
511Steve Tjiang, John Newlin, and Scott Foehner.
512
6d2ebf8b 513@node Sample Session
c906108c
SS
514@chapter A Sample @value{GDBN} Session
515
516You can use this manual at your leisure to read all about @value{GDBN}.
517However, a handful of commands are enough to get started using the
518debugger. This chapter illustrates those commands.
519
520@iftex
521In this sample session, we emphasize user input like this: @b{input},
522to make it easier to pick out from the surrounding output.
523@end iftex
524
525@c FIXME: this example may not be appropriate for some configs, where
526@c FIXME...primary interest is in remote use.
527
528One of the preliminary versions of @sc{gnu} @code{m4} (a generic macro
529processor) exhibits the following bug: sometimes, when we change its
530quote strings from the default, the commands used to capture one macro
531definition within another stop working. In the following short @code{m4}
532session, we define a macro @code{foo} which expands to @code{0000}; we
533then use the @code{m4} built-in @code{defn} to define @code{bar} as the
534same thing. However, when we change the open quote string to
535@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
536procedure fails to define a new synonym @code{baz}:
537
538@smallexample
539$ @b{cd gnu/m4}
540$ @b{./m4}
541@b{define(foo,0000)}
542
543@b{foo}
5440000
545@b{define(bar,defn(`foo'))}
546
547@b{bar}
5480000
549@b{changequote(<QUOTE>,<UNQUOTE>)}
550
551@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
552@b{baz}
c8aa23ab 553@b{Ctrl-d}
c906108c
SS
554m4: End of input: 0: fatal error: EOF in string
555@end smallexample
556
557@noindent
558Let us use @value{GDBN} to try to see what is going on.
559
c906108c
SS
560@smallexample
561$ @b{@value{GDBP} m4}
562@c FIXME: this falsifies the exact text played out, to permit smallbook
563@c FIXME... format to come out better.
564@value{GDBN} is free software and you are welcome to distribute copies
5d161b24 565 of it under certain conditions; type "show copying" to see
c906108c 566 the conditions.
5d161b24 567There is absolutely no warranty for @value{GDBN}; type "show warranty"
c906108c
SS
568 for details.
569
570@value{GDBN} @value{GDBVN}, Copyright 1999 Free Software Foundation, Inc...
571(@value{GDBP})
572@end smallexample
c906108c
SS
573
574@noindent
575@value{GDBN} reads only enough symbol data to know where to find the
576rest when needed; as a result, the first prompt comes up very quickly.
577We now tell @value{GDBN} to use a narrower display width than usual, so
578that examples fit in this manual.
579
580@smallexample
581(@value{GDBP}) @b{set width 70}
582@end smallexample
583
584@noindent
585We need to see how the @code{m4} built-in @code{changequote} works.
586Having looked at the source, we know the relevant subroutine is
587@code{m4_changequote}, so we set a breakpoint there with the @value{GDBN}
588@code{break} command.
589
590@smallexample
591(@value{GDBP}) @b{break m4_changequote}
592Breakpoint 1 at 0x62f4: file builtin.c, line 879.
593@end smallexample
594
595@noindent
596Using the @code{run} command, we start @code{m4} running under @value{GDBN}
597control; as long as control does not reach the @code{m4_changequote}
598subroutine, the program runs as usual:
599
600@smallexample
601(@value{GDBP}) @b{run}
602Starting program: /work/Editorial/gdb/gnu/m4/m4
603@b{define(foo,0000)}
604
605@b{foo}
6060000
607@end smallexample
608
609@noindent
610To trigger the breakpoint, we call @code{changequote}. @value{GDBN}
611suspends execution of @code{m4}, displaying information about the
612context where it stops.
613
614@smallexample
615@b{changequote(<QUOTE>,<UNQUOTE>)}
616
5d161b24 617Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
618 at builtin.c:879
619879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))
620@end smallexample
621
622@noindent
623Now we use the command @code{n} (@code{next}) to advance execution to
624the next line of the current function.
625
626@smallexample
627(@value{GDBP}) @b{n}
628882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
629 : nil,
630@end smallexample
631
632@noindent
633@code{set_quotes} looks like a promising subroutine. We can go into it
634by using the command @code{s} (@code{step}) instead of @code{next}.
635@code{step} goes to the next line to be executed in @emph{any}
636subroutine, so it steps into @code{set_quotes}.
637
638@smallexample
639(@value{GDBP}) @b{s}
640set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
641 at input.c:530
642530 if (lquote != def_lquote)
643@end smallexample
644
645@noindent
646The display that shows the subroutine where @code{m4} is now
647suspended (and its arguments) is called a stack frame display. It
648shows a summary of the stack. We can use the @code{backtrace}
649command (which can also be spelled @code{bt}), to see where we are
650in the stack as a whole: the @code{backtrace} command displays a
651stack frame for each active subroutine.
652
653@smallexample
654(@value{GDBP}) @b{bt}
655#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
656 at input.c:530
5d161b24 657#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
c906108c
SS
658 at builtin.c:882
659#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
660#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
661 at macro.c:71
662#4 0x79dc in expand_input () at macro.c:40
663#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
664@end smallexample
665
666@noindent
667We step through a few more lines to see what happens. The first two
668times, we can use @samp{s}; the next two times we use @code{n} to avoid
669falling into the @code{xstrdup} subroutine.
670
671@smallexample
672(@value{GDBP}) @b{s}
6730x3b5c 532 if (rquote != def_rquote)
674(@value{GDBP}) @b{s}
6750x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
676def_lquote : xstrdup(lq);
677(@value{GDBP}) @b{n}
678536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
679 : xstrdup(rq);
680(@value{GDBP}) @b{n}
681538 len_lquote = strlen(rquote);
682@end smallexample
683
684@noindent
685The last line displayed looks a little odd; we can examine the variables
686@code{lquote} and @code{rquote} to see if they are in fact the new left
687and right quotes we specified. We use the command @code{p}
688(@code{print}) to see their values.
689
690@smallexample
691(@value{GDBP}) @b{p lquote}
692$1 = 0x35d40 "<QUOTE>"
693(@value{GDBP}) @b{p rquote}
694$2 = 0x35d50 "<UNQUOTE>"
695@end smallexample
696
697@noindent
698@code{lquote} and @code{rquote} are indeed the new left and right quotes.
699To look at some context, we can display ten lines of source
700surrounding the current line with the @code{l} (@code{list}) command.
701
702@smallexample
703(@value{GDBP}) @b{l}
704533 xfree(rquote);
705534
706535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
707 : xstrdup (lq);
708536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
709 : xstrdup (rq);
710537
711538 len_lquote = strlen(rquote);
712539 len_rquote = strlen(lquote);
713540 @}
714541
715542 void
716@end smallexample
717
718@noindent
719Let us step past the two lines that set @code{len_lquote} and
720@code{len_rquote}, and then examine the values of those variables.
721
722@smallexample
723(@value{GDBP}) @b{n}
724539 len_rquote = strlen(lquote);
725(@value{GDBP}) @b{n}
726540 @}
727(@value{GDBP}) @b{p len_lquote}
728$3 = 9
729(@value{GDBP}) @b{p len_rquote}
730$4 = 7
731@end smallexample
732
733@noindent
734That certainly looks wrong, assuming @code{len_lquote} and
735@code{len_rquote} are meant to be the lengths of @code{lquote} and
736@code{rquote} respectively. We can set them to better values using
737the @code{p} command, since it can print the value of
738any expression---and that expression can include subroutine calls and
739assignments.
740
741@smallexample
742(@value{GDBP}) @b{p len_lquote=strlen(lquote)}
743$5 = 7
744(@value{GDBP}) @b{p len_rquote=strlen(rquote)}
745$6 = 9
746@end smallexample
747
748@noindent
749Is that enough to fix the problem of using the new quotes with the
750@code{m4} built-in @code{defn}? We can allow @code{m4} to continue
751executing with the @code{c} (@code{continue}) command, and then try the
752example that caused trouble initially:
753
754@smallexample
755(@value{GDBP}) @b{c}
756Continuing.
757
758@b{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
759
760baz
7610000
762@end smallexample
763
764@noindent
765Success! The new quotes now work just as well as the default ones. The
766problem seems to have been just the two typos defining the wrong
767lengths. We allow @code{m4} exit by giving it an EOF as input:
768
769@smallexample
c8aa23ab 770@b{Ctrl-d}
c906108c
SS
771Program exited normally.
772@end smallexample
773
774@noindent
775The message @samp{Program exited normally.} is from @value{GDBN}; it
776indicates @code{m4} has finished executing. We can end our @value{GDBN}
777session with the @value{GDBN} @code{quit} command.
778
779@smallexample
780(@value{GDBP}) @b{quit}
781@end smallexample
c906108c 782
6d2ebf8b 783@node Invocation
c906108c
SS
784@chapter Getting In and Out of @value{GDBN}
785
786This chapter discusses how to start @value{GDBN}, and how to get out of it.
5d161b24 787The essentials are:
c906108c 788@itemize @bullet
5d161b24 789@item
53a5351d 790type @samp{@value{GDBP}} to start @value{GDBN}.
5d161b24 791@item
c8aa23ab 792type @kbd{quit} or @kbd{Ctrl-d} to exit.
c906108c
SS
793@end itemize
794
795@menu
796* Invoking GDB:: How to start @value{GDBN}
797* Quitting GDB:: How to quit @value{GDBN}
798* Shell Commands:: How to use shell commands inside @value{GDBN}
79a6e687 799* Logging Output:: How to log @value{GDBN}'s output to a file
c906108c
SS
800@end menu
801
6d2ebf8b 802@node Invoking GDB
c906108c
SS
803@section Invoking @value{GDBN}
804
c906108c
SS
805Invoke @value{GDBN} by running the program @code{@value{GDBP}}. Once started,
806@value{GDBN} reads commands from the terminal until you tell it to exit.
807
808You can also run @code{@value{GDBP}} with a variety of arguments and options,
809to specify more of your debugging environment at the outset.
810
c906108c
SS
811The command-line options described here are designed
812to cover a variety of situations; in some environments, some of these
5d161b24 813options may effectively be unavailable.
c906108c
SS
814
815The most usual way to start @value{GDBN} is with one argument,
816specifying an executable program:
817
474c8240 818@smallexample
c906108c 819@value{GDBP} @var{program}
474c8240 820@end smallexample
c906108c 821
c906108c
SS
822@noindent
823You can also start with both an executable program and a core file
824specified:
825
474c8240 826@smallexample
c906108c 827@value{GDBP} @var{program} @var{core}
474c8240 828@end smallexample
c906108c
SS
829
830You can, instead, specify a process ID as a second argument, if you want
831to debug a running process:
832
474c8240 833@smallexample
c906108c 834@value{GDBP} @var{program} 1234
474c8240 835@end smallexample
c906108c
SS
836
837@noindent
838would attach @value{GDBN} to process @code{1234} (unless you also have a file
839named @file{1234}; @value{GDBN} does check for a core file first).
840
c906108c 841Taking advantage of the second command-line argument requires a fairly
2df3850c
JM
842complete operating system; when you use @value{GDBN} as a remote
843debugger attached to a bare board, there may not be any notion of
844``process'', and there is often no way to get a core dump. @value{GDBN}
845will warn you if it is unable to attach or to read core dumps.
c906108c 846
aa26fa3a
TT
847You can optionally have @code{@value{GDBP}} pass any arguments after the
848executable file to the inferior using @code{--args}. This option stops
849option processing.
474c8240 850@smallexample
3f94c067 851@value{GDBP} --args gcc -O2 -c foo.c
474c8240 852@end smallexample
aa26fa3a
TT
853This will cause @code{@value{GDBP}} to debug @code{gcc}, and to set
854@code{gcc}'s command-line arguments (@pxref{Arguments}) to @samp{-O2 -c foo.c}.
855
96a2c332 856You can run @code{@value{GDBP}} without printing the front material, which describes
c906108c
SS
857@value{GDBN}'s non-warranty, by specifying @code{-silent}:
858
859@smallexample
860@value{GDBP} -silent
861@end smallexample
862
863@noindent
864You can further control how @value{GDBN} starts up by using command-line
865options. @value{GDBN} itself can remind you of the options available.
866
867@noindent
868Type
869
474c8240 870@smallexample
c906108c 871@value{GDBP} -help
474c8240 872@end smallexample
c906108c
SS
873
874@noindent
875to display all available options and briefly describe their use
876(@samp{@value{GDBP} -h} is a shorter equivalent).
877
878All options and command line arguments you give are processed
879in sequential order. The order makes a difference when the
880@samp{-x} option is used.
881
882
883@menu
c906108c
SS
884* File Options:: Choosing files
885* Mode Options:: Choosing modes
6fc08d32 886* Startup:: What @value{GDBN} does during startup
c906108c
SS
887@end menu
888
6d2ebf8b 889@node File Options
79a6e687 890@subsection Choosing Files
c906108c 891
2df3850c 892When @value{GDBN} starts, it reads any arguments other than options as
c906108c
SS
893specifying an executable file and core file (or process ID). This is
894the same as if the arguments were specified by the @samp{-se} and
d52fb0e9 895@samp{-c} (or @samp{-p}) options respectively. (@value{GDBN} reads the
19837790
MS
896first argument that does not have an associated option flag as
897equivalent to the @samp{-se} option followed by that argument; and the
898second argument that does not have an associated option flag, if any, as
899equivalent to the @samp{-c}/@samp{-p} option followed by that argument.)
900If the second argument begins with a decimal digit, @value{GDBN} will
901first attempt to attach to it as a process, and if that fails, attempt
902to open it as a corefile. If you have a corefile whose name begins with
b383017d 903a digit, you can prevent @value{GDBN} from treating it as a pid by
c1468174 904prefixing it with @file{./}, e.g.@: @file{./12345}.
7a292a7a
SS
905
906If @value{GDBN} has not been configured to included core file support,
907such as for most embedded targets, then it will complain about a second
908argument and ignore it.
c906108c
SS
909
910Many options have both long and short forms; both are shown in the
911following list. @value{GDBN} also recognizes the long forms if you truncate
912them, so long as enough of the option is present to be unambiguous.
913(If you prefer, you can flag option arguments with @samp{--} rather
914than @samp{-}, though we illustrate the more usual convention.)
915
d700128c
EZ
916@c NOTE: the @cindex entries here use double dashes ON PURPOSE. This
917@c way, both those who look for -foo and --foo in the index, will find
918@c it.
919
c906108c
SS
920@table @code
921@item -symbols @var{file}
922@itemx -s @var{file}
d700128c
EZ
923@cindex @code{--symbols}
924@cindex @code{-s}
c906108c
SS
925Read symbol table from file @var{file}.
926
927@item -exec @var{file}
928@itemx -e @var{file}
d700128c
EZ
929@cindex @code{--exec}
930@cindex @code{-e}
7a292a7a
SS
931Use file @var{file} as the executable file to execute when appropriate,
932and for examining pure data in conjunction with a core dump.
c906108c
SS
933
934@item -se @var{file}
d700128c 935@cindex @code{--se}
c906108c
SS
936Read symbol table from file @var{file} and use it as the executable
937file.
938
c906108c
SS
939@item -core @var{file}
940@itemx -c @var{file}
d700128c
EZ
941@cindex @code{--core}
942@cindex @code{-c}
b383017d 943Use file @var{file} as a core dump to examine.
c906108c
SS
944
945@item -c @var{number}
19837790
MS
946@item -pid @var{number}
947@itemx -p @var{number}
948@cindex @code{--pid}
949@cindex @code{-p}
950Connect to process ID @var{number}, as with the @code{attach} command.
951If there is no such process, @value{GDBN} will attempt to open a core
952file named @var{number}.
c906108c
SS
953
954@item -command @var{file}
955@itemx -x @var{file}
d700128c
EZ
956@cindex @code{--command}
957@cindex @code{-x}
c906108c
SS
958Execute @value{GDBN} commands from file @var{file}. @xref{Command
959Files,, Command files}.
960
8a5a3c82
AS
961@item -eval-command @var{command}
962@itemx -ex @var{command}
963@cindex @code{--eval-command}
964@cindex @code{-ex}
965Execute a single @value{GDBN} command.
966
967This option may be used multiple times to call multiple commands. It may
968also be interleaved with @samp{-command} as required.
969
970@smallexample
971@value{GDBP} -ex 'target sim' -ex 'load' \
972 -x setbreakpoints -ex 'run' a.out
973@end smallexample
974
c906108c
SS
975@item -directory @var{directory}
976@itemx -d @var{directory}
d700128c
EZ
977@cindex @code{--directory}
978@cindex @code{-d}
4b505b12 979Add @var{directory} to the path to search for source and script files.
c906108c 980
c906108c
SS
981@item -r
982@itemx -readnow
d700128c
EZ
983@cindex @code{--readnow}
984@cindex @code{-r}
c906108c
SS
985Read each symbol file's entire symbol table immediately, rather than
986the default, which is to read it incrementally as it is needed.
987This makes startup slower, but makes future operations faster.
53a5351d 988
c906108c
SS
989@end table
990
6d2ebf8b 991@node Mode Options
79a6e687 992@subsection Choosing Modes
c906108c
SS
993
994You can run @value{GDBN} in various alternative modes---for example, in
995batch mode or quiet mode.
996
997@table @code
998@item -nx
999@itemx -n
d700128c
EZ
1000@cindex @code{--nx}
1001@cindex @code{-n}
96565e91 1002Do not execute commands found in any initialization files. Normally,
2df3850c
JM
1003@value{GDBN} executes the commands in these files after all the command
1004options and arguments have been processed. @xref{Command Files,,Command
79a6e687 1005Files}.
c906108c
SS
1006
1007@item -quiet
d700128c 1008@itemx -silent
c906108c 1009@itemx -q
d700128c
EZ
1010@cindex @code{--quiet}
1011@cindex @code{--silent}
1012@cindex @code{-q}
c906108c
SS
1013``Quiet''. Do not print the introductory and copyright messages. These
1014messages are also suppressed in batch mode.
1015
1016@item -batch
d700128c 1017@cindex @code{--batch}
c906108c
SS
1018Run in batch mode. Exit with status @code{0} after processing all the
1019command files specified with @samp{-x} (and all commands from
1020initialization files, if not inhibited with @samp{-n}). Exit with
1021nonzero status if an error occurs in executing the @value{GDBN} commands
1022in the command files.
1023
2df3850c
JM
1024Batch mode may be useful for running @value{GDBN} as a filter, for
1025example to download and run a program on another computer; in order to
1026make this more useful, the message
c906108c 1027
474c8240 1028@smallexample
c906108c 1029Program exited normally.
474c8240 1030@end smallexample
c906108c
SS
1031
1032@noindent
2df3850c
JM
1033(which is ordinarily issued whenever a program running under
1034@value{GDBN} control terminates) is not issued when running in batch
1035mode.
1036
1a088d06
AS
1037@item -batch-silent
1038@cindex @code{--batch-silent}
1039Run in batch mode exactly like @samp{-batch}, but totally silently. All
1040@value{GDBN} output to @code{stdout} is prevented (@code{stderr} is
1041unaffected). This is much quieter than @samp{-silent} and would be useless
1042for an interactive session.
1043
1044This is particularly useful when using targets that give @samp{Loading section}
1045messages, for example.
1046
1047Note that targets that give their output via @value{GDBN}, as opposed to
1048writing directly to @code{stdout}, will also be made silent.
1049
4b0ad762
AS
1050@item -return-child-result
1051@cindex @code{--return-child-result}
1052The return code from @value{GDBN} will be the return code from the child
1053process (the process being debugged), with the following exceptions:
1054
1055@itemize @bullet
1056@item
1057@value{GDBN} exits abnormally. E.g., due to an incorrect argument or an
1058internal error. In this case the exit code is the same as it would have been
1059without @samp{-return-child-result}.
1060@item
1061The user quits with an explicit value. E.g., @samp{quit 1}.
1062@item
1063The child process never runs, or is not allowed to terminate, in which case
1064the exit code will be -1.
1065@end itemize
1066
1067This option is useful in conjunction with @samp{-batch} or @samp{-batch-silent},
1068when @value{GDBN} is being used as a remote program loader or simulator
1069interface.
1070
2df3850c
JM
1071@item -nowindows
1072@itemx -nw
d700128c
EZ
1073@cindex @code{--nowindows}
1074@cindex @code{-nw}
2df3850c 1075``No windows''. If @value{GDBN} comes with a graphical user interface
96a2c332 1076(GUI) built in, then this option tells @value{GDBN} to only use the command-line
2df3850c
JM
1077interface. If no GUI is available, this option has no effect.
1078
1079@item -windows
1080@itemx -w
d700128c
EZ
1081@cindex @code{--windows}
1082@cindex @code{-w}
2df3850c
JM
1083If @value{GDBN} includes a GUI, then this option requires it to be
1084used if possible.
c906108c
SS
1085
1086@item -cd @var{directory}
d700128c 1087@cindex @code{--cd}
c906108c
SS
1088Run @value{GDBN} using @var{directory} as its working directory,
1089instead of the current directory.
1090
c906108c
SS
1091@item -fullname
1092@itemx -f
d700128c
EZ
1093@cindex @code{--fullname}
1094@cindex @code{-f}
7a292a7a
SS
1095@sc{gnu} Emacs sets this option when it runs @value{GDBN} as a
1096subprocess. It tells @value{GDBN} to output the full file name and line
1097number in a standard, recognizable fashion each time a stack frame is
1098displayed (which includes each time your program stops). This
1099recognizable format looks like two @samp{\032} characters, followed by
1100the file name, line number and character position separated by colons,
1101and a newline. The Emacs-to-@value{GDBN} interface program uses the two
1102@samp{\032} characters as a signal to display the source code for the
1103frame.
c906108c 1104
d700128c
EZ
1105@item -epoch
1106@cindex @code{--epoch}
1107The Epoch Emacs-@value{GDBN} interface sets this option when it runs
1108@value{GDBN} as a subprocess. It tells @value{GDBN} to modify its print
1109routines so as to allow Epoch to display values of expressions in a
1110separate window.
1111
1112@item -annotate @var{level}
1113@cindex @code{--annotate}
1114This option sets the @dfn{annotation level} inside @value{GDBN}. Its
1115effect is identical to using @samp{set annotate @var{level}}
086432e2
AC
1116(@pxref{Annotations}). The annotation @var{level} controls how much
1117information @value{GDBN} prints together with its prompt, values of
1118expressions, source lines, and other types of output. Level 0 is the
1119normal, level 1 is for use when @value{GDBN} is run as a subprocess of
1120@sc{gnu} Emacs, level 3 is the maximum annotation suitable for programs
1121that control @value{GDBN}, and level 2 has been deprecated.
1122
265eeb58 1123The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2 1124(@pxref{GDB/MI}).
d700128c 1125
aa26fa3a
TT
1126@item --args
1127@cindex @code{--args}
1128Change interpretation of command line so that arguments following the
1129executable file are passed as command line arguments to the inferior.
1130This option stops option processing.
1131
2df3850c
JM
1132@item -baud @var{bps}
1133@itemx -b @var{bps}
d700128c
EZ
1134@cindex @code{--baud}
1135@cindex @code{-b}
c906108c
SS
1136Set the line speed (baud rate or bits per second) of any serial
1137interface used by @value{GDBN} for remote debugging.
c906108c 1138
f47b1503
AS
1139@item -l @var{timeout}
1140@cindex @code{-l}
1141Set the timeout (in seconds) of any communication used by @value{GDBN}
1142for remote debugging.
1143
c906108c 1144@item -tty @var{device}
d700128c
EZ
1145@itemx -t @var{device}
1146@cindex @code{--tty}
1147@cindex @code{-t}
c906108c
SS
1148Run using @var{device} for your program's standard input and output.
1149@c FIXME: kingdon thinks there is more to -tty. Investigate.
c906108c 1150
53a5351d 1151@c resolve the situation of these eventually
c4555f82
SC
1152@item -tui
1153@cindex @code{--tui}
d0d5df6f
AC
1154Activate the @dfn{Text User Interface} when starting. The Text User
1155Interface manages several text windows on the terminal, showing
1156source, assembly, registers and @value{GDBN} command outputs
1157(@pxref{TUI, ,@value{GDBN} Text User Interface}). Alternatively, the
1158Text User Interface can be enabled by invoking the program
46ba6afa 1159@samp{@value{GDBTUI}}. Do not use this option if you run @value{GDBN} from
d0d5df6f 1160Emacs (@pxref{Emacs, ,Using @value{GDBN} under @sc{gnu} Emacs}).
53a5351d
JM
1161
1162@c @item -xdb
d700128c 1163@c @cindex @code{--xdb}
53a5351d
JM
1164@c Run in XDB compatibility mode, allowing the use of certain XDB commands.
1165@c For information, see the file @file{xdb_trans.html}, which is usually
1166@c installed in the directory @code{/opt/langtools/wdb/doc} on HP-UX
1167@c systems.
1168
d700128c
EZ
1169@item -interpreter @var{interp}
1170@cindex @code{--interpreter}
1171Use the interpreter @var{interp} for interface with the controlling
1172program or device. This option is meant to be set by programs which
94bbb2c0 1173communicate with @value{GDBN} using it as a back end.
21c294e6 1174@xref{Interpreters, , Command Interpreters}.
94bbb2c0 1175
da0f9dcd 1176@samp{--interpreter=mi} (or @samp{--interpreter=mi2}) causes
2fcf52f0 1177@value{GDBN} to use the @dfn{@sc{gdb/mi} interface} (@pxref{GDB/MI, ,
6b5e8c01 1178The @sc{gdb/mi} Interface}) included since @value{GDBN} version 6.0. The
6c74ac8b
AC
1179previous @sc{gdb/mi} interface, included in @value{GDBN} version 5.3 and
1180selected with @samp{--interpreter=mi1}, is deprecated. Earlier
1181@sc{gdb/mi} interfaces are no longer supported.
d700128c
EZ
1182
1183@item -write
1184@cindex @code{--write}
1185Open the executable and core files for both reading and writing. This
1186is equivalent to the @samp{set write on} command inside @value{GDBN}
1187(@pxref{Patching}).
1188
1189@item -statistics
1190@cindex @code{--statistics}
1191This option causes @value{GDBN} to print statistics about time and
1192memory usage after it completes each command and returns to the prompt.
1193
1194@item -version
1195@cindex @code{--version}
1196This option causes @value{GDBN} to print its version number and
1197no-warranty blurb, and exit.
1198
c906108c
SS
1199@end table
1200
6fc08d32 1201@node Startup
79a6e687 1202@subsection What @value{GDBN} Does During Startup
6fc08d32
EZ
1203@cindex @value{GDBN} startup
1204
1205Here's the description of what @value{GDBN} does during session startup:
1206
1207@enumerate
1208@item
1209Sets up the command interpreter as specified by the command line
1210(@pxref{Mode Options, interpreter}).
1211
1212@item
1213@cindex init file
1214Reads the @dfn{init file} (if any) in your home directory@footnote{On
1215DOS/Windows systems, the home directory is the one pointed to by the
1216@code{HOME} environment variable.} and executes all the commands in
1217that file.
1218
1219@item
1220Processes command line options and operands.
1221
1222@item
1223Reads and executes the commands from init file (if any) in the current
119b882a
EZ
1224working directory. This is only done if the current directory is
1225different from your home directory. Thus, you can have more than one
1226init file, one generic in your home directory, and another, specific
1227to the program you are debugging, in the directory where you invoke
6fc08d32
EZ
1228@value{GDBN}.
1229
1230@item
1231Reads command files specified by the @samp{-x} option. @xref{Command
1232Files}, for more details about @value{GDBN} command files.
1233
1234@item
1235Reads the command history recorded in the @dfn{history file}.
d620b259 1236@xref{Command History}, for more details about the command history and the
6fc08d32
EZ
1237files where @value{GDBN} records it.
1238@end enumerate
1239
1240Init files use the same syntax as @dfn{command files} (@pxref{Command
1241Files}) and are processed by @value{GDBN} in the same way. The init
1242file in your home directory can set options (such as @samp{set
1243complaints}) that affect subsequent processing of command line options
1244and operands. Init files are not executed if you use the @samp{-nx}
79a6e687 1245option (@pxref{Mode Options, ,Choosing Modes}).
6fc08d32
EZ
1246
1247@cindex init file name
1248@cindex @file{.gdbinit}
119b882a 1249@cindex @file{gdb.ini}
8807d78b 1250The @value{GDBN} init files are normally called @file{.gdbinit}.
119b882a
EZ
1251The DJGPP port of @value{GDBN} uses the name @file{gdb.ini}, due to
1252the limitations of file names imposed by DOS filesystems. The Windows
1253ports of @value{GDBN} use the standard name, but if they find a
1254@file{gdb.ini} file, they warn you about that and suggest to rename
1255the file to the standard name.
1256
6fc08d32 1257
6d2ebf8b 1258@node Quitting GDB
c906108c
SS
1259@section Quitting @value{GDBN}
1260@cindex exiting @value{GDBN}
1261@cindex leaving @value{GDBN}
1262
1263@table @code
1264@kindex quit @r{[}@var{expression}@r{]}
41afff9a 1265@kindex q @r{(@code{quit})}
96a2c332
SS
1266@item quit @r{[}@var{expression}@r{]}
1267@itemx q
1268To exit @value{GDBN}, use the @code{quit} command (abbreviated
c8aa23ab 1269@code{q}), or type an end-of-file character (usually @kbd{Ctrl-d}). If you
96a2c332
SS
1270do not supply @var{expression}, @value{GDBN} will terminate normally;
1271otherwise it will terminate using the result of @var{expression} as the
1272error code.
c906108c
SS
1273@end table
1274
1275@cindex interrupt
c8aa23ab 1276An interrupt (often @kbd{Ctrl-c}) does not exit from @value{GDBN}, but rather
c906108c
SS
1277terminates the action of any @value{GDBN} command that is in progress and
1278returns to @value{GDBN} command level. It is safe to type the interrupt
1279character at any time because @value{GDBN} does not allow it to take effect
1280until a time when it is safe.
1281
c906108c
SS
1282If you have been using @value{GDBN} to control an attached process or
1283device, you can release it with the @code{detach} command
79a6e687 1284(@pxref{Attach, ,Debugging an Already-running Process}).
c906108c 1285
6d2ebf8b 1286@node Shell Commands
79a6e687 1287@section Shell Commands
c906108c
SS
1288
1289If you need to execute occasional shell commands during your
1290debugging session, there is no need to leave or suspend @value{GDBN}; you can
1291just use the @code{shell} command.
1292
1293@table @code
1294@kindex shell
1295@cindex shell escape
1296@item shell @var{command string}
1297Invoke a standard shell to execute @var{command string}.
c906108c 1298If it exists, the environment variable @code{SHELL} determines which
d4f3574e
SS
1299shell to run. Otherwise @value{GDBN} uses the default shell
1300(@file{/bin/sh} on Unix systems, @file{COMMAND.COM} on MS-DOS, etc.).
c906108c
SS
1301@end table
1302
1303The utility @code{make} is often needed in development environments.
1304You do not have to use the @code{shell} command for this purpose in
1305@value{GDBN}:
1306
1307@table @code
1308@kindex make
1309@cindex calling make
1310@item make @var{make-args}
1311Execute the @code{make} program with the specified
1312arguments. This is equivalent to @samp{shell make @var{make-args}}.
1313@end table
1314
79a6e687
BW
1315@node Logging Output
1316@section Logging Output
0fac0b41 1317@cindex logging @value{GDBN} output
9c16f35a 1318@cindex save @value{GDBN} output to a file
0fac0b41
DJ
1319
1320You may want to save the output of @value{GDBN} commands to a file.
1321There are several commands to control @value{GDBN}'s logging.
1322
1323@table @code
1324@kindex set logging
1325@item set logging on
1326Enable logging.
1327@item set logging off
1328Disable logging.
9c16f35a 1329@cindex logging file name
0fac0b41
DJ
1330@item set logging file @var{file}
1331Change the name of the current logfile. The default logfile is @file{gdb.txt}.
1332@item set logging overwrite [on|off]
1333By default, @value{GDBN} will append to the logfile. Set @code{overwrite} if
1334you want @code{set logging on} to overwrite the logfile instead.
1335@item set logging redirect [on|off]
1336By default, @value{GDBN} output will go to both the terminal and the logfile.
1337Set @code{redirect} if you want output to go only to the log file.
1338@kindex show logging
1339@item show logging
1340Show the current values of the logging settings.
1341@end table
1342
6d2ebf8b 1343@node Commands
c906108c
SS
1344@chapter @value{GDBN} Commands
1345
1346You can abbreviate a @value{GDBN} command to the first few letters of the command
1347name, if that abbreviation is unambiguous; and you can repeat certain
1348@value{GDBN} commands by typing just @key{RET}. You can also use the @key{TAB}
1349key to get @value{GDBN} to fill out the rest of a word in a command (or to
1350show you the alternatives available, if there is more than one possibility).
1351
1352@menu
1353* Command Syntax:: How to give commands to @value{GDBN}
1354* Completion:: Command completion
1355* Help:: How to ask @value{GDBN} for help
1356@end menu
1357
6d2ebf8b 1358@node Command Syntax
79a6e687 1359@section Command Syntax
c906108c
SS
1360
1361A @value{GDBN} command is a single line of input. There is no limit on
1362how long it can be. It starts with a command name, which is followed by
1363arguments whose meaning depends on the command name. For example, the
1364command @code{step} accepts an argument which is the number of times to
1365step, as in @samp{step 5}. You can also use the @code{step} command
96a2c332 1366with no arguments. Some commands do not allow any arguments.
c906108c
SS
1367
1368@cindex abbreviation
1369@value{GDBN} command names may always be truncated if that abbreviation is
1370unambiguous. Other possible command abbreviations are listed in the
1371documentation for individual commands. In some cases, even ambiguous
1372abbreviations are allowed; for example, @code{s} is specially defined as
1373equivalent to @code{step} even though there are other commands whose
1374names start with @code{s}. You can test abbreviations by using them as
1375arguments to the @code{help} command.
1376
1377@cindex repeating commands
41afff9a 1378@kindex RET @r{(repeat last command)}
c906108c 1379A blank line as input to @value{GDBN} (typing just @key{RET}) means to
96a2c332 1380repeat the previous command. Certain commands (for example, @code{run})
c906108c
SS
1381will not repeat this way; these are commands whose unintentional
1382repetition might cause trouble and which you are unlikely to want to
c45da7e6
EZ
1383repeat. User-defined commands can disable this feature; see
1384@ref{Define, dont-repeat}.
c906108c
SS
1385
1386The @code{list} and @code{x} commands, when you repeat them with
1387@key{RET}, construct new arguments rather than repeating
1388exactly as typed. This permits easy scanning of source or memory.
1389
1390@value{GDBN} can also use @key{RET} in another way: to partition lengthy
1391output, in a way similar to the common utility @code{more}
79a6e687 1392(@pxref{Screen Size,,Screen Size}). Since it is easy to press one
c906108c
SS
1393@key{RET} too many in this situation, @value{GDBN} disables command
1394repetition after any command that generates this sort of display.
1395
41afff9a 1396@kindex # @r{(a comment)}
c906108c
SS
1397@cindex comment
1398Any text from a @kbd{#} to the end of the line is a comment; it does
1399nothing. This is useful mainly in command files (@pxref{Command
79a6e687 1400Files,,Command Files}).
c906108c 1401
88118b3a 1402@cindex repeating command sequences
c8aa23ab
EZ
1403@kindex Ctrl-o @r{(operate-and-get-next)}
1404The @kbd{Ctrl-o} binding is useful for repeating a complex sequence of
7f9087cb 1405commands. This command accepts the current line, like @key{RET}, and
88118b3a
TT
1406then fetches the next line relative to the current line from the history
1407for editing.
1408
6d2ebf8b 1409@node Completion
79a6e687 1410@section Command Completion
c906108c
SS
1411
1412@cindex completion
1413@cindex word completion
1414@value{GDBN} can fill in the rest of a word in a command for you, if there is
1415only one possibility; it can also show you what the valid possibilities
1416are for the next word in a command, at any time. This works for @value{GDBN}
1417commands, @value{GDBN} subcommands, and the names of symbols in your program.
1418
1419Press the @key{TAB} key whenever you want @value{GDBN} to fill out the rest
1420of a word. If there is only one possibility, @value{GDBN} fills in the
1421word, and waits for you to finish the command (or press @key{RET} to
1422enter it). For example, if you type
1423
1424@c FIXME "@key" does not distinguish its argument sufficiently to permit
1425@c complete accuracy in these examples; space introduced for clarity.
1426@c If texinfo enhancements make it unnecessary, it would be nice to
1427@c replace " @key" by "@key" in the following...
474c8240 1428@smallexample
c906108c 1429(@value{GDBP}) info bre @key{TAB}
474c8240 1430@end smallexample
c906108c
SS
1431
1432@noindent
1433@value{GDBN} fills in the rest of the word @samp{breakpoints}, since that is
1434the only @code{info} subcommand beginning with @samp{bre}:
1435
474c8240 1436@smallexample
c906108c 1437(@value{GDBP}) info breakpoints
474c8240 1438@end smallexample
c906108c
SS
1439
1440@noindent
1441You can either press @key{RET} at this point, to run the @code{info
1442breakpoints} command, or backspace and enter something else, if
1443@samp{breakpoints} does not look like the command you expected. (If you
1444were sure you wanted @code{info breakpoints} in the first place, you
1445might as well just type @key{RET} immediately after @samp{info bre},
1446to exploit command abbreviations rather than command completion).
1447
1448If there is more than one possibility for the next word when you press
1449@key{TAB}, @value{GDBN} sounds a bell. You can either supply more
1450characters and try again, or just press @key{TAB} a second time;
1451@value{GDBN} displays all the possible completions for that word. For
1452example, you might want to set a breakpoint on a subroutine whose name
1453begins with @samp{make_}, but when you type @kbd{b make_@key{TAB}} @value{GDBN}
1454just sounds the bell. Typing @key{TAB} again displays all the
1455function names in your program that begin with those characters, for
1456example:
1457
474c8240 1458@smallexample
c906108c
SS
1459(@value{GDBP}) b make_ @key{TAB}
1460@exdent @value{GDBN} sounds bell; press @key{TAB} again, to see:
5d161b24
DB
1461make_a_section_from_file make_environ
1462make_abs_section make_function_type
1463make_blockvector make_pointer_type
1464make_cleanup make_reference_type
c906108c
SS
1465make_command make_symbol_completion_list
1466(@value{GDBP}) b make_
474c8240 1467@end smallexample
c906108c
SS
1468
1469@noindent
1470After displaying the available possibilities, @value{GDBN} copies your
1471partial input (@samp{b make_} in the example) so you can finish the
1472command.
1473
1474If you just want to see the list of alternatives in the first place, you
b37052ae 1475can press @kbd{M-?} rather than pressing @key{TAB} twice. @kbd{M-?}
7a292a7a 1476means @kbd{@key{META} ?}. You can type this either by holding down a
c906108c 1477key designated as the @key{META} shift on your keyboard (if there is
7a292a7a 1478one) while typing @kbd{?}, or as @key{ESC} followed by @kbd{?}.
c906108c
SS
1479
1480@cindex quotes in commands
1481@cindex completion of quoted strings
1482Sometimes the string you need, while logically a ``word'', may contain
7a292a7a
SS
1483parentheses or other characters that @value{GDBN} normally excludes from
1484its notion of a word. To permit word completion to work in this
1485situation, you may enclose words in @code{'} (single quote marks) in
1486@value{GDBN} commands.
c906108c 1487
c906108c 1488The most likely situation where you might need this is in typing the
b37052ae
EZ
1489name of a C@t{++} function. This is because C@t{++} allows function
1490overloading (multiple definitions of the same function, distinguished
1491by argument type). For example, when you want to set a breakpoint you
1492may need to distinguish whether you mean the version of @code{name}
1493that takes an @code{int} parameter, @code{name(int)}, or the version
1494that takes a @code{float} parameter, @code{name(float)}. To use the
1495word-completion facilities in this situation, type a single quote
1496@code{'} at the beginning of the function name. This alerts
1497@value{GDBN} that it may need to consider more information than usual
1498when you press @key{TAB} or @kbd{M-?} to request word completion:
c906108c 1499
474c8240 1500@smallexample
96a2c332 1501(@value{GDBP}) b 'bubble( @kbd{M-?}
c906108c
SS
1502bubble(double,double) bubble(int,int)
1503(@value{GDBP}) b 'bubble(
474c8240 1504@end smallexample
c906108c
SS
1505
1506In some cases, @value{GDBN} can tell that completing a name requires using
1507quotes. When this happens, @value{GDBN} inserts the quote for you (while
1508completing as much as it can) if you do not type the quote in the first
1509place:
1510
474c8240 1511@smallexample
c906108c
SS
1512(@value{GDBP}) b bub @key{TAB}
1513@exdent @value{GDBN} alters your input line to the following, and rings a bell:
1514(@value{GDBP}) b 'bubble(
474c8240 1515@end smallexample
c906108c
SS
1516
1517@noindent
1518In general, @value{GDBN} can tell that a quote is needed (and inserts it) if
1519you have not yet started typing the argument list when you ask for
1520completion on an overloaded symbol.
1521
79a6e687
BW
1522For more information about overloaded functions, see @ref{C Plus Plus
1523Expressions, ,C@t{++} Expressions}. You can use the command @code{set
c906108c 1524overload-resolution off} to disable overload resolution;
79a6e687 1525see @ref{Debugging C Plus Plus, ,@value{GDBN} Features for C@t{++}}.
c906108c
SS
1526
1527
6d2ebf8b 1528@node Help
79a6e687 1529@section Getting Help
c906108c
SS
1530@cindex online documentation
1531@kindex help
1532
5d161b24 1533You can always ask @value{GDBN} itself for information on its commands,
c906108c
SS
1534using the command @code{help}.
1535
1536@table @code
41afff9a 1537@kindex h @r{(@code{help})}
c906108c
SS
1538@item help
1539@itemx h
1540You can use @code{help} (abbreviated @code{h}) with no arguments to
1541display a short list of named classes of commands:
1542
1543@smallexample
1544(@value{GDBP}) help
1545List of classes of commands:
1546
2df3850c 1547aliases -- Aliases of other commands
c906108c 1548breakpoints -- Making program stop at certain points
2df3850c 1549data -- Examining data
c906108c 1550files -- Specifying and examining files
2df3850c
JM
1551internals -- Maintenance commands
1552obscure -- Obscure features
1553running -- Running the program
1554stack -- Examining the stack
c906108c
SS
1555status -- Status inquiries
1556support -- Support facilities
12c27660 1557tracepoints -- Tracing of program execution without
96a2c332 1558 stopping the program
c906108c 1559user-defined -- User-defined commands
c906108c 1560
5d161b24 1561Type "help" followed by a class name for a list of
c906108c 1562commands in that class.
5d161b24 1563Type "help" followed by command name for full
c906108c
SS
1564documentation.
1565Command name abbreviations are allowed if unambiguous.
1566(@value{GDBP})
1567@end smallexample
96a2c332 1568@c the above line break eliminates huge line overfull...
c906108c
SS
1569
1570@item help @var{class}
1571Using one of the general help classes as an argument, you can get a
1572list of the individual commands in that class. For example, here is the
1573help display for the class @code{status}:
1574
1575@smallexample
1576(@value{GDBP}) help status
1577Status inquiries.
1578
1579List of commands:
1580
1581@c Line break in "show" line falsifies real output, but needed
1582@c to fit in smallbook page size.
2df3850c 1583info -- Generic command for showing things
12c27660 1584 about the program being debugged
2df3850c 1585show -- Generic command for showing things
12c27660 1586 about the debugger
c906108c 1587
5d161b24 1588Type "help" followed by command name for full
c906108c
SS
1589documentation.
1590Command name abbreviations are allowed if unambiguous.
1591(@value{GDBP})
1592@end smallexample
1593
1594@item help @var{command}
1595With a command name as @code{help} argument, @value{GDBN} displays a
1596short paragraph on how to use that command.
1597
6837a0a2
DB
1598@kindex apropos
1599@item apropos @var{args}
09d4efe1 1600The @code{apropos} command searches through all of the @value{GDBN}
6837a0a2
DB
1601commands, and their documentation, for the regular expression specified in
1602@var{args}. It prints out all matches found. For example:
1603
1604@smallexample
1605apropos reload
1606@end smallexample
1607
b37052ae
EZ
1608@noindent
1609results in:
6837a0a2
DB
1610
1611@smallexample
6d2ebf8b
SS
1612@c @group
1613set symbol-reloading -- Set dynamic symbol table reloading
12c27660 1614 multiple times in one run
6d2ebf8b 1615show symbol-reloading -- Show dynamic symbol table reloading
12c27660 1616 multiple times in one run
6d2ebf8b 1617@c @end group
6837a0a2
DB
1618@end smallexample
1619
c906108c
SS
1620@kindex complete
1621@item complete @var{args}
1622The @code{complete @var{args}} command lists all the possible completions
1623for the beginning of a command. Use @var{args} to specify the beginning of the
1624command you want completed. For example:
1625
1626@smallexample
1627complete i
1628@end smallexample
1629
1630@noindent results in:
1631
1632@smallexample
1633@group
2df3850c
JM
1634if
1635ignore
c906108c
SS
1636info
1637inspect
c906108c
SS
1638@end group
1639@end smallexample
1640
1641@noindent This is intended for use by @sc{gnu} Emacs.
1642@end table
1643
1644In addition to @code{help}, you can use the @value{GDBN} commands @code{info}
1645and @code{show} to inquire about the state of your program, or the state
1646of @value{GDBN} itself. Each command supports many topics of inquiry; this
1647manual introduces each of them in the appropriate context. The listings
1648under @code{info} and under @code{show} in the Index point to
1649all the sub-commands. @xref{Index}.
1650
1651@c @group
1652@table @code
1653@kindex info
41afff9a 1654@kindex i @r{(@code{info})}
c906108c
SS
1655@item info
1656This command (abbreviated @code{i}) is for describing the state of your
1657program. For example, you can list the arguments given to your program
1658with @code{info args}, list the registers currently in use with @code{info
1659registers}, or list the breakpoints you have set with @code{info breakpoints}.
1660You can get a complete list of the @code{info} sub-commands with
1661@w{@code{help info}}.
1662
1663@kindex set
1664@item set
5d161b24 1665You can assign the result of an expression to an environment variable with
c906108c
SS
1666@code{set}. For example, you can set the @value{GDBN} prompt to a $-sign with
1667@code{set prompt $}.
1668
1669@kindex show
1670@item show
5d161b24 1671In contrast to @code{info}, @code{show} is for describing the state of
c906108c
SS
1672@value{GDBN} itself.
1673You can change most of the things you can @code{show}, by using the
1674related command @code{set}; for example, you can control what number
1675system is used for displays with @code{set radix}, or simply inquire
1676which is currently in use with @code{show radix}.
1677
1678@kindex info set
1679To display all the settable parameters and their current
1680values, you can use @code{show} with no arguments; you may also use
1681@code{info set}. Both commands produce the same display.
1682@c FIXME: "info set" violates the rule that "info" is for state of
1683@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
1684@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
1685@end table
1686@c @end group
1687
1688Here are three miscellaneous @code{show} subcommands, all of which are
1689exceptional in lacking corresponding @code{set} commands:
1690
1691@table @code
1692@kindex show version
9c16f35a 1693@cindex @value{GDBN} version number
c906108c
SS
1694@item show version
1695Show what version of @value{GDBN} is running. You should include this
2df3850c
JM
1696information in @value{GDBN} bug-reports. If multiple versions of
1697@value{GDBN} are in use at your site, you may need to determine which
1698version of @value{GDBN} you are running; as @value{GDBN} evolves, new
1699commands are introduced, and old ones may wither away. Also, many
1700system vendors ship variant versions of @value{GDBN}, and there are
96a2c332 1701variant versions of @value{GDBN} in @sc{gnu}/Linux distributions as well.
2df3850c
JM
1702The version number is the same as the one announced when you start
1703@value{GDBN}.
c906108c
SS
1704
1705@kindex show copying
09d4efe1 1706@kindex info copying
9c16f35a 1707@cindex display @value{GDBN} copyright
c906108c 1708@item show copying
09d4efe1 1709@itemx info copying
c906108c
SS
1710Display information about permission for copying @value{GDBN}.
1711
1712@kindex show warranty
09d4efe1 1713@kindex info warranty
c906108c 1714@item show warranty
09d4efe1 1715@itemx info warranty
2df3850c 1716Display the @sc{gnu} ``NO WARRANTY'' statement, or a warranty,
96a2c332 1717if your version of @value{GDBN} comes with one.
2df3850c 1718
c906108c
SS
1719@end table
1720
6d2ebf8b 1721@node Running
c906108c
SS
1722@chapter Running Programs Under @value{GDBN}
1723
1724When you run a program under @value{GDBN}, you must first generate
1725debugging information when you compile it.
7a292a7a
SS
1726
1727You may start @value{GDBN} with its arguments, if any, in an environment
1728of your choice. If you are doing native debugging, you may redirect
1729your program's input and output, debug an already running process, or
1730kill a child process.
c906108c
SS
1731
1732@menu
1733* Compilation:: Compiling for debugging
1734* Starting:: Starting your program
c906108c
SS
1735* Arguments:: Your program's arguments
1736* Environment:: Your program's environment
c906108c
SS
1737
1738* Working Directory:: Your program's working directory
1739* Input/Output:: Your program's input and output
1740* Attach:: Debugging an already-running process
1741* Kill Process:: Killing the child process
c906108c
SS
1742
1743* Threads:: Debugging programs with multiple threads
1744* Processes:: Debugging programs with multiple processes
5c95884b 1745* Checkpoint/Restart:: Setting a @emph{bookmark} to return to later
c906108c
SS
1746@end menu
1747
6d2ebf8b 1748@node Compilation
79a6e687 1749@section Compiling for Debugging
c906108c
SS
1750
1751In order to debug a program effectively, you need to generate
1752debugging information when you compile it. This debugging information
1753is stored in the object file; it describes the data type of each
1754variable or function and the correspondence between source line numbers
1755and addresses in the executable code.
1756
1757To request debugging information, specify the @samp{-g} option when you run
1758the compiler.
1759
514c4d71
EZ
1760Programs that are to be shipped to your customers are compiled with
1761optimizations, using the @samp{-O} compiler option. However, many
1762compilers are unable to handle the @samp{-g} and @samp{-O} options
1763together. Using those compilers, you cannot generate optimized
c906108c
SS
1764executables containing debugging information.
1765
514c4d71 1766@value{NGCC}, the @sc{gnu} C/C@t{++} compiler, supports @samp{-g} with or
53a5351d
JM
1767without @samp{-O}, making it possible to debug optimized code. We
1768recommend that you @emph{always} use @samp{-g} whenever you compile a
1769program. You may think your program is correct, but there is no sense
1770in pushing your luck.
c906108c
SS
1771
1772@cindex optimized code, debugging
1773@cindex debugging optimized code
1774When you debug a program compiled with @samp{-g -O}, remember that the
1775optimizer is rearranging your code; the debugger shows you what is
1776really there. Do not be too surprised when the execution path does not
1777exactly match your source file! An extreme example: if you define a
1778variable, but never use it, @value{GDBN} never sees that
1779variable---because the compiler optimizes it out of existence.
1780
1781Some things do not work as well with @samp{-g -O} as with just
1782@samp{-g}, particularly on machines with instruction scheduling. If in
1783doubt, recompile with @samp{-g} alone, and if this fixes the problem,
1784please report it to us as a bug (including a test case!).
15387254 1785@xref{Variables}, for more information about debugging optimized code.
c906108c
SS
1786
1787Older versions of the @sc{gnu} C compiler permitted a variant option
1788@w{@samp{-gg}} for debugging information. @value{GDBN} no longer supports this
1789format; if your @sc{gnu} C compiler has this option, do not use it.
1790
514c4d71
EZ
1791@value{GDBN} knows about preprocessor macros and can show you their
1792expansion (@pxref{Macros}). Most compilers do not include information
1793about preprocessor macros in the debugging information if you specify
1794the @option{-g} flag alone, because this information is rather large.
1795Version 3.1 and later of @value{NGCC}, the @sc{gnu} C compiler,
1796provides macro information if you specify the options
1797@option{-gdwarf-2} and @option{-g3}; the former option requests
1798debugging information in the Dwarf 2 format, and the latter requests
1799``extra information''. In the future, we hope to find more compact
1800ways to represent macro information, so that it can be included with
1801@option{-g} alone.
1802
c906108c 1803@need 2000
6d2ebf8b 1804@node Starting
79a6e687 1805@section Starting your Program
c906108c
SS
1806@cindex starting
1807@cindex running
1808
1809@table @code
1810@kindex run
41afff9a 1811@kindex r @r{(@code{run})}
c906108c
SS
1812@item run
1813@itemx r
7a292a7a
SS
1814Use the @code{run} command to start your program under @value{GDBN}.
1815You must first specify the program name (except on VxWorks) with an
1816argument to @value{GDBN} (@pxref{Invocation, ,Getting In and Out of
1817@value{GDBN}}), or by using the @code{file} or @code{exec-file} command
79a6e687 1818(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
1819
1820@end table
1821
c906108c
SS
1822If you are running your program in an execution environment that
1823supports processes, @code{run} creates an inferior process and makes
1824that process run your program. (In environments without processes,
1825@code{run} jumps to the start of your program.)
1826
1827The execution of a program is affected by certain information it
1828receives from its superior. @value{GDBN} provides ways to specify this
1829information, which you must do @emph{before} starting your program. (You
1830can change it after starting your program, but such changes only affect
1831your program the next time you start it.) This information may be
1832divided into four categories:
1833
1834@table @asis
1835@item The @emph{arguments.}
1836Specify the arguments to give your program as the arguments of the
1837@code{run} command. If a shell is available on your target, the shell
1838is used to pass the arguments, so that you may use normal conventions
1839(such as wildcard expansion or variable substitution) in describing
1840the arguments.
1841In Unix systems, you can control which shell is used with the
1842@code{SHELL} environment variable.
79a6e687 1843@xref{Arguments, ,Your Program's Arguments}.
c906108c
SS
1844
1845@item The @emph{environment.}
1846Your program normally inherits its environment from @value{GDBN}, but you can
1847use the @value{GDBN} commands @code{set environment} and @code{unset
1848environment} to change parts of the environment that affect
79a6e687 1849your program. @xref{Environment, ,Your Program's Environment}.
c906108c
SS
1850
1851@item The @emph{working directory.}
1852Your program inherits its working directory from @value{GDBN}. You can set
1853the @value{GDBN} working directory with the @code{cd} command in @value{GDBN}.
79a6e687 1854@xref{Working Directory, ,Your Program's Working Directory}.
c906108c
SS
1855
1856@item The @emph{standard input and output.}
1857Your program normally uses the same device for standard input and
1858standard output as @value{GDBN} is using. You can redirect input and output
1859in the @code{run} command line, or you can use the @code{tty} command to
1860set a different device for your program.
79a6e687 1861@xref{Input/Output, ,Your Program's Input and Output}.
c906108c
SS
1862
1863@cindex pipes
1864@emph{Warning:} While input and output redirection work, you cannot use
1865pipes to pass the output of the program you are debugging to another
1866program; if you attempt this, @value{GDBN} is likely to wind up debugging the
1867wrong program.
1868@end table
c906108c
SS
1869
1870When you issue the @code{run} command, your program begins to execute
79a6e687 1871immediately. @xref{Stopping, ,Stopping and Continuing}, for discussion
c906108c
SS
1872of how to arrange for your program to stop. Once your program has
1873stopped, you may call functions in your program, using the @code{print}
1874or @code{call} commands. @xref{Data, ,Examining Data}.
1875
1876If the modification time of your symbol file has changed since the last
1877time @value{GDBN} read its symbols, @value{GDBN} discards its symbol
1878table, and reads it again. When it does this, @value{GDBN} tries to retain
1879your current breakpoints.
1880
4e8b0763
JB
1881@table @code
1882@kindex start
1883@item start
1884@cindex run to main procedure
1885The name of the main procedure can vary from language to language.
1886With C or C@t{++}, the main procedure name is always @code{main}, but
1887other languages such as Ada do not require a specific name for their
1888main procedure. The debugger provides a convenient way to start the
1889execution of the program and to stop at the beginning of the main
1890procedure, depending on the language used.
1891
1892The @samp{start} command does the equivalent of setting a temporary
1893breakpoint at the beginning of the main procedure and then invoking
1894the @samp{run} command.
1895
f018e82f
EZ
1896@cindex elaboration phase
1897Some programs contain an @dfn{elaboration} phase where some startup code is
1898executed before the main procedure is called. This depends on the
1899languages used to write your program. In C@t{++}, for instance,
4e8b0763
JB
1900constructors for static and global objects are executed before
1901@code{main} is called. It is therefore possible that the debugger stops
1902before reaching the main procedure. However, the temporary breakpoint
1903will remain to halt execution.
1904
1905Specify the arguments to give to your program as arguments to the
1906@samp{start} command. These arguments will be given verbatim to the
1907underlying @samp{run} command. Note that the same arguments will be
1908reused if no argument is provided during subsequent calls to
1909@samp{start} or @samp{run}.
1910
1911It is sometimes necessary to debug the program during elaboration. In
1912these cases, using the @code{start} command would stop the execution of
1913your program too late, as the program would have already completed the
1914elaboration phase. Under these circumstances, insert breakpoints in your
1915elaboration code before running your program.
1916@end table
1917
6d2ebf8b 1918@node Arguments
79a6e687 1919@section Your Program's Arguments
c906108c
SS
1920
1921@cindex arguments (to your program)
1922The arguments to your program can be specified by the arguments of the
5d161b24 1923@code{run} command.
c906108c
SS
1924They are passed to a shell, which expands wildcard characters and
1925performs redirection of I/O, and thence to your program. Your
1926@code{SHELL} environment variable (if it exists) specifies what shell
1927@value{GDBN} uses. If you do not define @code{SHELL}, @value{GDBN} uses
d4f3574e
SS
1928the default shell (@file{/bin/sh} on Unix).
1929
1930On non-Unix systems, the program is usually invoked directly by
1931@value{GDBN}, which emulates I/O redirection via the appropriate system
1932calls, and the wildcard characters are expanded by the startup code of
1933the program, not by the shell.
c906108c
SS
1934
1935@code{run} with no arguments uses the same arguments used by the previous
1936@code{run}, or those set by the @code{set args} command.
1937
c906108c 1938@table @code
41afff9a 1939@kindex set args
c906108c
SS
1940@item set args
1941Specify the arguments to be used the next time your program is run. If
1942@code{set args} has no arguments, @code{run} executes your program
1943with no arguments. Once you have run your program with arguments,
1944using @code{set args} before the next @code{run} is the only way to run
1945it again without arguments.
1946
1947@kindex show args
1948@item show args
1949Show the arguments to give your program when it is started.
1950@end table
1951
6d2ebf8b 1952@node Environment
79a6e687 1953@section Your Program's Environment
c906108c
SS
1954
1955@cindex environment (of your program)
1956The @dfn{environment} consists of a set of environment variables and
1957their values. Environment variables conventionally record such things as
1958your user name, your home directory, your terminal type, and your search
1959path for programs to run. Usually you set up environment variables with
1960the shell and they are inherited by all the other programs you run. When
1961debugging, it can be useful to try running your program with a modified
1962environment without having to start @value{GDBN} over again.
1963
1964@table @code
1965@kindex path
1966@item path @var{directory}
1967Add @var{directory} to the front of the @code{PATH} environment variable
17cc6a06
EZ
1968(the search path for executables) that will be passed to your program.
1969The value of @code{PATH} used by @value{GDBN} does not change.
d4f3574e
SS
1970You may specify several directory names, separated by whitespace or by a
1971system-dependent separator character (@samp{:} on Unix, @samp{;} on
1972MS-DOS and MS-Windows). If @var{directory} is already in the path, it
1973is moved to the front, so it is searched sooner.
c906108c
SS
1974
1975You can use the string @samp{$cwd} to refer to whatever is the current
1976working directory at the time @value{GDBN} searches the path. If you
1977use @samp{.} instead, it refers to the directory where you executed the
1978@code{path} command. @value{GDBN} replaces @samp{.} in the
1979@var{directory} argument (with the current path) before adding
1980@var{directory} to the search path.
1981@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
1982@c document that, since repeating it would be a no-op.
1983
1984@kindex show paths
1985@item show paths
1986Display the list of search paths for executables (the @code{PATH}
1987environment variable).
1988
1989@kindex show environment
1990@item show environment @r{[}@var{varname}@r{]}
1991Print the value of environment variable @var{varname} to be given to
1992your program when it starts. If you do not supply @var{varname},
1993print the names and values of all environment variables to be given to
1994your program. You can abbreviate @code{environment} as @code{env}.
1995
1996@kindex set environment
53a5351d 1997@item set environment @var{varname} @r{[}=@var{value}@r{]}
c906108c
SS
1998Set environment variable @var{varname} to @var{value}. The value
1999changes for your program only, not for @value{GDBN} itself. @var{value} may
2000be any string; the values of environment variables are just strings, and
2001any interpretation is supplied by your program itself. The @var{value}
2002parameter is optional; if it is eliminated, the variable is set to a
2003null value.
2004@c "any string" here does not include leading, trailing
2005@c blanks. Gnu asks: does anyone care?
2006
2007For example, this command:
2008
474c8240 2009@smallexample
c906108c 2010set env USER = foo
474c8240 2011@end smallexample
c906108c
SS
2012
2013@noindent
d4f3574e 2014tells the debugged program, when subsequently run, that its user is named
c906108c
SS
2015@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
2016are not actually required.)
2017
2018@kindex unset environment
2019@item unset environment @var{varname}
2020Remove variable @var{varname} from the environment to be passed to your
2021program. This is different from @samp{set env @var{varname} =};
2022@code{unset environment} removes the variable from the environment,
2023rather than assigning it an empty value.
2024@end table
2025
d4f3574e
SS
2026@emph{Warning:} On Unix systems, @value{GDBN} runs your program using
2027the shell indicated
c906108c
SS
2028by your @code{SHELL} environment variable if it exists (or
2029@code{/bin/sh} if not). If your @code{SHELL} variable names a shell
2030that runs an initialization file---such as @file{.cshrc} for C-shell, or
2031@file{.bashrc} for BASH---any variables you set in that file affect
2032your program. You may wish to move setting of environment variables to
2033files that are only run when you sign on, such as @file{.login} or
2034@file{.profile}.
2035
6d2ebf8b 2036@node Working Directory
79a6e687 2037@section Your Program's Working Directory
c906108c
SS
2038
2039@cindex working directory (of your program)
2040Each time you start your program with @code{run}, it inherits its
2041working directory from the current working directory of @value{GDBN}.
2042The @value{GDBN} working directory is initially whatever it inherited
2043from its parent process (typically the shell), but you can specify a new
2044working directory in @value{GDBN} with the @code{cd} command.
2045
2046The @value{GDBN} working directory also serves as a default for the commands
2047that specify files for @value{GDBN} to operate on. @xref{Files, ,Commands to
79a6e687 2048Specify Files}.
c906108c
SS
2049
2050@table @code
2051@kindex cd
721c2651 2052@cindex change working directory
c906108c
SS
2053@item cd @var{directory}
2054Set the @value{GDBN} working directory to @var{directory}.
2055
2056@kindex pwd
2057@item pwd
2058Print the @value{GDBN} working directory.
2059@end table
2060
60bf7e09
EZ
2061It is generally impossible to find the current working directory of
2062the process being debugged (since a program can change its directory
2063during its run). If you work on a system where @value{GDBN} is
2064configured with the @file{/proc} support, you can use the @code{info
2065proc} command (@pxref{SVR4 Process Information}) to find out the
2066current working directory of the debuggee.
2067
6d2ebf8b 2068@node Input/Output
79a6e687 2069@section Your Program's Input and Output
c906108c
SS
2070
2071@cindex redirection
2072@cindex i/o
2073@cindex terminal
2074By default, the program you run under @value{GDBN} does input and output to
5d161b24 2075the same terminal that @value{GDBN} uses. @value{GDBN} switches the terminal
c906108c
SS
2076to its own terminal modes to interact with you, but it records the terminal
2077modes your program was using and switches back to them when you continue
2078running your program.
2079
2080@table @code
2081@kindex info terminal
2082@item info terminal
2083Displays information recorded by @value{GDBN} about the terminal modes your
2084program is using.
2085@end table
2086
2087You can redirect your program's input and/or output using shell
2088redirection with the @code{run} command. For example,
2089
474c8240 2090@smallexample
c906108c 2091run > outfile
474c8240 2092@end smallexample
c906108c
SS
2093
2094@noindent
2095starts your program, diverting its output to the file @file{outfile}.
2096
2097@kindex tty
2098@cindex controlling terminal
2099Another way to specify where your program should do input and output is
2100with the @code{tty} command. This command accepts a file name as
2101argument, and causes this file to be the default for future @code{run}
2102commands. It also resets the controlling terminal for the child
2103process, for future @code{run} commands. For example,
2104
474c8240 2105@smallexample
c906108c 2106tty /dev/ttyb
474c8240 2107@end smallexample
c906108c
SS
2108
2109@noindent
2110directs that processes started with subsequent @code{run} commands
2111default to do input and output on the terminal @file{/dev/ttyb} and have
2112that as their controlling terminal.
2113
2114An explicit redirection in @code{run} overrides the @code{tty} command's
2115effect on the input/output device, but not its effect on the controlling
2116terminal.
2117
2118When you use the @code{tty} command or redirect input in the @code{run}
2119command, only the input @emph{for your program} is affected. The input
3cb3b8df
BR
2120for @value{GDBN} still comes from your terminal. @code{tty} is an alias
2121for @code{set inferior-tty}.
2122
2123@cindex inferior tty
2124@cindex set inferior controlling terminal
2125You can use the @code{show inferior-tty} command to tell @value{GDBN} to
2126display the name of the terminal that will be used for future runs of your
2127program.
2128
2129@table @code
2130@item set inferior-tty /dev/ttyb
2131@kindex set inferior-tty
2132Set the tty for the program being debugged to /dev/ttyb.
2133
2134@item show inferior-tty
2135@kindex show inferior-tty
2136Show the current tty for the program being debugged.
2137@end table
c906108c 2138
6d2ebf8b 2139@node Attach
79a6e687 2140@section Debugging an Already-running Process
c906108c
SS
2141@kindex attach
2142@cindex attach
2143
2144@table @code
2145@item attach @var{process-id}
2146This command attaches to a running process---one that was started
2147outside @value{GDBN}. (@code{info files} shows your active
2148targets.) The command takes as argument a process ID. The usual way to
09d4efe1 2149find out the @var{process-id} of a Unix process is with the @code{ps} utility,
c906108c
SS
2150or with the @samp{jobs -l} shell command.
2151
2152@code{attach} does not repeat if you press @key{RET} a second time after
2153executing the command.
2154@end table
2155
2156To use @code{attach}, your program must be running in an environment
2157which supports processes; for example, @code{attach} does not work for
2158programs on bare-board targets that lack an operating system. You must
2159also have permission to send the process a signal.
2160
2161When you use @code{attach}, the debugger finds the program running in
2162the process first by looking in the current working directory, then (if
2163the program is not found) by using the source file search path
79a6e687 2164(@pxref{Source Path, ,Specifying Source Directories}). You can also use
c906108c
SS
2165the @code{file} command to load the program. @xref{Files, ,Commands to
2166Specify Files}.
2167
2168The first thing @value{GDBN} does after arranging to debug the specified
2169process is to stop it. You can examine and modify an attached process
53a5351d
JM
2170with all the @value{GDBN} commands that are ordinarily available when
2171you start processes with @code{run}. You can insert breakpoints; you
2172can step and continue; you can modify storage. If you would rather the
2173process continue running, you may use the @code{continue} command after
c906108c
SS
2174attaching @value{GDBN} to the process.
2175
2176@table @code
2177@kindex detach
2178@item detach
2179When you have finished debugging the attached process, you can use the
2180@code{detach} command to release it from @value{GDBN} control. Detaching
2181the process continues its execution. After the @code{detach} command,
2182that process and @value{GDBN} become completely independent once more, and you
2183are ready to @code{attach} another process or start one with @code{run}.
2184@code{detach} does not repeat if you press @key{RET} again after
2185executing the command.
2186@end table
2187
159fcc13
JK
2188If you exit @value{GDBN} while you have an attached process, you detach
2189that process. If you use the @code{run} command, you kill that process.
2190By default, @value{GDBN} asks for confirmation if you try to do either of these
2191things; you can control whether or not you need to confirm by using the
2192@code{set confirm} command (@pxref{Messages/Warnings, ,Optional Warnings and
79a6e687 2193Messages}).
c906108c 2194
6d2ebf8b 2195@node Kill Process
79a6e687 2196@section Killing the Child Process
c906108c
SS
2197
2198@table @code
2199@kindex kill
2200@item kill
2201Kill the child process in which your program is running under @value{GDBN}.
2202@end table
2203
2204This command is useful if you wish to debug a core dump instead of a
2205running process. @value{GDBN} ignores any core dump file while your program
2206is running.
2207
2208On some operating systems, a program cannot be executed outside @value{GDBN}
2209while you have breakpoints set on it inside @value{GDBN}. You can use the
2210@code{kill} command in this situation to permit running your program
2211outside the debugger.
2212
2213The @code{kill} command is also useful if you wish to recompile and
2214relink your program, since on many systems it is impossible to modify an
2215executable file while it is running in a process. In this case, when you
2216next type @code{run}, @value{GDBN} notices that the file has changed, and
2217reads the symbol table again (while trying to preserve your current
2218breakpoint settings).
2219
6d2ebf8b 2220@node Threads
79a6e687 2221@section Debugging Programs with Multiple Threads
c906108c
SS
2222
2223@cindex threads of execution
2224@cindex multiple threads
2225@cindex switching threads
2226In some operating systems, such as HP-UX and Solaris, a single program
2227may have more than one @dfn{thread} of execution. The precise semantics
2228of threads differ from one operating system to another, but in general
2229the threads of a single program are akin to multiple processes---except
2230that they share one address space (that is, they can all examine and
2231modify the same variables). On the other hand, each thread has its own
2232registers and execution stack, and perhaps private memory.
2233
2234@value{GDBN} provides these facilities for debugging multi-thread
2235programs:
2236
2237@itemize @bullet
2238@item automatic notification of new threads
2239@item @samp{thread @var{threadno}}, a command to switch among threads
2240@item @samp{info threads}, a command to inquire about existing threads
5d161b24 2241@item @samp{thread apply [@var{threadno}] [@var{all}] @var{args}},
c906108c
SS
2242a command to apply a command to a list of threads
2243@item thread-specific breakpoints
2244@end itemize
2245
c906108c
SS
2246@quotation
2247@emph{Warning:} These facilities are not yet available on every
2248@value{GDBN} configuration where the operating system supports threads.
2249If your @value{GDBN} does not support threads, these commands have no
2250effect. For example, a system without thread support shows no output
2251from @samp{info threads}, and always rejects the @code{thread} command,
2252like this:
2253
2254@smallexample
2255(@value{GDBP}) info threads
2256(@value{GDBP}) thread 1
2257Thread ID 1 not known. Use the "info threads" command to
2258see the IDs of currently known threads.
2259@end smallexample
2260@c FIXME to implementors: how hard would it be to say "sorry, this GDB
2261@c doesn't support threads"?
2262@end quotation
c906108c
SS
2263
2264@cindex focus of debugging
2265@cindex current thread
2266The @value{GDBN} thread debugging facility allows you to observe all
2267threads while your program runs---but whenever @value{GDBN} takes
2268control, one thread in particular is always the focus of debugging.
2269This thread is called the @dfn{current thread}. Debugging commands show
2270program information from the perspective of the current thread.
2271
41afff9a 2272@cindex @code{New} @var{systag} message
c906108c
SS
2273@cindex thread identifier (system)
2274@c FIXME-implementors!! It would be more helpful if the [New...] message
2275@c included GDB's numeric thread handle, so you could just go to that
2276@c thread without first checking `info threads'.
2277Whenever @value{GDBN} detects a new thread in your program, it displays
2278the target system's identification for the thread with a message in the
2279form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2280whose form varies depending on the particular system. For example, on
8807d78b 2281@sc{gnu}/Linux, you might see
c906108c 2282
474c8240 2283@smallexample
8807d78b 2284[New Thread 46912507313328 (LWP 25582)]
474c8240 2285@end smallexample
c906108c
SS
2286
2287@noindent
2288when @value{GDBN} notices a new thread. In contrast, on an SGI system,
2289the @var{systag} is simply something like @samp{process 368}, with no
2290further qualifier.
2291
2292@c FIXME!! (1) Does the [New...] message appear even for the very first
2293@c thread of a program, or does it only appear for the
6ca652b0 2294@c second---i.e.@: when it becomes obvious we have a multithread
c906108c
SS
2295@c program?
2296@c (2) *Is* there necessarily a first thread always? Or do some
2297@c multithread systems permit starting a program with multiple
5d161b24 2298@c threads ab initio?
c906108c
SS
2299
2300@cindex thread number
2301@cindex thread identifier (GDB)
2302For debugging purposes, @value{GDBN} associates its own thread
2303number---always a single integer---with each thread in your program.
2304
2305@table @code
2306@kindex info threads
2307@item info threads
2308Display a summary of all threads currently in your
2309program. @value{GDBN} displays for each thread (in this order):
2310
2311@enumerate
09d4efe1
EZ
2312@item
2313the thread number assigned by @value{GDBN}
c906108c 2314
09d4efe1
EZ
2315@item
2316the target system's thread identifier (@var{systag})
c906108c 2317
09d4efe1
EZ
2318@item
2319the current stack frame summary for that thread
c906108c
SS
2320@end enumerate
2321
2322@noindent
2323An asterisk @samp{*} to the left of the @value{GDBN} thread number
2324indicates the current thread.
2325
5d161b24 2326For example,
c906108c
SS
2327@end table
2328@c end table here to get a little more width for example
2329
2330@smallexample
2331(@value{GDBP}) info threads
2332 3 process 35 thread 27 0x34e5 in sigpause ()
2333 2 process 35 thread 23 0x34e5 in sigpause ()
2334* 1 process 35 thread 13 main (argc=1, argv=0x7ffffff8)
2335 at threadtest.c:68
2336@end smallexample
53a5351d
JM
2337
2338On HP-UX systems:
c906108c 2339
4644b6e3
EZ
2340@cindex debugging multithreaded programs (on HP-UX)
2341@cindex thread identifier (GDB), on HP-UX
c906108c
SS
2342For debugging purposes, @value{GDBN} associates its own thread
2343number---a small integer assigned in thread-creation order---with each
2344thread in your program.
2345
41afff9a
EZ
2346@cindex @code{New} @var{systag} message, on HP-UX
2347@cindex thread identifier (system), on HP-UX
c906108c
SS
2348@c FIXME-implementors!! It would be more helpful if the [New...] message
2349@c included GDB's numeric thread handle, so you could just go to that
2350@c thread without first checking `info threads'.
2351Whenever @value{GDBN} detects a new thread in your program, it displays
2352both @value{GDBN}'s thread number and the target system's identification for the thread with a message in the
2353form @samp{[New @var{systag}]}. @var{systag} is a thread identifier
2354whose form varies depending on the particular system. For example, on
2355HP-UX, you see
2356
474c8240 2357@smallexample
c906108c 2358[New thread 2 (system thread 26594)]
474c8240 2359@end smallexample
c906108c
SS
2360
2361@noindent
5d161b24 2362when @value{GDBN} notices a new thread.
c906108c
SS
2363
2364@table @code
4644b6e3 2365@kindex info threads (HP-UX)
c906108c
SS
2366@item info threads
2367Display a summary of all threads currently in your
2368program. @value{GDBN} displays for each thread (in this order):
2369
2370@enumerate
2371@item the thread number assigned by @value{GDBN}
2372
2373@item the target system's thread identifier (@var{systag})
2374
2375@item the current stack frame summary for that thread
2376@end enumerate
2377
2378@noindent
2379An asterisk @samp{*} to the left of the @value{GDBN} thread number
2380indicates the current thread.
2381
5d161b24 2382For example,
c906108c
SS
2383@end table
2384@c end table here to get a little more width for example
2385
474c8240 2386@smallexample
c906108c 2387(@value{GDBP}) info threads
6d2ebf8b
SS
2388 * 3 system thread 26607 worker (wptr=0x7b09c318 "@@") \@*
2389 at quicksort.c:137
2390 2 system thread 26606 0x7b0030d8 in __ksleep () \@*
2391 from /usr/lib/libc.2
2392 1 system thread 27905 0x7b003498 in _brk () \@*
2393 from /usr/lib/libc.2
474c8240 2394@end smallexample
c906108c 2395
c45da7e6
EZ
2396On Solaris, you can display more information about user threads with a
2397Solaris-specific command:
2398
2399@table @code
2400@item maint info sol-threads
2401@kindex maint info sol-threads
2402@cindex thread info (Solaris)
2403Display info on Solaris user threads.
2404@end table
2405
c906108c
SS
2406@table @code
2407@kindex thread @var{threadno}
2408@item thread @var{threadno}
2409Make thread number @var{threadno} the current thread. The command
2410argument @var{threadno} is the internal @value{GDBN} thread number, as
2411shown in the first field of the @samp{info threads} display.
2412@value{GDBN} responds by displaying the system identifier of the thread
2413you selected, and its current stack frame summary:
2414
2415@smallexample
2416@c FIXME!! This example made up; find a @value{GDBN} w/threads and get real one
2417(@value{GDBP}) thread 2
c906108c 2418[Switching to process 35 thread 23]
c906108c
SS
24190x34e5 in sigpause ()
2420@end smallexample
2421
2422@noindent
2423As with the @samp{[New @dots{}]} message, the form of the text after
2424@samp{Switching to} depends on your system's conventions for identifying
5d161b24 2425threads.
c906108c 2426
9c16f35a 2427@kindex thread apply
638ac427 2428@cindex apply command to several threads
839c27b7
EZ
2429@item thread apply [@var{threadno}] [@var{all}] @var{command}
2430The @code{thread apply} command allows you to apply the named
2431@var{command} to one or more threads. Specify the numbers of the
2432threads that you want affected with the command argument
2433@var{threadno}. It can be a single thread number, one of the numbers
2434shown in the first field of the @samp{info threads} display; or it
2435could be a range of thread numbers, as in @code{2-4}. To apply a
2436command to all threads, type @kbd{thread apply all @var{command}}.
c906108c
SS
2437@end table
2438
2439@cindex automatic thread selection
2440@cindex switching threads automatically
2441@cindex threads, automatic switching
2442Whenever @value{GDBN} stops your program, due to a breakpoint or a
2443signal, it automatically selects the thread where that breakpoint or
2444signal happened. @value{GDBN} alerts you to the context switch with a
2445message of the form @samp{[Switching to @var{systag}]} to identify the
2446thread.
2447
79a6e687 2448@xref{Thread Stops,,Stopping and Starting Multi-thread Programs}, for
c906108c
SS
2449more information about how @value{GDBN} behaves when you stop and start
2450programs with multiple threads.
2451
79a6e687 2452@xref{Set Watchpoints,,Setting Watchpoints}, for information about
c906108c 2453watchpoints in programs with multiple threads.
c906108c 2454
6d2ebf8b 2455@node Processes
79a6e687 2456@section Debugging Programs with Multiple Processes
c906108c
SS
2457
2458@cindex fork, debugging programs which call
2459@cindex multiple processes
2460@cindex processes, multiple
53a5351d
JM
2461On most systems, @value{GDBN} has no special support for debugging
2462programs which create additional processes using the @code{fork}
2463function. When a program forks, @value{GDBN} will continue to debug the
2464parent process and the child process will run unimpeded. If you have
2465set a breakpoint in any code which the child then executes, the child
2466will get a @code{SIGTRAP} signal which (unless it catches the signal)
2467will cause it to terminate.
c906108c
SS
2468
2469However, if you want to debug the child process there is a workaround
2470which isn't too painful. Put a call to @code{sleep} in the code which
2471the child process executes after the fork. It may be useful to sleep
2472only if a certain environment variable is set, or a certain file exists,
2473so that the delay need not occur when you don't want to run @value{GDBN}
2474on the child. While the child is sleeping, use the @code{ps} program to
2475get its process ID. Then tell @value{GDBN} (a new invocation of
2476@value{GDBN} if you are also debugging the parent process) to attach to
d4f3574e 2477the child process (@pxref{Attach}). From that point on you can debug
c906108c 2478the child process just like any other process which you attached to.
c906108c 2479
b51970ac
DJ
2480On some systems, @value{GDBN} provides support for debugging programs that
2481create additional processes using the @code{fork} or @code{vfork} functions.
2482Currently, the only platforms with this feature are HP-UX (11.x and later
2483only?) and GNU/Linux (kernel version 2.5.60 and later).
c906108c
SS
2484
2485By default, when a program forks, @value{GDBN} will continue to debug
2486the parent process and the child process will run unimpeded.
2487
2488If you want to follow the child process instead of the parent process,
2489use the command @w{@code{set follow-fork-mode}}.
2490
2491@table @code
2492@kindex set follow-fork-mode
2493@item set follow-fork-mode @var{mode}
2494Set the debugger response to a program call of @code{fork} or
2495@code{vfork}. A call to @code{fork} or @code{vfork} creates a new
9c16f35a 2496process. The @var{mode} argument can be:
c906108c
SS
2497
2498@table @code
2499@item parent
2500The original process is debugged after a fork. The child process runs
2df3850c 2501unimpeded. This is the default.
c906108c
SS
2502
2503@item child
2504The new process is debugged after a fork. The parent process runs
2505unimpeded.
2506
c906108c
SS
2507@end table
2508
9c16f35a 2509@kindex show follow-fork-mode
c906108c 2510@item show follow-fork-mode
2df3850c 2511Display the current debugger response to a @code{fork} or @code{vfork} call.
c906108c
SS
2512@end table
2513
5c95884b
MS
2514@cindex debugging multiple processes
2515On Linux, if you want to debug both the parent and child processes, use the
2516command @w{@code{set detach-on-fork}}.
2517
2518@table @code
2519@kindex set detach-on-fork
2520@item set detach-on-fork @var{mode}
2521Tells gdb whether to detach one of the processes after a fork, or
2522retain debugger control over them both.
2523
2524@table @code
2525@item on
2526The child process (or parent process, depending on the value of
2527@code{follow-fork-mode}) will be detached and allowed to run
2528independently. This is the default.
2529
2530@item off
2531Both processes will be held under the control of @value{GDBN}.
2532One process (child or parent, depending on the value of
2533@code{follow-fork-mode}) is debugged as usual, while the other
2534is held suspended.
2535
2536@end table
2537
2538@kindex show detach-on-follow
2539@item show detach-on-follow
2540Show whether detach-on-follow mode is on/off.
2541@end table
2542
2543If you choose to set @var{detach-on-follow} mode off, then
2544@value{GDBN} will retain control of all forked processes (including
2545nested forks). You can list the forked processes under the control of
2546@value{GDBN} by using the @w{@code{info forks}} command, and switch
2547from one fork to another by using the @w{@code{fork}} command.
2548
2549@table @code
2550@kindex info forks
2551@item info forks
2552Print a list of all forked processes under the control of @value{GDBN}.
2553The listing will include a fork id, a process id, and the current
2554position (program counter) of the process.
2555
2556
2557@kindex fork @var{fork-id}
2558@item fork @var{fork-id}
2559Make fork number @var{fork-id} the current process. The argument
2560@var{fork-id} is the internal fork number assigned by @value{GDBN},
2561as shown in the first field of the @samp{info forks} display.
2562
2563@end table
2564
2565To quit debugging one of the forked processes, you can either detach
f73adfeb 2566from it by using the @w{@code{detach fork}} command (allowing it to
5c95884b 2567run independently), or delete (and kill) it using the
b8db102d 2568@w{@code{delete fork}} command.
5c95884b
MS
2569
2570@table @code
f73adfeb
AS
2571@kindex detach fork @var{fork-id}
2572@item detach fork @var{fork-id}
5c95884b
MS
2573Detach from the process identified by @value{GDBN} fork number
2574@var{fork-id}, and remove it from the fork list. The process will be
2575allowed to run independently.
2576
b8db102d
MS
2577@kindex delete fork @var{fork-id}
2578@item delete fork @var{fork-id}
5c95884b
MS
2579Kill the process identified by @value{GDBN} fork number @var{fork-id},
2580and remove it from the fork list.
2581
2582@end table
2583
c906108c
SS
2584If you ask to debug a child process and a @code{vfork} is followed by an
2585@code{exec}, @value{GDBN} executes the new target up to the first
2586breakpoint in the new target. If you have a breakpoint set on
2587@code{main} in your original program, the breakpoint will also be set on
2588the child process's @code{main}.
2589
2590When a child process is spawned by @code{vfork}, you cannot debug the
2591child or parent until an @code{exec} call completes.
2592
2593If you issue a @code{run} command to @value{GDBN} after an @code{exec}
2594call executes, the new target restarts. To restart the parent process,
2595use the @code{file} command with the parent executable name as its
2596argument.
2597
2598You can use the @code{catch} command to make @value{GDBN} stop whenever
2599a @code{fork}, @code{vfork}, or @code{exec} call is made. @xref{Set
79a6e687 2600Catchpoints, ,Setting Catchpoints}.
c906108c 2601
5c95884b 2602@node Checkpoint/Restart
79a6e687 2603@section Setting a @emph{Bookmark} to Return to Later
5c95884b
MS
2604
2605@cindex checkpoint
2606@cindex restart
2607@cindex bookmark
2608@cindex snapshot of a process
2609@cindex rewind program state
2610
2611On certain operating systems@footnote{Currently, only
2612@sc{gnu}/Linux.}, @value{GDBN} is able to save a @dfn{snapshot} of a
2613program's state, called a @dfn{checkpoint}, and come back to it
2614later.
2615
2616Returning to a checkpoint effectively undoes everything that has
2617happened in the program since the @code{checkpoint} was saved. This
2618includes changes in memory, registers, and even (within some limits)
2619system state. Effectively, it is like going back in time to the
2620moment when the checkpoint was saved.
2621
2622Thus, if you're stepping thru a program and you think you're
2623getting close to the point where things go wrong, you can save
2624a checkpoint. Then, if you accidentally go too far and miss
2625the critical statement, instead of having to restart your program
2626from the beginning, you can just go back to the checkpoint and
2627start again from there.
2628
2629This can be especially useful if it takes a lot of time or
2630steps to reach the point where you think the bug occurs.
2631
2632To use the @code{checkpoint}/@code{restart} method of debugging:
2633
2634@table @code
2635@kindex checkpoint
2636@item checkpoint
2637Save a snapshot of the debugged program's current execution state.
2638The @code{checkpoint} command takes no arguments, but each checkpoint
2639is assigned a small integer id, similar to a breakpoint id.
2640
2641@kindex info checkpoints
2642@item info checkpoints
2643List the checkpoints that have been saved in the current debugging
2644session. For each checkpoint, the following information will be
2645listed:
2646
2647@table @code
2648@item Checkpoint ID
2649@item Process ID
2650@item Code Address
2651@item Source line, or label
2652@end table
2653
2654@kindex restart @var{checkpoint-id}
2655@item restart @var{checkpoint-id}
2656Restore the program state that was saved as checkpoint number
2657@var{checkpoint-id}. All program variables, registers, stack frames
2658etc.@: will be returned to the values that they had when the checkpoint
2659was saved. In essence, gdb will ``wind back the clock'' to the point
2660in time when the checkpoint was saved.
2661
2662Note that breakpoints, @value{GDBN} variables, command history etc.
2663are not affected by restoring a checkpoint. In general, a checkpoint
2664only restores things that reside in the program being debugged, not in
2665the debugger.
2666
b8db102d
MS
2667@kindex delete checkpoint @var{checkpoint-id}
2668@item delete checkpoint @var{checkpoint-id}
5c95884b
MS
2669Delete the previously-saved checkpoint identified by @var{checkpoint-id}.
2670
2671@end table
2672
2673Returning to a previously saved checkpoint will restore the user state
2674of the program being debugged, plus a significant subset of the system
2675(OS) state, including file pointers. It won't ``un-write'' data from
2676a file, but it will rewind the file pointer to the previous location,
2677so that the previously written data can be overwritten. For files
2678opened in read mode, the pointer will also be restored so that the
2679previously read data can be read again.
2680
2681Of course, characters that have been sent to a printer (or other
2682external device) cannot be ``snatched back'', and characters received
2683from eg.@: a serial device can be removed from internal program buffers,
2684but they cannot be ``pushed back'' into the serial pipeline, ready to
2685be received again. Similarly, the actual contents of files that have
2686been changed cannot be restored (at this time).
2687
2688However, within those constraints, you actually can ``rewind'' your
2689program to a previously saved point in time, and begin debugging it
2690again --- and you can change the course of events so as to debug a
2691different execution path this time.
2692
2693@cindex checkpoints and process id
2694Finally, there is one bit of internal program state that will be
2695different when you return to a checkpoint --- the program's process
2696id. Each checkpoint will have a unique process id (or @var{pid}),
2697and each will be different from the program's original @var{pid}.
2698If your program has saved a local copy of its process id, this could
2699potentially pose a problem.
2700
79a6e687 2701@subsection A Non-obvious Benefit of Using Checkpoints
5c95884b
MS
2702
2703On some systems such as @sc{gnu}/Linux, address space randomization
2704is performed on new processes for security reasons. This makes it
2705difficult or impossible to set a breakpoint, or watchpoint, on an
2706absolute address if you have to restart the program, since the
2707absolute location of a symbol will change from one execution to the
2708next.
2709
2710A checkpoint, however, is an @emph{identical} copy of a process.
2711Therefore if you create a checkpoint at (eg.@:) the start of main,
2712and simply return to that checkpoint instead of restarting the
2713process, you can avoid the effects of address randomization and
2714your symbols will all stay in the same place.
2715
6d2ebf8b 2716@node Stopping
c906108c
SS
2717@chapter Stopping and Continuing
2718
2719The principal purposes of using a debugger are so that you can stop your
2720program before it terminates; or so that, if your program runs into
2721trouble, you can investigate and find out why.
2722
7a292a7a
SS
2723Inside @value{GDBN}, your program may stop for any of several reasons,
2724such as a signal, a breakpoint, or reaching a new line after a
2725@value{GDBN} command such as @code{step}. You may then examine and
2726change variables, set new breakpoints or remove old ones, and then
2727continue execution. Usually, the messages shown by @value{GDBN} provide
2728ample explanation of the status of your program---but you can also
2729explicitly request this information at any time.
c906108c
SS
2730
2731@table @code
2732@kindex info program
2733@item info program
2734Display information about the status of your program: whether it is
7a292a7a 2735running or not, what process it is, and why it stopped.
c906108c
SS
2736@end table
2737
2738@menu
2739* Breakpoints:: Breakpoints, watchpoints, and catchpoints
2740* Continuing and Stepping:: Resuming execution
c906108c 2741* Signals:: Signals
c906108c 2742* Thread Stops:: Stopping and starting multi-thread programs
c906108c
SS
2743@end menu
2744
6d2ebf8b 2745@node Breakpoints
79a6e687 2746@section Breakpoints, Watchpoints, and Catchpoints
c906108c
SS
2747
2748@cindex breakpoints
2749A @dfn{breakpoint} makes your program stop whenever a certain point in
2750the program is reached. For each breakpoint, you can add conditions to
2751control in finer detail whether your program stops. You can set
2752breakpoints with the @code{break} command and its variants (@pxref{Set
79a6e687 2753Breaks, ,Setting Breakpoints}), to specify the place where your program
c906108c
SS
2754should stop by line number, function name or exact address in the
2755program.
2756
09d4efe1
EZ
2757On some systems, you can set breakpoints in shared libraries before
2758the executable is run. There is a minor limitation on HP-UX systems:
2759you must wait until the executable is run in order to set breakpoints
2760in shared library routines that are not called directly by the program
2761(for example, routines that are arguments in a @code{pthread_create}
2762call).
c906108c
SS
2763
2764@cindex watchpoints
fd60e0df 2765@cindex data breakpoints
c906108c
SS
2766@cindex memory tracing
2767@cindex breakpoint on memory address
2768@cindex breakpoint on variable modification
2769A @dfn{watchpoint} is a special breakpoint that stops your program
fd60e0df 2770when the value of an expression changes. The expression may be a value
0ced0c34 2771of a variable, or it could involve values of one or more variables
fd60e0df
EZ
2772combined by operators, such as @samp{a + b}. This is sometimes called
2773@dfn{data breakpoints}. You must use a different command to set
79a6e687 2774watchpoints (@pxref{Set Watchpoints, ,Setting Watchpoints}), but aside
fd60e0df
EZ
2775from that, you can manage a watchpoint like any other breakpoint: you
2776enable, disable, and delete both breakpoints and watchpoints using the
2777same commands.
c906108c
SS
2778
2779You can arrange to have values from your program displayed automatically
2780whenever @value{GDBN} stops at a breakpoint. @xref{Auto Display,,
79a6e687 2781Automatic Display}.
c906108c
SS
2782
2783@cindex catchpoints
2784@cindex breakpoint on events
2785A @dfn{catchpoint} is another special breakpoint that stops your program
b37052ae 2786when a certain kind of event occurs, such as the throwing of a C@t{++}
c906108c
SS
2787exception or the loading of a library. As with watchpoints, you use a
2788different command to set a catchpoint (@pxref{Set Catchpoints, ,Setting
79a6e687 2789Catchpoints}), but aside from that, you can manage a catchpoint like any
c906108c 2790other breakpoint. (To stop when your program receives a signal, use the
d4f3574e 2791@code{handle} command; see @ref{Signals, ,Signals}.)
c906108c
SS
2792
2793@cindex breakpoint numbers
2794@cindex numbers for breakpoints
2795@value{GDBN} assigns a number to each breakpoint, watchpoint, or
2796catchpoint when you create it; these numbers are successive integers
2797starting with one. In many of the commands for controlling various
2798features of breakpoints you use the breakpoint number to say which
2799breakpoint you want to change. Each breakpoint may be @dfn{enabled} or
2800@dfn{disabled}; if disabled, it has no effect on your program until you
2801enable it again.
2802
c5394b80
JM
2803@cindex breakpoint ranges
2804@cindex ranges of breakpoints
2805Some @value{GDBN} commands accept a range of breakpoints on which to
2806operate. A breakpoint range is either a single breakpoint number, like
2807@samp{5}, or two such numbers, in increasing order, separated by a
2808hyphen, like @samp{5-7}. When a breakpoint range is given to a command,
d52fb0e9 2809all breakpoints in that range are operated on.
c5394b80 2810
c906108c
SS
2811@menu
2812* Set Breaks:: Setting breakpoints
2813* Set Watchpoints:: Setting watchpoints
2814* Set Catchpoints:: Setting catchpoints
2815* Delete Breaks:: Deleting breakpoints
2816* Disabling:: Disabling breakpoints
2817* Conditions:: Break conditions
2818* Break Commands:: Breakpoint command lists
c906108c 2819* Breakpoint Menus:: Breakpoint menus
d4f3574e 2820* Error in Breakpoints:: ``Cannot insert breakpoints''
79a6e687 2821* Breakpoint-related Warnings:: ``Breakpoint address adjusted...''
c906108c
SS
2822@end menu
2823
6d2ebf8b 2824@node Set Breaks
79a6e687 2825@subsection Setting Breakpoints
c906108c 2826
5d161b24 2827@c FIXME LMB what does GDB do if no code on line of breakpt?
c906108c
SS
2828@c consider in particular declaration with/without initialization.
2829@c
2830@c FIXME 2 is there stuff on this already? break at fun start, already init?
2831
2832@kindex break
41afff9a
EZ
2833@kindex b @r{(@code{break})}
2834@vindex $bpnum@r{, convenience variable}
c906108c
SS
2835@cindex latest breakpoint
2836Breakpoints are set with the @code{break} command (abbreviated
5d161b24 2837@code{b}). The debugger convenience variable @samp{$bpnum} records the
f3b28801 2838number of the breakpoint you've set most recently; see @ref{Convenience
79a6e687 2839Vars,, Convenience Variables}, for a discussion of what you can do with
c906108c
SS
2840convenience variables.
2841
2842You have several ways to say where the breakpoint should go.
2843
2844@table @code
2845@item break @var{function}
5d161b24 2846Set a breakpoint at entry to function @var{function}.
c906108c 2847When using source languages that permit overloading of symbols, such as
b37052ae 2848C@t{++}, @var{function} may refer to more than one possible place to break.
79a6e687 2849@xref{Breakpoint Menus,,Breakpoint Menus}, for a discussion of that situation.
c906108c
SS
2850
2851@item break +@var{offset}
2852@itemx break -@var{offset}
2853Set a breakpoint some number of lines forward or back from the position
d4f3574e 2854at which execution stopped in the currently selected @dfn{stack frame}.
2df3850c 2855(@xref{Frames, ,Frames}, for a description of stack frames.)
c906108c
SS
2856
2857@item break @var{linenum}
2858Set a breakpoint at line @var{linenum} in the current source file.
d4f3574e
SS
2859The current source file is the last file whose source text was printed.
2860The breakpoint will stop your program just before it executes any of the
c906108c
SS
2861code on that line.
2862
2863@item break @var{filename}:@var{linenum}
2864Set a breakpoint at line @var{linenum} in source file @var{filename}.
2865
2866@item break @var{filename}:@var{function}
2867Set a breakpoint at entry to function @var{function} found in file
2868@var{filename}. Specifying a file name as well as a function name is
2869superfluous except when multiple files contain similarly named
2870functions.
2871
2872@item break *@var{address}
2873Set a breakpoint at address @var{address}. You can use this to set
2874breakpoints in parts of your program which do not have debugging
2875information or source files.
2876
2877@item break
2878When called without any arguments, @code{break} sets a breakpoint at
2879the next instruction to be executed in the selected stack frame
2880(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
2881innermost, this makes your program stop as soon as control
2882returns to that frame. This is similar to the effect of a
2883@code{finish} command in the frame inside the selected frame---except
2884that @code{finish} does not leave an active breakpoint. If you use
2885@code{break} without an argument in the innermost frame, @value{GDBN} stops
2886the next time it reaches the current location; this may be useful
2887inside loops.
2888
2889@value{GDBN} normally ignores breakpoints when it resumes execution, until at
2890least one instruction has been executed. If it did not do this, you
2891would be unable to proceed past a breakpoint without first disabling the
2892breakpoint. This rule applies whether or not the breakpoint already
2893existed when your program stopped.
2894
2895@item break @dots{} if @var{cond}
2896Set a breakpoint with condition @var{cond}; evaluate the expression
2897@var{cond} each time the breakpoint is reached, and stop only if the
2898value is nonzero---that is, if @var{cond} evaluates as true.
2899@samp{@dots{}} stands for one of the possible arguments described
2900above (or no argument) specifying where to break. @xref{Conditions,
79a6e687 2901,Break Conditions}, for more information on breakpoint conditions.
c906108c
SS
2902
2903@kindex tbreak
2904@item tbreak @var{args}
2905Set a breakpoint enabled only for one stop. @var{args} are the
2906same as for the @code{break} command, and the breakpoint is set in the same
2907way, but the breakpoint is automatically deleted after the first time your
79a6e687 2908program stops there. @xref{Disabling, ,Disabling Breakpoints}.
c906108c 2909
c906108c 2910@kindex hbreak
ba04e063 2911@cindex hardware breakpoints
c906108c 2912@item hbreak @var{args}
d4f3574e
SS
2913Set a hardware-assisted breakpoint. @var{args} are the same as for the
2914@code{break} command and the breakpoint is set in the same way, but the
c906108c
SS
2915breakpoint requires hardware support and some target hardware may not
2916have this support. The main purpose of this is EPROM/ROM code
d4f3574e
SS
2917debugging, so you can set a breakpoint at an instruction without
2918changing the instruction. This can be used with the new trap-generation
09d4efe1 2919provided by SPARClite DSU and most x86-based targets. These targets
d4f3574e
SS
2920will generate traps when a program accesses some data or instruction
2921address that is assigned to the debug registers. However the hardware
2922breakpoint registers can take a limited number of breakpoints. For
2923example, on the DSU, only two data breakpoints can be set at a time, and
2924@value{GDBN} will reject this command if more than two are used. Delete
2925or disable unused hardware breakpoints before setting new ones
79a6e687
BW
2926(@pxref{Disabling, ,Disabling Breakpoints}).
2927@xref{Conditions, ,Break Conditions}.
9c16f35a
EZ
2928For remote targets, you can restrict the number of hardware
2929breakpoints @value{GDBN} will use, see @ref{set remote
2930hardware-breakpoint-limit}.
501eef12 2931
c906108c
SS
2932
2933@kindex thbreak
2934@item thbreak @var{args}
2935Set a hardware-assisted breakpoint enabled only for one stop. @var{args}
2936are the same as for the @code{hbreak} command and the breakpoint is set in
5d161b24 2937the same way. However, like the @code{tbreak} command,
c906108c
SS
2938the breakpoint is automatically deleted after the
2939first time your program stops there. Also, like the @code{hbreak}
5d161b24 2940command, the breakpoint requires hardware support and some target hardware
79a6e687
BW
2941may not have this support. @xref{Disabling, ,Disabling Breakpoints}.
2942See also @ref{Conditions, ,Break Conditions}.
c906108c
SS
2943
2944@kindex rbreak
2945@cindex regular expression
c45da7e6
EZ
2946@cindex breakpoints in functions matching a regexp
2947@cindex set breakpoints in many functions
c906108c 2948@item rbreak @var{regex}
c906108c 2949Set breakpoints on all functions matching the regular expression
11cf8741
JM
2950@var{regex}. This command sets an unconditional breakpoint on all
2951matches, printing a list of all breakpoints it set. Once these
2952breakpoints are set, they are treated just like the breakpoints set with
2953the @code{break} command. You can delete them, disable them, or make
2954them conditional the same way as any other breakpoint.
2955
2956The syntax of the regular expression is the standard one used with tools
2957like @file{grep}. Note that this is different from the syntax used by
2958shells, so for instance @code{foo*} matches all functions that include
2959an @code{fo} followed by zero or more @code{o}s. There is an implicit
2960@code{.*} leading and trailing the regular expression you supply, so to
2961match only functions that begin with @code{foo}, use @code{^foo}.
c906108c 2962
f7dc1244 2963@cindex non-member C@t{++} functions, set breakpoint in
b37052ae 2964When debugging C@t{++} programs, @code{rbreak} is useful for setting
c906108c
SS
2965breakpoints on overloaded functions that are not members of any special
2966classes.
c906108c 2967
f7dc1244
EZ
2968@cindex set breakpoints on all functions
2969The @code{rbreak} command can be used to set breakpoints in
2970@strong{all} the functions in a program, like this:
2971
2972@smallexample
2973(@value{GDBP}) rbreak .
2974@end smallexample
2975
c906108c
SS
2976@kindex info breakpoints
2977@cindex @code{$_} and @code{info breakpoints}
2978@item info breakpoints @r{[}@var{n}@r{]}
2979@itemx info break @r{[}@var{n}@r{]}
2980@itemx info watchpoints @r{[}@var{n}@r{]}
2981Print a table of all breakpoints, watchpoints, and catchpoints set and
45ac1734
EZ
2982not deleted. Optional argument @var{n} means print information only
2983about the specified breakpoint (or watchpoint or catchpoint). For
2984each breakpoint, following columns are printed:
c906108c
SS
2985
2986@table @emph
2987@item Breakpoint Numbers
2988@item Type
2989Breakpoint, watchpoint, or catchpoint.
2990@item Disposition
2991Whether the breakpoint is marked to be disabled or deleted when hit.
2992@item Enabled or Disabled
2993Enabled breakpoints are marked with @samp{y}. @samp{n} marks breakpoints
fe6fbf8b 2994that are not enabled. An optional @samp{(p)} suffix marks pending
3b784c4f 2995breakpoints---breakpoints for which address is either not yet
fe6fbf8b
VP
2996resolved, pending load of a shared library, or for which address was
2997in a shared library that was since unloaded. Such breakpoint won't
2998fire until a shared library that has the symbol or line referred by
2999breakpoint is loaded. See below for details.
c906108c 3000@item Address
fe6fbf8b
VP
3001Where the breakpoint is in your program, as a memory address. For a
3002pending breakpoint whose address is not yet known, this field will
3003contain @samp{<PENDING>}. A breakpoint with several locations will
3b784c4f 3004have @samp{<MULTIPLE>} in this field---see below for details.
c906108c
SS
3005@item What
3006Where the breakpoint is in the source for your program, as a file and
2650777c
JJ
3007line number. For a pending breakpoint, the original string passed to
3008the breakpoint command will be listed as it cannot be resolved until
3009the appropriate shared library is loaded in the future.
c906108c
SS
3010@end table
3011
3012@noindent
3013If a breakpoint is conditional, @code{info break} shows the condition on
3014the line following the affected breakpoint; breakpoint commands, if any,
2650777c
JJ
3015are listed after that. A pending breakpoint is allowed to have a condition
3016specified for it. The condition is not parsed for validity until a shared
3017library is loaded that allows the pending breakpoint to resolve to a
3018valid location.
c906108c
SS
3019
3020@noindent
3021@code{info break} with a breakpoint
3022number @var{n} as argument lists only that breakpoint. The
3023convenience variable @code{$_} and the default examining-address for
3024the @code{x} command are set to the address of the last breakpoint
79a6e687 3025listed (@pxref{Memory, ,Examining Memory}).
c906108c
SS
3026
3027@noindent
3028@code{info break} displays a count of the number of times the breakpoint
3029has been hit. This is especially useful in conjunction with the
3030@code{ignore} command. You can ignore a large number of breakpoint
3031hits, look at the breakpoint info to see how many times the breakpoint
3032was hit, and then run again, ignoring one less than that number. This
3033will get you quickly to the last hit of that breakpoint.
3034@end table
3035
3036@value{GDBN} allows you to set any number of breakpoints at the same place in
3037your program. There is nothing silly or meaningless about this. When
3038the breakpoints are conditional, this is even useful
79a6e687 3039(@pxref{Conditions, ,Break Conditions}).
c906108c 3040
fcda367b 3041It is possible that a breakpoint corresponds to several locations
fe6fbf8b
VP
3042in your program. Examples of this situation are:
3043
3044@itemize @bullet
3045
3046@item
3047For a C@t{++} constructor, the @value{NGCC} compiler generates several
3048instances of the function body, used in different cases.
3049
3050@item
3051For a C@t{++} template function, a given line in the function can
3052correspond to any number of instantiations.
3053
3054@item
3055For an inlined function, a given source line can correspond to
3056several places where that function is inlined.
3057
3058@end itemize
3059
3060In all those cases, @value{GDBN} will insert a breakpoint at all
3061the relevant locations.
3062
3b784c4f
EZ
3063A breakpoint with multiple locations is displayed in the breakpoint
3064table using several rows---one header row, followed by one row for
3065each breakpoint location. The header row has @samp{<MULTIPLE>} in the
3066address column. The rows for individual locations contain the actual
3067addresses for locations, and show the functions to which those
3068locations belong. The number column for a location is of the form
fe6fbf8b
VP
3069@var{breakpoint-number}.@var{location-number}.
3070
3071For example:
3b784c4f 3072
fe6fbf8b
VP
3073@smallexample
3074Num Type Disp Enb Address What
30751 breakpoint keep y <MULTIPLE>
3076 stop only if i==1
3077 breakpoint already hit 1 time
30781.1 y 0x080486a2 in void foo<int>() at t.cc:8
30791.2 y 0x080486ca in void foo<double>() at t.cc:8
3080@end smallexample
3081
3082Each location can be individually enabled or disabled by passing
3083@var{breakpoint-number}.@var{location-number} as argument to the
3b784c4f
EZ
3084@code{enable} and @code{disable} commands. Note that you cannot
3085delete the individual locations from the list, you can only delete the
16bfc218 3086entire list of locations that belong to their parent breakpoint (with
3b784c4f
EZ
3087the @kbd{delete @var{num}} command, where @var{num} is the number of
3088the parent breakpoint, 1 in the above example). Disabling or enabling
3089the parent breakpoint (@pxref{Disabling}) affects all of the locations
3090that belong to that breakpoint.
fe6fbf8b 3091
2650777c 3092@cindex pending breakpoints
fe6fbf8b 3093It's quite common to have a breakpoint inside a shared library.
3b784c4f 3094Shared libraries can be loaded and unloaded explicitly,
fe6fbf8b
VP
3095and possibly repeatedly, as the program is executed. To support
3096this use case, @value{GDBN} updates breakpoint locations whenever
3097any shared library is loaded or unloaded. Typically, you would
fcda367b 3098set a breakpoint in a shared library at the beginning of your
fe6fbf8b
VP
3099debugging session, when the library is not loaded, and when the
3100symbols from the library are not available. When you try to set
3101breakpoint, @value{GDBN} will ask you if you want to set
3b784c4f 3102a so called @dfn{pending breakpoint}---breakpoint whose address
fe6fbf8b
VP
3103is not yet resolved.
3104
3105After the program is run, whenever a new shared library is loaded,
3106@value{GDBN} reevaluates all the breakpoints. When a newly loaded
3107shared library contains the symbol or line referred to by some
3108pending breakpoint, that breakpoint is resolved and becomes an
3109ordinary breakpoint. When a library is unloaded, all breakpoints
3110that refer to its symbols or source lines become pending again.
3111
3112This logic works for breakpoints with multiple locations, too. For
3113example, if you have a breakpoint in a C@t{++} template function, and
3114a newly loaded shared library has an instantiation of that template,
3115a new location is added to the list of locations for the breakpoint.
3116
3117Except for having unresolved address, pending breakpoints do not
3118differ from regular breakpoints. You can set conditions or commands,
3119enable and disable them and perform other breakpoint operations.
3120
3121@value{GDBN} provides some additional commands for controlling what
3122happens when the @samp{break} command cannot resolve breakpoint
3123address specification to an address:
dd79a6cf
JJ
3124
3125@kindex set breakpoint pending
3126@kindex show breakpoint pending
3127@table @code
3128@item set breakpoint pending auto
3129This is the default behavior. When @value{GDBN} cannot find the breakpoint
3130location, it queries you whether a pending breakpoint should be created.
3131
3132@item set breakpoint pending on
3133This indicates that an unrecognized breakpoint location should automatically
3134result in a pending breakpoint being created.
3135
3136@item set breakpoint pending off
3137This indicates that pending breakpoints are not to be created. Any
3138unrecognized breakpoint location results in an error. This setting does
3139not affect any pending breakpoints previously created.
3140
3141@item show breakpoint pending
3142Show the current behavior setting for creating pending breakpoints.
3143@end table
2650777c 3144
fe6fbf8b
VP
3145The settings above only affect the @code{break} command and its
3146variants. Once breakpoint is set, it will be automatically updated
3147as shared libraries are loaded and unloaded.
2650777c 3148
765dc015
VP
3149@cindex automatic hardware breakpoints
3150For some targets, @value{GDBN} can automatically decide if hardware or
3151software breakpoints should be used, depending on whether the
3152breakpoint address is read-only or read-write. This applies to
3153breakpoints set with the @code{break} command as well as to internal
3154breakpoints set by commands like @code{next} and @code{finish}. For
fcda367b 3155breakpoints set with @code{hbreak}, @value{GDBN} will always use hardware
765dc015
VP
3156breakpoints.
3157
3158You can control this automatic behaviour with the following commands::
3159
3160@kindex set breakpoint auto-hw
3161@kindex show breakpoint auto-hw
3162@table @code
3163@item set breakpoint auto-hw on
3164This is the default behavior. When @value{GDBN} sets a breakpoint, it
3165will try to use the target memory map to decide if software or hardware
3166breakpoint must be used.
3167
3168@item set breakpoint auto-hw off
3169This indicates @value{GDBN} should not automatically select breakpoint
3170type. If the target provides a memory map, @value{GDBN} will warn when
3171trying to set software breakpoint at a read-only address.
3172@end table
3173
3174
c906108c
SS
3175@cindex negative breakpoint numbers
3176@cindex internal @value{GDBN} breakpoints
eb12ee30
AC
3177@value{GDBN} itself sometimes sets breakpoints in your program for
3178special purposes, such as proper handling of @code{longjmp} (in C
3179programs). These internal breakpoints are assigned negative numbers,
3180starting with @code{-1}; @samp{info breakpoints} does not display them.
c906108c 3181You can see these breakpoints with the @value{GDBN} maintenance command
eb12ee30 3182@samp{maint info breakpoints} (@pxref{maint info breakpoints}).
c906108c
SS
3183
3184
6d2ebf8b 3185@node Set Watchpoints
79a6e687 3186@subsection Setting Watchpoints
c906108c
SS
3187
3188@cindex setting watchpoints
c906108c
SS
3189You can use a watchpoint to stop execution whenever the value of an
3190expression changes, without having to predict a particular place where
fd60e0df
EZ
3191this may happen. (This is sometimes called a @dfn{data breakpoint}.)
3192The expression may be as simple as the value of a single variable, or
3193as complex as many variables combined by operators. Examples include:
3194
3195@itemize @bullet
3196@item
3197A reference to the value of a single variable.
3198
3199@item
3200An address cast to an appropriate data type. For example,
3201@samp{*(int *)0x12345678} will watch a 4-byte region at the specified
3202address (assuming an @code{int} occupies 4 bytes).
3203
3204@item
3205An arbitrarily complex expression, such as @samp{a*b + c/d}. The
3206expression can use any operators valid in the program's native
3207language (@pxref{Languages}).
3208@end itemize
c906108c 3209
82f2d802
EZ
3210@cindex software watchpoints
3211@cindex hardware watchpoints
c906108c 3212Depending on your system, watchpoints may be implemented in software or
2df3850c 3213hardware. @value{GDBN} does software watchpointing by single-stepping your
c906108c
SS
3214program and testing the variable's value each time, which is hundreds of
3215times slower than normal execution. (But this may still be worth it, to
3216catch errors where you have no clue what part of your program is the
3217culprit.)
3218
82f2d802
EZ
3219On some systems, such as HP-UX, @sc{gnu}/Linux and most other
3220x86-based targets, @value{GDBN} includes support for hardware
3221watchpoints, which do not slow down the running of your program.
c906108c
SS
3222
3223@table @code
3224@kindex watch
3225@item watch @var{expr}
fd60e0df
EZ
3226Set a watchpoint for an expression. @value{GDBN} will break when the
3227expression @var{expr} is written into by the program and its value
3228changes. The simplest (and the most popular) use of this command is
3229to watch the value of a single variable:
3230
3231@smallexample
3232(@value{GDBP}) watch foo
3233@end smallexample
c906108c
SS
3234
3235@kindex rwatch
3236@item rwatch @var{expr}
09d4efe1
EZ
3237Set a watchpoint that will break when the value of @var{expr} is read
3238by the program.
c906108c
SS
3239
3240@kindex awatch
3241@item awatch @var{expr}
09d4efe1
EZ
3242Set a watchpoint that will break when @var{expr} is either read from
3243or written into by the program.
c906108c 3244
45ac1734 3245@kindex info watchpoints @r{[}@var{n}@r{]}
c906108c
SS
3246@item info watchpoints
3247This command prints a list of watchpoints, breakpoints, and catchpoints;
09d4efe1 3248it is the same as @code{info break} (@pxref{Set Breaks}).
c906108c
SS
3249@end table
3250
3251@value{GDBN} sets a @dfn{hardware watchpoint} if possible. Hardware
3252watchpoints execute very quickly, and the debugger reports a change in
3253value at the exact instruction where the change occurs. If @value{GDBN}
3254cannot set a hardware watchpoint, it sets a software watchpoint, which
3255executes more slowly and reports the change in value at the next
82f2d802
EZ
3256@emph{statement}, not the instruction, after the change occurs.
3257
82f2d802
EZ
3258@cindex use only software watchpoints
3259You can force @value{GDBN} to use only software watchpoints with the
3260@kbd{set can-use-hw-watchpoints 0} command. With this variable set to
3261zero, @value{GDBN} will never try to use hardware watchpoints, even if
3262the underlying system supports them. (Note that hardware-assisted
3263watchpoints that were set @emph{before} setting
3264@code{can-use-hw-watchpoints} to zero will still use the hardware
d3e8051b 3265mechanism of watching expression values.)
c906108c 3266
9c16f35a
EZ
3267@table @code
3268@item set can-use-hw-watchpoints
3269@kindex set can-use-hw-watchpoints
3270Set whether or not to use hardware watchpoints.
3271
3272@item show can-use-hw-watchpoints
3273@kindex show can-use-hw-watchpoints
3274Show the current mode of using hardware watchpoints.
3275@end table
3276
3277For remote targets, you can restrict the number of hardware
3278watchpoints @value{GDBN} will use, see @ref{set remote
3279hardware-breakpoint-limit}.
3280
c906108c
SS
3281When you issue the @code{watch} command, @value{GDBN} reports
3282
474c8240 3283@smallexample
c906108c 3284Hardware watchpoint @var{num}: @var{expr}
474c8240 3285@end smallexample
c906108c
SS
3286
3287@noindent
3288if it was able to set a hardware watchpoint.
3289
7be570e7
JM
3290Currently, the @code{awatch} and @code{rwatch} commands can only set
3291hardware watchpoints, because accesses to data that don't change the
3292value of the watched expression cannot be detected without examining
3293every instruction as it is being executed, and @value{GDBN} does not do
3294that currently. If @value{GDBN} finds that it is unable to set a
3295hardware breakpoint with the @code{awatch} or @code{rwatch} command, it
3296will print a message like this:
3297
3298@smallexample
3299Expression cannot be implemented with read/access watchpoint.
3300@end smallexample
3301
3302Sometimes, @value{GDBN} cannot set a hardware watchpoint because the
3303data type of the watched expression is wider than what a hardware
3304watchpoint on the target machine can handle. For example, some systems
3305can only watch regions that are up to 4 bytes wide; on such systems you
3306cannot set hardware watchpoints for an expression that yields a
3307double-precision floating-point number (which is typically 8 bytes
3308wide). As a work-around, it might be possible to break the large region
3309into a series of smaller ones and watch them with separate watchpoints.
3310
3311If you set too many hardware watchpoints, @value{GDBN} might be unable
3312to insert all of them when you resume the execution of your program.
3313Since the precise number of active watchpoints is unknown until such
3314time as the program is about to be resumed, @value{GDBN} might not be
3315able to warn you about this when you set the watchpoints, and the
3316warning will be printed only when the program is resumed:
3317
3318@smallexample
3319Hardware watchpoint @var{num}: Could not insert watchpoint
3320@end smallexample
3321
3322@noindent
3323If this happens, delete or disable some of the watchpoints.
3324
fd60e0df
EZ
3325Watching complex expressions that reference many variables can also
3326exhaust the resources available for hardware-assisted watchpoints.
3327That's because @value{GDBN} needs to watch every variable in the
3328expression with separately allocated resources.
3329
7be570e7
JM
3330The SPARClite DSU will generate traps when a program accesses some data
3331or instruction address that is assigned to the debug registers. For the
3332data addresses, DSU facilitates the @code{watch} command. However the
3333hardware breakpoint registers can only take two data watchpoints, and
3334both watchpoints must be the same kind. For example, you can set two
3335watchpoints with @code{watch} commands, two with @code{rwatch} commands,
3336@strong{or} two with @code{awatch} commands, but you cannot set one
3337watchpoint with one command and the other with a different command.
c906108c
SS
3338@value{GDBN} will reject the command if you try to mix watchpoints.
3339Delete or disable unused watchpoint commands before setting new ones.
3340
3341If you call a function interactively using @code{print} or @code{call},
2df3850c 3342any watchpoints you have set will be inactive until @value{GDBN} reaches another
c906108c
SS
3343kind of breakpoint or the call completes.
3344
7be570e7
JM
3345@value{GDBN} automatically deletes watchpoints that watch local
3346(automatic) variables, or expressions that involve such variables, when
3347they go out of scope, that is, when the execution leaves the block in
3348which these variables were defined. In particular, when the program
3349being debugged terminates, @emph{all} local variables go out of scope,
3350and so only watchpoints that watch global variables remain set. If you
3351rerun the program, you will need to set all such watchpoints again. One
3352way of doing that would be to set a code breakpoint at the entry to the
3353@code{main} function and when it breaks, set all the watchpoints.
3354
c906108c
SS
3355@cindex watchpoints and threads
3356@cindex threads and watchpoints
d983da9c
DJ
3357In multi-threaded programs, watchpoints will detect changes to the
3358watched expression from every thread.
3359
3360@quotation
3361@emph{Warning:} In multi-threaded programs, software watchpoints
53a5351d
JM
3362have only limited usefulness. If @value{GDBN} creates a software
3363watchpoint, it can only watch the value of an expression @emph{in a
3364single thread}. If you are confident that the expression can only
3365change due to the current thread's activity (and if you are also
3366confident that no other thread can become current), then you can use
3367software watchpoints as usual. However, @value{GDBN} may not notice
3368when a non-current thread's activity changes the expression. (Hardware
3369watchpoints, in contrast, watch an expression in all threads.)
c906108c 3370@end quotation
c906108c 3371
501eef12
AC
3372@xref{set remote hardware-watchpoint-limit}.
3373
6d2ebf8b 3374@node Set Catchpoints
79a6e687 3375@subsection Setting Catchpoints
d4f3574e 3376@cindex catchpoints, setting
c906108c
SS
3377@cindex exception handlers
3378@cindex event handling
3379
3380You can use @dfn{catchpoints} to cause the debugger to stop for certain
b37052ae 3381kinds of program events, such as C@t{++} exceptions or the loading of a
c906108c
SS
3382shared library. Use the @code{catch} command to set a catchpoint.
3383
3384@table @code
3385@kindex catch
3386@item catch @var{event}
3387Stop when @var{event} occurs. @var{event} can be any of the following:
3388@table @code
3389@item throw
4644b6e3 3390@cindex stop on C@t{++} exceptions
b37052ae 3391The throwing of a C@t{++} exception.
c906108c
SS
3392
3393@item catch
b37052ae 3394The catching of a C@t{++} exception.
c906108c 3395
8936fcda
JB
3396@item exception
3397@cindex Ada exception catching
3398@cindex catch Ada exceptions
3399An Ada exception being raised. If an exception name is specified
3400at the end of the command (eg @code{catch exception Program_Error}),
3401the debugger will stop only when this specific exception is raised.
3402Otherwise, the debugger stops execution when any Ada exception is raised.
3403
3404@item exception unhandled
3405An exception that was raised but is not handled by the program.
3406
3407@item assert
3408A failed Ada assertion.
3409
c906108c 3410@item exec
4644b6e3 3411@cindex break on fork/exec
c906108c
SS
3412A call to @code{exec}. This is currently only available for HP-UX.
3413
3414@item fork
c906108c
SS
3415A call to @code{fork}. This is currently only available for HP-UX.
3416
3417@item vfork
c906108c
SS
3418A call to @code{vfork}. This is currently only available for HP-UX.
3419
3420@item load
3421@itemx load @var{libname}
4644b6e3 3422@cindex break on load/unload of shared library
c906108c
SS
3423The dynamic loading of any shared library, or the loading of the library
3424@var{libname}. This is currently only available for HP-UX.
3425
3426@item unload
3427@itemx unload @var{libname}
c906108c
SS
3428The unloading of any dynamically loaded shared library, or the unloading
3429of the library @var{libname}. This is currently only available for HP-UX.
3430@end table
3431
3432@item tcatch @var{event}
3433Set a catchpoint that is enabled only for one stop. The catchpoint is
3434automatically deleted after the first time the event is caught.
3435
3436@end table
3437
3438Use the @code{info break} command to list the current catchpoints.
3439
b37052ae 3440There are currently some limitations to C@t{++} exception handling
c906108c
SS
3441(@code{catch throw} and @code{catch catch}) in @value{GDBN}:
3442
3443@itemize @bullet
3444@item
3445If you call a function interactively, @value{GDBN} normally returns
3446control to you when the function has finished executing. If the call
3447raises an exception, however, the call may bypass the mechanism that
3448returns control to you and cause your program either to abort or to
3449simply continue running until it hits a breakpoint, catches a signal
3450that @value{GDBN} is listening for, or exits. This is the case even if
3451you set a catchpoint for the exception; catchpoints on exceptions are
3452disabled within interactive calls.
3453
3454@item
3455You cannot raise an exception interactively.
3456
3457@item
3458You cannot install an exception handler interactively.
3459@end itemize
3460
3461@cindex raise exceptions
3462Sometimes @code{catch} is not the best way to debug exception handling:
3463if you need to know exactly where an exception is raised, it is better to
3464stop @emph{before} the exception handler is called, since that way you
3465can see the stack before any unwinding takes place. If you set a
3466breakpoint in an exception handler instead, it may not be easy to find
3467out where the exception was raised.
3468
3469To stop just before an exception handler is called, you need some
b37052ae 3470knowledge of the implementation. In the case of @sc{gnu} C@t{++}, exceptions are
c906108c
SS
3471raised by calling a library function named @code{__raise_exception}
3472which has the following ANSI C interface:
3473
474c8240 3474@smallexample
c906108c 3475 /* @var{addr} is where the exception identifier is stored.
d4f3574e
SS
3476 @var{id} is the exception identifier. */
3477 void __raise_exception (void **addr, void *id);
474c8240 3478@end smallexample
c906108c
SS
3479
3480@noindent
3481To make the debugger catch all exceptions before any stack
3482unwinding takes place, set a breakpoint on @code{__raise_exception}
79a6e687 3483(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Exceptions}).
c906108c 3484
79a6e687 3485With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
c906108c
SS
3486that depends on the value of @var{id}, you can stop your program when
3487a specific exception is raised. You can use multiple conditional
3488breakpoints to stop your program when any of a number of exceptions are
3489raised.
3490
3491
6d2ebf8b 3492@node Delete Breaks
79a6e687 3493@subsection Deleting Breakpoints
c906108c
SS
3494
3495@cindex clearing breakpoints, watchpoints, catchpoints
3496@cindex deleting breakpoints, watchpoints, catchpoints
3497It is often necessary to eliminate a breakpoint, watchpoint, or
3498catchpoint once it has done its job and you no longer want your program
3499to stop there. This is called @dfn{deleting} the breakpoint. A
3500breakpoint that has been deleted no longer exists; it is forgotten.
3501
3502With the @code{clear} command you can delete breakpoints according to
3503where they are in your program. With the @code{delete} command you can
3504delete individual breakpoints, watchpoints, or catchpoints by specifying
3505their breakpoint numbers.
3506
3507It is not necessary to delete a breakpoint to proceed past it. @value{GDBN}
3508automatically ignores breakpoints on the first instruction to be executed
3509when you continue execution without changing the execution address.
3510
3511@table @code
3512@kindex clear
3513@item clear
3514Delete any breakpoints at the next instruction to be executed in the
79a6e687 3515selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
c906108c
SS
3516the innermost frame is selected, this is a good way to delete a
3517breakpoint where your program just stopped.
3518
3519@item clear @var{function}
3520@itemx clear @var{filename}:@var{function}
09d4efe1 3521Delete any breakpoints set at entry to the named @var{function}.
c906108c
SS
3522
3523@item clear @var{linenum}
3524@itemx clear @var{filename}:@var{linenum}
09d4efe1
EZ
3525Delete any breakpoints set at or within the code of the specified
3526@var{linenum} of the specified @var{filename}.
c906108c
SS
3527
3528@cindex delete breakpoints
3529@kindex delete
41afff9a 3530@kindex d @r{(@code{delete})}
c5394b80
JM
3531@item delete @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
3532Delete the breakpoints, watchpoints, or catchpoints of the breakpoint
3533ranges specified as arguments. If no argument is specified, delete all
c906108c
SS
3534breakpoints (@value{GDBN} asks confirmation, unless you have @code{set
3535confirm off}). You can abbreviate this command as @code{d}.
3536@end table
3537
6d2ebf8b 3538@node Disabling
79a6e687 3539@subsection Disabling Breakpoints
c906108c 3540
4644b6e3 3541@cindex enable/disable a breakpoint
c906108c
SS
3542Rather than deleting a breakpoint, watchpoint, or catchpoint, you might
3543prefer to @dfn{disable} it. This makes the breakpoint inoperative as if
3544it had been deleted, but remembers the information on the breakpoint so
3545that you can @dfn{enable} it again later.
3546
3547You disable and enable breakpoints, watchpoints, and catchpoints with
3548the @code{enable} and @code{disable} commands, optionally specifying one
3549or more breakpoint numbers as arguments. Use @code{info break} or
3550@code{info watch} to print a list of breakpoints, watchpoints, and
3551catchpoints if you do not know which numbers to use.
3552
3b784c4f
EZ
3553Disabling and enabling a breakpoint that has multiple locations
3554affects all of its locations.
3555
c906108c
SS
3556A breakpoint, watchpoint, or catchpoint can have any of four different
3557states of enablement:
3558
3559@itemize @bullet
3560@item
3561Enabled. The breakpoint stops your program. A breakpoint set
3562with the @code{break} command starts out in this state.
3563@item
3564Disabled. The breakpoint has no effect on your program.
3565@item
3566Enabled once. The breakpoint stops your program, but then becomes
d4f3574e 3567disabled.
c906108c
SS
3568@item
3569Enabled for deletion. The breakpoint stops your program, but
d4f3574e
SS
3570immediately after it does so it is deleted permanently. A breakpoint
3571set with the @code{tbreak} command starts out in this state.
c906108c
SS
3572@end itemize
3573
3574You can use the following commands to enable or disable breakpoints,
3575watchpoints, and catchpoints:
3576
3577@table @code
c906108c 3578@kindex disable
41afff9a 3579@kindex dis @r{(@code{disable})}
c5394b80 3580@item disable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3581Disable the specified breakpoints---or all breakpoints, if none are
3582listed. A disabled breakpoint has no effect but is not forgotten. All
3583options such as ignore-counts, conditions and commands are remembered in
3584case the breakpoint is enabled again later. You may abbreviate
3585@code{disable} as @code{dis}.
3586
c906108c 3587@kindex enable
c5394b80 3588@item enable @r{[}breakpoints@r{]} @r{[}@var{range}@dots{}@r{]}
c906108c
SS
3589Enable the specified breakpoints (or all defined breakpoints). They
3590become effective once again in stopping your program.
3591
c5394b80 3592@item enable @r{[}breakpoints@r{]} once @var{range}@dots{}
c906108c
SS
3593Enable the specified breakpoints temporarily. @value{GDBN} disables any
3594of these breakpoints immediately after stopping your program.
3595
c5394b80 3596@item enable @r{[}breakpoints@r{]} delete @var{range}@dots{}
c906108c
SS
3597Enable the specified breakpoints to work once, then die. @value{GDBN}
3598deletes any of these breakpoints as soon as your program stops there.
09d4efe1 3599Breakpoints set by the @code{tbreak} command start out in this state.
c906108c
SS
3600@end table
3601
d4f3574e
SS
3602@c FIXME: I think the following ``Except for [...] @code{tbreak}'' is
3603@c confusing: tbreak is also initially enabled.
c906108c 3604Except for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
79a6e687 3605,Setting Breakpoints}), breakpoints that you set are initially enabled;
c906108c
SS
3606subsequently, they become disabled or enabled only when you use one of
3607the commands above. (The command @code{until} can set and delete a
3608breakpoint of its own, but it does not change the state of your other
3609breakpoints; see @ref{Continuing and Stepping, ,Continuing and
79a6e687 3610Stepping}.)
c906108c 3611
6d2ebf8b 3612@node Conditions
79a6e687 3613@subsection Break Conditions
c906108c
SS
3614@cindex conditional breakpoints
3615@cindex breakpoint conditions
3616
3617@c FIXME what is scope of break condition expr? Context where wanted?
5d161b24 3618@c in particular for a watchpoint?
c906108c
SS
3619The simplest sort of breakpoint breaks every time your program reaches a
3620specified place. You can also specify a @dfn{condition} for a
3621breakpoint. A condition is just a Boolean expression in your
3622programming language (@pxref{Expressions, ,Expressions}). A breakpoint with
3623a condition evaluates the expression each time your program reaches it,
3624and your program stops only if the condition is @emph{true}.
3625
3626This is the converse of using assertions for program validation; in that
3627situation, you want to stop when the assertion is violated---that is,
3628when the condition is false. In C, if you want to test an assertion expressed
3629by the condition @var{assert}, you should set the condition
3630@samp{! @var{assert}} on the appropriate breakpoint.
3631
3632Conditions are also accepted for watchpoints; you may not need them,
3633since a watchpoint is inspecting the value of an expression anyhow---but
3634it might be simpler, say, to just set a watchpoint on a variable name,
3635and specify a condition that tests whether the new value is an interesting
3636one.
3637
3638Break conditions can have side effects, and may even call functions in
3639your program. This can be useful, for example, to activate functions
3640that log program progress, or to use your own print functions to
3641format special data structures. The effects are completely predictable
3642unless there is another enabled breakpoint at the same address. (In
3643that case, @value{GDBN} might see the other breakpoint first and stop your
3644program without checking the condition of this one.) Note that
d4f3574e
SS
3645breakpoint commands are usually more convenient and flexible than break
3646conditions for the
c906108c 3647purpose of performing side effects when a breakpoint is reached
79a6e687 3648(@pxref{Break Commands, ,Breakpoint Command Lists}).
c906108c
SS
3649
3650Break conditions can be specified when a breakpoint is set, by using
3651@samp{if} in the arguments to the @code{break} command. @xref{Set
79a6e687 3652Breaks, ,Setting Breakpoints}. They can also be changed at any time
c906108c 3653with the @code{condition} command.
53a5351d 3654
c906108c
SS
3655You can also use the @code{if} keyword with the @code{watch} command.
3656The @code{catch} command does not recognize the @code{if} keyword;
3657@code{condition} is the only way to impose a further condition on a
3658catchpoint.
c906108c
SS
3659
3660@table @code
3661@kindex condition
3662@item condition @var{bnum} @var{expression}
3663Specify @var{expression} as the break condition for breakpoint,
3664watchpoint, or catchpoint number @var{bnum}. After you set a condition,
3665breakpoint @var{bnum} stops your program only if the value of
3666@var{expression} is true (nonzero, in C). When you use
3667@code{condition}, @value{GDBN} checks @var{expression} immediately for
3668syntactic correctness, and to determine whether symbols in it have
d4f3574e
SS
3669referents in the context of your breakpoint. If @var{expression} uses
3670symbols not referenced in the context of the breakpoint, @value{GDBN}
3671prints an error message:
3672
474c8240 3673@smallexample
d4f3574e 3674No symbol "foo" in current context.
474c8240 3675@end smallexample
d4f3574e
SS
3676
3677@noindent
c906108c
SS
3678@value{GDBN} does
3679not actually evaluate @var{expression} at the time the @code{condition}
d4f3574e
SS
3680command (or a command that sets a breakpoint with a condition, like
3681@code{break if @dots{}}) is given, however. @xref{Expressions, ,Expressions}.
c906108c
SS
3682
3683@item condition @var{bnum}
3684Remove the condition from breakpoint number @var{bnum}. It becomes
3685an ordinary unconditional breakpoint.
3686@end table
3687
3688@cindex ignore count (of breakpoint)
3689A special case of a breakpoint condition is to stop only when the
3690breakpoint has been reached a certain number of times. This is so
3691useful that there is a special way to do it, using the @dfn{ignore
3692count} of the breakpoint. Every breakpoint has an ignore count, which
3693is an integer. Most of the time, the ignore count is zero, and
3694therefore has no effect. But if your program reaches a breakpoint whose
3695ignore count is positive, then instead of stopping, it just decrements
3696the ignore count by one and continues. As a result, if the ignore count
3697value is @var{n}, the breakpoint does not stop the next @var{n} times
3698your program reaches it.
3699
3700@table @code
3701@kindex ignore
3702@item ignore @var{bnum} @var{count}
3703Set the ignore count of breakpoint number @var{bnum} to @var{count}.
3704The next @var{count} times the breakpoint is reached, your program's
3705execution does not stop; other than to decrement the ignore count, @value{GDBN}
3706takes no action.
3707
3708To make the breakpoint stop the next time it is reached, specify
3709a count of zero.
3710
3711When you use @code{continue} to resume execution of your program from a
3712breakpoint, you can specify an ignore count directly as an argument to
3713@code{continue}, rather than using @code{ignore}. @xref{Continuing and
79a6e687 3714Stepping,,Continuing and Stepping}.
c906108c
SS
3715
3716If a breakpoint has a positive ignore count and a condition, the
3717condition is not checked. Once the ignore count reaches zero,
3718@value{GDBN} resumes checking the condition.
3719
3720You could achieve the effect of the ignore count with a condition such
3721as @w{@samp{$foo-- <= 0}} using a debugger convenience variable that
3722is decremented each time. @xref{Convenience Vars, ,Convenience
79a6e687 3723Variables}.
c906108c
SS
3724@end table
3725
3726Ignore counts apply to breakpoints, watchpoints, and catchpoints.
3727
3728
6d2ebf8b 3729@node Break Commands
79a6e687 3730@subsection Breakpoint Command Lists
c906108c
SS
3731
3732@cindex breakpoint commands
3733You can give any breakpoint (or watchpoint or catchpoint) a series of
3734commands to execute when your program stops due to that breakpoint. For
3735example, you might want to print the values of certain expressions, or
3736enable other breakpoints.
3737
3738@table @code
3739@kindex commands
ca91424e 3740@kindex end@r{ (breakpoint commands)}
c906108c
SS
3741@item commands @r{[}@var{bnum}@r{]}
3742@itemx @dots{} @var{command-list} @dots{}
3743@itemx end
3744Specify a list of commands for breakpoint number @var{bnum}. The commands
3745themselves appear on the following lines. Type a line containing just
3746@code{end} to terminate the commands.
3747
3748To remove all commands from a breakpoint, type @code{commands} and
3749follow it immediately with @code{end}; that is, give no commands.
3750
3751With no @var{bnum} argument, @code{commands} refers to the last
3752breakpoint, watchpoint, or catchpoint set (not to the breakpoint most
3753recently encountered).
3754@end table
3755
3756Pressing @key{RET} as a means of repeating the last @value{GDBN} command is
3757disabled within a @var{command-list}.
3758
3759You can use breakpoint commands to start your program up again. Simply
3760use the @code{continue} command, or @code{step}, or any other command
3761that resumes execution.
3762
3763Any other commands in the command list, after a command that resumes
3764execution, are ignored. This is because any time you resume execution
3765(even with a simple @code{next} or @code{step}), you may encounter
3766another breakpoint---which could have its own command list, leading to
3767ambiguities about which list to execute.
3768
3769@kindex silent
3770If the first command you specify in a command list is @code{silent}, the
3771usual message about stopping at a breakpoint is not printed. This may
3772be desirable for breakpoints that are to print a specific message and
3773then continue. If none of the remaining commands print anything, you
3774see no sign that the breakpoint was reached. @code{silent} is
3775meaningful only at the beginning of a breakpoint command list.
3776
3777The commands @code{echo}, @code{output}, and @code{printf} allow you to
3778print precisely controlled output, and are often useful in silent
79a6e687 3779breakpoints. @xref{Output, ,Commands for Controlled Output}.
c906108c
SS
3780
3781For example, here is how you could use breakpoint commands to print the
3782value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
3783
474c8240 3784@smallexample
c906108c
SS
3785break foo if x>0
3786commands
3787silent
3788printf "x is %d\n",x
3789cont
3790end
474c8240 3791@end smallexample
c906108c
SS
3792
3793One application for breakpoint commands is to compensate for one bug so
3794you can test for another. Put a breakpoint just after the erroneous line
3795of code, give it a condition to detect the case in which something
3796erroneous has been done, and give it commands to assign correct values
3797to any variables that need them. End with the @code{continue} command
3798so that your program does not stop, and start with the @code{silent}
3799command so that no output is produced. Here is an example:
3800
474c8240 3801@smallexample
c906108c
SS
3802break 403
3803commands
3804silent
3805set x = y + 4
3806cont
3807end
474c8240 3808@end smallexample
c906108c 3809
6d2ebf8b 3810@node Breakpoint Menus
79a6e687 3811@subsection Breakpoint Menus
c906108c
SS
3812@cindex overloading
3813@cindex symbol overloading
3814
b383017d 3815Some programming languages (notably C@t{++} and Objective-C) permit a
b37303ee 3816single function name
c906108c
SS
3817to be defined several times, for application in different contexts.
3818This is called @dfn{overloading}. When a function name is overloaded,
3819@samp{break @var{function}} is not enough to tell @value{GDBN} where you want
3b784c4f
EZ
3820a breakpoint. You can use explicit signature of the function, as in
3821@samp{break @var{function}(@var{types})}, to specify which
c906108c
SS
3822particular version of the function you want. Otherwise, @value{GDBN} offers
3823you a menu of numbered choices for different possible breakpoints, and
3824waits for your selection with the prompt @samp{>}. The first two
3825options are always @samp{[0] cancel} and @samp{[1] all}. Typing @kbd{1}
3826sets a breakpoint at each definition of @var{function}, and typing
3827@kbd{0} aborts the @code{break} command without setting any new
3828breakpoints.
3829
3830For example, the following session excerpt shows an attempt to set a
3831breakpoint at the overloaded symbol @code{String::after}.
3832We choose three particular definitions of that function name:
3833
3834@c FIXME! This is likely to change to show arg type lists, at least
3835@smallexample
3836@group
3837(@value{GDBP}) b String::after
3838[0] cancel
3839[1] all
3840[2] file:String.cc; line number:867
3841[3] file:String.cc; line number:860
3842[4] file:String.cc; line number:875
3843[5] file:String.cc; line number:853
3844[6] file:String.cc; line number:846
3845[7] file:String.cc; line number:735
3846> 2 4 6
3847Breakpoint 1 at 0xb26c: file String.cc, line 867.
3848Breakpoint 2 at 0xb344: file String.cc, line 875.
3849Breakpoint 3 at 0xafcc: file String.cc, line 846.
3850Multiple breakpoints were set.
3851Use the "delete" command to delete unwanted
3852 breakpoints.
3853(@value{GDBP})
3854@end group
3855@end smallexample
c906108c
SS
3856
3857@c @ifclear BARETARGET
6d2ebf8b 3858@node Error in Breakpoints
d4f3574e 3859@subsection ``Cannot insert breakpoints''
c906108c
SS
3860@c
3861@c FIXME!! 14/6/95 Is there a real example of this? Let's use it.
3862@c
d4f3574e
SS
3863Under some operating systems, breakpoints cannot be used in a program if
3864any other process is running that program. In this situation,
5d161b24 3865attempting to run or continue a program with a breakpoint causes
d4f3574e
SS
3866@value{GDBN} to print an error message:
3867
474c8240 3868@smallexample
d4f3574e
SS
3869Cannot insert breakpoints.
3870The same program may be running in another process.
474c8240 3871@end smallexample
d4f3574e
SS
3872
3873When this happens, you have three ways to proceed:
3874
3875@enumerate
3876@item
3877Remove or disable the breakpoints, then continue.
3878
3879@item
5d161b24 3880Suspend @value{GDBN}, and copy the file containing your program to a new
d4f3574e 3881name. Resume @value{GDBN} and use the @code{exec-file} command to specify
5d161b24 3882that @value{GDBN} should run your program under that name.
d4f3574e
SS
3883Then start your program again.
3884
3885@item
3886Relink your program so that the text segment is nonsharable, using the
3887linker option @samp{-N}. The operating system limitation may not apply
3888to nonsharable executables.
3889@end enumerate
c906108c
SS
3890@c @end ifclear
3891
d4f3574e
SS
3892A similar message can be printed if you request too many active
3893hardware-assisted breakpoints and watchpoints:
3894
3895@c FIXME: the precise wording of this message may change; the relevant
3896@c source change is not committed yet (Sep 3, 1999).
3897@smallexample
3898Stopped; cannot insert breakpoints.
3899You may have requested too many hardware breakpoints and watchpoints.
3900@end smallexample
3901
3902@noindent
3903This message is printed when you attempt to resume the program, since
3904only then @value{GDBN} knows exactly how many hardware breakpoints and
3905watchpoints it needs to insert.
3906
3907When this message is printed, you need to disable or remove some of the
3908hardware-assisted breakpoints and watchpoints, and then continue.
3909
79a6e687 3910@node Breakpoint-related Warnings
1485d690
KB
3911@subsection ``Breakpoint address adjusted...''
3912@cindex breakpoint address adjusted
3913
3914Some processor architectures place constraints on the addresses at
3915which breakpoints may be placed. For architectures thus constrained,
3916@value{GDBN} will attempt to adjust the breakpoint's address to comply
3917with the constraints dictated by the architecture.
3918
3919One example of such an architecture is the Fujitsu FR-V. The FR-V is
3920a VLIW architecture in which a number of RISC-like instructions may be
3921bundled together for parallel execution. The FR-V architecture
3922constrains the location of a breakpoint instruction within such a
3923bundle to the instruction with the lowest address. @value{GDBN}
3924honors this constraint by adjusting a breakpoint's address to the
3925first in the bundle.
3926
3927It is not uncommon for optimized code to have bundles which contain
3928instructions from different source statements, thus it may happen that
3929a breakpoint's address will be adjusted from one source statement to
3930another. Since this adjustment may significantly alter @value{GDBN}'s
3931breakpoint related behavior from what the user expects, a warning is
3932printed when the breakpoint is first set and also when the breakpoint
3933is hit.
3934
3935A warning like the one below is printed when setting a breakpoint
3936that's been subject to address adjustment:
3937
3938@smallexample
3939warning: Breakpoint address adjusted from 0x00010414 to 0x00010410.
3940@end smallexample
3941
3942Such warnings are printed both for user settable and @value{GDBN}'s
3943internal breakpoints. If you see one of these warnings, you should
3944verify that a breakpoint set at the adjusted address will have the
3945desired affect. If not, the breakpoint in question may be removed and
b383017d 3946other breakpoints may be set which will have the desired behavior.
1485d690
KB
3947E.g., it may be sufficient to place the breakpoint at a later
3948instruction. A conditional breakpoint may also be useful in some
3949cases to prevent the breakpoint from triggering too often.
3950
3951@value{GDBN} will also issue a warning when stopping at one of these
3952adjusted breakpoints:
3953
3954@smallexample
3955warning: Breakpoint 1 address previously adjusted from 0x00010414
3956to 0x00010410.
3957@end smallexample
3958
3959When this warning is encountered, it may be too late to take remedial
3960action except in cases where the breakpoint is hit earlier or more
3961frequently than expected.
d4f3574e 3962
6d2ebf8b 3963@node Continuing and Stepping
79a6e687 3964@section Continuing and Stepping
c906108c
SS
3965
3966@cindex stepping
3967@cindex continuing
3968@cindex resuming execution
3969@dfn{Continuing} means resuming program execution until your program
3970completes normally. In contrast, @dfn{stepping} means executing just
3971one more ``step'' of your program, where ``step'' may mean either one
3972line of source code, or one machine instruction (depending on what
7a292a7a
SS
3973particular command you use). Either when continuing or when stepping,
3974your program may stop even sooner, due to a breakpoint or a signal. (If
d4f3574e
SS
3975it stops due to a signal, you may want to use @code{handle}, or use
3976@samp{signal 0} to resume execution. @xref{Signals, ,Signals}.)
c906108c
SS
3977
3978@table @code
3979@kindex continue
41afff9a
EZ
3980@kindex c @r{(@code{continue})}
3981@kindex fg @r{(resume foreground execution)}
c906108c
SS
3982@item continue @r{[}@var{ignore-count}@r{]}
3983@itemx c @r{[}@var{ignore-count}@r{]}
3984@itemx fg @r{[}@var{ignore-count}@r{]}
3985Resume program execution, at the address where your program last stopped;
3986any breakpoints set at that address are bypassed. The optional argument
3987@var{ignore-count} allows you to specify a further number of times to
3988ignore a breakpoint at this location; its effect is like that of
79a6e687 3989@code{ignore} (@pxref{Conditions, ,Break Conditions}).
c906108c
SS
3990
3991The argument @var{ignore-count} is meaningful only when your program
3992stopped due to a breakpoint. At other times, the argument to
3993@code{continue} is ignored.
3994
d4f3574e
SS
3995The synonyms @code{c} and @code{fg} (for @dfn{foreground}, as the
3996debugged program is deemed to be the foreground program) are provided
3997purely for convenience, and have exactly the same behavior as
3998@code{continue}.
c906108c
SS
3999@end table
4000
4001To resume execution at a different place, you can use @code{return}
79a6e687 4002(@pxref{Returning, ,Returning from a Function}) to go back to the
c906108c 4003calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
79a6e687 4004Different Address}) to go to an arbitrary location in your program.
c906108c
SS
4005
4006A typical technique for using stepping is to set a breakpoint
79a6e687 4007(@pxref{Breakpoints, ,Breakpoints; Watchpoints; and Catchpoints}) at the
c906108c
SS
4008beginning of the function or the section of your program where a problem
4009is believed to lie, run your program until it stops at that breakpoint,
4010and then step through the suspect area, examining the variables that are
4011interesting, until you see the problem happen.
4012
4013@table @code
4014@kindex step
41afff9a 4015@kindex s @r{(@code{step})}
c906108c
SS
4016@item step
4017Continue running your program until control reaches a different source
4018line, then stop it and return control to @value{GDBN}. This command is
4019abbreviated @code{s}.
4020
4021@quotation
4022@c "without debugging information" is imprecise; actually "without line
4023@c numbers in the debugging information". (gcc -g1 has debugging info but
4024@c not line numbers). But it seems complex to try to make that
4025@c distinction here.
4026@emph{Warning:} If you use the @code{step} command while control is
4027within a function that was compiled without debugging information,
4028execution proceeds until control reaches a function that does have
4029debugging information. Likewise, it will not step into a function which
4030is compiled without debugging information. To step through functions
4031without debugging information, use the @code{stepi} command, described
4032below.
4033@end quotation
4034
4a92d011
EZ
4035The @code{step} command only stops at the first instruction of a source
4036line. This prevents the multiple stops that could otherwise occur in
4037@code{switch} statements, @code{for} loops, etc. @code{step} continues
4038to stop if a function that has debugging information is called within
4039the line. In other words, @code{step} @emph{steps inside} any functions
4040called within the line.
c906108c 4041
d4f3574e
SS
4042Also, the @code{step} command only enters a function if there is line
4043number information for the function. Otherwise it acts like the
5d161b24 4044@code{next} command. This avoids problems when using @code{cc -gl}
c906108c 4045on MIPS machines. Previously, @code{step} entered subroutines if there
5d161b24 4046was any debugging information about the routine.
c906108c
SS
4047
4048@item step @var{count}
4049Continue running as in @code{step}, but do so @var{count} times. If a
7a292a7a
SS
4050breakpoint is reached, or a signal not related to stepping occurs before
4051@var{count} steps, stepping stops right away.
c906108c
SS
4052
4053@kindex next
41afff9a 4054@kindex n @r{(@code{next})}
c906108c
SS
4055@item next @r{[}@var{count}@r{]}
4056Continue to the next source line in the current (innermost) stack frame.
7a292a7a
SS
4057This is similar to @code{step}, but function calls that appear within
4058the line of code are executed without stopping. Execution stops when
4059control reaches a different line of code at the original stack level
4060that was executing when you gave the @code{next} command. This command
4061is abbreviated @code{n}.
c906108c
SS
4062
4063An argument @var{count} is a repeat count, as for @code{step}.
4064
4065
4066@c FIX ME!! Do we delete this, or is there a way it fits in with
4067@c the following paragraph? --- Vctoria
4068@c
4069@c @code{next} within a function that lacks debugging information acts like
4070@c @code{step}, but any function calls appearing within the code of the
4071@c function are executed without stopping.
4072
d4f3574e
SS
4073The @code{next} command only stops at the first instruction of a
4074source line. This prevents multiple stops that could otherwise occur in
4a92d011 4075@code{switch} statements, @code{for} loops, etc.
c906108c 4076
b90a5f51
CF
4077@kindex set step-mode
4078@item set step-mode
4079@cindex functions without line info, and stepping
4080@cindex stepping into functions with no line info
4081@itemx set step-mode on
4a92d011 4082The @code{set step-mode on} command causes the @code{step} command to
b90a5f51
CF
4083stop at the first instruction of a function which contains no debug line
4084information rather than stepping over it.
4085
4a92d011
EZ
4086This is useful in cases where you may be interested in inspecting the
4087machine instructions of a function which has no symbolic info and do not
4088want @value{GDBN} to automatically skip over this function.
b90a5f51
CF
4089
4090@item set step-mode off
4a92d011 4091Causes the @code{step} command to step over any functions which contains no
b90a5f51
CF
4092debug information. This is the default.
4093
9c16f35a
EZ
4094@item show step-mode
4095Show whether @value{GDBN} will stop in or step over functions without
4096source line debug information.
4097
c906108c
SS
4098@kindex finish
4099@item finish
4100Continue running until just after function in the selected stack frame
4101returns. Print the returned value (if any).
4102
4103Contrast this with the @code{return} command (@pxref{Returning,
79a6e687 4104,Returning from a Function}).
c906108c
SS
4105
4106@kindex until
41afff9a 4107@kindex u @r{(@code{until})}
09d4efe1 4108@cindex run until specified location
c906108c
SS
4109@item until
4110@itemx u
4111Continue running until a source line past the current line, in the
4112current stack frame, is reached. This command is used to avoid single
4113stepping through a loop more than once. It is like the @code{next}
4114command, except that when @code{until} encounters a jump, it
4115automatically continues execution until the program counter is greater
4116than the address of the jump.
4117
4118This means that when you reach the end of a loop after single stepping
4119though it, @code{until} makes your program continue execution until it
4120exits the loop. In contrast, a @code{next} command at the end of a loop
4121simply steps back to the beginning of the loop, which forces you to step
4122through the next iteration.
4123
4124@code{until} always stops your program if it attempts to exit the current
4125stack frame.
4126
4127@code{until} may produce somewhat counterintuitive results if the order
4128of machine code does not match the order of the source lines. For
4129example, in the following excerpt from a debugging session, the @code{f}
4130(@code{frame}) command shows that execution is stopped at line
4131@code{206}; yet when we use @code{until}, we get to line @code{195}:
4132
474c8240 4133@smallexample
c906108c
SS
4134(@value{GDBP}) f
4135#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
4136206 expand_input();
4137(@value{GDBP}) until
4138195 for ( ; argc > 0; NEXTARG) @{
474c8240 4139@end smallexample
c906108c
SS
4140
4141This happened because, for execution efficiency, the compiler had
4142generated code for the loop closure test at the end, rather than the
4143start, of the loop---even though the test in a C @code{for}-loop is
4144written before the body of the loop. The @code{until} command appeared
4145to step back to the beginning of the loop when it advanced to this
4146expression; however, it has not really gone to an earlier
4147statement---not in terms of the actual machine code.
4148
4149@code{until} with no argument works by means of single
4150instruction stepping, and hence is slower than @code{until} with an
4151argument.
4152
4153@item until @var{location}
4154@itemx u @var{location}
4155Continue running your program until either the specified location is
4156reached, or the current stack frame returns. @var{location} is any of
4157the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
79a6e687 4158,Setting Breakpoints}). This form of the command uses breakpoints, and
c60eb6f1
EZ
4159hence is quicker than @code{until} without an argument. The specified
4160location is actually reached only if it is in the current frame. This
4161implies that @code{until} can be used to skip over recursive function
4162invocations. For instance in the code below, if the current location is
4163line @code{96}, issuing @code{until 99} will execute the program up to
db2e3e2e 4164line @code{99} in the same invocation of factorial, i.e., after the inner
c60eb6f1
EZ
4165invocations have returned.
4166
4167@smallexample
416894 int factorial (int value)
416995 @{
417096 if (value > 1) @{
417197 value *= factorial (value - 1);
417298 @}
417399 return (value);
4174100 @}
4175@end smallexample
4176
4177
4178@kindex advance @var{location}
4179@itemx advance @var{location}
09d4efe1
EZ
4180Continue running the program up to the given @var{location}. An argument is
4181required, which should be of the same form as arguments for the @code{break}
c60eb6f1
EZ
4182command. Execution will also stop upon exit from the current stack
4183frame. This command is similar to @code{until}, but @code{advance} will
4184not skip over recursive function calls, and the target location doesn't
4185have to be in the same frame as the current one.
4186
c906108c
SS
4187
4188@kindex stepi
41afff9a 4189@kindex si @r{(@code{stepi})}
c906108c 4190@item stepi
96a2c332 4191@itemx stepi @var{arg}
c906108c
SS
4192@itemx si
4193Execute one machine instruction, then stop and return to the debugger.
4194
4195It is often useful to do @samp{display/i $pc} when stepping by machine
4196instructions. This makes @value{GDBN} automatically display the next
4197instruction to be executed, each time your program stops. @xref{Auto
79a6e687 4198Display,, Automatic Display}.
c906108c
SS
4199
4200An argument is a repeat count, as in @code{step}.
4201
4202@need 750
4203@kindex nexti
41afff9a 4204@kindex ni @r{(@code{nexti})}
c906108c 4205@item nexti
96a2c332 4206@itemx nexti @var{arg}
c906108c
SS
4207@itemx ni
4208Execute one machine instruction, but if it is a function call,
4209proceed until the function returns.
4210
4211An argument is a repeat count, as in @code{next}.
4212@end table
4213
6d2ebf8b 4214@node Signals
c906108c
SS
4215@section Signals
4216@cindex signals
4217
4218A signal is an asynchronous event that can happen in a program. The
4219operating system defines the possible kinds of signals, and gives each
4220kind a name and a number. For example, in Unix @code{SIGINT} is the
c8aa23ab 4221signal a program gets when you type an interrupt character (often @kbd{Ctrl-c});
c906108c
SS
4222@code{SIGSEGV} is the signal a program gets from referencing a place in
4223memory far away from all the areas in use; @code{SIGALRM} occurs when
4224the alarm clock timer goes off (which happens only if your program has
4225requested an alarm).
4226
4227@cindex fatal signals
4228Some signals, including @code{SIGALRM}, are a normal part of the
4229functioning of your program. Others, such as @code{SIGSEGV}, indicate
d4f3574e 4230errors; these signals are @dfn{fatal} (they kill your program immediately) if the
c906108c
SS
4231program has not specified in advance some other way to handle the signal.
4232@code{SIGINT} does not indicate an error in your program, but it is normally
4233fatal so it can carry out the purpose of the interrupt: to kill the program.
4234
4235@value{GDBN} has the ability to detect any occurrence of a signal in your
4236program. You can tell @value{GDBN} in advance what to do for each kind of
4237signal.
4238
4239@cindex handling signals
24f93129
EZ
4240Normally, @value{GDBN} is set up to let the non-erroneous signals like
4241@code{SIGALRM} be silently passed to your program
4242(so as not to interfere with their role in the program's functioning)
c906108c
SS
4243but to stop your program immediately whenever an error signal happens.
4244You can change these settings with the @code{handle} command.
4245
4246@table @code
4247@kindex info signals
09d4efe1 4248@kindex info handle
c906108c 4249@item info signals
96a2c332 4250@itemx info handle
c906108c
SS
4251Print a table of all the kinds of signals and how @value{GDBN} has been told to
4252handle each one. You can use this to see the signal numbers of all
4253the defined types of signals.
4254
45ac1734
EZ
4255@item info signals @var{sig}
4256Similar, but print information only about the specified signal number.
4257
d4f3574e 4258@code{info handle} is an alias for @code{info signals}.
c906108c
SS
4259
4260@kindex handle
45ac1734 4261@item handle @var{signal} @r{[}@var{keywords}@dots{}@r{]}
5ece1a18
EZ
4262Change the way @value{GDBN} handles signal @var{signal}. @var{signal}
4263can be the number of a signal or its name (with or without the
24f93129 4264@samp{SIG} at the beginning); a list of signal numbers of the form
5ece1a18 4265@samp{@var{low}-@var{high}}; or the word @samp{all}, meaning all the
45ac1734
EZ
4266known signals. Optional arguments @var{keywords}, described below,
4267say what change to make.
c906108c
SS
4268@end table
4269
4270@c @group
4271The keywords allowed by the @code{handle} command can be abbreviated.
4272Their full names are:
4273
4274@table @code
4275@item nostop
4276@value{GDBN} should not stop your program when this signal happens. It may
4277still print a message telling you that the signal has come in.
4278
4279@item stop
4280@value{GDBN} should stop your program when this signal happens. This implies
4281the @code{print} keyword as well.
4282
4283@item print
4284@value{GDBN} should print a message when this signal happens.
4285
4286@item noprint
4287@value{GDBN} should not mention the occurrence of the signal at all. This
4288implies the @code{nostop} keyword as well.
4289
4290@item pass
5ece1a18 4291@itemx noignore
c906108c
SS
4292@value{GDBN} should allow your program to see this signal; your program
4293can handle the signal, or else it may terminate if the signal is fatal
5ece1a18 4294and not handled. @code{pass} and @code{noignore} are synonyms.
c906108c
SS
4295
4296@item nopass
5ece1a18 4297@itemx ignore
c906108c 4298@value{GDBN} should not allow your program to see this signal.
5ece1a18 4299@code{nopass} and @code{ignore} are synonyms.
c906108c
SS
4300@end table
4301@c @end group
4302
d4f3574e
SS
4303When a signal stops your program, the signal is not visible to the
4304program until you
c906108c
SS
4305continue. Your program sees the signal then, if @code{pass} is in
4306effect for the signal in question @emph{at that time}. In other words,
4307after @value{GDBN} reports a signal, you can use the @code{handle}
4308command with @code{pass} or @code{nopass} to control whether your
4309program sees that signal when you continue.
4310
24f93129
EZ
4311The default is set to @code{nostop}, @code{noprint}, @code{pass} for
4312non-erroneous signals such as @code{SIGALRM}, @code{SIGWINCH} and
4313@code{SIGCHLD}, and to @code{stop}, @code{print}, @code{pass} for the
4314erroneous signals.
4315
c906108c
SS
4316You can also use the @code{signal} command to prevent your program from
4317seeing a signal, or cause it to see a signal it normally would not see,
4318or to give it any signal at any time. For example, if your program stopped
4319due to some sort of memory reference error, you might store correct
4320values into the erroneous variables and continue, hoping to see more
4321execution; but your program would probably terminate immediately as
4322a result of the fatal signal once it saw the signal. To prevent this,
4323you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
79a6e687 4324Program a Signal}.
c906108c 4325
6d2ebf8b 4326@node Thread Stops
79a6e687 4327@section Stopping and Starting Multi-thread Programs
c906108c
SS
4328
4329When your program has multiple threads (@pxref{Threads,, Debugging
79a6e687 4330Programs with Multiple Threads}), you can choose whether to set
c906108c
SS
4331breakpoints on all threads, or on a particular thread.
4332
4333@table @code
4334@cindex breakpoints and threads
4335@cindex thread breakpoints
4336@kindex break @dots{} thread @var{threadno}
4337@item break @var{linespec} thread @var{threadno}
4338@itemx break @var{linespec} thread @var{threadno} if @dots{}
4339@var{linespec} specifies source lines; there are several ways of
4340writing them, but the effect is always to specify some source line.
4341
4342Use the qualifier @samp{thread @var{threadno}} with a breakpoint command
4343to specify that you only want @value{GDBN} to stop the program when a
4344particular thread reaches this breakpoint. @var{threadno} is one of the
4345numeric thread identifiers assigned by @value{GDBN}, shown in the first
4346column of the @samp{info threads} display.
4347
4348If you do not specify @samp{thread @var{threadno}} when you set a
4349breakpoint, the breakpoint applies to @emph{all} threads of your
4350program.
4351
4352You can use the @code{thread} qualifier on conditional breakpoints as
4353well; in this case, place @samp{thread @var{threadno}} before the
4354breakpoint condition, like this:
4355
4356@smallexample
2df3850c 4357(@value{GDBP}) break frik.c:13 thread 28 if bartab > lim
c906108c
SS
4358@end smallexample
4359
4360@end table
4361
4362@cindex stopped threads
4363@cindex threads, stopped
4364Whenever your program stops under @value{GDBN} for any reason,
4365@emph{all} threads of execution stop, not just the current thread. This
4366allows you to examine the overall state of the program, including
4367switching between threads, without worrying that things may change
4368underfoot.
4369
36d86913
MC
4370@cindex thread breakpoints and system calls
4371@cindex system calls and thread breakpoints
4372@cindex premature return from system calls
4373There is an unfortunate side effect. If one thread stops for a
4374breakpoint, or for some other reason, and another thread is blocked in a
4375system call, then the system call may return prematurely. This is a
4376consequence of the interaction between multiple threads and the signals
4377that @value{GDBN} uses to implement breakpoints and other events that
4378stop execution.
4379
4380To handle this problem, your program should check the return value of
4381each system call and react appropriately. This is good programming
4382style anyways.
4383
4384For example, do not write code like this:
4385
4386@smallexample
4387 sleep (10);
4388@end smallexample
4389
4390The call to @code{sleep} will return early if a different thread stops
4391at a breakpoint or for some other reason.
4392
4393Instead, write this:
4394
4395@smallexample
4396 int unslept = 10;
4397 while (unslept > 0)
4398 unslept = sleep (unslept);
4399@end smallexample
4400
4401A system call is allowed to return early, so the system is still
4402conforming to its specification. But @value{GDBN} does cause your
4403multi-threaded program to behave differently than it would without
4404@value{GDBN}.
4405
4406Also, @value{GDBN} uses internal breakpoints in the thread library to
4407monitor certain events such as thread creation and thread destruction.
4408When such an event happens, a system call in another thread may return
4409prematurely, even though your program does not appear to stop.
4410
c906108c
SS
4411@cindex continuing threads
4412@cindex threads, continuing
4413Conversely, whenever you restart the program, @emph{all} threads start
4414executing. @emph{This is true even when single-stepping} with commands
5d161b24 4415like @code{step} or @code{next}.
c906108c
SS
4416
4417In particular, @value{GDBN} cannot single-step all threads in lockstep.
4418Since thread scheduling is up to your debugging target's operating
4419system (not controlled by @value{GDBN}), other threads may
4420execute more than one statement while the current thread completes a
4421single step. Moreover, in general other threads stop in the middle of a
4422statement, rather than at a clean statement boundary, when the program
4423stops.
4424
4425You might even find your program stopped in another thread after
4426continuing or even single-stepping. This happens whenever some other
4427thread runs into a breakpoint, a signal, or an exception before the
4428first thread completes whatever you requested.
4429
4430On some OSes, you can lock the OS scheduler and thus allow only a single
4431thread to run.
4432
4433@table @code
4434@item set scheduler-locking @var{mode}
9c16f35a
EZ
4435@cindex scheduler locking mode
4436@cindex lock scheduler
c906108c
SS
4437Set the scheduler locking mode. If it is @code{off}, then there is no
4438locking and any thread may run at any time. If @code{on}, then only the
4439current thread may run when the inferior is resumed. The @code{step}
4440mode optimizes for single-stepping. It stops other threads from
4441``seizing the prompt'' by preempting the current thread while you are
4442stepping. Other threads will only rarely (or never) get a chance to run
d4f3574e 4443when you step. They are more likely to run when you @samp{next} over a
c906108c 4444function call, and they are completely free to run when you use commands
d4f3574e 4445like @samp{continue}, @samp{until}, or @samp{finish}. However, unless another
c906108c 4446thread hits a breakpoint during its timeslice, they will never steal the
2df3850c 4447@value{GDBN} prompt away from the thread that you are debugging.
c906108c
SS
4448
4449@item show scheduler-locking
4450Display the current scheduler locking mode.
4451@end table
4452
c906108c 4453
6d2ebf8b 4454@node Stack
c906108c
SS
4455@chapter Examining the Stack
4456
4457When your program has stopped, the first thing you need to know is where it
4458stopped and how it got there.
4459
4460@cindex call stack
5d161b24
DB
4461Each time your program performs a function call, information about the call
4462is generated.
4463That information includes the location of the call in your program,
4464the arguments of the call,
c906108c 4465and the local variables of the function being called.
5d161b24 4466The information is saved in a block of data called a @dfn{stack frame}.
c906108c
SS
4467The stack frames are allocated in a region of memory called the @dfn{call
4468stack}.
4469
4470When your program stops, the @value{GDBN} commands for examining the
4471stack allow you to see all of this information.
4472
4473@cindex selected frame
4474One of the stack frames is @dfn{selected} by @value{GDBN} and many
4475@value{GDBN} commands refer implicitly to the selected frame. In
4476particular, whenever you ask @value{GDBN} for the value of a variable in
4477your program, the value is found in the selected frame. There are
4478special @value{GDBN} commands to select whichever frame you are
79a6e687 4479interested in. @xref{Selection, ,Selecting a Frame}.
c906108c
SS
4480
4481When your program stops, @value{GDBN} automatically selects the
5d161b24 4482currently executing frame and describes it briefly, similar to the
79a6e687 4483@code{frame} command (@pxref{Frame Info, ,Information about a Frame}).
c906108c
SS
4484
4485@menu
4486* Frames:: Stack frames
4487* Backtrace:: Backtraces
4488* Selection:: Selecting a frame
4489* Frame Info:: Information on a frame
c906108c
SS
4490
4491@end menu
4492
6d2ebf8b 4493@node Frames
79a6e687 4494@section Stack Frames
c906108c 4495
d4f3574e 4496@cindex frame, definition
c906108c
SS
4497@cindex stack frame
4498The call stack is divided up into contiguous pieces called @dfn{stack
4499frames}, or @dfn{frames} for short; each frame is the data associated
4500with one call to one function. The frame contains the arguments given
4501to the function, the function's local variables, and the address at
4502which the function is executing.
4503
4504@cindex initial frame
4505@cindex outermost frame
4506@cindex innermost frame
4507When your program is started, the stack has only one frame, that of the
4508function @code{main}. This is called the @dfn{initial} frame or the
4509@dfn{outermost} frame. Each time a function is called, a new frame is
4510made. Each time a function returns, the frame for that function invocation
4511is eliminated. If a function is recursive, there can be many frames for
4512the same function. The frame for the function in which execution is
4513actually occurring is called the @dfn{innermost} frame. This is the most
4514recently created of all the stack frames that still exist.
4515
4516@cindex frame pointer
4517Inside your program, stack frames are identified by their addresses. A
4518stack frame consists of many bytes, each of which has its own address; each
4519kind of computer has a convention for choosing one byte whose
4520address serves as the address of the frame. Usually this address is kept
e09f16f9
EZ
4521in a register called the @dfn{frame pointer register}
4522(@pxref{Registers, $fp}) while execution is going on in that frame.
c906108c
SS
4523
4524@cindex frame number
4525@value{GDBN} assigns numbers to all existing stack frames, starting with
4526zero for the innermost frame, one for the frame that called it,
4527and so on upward. These numbers do not really exist in your program;
4528they are assigned by @value{GDBN} to give you a way of designating stack
4529frames in @value{GDBN} commands.
4530
6d2ebf8b
SS
4531@c The -fomit-frame-pointer below perennially causes hbox overflow
4532@c underflow problems.
c906108c
SS
4533@cindex frameless execution
4534Some compilers provide a way to compile functions so that they operate
e22ea452 4535without stack frames. (For example, the @value{NGCC} option
474c8240 4536@smallexample
6d2ebf8b 4537@samp{-fomit-frame-pointer}
474c8240 4538@end smallexample
6d2ebf8b 4539generates functions without a frame.)
c906108c
SS
4540This is occasionally done with heavily used library functions to save
4541the frame setup time. @value{GDBN} has limited facilities for dealing
4542with these function invocations. If the innermost function invocation
4543has no stack frame, @value{GDBN} nevertheless regards it as though
4544it had a separate frame, which is numbered zero as usual, allowing
4545correct tracing of the function call chain. However, @value{GDBN} has
4546no provision for frameless functions elsewhere in the stack.
4547
4548@table @code
d4f3574e 4549@kindex frame@r{, command}
41afff9a 4550@cindex current stack frame
c906108c 4551@item frame @var{args}
5d161b24 4552The @code{frame} command allows you to move from one stack frame to another,
c906108c 4553and to print the stack frame you select. @var{args} may be either the
5d161b24
DB
4554address of the frame or the stack frame number. Without an argument,
4555@code{frame} prints the current stack frame.
c906108c
SS
4556
4557@kindex select-frame
41afff9a 4558@cindex selecting frame silently
c906108c
SS
4559@item select-frame
4560The @code{select-frame} command allows you to move from one stack frame
4561to another without printing the frame. This is the silent version of
4562@code{frame}.
4563@end table
4564
6d2ebf8b 4565@node Backtrace
c906108c
SS
4566@section Backtraces
4567
09d4efe1
EZ
4568@cindex traceback
4569@cindex call stack traces
c906108c
SS
4570A backtrace is a summary of how your program got where it is. It shows one
4571line per frame, for many frames, starting with the currently executing
4572frame (frame zero), followed by its caller (frame one), and on up the
4573stack.
4574
4575@table @code
4576@kindex backtrace
41afff9a 4577@kindex bt @r{(@code{backtrace})}
c906108c
SS
4578@item backtrace
4579@itemx bt
4580Print a backtrace of the entire stack: one line per frame for all
4581frames in the stack.
4582
4583You can stop the backtrace at any time by typing the system interrupt
c8aa23ab 4584character, normally @kbd{Ctrl-c}.
c906108c
SS
4585
4586@item backtrace @var{n}
4587@itemx bt @var{n}
4588Similar, but print only the innermost @var{n} frames.
4589
4590@item backtrace -@var{n}
4591@itemx bt -@var{n}
4592Similar, but print only the outermost @var{n} frames.
0f061b69
NR
4593
4594@item backtrace full
0f061b69 4595@itemx bt full
dd74f6ae
NR
4596@itemx bt full @var{n}
4597@itemx bt full -@var{n}
e7109c7e 4598Print the values of the local variables also. @var{n} specifies the
286ba84d 4599number of frames to print, as described above.
c906108c
SS
4600@end table
4601
4602@kindex where
4603@kindex info stack
c906108c
SS
4604The names @code{where} and @code{info stack} (abbreviated @code{info s})
4605are additional aliases for @code{backtrace}.
4606
839c27b7
EZ
4607@cindex multiple threads, backtrace
4608In a multi-threaded program, @value{GDBN} by default shows the
4609backtrace only for the current thread. To display the backtrace for
4610several or all of the threads, use the command @code{thread apply}
4611(@pxref{Threads, thread apply}). For example, if you type @kbd{thread
4612apply all backtrace}, @value{GDBN} will display the backtrace for all
4613the threads; this is handy when you debug a core dump of a
4614multi-threaded program.
4615
c906108c
SS
4616Each line in the backtrace shows the frame number and the function name.
4617The program counter value is also shown---unless you use @code{set
4618print address off}. The backtrace also shows the source file name and
4619line number, as well as the arguments to the function. The program
4620counter value is omitted if it is at the beginning of the code for that
4621line number.
4622
4623Here is an example of a backtrace. It was made with the command
4624@samp{bt 3}, so it shows the innermost three frames.
4625
4626@smallexample
4627@group
5d161b24 4628#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
c906108c
SS
4629 at builtin.c:993
4630#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
4631#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
4632 at macro.c:71
4633(More stack frames follow...)
4634@end group
4635@end smallexample
4636
4637@noindent
4638The display for frame zero does not begin with a program counter
4639value, indicating that your program has stopped at the beginning of the
4640code for line @code{993} of @code{builtin.c}.
4641
18999be5
EZ
4642@cindex value optimized out, in backtrace
4643@cindex function call arguments, optimized out
4644If your program was compiled with optimizations, some compilers will
4645optimize away arguments passed to functions if those arguments are
4646never used after the call. Such optimizations generate code that
4647passes arguments through registers, but doesn't store those arguments
4648in the stack frame. @value{GDBN} has no way of displaying such
4649arguments in stack frames other than the innermost one. Here's what
4650such a backtrace might look like:
4651
4652@smallexample
4653@group
4654#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
4655 at builtin.c:993
4656#1 0x6e38 in expand_macro (sym=<value optimized out>) at macro.c:242
4657#2 0x6840 in expand_token (obs=0x0, t=<value optimized out>, td=0xf7fffb08)
4658 at macro.c:71
4659(More stack frames follow...)
4660@end group
4661@end smallexample
4662
4663@noindent
4664The values of arguments that were not saved in their stack frames are
4665shown as @samp{<value optimized out>}.
4666
4667If you need to display the values of such optimized-out arguments,
4668either deduce that from other variables whose values depend on the one
4669you are interested in, or recompile without optimizations.
4670
a8f24a35
EZ
4671@cindex backtrace beyond @code{main} function
4672@cindex program entry point
4673@cindex startup code, and backtrace
25d29d70
AC
4674Most programs have a standard user entry point---a place where system
4675libraries and startup code transition into user code. For C this is
d416eeec
EZ
4676@code{main}@footnote{
4677Note that embedded programs (the so-called ``free-standing''
4678environment) are not required to have a @code{main} function as the
4679entry point. They could even have multiple entry points.}.
4680When @value{GDBN} finds the entry function in a backtrace
25d29d70
AC
4681it will terminate the backtrace, to avoid tracing into highly
4682system-specific (and generally uninteresting) code.
4683
4684If you need to examine the startup code, or limit the number of levels
4685in a backtrace, you can change this behavior:
95f90d25
DJ
4686
4687@table @code
25d29d70
AC
4688@item set backtrace past-main
4689@itemx set backtrace past-main on
4644b6e3 4690@kindex set backtrace
25d29d70
AC
4691Backtraces will continue past the user entry point.
4692
4693@item set backtrace past-main off
95f90d25
DJ
4694Backtraces will stop when they encounter the user entry point. This is the
4695default.
4696
25d29d70 4697@item show backtrace past-main
4644b6e3 4698@kindex show backtrace
25d29d70
AC
4699Display the current user entry point backtrace policy.
4700
2315ffec
RC
4701@item set backtrace past-entry
4702@itemx set backtrace past-entry on
a8f24a35 4703Backtraces will continue past the internal entry point of an application.
2315ffec
RC
4704This entry point is encoded by the linker when the application is built,
4705and is likely before the user entry point @code{main} (or equivalent) is called.
4706
4707@item set backtrace past-entry off
d3e8051b 4708Backtraces will stop when they encounter the internal entry point of an
2315ffec
RC
4709application. This is the default.
4710
4711@item show backtrace past-entry
4712Display the current internal entry point backtrace policy.
4713
25d29d70
AC
4714@item set backtrace limit @var{n}
4715@itemx set backtrace limit 0
4716@cindex backtrace limit
4717Limit the backtrace to @var{n} levels. A value of zero means
4718unlimited.
95f90d25 4719
25d29d70
AC
4720@item show backtrace limit
4721Display the current limit on backtrace levels.
95f90d25
DJ
4722@end table
4723
6d2ebf8b 4724@node Selection
79a6e687 4725@section Selecting a Frame
c906108c
SS
4726
4727Most commands for examining the stack and other data in your program work on
4728whichever stack frame is selected at the moment. Here are the commands for
4729selecting a stack frame; all of them finish by printing a brief description
4730of the stack frame just selected.
4731
4732@table @code
d4f3574e 4733@kindex frame@r{, selecting}
41afff9a 4734@kindex f @r{(@code{frame})}
c906108c
SS
4735@item frame @var{n}
4736@itemx f @var{n}
4737Select frame number @var{n}. Recall that frame zero is the innermost
4738(currently executing) frame, frame one is the frame that called the
4739innermost one, and so on. The highest-numbered frame is the one for
4740@code{main}.
4741
4742@item frame @var{addr}
4743@itemx f @var{addr}
4744Select the frame at address @var{addr}. This is useful mainly if the
4745chaining of stack frames has been damaged by a bug, making it
4746impossible for @value{GDBN} to assign numbers properly to all frames. In
4747addition, this can be useful when your program has multiple stacks and
4748switches between them.
4749
c906108c
SS
4750On the SPARC architecture, @code{frame} needs two addresses to
4751select an arbitrary frame: a frame pointer and a stack pointer.
4752
4753On the MIPS and Alpha architecture, it needs two addresses: a stack
4754pointer and a program counter.
4755
4756On the 29k architecture, it needs three addresses: a register stack
4757pointer, a program counter, and a memory stack pointer.
c906108c
SS
4758
4759@kindex up
4760@item up @var{n}
4761Move @var{n} frames up the stack. For positive numbers @var{n}, this
4762advances toward the outermost frame, to higher frame numbers, to frames
4763that have existed longer. @var{n} defaults to one.
4764
4765@kindex down
41afff9a 4766@kindex do @r{(@code{down})}
c906108c
SS
4767@item down @var{n}
4768Move @var{n} frames down the stack. For positive numbers @var{n}, this
4769advances toward the innermost frame, to lower frame numbers, to frames
4770that were created more recently. @var{n} defaults to one. You may
4771abbreviate @code{down} as @code{do}.
4772@end table
4773
4774All of these commands end by printing two lines of output describing the
4775frame. The first line shows the frame number, the function name, the
4776arguments, and the source file and line number of execution in that
5d161b24 4777frame. The second line shows the text of that source line.
c906108c
SS
4778
4779@need 1000
4780For example:
4781
4782@smallexample
4783@group
4784(@value{GDBP}) up
4785#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
4786 at env.c:10
478710 read_input_file (argv[i]);
4788@end group
4789@end smallexample
4790
4791After such a printout, the @code{list} command with no arguments
4792prints ten lines centered on the point of execution in the frame.
87885426
FN
4793You can also edit the program at the point of execution with your favorite
4794editing program by typing @code{edit}.
79a6e687 4795@xref{List, ,Printing Source Lines},
87885426 4796for details.
c906108c
SS
4797
4798@table @code
4799@kindex down-silently
4800@kindex up-silently
4801@item up-silently @var{n}
4802@itemx down-silently @var{n}
4803These two commands are variants of @code{up} and @code{down},
4804respectively; they differ in that they do their work silently, without
4805causing display of the new frame. They are intended primarily for use
4806in @value{GDBN} command scripts, where the output might be unnecessary and
4807distracting.
4808@end table
4809
6d2ebf8b 4810@node Frame Info
79a6e687 4811@section Information About a Frame
c906108c
SS
4812
4813There are several other commands to print information about the selected
4814stack frame.
4815
4816@table @code
4817@item frame
4818@itemx f
4819When used without any argument, this command does not change which
4820frame is selected, but prints a brief description of the currently
4821selected stack frame. It can be abbreviated @code{f}. With an
4822argument, this command is used to select a stack frame.
79a6e687 4823@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4824
4825@kindex info frame
41afff9a 4826@kindex info f @r{(@code{info frame})}
c906108c
SS
4827@item info frame
4828@itemx info f
4829This command prints a verbose description of the selected stack frame,
4830including:
4831
4832@itemize @bullet
5d161b24
DB
4833@item
4834the address of the frame
c906108c
SS
4835@item
4836the address of the next frame down (called by this frame)
4837@item
4838the address of the next frame up (caller of this frame)
4839@item
4840the language in which the source code corresponding to this frame is written
4841@item
4842the address of the frame's arguments
4843@item
d4f3574e
SS
4844the address of the frame's local variables
4845@item
c906108c
SS
4846the program counter saved in it (the address of execution in the caller frame)
4847@item
4848which registers were saved in the frame
4849@end itemize
4850
4851@noindent The verbose description is useful when
4852something has gone wrong that has made the stack format fail to fit
4853the usual conventions.
4854
4855@item info frame @var{addr}
4856@itemx info f @var{addr}
4857Print a verbose description of the frame at address @var{addr}, without
4858selecting that frame. The selected frame remains unchanged by this
4859command. This requires the same kind of address (more than one for some
4860architectures) that you specify in the @code{frame} command.
79a6e687 4861@xref{Selection, ,Selecting a Frame}.
c906108c
SS
4862
4863@kindex info args
4864@item info args
4865Print the arguments of the selected frame, each on a separate line.
4866
4867@item info locals
4868@kindex info locals
4869Print the local variables of the selected frame, each on a separate
4870line. These are all variables (declared either static or automatic)
4871accessible at the point of execution of the selected frame.
4872
c906108c 4873@kindex info catch
d4f3574e
SS
4874@cindex catch exceptions, list active handlers
4875@cindex exception handlers, how to list
c906108c
SS
4876@item info catch
4877Print a list of all the exception handlers that are active in the
4878current stack frame at the current point of execution. To see other
4879exception handlers, visit the associated frame (using the @code{up},
4880@code{down}, or @code{frame} commands); then type @code{info catch}.
79a6e687 4881@xref{Set Catchpoints, , Setting Catchpoints}.
53a5351d 4882
c906108c
SS
4883@end table
4884
c906108c 4885
6d2ebf8b 4886@node Source
c906108c
SS
4887@chapter Examining Source Files
4888
4889@value{GDBN} can print parts of your program's source, since the debugging
4890information recorded in the program tells @value{GDBN} what source files were
4891used to build it. When your program stops, @value{GDBN} spontaneously prints
4892the line where it stopped. Likewise, when you select a stack frame
79a6e687 4893(@pxref{Selection, ,Selecting a Frame}), @value{GDBN} prints the line where
c906108c
SS
4894execution in that frame has stopped. You can print other portions of
4895source files by explicit command.
4896
7a292a7a 4897If you use @value{GDBN} through its @sc{gnu} Emacs interface, you may
d4f3574e 4898prefer to use Emacs facilities to view source; see @ref{Emacs, ,Using
7a292a7a 4899@value{GDBN} under @sc{gnu} Emacs}.
c906108c
SS
4900
4901@menu
4902* List:: Printing source lines
87885426 4903* Edit:: Editing source files
c906108c 4904* Search:: Searching source files
c906108c
SS
4905* Source Path:: Specifying source directories
4906* Machine Code:: Source and machine code
4907@end menu
4908
6d2ebf8b 4909@node List
79a6e687 4910@section Printing Source Lines
c906108c
SS
4911
4912@kindex list
41afff9a 4913@kindex l @r{(@code{list})}
c906108c 4914To print lines from a source file, use the @code{list} command
5d161b24 4915(abbreviated @code{l}). By default, ten lines are printed.
c906108c
SS
4916There are several ways to specify what part of the file you want to print.
4917
4918Here are the forms of the @code{list} command most commonly used:
4919
4920@table @code
4921@item list @var{linenum}
4922Print lines centered around line number @var{linenum} in the
4923current source file.
4924
4925@item list @var{function}
4926Print lines centered around the beginning of function
4927@var{function}.
4928
4929@item list
4930Print more lines. If the last lines printed were printed with a
4931@code{list} command, this prints lines following the last lines
4932printed; however, if the last line printed was a solitary line printed
4933as part of displaying a stack frame (@pxref{Stack, ,Examining the
4934Stack}), this prints lines centered around that line.
4935
4936@item list -
4937Print lines just before the lines last printed.
4938@end table
4939
9c16f35a 4940@cindex @code{list}, how many lines to display
c906108c
SS
4941By default, @value{GDBN} prints ten source lines with any of these forms of
4942the @code{list} command. You can change this using @code{set listsize}:
4943
4944@table @code
4945@kindex set listsize
4946@item set listsize @var{count}
4947Make the @code{list} command display @var{count} source lines (unless
4948the @code{list} argument explicitly specifies some other number).
4949
4950@kindex show listsize
4951@item show listsize
4952Display the number of lines that @code{list} prints.
4953@end table
4954
4955Repeating a @code{list} command with @key{RET} discards the argument,
4956so it is equivalent to typing just @code{list}. This is more useful
4957than listing the same lines again. An exception is made for an
4958argument of @samp{-}; that argument is preserved in repetition so that
4959each repetition moves up in the source file.
4960
4961@cindex linespec
4962In general, the @code{list} command expects you to supply zero, one or two
4963@dfn{linespecs}. Linespecs specify source lines; there are several ways
d4f3574e 4964of writing them, but the effect is always to specify some source line.
c906108c
SS
4965Here is a complete description of the possible arguments for @code{list}:
4966
4967@table @code
4968@item list @var{linespec}
4969Print lines centered around the line specified by @var{linespec}.
4970
4971@item list @var{first},@var{last}
4972Print lines from @var{first} to @var{last}. Both arguments are
4973linespecs.
4974
4975@item list ,@var{last}
4976Print lines ending with @var{last}.
4977
4978@item list @var{first},
4979Print lines starting with @var{first}.
4980
4981@item list +
4982Print lines just after the lines last printed.
4983
4984@item list -
4985Print lines just before the lines last printed.
4986
4987@item list
4988As described in the preceding table.
4989@end table
4990
4991Here are the ways of specifying a single source line---all the
4992kinds of linespec.
4993
4994@table @code
4995@item @var{number}
4996Specifies line @var{number} of the current source file.
4997When a @code{list} command has two linespecs, this refers to
4998the same source file as the first linespec.
4999
5000@item +@var{offset}
5001Specifies the line @var{offset} lines after the last line printed.
5002When used as the second linespec in a @code{list} command that has
5003two, this specifies the line @var{offset} lines down from the
5004first linespec.
5005
5006@item -@var{offset}
5007Specifies the line @var{offset} lines before the last line printed.
5008
5009@item @var{filename}:@var{number}
5010Specifies line @var{number} in the source file @var{filename}.
5011
5012@item @var{function}
5013Specifies the line that begins the body of the function @var{function}.
5014For example: in C, this is the line with the open brace.
5015
5016@item @var{filename}:@var{function}
5017Specifies the line of the open-brace that begins the body of the
5018function @var{function} in the file @var{filename}. You only need the
5019file name with a function name to avoid ambiguity when there are
5020identically named functions in different source files.
5021
5022@item *@var{address}
5023Specifies the line containing the program address @var{address}.
5024@var{address} may be any expression.
5025@end table
5026
87885426 5027@node Edit
79a6e687 5028@section Editing Source Files
87885426
FN
5029@cindex editing source files
5030
5031@kindex edit
5032@kindex e @r{(@code{edit})}
5033To edit the lines in a source file, use the @code{edit} command.
5034The editing program of your choice
5035is invoked with the current line set to
5036the active line in the program.
5037Alternatively, there are several ways to specify what part of the file you
5038want to print if you want to see other parts of the program.
5039
5040Here are the forms of the @code{edit} command most commonly used:
5041
5042@table @code
5043@item edit
5044Edit the current source file at the active line number in the program.
5045
5046@item edit @var{number}
5047Edit the current source file with @var{number} as the active line number.
5048
5049@item edit @var{function}
5050Edit the file containing @var{function} at the beginning of its definition.
5051
5052@item edit @var{filename}:@var{number}
5053Specifies line @var{number} in the source file @var{filename}.
5054
5055@item edit @var{filename}:@var{function}
5056Specifies the line that begins the body of the
5057function @var{function} in the file @var{filename}. You only need the
5058file name with a function name to avoid ambiguity when there are
5059identically named functions in different source files.
5060
5061@item edit *@var{address}
5062Specifies the line containing the program address @var{address}.
5063@var{address} may be any expression.
5064@end table
5065
79a6e687 5066@subsection Choosing your Editor
87885426
FN
5067You can customize @value{GDBN} to use any editor you want
5068@footnote{
5069The only restriction is that your editor (say @code{ex}), recognizes the
5070following command-line syntax:
10998722 5071@smallexample
87885426 5072ex +@var{number} file
10998722 5073@end smallexample
15387254
EZ
5074The optional numeric value +@var{number} specifies the number of the line in
5075the file where to start editing.}.
5076By default, it is @file{@value{EDITOR}}, but you can change this
10998722
AC
5077by setting the environment variable @code{EDITOR} before using
5078@value{GDBN}. For example, to configure @value{GDBN} to use the
5079@code{vi} editor, you could use these commands with the @code{sh} shell:
5080@smallexample
87885426
FN
5081EDITOR=/usr/bin/vi
5082export EDITOR
15387254 5083gdb @dots{}
10998722 5084@end smallexample
87885426 5085or in the @code{csh} shell,
10998722 5086@smallexample
87885426 5087setenv EDITOR /usr/bin/vi
15387254 5088gdb @dots{}
10998722 5089@end smallexample
87885426 5090
6d2ebf8b 5091@node Search
79a6e687 5092@section Searching Source Files
15387254 5093@cindex searching source files
c906108c
SS
5094
5095There are two commands for searching through the current source file for a
5096regular expression.
5097
5098@table @code
5099@kindex search
5100@kindex forward-search
5101@item forward-search @var{regexp}
5102@itemx search @var{regexp}
5103The command @samp{forward-search @var{regexp}} checks each line,
5104starting with the one following the last line listed, for a match for
5d161b24 5105@var{regexp}. It lists the line that is found. You can use the
c906108c
SS
5106synonym @samp{search @var{regexp}} or abbreviate the command name as
5107@code{fo}.
5108
09d4efe1 5109@kindex reverse-search
c906108c
SS
5110@item reverse-search @var{regexp}
5111The command @samp{reverse-search @var{regexp}} checks each line, starting
5112with the one before the last line listed and going backward, for a match
5113for @var{regexp}. It lists the line that is found. You can abbreviate
5114this command as @code{rev}.
5115@end table
c906108c 5116
6d2ebf8b 5117@node Source Path
79a6e687 5118@section Specifying Source Directories
c906108c
SS
5119
5120@cindex source path
5121@cindex directories for source files
5122Executable programs sometimes do not record the directories of the source
5123files from which they were compiled, just the names. Even when they do,
5124the directories could be moved between the compilation and your debugging
5125session. @value{GDBN} has a list of directories to search for source files;
5126this is called the @dfn{source path}. Each time @value{GDBN} wants a source file,
5127it tries all the directories in the list, in the order they are present
0b66e38c
EZ
5128in the list, until it finds a file with the desired name.
5129
5130For example, suppose an executable references the file
5131@file{/usr/src/foo-1.0/lib/foo.c}, and our source path is
5132@file{/mnt/cross}. The file is first looked up literally; if this
5133fails, @file{/mnt/cross/usr/src/foo-1.0/lib/foo.c} is tried; if this
5134fails, @file{/mnt/cross/foo.c} is opened; if this fails, an error
5135message is printed. @value{GDBN} does not look up the parts of the
5136source file name, such as @file{/mnt/cross/src/foo-1.0/lib/foo.c}.
5137Likewise, the subdirectories of the source path are not searched: if
5138the source path is @file{/mnt/cross}, and the binary refers to
5139@file{foo.c}, @value{GDBN} would not find it under
5140@file{/mnt/cross/usr/src/foo-1.0/lib}.
5141
5142Plain file names, relative file names with leading directories, file
5143names containing dots, etc.@: are all treated as described above; for
5144instance, if the source path is @file{/mnt/cross}, and the source file
5145is recorded as @file{../lib/foo.c}, @value{GDBN} would first try
5146@file{../lib/foo.c}, then @file{/mnt/cross/../lib/foo.c}, and after
5147that---@file{/mnt/cross/foo.c}.
5148
5149Note that the executable search path is @emph{not} used to locate the
cd852561 5150source files.
c906108c
SS
5151
5152Whenever you reset or rearrange the source path, @value{GDBN} clears out
5153any information it has cached about where source files are found and where
5154each line is in the file.
5155
5156@kindex directory
5157@kindex dir
d4f3574e
SS
5158When you start @value{GDBN}, its source path includes only @samp{cdir}
5159and @samp{cwd}, in that order.
c906108c
SS
5160To add other directories, use the @code{directory} command.
5161
4b505b12
AS
5162The search path is used to find both program source files and @value{GDBN}
5163script files (read using the @samp{-command} option and @samp{source} command).
5164
30daae6c
JB
5165In addition to the source path, @value{GDBN} provides a set of commands
5166that manage a list of source path substitution rules. A @dfn{substitution
5167rule} specifies how to rewrite source directories stored in the program's
5168debug information in case the sources were moved to a different
5169directory between compilation and debugging. A rule is made of
5170two strings, the first specifying what needs to be rewritten in
5171the path, and the second specifying how it should be rewritten.
5172In @ref{set substitute-path}, we name these two parts @var{from} and
5173@var{to} respectively. @value{GDBN} does a simple string replacement
5174of @var{from} with @var{to} at the start of the directory part of the
5175source file name, and uses that result instead of the original file
5176name to look up the sources.
5177
5178Using the previous example, suppose the @file{foo-1.0} tree has been
5179moved from @file{/usr/src} to @file{/mnt/cross}, then you can tell
3f94c067 5180@value{GDBN} to replace @file{/usr/src} in all source path names with
30daae6c
JB
5181@file{/mnt/cross}. The first lookup will then be
5182@file{/mnt/cross/foo-1.0/lib/foo.c} in place of the original location
5183of @file{/usr/src/foo-1.0/lib/foo.c}. To define a source path
5184substitution rule, use the @code{set substitute-path} command
5185(@pxref{set substitute-path}).
5186
5187To avoid unexpected substitution results, a rule is applied only if the
5188@var{from} part of the directory name ends at a directory separator.
5189For instance, a rule substituting @file{/usr/source} into
5190@file{/mnt/cross} will be applied to @file{/usr/source/foo-1.0} but
5191not to @file{/usr/sourceware/foo-2.0}. And because the substitution
d3e8051b 5192is applied only at the beginning of the directory name, this rule will
30daae6c
JB
5193not be applied to @file{/root/usr/source/baz.c} either.
5194
5195In many cases, you can achieve the same result using the @code{directory}
5196command. However, @code{set substitute-path} can be more efficient in
5197the case where the sources are organized in a complex tree with multiple
5198subdirectories. With the @code{directory} command, you need to add each
5199subdirectory of your project. If you moved the entire tree while
5200preserving its internal organization, then @code{set substitute-path}
5201allows you to direct the debugger to all the sources with one single
5202command.
5203
5204@code{set substitute-path} is also more than just a shortcut command.
5205The source path is only used if the file at the original location no
5206longer exists. On the other hand, @code{set substitute-path} modifies
5207the debugger behavior to look at the rewritten location instead. So, if
5208for any reason a source file that is not relevant to your executable is
5209located at the original location, a substitution rule is the only
3f94c067 5210method available to point @value{GDBN} at the new location.
30daae6c 5211
c906108c
SS
5212@table @code
5213@item directory @var{dirname} @dots{}
5214@item dir @var{dirname} @dots{}
5215Add directory @var{dirname} to the front of the source path. Several
d4f3574e
SS
5216directory names may be given to this command, separated by @samp{:}
5217(@samp{;} on MS-DOS and MS-Windows, where @samp{:} usually appears as
5218part of absolute file names) or
c906108c
SS
5219whitespace. You may specify a directory that is already in the source
5220path; this moves it forward, so @value{GDBN} searches it sooner.
5221
5222@kindex cdir
5223@kindex cwd
41afff9a 5224@vindex $cdir@r{, convenience variable}
d3e8051b 5225@vindex $cwd@r{, convenience variable}
c906108c
SS
5226@cindex compilation directory
5227@cindex current directory
5228@cindex working directory
5229@cindex directory, current
5230@cindex directory, compilation
5231You can use the string @samp{$cdir} to refer to the compilation
5232directory (if one is recorded), and @samp{$cwd} to refer to the current
5233working directory. @samp{$cwd} is not the same as @samp{.}---the former
5234tracks the current working directory as it changes during your @value{GDBN}
5235session, while the latter is immediately expanded to the current
5236directory at the time you add an entry to the source path.
5237
5238@item directory
cd852561 5239Reset the source path to its default value (@samp{$cdir:$cwd} on Unix systems). This requires confirmation.
c906108c
SS
5240
5241@c RET-repeat for @code{directory} is explicitly disabled, but since
5242@c repeating it would be a no-op we do not say that. (thanks to RMS)
5243
5244@item show directories
5245@kindex show directories
5246Print the source path: show which directories it contains.
30daae6c
JB
5247
5248@anchor{set substitute-path}
5249@item set substitute-path @var{from} @var{to}
5250@kindex set substitute-path
5251Define a source path substitution rule, and add it at the end of the
5252current list of existing substitution rules. If a rule with the same
5253@var{from} was already defined, then the old rule is also deleted.
5254
5255For example, if the file @file{/foo/bar/baz.c} was moved to
5256@file{/mnt/cross/baz.c}, then the command
5257
5258@smallexample
5259(@value{GDBP}) set substitute-path /usr/src /mnt/cross
5260@end smallexample
5261
5262@noindent
5263will tell @value{GDBN} to replace @samp{/usr/src} with
5264@samp{/mnt/cross}, which will allow @value{GDBN} to find the file
5265@file{baz.c} even though it was moved.
5266
5267In the case when more than one substitution rule have been defined,
5268the rules are evaluated one by one in the order where they have been
5269defined. The first one matching, if any, is selected to perform
5270the substitution.
5271
5272For instance, if we had entered the following commands:
5273
5274@smallexample
5275(@value{GDBP}) set substitute-path /usr/src/include /mnt/include
5276(@value{GDBP}) set substitute-path /usr/src /mnt/src
5277@end smallexample
5278
5279@noindent
5280@value{GDBN} would then rewrite @file{/usr/src/include/defs.h} into
5281@file{/mnt/include/defs.h} by using the first rule. However, it would
5282use the second rule to rewrite @file{/usr/src/lib/foo.c} into
5283@file{/mnt/src/lib/foo.c}.
5284
5285
5286@item unset substitute-path [path]
5287@kindex unset substitute-path
5288If a path is specified, search the current list of substitution rules
5289for a rule that would rewrite that path. Delete that rule if found.
5290A warning is emitted by the debugger if no rule could be found.
5291
5292If no path is specified, then all substitution rules are deleted.
5293
5294@item show substitute-path [path]
5295@kindex show substitute-path
5296If a path is specified, then print the source path substitution rule
5297which would rewrite that path, if any.
5298
5299If no path is specified, then print all existing source path substitution
5300rules.
5301
c906108c
SS
5302@end table
5303
5304If your source path is cluttered with directories that are no longer of
5305interest, @value{GDBN} may sometimes cause confusion by finding the wrong
5306versions of source. You can correct the situation as follows:
5307
5308@enumerate
5309@item
cd852561 5310Use @code{directory} with no argument to reset the source path to its default value.
c906108c
SS
5311
5312@item
5313Use @code{directory} with suitable arguments to reinstall the
5314directories you want in the source path. You can add all the
5315directories in one command.
5316@end enumerate
5317
6d2ebf8b 5318@node Machine Code
79a6e687 5319@section Source and Machine Code
15387254 5320@cindex source line and its code address
c906108c
SS
5321
5322You can use the command @code{info line} to map source lines to program
5323addresses (and vice versa), and the command @code{disassemble} to display
5324a range of addresses as machine instructions. When run under @sc{gnu} Emacs
d4f3574e 5325mode, the @code{info line} command causes the arrow to point to the
5d161b24 5326line specified. Also, @code{info line} prints addresses in symbolic form as
c906108c
SS
5327well as hex.
5328
5329@table @code
5330@kindex info line
5331@item info line @var{linespec}
5332Print the starting and ending addresses of the compiled code for
5333source line @var{linespec}. You can specify source lines in any of
5334the ways understood by the @code{list} command (@pxref{List, ,Printing
79a6e687 5335Source Lines}).
c906108c
SS
5336@end table
5337
5338For example, we can use @code{info line} to discover the location of
5339the object code for the first line of function
5340@code{m4_changequote}:
5341
d4f3574e
SS
5342@c FIXME: I think this example should also show the addresses in
5343@c symbolic form, as they usually would be displayed.
c906108c 5344@smallexample
96a2c332 5345(@value{GDBP}) info line m4_changequote
c906108c
SS
5346Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
5347@end smallexample
5348
5349@noindent
15387254 5350@cindex code address and its source line
c906108c
SS
5351We can also inquire (using @code{*@var{addr}} as the form for
5352@var{linespec}) what source line covers a particular address:
5353@smallexample
5354(@value{GDBP}) info line *0x63ff
5355Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
5356@end smallexample
5357
5358@cindex @code{$_} and @code{info line}
15387254 5359@cindex @code{x} command, default address
41afff9a 5360@kindex x@r{(examine), and} info line
c906108c
SS
5361After @code{info line}, the default address for the @code{x} command
5362is changed to the starting address of the line, so that @samp{x/i} is
5363sufficient to begin examining the machine code (@pxref{Memory,
79a6e687 5364,Examining Memory}). Also, this address is saved as the value of the
c906108c 5365convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
79a6e687 5366Variables}).
c906108c
SS
5367
5368@table @code
5369@kindex disassemble
5370@cindex assembly instructions
5371@cindex instructions, assembly
5372@cindex machine instructions
5373@cindex listing machine instructions
5374@item disassemble
5375This specialized command dumps a range of memory as machine
5376instructions. The default memory range is the function surrounding the
5377program counter of the selected frame. A single argument to this
5378command is a program counter value; @value{GDBN} dumps the function
5379surrounding this value. Two arguments specify a range of addresses
5380(first inclusive, second exclusive) to dump.
5381@end table
5382
c906108c
SS
5383The following example shows the disassembly of a range of addresses of
5384HP PA-RISC 2.0 code:
5385
5386@smallexample
5387(@value{GDBP}) disas 0x32c4 0x32e4
5388Dump of assembler code from 0x32c4 to 0x32e4:
53890x32c4 <main+204>: addil 0,dp
53900x32c8 <main+208>: ldw 0x22c(sr0,r1),r26
53910x32cc <main+212>: ldil 0x3000,r31
53920x32d0 <main+216>: ble 0x3f8(sr4,r31)
53930x32d4 <main+220>: ldo 0(r31),rp
53940x32d8 <main+224>: addil -0x800,dp
53950x32dc <main+228>: ldo 0x588(r1),r26
53960x32e0 <main+232>: ldil 0x3000,r31
5397End of assembler dump.
5398@end smallexample
c906108c
SS
5399
5400Some architectures have more than one commonly-used set of instruction
5401mnemonics or other syntax.
5402
76d17f34
EZ
5403For programs that were dynamically linked and use shared libraries,
5404instructions that call functions or branch to locations in the shared
5405libraries might show a seemingly bogus location---it's actually a
5406location of the relocation table. On some architectures, @value{GDBN}
5407might be able to resolve these to actual function names.
5408
c906108c 5409@table @code
d4f3574e 5410@kindex set disassembly-flavor
d4f3574e
SS
5411@cindex Intel disassembly flavor
5412@cindex AT&T disassembly flavor
5413@item set disassembly-flavor @var{instruction-set}
c906108c
SS
5414Select the instruction set to use when disassembling the
5415program via the @code{disassemble} or @code{x/i} commands.
5416
5417Currently this command is only defined for the Intel x86 family. You
d4f3574e
SS
5418can set @var{instruction-set} to either @code{intel} or @code{att}.
5419The default is @code{att}, the AT&T flavor used by default by Unix
5420assemblers for x86-based targets.
9c16f35a
EZ
5421
5422@kindex show disassembly-flavor
5423@item show disassembly-flavor
5424Show the current setting of the disassembly flavor.
c906108c
SS
5425@end table
5426
5427
6d2ebf8b 5428@node Data
c906108c
SS
5429@chapter Examining Data
5430
5431@cindex printing data
5432@cindex examining data
5433@kindex print
5434@kindex inspect
5435@c "inspect" is not quite a synonym if you are using Epoch, which we do not
5436@c document because it is nonstandard... Under Epoch it displays in a
5437@c different window or something like that.
5438The usual way to examine data in your program is with the @code{print}
7a292a7a
SS
5439command (abbreviated @code{p}), or its synonym @code{inspect}. It
5440evaluates and prints the value of an expression of the language your
5441program is written in (@pxref{Languages, ,Using @value{GDBN} with
5442Different Languages}).
c906108c
SS
5443
5444@table @code
d4f3574e
SS
5445@item print @var{expr}
5446@itemx print /@var{f} @var{expr}
5447@var{expr} is an expression (in the source language). By default the
5448value of @var{expr} is printed in a format appropriate to its data type;
c906108c 5449you can choose a different format by specifying @samp{/@var{f}}, where
d4f3574e 5450@var{f} is a letter specifying the format; see @ref{Output Formats,,Output
79a6e687 5451Formats}.
c906108c
SS
5452
5453@item print
5454@itemx print /@var{f}
15387254 5455@cindex reprint the last value
d4f3574e 5456If you omit @var{expr}, @value{GDBN} displays the last value again (from the
79a6e687 5457@dfn{value history}; @pxref{Value History, ,Value History}). This allows you to
c906108c
SS
5458conveniently inspect the same value in an alternative format.
5459@end table
5460
5461A more low-level way of examining data is with the @code{x} command.
5462It examines data in memory at a specified address and prints it in a
79a6e687 5463specified format. @xref{Memory, ,Examining Memory}.
c906108c 5464
7a292a7a 5465If you are interested in information about types, or about how the
d4f3574e
SS
5466fields of a struct or a class are declared, use the @code{ptype @var{exp}}
5467command rather than @code{print}. @xref{Symbols, ,Examining the Symbol
7a292a7a 5468Table}.
c906108c
SS
5469
5470@menu
5471* Expressions:: Expressions
5472* Variables:: Program variables
5473* Arrays:: Artificial arrays
5474* Output Formats:: Output formats
5475* Memory:: Examining memory
5476* Auto Display:: Automatic display
5477* Print Settings:: Print settings
5478* Value History:: Value history
5479* Convenience Vars:: Convenience variables
5480* Registers:: Registers
c906108c 5481* Floating Point Hardware:: Floating point hardware
53c69bd7 5482* Vector Unit:: Vector Unit
721c2651 5483* OS Information:: Auxiliary data provided by operating system
29e57380 5484* Memory Region Attributes:: Memory region attributes
16d9dec6 5485* Dump/Restore Files:: Copy between memory and a file
384ee23f 5486* Core File Generation:: Cause a program dump its core
a0eb71c5
KB
5487* Character Sets:: Debugging programs that use a different
5488 character set than GDB does
09d4efe1 5489* Caching Remote Data:: Data caching for remote targets
c906108c
SS
5490@end menu
5491
6d2ebf8b 5492@node Expressions
c906108c
SS
5493@section Expressions
5494
5495@cindex expressions
5496@code{print} and many other @value{GDBN} commands accept an expression and
5497compute its value. Any kind of constant, variable or operator defined
5498by the programming language you are using is valid in an expression in
e2e0bcd1
JB
5499@value{GDBN}. This includes conditional expressions, function calls,
5500casts, and string constants. It also includes preprocessor macros, if
5501you compiled your program to include this information; see
5502@ref{Compilation}.
c906108c 5503
15387254 5504@cindex arrays in expressions
d4f3574e
SS
5505@value{GDBN} supports array constants in expressions input by
5506the user. The syntax is @{@var{element}, @var{element}@dots{}@}. For example,
5d161b24 5507you can use the command @code{print @{1, 2, 3@}} to build up an array in
d4f3574e 5508memory that is @code{malloc}ed in the target program.
c906108c 5509
c906108c
SS
5510Because C is so widespread, most of the expressions shown in examples in
5511this manual are in C. @xref{Languages, , Using @value{GDBN} with Different
5512Languages}, for information on how to use expressions in other
5513languages.
5514
5515In this section, we discuss operators that you can use in @value{GDBN}
5516expressions regardless of your programming language.
5517
15387254 5518@cindex casts, in expressions
c906108c
SS
5519Casts are supported in all languages, not just in C, because it is so
5520useful to cast a number into a pointer in order to examine a structure
5521at that address in memory.
5522@c FIXME: casts supported---Mod2 true?
c906108c
SS
5523
5524@value{GDBN} supports these operators, in addition to those common
5525to programming languages:
5526
5527@table @code
5528@item @@
5529@samp{@@} is a binary operator for treating parts of memory as arrays.
79a6e687 5530@xref{Arrays, ,Artificial Arrays}, for more information.
c906108c
SS
5531
5532@item ::
5533@samp{::} allows you to specify a variable in terms of the file or
79a6e687 5534function where it is defined. @xref{Variables, ,Program Variables}.
c906108c
SS
5535
5536@cindex @{@var{type}@}
5537@cindex type casting memory
5538@cindex memory, viewing as typed object
5539@cindex casts, to view memory
5540@item @{@var{type}@} @var{addr}
5541Refers to an object of type @var{type} stored at address @var{addr} in
5542memory. @var{addr} may be any expression whose value is an integer or
5543pointer (but parentheses are required around binary operators, just as in
5544a cast). This construct is allowed regardless of what kind of data is
5545normally supposed to reside at @var{addr}.
5546@end table
5547
6d2ebf8b 5548@node Variables
79a6e687 5549@section Program Variables
c906108c
SS
5550
5551The most common kind of expression to use is the name of a variable
5552in your program.
5553
5554Variables in expressions are understood in the selected stack frame
79a6e687 5555(@pxref{Selection, ,Selecting a Frame}); they must be either:
c906108c
SS
5556
5557@itemize @bullet
5558@item
5559global (or file-static)
5560@end itemize
5561
5d161b24 5562@noindent or
c906108c
SS
5563
5564@itemize @bullet
5565@item
5566visible according to the scope rules of the
5567programming language from the point of execution in that frame
5d161b24 5568@end itemize
c906108c
SS
5569
5570@noindent This means that in the function
5571
474c8240 5572@smallexample
c906108c
SS
5573foo (a)
5574 int a;
5575@{
5576 bar (a);
5577 @{
5578 int b = test ();
5579 bar (b);
5580 @}
5581@}
474c8240 5582@end smallexample
c906108c
SS
5583
5584@noindent
5585you can examine and use the variable @code{a} whenever your program is
5586executing within the function @code{foo}, but you can only use or
5587examine the variable @code{b} while your program is executing inside
5588the block where @code{b} is declared.
5589
5590@cindex variable name conflict
5591There is an exception: you can refer to a variable or function whose
5592scope is a single source file even if the current execution point is not
5593in this file. But it is possible to have more than one such variable or
5594function with the same name (in different source files). If that
5595happens, referring to that name has unpredictable effects. If you wish,
5596you can specify a static variable in a particular function or file,
15387254 5597using the colon-colon (@code{::}) notation:
c906108c 5598
d4f3574e 5599@cindex colon-colon, context for variables/functions
12c27660 5600@ifnotinfo
c906108c 5601@c info cannot cope with a :: index entry, but why deprive hard copy readers?
41afff9a 5602@cindex @code{::}, context for variables/functions
12c27660 5603@end ifnotinfo
474c8240 5604@smallexample
c906108c
SS
5605@var{file}::@var{variable}
5606@var{function}::@var{variable}
474c8240 5607@end smallexample
c906108c
SS
5608
5609@noindent
5610Here @var{file} or @var{function} is the name of the context for the
5611static @var{variable}. In the case of file names, you can use quotes to
5612make sure @value{GDBN} parses the file name as a single word---for example,
5613to print a global value of @code{x} defined in @file{f2.c}:
5614
474c8240 5615@smallexample
c906108c 5616(@value{GDBP}) p 'f2.c'::x
474c8240 5617@end smallexample
c906108c 5618
b37052ae 5619@cindex C@t{++} scope resolution
c906108c 5620This use of @samp{::} is very rarely in conflict with the very similar
b37052ae 5621use of the same notation in C@t{++}. @value{GDBN} also supports use of the C@t{++}
c906108c
SS
5622scope resolution operator in @value{GDBN} expressions.
5623@c FIXME: Um, so what happens in one of those rare cases where it's in
5624@c conflict?? --mew
c906108c
SS
5625
5626@cindex wrong values
5627@cindex variable values, wrong
15387254
EZ
5628@cindex function entry/exit, wrong values of variables
5629@cindex optimized code, wrong values of variables
c906108c
SS
5630@quotation
5631@emph{Warning:} Occasionally, a local variable may appear to have the
5632wrong value at certain points in a function---just after entry to a new
5633scope, and just before exit.
5634@end quotation
5635You may see this problem when you are stepping by machine instructions.
5636This is because, on most machines, it takes more than one instruction to
5637set up a stack frame (including local variable definitions); if you are
5638stepping by machine instructions, variables may appear to have the wrong
5639values until the stack frame is completely built. On exit, it usually
5640also takes more than one machine instruction to destroy a stack frame;
5641after you begin stepping through that group of instructions, local
5642variable definitions may be gone.
5643
5644This may also happen when the compiler does significant optimizations.
5645To be sure of always seeing accurate values, turn off all optimization
5646when compiling.
5647
d4f3574e
SS
5648@cindex ``No symbol "foo" in current context''
5649Another possible effect of compiler optimizations is to optimize
5650unused variables out of existence, or assign variables to registers (as
5651opposed to memory addresses). Depending on the support for such cases
5652offered by the debug info format used by the compiler, @value{GDBN}
5653might not be able to display values for such local variables. If that
5654happens, @value{GDBN} will print a message like this:
5655
474c8240 5656@smallexample
d4f3574e 5657No symbol "foo" in current context.
474c8240 5658@end smallexample
d4f3574e
SS
5659
5660To solve such problems, either recompile without optimizations, or use a
5661different debug info format, if the compiler supports several such
15387254 5662formats. For example, @value{NGCC}, the @sc{gnu} C/C@t{++} compiler,
0179ffac
DC
5663usually supports the @option{-gstabs+} option. @option{-gstabs+}
5664produces debug info in a format that is superior to formats such as
5665COFF. You may be able to use DWARF 2 (@option{-gdwarf-2}), which is also
5666an effective form for debug info. @xref{Debugging Options,,Options
ce9341a1
BW
5667for Debugging Your Program or GCC, gcc.info, Using the @sc{gnu}
5668Compiler Collection (GCC)}.
79a6e687 5669@xref{C, ,C and C@t{++}}, for more information about debug info formats
15387254 5670that are best suited to C@t{++} programs.
d4f3574e 5671
ab1adacd
EZ
5672If you ask to print an object whose contents are unknown to
5673@value{GDBN}, e.g., because its data type is not completely specified
5674by the debug information, @value{GDBN} will say @samp{<incomplete
5675type>}. @xref{Symbols, incomplete type}, for more about this.
5676
3a60f64e
JK
5677Strings are identified as arrays of @code{char} values without specified
5678signedness. Arrays of either @code{signed char} or @code{unsigned char} get
5679printed as arrays of 1 byte sized integers. @code{-fsigned-char} or
5680@code{-funsigned-char} @value{NGCC} options have no effect as @value{GDBN}
5681defines literal string type @code{"char"} as @code{char} without a sign.
5682For program code
5683
5684@smallexample
5685char var0[] = "A";
5686signed char var1[] = "A";
5687@end smallexample
5688
5689You get during debugging
5690@smallexample
5691(gdb) print var0
5692$1 = "A"
5693(gdb) print var1
5694$2 = @{65 'A', 0 '\0'@}
5695@end smallexample
5696
6d2ebf8b 5697@node Arrays
79a6e687 5698@section Artificial Arrays
c906108c
SS
5699
5700@cindex artificial array
15387254 5701@cindex arrays
41afff9a 5702@kindex @@@r{, referencing memory as an array}
c906108c
SS
5703It is often useful to print out several successive objects of the
5704same type in memory; a section of an array, or an array of
5705dynamically determined size for which only a pointer exists in the
5706program.
5707
5708You can do this by referring to a contiguous span of memory as an
5709@dfn{artificial array}, using the binary operator @samp{@@}. The left
5710operand of @samp{@@} should be the first element of the desired array
5711and be an individual object. The right operand should be the desired length
5712of the array. The result is an array value whose elements are all of
5713the type of the left argument. The first element is actually the left
5714argument; the second element comes from bytes of memory immediately
5715following those that hold the first element, and so on. Here is an
5716example. If a program says
5717
474c8240 5718@smallexample
c906108c 5719int *array = (int *) malloc (len * sizeof (int));
474c8240 5720@end smallexample
c906108c
SS
5721
5722@noindent
5723you can print the contents of @code{array} with
5724
474c8240 5725@smallexample
c906108c 5726p *array@@len
474c8240 5727@end smallexample
c906108c
SS
5728
5729The left operand of @samp{@@} must reside in memory. Array values made
5730with @samp{@@} in this way behave just like other arrays in terms of
5731subscripting, and are coerced to pointers when used in expressions.
5732Artificial arrays most often appear in expressions via the value history
79a6e687 5733(@pxref{Value History, ,Value History}), after printing one out.
c906108c
SS
5734
5735Another way to create an artificial array is to use a cast.
5736This re-interprets a value as if it were an array.
5737The value need not be in memory:
474c8240 5738@smallexample
c906108c
SS
5739(@value{GDBP}) p/x (short[2])0x12345678
5740$1 = @{0x1234, 0x5678@}
474c8240 5741@end smallexample
c906108c
SS
5742
5743As a convenience, if you leave the array length out (as in
c3f6f71d 5744@samp{(@var{type}[])@var{value}}) @value{GDBN} calculates the size to fill
c906108c 5745the value (as @samp{sizeof(@var{value})/sizeof(@var{type})}:
474c8240 5746@smallexample
c906108c
SS
5747(@value{GDBP}) p/x (short[])0x12345678
5748$2 = @{0x1234, 0x5678@}
474c8240 5749@end smallexample
c906108c
SS
5750
5751Sometimes the artificial array mechanism is not quite enough; in
5752moderately complex data structures, the elements of interest may not
5753actually be adjacent---for example, if you are interested in the values
5754of pointers in an array. One useful work-around in this situation is
5755to use a convenience variable (@pxref{Convenience Vars, ,Convenience
79a6e687 5756Variables}) as a counter in an expression that prints the first
c906108c
SS
5757interesting value, and then repeat that expression via @key{RET}. For
5758instance, suppose you have an array @code{dtab} of pointers to
5759structures, and you are interested in the values of a field @code{fv}
5760in each structure. Here is an example of what you might type:
5761
474c8240 5762@smallexample
c906108c
SS
5763set $i = 0
5764p dtab[$i++]->fv
5765@key{RET}
5766@key{RET}
5767@dots{}
474c8240 5768@end smallexample
c906108c 5769
6d2ebf8b 5770@node Output Formats
79a6e687 5771@section Output Formats
c906108c
SS
5772
5773@cindex formatted output
5774@cindex output formats
5775By default, @value{GDBN} prints a value according to its data type. Sometimes
5776this is not what you want. For example, you might want to print a number
5777in hex, or a pointer in decimal. Or you might want to view data in memory
5778at a certain address as a character string or as an instruction. To do
5779these things, specify an @dfn{output format} when you print a value.
5780
5781The simplest use of output formats is to say how to print a value
5782already computed. This is done by starting the arguments of the
5783@code{print} command with a slash and a format letter. The format
5784letters supported are:
5785
5786@table @code
5787@item x
5788Regard the bits of the value as an integer, and print the integer in
5789hexadecimal.
5790
5791@item d
5792Print as integer in signed decimal.
5793
5794@item u
5795Print as integer in unsigned decimal.
5796
5797@item o
5798Print as integer in octal.
5799
5800@item t
5801Print as integer in binary. The letter @samp{t} stands for ``two''.
5802@footnote{@samp{b} cannot be used because these format letters are also
5803used with the @code{x} command, where @samp{b} stands for ``byte'';
79a6e687 5804see @ref{Memory,,Examining Memory}.}
c906108c
SS
5805
5806@item a
5807@cindex unknown address, locating
3d67e040 5808@cindex locate address
c906108c
SS
5809Print as an address, both absolute in hexadecimal and as an offset from
5810the nearest preceding symbol. You can use this format used to discover
5811where (in what function) an unknown address is located:
5812
474c8240 5813@smallexample
c906108c
SS
5814(@value{GDBP}) p/a 0x54320
5815$3 = 0x54320 <_initialize_vx+396>
474c8240 5816@end smallexample
c906108c 5817
3d67e040
EZ
5818@noindent
5819The command @code{info symbol 0x54320} yields similar results.
5820@xref{Symbols, info symbol}.
5821
c906108c 5822@item c
51274035
EZ
5823Regard as an integer and print it as a character constant. This
5824prints both the numerical value and its character representation. The
5825character representation is replaced with the octal escape @samp{\nnn}
5826for characters outside the 7-bit @sc{ascii} range.
c906108c 5827
ea37ba09
DJ
5828Without this format, @value{GDBN} displays @code{char},
5829@w{@code{unsigned char}}, and @w{@code{signed char}} data as character
5830constants. Single-byte members of vectors are displayed as integer
5831data.
5832
c906108c
SS
5833@item f
5834Regard the bits of the value as a floating point number and print
5835using typical floating point syntax.
ea37ba09
DJ
5836
5837@item s
5838@cindex printing strings
5839@cindex printing byte arrays
5840Regard as a string, if possible. With this format, pointers to single-byte
5841data are displayed as null-terminated strings and arrays of single-byte data
5842are displayed as fixed-length strings. Other values are displayed in their
5843natural types.
5844
5845Without this format, @value{GDBN} displays pointers to and arrays of
5846@code{char}, @w{@code{unsigned char}}, and @w{@code{signed char}} as
5847strings. Single-byte members of a vector are displayed as an integer
5848array.
c906108c
SS
5849@end table
5850
5851For example, to print the program counter in hex (@pxref{Registers}), type
5852
474c8240 5853@smallexample
c906108c 5854p/x $pc
474c8240 5855@end smallexample
c906108c
SS
5856
5857@noindent
5858Note that no space is required before the slash; this is because command
5859names in @value{GDBN} cannot contain a slash.
5860
5861To reprint the last value in the value history with a different format,
5862you can use the @code{print} command with just a format and no
5863expression. For example, @samp{p/x} reprints the last value in hex.
5864
6d2ebf8b 5865@node Memory
79a6e687 5866@section Examining Memory
c906108c
SS
5867
5868You can use the command @code{x} (for ``examine'') to examine memory in
5869any of several formats, independently of your program's data types.
5870
5871@cindex examining memory
5872@table @code
41afff9a 5873@kindex x @r{(examine memory)}
c906108c
SS
5874@item x/@var{nfu} @var{addr}
5875@itemx x @var{addr}
5876@itemx x
5877Use the @code{x} command to examine memory.
5878@end table
5879
5880@var{n}, @var{f}, and @var{u} are all optional parameters that specify how
5881much memory to display and how to format it; @var{addr} is an
5882expression giving the address where you want to start displaying memory.
5883If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
5884Several commands set convenient defaults for @var{addr}.
5885
5886@table @r
5887@item @var{n}, the repeat count
5888The repeat count is a decimal integer; the default is 1. It specifies
5889how much memory (counting by units @var{u}) to display.
5890@c This really is **decimal**; unaffected by 'set radix' as of GDB
5891@c 4.1.2.
5892
5893@item @var{f}, the display format
51274035
EZ
5894The display format is one of the formats used by @code{print}
5895(@samp{x}, @samp{d}, @samp{u}, @samp{o}, @samp{t}, @samp{a}, @samp{c},
ea37ba09
DJ
5896@samp{f}, @samp{s}), and in addition @samp{i} (for machine instructions).
5897The default is @samp{x} (hexadecimal) initially. The default changes
5898each time you use either @code{x} or @code{print}.
c906108c
SS
5899
5900@item @var{u}, the unit size
5901The unit size is any of
5902
5903@table @code
5904@item b
5905Bytes.
5906@item h
5907Halfwords (two bytes).
5908@item w
5909Words (four bytes). This is the initial default.
5910@item g
5911Giant words (eight bytes).
5912@end table
5913
5914Each time you specify a unit size with @code{x}, that size becomes the
5915default unit the next time you use @code{x}. (For the @samp{s} and
5916@samp{i} formats, the unit size is ignored and is normally not written.)
5917
5918@item @var{addr}, starting display address
5919@var{addr} is the address where you want @value{GDBN} to begin displaying
5920memory. The expression need not have a pointer value (though it may);
5921it is always interpreted as an integer address of a byte of memory.
5922@xref{Expressions, ,Expressions}, for more information on expressions. The default for
5923@var{addr} is usually just after the last address examined---but several
5924other commands also set the default address: @code{info breakpoints} (to
5925the address of the last breakpoint listed), @code{info line} (to the
5926starting address of a line), and @code{print} (if you use it to display
5927a value from memory).
5928@end table
5929
5930For example, @samp{x/3uh 0x54320} is a request to display three halfwords
5931(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
5932starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
5933words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
d4f3574e 5934@pxref{Registers, ,Registers}) in hexadecimal (@samp{x}).
c906108c
SS
5935
5936Since the letters indicating unit sizes are all distinct from the
5937letters specifying output formats, you do not have to remember whether
5938unit size or format comes first; either order works. The output
5939specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
5940(However, the count @var{n} must come first; @samp{wx4} does not work.)
5941
5942Even though the unit size @var{u} is ignored for the formats @samp{s}
5943and @samp{i}, you might still want to use a count @var{n}; for example,
5944@samp{3i} specifies that you want to see three machine instructions,
a4642986
MR
5945including any operands. For convenience, especially when used with
5946the @code{display} command, the @samp{i} format also prints branch delay
5947slot instructions, if any, beyond the count specified, which immediately
5948follow the last instruction that is within the count. The command
5949@code{disassemble} gives an alternative way of inspecting machine
5950instructions; see @ref{Machine Code,,Source and Machine Code}.
c906108c
SS
5951
5952All the defaults for the arguments to @code{x} are designed to make it
5953easy to continue scanning memory with minimal specifications each time
5954you use @code{x}. For example, after you have inspected three machine
5955instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
5956with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
5957the repeat count @var{n} is used again; the other arguments default as
5958for successive uses of @code{x}.
5959
5960@cindex @code{$_}, @code{$__}, and value history
5961The addresses and contents printed by the @code{x} command are not saved
5962in the value history because there is often too much of them and they
5963would get in the way. Instead, @value{GDBN} makes these values available for
5964subsequent use in expressions as values of the convenience variables
5965@code{$_} and @code{$__}. After an @code{x} command, the last address
5966examined is available for use in expressions in the convenience variable
5967@code{$_}. The contents of that address, as examined, are available in
5968the convenience variable @code{$__}.
5969
5970If the @code{x} command has a repeat count, the address and contents saved
5971are from the last memory unit printed; this is not the same as the last
5972address printed if several units were printed on the last line of output.
5973
09d4efe1
EZ
5974@cindex remote memory comparison
5975@cindex verify remote memory image
5976When you are debugging a program running on a remote target machine
ea35711c 5977(@pxref{Remote Debugging}), you may wish to verify the program's image in the
09d4efe1
EZ
5978remote machine's memory against the executable file you downloaded to
5979the target. The @code{compare-sections} command is provided for such
5980situations.
5981
5982@table @code
5983@kindex compare-sections
5984@item compare-sections @r{[}@var{section-name}@r{]}
5985Compare the data of a loadable section @var{section-name} in the
5986executable file of the program being debugged with the same section in
5987the remote machine's memory, and report any mismatches. With no
5988arguments, compares all loadable sections. This command's
5989availability depends on the target's support for the @code{"qCRC"}
5990remote request.
5991@end table
5992
6d2ebf8b 5993@node Auto Display
79a6e687 5994@section Automatic Display
c906108c
SS
5995@cindex automatic display
5996@cindex display of expressions
5997
5998If you find that you want to print the value of an expression frequently
5999(to see how it changes), you might want to add it to the @dfn{automatic
6000display list} so that @value{GDBN} prints its value each time your program stops.
6001Each expression added to the list is given a number to identify it;
6002to remove an expression from the list, you specify that number.
6003The automatic display looks like this:
6004
474c8240 6005@smallexample
c906108c
SS
60062: foo = 38
60073: bar[5] = (struct hack *) 0x3804
474c8240 6008@end smallexample
c906108c
SS
6009
6010@noindent
6011This display shows item numbers, expressions and their current values. As with
6012displays you request manually using @code{x} or @code{print}, you can
6013specify the output format you prefer; in fact, @code{display} decides
ea37ba09
DJ
6014whether to use @code{print} or @code{x} depending your format
6015specification---it uses @code{x} if you specify either the @samp{i}
6016or @samp{s} format, or a unit size; otherwise it uses @code{print}.
c906108c
SS
6017
6018@table @code
6019@kindex display
d4f3574e
SS
6020@item display @var{expr}
6021Add the expression @var{expr} to the list of expressions to display
c906108c
SS
6022each time your program stops. @xref{Expressions, ,Expressions}.
6023
6024@code{display} does not repeat if you press @key{RET} again after using it.
6025
d4f3574e 6026@item display/@var{fmt} @var{expr}
c906108c 6027For @var{fmt} specifying only a display format and not a size or
d4f3574e 6028count, add the expression @var{expr} to the auto-display list but
c906108c 6029arrange to display it each time in the specified format @var{fmt}.
79a6e687 6030@xref{Output Formats,,Output Formats}.
c906108c
SS
6031
6032@item display/@var{fmt} @var{addr}
6033For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
6034number of units, add the expression @var{addr} as a memory address to
6035be examined each time your program stops. Examining means in effect
79a6e687 6036doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
c906108c
SS
6037@end table
6038
6039For example, @samp{display/i $pc} can be helpful, to see the machine
6040instruction about to be executed each time execution stops (@samp{$pc}
d4f3574e 6041is a common name for the program counter; @pxref{Registers, ,Registers}).
c906108c
SS
6042
6043@table @code
6044@kindex delete display
6045@kindex undisplay
6046@item undisplay @var{dnums}@dots{}
6047@itemx delete display @var{dnums}@dots{}
6048Remove item numbers @var{dnums} from the list of expressions to display.
6049
6050@code{undisplay} does not repeat if you press @key{RET} after using it.
6051(Otherwise you would just get the error @samp{No display number @dots{}}.)
6052
6053@kindex disable display
6054@item disable display @var{dnums}@dots{}
6055Disable the display of item numbers @var{dnums}. A disabled display
6056item is not printed automatically, but is not forgotten. It may be
6057enabled again later.
6058
6059@kindex enable display
6060@item enable display @var{dnums}@dots{}
6061Enable display of item numbers @var{dnums}. It becomes effective once
6062again in auto display of its expression, until you specify otherwise.
6063
6064@item display
6065Display the current values of the expressions on the list, just as is
6066done when your program stops.
6067
6068@kindex info display
6069@item info display
6070Print the list of expressions previously set up to display
6071automatically, each one with its item number, but without showing the
6072values. This includes disabled expressions, which are marked as such.
6073It also includes expressions which would not be displayed right now
6074because they refer to automatic variables not currently available.
6075@end table
6076
15387254 6077@cindex display disabled out of scope
c906108c
SS
6078If a display expression refers to local variables, then it does not make
6079sense outside the lexical context for which it was set up. Such an
6080expression is disabled when execution enters a context where one of its
6081variables is not defined. For example, if you give the command
6082@code{display last_char} while inside a function with an argument
6083@code{last_char}, @value{GDBN} displays this argument while your program
6084continues to stop inside that function. When it stops elsewhere---where
6085there is no variable @code{last_char}---the display is disabled
6086automatically. The next time your program stops where @code{last_char}
6087is meaningful, you can enable the display expression once again.
6088
6d2ebf8b 6089@node Print Settings
79a6e687 6090@section Print Settings
c906108c
SS
6091
6092@cindex format options
6093@cindex print settings
6094@value{GDBN} provides the following ways to control how arrays, structures,
6095and symbols are printed.
6096
6097@noindent
6098These settings are useful for debugging programs in any language:
6099
6100@table @code
4644b6e3 6101@kindex set print
c906108c
SS
6102@item set print address
6103@itemx set print address on
4644b6e3 6104@cindex print/don't print memory addresses
c906108c
SS
6105@value{GDBN} prints memory addresses showing the location of stack
6106traces, structure values, pointer values, breakpoints, and so forth,
6107even when it also displays the contents of those addresses. The default
6108is @code{on}. For example, this is what a stack frame display looks like with
6109@code{set print address on}:
6110
6111@smallexample
6112@group
6113(@value{GDBP}) f
6114#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
6115 at input.c:530
6116530 if (lquote != def_lquote)
6117@end group
6118@end smallexample
6119
6120@item set print address off
6121Do not print addresses when displaying their contents. For example,
6122this is the same stack frame displayed with @code{set print address off}:
6123
6124@smallexample
6125@group
6126(@value{GDBP}) set print addr off
6127(@value{GDBP}) f
6128#0 set_quotes (lq="<<", rq=">>") at input.c:530
6129530 if (lquote != def_lquote)
6130@end group
6131@end smallexample
6132
6133You can use @samp{set print address off} to eliminate all machine
6134dependent displays from the @value{GDBN} interface. For example, with
6135@code{print address off}, you should get the same text for backtraces on
6136all machines---whether or not they involve pointer arguments.
6137
4644b6e3 6138@kindex show print
c906108c
SS
6139@item show print address
6140Show whether or not addresses are to be printed.
6141@end table
6142
6143When @value{GDBN} prints a symbolic address, it normally prints the
6144closest earlier symbol plus an offset. If that symbol does not uniquely
6145identify the address (for example, it is a name whose scope is a single
6146source file), you may need to clarify. One way to do this is with
6147@code{info line}, for example @samp{info line *0x4537}. Alternately,
6148you can set @value{GDBN} to print the source file and line number when
6149it prints a symbolic address:
6150
6151@table @code
c906108c 6152@item set print symbol-filename on
9c16f35a
EZ
6153@cindex source file and line of a symbol
6154@cindex symbol, source file and line
c906108c
SS
6155Tell @value{GDBN} to print the source file name and line number of a
6156symbol in the symbolic form of an address.
6157
6158@item set print symbol-filename off
6159Do not print source file name and line number of a symbol. This is the
6160default.
6161
c906108c
SS
6162@item show print symbol-filename
6163Show whether or not @value{GDBN} will print the source file name and
6164line number of a symbol in the symbolic form of an address.
6165@end table
6166
6167Another situation where it is helpful to show symbol filenames and line
6168numbers is when disassembling code; @value{GDBN} shows you the line
6169number and source file that corresponds to each instruction.
6170
6171Also, you may wish to see the symbolic form only if the address being
6172printed is reasonably close to the closest earlier symbol:
6173
6174@table @code
c906108c 6175@item set print max-symbolic-offset @var{max-offset}
4644b6e3 6176@cindex maximum value for offset of closest symbol
c906108c
SS
6177Tell @value{GDBN} to only display the symbolic form of an address if the
6178offset between the closest earlier symbol and the address is less than
5d161b24 6179@var{max-offset}. The default is 0, which tells @value{GDBN}
c906108c
SS
6180to always print the symbolic form of an address if any symbol precedes it.
6181
c906108c
SS
6182@item show print max-symbolic-offset
6183Ask how large the maximum offset is that @value{GDBN} prints in a
6184symbolic address.
6185@end table
6186
6187@cindex wild pointer, interpreting
6188@cindex pointer, finding referent
6189If you have a pointer and you are not sure where it points, try
6190@samp{set print symbol-filename on}. Then you can determine the name
6191and source file location of the variable where it points, using
6192@samp{p/a @var{pointer}}. This interprets the address in symbolic form.
6193For example, here @value{GDBN} shows that a variable @code{ptt} points
6194at another variable @code{t}, defined in @file{hi2.c}:
6195
474c8240 6196@smallexample
c906108c
SS
6197(@value{GDBP}) set print symbol-filename on
6198(@value{GDBP}) p/a ptt
6199$4 = 0xe008 <t in hi2.c>
474c8240 6200@end smallexample
c906108c
SS
6201
6202@quotation
6203@emph{Warning:} For pointers that point to a local variable, @samp{p/a}
6204does not show the symbol name and filename of the referent, even with
6205the appropriate @code{set print} options turned on.
6206@end quotation
6207
6208Other settings control how different kinds of objects are printed:
6209
6210@table @code
c906108c
SS
6211@item set print array
6212@itemx set print array on
4644b6e3 6213@cindex pretty print arrays
c906108c
SS
6214Pretty print arrays. This format is more convenient to read,
6215but uses more space. The default is off.
6216
6217@item set print array off
6218Return to compressed format for arrays.
6219
c906108c
SS
6220@item show print array
6221Show whether compressed or pretty format is selected for displaying
6222arrays.
6223
3c9c013a
JB
6224@cindex print array indexes
6225@item set print array-indexes
6226@itemx set print array-indexes on
6227Print the index of each element when displaying arrays. May be more
6228convenient to locate a given element in the array or quickly find the
6229index of a given element in that printed array. The default is off.
6230
6231@item set print array-indexes off
6232Stop printing element indexes when displaying arrays.
6233
6234@item show print array-indexes
6235Show whether the index of each element is printed when displaying
6236arrays.
6237
c906108c 6238@item set print elements @var{number-of-elements}
4644b6e3 6239@cindex number of array elements to print
9c16f35a 6240@cindex limit on number of printed array elements
c906108c
SS
6241Set a limit on how many elements of an array @value{GDBN} will print.
6242If @value{GDBN} is printing a large array, it stops printing after it has
6243printed the number of elements set by the @code{set print elements} command.
6244This limit also applies to the display of strings.
d4f3574e 6245When @value{GDBN} starts, this limit is set to 200.
c906108c
SS
6246Setting @var{number-of-elements} to zero means that the printing is unlimited.
6247
c906108c
SS
6248@item show print elements
6249Display the number of elements of a large array that @value{GDBN} will print.
6250If the number is 0, then the printing is unlimited.
6251
b4740add
JB
6252@item set print frame-arguments @var{value}
6253@cindex printing frame argument values
6254@cindex print all frame argument values
6255@cindex print frame argument values for scalars only
6256@cindex do not print frame argument values
6257This command allows to control how the values of arguments are printed
6258when the debugger prints a frame (@pxref{Frames}). The possible
6259values are:
6260
6261@table @code
6262@item all
6263The values of all arguments are printed. This is the default.
6264
6265@item scalars
6266Print the value of an argument only if it is a scalar. The value of more
6267complex arguments such as arrays, structures, unions, etc, is replaced
6268by @code{@dots{}}. Here is an example where only scalar arguments are shown:
6269
6270@smallexample
6271#1 0x08048361 in call_me (i=3, s=@dots{}, ss=0xbf8d508c, u=@dots{}, e=green)
6272 at frame-args.c:23
6273@end smallexample
6274
6275@item none
6276None of the argument values are printed. Instead, the value of each argument
6277is replaced by @code{@dots{}}. In this case, the example above now becomes:
6278
6279@smallexample
6280#1 0x08048361 in call_me (i=@dots{}, s=@dots{}, ss=@dots{}, u=@dots{}, e=@dots{})
6281 at frame-args.c:23
6282@end smallexample
6283@end table
6284
6285By default, all argument values are always printed. But this command
6286can be useful in several cases. For instance, it can be used to reduce
6287the amount of information printed in each frame, making the backtrace
6288more readable. Also, this command can be used to improve performance
6289when displaying Ada frames, because the computation of large arguments
6290can sometimes be CPU-intensive, especiallly in large applications.
6291Setting @code{print frame-arguments} to @code{scalars} or @code{none}
6292avoids this computation, thus speeding up the display of each Ada frame.
6293
6294@item show print frame-arguments
6295Show how the value of arguments should be displayed when printing a frame.
6296
9c16f35a
EZ
6297@item set print repeats
6298@cindex repeated array elements
6299Set the threshold for suppressing display of repeated array
d3e8051b 6300elements. When the number of consecutive identical elements of an
9c16f35a
EZ
6301array exceeds the threshold, @value{GDBN} prints the string
6302@code{"<repeats @var{n} times>"}, where @var{n} is the number of
6303identical repetitions, instead of displaying the identical elements
6304themselves. Setting the threshold to zero will cause all elements to
6305be individually printed. The default threshold is 10.
6306
6307@item show print repeats
6308Display the current threshold for printing repeated identical
6309elements.
6310
c906108c 6311@item set print null-stop
4644b6e3 6312@cindex @sc{null} elements in arrays
c906108c 6313Cause @value{GDBN} to stop printing the characters of an array when the first
d4f3574e 6314@sc{null} is encountered. This is useful when large arrays actually
c906108c 6315contain only short strings.
d4f3574e 6316The default is off.
c906108c 6317
9c16f35a
EZ
6318@item show print null-stop
6319Show whether @value{GDBN} stops printing an array on the first
6320@sc{null} character.
6321
c906108c 6322@item set print pretty on
9c16f35a
EZ
6323@cindex print structures in indented form
6324@cindex indentation in structure display
5d161b24 6325Cause @value{GDBN} to print structures in an indented format with one member
c906108c
SS
6326per line, like this:
6327
6328@smallexample
6329@group
6330$1 = @{
6331 next = 0x0,
6332 flags = @{
6333 sweet = 1,
6334 sour = 1
6335 @},
6336 meat = 0x54 "Pork"
6337@}
6338@end group
6339@end smallexample
6340
6341@item set print pretty off
6342Cause @value{GDBN} to print structures in a compact format, like this:
6343
6344@smallexample
6345@group
6346$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, \
6347meat = 0x54 "Pork"@}
6348@end group
6349@end smallexample
6350
6351@noindent
6352This is the default format.
6353
c906108c
SS
6354@item show print pretty
6355Show which format @value{GDBN} is using to print structures.
6356
c906108c 6357@item set print sevenbit-strings on
4644b6e3
EZ
6358@cindex eight-bit characters in strings
6359@cindex octal escapes in strings
c906108c
SS
6360Print using only seven-bit characters; if this option is set,
6361@value{GDBN} displays any eight-bit characters (in strings or
6362character values) using the notation @code{\}@var{nnn}. This setting is
6363best if you are working in English (@sc{ascii}) and you use the
6364high-order bit of characters as a marker or ``meta'' bit.
6365
6366@item set print sevenbit-strings off
6367Print full eight-bit characters. This allows the use of more
6368international character sets, and is the default.
6369
c906108c
SS
6370@item show print sevenbit-strings
6371Show whether or not @value{GDBN} is printing only seven-bit characters.
6372
c906108c 6373@item set print union on
4644b6e3 6374@cindex unions in structures, printing
9c16f35a
EZ
6375Tell @value{GDBN} to print unions which are contained in structures
6376and other unions. This is the default setting.
c906108c
SS
6377
6378@item set print union off
9c16f35a
EZ
6379Tell @value{GDBN} not to print unions which are contained in
6380structures and other unions. @value{GDBN} will print @code{"@{...@}"}
6381instead.
c906108c 6382
c906108c
SS
6383@item show print union
6384Ask @value{GDBN} whether or not it will print unions which are contained in
9c16f35a 6385structures and other unions.
c906108c
SS
6386
6387For example, given the declarations
6388
6389@smallexample
6390typedef enum @{Tree, Bug@} Species;
6391typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
5d161b24 6392typedef enum @{Caterpillar, Cocoon, Butterfly@}
c906108c
SS
6393 Bug_forms;
6394
6395struct thing @{
6396 Species it;
6397 union @{
6398 Tree_forms tree;
6399 Bug_forms bug;
6400 @} form;
6401@};
6402
6403struct thing foo = @{Tree, @{Acorn@}@};
6404@end smallexample
6405
6406@noindent
6407with @code{set print union on} in effect @samp{p foo} would print
6408
6409@smallexample
6410$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
6411@end smallexample
6412
6413@noindent
6414and with @code{set print union off} in effect it would print
6415
6416@smallexample
6417$1 = @{it = Tree, form = @{...@}@}
6418@end smallexample
9c16f35a
EZ
6419
6420@noindent
6421@code{set print union} affects programs written in C-like languages
6422and in Pascal.
c906108c
SS
6423@end table
6424
c906108c
SS
6425@need 1000
6426@noindent
b37052ae 6427These settings are of interest when debugging C@t{++} programs:
c906108c
SS
6428
6429@table @code
4644b6e3 6430@cindex demangling C@t{++} names
c906108c
SS
6431@item set print demangle
6432@itemx set print demangle on
b37052ae 6433Print C@t{++} names in their source form rather than in the encoded
c906108c 6434(``mangled'') form passed to the assembler and linker for type-safe
d4f3574e 6435linkage. The default is on.
c906108c 6436
c906108c 6437@item show print demangle
b37052ae 6438Show whether C@t{++} names are printed in mangled or demangled form.
c906108c 6439
c906108c
SS
6440@item set print asm-demangle
6441@itemx set print asm-demangle on
b37052ae 6442Print C@t{++} names in their source form rather than their mangled form, even
c906108c
SS
6443in assembler code printouts such as instruction disassemblies.
6444The default is off.
6445
c906108c 6446@item show print asm-demangle
b37052ae 6447Show whether C@t{++} names in assembly listings are printed in mangled
c906108c
SS
6448or demangled form.
6449
b37052ae
EZ
6450@cindex C@t{++} symbol decoding style
6451@cindex symbol decoding style, C@t{++}
a8f24a35 6452@kindex set demangle-style
c906108c
SS
6453@item set demangle-style @var{style}
6454Choose among several encoding schemes used by different compilers to
b37052ae 6455represent C@t{++} names. The choices for @var{style} are currently:
c906108c
SS
6456
6457@table @code
6458@item auto
6459Allow @value{GDBN} to choose a decoding style by inspecting your program.
6460
6461@item gnu
b37052ae 6462Decode based on the @sc{gnu} C@t{++} compiler (@code{g++}) encoding algorithm.
c906108c 6463This is the default.
c906108c
SS
6464
6465@item hp
b37052ae 6466Decode based on the HP ANSI C@t{++} (@code{aCC}) encoding algorithm.
c906108c
SS
6467
6468@item lucid
b37052ae 6469Decode based on the Lucid C@t{++} compiler (@code{lcc}) encoding algorithm.
c906108c
SS
6470
6471@item arm
b37052ae 6472Decode using the algorithm in the @cite{C@t{++} Annotated Reference Manual}.
c906108c
SS
6473@strong{Warning:} this setting alone is not sufficient to allow
6474debugging @code{cfront}-generated executables. @value{GDBN} would
6475require further enhancement to permit that.
6476
6477@end table
6478If you omit @var{style}, you will see a list of possible formats.
6479
c906108c 6480@item show demangle-style
b37052ae 6481Display the encoding style currently in use for decoding C@t{++} symbols.
c906108c 6482
c906108c
SS
6483@item set print object
6484@itemx set print object on
4644b6e3 6485@cindex derived type of an object, printing
9c16f35a 6486@cindex display derived types
c906108c
SS
6487When displaying a pointer to an object, identify the @emph{actual}
6488(derived) type of the object rather than the @emph{declared} type, using
6489the virtual function table.
6490
6491@item set print object off
6492Display only the declared type of objects, without reference to the
6493virtual function table. This is the default setting.
6494
c906108c
SS
6495@item show print object
6496Show whether actual, or declared, object types are displayed.
6497
c906108c
SS
6498@item set print static-members
6499@itemx set print static-members on
4644b6e3 6500@cindex static members of C@t{++} objects
b37052ae 6501Print static members when displaying a C@t{++} object. The default is on.
c906108c
SS
6502
6503@item set print static-members off
b37052ae 6504Do not print static members when displaying a C@t{++} object.
c906108c 6505
c906108c 6506@item show print static-members
9c16f35a
EZ
6507Show whether C@t{++} static members are printed or not.
6508
6509@item set print pascal_static-members
6510@itemx set print pascal_static-members on
d3e8051b
EZ
6511@cindex static members of Pascal objects
6512@cindex Pascal objects, static members display
9c16f35a
EZ
6513Print static members when displaying a Pascal object. The default is on.
6514
6515@item set print pascal_static-members off
6516Do not print static members when displaying a Pascal object.
6517
6518@item show print pascal_static-members
6519Show whether Pascal static members are printed or not.
c906108c
SS
6520
6521@c These don't work with HP ANSI C++ yet.
c906108c
SS
6522@item set print vtbl
6523@itemx set print vtbl on
4644b6e3 6524@cindex pretty print C@t{++} virtual function tables
9c16f35a
EZ
6525@cindex virtual functions (C@t{++}) display
6526@cindex VTBL display
b37052ae 6527Pretty print C@t{++} virtual function tables. The default is off.
c906108c 6528(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 6529ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
6530
6531@item set print vtbl off
b37052ae 6532Do not pretty print C@t{++} virtual function tables.
c906108c 6533
c906108c 6534@item show print vtbl
b37052ae 6535Show whether C@t{++} virtual function tables are pretty printed, or not.
c906108c 6536@end table
c906108c 6537
6d2ebf8b 6538@node Value History
79a6e687 6539@section Value History
c906108c
SS
6540
6541@cindex value history
9c16f35a 6542@cindex history of values printed by @value{GDBN}
5d161b24
DB
6543Values printed by the @code{print} command are saved in the @value{GDBN}
6544@dfn{value history}. This allows you to refer to them in other expressions.
6545Values are kept until the symbol table is re-read or discarded
6546(for example with the @code{file} or @code{symbol-file} commands).
6547When the symbol table changes, the value history is discarded,
6548since the values may contain pointers back to the types defined in the
c906108c
SS
6549symbol table.
6550
6551@cindex @code{$}
6552@cindex @code{$$}
6553@cindex history number
6554The values printed are given @dfn{history numbers} by which you can
6555refer to them. These are successive integers starting with one.
6556@code{print} shows you the history number assigned to a value by
6557printing @samp{$@var{num} = } before the value; here @var{num} is the
6558history number.
6559
6560To refer to any previous value, use @samp{$} followed by the value's
6561history number. The way @code{print} labels its output is designed to
6562remind you of this. Just @code{$} refers to the most recent value in
6563the history, and @code{$$} refers to the value before that.
6564@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
6565is the value just prior to @code{$$}, @code{$$1} is equivalent to
6566@code{$$}, and @code{$$0} is equivalent to @code{$}.
6567
6568For example, suppose you have just printed a pointer to a structure and
6569want to see the contents of the structure. It suffices to type
6570
474c8240 6571@smallexample
c906108c 6572p *$
474c8240 6573@end smallexample
c906108c
SS
6574
6575If you have a chain of structures where the component @code{next} points
6576to the next one, you can print the contents of the next one with this:
6577
474c8240 6578@smallexample
c906108c 6579p *$.next
474c8240 6580@end smallexample
c906108c
SS
6581
6582@noindent
6583You can print successive links in the chain by repeating this
6584command---which you can do by just typing @key{RET}.
6585
6586Note that the history records values, not expressions. If the value of
6587@code{x} is 4 and you type these commands:
6588
474c8240 6589@smallexample
c906108c
SS
6590print x
6591set x=5
474c8240 6592@end smallexample
c906108c
SS
6593
6594@noindent
6595then the value recorded in the value history by the @code{print} command
6596remains 4 even though the value of @code{x} has changed.
6597
6598@table @code
6599@kindex show values
6600@item show values
6601Print the last ten values in the value history, with their item numbers.
6602This is like @samp{p@ $$9} repeated ten times, except that @code{show
6603values} does not change the history.
6604
6605@item show values @var{n}
6606Print ten history values centered on history item number @var{n}.
6607
6608@item show values +
6609Print ten history values just after the values last printed. If no more
6610values are available, @code{show values +} produces no display.
6611@end table
6612
6613Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
6614same effect as @samp{show values +}.
6615
6d2ebf8b 6616@node Convenience Vars
79a6e687 6617@section Convenience Variables
c906108c
SS
6618
6619@cindex convenience variables
9c16f35a 6620@cindex user-defined variables
c906108c
SS
6621@value{GDBN} provides @dfn{convenience variables} that you can use within
6622@value{GDBN} to hold on to a value and refer to it later. These variables
6623exist entirely within @value{GDBN}; they are not part of your program, and
6624setting a convenience variable has no direct effect on further execution
6625of your program. That is why you can use them freely.
6626
6627Convenience variables are prefixed with @samp{$}. Any name preceded by
6628@samp{$} can be used for a convenience variable, unless it is one of
d4f3574e 6629the predefined machine-specific register names (@pxref{Registers, ,Registers}).
c906108c 6630(Value history references, in contrast, are @emph{numbers} preceded
79a6e687 6631by @samp{$}. @xref{Value History, ,Value History}.)
c906108c
SS
6632
6633You can save a value in a convenience variable with an assignment
6634expression, just as you would set a variable in your program.
6635For example:
6636
474c8240 6637@smallexample
c906108c 6638set $foo = *object_ptr
474c8240 6639@end smallexample
c906108c
SS
6640
6641@noindent
6642would save in @code{$foo} the value contained in the object pointed to by
6643@code{object_ptr}.
6644
6645Using a convenience variable for the first time creates it, but its
6646value is @code{void} until you assign a new value. You can alter the
6647value with another assignment at any time.
6648
6649Convenience variables have no fixed types. You can assign a convenience
6650variable any type of value, including structures and arrays, even if
6651that variable already has a value of a different type. The convenience
6652variable, when used as an expression, has the type of its current value.
6653
6654@table @code
6655@kindex show convenience
9c16f35a 6656@cindex show all user variables
c906108c
SS
6657@item show convenience
6658Print a list of convenience variables used so far, and their values.
d4f3574e 6659Abbreviated @code{show conv}.
53e5f3cf
AS
6660
6661@kindex init-if-undefined
6662@cindex convenience variables, initializing
6663@item init-if-undefined $@var{variable} = @var{expression}
6664Set a convenience variable if it has not already been set. This is useful
6665for user-defined commands that keep some state. It is similar, in concept,
6666to using local static variables with initializers in C (except that
6667convenience variables are global). It can also be used to allow users to
6668override default values used in a command script.
6669
6670If the variable is already defined then the expression is not evaluated so
6671any side-effects do not occur.
c906108c
SS
6672@end table
6673
6674One of the ways to use a convenience variable is as a counter to be
6675incremented or a pointer to be advanced. For example, to print
6676a field from successive elements of an array of structures:
6677
474c8240 6678@smallexample
c906108c
SS
6679set $i = 0
6680print bar[$i++]->contents
474c8240 6681@end smallexample
c906108c 6682
d4f3574e
SS
6683@noindent
6684Repeat that command by typing @key{RET}.
c906108c
SS
6685
6686Some convenience variables are created automatically by @value{GDBN} and given
6687values likely to be useful.
6688
6689@table @code
41afff9a 6690@vindex $_@r{, convenience variable}
c906108c
SS
6691@item $_
6692The variable @code{$_} is automatically set by the @code{x} command to
79a6e687 6693the last address examined (@pxref{Memory, ,Examining Memory}). Other
c906108c
SS
6694commands which provide a default address for @code{x} to examine also
6695set @code{$_} to that address; these commands include @code{info line}
6696and @code{info breakpoint}. The type of @code{$_} is @code{void *}
6697except when set by the @code{x} command, in which case it is a pointer
6698to the type of @code{$__}.
6699
41afff9a 6700@vindex $__@r{, convenience variable}
c906108c
SS
6701@item $__
6702The variable @code{$__} is automatically set by the @code{x} command
6703to the value found in the last address examined. Its type is chosen
6704to match the format in which the data was printed.
6705
6706@item $_exitcode
41afff9a 6707@vindex $_exitcode@r{, convenience variable}
c906108c
SS
6708The variable @code{$_exitcode} is automatically set to the exit code when
6709the program being debugged terminates.
6710@end table
6711
53a5351d
JM
6712On HP-UX systems, if you refer to a function or variable name that
6713begins with a dollar sign, @value{GDBN} searches for a user or system
6714name first, before it searches for a convenience variable.
c906108c 6715
6d2ebf8b 6716@node Registers
c906108c
SS
6717@section Registers
6718
6719@cindex registers
6720You can refer to machine register contents, in expressions, as variables
6721with names starting with @samp{$}. The names of registers are different
6722for each machine; use @code{info registers} to see the names used on
6723your machine.
6724
6725@table @code
6726@kindex info registers
6727@item info registers
6728Print the names and values of all registers except floating-point
c85508ee 6729and vector registers (in the selected stack frame).
c906108c
SS
6730
6731@kindex info all-registers
6732@cindex floating point registers
6733@item info all-registers
6734Print the names and values of all registers, including floating-point
c85508ee 6735and vector registers (in the selected stack frame).
c906108c
SS
6736
6737@item info registers @var{regname} @dots{}
6738Print the @dfn{relativized} value of each specified register @var{regname}.
5d161b24
DB
6739As discussed in detail below, register values are normally relative to
6740the selected stack frame. @var{regname} may be any register name valid on
c906108c
SS
6741the machine you are using, with or without the initial @samp{$}.
6742@end table
6743
e09f16f9
EZ
6744@cindex stack pointer register
6745@cindex program counter register
6746@cindex process status register
6747@cindex frame pointer register
6748@cindex standard registers
c906108c
SS
6749@value{GDBN} has four ``standard'' register names that are available (in
6750expressions) on most machines---whenever they do not conflict with an
6751architecture's canonical mnemonics for registers. The register names
6752@code{$pc} and @code{$sp} are used for the program counter register and
6753the stack pointer. @code{$fp} is used for a register that contains a
6754pointer to the current stack frame, and @code{$ps} is used for a
6755register that contains the processor status. For example,
6756you could print the program counter in hex with
6757
474c8240 6758@smallexample
c906108c 6759p/x $pc
474c8240 6760@end smallexample
c906108c
SS
6761
6762@noindent
6763or print the instruction to be executed next with
6764
474c8240 6765@smallexample
c906108c 6766x/i $pc
474c8240 6767@end smallexample
c906108c
SS
6768
6769@noindent
6770or add four to the stack pointer@footnote{This is a way of removing
6771one word from the stack, on machines where stacks grow downward in
6772memory (most machines, nowadays). This assumes that the innermost
6773stack frame is selected; setting @code{$sp} is not allowed when other
6774stack frames are selected. To pop entire frames off the stack,
6775regardless of machine architecture, use @code{return};
79a6e687 6776see @ref{Returning, ,Returning from a Function}.} with
c906108c 6777
474c8240 6778@smallexample
c906108c 6779set $sp += 4
474c8240 6780@end smallexample
c906108c
SS
6781
6782Whenever possible, these four standard register names are available on
6783your machine even though the machine has different canonical mnemonics,
6784so long as there is no conflict. The @code{info registers} command
6785shows the canonical names. For example, on the SPARC, @code{info
6786registers} displays the processor status register as @code{$psr} but you
d4f3574e
SS
6787can also refer to it as @code{$ps}; and on x86-based machines @code{$ps}
6788is an alias for the @sc{eflags} register.
c906108c
SS
6789
6790@value{GDBN} always considers the contents of an ordinary register as an
6791integer when the register is examined in this way. Some machines have
6792special registers which can hold nothing but floating point; these
6793registers are considered to have floating point values. There is no way
6794to refer to the contents of an ordinary register as floating point value
6795(although you can @emph{print} it as a floating point value with
6796@samp{print/f $@var{regname}}).
6797
6798Some registers have distinct ``raw'' and ``virtual'' data formats. This
6799means that the data format in which the register contents are saved by
6800the operating system is not the same one that your program normally
6801sees. For example, the registers of the 68881 floating point
6802coprocessor are always saved in ``extended'' (raw) format, but all C
6803programs expect to work with ``double'' (virtual) format. In such
5d161b24 6804cases, @value{GDBN} normally works with the virtual format only (the format
c906108c
SS
6805that makes sense for your program), but the @code{info registers} command
6806prints the data in both formats.
6807
36b80e65
EZ
6808@cindex SSE registers (x86)
6809@cindex MMX registers (x86)
6810Some machines have special registers whose contents can be interpreted
6811in several different ways. For example, modern x86-based machines
6812have SSE and MMX registers that can hold several values packed
6813together in several different formats. @value{GDBN} refers to such
6814registers in @code{struct} notation:
6815
6816@smallexample
6817(@value{GDBP}) print $xmm1
6818$1 = @{
6819 v4_float = @{0, 3.43859137e-038, 1.54142831e-044, 1.821688e-044@},
6820 v2_double = @{9.92129282474342e-303, 2.7585945287983262e-313@},
6821 v16_int8 = "\000\000\000\000\3706;\001\v\000\000\000\r\000\000",
6822 v8_int16 = @{0, 0, 14072, 315, 11, 0, 13, 0@},
6823 v4_int32 = @{0, 20657912, 11, 13@},
6824 v2_int64 = @{88725056443645952, 55834574859@},
6825 uint128 = 0x0000000d0000000b013b36f800000000
6826@}
6827@end smallexample
6828
6829@noindent
6830To set values of such registers, you need to tell @value{GDBN} which
6831view of the register you wish to change, as if you were assigning
6832value to a @code{struct} member:
6833
6834@smallexample
6835 (@value{GDBP}) set $xmm1.uint128 = 0x000000000000000000000000FFFFFFFF
6836@end smallexample
6837
c906108c 6838Normally, register values are relative to the selected stack frame
79a6e687 6839(@pxref{Selection, ,Selecting a Frame}). This means that you get the
c906108c
SS
6840value that the register would contain if all stack frames farther in
6841were exited and their saved registers restored. In order to see the
6842true contents of hardware registers, you must select the innermost
6843frame (with @samp{frame 0}).
6844
6845However, @value{GDBN} must deduce where registers are saved, from the machine
6846code generated by your compiler. If some registers are not saved, or if
6847@value{GDBN} is unable to locate the saved registers, the selected stack
6848frame makes no difference.
6849
6d2ebf8b 6850@node Floating Point Hardware
79a6e687 6851@section Floating Point Hardware
c906108c
SS
6852@cindex floating point
6853
6854Depending on the configuration, @value{GDBN} may be able to give
6855you more information about the status of the floating point hardware.
6856
6857@table @code
6858@kindex info float
6859@item info float
6860Display hardware-dependent information about the floating
6861point unit. The exact contents and layout vary depending on the
6862floating point chip. Currently, @samp{info float} is supported on
6863the ARM and x86 machines.
6864@end table
c906108c 6865
e76f1f2e
AC
6866@node Vector Unit
6867@section Vector Unit
6868@cindex vector unit
6869
6870Depending on the configuration, @value{GDBN} may be able to give you
6871more information about the status of the vector unit.
6872
6873@table @code
6874@kindex info vector
6875@item info vector
6876Display information about the vector unit. The exact contents and
6877layout vary depending on the hardware.
6878@end table
6879
721c2651 6880@node OS Information
79a6e687 6881@section Operating System Auxiliary Information
721c2651
EZ
6882@cindex OS information
6883
6884@value{GDBN} provides interfaces to useful OS facilities that can help
6885you debug your program.
6886
6887@cindex @code{ptrace} system call
6888@cindex @code{struct user} contents
6889When @value{GDBN} runs on a @dfn{Posix system} (such as GNU or Unix
6890machines), it interfaces with the inferior via the @code{ptrace}
6891system call. The operating system creates a special sata structure,
6892called @code{struct user}, for this interface. You can use the
6893command @code{info udot} to display the contents of this data
6894structure.
6895
6896@table @code
6897@item info udot
6898@kindex info udot
6899Display the contents of the @code{struct user} maintained by the OS
6900kernel for the program being debugged. @value{GDBN} displays the
6901contents of @code{struct user} as a list of hex numbers, similar to
6902the @code{examine} command.
6903@end table
6904
b383017d
RM
6905@cindex auxiliary vector
6906@cindex vector, auxiliary
b383017d
RM
6907Some operating systems supply an @dfn{auxiliary vector} to programs at
6908startup. This is akin to the arguments and environment that you
6909specify for a program, but contains a system-dependent variety of
6910binary values that tell system libraries important details about the
6911hardware, operating system, and process. Each value's purpose is
6912identified by an integer tag; the meanings are well-known but system-specific.
6913Depending on the configuration and operating system facilities,
9c16f35a
EZ
6914@value{GDBN} may be able to show you this information. For remote
6915targets, this functionality may further depend on the remote stub's
427c3a89
DJ
6916support of the @samp{qXfer:auxv:read} packet, see
6917@ref{qXfer auxiliary vector read}.
b383017d
RM
6918
6919@table @code
6920@kindex info auxv
6921@item info auxv
6922Display the auxiliary vector of the inferior, which can be either a
e4937fc1 6923live process or a core dump file. @value{GDBN} prints each tag value
b383017d
RM
6924numerically, and also shows names and text descriptions for recognized
6925tags. Some values in the vector are numbers, some bit masks, and some
e4937fc1 6926pointers to strings or other data. @value{GDBN} displays each value in the
b383017d
RM
6927most appropriate form for a recognized tag, and in hexadecimal for
6928an unrecognized tag.
6929@end table
6930
721c2651 6931
29e57380 6932@node Memory Region Attributes
79a6e687 6933@section Memory Region Attributes
29e57380
C
6934@cindex memory region attributes
6935
b383017d 6936@dfn{Memory region attributes} allow you to describe special handling
fd79ecee
DJ
6937required by regions of your target's memory. @value{GDBN} uses
6938attributes to determine whether to allow certain types of memory
6939accesses; whether to use specific width accesses; and whether to cache
6940target memory. By default the description of memory regions is
6941fetched from the target (if the current target supports this), but the
6942user can override the fetched regions.
29e57380
C
6943
6944Defined memory regions can be individually enabled and disabled. When a
6945memory region is disabled, @value{GDBN} uses the default attributes when
6946accessing memory in that region. Similarly, if no memory regions have
6947been defined, @value{GDBN} uses the default attributes when accessing
6948all memory.
6949
b383017d 6950When a memory region is defined, it is given a number to identify it;
29e57380
C
6951to enable, disable, or remove a memory region, you specify that number.
6952
6953@table @code
6954@kindex mem
bfac230e 6955@item mem @var{lower} @var{upper} @var{attributes}@dots{}
09d4efe1
EZ
6956Define a memory region bounded by @var{lower} and @var{upper} with
6957attributes @var{attributes}@dots{}, and add it to the list of regions
6958monitored by @value{GDBN}. Note that @var{upper} == 0 is a special
d3e8051b 6959case: it is treated as the target's maximum memory address.
bfac230e 6960(0xffff on 16 bit targets, 0xffffffff on 32 bit targets, etc.)
29e57380 6961
fd79ecee
DJ
6962@item mem auto
6963Discard any user changes to the memory regions and use target-supplied
6964regions, if available, or no regions if the target does not support.
6965
29e57380
C
6966@kindex delete mem
6967@item delete mem @var{nums}@dots{}
09d4efe1
EZ
6968Remove memory regions @var{nums}@dots{} from the list of regions
6969monitored by @value{GDBN}.
29e57380
C
6970
6971@kindex disable mem
6972@item disable mem @var{nums}@dots{}
09d4efe1 6973Disable monitoring of memory regions @var{nums}@dots{}.
b383017d 6974A disabled memory region is not forgotten.
29e57380
C
6975It may be enabled again later.
6976
6977@kindex enable mem
6978@item enable mem @var{nums}@dots{}
09d4efe1 6979Enable monitoring of memory regions @var{nums}@dots{}.
29e57380
C
6980
6981@kindex info mem
6982@item info mem
6983Print a table of all defined memory regions, with the following columns
09d4efe1 6984for each region:
29e57380
C
6985
6986@table @emph
6987@item Memory Region Number
6988@item Enabled or Disabled.
b383017d 6989Enabled memory regions are marked with @samp{y}.
29e57380
C
6990Disabled memory regions are marked with @samp{n}.
6991
6992@item Lo Address
6993The address defining the inclusive lower bound of the memory region.
6994
6995@item Hi Address
6996The address defining the exclusive upper bound of the memory region.
6997
6998@item Attributes
6999The list of attributes set for this memory region.
7000@end table
7001@end table
7002
7003
7004@subsection Attributes
7005
b383017d 7006@subsubsection Memory Access Mode
29e57380
C
7007The access mode attributes set whether @value{GDBN} may make read or
7008write accesses to a memory region.
7009
7010While these attributes prevent @value{GDBN} from performing invalid
7011memory accesses, they do nothing to prevent the target system, I/O DMA,
359df76b 7012etc.@: from accessing memory.
29e57380
C
7013
7014@table @code
7015@item ro
7016Memory is read only.
7017@item wo
7018Memory is write only.
7019@item rw
6ca652b0 7020Memory is read/write. This is the default.
29e57380
C
7021@end table
7022
7023@subsubsection Memory Access Size
d3e8051b 7024The access size attribute tells @value{GDBN} to use specific sized
29e57380
C
7025accesses in the memory region. Often memory mapped device registers
7026require specific sized accesses. If no access size attribute is
7027specified, @value{GDBN} may use accesses of any size.
7028
7029@table @code
7030@item 8
7031Use 8 bit memory accesses.
7032@item 16
7033Use 16 bit memory accesses.
7034@item 32
7035Use 32 bit memory accesses.
7036@item 64
7037Use 64 bit memory accesses.
7038@end table
7039
7040@c @subsubsection Hardware/Software Breakpoints
7041@c The hardware/software breakpoint attributes set whether @value{GDBN}
7042@c will use hardware or software breakpoints for the internal breakpoints
7043@c used by the step, next, finish, until, etc. commands.
7044@c
7045@c @table @code
7046@c @item hwbreak
b383017d 7047@c Always use hardware breakpoints
29e57380
C
7048@c @item swbreak (default)
7049@c @end table
7050
7051@subsubsection Data Cache
7052The data cache attributes set whether @value{GDBN} will cache target
7053memory. While this generally improves performance by reducing debug
7054protocol overhead, it can lead to incorrect results because @value{GDBN}
7055does not know about volatile variables or memory mapped device
7056registers.
7057
7058@table @code
7059@item cache
b383017d 7060Enable @value{GDBN} to cache target memory.
6ca652b0
EZ
7061@item nocache
7062Disable @value{GDBN} from caching target memory. This is the default.
29e57380
C
7063@end table
7064
4b5752d0
VP
7065@subsection Memory Access Checking
7066@value{GDBN} can be instructed to refuse accesses to memory that is
7067not explicitly described. This can be useful if accessing such
7068regions has undesired effects for a specific target, or to provide
7069better error checking. The following commands control this behaviour.
7070
7071@table @code
7072@kindex set mem inaccessible-by-default
7073@item set mem inaccessible-by-default [on|off]
7074If @code{on} is specified, make @value{GDBN} treat memory not
7075explicitly described by the memory ranges as non-existent and refuse accesses
7076to such memory. The checks are only performed if there's at least one
7077memory range defined. If @code{off} is specified, make @value{GDBN}
7078treat the memory not explicitly described by the memory ranges as RAM.
56cf5405 7079The default value is @code{on}.
4b5752d0
VP
7080@kindex show mem inaccessible-by-default
7081@item show mem inaccessible-by-default
7082Show the current handling of accesses to unknown memory.
7083@end table
7084
7085
29e57380 7086@c @subsubsection Memory Write Verification
b383017d 7087@c The memory write verification attributes set whether @value{GDBN}
29e57380
C
7088@c will re-reads data after each write to verify the write was successful.
7089@c
7090@c @table @code
7091@c @item verify
7092@c @item noverify (default)
7093@c @end table
7094
16d9dec6 7095@node Dump/Restore Files
79a6e687 7096@section Copy Between Memory and a File
16d9dec6
MS
7097@cindex dump/restore files
7098@cindex append data to a file
7099@cindex dump data to a file
7100@cindex restore data from a file
16d9dec6 7101
df5215a6
JB
7102You can use the commands @code{dump}, @code{append}, and
7103@code{restore} to copy data between target memory and a file. The
7104@code{dump} and @code{append} commands write data to a file, and the
7105@code{restore} command reads data from a file back into the inferior's
7106memory. Files may be in binary, Motorola S-record, Intel hex, or
7107Tektronix Hex format; however, @value{GDBN} can only append to binary
7108files.
7109
7110@table @code
7111
7112@kindex dump
7113@item dump @r{[}@var{format}@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7114@itemx dump @r{[}@var{format}@r{]} value @var{filename} @var{expr}
7115Dump the contents of memory from @var{start_addr} to @var{end_addr},
7116or the value of @var{expr}, to @var{filename} in the given format.
16d9dec6 7117
df5215a6 7118The @var{format} parameter may be any one of:
16d9dec6 7119@table @code
df5215a6
JB
7120@item binary
7121Raw binary form.
7122@item ihex
7123Intel hex format.
7124@item srec
7125Motorola S-record format.
7126@item tekhex
7127Tektronix Hex format.
7128@end table
7129
7130@value{GDBN} uses the same definitions of these formats as the
7131@sc{gnu} binary utilities, like @samp{objdump} and @samp{objcopy}. If
7132@var{format} is omitted, @value{GDBN} dumps the data in raw binary
7133form.
7134
7135@kindex append
7136@item append @r{[}binary@r{]} memory @var{filename} @var{start_addr} @var{end_addr}
7137@itemx append @r{[}binary@r{]} value @var{filename} @var{expr}
7138Append the contents of memory from @var{start_addr} to @var{end_addr},
09d4efe1 7139or the value of @var{expr}, to the file @var{filename}, in raw binary form.
df5215a6
JB
7140(@value{GDBN} can only append data to files in raw binary form.)
7141
7142@kindex restore
7143@item restore @var{filename} @r{[}binary@r{]} @var{bias} @var{start} @var{end}
7144Restore the contents of file @var{filename} into memory. The
7145@code{restore} command can automatically recognize any known @sc{bfd}
7146file format, except for raw binary. To restore a raw binary file you
7147must specify the optional keyword @code{binary} after the filename.
16d9dec6 7148
b383017d 7149If @var{bias} is non-zero, its value will be added to the addresses
16d9dec6
MS
7150contained in the file. Binary files always start at address zero, so
7151they will be restored at address @var{bias}. Other bfd files have
7152a built-in location; they will be restored at offset @var{bias}
7153from that location.
7154
7155If @var{start} and/or @var{end} are non-zero, then only data between
7156file offset @var{start} and file offset @var{end} will be restored.
b383017d 7157These offsets are relative to the addresses in the file, before
16d9dec6
MS
7158the @var{bias} argument is applied.
7159
7160@end table
7161
384ee23f
EZ
7162@node Core File Generation
7163@section How to Produce a Core File from Your Program
7164@cindex dump core from inferior
7165
7166A @dfn{core file} or @dfn{core dump} is a file that records the memory
7167image of a running process and its process status (register values
7168etc.). Its primary use is post-mortem debugging of a program that
7169crashed while it ran outside a debugger. A program that crashes
7170automatically produces a core file, unless this feature is disabled by
7171the user. @xref{Files}, for information on invoking @value{GDBN} in
7172the post-mortem debugging mode.
7173
7174Occasionally, you may wish to produce a core file of the program you
7175are debugging in order to preserve a snapshot of its state.
7176@value{GDBN} has a special command for that.
7177
7178@table @code
7179@kindex gcore
7180@kindex generate-core-file
7181@item generate-core-file [@var{file}]
7182@itemx gcore [@var{file}]
7183Produce a core dump of the inferior process. The optional argument
7184@var{file} specifies the file name where to put the core dump. If not
7185specified, the file name defaults to @file{core.@var{pid}}, where
7186@var{pid} is the inferior process ID.
7187
7188Note that this command is implemented only for some systems (as of
7189this writing, @sc{gnu}/Linux, FreeBSD, Solaris, Unixware, and S390).
7190@end table
7191
a0eb71c5
KB
7192@node Character Sets
7193@section Character Sets
7194@cindex character sets
7195@cindex charset
7196@cindex translating between character sets
7197@cindex host character set
7198@cindex target character set
7199
7200If the program you are debugging uses a different character set to
7201represent characters and strings than the one @value{GDBN} uses itself,
7202@value{GDBN} can automatically translate between the character sets for
7203you. The character set @value{GDBN} uses we call the @dfn{host
7204character set}; the one the inferior program uses we call the
7205@dfn{target character set}.
7206
7207For example, if you are running @value{GDBN} on a @sc{gnu}/Linux system, which
7208uses the ISO Latin 1 character set, but you are using @value{GDBN}'s
ea35711c 7209remote protocol (@pxref{Remote Debugging}) to debug a program
a0eb71c5
KB
7210running on an IBM mainframe, which uses the @sc{ebcdic} character set,
7211then the host character set is Latin-1, and the target character set is
7212@sc{ebcdic}. If you give @value{GDBN} the command @code{set
e33d66ec 7213target-charset EBCDIC-US}, then @value{GDBN} translates between
a0eb71c5
KB
7214@sc{ebcdic} and Latin 1 as you print character or string values, or use
7215character and string literals in expressions.
7216
7217@value{GDBN} has no way to automatically recognize which character set
7218the inferior program uses; you must tell it, using the @code{set
7219target-charset} command, described below.
7220
7221Here are the commands for controlling @value{GDBN}'s character set
7222support:
7223
7224@table @code
7225@item set target-charset @var{charset}
7226@kindex set target-charset
7227Set the current target character set to @var{charset}. We list the
e33d66ec
EZ
7228character set names @value{GDBN} recognizes below, but if you type
7229@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7230list the target character sets it supports.
a0eb71c5
KB
7231@end table
7232
7233@table @code
7234@item set host-charset @var{charset}
7235@kindex set host-charset
7236Set the current host character set to @var{charset}.
7237
7238By default, @value{GDBN} uses a host character set appropriate to the
7239system it is running on; you can override that default using the
7240@code{set host-charset} command.
7241
7242@value{GDBN} can only use certain character sets as its host character
7243set. We list the character set names @value{GDBN} recognizes below, and
e33d66ec
EZ
7244indicate which can be host character sets, but if you type
7245@code{set target-charset} followed by @key{TAB}@key{TAB}, @value{GDBN} will
7246list the host character sets it supports.
a0eb71c5
KB
7247
7248@item set charset @var{charset}
7249@kindex set charset
e33d66ec
EZ
7250Set the current host and target character sets to @var{charset}. As
7251above, if you type @code{set charset} followed by @key{TAB}@key{TAB},
7252@value{GDBN} will list the name of the character sets that can be used
7253for both host and target.
7254
a0eb71c5
KB
7255
7256@item show charset
a0eb71c5 7257@kindex show charset
b383017d 7258Show the names of the current host and target charsets.
e33d66ec
EZ
7259
7260@itemx show host-charset
a0eb71c5 7261@kindex show host-charset
b383017d 7262Show the name of the current host charset.
e33d66ec
EZ
7263
7264@itemx show target-charset
a0eb71c5 7265@kindex show target-charset
b383017d 7266Show the name of the current target charset.
a0eb71c5
KB
7267
7268@end table
7269
7270@value{GDBN} currently includes support for the following character
7271sets:
7272
7273@table @code
7274
7275@item ASCII
7276@cindex ASCII character set
7277Seven-bit U.S. @sc{ascii}. @value{GDBN} can use this as its host
7278character set.
7279
7280@item ISO-8859-1
7281@cindex ISO 8859-1 character set
7282@cindex ISO Latin 1 character set
e33d66ec 7283The ISO Latin 1 character set. This extends @sc{ascii} with accented
a0eb71c5
KB
7284characters needed for French, German, and Spanish. @value{GDBN} can use
7285this as its host character set.
7286
7287@item EBCDIC-US
7288@itemx IBM1047
7289@cindex EBCDIC character set
7290@cindex IBM1047 character set
7291Variants of the @sc{ebcdic} character set, used on some of IBM's
7292mainframe operating systems. (@sc{gnu}/Linux on the S/390 uses U.S. @sc{ascii}.)
7293@value{GDBN} cannot use these as its host character set.
7294
7295@end table
7296
7297Note that these are all single-byte character sets. More work inside
3f94c067 7298@value{GDBN} is needed to support multi-byte or variable-width character
a0eb71c5
KB
7299encodings, like the UTF-8 and UCS-2 encodings of Unicode.
7300
7301Here is an example of @value{GDBN}'s character set support in action.
7302Assume that the following source code has been placed in the file
7303@file{charset-test.c}:
7304
7305@smallexample
7306#include <stdio.h>
7307
7308char ascii_hello[]
7309 = @{72, 101, 108, 108, 111, 44, 32, 119,
7310 111, 114, 108, 100, 33, 10, 0@};
7311char ibm1047_hello[]
7312 = @{200, 133, 147, 147, 150, 107, 64, 166,
7313 150, 153, 147, 132, 90, 37, 0@};
7314
7315main ()
7316@{
7317 printf ("Hello, world!\n");
7318@}
10998722 7319@end smallexample
a0eb71c5
KB
7320
7321In this program, @code{ascii_hello} and @code{ibm1047_hello} are arrays
7322containing the string @samp{Hello, world!} followed by a newline,
7323encoded in the @sc{ascii} and @sc{ibm1047} character sets.
7324
7325We compile the program, and invoke the debugger on it:
7326
7327@smallexample
7328$ gcc -g charset-test.c -o charset-test
7329$ gdb -nw charset-test
7330GNU gdb 2001-12-19-cvs
7331Copyright 2001 Free Software Foundation, Inc.
7332@dots{}
f7dc1244 7333(@value{GDBP})
10998722 7334@end smallexample
a0eb71c5
KB
7335
7336We can use the @code{show charset} command to see what character sets
7337@value{GDBN} is currently using to interpret and display characters and
7338strings:
7339
7340@smallexample
f7dc1244 7341(@value{GDBP}) show charset
e33d66ec 7342The current host and target character set is `ISO-8859-1'.
f7dc1244 7343(@value{GDBP})
10998722 7344@end smallexample
a0eb71c5
KB
7345
7346For the sake of printing this manual, let's use @sc{ascii} as our
7347initial character set:
7348@smallexample
f7dc1244
EZ
7349(@value{GDBP}) set charset ASCII
7350(@value{GDBP}) show charset
e33d66ec 7351The current host and target character set is `ASCII'.
f7dc1244 7352(@value{GDBP})
10998722 7353@end smallexample
a0eb71c5
KB
7354
7355Let's assume that @sc{ascii} is indeed the correct character set for our
7356host system --- in other words, let's assume that if @value{GDBN} prints
7357characters using the @sc{ascii} character set, our terminal will display
7358them properly. Since our current target character set is also
7359@sc{ascii}, the contents of @code{ascii_hello} print legibly:
7360
7361@smallexample
f7dc1244 7362(@value{GDBP}) print ascii_hello
a0eb71c5 7363$1 = 0x401698 "Hello, world!\n"
f7dc1244 7364(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7365$2 = 72 'H'
f7dc1244 7366(@value{GDBP})
10998722 7367@end smallexample
a0eb71c5
KB
7368
7369@value{GDBN} uses the target character set for character and string
7370literals you use in expressions:
7371
7372@smallexample
f7dc1244 7373(@value{GDBP}) print '+'
a0eb71c5 7374$3 = 43 '+'
f7dc1244 7375(@value{GDBP})
10998722 7376@end smallexample
a0eb71c5
KB
7377
7378The @sc{ascii} character set uses the number 43 to encode the @samp{+}
7379character.
7380
7381@value{GDBN} relies on the user to tell it which character set the
7382target program uses. If we print @code{ibm1047_hello} while our target
7383character set is still @sc{ascii}, we get jibberish:
7384
7385@smallexample
f7dc1244 7386(@value{GDBP}) print ibm1047_hello
a0eb71c5 7387$4 = 0x4016a8 "\310\205\223\223\226k@@\246\226\231\223\204Z%"
f7dc1244 7388(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7389$5 = 200 '\310'
f7dc1244 7390(@value{GDBP})
10998722 7391@end smallexample
a0eb71c5 7392
e33d66ec 7393If we invoke the @code{set target-charset} followed by @key{TAB}@key{TAB},
a0eb71c5
KB
7394@value{GDBN} tells us the character sets it supports:
7395
7396@smallexample
f7dc1244 7397(@value{GDBP}) set target-charset
b383017d 7398ASCII EBCDIC-US IBM1047 ISO-8859-1
f7dc1244 7399(@value{GDBP}) set target-charset
10998722 7400@end smallexample
a0eb71c5
KB
7401
7402We can select @sc{ibm1047} as our target character set, and examine the
7403program's strings again. Now the @sc{ascii} string is wrong, but
7404@value{GDBN} translates the contents of @code{ibm1047_hello} from the
7405target character set, @sc{ibm1047}, to the host character set,
7406@sc{ascii}, and they display correctly:
7407
7408@smallexample
f7dc1244
EZ
7409(@value{GDBP}) set target-charset IBM1047
7410(@value{GDBP}) show charset
e33d66ec
EZ
7411The current host character set is `ASCII'.
7412The current target character set is `IBM1047'.
f7dc1244 7413(@value{GDBP}) print ascii_hello
a0eb71c5 7414$6 = 0x401698 "\110\145%%?\054\040\167?\162%\144\041\012"
f7dc1244 7415(@value{GDBP}) print ascii_hello[0]
a0eb71c5 7416$7 = 72 '\110'
f7dc1244 7417(@value{GDBP}) print ibm1047_hello
a0eb71c5 7418$8 = 0x4016a8 "Hello, world!\n"
f7dc1244 7419(@value{GDBP}) print ibm1047_hello[0]
a0eb71c5 7420$9 = 200 'H'
f7dc1244 7421(@value{GDBP})
10998722 7422@end smallexample
a0eb71c5
KB
7423
7424As above, @value{GDBN} uses the target character set for character and
7425string literals you use in expressions:
7426
7427@smallexample
f7dc1244 7428(@value{GDBP}) print '+'
a0eb71c5 7429$10 = 78 '+'
f7dc1244 7430(@value{GDBP})
10998722 7431@end smallexample
a0eb71c5 7432
e33d66ec 7433The @sc{ibm1047} character set uses the number 78 to encode the @samp{+}
a0eb71c5
KB
7434character.
7435
09d4efe1
EZ
7436@node Caching Remote Data
7437@section Caching Data of Remote Targets
7438@cindex caching data of remote targets
7439
7440@value{GDBN} can cache data exchanged between the debugger and a
ea35711c 7441remote target (@pxref{Remote Debugging}). Such caching generally improves
09d4efe1
EZ
7442performance, because it reduces the overhead of the remote protocol by
7443bundling memory reads and writes into large chunks. Unfortunately,
7444@value{GDBN} does not currently know anything about volatile
7445registers, and thus data caching will produce incorrect results when
7446volatile registers are in use.
7447
7448@table @code
7449@kindex set remotecache
7450@item set remotecache on
7451@itemx set remotecache off
7452Set caching state for remote targets. When @code{ON}, use data
7453caching. By default, this option is @code{OFF}.
7454
7455@kindex show remotecache
7456@item show remotecache
7457Show the current state of data caching for remote targets.
7458
7459@kindex info dcache
7460@item info dcache
7461Print the information about the data cache performance. The
7462information displayed includes: the dcache width and depth; and for
7463each cache line, how many times it was referenced, and its data and
7464state (dirty, bad, ok, etc.). This command is useful for debugging
7465the data cache operation.
7466@end table
7467
a0eb71c5 7468
e2e0bcd1
JB
7469@node Macros
7470@chapter C Preprocessor Macros
7471
49efadf5 7472Some languages, such as C and C@t{++}, provide a way to define and invoke
e2e0bcd1
JB
7473``preprocessor macros'' which expand into strings of tokens.
7474@value{GDBN} can evaluate expressions containing macro invocations, show
7475the result of macro expansion, and show a macro's definition, including
7476where it was defined.
7477
7478You may need to compile your program specially to provide @value{GDBN}
7479with information about preprocessor macros. Most compilers do not
7480include macros in their debugging information, even when you compile
7481with the @option{-g} flag. @xref{Compilation}.
7482
7483A program may define a macro at one point, remove that definition later,
7484and then provide a different definition after that. Thus, at different
7485points in the program, a macro may have different definitions, or have
7486no definition at all. If there is a current stack frame, @value{GDBN}
7487uses the macros in scope at that frame's source code line. Otherwise,
7488@value{GDBN} uses the macros in scope at the current listing location;
7489see @ref{List}.
7490
7491At the moment, @value{GDBN} does not support the @code{##}
7492token-splicing operator, the @code{#} stringification operator, or
7493variable-arity macros.
7494
7495Whenever @value{GDBN} evaluates an expression, it always expands any
7496macro invocations present in the expression. @value{GDBN} also provides
7497the following commands for working with macros explicitly.
7498
7499@table @code
7500
7501@kindex macro expand
7502@cindex macro expansion, showing the results of preprocessor
7503@cindex preprocessor macro expansion, showing the results of
7504@cindex expanding preprocessor macros
7505@item macro expand @var{expression}
7506@itemx macro exp @var{expression}
7507Show the results of expanding all preprocessor macro invocations in
7508@var{expression}. Since @value{GDBN} simply expands macros, but does
7509not parse the result, @var{expression} need not be a valid expression;
7510it can be any string of tokens.
7511
09d4efe1 7512@kindex macro exp1
e2e0bcd1
JB
7513@item macro expand-once @var{expression}
7514@itemx macro exp1 @var{expression}
4644b6e3 7515@cindex expand macro once
e2e0bcd1
JB
7516@i{(This command is not yet implemented.)} Show the results of
7517expanding those preprocessor macro invocations that appear explicitly in
7518@var{expression}. Macro invocations appearing in that expansion are
7519left unchanged. This command allows you to see the effect of a
7520particular macro more clearly, without being confused by further
7521expansions. Since @value{GDBN} simply expands macros, but does not
7522parse the result, @var{expression} need not be a valid expression; it
7523can be any string of tokens.
7524
475b0867 7525@kindex info macro
e2e0bcd1
JB
7526@cindex macro definition, showing
7527@cindex definition, showing a macro's
475b0867 7528@item info macro @var{macro}
e2e0bcd1
JB
7529Show the definition of the macro named @var{macro}, and describe the
7530source location where that definition was established.
7531
7532@kindex macro define
7533@cindex user-defined macros
7534@cindex defining macros interactively
7535@cindex macros, user-defined
7536@item macro define @var{macro} @var{replacement-list}
7537@itemx macro define @var{macro}(@var{arglist}) @var{replacement-list}
7538@i{(This command is not yet implemented.)} Introduce a definition for a
7539preprocessor macro named @var{macro}, invocations of which are replaced
7540by the tokens given in @var{replacement-list}. The first form of this
7541command defines an ``object-like'' macro, which takes no arguments; the
7542second form defines a ``function-like'' macro, which takes the arguments
7543given in @var{arglist}.
7544
7545A definition introduced by this command is in scope in every expression
7546evaluated in @value{GDBN}, until it is removed with the @command{macro
7547undef} command, described below. The definition overrides all
7548definitions for @var{macro} present in the program being debugged, as
7549well as any previous user-supplied definition.
7550
7551@kindex macro undef
7552@item macro undef @var{macro}
7553@i{(This command is not yet implemented.)} Remove any user-supplied
7554definition for the macro named @var{macro}. This command only affects
7555definitions provided with the @command{macro define} command, described
7556above; it cannot remove definitions present in the program being
7557debugged.
7558
09d4efe1
EZ
7559@kindex macro list
7560@item macro list
7561@i{(This command is not yet implemented.)} List all the macros
7562defined using the @code{macro define} command.
e2e0bcd1
JB
7563@end table
7564
7565@cindex macros, example of debugging with
7566Here is a transcript showing the above commands in action. First, we
7567show our source files:
7568
7569@smallexample
7570$ cat sample.c
7571#include <stdio.h>
7572#include "sample.h"
7573
7574#define M 42
7575#define ADD(x) (M + x)
7576
7577main ()
7578@{
7579#define N 28
7580 printf ("Hello, world!\n");
7581#undef N
7582 printf ("We're so creative.\n");
7583#define N 1729
7584 printf ("Goodbye, world!\n");
7585@}
7586$ cat sample.h
7587#define Q <
7588$
7589@end smallexample
7590
7591Now, we compile the program using the @sc{gnu} C compiler, @value{NGCC}.
7592We pass the @option{-gdwarf-2} and @option{-g3} flags to ensure the
7593compiler includes information about preprocessor macros in the debugging
7594information.
7595
7596@smallexample
7597$ gcc -gdwarf-2 -g3 sample.c -o sample
7598$
7599@end smallexample
7600
7601Now, we start @value{GDBN} on our sample program:
7602
7603@smallexample
7604$ gdb -nw sample
7605GNU gdb 2002-05-06-cvs
7606Copyright 2002 Free Software Foundation, Inc.
7607GDB is free software, @dots{}
f7dc1244 7608(@value{GDBP})
e2e0bcd1
JB
7609@end smallexample
7610
7611We can expand macros and examine their definitions, even when the
7612program is not running. @value{GDBN} uses the current listing position
7613to decide which macro definitions are in scope:
7614
7615@smallexample
f7dc1244 7616(@value{GDBP}) list main
e2e0bcd1
JB
76173
76184 #define M 42
76195 #define ADD(x) (M + x)
76206
76217 main ()
76228 @{
76239 #define N 28
762410 printf ("Hello, world!\n");
762511 #undef N
762612 printf ("We're so creative.\n");
f7dc1244 7627(@value{GDBP}) info macro ADD
e2e0bcd1
JB
7628Defined at /home/jimb/gdb/macros/play/sample.c:5
7629#define ADD(x) (M + x)
f7dc1244 7630(@value{GDBP}) info macro Q
e2e0bcd1
JB
7631Defined at /home/jimb/gdb/macros/play/sample.h:1
7632 included at /home/jimb/gdb/macros/play/sample.c:2
7633#define Q <
f7dc1244 7634(@value{GDBP}) macro expand ADD(1)
e2e0bcd1 7635expands to: (42 + 1)
f7dc1244 7636(@value{GDBP}) macro expand-once ADD(1)
e2e0bcd1 7637expands to: once (M + 1)
f7dc1244 7638(@value{GDBP})
e2e0bcd1
JB
7639@end smallexample
7640
7641In the example above, note that @command{macro expand-once} expands only
7642the macro invocation explicit in the original text --- the invocation of
7643@code{ADD} --- but does not expand the invocation of the macro @code{M},
7644which was introduced by @code{ADD}.
7645
3f94c067
BW
7646Once the program is running, @value{GDBN} uses the macro definitions in
7647force at the source line of the current stack frame:
e2e0bcd1
JB
7648
7649@smallexample
f7dc1244 7650(@value{GDBP}) break main
e2e0bcd1 7651Breakpoint 1 at 0x8048370: file sample.c, line 10.
f7dc1244 7652(@value{GDBP}) run
b383017d 7653Starting program: /home/jimb/gdb/macros/play/sample
e2e0bcd1
JB
7654
7655Breakpoint 1, main () at sample.c:10
765610 printf ("Hello, world!\n");
f7dc1244 7657(@value{GDBP})
e2e0bcd1
JB
7658@end smallexample
7659
7660At line 10, the definition of the macro @code{N} at line 9 is in force:
7661
7662@smallexample
f7dc1244 7663(@value{GDBP}) info macro N
e2e0bcd1
JB
7664Defined at /home/jimb/gdb/macros/play/sample.c:9
7665#define N 28
f7dc1244 7666(@value{GDBP}) macro expand N Q M
e2e0bcd1 7667expands to: 28 < 42
f7dc1244 7668(@value{GDBP}) print N Q M
e2e0bcd1 7669$1 = 1
f7dc1244 7670(@value{GDBP})
e2e0bcd1
JB
7671@end smallexample
7672
7673As we step over directives that remove @code{N}'s definition, and then
7674give it a new definition, @value{GDBN} finds the definition (or lack
7675thereof) in force at each point:
7676
7677@smallexample
f7dc1244 7678(@value{GDBP}) next
e2e0bcd1
JB
7679Hello, world!
768012 printf ("We're so creative.\n");
f7dc1244 7681(@value{GDBP}) info macro N
e2e0bcd1
JB
7682The symbol `N' has no definition as a C/C++ preprocessor macro
7683at /home/jimb/gdb/macros/play/sample.c:12
f7dc1244 7684(@value{GDBP}) next
e2e0bcd1
JB
7685We're so creative.
768614 printf ("Goodbye, world!\n");
f7dc1244 7687(@value{GDBP}) info macro N
e2e0bcd1
JB
7688Defined at /home/jimb/gdb/macros/play/sample.c:13
7689#define N 1729
f7dc1244 7690(@value{GDBP}) macro expand N Q M
e2e0bcd1 7691expands to: 1729 < 42
f7dc1244 7692(@value{GDBP}) print N Q M
e2e0bcd1 7693$2 = 0
f7dc1244 7694(@value{GDBP})
e2e0bcd1
JB
7695@end smallexample
7696
7697
b37052ae
EZ
7698@node Tracepoints
7699@chapter Tracepoints
7700@c This chapter is based on the documentation written by Michael
7701@c Snyder, David Taylor, Jim Blandy, and Elena Zannoni.
7702
7703@cindex tracepoints
7704In some applications, it is not feasible for the debugger to interrupt
7705the program's execution long enough for the developer to learn
7706anything helpful about its behavior. If the program's correctness
7707depends on its real-time behavior, delays introduced by a debugger
7708might cause the program to change its behavior drastically, or perhaps
7709fail, even when the code itself is correct. It is useful to be able
7710to observe the program's behavior without interrupting it.
7711
7712Using @value{GDBN}'s @code{trace} and @code{collect} commands, you can
7713specify locations in the program, called @dfn{tracepoints}, and
7714arbitrary expressions to evaluate when those tracepoints are reached.
7715Later, using the @code{tfind} command, you can examine the values
7716those expressions had when the program hit the tracepoints. The
7717expressions may also denote objects in memory---structures or arrays,
7718for example---whose values @value{GDBN} should record; while visiting
7719a particular tracepoint, you may inspect those objects as if they were
7720in memory at that moment. However, because @value{GDBN} records these
7721values without interacting with you, it can do so quickly and
7722unobtrusively, hopefully not disturbing the program's behavior.
7723
7724The tracepoint facility is currently available only for remote
9d29849a
JB
7725targets. @xref{Targets}. In addition, your remote target must know
7726how to collect trace data. This functionality is implemented in the
7727remote stub; however, none of the stubs distributed with @value{GDBN}
7728support tracepoints as of this writing. The format of the remote
7729packets used to implement tracepoints are described in @ref{Tracepoint
7730Packets}.
b37052ae
EZ
7731
7732This chapter describes the tracepoint commands and features.
7733
7734@menu
b383017d
RM
7735* Set Tracepoints::
7736* Analyze Collected Data::
7737* Tracepoint Variables::
b37052ae
EZ
7738@end menu
7739
7740@node Set Tracepoints
7741@section Commands to Set Tracepoints
7742
7743Before running such a @dfn{trace experiment}, an arbitrary number of
7744tracepoints can be set. Like a breakpoint (@pxref{Set Breaks}), a
7745tracepoint has a number assigned to it by @value{GDBN}. Like with
7746breakpoints, tracepoint numbers are successive integers starting from
7747one. Many of the commands associated with tracepoints take the
7748tracepoint number as their argument, to identify which tracepoint to
7749work on.
7750
7751For each tracepoint, you can specify, in advance, some arbitrary set
7752of data that you want the target to collect in the trace buffer when
7753it hits that tracepoint. The collected data can include registers,
7754local variables, or global data. Later, you can use @value{GDBN}
7755commands to examine the values these data had at the time the
7756tracepoint was hit.
7757
7758This section describes commands to set tracepoints and associated
7759conditions and actions.
7760
7761@menu
b383017d
RM
7762* Create and Delete Tracepoints::
7763* Enable and Disable Tracepoints::
7764* Tracepoint Passcounts::
7765* Tracepoint Actions::
7766* Listing Tracepoints::
79a6e687 7767* Starting and Stopping Trace Experiments::
b37052ae
EZ
7768@end menu
7769
7770@node Create and Delete Tracepoints
7771@subsection Create and Delete Tracepoints
7772
7773@table @code
7774@cindex set tracepoint
7775@kindex trace
7776@item trace
7777The @code{trace} command is very similar to the @code{break} command.
7778Its argument can be a source line, a function name, or an address in
7779the target program. @xref{Set Breaks}. The @code{trace} command
7780defines a tracepoint, which is a point in the target program where the
7781debugger will briefly stop, collect some data, and then allow the
7782program to continue. Setting a tracepoint or changing its commands
7783doesn't take effect until the next @code{tstart} command; thus, you
7784cannot change the tracepoint attributes once a trace experiment is
7785running.
7786
7787Here are some examples of using the @code{trace} command:
7788
7789@smallexample
7790(@value{GDBP}) @b{trace foo.c:121} // a source file and line number
7791
7792(@value{GDBP}) @b{trace +2} // 2 lines forward
7793
7794(@value{GDBP}) @b{trace my_function} // first source line of function
7795
7796(@value{GDBP}) @b{trace *my_function} // EXACT start address of function
7797
7798(@value{GDBP}) @b{trace *0x2117c4} // an address
7799@end smallexample
7800
7801@noindent
7802You can abbreviate @code{trace} as @code{tr}.
7803
7804@vindex $tpnum
7805@cindex last tracepoint number
7806@cindex recent tracepoint number
7807@cindex tracepoint number
7808The convenience variable @code{$tpnum} records the tracepoint number
7809of the most recently set tracepoint.
7810
7811@kindex delete tracepoint
7812@cindex tracepoint deletion
7813@item delete tracepoint @r{[}@var{num}@r{]}
7814Permanently delete one or more tracepoints. With no argument, the
7815default is to delete all tracepoints.
7816
7817Examples:
7818
7819@smallexample
7820(@value{GDBP}) @b{delete trace 1 2 3} // remove three tracepoints
7821
7822(@value{GDBP}) @b{delete trace} // remove all tracepoints
7823@end smallexample
7824
7825@noindent
7826You can abbreviate this command as @code{del tr}.
7827@end table
7828
7829@node Enable and Disable Tracepoints
7830@subsection Enable and Disable Tracepoints
7831
7832@table @code
7833@kindex disable tracepoint
7834@item disable tracepoint @r{[}@var{num}@r{]}
7835Disable tracepoint @var{num}, or all tracepoints if no argument
7836@var{num} is given. A disabled tracepoint will have no effect during
7837the next trace experiment, but it is not forgotten. You can re-enable
7838a disabled tracepoint using the @code{enable tracepoint} command.
7839
7840@kindex enable tracepoint
7841@item enable tracepoint @r{[}@var{num}@r{]}
7842Enable tracepoint @var{num}, or all tracepoints. The enabled
7843tracepoints will become effective the next time a trace experiment is
7844run.
7845@end table
7846
7847@node Tracepoint Passcounts
7848@subsection Tracepoint Passcounts
7849
7850@table @code
7851@kindex passcount
7852@cindex tracepoint pass count
7853@item passcount @r{[}@var{n} @r{[}@var{num}@r{]]}
7854Set the @dfn{passcount} of a tracepoint. The passcount is a way to
7855automatically stop a trace experiment. If a tracepoint's passcount is
7856@var{n}, then the trace experiment will be automatically stopped on
7857the @var{n}'th time that tracepoint is hit. If the tracepoint number
7858@var{num} is not specified, the @code{passcount} command sets the
7859passcount of the most recently defined tracepoint. If no passcount is
7860given, the trace experiment will run until stopped explicitly by the
7861user.
7862
7863Examples:
7864
7865@smallexample
b383017d 7866(@value{GDBP}) @b{passcount 5 2} // Stop on the 5th execution of
6826cf00 7867@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// tracepoint 2}
b37052ae
EZ
7868
7869(@value{GDBP}) @b{passcount 12} // Stop on the 12th execution of the
6826cf00 7870@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// most recently defined tracepoint.}
b37052ae
EZ
7871(@value{GDBP}) @b{trace foo}
7872(@value{GDBP}) @b{pass 3}
7873(@value{GDBP}) @b{trace bar}
7874(@value{GDBP}) @b{pass 2}
7875(@value{GDBP}) @b{trace baz}
7876(@value{GDBP}) @b{pass 1} // Stop tracing when foo has been
6826cf00
EZ
7877@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// executed 3 times OR when bar has}
7878@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// been executed 2 times}
7879@exdent @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @ @code{// OR when baz has been executed 1 time.}
b37052ae
EZ
7880@end smallexample
7881@end table
7882
7883@node Tracepoint Actions
7884@subsection Tracepoint Action Lists
7885
7886@table @code
7887@kindex actions
7888@cindex tracepoint actions
7889@item actions @r{[}@var{num}@r{]}
7890This command will prompt for a list of actions to be taken when the
7891tracepoint is hit. If the tracepoint number @var{num} is not
7892specified, this command sets the actions for the one that was most
7893recently defined (so that you can define a tracepoint and then say
7894@code{actions} without bothering about its number). You specify the
7895actions themselves on the following lines, one action at a time, and
7896terminate the actions list with a line containing just @code{end}. So
7897far, the only defined actions are @code{collect} and
7898@code{while-stepping}.
7899
7900@cindex remove actions from a tracepoint
7901To remove all actions from a tracepoint, type @samp{actions @var{num}}
7902and follow it immediately with @samp{end}.
7903
7904@smallexample
7905(@value{GDBP}) @b{collect @var{data}} // collect some data
7906
6826cf00 7907(@value{GDBP}) @b{while-stepping 5} // single-step 5 times, collect data
b37052ae 7908
6826cf00 7909(@value{GDBP}) @b{end} // signals the end of actions.
b37052ae
EZ
7910@end smallexample
7911
7912In the following example, the action list begins with @code{collect}
7913commands indicating the things to be collected when the tracepoint is
7914hit. Then, in order to single-step and collect additional data
7915following the tracepoint, a @code{while-stepping} command is used,
7916followed by the list of things to be collected while stepping. The
7917@code{while-stepping} command is terminated by its own separate
7918@code{end} command. Lastly, the action list is terminated by an
7919@code{end} command.
7920
7921@smallexample
7922(@value{GDBP}) @b{trace foo}
7923(@value{GDBP}) @b{actions}
7924Enter actions for tracepoint 1, one per line:
7925> collect bar,baz
7926> collect $regs
7927> while-stepping 12
7928 > collect $fp, $sp
7929 > end
7930end
7931@end smallexample
7932
7933@kindex collect @r{(tracepoints)}
7934@item collect @var{expr1}, @var{expr2}, @dots{}
7935Collect values of the given expressions when the tracepoint is hit.
7936This command accepts a comma-separated list of any valid expressions.
7937In addition to global, static, or local variables, the following
7938special arguments are supported:
7939
7940@table @code
7941@item $regs
7942collect all registers
7943
7944@item $args
7945collect all function arguments
7946
7947@item $locals
7948collect all local variables.
7949@end table
7950
7951You can give several consecutive @code{collect} commands, each one
7952with a single argument, or one @code{collect} command with several
7953arguments separated by commas: the effect is the same.
7954
f5c37c66
EZ
7955The command @code{info scope} (@pxref{Symbols, info scope}) is
7956particularly useful for figuring out what data to collect.
7957
b37052ae
EZ
7958@kindex while-stepping @r{(tracepoints)}
7959@item while-stepping @var{n}
7960Perform @var{n} single-step traces after the tracepoint, collecting
7961new data at each step. The @code{while-stepping} command is
7962followed by the list of what to collect while stepping (followed by
7963its own @code{end} command):
7964
7965@smallexample
7966> while-stepping 12
7967 > collect $regs, myglobal
7968 > end
7969>
7970@end smallexample
7971
7972@noindent
7973You may abbreviate @code{while-stepping} as @code{ws} or
7974@code{stepping}.
7975@end table
7976
7977@node Listing Tracepoints
7978@subsection Listing Tracepoints
7979
7980@table @code
7981@kindex info tracepoints
09d4efe1 7982@kindex info tp
b37052ae
EZ
7983@cindex information about tracepoints
7984@item info tracepoints @r{[}@var{num}@r{]}
8a037dd7 7985Display information about the tracepoint @var{num}. If you don't specify
798c8bc6 7986a tracepoint number, displays information about all the tracepoints
b37052ae
EZ
7987defined so far. For each tracepoint, the following information is
7988shown:
7989
7990@itemize @bullet
7991@item
7992its number
7993@item
7994whether it is enabled or disabled
7995@item
7996its address
7997@item
7998its passcount as given by the @code{passcount @var{n}} command
7999@item
8000its step count as given by the @code{while-stepping @var{n}} command
8001@item
8002where in the source files is the tracepoint set
8003@item
8004its action list as given by the @code{actions} command
8005@end itemize
8006
8007@smallexample
8008(@value{GDBP}) @b{info trace}
8009Num Enb Address PassC StepC What
80101 y 0x002117c4 0 0 <gdb_asm>
6826cf00
EZ
80112 y 0x0020dc64 0 0 in g_test at g_test.c:1375
80123 y 0x0020b1f4 0 0 in get_data at ../foo.c:41
b37052ae
EZ
8013(@value{GDBP})
8014@end smallexample
8015
8016@noindent
8017This command can be abbreviated @code{info tp}.
8018@end table
8019
79a6e687
BW
8020@node Starting and Stopping Trace Experiments
8021@subsection Starting and Stopping Trace Experiments
b37052ae
EZ
8022
8023@table @code
8024@kindex tstart
8025@cindex start a new trace experiment
8026@cindex collected data discarded
8027@item tstart
8028This command takes no arguments. It starts the trace experiment, and
8029begins collecting data. This has the side effect of discarding all
8030the data collected in the trace buffer during the previous trace
8031experiment.
8032
8033@kindex tstop
8034@cindex stop a running trace experiment
8035@item tstop
8036This command takes no arguments. It ends the trace experiment, and
8037stops collecting data.
8038
68c71a2e 8039@strong{Note}: a trace experiment and data collection may stop
b37052ae
EZ
8040automatically if any tracepoint's passcount is reached
8041(@pxref{Tracepoint Passcounts}), or if the trace buffer becomes full.
8042
8043@kindex tstatus
8044@cindex status of trace data collection
8045@cindex trace experiment, status of
8046@item tstatus
8047This command displays the status of the current trace data
8048collection.
8049@end table
8050
8051Here is an example of the commands we described so far:
8052
8053@smallexample
8054(@value{GDBP}) @b{trace gdb_c_test}
8055(@value{GDBP}) @b{actions}
8056Enter actions for tracepoint #1, one per line.
8057> collect $regs,$locals,$args
8058> while-stepping 11
8059 > collect $regs
8060 > end
8061> end
8062(@value{GDBP}) @b{tstart}
8063 [time passes @dots{}]
8064(@value{GDBP}) @b{tstop}
8065@end smallexample
8066
8067
8068@node Analyze Collected Data
79a6e687 8069@section Using the Collected Data
b37052ae
EZ
8070
8071After the tracepoint experiment ends, you use @value{GDBN} commands
8072for examining the trace data. The basic idea is that each tracepoint
8073collects a trace @dfn{snapshot} every time it is hit and another
8074snapshot every time it single-steps. All these snapshots are
8075consecutively numbered from zero and go into a buffer, and you can
8076examine them later. The way you examine them is to @dfn{focus} on a
8077specific trace snapshot. When the remote stub is focused on a trace
8078snapshot, it will respond to all @value{GDBN} requests for memory and
8079registers by reading from the buffer which belongs to that snapshot,
8080rather than from @emph{real} memory or registers of the program being
8081debugged. This means that @strong{all} @value{GDBN} commands
8082(@code{print}, @code{info registers}, @code{backtrace}, etc.) will
8083behave as if we were currently debugging the program state as it was
8084when the tracepoint occurred. Any requests for data that are not in
8085the buffer will fail.
8086
8087@menu
8088* tfind:: How to select a trace snapshot
8089* tdump:: How to display all data for a snapshot
8090* save-tracepoints:: How to save tracepoints for a future run
8091@end menu
8092
8093@node tfind
8094@subsection @code{tfind @var{n}}
8095
8096@kindex tfind
8097@cindex select trace snapshot
8098@cindex find trace snapshot
8099The basic command for selecting a trace snapshot from the buffer is
8100@code{tfind @var{n}}, which finds trace snapshot number @var{n},
8101counting from zero. If no argument @var{n} is given, the next
8102snapshot is selected.
8103
8104Here are the various forms of using the @code{tfind} command.
8105
8106@table @code
8107@item tfind start
8108Find the first snapshot in the buffer. This is a synonym for
8109@code{tfind 0} (since 0 is the number of the first snapshot).
8110
8111@item tfind none
8112Stop debugging trace snapshots, resume @emph{live} debugging.
8113
8114@item tfind end
8115Same as @samp{tfind none}.
8116
8117@item tfind
8118No argument means find the next trace snapshot.
8119
8120@item tfind -
8121Find the previous trace snapshot before the current one. This permits
8122retracing earlier steps.
8123
8124@item tfind tracepoint @var{num}
8125Find the next snapshot associated with tracepoint @var{num}. Search
8126proceeds forward from the last examined trace snapshot. If no
8127argument @var{num} is given, it means find the next snapshot collected
8128for the same tracepoint as the current snapshot.
8129
8130@item tfind pc @var{addr}
8131Find the next snapshot associated with the value @var{addr} of the
8132program counter. Search proceeds forward from the last examined trace
8133snapshot. If no argument @var{addr} is given, it means find the next
8134snapshot with the same value of PC as the current snapshot.
8135
8136@item tfind outside @var{addr1}, @var{addr2}
8137Find the next snapshot whose PC is outside the given range of
8138addresses.
8139
8140@item tfind range @var{addr1}, @var{addr2}
8141Find the next snapshot whose PC is between @var{addr1} and
8142@var{addr2}. @c FIXME: Is the range inclusive or exclusive?
8143
8144@item tfind line @r{[}@var{file}:@r{]}@var{n}
8145Find the next snapshot associated with the source line @var{n}. If
8146the optional argument @var{file} is given, refer to line @var{n} in
8147that source file. Search proceeds forward from the last examined
8148trace snapshot. If no argument @var{n} is given, it means find the
8149next line other than the one currently being examined; thus saying
8150@code{tfind line} repeatedly can appear to have the same effect as
8151stepping from line to line in a @emph{live} debugging session.
8152@end table
8153
8154The default arguments for the @code{tfind} commands are specifically
8155designed to make it easy to scan through the trace buffer. For
8156instance, @code{tfind} with no argument selects the next trace
8157snapshot, and @code{tfind -} with no argument selects the previous
8158trace snapshot. So, by giving one @code{tfind} command, and then
8159simply hitting @key{RET} repeatedly you can examine all the trace
8160snapshots in order. Or, by saying @code{tfind -} and then hitting
8161@key{RET} repeatedly you can examine the snapshots in reverse order.
8162The @code{tfind line} command with no argument selects the snapshot
8163for the next source line executed. The @code{tfind pc} command with
8164no argument selects the next snapshot with the same program counter
8165(PC) as the current frame. The @code{tfind tracepoint} command with
8166no argument selects the next trace snapshot collected by the same
8167tracepoint as the current one.
8168
8169In addition to letting you scan through the trace buffer manually,
8170these commands make it easy to construct @value{GDBN} scripts that
8171scan through the trace buffer and print out whatever collected data
8172you are interested in. Thus, if we want to examine the PC, FP, and SP
8173registers from each trace frame in the buffer, we can say this:
8174
8175@smallexample
8176(@value{GDBP}) @b{tfind start}
8177(@value{GDBP}) @b{while ($trace_frame != -1)}
8178> printf "Frame %d, PC = %08X, SP = %08X, FP = %08X\n", \
8179 $trace_frame, $pc, $sp, $fp
8180> tfind
8181> end
8182
8183Frame 0, PC = 0020DC64, SP = 0030BF3C, FP = 0030BF44
8184Frame 1, PC = 0020DC6C, SP = 0030BF38, FP = 0030BF44
8185Frame 2, PC = 0020DC70, SP = 0030BF34, FP = 0030BF44
8186Frame 3, PC = 0020DC74, SP = 0030BF30, FP = 0030BF44
8187Frame 4, PC = 0020DC78, SP = 0030BF2C, FP = 0030BF44
8188Frame 5, PC = 0020DC7C, SP = 0030BF28, FP = 0030BF44
8189Frame 6, PC = 0020DC80, SP = 0030BF24, FP = 0030BF44
8190Frame 7, PC = 0020DC84, SP = 0030BF20, FP = 0030BF44
8191Frame 8, PC = 0020DC88, SP = 0030BF1C, FP = 0030BF44
8192Frame 9, PC = 0020DC8E, SP = 0030BF18, FP = 0030BF44
8193Frame 10, PC = 00203F6C, SP = 0030BE3C, FP = 0030BF14
8194@end smallexample
8195
8196Or, if we want to examine the variable @code{X} at each source line in
8197the buffer:
8198
8199@smallexample
8200(@value{GDBP}) @b{tfind start}
8201(@value{GDBP}) @b{while ($trace_frame != -1)}
8202> printf "Frame %d, X == %d\n", $trace_frame, X
8203> tfind line
8204> end
8205
8206Frame 0, X = 1
8207Frame 7, X = 2
8208Frame 13, X = 255
8209@end smallexample
8210
8211@node tdump
8212@subsection @code{tdump}
8213@kindex tdump
8214@cindex dump all data collected at tracepoint
8215@cindex tracepoint data, display
8216
8217This command takes no arguments. It prints all the data collected at
8218the current trace snapshot.
8219
8220@smallexample
8221(@value{GDBP}) @b{trace 444}
8222(@value{GDBP}) @b{actions}
8223Enter actions for tracepoint #2, one per line:
8224> collect $regs, $locals, $args, gdb_long_test
8225> end
8226
8227(@value{GDBP}) @b{tstart}
8228
8229(@value{GDBP}) @b{tfind line 444}
8230#0 gdb_test (p1=0x11, p2=0x22, p3=0x33, p4=0x44, p5=0x55, p6=0x66)
8231at gdb_test.c:444
8232444 printp( "%s: arguments = 0x%X 0x%X 0x%X 0x%X 0x%X 0x%X\n", )
8233
8234(@value{GDBP}) @b{tdump}
8235Data collected at tracepoint 2, trace frame 1:
8236d0 0xc4aa0085 -995491707
8237d1 0x18 24
8238d2 0x80 128
8239d3 0x33 51
8240d4 0x71aea3d 119204413
8241d5 0x22 34
8242d6 0xe0 224
8243d7 0x380035 3670069
8244a0 0x19e24a 1696330
8245a1 0x3000668 50333288
8246a2 0x100 256
8247a3 0x322000 3284992
8248a4 0x3000698 50333336
8249a5 0x1ad3cc 1758156
8250fp 0x30bf3c 0x30bf3c
8251sp 0x30bf34 0x30bf34
8252ps 0x0 0
8253pc 0x20b2c8 0x20b2c8
8254fpcontrol 0x0 0
8255fpstatus 0x0 0
8256fpiaddr 0x0 0
8257p = 0x20e5b4 "gdb-test"
8258p1 = (void *) 0x11
8259p2 = (void *) 0x22
8260p3 = (void *) 0x33
8261p4 = (void *) 0x44
8262p5 = (void *) 0x55
8263p6 = (void *) 0x66
8264gdb_long_test = 17 '\021'
8265
8266(@value{GDBP})
8267@end smallexample
8268
8269@node save-tracepoints
8270@subsection @code{save-tracepoints @var{filename}}
8271@kindex save-tracepoints
8272@cindex save tracepoints for future sessions
8273
8274This command saves all current tracepoint definitions together with
8275their actions and passcounts, into a file @file{@var{filename}}
8276suitable for use in a later debugging session. To read the saved
8277tracepoint definitions, use the @code{source} command (@pxref{Command
8278Files}).
8279
8280@node Tracepoint Variables
8281@section Convenience Variables for Tracepoints
8282@cindex tracepoint variables
8283@cindex convenience variables for tracepoints
8284
8285@table @code
8286@vindex $trace_frame
8287@item (int) $trace_frame
8288The current trace snapshot (a.k.a.@: @dfn{frame}) number, or -1 if no
8289snapshot is selected.
8290
8291@vindex $tracepoint
8292@item (int) $tracepoint
8293The tracepoint for the current trace snapshot.
8294
8295@vindex $trace_line
8296@item (int) $trace_line
8297The line number for the current trace snapshot.
8298
8299@vindex $trace_file
8300@item (char []) $trace_file
8301The source file for the current trace snapshot.
8302
8303@vindex $trace_func
8304@item (char []) $trace_func
8305The name of the function containing @code{$tracepoint}.
8306@end table
8307
8308Note: @code{$trace_file} is not suitable for use in @code{printf},
8309use @code{output} instead.
8310
8311Here's a simple example of using these convenience variables for
8312stepping through all the trace snapshots and printing some of their
8313data.
8314
8315@smallexample
8316(@value{GDBP}) @b{tfind start}
8317
8318(@value{GDBP}) @b{while $trace_frame != -1}
8319> output $trace_file
8320> printf ", line %d (tracepoint #%d)\n", $trace_line, $tracepoint
8321> tfind
8322> end
8323@end smallexample
8324
df0cd8c5
JB
8325@node Overlays
8326@chapter Debugging Programs That Use Overlays
8327@cindex overlays
8328
8329If your program is too large to fit completely in your target system's
8330memory, you can sometimes use @dfn{overlays} to work around this
8331problem. @value{GDBN} provides some support for debugging programs that
8332use overlays.
8333
8334@menu
8335* How Overlays Work:: A general explanation of overlays.
8336* Overlay Commands:: Managing overlays in @value{GDBN}.
8337* Automatic Overlay Debugging:: @value{GDBN} can find out which overlays are
8338 mapped by asking the inferior.
8339* Overlay Sample Program:: A sample program using overlays.
8340@end menu
8341
8342@node How Overlays Work
8343@section How Overlays Work
8344@cindex mapped overlays
8345@cindex unmapped overlays
8346@cindex load address, overlay's
8347@cindex mapped address
8348@cindex overlay area
8349
8350Suppose you have a computer whose instruction address space is only 64
8351kilobytes long, but which has much more memory which can be accessed by
8352other means: special instructions, segment registers, or memory
8353management hardware, for example. Suppose further that you want to
8354adapt a program which is larger than 64 kilobytes to run on this system.
8355
8356One solution is to identify modules of your program which are relatively
8357independent, and need not call each other directly; call these modules
8358@dfn{overlays}. Separate the overlays from the main program, and place
8359their machine code in the larger memory. Place your main program in
8360instruction memory, but leave at least enough space there to hold the
8361largest overlay as well.
8362
8363Now, to call a function located in an overlay, you must first copy that
8364overlay's machine code from the large memory into the space set aside
8365for it in the instruction memory, and then jump to its entry point
8366there.
8367
c928edc0
AC
8368@c NB: In the below the mapped area's size is greater or equal to the
8369@c size of all overlays. This is intentional to remind the developer
8370@c that overlays don't necessarily need to be the same size.
8371
474c8240 8372@smallexample
df0cd8c5 8373@group
c928edc0
AC
8374 Data Instruction Larger
8375Address Space Address Space Address Space
8376+-----------+ +-----------+ +-----------+
8377| | | | | |
8378+-----------+ +-----------+ +-----------+<-- overlay 1
8379| program | | main | .----| overlay 1 | load address
8380| variables | | program | | +-----------+
8381| and heap | | | | | |
8382+-----------+ | | | +-----------+<-- overlay 2
8383| | +-----------+ | | | load address
8384+-----------+ | | | .-| overlay 2 |
8385 | | | | | |
8386 mapped --->+-----------+ | | +-----------+
8387 address | | | | | |
8388 | overlay | <-' | | |
8389 | area | <---' +-----------+<-- overlay 3
8390 | | <---. | | load address
8391 +-----------+ `--| overlay 3 |
8392 | | | |
8393 +-----------+ | |
8394 +-----------+
8395 | |
8396 +-----------+
8397
8398 @anchor{A code overlay}A code overlay
df0cd8c5 8399@end group
474c8240 8400@end smallexample
df0cd8c5 8401
c928edc0
AC
8402The diagram (@pxref{A code overlay}) shows a system with separate data
8403and instruction address spaces. To map an overlay, the program copies
8404its code from the larger address space to the instruction address space.
8405Since the overlays shown here all use the same mapped address, only one
8406may be mapped at a time. For a system with a single address space for
8407data and instructions, the diagram would be similar, except that the
8408program variables and heap would share an address space with the main
8409program and the overlay area.
df0cd8c5
JB
8410
8411An overlay loaded into instruction memory and ready for use is called a
8412@dfn{mapped} overlay; its @dfn{mapped address} is its address in the
8413instruction memory. An overlay not present (or only partially present)
8414in instruction memory is called @dfn{unmapped}; its @dfn{load address}
8415is its address in the larger memory. The mapped address is also called
8416the @dfn{virtual memory address}, or @dfn{VMA}; the load address is also
8417called the @dfn{load memory address}, or @dfn{LMA}.
8418
8419Unfortunately, overlays are not a completely transparent way to adapt a
8420program to limited instruction memory. They introduce a new set of
8421global constraints you must keep in mind as you design your program:
8422
8423@itemize @bullet
8424
8425@item
8426Before calling or returning to a function in an overlay, your program
8427must make sure that overlay is actually mapped. Otherwise, the call or
8428return will transfer control to the right address, but in the wrong
8429overlay, and your program will probably crash.
8430
8431@item
8432If the process of mapping an overlay is expensive on your system, you
8433will need to choose your overlays carefully to minimize their effect on
8434your program's performance.
8435
8436@item
8437The executable file you load onto your system must contain each
8438overlay's instructions, appearing at the overlay's load address, not its
8439mapped address. However, each overlay's instructions must be relocated
8440and its symbols defined as if the overlay were at its mapped address.
8441You can use GNU linker scripts to specify different load and relocation
8442addresses for pieces of your program; see @ref{Overlay Description,,,
8443ld.info, Using ld: the GNU linker}.
8444
8445@item
8446The procedure for loading executable files onto your system must be able
8447to load their contents into the larger address space as well as the
8448instruction and data spaces.
8449
8450@end itemize
8451
8452The overlay system described above is rather simple, and could be
8453improved in many ways:
8454
8455@itemize @bullet
8456
8457@item
8458If your system has suitable bank switch registers or memory management
8459hardware, you could use those facilities to make an overlay's load area
8460contents simply appear at their mapped address in instruction space.
8461This would probably be faster than copying the overlay to its mapped
8462area in the usual way.
8463
8464@item
8465If your overlays are small enough, you could set aside more than one
8466overlay area, and have more than one overlay mapped at a time.
8467
8468@item
8469You can use overlays to manage data, as well as instructions. In
8470general, data overlays are even less transparent to your design than
8471code overlays: whereas code overlays only require care when you call or
8472return to functions, data overlays require care every time you access
8473the data. Also, if you change the contents of a data overlay, you
8474must copy its contents back out to its load address before you can copy a
8475different data overlay into the same mapped area.
8476
8477@end itemize
8478
8479
8480@node Overlay Commands
8481@section Overlay Commands
8482
8483To use @value{GDBN}'s overlay support, each overlay in your program must
8484correspond to a separate section of the executable file. The section's
8485virtual memory address and load memory address must be the overlay's
8486mapped and load addresses. Identifying overlays with sections allows
8487@value{GDBN} to determine the appropriate address of a function or
8488variable, depending on whether the overlay is mapped or not.
8489
8490@value{GDBN}'s overlay commands all start with the word @code{overlay};
8491you can abbreviate this as @code{ov} or @code{ovly}. The commands are:
8492
8493@table @code
8494@item overlay off
4644b6e3 8495@kindex overlay
df0cd8c5
JB
8496Disable @value{GDBN}'s overlay support. When overlay support is
8497disabled, @value{GDBN} assumes that all functions and variables are
8498always present at their mapped addresses. By default, @value{GDBN}'s
8499overlay support is disabled.
8500
8501@item overlay manual
df0cd8c5
JB
8502@cindex manual overlay debugging
8503Enable @dfn{manual} overlay debugging. In this mode, @value{GDBN}
8504relies on you to tell it which overlays are mapped, and which are not,
8505using the @code{overlay map-overlay} and @code{overlay unmap-overlay}
8506commands described below.
8507
8508@item overlay map-overlay @var{overlay}
8509@itemx overlay map @var{overlay}
df0cd8c5
JB
8510@cindex map an overlay
8511Tell @value{GDBN} that @var{overlay} is now mapped; @var{overlay} must
8512be the name of the object file section containing the overlay. When an
8513overlay is mapped, @value{GDBN} assumes it can find the overlay's
8514functions and variables at their mapped addresses. @value{GDBN} assumes
8515that any other overlays whose mapped ranges overlap that of
8516@var{overlay} are now unmapped.
8517
8518@item overlay unmap-overlay @var{overlay}
8519@itemx overlay unmap @var{overlay}
df0cd8c5
JB
8520@cindex unmap an overlay
8521Tell @value{GDBN} that @var{overlay} is no longer mapped; @var{overlay}
8522must be the name of the object file section containing the overlay.
8523When an overlay is unmapped, @value{GDBN} assumes it can find the
8524overlay's functions and variables at their load addresses.
8525
8526@item overlay auto
df0cd8c5
JB
8527Enable @dfn{automatic} overlay debugging. In this mode, @value{GDBN}
8528consults a data structure the overlay manager maintains in the inferior
8529to see which overlays are mapped. For details, see @ref{Automatic
8530Overlay Debugging}.
8531
8532@item overlay load-target
8533@itemx overlay load
df0cd8c5
JB
8534@cindex reloading the overlay table
8535Re-read the overlay table from the inferior. Normally, @value{GDBN}
8536re-reads the table @value{GDBN} automatically each time the inferior
8537stops, so this command should only be necessary if you have changed the
8538overlay mapping yourself using @value{GDBN}. This command is only
8539useful when using automatic overlay debugging.
8540
8541@item overlay list-overlays
8542@itemx overlay list
8543@cindex listing mapped overlays
8544Display a list of the overlays currently mapped, along with their mapped
8545addresses, load addresses, and sizes.
8546
8547@end table
8548
8549Normally, when @value{GDBN} prints a code address, it includes the name
8550of the function the address falls in:
8551
474c8240 8552@smallexample
f7dc1244 8553(@value{GDBP}) print main
df0cd8c5 8554$3 = @{int ()@} 0x11a0 <main>
474c8240 8555@end smallexample
df0cd8c5
JB
8556@noindent
8557When overlay debugging is enabled, @value{GDBN} recognizes code in
8558unmapped overlays, and prints the names of unmapped functions with
8559asterisks around them. For example, if @code{foo} is a function in an
8560unmapped overlay, @value{GDBN} prints it this way:
8561
474c8240 8562@smallexample
f7dc1244 8563(@value{GDBP}) overlay list
df0cd8c5 8564No sections are mapped.
f7dc1244 8565(@value{GDBP}) print foo
df0cd8c5 8566$5 = @{int (int)@} 0x100000 <*foo*>
474c8240 8567@end smallexample
df0cd8c5
JB
8568@noindent
8569When @code{foo}'s overlay is mapped, @value{GDBN} prints the function's
8570name normally:
8571
474c8240 8572@smallexample
f7dc1244 8573(@value{GDBP}) overlay list
b383017d 8574Section .ov.foo.text, loaded at 0x100000 - 0x100034,
df0cd8c5 8575 mapped at 0x1016 - 0x104a
f7dc1244 8576(@value{GDBP}) print foo
df0cd8c5 8577$6 = @{int (int)@} 0x1016 <foo>
474c8240 8578@end smallexample
df0cd8c5
JB
8579
8580When overlay debugging is enabled, @value{GDBN} can find the correct
8581address for functions and variables in an overlay, whether or not the
8582overlay is mapped. This allows most @value{GDBN} commands, like
8583@code{break} and @code{disassemble}, to work normally, even on unmapped
8584code. However, @value{GDBN}'s breakpoint support has some limitations:
8585
8586@itemize @bullet
8587@item
8588@cindex breakpoints in overlays
8589@cindex overlays, setting breakpoints in
8590You can set breakpoints in functions in unmapped overlays, as long as
8591@value{GDBN} can write to the overlay at its load address.
8592@item
8593@value{GDBN} can not set hardware or simulator-based breakpoints in
8594unmapped overlays. However, if you set a breakpoint at the end of your
8595overlay manager (and tell @value{GDBN} which overlays are now mapped, if
8596you are using manual overlay management), @value{GDBN} will re-set its
8597breakpoints properly.
8598@end itemize
8599
8600
8601@node Automatic Overlay Debugging
8602@section Automatic Overlay Debugging
8603@cindex automatic overlay debugging
8604
8605@value{GDBN} can automatically track which overlays are mapped and which
8606are not, given some simple co-operation from the overlay manager in the
8607inferior. If you enable automatic overlay debugging with the
8608@code{overlay auto} command (@pxref{Overlay Commands}), @value{GDBN}
8609looks in the inferior's memory for certain variables describing the
8610current state of the overlays.
8611
8612Here are the variables your overlay manager must define to support
8613@value{GDBN}'s automatic overlay debugging:
8614
8615@table @asis
8616
8617@item @code{_ovly_table}:
8618This variable must be an array of the following structures:
8619
474c8240 8620@smallexample
df0cd8c5
JB
8621struct
8622@{
8623 /* The overlay's mapped address. */
8624 unsigned long vma;
8625
8626 /* The size of the overlay, in bytes. */
8627 unsigned long size;
8628
8629 /* The overlay's load address. */
8630 unsigned long lma;
8631
8632 /* Non-zero if the overlay is currently mapped;
8633 zero otherwise. */
8634 unsigned long mapped;
8635@}
474c8240 8636@end smallexample
df0cd8c5
JB
8637
8638@item @code{_novlys}:
8639This variable must be a four-byte signed integer, holding the total
8640number of elements in @code{_ovly_table}.
8641
8642@end table
8643
8644To decide whether a particular overlay is mapped or not, @value{GDBN}
8645looks for an entry in @w{@code{_ovly_table}} whose @code{vma} and
8646@code{lma} members equal the VMA and LMA of the overlay's section in the
8647executable file. When @value{GDBN} finds a matching entry, it consults
8648the entry's @code{mapped} member to determine whether the overlay is
8649currently mapped.
8650
81d46470 8651In addition, your overlay manager may define a function called
def71bfa 8652@code{_ovly_debug_event}. If this function is defined, @value{GDBN}
81d46470
MS
8653will silently set a breakpoint there. If the overlay manager then
8654calls this function whenever it has changed the overlay table, this
8655will enable @value{GDBN} to accurately keep track of which overlays
8656are in program memory, and update any breakpoints that may be set
b383017d 8657in overlays. This will allow breakpoints to work even if the
81d46470
MS
8658overlays are kept in ROM or other non-writable memory while they
8659are not being executed.
df0cd8c5
JB
8660
8661@node Overlay Sample Program
8662@section Overlay Sample Program
8663@cindex overlay example program
8664
8665When linking a program which uses overlays, you must place the overlays
8666at their load addresses, while relocating them to run at their mapped
8667addresses. To do this, you must write a linker script (@pxref{Overlay
8668Description,,, ld.info, Using ld: the GNU linker}). Unfortunately,
8669since linker scripts are specific to a particular host system, target
8670architecture, and target memory layout, this manual cannot provide
8671portable sample code demonstrating @value{GDBN}'s overlay support.
8672
8673However, the @value{GDBN} source distribution does contain an overlaid
8674program, with linker scripts for a few systems, as part of its test
8675suite. The program consists of the following files from
8676@file{gdb/testsuite/gdb.base}:
8677
8678@table @file
8679@item overlays.c
8680The main program file.
8681@item ovlymgr.c
8682A simple overlay manager, used by @file{overlays.c}.
8683@item foo.c
8684@itemx bar.c
8685@itemx baz.c
8686@itemx grbx.c
8687Overlay modules, loaded and used by @file{overlays.c}.
8688@item d10v.ld
8689@itemx m32r.ld
8690Linker scripts for linking the test program on the @code{d10v-elf}
8691and @code{m32r-elf} targets.
8692@end table
8693
8694You can build the test program using the @code{d10v-elf} GCC
8695cross-compiler like this:
8696
474c8240 8697@smallexample
df0cd8c5
JB
8698$ d10v-elf-gcc -g -c overlays.c
8699$ d10v-elf-gcc -g -c ovlymgr.c
8700$ d10v-elf-gcc -g -c foo.c
8701$ d10v-elf-gcc -g -c bar.c
8702$ d10v-elf-gcc -g -c baz.c
8703$ d10v-elf-gcc -g -c grbx.c
8704$ d10v-elf-gcc -g overlays.o ovlymgr.o foo.o bar.o \
8705 baz.o grbx.o -Wl,-Td10v.ld -o overlays
474c8240 8706@end smallexample
df0cd8c5
JB
8707
8708The build process is identical for any other architecture, except that
8709you must substitute the appropriate compiler and linker script for the
8710target system for @code{d10v-elf-gcc} and @code{d10v.ld}.
8711
8712
6d2ebf8b 8713@node Languages
c906108c
SS
8714@chapter Using @value{GDBN} with Different Languages
8715@cindex languages
8716
c906108c
SS
8717Although programming languages generally have common aspects, they are
8718rarely expressed in the same manner. For instance, in ANSI C,
8719dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
8720Modula-2, it is accomplished by @code{p^}. Values can also be
5d161b24 8721represented (and displayed) differently. Hex numbers in C appear as
c906108c 8722@samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
c906108c
SS
8723
8724@cindex working language
8725Language-specific information is built into @value{GDBN} for some languages,
8726allowing you to express operations like the above in your program's
8727native language, and allowing @value{GDBN} to output values in a manner
8728consistent with the syntax of your program's native language. The
8729language you use to build expressions is called the @dfn{working
8730language}.
8731
8732@menu
8733* Setting:: Switching between source languages
8734* Show:: Displaying the language
c906108c 8735* Checks:: Type and range checks
79a6e687
BW
8736* Supported Languages:: Supported languages
8737* Unsupported Languages:: Unsupported languages
c906108c
SS
8738@end menu
8739
6d2ebf8b 8740@node Setting
79a6e687 8741@section Switching Between Source Languages
c906108c
SS
8742
8743There are two ways to control the working language---either have @value{GDBN}
8744set it automatically, or select it manually yourself. You can use the
8745@code{set language} command for either purpose. On startup, @value{GDBN}
8746defaults to setting the language automatically. The working language is
8747used to determine how expressions you type are interpreted, how values
8748are printed, etc.
8749
8750In addition to the working language, every source file that
8751@value{GDBN} knows about has its own working language. For some object
8752file formats, the compiler might indicate which language a particular
8753source file is in. However, most of the time @value{GDBN} infers the
8754language from the name of the file. The language of a source file
b37052ae 8755controls whether C@t{++} names are demangled---this way @code{backtrace} can
c906108c 8756show each frame appropriately for its own language. There is no way to
d4f3574e
SS
8757set the language of a source file from within @value{GDBN}, but you can
8758set the language associated with a filename extension. @xref{Show, ,
79a6e687 8759Displaying the Language}.
c906108c
SS
8760
8761This is most commonly a problem when you use a program, such
5d161b24 8762as @code{cfront} or @code{f2c}, that generates C but is written in
c906108c
SS
8763another language. In that case, make the
8764program use @code{#line} directives in its C output; that way
8765@value{GDBN} will know the correct language of the source code of the original
8766program, and will display that source code, not the generated C code.
8767
8768@menu
8769* Filenames:: Filename extensions and languages.
8770* Manually:: Setting the working language manually
8771* Automatically:: Having @value{GDBN} infer the source language
8772@end menu
8773
6d2ebf8b 8774@node Filenames
79a6e687 8775@subsection List of Filename Extensions and Languages
c906108c
SS
8776
8777If a source file name ends in one of the following extensions, then
8778@value{GDBN} infers that its language is the one indicated.
8779
8780@table @file
e07c999f
PH
8781@item .ada
8782@itemx .ads
8783@itemx .adb
8784@itemx .a
8785Ada source file.
c906108c
SS
8786
8787@item .c
8788C source file
8789
8790@item .C
8791@itemx .cc
8792@itemx .cp
8793@itemx .cpp
8794@itemx .cxx
8795@itemx .c++
b37052ae 8796C@t{++} source file
c906108c 8797
b37303ee
AF
8798@item .m
8799Objective-C source file
8800
c906108c
SS
8801@item .f
8802@itemx .F
8803Fortran source file
8804
c906108c
SS
8805@item .mod
8806Modula-2 source file
c906108c
SS
8807
8808@item .s
8809@itemx .S
8810Assembler source file. This actually behaves almost like C, but
8811@value{GDBN} does not skip over function prologues when stepping.
8812@end table
8813
8814In addition, you may set the language associated with a filename
79a6e687 8815extension. @xref{Show, , Displaying the Language}.
c906108c 8816
6d2ebf8b 8817@node Manually
79a6e687 8818@subsection Setting the Working Language
c906108c
SS
8819
8820If you allow @value{GDBN} to set the language automatically,
8821expressions are interpreted the same way in your debugging session and
8822your program.
8823
8824@kindex set language
8825If you wish, you may set the language manually. To do this, issue the
8826command @samp{set language @var{lang}}, where @var{lang} is the name of
5d161b24 8827a language, such as
c906108c 8828@code{c} or @code{modula-2}.
c906108c
SS
8829For a list of the supported languages, type @samp{set language}.
8830
c906108c
SS
8831Setting the language manually prevents @value{GDBN} from updating the working
8832language automatically. This can lead to confusion if you try
8833to debug a program when the working language is not the same as the
8834source language, when an expression is acceptable to both
8835languages---but means different things. For instance, if the current
8836source file were written in C, and @value{GDBN} was parsing Modula-2, a
8837command such as:
8838
474c8240 8839@smallexample
c906108c 8840print a = b + c
474c8240 8841@end smallexample
c906108c
SS
8842
8843@noindent
8844might not have the effect you intended. In C, this means to add
8845@code{b} and @code{c} and place the result in @code{a}. The result
8846printed would be the value of @code{a}. In Modula-2, this means to compare
8847@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
c906108c 8848
6d2ebf8b 8849@node Automatically
79a6e687 8850@subsection Having @value{GDBN} Infer the Source Language
c906108c
SS
8851
8852To have @value{GDBN} set the working language automatically, use
8853@samp{set language local} or @samp{set language auto}. @value{GDBN}
8854then infers the working language. That is, when your program stops in a
8855frame (usually by encountering a breakpoint), @value{GDBN} sets the
8856working language to the language recorded for the function in that
8857frame. If the language for a frame is unknown (that is, if the function
8858or block corresponding to the frame was defined in a source file that
8859does not have a recognized extension), the current working language is
8860not changed, and @value{GDBN} issues a warning.
8861
8862This may not seem necessary for most programs, which are written
8863entirely in one source language. However, program modules and libraries
8864written in one source language can be used by a main program written in
8865a different source language. Using @samp{set language auto} in this
8866case frees you from having to set the working language manually.
8867
6d2ebf8b 8868@node Show
79a6e687 8869@section Displaying the Language
c906108c
SS
8870
8871The following commands help you find out which language is the
8872working language, and also what language source files were written in.
8873
c906108c
SS
8874@table @code
8875@item show language
9c16f35a 8876@kindex show language
c906108c
SS
8877Display the current working language. This is the
8878language you can use with commands such as @code{print} to
8879build and compute expressions that may involve variables in your program.
8880
8881@item info frame
4644b6e3 8882@kindex info frame@r{, show the source language}
5d161b24 8883Display the source language for this frame. This language becomes the
c906108c 8884working language if you use an identifier from this frame.
79a6e687 8885@xref{Frame Info, ,Information about a Frame}, to identify the other
c906108c
SS
8886information listed here.
8887
8888@item info source
4644b6e3 8889@kindex info source@r{, show the source language}
c906108c 8890Display the source language of this source file.
5d161b24 8891@xref{Symbols, ,Examining the Symbol Table}, to identify the other
c906108c
SS
8892information listed here.
8893@end table
8894
8895In unusual circumstances, you may have source files with extensions
8896not in the standard list. You can then set the extension associated
8897with a language explicitly:
8898
c906108c 8899@table @code
09d4efe1 8900@item set extension-language @var{ext} @var{language}
9c16f35a 8901@kindex set extension-language
09d4efe1
EZ
8902Tell @value{GDBN} that source files with extension @var{ext} are to be
8903assumed as written in the source language @var{language}.
c906108c
SS
8904
8905@item info extensions
9c16f35a 8906@kindex info extensions
c906108c
SS
8907List all the filename extensions and the associated languages.
8908@end table
8909
6d2ebf8b 8910@node Checks
79a6e687 8911@section Type and Range Checking
c906108c
SS
8912
8913@quotation
8914@emph{Warning:} In this release, the @value{GDBN} commands for type and range
8915checking are included, but they do not yet have any effect. This
8916section documents the intended facilities.
8917@end quotation
8918@c FIXME remove warning when type/range code added
8919
8920Some languages are designed to guard you against making seemingly common
8921errors through a series of compile- and run-time checks. These include
8922checking the type of arguments to functions and operators, and making
8923sure mathematical overflows are caught at run time. Checks such as
8924these help to ensure a program's correctness once it has been compiled
8925by eliminating type mismatches, and providing active checks for range
8926errors when your program is running.
8927
8928@value{GDBN} can check for conditions like the above if you wish.
9c16f35a
EZ
8929Although @value{GDBN} does not check the statements in your program,
8930it can check expressions entered directly into @value{GDBN} for
8931evaluation via the @code{print} command, for example. As with the
8932working language, @value{GDBN} can also decide whether or not to check
8933automatically based on your program's source language.
79a6e687 8934@xref{Supported Languages, ,Supported Languages}, for the default
9c16f35a 8935settings of supported languages.
c906108c
SS
8936
8937@menu
8938* Type Checking:: An overview of type checking
8939* Range Checking:: An overview of range checking
8940@end menu
8941
8942@cindex type checking
8943@cindex checks, type
6d2ebf8b 8944@node Type Checking
79a6e687 8945@subsection An Overview of Type Checking
c906108c
SS
8946
8947Some languages, such as Modula-2, are strongly typed, meaning that the
8948arguments to operators and functions have to be of the correct type,
8949otherwise an error occurs. These checks prevent type mismatch
8950errors from ever causing any run-time problems. For example,
8951
8952@smallexample
89531 + 2 @result{} 3
8954@exdent but
8955@error{} 1 + 2.3
8956@end smallexample
8957
8958The second example fails because the @code{CARDINAL} 1 is not
8959type-compatible with the @code{REAL} 2.3.
8960
5d161b24
DB
8961For the expressions you use in @value{GDBN} commands, you can tell the
8962@value{GDBN} type checker to skip checking;
8963to treat any mismatches as errors and abandon the expression;
8964or to only issue warnings when type mismatches occur,
c906108c
SS
8965but evaluate the expression anyway. When you choose the last of
8966these, @value{GDBN} evaluates expressions like the second example above, but
8967also issues a warning.
8968
5d161b24
DB
8969Even if you turn type checking off, there may be other reasons
8970related to type that prevent @value{GDBN} from evaluating an expression.
8971For instance, @value{GDBN} does not know how to add an @code{int} and
8972a @code{struct foo}. These particular type errors have nothing to do
8973with the language in use, and usually arise from expressions, such as
c906108c
SS
8974the one described above, which make little sense to evaluate anyway.
8975
8976Each language defines to what degree it is strict about type. For
8977instance, both Modula-2 and C require the arguments to arithmetical
8978operators to be numbers. In C, enumerated types and pointers can be
8979represented as numbers, so that they are valid arguments to mathematical
79a6e687 8980operators. @xref{Supported Languages, ,Supported Languages}, for further
c906108c
SS
8981details on specific languages.
8982
8983@value{GDBN} provides some additional commands for controlling the type checker:
8984
c906108c
SS
8985@kindex set check type
8986@kindex show check type
8987@table @code
8988@item set check type auto
8989Set type checking on or off based on the current working language.
79a6e687 8990@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
8991each language.
8992
8993@item set check type on
8994@itemx set check type off
8995Set type checking on or off, overriding the default setting for the
8996current working language. Issue a warning if the setting does not
8997match the language default. If any type mismatches occur in
d4f3574e 8998evaluating an expression while type checking is on, @value{GDBN} prints a
c906108c
SS
8999message and aborts evaluation of the expression.
9000
9001@item set check type warn
9002Cause the type checker to issue warnings, but to always attempt to
9003evaluate the expression. Evaluating the expression may still
9004be impossible for other reasons. For example, @value{GDBN} cannot add
9005numbers and structures.
9006
9007@item show type
5d161b24 9008Show the current setting of the type checker, and whether or not @value{GDBN}
c906108c
SS
9009is setting it automatically.
9010@end table
9011
9012@cindex range checking
9013@cindex checks, range
6d2ebf8b 9014@node Range Checking
79a6e687 9015@subsection An Overview of Range Checking
c906108c
SS
9016
9017In some languages (such as Modula-2), it is an error to exceed the
9018bounds of a type; this is enforced with run-time checks. Such range
9019checking is meant to ensure program correctness by making sure
9020computations do not overflow, or indices on an array element access do
9021not exceed the bounds of the array.
9022
9023For expressions you use in @value{GDBN} commands, you can tell
9024@value{GDBN} to treat range errors in one of three ways: ignore them,
9025always treat them as errors and abandon the expression, or issue
9026warnings but evaluate the expression anyway.
9027
9028A range error can result from numerical overflow, from exceeding an
9029array index bound, or when you type a constant that is not a member
9030of any type. Some languages, however, do not treat overflows as an
9031error. In many implementations of C, mathematical overflow causes the
9032result to ``wrap around'' to lower values---for example, if @var{m} is
9033the largest integer value, and @var{s} is the smallest, then
9034
474c8240 9035@smallexample
c906108c 9036@var{m} + 1 @result{} @var{s}
474c8240 9037@end smallexample
c906108c
SS
9038
9039This, too, is specific to individual languages, and in some cases
79a6e687
BW
9040specific to individual compilers or machines. @xref{Supported Languages, ,
9041Supported Languages}, for further details on specific languages.
c906108c
SS
9042
9043@value{GDBN} provides some additional commands for controlling the range checker:
9044
c906108c
SS
9045@kindex set check range
9046@kindex show check range
9047@table @code
9048@item set check range auto
9049Set range checking on or off based on the current working language.
79a6e687 9050@xref{Supported Languages, ,Supported Languages}, for the default settings for
c906108c
SS
9051each language.
9052
9053@item set check range on
9054@itemx set check range off
9055Set range checking on or off, overriding the default setting for the
9056current working language. A warning is issued if the setting does not
c3f6f71d
JM
9057match the language default. If a range error occurs and range checking is on,
9058then a message is printed and evaluation of the expression is aborted.
c906108c
SS
9059
9060@item set check range warn
9061Output messages when the @value{GDBN} range checker detects a range error,
9062but attempt to evaluate the expression anyway. Evaluating the
9063expression may still be impossible for other reasons, such as accessing
9064memory that the process does not own (a typical example from many Unix
9065systems).
9066
9067@item show range
9068Show the current setting of the range checker, and whether or not it is
9069being set automatically by @value{GDBN}.
9070@end table
c906108c 9071
79a6e687
BW
9072@node Supported Languages
9073@section Supported Languages
c906108c 9074
9c16f35a
EZ
9075@value{GDBN} supports C, C@t{++}, Objective-C, Fortran, Java, Pascal,
9076assembly, Modula-2, and Ada.
cce74817 9077@c This is false ...
c906108c
SS
9078Some @value{GDBN} features may be used in expressions regardless of the
9079language you use: the @value{GDBN} @code{@@} and @code{::} operators,
9080and the @samp{@{type@}addr} construct (@pxref{Expressions,
9081,Expressions}) can be used with the constructs of any supported
9082language.
9083
9084The following sections detail to what degree each source language is
9085supported by @value{GDBN}. These sections are not meant to be language
9086tutorials or references, but serve only as a reference guide to what the
9087@value{GDBN} expression parser accepts, and what input and output
9088formats should look like for different languages. There are many good
9089books written on each of these languages; please look to these for a
9090language reference or tutorial.
9091
c906108c 9092@menu
b37303ee 9093* C:: C and C@t{++}
b383017d 9094* Objective-C:: Objective-C
09d4efe1 9095* Fortran:: Fortran
9c16f35a 9096* Pascal:: Pascal
b37303ee 9097* Modula-2:: Modula-2
e07c999f 9098* Ada:: Ada
c906108c
SS
9099@end menu
9100
6d2ebf8b 9101@node C
b37052ae 9102@subsection C and C@t{++}
7a292a7a 9103
b37052ae
EZ
9104@cindex C and C@t{++}
9105@cindex expressions in C or C@t{++}
c906108c 9106
b37052ae 9107Since C and C@t{++} are so closely related, many features of @value{GDBN} apply
c906108c
SS
9108to both languages. Whenever this is the case, we discuss those languages
9109together.
9110
41afff9a
EZ
9111@cindex C@t{++}
9112@cindex @code{g++}, @sc{gnu} C@t{++} compiler
b37052ae
EZ
9113@cindex @sc{gnu} C@t{++}
9114The C@t{++} debugging facilities are jointly implemented by the C@t{++}
9115compiler and @value{GDBN}. Therefore, to debug your C@t{++} code
9116effectively, you must compile your C@t{++} programs with a supported
9117C@t{++} compiler, such as @sc{gnu} @code{g++}, or the HP ANSI C@t{++}
c906108c
SS
9118compiler (@code{aCC}).
9119
0179ffac
DC
9120For best results when using @sc{gnu} C@t{++}, use the DWARF 2 debugging
9121format; if it doesn't work on your system, try the stabs+ debugging
9122format. You can select those formats explicitly with the @code{g++}
9123command-line options @option{-gdwarf-2} and @option{-gstabs+}.
ce9341a1
BW
9124@xref{Debugging Options,,Options for Debugging Your Program or GCC,
9125gcc.info, Using the @sc{gnu} Compiler Collection (GCC)}.
c906108c 9126
c906108c 9127@menu
b37052ae
EZ
9128* C Operators:: C and C@t{++} operators
9129* C Constants:: C and C@t{++} constants
79a6e687 9130* C Plus Plus Expressions:: C@t{++} expressions
b37052ae
EZ
9131* C Defaults:: Default settings for C and C@t{++}
9132* C Checks:: C and C@t{++} type and range checks
c906108c 9133* Debugging C:: @value{GDBN} and C
79a6e687 9134* Debugging C Plus Plus:: @value{GDBN} features for C@t{++}
c906108c 9135@end menu
c906108c 9136
6d2ebf8b 9137@node C Operators
79a6e687 9138@subsubsection C and C@t{++} Operators
7a292a7a 9139
b37052ae 9140@cindex C and C@t{++} operators
c906108c
SS
9141
9142Operators must be defined on values of specific types. For instance,
9143@code{+} is defined on numbers, but not on structures. Operators are
5d161b24 9144often defined on groups of types.
c906108c 9145
b37052ae 9146For the purposes of C and C@t{++}, the following definitions hold:
c906108c
SS
9147
9148@itemize @bullet
53a5351d 9149
c906108c 9150@item
c906108c 9151@emph{Integral types} include @code{int} with any of its storage-class
b37052ae 9152specifiers; @code{char}; @code{enum}; and, for C@t{++}, @code{bool}.
c906108c
SS
9153
9154@item
d4f3574e
SS
9155@emph{Floating-point types} include @code{float}, @code{double}, and
9156@code{long double} (if supported by the target platform).
c906108c
SS
9157
9158@item
53a5351d 9159@emph{Pointer types} include all types defined as @code{(@var{type} *)}.
c906108c
SS
9160
9161@item
9162@emph{Scalar types} include all of the above.
53a5351d 9163
c906108c
SS
9164@end itemize
9165
9166@noindent
9167The following operators are supported. They are listed here
9168in order of increasing precedence:
9169
9170@table @code
9171@item ,
9172The comma or sequencing operator. Expressions in a comma-separated list
9173are evaluated from left to right, with the result of the entire
9174expression being the last expression evaluated.
9175
9176@item =
9177Assignment. The value of an assignment expression is the value
9178assigned. Defined on scalar types.
9179
9180@item @var{op}=
9181Used in an expression of the form @w{@code{@var{a} @var{op}= @var{b}}},
9182and translated to @w{@code{@var{a} = @var{a op b}}}.
d4f3574e 9183@w{@code{@var{op}=}} and @code{=} have the same precedence.
c906108c
SS
9184@var{op} is any one of the operators @code{|}, @code{^}, @code{&},
9185@code{<<}, @code{>>}, @code{+}, @code{-}, @code{*}, @code{/}, @code{%}.
9186
9187@item ?:
9188The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
9189of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
9190integral type.
9191
9192@item ||
9193Logical @sc{or}. Defined on integral types.
9194
9195@item &&
9196Logical @sc{and}. Defined on integral types.
9197
9198@item |
9199Bitwise @sc{or}. Defined on integral types.
9200
9201@item ^
9202Bitwise exclusive-@sc{or}. Defined on integral types.
9203
9204@item &
9205Bitwise @sc{and}. Defined on integral types.
9206
9207@item ==@r{, }!=
9208Equality and inequality. Defined on scalar types. The value of these
9209expressions is 0 for false and non-zero for true.
9210
9211@item <@r{, }>@r{, }<=@r{, }>=
9212Less than, greater than, less than or equal, greater than or equal.
9213Defined on scalar types. The value of these expressions is 0 for false
9214and non-zero for true.
9215
9216@item <<@r{, }>>
9217left shift, and right shift. Defined on integral types.
9218
9219@item @@
9220The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9221
9222@item +@r{, }-
9223Addition and subtraction. Defined on integral types, floating-point types and
9224pointer types.
9225
9226@item *@r{, }/@r{, }%
9227Multiplication, division, and modulus. Multiplication and division are
9228defined on integral and floating-point types. Modulus is defined on
9229integral types.
9230
9231@item ++@r{, }--
9232Increment and decrement. When appearing before a variable, the
9233operation is performed before the variable is used in an expression;
9234when appearing after it, the variable's value is used before the
9235operation takes place.
9236
9237@item *
9238Pointer dereferencing. Defined on pointer types. Same precedence as
9239@code{++}.
9240
9241@item &
9242Address operator. Defined on variables. Same precedence as @code{++}.
9243
b37052ae
EZ
9244For debugging C@t{++}, @value{GDBN} implements a use of @samp{&} beyond what is
9245allowed in the C@t{++} language itself: you can use @samp{&(&@var{ref})}
c906108c 9246(or, if you prefer, simply @samp{&&@var{ref}}) to examine the address
b37052ae 9247where a C@t{++} reference variable (declared with @samp{&@var{ref}}) is
c906108c 9248stored.
c906108c
SS
9249
9250@item -
9251Negative. Defined on integral and floating-point types. Same
9252precedence as @code{++}.
9253
9254@item !
9255Logical negation. Defined on integral types. Same precedence as
9256@code{++}.
9257
9258@item ~
9259Bitwise complement operator. Defined on integral types. Same precedence as
9260@code{++}.
9261
9262
9263@item .@r{, }->
9264Structure member, and pointer-to-structure member. For convenience,
9265@value{GDBN} regards the two as equivalent, choosing whether to dereference a
9266pointer based on the stored type information.
9267Defined on @code{struct} and @code{union} data.
9268
c906108c
SS
9269@item .*@r{, }->*
9270Dereferences of pointers to members.
c906108c
SS
9271
9272@item []
9273Array indexing. @code{@var{a}[@var{i}]} is defined as
9274@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
9275
9276@item ()
9277Function parameter list. Same precedence as @code{->}.
9278
c906108c 9279@item ::
b37052ae 9280C@t{++} scope resolution operator. Defined on @code{struct}, @code{union},
7a292a7a 9281and @code{class} types.
c906108c
SS
9282
9283@item ::
7a292a7a
SS
9284Doubled colons also represent the @value{GDBN} scope operator
9285(@pxref{Expressions, ,Expressions}). Same precedence as @code{::},
9286above.
c906108c
SS
9287@end table
9288
c906108c
SS
9289If an operator is redefined in the user code, @value{GDBN} usually
9290attempts to invoke the redefined version instead of using the operator's
9291predefined meaning.
c906108c 9292
6d2ebf8b 9293@node C Constants
79a6e687 9294@subsubsection C and C@t{++} Constants
c906108c 9295
b37052ae 9296@cindex C and C@t{++} constants
c906108c 9297
b37052ae 9298@value{GDBN} allows you to express the constants of C and C@t{++} in the
c906108c 9299following ways:
c906108c
SS
9300
9301@itemize @bullet
9302@item
9303Integer constants are a sequence of digits. Octal constants are
6ca652b0
EZ
9304specified by a leading @samp{0} (i.e.@: zero), and hexadecimal constants
9305by a leading @samp{0x} or @samp{0X}. Constants may also end with a letter
c906108c
SS
9306@samp{l}, specifying that the constant should be treated as a
9307@code{long} value.
9308
9309@item
9310Floating point constants are a sequence of digits, followed by a decimal
9311point, followed by a sequence of digits, and optionally followed by an
9312exponent. An exponent is of the form:
9313@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
9314sequence of digits. The @samp{+} is optional for positive exponents.
d4f3574e
SS
9315A floating-point constant may also end with a letter @samp{f} or
9316@samp{F}, specifying that the constant should be treated as being of
9317the @code{float} (as opposed to the default @code{double}) type; or with
9318a letter @samp{l} or @samp{L}, which specifies a @code{long double}
9319constant.
c906108c
SS
9320
9321@item
9322Enumerated constants consist of enumerated identifiers, or their
9323integral equivalents.
9324
9325@item
9326Character constants are a single character surrounded by single quotes
9327(@code{'}), or a number---the ordinal value of the corresponding character
d4f3574e 9328(usually its @sc{ascii} value). Within quotes, the single character may
c906108c
SS
9329be represented by a letter or by @dfn{escape sequences}, which are of
9330the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
9331of the character's ordinal value; or of the form @samp{\@var{x}}, where
9332@samp{@var{x}} is a predefined special character---for example,
9333@samp{\n} for newline.
9334
9335@item
96a2c332
SS
9336String constants are a sequence of character constants surrounded by
9337double quotes (@code{"}). Any valid character constant (as described
9338above) may appear. Double quotes within the string must be preceded by
9339a backslash, so for instance @samp{"a\"b'c"} is a string of five
9340characters.
c906108c
SS
9341
9342@item
9343Pointer constants are an integral value. You can also write pointers
9344to constants using the C operator @samp{&}.
9345
9346@item
9347Array constants are comma-separated lists surrounded by braces @samp{@{}
9348and @samp{@}}; for example, @samp{@{1,2,3@}} is a three-element array of
9349integers, @samp{@{@{1,2@}, @{3,4@}, @{5,6@}@}} is a three-by-two array,
9350and @samp{@{&"hi", &"there", &"fred"@}} is a three-element array of pointers.
9351@end itemize
9352
79a6e687
BW
9353@node C Plus Plus Expressions
9354@subsubsection C@t{++} Expressions
b37052ae
EZ
9355
9356@cindex expressions in C@t{++}
9357@value{GDBN} expression handling can interpret most C@t{++} expressions.
9358
0179ffac
DC
9359@cindex debugging C@t{++} programs
9360@cindex C@t{++} compilers
9361@cindex debug formats and C@t{++}
9362@cindex @value{NGCC} and C@t{++}
c906108c 9363@quotation
b37052ae 9364@emph{Warning:} @value{GDBN} can only debug C@t{++} code if you use the
0179ffac
DC
9365proper compiler and the proper debug format. Currently, @value{GDBN}
9366works best when debugging C@t{++} code that is compiled with
9367@value{NGCC} 2.95.3 or with @value{NGCC} 3.1 or newer, using the options
9368@option{-gdwarf-2} or @option{-gstabs+}. DWARF 2 is preferred over
9369stabs+. Most configurations of @value{NGCC} emit either DWARF 2 or
9370stabs+ as their default debug format, so you usually don't need to
9371specify a debug format explicitly. Other compilers and/or debug formats
9372are likely to work badly or not at all when using @value{GDBN} to debug
9373C@t{++} code.
c906108c 9374@end quotation
c906108c
SS
9375
9376@enumerate
9377
9378@cindex member functions
9379@item
9380Member function calls are allowed; you can use expressions like
9381
474c8240 9382@smallexample
c906108c 9383count = aml->GetOriginal(x, y)
474c8240 9384@end smallexample
c906108c 9385
41afff9a 9386@vindex this@r{, inside C@t{++} member functions}
b37052ae 9387@cindex namespace in C@t{++}
c906108c
SS
9388@item
9389While a member function is active (in the selected stack frame), your
9390expressions have the same namespace available as the member function;
9391that is, @value{GDBN} allows implicit references to the class instance
b37052ae 9392pointer @code{this} following the same rules as C@t{++}.
c906108c 9393
c906108c 9394@cindex call overloaded functions
d4f3574e 9395@cindex overloaded functions, calling
b37052ae 9396@cindex type conversions in C@t{++}
c906108c
SS
9397@item
9398You can call overloaded functions; @value{GDBN} resolves the function
d4f3574e 9399call to the right definition, with some restrictions. @value{GDBN} does not
c906108c
SS
9400perform overload resolution involving user-defined type conversions,
9401calls to constructors, or instantiations of templates that do not exist
9402in the program. It also cannot handle ellipsis argument lists or
9403default arguments.
9404
9405It does perform integral conversions and promotions, floating-point
9406promotions, arithmetic conversions, pointer conversions, conversions of
9407class objects to base classes, and standard conversions such as those of
9408functions or arrays to pointers; it requires an exact match on the
9409number of function arguments.
9410
9411Overload resolution is always performed, unless you have specified
79a6e687
BW
9412@code{set overload-resolution off}. @xref{Debugging C Plus Plus,
9413,@value{GDBN} Features for C@t{++}}.
c906108c 9414
d4f3574e 9415You must specify @code{set overload-resolution off} in order to use an
c906108c
SS
9416explicit function signature to call an overloaded function, as in
9417@smallexample
9418p 'foo(char,int)'('x', 13)
9419@end smallexample
d4f3574e 9420
c906108c 9421The @value{GDBN} command-completion facility can simplify this;
79a6e687 9422see @ref{Completion, ,Command Completion}.
c906108c 9423
c906108c
SS
9424@cindex reference declarations
9425@item
b37052ae
EZ
9426@value{GDBN} understands variables declared as C@t{++} references; you can use
9427them in expressions just as you do in C@t{++} source---they are automatically
c906108c
SS
9428dereferenced.
9429
9430In the parameter list shown when @value{GDBN} displays a frame, the values of
9431reference variables are not displayed (unlike other variables); this
9432avoids clutter, since references are often used for large structures.
9433The @emph{address} of a reference variable is always shown, unless
9434you have specified @samp{set print address off}.
9435
9436@item
b37052ae 9437@value{GDBN} supports the C@t{++} name resolution operator @code{::}---your
c906108c
SS
9438expressions can use it just as expressions in your program do. Since
9439one scope may be defined in another, you can use @code{::} repeatedly if
9440necessary, for example in an expression like
9441@samp{@var{scope1}::@var{scope2}::@var{name}}. @value{GDBN} also allows
b37052ae 9442resolving name scope by reference to source files, in both C and C@t{++}
79a6e687 9443debugging (@pxref{Variables, ,Program Variables}).
c906108c
SS
9444@end enumerate
9445
b37052ae 9446In addition, when used with HP's C@t{++} compiler, @value{GDBN} supports
53a5351d
JM
9447calling virtual functions correctly, printing out virtual bases of
9448objects, calling functions in a base subobject, casting objects, and
9449invoking user-defined operators.
c906108c 9450
6d2ebf8b 9451@node C Defaults
79a6e687 9452@subsubsection C and C@t{++} Defaults
7a292a7a 9453
b37052ae 9454@cindex C and C@t{++} defaults
c906108c 9455
c906108c
SS
9456If you allow @value{GDBN} to set type and range checking automatically, they
9457both default to @code{off} whenever the working language changes to
b37052ae 9458C or C@t{++}. This happens regardless of whether you or @value{GDBN}
c906108c 9459selects the working language.
c906108c
SS
9460
9461If you allow @value{GDBN} to set the language automatically, it
9462recognizes source files whose names end with @file{.c}, @file{.C}, or
9463@file{.cc}, etc, and when @value{GDBN} enters code compiled from one of
b37052ae 9464these files, it sets the working language to C or C@t{++}.
79a6e687 9465@xref{Automatically, ,Having @value{GDBN} Infer the Source Language},
c906108c
SS
9466for further details.
9467
c906108c
SS
9468@c Type checking is (a) primarily motivated by Modula-2, and (b)
9469@c unimplemented. If (b) changes, it might make sense to let this node
9470@c appear even if Mod-2 does not, but meanwhile ignore it. roland 16jul93.
7a292a7a 9471
6d2ebf8b 9472@node C Checks
79a6e687 9473@subsubsection C and C@t{++} Type and Range Checks
7a292a7a 9474
b37052ae 9475@cindex C and C@t{++} checks
c906108c 9476
b37052ae 9477By default, when @value{GDBN} parses C or C@t{++} expressions, type checking
c906108c
SS
9478is not used. However, if you turn type checking on, @value{GDBN}
9479considers two variables type equivalent if:
9480
9481@itemize @bullet
9482@item
9483The two variables are structured and have the same structure, union, or
9484enumerated tag.
9485
9486@item
9487The two variables have the same type name, or types that have been
9488declared equivalent through @code{typedef}.
9489
9490@ignore
9491@c leaving this out because neither J Gilmore nor R Pesch understand it.
9492@c FIXME--beers?
9493@item
9494The two @code{struct}, @code{union}, or @code{enum} variables are
9495declared in the same declaration. (Note: this may not be true for all C
9496compilers.)
9497@end ignore
9498@end itemize
9499
9500Range checking, if turned on, is done on mathematical operations. Array
9501indices are not checked, since they are often used to index a pointer
9502that is not itself an array.
c906108c 9503
6d2ebf8b 9504@node Debugging C
c906108c 9505@subsubsection @value{GDBN} and C
c906108c
SS
9506
9507The @code{set print union} and @code{show print union} commands apply to
9508the @code{union} type. When set to @samp{on}, any @code{union} that is
7a292a7a
SS
9509inside a @code{struct} or @code{class} is also printed. Otherwise, it
9510appears as @samp{@{...@}}.
c906108c
SS
9511
9512The @code{@@} operator aids in the debugging of dynamic arrays, formed
9513with pointers and a memory allocation function. @xref{Expressions,
9514,Expressions}.
9515
79a6e687
BW
9516@node Debugging C Plus Plus
9517@subsubsection @value{GDBN} Features for C@t{++}
c906108c 9518
b37052ae 9519@cindex commands for C@t{++}
7a292a7a 9520
b37052ae
EZ
9521Some @value{GDBN} commands are particularly useful with C@t{++}, and some are
9522designed specifically for use with C@t{++}. Here is a summary:
c906108c
SS
9523
9524@table @code
9525@cindex break in overloaded functions
9526@item @r{breakpoint menus}
9527When you want a breakpoint in a function whose name is overloaded,
9528@value{GDBN} breakpoint menus help you specify which function definition
79a6e687 9529you want. @xref{Breakpoint Menus,,Breakpoint Menus}.
c906108c 9530
b37052ae 9531@cindex overloading in C@t{++}
c906108c
SS
9532@item rbreak @var{regex}
9533Setting breakpoints using regular expressions is helpful for setting
9534breakpoints on overloaded functions that are not members of any special
9535classes.
79a6e687 9536@xref{Set Breaks, ,Setting Breakpoints}.
c906108c 9537
b37052ae 9538@cindex C@t{++} exception handling
c906108c
SS
9539@item catch throw
9540@itemx catch catch
b37052ae 9541Debug C@t{++} exception handling using these commands. @xref{Set
79a6e687 9542Catchpoints, , Setting Catchpoints}.
c906108c
SS
9543
9544@cindex inheritance
9545@item ptype @var{typename}
9546Print inheritance relationships as well as other information for type
9547@var{typename}.
9548@xref{Symbols, ,Examining the Symbol Table}.
9549
b37052ae 9550@cindex C@t{++} symbol display
c906108c
SS
9551@item set print demangle
9552@itemx show print demangle
9553@itemx set print asm-demangle
9554@itemx show print asm-demangle
b37052ae
EZ
9555Control whether C@t{++} symbols display in their source form, both when
9556displaying code as C@t{++} source and when displaying disassemblies.
79a6e687 9557@xref{Print Settings, ,Print Settings}.
c906108c
SS
9558
9559@item set print object
9560@itemx show print object
9561Choose whether to print derived (actual) or declared types of objects.
79a6e687 9562@xref{Print Settings, ,Print Settings}.
c906108c
SS
9563
9564@item set print vtbl
9565@itemx show print vtbl
9566Control the format for printing virtual function tables.
79a6e687 9567@xref{Print Settings, ,Print Settings}.
c906108c 9568(The @code{vtbl} commands do not work on programs compiled with the HP
b37052ae 9569ANSI C@t{++} compiler (@code{aCC}).)
c906108c
SS
9570
9571@kindex set overload-resolution
d4f3574e 9572@cindex overloaded functions, overload resolution
c906108c 9573@item set overload-resolution on
b37052ae 9574Enable overload resolution for C@t{++} expression evaluation. The default
c906108c
SS
9575is on. For overloaded functions, @value{GDBN} evaluates the arguments
9576and searches for a function whose signature matches the argument types,
79a6e687
BW
9577using the standard C@t{++} conversion rules (see @ref{C Plus Plus
9578Expressions, ,C@t{++} Expressions}, for details).
9579If it cannot find a match, it emits a message.
c906108c
SS
9580
9581@item set overload-resolution off
b37052ae 9582Disable overload resolution for C@t{++} expression evaluation. For
c906108c
SS
9583overloaded functions that are not class member functions, @value{GDBN}
9584chooses the first function of the specified name that it finds in the
9585symbol table, whether or not its arguments are of the correct type. For
9586overloaded functions that are class member functions, @value{GDBN}
9587searches for a function whose signature @emph{exactly} matches the
9588argument types.
c906108c 9589
9c16f35a
EZ
9590@kindex show overload-resolution
9591@item show overload-resolution
9592Show the current setting of overload resolution.
9593
c906108c
SS
9594@item @r{Overloaded symbol names}
9595You can specify a particular definition of an overloaded symbol, using
b37052ae 9596the same notation that is used to declare such symbols in C@t{++}: type
c906108c
SS
9597@code{@var{symbol}(@var{types})} rather than just @var{symbol}. You can
9598also use the @value{GDBN} command-line word completion facilities to list the
9599available choices, or to finish the type list for you.
79a6e687 9600@xref{Completion,, Command Completion}, for details on how to do this.
c906108c 9601@end table
c906108c 9602
b37303ee
AF
9603@node Objective-C
9604@subsection Objective-C
9605
9606@cindex Objective-C
9607This section provides information about some commands and command
721c2651
EZ
9608options that are useful for debugging Objective-C code. See also
9609@ref{Symbols, info classes}, and @ref{Symbols, info selectors}, for a
9610few more commands specific to Objective-C support.
b37303ee
AF
9611
9612@menu
b383017d
RM
9613* Method Names in Commands::
9614* The Print Command with Objective-C::
b37303ee
AF
9615@end menu
9616
c8f4133a 9617@node Method Names in Commands
b37303ee
AF
9618@subsubsection Method Names in Commands
9619
9620The following commands have been extended to accept Objective-C method
9621names as line specifications:
9622
9623@kindex clear@r{, and Objective-C}
9624@kindex break@r{, and Objective-C}
9625@kindex info line@r{, and Objective-C}
9626@kindex jump@r{, and Objective-C}
9627@kindex list@r{, and Objective-C}
9628@itemize
9629@item @code{clear}
9630@item @code{break}
9631@item @code{info line}
9632@item @code{jump}
9633@item @code{list}
9634@end itemize
9635
9636A fully qualified Objective-C method name is specified as
9637
9638@smallexample
9639-[@var{Class} @var{methodName}]
9640@end smallexample
9641
c552b3bb
JM
9642where the minus sign is used to indicate an instance method and a
9643plus sign (not shown) is used to indicate a class method. The class
9644name @var{Class} and method name @var{methodName} are enclosed in
9645brackets, similar to the way messages are specified in Objective-C
9646source code. For example, to set a breakpoint at the @code{create}
9647instance method of class @code{Fruit} in the program currently being
9648debugged, enter:
b37303ee
AF
9649
9650@smallexample
9651break -[Fruit create]
9652@end smallexample
9653
9654To list ten program lines around the @code{initialize} class method,
9655enter:
9656
9657@smallexample
9658list +[NSText initialize]
9659@end smallexample
9660
c552b3bb
JM
9661In the current version of @value{GDBN}, the plus or minus sign is
9662required. In future versions of @value{GDBN}, the plus or minus
9663sign will be optional, but you can use it to narrow the search. It
9664is also possible to specify just a method name:
b37303ee
AF
9665
9666@smallexample
9667break create
9668@end smallexample
9669
9670You must specify the complete method name, including any colons. If
9671your program's source files contain more than one @code{create} method,
9672you'll be presented with a numbered list of classes that implement that
9673method. Indicate your choice by number, or type @samp{0} to exit if
9674none apply.
9675
9676As another example, to clear a breakpoint established at the
9677@code{makeKeyAndOrderFront:} method of the @code{NSWindow} class, enter:
9678
9679@smallexample
9680clear -[NSWindow makeKeyAndOrderFront:]
9681@end smallexample
9682
9683@node The Print Command with Objective-C
9684@subsubsection The Print Command With Objective-C
721c2651 9685@cindex Objective-C, print objects
c552b3bb
JM
9686@kindex print-object
9687@kindex po @r{(@code{print-object})}
b37303ee 9688
c552b3bb 9689The print command has also been extended to accept methods. For example:
b37303ee
AF
9690
9691@smallexample
c552b3bb 9692print -[@var{object} hash]
b37303ee
AF
9693@end smallexample
9694
9695@cindex print an Objective-C object description
c552b3bb
JM
9696@cindex @code{_NSPrintForDebugger}, and printing Objective-C objects
9697@noindent
9698will tell @value{GDBN} to send the @code{hash} message to @var{object}
9699and print the result. Also, an additional command has been added,
9700@code{print-object} or @code{po} for short, which is meant to print
9701the description of an object. However, this command may only work
9702with certain Objective-C libraries that have a particular hook
9703function, @code{_NSPrintForDebugger}, defined.
b37303ee 9704
09d4efe1
EZ
9705@node Fortran
9706@subsection Fortran
9707@cindex Fortran-specific support in @value{GDBN}
9708
814e32d7
WZ
9709@value{GDBN} can be used to debug programs written in Fortran, but it
9710currently supports only the features of Fortran 77 language.
9711
9712@cindex trailing underscore, in Fortran symbols
9713Some Fortran compilers (@sc{gnu} Fortran 77 and Fortran 95 compilers
9714among them) append an underscore to the names of variables and
9715functions. When you debug programs compiled by those compilers, you
9716will need to refer to variables and functions with a trailing
9717underscore.
9718
9719@menu
9720* Fortran Operators:: Fortran operators and expressions
9721* Fortran Defaults:: Default settings for Fortran
79a6e687 9722* Special Fortran Commands:: Special @value{GDBN} commands for Fortran
814e32d7
WZ
9723@end menu
9724
9725@node Fortran Operators
79a6e687 9726@subsubsection Fortran Operators and Expressions
814e32d7
WZ
9727
9728@cindex Fortran operators and expressions
9729
9730Operators must be defined on values of specific types. For instance,
9731@code{+} is defined on numbers, but not on characters or other non-
ff2587ec 9732arithmetic types. Operators are often defined on groups of types.
814e32d7
WZ
9733
9734@table @code
9735@item **
9736The exponentiation operator. It raises the first operand to the power
9737of the second one.
9738
9739@item :
9740The range operator. Normally used in the form of array(low:high) to
9741represent a section of array.
9742@end table
9743
9744@node Fortran Defaults
9745@subsubsection Fortran Defaults
9746
9747@cindex Fortran Defaults
9748
9749Fortran symbols are usually case-insensitive, so @value{GDBN} by
9750default uses case-insensitive matches for Fortran symbols. You can
9751change that with the @samp{set case-insensitive} command, see
9752@ref{Symbols}, for the details.
9753
79a6e687
BW
9754@node Special Fortran Commands
9755@subsubsection Special Fortran Commands
814e32d7
WZ
9756
9757@cindex Special Fortran commands
9758
db2e3e2e
BW
9759@value{GDBN} has some commands to support Fortran-specific features,
9760such as displaying common blocks.
814e32d7 9761
09d4efe1
EZ
9762@table @code
9763@cindex @code{COMMON} blocks, Fortran
9764@kindex info common
9765@item info common @r{[}@var{common-name}@r{]}
9766This command prints the values contained in the Fortran @code{COMMON}
9767block whose name is @var{common-name}. With no argument, the names of
d52fb0e9 9768all @code{COMMON} blocks visible at the current program location are
09d4efe1
EZ
9769printed.
9770@end table
9771
9c16f35a
EZ
9772@node Pascal
9773@subsection Pascal
9774
9775@cindex Pascal support in @value{GDBN}, limitations
9776Debugging Pascal programs which use sets, subranges, file variables, or
9777nested functions does not currently work. @value{GDBN} does not support
9778entering expressions, printing values, or similar features using Pascal
9779syntax.
9780
9781The Pascal-specific command @code{set print pascal_static-members}
9782controls whether static members of Pascal objects are displayed.
9783@xref{Print Settings, pascal_static-members}.
9784
09d4efe1 9785@node Modula-2
c906108c 9786@subsection Modula-2
7a292a7a 9787
d4f3574e 9788@cindex Modula-2, @value{GDBN} support
c906108c
SS
9789
9790The extensions made to @value{GDBN} to support Modula-2 only support
9791output from the @sc{gnu} Modula-2 compiler (which is currently being
9792developed). Other Modula-2 compilers are not currently supported, and
9793attempting to debug executables produced by them is most likely
9794to give an error as @value{GDBN} reads in the executable's symbol
9795table.
9796
9797@cindex expressions in Modula-2
9798@menu
9799* M2 Operators:: Built-in operators
9800* Built-In Func/Proc:: Built-in functions and procedures
9801* M2 Constants:: Modula-2 constants
72019c9c 9802* M2 Types:: Modula-2 types
c906108c
SS
9803* M2 Defaults:: Default settings for Modula-2
9804* Deviations:: Deviations from standard Modula-2
9805* M2 Checks:: Modula-2 type and range checks
9806* M2 Scope:: The scope operators @code{::} and @code{.}
9807* GDB/M2:: @value{GDBN} and Modula-2
9808@end menu
9809
6d2ebf8b 9810@node M2 Operators
c906108c
SS
9811@subsubsection Operators
9812@cindex Modula-2 operators
9813
9814Operators must be defined on values of specific types. For instance,
9815@code{+} is defined on numbers, but not on structures. Operators are
9816often defined on groups of types. For the purposes of Modula-2, the
9817following definitions hold:
9818
9819@itemize @bullet
9820
9821@item
9822@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
9823their subranges.
9824
9825@item
9826@emph{Character types} consist of @code{CHAR} and its subranges.
9827
9828@item
9829@emph{Floating-point types} consist of @code{REAL}.
9830
9831@item
9832@emph{Pointer types} consist of anything declared as @code{POINTER TO
9833@var{type}}.
9834
9835@item
9836@emph{Scalar types} consist of all of the above.
9837
9838@item
9839@emph{Set types} consist of @code{SET} and @code{BITSET} types.
9840
9841@item
9842@emph{Boolean types} consist of @code{BOOLEAN}.
9843@end itemize
9844
9845@noindent
9846The following operators are supported, and appear in order of
9847increasing precedence:
9848
9849@table @code
9850@item ,
9851Function argument or array index separator.
9852
9853@item :=
9854Assignment. The value of @var{var} @code{:=} @var{value} is
9855@var{value}.
9856
9857@item <@r{, }>
9858Less than, greater than on integral, floating-point, or enumerated
9859types.
9860
9861@item <=@r{, }>=
96a2c332 9862Less than or equal to, greater than or equal to
c906108c
SS
9863on integral, floating-point and enumerated types, or set inclusion on
9864set types. Same precedence as @code{<}.
9865
9866@item =@r{, }<>@r{, }#
9867Equality and two ways of expressing inequality, valid on scalar types.
9868Same precedence as @code{<}. In @value{GDBN} scripts, only @code{<>} is
9869available for inequality, since @code{#} conflicts with the script
9870comment character.
9871
9872@item IN
9873Set membership. Defined on set types and the types of their members.
9874Same precedence as @code{<}.
9875
9876@item OR
9877Boolean disjunction. Defined on boolean types.
9878
9879@item AND@r{, }&
d4f3574e 9880Boolean conjunction. Defined on boolean types.
c906108c
SS
9881
9882@item @@
9883The @value{GDBN} ``artificial array'' operator (@pxref{Expressions, ,Expressions}).
9884
9885@item +@r{, }-
9886Addition and subtraction on integral and floating-point types, or union
9887and difference on set types.
9888
9889@item *
9890Multiplication on integral and floating-point types, or set intersection
9891on set types.
9892
9893@item /
9894Division on floating-point types, or symmetric set difference on set
9895types. Same precedence as @code{*}.
9896
9897@item DIV@r{, }MOD
9898Integer division and remainder. Defined on integral types. Same
9899precedence as @code{*}.
9900
9901@item -
9902Negative. Defined on @code{INTEGER} and @code{REAL} data.
9903
9904@item ^
9905Pointer dereferencing. Defined on pointer types.
9906
9907@item NOT
9908Boolean negation. Defined on boolean types. Same precedence as
9909@code{^}.
9910
9911@item .
9912@code{RECORD} field selector. Defined on @code{RECORD} data. Same
9913precedence as @code{^}.
9914
9915@item []
9916Array indexing. Defined on @code{ARRAY} data. Same precedence as @code{^}.
9917
9918@item ()
9919Procedure argument list. Defined on @code{PROCEDURE} objects. Same precedence
9920as @code{^}.
9921
9922@item ::@r{, }.
9923@value{GDBN} and Modula-2 scope operators.
9924@end table
9925
9926@quotation
72019c9c 9927@emph{Warning:} Set expressions and their operations are not yet supported, so @value{GDBN}
c906108c
SS
9928treats the use of the operator @code{IN}, or the use of operators
9929@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
9930@code{<=}, and @code{>=} on sets as an error.
9931@end quotation
9932
cb51c4e0 9933
6d2ebf8b 9934@node Built-In Func/Proc
79a6e687 9935@subsubsection Built-in Functions and Procedures
cb51c4e0 9936@cindex Modula-2 built-ins
c906108c
SS
9937
9938Modula-2 also makes available several built-in procedures and functions.
9939In describing these, the following metavariables are used:
9940
9941@table @var
9942
9943@item a
9944represents an @code{ARRAY} variable.
9945
9946@item c
9947represents a @code{CHAR} constant or variable.
9948
9949@item i
9950represents a variable or constant of integral type.
9951
9952@item m
9953represents an identifier that belongs to a set. Generally used in the
9954same function with the metavariable @var{s}. The type of @var{s} should
9955be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}).
9956
9957@item n
9958represents a variable or constant of integral or floating-point type.
9959
9960@item r
9961represents a variable or constant of floating-point type.
9962
9963@item t
9964represents a type.
9965
9966@item v
9967represents a variable.
9968
9969@item x
9970represents a variable or constant of one of many types. See the
9971explanation of the function for details.
9972@end table
9973
9974All Modula-2 built-in procedures also return a result, described below.
9975
9976@table @code
9977@item ABS(@var{n})
9978Returns the absolute value of @var{n}.
9979
9980@item CAP(@var{c})
9981If @var{c} is a lower case letter, it returns its upper case
c3f6f71d 9982equivalent, otherwise it returns its argument.
c906108c
SS
9983
9984@item CHR(@var{i})
9985Returns the character whose ordinal value is @var{i}.
9986
9987@item DEC(@var{v})
c3f6f71d 9988Decrements the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
9989
9990@item DEC(@var{v},@var{i})
9991Decrements the value in the variable @var{v} by @var{i}. Returns the
9992new value.
9993
9994@item EXCL(@var{m},@var{s})
9995Removes the element @var{m} from the set @var{s}. Returns the new
9996set.
9997
9998@item FLOAT(@var{i})
9999Returns the floating point equivalent of the integer @var{i}.
10000
10001@item HIGH(@var{a})
10002Returns the index of the last member of @var{a}.
10003
10004@item INC(@var{v})
c3f6f71d 10005Increments the value in the variable @var{v} by one. Returns the new value.
c906108c
SS
10006
10007@item INC(@var{v},@var{i})
10008Increments the value in the variable @var{v} by @var{i}. Returns the
10009new value.
10010
10011@item INCL(@var{m},@var{s})
10012Adds the element @var{m} to the set @var{s} if it is not already
10013there. Returns the new set.
10014
10015@item MAX(@var{t})
10016Returns the maximum value of the type @var{t}.
10017
10018@item MIN(@var{t})
10019Returns the minimum value of the type @var{t}.
10020
10021@item ODD(@var{i})
10022Returns boolean TRUE if @var{i} is an odd number.
10023
10024@item ORD(@var{x})
10025Returns the ordinal value of its argument. For example, the ordinal
c3f6f71d
JM
10026value of a character is its @sc{ascii} value (on machines supporting the
10027@sc{ascii} character set). @var{x} must be of an ordered type, which include
c906108c
SS
10028integral, character and enumerated types.
10029
10030@item SIZE(@var{x})
10031Returns the size of its argument. @var{x} can be a variable or a type.
10032
10033@item TRUNC(@var{r})
10034Returns the integral part of @var{r}.
10035
844781a1
GM
10036@item TSIZE(@var{x})
10037Returns the size of its argument. @var{x} can be a variable or a type.
10038
c906108c
SS
10039@item VAL(@var{t},@var{i})
10040Returns the member of the type @var{t} whose ordinal value is @var{i}.
10041@end table
10042
10043@quotation
10044@emph{Warning:} Sets and their operations are not yet supported, so
10045@value{GDBN} treats the use of procedures @code{INCL} and @code{EXCL} as
10046an error.
10047@end quotation
10048
10049@cindex Modula-2 constants
6d2ebf8b 10050@node M2 Constants
c906108c
SS
10051@subsubsection Constants
10052
10053@value{GDBN} allows you to express the constants of Modula-2 in the following
10054ways:
10055
10056@itemize @bullet
10057
10058@item
10059Integer constants are simply a sequence of digits. When used in an
10060expression, a constant is interpreted to be type-compatible with the
10061rest of the expression. Hexadecimal integers are specified by a
10062trailing @samp{H}, and octal integers by a trailing @samp{B}.
10063
10064@item
10065Floating point constants appear as a sequence of digits, followed by a
10066decimal point and another sequence of digits. An optional exponent can
10067then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
10068@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
10069digits of the floating point constant must be valid decimal (base 10)
10070digits.
10071
10072@item
10073Character constants consist of a single character enclosed by a pair of
10074like quotes, either single (@code{'}) or double (@code{"}). They may
c3f6f71d 10075also be expressed by their ordinal value (their @sc{ascii} value, usually)
c906108c
SS
10076followed by a @samp{C}.
10077
10078@item
10079String constants consist of a sequence of characters enclosed by a
10080pair of like quotes, either single (@code{'}) or double (@code{"}).
10081Escape sequences in the style of C are also allowed. @xref{C
79a6e687 10082Constants, ,C and C@t{++} Constants}, for a brief explanation of escape
c906108c
SS
10083sequences.
10084
10085@item
10086Enumerated constants consist of an enumerated identifier.
10087
10088@item
10089Boolean constants consist of the identifiers @code{TRUE} and
10090@code{FALSE}.
10091
10092@item
10093Pointer constants consist of integral values only.
10094
10095@item
10096Set constants are not yet supported.
10097@end itemize
10098
72019c9c
GM
10099@node M2 Types
10100@subsubsection Modula-2 Types
10101@cindex Modula-2 types
10102
10103Currently @value{GDBN} can print the following data types in Modula-2
10104syntax: array types, record types, set types, pointer types, procedure
10105types, enumerated types, subrange types and base types. You can also
10106print the contents of variables declared using these type.
10107This section gives a number of simple source code examples together with
10108sample @value{GDBN} sessions.
10109
10110The first example contains the following section of code:
10111
10112@smallexample
10113VAR
10114 s: SET OF CHAR ;
10115 r: [20..40] ;
10116@end smallexample
10117
10118@noindent
10119and you can request @value{GDBN} to interrogate the type and value of
10120@code{r} and @code{s}.
10121
10122@smallexample
10123(@value{GDBP}) print s
10124@{'A'..'C', 'Z'@}
10125(@value{GDBP}) ptype s
10126SET OF CHAR
10127(@value{GDBP}) print r
1012821
10129(@value{GDBP}) ptype r
10130[20..40]
10131@end smallexample
10132
10133@noindent
10134Likewise if your source code declares @code{s} as:
10135
10136@smallexample
10137VAR
10138 s: SET ['A'..'Z'] ;
10139@end smallexample
10140
10141@noindent
10142then you may query the type of @code{s} by:
10143
10144@smallexample
10145(@value{GDBP}) ptype s
10146type = SET ['A'..'Z']
10147@end smallexample
10148
10149@noindent
10150Note that at present you cannot interactively manipulate set
10151expressions using the debugger.
10152
10153The following example shows how you might declare an array in Modula-2
10154and how you can interact with @value{GDBN} to print its type and contents:
10155
10156@smallexample
10157VAR
10158 s: ARRAY [-10..10] OF CHAR ;
10159@end smallexample
10160
10161@smallexample
10162(@value{GDBP}) ptype s
10163ARRAY [-10..10] OF CHAR
10164@end smallexample
10165
10166Note that the array handling is not yet complete and although the type
10167is printed correctly, expression handling still assumes that all
10168arrays have a lower bound of zero and not @code{-10} as in the example
844781a1 10169above.
72019c9c
GM
10170
10171Here are some more type related Modula-2 examples:
10172
10173@smallexample
10174TYPE
10175 colour = (blue, red, yellow, green) ;
10176 t = [blue..yellow] ;
10177VAR
10178 s: t ;
10179BEGIN
10180 s := blue ;
10181@end smallexample
10182
10183@noindent
10184The @value{GDBN} interaction shows how you can query the data type
10185and value of a variable.
10186
10187@smallexample
10188(@value{GDBP}) print s
10189$1 = blue
10190(@value{GDBP}) ptype t
10191type = [blue..yellow]
10192@end smallexample
10193
10194@noindent
10195In this example a Modula-2 array is declared and its contents
10196displayed. Observe that the contents are written in the same way as
10197their @code{C} counterparts.
10198
10199@smallexample
10200VAR
10201 s: ARRAY [1..5] OF CARDINAL ;
10202BEGIN
10203 s[1] := 1 ;
10204@end smallexample
10205
10206@smallexample
10207(@value{GDBP}) print s
10208$1 = @{1, 0, 0, 0, 0@}
10209(@value{GDBP}) ptype s
10210type = ARRAY [1..5] OF CARDINAL
10211@end smallexample
10212
10213The Modula-2 language interface to @value{GDBN} also understands
10214pointer types as shown in this example:
10215
10216@smallexample
10217VAR
10218 s: POINTER TO ARRAY [1..5] OF CARDINAL ;
10219BEGIN
10220 NEW(s) ;
10221 s^[1] := 1 ;
10222@end smallexample
10223
10224@noindent
10225and you can request that @value{GDBN} describes the type of @code{s}.
10226
10227@smallexample
10228(@value{GDBP}) ptype s
10229type = POINTER TO ARRAY [1..5] OF CARDINAL
10230@end smallexample
10231
10232@value{GDBN} handles compound types as we can see in this example.
10233Here we combine array types, record types, pointer types and subrange
10234types:
10235
10236@smallexample
10237TYPE
10238 foo = RECORD
10239 f1: CARDINAL ;
10240 f2: CHAR ;
10241 f3: myarray ;
10242 END ;
10243
10244 myarray = ARRAY myrange OF CARDINAL ;
10245 myrange = [-2..2] ;
10246VAR
10247 s: POINTER TO ARRAY myrange OF foo ;
10248@end smallexample
10249
10250@noindent
10251and you can ask @value{GDBN} to describe the type of @code{s} as shown
10252below.
10253
10254@smallexample
10255(@value{GDBP}) ptype s
10256type = POINTER TO ARRAY [-2..2] OF foo = RECORD
10257 f1 : CARDINAL;
10258 f2 : CHAR;
10259 f3 : ARRAY [-2..2] OF CARDINAL;
10260END
10261@end smallexample
10262
6d2ebf8b 10263@node M2 Defaults
79a6e687 10264@subsubsection Modula-2 Defaults
c906108c
SS
10265@cindex Modula-2 defaults
10266
10267If type and range checking are set automatically by @value{GDBN}, they
10268both default to @code{on} whenever the working language changes to
d4f3574e 10269Modula-2. This happens regardless of whether you or @value{GDBN}
c906108c
SS
10270selected the working language.
10271
10272If you allow @value{GDBN} to set the language automatically, then entering
10273code compiled from a file whose name ends with @file{.mod} sets the
79a6e687
BW
10274working language to Modula-2. @xref{Automatically, ,Having @value{GDBN}
10275Infer the Source Language}, for further details.
c906108c 10276
6d2ebf8b 10277@node Deviations
79a6e687 10278@subsubsection Deviations from Standard Modula-2
c906108c
SS
10279@cindex Modula-2, deviations from
10280
10281A few changes have been made to make Modula-2 programs easier to debug.
10282This is done primarily via loosening its type strictness:
10283
10284@itemize @bullet
10285@item
10286Unlike in standard Modula-2, pointer constants can be formed by
10287integers. This allows you to modify pointer variables during
10288debugging. (In standard Modula-2, the actual address contained in a
10289pointer variable is hidden from you; it can only be modified
10290through direct assignment to another pointer variable or expression that
10291returned a pointer.)
10292
10293@item
10294C escape sequences can be used in strings and characters to represent
10295non-printable characters. @value{GDBN} prints out strings with these
10296escape sequences embedded. Single non-printable characters are
10297printed using the @samp{CHR(@var{nnn})} format.
10298
10299@item
10300The assignment operator (@code{:=}) returns the value of its right-hand
10301argument.
10302
10303@item
10304All built-in procedures both modify @emph{and} return their argument.
10305@end itemize
10306
6d2ebf8b 10307@node M2 Checks
79a6e687 10308@subsubsection Modula-2 Type and Range Checks
c906108c
SS
10309@cindex Modula-2 checks
10310
10311@quotation
10312@emph{Warning:} in this release, @value{GDBN} does not yet perform type or
10313range checking.
10314@end quotation
10315@c FIXME remove warning when type/range checks added
10316
10317@value{GDBN} considers two Modula-2 variables type equivalent if:
10318
10319@itemize @bullet
10320@item
10321They are of types that have been declared equivalent via a @code{TYPE
10322@var{t1} = @var{t2}} statement
10323
10324@item
10325They have been declared on the same line. (Note: This is true of the
10326@sc{gnu} Modula-2 compiler, but it may not be true of other compilers.)
10327@end itemize
10328
10329As long as type checking is enabled, any attempt to combine variables
10330whose types are not equivalent is an error.
10331
10332Range checking is done on all mathematical operations, assignment, array
10333index bounds, and all built-in functions and procedures.
10334
6d2ebf8b 10335@node M2 Scope
79a6e687 10336@subsubsection The Scope Operators @code{::} and @code{.}
c906108c 10337@cindex scope
41afff9a 10338@cindex @code{.}, Modula-2 scope operator
c906108c
SS
10339@cindex colon, doubled as scope operator
10340@ifinfo
41afff9a 10341@vindex colon-colon@r{, in Modula-2}
c906108c
SS
10342@c Info cannot handle :: but TeX can.
10343@end ifinfo
10344@iftex
41afff9a 10345@vindex ::@r{, in Modula-2}
c906108c
SS
10346@end iftex
10347
10348There are a few subtle differences between the Modula-2 scope operator
10349(@code{.}) and the @value{GDBN} scope operator (@code{::}). The two have
10350similar syntax:
10351
474c8240 10352@smallexample
c906108c
SS
10353
10354@var{module} . @var{id}
10355@var{scope} :: @var{id}
474c8240 10356@end smallexample
c906108c
SS
10357
10358@noindent
10359where @var{scope} is the name of a module or a procedure,
10360@var{module} the name of a module, and @var{id} is any declared
10361identifier within your program, except another module.
10362
10363Using the @code{::} operator makes @value{GDBN} search the scope
10364specified by @var{scope} for the identifier @var{id}. If it is not
10365found in the specified scope, then @value{GDBN} searches all scopes
10366enclosing the one specified by @var{scope}.
10367
10368Using the @code{.} operator makes @value{GDBN} search the current scope for
10369the identifier specified by @var{id} that was imported from the
10370definition module specified by @var{module}. With this operator, it is
10371an error if the identifier @var{id} was not imported from definition
10372module @var{module}, or if @var{id} is not an identifier in
10373@var{module}.
10374
6d2ebf8b 10375@node GDB/M2
c906108c
SS
10376@subsubsection @value{GDBN} and Modula-2
10377
10378Some @value{GDBN} commands have little use when debugging Modula-2 programs.
10379Five subcommands of @code{set print} and @code{show print} apply
b37052ae 10380specifically to C and C@t{++}: @samp{vtbl}, @samp{demangle},
c906108c 10381@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
b37052ae 10382apply to C@t{++}, and the last to the C @code{union} type, which has no direct
c906108c
SS
10383analogue in Modula-2.
10384
10385The @code{@@} operator (@pxref{Expressions, ,Expressions}), while available
d4f3574e 10386with any language, is not useful with Modula-2. Its
c906108c 10387intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
b37052ae 10388created in Modula-2 as they can in C or C@t{++}. However, because an
c906108c 10389address can be specified by an integral constant, the construct
d4f3574e 10390@samp{@{@var{type}@}@var{adrexp}} is still useful.
c906108c
SS
10391
10392@cindex @code{#} in Modula-2
10393In @value{GDBN} scripts, the Modula-2 inequality operator @code{#} is
10394interpreted as the beginning of a comment. Use @code{<>} instead.
c906108c 10395
e07c999f
PH
10396@node Ada
10397@subsection Ada
10398@cindex Ada
10399
10400The extensions made to @value{GDBN} for Ada only support
10401output from the @sc{gnu} Ada (GNAT) compiler.
10402Other Ada compilers are not currently supported, and
10403attempting to debug executables produced by them is most likely
10404to be difficult.
10405
10406
10407@cindex expressions in Ada
10408@menu
10409* Ada Mode Intro:: General remarks on the Ada syntax
10410 and semantics supported by Ada mode
10411 in @value{GDBN}.
10412* Omissions from Ada:: Restrictions on the Ada expression syntax.
10413* Additions to Ada:: Extensions of the Ada expression syntax.
10414* Stopping Before Main Program:: Debugging the program during elaboration.
10415* Ada Glitches:: Known peculiarities of Ada mode.
10416@end menu
10417
10418@node Ada Mode Intro
10419@subsubsection Introduction
10420@cindex Ada mode, general
10421
10422The Ada mode of @value{GDBN} supports a fairly large subset of Ada expression
10423syntax, with some extensions.
10424The philosophy behind the design of this subset is
10425
10426@itemize @bullet
10427@item
10428That @value{GDBN} should provide basic literals and access to operations for
10429arithmetic, dereferencing, field selection, indexing, and subprogram calls,
10430leaving more sophisticated computations to subprograms written into the
10431program (which therefore may be called from @value{GDBN}).
10432
10433@item
10434That type safety and strict adherence to Ada language restrictions
10435are not particularly important to the @value{GDBN} user.
10436
10437@item
10438That brevity is important to the @value{GDBN} user.
10439@end itemize
10440
10441Thus, for brevity, the debugger acts as if there were
10442implicit @code{with} and @code{use} clauses in effect for all user-written
10443packages, making it unnecessary to fully qualify most names with
10444their packages, regardless of context. Where this causes ambiguity,
10445@value{GDBN} asks the user's intent.
10446
10447The debugger will start in Ada mode if it detects an Ada main program.
10448As for other languages, it will enter Ada mode when stopped in a program that
10449was translated from an Ada source file.
10450
10451While in Ada mode, you may use `@t{--}' for comments. This is useful
10452mostly for documenting command files. The standard @value{GDBN} comment
10453(@samp{#}) still works at the beginning of a line in Ada mode, but not in the
10454middle (to allow based literals).
10455
10456The debugger supports limited overloading. Given a subprogram call in which
10457the function symbol has multiple definitions, it will use the number of
10458actual parameters and some information about their types to attempt to narrow
10459the set of definitions. It also makes very limited use of context, preferring
10460procedures to functions in the context of the @code{call} command, and
10461functions to procedures elsewhere.
10462
10463@node Omissions from Ada
10464@subsubsection Omissions from Ada
10465@cindex Ada, omissions from
10466
10467Here are the notable omissions from the subset:
10468
10469@itemize @bullet
10470@item
10471Only a subset of the attributes are supported:
10472
10473@itemize @minus
10474@item
10475@t{'First}, @t{'Last}, and @t{'Length}
10476 on array objects (not on types and subtypes).
10477
10478@item
10479@t{'Min} and @t{'Max}.
10480
10481@item
10482@t{'Pos} and @t{'Val}.
10483
10484@item
10485@t{'Tag}.
10486
10487@item
10488@t{'Range} on array objects (not subtypes), but only as the right
10489operand of the membership (@code{in}) operator.
10490
10491@item
10492@t{'Access}, @t{'Unchecked_Access}, and
10493@t{'Unrestricted_Access} (a GNAT extension).
10494
10495@item
10496@t{'Address}.
10497@end itemize
10498
10499@item
10500The names in
10501@code{Characters.Latin_1} are not available and
10502concatenation is not implemented. Thus, escape characters in strings are
10503not currently available.
10504
10505@item
10506Equality tests (@samp{=} and @samp{/=}) on arrays test for bitwise
10507equality of representations. They will generally work correctly
10508for strings and arrays whose elements have integer or enumeration types.
10509They may not work correctly for arrays whose element
10510types have user-defined equality, for arrays of real values
10511(in particular, IEEE-conformant floating point, because of negative
10512zeroes and NaNs), and for arrays whose elements contain unused bits with
10513indeterminate values.
10514
10515@item
10516The other component-by-component array operations (@code{and}, @code{or},
10517@code{xor}, @code{not}, and relational tests other than equality)
10518are not implemented.
10519
10520@item
860701dc
PH
10521@cindex array aggregates (Ada)
10522@cindex record aggregates (Ada)
10523@cindex aggregates (Ada)
10524There is limited support for array and record aggregates. They are
10525permitted only on the right sides of assignments, as in these examples:
10526
10527@smallexample
10528set An_Array := (1, 2, 3, 4, 5, 6)
10529set An_Array := (1, others => 0)
10530set An_Array := (0|4 => 1, 1..3 => 2, 5 => 6)
10531set A_2D_Array := ((1, 2, 3), (4, 5, 6), (7, 8, 9))
10532set A_Record := (1, "Peter", True);
10533set A_Record := (Name => "Peter", Id => 1, Alive => True)
10534@end smallexample
10535
10536Changing a
10537discriminant's value by assigning an aggregate has an
10538undefined effect if that discriminant is used within the record.
10539However, you can first modify discriminants by directly assigning to
10540them (which normally would not be allowed in Ada), and then performing an
10541aggregate assignment. For example, given a variable @code{A_Rec}
10542declared to have a type such as:
10543
10544@smallexample
10545type Rec (Len : Small_Integer := 0) is record
10546 Id : Integer;
10547 Vals : IntArray (1 .. Len);
10548end record;
10549@end smallexample
10550
10551you can assign a value with a different size of @code{Vals} with two
10552assignments:
10553
10554@smallexample
10555set A_Rec.Len := 4
10556set A_Rec := (Id => 42, Vals => (1, 2, 3, 4))
10557@end smallexample
10558
10559As this example also illustrates, @value{GDBN} is very loose about the usual
10560rules concerning aggregates. You may leave out some of the
10561components of an array or record aggregate (such as the @code{Len}
10562component in the assignment to @code{A_Rec} above); they will retain their
10563original values upon assignment. You may freely use dynamic values as
10564indices in component associations. You may even use overlapping or
10565redundant component associations, although which component values are
10566assigned in such cases is not defined.
e07c999f
PH
10567
10568@item
10569Calls to dispatching subprograms are not implemented.
10570
10571@item
10572The overloading algorithm is much more limited (i.e., less selective)
ae21e955
BW
10573than that of real Ada. It makes only limited use of the context in
10574which a subexpression appears to resolve its meaning, and it is much
10575looser in its rules for allowing type matches. As a result, some
10576function calls will be ambiguous, and the user will be asked to choose
10577the proper resolution.
e07c999f
PH
10578
10579@item
10580The @code{new} operator is not implemented.
10581
10582@item
10583Entry calls are not implemented.
10584
10585@item
10586Aside from printing, arithmetic operations on the native VAX floating-point
10587formats are not supported.
10588
10589@item
10590It is not possible to slice a packed array.
10591@end itemize
10592
10593@node Additions to Ada
10594@subsubsection Additions to Ada
10595@cindex Ada, deviations from
10596
10597As it does for other languages, @value{GDBN} makes certain generic
10598extensions to Ada (@pxref{Expressions}):
10599
10600@itemize @bullet
10601@item
ae21e955
BW
10602If the expression @var{E} is a variable residing in memory (typically
10603a local variable or array element) and @var{N} is a positive integer,
10604then @code{@var{E}@@@var{N}} displays the values of @var{E} and the
10605@var{N}-1 adjacent variables following it in memory as an array. In
10606Ada, this operator is generally not necessary, since its prime use is
10607in displaying parts of an array, and slicing will usually do this in
10608Ada. However, there are occasional uses when debugging programs in
10609which certain debugging information has been optimized away.
e07c999f
PH
10610
10611@item
ae21e955
BW
10612@code{@var{B}::@var{var}} means ``the variable named @var{var} that
10613appears in function or file @var{B}.'' When @var{B} is a file name,
10614you must typically surround it in single quotes.
e07c999f
PH
10615
10616@item
10617The expression @code{@{@var{type}@} @var{addr}} means ``the variable of type
10618@var{type} that appears at address @var{addr}.''
10619
10620@item
10621A name starting with @samp{$} is a convenience variable
10622(@pxref{Convenience Vars}) or a machine register (@pxref{Registers}).
10623@end itemize
10624
ae21e955
BW
10625In addition, @value{GDBN} provides a few other shortcuts and outright
10626additions specific to Ada:
e07c999f
PH
10627
10628@itemize @bullet
10629@item
10630The assignment statement is allowed as an expression, returning
10631its right-hand operand as its value. Thus, you may enter
10632
10633@smallexample
10634set x := y + 3
10635print A(tmp := y + 1)
10636@end smallexample
10637
10638@item
10639The semicolon is allowed as an ``operator,'' returning as its value
10640the value of its right-hand operand.
10641This allows, for example,
10642complex conditional breaks:
10643
10644@smallexample
10645break f
10646condition 1 (report(i); k += 1; A(k) > 100)
10647@end smallexample
10648
10649@item
10650Rather than use catenation and symbolic character names to introduce special
10651characters into strings, one may instead use a special bracket notation,
10652which is also used to print strings. A sequence of characters of the form
10653@samp{["@var{XX}"]} within a string or character literal denotes the
10654(single) character whose numeric encoding is @var{XX} in hexadecimal. The
10655sequence of characters @samp{["""]} also denotes a single quotation mark
10656in strings. For example,
10657@smallexample
10658 "One line.["0a"]Next line.["0a"]"
10659@end smallexample
10660@noindent
ae21e955
BW
10661contains an ASCII newline character (@code{Ada.Characters.Latin_1.LF})
10662after each period.
e07c999f
PH
10663
10664@item
10665The subtype used as a prefix for the attributes @t{'Pos}, @t{'Min}, and
10666@t{'Max} is optional (and is ignored in any case). For example, it is valid
10667to write
10668
10669@smallexample
10670print 'max(x, y)
10671@end smallexample
10672
10673@item
10674When printing arrays, @value{GDBN} uses positional notation when the
10675array has a lower bound of 1, and uses a modified named notation otherwise.
ae21e955
BW
10676For example, a one-dimensional array of three integers with a lower bound
10677of 3 might print as
e07c999f
PH
10678
10679@smallexample
10680(3 => 10, 17, 1)
10681@end smallexample
10682
10683@noindent
10684That is, in contrast to valid Ada, only the first component has a @code{=>}
10685clause.
10686
10687@item
10688You may abbreviate attributes in expressions with any unique,
10689multi-character subsequence of
10690their names (an exact match gets preference).
10691For example, you may use @t{a'len}, @t{a'gth}, or @t{a'lh}
10692in place of @t{a'length}.
10693
10694@item
10695@cindex quoting Ada internal identifiers
10696Since Ada is case-insensitive, the debugger normally maps identifiers you type
10697to lower case. The GNAT compiler uses upper-case characters for
10698some of its internal identifiers, which are normally of no interest to users.
10699For the rare occasions when you actually have to look at them,
10700enclose them in angle brackets to avoid the lower-case mapping.
10701For example,
10702@smallexample
10703@value{GDBP} print <JMPBUF_SAVE>[0]
10704@end smallexample
10705
10706@item
10707Printing an object of class-wide type or dereferencing an
10708access-to-class-wide value will display all the components of the object's
10709specific type (as indicated by its run-time tag). Likewise, component
10710selection on such a value will operate on the specific type of the
10711object.
10712
10713@end itemize
10714
10715@node Stopping Before Main Program
10716@subsubsection Stopping at the Very Beginning
10717
10718@cindex breakpointing Ada elaboration code
10719It is sometimes necessary to debug the program during elaboration, and
10720before reaching the main procedure.
10721As defined in the Ada Reference
10722Manual, the elaboration code is invoked from a procedure called
10723@code{adainit}. To run your program up to the beginning of
10724elaboration, simply use the following two commands:
10725@code{tbreak adainit} and @code{run}.
10726
10727@node Ada Glitches
10728@subsubsection Known Peculiarities of Ada Mode
10729@cindex Ada, problems
10730
10731Besides the omissions listed previously (@pxref{Omissions from Ada}),
10732we know of several problems with and limitations of Ada mode in
10733@value{GDBN},
10734some of which will be fixed with planned future releases of the debugger
10735and the GNU Ada compiler.
10736
10737@itemize @bullet
10738@item
10739Currently, the debugger
10740has insufficient information to determine whether certain pointers represent
10741pointers to objects or the objects themselves.
10742Thus, the user may have to tack an extra @code{.all} after an expression
10743to get it printed properly.
10744
10745@item
10746Static constants that the compiler chooses not to materialize as objects in
10747storage are invisible to the debugger.
10748
10749@item
10750Named parameter associations in function argument lists are ignored (the
10751argument lists are treated as positional).
10752
10753@item
10754Many useful library packages are currently invisible to the debugger.
10755
10756@item
10757Fixed-point arithmetic, conversions, input, and output is carried out using
10758floating-point arithmetic, and may give results that only approximate those on
10759the host machine.
10760
10761@item
10762The type of the @t{'Address} attribute may not be @code{System.Address}.
10763
10764@item
10765The GNAT compiler never generates the prefix @code{Standard} for any of
10766the standard symbols defined by the Ada language. @value{GDBN} knows about
10767this: it will strip the prefix from names when you use it, and will never
10768look for a name you have so qualified among local symbols, nor match against
10769symbols in other packages or subprograms. If you have
10770defined entities anywhere in your program other than parameters and
10771local variables whose simple names match names in @code{Standard},
10772GNAT's lack of qualification here can cause confusion. When this happens,
10773you can usually resolve the confusion
10774by qualifying the problematic names with package
10775@code{Standard} explicitly.
10776@end itemize
10777
79a6e687
BW
10778@node Unsupported Languages
10779@section Unsupported Languages
4e562065
JB
10780
10781@cindex unsupported languages
10782@cindex minimal language
10783In addition to the other fully-supported programming languages,
10784@value{GDBN} also provides a pseudo-language, called @code{minimal}.
10785It does not represent a real programming language, but provides a set
10786of capabilities close to what the C or assembly languages provide.
10787This should allow most simple operations to be performed while debugging
10788an application that uses a language currently not supported by @value{GDBN}.
10789
10790If the language is set to @code{auto}, @value{GDBN} will automatically
10791select this language if the current frame corresponds to an unsupported
10792language.
10793
6d2ebf8b 10794@node Symbols
c906108c
SS
10795@chapter Examining the Symbol Table
10796
d4f3574e 10797The commands described in this chapter allow you to inquire about the
c906108c
SS
10798symbols (names of variables, functions and types) defined in your
10799program. This information is inherent in the text of your program and
10800does not change as your program executes. @value{GDBN} finds it in your
10801program's symbol table, in the file indicated when you started @value{GDBN}
79a6e687
BW
10802(@pxref{File Options, ,Choosing Files}), or by one of the
10803file-management commands (@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
10804
10805@cindex symbol names
10806@cindex names of symbols
10807@cindex quoting names
10808Occasionally, you may need to refer to symbols that contain unusual
10809characters, which @value{GDBN} ordinarily treats as word delimiters. The
10810most frequent case is in referring to static variables in other
79a6e687 10811source files (@pxref{Variables,,Program Variables}). File names
c906108c
SS
10812are recorded in object files as debugging symbols, but @value{GDBN} would
10813ordinarily parse a typical file name, like @file{foo.c}, as the three words
10814@samp{foo} @samp{.} @samp{c}. To allow @value{GDBN} to recognize
10815@samp{foo.c} as a single symbol, enclose it in single quotes; for example,
10816
474c8240 10817@smallexample
c906108c 10818p 'foo.c'::x
474c8240 10819@end smallexample
c906108c
SS
10820
10821@noindent
10822looks up the value of @code{x} in the scope of the file @file{foo.c}.
10823
10824@table @code
a8f24a35
EZ
10825@cindex case-insensitive symbol names
10826@cindex case sensitivity in symbol names
10827@kindex set case-sensitive
10828@item set case-sensitive on
10829@itemx set case-sensitive off
10830@itemx set case-sensitive auto
10831Normally, when @value{GDBN} looks up symbols, it matches their names
10832with case sensitivity determined by the current source language.
10833Occasionally, you may wish to control that. The command @code{set
10834case-sensitive} lets you do that by specifying @code{on} for
10835case-sensitive matches or @code{off} for case-insensitive ones. If
10836you specify @code{auto}, case sensitivity is reset to the default
10837suitable for the source language. The default is case-sensitive
10838matches for all languages except for Fortran, for which the default is
10839case-insensitive matches.
10840
9c16f35a
EZ
10841@kindex show case-sensitive
10842@item show case-sensitive
a8f24a35
EZ
10843This command shows the current setting of case sensitivity for symbols
10844lookups.
10845
c906108c 10846@kindex info address
b37052ae 10847@cindex address of a symbol
c906108c
SS
10848@item info address @var{symbol}
10849Describe where the data for @var{symbol} is stored. For a register
10850variable, this says which register it is kept in. For a non-register
10851local variable, this prints the stack-frame offset at which the variable
10852is always stored.
10853
10854Note the contrast with @samp{print &@var{symbol}}, which does not work
10855at all for a register variable, and for a stack local variable prints
10856the exact address of the current instantiation of the variable.
10857
3d67e040 10858@kindex info symbol
b37052ae 10859@cindex symbol from address
9c16f35a 10860@cindex closest symbol and offset for an address
3d67e040
EZ
10861@item info symbol @var{addr}
10862Print the name of a symbol which is stored at the address @var{addr}.
10863If no symbol is stored exactly at @var{addr}, @value{GDBN} prints the
10864nearest symbol and an offset from it:
10865
474c8240 10866@smallexample
3d67e040
EZ
10867(@value{GDBP}) info symbol 0x54320
10868_initialize_vx + 396 in section .text
474c8240 10869@end smallexample
3d67e040
EZ
10870
10871@noindent
10872This is the opposite of the @code{info address} command. You can use
10873it to find out the name of a variable or a function given its address.
10874
c906108c 10875@kindex whatis
62f3a2ba
FF
10876@item whatis [@var{arg}]
10877Print the data type of @var{arg}, which can be either an expression or
10878a data type. With no argument, print the data type of @code{$}, the
10879last value in the value history. If @var{arg} is an expression, it is
10880not actually evaluated, and any side-effecting operations (such as
10881assignments or function calls) inside it do not take place. If
10882@var{arg} is a type name, it may be the name of a type or typedef, or
10883for C code it may have the form @samp{class @var{class-name}},
10884@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
10885@samp{enum @var{enum-tag}}.
c906108c
SS
10886@xref{Expressions, ,Expressions}.
10887
c906108c 10888@kindex ptype
62f3a2ba
FF
10889@item ptype [@var{arg}]
10890@code{ptype} accepts the same arguments as @code{whatis}, but prints a
10891detailed description of the type, instead of just the name of the type.
10892@xref{Expressions, ,Expressions}.
c906108c
SS
10893
10894For example, for this variable declaration:
10895
474c8240 10896@smallexample
c906108c 10897struct complex @{double real; double imag;@} v;
474c8240 10898@end smallexample
c906108c
SS
10899
10900@noindent
10901the two commands give this output:
10902
474c8240 10903@smallexample
c906108c
SS
10904@group
10905(@value{GDBP}) whatis v
10906type = struct complex
10907(@value{GDBP}) ptype v
10908type = struct complex @{
10909 double real;
10910 double imag;
10911@}
10912@end group
474c8240 10913@end smallexample
c906108c
SS
10914
10915@noindent
10916As with @code{whatis}, using @code{ptype} without an argument refers to
10917the type of @code{$}, the last value in the value history.
10918
ab1adacd
EZ
10919@cindex incomplete type
10920Sometimes, programs use opaque data types or incomplete specifications
10921of complex data structure. If the debug information included in the
10922program does not allow @value{GDBN} to display a full declaration of
10923the data type, it will say @samp{<incomplete type>}. For example,
10924given these declarations:
10925
10926@smallexample
10927 struct foo;
10928 struct foo *fooptr;
10929@end smallexample
10930
10931@noindent
10932but no definition for @code{struct foo} itself, @value{GDBN} will say:
10933
10934@smallexample
ddb50cd7 10935 (@value{GDBP}) ptype foo
ab1adacd
EZ
10936 $1 = <incomplete type>
10937@end smallexample
10938
10939@noindent
10940``Incomplete type'' is C terminology for data types that are not
10941completely specified.
10942
c906108c
SS
10943@kindex info types
10944@item info types @var{regexp}
10945@itemx info types
09d4efe1
EZ
10946Print a brief description of all types whose names match the regular
10947expression @var{regexp} (or all types in your program, if you supply
10948no argument). Each complete typename is matched as though it were a
10949complete line; thus, @samp{i type value} gives information on all
10950types in your program whose names include the string @code{value}, but
10951@samp{i type ^value$} gives information only on types whose complete
10952name is @code{value}.
c906108c
SS
10953
10954This command differs from @code{ptype} in two ways: first, like
10955@code{whatis}, it does not print a detailed description; second, it
10956lists all source files where a type is defined.
10957
b37052ae
EZ
10958@kindex info scope
10959@cindex local variables
09d4efe1 10960@item info scope @var{location}
b37052ae 10961List all the variables local to a particular scope. This command
09d4efe1
EZ
10962accepts a @var{location} argument---a function name, a source line, or
10963an address preceded by a @samp{*}, and prints all the variables local
10964to the scope defined by that location. For example:
b37052ae
EZ
10965
10966@smallexample
10967(@value{GDBP}) @b{info scope command_line_handler}
10968Scope for command_line_handler:
10969Symbol rl is an argument at stack/frame offset 8, length 4.
10970Symbol linebuffer is in static storage at address 0x150a18, length 4.
10971Symbol linelength is in static storage at address 0x150a1c, length 4.
10972Symbol p is a local variable in register $esi, length 4.
10973Symbol p1 is a local variable in register $ebx, length 4.
10974Symbol nline is a local variable in register $edx, length 4.
10975Symbol repeat is a local variable at frame offset -8, length 4.
10976@end smallexample
10977
f5c37c66
EZ
10978@noindent
10979This command is especially useful for determining what data to collect
10980during a @dfn{trace experiment}, see @ref{Tracepoint Actions,
10981collect}.
10982
c906108c
SS
10983@kindex info source
10984@item info source
919d772c
JB
10985Show information about the current source file---that is, the source file for
10986the function containing the current point of execution:
10987@itemize @bullet
10988@item
10989the name of the source file, and the directory containing it,
10990@item
10991the directory it was compiled in,
10992@item
10993its length, in lines,
10994@item
10995which programming language it is written in,
10996@item
10997whether the executable includes debugging information for that file, and
10998if so, what format the information is in (e.g., STABS, Dwarf 2, etc.), and
10999@item
11000whether the debugging information includes information about
11001preprocessor macros.
11002@end itemize
11003
c906108c
SS
11004
11005@kindex info sources
11006@item info sources
11007Print the names of all source files in your program for which there is
11008debugging information, organized into two lists: files whose symbols
11009have already been read, and files whose symbols will be read when needed.
11010
11011@kindex info functions
11012@item info functions
11013Print the names and data types of all defined functions.
11014
11015@item info functions @var{regexp}
11016Print the names and data types of all defined functions
11017whose names contain a match for regular expression @var{regexp}.
11018Thus, @samp{info fun step} finds all functions whose names
11019include @code{step}; @samp{info fun ^step} finds those whose names
b383017d 11020start with @code{step}. If a function name contains characters
c1468174 11021that conflict with the regular expression language (e.g.@:
1c5dfdad 11022@samp{operator*()}), they may be quoted with a backslash.
c906108c
SS
11023
11024@kindex info variables
11025@item info variables
11026Print the names and data types of all variables that are declared
6ca652b0 11027outside of functions (i.e.@: excluding local variables).
c906108c
SS
11028
11029@item info variables @var{regexp}
11030Print the names and data types of all variables (except for local
11031variables) whose names contain a match for regular expression
11032@var{regexp}.
11033
b37303ee 11034@kindex info classes
721c2651 11035@cindex Objective-C, classes and selectors
b37303ee
AF
11036@item info classes
11037@itemx info classes @var{regexp}
11038Display all Objective-C classes in your program, or
11039(with the @var{regexp} argument) all those matching a particular regular
11040expression.
11041
11042@kindex info selectors
11043@item info selectors
11044@itemx info selectors @var{regexp}
11045Display all Objective-C selectors in your program, or
11046(with the @var{regexp} argument) all those matching a particular regular
11047expression.
11048
c906108c
SS
11049@ignore
11050This was never implemented.
11051@kindex info methods
11052@item info methods
11053@itemx info methods @var{regexp}
11054The @code{info methods} command permits the user to examine all defined
b37052ae
EZ
11055methods within C@t{++} program, or (with the @var{regexp} argument) a
11056specific set of methods found in the various C@t{++} classes. Many
11057C@t{++} classes provide a large number of methods. Thus, the output
c906108c
SS
11058from the @code{ptype} command can be overwhelming and hard to use. The
11059@code{info-methods} command filters the methods, printing only those
11060which match the regular-expression @var{regexp}.
11061@end ignore
11062
c906108c
SS
11063@cindex reloading symbols
11064Some systems allow individual object files that make up your program to
7a292a7a
SS
11065be replaced without stopping and restarting your program. For example,
11066in VxWorks you can simply recompile a defective object file and keep on
11067running. If you are running on one of these systems, you can allow
11068@value{GDBN} to reload the symbols for automatically relinked modules:
c906108c
SS
11069
11070@table @code
11071@kindex set symbol-reloading
11072@item set symbol-reloading on
11073Replace symbol definitions for the corresponding source file when an
11074object file with a particular name is seen again.
11075
11076@item set symbol-reloading off
6d2ebf8b
SS
11077Do not replace symbol definitions when encountering object files of the
11078same name more than once. This is the default state; if you are not
11079running on a system that permits automatic relinking of modules, you
11080should leave @code{symbol-reloading} off, since otherwise @value{GDBN}
11081may discard symbols when linking large programs, that may contain
11082several modules (from different directories or libraries) with the same
11083name.
c906108c
SS
11084
11085@kindex show symbol-reloading
11086@item show symbol-reloading
11087Show the current @code{on} or @code{off} setting.
11088@end table
c906108c 11089
9c16f35a 11090@cindex opaque data types
c906108c
SS
11091@kindex set opaque-type-resolution
11092@item set opaque-type-resolution on
11093Tell @value{GDBN} to resolve opaque types. An opaque type is a type
11094declared as a pointer to a @code{struct}, @code{class}, or
11095@code{union}---for example, @code{struct MyType *}---that is used in one
11096source file although the full declaration of @code{struct MyType} is in
11097another source file. The default is on.
11098
11099A change in the setting of this subcommand will not take effect until
11100the next time symbols for a file are loaded.
11101
11102@item set opaque-type-resolution off
11103Tell @value{GDBN} not to resolve opaque types. In this case, the type
11104is printed as follows:
11105@smallexample
11106@{<no data fields>@}
11107@end smallexample
11108
11109@kindex show opaque-type-resolution
11110@item show opaque-type-resolution
11111Show whether opaque types are resolved or not.
c906108c
SS
11112
11113@kindex maint print symbols
11114@cindex symbol dump
11115@kindex maint print psymbols
11116@cindex partial symbol dump
11117@item maint print symbols @var{filename}
11118@itemx maint print psymbols @var{filename}
11119@itemx maint print msymbols @var{filename}
11120Write a dump of debugging symbol data into the file @var{filename}.
11121These commands are used to debug the @value{GDBN} symbol-reading code. Only
11122symbols with debugging data are included. If you use @samp{maint print
11123symbols}, @value{GDBN} includes all the symbols for which it has already
11124collected full details: that is, @var{filename} reflects symbols for
11125only those files whose symbols @value{GDBN} has read. You can use the
11126command @code{info sources} to find out which files these are. If you
11127use @samp{maint print psymbols} instead, the dump shows information about
11128symbols that @value{GDBN} only knows partially---that is, symbols defined in
11129files that @value{GDBN} has skimmed, but not yet read completely. Finally,
11130@samp{maint print msymbols} dumps just the minimal symbol information
11131required for each object file from which @value{GDBN} has read some symbols.
79a6e687 11132@xref{Files, ,Commands to Specify Files}, for a discussion of how
c906108c 11133@value{GDBN} reads symbols (in the description of @code{symbol-file}).
44ea7b70 11134
5e7b2f39
JB
11135@kindex maint info symtabs
11136@kindex maint info psymtabs
44ea7b70
JB
11137@cindex listing @value{GDBN}'s internal symbol tables
11138@cindex symbol tables, listing @value{GDBN}'s internal
11139@cindex full symbol tables, listing @value{GDBN}'s internal
11140@cindex partial symbol tables, listing @value{GDBN}'s internal
5e7b2f39
JB
11141@item maint info symtabs @r{[} @var{regexp} @r{]}
11142@itemx maint info psymtabs @r{[} @var{regexp} @r{]}
44ea7b70
JB
11143
11144List the @code{struct symtab} or @code{struct partial_symtab}
11145structures whose names match @var{regexp}. If @var{regexp} is not
11146given, list them all. The output includes expressions which you can
11147copy into a @value{GDBN} debugging this one to examine a particular
11148structure in more detail. For example:
11149
11150@smallexample
5e7b2f39 11151(@value{GDBP}) maint info psymtabs dwarf2read
44ea7b70
JB
11152@{ objfile /home/gnu/build/gdb/gdb
11153 ((struct objfile *) 0x82e69d0)
b383017d 11154 @{ psymtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11155 ((struct partial_symtab *) 0x8474b10)
11156 readin no
11157 fullname (null)
11158 text addresses 0x814d3c8 -- 0x8158074
11159 globals (* (struct partial_symbol **) 0x8507a08 @@ 9)
11160 statics (* (struct partial_symbol **) 0x40e95b78 @@ 2882)
11161 dependencies (none)
11162 @}
11163@}
5e7b2f39 11164(@value{GDBP}) maint info symtabs
44ea7b70
JB
11165(@value{GDBP})
11166@end smallexample
11167@noindent
11168We see that there is one partial symbol table whose filename contains
11169the string @samp{dwarf2read}, belonging to the @samp{gdb} executable;
11170and we see that @value{GDBN} has not read in any symtabs yet at all.
11171If we set a breakpoint on a function, that will cause @value{GDBN} to
11172read the symtab for the compilation unit containing that function:
11173
11174@smallexample
11175(@value{GDBP}) break dwarf2_psymtab_to_symtab
11176Breakpoint 1 at 0x814e5da: file /home/gnu/src/gdb/dwarf2read.c,
11177line 1574.
5e7b2f39 11178(@value{GDBP}) maint info symtabs
b383017d 11179@{ objfile /home/gnu/build/gdb/gdb
44ea7b70 11180 ((struct objfile *) 0x82e69d0)
b383017d 11181 @{ symtab /home/gnu/src/gdb/dwarf2read.c
44ea7b70
JB
11182 ((struct symtab *) 0x86c1f38)
11183 dirname (null)
11184 fullname (null)
11185 blockvector ((struct blockvector *) 0x86c1bd0) (primary)
1b39d5c0 11186 linetable ((struct linetable *) 0x8370fa0)
44ea7b70
JB
11187 debugformat DWARF 2
11188 @}
11189@}
b383017d 11190(@value{GDBP})
44ea7b70 11191@end smallexample
c906108c
SS
11192@end table
11193
44ea7b70 11194
6d2ebf8b 11195@node Altering
c906108c
SS
11196@chapter Altering Execution
11197
11198Once you think you have found an error in your program, you might want to
11199find out for certain whether correcting the apparent error would lead to
11200correct results in the rest of the run. You can find the answer by
11201experiment, using the @value{GDBN} features for altering execution of the
11202program.
11203
11204For example, you can store new values into variables or memory
7a292a7a
SS
11205locations, give your program a signal, restart it at a different
11206address, or even return prematurely from a function.
c906108c
SS
11207
11208@menu
11209* Assignment:: Assignment to variables
11210* Jumping:: Continuing at a different address
c906108c 11211* Signaling:: Giving your program a signal
c906108c
SS
11212* Returning:: Returning from a function
11213* Calling:: Calling your program's functions
11214* Patching:: Patching your program
11215@end menu
11216
6d2ebf8b 11217@node Assignment
79a6e687 11218@section Assignment to Variables
c906108c
SS
11219
11220@cindex assignment
11221@cindex setting variables
11222To alter the value of a variable, evaluate an assignment expression.
11223@xref{Expressions, ,Expressions}. For example,
11224
474c8240 11225@smallexample
c906108c 11226print x=4
474c8240 11227@end smallexample
c906108c
SS
11228
11229@noindent
11230stores the value 4 into the variable @code{x}, and then prints the
5d161b24 11231value of the assignment expression (which is 4).
c906108c
SS
11232@xref{Languages, ,Using @value{GDBN} with Different Languages}, for more
11233information on operators in supported languages.
c906108c
SS
11234
11235@kindex set variable
11236@cindex variables, setting
11237If you are not interested in seeing the value of the assignment, use the
11238@code{set} command instead of the @code{print} command. @code{set} is
11239really the same as @code{print} except that the expression's value is
11240not printed and is not put in the value history (@pxref{Value History,
79a6e687 11241,Value History}). The expression is evaluated only for its effects.
c906108c 11242
c906108c
SS
11243If the beginning of the argument string of the @code{set} command
11244appears identical to a @code{set} subcommand, use the @code{set
11245variable} command instead of just @code{set}. This command is identical
11246to @code{set} except for its lack of subcommands. For example, if your
11247program has a variable @code{width}, you get an error if you try to set
11248a new value with just @samp{set width=13}, because @value{GDBN} has the
11249command @code{set width}:
11250
474c8240 11251@smallexample
c906108c
SS
11252(@value{GDBP}) whatis width
11253type = double
11254(@value{GDBP}) p width
11255$4 = 13
11256(@value{GDBP}) set width=47
11257Invalid syntax in expression.
474c8240 11258@end smallexample
c906108c
SS
11259
11260@noindent
11261The invalid expression, of course, is @samp{=47}. In
11262order to actually set the program's variable @code{width}, use
11263
474c8240 11264@smallexample
c906108c 11265(@value{GDBP}) set var width=47
474c8240 11266@end smallexample
53a5351d 11267
c906108c
SS
11268Because the @code{set} command has many subcommands that can conflict
11269with the names of program variables, it is a good idea to use the
11270@code{set variable} command instead of just @code{set}. For example, if
11271your program has a variable @code{g}, you run into problems if you try
11272to set a new value with just @samp{set g=4}, because @value{GDBN} has
11273the command @code{set gnutarget}, abbreviated @code{set g}:
11274
474c8240 11275@smallexample
c906108c
SS
11276@group
11277(@value{GDBP}) whatis g
11278type = double
11279(@value{GDBP}) p g
11280$1 = 1
11281(@value{GDBP}) set g=4
2df3850c 11282(@value{GDBP}) p g
c906108c
SS
11283$2 = 1
11284(@value{GDBP}) r
11285The program being debugged has been started already.
11286Start it from the beginning? (y or n) y
11287Starting program: /home/smith/cc_progs/a.out
6d2ebf8b
SS
11288"/home/smith/cc_progs/a.out": can't open to read symbols:
11289 Invalid bfd target.
c906108c
SS
11290(@value{GDBP}) show g
11291The current BFD target is "=4".
11292@end group
474c8240 11293@end smallexample
c906108c
SS
11294
11295@noindent
11296The program variable @code{g} did not change, and you silently set the
11297@code{gnutarget} to an invalid value. In order to set the variable
11298@code{g}, use
11299
474c8240 11300@smallexample
c906108c 11301(@value{GDBP}) set var g=4
474c8240 11302@end smallexample
c906108c
SS
11303
11304@value{GDBN} allows more implicit conversions in assignments than C; you can
11305freely store an integer value into a pointer variable or vice versa,
11306and you can convert any structure to any other structure that is the
11307same length or shorter.
11308@comment FIXME: how do structs align/pad in these conversions?
11309@comment /doc@cygnus.com 18dec1990
11310
11311To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
11312construct to generate a value of specified type at a specified address
11313(@pxref{Expressions, ,Expressions}). For example, @code{@{int@}0x83040} refers
11314to memory location @code{0x83040} as an integer (which implies a certain size
11315and representation in memory), and
11316
474c8240 11317@smallexample
c906108c 11318set @{int@}0x83040 = 4
474c8240 11319@end smallexample
c906108c
SS
11320
11321@noindent
11322stores the value 4 into that memory location.
11323
6d2ebf8b 11324@node Jumping
79a6e687 11325@section Continuing at a Different Address
c906108c
SS
11326
11327Ordinarily, when you continue your program, you do so at the place where
11328it stopped, with the @code{continue} command. You can instead continue at
11329an address of your own choosing, with the following commands:
11330
11331@table @code
11332@kindex jump
11333@item jump @var{linespec}
11334Resume execution at line @var{linespec}. Execution stops again
11335immediately if there is a breakpoint there. @xref{List, ,Printing
79a6e687 11336Source Lines}, for a description of the different forms of
c906108c
SS
11337@var{linespec}. It is common practice to use the @code{tbreak} command
11338in conjunction with @code{jump}. @xref{Set Breaks, ,Setting
79a6e687 11339Breakpoints}.
c906108c
SS
11340
11341The @code{jump} command does not change the current stack frame, or
11342the stack pointer, or the contents of any memory location or any
11343register other than the program counter. If line @var{linespec} is in
11344a different function from the one currently executing, the results may
11345be bizarre if the two functions expect different patterns of arguments or
11346of local variables. For this reason, the @code{jump} command requests
11347confirmation if the specified line is not in the function currently
11348executing. However, even bizarre results are predictable if you are
11349well acquainted with the machine-language code of your program.
11350
11351@item jump *@var{address}
11352Resume execution at the instruction at address @var{address}.
11353@end table
11354
c906108c 11355@c Doesn't work on HP-UX; have to set $pcoqh and $pcoqt.
53a5351d
JM
11356On many systems, you can get much the same effect as the @code{jump}
11357command by storing a new value into the register @code{$pc}. The
11358difference is that this does not start your program running; it only
11359changes the address of where it @emph{will} run when you continue. For
11360example,
c906108c 11361
474c8240 11362@smallexample
c906108c 11363set $pc = 0x485
474c8240 11364@end smallexample
c906108c
SS
11365
11366@noindent
11367makes the next @code{continue} command or stepping command execute at
11368address @code{0x485}, rather than at the address where your program stopped.
79a6e687 11369@xref{Continuing and Stepping, ,Continuing and Stepping}.
c906108c
SS
11370
11371The most common occasion to use the @code{jump} command is to back
11372up---perhaps with more breakpoints set---over a portion of a program
11373that has already executed, in order to examine its execution in more
11374detail.
11375
c906108c 11376@c @group
6d2ebf8b 11377@node Signaling
79a6e687 11378@section Giving your Program a Signal
9c16f35a 11379@cindex deliver a signal to a program
c906108c
SS
11380
11381@table @code
11382@kindex signal
11383@item signal @var{signal}
11384Resume execution where your program stopped, but immediately give it the
11385signal @var{signal}. @var{signal} can be the name or the number of a
11386signal. For example, on many systems @code{signal 2} and @code{signal
11387SIGINT} are both ways of sending an interrupt signal.
11388
11389Alternatively, if @var{signal} is zero, continue execution without
11390giving a signal. This is useful when your program stopped on account of
11391a signal and would ordinary see the signal when resumed with the
11392@code{continue} command; @samp{signal 0} causes it to resume without a
11393signal.
11394
11395@code{signal} does not repeat when you press @key{RET} a second time
11396after executing the command.
11397@end table
11398@c @end group
11399
11400Invoking the @code{signal} command is not the same as invoking the
11401@code{kill} utility from the shell. Sending a signal with @code{kill}
11402causes @value{GDBN} to decide what to do with the signal depending on
11403the signal handling tables (@pxref{Signals}). The @code{signal} command
11404passes the signal directly to your program.
11405
c906108c 11406
6d2ebf8b 11407@node Returning
79a6e687 11408@section Returning from a Function
c906108c
SS
11409
11410@table @code
11411@cindex returning from a function
11412@kindex return
11413@item return
11414@itemx return @var{expression}
11415You can cancel execution of a function call with the @code{return}
11416command. If you give an
11417@var{expression} argument, its value is used as the function's return
11418value.
11419@end table
11420
11421When you use @code{return}, @value{GDBN} discards the selected stack frame
11422(and all frames within it). You can think of this as making the
11423discarded frame return prematurely. If you wish to specify a value to
11424be returned, give that value as the argument to @code{return}.
11425
11426This pops the selected stack frame (@pxref{Selection, ,Selecting a
79a6e687 11427Frame}), and any other frames inside of it, leaving its caller as the
c906108c
SS
11428innermost remaining frame. That frame becomes selected. The
11429specified value is stored in the registers used for returning values
11430of functions.
11431
11432The @code{return} command does not resume execution; it leaves the
11433program stopped in the state that would exist if the function had just
11434returned. In contrast, the @code{finish} command (@pxref{Continuing
79a6e687 11435and Stepping, ,Continuing and Stepping}) resumes execution until the
c906108c
SS
11436selected stack frame returns naturally.
11437
6d2ebf8b 11438@node Calling
79a6e687 11439@section Calling Program Functions
c906108c 11440
f8568604 11441@table @code
c906108c 11442@cindex calling functions
f8568604
EZ
11443@cindex inferior functions, calling
11444@item print @var{expr}
d3e8051b 11445Evaluate the expression @var{expr} and display the resulting value.
f8568604
EZ
11446@var{expr} may include calls to functions in the program being
11447debugged.
11448
c906108c 11449@kindex call
c906108c
SS
11450@item call @var{expr}
11451Evaluate the expression @var{expr} without displaying @code{void}
11452returned values.
c906108c
SS
11453
11454You can use this variant of the @code{print} command if you want to
f8568604
EZ
11455execute a function from your program that does not return anything
11456(a.k.a.@: @dfn{a void function}), but without cluttering the output
11457with @code{void} returned values that @value{GDBN} will otherwise
11458print. If the result is not void, it is printed and saved in the
11459value history.
11460@end table
11461
9c16f35a
EZ
11462It is possible for the function you call via the @code{print} or
11463@code{call} command to generate a signal (e.g., if there's a bug in
11464the function, or if you passed it incorrect arguments). What happens
11465in that case is controlled by the @code{set unwindonsignal} command.
11466
11467@table @code
11468@item set unwindonsignal
11469@kindex set unwindonsignal
11470@cindex unwind stack in called functions
11471@cindex call dummy stack unwinding
11472Set unwinding of the stack if a signal is received while in a function
11473that @value{GDBN} called in the program being debugged. If set to on,
11474@value{GDBN} unwinds the stack it created for the call and restores
11475the context to what it was before the call. If set to off (the
11476default), @value{GDBN} stops in the frame where the signal was
11477received.
11478
11479@item show unwindonsignal
11480@kindex show unwindonsignal
11481Show the current setting of stack unwinding in the functions called by
11482@value{GDBN}.
11483@end table
11484
f8568604
EZ
11485@cindex weak alias functions
11486Sometimes, a function you wish to call is actually a @dfn{weak alias}
11487for another function. In such case, @value{GDBN} might not pick up
11488the type information, including the types of the function arguments,
11489which causes @value{GDBN} to call the inferior function incorrectly.
11490As a result, the called function will function erroneously and may
11491even crash. A solution to that is to use the name of the aliased
11492function instead.
c906108c 11493
6d2ebf8b 11494@node Patching
79a6e687 11495@section Patching Programs
7a292a7a 11496
c906108c
SS
11497@cindex patching binaries
11498@cindex writing into executables
c906108c 11499@cindex writing into corefiles
c906108c 11500
7a292a7a
SS
11501By default, @value{GDBN} opens the file containing your program's
11502executable code (or the corefile) read-only. This prevents accidental
11503alterations to machine code; but it also prevents you from intentionally
11504patching your program's binary.
c906108c
SS
11505
11506If you'd like to be able to patch the binary, you can specify that
11507explicitly with the @code{set write} command. For example, you might
11508want to turn on internal debugging flags, or even to make emergency
11509repairs.
11510
11511@table @code
11512@kindex set write
11513@item set write on
11514@itemx set write off
7a292a7a
SS
11515If you specify @samp{set write on}, @value{GDBN} opens executable and
11516core files for both reading and writing; if you specify @samp{set write
c906108c
SS
11517off} (the default), @value{GDBN} opens them read-only.
11518
11519If you have already loaded a file, you must load it again (using the
7a292a7a
SS
11520@code{exec-file} or @code{core-file} command) after changing @code{set
11521write}, for your new setting to take effect.
c906108c
SS
11522
11523@item show write
11524@kindex show write
7a292a7a
SS
11525Display whether executable files and core files are opened for writing
11526as well as reading.
c906108c
SS
11527@end table
11528
6d2ebf8b 11529@node GDB Files
c906108c
SS
11530@chapter @value{GDBN} Files
11531
7a292a7a
SS
11532@value{GDBN} needs to know the file name of the program to be debugged,
11533both in order to read its symbol table and in order to start your
11534program. To debug a core dump of a previous run, you must also tell
11535@value{GDBN} the name of the core dump file.
c906108c
SS
11536
11537@menu
11538* Files:: Commands to specify files
5b5d99cf 11539* Separate Debug Files:: Debugging information in separate files
c906108c
SS
11540* Symbol Errors:: Errors reading symbol files
11541@end menu
11542
6d2ebf8b 11543@node Files
79a6e687 11544@section Commands to Specify Files
c906108c 11545
7a292a7a 11546@cindex symbol table
c906108c 11547@cindex core dump file
7a292a7a
SS
11548
11549You may want to specify executable and core dump file names. The usual
11550way to do this is at start-up time, using the arguments to
11551@value{GDBN}'s start-up commands (@pxref{Invocation, , Getting In and
11552Out of @value{GDBN}}).
c906108c
SS
11553
11554Occasionally it is necessary to change to a different file during a
397ca115
EZ
11555@value{GDBN} session. Or you may run @value{GDBN} and forget to
11556specify a file you want to use. Or you are debugging a remote target
79a6e687
BW
11557via @code{gdbserver} (@pxref{Server, file, Using the @code{gdbserver}
11558Program}). In these situations the @value{GDBN} commands to specify
0869d01b 11559new files are useful.
c906108c
SS
11560
11561@table @code
11562@cindex executable file
11563@kindex file
11564@item file @var{filename}
11565Use @var{filename} as the program to be debugged. It is read for its
11566symbols and for the contents of pure memory. It is also the program
11567executed when you use the @code{run} command. If you do not specify a
5d161b24
DB
11568directory and the file is not found in the @value{GDBN} working directory,
11569@value{GDBN} uses the environment variable @code{PATH} as a list of
11570directories to search, just as the shell does when looking for a program
11571to run. You can change the value of this variable, for both @value{GDBN}
c906108c
SS
11572and your program, using the @code{path} command.
11573
fc8be69e
EZ
11574@cindex unlinked object files
11575@cindex patching object files
11576You can load unlinked object @file{.o} files into @value{GDBN} using
11577the @code{file} command. You will not be able to ``run'' an object
11578file, but you can disassemble functions and inspect variables. Also,
11579if the underlying BFD functionality supports it, you could use
11580@kbd{gdb -write} to patch object files using this technique. Note
11581that @value{GDBN} can neither interpret nor modify relocations in this
11582case, so branches and some initialized variables will appear to go to
11583the wrong place. But this feature is still handy from time to time.
11584
c906108c
SS
11585@item file
11586@code{file} with no argument makes @value{GDBN} discard any information it
11587has on both executable file and the symbol table.
11588
11589@kindex exec-file
11590@item exec-file @r{[} @var{filename} @r{]}
11591Specify that the program to be run (but not the symbol table) is found
11592in @var{filename}. @value{GDBN} searches the environment variable @code{PATH}
11593if necessary to locate your program. Omitting @var{filename} means to
11594discard information on the executable file.
11595
11596@kindex symbol-file
11597@item symbol-file @r{[} @var{filename} @r{]}
11598Read symbol table information from file @var{filename}. @code{PATH} is
11599searched when necessary. Use the @code{file} command to get both symbol
11600table and program to run from the same file.
11601
11602@code{symbol-file} with no argument clears out @value{GDBN} information on your
11603program's symbol table.
11604
ae5a43e0
DJ
11605The @code{symbol-file} command causes @value{GDBN} to forget the contents of
11606some breakpoints and auto-display expressions. This is because they may
11607contain pointers to the internal data recording symbols and data types,
11608which are part of the old symbol table data being discarded inside
11609@value{GDBN}.
c906108c
SS
11610
11611@code{symbol-file} does not repeat if you press @key{RET} again after
11612executing it once.
11613
11614When @value{GDBN} is configured for a particular environment, it
11615understands debugging information in whatever format is the standard
11616generated for that environment; you may use either a @sc{gnu} compiler, or
11617other compilers that adhere to the local conventions.
c906108c 11618Best results are usually obtained from @sc{gnu} compilers; for example,
e22ea452 11619using @code{@value{NGCC}} you can generate debugging information for
c906108c 11620optimized code.
c906108c
SS
11621
11622For most kinds of object files, with the exception of old SVR3 systems
11623using COFF, the @code{symbol-file} command does not normally read the
11624symbol table in full right away. Instead, it scans the symbol table
11625quickly to find which source files and which symbols are present. The
11626details are read later, one source file at a time, as they are needed.
11627
11628The purpose of this two-stage reading strategy is to make @value{GDBN}
11629start up faster. For the most part, it is invisible except for
11630occasional pauses while the symbol table details for a particular source
11631file are being read. (The @code{set verbose} command can turn these
11632pauses into messages if desired. @xref{Messages/Warnings, ,Optional
79a6e687 11633Warnings and Messages}.)
c906108c 11634
c906108c
SS
11635We have not implemented the two-stage strategy for COFF yet. When the
11636symbol table is stored in COFF format, @code{symbol-file} reads the
11637symbol table data in full right away. Note that ``stabs-in-COFF''
11638still does the two-stage strategy, since the debug info is actually
11639in stabs format.
11640
11641@kindex readnow
11642@cindex reading symbols immediately
11643@cindex symbols, reading immediately
a94ab193
EZ
11644@item symbol-file @var{filename} @r{[} -readnow @r{]}
11645@itemx file @var{filename} @r{[} -readnow @r{]}
c906108c
SS
11646You can override the @value{GDBN} two-stage strategy for reading symbol
11647tables by using the @samp{-readnow} option with any of the commands that
11648load symbol table information, if you want to be sure @value{GDBN} has the
5d161b24 11649entire symbol table available.
c906108c 11650
c906108c
SS
11651@c FIXME: for now no mention of directories, since this seems to be in
11652@c flux. 13mar1992 status is that in theory GDB would look either in
11653@c current dir or in same dir as myprog; but issues like competing
11654@c GDB's, or clutter in system dirs, mean that in practice right now
11655@c only current dir is used. FFish says maybe a special GDB hierarchy
11656@c (eg rooted in val of env var GDBSYMS) could exist for mappable symbol
11657@c files.
11658
c906108c 11659@kindex core-file
09d4efe1 11660@item core-file @r{[}@var{filename}@r{]}
4644b6e3 11661@itemx core
c906108c
SS
11662Specify the whereabouts of a core dump file to be used as the ``contents
11663of memory''. Traditionally, core files contain only some parts of the
11664address space of the process that generated them; @value{GDBN} can access the
11665executable file itself for other parts.
11666
11667@code{core-file} with no argument specifies that no core file is
11668to be used.
11669
11670Note that the core file is ignored when your program is actually running
7a292a7a
SS
11671under @value{GDBN}. So, if you have been running your program and you
11672wish to debug a core file instead, you must kill the subprocess in which
11673the program is running. To do this, use the @code{kill} command
79a6e687 11674(@pxref{Kill Process, ,Killing the Child Process}).
c906108c 11675
c906108c
SS
11676@kindex add-symbol-file
11677@cindex dynamic linking
11678@item add-symbol-file @var{filename} @var{address}
a94ab193 11679@itemx add-symbol-file @var{filename} @var{address} @r{[} -readnow @r{]}
17d9d558 11680@itemx add-symbol-file @var{filename} @r{-s}@var{section} @var{address} @dots{}
96a2c332
SS
11681The @code{add-symbol-file} command reads additional symbol table
11682information from the file @var{filename}. You would use this command
11683when @var{filename} has been dynamically loaded (by some other means)
11684into the program that is running. @var{address} should be the memory
11685address at which the file has been loaded; @value{GDBN} cannot figure
d167840f
EZ
11686this out for itself. You can additionally specify an arbitrary number
11687of @samp{@r{-s}@var{section} @var{address}} pairs, to give an explicit
11688section name and base address for that section. You can specify any
11689@var{address} as an expression.
c906108c
SS
11690
11691The symbol table of the file @var{filename} is added to the symbol table
11692originally read with the @code{symbol-file} command. You can use the
96a2c332
SS
11693@code{add-symbol-file} command any number of times; the new symbol data
11694thus read keeps adding to the old. To discard all old symbol data
11695instead, use the @code{symbol-file} command without any arguments.
c906108c 11696
17d9d558
JB
11697@cindex relocatable object files, reading symbols from
11698@cindex object files, relocatable, reading symbols from
11699@cindex reading symbols from relocatable object files
11700@cindex symbols, reading from relocatable object files
11701@cindex @file{.o} files, reading symbols from
11702Although @var{filename} is typically a shared library file, an
11703executable file, or some other object file which has been fully
11704relocated for loading into a process, you can also load symbolic
11705information from relocatable @file{.o} files, as long as:
11706
11707@itemize @bullet
11708@item
11709the file's symbolic information refers only to linker symbols defined in
11710that file, not to symbols defined by other object files,
11711@item
11712every section the file's symbolic information refers to has actually
11713been loaded into the inferior, as it appears in the file, and
11714@item
11715you can determine the address at which every section was loaded, and
11716provide these to the @code{add-symbol-file} command.
11717@end itemize
11718
11719@noindent
11720Some embedded operating systems, like Sun Chorus and VxWorks, can load
11721relocatable files into an already running program; such systems
11722typically make the requirements above easy to meet. However, it's
11723important to recognize that many native systems use complex link
49efadf5 11724procedures (@code{.linkonce} section factoring and C@t{++} constructor table
17d9d558
JB
11725assembly, for example) that make the requirements difficult to meet. In
11726general, one cannot assume that using @code{add-symbol-file} to read a
11727relocatable object file's symbolic information will have the same effect
11728as linking the relocatable object file into the program in the normal
11729way.
11730
c906108c
SS
11731@code{add-symbol-file} does not repeat if you press @key{RET} after using it.
11732
c45da7e6
EZ
11733@kindex add-symbol-file-from-memory
11734@cindex @code{syscall DSO}
11735@cindex load symbols from memory
11736@item add-symbol-file-from-memory @var{address}
11737Load symbols from the given @var{address} in a dynamically loaded
11738object file whose image is mapped directly into the inferior's memory.
11739For example, the Linux kernel maps a @code{syscall DSO} into each
11740process's address space; this DSO provides kernel-specific code for
11741some system calls. The argument can be any expression whose
11742evaluation yields the address of the file's shared object file header.
11743For this command to work, you must have used @code{symbol-file} or
11744@code{exec-file} commands in advance.
11745
09d4efe1
EZ
11746@kindex add-shared-symbol-files
11747@kindex assf
11748@item add-shared-symbol-files @var{library-file}
11749@itemx assf @var{library-file}
11750The @code{add-shared-symbol-files} command can currently be used only
11751in the Cygwin build of @value{GDBN} on MS-Windows OS, where it is an
11752alias for the @code{dll-symbols} command (@pxref{Cygwin Native}).
11753@value{GDBN} automatically looks for shared libraries, however if
11754@value{GDBN} does not find yours, you can invoke
11755@code{add-shared-symbol-files}. It takes one argument: the shared
11756library's file name. @code{assf} is a shorthand alias for
11757@code{add-shared-symbol-files}.
c906108c 11758
c906108c 11759@kindex section
09d4efe1
EZ
11760@item section @var{section} @var{addr}
11761The @code{section} command changes the base address of the named
11762@var{section} of the exec file to @var{addr}. This can be used if the
11763exec file does not contain section addresses, (such as in the
11764@code{a.out} format), or when the addresses specified in the file
11765itself are wrong. Each section must be changed separately. The
11766@code{info files} command, described below, lists all the sections and
11767their addresses.
c906108c
SS
11768
11769@kindex info files
11770@kindex info target
11771@item info files
11772@itemx info target
7a292a7a
SS
11773@code{info files} and @code{info target} are synonymous; both print the
11774current target (@pxref{Targets, ,Specifying a Debugging Target}),
11775including the names of the executable and core dump files currently in
11776use by @value{GDBN}, and the files from which symbols were loaded. The
11777command @code{help target} lists all possible targets rather than
11778current ones.
11779
fe95c787
MS
11780@kindex maint info sections
11781@item maint info sections
11782Another command that can give you extra information about program sections
11783is @code{maint info sections}. In addition to the section information
11784displayed by @code{info files}, this command displays the flags and file
11785offset of each section in the executable and core dump files. In addition,
11786@code{maint info sections} provides the following command options (which
11787may be arbitrarily combined):
11788
11789@table @code
11790@item ALLOBJ
11791Display sections for all loaded object files, including shared libraries.
11792@item @var{sections}
6600abed 11793Display info only for named @var{sections}.
fe95c787
MS
11794@item @var{section-flags}
11795Display info only for sections for which @var{section-flags} are true.
11796The section flags that @value{GDBN} currently knows about are:
11797@table @code
11798@item ALLOC
11799Section will have space allocated in the process when loaded.
11800Set for all sections except those containing debug information.
11801@item LOAD
11802Section will be loaded from the file into the child process memory.
11803Set for pre-initialized code and data, clear for @code{.bss} sections.
11804@item RELOC
11805Section needs to be relocated before loading.
11806@item READONLY
11807Section cannot be modified by the child process.
11808@item CODE
11809Section contains executable code only.
6600abed 11810@item DATA
fe95c787
MS
11811Section contains data only (no executable code).
11812@item ROM
11813Section will reside in ROM.
11814@item CONSTRUCTOR
11815Section contains data for constructor/destructor lists.
11816@item HAS_CONTENTS
11817Section is not empty.
11818@item NEVER_LOAD
11819An instruction to the linker to not output the section.
11820@item COFF_SHARED_LIBRARY
11821A notification to the linker that the section contains
11822COFF shared library information.
11823@item IS_COMMON
11824Section contains common symbols.
11825@end table
11826@end table
6763aef9 11827@kindex set trust-readonly-sections
9c16f35a 11828@cindex read-only sections
6763aef9
MS
11829@item set trust-readonly-sections on
11830Tell @value{GDBN} that readonly sections in your object file
6ca652b0 11831really are read-only (i.e.@: that their contents will not change).
6763aef9
MS
11832In that case, @value{GDBN} can fetch values from these sections
11833out of the object file, rather than from the target program.
11834For some targets (notably embedded ones), this can be a significant
11835enhancement to debugging performance.
11836
11837The default is off.
11838
11839@item set trust-readonly-sections off
15110bc3 11840Tell @value{GDBN} not to trust readonly sections. This means that
6763aef9
MS
11841the contents of the section might change while the program is running,
11842and must therefore be fetched from the target when needed.
9c16f35a
EZ
11843
11844@item show trust-readonly-sections
11845Show the current setting of trusting readonly sections.
c906108c
SS
11846@end table
11847
11848All file-specifying commands allow both absolute and relative file names
11849as arguments. @value{GDBN} always converts the file name to an absolute file
11850name and remembers it that way.
11851
c906108c 11852@cindex shared libraries
9cceb671
DJ
11853@anchor{Shared Libraries}
11854@value{GDBN} supports @sc{gnu}/Linux, MS-Windows, HP-UX, SunOS, SVr4, Irix,
9c16f35a 11855and IBM RS/6000 AIX shared libraries.
53a5351d 11856
9cceb671
DJ
11857On MS-Windows @value{GDBN} must be linked with the Expat library to support
11858shared libraries. @xref{Expat}.
11859
c906108c
SS
11860@value{GDBN} automatically loads symbol definitions from shared libraries
11861when you use the @code{run} command, or when you examine a core file.
11862(Before you issue the @code{run} command, @value{GDBN} does not understand
11863references to a function in a shared library, however---unless you are
11864debugging a core file).
53a5351d
JM
11865
11866On HP-UX, if the program loads a library explicitly, @value{GDBN}
11867automatically loads the symbols at the time of the @code{shl_load} call.
11868
c906108c
SS
11869@c FIXME: some @value{GDBN} release may permit some refs to undef
11870@c FIXME...symbols---eg in a break cmd---assuming they are from a shared
11871@c FIXME...lib; check this from time to time when updating manual
11872
b7209cb4
FF
11873There are times, however, when you may wish to not automatically load
11874symbol definitions from shared libraries, such as when they are
11875particularly large or there are many of them.
11876
11877To control the automatic loading of shared library symbols, use the
11878commands:
11879
11880@table @code
11881@kindex set auto-solib-add
11882@item set auto-solib-add @var{mode}
11883If @var{mode} is @code{on}, symbols from all shared object libraries
11884will be loaded automatically when the inferior begins execution, you
11885attach to an independently started inferior, or when the dynamic linker
11886informs @value{GDBN} that a new library has been loaded. If @var{mode}
11887is @code{off}, symbols must be loaded manually, using the
11888@code{sharedlibrary} command. The default value is @code{on}.
11889
dcaf7c2c
EZ
11890@cindex memory used for symbol tables
11891If your program uses lots of shared libraries with debug info that
11892takes large amounts of memory, you can decrease the @value{GDBN}
11893memory footprint by preventing it from automatically loading the
11894symbols from shared libraries. To that end, type @kbd{set
11895auto-solib-add off} before running the inferior, then load each
11896library whose debug symbols you do need with @kbd{sharedlibrary
d3e8051b 11897@var{regexp}}, where @var{regexp} is a regular expression that matches
dcaf7c2c
EZ
11898the libraries whose symbols you want to be loaded.
11899
b7209cb4
FF
11900@kindex show auto-solib-add
11901@item show auto-solib-add
11902Display the current autoloading mode.
11903@end table
11904
c45da7e6 11905@cindex load shared library
b7209cb4
FF
11906To explicitly load shared library symbols, use the @code{sharedlibrary}
11907command:
11908
c906108c
SS
11909@table @code
11910@kindex info sharedlibrary
11911@kindex info share
11912@item info share
11913@itemx info sharedlibrary
11914Print the names of the shared libraries which are currently loaded.
11915
11916@kindex sharedlibrary
11917@kindex share
11918@item sharedlibrary @var{regex}
11919@itemx share @var{regex}
c906108c
SS
11920Load shared object library symbols for files matching a
11921Unix regular expression.
11922As with files loaded automatically, it only loads shared libraries
11923required by your program for a core file or after typing @code{run}. If
11924@var{regex} is omitted all shared libraries required by your program are
11925loaded.
c45da7e6
EZ
11926
11927@item nosharedlibrary
11928@kindex nosharedlibrary
11929@cindex unload symbols from shared libraries
11930Unload all shared object library symbols. This discards all symbols
11931that have been loaded from all shared libraries. Symbols from shared
11932libraries that were loaded by explicit user requests are not
11933discarded.
c906108c
SS
11934@end table
11935
721c2651
EZ
11936Sometimes you may wish that @value{GDBN} stops and gives you control
11937when any of shared library events happen. Use the @code{set
11938stop-on-solib-events} command for this:
11939
11940@table @code
11941@item set stop-on-solib-events
11942@kindex set stop-on-solib-events
11943This command controls whether @value{GDBN} should give you control
11944when the dynamic linker notifies it about some shared library event.
11945The most common event of interest is loading or unloading of a new
11946shared library.
11947
11948@item show stop-on-solib-events
11949@kindex show stop-on-solib-events
11950Show whether @value{GDBN} stops and gives you control when shared
11951library events happen.
11952@end table
11953
f5ebfba0
DJ
11954Shared libraries are also supported in many cross or remote debugging
11955configurations. A copy of the target's libraries need to be present on the
11956host system; they need to be the same as the target libraries, although the
11957copies on the target can be stripped as long as the copies on the host are
11958not.
11959
59b7b46f
EZ
11960@cindex where to look for shared libraries
11961For remote debugging, you need to tell @value{GDBN} where the target
11962libraries are, so that it can load the correct copies---otherwise, it
11963may try to load the host's libraries. @value{GDBN} has two variables
11964to specify the search directories for target libraries.
f5ebfba0
DJ
11965
11966@table @code
59b7b46f 11967@cindex prefix for shared library file names
f822c95b 11968@cindex system root, alternate
f5ebfba0 11969@kindex set solib-absolute-prefix
f822c95b
DJ
11970@kindex set sysroot
11971@item set sysroot @var{path}
11972Use @var{path} as the system root for the program being debugged. Any
11973absolute shared library paths will be prefixed with @var{path}; many
11974runtime loaders store the absolute paths to the shared library in the
11975target program's memory. If you use @code{set sysroot} to find shared
11976libraries, they need to be laid out in the same way that they are on
11977the target, with e.g.@: a @file{/lib} and @file{/usr/lib} hierarchy
11978under @var{path}.
11979
11980The @code{set solib-absolute-prefix} command is an alias for @code{set
11981sysroot}.
11982
11983@cindex default system root
59b7b46f 11984@cindex @samp{--with-sysroot}
f822c95b
DJ
11985You can set the default system root by using the configure-time
11986@samp{--with-sysroot} option. If the system root is inside
11987@value{GDBN}'s configured binary prefix (set with @samp{--prefix} or
11988@samp{--exec-prefix}), then the default system root will be updated
11989automatically if the installed @value{GDBN} is moved to a new
11990location.
11991
11992@kindex show sysroot
11993@item show sysroot
f5ebfba0
DJ
11994Display the current shared library prefix.
11995
11996@kindex set solib-search-path
11997@item set solib-search-path @var{path}
f822c95b
DJ
11998If this variable is set, @var{path} is a colon-separated list of
11999directories to search for shared libraries. @samp{solib-search-path}
12000is used after @samp{sysroot} fails to locate the library, or if the
12001path to the library is relative instead of absolute. If you want to
12002use @samp{solib-search-path} instead of @samp{sysroot}, be sure to set
d3e8051b 12003@samp{sysroot} to a nonexistent directory to prevent @value{GDBN} from
f822c95b 12004finding your host's libraries. @samp{sysroot} is preferred; setting
d3e8051b 12005it to a nonexistent directory may interfere with automatic loading
f822c95b 12006of shared library symbols.
f5ebfba0
DJ
12007
12008@kindex show solib-search-path
12009@item show solib-search-path
12010Display the current shared library search path.
12011@end table
12012
5b5d99cf
JB
12013
12014@node Separate Debug Files
12015@section Debugging Information in Separate Files
12016@cindex separate debugging information files
12017@cindex debugging information in separate files
12018@cindex @file{.debug} subdirectories
12019@cindex debugging information directory, global
12020@cindex global debugging information directory
c7e83d54
EZ
12021@cindex build ID, and separate debugging files
12022@cindex @file{.build-id} directory
5b5d99cf
JB
12023
12024@value{GDBN} allows you to put a program's debugging information in a
12025file separate from the executable itself, in a way that allows
12026@value{GDBN} to find and load the debugging information automatically.
c7e83d54
EZ
12027Since debugging information can be very large---sometimes larger
12028than the executable code itself---some systems distribute debugging
5b5d99cf
JB
12029information for their executables in separate files, which users can
12030install only when they need to debug a problem.
12031
c7e83d54
EZ
12032@value{GDBN} supports two ways of specifying the separate debug info
12033file:
5b5d99cf
JB
12034
12035@itemize @bullet
12036@item
c7e83d54
EZ
12037The executable contains a @dfn{debug link} that specifies the name of
12038the separate debug info file. The separate debug file's name is
12039usually @file{@var{executable}.debug}, where @var{executable} is the
12040name of the corresponding executable file without leading directories
12041(e.g., @file{ls.debug} for @file{/usr/bin/ls}). In addition, the
12042debug link specifies a CRC32 checksum for the debug file, which
12043@value{GDBN} uses to validate that the executable and the debug file
12044came from the same build.
12045
12046@item
7e27a47a 12047The executable contains a @dfn{build ID}, a unique bit string that is
c7e83d54 12048also present in the corresponding debug info file. (This is supported
7e27a47a
EZ
12049only on some operating systems, notably those which use the ELF format
12050for binary files and the @sc{gnu} Binutils.) For more details about
12051this feature, see the description of the @option{--build-id}
12052command-line option in @ref{Options, , Command Line Options, ld.info,
12053The GNU Linker}. The debug info file's name is not specified
12054explicitly by the build ID, but can be computed from the build ID, see
12055below.
d3750b24
JK
12056@end itemize
12057
c7e83d54
EZ
12058Depending on the way the debug info file is specified, @value{GDBN}
12059uses two different methods of looking for the debug file:
d3750b24
JK
12060
12061@itemize @bullet
12062@item
c7e83d54
EZ
12063For the ``debug link'' method, @value{GDBN} looks up the named file in
12064the directory of the executable file, then in a subdirectory of that
12065directory named @file{.debug}, and finally under the global debug
12066directory, in a subdirectory whose name is identical to the leading
12067directories of the executable's absolute file name.
12068
12069@item
83f83d7f 12070For the ``build ID'' method, @value{GDBN} looks in the
c7e83d54
EZ
12071@file{.build-id} subdirectory of the global debug directory for a file
12072named @file{@var{nn}/@var{nnnnnnnn}.debug}, where @var{nn} are the
7e27a47a
EZ
12073first 2 hex characters of the build ID bit string, and @var{nnnnnnnn}
12074are the rest of the bit string. (Real build ID strings are 32 or more
12075hex characters, not 10.)
c7e83d54
EZ
12076@end itemize
12077
12078So, for example, suppose you ask @value{GDBN} to debug
7e27a47a
EZ
12079@file{/usr/bin/ls}, which has a debug link that specifies the
12080file @file{ls.debug}, and a build ID whose value in hex is
c7e83d54
EZ
12081@code{abcdef1234}. If the global debug directory is
12082@file{/usr/lib/debug}, then @value{GDBN} will look for the following
12083debug information files, in the indicated order:
12084
12085@itemize @minus
12086@item
12087@file{/usr/lib/debug/.build-id/ab/cdef1234.debug}
d3750b24 12088@item
c7e83d54 12089@file{/usr/bin/ls.debug}
5b5d99cf 12090@item
c7e83d54 12091@file{/usr/bin/.debug/ls.debug}
5b5d99cf 12092@item
c7e83d54 12093@file{/usr/lib/debug/usr/bin/ls.debug}.
5b5d99cf 12094@end itemize
5b5d99cf
JB
12095
12096You can set the global debugging info directory's name, and view the
12097name @value{GDBN} is currently using.
12098
12099@table @code
12100
12101@kindex set debug-file-directory
12102@item set debug-file-directory @var{directory}
12103Set the directory which @value{GDBN} searches for separate debugging
12104information files to @var{directory}.
12105
12106@kindex show debug-file-directory
12107@item show debug-file-directory
12108Show the directory @value{GDBN} searches for separate debugging
12109information files.
12110
12111@end table
12112
12113@cindex @code{.gnu_debuglink} sections
c7e83d54 12114@cindex debug link sections
5b5d99cf
JB
12115A debug link is a special section of the executable file named
12116@code{.gnu_debuglink}. The section must contain:
12117
12118@itemize
12119@item
12120A filename, with any leading directory components removed, followed by
12121a zero byte,
12122@item
12123zero to three bytes of padding, as needed to reach the next four-byte
12124boundary within the section, and
12125@item
12126a four-byte CRC checksum, stored in the same endianness used for the
12127executable file itself. The checksum is computed on the debugging
12128information file's full contents by the function given below, passing
12129zero as the @var{crc} argument.
12130@end itemize
12131
12132Any executable file format can carry a debug link, as long as it can
12133contain a section named @code{.gnu_debuglink} with the contents
12134described above.
12135
d3750b24 12136@cindex @code{.note.gnu.build-id} sections
c7e83d54 12137@cindex build ID sections
7e27a47a
EZ
12138The build ID is a special section in the executable file (and in other
12139ELF binary files that @value{GDBN} may consider). This section is
12140often named @code{.note.gnu.build-id}, but that name is not mandatory.
12141It contains unique identification for the built files---the ID remains
12142the same across multiple builds of the same build tree. The default
12143algorithm SHA1 produces 160 bits (40 hexadecimal characters) of the
12144content for the build ID string. The same section with an identical
12145value is present in the original built binary with symbols, in its
12146stripped variant, and in the separate debugging information file.
d3750b24 12147
5b5d99cf
JB
12148The debugging information file itself should be an ordinary
12149executable, containing a full set of linker symbols, sections, and
12150debugging information. The sections of the debugging information file
c7e83d54
EZ
12151should have the same names, addresses, and sizes as the original file,
12152but they need not contain any data---much like a @code{.bss} section
5b5d99cf
JB
12153in an ordinary executable.
12154
7e27a47a 12155The @sc{gnu} binary utilities (Binutils) package includes the
c7e83d54
EZ
12156@samp{objcopy} utility that can produce
12157the separated executable / debugging information file pairs using the
12158following commands:
12159
12160@smallexample
12161@kbd{objcopy --only-keep-debug foo foo.debug}
12162@kbd{strip -g foo}
c7e83d54
EZ
12163@end smallexample
12164
12165@noindent
12166These commands remove the debugging
83f83d7f
JK
12167information from the executable file @file{foo} and place it in the file
12168@file{foo.debug}. You can use the first, second or both methods to link the
12169two files:
12170
12171@itemize @bullet
12172@item
12173The debug link method needs the following additional command to also leave
12174behind a debug link in @file{foo}:
12175
12176@smallexample
12177@kbd{objcopy --add-gnu-debuglink=foo.debug foo}
12178@end smallexample
12179
12180Ulrich Drepper's @file{elfutils} package, starting with version 0.53, contains
d3750b24 12181a version of the @code{strip} command such that the command @kbd{strip foo -f
83f83d7f
JK
12182foo.debug} has the same functionality as the two @code{objcopy} commands and
12183the @code{ln -s} command above, together.
12184
12185@item
12186Build ID gets embedded into the main executable using @code{ld --build-id} or
12187the @value{NGCC} counterpart @code{gcc -Wl,--build-id}. Build ID support plus
12188compatibility fixes for debug files separation are present in @sc{gnu} binary
7e27a47a 12189utilities (Binutils) package since version 2.18.
83f83d7f
JK
12190@end itemize
12191
12192@noindent
d3750b24 12193
c7e83d54
EZ
12194Since there are many different ways to compute CRC's for the debug
12195link (different polynomials, reversals, byte ordering, etc.), the
12196simplest way to describe the CRC used in @code{.gnu_debuglink}
12197sections is to give the complete code for a function that computes it:
5b5d99cf 12198
4644b6e3 12199@kindex gnu_debuglink_crc32
5b5d99cf
JB
12200@smallexample
12201unsigned long
12202gnu_debuglink_crc32 (unsigned long crc,
12203 unsigned char *buf, size_t len)
12204@{
12205 static const unsigned long crc32_table[256] =
12206 @{
12207 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419,
12208 0x706af48f, 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4,
12209 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07,
12210 0x90bf1d91, 0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
12211 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 0x136c9856,
12212 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
12213 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4,
12214 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
12215 0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3,
12216 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 0x26d930ac, 0x51de003a,
12217 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599,
12218 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
12219 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190,
12220 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f,
12221 0x9fbfe4a5, 0xe8b8d433, 0x7807c9a2, 0x0f00f934, 0x9609a88e,
12222 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
12223 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed,
12224 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
12225 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3,
12226 0xfbd44c65, 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
12227 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a,
12228 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5,
12229 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 0xbe0b1010,
12230 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
12231 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17,
12232 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6,
12233 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615,
12234 0x73dc1683, 0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
12235 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 0xf00f9344,
12236 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
12237 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a,
12238 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
12239 0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1,
12240 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 0xd80d2bda, 0xaf0a1b4c,
12241 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef,
12242 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
12243 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe,
12244 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31,
12245 0x2cd99e8b, 0x5bdeae1d, 0x9b64c2b0, 0xec63f226, 0x756aa39c,
12246 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
12247 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b,
12248 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
12249 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1,
12250 0x18b74777, 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
12251 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45, 0xa00ae278,
12252 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7,
12253 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 0x40df0b66,
12254 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
12255 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605,
12256 0xcdd70693, 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8,
12257 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b,
12258 0x2d02ef8d
12259 @};
12260 unsigned char *end;
12261
12262 crc = ~crc & 0xffffffff;
12263 for (end = buf + len; buf < end; ++buf)
12264 crc = crc32_table[(crc ^ *buf) & 0xff] ^ (crc >> 8);
e7a3abfc 12265 return ~crc & 0xffffffff;
5b5d99cf
JB
12266@}
12267@end smallexample
12268
c7e83d54
EZ
12269@noindent
12270This computation does not apply to the ``build ID'' method.
12271
5b5d99cf 12272
6d2ebf8b 12273@node Symbol Errors
79a6e687 12274@section Errors Reading Symbol Files
c906108c
SS
12275
12276While reading a symbol file, @value{GDBN} occasionally encounters problems,
12277such as symbol types it does not recognize, or known bugs in compiler
12278output. By default, @value{GDBN} does not notify you of such problems, since
12279they are relatively common and primarily of interest to people
12280debugging compilers. If you are interested in seeing information
12281about ill-constructed symbol tables, you can either ask @value{GDBN} to print
12282only one message about each such type of problem, no matter how many
12283times the problem occurs; or you can ask @value{GDBN} to print more messages,
12284to see how many times the problems occur, with the @code{set
79a6e687
BW
12285complaints} command (@pxref{Messages/Warnings, ,Optional Warnings and
12286Messages}).
c906108c
SS
12287
12288The messages currently printed, and their meanings, include:
12289
12290@table @code
12291@item inner block not inside outer block in @var{symbol}
12292
12293The symbol information shows where symbol scopes begin and end
12294(such as at the start of a function or a block of statements). This
12295error indicates that an inner scope block is not fully contained
12296in its outer scope blocks.
12297
12298@value{GDBN} circumvents the problem by treating the inner block as if it had
12299the same scope as the outer block. In the error message, @var{symbol}
12300may be shown as ``@code{(don't know)}'' if the outer block is not a
12301function.
12302
12303@item block at @var{address} out of order
12304
12305The symbol information for symbol scope blocks should occur in
12306order of increasing addresses. This error indicates that it does not
12307do so.
12308
12309@value{GDBN} does not circumvent this problem, and has trouble
12310locating symbols in the source file whose symbols it is reading. (You
12311can often determine what source file is affected by specifying
79a6e687
BW
12312@code{set verbose on}. @xref{Messages/Warnings, ,Optional Warnings and
12313Messages}.)
c906108c
SS
12314
12315@item bad block start address patched
12316
12317The symbol information for a symbol scope block has a start address
12318smaller than the address of the preceding source line. This is known
12319to occur in the SunOS 4.1.1 (and earlier) C compiler.
12320
12321@value{GDBN} circumvents the problem by treating the symbol scope block as
12322starting on the previous source line.
12323
12324@item bad string table offset in symbol @var{n}
12325
12326@cindex foo
12327Symbol number @var{n} contains a pointer into the string table which is
12328larger than the size of the string table.
12329
12330@value{GDBN} circumvents the problem by considering the symbol to have the
12331name @code{foo}, which may cause other problems if many symbols end up
12332with this name.
12333
12334@item unknown symbol type @code{0x@var{nn}}
12335
7a292a7a
SS
12336The symbol information contains new data types that @value{GDBN} does
12337not yet know how to read. @code{0x@var{nn}} is the symbol type of the
d4f3574e 12338uncomprehended information, in hexadecimal.
c906108c 12339
7a292a7a
SS
12340@value{GDBN} circumvents the error by ignoring this symbol information.
12341This usually allows you to debug your program, though certain symbols
c906108c 12342are not accessible. If you encounter such a problem and feel like
7a292a7a
SS
12343debugging it, you can debug @code{@value{GDBP}} with itself, breakpoint
12344on @code{complain}, then go up to the function @code{read_dbx_symtab}
12345and examine @code{*bufp} to see the symbol.
c906108c
SS
12346
12347@item stub type has NULL name
c906108c 12348
7a292a7a 12349@value{GDBN} could not find the full definition for a struct or class.
c906108c 12350
7a292a7a 12351@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
b37052ae 12352The symbol information for a C@t{++} member function is missing some
7a292a7a
SS
12353information that recent versions of the compiler should have output for
12354it.
c906108c
SS
12355
12356@item info mismatch between compiler and debugger
12357
12358@value{GDBN} could not parse a type specification output by the compiler.
7a292a7a 12359
c906108c
SS
12360@end table
12361
6d2ebf8b 12362@node Targets
c906108c 12363@chapter Specifying a Debugging Target
7a292a7a 12364
c906108c 12365@cindex debugging target
c906108c 12366A @dfn{target} is the execution environment occupied by your program.
53a5351d
JM
12367
12368Often, @value{GDBN} runs in the same host environment as your program;
12369in that case, the debugging target is specified as a side effect when
12370you use the @code{file} or @code{core} commands. When you need more
c906108c
SS
12371flexibility---for example, running @value{GDBN} on a physically separate
12372host, or controlling a standalone system over a serial port or a
53a5351d
JM
12373realtime system over a TCP/IP connection---you can use the @code{target}
12374command to specify one of the target types configured for @value{GDBN}
79a6e687 12375(@pxref{Target Commands, ,Commands for Managing Targets}).
c906108c 12376
a8f24a35
EZ
12377@cindex target architecture
12378It is possible to build @value{GDBN} for several different @dfn{target
12379architectures}. When @value{GDBN} is built like that, you can choose
12380one of the available architectures with the @kbd{set architecture}
12381command.
12382
12383@table @code
12384@kindex set architecture
12385@kindex show architecture
12386@item set architecture @var{arch}
12387This command sets the current target architecture to @var{arch}. The
12388value of @var{arch} can be @code{"auto"}, in addition to one of the
12389supported architectures.
12390
12391@item show architecture
12392Show the current target architecture.
9c16f35a
EZ
12393
12394@item set processor
12395@itemx processor
12396@kindex set processor
12397@kindex show processor
12398These are alias commands for, respectively, @code{set architecture}
12399and @code{show architecture}.
a8f24a35
EZ
12400@end table
12401
c906108c
SS
12402@menu
12403* Active Targets:: Active targets
12404* Target Commands:: Commands for managing targets
c906108c 12405* Byte Order:: Choosing target byte order
c906108c
SS
12406@end menu
12407
6d2ebf8b 12408@node Active Targets
79a6e687 12409@section Active Targets
7a292a7a 12410
c906108c
SS
12411@cindex stacking targets
12412@cindex active targets
12413@cindex multiple targets
12414
c906108c 12415There are three classes of targets: processes, core files, and
7a292a7a
SS
12416executable files. @value{GDBN} can work concurrently on up to three
12417active targets, one in each class. This allows you to (for example)
12418start a process and inspect its activity without abandoning your work on
12419a core file.
c906108c
SS
12420
12421For example, if you execute @samp{gdb a.out}, then the executable file
12422@code{a.out} is the only active target. If you designate a core file as
12423well---presumably from a prior run that crashed and coredumped---then
12424@value{GDBN} has two active targets and uses them in tandem, looking
12425first in the corefile target, then in the executable file, to satisfy
12426requests for memory addresses. (Typically, these two classes of target
12427are complementary, since core files contain only a program's
12428read-write memory---variables and so on---plus machine status, while
12429executable files contain only the program text and initialized data.)
c906108c
SS
12430
12431When you type @code{run}, your executable file becomes an active process
7a292a7a
SS
12432target as well. When a process target is active, all @value{GDBN}
12433commands requesting memory addresses refer to that target; addresses in
12434an active core file or executable file target are obscured while the
12435process target is active.
c906108c 12436
7a292a7a 12437Use the @code{core-file} and @code{exec-file} commands to select a new
79a6e687
BW
12438core file or executable target (@pxref{Files, ,Commands to Specify
12439Files}). To specify as a target a process that is already running, use
12440the @code{attach} command (@pxref{Attach, ,Debugging an Already-running
12441Process}).
c906108c 12442
6d2ebf8b 12443@node Target Commands
79a6e687 12444@section Commands for Managing Targets
c906108c
SS
12445
12446@table @code
12447@item target @var{type} @var{parameters}
7a292a7a
SS
12448Connects the @value{GDBN} host environment to a target machine or
12449process. A target is typically a protocol for talking to debugging
12450facilities. You use the argument @var{type} to specify the type or
12451protocol of the target machine.
c906108c
SS
12452
12453Further @var{parameters} are interpreted by the target protocol, but
12454typically include things like device names or host names to connect
12455with, process numbers, and baud rates.
c906108c
SS
12456
12457The @code{target} command does not repeat if you press @key{RET} again
12458after executing the command.
12459
12460@kindex help target
12461@item help target
12462Displays the names of all targets available. To display targets
12463currently selected, use either @code{info target} or @code{info files}
79a6e687 12464(@pxref{Files, ,Commands to Specify Files}).
c906108c
SS
12465
12466@item help target @var{name}
12467Describe a particular target, including any parameters necessary to
12468select it.
12469
12470@kindex set gnutarget
12471@item set gnutarget @var{args}
5d161b24 12472@value{GDBN} uses its own library BFD to read your files. @value{GDBN}
c906108c 12473knows whether it is reading an @dfn{executable},
5d161b24
DB
12474a @dfn{core}, or a @dfn{.o} file; however, you can specify the file format
12475with the @code{set gnutarget} command. Unlike most @code{target} commands,
c906108c
SS
12476with @code{gnutarget} the @code{target} refers to a program, not a machine.
12477
d4f3574e 12478@quotation
c906108c
SS
12479@emph{Warning:} To specify a file format with @code{set gnutarget},
12480you must know the actual BFD name.
d4f3574e 12481@end quotation
c906108c 12482
d4f3574e 12483@noindent
79a6e687 12484@xref{Files, , Commands to Specify Files}.
c906108c 12485
5d161b24 12486@kindex show gnutarget
c906108c
SS
12487@item show gnutarget
12488Use the @code{show gnutarget} command to display what file format
12489@code{gnutarget} is set to read. If you have not set @code{gnutarget},
12490@value{GDBN} will determine the file format for each file automatically,
12491and @code{show gnutarget} displays @samp{The current BDF target is "auto"}.
12492@end table
12493
4644b6e3 12494@cindex common targets
c906108c
SS
12495Here are some common targets (available, or not, depending on the GDB
12496configuration):
c906108c
SS
12497
12498@table @code
4644b6e3 12499@kindex target
c906108c 12500@item target exec @var{program}
4644b6e3 12501@cindex executable file target
c906108c
SS
12502An executable file. @samp{target exec @var{program}} is the same as
12503@samp{exec-file @var{program}}.
12504
c906108c 12505@item target core @var{filename}
4644b6e3 12506@cindex core dump file target
c906108c
SS
12507A core dump file. @samp{target core @var{filename}} is the same as
12508@samp{core-file @var{filename}}.
c906108c 12509
1a10341b 12510@item target remote @var{medium}
4644b6e3 12511@cindex remote target
1a10341b
JB
12512A remote system connected to @value{GDBN} via a serial line or network
12513connection. This command tells @value{GDBN} to use its own remote
12514protocol over @var{medium} for debugging. @xref{Remote Debugging}.
12515
12516For example, if you have a board connected to @file{/dev/ttya} on the
12517machine running @value{GDBN}, you could say:
12518
12519@smallexample
12520target remote /dev/ttya
12521@end smallexample
12522
12523@code{target remote} supports the @code{load} command. This is only
12524useful if you have some other way of getting the stub to the target
12525system, and you can put it somewhere in memory where it won't get
12526clobbered by the download.
c906108c 12527
c906108c 12528@item target sim
4644b6e3 12529@cindex built-in simulator target
2df3850c 12530Builtin CPU simulator. @value{GDBN} includes simulators for most architectures.
104c1213 12531In general,
474c8240 12532@smallexample
104c1213
JM
12533 target sim
12534 load
12535 run
474c8240 12536@end smallexample
d4f3574e 12537@noindent
104c1213 12538works; however, you cannot assume that a specific memory map, device
d4f3574e 12539drivers, or even basic I/O is available, although some simulators do
104c1213
JM
12540provide these. For info about any processor-specific simulator details,
12541see the appropriate section in @ref{Embedded Processors, ,Embedded
12542Processors}.
12543
c906108c
SS
12544@end table
12545
104c1213 12546Some configurations may include these targets as well:
c906108c
SS
12547
12548@table @code
12549
c906108c 12550@item target nrom @var{dev}
4644b6e3 12551@cindex NetROM ROM emulator target
c906108c
SS
12552NetROM ROM emulator. This target only supports downloading.
12553
c906108c
SS
12554@end table
12555
5d161b24 12556Different targets are available on different configurations of @value{GDBN};
c906108c 12557your configuration may have more or fewer targets.
c906108c 12558
721c2651
EZ
12559Many remote targets require you to download the executable's code once
12560you've successfully established a connection. You may wish to control
3d00d119
DJ
12561various aspects of this process.
12562
12563@table @code
721c2651
EZ
12564
12565@item set hash
12566@kindex set hash@r{, for remote monitors}
12567@cindex hash mark while downloading
12568This command controls whether a hash mark @samp{#} is displayed while
12569downloading a file to the remote monitor. If on, a hash mark is
12570displayed after each S-record is successfully downloaded to the
12571monitor.
12572
12573@item show hash
12574@kindex show hash@r{, for remote monitors}
12575Show the current status of displaying the hash mark.
12576
12577@item set debug monitor
12578@kindex set debug monitor
12579@cindex display remote monitor communications
12580Enable or disable display of communications messages between
12581@value{GDBN} and the remote monitor.
12582
12583@item show debug monitor
12584@kindex show debug monitor
12585Show the current status of displaying communications between
12586@value{GDBN} and the remote monitor.
a8f24a35 12587@end table
c906108c
SS
12588
12589@table @code
12590
12591@kindex load @var{filename}
12592@item load @var{filename}
c906108c
SS
12593Depending on what remote debugging facilities are configured into
12594@value{GDBN}, the @code{load} command may be available. Where it exists, it
12595is meant to make @var{filename} (an executable) available for debugging
12596on the remote system---by downloading, or dynamic linking, for example.
12597@code{load} also records the @var{filename} symbol table in @value{GDBN}, like
12598the @code{add-symbol-file} command.
12599
12600If your @value{GDBN} does not have a @code{load} command, attempting to
12601execute it gets the error message ``@code{You can't do that when your
12602target is @dots{}}''
c906108c
SS
12603
12604The file is loaded at whatever address is specified in the executable.
12605For some object file formats, you can specify the load address when you
12606link the program; for other formats, like a.out, the object file format
12607specifies a fixed address.
12608@c FIXME! This would be a good place for an xref to the GNU linker doc.
12609
68437a39
DJ
12610Depending on the remote side capabilities, @value{GDBN} may be able to
12611load programs into flash memory.
12612
c906108c
SS
12613@code{load} does not repeat if you press @key{RET} again after using it.
12614@end table
12615
6d2ebf8b 12616@node Byte Order
79a6e687 12617@section Choosing Target Byte Order
7a292a7a 12618
c906108c
SS
12619@cindex choosing target byte order
12620@cindex target byte order
c906108c 12621
172c2a43 12622Some types of processors, such as the MIPS, PowerPC, and Renesas SH,
c906108c
SS
12623offer the ability to run either big-endian or little-endian byte
12624orders. Usually the executable or symbol will include a bit to
12625designate the endian-ness, and you will not need to worry about
12626which to use. However, you may still find it useful to adjust
d4f3574e 12627@value{GDBN}'s idea of processor endian-ness manually.
c906108c
SS
12628
12629@table @code
4644b6e3 12630@kindex set endian
c906108c
SS
12631@item set endian big
12632Instruct @value{GDBN} to assume the target is big-endian.
12633
c906108c
SS
12634@item set endian little
12635Instruct @value{GDBN} to assume the target is little-endian.
12636
c906108c
SS
12637@item set endian auto
12638Instruct @value{GDBN} to use the byte order associated with the
12639executable.
12640
12641@item show endian
12642Display @value{GDBN}'s current idea of the target byte order.
12643
12644@end table
12645
12646Note that these commands merely adjust interpretation of symbolic
12647data on the host, and that they have absolutely no effect on the
12648target system.
12649
ea35711c
DJ
12650
12651@node Remote Debugging
12652@chapter Debugging Remote Programs
c906108c
SS
12653@cindex remote debugging
12654
12655If you are trying to debug a program running on a machine that cannot run
5d161b24
DB
12656@value{GDBN} in the usual way, it is often useful to use remote debugging.
12657For example, you might use remote debugging on an operating system kernel,
c906108c
SS
12658or on a small system which does not have a general purpose operating system
12659powerful enough to run a full-featured debugger.
12660
12661Some configurations of @value{GDBN} have special serial or TCP/IP interfaces
12662to make this work with particular debugging targets. In addition,
5d161b24 12663@value{GDBN} comes with a generic serial protocol (specific to @value{GDBN},
c906108c
SS
12664but not specific to any particular target system) which you can use if you
12665write the remote stubs---the code that runs on the remote system to
12666communicate with @value{GDBN}.
12667
12668Other remote targets may be available in your
12669configuration of @value{GDBN}; use @code{help target} to list them.
c906108c 12670
6b2f586d 12671@menu
07f31aa6 12672* Connecting:: Connecting to a remote target
6b2f586d 12673* Server:: Using the gdbserver program
79a6e687
BW
12674* Remote Configuration:: Remote configuration
12675* Remote Stub:: Implementing a remote stub
6b2f586d
AC
12676@end menu
12677
07f31aa6 12678@node Connecting
79a6e687 12679@section Connecting to a Remote Target
07f31aa6
DJ
12680
12681On the @value{GDBN} host machine, you will need an unstripped copy of
d3e8051b 12682your program, since @value{GDBN} needs symbol and debugging information.
07f31aa6
DJ
12683Start up @value{GDBN} as usual, using the name of the local copy of your
12684program as the first argument.
12685
86941c27
JB
12686@cindex @code{target remote}
12687@value{GDBN} can communicate with the target over a serial line, or
12688over an @acronym{IP} network using @acronym{TCP} or @acronym{UDP}. In
12689each case, @value{GDBN} uses the same protocol for debugging your
12690program; only the medium carrying the debugging packets varies. The
12691@code{target remote} command establishes a connection to the target.
12692Its arguments indicate which medium to use:
12693
12694@table @code
12695
12696@item target remote @var{serial-device}
07f31aa6 12697@cindex serial line, @code{target remote}
86941c27
JB
12698Use @var{serial-device} to communicate with the target. For example,
12699to use a serial line connected to the device named @file{/dev/ttyb}:
12700
12701@smallexample
12702target remote /dev/ttyb
12703@end smallexample
12704
07f31aa6
DJ
12705If you're using a serial line, you may want to give @value{GDBN} the
12706@w{@samp{--baud}} option, or use the @code{set remotebaud} command
79a6e687 12707(@pxref{Remote Configuration, set remotebaud}) before the
9c16f35a 12708@code{target} command.
07f31aa6 12709
86941c27
JB
12710@item target remote @code{@var{host}:@var{port}}
12711@itemx target remote @code{tcp:@var{host}:@var{port}}
12712@cindex @acronym{TCP} port, @code{target remote}
12713Debug using a @acronym{TCP} connection to @var{port} on @var{host}.
12714The @var{host} may be either a host name or a numeric @acronym{IP}
12715address; @var{port} must be a decimal number. The @var{host} could be
12716the target machine itself, if it is directly connected to the net, or
12717it might be a terminal server which in turn has a serial line to the
12718target.
07f31aa6 12719
86941c27
JB
12720For example, to connect to port 2828 on a terminal server named
12721@code{manyfarms}:
07f31aa6
DJ
12722
12723@smallexample
12724target remote manyfarms:2828
12725@end smallexample
12726
86941c27
JB
12727If your remote target is actually running on the same machine as your
12728debugger session (e.g.@: a simulator for your target running on the
12729same host), you can omit the hostname. For example, to connect to
12730port 1234 on your local machine:
07f31aa6
DJ
12731
12732@smallexample
12733target remote :1234
12734@end smallexample
12735@noindent
12736
12737Note that the colon is still required here.
12738
86941c27
JB
12739@item target remote @code{udp:@var{host}:@var{port}}
12740@cindex @acronym{UDP} port, @code{target remote}
12741Debug using @acronym{UDP} packets to @var{port} on @var{host}. For example, to
12742connect to @acronym{UDP} port 2828 on a terminal server named @code{manyfarms}:
07f31aa6
DJ
12743
12744@smallexample
12745target remote udp:manyfarms:2828
12746@end smallexample
12747
86941c27
JB
12748When using a @acronym{UDP} connection for remote debugging, you should
12749keep in mind that the `U' stands for ``Unreliable''. @acronym{UDP}
12750can silently drop packets on busy or unreliable networks, which will
12751cause havoc with your debugging session.
12752
66b8c7f6
JB
12753@item target remote | @var{command}
12754@cindex pipe, @code{target remote} to
12755Run @var{command} in the background and communicate with it using a
12756pipe. The @var{command} is a shell command, to be parsed and expanded
12757by the system's command shell, @code{/bin/sh}; it should expect remote
12758protocol packets on its standard input, and send replies on its
12759standard output. You could use this to run a stand-alone simulator
12760that speaks the remote debugging protocol, to make net connections
12761using programs like @code{ssh}, or for other similar tricks.
12762
12763If @var{command} closes its standard output (perhaps by exiting),
12764@value{GDBN} will try to send it a @code{SIGTERM} signal. (If the
12765program has already exited, this will have no effect.)
12766
86941c27 12767@end table
07f31aa6 12768
86941c27
JB
12769Once the connection has been established, you can use all the usual
12770commands to examine and change data and to step and continue the
12771remote program.
07f31aa6
DJ
12772
12773@cindex interrupting remote programs
12774@cindex remote programs, interrupting
12775Whenever @value{GDBN} is waiting for the remote program, if you type the
c8aa23ab 12776interrupt character (often @kbd{Ctrl-c}), @value{GDBN} attempts to stop the
07f31aa6
DJ
12777program. This may or may not succeed, depending in part on the hardware
12778and the serial drivers the remote system uses. If you type the
12779interrupt character once again, @value{GDBN} displays this prompt:
12780
12781@smallexample
12782Interrupted while waiting for the program.
12783Give up (and stop debugging it)? (y or n)
12784@end smallexample
12785
12786If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
12787(If you decide you want to try again later, you can use @samp{target
12788remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
12789goes back to waiting.
12790
12791@table @code
12792@kindex detach (remote)
12793@item detach
12794When you have finished debugging the remote program, you can use the
12795@code{detach} command to release it from @value{GDBN} control.
12796Detaching from the target normally resumes its execution, but the results
12797will depend on your particular remote stub. After the @code{detach}
12798command, @value{GDBN} is free to connect to another target.
12799
12800@kindex disconnect
12801@item disconnect
12802The @code{disconnect} command behaves like @code{detach}, except that
12803the target is generally not resumed. It will wait for @value{GDBN}
12804(this instance or another one) to connect and continue debugging. After
12805the @code{disconnect} command, @value{GDBN} is again free to connect to
12806another target.
09d4efe1
EZ
12807
12808@cindex send command to remote monitor
fad38dfa
EZ
12809@cindex extend @value{GDBN} for remote targets
12810@cindex add new commands for external monitor
09d4efe1
EZ
12811@kindex monitor
12812@item monitor @var{cmd}
fad38dfa
EZ
12813This command allows you to send arbitrary commands directly to the
12814remote monitor. Since @value{GDBN} doesn't care about the commands it
12815sends like this, this command is the way to extend @value{GDBN}---you
12816can add new commands that only the external monitor will understand
12817and implement.
07f31aa6
DJ
12818@end table
12819
6f05cf9f 12820@node Server
79a6e687 12821@section Using the @code{gdbserver} Program
6f05cf9f
AC
12822
12823@kindex gdbserver
12824@cindex remote connection without stubs
12825@code{gdbserver} is a control program for Unix-like systems, which
12826allows you to connect your program with a remote @value{GDBN} via
12827@code{target remote}---but without linking in the usual debugging stub.
12828
12829@code{gdbserver} is not a complete replacement for the debugging stubs,
12830because it requires essentially the same operating-system facilities
12831that @value{GDBN} itself does. In fact, a system that can run
12832@code{gdbserver} to connect to a remote @value{GDBN} could also run
12833@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
12834because it is a much smaller program than @value{GDBN} itself. It is
12835also easier to port than all of @value{GDBN}, so you may be able to get
12836started more quickly on a new system by using @code{gdbserver}.
12837Finally, if you develop code for real-time systems, you may find that
12838the tradeoffs involved in real-time operation make it more convenient to
12839do as much development work as possible on another system, for example
12840by cross-compiling. You can use @code{gdbserver} to make a similar
12841choice for debugging.
12842
12843@value{GDBN} and @code{gdbserver} communicate via either a serial line
12844or a TCP connection, using the standard @value{GDBN} remote serial
12845protocol.
12846
12847@table @emph
12848@item On the target machine,
12849you need to have a copy of the program you want to debug.
12850@code{gdbserver} does not need your program's symbol table, so you can
12851strip the program if necessary to save space. @value{GDBN} on the host
12852system does all the symbol handling.
12853
12854To use the server, you must tell it how to communicate with @value{GDBN};
56460a61 12855the name of your program; and the arguments for your program. The usual
6f05cf9f
AC
12856syntax is:
12857
12858@smallexample
12859target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
12860@end smallexample
12861
12862@var{comm} is either a device name (to use a serial line) or a TCP
12863hostname and portnumber. For example, to debug Emacs with the argument
12864@samp{foo.txt} and communicate with @value{GDBN} over the serial port
12865@file{/dev/com1}:
12866
12867@smallexample
12868target> gdbserver /dev/com1 emacs foo.txt
12869@end smallexample
12870
12871@code{gdbserver} waits passively for the host @value{GDBN} to communicate
12872with it.
12873
12874To use a TCP connection instead of a serial line:
12875
12876@smallexample
12877target> gdbserver host:2345 emacs foo.txt
12878@end smallexample
12879
12880The only difference from the previous example is the first argument,
12881specifying that you are communicating with the host @value{GDBN} via
12882TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
12883expect a TCP connection from machine @samp{host} to local TCP port 2345.
12884(Currently, the @samp{host} part is ignored.) You can choose any number
12885you want for the port number as long as it does not conflict with any
12886TCP ports already in use on the target system (for example, @code{23} is
12887reserved for @code{telnet}).@footnote{If you choose a port number that
12888conflicts with another service, @code{gdbserver} prints an error message
12889and exits.} You must use the same port number with the host @value{GDBN}
12890@code{target remote} command.
12891
56460a61
DJ
12892On some targets, @code{gdbserver} can also attach to running programs.
12893This is accomplished via the @code{--attach} argument. The syntax is:
12894
12895@smallexample
12896target> gdbserver @var{comm} --attach @var{pid}
12897@end smallexample
12898
12899@var{pid} is the process ID of a currently running process. It isn't necessary
12900to point @code{gdbserver} at a binary for the running process.
12901
b1fe9455
DJ
12902@pindex pidof
12903@cindex attach to a program by name
12904You can debug processes by name instead of process ID if your target has the
12905@code{pidof} utility:
12906
12907@smallexample
f822c95b 12908target> gdbserver @var{comm} --attach `pidof @var{program}`
b1fe9455
DJ
12909@end smallexample
12910
f822c95b 12911In case more than one copy of @var{program} is running, or @var{program}
b1fe9455
DJ
12912has multiple threads, most versions of @code{pidof} support the
12913@code{-s} option to only return the first process ID.
12914
07f31aa6 12915@item On the host machine,
f822c95b
DJ
12916first make sure you have the necessary symbol files. Load symbols for
12917your application using the @code{file} command before you connect. Use
12918@code{set sysroot} to locate target libraries (unless your @value{GDBN}
12919was compiled with the correct sysroot using @code{--with-system-root}).
12920
12921The symbol file and target libraries must exactly match the executable
12922and libraries on the target, with one exception: the files on the host
12923system should not be stripped, even if the files on the target system
12924are. Mismatched or missing files will lead to confusing results
12925during debugging. On @sc{gnu}/Linux targets, mismatched or missing
12926files may also prevent @code{gdbserver} from debugging multi-threaded
12927programs.
12928
79a6e687 12929Connect to your target (@pxref{Connecting,,Connecting to a Remote Target}).
6f05cf9f
AC
12930For TCP connections, you must start up @code{gdbserver} prior to using
12931the @code{target remote} command. Otherwise you may get an error whose
12932text depends on the host system, but which usually looks something like
07f31aa6 12933@samp{Connection refused}. You don't need to use the @code{load}
397ca115 12934command in @value{GDBN} when using @code{gdbserver}, since the program is
f822c95b 12935already on the target.
07f31aa6 12936
6f05cf9f
AC
12937@end table
12938
79a6e687 12939@subsection Monitor Commands for @code{gdbserver}
c74d0ad8
DJ
12940@cindex monitor commands, for @code{gdbserver}
12941
12942During a @value{GDBN} session using @code{gdbserver}, you can use the
12943@code{monitor} command to send special requests to @code{gdbserver}.
12944Here are the available commands; they are only of interest when
12945debugging @value{GDBN} or @code{gdbserver}.
12946
12947@table @code
12948@item monitor help
12949List the available monitor commands.
12950
12951@item monitor set debug 0
12952@itemx monitor set debug 1
12953Disable or enable general debugging messages.
12954
12955@item monitor set remote-debug 0
12956@itemx monitor set remote-debug 1
12957Disable or enable specific debugging messages associated with the remote
12958protocol (@pxref{Remote Protocol}).
12959
12960@end table
12961
79a6e687
BW
12962@node Remote Configuration
12963@section Remote Configuration
501eef12 12964
9c16f35a
EZ
12965@kindex set remote
12966@kindex show remote
12967This section documents the configuration options available when
12968debugging remote programs. For the options related to the File I/O
fc320d37 12969extensions of the remote protocol, see @ref{system,
9c16f35a 12970system-call-allowed}.
501eef12
AC
12971
12972@table @code
9c16f35a 12973@item set remoteaddresssize @var{bits}
d3e8051b 12974@cindex address size for remote targets
9c16f35a
EZ
12975@cindex bits in remote address
12976Set the maximum size of address in a memory packet to the specified
12977number of bits. @value{GDBN} will mask off the address bits above
12978that number, when it passes addresses to the remote target. The
12979default value is the number of bits in the target's address.
12980
12981@item show remoteaddresssize
12982Show the current value of remote address size in bits.
12983
12984@item set remotebaud @var{n}
12985@cindex baud rate for remote targets
12986Set the baud rate for the remote serial I/O to @var{n} baud. The
12987value is used to set the speed of the serial port used for debugging
12988remote targets.
12989
12990@item show remotebaud
12991Show the current speed of the remote connection.
12992
12993@item set remotebreak
12994@cindex interrupt remote programs
12995@cindex BREAK signal instead of Ctrl-C
9a6253be 12996@anchor{set remotebreak}
9c16f35a 12997If set to on, @value{GDBN} sends a @code{BREAK} signal to the remote
c8aa23ab 12998when you type @kbd{Ctrl-c} to interrupt the program running
9a7a1b36 12999on the remote. If set to off, @value{GDBN} sends the @samp{Ctrl-C}
9c16f35a
EZ
13000character instead. The default is off, since most remote systems
13001expect to see @samp{Ctrl-C} as the interrupt signal.
13002
13003@item show remotebreak
13004Show whether @value{GDBN} sends @code{BREAK} or @samp{Ctrl-C} to
13005interrupt the remote program.
13006
23776285
MR
13007@item set remoteflow on
13008@itemx set remoteflow off
13009@kindex set remoteflow
13010Enable or disable hardware flow control (@code{RTS}/@code{CTS})
13011on the serial port used to communicate to the remote target.
13012
13013@item show remoteflow
13014@kindex show remoteflow
13015Show the current setting of hardware flow control.
13016
9c16f35a
EZ
13017@item set remotelogbase @var{base}
13018Set the base (a.k.a.@: radix) of logging serial protocol
13019communications to @var{base}. Supported values of @var{base} are:
13020@code{ascii}, @code{octal}, and @code{hex}. The default is
13021@code{ascii}.
13022
13023@item show remotelogbase
13024Show the current setting of the radix for logging remote serial
13025protocol.
13026
13027@item set remotelogfile @var{file}
13028@cindex record serial communications on file
13029Record remote serial communications on the named @var{file}. The
13030default is not to record at all.
13031
13032@item show remotelogfile.
13033Show the current setting of the file name on which to record the
13034serial communications.
13035
13036@item set remotetimeout @var{num}
13037@cindex timeout for serial communications
13038@cindex remote timeout
13039Set the timeout limit to wait for the remote target to respond to
13040@var{num} seconds. The default is 2 seconds.
13041
13042@item show remotetimeout
13043Show the current number of seconds to wait for the remote target
13044responses.
13045
13046@cindex limit hardware breakpoints and watchpoints
13047@cindex remote target, limit break- and watchpoints
501eef12
AC
13048@anchor{set remote hardware-watchpoint-limit}
13049@anchor{set remote hardware-breakpoint-limit}
13050@item set remote hardware-watchpoint-limit @var{limit}
13051@itemx set remote hardware-breakpoint-limit @var{limit}
13052Restrict @value{GDBN} to using @var{limit} remote hardware breakpoint or
13053watchpoints. A limit of -1, the default, is treated as unlimited.
13054@end table
13055
427c3a89
DJ
13056@cindex remote packets, enabling and disabling
13057The @value{GDBN} remote protocol autodetects the packets supported by
13058your debugging stub. If you need to override the autodetection, you
13059can use these commands to enable or disable individual packets. Each
13060packet can be set to @samp{on} (the remote target supports this
13061packet), @samp{off} (the remote target does not support this packet),
13062or @samp{auto} (detect remote target support for this packet). They
13063all default to @samp{auto}. For more information about each packet,
13064see @ref{Remote Protocol}.
13065
13066During normal use, you should not have to use any of these commands.
13067If you do, that may be a bug in your remote debugging stub, or a bug
13068in @value{GDBN}. You may want to report the problem to the
13069@value{GDBN} developers.
13070
cfa9d6d9
DJ
13071For each packet @var{name}, the command to enable or disable the
13072packet is @code{set remote @var{name}-packet}. The available settings
13073are:
427c3a89 13074
cfa9d6d9 13075@multitable @columnfractions 0.28 0.32 0.25
427c3a89
DJ
13076@item Command Name
13077@tab Remote Packet
13078@tab Related Features
13079
cfa9d6d9 13080@item @code{fetch-register}
427c3a89
DJ
13081@tab @code{p}
13082@tab @code{info registers}
13083
cfa9d6d9 13084@item @code{set-register}
427c3a89
DJ
13085@tab @code{P}
13086@tab @code{set}
13087
cfa9d6d9 13088@item @code{binary-download}
427c3a89
DJ
13089@tab @code{X}
13090@tab @code{load}, @code{set}
13091
cfa9d6d9 13092@item @code{read-aux-vector}
427c3a89
DJ
13093@tab @code{qXfer:auxv:read}
13094@tab @code{info auxv}
13095
cfa9d6d9 13096@item @code{symbol-lookup}
427c3a89
DJ
13097@tab @code{qSymbol}
13098@tab Detecting multiple threads
13099
cfa9d6d9 13100@item @code{verbose-resume}
427c3a89
DJ
13101@tab @code{vCont}
13102@tab Stepping or resuming multiple threads
13103
cfa9d6d9 13104@item @code{software-breakpoint}
427c3a89
DJ
13105@tab @code{Z0}
13106@tab @code{break}
13107
cfa9d6d9 13108@item @code{hardware-breakpoint}
427c3a89
DJ
13109@tab @code{Z1}
13110@tab @code{hbreak}
13111
cfa9d6d9 13112@item @code{write-watchpoint}
427c3a89
DJ
13113@tab @code{Z2}
13114@tab @code{watch}
13115
cfa9d6d9 13116@item @code{read-watchpoint}
427c3a89
DJ
13117@tab @code{Z3}
13118@tab @code{rwatch}
13119
cfa9d6d9 13120@item @code{access-watchpoint}
427c3a89
DJ
13121@tab @code{Z4}
13122@tab @code{awatch}
13123
cfa9d6d9
DJ
13124@item @code{target-features}
13125@tab @code{qXfer:features:read}
13126@tab @code{set architecture}
13127
13128@item @code{library-info}
13129@tab @code{qXfer:libraries:read}
13130@tab @code{info sharedlibrary}
13131
13132@item @code{memory-map}
13133@tab @code{qXfer:memory-map:read}
13134@tab @code{info mem}
13135
13136@item @code{read-spu-object}
13137@tab @code{qXfer:spu:read}
13138@tab @code{info spu}
13139
13140@item @code{write-spu-object}
13141@tab @code{qXfer:spu:write}
13142@tab @code{info spu}
13143
13144@item @code{get-thread-local-@*storage-address}
427c3a89
DJ
13145@tab @code{qGetTLSAddr}
13146@tab Displaying @code{__thread} variables
13147
13148@item @code{supported-packets}
13149@tab @code{qSupported}
13150@tab Remote communications parameters
13151
cfa9d6d9 13152@item @code{pass-signals}
89be2091
DJ
13153@tab @code{QPassSignals}
13154@tab @code{handle @var{signal}}
13155
427c3a89
DJ
13156@end multitable
13157
79a6e687
BW
13158@node Remote Stub
13159@section Implementing a Remote Stub
7a292a7a 13160
8e04817f
AC
13161@cindex debugging stub, example
13162@cindex remote stub, example
13163@cindex stub example, remote debugging
13164The stub files provided with @value{GDBN} implement the target side of the
13165communication protocol, and the @value{GDBN} side is implemented in the
13166@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
13167these subroutines to communicate, and ignore the details. (If you're
13168implementing your own stub file, you can still ignore the details: start
13169with one of the existing stub files. @file{sparc-stub.c} is the best
13170organized, and therefore the easiest to read.)
13171
104c1213
JM
13172@cindex remote serial debugging, overview
13173To debug a program running on another machine (the debugging
13174@dfn{target} machine), you must first arrange for all the usual
13175prerequisites for the program to run by itself. For example, for a C
13176program, you need:
c906108c 13177
104c1213
JM
13178@enumerate
13179@item
13180A startup routine to set up the C runtime environment; these usually
13181have a name like @file{crt0}. The startup routine may be supplied by
13182your hardware supplier, or you may have to write your own.
96baa820 13183
5d161b24 13184@item
d4f3574e 13185A C subroutine library to support your program's
104c1213 13186subroutine calls, notably managing input and output.
96baa820 13187
104c1213
JM
13188@item
13189A way of getting your program to the other machine---for example, a
13190download program. These are often supplied by the hardware
13191manufacturer, but you may have to write your own from hardware
13192documentation.
13193@end enumerate
96baa820 13194
104c1213
JM
13195The next step is to arrange for your program to use a serial port to
13196communicate with the machine where @value{GDBN} is running (the @dfn{host}
13197machine). In general terms, the scheme looks like this:
96baa820 13198
104c1213
JM
13199@table @emph
13200@item On the host,
13201@value{GDBN} already understands how to use this protocol; when everything
13202else is set up, you can simply use the @samp{target remote} command
13203(@pxref{Targets,,Specifying a Debugging Target}).
13204
13205@item On the target,
13206you must link with your program a few special-purpose subroutines that
13207implement the @value{GDBN} remote serial protocol. The file containing these
13208subroutines is called a @dfn{debugging stub}.
13209
13210On certain remote targets, you can use an auxiliary program
13211@code{gdbserver} instead of linking a stub into your program.
79a6e687 13212@xref{Server,,Using the @code{gdbserver} Program}, for details.
104c1213 13213@end table
96baa820 13214
104c1213
JM
13215The debugging stub is specific to the architecture of the remote
13216machine; for example, use @file{sparc-stub.c} to debug programs on
13217@sc{sparc} boards.
96baa820 13218
104c1213
JM
13219@cindex remote serial stub list
13220These working remote stubs are distributed with @value{GDBN}:
96baa820 13221
104c1213
JM
13222@table @code
13223
13224@item i386-stub.c
41afff9a 13225@cindex @file{i386-stub.c}
104c1213
JM
13226@cindex Intel
13227@cindex i386
13228For Intel 386 and compatible architectures.
13229
13230@item m68k-stub.c
41afff9a 13231@cindex @file{m68k-stub.c}
104c1213
JM
13232@cindex Motorola 680x0
13233@cindex m680x0
13234For Motorola 680x0 architectures.
13235
13236@item sh-stub.c
41afff9a 13237@cindex @file{sh-stub.c}
172c2a43 13238@cindex Renesas
104c1213 13239@cindex SH
172c2a43 13240For Renesas SH architectures.
104c1213
JM
13241
13242@item sparc-stub.c
41afff9a 13243@cindex @file{sparc-stub.c}
104c1213
JM
13244@cindex Sparc
13245For @sc{sparc} architectures.
13246
13247@item sparcl-stub.c
41afff9a 13248@cindex @file{sparcl-stub.c}
104c1213
JM
13249@cindex Fujitsu
13250@cindex SparcLite
13251For Fujitsu @sc{sparclite} architectures.
13252
13253@end table
13254
13255The @file{README} file in the @value{GDBN} distribution may list other
13256recently added stubs.
13257
13258@menu
13259* Stub Contents:: What the stub can do for you
13260* Bootstrapping:: What you must do for the stub
13261* Debug Session:: Putting it all together
104c1213
JM
13262@end menu
13263
6d2ebf8b 13264@node Stub Contents
79a6e687 13265@subsection What the Stub Can Do for You
104c1213
JM
13266
13267@cindex remote serial stub
13268The debugging stub for your architecture supplies these three
13269subroutines:
13270
13271@table @code
13272@item set_debug_traps
4644b6e3 13273@findex set_debug_traps
104c1213
JM
13274@cindex remote serial stub, initialization
13275This routine arranges for @code{handle_exception} to run when your
13276program stops. You must call this subroutine explicitly near the
13277beginning of your program.
13278
13279@item handle_exception
4644b6e3 13280@findex handle_exception
104c1213
JM
13281@cindex remote serial stub, main routine
13282This is the central workhorse, but your program never calls it
13283explicitly---the setup code arranges for @code{handle_exception} to
13284run when a trap is triggered.
13285
13286@code{handle_exception} takes control when your program stops during
13287execution (for example, on a breakpoint), and mediates communications
13288with @value{GDBN} on the host machine. This is where the communications
13289protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
d4f3574e 13290representative on the target machine. It begins by sending summary
104c1213
JM
13291information on the state of your program, then continues to execute,
13292retrieving and transmitting any information @value{GDBN} needs, until you
13293execute a @value{GDBN} command that makes your program resume; at that point,
13294@code{handle_exception} returns control to your own code on the target
5d161b24 13295machine.
104c1213
JM
13296
13297@item breakpoint
13298@cindex @code{breakpoint} subroutine, remote
13299Use this auxiliary subroutine to make your program contain a
13300breakpoint. Depending on the particular situation, this may be the only
13301way for @value{GDBN} to get control. For instance, if your target
13302machine has some sort of interrupt button, you won't need to call this;
13303pressing the interrupt button transfers control to
13304@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
13305simply receiving characters on the serial port may also trigger a trap;
13306again, in that situation, you don't need to call @code{breakpoint} from
13307your own program---simply running @samp{target remote} from the host
5d161b24 13308@value{GDBN} session gets control.
104c1213
JM
13309
13310Call @code{breakpoint} if none of these is true, or if you simply want
13311to make certain your program stops at a predetermined point for the
13312start of your debugging session.
13313@end table
13314
6d2ebf8b 13315@node Bootstrapping
79a6e687 13316@subsection What You Must Do for the Stub
104c1213
JM
13317
13318@cindex remote stub, support routines
13319The debugging stubs that come with @value{GDBN} are set up for a particular
13320chip architecture, but they have no information about the rest of your
13321debugging target machine.
13322
13323First of all you need to tell the stub how to communicate with the
13324serial port.
13325
13326@table @code
13327@item int getDebugChar()
4644b6e3 13328@findex getDebugChar
104c1213
JM
13329Write this subroutine to read a single character from the serial port.
13330It may be identical to @code{getchar} for your target system; a
13331different name is used to allow you to distinguish the two if you wish.
13332
13333@item void putDebugChar(int)
4644b6e3 13334@findex putDebugChar
104c1213 13335Write this subroutine to write a single character to the serial port.
5d161b24 13336It may be identical to @code{putchar} for your target system; a
104c1213
JM
13337different name is used to allow you to distinguish the two if you wish.
13338@end table
13339
13340@cindex control C, and remote debugging
13341@cindex interrupting remote targets
13342If you want @value{GDBN} to be able to stop your program while it is
13343running, you need to use an interrupt-driven serial driver, and arrange
13344for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
13345character). That is the character which @value{GDBN} uses to tell the
13346remote system to stop.
13347
13348Getting the debugging target to return the proper status to @value{GDBN}
13349probably requires changes to the standard stub; one quick and dirty way
13350is to just execute a breakpoint instruction (the ``dirty'' part is that
13351@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
13352
13353Other routines you need to supply are:
13354
13355@table @code
13356@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
4644b6e3 13357@findex exceptionHandler
104c1213
JM
13358Write this function to install @var{exception_address} in the exception
13359handling tables. You need to do this because the stub does not have any
13360way of knowing what the exception handling tables on your target system
13361are like (for example, the processor's table might be in @sc{rom},
13362containing entries which point to a table in @sc{ram}).
13363@var{exception_number} is the exception number which should be changed;
13364its meaning is architecture-dependent (for example, different numbers
13365might represent divide by zero, misaligned access, etc). When this
13366exception occurs, control should be transferred directly to
13367@var{exception_address}, and the processor state (stack, registers,
13368and so on) should be just as it is when a processor exception occurs. So if
13369you want to use a jump instruction to reach @var{exception_address}, it
13370should be a simple jump, not a jump to subroutine.
13371
13372For the 386, @var{exception_address} should be installed as an interrupt
13373gate so that interrupts are masked while the handler runs. The gate
13374should be at privilege level 0 (the most privileged level). The
13375@sc{sparc} and 68k stubs are able to mask interrupts themselves without
13376help from @code{exceptionHandler}.
13377
13378@item void flush_i_cache()
4644b6e3 13379@findex flush_i_cache
d4f3574e 13380On @sc{sparc} and @sc{sparclite} only, write this subroutine to flush the
104c1213
JM
13381instruction cache, if any, on your target machine. If there is no
13382instruction cache, this subroutine may be a no-op.
13383
13384On target machines that have instruction caches, @value{GDBN} requires this
13385function to make certain that the state of your program is stable.
13386@end table
13387
13388@noindent
13389You must also make sure this library routine is available:
13390
13391@table @code
13392@item void *memset(void *, int, int)
4644b6e3 13393@findex memset
104c1213
JM
13394This is the standard library function @code{memset} that sets an area of
13395memory to a known value. If you have one of the free versions of
13396@code{libc.a}, @code{memset} can be found there; otherwise, you must
13397either obtain it from your hardware manufacturer, or write your own.
13398@end table
13399
13400If you do not use the GNU C compiler, you may need other standard
13401library subroutines as well; this varies from one stub to another,
13402but in general the stubs are likely to use any of the common library
e22ea452 13403subroutines which @code{@value{NGCC}} generates as inline code.
104c1213
JM
13404
13405
6d2ebf8b 13406@node Debug Session
79a6e687 13407@subsection Putting it All Together
104c1213
JM
13408
13409@cindex remote serial debugging summary
13410In summary, when your program is ready to debug, you must follow these
13411steps.
13412
13413@enumerate
13414@item
6d2ebf8b 13415Make sure you have defined the supporting low-level routines
79a6e687 13416(@pxref{Bootstrapping,,What You Must Do for the Stub}):
104c1213
JM
13417@display
13418@code{getDebugChar}, @code{putDebugChar},
13419@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
13420@end display
13421
13422@item
13423Insert these lines near the top of your program:
13424
474c8240 13425@smallexample
104c1213
JM
13426set_debug_traps();
13427breakpoint();
474c8240 13428@end smallexample
104c1213
JM
13429
13430@item
13431For the 680x0 stub only, you need to provide a variable called
13432@code{exceptionHook}. Normally you just use:
13433
474c8240 13434@smallexample
104c1213 13435void (*exceptionHook)() = 0;
474c8240 13436@end smallexample
104c1213 13437
d4f3574e 13438@noindent
104c1213 13439but if before calling @code{set_debug_traps}, you set it to point to a
598ca718 13440function in your program, that function is called when
104c1213
JM
13441@code{@value{GDBN}} continues after stopping on a trap (for example, bus
13442error). The function indicated by @code{exceptionHook} is called with
13443one parameter: an @code{int} which is the exception number.
13444
13445@item
13446Compile and link together: your program, the @value{GDBN} debugging stub for
13447your target architecture, and the supporting subroutines.
13448
13449@item
13450Make sure you have a serial connection between your target machine and
13451the @value{GDBN} host, and identify the serial port on the host.
13452
13453@item
13454@c The "remote" target now provides a `load' command, so we should
13455@c document that. FIXME.
13456Download your program to your target machine (or get it there by
13457whatever means the manufacturer provides), and start it.
13458
13459@item
07f31aa6 13460Start @value{GDBN} on the host, and connect to the target
79a6e687 13461(@pxref{Connecting,,Connecting to a Remote Target}).
9db8d71f 13462
104c1213
JM
13463@end enumerate
13464
8e04817f
AC
13465@node Configurations
13466@chapter Configuration-Specific Information
104c1213 13467
8e04817f
AC
13468While nearly all @value{GDBN} commands are available for all native and
13469cross versions of the debugger, there are some exceptions. This chapter
13470describes things that are only available in certain configurations.
104c1213 13471
8e04817f
AC
13472There are three major categories of configurations: native
13473configurations, where the host and target are the same, embedded
13474operating system configurations, which are usually the same for several
13475different processor architectures, and bare embedded processors, which
13476are quite different from each other.
104c1213 13477
8e04817f
AC
13478@menu
13479* Native::
13480* Embedded OS::
13481* Embedded Processors::
13482* Architectures::
13483@end menu
104c1213 13484
8e04817f
AC
13485@node Native
13486@section Native
104c1213 13487
8e04817f
AC
13488This section describes details specific to particular native
13489configurations.
6cf7e474 13490
8e04817f
AC
13491@menu
13492* HP-UX:: HP-UX
7561d450 13493* BSD libkvm Interface:: Debugging BSD kernel memory images
8e04817f
AC
13494* SVR4 Process Information:: SVR4 process information
13495* DJGPP Native:: Features specific to the DJGPP port
78c47bea 13496* Cygwin Native:: Features specific to the Cygwin port
14d6dd68 13497* Hurd Native:: Features specific to @sc{gnu} Hurd
a64548ea 13498* Neutrino:: Features specific to QNX Neutrino
8e04817f 13499@end menu
6cf7e474 13500
8e04817f
AC
13501@node HP-UX
13502@subsection HP-UX
104c1213 13503
8e04817f
AC
13504On HP-UX systems, if you refer to a function or variable name that
13505begins with a dollar sign, @value{GDBN} searches for a user or system
13506name first, before it searches for a convenience variable.
104c1213 13507
9c16f35a 13508
7561d450
MK
13509@node BSD libkvm Interface
13510@subsection BSD libkvm Interface
13511
13512@cindex libkvm
13513@cindex kernel memory image
13514@cindex kernel crash dump
13515
13516BSD-derived systems (FreeBSD/NetBSD/OpenBSD) have a kernel memory
13517interface that provides a uniform interface for accessing kernel virtual
13518memory images, including live systems and crash dumps. @value{GDBN}
13519uses this interface to allow you to debug live kernels and kernel crash
13520dumps on many native BSD configurations. This is implemented as a
13521special @code{kvm} debugging target. For debugging a live system, load
13522the currently running kernel into @value{GDBN} and connect to the
13523@code{kvm} target:
13524
13525@smallexample
13526(@value{GDBP}) @b{target kvm}
13527@end smallexample
13528
13529For debugging crash dumps, provide the file name of the crash dump as an
13530argument:
13531
13532@smallexample
13533(@value{GDBP}) @b{target kvm /var/crash/bsd.0}
13534@end smallexample
13535
13536Once connected to the @code{kvm} target, the following commands are
13537available:
13538
13539@table @code
13540@kindex kvm
13541@item kvm pcb
721c2651 13542Set current context from the @dfn{Process Control Block} (PCB) address.
7561d450
MK
13543
13544@item kvm proc
13545Set current context from proc address. This command isn't available on
13546modern FreeBSD systems.
13547@end table
13548
8e04817f 13549@node SVR4 Process Information
79a6e687 13550@subsection SVR4 Process Information
60bf7e09
EZ
13551@cindex /proc
13552@cindex examine process image
13553@cindex process info via @file{/proc}
104c1213 13554
60bf7e09
EZ
13555Many versions of SVR4 and compatible systems provide a facility called
13556@samp{/proc} that can be used to examine the image of a running
13557process using file-system subroutines. If @value{GDBN} is configured
13558for an operating system with this facility, the command @code{info
13559proc} is available to report information about the process running
13560your program, or about any process running on your system. @code{info
13561proc} works only on SVR4 systems that include the @code{procfs} code.
13562This includes, as of this writing, @sc{gnu}/Linux, OSF/1 (Digital
13563Unix), Solaris, Irix, and Unixware, but not HP-UX, for example.
104c1213 13564
8e04817f
AC
13565@table @code
13566@kindex info proc
60bf7e09 13567@cindex process ID
8e04817f 13568@item info proc
60bf7e09
EZ
13569@itemx info proc @var{process-id}
13570Summarize available information about any running process. If a
13571process ID is specified by @var{process-id}, display information about
13572that process; otherwise display information about the program being
13573debugged. The summary includes the debugged process ID, the command
13574line used to invoke it, its current working directory, and its
13575executable file's absolute file name.
13576
13577On some systems, @var{process-id} can be of the form
13578@samp{[@var{pid}]/@var{tid}} which specifies a certain thread ID
13579within a process. If the optional @var{pid} part is missing, it means
13580a thread from the process being debugged (the leading @samp{/} still
13581needs to be present, or else @value{GDBN} will interpret the number as
13582a process ID rather than a thread ID).
6cf7e474 13583
8e04817f 13584@item info proc mappings
60bf7e09
EZ
13585@cindex memory address space mappings
13586Report the memory address space ranges accessible in the program, with
13587information on whether the process has read, write, or execute access
13588rights to each range. On @sc{gnu}/Linux systems, each memory range
13589includes the object file which is mapped to that range, instead of the
13590memory access rights to that range.
13591
13592@item info proc stat
13593@itemx info proc status
13594@cindex process detailed status information
13595These subcommands are specific to @sc{gnu}/Linux systems. They show
13596the process-related information, including the user ID and group ID;
13597how many threads are there in the process; its virtual memory usage;
13598the signals that are pending, blocked, and ignored; its TTY; its
13599consumption of system and user time; its stack size; its @samp{nice}
2eecc4ab 13600value; etc. For more information, see the @samp{proc} man page
60bf7e09
EZ
13601(type @kbd{man 5 proc} from your shell prompt).
13602
13603@item info proc all
13604Show all the information about the process described under all of the
13605above @code{info proc} subcommands.
13606
8e04817f
AC
13607@ignore
13608@comment These sub-options of 'info proc' were not included when
13609@comment procfs.c was re-written. Keep their descriptions around
13610@comment against the day when someone finds the time to put them back in.
13611@kindex info proc times
13612@item info proc times
13613Starting time, user CPU time, and system CPU time for your program and
13614its children.
6cf7e474 13615
8e04817f
AC
13616@kindex info proc id
13617@item info proc id
13618Report on the process IDs related to your program: its own process ID,
13619the ID of its parent, the process group ID, and the session ID.
8e04817f 13620@end ignore
721c2651
EZ
13621
13622@item set procfs-trace
13623@kindex set procfs-trace
13624@cindex @code{procfs} API calls
13625This command enables and disables tracing of @code{procfs} API calls.
13626
13627@item show procfs-trace
13628@kindex show procfs-trace
13629Show the current state of @code{procfs} API call tracing.
13630
13631@item set procfs-file @var{file}
13632@kindex set procfs-file
13633Tell @value{GDBN} to write @code{procfs} API trace to the named
13634@var{file}. @value{GDBN} appends the trace info to the previous
13635contents of the file. The default is to display the trace on the
13636standard output.
13637
13638@item show procfs-file
13639@kindex show procfs-file
13640Show the file to which @code{procfs} API trace is written.
13641
13642@item proc-trace-entry
13643@itemx proc-trace-exit
13644@itemx proc-untrace-entry
13645@itemx proc-untrace-exit
13646@kindex proc-trace-entry
13647@kindex proc-trace-exit
13648@kindex proc-untrace-entry
13649@kindex proc-untrace-exit
13650These commands enable and disable tracing of entries into and exits
13651from the @code{syscall} interface.
13652
13653@item info pidlist
13654@kindex info pidlist
13655@cindex process list, QNX Neutrino
13656For QNX Neutrino only, this command displays the list of all the
13657processes and all the threads within each process.
13658
13659@item info meminfo
13660@kindex info meminfo
13661@cindex mapinfo list, QNX Neutrino
13662For QNX Neutrino only, this command displays the list of all mapinfos.
8e04817f 13663@end table
104c1213 13664
8e04817f
AC
13665@node DJGPP Native
13666@subsection Features for Debugging @sc{djgpp} Programs
13667@cindex @sc{djgpp} debugging
13668@cindex native @sc{djgpp} debugging
13669@cindex MS-DOS-specific commands
104c1213 13670
514c4d71
EZ
13671@cindex DPMI
13672@sc{djgpp} is a port of the @sc{gnu} development tools to MS-DOS and
8e04817f
AC
13673MS-Windows. @sc{djgpp} programs are 32-bit protected-mode programs
13674that use the @dfn{DPMI} (DOS Protected-Mode Interface) API to run on
13675top of real-mode DOS systems and their emulations.
104c1213 13676
8e04817f
AC
13677@value{GDBN} supports native debugging of @sc{djgpp} programs, and
13678defines a few commands specific to the @sc{djgpp} port. This
13679subsection describes those commands.
104c1213 13680
8e04817f
AC
13681@table @code
13682@kindex info dos
13683@item info dos
13684This is a prefix of @sc{djgpp}-specific commands which print
13685information about the target system and important OS structures.
f1251bdd 13686
8e04817f
AC
13687@kindex sysinfo
13688@cindex MS-DOS system info
13689@cindex free memory information (MS-DOS)
13690@item info dos sysinfo
13691This command displays assorted information about the underlying
13692platform: the CPU type and features, the OS version and flavor, the
13693DPMI version, and the available conventional and DPMI memory.
104c1213 13694
8e04817f
AC
13695@cindex GDT
13696@cindex LDT
13697@cindex IDT
13698@cindex segment descriptor tables
13699@cindex descriptor tables display
13700@item info dos gdt
13701@itemx info dos ldt
13702@itemx info dos idt
13703These 3 commands display entries from, respectively, Global, Local,
13704and Interrupt Descriptor Tables (GDT, LDT, and IDT). The descriptor
13705tables are data structures which store a descriptor for each segment
13706that is currently in use. The segment's selector is an index into a
13707descriptor table; the table entry for that index holds the
13708descriptor's base address and limit, and its attributes and access
13709rights.
104c1213 13710
8e04817f
AC
13711A typical @sc{djgpp} program uses 3 segments: a code segment, a data
13712segment (used for both data and the stack), and a DOS segment (which
13713allows access to DOS/BIOS data structures and absolute addresses in
13714conventional memory). However, the DPMI host will usually define
13715additional segments in order to support the DPMI environment.
d4f3574e 13716
8e04817f
AC
13717@cindex garbled pointers
13718These commands allow to display entries from the descriptor tables.
13719Without an argument, all entries from the specified table are
13720displayed. An argument, which should be an integer expression, means
13721display a single entry whose index is given by the argument. For
13722example, here's a convenient way to display information about the
13723debugged program's data segment:
104c1213 13724
8e04817f
AC
13725@smallexample
13726@exdent @code{(@value{GDBP}) info dos ldt $ds}
13727@exdent @code{0x13f: base=0x11970000 limit=0x0009ffff 32-Bit Data (Read/Write, Exp-up)}
13728@end smallexample
104c1213 13729
8e04817f
AC
13730@noindent
13731This comes in handy when you want to see whether a pointer is outside
13732the data segment's limit (i.e.@: @dfn{garbled}).
104c1213 13733
8e04817f
AC
13734@cindex page tables display (MS-DOS)
13735@item info dos pde
13736@itemx info dos pte
13737These two commands display entries from, respectively, the Page
13738Directory and the Page Tables. Page Directories and Page Tables are
13739data structures which control how virtual memory addresses are mapped
13740into physical addresses. A Page Table includes an entry for every
13741page of memory that is mapped into the program's address space; there
13742may be several Page Tables, each one holding up to 4096 entries. A
13743Page Directory has up to 4096 entries, one each for every Page Table
13744that is currently in use.
104c1213 13745
8e04817f
AC
13746Without an argument, @kbd{info dos pde} displays the entire Page
13747Directory, and @kbd{info dos pte} displays all the entries in all of
13748the Page Tables. An argument, an integer expression, given to the
13749@kbd{info dos pde} command means display only that entry from the Page
13750Directory table. An argument given to the @kbd{info dos pte} command
13751means display entries from a single Page Table, the one pointed to by
13752the specified entry in the Page Directory.
104c1213 13753
8e04817f
AC
13754@cindex direct memory access (DMA) on MS-DOS
13755These commands are useful when your program uses @dfn{DMA} (Direct
13756Memory Access), which needs physical addresses to program the DMA
13757controller.
104c1213 13758
8e04817f 13759These commands are supported only with some DPMI servers.
104c1213 13760
8e04817f
AC
13761@cindex physical address from linear address
13762@item info dos address-pte @var{addr}
13763This command displays the Page Table entry for a specified linear
514c4d71
EZ
13764address. The argument @var{addr} is a linear address which should
13765already have the appropriate segment's base address added to it,
13766because this command accepts addresses which may belong to @emph{any}
13767segment. For example, here's how to display the Page Table entry for
13768the page where a variable @code{i} is stored:
104c1213 13769
b383017d 13770@smallexample
8e04817f
AC
13771@exdent @code{(@value{GDBP}) info dos address-pte __djgpp_base_address + (char *)&i}
13772@exdent @code{Page Table entry for address 0x11a00d30:}
b383017d 13773@exdent @code{Base=0x02698000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0xd30}
8e04817f 13774@end smallexample
104c1213 13775
8e04817f
AC
13776@noindent
13777This says that @code{i} is stored at offset @code{0xd30} from the page
514c4d71 13778whose physical base address is @code{0x02698000}, and shows all the
8e04817f 13779attributes of that page.
104c1213 13780
8e04817f
AC
13781Note that you must cast the addresses of variables to a @code{char *},
13782since otherwise the value of @code{__djgpp_base_address}, the base
13783address of all variables and functions in a @sc{djgpp} program, will
13784be added using the rules of C pointer arithmetics: if @code{i} is
13785declared an @code{int}, @value{GDBN} will add 4 times the value of
13786@code{__djgpp_base_address} to the address of @code{i}.
104c1213 13787
8e04817f
AC
13788Here's another example, it displays the Page Table entry for the
13789transfer buffer:
104c1213 13790
8e04817f
AC
13791@smallexample
13792@exdent @code{(@value{GDBP}) info dos address-pte *((unsigned *)&_go32_info_block + 3)}
13793@exdent @code{Page Table entry for address 0x29110:}
13794@exdent @code{Base=0x00029000 Dirty Acc. Not-Cached Write-Back Usr Read-Write +0x110}
13795@end smallexample
104c1213 13796
8e04817f
AC
13797@noindent
13798(The @code{+ 3} offset is because the transfer buffer's address is the
514c4d71
EZ
137993rd member of the @code{_go32_info_block} structure.) The output
13800clearly shows that this DPMI server maps the addresses in conventional
13801memory 1:1, i.e.@: the physical (@code{0x00029000} + @code{0x110}) and
13802linear (@code{0x29110}) addresses are identical.
104c1213 13803
8e04817f
AC
13804This command is supported only with some DPMI servers.
13805@end table
104c1213 13806
c45da7e6 13807@cindex DOS serial data link, remote debugging
a8f24a35
EZ
13808In addition to native debugging, the DJGPP port supports remote
13809debugging via a serial data link. The following commands are specific
13810to remote serial debugging in the DJGPP port of @value{GDBN}.
13811
13812@table @code
13813@kindex set com1base
13814@kindex set com1irq
13815@kindex set com2base
13816@kindex set com2irq
13817@kindex set com3base
13818@kindex set com3irq
13819@kindex set com4base
13820@kindex set com4irq
13821@item set com1base @var{addr}
13822This command sets the base I/O port address of the @file{COM1} serial
13823port.
13824
13825@item set com1irq @var{irq}
13826This command sets the @dfn{Interrupt Request} (@code{IRQ}) line to use
13827for the @file{COM1} serial port.
13828
13829There are similar commands @samp{set com2base}, @samp{set com3irq},
13830etc.@: for setting the port address and the @code{IRQ} lines for the
13831other 3 COM ports.
13832
13833@kindex show com1base
13834@kindex show com1irq
13835@kindex show com2base
13836@kindex show com2irq
13837@kindex show com3base
13838@kindex show com3irq
13839@kindex show com4base
13840@kindex show com4irq
13841The related commands @samp{show com1base}, @samp{show com1irq} etc.@:
13842display the current settings of the base address and the @code{IRQ}
13843lines used by the COM ports.
c45da7e6
EZ
13844
13845@item info serial
13846@kindex info serial
13847@cindex DOS serial port status
13848This command prints the status of the 4 DOS serial ports. For each
13849port, it prints whether it's active or not, its I/O base address and
13850IRQ number, whether it uses a 16550-style FIFO, its baudrate, and the
13851counts of various errors encountered so far.
a8f24a35
EZ
13852@end table
13853
13854
78c47bea 13855@node Cygwin Native
79a6e687 13856@subsection Features for Debugging MS Windows PE Executables
78c47bea
PM
13857@cindex MS Windows debugging
13858@cindex native Cygwin debugging
13859@cindex Cygwin-specific commands
13860
be448670 13861@value{GDBN} supports native debugging of MS Windows programs, including
db2e3e2e
BW
13862DLLs with and without symbolic debugging information. There are various
13863additional Cygwin-specific commands, described in this section.
13864Working with DLLs that have no debugging symbols is described in
13865@ref{Non-debug DLL Symbols}.
78c47bea
PM
13866
13867@table @code
13868@kindex info w32
13869@item info w32
db2e3e2e 13870This is a prefix of MS Windows-specific commands which print
78c47bea
PM
13871information about the target system and important OS structures.
13872
13873@item info w32 selector
13874This command displays information returned by
13875the Win32 API @code{GetThreadSelectorEntry} function.
13876It takes an optional argument that is evaluated to
13877a long value to give the information about this given selector.
13878Without argument, this command displays information
d3e8051b 13879about the six segment registers.
78c47bea
PM
13880
13881@kindex info dll
13882@item info dll
db2e3e2e 13883This is a Cygwin-specific alias of @code{info shared}.
78c47bea
PM
13884
13885@kindex dll-symbols
13886@item dll-symbols
13887This command loads symbols from a dll similarly to
13888add-sym command but without the need to specify a base address.
13889
be90c084 13890@kindex set cygwin-exceptions
e16b02ee
EZ
13891@cindex debugging the Cygwin DLL
13892@cindex Cygwin DLL, debugging
be90c084 13893@item set cygwin-exceptions @var{mode}
e16b02ee
EZ
13894If @var{mode} is @code{on}, @value{GDBN} will break on exceptions that
13895happen inside the Cygwin DLL. If @var{mode} is @code{off},
13896@value{GDBN} will delay recognition of exceptions, and may ignore some
13897exceptions which seem to be caused by internal Cygwin DLL
13898``bookkeeping''. This option is meant primarily for debugging the
13899Cygwin DLL itself; the default value is @code{off} to avoid annoying
13900@value{GDBN} users with false @code{SIGSEGV} signals.
be90c084
CF
13901
13902@kindex show cygwin-exceptions
13903@item show cygwin-exceptions
e16b02ee
EZ
13904Displays whether @value{GDBN} will break on exceptions that happen
13905inside the Cygwin DLL itself.
be90c084 13906
b383017d 13907@kindex set new-console
78c47bea 13908@item set new-console @var{mode}
b383017d 13909If @var{mode} is @code{on} the debuggee will
78c47bea
PM
13910be started in a new console on next start.
13911If @var{mode} is @code{off}i, the debuggee will
13912be started in the same console as the debugger.
13913
13914@kindex show new-console
13915@item show new-console
13916Displays whether a new console is used
13917when the debuggee is started.
13918
13919@kindex set new-group
13920@item set new-group @var{mode}
13921This boolean value controls whether the debuggee should
13922start a new group or stay in the same group as the debugger.
13923This affects the way the Windows OS handles
c8aa23ab 13924@samp{Ctrl-C}.
78c47bea
PM
13925
13926@kindex show new-group
13927@item show new-group
13928Displays current value of new-group boolean.
13929
13930@kindex set debugevents
13931@item set debugevents
219eec71
EZ
13932This boolean value adds debug output concerning kernel events related
13933to the debuggee seen by the debugger. This includes events that
13934signal thread and process creation and exit, DLL loading and
13935unloading, console interrupts, and debugging messages produced by the
13936Windows @code{OutputDebugString} API call.
78c47bea
PM
13937
13938@kindex set debugexec
13939@item set debugexec
b383017d 13940This boolean value adds debug output concerning execute events
219eec71 13941(such as resume thread) seen by the debugger.
78c47bea
PM
13942
13943@kindex set debugexceptions
13944@item set debugexceptions
219eec71
EZ
13945This boolean value adds debug output concerning exceptions in the
13946debuggee seen by the debugger.
78c47bea
PM
13947
13948@kindex set debugmemory
13949@item set debugmemory
219eec71
EZ
13950This boolean value adds debug output concerning debuggee memory reads
13951and writes by the debugger.
78c47bea
PM
13952
13953@kindex set shell
13954@item set shell
13955This boolean values specifies whether the debuggee is called
13956via a shell or directly (default value is on).
13957
13958@kindex show shell
13959@item show shell
13960Displays if the debuggee will be started with a shell.
13961
13962@end table
13963
be448670 13964@menu
79a6e687 13965* Non-debug DLL Symbols:: Support for DLLs without debugging symbols
be448670
CF
13966@end menu
13967
79a6e687
BW
13968@node Non-debug DLL Symbols
13969@subsubsection Support for DLLs without Debugging Symbols
be448670
CF
13970@cindex DLLs with no debugging symbols
13971@cindex Minimal symbols and DLLs
13972
13973Very often on windows, some of the DLLs that your program relies on do
13974not include symbolic debugging information (for example,
db2e3e2e 13975@file{kernel32.dll}). When @value{GDBN} doesn't recognize any debugging
be448670 13976symbols in a DLL, it relies on the minimal amount of symbolic
db2e3e2e 13977information contained in the DLL's export table. This section
be448670
CF
13978describes working with such symbols, known internally to @value{GDBN} as
13979``minimal symbols''.
13980
13981Note that before the debugged program has started execution, no DLLs
db2e3e2e 13982will have been loaded. The easiest way around this problem is simply to
be448670 13983start the program --- either by setting a breakpoint or letting the
db2e3e2e 13984program run once to completion. It is also possible to force
be448670 13985@value{GDBN} to load a particular DLL before starting the executable ---
12c27660 13986see the shared library information in @ref{Files}, or the
db2e3e2e 13987@code{dll-symbols} command in @ref{Cygwin Native}. Currently,
be448670
CF
13988explicitly loading symbols from a DLL with no debugging information will
13989cause the symbol names to be duplicated in @value{GDBN}'s lookup table,
13990which may adversely affect symbol lookup performance.
13991
79a6e687 13992@subsubsection DLL Name Prefixes
be448670
CF
13993
13994In keeping with the naming conventions used by the Microsoft debugging
13995tools, DLL export symbols are made available with a prefix based on the
13996DLL name, for instance @code{KERNEL32!CreateFileA}. The plain name is
13997also entered into the symbol table, so @code{CreateFileA} is often
13998sufficient. In some cases there will be name clashes within a program
13999(particularly if the executable itself includes full debugging symbols)
14000necessitating the use of the fully qualified name when referring to the
14001contents of the DLL. Use single-quotes around the name to avoid the
14002exclamation mark (``!'') being interpreted as a language operator.
14003
14004Note that the internal name of the DLL may be all upper-case, even
14005though the file name of the DLL is lower-case, or vice-versa. Since
14006symbols within @value{GDBN} are @emph{case-sensitive} this may cause
14007some confusion. If in doubt, try the @code{info functions} and
0869d01b
NR
14008@code{info variables} commands or even @code{maint print msymbols}
14009(@pxref{Symbols}). Here's an example:
be448670
CF
14010
14011@smallexample
f7dc1244 14012(@value{GDBP}) info function CreateFileA
be448670
CF
14013All functions matching regular expression "CreateFileA":
14014
14015Non-debugging symbols:
140160x77e885f4 CreateFileA
140170x77e885f4 KERNEL32!CreateFileA
14018@end smallexample
14019
14020@smallexample
f7dc1244 14021(@value{GDBP}) info function !
be448670
CF
14022All functions matching regular expression "!":
14023
14024Non-debugging symbols:
140250x6100114c cygwin1!__assert
140260x61004034 cygwin1!_dll_crt0@@0
140270x61004240 cygwin1!dll_crt0(per_process *)
14028[etc...]
14029@end smallexample
14030
79a6e687 14031@subsubsection Working with Minimal Symbols
be448670
CF
14032
14033Symbols extracted from a DLL's export table do not contain very much
14034type information. All that @value{GDBN} can do is guess whether a symbol
14035refers to a function or variable depending on the linker section that
14036contains the symbol. Also note that the actual contents of the memory
14037contained in a DLL are not available unless the program is running. This
14038means that you cannot examine the contents of a variable or disassemble
14039a function within a DLL without a running program.
14040
14041Variables are generally treated as pointers and dereferenced
14042automatically. For this reason, it is often necessary to prefix a
14043variable name with the address-of operator (``&'') and provide explicit
14044type information in the command. Here's an example of the type of
14045problem:
14046
14047@smallexample
f7dc1244 14048(@value{GDBP}) print 'cygwin1!__argv'
be448670
CF
14049$1 = 268572168
14050@end smallexample
14051
14052@smallexample
f7dc1244 14053(@value{GDBP}) x 'cygwin1!__argv'
be448670
CF
140540x10021610: "\230y\""
14055@end smallexample
14056
14057And two possible solutions:
14058
14059@smallexample
f7dc1244 14060(@value{GDBP}) print ((char **)'cygwin1!__argv')[0]
be448670
CF
14061$2 = 0x22fd98 "/cygdrive/c/mydirectory/myprogram"
14062@end smallexample
14063
14064@smallexample
f7dc1244 14065(@value{GDBP}) x/2x &'cygwin1!__argv'
be448670 140660x610c0aa8 <cygwin1!__argv>: 0x10021608 0x00000000
f7dc1244 14067(@value{GDBP}) x/x 0x10021608
be448670 140680x10021608: 0x0022fd98
f7dc1244 14069(@value{GDBP}) x/s 0x0022fd98
be448670
CF
140700x22fd98: "/cygdrive/c/mydirectory/myprogram"
14071@end smallexample
14072
14073Setting a break point within a DLL is possible even before the program
14074starts execution. However, under these circumstances, @value{GDBN} can't
14075examine the initial instructions of the function in order to skip the
14076function's frame set-up code. You can work around this by using ``*&''
14077to set the breakpoint at a raw memory address:
14078
14079@smallexample
f7dc1244 14080(@value{GDBP}) break *&'python22!PyOS_Readline'
be448670
CF
14081Breakpoint 1 at 0x1e04eff0
14082@end smallexample
14083
14084The author of these extensions is not entirely convinced that setting a
14085break point within a shared DLL like @file{kernel32.dll} is completely
14086safe.
14087
14d6dd68 14088@node Hurd Native
79a6e687 14089@subsection Commands Specific to @sc{gnu} Hurd Systems
14d6dd68
EZ
14090@cindex @sc{gnu} Hurd debugging
14091
14092This subsection describes @value{GDBN} commands specific to the
14093@sc{gnu} Hurd native debugging.
14094
14095@table @code
14096@item set signals
14097@itemx set sigs
14098@kindex set signals@r{, Hurd command}
14099@kindex set sigs@r{, Hurd command}
14100This command toggles the state of inferior signal interception by
14101@value{GDBN}. Mach exceptions, such as breakpoint traps, are not
14102affected by this command. @code{sigs} is a shorthand alias for
14103@code{signals}.
14104
14105@item show signals
14106@itemx show sigs
14107@kindex show signals@r{, Hurd command}
14108@kindex show sigs@r{, Hurd command}
14109Show the current state of intercepting inferior's signals.
14110
14111@item set signal-thread
14112@itemx set sigthread
14113@kindex set signal-thread
14114@kindex set sigthread
14115This command tells @value{GDBN} which thread is the @code{libc} signal
14116thread. That thread is run when a signal is delivered to a running
14117process. @code{set sigthread} is the shorthand alias of @code{set
14118signal-thread}.
14119
14120@item show signal-thread
14121@itemx show sigthread
14122@kindex show signal-thread
14123@kindex show sigthread
14124These two commands show which thread will run when the inferior is
14125delivered a signal.
14126
14127@item set stopped
14128@kindex set stopped@r{, Hurd command}
14129This commands tells @value{GDBN} that the inferior process is stopped,
14130as with the @code{SIGSTOP} signal. The stopped process can be
14131continued by delivering a signal to it.
14132
14133@item show stopped
14134@kindex show stopped@r{, Hurd command}
14135This command shows whether @value{GDBN} thinks the debuggee is
14136stopped.
14137
14138@item set exceptions
14139@kindex set exceptions@r{, Hurd command}
14140Use this command to turn off trapping of exceptions in the inferior.
14141When exception trapping is off, neither breakpoints nor
14142single-stepping will work. To restore the default, set exception
14143trapping on.
14144
14145@item show exceptions
14146@kindex show exceptions@r{, Hurd command}
14147Show the current state of trapping exceptions in the inferior.
14148
14149@item set task pause
14150@kindex set task@r{, Hurd commands}
14151@cindex task attributes (@sc{gnu} Hurd)
14152@cindex pause current task (@sc{gnu} Hurd)
14153This command toggles task suspension when @value{GDBN} has control.
14154Setting it to on takes effect immediately, and the task is suspended
14155whenever @value{GDBN} gets control. Setting it to off will take
14156effect the next time the inferior is continued. If this option is set
14157to off, you can use @code{set thread default pause on} or @code{set
14158thread pause on} (see below) to pause individual threads.
14159
14160@item show task pause
14161@kindex show task@r{, Hurd commands}
14162Show the current state of task suspension.
14163
14164@item set task detach-suspend-count
14165@cindex task suspend count
14166@cindex detach from task, @sc{gnu} Hurd
14167This command sets the suspend count the task will be left with when
14168@value{GDBN} detaches from it.
14169
14170@item show task detach-suspend-count
14171Show the suspend count the task will be left with when detaching.
14172
14173@item set task exception-port
14174@itemx set task excp
14175@cindex task exception port, @sc{gnu} Hurd
14176This command sets the task exception port to which @value{GDBN} will
14177forward exceptions. The argument should be the value of the @dfn{send
14178rights} of the task. @code{set task excp} is a shorthand alias.
14179
14180@item set noninvasive
14181@cindex noninvasive task options
14182This command switches @value{GDBN} to a mode that is the least
14183invasive as far as interfering with the inferior is concerned. This
14184is the same as using @code{set task pause}, @code{set exceptions}, and
14185@code{set signals} to values opposite to the defaults.
14186
14187@item info send-rights
14188@itemx info receive-rights
14189@itemx info port-rights
14190@itemx info port-sets
14191@itemx info dead-names
14192@itemx info ports
14193@itemx info psets
14194@cindex send rights, @sc{gnu} Hurd
14195@cindex receive rights, @sc{gnu} Hurd
14196@cindex port rights, @sc{gnu} Hurd
14197@cindex port sets, @sc{gnu} Hurd
14198@cindex dead names, @sc{gnu} Hurd
14199These commands display information about, respectively, send rights,
14200receive rights, port rights, port sets, and dead names of a task.
14201There are also shorthand aliases: @code{info ports} for @code{info
14202port-rights} and @code{info psets} for @code{info port-sets}.
14203
14204@item set thread pause
14205@kindex set thread@r{, Hurd command}
14206@cindex thread properties, @sc{gnu} Hurd
14207@cindex pause current thread (@sc{gnu} Hurd)
14208This command toggles current thread suspension when @value{GDBN} has
14209control. Setting it to on takes effect immediately, and the current
14210thread is suspended whenever @value{GDBN} gets control. Setting it to
14211off will take effect the next time the inferior is continued.
14212Normally, this command has no effect, since when @value{GDBN} has
14213control, the whole task is suspended. However, if you used @code{set
14214task pause off} (see above), this command comes in handy to suspend
14215only the current thread.
14216
14217@item show thread pause
14218@kindex show thread@r{, Hurd command}
14219This command shows the state of current thread suspension.
14220
14221@item set thread run
d3e8051b 14222This command sets whether the current thread is allowed to run.
14d6dd68
EZ
14223
14224@item show thread run
14225Show whether the current thread is allowed to run.
14226
14227@item set thread detach-suspend-count
14228@cindex thread suspend count, @sc{gnu} Hurd
14229@cindex detach from thread, @sc{gnu} Hurd
14230This command sets the suspend count @value{GDBN} will leave on a
14231thread when detaching. This number is relative to the suspend count
14232found by @value{GDBN} when it notices the thread; use @code{set thread
14233takeover-suspend-count} to force it to an absolute value.
14234
14235@item show thread detach-suspend-count
14236Show the suspend count @value{GDBN} will leave on the thread when
14237detaching.
14238
14239@item set thread exception-port
14240@itemx set thread excp
14241Set the thread exception port to which to forward exceptions. This
14242overrides the port set by @code{set task exception-port} (see above).
14243@code{set thread excp} is the shorthand alias.
14244
14245@item set thread takeover-suspend-count
14246Normally, @value{GDBN}'s thread suspend counts are relative to the
14247value @value{GDBN} finds when it notices each thread. This command
14248changes the suspend counts to be absolute instead.
14249
14250@item set thread default
14251@itemx show thread default
14252@cindex thread default settings, @sc{gnu} Hurd
14253Each of the above @code{set thread} commands has a @code{set thread
14254default} counterpart (e.g., @code{set thread default pause}, @code{set
14255thread default exception-port}, etc.). The @code{thread default}
14256variety of commands sets the default thread properties for all
14257threads; you can then change the properties of individual threads with
14258the non-default commands.
14259@end table
14260
14261
a64548ea
EZ
14262@node Neutrino
14263@subsection QNX Neutrino
14264@cindex QNX Neutrino
14265
14266@value{GDBN} provides the following commands specific to the QNX
14267Neutrino target:
14268
14269@table @code
14270@item set debug nto-debug
14271@kindex set debug nto-debug
14272When set to on, enables debugging messages specific to the QNX
14273Neutrino support.
14274
14275@item show debug nto-debug
14276@kindex show debug nto-debug
14277Show the current state of QNX Neutrino messages.
14278@end table
14279
14280
8e04817f
AC
14281@node Embedded OS
14282@section Embedded Operating Systems
104c1213 14283
8e04817f
AC
14284This section describes configurations involving the debugging of
14285embedded operating systems that are available for several different
14286architectures.
d4f3574e 14287
8e04817f
AC
14288@menu
14289* VxWorks:: Using @value{GDBN} with VxWorks
14290@end menu
104c1213 14291
8e04817f
AC
14292@value{GDBN} includes the ability to debug programs running on
14293various real-time operating systems.
104c1213 14294
8e04817f
AC
14295@node VxWorks
14296@subsection Using @value{GDBN} with VxWorks
104c1213 14297
8e04817f 14298@cindex VxWorks
104c1213 14299
8e04817f 14300@table @code
104c1213 14301
8e04817f
AC
14302@kindex target vxworks
14303@item target vxworks @var{machinename}
14304A VxWorks system, attached via TCP/IP. The argument @var{machinename}
14305is the target system's machine name or IP address.
104c1213 14306
8e04817f 14307@end table
104c1213 14308
8e04817f
AC
14309On VxWorks, @code{load} links @var{filename} dynamically on the
14310current target system as well as adding its symbols in @value{GDBN}.
104c1213 14311
8e04817f
AC
14312@value{GDBN} enables developers to spawn and debug tasks running on networked
14313VxWorks targets from a Unix host. Already-running tasks spawned from
14314the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
14315both the Unix host and on the VxWorks target. The program
14316@code{@value{GDBP}} is installed and executed on the Unix host. (It may be
14317installed with the name @code{vxgdb}, to distinguish it from a
14318@value{GDBN} for debugging programs on the host itself.)
104c1213 14319
8e04817f
AC
14320@table @code
14321@item VxWorks-timeout @var{args}
14322@kindex vxworks-timeout
14323All VxWorks-based targets now support the option @code{vxworks-timeout}.
14324This option is set by the user, and @var{args} represents the number of
14325seconds @value{GDBN} waits for responses to rpc's. You might use this if
14326your VxWorks target is a slow software simulator or is on the far side
14327of a thin network line.
14328@end table
104c1213 14329
8e04817f
AC
14330The following information on connecting to VxWorks was current when
14331this manual was produced; newer releases of VxWorks may use revised
14332procedures.
104c1213 14333
4644b6e3 14334@findex INCLUDE_RDB
8e04817f
AC
14335To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
14336to include the remote debugging interface routines in the VxWorks
14337library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
14338VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
14339kernel. The resulting kernel contains @file{rdb.a}, and spawns the
14340source debugging task @code{tRdbTask} when VxWorks is booted. For more
14341information on configuring and remaking VxWorks, see the manufacturer's
14342manual.
14343@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
104c1213 14344
8e04817f
AC
14345Once you have included @file{rdb.a} in your VxWorks system image and set
14346your Unix execution search path to find @value{GDBN}, you are ready to
14347run @value{GDBN}. From your Unix host, run @code{@value{GDBP}} (or
14348@code{vxgdb}, depending on your installation).
104c1213 14349
8e04817f 14350@value{GDBN} comes up showing the prompt:
104c1213 14351
474c8240 14352@smallexample
8e04817f 14353(vxgdb)
474c8240 14354@end smallexample
104c1213 14355
8e04817f
AC
14356@menu
14357* VxWorks Connection:: Connecting to VxWorks
14358* VxWorks Download:: VxWorks download
14359* VxWorks Attach:: Running tasks
14360@end menu
104c1213 14361
8e04817f
AC
14362@node VxWorks Connection
14363@subsubsection Connecting to VxWorks
104c1213 14364
8e04817f
AC
14365The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
14366network. To connect to a target whose host name is ``@code{tt}'', type:
104c1213 14367
474c8240 14368@smallexample
8e04817f 14369(vxgdb) target vxworks tt
474c8240 14370@end smallexample
104c1213 14371
8e04817f
AC
14372@need 750
14373@value{GDBN} displays messages like these:
104c1213 14374
8e04817f
AC
14375@smallexample
14376Attaching remote machine across net...
14377Connected to tt.
14378@end smallexample
104c1213 14379
8e04817f
AC
14380@need 1000
14381@value{GDBN} then attempts to read the symbol tables of any object modules
14382loaded into the VxWorks target since it was last booted. @value{GDBN} locates
14383these files by searching the directories listed in the command search
79a6e687 14384path (@pxref{Environment, ,Your Program's Environment}); if it fails
8e04817f 14385to find an object file, it displays a message such as:
5d161b24 14386
474c8240 14387@smallexample
8e04817f 14388prog.o: No such file or directory.
474c8240 14389@end smallexample
104c1213 14390
8e04817f
AC
14391When this happens, add the appropriate directory to the search path with
14392the @value{GDBN} command @code{path}, and execute the @code{target}
14393command again.
104c1213 14394
8e04817f 14395@node VxWorks Download
79a6e687 14396@subsubsection VxWorks Download
104c1213 14397
8e04817f
AC
14398@cindex download to VxWorks
14399If you have connected to the VxWorks target and you want to debug an
14400object that has not yet been loaded, you can use the @value{GDBN}
14401@code{load} command to download a file from Unix to VxWorks
14402incrementally. The object file given as an argument to the @code{load}
14403command is actually opened twice: first by the VxWorks target in order
14404to download the code, then by @value{GDBN} in order to read the symbol
14405table. This can lead to problems if the current working directories on
14406the two systems differ. If both systems have NFS mounted the same
14407filesystems, you can avoid these problems by using absolute paths.
14408Otherwise, it is simplest to set the working directory on both systems
14409to the directory in which the object file resides, and then to reference
14410the file by its name, without any path. For instance, a program
14411@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
14412and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
14413program, type this on VxWorks:
104c1213 14414
474c8240 14415@smallexample
8e04817f 14416-> cd "@var{vxpath}/vw/demo/rdb"
474c8240 14417@end smallexample
104c1213 14418
8e04817f
AC
14419@noindent
14420Then, in @value{GDBN}, type:
104c1213 14421
474c8240 14422@smallexample
8e04817f
AC
14423(vxgdb) cd @var{hostpath}/vw/demo/rdb
14424(vxgdb) load prog.o
474c8240 14425@end smallexample
104c1213 14426
8e04817f 14427@value{GDBN} displays a response similar to this:
104c1213 14428
8e04817f
AC
14429@smallexample
14430Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
14431@end smallexample
104c1213 14432
8e04817f
AC
14433You can also use the @code{load} command to reload an object module
14434after editing and recompiling the corresponding source file. Note that
14435this makes @value{GDBN} delete all currently-defined breakpoints,
14436auto-displays, and convenience variables, and to clear the value
14437history. (This is necessary in order to preserve the integrity of
14438debugger's data structures that reference the target system's symbol
14439table.)
104c1213 14440
8e04817f 14441@node VxWorks Attach
79a6e687 14442@subsubsection Running Tasks
104c1213
JM
14443
14444@cindex running VxWorks tasks
14445You can also attach to an existing task using the @code{attach} command as
14446follows:
14447
474c8240 14448@smallexample
104c1213 14449(vxgdb) attach @var{task}
474c8240 14450@end smallexample
104c1213
JM
14451
14452@noindent
14453where @var{task} is the VxWorks hexadecimal task ID. The task can be running
14454or suspended when you attach to it. Running tasks are suspended at
14455the time of attachment.
14456
6d2ebf8b 14457@node Embedded Processors
104c1213
JM
14458@section Embedded Processors
14459
14460This section goes into details specific to particular embedded
14461configurations.
14462
c45da7e6
EZ
14463@cindex send command to simulator
14464Whenever a specific embedded processor has a simulator, @value{GDBN}
14465allows to send an arbitrary command to the simulator.
14466
14467@table @code
14468@item sim @var{command}
14469@kindex sim@r{, a command}
14470Send an arbitrary @var{command} string to the simulator. Consult the
14471documentation for the specific simulator in use for information about
14472acceptable commands.
14473@end table
14474
7d86b5d5 14475
104c1213 14476@menu
c45da7e6 14477* ARM:: ARM RDI
172c2a43 14478* M32R/D:: Renesas M32R/D
104c1213 14479* M68K:: Motorola M68K
104c1213 14480* MIPS Embedded:: MIPS Embedded
a37295f9 14481* OpenRISC 1000:: OpenRisc 1000
104c1213 14482* PA:: HP PA Embedded
0869d01b 14483* PowerPC:: PowerPC
104c1213
JM
14484* Sparclet:: Tsqware Sparclet
14485* Sparclite:: Fujitsu Sparclite
104c1213 14486* Z8000:: Zilog Z8000
a64548ea
EZ
14487* AVR:: Atmel AVR
14488* CRIS:: CRIS
14489* Super-H:: Renesas Super-H
104c1213
JM
14490@end menu
14491
6d2ebf8b 14492@node ARM
104c1213 14493@subsection ARM
c45da7e6 14494@cindex ARM RDI
104c1213
JM
14495
14496@table @code
8e04817f
AC
14497@kindex target rdi
14498@item target rdi @var{dev}
14499ARM Angel monitor, via RDI library interface to ADP protocol. You may
14500use this target to communicate with both boards running the Angel
14501monitor, or with the EmbeddedICE JTAG debug device.
14502
14503@kindex target rdp
14504@item target rdp @var{dev}
14505ARM Demon monitor.
14506
14507@end table
14508
e2f4edfd
EZ
14509@value{GDBN} provides the following ARM-specific commands:
14510
14511@table @code
14512@item set arm disassembler
14513@kindex set arm
14514This commands selects from a list of disassembly styles. The
14515@code{"std"} style is the standard style.
14516
14517@item show arm disassembler
14518@kindex show arm
14519Show the current disassembly style.
14520
14521@item set arm apcs32
14522@cindex ARM 32-bit mode
14523This command toggles ARM operation mode between 32-bit and 26-bit.
14524
14525@item show arm apcs32
14526Display the current usage of the ARM 32-bit mode.
14527
14528@item set arm fpu @var{fputype}
14529This command sets the ARM floating-point unit (FPU) type. The
14530argument @var{fputype} can be one of these:
14531
14532@table @code
14533@item auto
14534Determine the FPU type by querying the OS ABI.
14535@item softfpa
14536Software FPU, with mixed-endian doubles on little-endian ARM
14537processors.
14538@item fpa
14539GCC-compiled FPA co-processor.
14540@item softvfp
14541Software FPU with pure-endian doubles.
14542@item vfp
14543VFP co-processor.
14544@end table
14545
14546@item show arm fpu
14547Show the current type of the FPU.
14548
14549@item set arm abi
14550This command forces @value{GDBN} to use the specified ABI.
14551
14552@item show arm abi
14553Show the currently used ABI.
14554
14555@item set debug arm
14556Toggle whether to display ARM-specific debugging messages from the ARM
14557target support subsystem.
14558
14559@item show debug arm
14560Show whether ARM-specific debugging messages are enabled.
14561@end table
14562
c45da7e6
EZ
14563The following commands are available when an ARM target is debugged
14564using the RDI interface:
14565
14566@table @code
14567@item rdilogfile @r{[}@var{file}@r{]}
14568@kindex rdilogfile
14569@cindex ADP (Angel Debugger Protocol) logging
14570Set the filename for the ADP (Angel Debugger Protocol) packet log.
14571With an argument, sets the log file to the specified @var{file}. With
14572no argument, show the current log file name. The default log file is
14573@file{rdi.log}.
14574
14575@item rdilogenable @r{[}@var{arg}@r{]}
14576@kindex rdilogenable
14577Control logging of ADP packets. With an argument of 1 or @code{"yes"}
14578enables logging, with an argument 0 or @code{"no"} disables it. With
14579no arguments displays the current setting. When logging is enabled,
14580ADP packets exchanged between @value{GDBN} and the RDI target device
14581are logged to a file.
14582
14583@item set rdiromatzero
14584@kindex set rdiromatzero
14585@cindex ROM at zero address, RDI
14586Tell @value{GDBN} whether the target has ROM at address 0. If on,
14587vector catching is disabled, so that zero address can be used. If off
14588(the default), vector catching is enabled. For this command to take
14589effect, it needs to be invoked prior to the @code{target rdi} command.
14590
14591@item show rdiromatzero
14592@kindex show rdiromatzero
14593Show the current setting of ROM at zero address.
14594
14595@item set rdiheartbeat
14596@kindex set rdiheartbeat
14597@cindex RDI heartbeat
14598Enable or disable RDI heartbeat packets. It is not recommended to
14599turn on this option, since it confuses ARM and EPI JTAG interface, as
14600well as the Angel monitor.
14601
14602@item show rdiheartbeat
14603@kindex show rdiheartbeat
14604Show the setting of RDI heartbeat packets.
14605@end table
14606
e2f4edfd 14607
8e04817f 14608@node M32R/D
ba04e063 14609@subsection Renesas M32R/D and M32R/SDI
8e04817f
AC
14610
14611@table @code
8e04817f
AC
14612@kindex target m32r
14613@item target m32r @var{dev}
172c2a43 14614Renesas M32R/D ROM monitor.
8e04817f 14615
fb3e19c0
KI
14616@kindex target m32rsdi
14617@item target m32rsdi @var{dev}
14618Renesas M32R SDI server, connected via parallel port to the board.
721c2651
EZ
14619@end table
14620
14621The following @value{GDBN} commands are specific to the M32R monitor:
14622
14623@table @code
14624@item set download-path @var{path}
14625@kindex set download-path
14626@cindex find downloadable @sc{srec} files (M32R)
d3e8051b 14627Set the default path for finding downloadable @sc{srec} files.
721c2651
EZ
14628
14629@item show download-path
14630@kindex show download-path
14631Show the default path for downloadable @sc{srec} files.
fb3e19c0 14632
721c2651
EZ
14633@item set board-address @var{addr}
14634@kindex set board-address
14635@cindex M32-EVA target board address
14636Set the IP address for the M32R-EVA target board.
14637
14638@item show board-address
14639@kindex show board-address
14640Show the current IP address of the target board.
14641
14642@item set server-address @var{addr}
14643@kindex set server-address
14644@cindex download server address (M32R)
14645Set the IP address for the download server, which is the @value{GDBN}'s
14646host machine.
14647
14648@item show server-address
14649@kindex show server-address
14650Display the IP address of the download server.
14651
14652@item upload @r{[}@var{file}@r{]}
14653@kindex upload@r{, M32R}
14654Upload the specified @sc{srec} @var{file} via the monitor's Ethernet
14655upload capability. If no @var{file} argument is given, the current
14656executable file is uploaded.
14657
14658@item tload @r{[}@var{file}@r{]}
14659@kindex tload@r{, M32R}
14660Test the @code{upload} command.
8e04817f
AC
14661@end table
14662
ba04e063
EZ
14663The following commands are available for M32R/SDI:
14664
14665@table @code
14666@item sdireset
14667@kindex sdireset
14668@cindex reset SDI connection, M32R
14669This command resets the SDI connection.
14670
14671@item sdistatus
14672@kindex sdistatus
14673This command shows the SDI connection status.
14674
14675@item debug_chaos
14676@kindex debug_chaos
14677@cindex M32R/Chaos debugging
14678Instructs the remote that M32R/Chaos debugging is to be used.
14679
14680@item use_debug_dma
14681@kindex use_debug_dma
14682Instructs the remote to use the DEBUG_DMA method of accessing memory.
14683
14684@item use_mon_code
14685@kindex use_mon_code
14686Instructs the remote to use the MON_CODE method of accessing memory.
14687
14688@item use_ib_break
14689@kindex use_ib_break
14690Instructs the remote to set breakpoints by IB break.
14691
14692@item use_dbt_break
14693@kindex use_dbt_break
14694Instructs the remote to set breakpoints by DBT.
14695@end table
14696
8e04817f
AC
14697@node M68K
14698@subsection M68k
14699
7ce59000
DJ
14700The Motorola m68k configuration includes ColdFire support, and a
14701target command for the following ROM monitor.
8e04817f
AC
14702
14703@table @code
14704
8e04817f
AC
14705@kindex target dbug
14706@item target dbug @var{dev}
14707dBUG ROM monitor for Motorola ColdFire.
14708
8e04817f
AC
14709@end table
14710
8e04817f
AC
14711@node MIPS Embedded
14712@subsection MIPS Embedded
14713
14714@cindex MIPS boards
14715@value{GDBN} can use the MIPS remote debugging protocol to talk to a
14716MIPS board attached to a serial line. This is available when
14717you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
104c1213 14718
8e04817f
AC
14719@need 1000
14720Use these @value{GDBN} commands to specify the connection to your target board:
104c1213 14721
8e04817f
AC
14722@table @code
14723@item target mips @var{port}
14724@kindex target mips @var{port}
14725To run a program on the board, start up @code{@value{GDBP}} with the
14726name of your program as the argument. To connect to the board, use the
14727command @samp{target mips @var{port}}, where @var{port} is the name of
14728the serial port connected to the board. If the program has not already
14729been downloaded to the board, you may use the @code{load} command to
14730download it. You can then use all the usual @value{GDBN} commands.
104c1213 14731
8e04817f
AC
14732For example, this sequence connects to the target board through a serial
14733port, and loads and runs a program called @var{prog} through the
14734debugger:
104c1213 14735
474c8240 14736@smallexample
8e04817f
AC
14737host$ @value{GDBP} @var{prog}
14738@value{GDBN} is free software and @dots{}
14739(@value{GDBP}) target mips /dev/ttyb
14740(@value{GDBP}) load @var{prog}
14741(@value{GDBP}) run
474c8240 14742@end smallexample
104c1213 14743
8e04817f
AC
14744@item target mips @var{hostname}:@var{portnumber}
14745On some @value{GDBN} host configurations, you can specify a TCP
14746connection (for instance, to a serial line managed by a terminal
14747concentrator) instead of a serial port, using the syntax
14748@samp{@var{hostname}:@var{portnumber}}.
104c1213 14749
8e04817f
AC
14750@item target pmon @var{port}
14751@kindex target pmon @var{port}
14752PMON ROM monitor.
104c1213 14753
8e04817f
AC
14754@item target ddb @var{port}
14755@kindex target ddb @var{port}
14756NEC's DDB variant of PMON for Vr4300.
104c1213 14757
8e04817f
AC
14758@item target lsi @var{port}
14759@kindex target lsi @var{port}
14760LSI variant of PMON.
104c1213 14761
8e04817f
AC
14762@kindex target r3900
14763@item target r3900 @var{dev}
14764Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
104c1213 14765
8e04817f
AC
14766@kindex target array
14767@item target array @var{dev}
14768Array Tech LSI33K RAID controller board.
104c1213 14769
8e04817f 14770@end table
104c1213 14771
104c1213 14772
8e04817f
AC
14773@noindent
14774@value{GDBN} also supports these special commands for MIPS targets:
104c1213 14775
8e04817f 14776@table @code
8e04817f
AC
14777@item set mipsfpu double
14778@itemx set mipsfpu single
14779@itemx set mipsfpu none
a64548ea 14780@itemx set mipsfpu auto
8e04817f
AC
14781@itemx show mipsfpu
14782@kindex set mipsfpu
14783@kindex show mipsfpu
14784@cindex MIPS remote floating point
14785@cindex floating point, MIPS remote
14786If your target board does not support the MIPS floating point
14787coprocessor, you should use the command @samp{set mipsfpu none} (if you
14788need this, you may wish to put the command in your @value{GDBN} init
14789file). This tells @value{GDBN} how to find the return value of
14790functions which return floating point values. It also allows
14791@value{GDBN} to avoid saving the floating point registers when calling
14792functions on the board. If you are using a floating point coprocessor
14793with only single precision floating point support, as on the @sc{r4650}
14794processor, use the command @samp{set mipsfpu single}. The default
14795double precision floating point coprocessor may be selected using
14796@samp{set mipsfpu double}.
104c1213 14797
8e04817f
AC
14798In previous versions the only choices were double precision or no
14799floating point, so @samp{set mipsfpu on} will select double precision
14800and @samp{set mipsfpu off} will select no floating point.
104c1213 14801
8e04817f
AC
14802As usual, you can inquire about the @code{mipsfpu} variable with
14803@samp{show mipsfpu}.
104c1213 14804
8e04817f
AC
14805@item set timeout @var{seconds}
14806@itemx set retransmit-timeout @var{seconds}
14807@itemx show timeout
14808@itemx show retransmit-timeout
14809@cindex @code{timeout}, MIPS protocol
14810@cindex @code{retransmit-timeout}, MIPS protocol
14811@kindex set timeout
14812@kindex show timeout
14813@kindex set retransmit-timeout
14814@kindex show retransmit-timeout
14815You can control the timeout used while waiting for a packet, in the MIPS
14816remote protocol, with the @code{set timeout @var{seconds}} command. The
14817default is 5 seconds. Similarly, you can control the timeout used while
14818waiting for an acknowledgement of a packet with the @code{set
14819retransmit-timeout @var{seconds}} command. The default is 3 seconds.
14820You can inspect both values with @code{show timeout} and @code{show
14821retransmit-timeout}. (These commands are @emph{only} available when
14822@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
104c1213 14823
8e04817f
AC
14824The timeout set by @code{set timeout} does not apply when @value{GDBN}
14825is waiting for your program to stop. In that case, @value{GDBN} waits
14826forever because it has no way of knowing how long the program is going
14827to run before stopping.
ba04e063
EZ
14828
14829@item set syn-garbage-limit @var{num}
14830@kindex set syn-garbage-limit@r{, MIPS remote}
14831@cindex synchronize with remote MIPS target
14832Limit the maximum number of characters @value{GDBN} should ignore when
14833it tries to synchronize with the remote target. The default is 10
14834characters. Setting the limit to -1 means there's no limit.
14835
14836@item show syn-garbage-limit
14837@kindex show syn-garbage-limit@r{, MIPS remote}
14838Show the current limit on the number of characters to ignore when
14839trying to synchronize with the remote system.
14840
14841@item set monitor-prompt @var{prompt}
14842@kindex set monitor-prompt@r{, MIPS remote}
14843@cindex remote monitor prompt
14844Tell @value{GDBN} to expect the specified @var{prompt} string from the
14845remote monitor. The default depends on the target:
14846@table @asis
14847@item pmon target
14848@samp{PMON}
14849@item ddb target
14850@samp{NEC010}
14851@item lsi target
14852@samp{PMON>}
14853@end table
14854
14855@item show monitor-prompt
14856@kindex show monitor-prompt@r{, MIPS remote}
14857Show the current strings @value{GDBN} expects as the prompt from the
14858remote monitor.
14859
14860@item set monitor-warnings
14861@kindex set monitor-warnings@r{, MIPS remote}
14862Enable or disable monitor warnings about hardware breakpoints. This
14863has effect only for the @code{lsi} target. When on, @value{GDBN} will
14864display warning messages whose codes are returned by the @code{lsi}
14865PMON monitor for breakpoint commands.
14866
14867@item show monitor-warnings
14868@kindex show monitor-warnings@r{, MIPS remote}
14869Show the current setting of printing monitor warnings.
14870
14871@item pmon @var{command}
14872@kindex pmon@r{, MIPS remote}
14873@cindex send PMON command
14874This command allows sending an arbitrary @var{command} string to the
14875monitor. The monitor must be in debug mode for this to work.
8e04817f 14876@end table
104c1213 14877
a37295f9
MM
14878@node OpenRISC 1000
14879@subsection OpenRISC 1000
14880@cindex OpenRISC 1000
14881
14882@cindex or1k boards
14883See OR1k Architecture document (@uref{www.opencores.org}) for more information
14884about platform and commands.
14885
14886@table @code
14887
14888@kindex target jtag
14889@item target jtag jtag://@var{host}:@var{port}
14890
14891Connects to remote JTAG server.
14892JTAG remote server can be either an or1ksim or JTAG server,
14893connected via parallel port to the board.
14894
14895Example: @code{target jtag jtag://localhost:9999}
14896
14897@kindex or1ksim
14898@item or1ksim @var{command}
14899If connected to @code{or1ksim} OpenRISC 1000 Architectural
14900Simulator, proprietary commands can be executed.
14901
14902@kindex info or1k spr
14903@item info or1k spr
14904Displays spr groups.
14905
14906@item info or1k spr @var{group}
14907@itemx info or1k spr @var{groupno}
14908Displays register names in selected group.
14909
14910@item info or1k spr @var{group} @var{register}
14911@itemx info or1k spr @var{register}
14912@itemx info or1k spr @var{groupno} @var{registerno}
14913@itemx info or1k spr @var{registerno}
14914Shows information about specified spr register.
14915
14916@kindex spr
14917@item spr @var{group} @var{register} @var{value}
14918@itemx spr @var{register @var{value}}
14919@itemx spr @var{groupno} @var{registerno @var{value}}
14920@itemx spr @var{registerno @var{value}}
14921Writes @var{value} to specified spr register.
14922@end table
14923
14924Some implementations of OpenRISC 1000 Architecture also have hardware trace.
14925It is very similar to @value{GDBN} trace, except it does not interfere with normal
14926program execution and is thus much faster. Hardware breakpoints/watchpoint
14927triggers can be set using:
14928@table @code
14929@item $LEA/$LDATA
14930Load effective address/data
14931@item $SEA/$SDATA
14932Store effective address/data
14933@item $AEA/$ADATA
14934Access effective address ($SEA or $LEA) or data ($SDATA/$LDATA)
14935@item $FETCH
14936Fetch data
14937@end table
14938
14939When triggered, it can capture low level data, like: @code{PC}, @code{LSEA},
14940@code{LDATA}, @code{SDATA}, @code{READSPR}, @code{WRITESPR}, @code{INSTR}.
14941
14942@code{htrace} commands:
14943@cindex OpenRISC 1000 htrace
14944@table @code
14945@kindex hwatch
14946@item hwatch @var{conditional}
d3e8051b 14947Set hardware watchpoint on combination of Load/Store Effective Address(es)
a37295f9
MM
14948or Data. For example:
14949
14950@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
14951
14952@code{hwatch ($LEA == my_var) && ($LDATA < 50) || ($SEA == my_var) && ($SDATA >= 50)}
14953
4644b6e3 14954@kindex htrace
a37295f9
MM
14955@item htrace info
14956Display information about current HW trace configuration.
14957
a37295f9
MM
14958@item htrace trigger @var{conditional}
14959Set starting criteria for HW trace.
14960
a37295f9
MM
14961@item htrace qualifier @var{conditional}
14962Set acquisition qualifier for HW trace.
14963
a37295f9
MM
14964@item htrace stop @var{conditional}
14965Set HW trace stopping criteria.
14966
f153cc92 14967@item htrace record [@var{data}]*
a37295f9
MM
14968Selects the data to be recorded, when qualifier is met and HW trace was
14969triggered.
14970
a37295f9 14971@item htrace enable
a37295f9
MM
14972@itemx htrace disable
14973Enables/disables the HW trace.
14974
f153cc92 14975@item htrace rewind [@var{filename}]
a37295f9
MM
14976Clears currently recorded trace data.
14977
14978If filename is specified, new trace file is made and any newly collected data
14979will be written there.
14980
f153cc92 14981@item htrace print [@var{start} [@var{len}]]
a37295f9
MM
14982Prints trace buffer, using current record configuration.
14983
a37295f9
MM
14984@item htrace mode continuous
14985Set continuous trace mode.
14986
a37295f9
MM
14987@item htrace mode suspend
14988Set suspend trace mode.
14989
14990@end table
14991
8e04817f
AC
14992@node PowerPC
14993@subsection PowerPC
104c1213 14994
55eddb0f
DJ
14995@value{GDBN} provides the following PowerPC-specific commands:
14996
104c1213 14997@table @code
55eddb0f
DJ
14998@kindex set powerpc
14999@item set powerpc soft-float
15000@itemx show powerpc soft-float
15001Force @value{GDBN} to use (or not use) a software floating point calling
15002convention. By default, @value{GDBN} selects the calling convention based
15003on the selected architecture and the provided executable file.
15004
15005@item set powerpc vector-abi
15006@itemx show powerpc vector-abi
15007Force @value{GDBN} to use the specified calling convention for vector
15008arguments and return values. The valid options are @samp{auto};
15009@samp{generic}, to avoid vector registers even if they are present;
15010@samp{altivec}, to use AltiVec registers; and @samp{spe} to use SPE
15011registers. By default, @value{GDBN} selects the calling convention
15012based on the selected architecture and the provided executable file.
15013
8e04817f
AC
15014@kindex target dink32
15015@item target dink32 @var{dev}
15016DINK32 ROM monitor.
104c1213 15017
8e04817f
AC
15018@kindex target ppcbug
15019@item target ppcbug @var{dev}
15020@kindex target ppcbug1
15021@item target ppcbug1 @var{dev}
15022PPCBUG ROM monitor for PowerPC.
104c1213 15023
8e04817f
AC
15024@kindex target sds
15025@item target sds @var{dev}
15026SDS monitor, running on a PowerPC board (such as Motorola's ADS).
c45da7e6 15027@end table
8e04817f 15028
c45da7e6 15029@cindex SDS protocol
d52fb0e9 15030The following commands specific to the SDS protocol are supported
55eddb0f 15031by @value{GDBN}:
c45da7e6
EZ
15032
15033@table @code
15034@item set sdstimeout @var{nsec}
15035@kindex set sdstimeout
15036Set the timeout for SDS protocol reads to be @var{nsec} seconds. The
15037default is 2 seconds.
15038
15039@item show sdstimeout
15040@kindex show sdstimeout
15041Show the current value of the SDS timeout.
15042
15043@item sds @var{command}
15044@kindex sds@r{, a command}
15045Send the specified @var{command} string to the SDS monitor.
8e04817f
AC
15046@end table
15047
c45da7e6 15048
8e04817f
AC
15049@node PA
15050@subsection HP PA Embedded
104c1213
JM
15051
15052@table @code
15053
8e04817f
AC
15054@kindex target op50n
15055@item target op50n @var{dev}
15056OP50N monitor, running on an OKI HPPA board.
15057
15058@kindex target w89k
15059@item target w89k @var{dev}
15060W89K monitor, running on a Winbond HPPA board.
104c1213
JM
15061
15062@end table
15063
8e04817f
AC
15064@node Sparclet
15065@subsection Tsqware Sparclet
104c1213 15066
8e04817f
AC
15067@cindex Sparclet
15068
15069@value{GDBN} enables developers to debug tasks running on
15070Sparclet targets from a Unix host.
15071@value{GDBN} uses code that runs on
15072both the Unix host and on the Sparclet target. The program
15073@code{@value{GDBP}} is installed and executed on the Unix host.
104c1213 15074
8e04817f
AC
15075@table @code
15076@item remotetimeout @var{args}
15077@kindex remotetimeout
15078@value{GDBN} supports the option @code{remotetimeout}.
15079This option is set by the user, and @var{args} represents the number of
15080seconds @value{GDBN} waits for responses.
104c1213
JM
15081@end table
15082
8e04817f
AC
15083@cindex compiling, on Sparclet
15084When compiling for debugging, include the options @samp{-g} to get debug
15085information and @samp{-Ttext} to relocate the program to where you wish to
15086load it on the target. You may also want to add the options @samp{-n} or
15087@samp{-N} in order to reduce the size of the sections. Example:
104c1213 15088
474c8240 15089@smallexample
8e04817f 15090sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
474c8240 15091@end smallexample
104c1213 15092
8e04817f 15093You can use @code{objdump} to verify that the addresses are what you intended:
104c1213 15094
474c8240 15095@smallexample
8e04817f 15096sparclet-aout-objdump --headers --syms prog
474c8240 15097@end smallexample
104c1213 15098
8e04817f
AC
15099@cindex running, on Sparclet
15100Once you have set
15101your Unix execution search path to find @value{GDBN}, you are ready to
15102run @value{GDBN}. From your Unix host, run @code{@value{GDBP}}
15103(or @code{sparclet-aout-gdb}, depending on your installation).
104c1213 15104
8e04817f
AC
15105@value{GDBN} comes up showing the prompt:
15106
474c8240 15107@smallexample
8e04817f 15108(gdbslet)
474c8240 15109@end smallexample
104c1213
JM
15110
15111@menu
8e04817f
AC
15112* Sparclet File:: Setting the file to debug
15113* Sparclet Connection:: Connecting to Sparclet
15114* Sparclet Download:: Sparclet download
15115* Sparclet Execution:: Running and debugging
104c1213
JM
15116@end menu
15117
8e04817f 15118@node Sparclet File
79a6e687 15119@subsubsection Setting File to Debug
104c1213 15120
8e04817f 15121The @value{GDBN} command @code{file} lets you choose with program to debug.
104c1213 15122
474c8240 15123@smallexample
8e04817f 15124(gdbslet) file prog
474c8240 15125@end smallexample
104c1213 15126
8e04817f
AC
15127@need 1000
15128@value{GDBN} then attempts to read the symbol table of @file{prog}.
15129@value{GDBN} locates
15130the file by searching the directories listed in the command search
15131path.
12c27660 15132If the file was compiled with debug information (option @samp{-g}), source
8e04817f
AC
15133files will be searched as well.
15134@value{GDBN} locates
15135the source files by searching the directories listed in the directory search
79a6e687 15136path (@pxref{Environment, ,Your Program's Environment}).
8e04817f
AC
15137If it fails
15138to find a file, it displays a message such as:
104c1213 15139
474c8240 15140@smallexample
8e04817f 15141prog: No such file or directory.
474c8240 15142@end smallexample
104c1213 15143
8e04817f
AC
15144When this happens, add the appropriate directories to the search paths with
15145the @value{GDBN} commands @code{path} and @code{dir}, and execute the
15146@code{target} command again.
104c1213 15147
8e04817f
AC
15148@node Sparclet Connection
15149@subsubsection Connecting to Sparclet
104c1213 15150
8e04817f
AC
15151The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
15152To connect to a target on serial port ``@code{ttya}'', type:
104c1213 15153
474c8240 15154@smallexample
8e04817f
AC
15155(gdbslet) target sparclet /dev/ttya
15156Remote target sparclet connected to /dev/ttya
15157main () at ../prog.c:3
474c8240 15158@end smallexample
104c1213 15159
8e04817f
AC
15160@need 750
15161@value{GDBN} displays messages like these:
104c1213 15162
474c8240 15163@smallexample
8e04817f 15164Connected to ttya.
474c8240 15165@end smallexample
104c1213 15166
8e04817f 15167@node Sparclet Download
79a6e687 15168@subsubsection Sparclet Download
104c1213 15169
8e04817f
AC
15170@cindex download to Sparclet
15171Once connected to the Sparclet target,
15172you can use the @value{GDBN}
15173@code{load} command to download the file from the host to the target.
15174The file name and load offset should be given as arguments to the @code{load}
15175command.
15176Since the file format is aout, the program must be loaded to the starting
15177address. You can use @code{objdump} to find out what this value is. The load
15178offset is an offset which is added to the VMA (virtual memory address)
15179of each of the file's sections.
15180For instance, if the program
15181@file{prog} was linked to text address 0x1201000, with data at 0x12010160
15182and bss at 0x12010170, in @value{GDBN}, type:
104c1213 15183
474c8240 15184@smallexample
8e04817f
AC
15185(gdbslet) load prog 0x12010000
15186Loading section .text, size 0xdb0 vma 0x12010000
474c8240 15187@end smallexample
104c1213 15188
8e04817f
AC
15189If the code is loaded at a different address then what the program was linked
15190to, you may need to use the @code{section} and @code{add-symbol-file} commands
15191to tell @value{GDBN} where to map the symbol table.
15192
15193@node Sparclet Execution
79a6e687 15194@subsubsection Running and Debugging
8e04817f
AC
15195
15196@cindex running and debugging Sparclet programs
15197You can now begin debugging the task using @value{GDBN}'s execution control
15198commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
15199manual for the list of commands.
15200
474c8240 15201@smallexample
8e04817f
AC
15202(gdbslet) b main
15203Breakpoint 1 at 0x12010000: file prog.c, line 3.
15204(gdbslet) run
15205Starting program: prog
15206Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
152073 char *symarg = 0;
15208(gdbslet) step
152094 char *execarg = "hello!";
15210(gdbslet)
474c8240 15211@end smallexample
8e04817f
AC
15212
15213@node Sparclite
15214@subsection Fujitsu Sparclite
104c1213
JM
15215
15216@table @code
15217
8e04817f
AC
15218@kindex target sparclite
15219@item target sparclite @var{dev}
15220Fujitsu sparclite boards, used only for the purpose of loading.
15221You must use an additional command to debug the program.
15222For example: target remote @var{dev} using @value{GDBN} standard
15223remote protocol.
104c1213
JM
15224
15225@end table
15226
8e04817f
AC
15227@node Z8000
15228@subsection Zilog Z8000
104c1213 15229
8e04817f
AC
15230@cindex Z8000
15231@cindex simulator, Z8000
15232@cindex Zilog Z8000 simulator
104c1213 15233
8e04817f
AC
15234When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
15235a Z8000 simulator.
15236
15237For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
15238unsegmented variant of the Z8000 architecture) or the Z8001 (the
15239segmented variant). The simulator recognizes which architecture is
15240appropriate by inspecting the object code.
104c1213 15241
8e04817f
AC
15242@table @code
15243@item target sim @var{args}
15244@kindex sim
15245@kindex target sim@r{, with Z8000}
15246Debug programs on a simulated CPU. If the simulator supports setup
15247options, specify them via @var{args}.
104c1213
JM
15248@end table
15249
8e04817f
AC
15250@noindent
15251After specifying this target, you can debug programs for the simulated
15252CPU in the same style as programs for your host computer; use the
15253@code{file} command to load a new program image, the @code{run} command
15254to run your program, and so on.
15255
15256As well as making available all the usual machine registers
15257(@pxref{Registers, ,Registers}), the Z8000 simulator provides three
15258additional items of information as specially named registers:
104c1213
JM
15259
15260@table @code
15261
8e04817f
AC
15262@item cycles
15263Counts clock-ticks in the simulator.
104c1213 15264
8e04817f
AC
15265@item insts
15266Counts instructions run in the simulator.
104c1213 15267
8e04817f
AC
15268@item time
15269Execution time in 60ths of a second.
104c1213 15270
8e04817f 15271@end table
104c1213 15272
8e04817f
AC
15273You can refer to these values in @value{GDBN} expressions with the usual
15274conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
15275conditional breakpoint that suspends only after at least 5000
15276simulated clock ticks.
104c1213 15277
a64548ea
EZ
15278@node AVR
15279@subsection Atmel AVR
15280@cindex AVR
15281
15282When configured for debugging the Atmel AVR, @value{GDBN} supports the
15283following AVR-specific commands:
15284
15285@table @code
15286@item info io_registers
15287@kindex info io_registers@r{, AVR}
15288@cindex I/O registers (Atmel AVR)
15289This command displays information about the AVR I/O registers. For
15290each register, @value{GDBN} prints its number and value.
15291@end table
15292
15293@node CRIS
15294@subsection CRIS
15295@cindex CRIS
15296
15297When configured for debugging CRIS, @value{GDBN} provides the
15298following CRIS-specific commands:
15299
15300@table @code
15301@item set cris-version @var{ver}
15302@cindex CRIS version
e22e55c9
OF
15303Set the current CRIS version to @var{ver}, either @samp{10} or @samp{32}.
15304The CRIS version affects register names and sizes. This command is useful in
15305case autodetection of the CRIS version fails.
a64548ea
EZ
15306
15307@item show cris-version
15308Show the current CRIS version.
15309
15310@item set cris-dwarf2-cfi
15311@cindex DWARF-2 CFI and CRIS
e22e55c9
OF
15312Set the usage of DWARF-2 CFI for CRIS debugging. The default is @samp{on}.
15313Change to @samp{off} when using @code{gcc-cris} whose version is below
15314@code{R59}.
a64548ea
EZ
15315
15316@item show cris-dwarf2-cfi
15317Show the current state of using DWARF-2 CFI.
e22e55c9
OF
15318
15319@item set cris-mode @var{mode}
15320@cindex CRIS mode
15321Set the current CRIS mode to @var{mode}. It should only be changed when
15322debugging in guru mode, in which case it should be set to
15323@samp{guru} (the default is @samp{normal}).
15324
15325@item show cris-mode
15326Show the current CRIS mode.
a64548ea
EZ
15327@end table
15328
15329@node Super-H
15330@subsection Renesas Super-H
15331@cindex Super-H
15332
15333For the Renesas Super-H processor, @value{GDBN} provides these
15334commands:
15335
15336@table @code
15337@item regs
15338@kindex regs@r{, Super-H}
15339Show the values of all Super-H registers.
15340@end table
15341
15342
8e04817f
AC
15343@node Architectures
15344@section Architectures
104c1213 15345
8e04817f
AC
15346This section describes characteristics of architectures that affect
15347all uses of @value{GDBN} with the architecture, both native and cross.
104c1213 15348
8e04817f 15349@menu
9c16f35a 15350* i386::
8e04817f
AC
15351* A29K::
15352* Alpha::
15353* MIPS::
a64548ea 15354* HPPA:: HP PA architecture
23d964e7 15355* SPU:: Cell Broadband Engine SPU architecture
8e04817f 15356@end menu
104c1213 15357
9c16f35a 15358@node i386
db2e3e2e 15359@subsection x86 Architecture-specific Issues
9c16f35a
EZ
15360
15361@table @code
15362@item set struct-convention @var{mode}
15363@kindex set struct-convention
15364@cindex struct return convention
15365@cindex struct/union returned in registers
15366Set the convention used by the inferior to return @code{struct}s and
15367@code{union}s from functions to @var{mode}. Possible values of
15368@var{mode} are @code{"pcc"}, @code{"reg"}, and @code{"default"} (the
15369default). @code{"default"} or @code{"pcc"} means that @code{struct}s
15370are returned on the stack, while @code{"reg"} means that a
15371@code{struct} or a @code{union} whose size is 1, 2, 4, or 8 bytes will
15372be returned in a register.
15373
15374@item show struct-convention
15375@kindex show struct-convention
15376Show the current setting of the convention to return @code{struct}s
15377from functions.
15378@end table
15379
8e04817f
AC
15380@node A29K
15381@subsection A29K
104c1213
JM
15382
15383@table @code
104c1213 15384
8e04817f
AC
15385@kindex set rstack_high_address
15386@cindex AMD 29K register stack
15387@cindex register stack, AMD29K
15388@item set rstack_high_address @var{address}
15389On AMD 29000 family processors, registers are saved in a separate
15390@dfn{register stack}. There is no way for @value{GDBN} to determine the
15391extent of this stack. Normally, @value{GDBN} just assumes that the
15392stack is ``large enough''. This may result in @value{GDBN} referencing
15393memory locations that do not exist. If necessary, you can get around
15394this problem by specifying the ending address of the register stack with
15395the @code{set rstack_high_address} command. The argument should be an
15396address, which you probably want to precede with @samp{0x} to specify in
15397hexadecimal.
104c1213 15398
8e04817f
AC
15399@kindex show rstack_high_address
15400@item show rstack_high_address
15401Display the current limit of the register stack, on AMD 29000 family
15402processors.
104c1213 15403
8e04817f 15404@end table
104c1213 15405
8e04817f
AC
15406@node Alpha
15407@subsection Alpha
104c1213 15408
8e04817f 15409See the following section.
104c1213 15410
8e04817f
AC
15411@node MIPS
15412@subsection MIPS
104c1213 15413
8e04817f
AC
15414@cindex stack on Alpha
15415@cindex stack on MIPS
15416@cindex Alpha stack
15417@cindex MIPS stack
15418Alpha- and MIPS-based computers use an unusual stack frame, which
15419sometimes requires @value{GDBN} to search backward in the object code to
15420find the beginning of a function.
104c1213 15421
8e04817f
AC
15422@cindex response time, MIPS debugging
15423To improve response time (especially for embedded applications, where
15424@value{GDBN} may be restricted to a slow serial line for this search)
15425you may want to limit the size of this search, using one of these
15426commands:
104c1213 15427
8e04817f
AC
15428@table @code
15429@cindex @code{heuristic-fence-post} (Alpha, MIPS)
15430@item set heuristic-fence-post @var{limit}
15431Restrict @value{GDBN} to examining at most @var{limit} bytes in its
15432search for the beginning of a function. A value of @var{0} (the
15433default) means there is no limit. However, except for @var{0}, the
15434larger the limit the more bytes @code{heuristic-fence-post} must search
e2f4edfd
EZ
15435and therefore the longer it takes to run. You should only need to use
15436this command when debugging a stripped executable.
104c1213 15437
8e04817f
AC
15438@item show heuristic-fence-post
15439Display the current limit.
15440@end table
104c1213
JM
15441
15442@noindent
8e04817f
AC
15443These commands are available @emph{only} when @value{GDBN} is configured
15444for debugging programs on Alpha or MIPS processors.
104c1213 15445
a64548ea
EZ
15446Several MIPS-specific commands are available when debugging MIPS
15447programs:
15448
15449@table @code
a64548ea
EZ
15450@item set mips abi @var{arg}
15451@kindex set mips abi
15452@cindex set ABI for MIPS
15453Tell @value{GDBN} which MIPS ABI is used by the inferior. Possible
15454values of @var{arg} are:
15455
15456@table @samp
15457@item auto
15458The default ABI associated with the current binary (this is the
15459default).
15460@item o32
15461@item o64
15462@item n32
15463@item n64
15464@item eabi32
15465@item eabi64
15466@item auto
15467@end table
15468
15469@item show mips abi
15470@kindex show mips abi
15471Show the MIPS ABI used by @value{GDBN} to debug the inferior.
15472
15473@item set mipsfpu
15474@itemx show mipsfpu
15475@xref{MIPS Embedded, set mipsfpu}.
15476
15477@item set mips mask-address @var{arg}
15478@kindex set mips mask-address
15479@cindex MIPS addresses, masking
15480This command determines whether the most-significant 32 bits of 64-bit
15481MIPS addresses are masked off. The argument @var{arg} can be
15482@samp{on}, @samp{off}, or @samp{auto}. The latter is the default
15483setting, which lets @value{GDBN} determine the correct value.
15484
15485@item show mips mask-address
15486@kindex show mips mask-address
15487Show whether the upper 32 bits of MIPS addresses are masked off or
15488not.
15489
15490@item set remote-mips64-transfers-32bit-regs
15491@kindex set remote-mips64-transfers-32bit-regs
15492This command controls compatibility with 64-bit MIPS targets that
15493transfer data in 32-bit quantities. If you have an old MIPS 64 target
15494that transfers 32 bits for some registers, like @sc{sr} and @sc{fsr},
15495and 64 bits for other registers, set this option to @samp{on}.
15496
15497@item show remote-mips64-transfers-32bit-regs
15498@kindex show remote-mips64-transfers-32bit-regs
15499Show the current setting of compatibility with older MIPS 64 targets.
15500
15501@item set debug mips
15502@kindex set debug mips
15503This command turns on and off debugging messages for the MIPS-specific
15504target code in @value{GDBN}.
15505
15506@item show debug mips
15507@kindex show debug mips
15508Show the current setting of MIPS debugging messages.
15509@end table
15510
15511
15512@node HPPA
15513@subsection HPPA
15514@cindex HPPA support
15515
d3e8051b 15516When @value{GDBN} is debugging the HP PA architecture, it provides the
a64548ea
EZ
15517following special commands:
15518
15519@table @code
15520@item set debug hppa
15521@kindex set debug hppa
db2e3e2e 15522This command determines whether HPPA architecture-specific debugging
a64548ea
EZ
15523messages are to be displayed.
15524
15525@item show debug hppa
15526Show whether HPPA debugging messages are displayed.
15527
15528@item maint print unwind @var{address}
15529@kindex maint print unwind@r{, HPPA}
15530This command displays the contents of the unwind table entry at the
15531given @var{address}.
15532
15533@end table
15534
104c1213 15535
23d964e7
UW
15536@node SPU
15537@subsection Cell Broadband Engine SPU architecture
15538@cindex Cell Broadband Engine
15539@cindex SPU
15540
15541When @value{GDBN} is debugging the Cell Broadband Engine SPU architecture,
15542it provides the following special commands:
15543
15544@table @code
15545@item info spu event
15546@kindex info spu
15547Display SPU event facility status. Shows current event mask
15548and pending event status.
15549
15550@item info spu signal
15551Display SPU signal notification facility status. Shows pending
15552signal-control word and signal notification mode of both signal
15553notification channels.
15554
15555@item info spu mailbox
15556Display SPU mailbox facility status. Shows all pending entries,
15557in order of processing, in each of the SPU Write Outbound,
15558SPU Write Outbound Interrupt, and SPU Read Inbound mailboxes.
15559
15560@item info spu dma
15561Display MFC DMA status. Shows all pending commands in the MFC
15562DMA queue. For each entry, opcode, tag, class IDs, effective
15563and local store addresses and transfer size are shown.
15564
15565@item info spu proxydma
15566Display MFC Proxy-DMA status. Shows all pending commands in the MFC
15567Proxy-DMA queue. For each entry, opcode, tag, class IDs, effective
15568and local store addresses and transfer size are shown.
15569
15570@end table
15571
15572
8e04817f
AC
15573@node Controlling GDB
15574@chapter Controlling @value{GDBN}
15575
15576You can alter the way @value{GDBN} interacts with you by using the
15577@code{set} command. For commands controlling how @value{GDBN} displays
79a6e687 15578data, see @ref{Print Settings, ,Print Settings}. Other settings are
8e04817f
AC
15579described here.
15580
15581@menu
15582* Prompt:: Prompt
15583* Editing:: Command editing
d620b259 15584* Command History:: Command history
8e04817f
AC
15585* Screen Size:: Screen size
15586* Numbers:: Numbers
1e698235 15587* ABI:: Configuring the current ABI
8e04817f
AC
15588* Messages/Warnings:: Optional warnings and messages
15589* Debugging Output:: Optional messages about internal happenings
15590@end menu
15591
15592@node Prompt
15593@section Prompt
104c1213 15594
8e04817f 15595@cindex prompt
104c1213 15596
8e04817f
AC
15597@value{GDBN} indicates its readiness to read a command by printing a string
15598called the @dfn{prompt}. This string is normally @samp{(@value{GDBP})}. You
15599can change the prompt string with the @code{set prompt} command. For
15600instance, when debugging @value{GDBN} with @value{GDBN}, it is useful to change
15601the prompt in one of the @value{GDBN} sessions so that you can always tell
15602which one you are talking to.
104c1213 15603
8e04817f
AC
15604@emph{Note:} @code{set prompt} does not add a space for you after the
15605prompt you set. This allows you to set a prompt which ends in a space
15606or a prompt that does not.
104c1213 15607
8e04817f
AC
15608@table @code
15609@kindex set prompt
15610@item set prompt @var{newprompt}
15611Directs @value{GDBN} to use @var{newprompt} as its prompt string henceforth.
104c1213 15612
8e04817f
AC
15613@kindex show prompt
15614@item show prompt
15615Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
104c1213
JM
15616@end table
15617
8e04817f 15618@node Editing
79a6e687 15619@section Command Editing
8e04817f
AC
15620@cindex readline
15621@cindex command line editing
104c1213 15622
703663ab 15623@value{GDBN} reads its input commands via the @dfn{Readline} interface. This
8e04817f
AC
15624@sc{gnu} library provides consistent behavior for programs which provide a
15625command line interface to the user. Advantages are @sc{gnu} Emacs-style
15626or @dfn{vi}-style inline editing of commands, @code{csh}-like history
15627substitution, and a storage and recall of command history across
15628debugging sessions.
104c1213 15629
8e04817f
AC
15630You may control the behavior of command line editing in @value{GDBN} with the
15631command @code{set}.
104c1213 15632
8e04817f
AC
15633@table @code
15634@kindex set editing
15635@cindex editing
15636@item set editing
15637@itemx set editing on
15638Enable command line editing (enabled by default).
104c1213 15639
8e04817f
AC
15640@item set editing off
15641Disable command line editing.
104c1213 15642
8e04817f
AC
15643@kindex show editing
15644@item show editing
15645Show whether command line editing is enabled.
104c1213
JM
15646@end table
15647
703663ab
EZ
15648@xref{Command Line Editing}, for more details about the Readline
15649interface. Users unfamiliar with @sc{gnu} Emacs or @code{vi} are
15650encouraged to read that chapter.
15651
d620b259 15652@node Command History
79a6e687 15653@section Command History
703663ab 15654@cindex command history
8e04817f
AC
15655
15656@value{GDBN} can keep track of the commands you type during your
15657debugging sessions, so that you can be certain of precisely what
15658happened. Use these commands to manage the @value{GDBN} command
15659history facility.
104c1213 15660
703663ab
EZ
15661@value{GDBN} uses the @sc{gnu} History library, a part of the Readline
15662package, to provide the history facility. @xref{Using History
15663Interactively}, for the detailed description of the History library.
15664
d620b259 15665To issue a command to @value{GDBN} without affecting certain aspects of
9e6c4bd5
NR
15666the state which is seen by users, prefix it with @samp{server }
15667(@pxref{Server Prefix}). This
d620b259
NR
15668means that this command will not affect the command history, nor will it
15669affect @value{GDBN}'s notion of which command to repeat if @key{RET} is
15670pressed on a line by itself.
15671
15672@cindex @code{server}, command prefix
15673The server prefix does not affect the recording of values into the value
15674history; to print a value without recording it into the value history,
15675use the @code{output} command instead of the @code{print} command.
15676
703663ab
EZ
15677Here is the description of @value{GDBN} commands related to command
15678history.
15679
104c1213 15680@table @code
8e04817f
AC
15681@cindex history substitution
15682@cindex history file
15683@kindex set history filename
4644b6e3 15684@cindex @env{GDBHISTFILE}, environment variable
8e04817f
AC
15685@item set history filename @var{fname}
15686Set the name of the @value{GDBN} command history file to @var{fname}.
15687This is the file where @value{GDBN} reads an initial command history
15688list, and where it writes the command history from this session when it
15689exits. You can access this list through history expansion or through
15690the history command editing characters listed below. This file defaults
15691to the value of the environment variable @code{GDBHISTFILE}, or to
15692@file{./.gdb_history} (@file{./_gdb_history} on MS-DOS) if this variable
15693is not set.
104c1213 15694
9c16f35a
EZ
15695@cindex save command history
15696@kindex set history save
8e04817f
AC
15697@item set history save
15698@itemx set history save on
15699Record command history in a file, whose name may be specified with the
15700@code{set history filename} command. By default, this option is disabled.
104c1213 15701
8e04817f
AC
15702@item set history save off
15703Stop recording command history in a file.
104c1213 15704
8e04817f 15705@cindex history size
9c16f35a 15706@kindex set history size
6fc08d32 15707@cindex @env{HISTSIZE}, environment variable
8e04817f
AC
15708@item set history size @var{size}
15709Set the number of commands which @value{GDBN} keeps in its history list.
15710This defaults to the value of the environment variable
15711@code{HISTSIZE}, or to 256 if this variable is not set.
104c1213
JM
15712@end table
15713
8e04817f 15714History expansion assigns special meaning to the character @kbd{!}.
703663ab 15715@xref{Event Designators}, for more details.
8e04817f 15716
703663ab 15717@cindex history expansion, turn on/off
8e04817f
AC
15718Since @kbd{!} is also the logical not operator in C, history expansion
15719is off by default. If you decide to enable history expansion with the
15720@code{set history expansion on} command, you may sometimes need to
15721follow @kbd{!} (when it is used as logical not, in an expression) with
15722a space or a tab to prevent it from being expanded. The readline
15723history facilities do not attempt substitution on the strings
15724@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
15725
15726The commands to control history expansion are:
104c1213
JM
15727
15728@table @code
8e04817f
AC
15729@item set history expansion on
15730@itemx set history expansion
703663ab 15731@kindex set history expansion
8e04817f 15732Enable history expansion. History expansion is off by default.
104c1213 15733
8e04817f
AC
15734@item set history expansion off
15735Disable history expansion.
104c1213 15736
8e04817f
AC
15737@c @group
15738@kindex show history
15739@item show history
15740@itemx show history filename
15741@itemx show history save
15742@itemx show history size
15743@itemx show history expansion
15744These commands display the state of the @value{GDBN} history parameters.
15745@code{show history} by itself displays all four states.
15746@c @end group
15747@end table
15748
15749@table @code
9c16f35a
EZ
15750@kindex show commands
15751@cindex show last commands
15752@cindex display command history
8e04817f
AC
15753@item show commands
15754Display the last ten commands in the command history.
104c1213 15755
8e04817f
AC
15756@item show commands @var{n}
15757Print ten commands centered on command number @var{n}.
15758
15759@item show commands +
15760Print ten commands just after the commands last printed.
104c1213
JM
15761@end table
15762
8e04817f 15763@node Screen Size
79a6e687 15764@section Screen Size
8e04817f
AC
15765@cindex size of screen
15766@cindex pauses in output
104c1213 15767
8e04817f
AC
15768Certain commands to @value{GDBN} may produce large amounts of
15769information output to the screen. To help you read all of it,
15770@value{GDBN} pauses and asks you for input at the end of each page of
15771output. Type @key{RET} when you want to continue the output, or @kbd{q}
15772to discard the remaining output. Also, the screen width setting
15773determines when to wrap lines of output. Depending on what is being
15774printed, @value{GDBN} tries to break the line at a readable place,
15775rather than simply letting it overflow onto the following line.
15776
15777Normally @value{GDBN} knows the size of the screen from the terminal
15778driver software. For example, on Unix @value{GDBN} uses the termcap data base
15779together with the value of the @code{TERM} environment variable and the
15780@code{stty rows} and @code{stty cols} settings. If this is not correct,
15781you can override it with the @code{set height} and @code{set
15782width} commands:
15783
15784@table @code
15785@kindex set height
15786@kindex set width
15787@kindex show width
15788@kindex show height
15789@item set height @var{lpp}
15790@itemx show height
15791@itemx set width @var{cpl}
15792@itemx show width
15793These @code{set} commands specify a screen height of @var{lpp} lines and
15794a screen width of @var{cpl} characters. The associated @code{show}
15795commands display the current settings.
104c1213 15796
8e04817f
AC
15797If you specify a height of zero lines, @value{GDBN} does not pause during
15798output no matter how long the output is. This is useful if output is to a
15799file or to an editor buffer.
104c1213 15800
8e04817f
AC
15801Likewise, you can specify @samp{set width 0} to prevent @value{GDBN}
15802from wrapping its output.
9c16f35a
EZ
15803
15804@item set pagination on
15805@itemx set pagination off
15806@kindex set pagination
15807Turn the output pagination on or off; the default is on. Turning
15808pagination off is the alternative to @code{set height 0}.
15809
15810@item show pagination
15811@kindex show pagination
15812Show the current pagination mode.
104c1213
JM
15813@end table
15814
8e04817f
AC
15815@node Numbers
15816@section Numbers
15817@cindex number representation
15818@cindex entering numbers
104c1213 15819
8e04817f
AC
15820You can always enter numbers in octal, decimal, or hexadecimal in
15821@value{GDBN} by the usual conventions: octal numbers begin with
15822@samp{0}, decimal numbers end with @samp{.}, and hexadecimal numbers
eb2dae08
EZ
15823begin with @samp{0x}. Numbers that neither begin with @samp{0} or
15824@samp{0x}, nor end with a @samp{.} are, by default, entered in base
1582510; likewise, the default display for numbers---when no particular
15826format is specified---is base 10. You can change the default base for
15827both input and output with the commands described below.
104c1213 15828
8e04817f
AC
15829@table @code
15830@kindex set input-radix
15831@item set input-radix @var{base}
15832Set the default base for numeric input. Supported choices
15833for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15834specified either unambiguously or using the current input radix; for
8e04817f 15835example, any of
104c1213 15836
8e04817f 15837@smallexample
9c16f35a
EZ
15838set input-radix 012
15839set input-radix 10.
15840set input-radix 0xa
8e04817f 15841@end smallexample
104c1213 15842
8e04817f 15843@noindent
9c16f35a 15844sets the input base to decimal. On the other hand, @samp{set input-radix 10}
eb2dae08
EZ
15845leaves the input radix unchanged, no matter what it was, since
15846@samp{10}, being without any leading or trailing signs of its base, is
15847interpreted in the current radix. Thus, if the current radix is 16,
15848@samp{10} is interpreted in hex, i.e.@: as 16 decimal, which doesn't
15849change the radix.
104c1213 15850
8e04817f
AC
15851@kindex set output-radix
15852@item set output-radix @var{base}
15853Set the default base for numeric display. Supported choices
15854for @var{base} are decimal 8, 10, or 16. @var{base} must itself be
eb2dae08 15855specified either unambiguously or using the current input radix.
104c1213 15856
8e04817f
AC
15857@kindex show input-radix
15858@item show input-radix
15859Display the current default base for numeric input.
104c1213 15860
8e04817f
AC
15861@kindex show output-radix
15862@item show output-radix
15863Display the current default base for numeric display.
9c16f35a
EZ
15864
15865@item set radix @r{[}@var{base}@r{]}
15866@itemx show radix
15867@kindex set radix
15868@kindex show radix
15869These commands set and show the default base for both input and output
15870of numbers. @code{set radix} sets the radix of input and output to
15871the same base; without an argument, it resets the radix back to its
15872default value of 10.
15873
8e04817f 15874@end table
104c1213 15875
1e698235 15876@node ABI
79a6e687 15877@section Configuring the Current ABI
1e698235
DJ
15878
15879@value{GDBN} can determine the @dfn{ABI} (Application Binary Interface) of your
15880application automatically. However, sometimes you need to override its
15881conclusions. Use these commands to manage @value{GDBN}'s view of the
15882current ABI.
15883
98b45e30
DJ
15884@cindex OS ABI
15885@kindex set osabi
b4e9345d 15886@kindex show osabi
98b45e30
DJ
15887
15888One @value{GDBN} configuration can debug binaries for multiple operating
b383017d 15889system targets, either via remote debugging or native emulation.
98b45e30
DJ
15890@value{GDBN} will autodetect the @dfn{OS ABI} (Operating System ABI) in use,
15891but you can override its conclusion using the @code{set osabi} command.
15892One example where this is useful is in debugging of binaries which use
15893an alternate C library (e.g.@: @sc{uClibc} for @sc{gnu}/Linux) which does
15894not have the same identifying marks that the standard C library for your
15895platform provides.
15896
15897@table @code
15898@item show osabi
15899Show the OS ABI currently in use.
15900
15901@item set osabi
15902With no argument, show the list of registered available OS ABI's.
15903
15904@item set osabi @var{abi}
15905Set the current OS ABI to @var{abi}.
15906@end table
15907
1e698235 15908@cindex float promotion
1e698235
DJ
15909
15910Generally, the way that an argument of type @code{float} is passed to a
15911function depends on whether the function is prototyped. For a prototyped
15912(i.e.@: ANSI/ISO style) function, @code{float} arguments are passed unchanged,
15913according to the architecture's convention for @code{float}. For unprototyped
15914(i.e.@: K&R style) functions, @code{float} arguments are first promoted to type
15915@code{double} and then passed.
15916
15917Unfortunately, some forms of debug information do not reliably indicate whether
15918a function is prototyped. If @value{GDBN} calls a function that is not marked
15919as prototyped, it consults @kbd{set coerce-float-to-double}.
15920
15921@table @code
a8f24a35 15922@kindex set coerce-float-to-double
1e698235
DJ
15923@item set coerce-float-to-double
15924@itemx set coerce-float-to-double on
15925Arguments of type @code{float} will be promoted to @code{double} when passed
15926to an unprototyped function. This is the default setting.
15927
15928@item set coerce-float-to-double off
15929Arguments of type @code{float} will be passed directly to unprototyped
15930functions.
9c16f35a
EZ
15931
15932@kindex show coerce-float-to-double
15933@item show coerce-float-to-double
15934Show the current setting of promoting @code{float} to @code{double}.
1e698235
DJ
15935@end table
15936
f1212245
DJ
15937@kindex set cp-abi
15938@kindex show cp-abi
15939@value{GDBN} needs to know the ABI used for your program's C@t{++}
15940objects. The correct C@t{++} ABI depends on which C@t{++} compiler was
15941used to build your application. @value{GDBN} only fully supports
15942programs with a single C@t{++} ABI; if your program contains code using
15943multiple C@t{++} ABI's or if @value{GDBN} can not identify your
15944program's ABI correctly, you can tell @value{GDBN} which ABI to use.
15945Currently supported ABI's include ``gnu-v2'', for @code{g++} versions
15946before 3.0, ``gnu-v3'', for @code{g++} versions 3.0 and later, and
15947``hpaCC'' for the HP ANSI C@t{++} compiler. Other C@t{++} compilers may
15948use the ``gnu-v2'' or ``gnu-v3'' ABI's as well. The default setting is
15949``auto''.
15950
15951@table @code
15952@item show cp-abi
15953Show the C@t{++} ABI currently in use.
15954
15955@item set cp-abi
15956With no argument, show the list of supported C@t{++} ABI's.
15957
15958@item set cp-abi @var{abi}
15959@itemx set cp-abi auto
15960Set the current C@t{++} ABI to @var{abi}, or return to automatic detection.
15961@end table
15962
8e04817f 15963@node Messages/Warnings
79a6e687 15964@section Optional Warnings and Messages
104c1213 15965
9c16f35a
EZ
15966@cindex verbose operation
15967@cindex optional warnings
8e04817f
AC
15968By default, @value{GDBN} is silent about its inner workings. If you are
15969running on a slow machine, you may want to use the @code{set verbose}
15970command. This makes @value{GDBN} tell you when it does a lengthy
15971internal operation, so you will not think it has crashed.
104c1213 15972
8e04817f
AC
15973Currently, the messages controlled by @code{set verbose} are those
15974which announce that the symbol table for a source file is being read;
79a6e687 15975see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}.
104c1213 15976
8e04817f
AC
15977@table @code
15978@kindex set verbose
15979@item set verbose on
15980Enables @value{GDBN} output of certain informational messages.
104c1213 15981
8e04817f
AC
15982@item set verbose off
15983Disables @value{GDBN} output of certain informational messages.
104c1213 15984
8e04817f
AC
15985@kindex show verbose
15986@item show verbose
15987Displays whether @code{set verbose} is on or off.
15988@end table
104c1213 15989
8e04817f
AC
15990By default, if @value{GDBN} encounters bugs in the symbol table of an
15991object file, it is silent; but if you are debugging a compiler, you may
79a6e687
BW
15992find this information useful (@pxref{Symbol Errors, ,Errors Reading
15993Symbol Files}).
104c1213 15994
8e04817f 15995@table @code
104c1213 15996
8e04817f
AC
15997@kindex set complaints
15998@item set complaints @var{limit}
15999Permits @value{GDBN} to output @var{limit} complaints about each type of
16000unusual symbols before becoming silent about the problem. Set
16001@var{limit} to zero to suppress all complaints; set it to a large number
16002to prevent complaints from being suppressed.
104c1213 16003
8e04817f
AC
16004@kindex show complaints
16005@item show complaints
16006Displays how many symbol complaints @value{GDBN} is permitted to produce.
104c1213 16007
8e04817f 16008@end table
104c1213 16009
8e04817f
AC
16010By default, @value{GDBN} is cautious, and asks what sometimes seems to be a
16011lot of stupid questions to confirm certain commands. For example, if
16012you try to run a program which is already running:
104c1213 16013
474c8240 16014@smallexample
8e04817f
AC
16015(@value{GDBP}) run
16016The program being debugged has been started already.
16017Start it from the beginning? (y or n)
474c8240 16018@end smallexample
104c1213 16019
8e04817f
AC
16020If you are willing to unflinchingly face the consequences of your own
16021commands, you can disable this ``feature'':
104c1213 16022
8e04817f 16023@table @code
104c1213 16024
8e04817f
AC
16025@kindex set confirm
16026@cindex flinching
16027@cindex confirmation
16028@cindex stupid questions
16029@item set confirm off
16030Disables confirmation requests.
104c1213 16031
8e04817f
AC
16032@item set confirm on
16033Enables confirmation requests (the default).
104c1213 16034
8e04817f
AC
16035@kindex show confirm
16036@item show confirm
16037Displays state of confirmation requests.
16038
16039@end table
104c1213 16040
16026cd7
AS
16041@cindex command tracing
16042If you need to debug user-defined commands or sourced files you may find it
16043useful to enable @dfn{command tracing}. In this mode each command will be
16044printed as it is executed, prefixed with one or more @samp{+} symbols, the
16045quantity denoting the call depth of each command.
16046
16047@table @code
16048@kindex set trace-commands
16049@cindex command scripts, debugging
16050@item set trace-commands on
16051Enable command tracing.
16052@item set trace-commands off
16053Disable command tracing.
16054@item show trace-commands
16055Display the current state of command tracing.
16056@end table
16057
8e04817f 16058@node Debugging Output
79a6e687 16059@section Optional Messages about Internal Happenings
4644b6e3
EZ
16060@cindex optional debugging messages
16061
da316a69
EZ
16062@value{GDBN} has commands that enable optional debugging messages from
16063various @value{GDBN} subsystems; normally these commands are of
16064interest to @value{GDBN} maintainers, or when reporting a bug. This
16065section documents those commands.
16066
104c1213 16067@table @code
a8f24a35
EZ
16068@kindex set exec-done-display
16069@item set exec-done-display
16070Turns on or off the notification of asynchronous commands'
16071completion. When on, @value{GDBN} will print a message when an
16072asynchronous command finishes its execution. The default is off.
16073@kindex show exec-done-display
16074@item show exec-done-display
16075Displays the current setting of asynchronous command completion
16076notification.
4644b6e3
EZ
16077@kindex set debug
16078@cindex gdbarch debugging info
a8f24a35 16079@cindex architecture debugging info
8e04817f 16080@item set debug arch
a8f24a35 16081Turns on or off display of gdbarch debugging info. The default is off
4644b6e3 16082@kindex show debug
8e04817f
AC
16083@item show debug arch
16084Displays the current state of displaying gdbarch debugging info.
721c2651
EZ
16085@item set debug aix-thread
16086@cindex AIX threads
16087Display debugging messages about inner workings of the AIX thread
16088module.
16089@item show debug aix-thread
16090Show the current state of AIX thread debugging info display.
8e04817f 16091@item set debug event
4644b6e3 16092@cindex event debugging info
a8f24a35 16093Turns on or off display of @value{GDBN} event debugging info. The
8e04817f 16094default is off.
8e04817f
AC
16095@item show debug event
16096Displays the current state of displaying @value{GDBN} event debugging
16097info.
8e04817f 16098@item set debug expression
4644b6e3 16099@cindex expression debugging info
721c2651
EZ
16100Turns on or off display of debugging info about @value{GDBN}
16101expression parsing. The default is off.
8e04817f 16102@item show debug expression
721c2651
EZ
16103Displays the current state of displaying debugging info about
16104@value{GDBN} expression parsing.
7453dc06 16105@item set debug frame
4644b6e3 16106@cindex frame debugging info
7453dc06
AC
16107Turns on or off display of @value{GDBN} frame debugging info. The
16108default is off.
7453dc06
AC
16109@item show debug frame
16110Displays the current state of displaying @value{GDBN} frame debugging
16111info.
30e91e0b
RC
16112@item set debug infrun
16113@cindex inferior debugging info
16114Turns on or off display of @value{GDBN} debugging info for running the inferior.
16115The default is off. @file{infrun.c} contains GDB's runtime state machine used
16116for implementing operations such as single-stepping the inferior.
16117@item show debug infrun
16118Displays the current state of @value{GDBN} inferior debugging.
da316a69
EZ
16119@item set debug lin-lwp
16120@cindex @sc{gnu}/Linux LWP debug messages
16121@cindex Linux lightweight processes
721c2651 16122Turns on or off debugging messages from the Linux LWP debug support.
da316a69
EZ
16123@item show debug lin-lwp
16124Show the current state of Linux LWP debugging messages.
2b4855ab 16125@item set debug observer
4644b6e3 16126@cindex observer debugging info
2b4855ab
AC
16127Turns on or off display of @value{GDBN} observer debugging. This
16128includes info such as the notification of observable events.
2b4855ab
AC
16129@item show debug observer
16130Displays the current state of observer debugging.
8e04817f 16131@item set debug overload
4644b6e3 16132@cindex C@t{++} overload debugging info
8e04817f 16133Turns on or off display of @value{GDBN} C@t{++} overload debugging
359df76b 16134info. This includes info such as ranking of functions, etc. The default
8e04817f 16135is off.
8e04817f
AC
16136@item show debug overload
16137Displays the current state of displaying @value{GDBN} C@t{++} overload
16138debugging info.
8e04817f
AC
16139@cindex packets, reporting on stdout
16140@cindex serial connections, debugging
605a56cb
DJ
16141@cindex debug remote protocol
16142@cindex remote protocol debugging
16143@cindex display remote packets
8e04817f
AC
16144@item set debug remote
16145Turns on or off display of reports on all packets sent back and forth across
16146the serial line to the remote machine. The info is printed on the
16147@value{GDBN} standard output stream. The default is off.
8e04817f
AC
16148@item show debug remote
16149Displays the state of display of remote packets.
8e04817f
AC
16150@item set debug serial
16151Turns on or off display of @value{GDBN} serial debugging info. The
16152default is off.
8e04817f
AC
16153@item show debug serial
16154Displays the current state of displaying @value{GDBN} serial debugging
16155info.
c45da7e6
EZ
16156@item set debug solib-frv
16157@cindex FR-V shared-library debugging
16158Turns on or off debugging messages for FR-V shared-library code.
16159@item show debug solib-frv
16160Display the current state of FR-V shared-library code debugging
16161messages.
8e04817f 16162@item set debug target
4644b6e3 16163@cindex target debugging info
8e04817f
AC
16164Turns on or off display of @value{GDBN} target debugging info. This info
16165includes what is going on at the target level of GDB, as it happens. The
701b08bb
DJ
16166default is 0. Set it to 1 to track events, and to 2 to also track the
16167value of large memory transfers. Changes to this flag do not take effect
16168until the next time you connect to a target or use the @code{run} command.
8e04817f
AC
16169@item show debug target
16170Displays the current state of displaying @value{GDBN} target debugging
16171info.
c45da7e6 16172@item set debugvarobj
4644b6e3 16173@cindex variable object debugging info
8e04817f
AC
16174Turns on or off display of @value{GDBN} variable object debugging
16175info. The default is off.
c45da7e6 16176@item show debugvarobj
8e04817f
AC
16177Displays the current state of displaying @value{GDBN} variable object
16178debugging info.
e776119f
DJ
16179@item set debug xml
16180@cindex XML parser debugging
16181Turns on or off debugging messages for built-in XML parsers.
16182@item show debug xml
16183Displays the current state of XML debugging messages.
8e04817f 16184@end table
104c1213 16185
8e04817f
AC
16186@node Sequences
16187@chapter Canned Sequences of Commands
104c1213 16188
8e04817f 16189Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
79a6e687 16190Command Lists}), @value{GDBN} provides two ways to store sequences of
8e04817f
AC
16191commands for execution as a unit: user-defined commands and command
16192files.
104c1213 16193
8e04817f 16194@menu
fcc73fe3
EZ
16195* Define:: How to define your own commands
16196* Hooks:: Hooks for user-defined commands
16197* Command Files:: How to write scripts of commands to be stored in a file
16198* Output:: Commands for controlled output
8e04817f 16199@end menu
104c1213 16200
8e04817f 16201@node Define
79a6e687 16202@section User-defined Commands
104c1213 16203
8e04817f 16204@cindex user-defined command
fcc73fe3 16205@cindex arguments, to user-defined commands
8e04817f
AC
16206A @dfn{user-defined command} is a sequence of @value{GDBN} commands to
16207which you assign a new name as a command. This is done with the
16208@code{define} command. User commands may accept up to 10 arguments
16209separated by whitespace. Arguments are accessed within the user command
c03c782f 16210via @code{$arg0@dots{}$arg9}. A trivial example:
104c1213 16211
8e04817f
AC
16212@smallexample
16213define adder
16214 print $arg0 + $arg1 + $arg2
c03c782f 16215end
8e04817f 16216@end smallexample
104c1213
JM
16217
16218@noindent
8e04817f 16219To execute the command use:
104c1213 16220
8e04817f
AC
16221@smallexample
16222adder 1 2 3
16223@end smallexample
104c1213 16224
8e04817f
AC
16225@noindent
16226This defines the command @code{adder}, which prints the sum of
16227its three arguments. Note the arguments are text substitutions, so they may
16228reference variables, use complex expressions, or even perform inferior
16229functions calls.
104c1213 16230
fcc73fe3
EZ
16231@cindex argument count in user-defined commands
16232@cindex how many arguments (user-defined commands)
c03c782f
AS
16233In addition, @code{$argc} may be used to find out how many arguments have
16234been passed. This expands to a number in the range 0@dots{}10.
16235
16236@smallexample
16237define adder
16238 if $argc == 2
16239 print $arg0 + $arg1
16240 end
16241 if $argc == 3
16242 print $arg0 + $arg1 + $arg2
16243 end
16244end
16245@end smallexample
16246
104c1213 16247@table @code
104c1213 16248
8e04817f
AC
16249@kindex define
16250@item define @var{commandname}
16251Define a command named @var{commandname}. If there is already a command
16252by that name, you are asked to confirm that you want to redefine it.
104c1213 16253
8e04817f
AC
16254The definition of the command is made up of other @value{GDBN} command lines,
16255which are given following the @code{define} command. The end of these
16256commands is marked by a line containing @code{end}.
104c1213 16257
8e04817f 16258@kindex document
ca91424e 16259@kindex end@r{ (user-defined commands)}
8e04817f
AC
16260@item document @var{commandname}
16261Document the user-defined command @var{commandname}, so that it can be
16262accessed by @code{help}. The command @var{commandname} must already be
16263defined. This command reads lines of documentation just as @code{define}
16264reads the lines of the command definition, ending with @code{end}.
16265After the @code{document} command is finished, @code{help} on command
16266@var{commandname} displays the documentation you have written.
104c1213 16267
8e04817f
AC
16268You may use the @code{document} command again to change the
16269documentation of a command. Redefining the command with @code{define}
16270does not change the documentation.
104c1213 16271
c45da7e6
EZ
16272@kindex dont-repeat
16273@cindex don't repeat command
16274@item dont-repeat
16275Used inside a user-defined command, this tells @value{GDBN} that this
16276command should not be repeated when the user hits @key{RET}
16277(@pxref{Command Syntax, repeat last command}).
16278
8e04817f
AC
16279@kindex help user-defined
16280@item help user-defined
16281List all user-defined commands, with the first line of the documentation
16282(if any) for each.
104c1213 16283
8e04817f
AC
16284@kindex show user
16285@item show user
16286@itemx show user @var{commandname}
16287Display the @value{GDBN} commands used to define @var{commandname} (but
16288not its documentation). If no @var{commandname} is given, display the
16289definitions for all user-defined commands.
104c1213 16290
fcc73fe3 16291@cindex infinite recursion in user-defined commands
20f01a46
DH
16292@kindex show max-user-call-depth
16293@kindex set max-user-call-depth
16294@item show max-user-call-depth
5ca0cb28
DH
16295@itemx set max-user-call-depth
16296The value of @code{max-user-call-depth} controls how many recursion
3f94c067 16297levels are allowed in user-defined commands before @value{GDBN} suspects an
5ca0cb28 16298infinite recursion and aborts the command.
104c1213
JM
16299@end table
16300
fcc73fe3
EZ
16301In addition to the above commands, user-defined commands frequently
16302use control flow commands, described in @ref{Command Files}.
16303
8e04817f
AC
16304When user-defined commands are executed, the
16305commands of the definition are not printed. An error in any command
16306stops execution of the user-defined command.
104c1213 16307
8e04817f
AC
16308If used interactively, commands that would ask for confirmation proceed
16309without asking when used inside a user-defined command. Many @value{GDBN}
16310commands that normally print messages to say what they are doing omit the
16311messages when used in a user-defined command.
104c1213 16312
8e04817f 16313@node Hooks
79a6e687 16314@section User-defined Command Hooks
8e04817f
AC
16315@cindex command hooks
16316@cindex hooks, for commands
16317@cindex hooks, pre-command
104c1213 16318
8e04817f 16319@kindex hook
8e04817f
AC
16320You may define @dfn{hooks}, which are a special kind of user-defined
16321command. Whenever you run the command @samp{foo}, if the user-defined
16322command @samp{hook-foo} exists, it is executed (with no arguments)
16323before that command.
104c1213 16324
8e04817f
AC
16325@cindex hooks, post-command
16326@kindex hookpost
8e04817f
AC
16327A hook may also be defined which is run after the command you executed.
16328Whenever you run the command @samp{foo}, if the user-defined command
16329@samp{hookpost-foo} exists, it is executed (with no arguments) after
16330that command. Post-execution hooks may exist simultaneously with
16331pre-execution hooks, for the same command.
104c1213 16332
8e04817f 16333It is valid for a hook to call the command which it hooks. If this
9f1c6395 16334occurs, the hook is not re-executed, thereby avoiding infinite recursion.
104c1213 16335
8e04817f
AC
16336@c It would be nice if hookpost could be passed a parameter indicating
16337@c if the command it hooks executed properly or not. FIXME!
104c1213 16338
8e04817f
AC
16339@kindex stop@r{, a pseudo-command}
16340In addition, a pseudo-command, @samp{stop} exists. Defining
16341(@samp{hook-stop}) makes the associated commands execute every time
16342execution stops in your program: before breakpoint commands are run,
16343displays are printed, or the stack frame is printed.
104c1213 16344
8e04817f
AC
16345For example, to ignore @code{SIGALRM} signals while
16346single-stepping, but treat them normally during normal execution,
16347you could define:
104c1213 16348
474c8240 16349@smallexample
8e04817f
AC
16350define hook-stop
16351handle SIGALRM nopass
16352end
104c1213 16353
8e04817f
AC
16354define hook-run
16355handle SIGALRM pass
16356end
104c1213 16357
8e04817f 16358define hook-continue
d3e8051b 16359handle SIGALRM pass
8e04817f 16360end
474c8240 16361@end smallexample
104c1213 16362
d3e8051b 16363As a further example, to hook at the beginning and end of the @code{echo}
b383017d 16364command, and to add extra text to the beginning and end of the message,
8e04817f 16365you could define:
104c1213 16366
474c8240 16367@smallexample
8e04817f
AC
16368define hook-echo
16369echo <<<---
16370end
104c1213 16371
8e04817f
AC
16372define hookpost-echo
16373echo --->>>\n
16374end
104c1213 16375
8e04817f
AC
16376(@value{GDBP}) echo Hello World
16377<<<---Hello World--->>>
16378(@value{GDBP})
104c1213 16379
474c8240 16380@end smallexample
104c1213 16381
8e04817f
AC
16382You can define a hook for any single-word command in @value{GDBN}, but
16383not for command aliases; you should define a hook for the basic command
c1468174 16384name, e.g.@: @code{backtrace} rather than @code{bt}.
8e04817f
AC
16385@c FIXME! So how does Joe User discover whether a command is an alias
16386@c or not?
16387If an error occurs during the execution of your hook, execution of
16388@value{GDBN} commands stops and @value{GDBN} issues a prompt
16389(before the command that you actually typed had a chance to run).
104c1213 16390
8e04817f
AC
16391If you try to define a hook which does not match any known command, you
16392get a warning from the @code{define} command.
c906108c 16393
8e04817f 16394@node Command Files
79a6e687 16395@section Command Files
c906108c 16396
8e04817f 16397@cindex command files
fcc73fe3 16398@cindex scripting commands
6fc08d32
EZ
16399A command file for @value{GDBN} is a text file made of lines that are
16400@value{GDBN} commands. Comments (lines starting with @kbd{#}) may
16401also be included. An empty line in a command file does nothing; it
16402does not mean to repeat the last command, as it would from the
16403terminal.
c906108c 16404
6fc08d32
EZ
16405You can request the execution of a command file with the @code{source}
16406command:
c906108c 16407
8e04817f
AC
16408@table @code
16409@kindex source
ca91424e 16410@cindex execute commands from a file
16026cd7 16411@item source [@code{-v}] @var{filename}
8e04817f 16412Execute the command file @var{filename}.
c906108c
SS
16413@end table
16414
fcc73fe3
EZ
16415The lines in a command file are generally executed sequentially,
16416unless the order of execution is changed by one of the
16417@emph{flow-control commands} described below. The commands are not
a71ec265
DH
16418printed as they are executed. An error in any command terminates
16419execution of the command file and control is returned to the console.
c906108c 16420
4b505b12
AS
16421@value{GDBN} searches for @var{filename} in the current directory and then
16422on the search path (specified with the @samp{directory} command).
16423
16026cd7
AS
16424If @code{-v}, for verbose mode, is given then @value{GDBN} displays
16425each command as it is executed. The option must be given before
16426@var{filename}, and is interpreted as part of the filename anywhere else.
16427
8e04817f
AC
16428Commands that would ask for confirmation if used interactively proceed
16429without asking when used in a command file. Many @value{GDBN} commands that
16430normally print messages to say what they are doing omit the messages
16431when called from command files.
c906108c 16432
8e04817f
AC
16433@value{GDBN} also accepts command input from standard input. In this
16434mode, normal output goes to standard output and error output goes to
16435standard error. Errors in a command file supplied on standard input do
6fc08d32 16436not terminate execution of the command file---execution continues with
8e04817f 16437the next command.
c906108c 16438
474c8240 16439@smallexample
8e04817f 16440gdb < cmds > log 2>&1
474c8240 16441@end smallexample
c906108c 16442
8e04817f
AC
16443(The syntax above will vary depending on the shell used.) This example
16444will execute commands from the file @file{cmds}. All output and errors
16445would be directed to @file{log}.
c906108c 16446
fcc73fe3
EZ
16447Since commands stored on command files tend to be more general than
16448commands typed interactively, they frequently need to deal with
16449complicated situations, such as different or unexpected values of
16450variables and symbols, changes in how the program being debugged is
16451built, etc. @value{GDBN} provides a set of flow-control commands to
16452deal with these complexities. Using these commands, you can write
16453complex scripts that loop over data structures, execute commands
16454conditionally, etc.
16455
16456@table @code
16457@kindex if
16458@kindex else
16459@item if
16460@itemx else
16461This command allows to include in your script conditionally executed
16462commands. The @code{if} command takes a single argument, which is an
16463expression to evaluate. It is followed by a series of commands that
16464are executed only if the expression is true (its value is nonzero).
16465There can then optionally be an @code{else} line, followed by a series
16466of commands that are only executed if the expression was false. The
16467end of the list is marked by a line containing @code{end}.
16468
16469@kindex while
16470@item while
16471This command allows to write loops. Its syntax is similar to
16472@code{if}: the command takes a single argument, which is an expression
16473to evaluate, and must be followed by the commands to execute, one per
16474line, terminated by an @code{end}. These commands are called the
16475@dfn{body} of the loop. The commands in the body of @code{while} are
16476executed repeatedly as long as the expression evaluates to true.
16477
16478@kindex loop_break
16479@item loop_break
16480This command exits the @code{while} loop in whose body it is included.
16481Execution of the script continues after that @code{while}s @code{end}
16482line.
16483
16484@kindex loop_continue
16485@item loop_continue
16486This command skips the execution of the rest of the body of commands
16487in the @code{while} loop in whose body it is included. Execution
16488branches to the beginning of the @code{while} loop, where it evaluates
16489the controlling expression.
ca91424e
EZ
16490
16491@kindex end@r{ (if/else/while commands)}
16492@item end
16493Terminate the block of commands that are the body of @code{if},
16494@code{else}, or @code{while} flow-control commands.
fcc73fe3
EZ
16495@end table
16496
16497
8e04817f 16498@node Output
79a6e687 16499@section Commands for Controlled Output
c906108c 16500
8e04817f
AC
16501During the execution of a command file or a user-defined command, normal
16502@value{GDBN} output is suppressed; the only output that appears is what is
16503explicitly printed by the commands in the definition. This section
16504describes three commands useful for generating exactly the output you
16505want.
c906108c
SS
16506
16507@table @code
8e04817f
AC
16508@kindex echo
16509@item echo @var{text}
16510@c I do not consider backslash-space a standard C escape sequence
16511@c because it is not in ANSI.
16512Print @var{text}. Nonprinting characters can be included in
16513@var{text} using C escape sequences, such as @samp{\n} to print a
16514newline. @strong{No newline is printed unless you specify one.}
16515In addition to the standard C escape sequences, a backslash followed
16516by a space stands for a space. This is useful for displaying a
16517string with spaces at the beginning or the end, since leading and
16518trailing spaces are otherwise trimmed from all arguments.
16519To print @samp{@w{ }and foo =@w{ }}, use the command
16520@samp{echo \@w{ }and foo = \@w{ }}.
c906108c 16521
8e04817f
AC
16522A backslash at the end of @var{text} can be used, as in C, to continue
16523the command onto subsequent lines. For example,
c906108c 16524
474c8240 16525@smallexample
8e04817f
AC
16526echo This is some text\n\
16527which is continued\n\
16528onto several lines.\n
474c8240 16529@end smallexample
c906108c 16530
8e04817f 16531produces the same output as
c906108c 16532
474c8240 16533@smallexample
8e04817f
AC
16534echo This is some text\n
16535echo which is continued\n
16536echo onto several lines.\n
474c8240 16537@end smallexample
c906108c 16538
8e04817f
AC
16539@kindex output
16540@item output @var{expression}
16541Print the value of @var{expression} and nothing but that value: no
16542newlines, no @samp{$@var{nn} = }. The value is not entered in the
16543value history either. @xref{Expressions, ,Expressions}, for more information
16544on expressions.
c906108c 16545
8e04817f
AC
16546@item output/@var{fmt} @var{expression}
16547Print the value of @var{expression} in format @var{fmt}. You can use
16548the same formats as for @code{print}. @xref{Output Formats,,Output
79a6e687 16549Formats}, for more information.
c906108c 16550
8e04817f 16551@kindex printf
82160952
EZ
16552@item printf @var{template}, @var{expressions}@dots{}
16553Print the values of one or more @var{expressions} under the control of
16554the string @var{template}. To print several values, make
16555@var{expressions} be a comma-separated list of individual expressions,
16556which may be either numbers or pointers. Their values are printed as
16557specified by @var{template}, exactly as a C program would do by
16558executing the code below:
c906108c 16559
474c8240 16560@smallexample
82160952 16561printf (@var{template}, @var{expressions}@dots{});
474c8240 16562@end smallexample
c906108c 16563
82160952
EZ
16564As in @code{C} @code{printf}, ordinary characters in @var{template}
16565are printed verbatim, while @dfn{conversion specification} introduced
16566by the @samp{%} character cause subsequent @var{expressions} to be
16567evaluated, their values converted and formatted according to type and
16568style information encoded in the conversion specifications, and then
16569printed.
16570
8e04817f 16571For example, you can print two values in hex like this:
c906108c 16572
8e04817f
AC
16573@smallexample
16574printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
16575@end smallexample
c906108c 16576
82160952
EZ
16577@code{printf} supports all the standard @code{C} conversion
16578specifications, including the flags and modifiers between the @samp{%}
16579character and the conversion letter, with the following exceptions:
16580
16581@itemize @bullet
16582@item
16583The argument-ordering modifiers, such as @samp{2$}, are not supported.
16584
16585@item
16586The modifier @samp{*} is not supported for specifying precision or
16587width.
16588
16589@item
16590The @samp{'} flag (for separation of digits into groups according to
16591@code{LC_NUMERIC'}) is not supported.
16592
16593@item
16594The type modifiers @samp{hh}, @samp{j}, @samp{t}, and @samp{z} are not
16595supported.
16596
16597@item
16598The conversion letter @samp{n} (as in @samp{%n}) is not supported.
16599
16600@item
16601The conversion letters @samp{a} and @samp{A} are not supported.
16602@end itemize
16603
16604@noindent
16605Note that the @samp{ll} type modifier is supported only if the
16606underlying @code{C} implementation used to build @value{GDBN} supports
16607the @code{long long int} type, and the @samp{L} type modifier is
16608supported only if @code{long double} type is available.
16609
16610As in @code{C}, @code{printf} supports simple backslash-escape
16611sequences, such as @code{\n}, @samp{\t}, @samp{\\}, @samp{\"},
16612@samp{\a}, and @samp{\f}, that consist of backslash followed by a
16613single character. Octal and hexadecimal escape sequences are not
16614supported.
1a619819
LM
16615
16616Additionally, @code{printf} supports conversion specifications for DFP
16617(@dfn{Decimal Floating Point}) types using the following conversion
16618letters:
16619
16620@itemize @bullet
16621@item
16622@samp{H} for printing @code{Decimal32} types.
16623
16624@item
16625@samp{D} for printing @code{Decimal64} types.
16626
16627@item
16628@samp{DD} for printing @code{Decimal128} types.
16629@end itemize
16630
16631If the underlying @code{C} implementation used to build @value{GDBN} has
16632support for the three conversion letters for DFP types, other modifiers
3b784c4f 16633such as width and precision will also be available for @value{GDBN} to use.
1a619819
LM
16634
16635In case there is no such @code{C} support, no additional modifiers will be
16636available and the value will be printed in the standard way.
16637
16638Here's an example of printing DFP types using the above conversion letters:
16639@smallexample
16640printf "D32: %H - D64: %D - D128: %DD\n",1.2345df,1.2E10dd,1.2E1dl
16641@end smallexample
16642
c906108c
SS
16643@end table
16644
21c294e6
AC
16645@node Interpreters
16646@chapter Command Interpreters
16647@cindex command interpreters
16648
16649@value{GDBN} supports multiple command interpreters, and some command
16650infrastructure to allow users or user interface writers to switch
16651between interpreters or run commands in other interpreters.
16652
16653@value{GDBN} currently supports two command interpreters, the console
16654interpreter (sometimes called the command-line interpreter or @sc{cli})
16655and the machine interface interpreter (or @sc{gdb/mi}). This manual
16656describes both of these interfaces in great detail.
16657
16658By default, @value{GDBN} will start with the console interpreter.
16659However, the user may choose to start @value{GDBN} with another
16660interpreter by specifying the @option{-i} or @option{--interpreter}
16661startup options. Defined interpreters include:
16662
16663@table @code
16664@item console
16665@cindex console interpreter
16666The traditional console or command-line interpreter. This is the most often
16667used interpreter with @value{GDBN}. With no interpreter specified at runtime,
16668@value{GDBN} will use this interpreter.
16669
16670@item mi
16671@cindex mi interpreter
16672The newest @sc{gdb/mi} interface (currently @code{mi2}). Used primarily
16673by programs wishing to use @value{GDBN} as a backend for a debugger GUI
16674or an IDE. For more information, see @ref{GDB/MI, ,The @sc{gdb/mi}
16675Interface}.
16676
16677@item mi2
16678@cindex mi2 interpreter
16679The current @sc{gdb/mi} interface.
16680
16681@item mi1
16682@cindex mi1 interpreter
16683The @sc{gdb/mi} interface included in @value{GDBN} 5.1, 5.2, and 5.3.
16684
16685@end table
16686
16687@cindex invoke another interpreter
16688The interpreter being used by @value{GDBN} may not be dynamically
16689switched at runtime. Although possible, this could lead to a very
16690precarious situation. Consider an IDE using @sc{gdb/mi}. If a user
16691enters the command "interpreter-set console" in a console view,
16692@value{GDBN} would switch to using the console interpreter, rendering
16693the IDE inoperable!
16694
16695@kindex interpreter-exec
16696Although you may only choose a single interpreter at startup, you may execute
16697commands in any interpreter from the current interpreter using the appropriate
16698command. If you are running the console interpreter, simply use the
16699@code{interpreter-exec} command:
16700
16701@smallexample
16702interpreter-exec mi "-data-list-register-names"
16703@end smallexample
16704
16705@sc{gdb/mi} has a similar command, although it is only available in versions of
16706@value{GDBN} which support @sc{gdb/mi} version 2 (or greater).
16707
8e04817f
AC
16708@node TUI
16709@chapter @value{GDBN} Text User Interface
16710@cindex TUI
d0d5df6f 16711@cindex Text User Interface
c906108c 16712
8e04817f
AC
16713@menu
16714* TUI Overview:: TUI overview
16715* TUI Keys:: TUI key bindings
7cf36c78 16716* TUI Single Key Mode:: TUI single key mode
db2e3e2e 16717* TUI Commands:: TUI-specific commands
8e04817f
AC
16718* TUI Configuration:: TUI configuration variables
16719@end menu
c906108c 16720
46ba6afa 16721The @value{GDBN} Text User Interface (TUI) is a terminal
d0d5df6f
AC
16722interface which uses the @code{curses} library to show the source
16723file, the assembly output, the program registers and @value{GDBN}
46ba6afa
BW
16724commands in separate text windows. The TUI mode is supported only
16725on platforms where a suitable version of the @code{curses} library
16726is available.
d0d5df6f 16727
46ba6afa
BW
16728@pindex @value{GDBTUI}
16729The TUI mode is enabled by default when you invoke @value{GDBN} as
16730either @samp{@value{GDBTUI}} or @samp{@value{GDBP} -tui}.
16731You can also switch in and out of TUI mode while @value{GDBN} runs by
16732using various TUI commands and key bindings, such as @kbd{C-x C-a}.
16733@xref{TUI Keys, ,TUI Key Bindings}.
c906108c 16734
8e04817f 16735@node TUI Overview
79a6e687 16736@section TUI Overview
c906108c 16737
46ba6afa 16738In TUI mode, @value{GDBN} can display several text windows:
c906108c 16739
8e04817f
AC
16740@table @emph
16741@item command
16742This window is the @value{GDBN} command window with the @value{GDBN}
46ba6afa
BW
16743prompt and the @value{GDBN} output. The @value{GDBN} input is still
16744managed using readline.
c906108c 16745
8e04817f
AC
16746@item source
16747The source window shows the source file of the program. The current
46ba6afa 16748line and active breakpoints are displayed in this window.
c906108c 16749
8e04817f
AC
16750@item assembly
16751The assembly window shows the disassembly output of the program.
c906108c 16752
8e04817f 16753@item register
46ba6afa
BW
16754This window shows the processor registers. Registers are highlighted
16755when their values change.
c906108c
SS
16756@end table
16757
269c21fe 16758The source and assembly windows show the current program position
46ba6afa
BW
16759by highlighting the current line and marking it with a @samp{>} marker.
16760Breakpoints are indicated with two markers. The first marker
269c21fe
SC
16761indicates the breakpoint type:
16762
16763@table @code
16764@item B
16765Breakpoint which was hit at least once.
16766
16767@item b
16768Breakpoint which was never hit.
16769
16770@item H
16771Hardware breakpoint which was hit at least once.
16772
16773@item h
16774Hardware breakpoint which was never hit.
269c21fe
SC
16775@end table
16776
16777The second marker indicates whether the breakpoint is enabled or not:
16778
16779@table @code
16780@item +
16781Breakpoint is enabled.
16782
16783@item -
16784Breakpoint is disabled.
269c21fe
SC
16785@end table
16786
46ba6afa
BW
16787The source, assembly and register windows are updated when the current
16788thread changes, when the frame changes, or when the program counter
16789changes.
16790
16791These windows are not all visible at the same time. The command
16792window is always visible. The others can be arranged in several
16793layouts:
c906108c 16794
8e04817f
AC
16795@itemize @bullet
16796@item
46ba6afa 16797source only,
2df3850c 16798
8e04817f 16799@item
46ba6afa 16800assembly only,
8e04817f
AC
16801
16802@item
46ba6afa 16803source and assembly,
8e04817f
AC
16804
16805@item
46ba6afa 16806source and registers, or
c906108c 16807
8e04817f 16808@item
46ba6afa 16809assembly and registers.
8e04817f 16810@end itemize
c906108c 16811
46ba6afa 16812A status line above the command window shows the following information:
b7bb15bc
SC
16813
16814@table @emph
16815@item target
46ba6afa 16816Indicates the current @value{GDBN} target.
b7bb15bc
SC
16817(@pxref{Targets, ,Specifying a Debugging Target}).
16818
16819@item process
46ba6afa 16820Gives the current process or thread number.
b7bb15bc
SC
16821When no process is being debugged, this field is set to @code{No process}.
16822
16823@item function
16824Gives the current function name for the selected frame.
16825The name is demangled if demangling is turned on (@pxref{Print Settings}).
46ba6afa 16826When there is no symbol corresponding to the current program counter,
b7bb15bc
SC
16827the string @code{??} is displayed.
16828
16829@item line
16830Indicates the current line number for the selected frame.
46ba6afa 16831When the current line number is not known, the string @code{??} is displayed.
b7bb15bc
SC
16832
16833@item pc
16834Indicates the current program counter address.
b7bb15bc
SC
16835@end table
16836
8e04817f
AC
16837@node TUI Keys
16838@section TUI Key Bindings
16839@cindex TUI key bindings
c906108c 16840
8e04817f 16841The TUI installs several key bindings in the readline keymaps
46ba6afa 16842(@pxref{Command Line Editing}). The following key bindings
8e04817f 16843are installed for both TUI mode and the @value{GDBN} standard mode.
c906108c 16844
8e04817f
AC
16845@table @kbd
16846@kindex C-x C-a
16847@item C-x C-a
16848@kindex C-x a
16849@itemx C-x a
16850@kindex C-x A
16851@itemx C-x A
46ba6afa
BW
16852Enter or leave the TUI mode. When leaving the TUI mode,
16853the curses window management stops and @value{GDBN} operates using
16854its standard mode, writing on the terminal directly. When reentering
16855the TUI mode, control is given back to the curses windows.
8e04817f 16856The screen is then refreshed.
c906108c 16857
8e04817f
AC
16858@kindex C-x 1
16859@item C-x 1
16860Use a TUI layout with only one window. The layout will
16861either be @samp{source} or @samp{assembly}. When the TUI mode
16862is not active, it will switch to the TUI mode.
2df3850c 16863
8e04817f 16864Think of this key binding as the Emacs @kbd{C-x 1} binding.
c906108c 16865
8e04817f
AC
16866@kindex C-x 2
16867@item C-x 2
16868Use a TUI layout with at least two windows. When the current
46ba6afa 16869layout already has two windows, the next layout with two windows is used.
8e04817f
AC
16870When a new layout is chosen, one window will always be common to the
16871previous layout and the new one.
c906108c 16872
8e04817f 16873Think of it as the Emacs @kbd{C-x 2} binding.
2df3850c 16874
72ffddc9
SC
16875@kindex C-x o
16876@item C-x o
16877Change the active window. The TUI associates several key bindings
46ba6afa 16878(like scrolling and arrow keys) with the active window. This command
72ffddc9
SC
16879gives the focus to the next TUI window.
16880
16881Think of it as the Emacs @kbd{C-x o} binding.
16882
7cf36c78
SC
16883@kindex C-x s
16884@item C-x s
46ba6afa
BW
16885Switch in and out of the TUI SingleKey mode that binds single
16886keys to @value{GDBN} commands (@pxref{TUI Single Key Mode}).
c906108c
SS
16887@end table
16888
46ba6afa 16889The following key bindings only work in the TUI mode:
5d161b24 16890
46ba6afa 16891@table @asis
8e04817f 16892@kindex PgUp
46ba6afa 16893@item @key{PgUp}
8e04817f 16894Scroll the active window one page up.
c906108c 16895
8e04817f 16896@kindex PgDn
46ba6afa 16897@item @key{PgDn}
8e04817f 16898Scroll the active window one page down.
c906108c 16899
8e04817f 16900@kindex Up
46ba6afa 16901@item @key{Up}
8e04817f 16902Scroll the active window one line up.
c906108c 16903
8e04817f 16904@kindex Down
46ba6afa 16905@item @key{Down}
8e04817f 16906Scroll the active window one line down.
c906108c 16907
8e04817f 16908@kindex Left
46ba6afa 16909@item @key{Left}
8e04817f 16910Scroll the active window one column left.
c906108c 16911
8e04817f 16912@kindex Right
46ba6afa 16913@item @key{Right}
8e04817f 16914Scroll the active window one column right.
c906108c 16915
8e04817f 16916@kindex C-L
46ba6afa 16917@item @kbd{C-L}
8e04817f 16918Refresh the screen.
8e04817f 16919@end table
c906108c 16920
46ba6afa
BW
16921Because the arrow keys scroll the active window in the TUI mode, they
16922are not available for their normal use by readline unless the command
16923window has the focus. When another window is active, you must use
16924other readline key bindings such as @kbd{C-p}, @kbd{C-n}, @kbd{C-b}
16925and @kbd{C-f} to control the command window.
8e04817f 16926
7cf36c78
SC
16927@node TUI Single Key Mode
16928@section TUI Single Key Mode
16929@cindex TUI single key mode
16930
46ba6afa
BW
16931The TUI also provides a @dfn{SingleKey} mode, which binds several
16932frequently used @value{GDBN} commands to single keys. Type @kbd{C-x s} to
16933switch into this mode, where the following key bindings are used:
7cf36c78
SC
16934
16935@table @kbd
16936@kindex c @r{(SingleKey TUI key)}
16937@item c
16938continue
16939
16940@kindex d @r{(SingleKey TUI key)}
16941@item d
16942down
16943
16944@kindex f @r{(SingleKey TUI key)}
16945@item f
16946finish
16947
16948@kindex n @r{(SingleKey TUI key)}
16949@item n
16950next
16951
16952@kindex q @r{(SingleKey TUI key)}
16953@item q
46ba6afa 16954exit the SingleKey mode.
7cf36c78
SC
16955
16956@kindex r @r{(SingleKey TUI key)}
16957@item r
16958run
16959
16960@kindex s @r{(SingleKey TUI key)}
16961@item s
16962step
16963
16964@kindex u @r{(SingleKey TUI key)}
16965@item u
16966up
16967
16968@kindex v @r{(SingleKey TUI key)}
16969@item v
16970info locals
16971
16972@kindex w @r{(SingleKey TUI key)}
16973@item w
16974where
7cf36c78
SC
16975@end table
16976
16977Other keys temporarily switch to the @value{GDBN} command prompt.
16978The key that was pressed is inserted in the editing buffer so that
16979it is possible to type most @value{GDBN} commands without interaction
46ba6afa
BW
16980with the TUI SingleKey mode. Once the command is entered the TUI
16981SingleKey mode is restored. The only way to permanently leave
7f9087cb 16982this mode is by typing @kbd{q} or @kbd{C-x s}.
7cf36c78
SC
16983
16984
8e04817f 16985@node TUI Commands
db2e3e2e 16986@section TUI-specific Commands
8e04817f
AC
16987@cindex TUI commands
16988
16989The TUI has specific commands to control the text windows.
46ba6afa
BW
16990These commands are always available, even when @value{GDBN} is not in
16991the TUI mode. When @value{GDBN} is in the standard mode, most
16992of these commands will automatically switch to the TUI mode.
c906108c
SS
16993
16994@table @code
3d757584
SC
16995@item info win
16996@kindex info win
16997List and give the size of all displayed windows.
16998
8e04817f 16999@item layout next
4644b6e3 17000@kindex layout
8e04817f 17001Display the next layout.
2df3850c 17002
8e04817f 17003@item layout prev
8e04817f 17004Display the previous layout.
c906108c 17005
8e04817f 17006@item layout src
8e04817f 17007Display the source window only.
c906108c 17008
8e04817f 17009@item layout asm
8e04817f 17010Display the assembly window only.
c906108c 17011
8e04817f 17012@item layout split
8e04817f 17013Display the source and assembly window.
c906108c 17014
8e04817f 17015@item layout regs
8e04817f
AC
17016Display the register window together with the source or assembly window.
17017
46ba6afa 17018@item focus next
8e04817f 17019@kindex focus
46ba6afa
BW
17020Make the next window active for scrolling.
17021
17022@item focus prev
17023Make the previous window active for scrolling.
17024
17025@item focus src
17026Make the source window active for scrolling.
17027
17028@item focus asm
17029Make the assembly window active for scrolling.
17030
17031@item focus regs
17032Make the register window active for scrolling.
17033
17034@item focus cmd
17035Make the command window active for scrolling.
c906108c 17036
8e04817f
AC
17037@item refresh
17038@kindex refresh
7f9087cb 17039Refresh the screen. This is similar to typing @kbd{C-L}.
c906108c 17040
6a1b180d
SC
17041@item tui reg float
17042@kindex tui reg
17043Show the floating point registers in the register window.
17044
17045@item tui reg general
17046Show the general registers in the register window.
17047
17048@item tui reg next
17049Show the next register group. The list of register groups as well as
17050their order is target specific. The predefined register groups are the
17051following: @code{general}, @code{float}, @code{system}, @code{vector},
17052@code{all}, @code{save}, @code{restore}.
17053
17054@item tui reg system
17055Show the system registers in the register window.
17056
8e04817f
AC
17057@item update
17058@kindex update
17059Update the source window and the current execution point.
c906108c 17060
8e04817f
AC
17061@item winheight @var{name} +@var{count}
17062@itemx winheight @var{name} -@var{count}
17063@kindex winheight
17064Change the height of the window @var{name} by @var{count}
17065lines. Positive counts increase the height, while negative counts
17066decrease it.
2df3850c 17067
46ba6afa
BW
17068@item tabset @var{nchars}
17069@kindex tabset
c45da7e6 17070Set the width of tab stops to be @var{nchars} characters.
c906108c
SS
17071@end table
17072
8e04817f 17073@node TUI Configuration
79a6e687 17074@section TUI Configuration Variables
8e04817f 17075@cindex TUI configuration variables
c906108c 17076
46ba6afa 17077Several configuration variables control the appearance of TUI windows.
c906108c 17078
8e04817f
AC
17079@table @code
17080@item set tui border-kind @var{kind}
17081@kindex set tui border-kind
17082Select the border appearance for the source, assembly and register windows.
17083The possible values are the following:
17084@table @code
17085@item space
17086Use a space character to draw the border.
c906108c 17087
8e04817f 17088@item ascii
46ba6afa 17089Use @sc{ascii} characters @samp{+}, @samp{-} and @samp{|} to draw the border.
c906108c 17090
8e04817f
AC
17091@item acs
17092Use the Alternate Character Set to draw the border. The border is
17093drawn using character line graphics if the terminal supports them.
8e04817f 17094@end table
c78b4128 17095
8e04817f
AC
17096@item set tui border-mode @var{mode}
17097@kindex set tui border-mode
46ba6afa
BW
17098@itemx set tui active-border-mode @var{mode}
17099@kindex set tui active-border-mode
17100Select the display attributes for the borders of the inactive windows
17101or the active window. The @var{mode} can be one of the following:
8e04817f
AC
17102@table @code
17103@item normal
17104Use normal attributes to display the border.
c906108c 17105
8e04817f
AC
17106@item standout
17107Use standout mode.
c906108c 17108
8e04817f
AC
17109@item reverse
17110Use reverse video mode.
c906108c 17111
8e04817f
AC
17112@item half
17113Use half bright mode.
c906108c 17114
8e04817f
AC
17115@item half-standout
17116Use half bright and standout mode.
c906108c 17117
8e04817f
AC
17118@item bold
17119Use extra bright or bold mode.
c78b4128 17120
8e04817f
AC
17121@item bold-standout
17122Use extra bright or bold and standout mode.
8e04817f 17123@end table
8e04817f 17124@end table
c78b4128 17125
8e04817f
AC
17126@node Emacs
17127@chapter Using @value{GDBN} under @sc{gnu} Emacs
c78b4128 17128
8e04817f
AC
17129@cindex Emacs
17130@cindex @sc{gnu} Emacs
17131A special interface allows you to use @sc{gnu} Emacs to view (and
17132edit) the source files for the program you are debugging with
17133@value{GDBN}.
c906108c 17134
8e04817f
AC
17135To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
17136executable file you want to debug as an argument. This command starts
17137@value{GDBN} as a subprocess of Emacs, with input and output through a newly
17138created Emacs buffer.
17139@c (Do not use the @code{-tui} option to run @value{GDBN} from Emacs.)
c906108c 17140
5e252a2e 17141Running @value{GDBN} under Emacs can be just like running @value{GDBN} normally except for two
8e04817f 17142things:
c906108c 17143
8e04817f
AC
17144@itemize @bullet
17145@item
5e252a2e
NR
17146All ``terminal'' input and output goes through an Emacs buffer, called
17147the GUD buffer.
c906108c 17148
8e04817f
AC
17149This applies both to @value{GDBN} commands and their output, and to the input
17150and output done by the program you are debugging.
bf0184be 17151
8e04817f
AC
17152This is useful because it means that you can copy the text of previous
17153commands and input them again; you can even use parts of the output
17154in this way.
bf0184be 17155
8e04817f
AC
17156All the facilities of Emacs' Shell mode are available for interacting
17157with your program. In particular, you can send signals the usual
17158way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
17159stop.
bf0184be
ND
17160
17161@item
8e04817f 17162@value{GDBN} displays source code through Emacs.
bf0184be 17163
8e04817f
AC
17164Each time @value{GDBN} displays a stack frame, Emacs automatically finds the
17165source file for that frame and puts an arrow (@samp{=>}) at the
17166left margin of the current line. Emacs uses a separate buffer for
17167source display, and splits the screen to show both your @value{GDBN} session
17168and the source.
bf0184be 17169
8e04817f
AC
17170Explicit @value{GDBN} @code{list} or search commands still produce output as
17171usual, but you probably have no reason to use them from Emacs.
5e252a2e
NR
17172@end itemize
17173
17174We call this @dfn{text command mode}. Emacs 22.1, and later, also uses
17175a graphical mode, enabled by default, which provides further buffers
17176that can control the execution and describe the state of your program.
17177@xref{GDB Graphical Interface,,, Emacs, The @sc{gnu} Emacs Manual}.
c906108c 17178
64fabec2
AC
17179If you specify an absolute file name when prompted for the @kbd{M-x
17180gdb} argument, then Emacs sets your current working directory to where
17181your program resides. If you only specify the file name, then Emacs
17182sets your current working directory to to the directory associated
17183with the previous buffer. In this case, @value{GDBN} may find your
17184program by searching your environment's @code{PATH} variable, but on
17185some operating systems it might not find the source. So, although the
17186@value{GDBN} input and output session proceeds normally, the auxiliary
17187buffer does not display the current source and line of execution.
17188
17189The initial working directory of @value{GDBN} is printed on the top
5e252a2e
NR
17190line of the GUD buffer and this serves as a default for the commands
17191that specify files for @value{GDBN} to operate on. @xref{Files,
17192,Commands to Specify Files}.
64fabec2
AC
17193
17194By default, @kbd{M-x gdb} calls the program called @file{gdb}. If you
17195need to call @value{GDBN} by a different name (for example, if you
17196keep several configurations around, with different names) you can
17197customize the Emacs variable @code{gud-gdb-command-name} to run the
17198one you want.
8e04817f 17199
5e252a2e 17200In the GUD buffer, you can use these special Emacs commands in
8e04817f 17201addition to the standard Shell mode commands:
c906108c 17202
8e04817f
AC
17203@table @kbd
17204@item C-h m
5e252a2e 17205Describe the features of Emacs' GUD Mode.
c906108c 17206
64fabec2 17207@item C-c C-s
8e04817f
AC
17208Execute to another source line, like the @value{GDBN} @code{step} command; also
17209update the display window to show the current file and location.
c906108c 17210
64fabec2 17211@item C-c C-n
8e04817f
AC
17212Execute to next source line in this function, skipping all function
17213calls, like the @value{GDBN} @code{next} command. Then update the display window
17214to show the current file and location.
c906108c 17215
64fabec2 17216@item C-c C-i
8e04817f
AC
17217Execute one instruction, like the @value{GDBN} @code{stepi} command; update
17218display window accordingly.
c906108c 17219
8e04817f
AC
17220@item C-c C-f
17221Execute until exit from the selected stack frame, like the @value{GDBN}
17222@code{finish} command.
c906108c 17223
64fabec2 17224@item C-c C-r
8e04817f
AC
17225Continue execution of your program, like the @value{GDBN} @code{continue}
17226command.
b433d00b 17227
64fabec2 17228@item C-c <
8e04817f
AC
17229Go up the number of frames indicated by the numeric argument
17230(@pxref{Arguments, , Numeric Arguments, Emacs, The @sc{gnu} Emacs Manual}),
17231like the @value{GDBN} @code{up} command.
b433d00b 17232
64fabec2 17233@item C-c >
8e04817f
AC
17234Go down the number of frames indicated by the numeric argument, like the
17235@value{GDBN} @code{down} command.
8e04817f 17236@end table
c906108c 17237
7f9087cb 17238In any source file, the Emacs command @kbd{C-x @key{SPC}} (@code{gud-break})
8e04817f 17239tells @value{GDBN} to set a breakpoint on the source line point is on.
c906108c 17240
5e252a2e
NR
17241In text command mode, if you type @kbd{M-x speedbar}, Emacs displays a
17242separate frame which shows a backtrace when the GUD buffer is current.
17243Move point to any frame in the stack and type @key{RET} to make it
17244become the current frame and display the associated source in the
17245source buffer. Alternatively, click @kbd{Mouse-2} to make the
17246selected frame become the current one. In graphical mode, the
17247speedbar displays watch expressions.
64fabec2 17248
8e04817f
AC
17249If you accidentally delete the source-display buffer, an easy way to get
17250it back is to type the command @code{f} in the @value{GDBN} buffer, to
17251request a frame display; when you run under Emacs, this recreates
17252the source buffer if necessary to show you the context of the current
17253frame.
c906108c 17254
8e04817f
AC
17255The source files displayed in Emacs are in ordinary Emacs buffers
17256which are visiting the source files in the usual way. You can edit
17257the files with these buffers if you wish; but keep in mind that @value{GDBN}
17258communicates with Emacs in terms of line numbers. If you add or
17259delete lines from the text, the line numbers that @value{GDBN} knows cease
17260to correspond properly with the code.
b383017d 17261
5e252a2e
NR
17262A more detailed description of Emacs' interaction with @value{GDBN} is
17263given in the Emacs manual (@pxref{Debuggers,,, Emacs, The @sc{gnu}
17264Emacs Manual}).
c906108c 17265
8e04817f
AC
17266@c The following dropped because Epoch is nonstandard. Reactivate
17267@c if/when v19 does something similar. ---doc@cygnus.com 19dec1990
17268@ignore
17269@kindex Emacs Epoch environment
17270@kindex Epoch
17271@kindex inspect
c906108c 17272
8e04817f
AC
17273Version 18 of @sc{gnu} Emacs has a built-in window system
17274called the @code{epoch}
17275environment. Users of this environment can use a new command,
17276@code{inspect} which performs identically to @code{print} except that
17277each value is printed in its own window.
17278@end ignore
c906108c 17279
922fbb7b
AC
17280
17281@node GDB/MI
17282@chapter The @sc{gdb/mi} Interface
17283
17284@unnumberedsec Function and Purpose
17285
17286@cindex @sc{gdb/mi}, its purpose
6b5e8c01
NR
17287@sc{gdb/mi} is a line based machine oriented text interface to
17288@value{GDBN} and is activated by specifying using the
17289@option{--interpreter} command line option (@pxref{Mode Options}). It
17290is specifically intended to support the development of systems which
17291use the debugger as just one small component of a larger system.
922fbb7b
AC
17292
17293This chapter is a specification of the @sc{gdb/mi} interface. It is written
17294in the form of a reference manual.
17295
17296Note that @sc{gdb/mi} is still under construction, so some of the
af6eff6f
NR
17297features described below are incomplete and subject to change
17298(@pxref{GDB/MI Development and Front Ends, , @sc{gdb/mi} Development and Front Ends}).
922fbb7b
AC
17299
17300@unnumberedsec Notation and Terminology
17301
17302@cindex notational conventions, for @sc{gdb/mi}
17303This chapter uses the following notation:
17304
17305@itemize @bullet
17306@item
17307@code{|} separates two alternatives.
17308
17309@item
17310@code{[ @var{something} ]} indicates that @var{something} is optional:
17311it may or may not be given.
17312
17313@item
17314@code{( @var{group} )*} means that @var{group} inside the parentheses
17315may repeat zero or more times.
17316
17317@item
17318@code{( @var{group} )+} means that @var{group} inside the parentheses
17319may repeat one or more times.
17320
17321@item
17322@code{"@var{string}"} means a literal @var{string}.
17323@end itemize
17324
17325@ignore
17326@heading Dependencies
17327@end ignore
17328
922fbb7b
AC
17329@menu
17330* GDB/MI Command Syntax::
17331* GDB/MI Compatibility with CLI::
af6eff6f 17332* GDB/MI Development and Front Ends::
922fbb7b 17333* GDB/MI Output Records::
ef21caaf 17334* GDB/MI Simple Examples::
922fbb7b 17335* GDB/MI Command Description Format::
ef21caaf 17336* GDB/MI Breakpoint Commands::
a2c02241
NR
17337* GDB/MI Program Context::
17338* GDB/MI Thread Commands::
17339* GDB/MI Program Execution::
17340* GDB/MI Stack Manipulation::
17341* GDB/MI Variable Objects::
922fbb7b 17342* GDB/MI Data Manipulation::
a2c02241
NR
17343* GDB/MI Tracepoint Commands::
17344* GDB/MI Symbol Query::
351ff01a 17345* GDB/MI File Commands::
922fbb7b
AC
17346@ignore
17347* GDB/MI Kod Commands::
17348* GDB/MI Memory Overlay Commands::
17349* GDB/MI Signal Handling Commands::
17350@end ignore
922fbb7b 17351* GDB/MI Target Manipulation::
ef21caaf 17352* GDB/MI Miscellaneous Commands::
922fbb7b
AC
17353@end menu
17354
17355@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17356@node GDB/MI Command Syntax
17357@section @sc{gdb/mi} Command Syntax
17358
17359@menu
17360* GDB/MI Input Syntax::
17361* GDB/MI Output Syntax::
922fbb7b
AC
17362@end menu
17363
17364@node GDB/MI Input Syntax
17365@subsection @sc{gdb/mi} Input Syntax
17366
17367@cindex input syntax for @sc{gdb/mi}
17368@cindex @sc{gdb/mi}, input syntax
17369@table @code
17370@item @var{command} @expansion{}
17371@code{@var{cli-command} | @var{mi-command}}
17372
17373@item @var{cli-command} @expansion{}
17374@code{[ @var{token} ] @var{cli-command} @var{nl}}, where
17375@var{cli-command} is any existing @value{GDBN} CLI command.
17376
17377@item @var{mi-command} @expansion{}
17378@code{[ @var{token} ] "-" @var{operation} ( " " @var{option} )*
17379@code{[} " --" @code{]} ( " " @var{parameter} )* @var{nl}}
17380
17381@item @var{token} @expansion{}
17382"any sequence of digits"
17383
17384@item @var{option} @expansion{}
17385@code{"-" @var{parameter} [ " " @var{parameter} ]}
17386
17387@item @var{parameter} @expansion{}
17388@code{@var{non-blank-sequence} | @var{c-string}}
17389
17390@item @var{operation} @expansion{}
17391@emph{any of the operations described in this chapter}
17392
17393@item @var{non-blank-sequence} @expansion{}
17394@emph{anything, provided it doesn't contain special characters such as
17395"-", @var{nl}, """ and of course " "}
17396
17397@item @var{c-string} @expansion{}
17398@code{""" @var{seven-bit-iso-c-string-content} """}
17399
17400@item @var{nl} @expansion{}
17401@code{CR | CR-LF}
17402@end table
17403
17404@noindent
17405Notes:
17406
17407@itemize @bullet
17408@item
17409The CLI commands are still handled by the @sc{mi} interpreter; their
17410output is described below.
17411
17412@item
17413The @code{@var{token}}, when present, is passed back when the command
17414finishes.
17415
17416@item
17417Some @sc{mi} commands accept optional arguments as part of the parameter
17418list. Each option is identified by a leading @samp{-} (dash) and may be
17419followed by an optional argument parameter. Options occur first in the
17420parameter list and can be delimited from normal parameters using
17421@samp{--} (this is useful when some parameters begin with a dash).
17422@end itemize
17423
17424Pragmatics:
17425
17426@itemize @bullet
17427@item
17428We want easy access to the existing CLI syntax (for debugging).
17429
17430@item
17431We want it to be easy to spot a @sc{mi} operation.
17432@end itemize
17433
17434@node GDB/MI Output Syntax
17435@subsection @sc{gdb/mi} Output Syntax
17436
17437@cindex output syntax of @sc{gdb/mi}
17438@cindex @sc{gdb/mi}, output syntax
17439The output from @sc{gdb/mi} consists of zero or more out-of-band records
17440followed, optionally, by a single result record. This result record
17441is for the most recent command. The sequence of output records is
594fe323 17442terminated by @samp{(gdb)}.
922fbb7b
AC
17443
17444If an input command was prefixed with a @code{@var{token}} then the
17445corresponding output for that command will also be prefixed by that same
17446@var{token}.
17447
17448@table @code
17449@item @var{output} @expansion{}
594fe323 17450@code{( @var{out-of-band-record} )* [ @var{result-record} ] "(gdb)" @var{nl}}
922fbb7b
AC
17451
17452@item @var{result-record} @expansion{}
17453@code{ [ @var{token} ] "^" @var{result-class} ( "," @var{result} )* @var{nl}}
17454
17455@item @var{out-of-band-record} @expansion{}
17456@code{@var{async-record} | @var{stream-record}}
17457
17458@item @var{async-record} @expansion{}
17459@code{@var{exec-async-output} | @var{status-async-output} | @var{notify-async-output}}
17460
17461@item @var{exec-async-output} @expansion{}
17462@code{[ @var{token} ] "*" @var{async-output}}
17463
17464@item @var{status-async-output} @expansion{}
17465@code{[ @var{token} ] "+" @var{async-output}}
17466
17467@item @var{notify-async-output} @expansion{}
17468@code{[ @var{token} ] "=" @var{async-output}}
17469
17470@item @var{async-output} @expansion{}
17471@code{@var{async-class} ( "," @var{result} )* @var{nl}}
17472
17473@item @var{result-class} @expansion{}
17474@code{"done" | "running" | "connected" | "error" | "exit"}
17475
17476@item @var{async-class} @expansion{}
17477@code{"stopped" | @var{others}} (where @var{others} will be added
17478depending on the needs---this is still in development).
17479
17480@item @var{result} @expansion{}
17481@code{ @var{variable} "=" @var{value}}
17482
17483@item @var{variable} @expansion{}
17484@code{ @var{string} }
17485
17486@item @var{value} @expansion{}
17487@code{ @var{const} | @var{tuple} | @var{list} }
17488
17489@item @var{const} @expansion{}
17490@code{@var{c-string}}
17491
17492@item @var{tuple} @expansion{}
17493@code{ "@{@}" | "@{" @var{result} ( "," @var{result} )* "@}" }
17494
17495@item @var{list} @expansion{}
17496@code{ "[]" | "[" @var{value} ( "," @var{value} )* "]" | "["
17497@var{result} ( "," @var{result} )* "]" }
17498
17499@item @var{stream-record} @expansion{}
17500@code{@var{console-stream-output} | @var{target-stream-output} | @var{log-stream-output}}
17501
17502@item @var{console-stream-output} @expansion{}
17503@code{"~" @var{c-string}}
17504
17505@item @var{target-stream-output} @expansion{}
17506@code{"@@" @var{c-string}}
17507
17508@item @var{log-stream-output} @expansion{}
17509@code{"&" @var{c-string}}
17510
17511@item @var{nl} @expansion{}
17512@code{CR | CR-LF}
17513
17514@item @var{token} @expansion{}
17515@emph{any sequence of digits}.
17516@end table
17517
17518@noindent
17519Notes:
17520
17521@itemize @bullet
17522@item
17523All output sequences end in a single line containing a period.
17524
17525@item
17526The @code{@var{token}} is from the corresponding request. If an execution
17527command is interrupted by the @samp{-exec-interrupt} command, the
17528@var{token} associated with the @samp{*stopped} message is the one of the
17529original execution command, not the one of the interrupt command.
17530
17531@item
17532@cindex status output in @sc{gdb/mi}
17533@var{status-async-output} contains on-going status information about the
17534progress of a slow operation. It can be discarded. All status output is
17535prefixed by @samp{+}.
17536
17537@item
17538@cindex async output in @sc{gdb/mi}
17539@var{exec-async-output} contains asynchronous state change on the target
17540(stopped, started, disappeared). All async output is prefixed by
17541@samp{*}.
17542
17543@item
17544@cindex notify output in @sc{gdb/mi}
17545@var{notify-async-output} contains supplementary information that the
17546client should handle (e.g., a new breakpoint information). All notify
17547output is prefixed by @samp{=}.
17548
17549@item
17550@cindex console output in @sc{gdb/mi}
17551@var{console-stream-output} is output that should be displayed as is in the
17552console. It is the textual response to a CLI command. All the console
17553output is prefixed by @samp{~}.
17554
17555@item
17556@cindex target output in @sc{gdb/mi}
17557@var{target-stream-output} is the output produced by the target program.
17558All the target output is prefixed by @samp{@@}.
17559
17560@item
17561@cindex log output in @sc{gdb/mi}
17562@var{log-stream-output} is output text coming from @value{GDBN}'s internals, for
17563instance messages that should be displayed as part of an error log. All
17564the log output is prefixed by @samp{&}.
17565
17566@item
17567@cindex list output in @sc{gdb/mi}
17568New @sc{gdb/mi} commands should only output @var{lists} containing
17569@var{values}.
17570
17571
17572@end itemize
17573
17574@xref{GDB/MI Stream Records, , @sc{gdb/mi} Stream Records}, for more
17575details about the various output records.
17576
922fbb7b
AC
17577@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17578@node GDB/MI Compatibility with CLI
17579@section @sc{gdb/mi} Compatibility with CLI
17580
17581@cindex compatibility, @sc{gdb/mi} and CLI
17582@cindex @sc{gdb/mi}, compatibility with CLI
922fbb7b 17583
a2c02241
NR
17584For the developers convenience CLI commands can be entered directly,
17585but there may be some unexpected behaviour. For example, commands
17586that query the user will behave as if the user replied yes, breakpoint
17587command lists are not executed and some CLI commands, such as
17588@code{if}, @code{when} and @code{define}, prompt for further input with
17589@samp{>}, which is not valid MI output.
ef21caaf
NR
17590
17591This feature may be removed at some stage in the future and it is
a2c02241
NR
17592recommended that front ends use the @code{-interpreter-exec} command
17593(@pxref{-interpreter-exec}).
922fbb7b 17594
af6eff6f
NR
17595@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17596@node GDB/MI Development and Front Ends
17597@section @sc{gdb/mi} Development and Front Ends
17598@cindex @sc{gdb/mi} development
17599
17600The application which takes the MI output and presents the state of the
17601program being debugged to the user is called a @dfn{front end}.
17602
17603Although @sc{gdb/mi} is still incomplete, it is currently being used
17604by a variety of front ends to @value{GDBN}. This makes it difficult
17605to introduce new functionality without breaking existing usage. This
17606section tries to minimize the problems by describing how the protocol
17607might change.
17608
17609Some changes in MI need not break a carefully designed front end, and
17610for these the MI version will remain unchanged. The following is a
17611list of changes that may occur within one level, so front ends should
17612parse MI output in a way that can handle them:
17613
17614@itemize @bullet
17615@item
17616New MI commands may be added.
17617
17618@item
17619New fields may be added to the output of any MI command.
17620
36ece8b3
NR
17621@item
17622The range of values for fields with specified values, e.g.,
9f708cb2 17623@code{in_scope} (@pxref{-var-update}) may be extended.
36ece8b3 17624
af6eff6f
NR
17625@c The format of field's content e.g type prefix, may change so parse it
17626@c at your own risk. Yes, in general?
17627
17628@c The order of fields may change? Shouldn't really matter but it might
17629@c resolve inconsistencies.
17630@end itemize
17631
17632If the changes are likely to break front ends, the MI version level
17633will be increased by one. This will allow the front end to parse the
17634output according to the MI version. Apart from mi0, new versions of
17635@value{GDBN} will not support old versions of MI and it will be the
17636responsibility of the front end to work with the new one.
17637
17638@c Starting with mi3, add a new command -mi-version that prints the MI
17639@c version?
17640
17641The best way to avoid unexpected changes in MI that might break your front
17642end is to make your project known to @value{GDBN} developers and
7a9a6b69
NR
17643follow development on @email{gdb@@sourceware.org} and
17644@email{gdb-patches@@sourceware.org}. There is also the mailing list
af6eff6f 17645@email{dmi-discuss@@lists.freestandards.org}, hosted by the Free Standards
d3e8051b 17646Group, which has the aim of creating a more general MI protocol
af6eff6f
NR
17647called Debugger Machine Interface (DMI) that will become a standard
17648for all debuggers, not just @value{GDBN}.
17649@cindex mailing lists
17650
922fbb7b
AC
17651@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17652@node GDB/MI Output Records
17653@section @sc{gdb/mi} Output Records
17654
17655@menu
17656* GDB/MI Result Records::
17657* GDB/MI Stream Records::
17658* GDB/MI Out-of-band Records::
17659@end menu
17660
17661@node GDB/MI Result Records
17662@subsection @sc{gdb/mi} Result Records
17663
17664@cindex result records in @sc{gdb/mi}
17665@cindex @sc{gdb/mi}, result records
17666In addition to a number of out-of-band notifications, the response to a
17667@sc{gdb/mi} command includes one of the following result indications:
17668
17669@table @code
17670@findex ^done
17671@item "^done" [ "," @var{results} ]
17672The synchronous operation was successful, @code{@var{results}} are the return
17673values.
17674
17675@item "^running"
17676@findex ^running
17677@c Is this one correct? Should it be an out-of-band notification?
17678The asynchronous operation was successfully started. The target is
17679running.
17680
ef21caaf
NR
17681@item "^connected"
17682@findex ^connected
3f94c067 17683@value{GDBN} has connected to a remote target.
ef21caaf 17684
922fbb7b
AC
17685@item "^error" "," @var{c-string}
17686@findex ^error
17687The operation failed. The @code{@var{c-string}} contains the corresponding
17688error message.
ef21caaf
NR
17689
17690@item "^exit"
17691@findex ^exit
3f94c067 17692@value{GDBN} has terminated.
ef21caaf 17693
922fbb7b
AC
17694@end table
17695
17696@node GDB/MI Stream Records
17697@subsection @sc{gdb/mi} Stream Records
17698
17699@cindex @sc{gdb/mi}, stream records
17700@cindex stream records in @sc{gdb/mi}
17701@value{GDBN} internally maintains a number of output streams: the console, the
17702target, and the log. The output intended for each of these streams is
17703funneled through the @sc{gdb/mi} interface using @dfn{stream records}.
17704
17705Each stream record begins with a unique @dfn{prefix character} which
17706identifies its stream (@pxref{GDB/MI Output Syntax, , @sc{gdb/mi} Output
17707Syntax}). In addition to the prefix, each stream record contains a
17708@code{@var{string-output}}. This is either raw text (with an implicit new
17709line) or a quoted C string (which does not contain an implicit newline).
17710
17711@table @code
17712@item "~" @var{string-output}
17713The console output stream contains text that should be displayed in the
17714CLI console window. It contains the textual responses to CLI commands.
17715
17716@item "@@" @var{string-output}
17717The target output stream contains any textual output from the running
ef21caaf
NR
17718target. This is only present when GDB's event loop is truly
17719asynchronous, which is currently only the case for remote targets.
922fbb7b
AC
17720
17721@item "&" @var{string-output}
17722The log stream contains debugging messages being produced by @value{GDBN}'s
17723internals.
17724@end table
17725
17726@node GDB/MI Out-of-band Records
17727@subsection @sc{gdb/mi} Out-of-band Records
17728
17729@cindex out-of-band records in @sc{gdb/mi}
17730@cindex @sc{gdb/mi}, out-of-band records
17731@dfn{Out-of-band} records are used to notify the @sc{gdb/mi} client of
17732additional changes that have occurred. Those changes can either be a
17733consequence of @sc{gdb/mi} (e.g., a breakpoint modified) or a result of
17734target activity (e.g., target stopped).
17735
17736The following is a preliminary list of possible out-of-band records.
034dad6f 17737In particular, the @var{exec-async-output} records.
922fbb7b
AC
17738
17739@table @code
034dad6f
BR
17740@item *stopped,reason="@var{reason}"
17741@end table
17742
17743@var{reason} can be one of the following:
17744
17745@table @code
17746@item breakpoint-hit
17747A breakpoint was reached.
17748@item watchpoint-trigger
17749A watchpoint was triggered.
17750@item read-watchpoint-trigger
17751A read watchpoint was triggered.
17752@item access-watchpoint-trigger
17753An access watchpoint was triggered.
17754@item function-finished
17755An -exec-finish or similar CLI command was accomplished.
17756@item location-reached
17757An -exec-until or similar CLI command was accomplished.
17758@item watchpoint-scope
17759A watchpoint has gone out of scope.
17760@item end-stepping-range
17761An -exec-next, -exec-next-instruction, -exec-step, -exec-step-instruction or
17762similar CLI command was accomplished.
17763@item exited-signalled
17764The inferior exited because of a signal.
17765@item exited
17766The inferior exited.
17767@item exited-normally
17768The inferior exited normally.
17769@item signal-received
17770A signal was received by the inferior.
922fbb7b
AC
17771@end table
17772
17773
ef21caaf
NR
17774@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17775@node GDB/MI Simple Examples
17776@section Simple Examples of @sc{gdb/mi} Interaction
17777@cindex @sc{gdb/mi}, simple examples
17778
17779This subsection presents several simple examples of interaction using
17780the @sc{gdb/mi} interface. In these examples, @samp{->} means that the
17781following line is passed to @sc{gdb/mi} as input, while @samp{<-} means
17782the output received from @sc{gdb/mi}.
17783
d3e8051b 17784Note the line breaks shown in the examples are here only for
ef21caaf
NR
17785readability, they don't appear in the real output.
17786
79a6e687 17787@subheading Setting a Breakpoint
ef21caaf
NR
17788
17789Setting a breakpoint generates synchronous output which contains detailed
17790information of the breakpoint.
17791
17792@smallexample
17793-> -break-insert main
17794<- ^done,bkpt=@{number="1",type="breakpoint",disp="keep",
17795 enabled="y",addr="0x08048564",func="main",file="myprog.c",
17796 fullname="/home/nickrob/myprog.c",line="68",times="0"@}
17797<- (gdb)
17798@end smallexample
17799
17800@subheading Program Execution
17801
17802Program execution generates asynchronous records and MI gives the
17803reason that execution stopped.
17804
17805@smallexample
17806-> -exec-run
17807<- ^running
17808<- (gdb)
17809<- *stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
17810 frame=@{addr="0x08048564",func="main",
17811 args=[@{name="argc",value="1"@},@{name="argv",value="0xbfc4d4d4"@}],
17812 file="myprog.c",fullname="/home/nickrob/myprog.c",line="68"@}
17813<- (gdb)
17814-> -exec-continue
17815<- ^running
17816<- (gdb)
17817<- *stopped,reason="exited-normally"
17818<- (gdb)
17819@end smallexample
17820
3f94c067 17821@subheading Quitting @value{GDBN}
ef21caaf 17822
3f94c067 17823Quitting @value{GDBN} just prints the result class @samp{^exit}.
ef21caaf
NR
17824
17825@smallexample
17826-> (gdb)
17827<- -gdb-exit
17828<- ^exit
17829@end smallexample
17830
a2c02241 17831@subheading A Bad Command
ef21caaf
NR
17832
17833Here's what happens if you pass a non-existent command:
17834
17835@smallexample
17836-> -rubbish
17837<- ^error,msg="Undefined MI command: rubbish"
594fe323 17838<- (gdb)
ef21caaf
NR
17839@end smallexample
17840
17841
922fbb7b
AC
17842@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17843@node GDB/MI Command Description Format
17844@section @sc{gdb/mi} Command Description Format
17845
17846The remaining sections describe blocks of commands. Each block of
17847commands is laid out in a fashion similar to this section.
17848
922fbb7b
AC
17849@subheading Motivation
17850
17851The motivation for this collection of commands.
17852
17853@subheading Introduction
17854
17855A brief introduction to this collection of commands as a whole.
17856
17857@subheading Commands
17858
17859For each command in the block, the following is described:
17860
17861@subsubheading Synopsis
17862
17863@smallexample
17864 -command @var{args}@dots{}
17865@end smallexample
17866
922fbb7b
AC
17867@subsubheading Result
17868
265eeb58 17869@subsubheading @value{GDBN} Command
922fbb7b 17870
265eeb58 17871The corresponding @value{GDBN} CLI command(s), if any.
922fbb7b
AC
17872
17873@subsubheading Example
17874
ef21caaf
NR
17875Example(s) formatted for readability. Some of the described commands have
17876not been implemented yet and these are labeled N.A.@: (not available).
17877
17878
922fbb7b 17879@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ef21caaf
NR
17880@node GDB/MI Breakpoint Commands
17881@section @sc{gdb/mi} Breakpoint Commands
922fbb7b
AC
17882
17883@cindex breakpoint commands for @sc{gdb/mi}
17884@cindex @sc{gdb/mi}, breakpoint commands
17885This section documents @sc{gdb/mi} commands for manipulating
17886breakpoints.
17887
17888@subheading The @code{-break-after} Command
17889@findex -break-after
17890
17891@subsubheading Synopsis
17892
17893@smallexample
17894 -break-after @var{number} @var{count}
17895@end smallexample
17896
17897The breakpoint number @var{number} is not in effect until it has been
17898hit @var{count} times. To see how this is reflected in the output of
17899the @samp{-break-list} command, see the description of the
17900@samp{-break-list} command below.
17901
17902@subsubheading @value{GDBN} Command
17903
17904The corresponding @value{GDBN} command is @samp{ignore}.
17905
17906@subsubheading Example
17907
17908@smallexample
594fe323 17909(gdb)
922fbb7b 17910-break-insert main
948d5102
NR
17911^done,bkpt=@{number="1",addr="0x000100d0",file="hello.c",
17912fullname="/home/foo/hello.c",line="5",times="0"@}
594fe323 17913(gdb)
922fbb7b
AC
17914-break-after 1 3
17915~
17916^done
594fe323 17917(gdb)
922fbb7b
AC
17918-break-list
17919^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17920hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17921@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17922@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17923@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17924@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17925@{width="40",alignment="2",col_name="what",colhdr="What"@}],
17926body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
17927addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17928line="5",times="0",ignore="3"@}]@}
594fe323 17929(gdb)
922fbb7b
AC
17930@end smallexample
17931
17932@ignore
17933@subheading The @code{-break-catch} Command
17934@findex -break-catch
17935
17936@subheading The @code{-break-commands} Command
17937@findex -break-commands
17938@end ignore
17939
17940
17941@subheading The @code{-break-condition} Command
17942@findex -break-condition
17943
17944@subsubheading Synopsis
17945
17946@smallexample
17947 -break-condition @var{number} @var{expr}
17948@end smallexample
17949
17950Breakpoint @var{number} will stop the program only if the condition in
17951@var{expr} is true. The condition becomes part of the
17952@samp{-break-list} output (see the description of the @samp{-break-list}
17953command below).
17954
17955@subsubheading @value{GDBN} Command
17956
17957The corresponding @value{GDBN} command is @samp{condition}.
17958
17959@subsubheading Example
17960
17961@smallexample
594fe323 17962(gdb)
922fbb7b
AC
17963-break-condition 1 1
17964^done
594fe323 17965(gdb)
922fbb7b
AC
17966-break-list
17967^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
17968hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
17969@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
17970@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
17971@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
17972@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
17973@{width="40",alignment="2",col_name="what",colhdr="What"@}],
17974body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
17975addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
17976line="5",cond="1",times="0",ignore="3"@}]@}
594fe323 17977(gdb)
922fbb7b
AC
17978@end smallexample
17979
17980@subheading The @code{-break-delete} Command
17981@findex -break-delete
17982
17983@subsubheading Synopsis
17984
17985@smallexample
17986 -break-delete ( @var{breakpoint} )+
17987@end smallexample
17988
17989Delete the breakpoint(s) whose number(s) are specified in the argument
17990list. This is obviously reflected in the breakpoint list.
17991
79a6e687 17992@subsubheading @value{GDBN} Command
922fbb7b
AC
17993
17994The corresponding @value{GDBN} command is @samp{delete}.
17995
17996@subsubheading Example
17997
17998@smallexample
594fe323 17999(gdb)
922fbb7b
AC
18000-break-delete 1
18001^done
594fe323 18002(gdb)
922fbb7b
AC
18003-break-list
18004^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18005hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18006@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18007@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18008@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18009@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18010@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18011body=[]@}
594fe323 18012(gdb)
922fbb7b
AC
18013@end smallexample
18014
18015@subheading The @code{-break-disable} Command
18016@findex -break-disable
18017
18018@subsubheading Synopsis
18019
18020@smallexample
18021 -break-disable ( @var{breakpoint} )+
18022@end smallexample
18023
18024Disable the named @var{breakpoint}(s). The field @samp{enabled} in the
18025break list is now set to @samp{n} for the named @var{breakpoint}(s).
18026
18027@subsubheading @value{GDBN} Command
18028
18029The corresponding @value{GDBN} command is @samp{disable}.
18030
18031@subsubheading Example
18032
18033@smallexample
594fe323 18034(gdb)
922fbb7b
AC
18035-break-disable 2
18036^done
594fe323 18037(gdb)
922fbb7b
AC
18038-break-list
18039^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18040hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18041@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18042@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18043@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18044@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18045@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18046body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="n",
948d5102
NR
18047addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18048line="5",times="0"@}]@}
594fe323 18049(gdb)
922fbb7b
AC
18050@end smallexample
18051
18052@subheading The @code{-break-enable} Command
18053@findex -break-enable
18054
18055@subsubheading Synopsis
18056
18057@smallexample
18058 -break-enable ( @var{breakpoint} )+
18059@end smallexample
18060
18061Enable (previously disabled) @var{breakpoint}(s).
18062
18063@subsubheading @value{GDBN} Command
18064
18065The corresponding @value{GDBN} command is @samp{enable}.
18066
18067@subsubheading Example
18068
18069@smallexample
594fe323 18070(gdb)
922fbb7b
AC
18071-break-enable 2
18072^done
594fe323 18073(gdb)
922fbb7b
AC
18074-break-list
18075^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18076hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18077@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18078@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18079@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18080@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18081@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18082body=[bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18083addr="0x000100d0",func="main",file="hello.c",fullname="/home/foo/hello.c",
18084line="5",times="0"@}]@}
594fe323 18085(gdb)
922fbb7b
AC
18086@end smallexample
18087
18088@subheading The @code{-break-info} Command
18089@findex -break-info
18090
18091@subsubheading Synopsis
18092
18093@smallexample
18094 -break-info @var{breakpoint}
18095@end smallexample
18096
18097@c REDUNDANT???
18098Get information about a single breakpoint.
18099
79a6e687 18100@subsubheading @value{GDBN} Command
922fbb7b
AC
18101
18102The corresponding @value{GDBN} command is @samp{info break @var{breakpoint}}.
18103
18104@subsubheading Example
18105N.A.
18106
18107@subheading The @code{-break-insert} Command
18108@findex -break-insert
18109
18110@subsubheading Synopsis
18111
18112@smallexample
18113 -break-insert [ -t ] [ -h ] [ -r ]
18114 [ -c @var{condition} ] [ -i @var{ignore-count} ]
18115 [ -p @var{thread} ] [ @var{line} | @var{addr} ]
18116@end smallexample
18117
18118@noindent
18119If specified, @var{line}, can be one of:
18120
18121@itemize @bullet
18122@item function
18123@c @item +offset
18124@c @item -offset
18125@c @item linenum
18126@item filename:linenum
18127@item filename:function
18128@item *address
18129@end itemize
18130
18131The possible optional parameters of this command are:
18132
18133@table @samp
18134@item -t
948d5102 18135Insert a temporary breakpoint.
922fbb7b
AC
18136@item -h
18137Insert a hardware breakpoint.
18138@item -c @var{condition}
18139Make the breakpoint conditional on @var{condition}.
18140@item -i @var{ignore-count}
18141Initialize the @var{ignore-count}.
18142@item -r
18143Insert a regular breakpoint in all the functions whose names match the
18144given regular expression. Other flags are not applicable to regular
d3e8051b 18145expressions.
922fbb7b
AC
18146@end table
18147
18148@subsubheading Result
18149
18150The result is in the form:
18151
18152@smallexample
948d5102
NR
18153^done,bkpt=@{number="@var{number}",type="@var{type}",disp="del"|"keep",
18154enabled="y"|"n",addr="@var{hex}",func="@var{funcname}",file="@var{filename}",
ef21caaf
NR
18155fullname="@var{full_filename}",line="@var{lineno}",[thread="@var{threadno},]
18156times="@var{times}"@}
922fbb7b
AC
18157@end smallexample
18158
18159@noindent
948d5102
NR
18160where @var{number} is the @value{GDBN} number for this breakpoint,
18161@var{funcname} is the name of the function where the breakpoint was
18162inserted, @var{filename} is the name of the source file which contains
18163this function, @var{lineno} is the source line number within that file
18164and @var{times} the number of times that the breakpoint has been hit
18165(always 0 for -break-insert but may be greater for -break-info or -break-list
18166which use the same output).
922fbb7b
AC
18167
18168Note: this format is open to change.
18169@c An out-of-band breakpoint instead of part of the result?
18170
18171@subsubheading @value{GDBN} Command
18172
18173The corresponding @value{GDBN} commands are @samp{break}, @samp{tbreak},
18174@samp{hbreak}, @samp{thbreak}, and @samp{rbreak}.
18175
18176@subsubheading Example
18177
18178@smallexample
594fe323 18179(gdb)
922fbb7b 18180-break-insert main
948d5102
NR
18181^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",
18182fullname="/home/foo/recursive2.c,line="4",times="0"@}
594fe323 18183(gdb)
922fbb7b 18184-break-insert -t foo
948d5102
NR
18185^done,bkpt=@{number="2",addr="0x00010774",file="recursive2.c",
18186fullname="/home/foo/recursive2.c,line="11",times="0"@}
594fe323 18187(gdb)
922fbb7b
AC
18188-break-list
18189^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18190hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18191@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18192@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18193@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18194@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18195@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18196body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18197addr="0x0001072c", func="main",file="recursive2.c",
18198fullname="/home/foo/recursive2.c,"line="4",times="0"@},
922fbb7b 18199bkpt=@{number="2",type="breakpoint",disp="del",enabled="y",
948d5102
NR
18200addr="0x00010774",func="foo",file="recursive2.c",
18201fullname="/home/foo/recursive2.c",line="11",times="0"@}]@}
594fe323 18202(gdb)
922fbb7b
AC
18203-break-insert -r foo.*
18204~int foo(int, int);
948d5102
NR
18205^done,bkpt=@{number="3",addr="0x00010774",file="recursive2.c,
18206"fullname="/home/foo/recursive2.c",line="11",times="0"@}
594fe323 18207(gdb)
922fbb7b
AC
18208@end smallexample
18209
18210@subheading The @code{-break-list} Command
18211@findex -break-list
18212
18213@subsubheading Synopsis
18214
18215@smallexample
18216 -break-list
18217@end smallexample
18218
18219Displays the list of inserted breakpoints, showing the following fields:
18220
18221@table @samp
18222@item Number
18223number of the breakpoint
18224@item Type
18225type of the breakpoint: @samp{breakpoint} or @samp{watchpoint}
18226@item Disposition
18227should the breakpoint be deleted or disabled when it is hit: @samp{keep}
18228or @samp{nokeep}
18229@item Enabled
18230is the breakpoint enabled or no: @samp{y} or @samp{n}
18231@item Address
18232memory location at which the breakpoint is set
18233@item What
18234logical location of the breakpoint, expressed by function name, file
18235name, line number
18236@item Times
18237number of times the breakpoint has been hit
18238@end table
18239
18240If there are no breakpoints or watchpoints, the @code{BreakpointTable}
18241@code{body} field is an empty list.
18242
18243@subsubheading @value{GDBN} Command
18244
18245The corresponding @value{GDBN} command is @samp{info break}.
18246
18247@subsubheading Example
18248
18249@smallexample
594fe323 18250(gdb)
922fbb7b
AC
18251-break-list
18252^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18253hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18254@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18255@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18256@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18257@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18258@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18259body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18260addr="0x000100d0",func="main",file="hello.c",line="5",times="0"@},
18261bkpt=@{number="2",type="breakpoint",disp="keep",enabled="y",
948d5102
NR
18262addr="0x00010114",func="foo",file="hello.c",fullname="/home/foo/hello.c",
18263line="13",times="0"@}]@}
594fe323 18264(gdb)
922fbb7b
AC
18265@end smallexample
18266
18267Here's an example of the result when there are no breakpoints:
18268
18269@smallexample
594fe323 18270(gdb)
922fbb7b
AC
18271-break-list
18272^done,BreakpointTable=@{nr_rows="0",nr_cols="6",
18273hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18274@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18275@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18276@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18277@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18278@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18279body=[]@}
594fe323 18280(gdb)
922fbb7b
AC
18281@end smallexample
18282
18283@subheading The @code{-break-watch} Command
18284@findex -break-watch
18285
18286@subsubheading Synopsis
18287
18288@smallexample
18289 -break-watch [ -a | -r ]
18290@end smallexample
18291
18292Create a watchpoint. With the @samp{-a} option it will create an
d3e8051b 18293@dfn{access} watchpoint, i.e., a watchpoint that triggers either on a
922fbb7b 18294read from or on a write to the memory location. With the @samp{-r}
d3e8051b 18295option, the watchpoint created is a @dfn{read} watchpoint, i.e., it will
922fbb7b
AC
18296trigger only when the memory location is accessed for reading. Without
18297either of the options, the watchpoint created is a regular watchpoint,
d3e8051b 18298i.e., it will trigger when the memory location is accessed for writing.
79a6e687 18299@xref{Set Watchpoints, , Setting Watchpoints}.
922fbb7b
AC
18300
18301Note that @samp{-break-list} will report a single list of watchpoints and
18302breakpoints inserted.
18303
18304@subsubheading @value{GDBN} Command
18305
18306The corresponding @value{GDBN} commands are @samp{watch}, @samp{awatch}, and
18307@samp{rwatch}.
18308
18309@subsubheading Example
18310
18311Setting a watchpoint on a variable in the @code{main} function:
18312
18313@smallexample
594fe323 18314(gdb)
922fbb7b
AC
18315-break-watch x
18316^done,wpt=@{number="2",exp="x"@}
594fe323 18317(gdb)
922fbb7b
AC
18318-exec-continue
18319^running
0869d01b
NR
18320(gdb)
18321*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="x"@},
922fbb7b 18322value=@{old="-268439212",new="55"@},
76ff342d 18323frame=@{func="main",args=[],file="recursive2.c",
948d5102 18324fullname="/home/foo/bar/recursive2.c",line="5"@}
594fe323 18325(gdb)
922fbb7b
AC
18326@end smallexample
18327
18328Setting a watchpoint on a variable local to a function. @value{GDBN} will stop
18329the program execution twice: first for the variable changing value, then
18330for the watchpoint going out of scope.
18331
18332@smallexample
594fe323 18333(gdb)
922fbb7b
AC
18334-break-watch C
18335^done,wpt=@{number="5",exp="C"@}
594fe323 18336(gdb)
922fbb7b
AC
18337-exec-continue
18338^running
0869d01b
NR
18339(gdb)
18340*stopped,reason="watchpoint-trigger",
922fbb7b
AC
18341wpt=@{number="5",exp="C"@},value=@{old="-276895068",new="3"@},
18342frame=@{func="callee4",args=[],
76ff342d
DJ
18343file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18344fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18345(gdb)
922fbb7b
AC
18346-exec-continue
18347^running
0869d01b
NR
18348(gdb)
18349*stopped,reason="watchpoint-scope",wpnum="5",
922fbb7b
AC
18350frame=@{func="callee3",args=[@{name="strarg",
18351value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18352file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18353fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18354(gdb)
922fbb7b
AC
18355@end smallexample
18356
18357Listing breakpoints and watchpoints, at different points in the program
18358execution. Note that once the watchpoint goes out of scope, it is
18359deleted.
18360
18361@smallexample
594fe323 18362(gdb)
922fbb7b
AC
18363-break-watch C
18364^done,wpt=@{number="2",exp="C"@}
594fe323 18365(gdb)
922fbb7b
AC
18366-break-list
18367^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18368hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18369@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18370@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18371@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18372@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18373@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18374body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18375addr="0x00010734",func="callee4",
948d5102
NR
18376file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18377fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c"line="8",times="1"@},
922fbb7b
AC
18378bkpt=@{number="2",type="watchpoint",disp="keep",
18379enabled="y",addr="",what="C",times="0"@}]@}
594fe323 18380(gdb)
922fbb7b
AC
18381-exec-continue
18382^running
0869d01b
NR
18383(gdb)
18384*stopped,reason="watchpoint-trigger",wpt=@{number="2",exp="C"@},
922fbb7b
AC
18385value=@{old="-276895068",new="3"@},
18386frame=@{func="callee4",args=[],
76ff342d
DJ
18387file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18388fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="13"@}
594fe323 18389(gdb)
922fbb7b
AC
18390-break-list
18391^done,BreakpointTable=@{nr_rows="2",nr_cols="6",
18392hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18393@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18394@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18395@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18396@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18397@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18398body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18399addr="0x00010734",func="callee4",
948d5102
NR
18400file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18401fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",times="1"@},
922fbb7b
AC
18402bkpt=@{number="2",type="watchpoint",disp="keep",
18403enabled="y",addr="",what="C",times="-5"@}]@}
594fe323 18404(gdb)
922fbb7b
AC
18405-exec-continue
18406^running
18407^done,reason="watchpoint-scope",wpnum="2",
18408frame=@{func="callee3",args=[@{name="strarg",
18409value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18410file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18411fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18412(gdb)
922fbb7b
AC
18413-break-list
18414^done,BreakpointTable=@{nr_rows="1",nr_cols="6",
18415hdr=[@{width="3",alignment="-1",col_name="number",colhdr="Num"@},
18416@{width="14",alignment="-1",col_name="type",colhdr="Type"@},
18417@{width="4",alignment="-1",col_name="disp",colhdr="Disp"@},
18418@{width="3",alignment="-1",col_name="enabled",colhdr="Enb"@},
18419@{width="10",alignment="-1",col_name="addr",colhdr="Address"@},
18420@{width="40",alignment="2",col_name="what",colhdr="What"@}],
18421body=[bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
18422addr="0x00010734",func="callee4",
948d5102
NR
18423file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18424fullname="/home/foo/devo/gdb/testsuite/gdb.mi/basics.c",line="8",
18425times="1"@}]@}
594fe323 18426(gdb)
922fbb7b
AC
18427@end smallexample
18428
18429@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
18430@node GDB/MI Program Context
18431@section @sc{gdb/mi} Program Context
922fbb7b 18432
a2c02241
NR
18433@subheading The @code{-exec-arguments} Command
18434@findex -exec-arguments
922fbb7b 18435
922fbb7b
AC
18436
18437@subsubheading Synopsis
18438
18439@smallexample
a2c02241 18440 -exec-arguments @var{args}
922fbb7b
AC
18441@end smallexample
18442
a2c02241
NR
18443Set the inferior program arguments, to be used in the next
18444@samp{-exec-run}.
922fbb7b 18445
a2c02241 18446@subsubheading @value{GDBN} Command
922fbb7b 18447
a2c02241 18448The corresponding @value{GDBN} command is @samp{set args}.
922fbb7b 18449
a2c02241 18450@subsubheading Example
922fbb7b 18451
a2c02241
NR
18452@c FIXME!
18453Don't have one around.
922fbb7b 18454
a2c02241
NR
18455
18456@subheading The @code{-exec-show-arguments} Command
18457@findex -exec-show-arguments
18458
18459@subsubheading Synopsis
18460
18461@smallexample
18462 -exec-show-arguments
18463@end smallexample
18464
18465Print the arguments of the program.
922fbb7b
AC
18466
18467@subsubheading @value{GDBN} Command
18468
a2c02241 18469The corresponding @value{GDBN} command is @samp{show args}.
922fbb7b
AC
18470
18471@subsubheading Example
a2c02241 18472N.A.
922fbb7b 18473
922fbb7b 18474
a2c02241
NR
18475@subheading The @code{-environment-cd} Command
18476@findex -environment-cd
922fbb7b 18477
a2c02241 18478@subsubheading Synopsis
922fbb7b
AC
18479
18480@smallexample
a2c02241 18481 -environment-cd @var{pathdir}
922fbb7b
AC
18482@end smallexample
18483
a2c02241 18484Set @value{GDBN}'s working directory.
922fbb7b 18485
a2c02241 18486@subsubheading @value{GDBN} Command
922fbb7b 18487
a2c02241
NR
18488The corresponding @value{GDBN} command is @samp{cd}.
18489
18490@subsubheading Example
922fbb7b
AC
18491
18492@smallexample
594fe323 18493(gdb)
a2c02241
NR
18494-environment-cd /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18495^done
594fe323 18496(gdb)
922fbb7b
AC
18497@end smallexample
18498
18499
a2c02241
NR
18500@subheading The @code{-environment-directory} Command
18501@findex -environment-directory
922fbb7b
AC
18502
18503@subsubheading Synopsis
18504
18505@smallexample
a2c02241 18506 -environment-directory [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18507@end smallexample
18508
a2c02241
NR
18509Add directories @var{pathdir} to beginning of search path for source files.
18510If the @samp{-r} option is used, the search path is reset to the default
18511search path. If directories @var{pathdir} are supplied in addition to the
18512@samp{-r} option, the search path is first reset and then addition
18513occurs as normal.
18514Multiple directories may be specified, separated by blanks. Specifying
18515multiple directories in a single command
18516results in the directories added to the beginning of the
18517search path in the same order they were presented in the command.
18518If blanks are needed as
18519part of a directory name, double-quotes should be used around
18520the name. In the command output, the path will show up separated
d3e8051b 18521by the system directory-separator character. The directory-separator
a2c02241
NR
18522character must not be used
18523in any directory name.
18524If no directories are specified, the current search path is displayed.
922fbb7b
AC
18525
18526@subsubheading @value{GDBN} Command
18527
a2c02241 18528The corresponding @value{GDBN} command is @samp{dir}.
922fbb7b
AC
18529
18530@subsubheading Example
18531
922fbb7b 18532@smallexample
594fe323 18533(gdb)
a2c02241
NR
18534-environment-directory /kwikemart/marge/ezannoni/flathead-dev/devo/gdb
18535^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18536(gdb)
a2c02241
NR
18537-environment-directory ""
18538^done,source-path="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb:$cdir:$cwd"
594fe323 18539(gdb)
a2c02241
NR
18540-environment-directory -r /home/jjohnstn/src/gdb /usr/src
18541^done,source-path="/home/jjohnstn/src/gdb:/usr/src:$cdir:$cwd"
594fe323 18542(gdb)
a2c02241
NR
18543-environment-directory -r
18544^done,source-path="$cdir:$cwd"
594fe323 18545(gdb)
922fbb7b
AC
18546@end smallexample
18547
18548
a2c02241
NR
18549@subheading The @code{-environment-path} Command
18550@findex -environment-path
922fbb7b
AC
18551
18552@subsubheading Synopsis
18553
18554@smallexample
a2c02241 18555 -environment-path [ -r ] [ @var{pathdir} ]+
922fbb7b
AC
18556@end smallexample
18557
a2c02241
NR
18558Add directories @var{pathdir} to beginning of search path for object files.
18559If the @samp{-r} option is used, the search path is reset to the original
18560search path that existed at gdb start-up. If directories @var{pathdir} are
18561supplied in addition to the
18562@samp{-r} option, the search path is first reset and then addition
18563occurs as normal.
18564Multiple directories may be specified, separated by blanks. Specifying
18565multiple directories in a single command
18566results in the directories added to the beginning of the
18567search path in the same order they were presented in the command.
18568If blanks are needed as
18569part of a directory name, double-quotes should be used around
18570the name. In the command output, the path will show up separated
d3e8051b 18571by the system directory-separator character. The directory-separator
a2c02241
NR
18572character must not be used
18573in any directory name.
18574If no directories are specified, the current path is displayed.
18575
922fbb7b
AC
18576
18577@subsubheading @value{GDBN} Command
18578
a2c02241 18579The corresponding @value{GDBN} command is @samp{path}.
922fbb7b
AC
18580
18581@subsubheading Example
18582
922fbb7b 18583@smallexample
594fe323 18584(gdb)
a2c02241
NR
18585-environment-path
18586^done,path="/usr/bin"
594fe323 18587(gdb)
a2c02241
NR
18588-environment-path /kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb /bin
18589^done,path="/kwikemart/marge/ezannoni/flathead-dev/ppc-eabi/gdb:/bin:/usr/bin"
594fe323 18590(gdb)
a2c02241
NR
18591-environment-path -r /usr/local/bin
18592^done,path="/usr/local/bin:/usr/bin"
594fe323 18593(gdb)
922fbb7b
AC
18594@end smallexample
18595
18596
a2c02241
NR
18597@subheading The @code{-environment-pwd} Command
18598@findex -environment-pwd
922fbb7b
AC
18599
18600@subsubheading Synopsis
18601
18602@smallexample
a2c02241 18603 -environment-pwd
922fbb7b
AC
18604@end smallexample
18605
a2c02241 18606Show the current working directory.
922fbb7b 18607
79a6e687 18608@subsubheading @value{GDBN} Command
922fbb7b 18609
a2c02241 18610The corresponding @value{GDBN} command is @samp{pwd}.
922fbb7b
AC
18611
18612@subsubheading Example
18613
922fbb7b 18614@smallexample
594fe323 18615(gdb)
a2c02241
NR
18616-environment-pwd
18617^done,cwd="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb"
594fe323 18618(gdb)
922fbb7b
AC
18619@end smallexample
18620
a2c02241
NR
18621@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18622@node GDB/MI Thread Commands
18623@section @sc{gdb/mi} Thread Commands
18624
18625
18626@subheading The @code{-thread-info} Command
18627@findex -thread-info
922fbb7b
AC
18628
18629@subsubheading Synopsis
18630
18631@smallexample
a2c02241 18632 -thread-info
922fbb7b
AC
18633@end smallexample
18634
79a6e687 18635@subsubheading @value{GDBN} Command
922fbb7b 18636
a2c02241 18637No equivalent.
922fbb7b
AC
18638
18639@subsubheading Example
a2c02241 18640N.A.
922fbb7b
AC
18641
18642
a2c02241
NR
18643@subheading The @code{-thread-list-all-threads} Command
18644@findex -thread-list-all-threads
922fbb7b
AC
18645
18646@subsubheading Synopsis
18647
18648@smallexample
a2c02241 18649 -thread-list-all-threads
922fbb7b
AC
18650@end smallexample
18651
a2c02241 18652@subsubheading @value{GDBN} Command
922fbb7b 18653
a2c02241 18654The equivalent @value{GDBN} command is @samp{info threads}.
922fbb7b 18655
a2c02241
NR
18656@subsubheading Example
18657N.A.
922fbb7b 18658
922fbb7b 18659
a2c02241
NR
18660@subheading The @code{-thread-list-ids} Command
18661@findex -thread-list-ids
922fbb7b 18662
a2c02241 18663@subsubheading Synopsis
922fbb7b 18664
a2c02241
NR
18665@smallexample
18666 -thread-list-ids
18667@end smallexample
922fbb7b 18668
a2c02241
NR
18669Produces a list of the currently known @value{GDBN} thread ids. At the
18670end of the list it also prints the total number of such threads.
922fbb7b
AC
18671
18672@subsubheading @value{GDBN} Command
18673
a2c02241 18674Part of @samp{info threads} supplies the same information.
922fbb7b
AC
18675
18676@subsubheading Example
18677
a2c02241 18678No threads present, besides the main process:
922fbb7b
AC
18679
18680@smallexample
594fe323 18681(gdb)
a2c02241
NR
18682-thread-list-ids
18683^done,thread-ids=@{@},number-of-threads="0"
594fe323 18684(gdb)
922fbb7b
AC
18685@end smallexample
18686
922fbb7b 18687
a2c02241 18688Several threads:
922fbb7b
AC
18689
18690@smallexample
594fe323 18691(gdb)
a2c02241
NR
18692-thread-list-ids
18693^done,thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18694number-of-threads="3"
594fe323 18695(gdb)
922fbb7b
AC
18696@end smallexample
18697
a2c02241
NR
18698
18699@subheading The @code{-thread-select} Command
18700@findex -thread-select
922fbb7b
AC
18701
18702@subsubheading Synopsis
18703
18704@smallexample
a2c02241 18705 -thread-select @var{threadnum}
922fbb7b
AC
18706@end smallexample
18707
a2c02241
NR
18708Make @var{threadnum} the current thread. It prints the number of the new
18709current thread, and the topmost frame for that thread.
922fbb7b
AC
18710
18711@subsubheading @value{GDBN} Command
18712
a2c02241 18713The corresponding @value{GDBN} command is @samp{thread}.
922fbb7b
AC
18714
18715@subsubheading Example
922fbb7b
AC
18716
18717@smallexample
594fe323 18718(gdb)
a2c02241
NR
18719-exec-next
18720^running
594fe323 18721(gdb)
a2c02241
NR
18722*stopped,reason="end-stepping-range",thread-id="2",line="187",
18723file="../../../devo/gdb/testsuite/gdb.threads/linux-dp.c"
594fe323 18724(gdb)
a2c02241
NR
18725-thread-list-ids
18726^done,
18727thread-ids=@{thread-id="3",thread-id="2",thread-id="1"@},
18728number-of-threads="3"
594fe323 18729(gdb)
a2c02241
NR
18730-thread-select 3
18731^done,new-thread-id="3",
18732frame=@{level="0",func="vprintf",
18733args=[@{name="format",value="0x8048e9c \"%*s%c %d %c\\n\""@},
18734@{name="arg",value="0x2"@}],file="vprintf.c",line="31"@}
594fe323 18735(gdb)
922fbb7b
AC
18736@end smallexample
18737
a2c02241
NR
18738@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
18739@node GDB/MI Program Execution
18740@section @sc{gdb/mi} Program Execution
922fbb7b 18741
ef21caaf 18742These are the asynchronous commands which generate the out-of-band
3f94c067 18743record @samp{*stopped}. Currently @value{GDBN} only really executes
ef21caaf
NR
18744asynchronously with remote targets and this interaction is mimicked in
18745other cases.
922fbb7b 18746
922fbb7b
AC
18747@subheading The @code{-exec-continue} Command
18748@findex -exec-continue
18749
18750@subsubheading Synopsis
18751
18752@smallexample
18753 -exec-continue
18754@end smallexample
18755
ef21caaf
NR
18756Resumes the execution of the inferior program until a breakpoint is
18757encountered, or until the inferior exits.
922fbb7b
AC
18758
18759@subsubheading @value{GDBN} Command
18760
18761The corresponding @value{GDBN} corresponding is @samp{continue}.
18762
18763@subsubheading Example
18764
18765@smallexample
18766-exec-continue
18767^running
594fe323 18768(gdb)
922fbb7b
AC
18769@@Hello world
18770*stopped,reason="breakpoint-hit",bkptno="2",frame=@{func="foo",args=[],
948d5102 18771file="hello.c",fullname="/home/foo/bar/hello.c",line="13"@}
594fe323 18772(gdb)
922fbb7b
AC
18773@end smallexample
18774
18775
18776@subheading The @code{-exec-finish} Command
18777@findex -exec-finish
18778
18779@subsubheading Synopsis
18780
18781@smallexample
18782 -exec-finish
18783@end smallexample
18784
ef21caaf
NR
18785Resumes the execution of the inferior program until the current
18786function is exited. Displays the results returned by the function.
922fbb7b
AC
18787
18788@subsubheading @value{GDBN} Command
18789
18790The corresponding @value{GDBN} command is @samp{finish}.
18791
18792@subsubheading Example
18793
18794Function returning @code{void}.
18795
18796@smallexample
18797-exec-finish
18798^running
594fe323 18799(gdb)
922fbb7b
AC
18800@@hello from foo
18801*stopped,reason="function-finished",frame=@{func="main",args=[],
948d5102 18802file="hello.c",fullname="/home/foo/bar/hello.c",line="7"@}
594fe323 18803(gdb)
922fbb7b
AC
18804@end smallexample
18805
18806Function returning other than @code{void}. The name of the internal
18807@value{GDBN} variable storing the result is printed, together with the
18808value itself.
18809
18810@smallexample
18811-exec-finish
18812^running
594fe323 18813(gdb)
922fbb7b
AC
18814*stopped,reason="function-finished",frame=@{addr="0x000107b0",func="foo",
18815args=[@{name="a",value="1"],@{name="b",value="9"@}@},
948d5102 18816file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
922fbb7b 18817gdb-result-var="$1",return-value="0"
594fe323 18818(gdb)
922fbb7b
AC
18819@end smallexample
18820
18821
18822@subheading The @code{-exec-interrupt} Command
18823@findex -exec-interrupt
18824
18825@subsubheading Synopsis
18826
18827@smallexample
18828 -exec-interrupt
18829@end smallexample
18830
ef21caaf
NR
18831Interrupts the background execution of the target. Note how the token
18832associated with the stop message is the one for the execution command
18833that has been interrupted. The token for the interrupt itself only
18834appears in the @samp{^done} output. If the user is trying to
922fbb7b
AC
18835interrupt a non-running program, an error message will be printed.
18836
18837@subsubheading @value{GDBN} Command
18838
18839The corresponding @value{GDBN} command is @samp{interrupt}.
18840
18841@subsubheading Example
18842
18843@smallexample
594fe323 18844(gdb)
922fbb7b
AC
18845111-exec-continue
18846111^running
18847
594fe323 18848(gdb)
922fbb7b
AC
18849222-exec-interrupt
18850222^done
594fe323 18851(gdb)
922fbb7b 18852111*stopped,signal-name="SIGINT",signal-meaning="Interrupt",
76ff342d 18853frame=@{addr="0x00010140",func="foo",args=[],file="try.c",
948d5102 18854fullname="/home/foo/bar/try.c",line="13"@}
594fe323 18855(gdb)
922fbb7b 18856
594fe323 18857(gdb)
922fbb7b
AC
18858-exec-interrupt
18859^error,msg="mi_cmd_exec_interrupt: Inferior not executing."
594fe323 18860(gdb)
922fbb7b
AC
18861@end smallexample
18862
18863
18864@subheading The @code{-exec-next} Command
18865@findex -exec-next
18866
18867@subsubheading Synopsis
18868
18869@smallexample
18870 -exec-next
18871@end smallexample
18872
ef21caaf
NR
18873Resumes execution of the inferior program, stopping when the beginning
18874of the next source line is reached.
922fbb7b
AC
18875
18876@subsubheading @value{GDBN} Command
18877
18878The corresponding @value{GDBN} command is @samp{next}.
18879
18880@subsubheading Example
18881
18882@smallexample
18883-exec-next
18884^running
594fe323 18885(gdb)
922fbb7b 18886*stopped,reason="end-stepping-range",line="8",file="hello.c"
594fe323 18887(gdb)
922fbb7b
AC
18888@end smallexample
18889
18890
18891@subheading The @code{-exec-next-instruction} Command
18892@findex -exec-next-instruction
18893
18894@subsubheading Synopsis
18895
18896@smallexample
18897 -exec-next-instruction
18898@end smallexample
18899
ef21caaf
NR
18900Executes one machine instruction. If the instruction is a function
18901call, continues until the function returns. If the program stops at an
18902instruction in the middle of a source line, the address will be
18903printed as well.
922fbb7b
AC
18904
18905@subsubheading @value{GDBN} Command
18906
18907The corresponding @value{GDBN} command is @samp{nexti}.
18908
18909@subsubheading Example
18910
18911@smallexample
594fe323 18912(gdb)
922fbb7b
AC
18913-exec-next-instruction
18914^running
18915
594fe323 18916(gdb)
922fbb7b
AC
18917*stopped,reason="end-stepping-range",
18918addr="0x000100d4",line="5",file="hello.c"
594fe323 18919(gdb)
922fbb7b
AC
18920@end smallexample
18921
18922
18923@subheading The @code{-exec-return} Command
18924@findex -exec-return
18925
18926@subsubheading Synopsis
18927
18928@smallexample
18929 -exec-return
18930@end smallexample
18931
18932Makes current function return immediately. Doesn't execute the inferior.
18933Displays the new current frame.
18934
18935@subsubheading @value{GDBN} Command
18936
18937The corresponding @value{GDBN} command is @samp{return}.
18938
18939@subsubheading Example
18940
18941@smallexample
594fe323 18942(gdb)
922fbb7b
AC
18943200-break-insert callee4
18944200^done,bkpt=@{number="1",addr="0x00010734",
18945file="../../../devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 18946(gdb)
922fbb7b
AC
18947000-exec-run
18948000^running
594fe323 18949(gdb)
922fbb7b
AC
18950000*stopped,reason="breakpoint-hit",bkptno="1",
18951frame=@{func="callee4",args=[],
76ff342d
DJ
18952file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18953fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@}
594fe323 18954(gdb)
922fbb7b
AC
18955205-break-delete
18956205^done
594fe323 18957(gdb)
922fbb7b
AC
18958111-exec-return
18959111^done,frame=@{level="0",func="callee3",
18960args=[@{name="strarg",
18961value="0x11940 \"A string argument.\""@}],
76ff342d
DJ
18962file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
18963fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="18"@}
594fe323 18964(gdb)
922fbb7b
AC
18965@end smallexample
18966
18967
18968@subheading The @code{-exec-run} Command
18969@findex -exec-run
18970
18971@subsubheading Synopsis
18972
18973@smallexample
18974 -exec-run
18975@end smallexample
18976
ef21caaf
NR
18977Starts execution of the inferior from the beginning. The inferior
18978executes until either a breakpoint is encountered or the program
18979exits. In the latter case the output will include an exit code, if
18980the program has exited exceptionally.
922fbb7b
AC
18981
18982@subsubheading @value{GDBN} Command
18983
18984The corresponding @value{GDBN} command is @samp{run}.
18985
ef21caaf 18986@subsubheading Examples
922fbb7b
AC
18987
18988@smallexample
594fe323 18989(gdb)
922fbb7b
AC
18990-break-insert main
18991^done,bkpt=@{number="1",addr="0x0001072c",file="recursive2.c",line="4"@}
594fe323 18992(gdb)
922fbb7b
AC
18993-exec-run
18994^running
594fe323 18995(gdb)
922fbb7b 18996*stopped,reason="breakpoint-hit",bkptno="1",
76ff342d 18997frame=@{func="main",args=[],file="recursive2.c",
948d5102 18998fullname="/home/foo/bar/recursive2.c",line="4"@}
594fe323 18999(gdb)
922fbb7b
AC
19000@end smallexample
19001
ef21caaf
NR
19002@noindent
19003Program exited normally:
19004
19005@smallexample
594fe323 19006(gdb)
ef21caaf
NR
19007-exec-run
19008^running
594fe323 19009(gdb)
ef21caaf
NR
19010x = 55
19011*stopped,reason="exited-normally"
594fe323 19012(gdb)
ef21caaf
NR
19013@end smallexample
19014
19015@noindent
19016Program exited exceptionally:
19017
19018@smallexample
594fe323 19019(gdb)
ef21caaf
NR
19020-exec-run
19021^running
594fe323 19022(gdb)
ef21caaf
NR
19023x = 55
19024*stopped,reason="exited",exit-code="01"
594fe323 19025(gdb)
ef21caaf
NR
19026@end smallexample
19027
19028Another way the program can terminate is if it receives a signal such as
19029@code{SIGINT}. In this case, @sc{gdb/mi} displays this:
19030
19031@smallexample
594fe323 19032(gdb)
ef21caaf
NR
19033*stopped,reason="exited-signalled",signal-name="SIGINT",
19034signal-meaning="Interrupt"
19035@end smallexample
19036
922fbb7b 19037
a2c02241
NR
19038@c @subheading -exec-signal
19039
19040
19041@subheading The @code{-exec-step} Command
19042@findex -exec-step
922fbb7b
AC
19043
19044@subsubheading Synopsis
19045
19046@smallexample
a2c02241 19047 -exec-step
922fbb7b
AC
19048@end smallexample
19049
a2c02241
NR
19050Resumes execution of the inferior program, stopping when the beginning
19051of the next source line is reached, if the next source line is not a
19052function call. If it is, stop at the first instruction of the called
19053function.
922fbb7b
AC
19054
19055@subsubheading @value{GDBN} Command
19056
a2c02241 19057The corresponding @value{GDBN} command is @samp{step}.
922fbb7b
AC
19058
19059@subsubheading Example
19060
19061Stepping into a function:
19062
19063@smallexample
19064-exec-step
19065^running
594fe323 19066(gdb)
922fbb7b
AC
19067*stopped,reason="end-stepping-range",
19068frame=@{func="foo",args=[@{name="a",value="10"@},
76ff342d 19069@{name="b",value="0"@}],file="recursive2.c",
948d5102 19070fullname="/home/foo/bar/recursive2.c",line="11"@}
594fe323 19071(gdb)
922fbb7b
AC
19072@end smallexample
19073
19074Regular stepping:
19075
19076@smallexample
19077-exec-step
19078^running
594fe323 19079(gdb)
922fbb7b 19080*stopped,reason="end-stepping-range",line="14",file="recursive2.c"
594fe323 19081(gdb)
922fbb7b
AC
19082@end smallexample
19083
19084
19085@subheading The @code{-exec-step-instruction} Command
19086@findex -exec-step-instruction
19087
19088@subsubheading Synopsis
19089
19090@smallexample
19091 -exec-step-instruction
19092@end smallexample
19093
ef21caaf
NR
19094Resumes the inferior which executes one machine instruction. The
19095output, once @value{GDBN} has stopped, will vary depending on whether
19096we have stopped in the middle of a source line or not. In the former
19097case, the address at which the program stopped will be printed as
922fbb7b
AC
19098well.
19099
19100@subsubheading @value{GDBN} Command
19101
19102The corresponding @value{GDBN} command is @samp{stepi}.
19103
19104@subsubheading Example
19105
19106@smallexample
594fe323 19107(gdb)
922fbb7b
AC
19108-exec-step-instruction
19109^running
19110
594fe323 19111(gdb)
922fbb7b 19112*stopped,reason="end-stepping-range",
76ff342d 19113frame=@{func="foo",args=[],file="try.c",
948d5102 19114fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19115(gdb)
922fbb7b
AC
19116-exec-step-instruction
19117^running
19118
594fe323 19119(gdb)
922fbb7b 19120*stopped,reason="end-stepping-range",
76ff342d 19121frame=@{addr="0x000100f4",func="foo",args=[],file="try.c",
948d5102 19122fullname="/home/foo/bar/try.c",line="10"@}
594fe323 19123(gdb)
922fbb7b
AC
19124@end smallexample
19125
19126
19127@subheading The @code{-exec-until} Command
19128@findex -exec-until
19129
19130@subsubheading Synopsis
19131
19132@smallexample
19133 -exec-until [ @var{location} ]
19134@end smallexample
19135
ef21caaf
NR
19136Executes the inferior until the @var{location} specified in the
19137argument is reached. If there is no argument, the inferior executes
19138until a source line greater than the current one is reached. The
19139reason for stopping in this case will be @samp{location-reached}.
922fbb7b
AC
19140
19141@subsubheading @value{GDBN} Command
19142
19143The corresponding @value{GDBN} command is @samp{until}.
19144
19145@subsubheading Example
19146
19147@smallexample
594fe323 19148(gdb)
922fbb7b
AC
19149-exec-until recursive2.c:6
19150^running
594fe323 19151(gdb)
922fbb7b
AC
19152x = 55
19153*stopped,reason="location-reached",frame=@{func="main",args=[],
948d5102 19154file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="6"@}
594fe323 19155(gdb)
922fbb7b
AC
19156@end smallexample
19157
19158@ignore
19159@subheading -file-clear
19160Is this going away????
19161@end ignore
19162
351ff01a 19163@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19164@node GDB/MI Stack Manipulation
19165@section @sc{gdb/mi} Stack Manipulation Commands
351ff01a 19166
922fbb7b 19167
a2c02241
NR
19168@subheading The @code{-stack-info-frame} Command
19169@findex -stack-info-frame
922fbb7b
AC
19170
19171@subsubheading Synopsis
19172
19173@smallexample
a2c02241 19174 -stack-info-frame
922fbb7b
AC
19175@end smallexample
19176
a2c02241 19177Get info on the selected frame.
922fbb7b
AC
19178
19179@subsubheading @value{GDBN} Command
19180
a2c02241
NR
19181The corresponding @value{GDBN} command is @samp{info frame} or @samp{frame}
19182(without arguments).
922fbb7b
AC
19183
19184@subsubheading Example
19185
19186@smallexample
594fe323 19187(gdb)
a2c02241
NR
19188-stack-info-frame
19189^done,frame=@{level="1",addr="0x0001076c",func="callee3",
19190file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19191fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@}
594fe323 19192(gdb)
922fbb7b
AC
19193@end smallexample
19194
a2c02241
NR
19195@subheading The @code{-stack-info-depth} Command
19196@findex -stack-info-depth
922fbb7b
AC
19197
19198@subsubheading Synopsis
19199
19200@smallexample
a2c02241 19201 -stack-info-depth [ @var{max-depth} ]
922fbb7b
AC
19202@end smallexample
19203
a2c02241
NR
19204Return the depth of the stack. If the integer argument @var{max-depth}
19205is specified, do not count beyond @var{max-depth} frames.
922fbb7b
AC
19206
19207@subsubheading @value{GDBN} Command
19208
a2c02241 19209There's no equivalent @value{GDBN} command.
922fbb7b
AC
19210
19211@subsubheading Example
19212
a2c02241
NR
19213For a stack with frame levels 0 through 11:
19214
922fbb7b 19215@smallexample
594fe323 19216(gdb)
a2c02241
NR
19217-stack-info-depth
19218^done,depth="12"
594fe323 19219(gdb)
a2c02241
NR
19220-stack-info-depth 4
19221^done,depth="4"
594fe323 19222(gdb)
a2c02241
NR
19223-stack-info-depth 12
19224^done,depth="12"
594fe323 19225(gdb)
a2c02241
NR
19226-stack-info-depth 11
19227^done,depth="11"
594fe323 19228(gdb)
a2c02241
NR
19229-stack-info-depth 13
19230^done,depth="12"
594fe323 19231(gdb)
922fbb7b
AC
19232@end smallexample
19233
a2c02241
NR
19234@subheading The @code{-stack-list-arguments} Command
19235@findex -stack-list-arguments
922fbb7b
AC
19236
19237@subsubheading Synopsis
19238
19239@smallexample
a2c02241
NR
19240 -stack-list-arguments @var{show-values}
19241 [ @var{low-frame} @var{high-frame} ]
922fbb7b
AC
19242@end smallexample
19243
a2c02241
NR
19244Display a list of the arguments for the frames between @var{low-frame}
19245and @var{high-frame} (inclusive). If @var{low-frame} and
2f1acb09
VP
19246@var{high-frame} are not provided, list the arguments for the whole
19247call stack. If the two arguments are equal, show the single frame
19248at the corresponding level. It is an error if @var{low-frame} is
19249larger than the actual number of frames. On the other hand,
19250@var{high-frame} may be larger than the actual number of frames, in
19251which case only existing frames will be returned.
a2c02241
NR
19252
19253The @var{show-values} argument must have a value of 0 or 1. A value of
192540 means that only the names of the arguments are listed, a value of 1
19255means that both names and values of the arguments are printed.
922fbb7b
AC
19256
19257@subsubheading @value{GDBN} Command
19258
a2c02241
NR
19259@value{GDBN} does not have an equivalent command. @code{gdbtk} has a
19260@samp{gdb_get_args} command which partially overlaps with the
19261functionality of @samp{-stack-list-arguments}.
922fbb7b
AC
19262
19263@subsubheading Example
922fbb7b 19264
a2c02241 19265@smallexample
594fe323 19266(gdb)
a2c02241
NR
19267-stack-list-frames
19268^done,
19269stack=[
19270frame=@{level="0",addr="0x00010734",func="callee4",
19271file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19272fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="8"@},
19273frame=@{level="1",addr="0x0001076c",func="callee3",
19274file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19275fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="17"@},
19276frame=@{level="2",addr="0x0001078c",func="callee2",
19277file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19278fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="22"@},
19279frame=@{level="3",addr="0x000107b4",func="callee1",
19280file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19281fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="27"@},
19282frame=@{level="4",addr="0x000107e0",func="main",
19283file="../../../devo/gdb/testsuite/gdb.mi/basics.c",
19284fullname="/home/foo/bar/devo/gdb/testsuite/gdb.mi/basics.c",line="32"@}]
594fe323 19285(gdb)
a2c02241
NR
19286-stack-list-arguments 0
19287^done,
19288stack-args=[
19289frame=@{level="0",args=[]@},
19290frame=@{level="1",args=[name="strarg"]@},
19291frame=@{level="2",args=[name="intarg",name="strarg"]@},
19292frame=@{level="3",args=[name="intarg",name="strarg",name="fltarg"]@},
19293frame=@{level="4",args=[]@}]
594fe323 19294(gdb)
a2c02241
NR
19295-stack-list-arguments 1
19296^done,
19297stack-args=[
19298frame=@{level="0",args=[]@},
19299frame=@{level="1",
19300 args=[@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19301frame=@{level="2",args=[
19302@{name="intarg",value="2"@},
19303@{name="strarg",value="0x11940 \"A string argument.\""@}]@},
19304@{frame=@{level="3",args=[
19305@{name="intarg",value="2"@},
19306@{name="strarg",value="0x11940 \"A string argument.\""@},
19307@{name="fltarg",value="3.5"@}]@},
19308frame=@{level="4",args=[]@}]
594fe323 19309(gdb)
a2c02241
NR
19310-stack-list-arguments 0 2 2
19311^done,stack-args=[frame=@{level="2",args=[name="intarg",name="strarg"]@}]
594fe323 19312(gdb)
a2c02241
NR
19313-stack-list-arguments 1 2 2
19314^done,stack-args=[frame=@{level="2",
19315args=[@{name="intarg",value="2"@},
19316@{name="strarg",value="0x11940 \"A string argument.\""@}]@}]
594fe323 19317(gdb)
a2c02241
NR
19318@end smallexample
19319
19320@c @subheading -stack-list-exception-handlers
922fbb7b 19321
a2c02241
NR
19322
19323@subheading The @code{-stack-list-frames} Command
19324@findex -stack-list-frames
1abaf70c
BR
19325
19326@subsubheading Synopsis
19327
19328@smallexample
a2c02241 19329 -stack-list-frames [ @var{low-frame} @var{high-frame} ]
1abaf70c
BR
19330@end smallexample
19331
a2c02241
NR
19332List the frames currently on the stack. For each frame it displays the
19333following info:
19334
19335@table @samp
19336@item @var{level}
d3e8051b 19337The frame number, 0 being the topmost frame, i.e., the innermost function.
a2c02241
NR
19338@item @var{addr}
19339The @code{$pc} value for that frame.
19340@item @var{func}
19341Function name.
19342@item @var{file}
19343File name of the source file where the function lives.
19344@item @var{line}
19345Line number corresponding to the @code{$pc}.
19346@end table
19347
19348If invoked without arguments, this command prints a backtrace for the
19349whole stack. If given two integer arguments, it shows the frames whose
19350levels are between the two arguments (inclusive). If the two arguments
2ab1eb7a
VP
19351are equal, it shows the single frame at the corresponding level. It is
19352an error if @var{low-frame} is larger than the actual number of
a5451f4e 19353frames. On the other hand, @var{high-frame} may be larger than the
2ab1eb7a 19354actual number of frames, in which case only existing frames will be returned.
1abaf70c
BR
19355
19356@subsubheading @value{GDBN} Command
19357
a2c02241 19358The corresponding @value{GDBN} commands are @samp{backtrace} and @samp{where}.
1abaf70c
BR
19359
19360@subsubheading Example
19361
a2c02241
NR
19362Full stack backtrace:
19363
1abaf70c 19364@smallexample
594fe323 19365(gdb)
a2c02241
NR
19366-stack-list-frames
19367^done,stack=
19368[frame=@{level="0",addr="0x0001076c",func="foo",
19369 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="11"@},
19370frame=@{level="1",addr="0x000107a4",func="foo",
19371 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19372frame=@{level="2",addr="0x000107a4",func="foo",
19373 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19374frame=@{level="3",addr="0x000107a4",func="foo",
19375 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19376frame=@{level="4",addr="0x000107a4",func="foo",
19377 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19378frame=@{level="5",addr="0x000107a4",func="foo",
19379 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19380frame=@{level="6",addr="0x000107a4",func="foo",
19381 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19382frame=@{level="7",addr="0x000107a4",func="foo",
19383 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19384frame=@{level="8",addr="0x000107a4",func="foo",
19385 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19386frame=@{level="9",addr="0x000107a4",func="foo",
19387 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19388frame=@{level="10",addr="0x000107a4",func="foo",
19389 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19390frame=@{level="11",addr="0x00010738",func="main",
19391 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="4"@}]
594fe323 19392(gdb)
1abaf70c
BR
19393@end smallexample
19394
a2c02241 19395Show frames between @var{low_frame} and @var{high_frame}:
1abaf70c 19396
a2c02241 19397@smallexample
594fe323 19398(gdb)
a2c02241
NR
19399-stack-list-frames 3 5
19400^done,stack=
19401[frame=@{level="3",addr="0x000107a4",func="foo",
19402 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19403frame=@{level="4",addr="0x000107a4",func="foo",
19404 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@},
19405frame=@{level="5",addr="0x000107a4",func="foo",
19406 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19407(gdb)
a2c02241 19408@end smallexample
922fbb7b 19409
a2c02241 19410Show a single frame:
922fbb7b
AC
19411
19412@smallexample
594fe323 19413(gdb)
a2c02241
NR
19414-stack-list-frames 3 3
19415^done,stack=
19416[frame=@{level="3",addr="0x000107a4",func="foo",
19417 file="recursive2.c",fullname="/home/foo/bar/recursive2.c",line="14"@}]
594fe323 19418(gdb)
922fbb7b
AC
19419@end smallexample
19420
922fbb7b 19421
a2c02241
NR
19422@subheading The @code{-stack-list-locals} Command
19423@findex -stack-list-locals
57c22c6c 19424
a2c02241 19425@subsubheading Synopsis
922fbb7b
AC
19426
19427@smallexample
a2c02241 19428 -stack-list-locals @var{print-values}
922fbb7b
AC
19429@end smallexample
19430
a2c02241
NR
19431Display the local variable names for the selected frame. If
19432@var{print-values} is 0 or @code{--no-values}, print only the names of
19433the variables; if it is 1 or @code{--all-values}, print also their
19434values; and if it is 2 or @code{--simple-values}, print the name,
19435type and value for simple data types and the name and type for arrays,
19436structures and unions. In this last case, a frontend can immediately
19437display the value of simple data types and create variable objects for
d3e8051b 19438other data types when the user wishes to explore their values in
a2c02241 19439more detail.
922fbb7b
AC
19440
19441@subsubheading @value{GDBN} Command
19442
a2c02241 19443@samp{info locals} in @value{GDBN}, @samp{gdb_get_locals} in @code{gdbtk}.
922fbb7b
AC
19444
19445@subsubheading Example
922fbb7b
AC
19446
19447@smallexample
594fe323 19448(gdb)
a2c02241
NR
19449-stack-list-locals 0
19450^done,locals=[name="A",name="B",name="C"]
594fe323 19451(gdb)
a2c02241
NR
19452-stack-list-locals --all-values
19453^done,locals=[@{name="A",value="1"@},@{name="B",value="2"@},
19454 @{name="C",value="@{1, 2, 3@}"@}]
19455-stack-list-locals --simple-values
19456^done,locals=[@{name="A",type="int",value="1"@},
19457 @{name="B",type="int",value="2"@},@{name="C",type="int [3]"@}]
594fe323 19458(gdb)
922fbb7b
AC
19459@end smallexample
19460
922fbb7b 19461
a2c02241
NR
19462@subheading The @code{-stack-select-frame} Command
19463@findex -stack-select-frame
922fbb7b
AC
19464
19465@subsubheading Synopsis
19466
19467@smallexample
a2c02241 19468 -stack-select-frame @var{framenum}
922fbb7b
AC
19469@end smallexample
19470
a2c02241
NR
19471Change the selected frame. Select a different frame @var{framenum} on
19472the stack.
922fbb7b
AC
19473
19474@subsubheading @value{GDBN} Command
19475
a2c02241
NR
19476The corresponding @value{GDBN} commands are @samp{frame}, @samp{up},
19477@samp{down}, @samp{select-frame}, @samp{up-silent}, and @samp{down-silent}.
922fbb7b
AC
19478
19479@subsubheading Example
19480
19481@smallexample
594fe323 19482(gdb)
a2c02241 19483-stack-select-frame 2
922fbb7b 19484^done
594fe323 19485(gdb)
922fbb7b
AC
19486@end smallexample
19487
19488@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
a2c02241
NR
19489@node GDB/MI Variable Objects
19490@section @sc{gdb/mi} Variable Objects
922fbb7b 19491
a1b5960f 19492@ignore
922fbb7b 19493
a2c02241 19494@subheading Motivation for Variable Objects in @sc{gdb/mi}
922fbb7b 19495
a2c02241
NR
19496For the implementation of a variable debugger window (locals, watched
19497expressions, etc.), we are proposing the adaptation of the existing code
19498used by @code{Insight}.
922fbb7b 19499
a2c02241 19500The two main reasons for that are:
922fbb7b 19501
a2c02241
NR
19502@enumerate 1
19503@item
19504It has been proven in practice (it is already on its second generation).
922fbb7b 19505
a2c02241
NR
19506@item
19507It will shorten development time (needless to say how important it is
19508now).
19509@end enumerate
922fbb7b 19510
a2c02241
NR
19511The original interface was designed to be used by Tcl code, so it was
19512slightly changed so it could be used through @sc{gdb/mi}. This section
19513describes the @sc{gdb/mi} operations that will be available and gives some
19514hints about their use.
922fbb7b 19515
a2c02241
NR
19516@emph{Note}: In addition to the set of operations described here, we
19517expect the @sc{gui} implementation of a variable window to require, at
19518least, the following operations:
922fbb7b 19519
a2c02241
NR
19520@itemize @bullet
19521@item @code{-gdb-show} @code{output-radix}
19522@item @code{-stack-list-arguments}
19523@item @code{-stack-list-locals}
19524@item @code{-stack-select-frame}
19525@end itemize
922fbb7b 19526
a1b5960f
VP
19527@end ignore
19528
c8b2f53c 19529@subheading Introduction to Variable Objects
922fbb7b 19530
a2c02241 19531@cindex variable objects in @sc{gdb/mi}
c8b2f53c
VP
19532
19533Variable objects are "object-oriented" MI interface for examining and
19534changing values of expressions. Unlike some other MI interfaces that
19535work with expressions, variable objects are specifically designed for
19536simple and efficient presentation in the frontend. A variable object
19537is identified by string name. When a variable object is created, the
19538frontend specifies the expression for that variable object. The
19539expression can be a simple variable, or it can be an arbitrary complex
19540expression, and can even involve CPU registers. After creating a
19541variable object, the frontend can invoke other variable object
19542operations---for example to obtain or change the value of a variable
19543object, or to change display format.
19544
19545Variable objects have hierarchical tree structure. Any variable object
19546that corresponds to a composite type, such as structure in C, has
19547a number of child variable objects, for example corresponding to each
19548element of a structure. A child variable object can itself have
19549children, recursively. Recursion ends when we reach
25d5ea92
VP
19550leaf variable objects, which always have built-in types. Child variable
19551objects are created only by explicit request, so if a frontend
19552is not interested in the children of a particular variable object, no
19553child will be created.
c8b2f53c
VP
19554
19555For a leaf variable object it is possible to obtain its value as a
19556string, or set the value from a string. String value can be also
19557obtained for a non-leaf variable object, but it's generally a string
19558that only indicates the type of the object, and does not list its
19559contents. Assignment to a non-leaf variable object is not allowed.
19560
19561A frontend does not need to read the values of all variable objects each time
19562the program stops. Instead, MI provides an update command that lists all
19563variable objects whose values has changed since the last update
19564operation. This considerably reduces the amount of data that must
25d5ea92
VP
19565be transferred to the frontend. As noted above, children variable
19566objects are created on demand, and only leaf variable objects have a
19567real value. As result, gdb will read target memory only for leaf
19568variables that frontend has created.
19569
19570The automatic update is not always desirable. For example, a frontend
19571might want to keep a value of some expression for future reference,
19572and never update it. For another example, fetching memory is
19573relatively slow for embedded targets, so a frontend might want
19574to disable automatic update for the variables that are either not
19575visible on the screen, or ``closed''. This is possible using so
19576called ``frozen variable objects''. Such variable objects are never
19577implicitly updated.
922fbb7b 19578
a2c02241
NR
19579The following is the complete set of @sc{gdb/mi} operations defined to
19580access this functionality:
922fbb7b 19581
a2c02241
NR
19582@multitable @columnfractions .4 .6
19583@item @strong{Operation}
19584@tab @strong{Description}
922fbb7b 19585
a2c02241
NR
19586@item @code{-var-create}
19587@tab create a variable object
19588@item @code{-var-delete}
22d8a470 19589@tab delete the variable object and/or its children
a2c02241
NR
19590@item @code{-var-set-format}
19591@tab set the display format of this variable
19592@item @code{-var-show-format}
19593@tab show the display format of this variable
19594@item @code{-var-info-num-children}
19595@tab tells how many children this object has
19596@item @code{-var-list-children}
19597@tab return a list of the object's children
19598@item @code{-var-info-type}
19599@tab show the type of this variable object
19600@item @code{-var-info-expression}
02142340
VP
19601@tab print parent-relative expression that this variable object represents
19602@item @code{-var-info-path-expression}
19603@tab print full expression that this variable object represents
a2c02241
NR
19604@item @code{-var-show-attributes}
19605@tab is this variable editable? does it exist here?
19606@item @code{-var-evaluate-expression}
19607@tab get the value of this variable
19608@item @code{-var-assign}
19609@tab set the value of this variable
19610@item @code{-var-update}
19611@tab update the variable and its children
25d5ea92
VP
19612@item @code{-var-set-frozen}
19613@tab set frozeness attribute
a2c02241 19614@end multitable
922fbb7b 19615
a2c02241
NR
19616In the next subsection we describe each operation in detail and suggest
19617how it can be used.
922fbb7b 19618
a2c02241 19619@subheading Description And Use of Operations on Variable Objects
922fbb7b 19620
a2c02241
NR
19621@subheading The @code{-var-create} Command
19622@findex -var-create
ef21caaf 19623
a2c02241 19624@subsubheading Synopsis
ef21caaf 19625
a2c02241
NR
19626@smallexample
19627 -var-create @{@var{name} | "-"@}
19628 @{@var{frame-addr} | "*"@} @var{expression}
19629@end smallexample
19630
19631This operation creates a variable object, which allows the monitoring of
19632a variable, the result of an expression, a memory cell or a CPU
19633register.
ef21caaf 19634
a2c02241
NR
19635The @var{name} parameter is the string by which the object can be
19636referenced. It must be unique. If @samp{-} is specified, the varobj
19637system will generate a string ``varNNNNNN'' automatically. It will be
19638unique provided that one does not specify @var{name} on that format.
19639The command fails if a duplicate name is found.
ef21caaf 19640
a2c02241
NR
19641The frame under which the expression should be evaluated can be
19642specified by @var{frame-addr}. A @samp{*} indicates that the current
19643frame should be used.
922fbb7b 19644
a2c02241
NR
19645@var{expression} is any expression valid on the current language set (must not
19646begin with a @samp{*}), or one of the following:
922fbb7b 19647
a2c02241
NR
19648@itemize @bullet
19649@item
19650@samp{*@var{addr}}, where @var{addr} is the address of a memory cell
922fbb7b 19651
a2c02241
NR
19652@item
19653@samp{*@var{addr}-@var{addr}} --- a memory address range (TBD)
922fbb7b 19654
a2c02241
NR
19655@item
19656@samp{$@var{regname}} --- a CPU register name
19657@end itemize
922fbb7b 19658
a2c02241 19659@subsubheading Result
922fbb7b 19660
a2c02241
NR
19661This operation returns the name, number of children and the type of the
19662object created. Type is returned as a string as the ones generated by
19663the @value{GDBN} CLI:
922fbb7b
AC
19664
19665@smallexample
a2c02241 19666 name="@var{name}",numchild="N",type="@var{type}"
dcaaae04
NR
19667@end smallexample
19668
a2c02241
NR
19669
19670@subheading The @code{-var-delete} Command
19671@findex -var-delete
922fbb7b
AC
19672
19673@subsubheading Synopsis
19674
19675@smallexample
22d8a470 19676 -var-delete [ -c ] @var{name}
922fbb7b
AC
19677@end smallexample
19678
a2c02241 19679Deletes a previously created variable object and all of its children.
22d8a470 19680With the @samp{-c} option, just deletes the children.
922fbb7b 19681
a2c02241 19682Returns an error if the object @var{name} is not found.
922fbb7b 19683
922fbb7b 19684
a2c02241
NR
19685@subheading The @code{-var-set-format} Command
19686@findex -var-set-format
922fbb7b 19687
a2c02241 19688@subsubheading Synopsis
922fbb7b
AC
19689
19690@smallexample
a2c02241 19691 -var-set-format @var{name} @var{format-spec}
922fbb7b
AC
19692@end smallexample
19693
a2c02241
NR
19694Sets the output format for the value of the object @var{name} to be
19695@var{format-spec}.
19696
19697The syntax for the @var{format-spec} is as follows:
19698
19699@smallexample
19700 @var{format-spec} @expansion{}
19701 @{binary | decimal | hexadecimal | octal | natural@}
19702@end smallexample
19703
c8b2f53c
VP
19704The natural format is the default format choosen automatically
19705based on the variable type (like decimal for an @code{int}, hex
19706for pointers, etc.).
19707
19708For a variable with children, the format is set only on the
19709variable itself, and the children are not affected.
a2c02241
NR
19710
19711@subheading The @code{-var-show-format} Command
19712@findex -var-show-format
922fbb7b
AC
19713
19714@subsubheading Synopsis
19715
19716@smallexample
a2c02241 19717 -var-show-format @var{name}
922fbb7b
AC
19718@end smallexample
19719
a2c02241 19720Returns the format used to display the value of the object @var{name}.
922fbb7b 19721
a2c02241
NR
19722@smallexample
19723 @var{format} @expansion{}
19724 @var{format-spec}
19725@end smallexample
922fbb7b 19726
922fbb7b 19727
a2c02241
NR
19728@subheading The @code{-var-info-num-children} Command
19729@findex -var-info-num-children
19730
19731@subsubheading Synopsis
19732
19733@smallexample
19734 -var-info-num-children @var{name}
19735@end smallexample
19736
19737Returns the number of children of a variable object @var{name}:
19738
19739@smallexample
19740 numchild=@var{n}
19741@end smallexample
19742
19743
19744@subheading The @code{-var-list-children} Command
19745@findex -var-list-children
19746
19747@subsubheading Synopsis
19748
19749@smallexample
19750 -var-list-children [@var{print-values}] @var{name}
19751@end smallexample
19752@anchor{-var-list-children}
19753
19754Return a list of the children of the specified variable object and
19755create variable objects for them, if they do not already exist. With
19756a single argument or if @var{print-values} has a value for of 0 or
19757@code{--no-values}, print only the names of the variables; if
19758@var{print-values} is 1 or @code{--all-values}, also print their
19759values; and if it is 2 or @code{--simple-values} print the name and
19760value for simple data types and just the name for arrays, structures
19761and unions.
922fbb7b
AC
19762
19763@subsubheading Example
19764
19765@smallexample
594fe323 19766(gdb)
a2c02241
NR
19767 -var-list-children n
19768 ^done,numchild=@var{n},children=[@{name=@var{name},
19769 numchild=@var{n},type=@var{type}@},@r{(repeats N times)}]
594fe323 19770(gdb)
a2c02241
NR
19771 -var-list-children --all-values n
19772 ^done,numchild=@var{n},children=[@{name=@var{name},
19773 numchild=@var{n},value=@var{value},type=@var{type}@},@r{(repeats N times)}]
922fbb7b
AC
19774@end smallexample
19775
922fbb7b 19776
a2c02241
NR
19777@subheading The @code{-var-info-type} Command
19778@findex -var-info-type
922fbb7b 19779
a2c02241
NR
19780@subsubheading Synopsis
19781
19782@smallexample
19783 -var-info-type @var{name}
19784@end smallexample
19785
19786Returns the type of the specified variable @var{name}. The type is
19787returned as a string in the same format as it is output by the
19788@value{GDBN} CLI:
19789
19790@smallexample
19791 type=@var{typename}
19792@end smallexample
19793
19794
19795@subheading The @code{-var-info-expression} Command
19796@findex -var-info-expression
922fbb7b
AC
19797
19798@subsubheading Synopsis
19799
19800@smallexample
a2c02241 19801 -var-info-expression @var{name}
922fbb7b
AC
19802@end smallexample
19803
02142340
VP
19804Returns a string that is suitable for presenting this
19805variable object in user interface. The string is generally
19806not valid expression in the current language, and cannot be evaluated.
19807
19808For example, if @code{a} is an array, and variable object
19809@code{A} was created for @code{a}, then we'll get this output:
922fbb7b 19810
a2c02241 19811@smallexample
02142340
VP
19812(gdb) -var-info-expression A.1
19813^done,lang="C",exp="1"
a2c02241 19814@end smallexample
922fbb7b 19815
a2c02241 19816@noindent
02142340
VP
19817Here, the values of @code{lang} can be @code{@{"C" | "C++" | "Java"@}}.
19818
19819Note that the output of the @code{-var-list-children} command also
19820includes those expressions, so the @code{-var-info-expression} command
19821is of limited use.
19822
19823@subheading The @code{-var-info-path-expression} Command
19824@findex -var-info-path-expression
19825
19826@subsubheading Synopsis
19827
19828@smallexample
19829 -var-info-path-expression @var{name}
19830@end smallexample
19831
19832Returns an expression that can be evaluated in the current
19833context and will yield the same value that a variable object has.
19834Compare this with the @code{-var-info-expression} command, which
19835result can be used only for UI presentation. Typical use of
19836the @code{-var-info-path-expression} command is creating a
19837watchpoint from a variable object.
19838
19839For example, suppose @code{C} is a C@t{++} class, derived from class
19840@code{Base}, and that the @code{Base} class has a member called
19841@code{m_size}. Assume a variable @code{c} is has the type of
19842@code{C} and a variable object @code{C} was created for variable
19843@code{c}. Then, we'll get this output:
19844@smallexample
19845(gdb) -var-info-path-expression C.Base.public.m_size
19846^done,path_expr=((Base)c).m_size)
19847@end smallexample
922fbb7b 19848
a2c02241
NR
19849@subheading The @code{-var-show-attributes} Command
19850@findex -var-show-attributes
922fbb7b 19851
a2c02241 19852@subsubheading Synopsis
922fbb7b 19853
a2c02241
NR
19854@smallexample
19855 -var-show-attributes @var{name}
19856@end smallexample
922fbb7b 19857
a2c02241 19858List attributes of the specified variable object @var{name}:
922fbb7b
AC
19859
19860@smallexample
a2c02241 19861 status=@var{attr} [ ( ,@var{attr} )* ]
922fbb7b
AC
19862@end smallexample
19863
a2c02241
NR
19864@noindent
19865where @var{attr} is @code{@{ @{ editable | noneditable @} | TBD @}}.
19866
19867@subheading The @code{-var-evaluate-expression} Command
19868@findex -var-evaluate-expression
19869
19870@subsubheading Synopsis
19871
19872@smallexample
19873 -var-evaluate-expression @var{name}
19874@end smallexample
19875
19876Evaluates the expression that is represented by the specified variable
c8b2f53c
VP
19877object and returns its value as a string. The format of the
19878string can be changed using the @code{-var-set-format} command.
a2c02241
NR
19879
19880@smallexample
19881 value=@var{value}
19882@end smallexample
19883
19884Note that one must invoke @code{-var-list-children} for a variable
19885before the value of a child variable can be evaluated.
19886
19887@subheading The @code{-var-assign} Command
19888@findex -var-assign
19889
19890@subsubheading Synopsis
19891
19892@smallexample
19893 -var-assign @var{name} @var{expression}
19894@end smallexample
19895
19896Assigns the value of @var{expression} to the variable object specified
19897by @var{name}. The object must be @samp{editable}. If the variable's
19898value is altered by the assign, the variable will show up in any
19899subsequent @code{-var-update} list.
19900
19901@subsubheading Example
922fbb7b
AC
19902
19903@smallexample
594fe323 19904(gdb)
a2c02241
NR
19905-var-assign var1 3
19906^done,value="3"
594fe323 19907(gdb)
a2c02241
NR
19908-var-update *
19909^done,changelist=[@{name="var1",in_scope="true",type_changed="false"@}]
594fe323 19910(gdb)
922fbb7b
AC
19911@end smallexample
19912
a2c02241
NR
19913@subheading The @code{-var-update} Command
19914@findex -var-update
19915
19916@subsubheading Synopsis
19917
19918@smallexample
19919 -var-update [@var{print-values}] @{@var{name} | "*"@}
19920@end smallexample
19921
c8b2f53c
VP
19922Reevaluate the expressions corresponding to the variable object
19923@var{name} and all its direct and indirect children, and return the
36ece8b3
NR
19924list of variable objects whose values have changed; @var{name} must
19925be a root variable object. Here, ``changed'' means that the result of
19926@code{-var-evaluate-expression} before and after the
19927@code{-var-update} is different. If @samp{*} is used as the variable
9f708cb2
VP
19928object names, all existing variable objects are updated, except
19929for frozen ones (@pxref{-var-set-frozen}). The option
36ece8b3
NR
19930@var{print-values} determines whether both names and values, or just
19931names are printed. The possible values of this options are the same
19932as for @code{-var-list-children} (@pxref{-var-list-children}). It is
19933recommended to use the @samp{--all-values} option, to reduce the
19934number of MI commands needed on each program stop.
c8b2f53c 19935
a2c02241
NR
19936
19937@subsubheading Example
922fbb7b
AC
19938
19939@smallexample
594fe323 19940(gdb)
a2c02241
NR
19941-var-assign var1 3
19942^done,value="3"
594fe323 19943(gdb)
a2c02241
NR
19944-var-update --all-values var1
19945^done,changelist=[@{name="var1",value="3",in_scope="true",
19946type_changed="false"@}]
594fe323 19947(gdb)
922fbb7b
AC
19948@end smallexample
19949
9f708cb2 19950@anchor{-var-update}
36ece8b3
NR
19951The field in_scope may take three values:
19952
19953@table @code
19954@item "true"
19955The variable object's current value is valid.
19956
19957@item "false"
19958The variable object does not currently hold a valid value but it may
19959hold one in the future if its associated expression comes back into
19960scope.
19961
19962@item "invalid"
19963The variable object no longer holds a valid value.
19964This can occur when the executable file being debugged has changed,
19965either through recompilation or by using the @value{GDBN} @code{file}
19966command. The front end should normally choose to delete these variable
19967objects.
19968@end table
19969
19970In the future new values may be added to this list so the front should
19971be prepared for this possibility. @xref{GDB/MI Development and Front Ends, ,@sc{GDB/MI} Development and Front Ends}.
19972
25d5ea92
VP
19973@subheading The @code{-var-set-frozen} Command
19974@findex -var-set-frozen
9f708cb2 19975@anchor{-var-set-frozen}
25d5ea92
VP
19976
19977@subsubheading Synopsis
19978
19979@smallexample
9f708cb2 19980 -var-set-frozen @var{name} @var{flag}
25d5ea92
VP
19981@end smallexample
19982
9f708cb2 19983Set the frozenness flag on the variable object @var{name}. The
25d5ea92 19984@var{flag} parameter should be either @samp{1} to make the variable
9f708cb2 19985frozen or @samp{0} to make it unfrozen. If a variable object is
25d5ea92 19986frozen, then neither itself, nor any of its children, are
9f708cb2 19987implicitly updated by @code{-var-update} of
25d5ea92
VP
19988a parent variable or by @code{-var-update *}. Only
19989@code{-var-update} of the variable itself will update its value and
19990values of its children. After a variable object is unfrozen, it is
19991implicitly updated by all subsequent @code{-var-update} operations.
19992Unfreezing a variable does not update it, only subsequent
19993@code{-var-update} does.
19994
19995@subsubheading Example
19996
19997@smallexample
19998(gdb)
19999-var-set-frozen V 1
20000^done
20001(gdb)
20002@end smallexample
20003
20004
a2c02241
NR
20005@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20006@node GDB/MI Data Manipulation
20007@section @sc{gdb/mi} Data Manipulation
922fbb7b 20008
a2c02241
NR
20009@cindex data manipulation, in @sc{gdb/mi}
20010@cindex @sc{gdb/mi}, data manipulation
20011This section describes the @sc{gdb/mi} commands that manipulate data:
20012examine memory and registers, evaluate expressions, etc.
20013
20014@c REMOVED FROM THE INTERFACE.
20015@c @subheading -data-assign
20016@c Change the value of a program variable. Plenty of side effects.
79a6e687 20017@c @subsubheading GDB Command
a2c02241
NR
20018@c set variable
20019@c @subsubheading Example
20020@c N.A.
20021
20022@subheading The @code{-data-disassemble} Command
20023@findex -data-disassemble
922fbb7b
AC
20024
20025@subsubheading Synopsis
20026
20027@smallexample
a2c02241
NR
20028 -data-disassemble
20029 [ -s @var{start-addr} -e @var{end-addr} ]
20030 | [ -f @var{filename} -l @var{linenum} [ -n @var{lines} ] ]
20031 -- @var{mode}
922fbb7b
AC
20032@end smallexample
20033
a2c02241
NR
20034@noindent
20035Where:
20036
20037@table @samp
20038@item @var{start-addr}
20039is the beginning address (or @code{$pc})
20040@item @var{end-addr}
20041is the end address
20042@item @var{filename}
20043is the name of the file to disassemble
20044@item @var{linenum}
20045is the line number to disassemble around
20046@item @var{lines}
d3e8051b 20047is the number of disassembly lines to be produced. If it is -1,
a2c02241
NR
20048the whole function will be disassembled, in case no @var{end-addr} is
20049specified. If @var{end-addr} is specified as a non-zero value, and
20050@var{lines} is lower than the number of disassembly lines between
20051@var{start-addr} and @var{end-addr}, only @var{lines} lines are
20052displayed; if @var{lines} is higher than the number of lines between
20053@var{start-addr} and @var{end-addr}, only the lines up to @var{end-addr}
20054are displayed.
20055@item @var{mode}
20056is either 0 (meaning only disassembly) or 1 (meaning mixed source and
20057disassembly).
20058@end table
20059
20060@subsubheading Result
20061
20062The output for each instruction is composed of four fields:
20063
20064@itemize @bullet
20065@item Address
20066@item Func-name
20067@item Offset
20068@item Instruction
20069@end itemize
20070
20071Note that whatever included in the instruction field, is not manipulated
d3e8051b 20072directly by @sc{gdb/mi}, i.e., it is not possible to adjust its format.
922fbb7b
AC
20073
20074@subsubheading @value{GDBN} Command
20075
a2c02241 20076There's no direct mapping from this command to the CLI.
922fbb7b
AC
20077
20078@subsubheading Example
20079
a2c02241
NR
20080Disassemble from the current value of @code{$pc} to @code{$pc + 20}:
20081
922fbb7b 20082@smallexample
594fe323 20083(gdb)
a2c02241
NR
20084-data-disassemble -s $pc -e "$pc + 20" -- 0
20085^done,
20086asm_insns=[
20087@{address="0x000107c0",func-name="main",offset="4",
20088inst="mov 2, %o0"@},
20089@{address="0x000107c4",func-name="main",offset="8",
20090inst="sethi %hi(0x11800), %o2"@},
20091@{address="0x000107c8",func-name="main",offset="12",
20092inst="or %o2, 0x140, %o1\t! 0x11940 <_lib_version+8>"@},
20093@{address="0x000107cc",func-name="main",offset="16",
20094inst="sethi %hi(0x11800), %o2"@},
20095@{address="0x000107d0",func-name="main",offset="20",
20096inst="or %o2, 0x168, %o4\t! 0x11968 <_lib_version+48>"@}]
594fe323 20097(gdb)
a2c02241
NR
20098@end smallexample
20099
20100Disassemble the whole @code{main} function. Line 32 is part of
20101@code{main}.
20102
20103@smallexample
20104-data-disassemble -f basics.c -l 32 -- 0
20105^done,asm_insns=[
20106@{address="0x000107bc",func-name="main",offset="0",
20107inst="save %sp, -112, %sp"@},
20108@{address="0x000107c0",func-name="main",offset="4",
20109inst="mov 2, %o0"@},
20110@{address="0x000107c4",func-name="main",offset="8",
20111inst="sethi %hi(0x11800), %o2"@},
20112[@dots{}]
20113@{address="0x0001081c",func-name="main",offset="96",inst="ret "@},
20114@{address="0x00010820",func-name="main",offset="100",inst="restore "@}]
594fe323 20115(gdb)
922fbb7b
AC
20116@end smallexample
20117
a2c02241 20118Disassemble 3 instructions from the start of @code{main}:
922fbb7b 20119
a2c02241 20120@smallexample
594fe323 20121(gdb)
a2c02241
NR
20122-data-disassemble -f basics.c -l 32 -n 3 -- 0
20123^done,asm_insns=[
20124@{address="0x000107bc",func-name="main",offset="0",
20125inst="save %sp, -112, %sp"@},
20126@{address="0x000107c0",func-name="main",offset="4",
20127inst="mov 2, %o0"@},
20128@{address="0x000107c4",func-name="main",offset="8",
20129inst="sethi %hi(0x11800), %o2"@}]
594fe323 20130(gdb)
a2c02241
NR
20131@end smallexample
20132
20133Disassemble 3 instructions from the start of @code{main} in mixed mode:
20134
20135@smallexample
594fe323 20136(gdb)
a2c02241
NR
20137-data-disassemble -f basics.c -l 32 -n 3 -- 1
20138^done,asm_insns=[
20139src_and_asm_line=@{line="31",
20140file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20141 testsuite/gdb.mi/basics.c",line_asm_insn=[
20142@{address="0x000107bc",func-name="main",offset="0",
20143inst="save %sp, -112, %sp"@}]@},
20144src_and_asm_line=@{line="32",
20145file="/kwikemart/marge/ezannoni/flathead-dev/devo/gdb/ \
20146 testsuite/gdb.mi/basics.c",line_asm_insn=[
20147@{address="0x000107c0",func-name="main",offset="4",
20148inst="mov 2, %o0"@},
20149@{address="0x000107c4",func-name="main",offset="8",
20150inst="sethi %hi(0x11800), %o2"@}]@}]
594fe323 20151(gdb)
a2c02241
NR
20152@end smallexample
20153
20154
20155@subheading The @code{-data-evaluate-expression} Command
20156@findex -data-evaluate-expression
922fbb7b
AC
20157
20158@subsubheading Synopsis
20159
20160@smallexample
a2c02241 20161 -data-evaluate-expression @var{expr}
922fbb7b
AC
20162@end smallexample
20163
a2c02241
NR
20164Evaluate @var{expr} as an expression. The expression could contain an
20165inferior function call. The function call will execute synchronously.
20166If the expression contains spaces, it must be enclosed in double quotes.
922fbb7b
AC
20167
20168@subsubheading @value{GDBN} Command
20169
a2c02241
NR
20170The corresponding @value{GDBN} commands are @samp{print}, @samp{output}, and
20171@samp{call}. In @code{gdbtk} only, there's a corresponding
20172@samp{gdb_eval} command.
922fbb7b
AC
20173
20174@subsubheading Example
20175
a2c02241
NR
20176In the following example, the numbers that precede the commands are the
20177@dfn{tokens} described in @ref{GDB/MI Command Syntax, ,@sc{gdb/mi}
20178Command Syntax}. Notice how @sc{gdb/mi} returns the same tokens in its
20179output.
20180
922fbb7b 20181@smallexample
a2c02241
NR
20182211-data-evaluate-expression A
20183211^done,value="1"
594fe323 20184(gdb)
a2c02241
NR
20185311-data-evaluate-expression &A
20186311^done,value="0xefffeb7c"
594fe323 20187(gdb)
a2c02241
NR
20188411-data-evaluate-expression A+3
20189411^done,value="4"
594fe323 20190(gdb)
a2c02241
NR
20191511-data-evaluate-expression "A + 3"
20192511^done,value="4"
594fe323 20193(gdb)
a2c02241 20194@end smallexample
922fbb7b
AC
20195
20196
a2c02241
NR
20197@subheading The @code{-data-list-changed-registers} Command
20198@findex -data-list-changed-registers
922fbb7b
AC
20199
20200@subsubheading Synopsis
20201
20202@smallexample
a2c02241 20203 -data-list-changed-registers
922fbb7b
AC
20204@end smallexample
20205
a2c02241 20206Display a list of the registers that have changed.
922fbb7b
AC
20207
20208@subsubheading @value{GDBN} Command
20209
a2c02241
NR
20210@value{GDBN} doesn't have a direct analog for this command; @code{gdbtk}
20211has the corresponding command @samp{gdb_changed_register_list}.
922fbb7b
AC
20212
20213@subsubheading Example
922fbb7b 20214
a2c02241 20215On a PPC MBX board:
922fbb7b
AC
20216
20217@smallexample
594fe323 20218(gdb)
a2c02241
NR
20219-exec-continue
20220^running
922fbb7b 20221
594fe323 20222(gdb)
a2c02241
NR
20223*stopped,reason="breakpoint-hit",bkptno="1",frame=@{func="main",
20224args=[],file="try.c",fullname="/home/foo/bar/try.c",line="5"@}
594fe323 20225(gdb)
a2c02241
NR
20226-data-list-changed-registers
20227^done,changed-registers=["0","1","2","4","5","6","7","8","9",
20228"10","11","13","14","15","16","17","18","19","20","21","22","23",
20229"24","25","26","27","28","30","31","64","65","66","67","69"]
594fe323 20230(gdb)
a2c02241 20231@end smallexample
922fbb7b
AC
20232
20233
a2c02241
NR
20234@subheading The @code{-data-list-register-names} Command
20235@findex -data-list-register-names
922fbb7b
AC
20236
20237@subsubheading Synopsis
20238
20239@smallexample
a2c02241 20240 -data-list-register-names [ ( @var{regno} )+ ]
922fbb7b
AC
20241@end smallexample
20242
a2c02241
NR
20243Show a list of register names for the current target. If no arguments
20244are given, it shows a list of the names of all the registers. If
20245integer numbers are given as arguments, it will print a list of the
20246names of the registers corresponding to the arguments. To ensure
20247consistency between a register name and its number, the output list may
20248include empty register names.
922fbb7b
AC
20249
20250@subsubheading @value{GDBN} Command
20251
a2c02241
NR
20252@value{GDBN} does not have a command which corresponds to
20253@samp{-data-list-register-names}. In @code{gdbtk} there is a
20254corresponding command @samp{gdb_regnames}.
922fbb7b
AC
20255
20256@subsubheading Example
922fbb7b 20257
a2c02241
NR
20258For the PPC MBX board:
20259@smallexample
594fe323 20260(gdb)
a2c02241
NR
20261-data-list-register-names
20262^done,register-names=["r0","r1","r2","r3","r4","r5","r6","r7",
20263"r8","r9","r10","r11","r12","r13","r14","r15","r16","r17","r18",
20264"r19","r20","r21","r22","r23","r24","r25","r26","r27","r28","r29",
20265"r30","r31","f0","f1","f2","f3","f4","f5","f6","f7","f8","f9",
20266"f10","f11","f12","f13","f14","f15","f16","f17","f18","f19","f20",
20267"f21","f22","f23","f24","f25","f26","f27","f28","f29","f30","f31",
20268"", "pc","ps","cr","lr","ctr","xer"]
594fe323 20269(gdb)
a2c02241
NR
20270-data-list-register-names 1 2 3
20271^done,register-names=["r1","r2","r3"]
594fe323 20272(gdb)
a2c02241 20273@end smallexample
922fbb7b 20274
a2c02241
NR
20275@subheading The @code{-data-list-register-values} Command
20276@findex -data-list-register-values
922fbb7b
AC
20277
20278@subsubheading Synopsis
20279
20280@smallexample
a2c02241 20281 -data-list-register-values @var{fmt} [ ( @var{regno} )*]
922fbb7b
AC
20282@end smallexample
20283
a2c02241
NR
20284Display the registers' contents. @var{fmt} is the format according to
20285which the registers' contents are to be returned, followed by an optional
20286list of numbers specifying the registers to display. A missing list of
20287numbers indicates that the contents of all the registers must be returned.
20288
20289Allowed formats for @var{fmt} are:
20290
20291@table @code
20292@item x
20293Hexadecimal
20294@item o
20295Octal
20296@item t
20297Binary
20298@item d
20299Decimal
20300@item r
20301Raw
20302@item N
20303Natural
20304@end table
922fbb7b
AC
20305
20306@subsubheading @value{GDBN} Command
20307
a2c02241
NR
20308The corresponding @value{GDBN} commands are @samp{info reg}, @samp{info
20309all-reg}, and (in @code{gdbtk}) @samp{gdb_fetch_registers}.
922fbb7b
AC
20310
20311@subsubheading Example
922fbb7b 20312
a2c02241
NR
20313For a PPC MBX board (note: line breaks are for readability only, they
20314don't appear in the actual output):
20315
20316@smallexample
594fe323 20317(gdb)
a2c02241
NR
20318-data-list-register-values r 64 65
20319^done,register-values=[@{number="64",value="0xfe00a300"@},
20320@{number="65",value="0x00029002"@}]
594fe323 20321(gdb)
a2c02241
NR
20322-data-list-register-values x
20323^done,register-values=[@{number="0",value="0xfe0043c8"@},
20324@{number="1",value="0x3fff88"@},@{number="2",value="0xfffffffe"@},
20325@{number="3",value="0x0"@},@{number="4",value="0xa"@},
20326@{number="5",value="0x3fff68"@},@{number="6",value="0x3fff58"@},
20327@{number="7",value="0xfe011e98"@},@{number="8",value="0x2"@},
20328@{number="9",value="0xfa202820"@},@{number="10",value="0xfa202808"@},
20329@{number="11",value="0x1"@},@{number="12",value="0x0"@},
20330@{number="13",value="0x4544"@},@{number="14",value="0xffdfffff"@},
20331@{number="15",value="0xffffffff"@},@{number="16",value="0xfffffeff"@},
20332@{number="17",value="0xefffffed"@},@{number="18",value="0xfffffffe"@},
20333@{number="19",value="0xffffffff"@},@{number="20",value="0xffffffff"@},
20334@{number="21",value="0xffffffff"@},@{number="22",value="0xfffffff7"@},
20335@{number="23",value="0xffffffff"@},@{number="24",value="0xffffffff"@},
20336@{number="25",value="0xffffffff"@},@{number="26",value="0xfffffffb"@},
20337@{number="27",value="0xffffffff"@},@{number="28",value="0xf7bfffff"@},
20338@{number="29",value="0x0"@},@{number="30",value="0xfe010000"@},
20339@{number="31",value="0x0"@},@{number="32",value="0x0"@},
20340@{number="33",value="0x0"@},@{number="34",value="0x0"@},
20341@{number="35",value="0x0"@},@{number="36",value="0x0"@},
20342@{number="37",value="0x0"@},@{number="38",value="0x0"@},
20343@{number="39",value="0x0"@},@{number="40",value="0x0"@},
20344@{number="41",value="0x0"@},@{number="42",value="0x0"@},
20345@{number="43",value="0x0"@},@{number="44",value="0x0"@},
20346@{number="45",value="0x0"@},@{number="46",value="0x0"@},
20347@{number="47",value="0x0"@},@{number="48",value="0x0"@},
20348@{number="49",value="0x0"@},@{number="50",value="0x0"@},
20349@{number="51",value="0x0"@},@{number="52",value="0x0"@},
20350@{number="53",value="0x0"@},@{number="54",value="0x0"@},
20351@{number="55",value="0x0"@},@{number="56",value="0x0"@},
20352@{number="57",value="0x0"@},@{number="58",value="0x0"@},
20353@{number="59",value="0x0"@},@{number="60",value="0x0"@},
20354@{number="61",value="0x0"@},@{number="62",value="0x0"@},
20355@{number="63",value="0x0"@},@{number="64",value="0xfe00a300"@},
20356@{number="65",value="0x29002"@},@{number="66",value="0x202f04b5"@},
20357@{number="67",value="0xfe0043b0"@},@{number="68",value="0xfe00b3e4"@},
20358@{number="69",value="0x20002b03"@}]
594fe323 20359(gdb)
a2c02241 20360@end smallexample
922fbb7b 20361
a2c02241
NR
20362
20363@subheading The @code{-data-read-memory} Command
20364@findex -data-read-memory
922fbb7b
AC
20365
20366@subsubheading Synopsis
20367
20368@smallexample
a2c02241
NR
20369 -data-read-memory [ -o @var{byte-offset} ]
20370 @var{address} @var{word-format} @var{word-size}
20371 @var{nr-rows} @var{nr-cols} [ @var{aschar} ]
922fbb7b
AC
20372@end smallexample
20373
a2c02241
NR
20374@noindent
20375where:
922fbb7b 20376
a2c02241
NR
20377@table @samp
20378@item @var{address}
20379An expression specifying the address of the first memory word to be
20380read. Complex expressions containing embedded white space should be
20381quoted using the C convention.
922fbb7b 20382
a2c02241
NR
20383@item @var{word-format}
20384The format to be used to print the memory words. The notation is the
20385same as for @value{GDBN}'s @code{print} command (@pxref{Output Formats,
79a6e687 20386,Output Formats}).
922fbb7b 20387
a2c02241
NR
20388@item @var{word-size}
20389The size of each memory word in bytes.
922fbb7b 20390
a2c02241
NR
20391@item @var{nr-rows}
20392The number of rows in the output table.
922fbb7b 20393
a2c02241
NR
20394@item @var{nr-cols}
20395The number of columns in the output table.
922fbb7b 20396
a2c02241
NR
20397@item @var{aschar}
20398If present, indicates that each row should include an @sc{ascii} dump. The
20399value of @var{aschar} is used as a padding character when a byte is not a
20400member of the printable @sc{ascii} character set (printable @sc{ascii}
20401characters are those whose code is between 32 and 126, inclusively).
922fbb7b 20402
a2c02241
NR
20403@item @var{byte-offset}
20404An offset to add to the @var{address} before fetching memory.
20405@end table
922fbb7b 20406
a2c02241
NR
20407This command displays memory contents as a table of @var{nr-rows} by
20408@var{nr-cols} words, each word being @var{word-size} bytes. In total,
20409@code{@var{nr-rows} * @var{nr-cols} * @var{word-size}} bytes are read
20410(returned as @samp{total-bytes}). Should less than the requested number
20411of bytes be returned by the target, the missing words are identified
20412using @samp{N/A}. The number of bytes read from the target is returned
20413in @samp{nr-bytes} and the starting address used to read memory in
20414@samp{addr}.
20415
20416The address of the next/previous row or page is available in
20417@samp{next-row} and @samp{prev-row}, @samp{next-page} and
20418@samp{prev-page}.
922fbb7b
AC
20419
20420@subsubheading @value{GDBN} Command
20421
a2c02241
NR
20422The corresponding @value{GDBN} command is @samp{x}. @code{gdbtk} has
20423@samp{gdb_get_mem} memory read command.
922fbb7b
AC
20424
20425@subsubheading Example
32e7087d 20426
a2c02241
NR
20427Read six bytes of memory starting at @code{bytes+6} but then offset by
20428@code{-6} bytes. Format as three rows of two columns. One byte per
20429word. Display each word in hex.
32e7087d
JB
20430
20431@smallexample
594fe323 20432(gdb)
a2c02241
NR
204339-data-read-memory -o -6 -- bytes+6 x 1 3 2
204349^done,addr="0x00001390",nr-bytes="6",total-bytes="6",
20435next-row="0x00001396",prev-row="0x0000138e",next-page="0x00001396",
20436prev-page="0x0000138a",memory=[
20437@{addr="0x00001390",data=["0x00","0x01"]@},
20438@{addr="0x00001392",data=["0x02","0x03"]@},
20439@{addr="0x00001394",data=["0x04","0x05"]@}]
594fe323 20440(gdb)
32e7087d
JB
20441@end smallexample
20442
a2c02241
NR
20443Read two bytes of memory starting at address @code{shorts + 64} and
20444display as a single word formatted in decimal.
32e7087d 20445
32e7087d 20446@smallexample
594fe323 20447(gdb)
a2c02241
NR
204485-data-read-memory shorts+64 d 2 1 1
204495^done,addr="0x00001510",nr-bytes="2",total-bytes="2",
20450next-row="0x00001512",prev-row="0x0000150e",
20451next-page="0x00001512",prev-page="0x0000150e",memory=[
20452@{addr="0x00001510",data=["128"]@}]
594fe323 20453(gdb)
32e7087d
JB
20454@end smallexample
20455
a2c02241
NR
20456Read thirty two bytes of memory starting at @code{bytes+16} and format
20457as eight rows of four columns. Include a string encoding with @samp{x}
20458used as the non-printable character.
922fbb7b
AC
20459
20460@smallexample
594fe323 20461(gdb)
a2c02241
NR
204624-data-read-memory bytes+16 x 1 8 4 x
204634^done,addr="0x000013a0",nr-bytes="32",total-bytes="32",
20464next-row="0x000013c0",prev-row="0x0000139c",
20465next-page="0x000013c0",prev-page="0x00001380",memory=[
20466@{addr="0x000013a0",data=["0x10","0x11","0x12","0x13"],ascii="xxxx"@},
20467@{addr="0x000013a4",data=["0x14","0x15","0x16","0x17"],ascii="xxxx"@},
20468@{addr="0x000013a8",data=["0x18","0x19","0x1a","0x1b"],ascii="xxxx"@},
20469@{addr="0x000013ac",data=["0x1c","0x1d","0x1e","0x1f"],ascii="xxxx"@},
20470@{addr="0x000013b0",data=["0x20","0x21","0x22","0x23"],ascii=" !\"#"@},
20471@{addr="0x000013b4",data=["0x24","0x25","0x26","0x27"],ascii="$%&'"@},
20472@{addr="0x000013b8",data=["0x28","0x29","0x2a","0x2b"],ascii="()*+"@},
20473@{addr="0x000013bc",data=["0x2c","0x2d","0x2e","0x2f"],ascii=",-./"@}]
594fe323 20474(gdb)
922fbb7b
AC
20475@end smallexample
20476
a2c02241
NR
20477@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20478@node GDB/MI Tracepoint Commands
20479@section @sc{gdb/mi} Tracepoint Commands
922fbb7b 20480
a2c02241 20481The tracepoint commands are not yet implemented.
922fbb7b 20482
a2c02241 20483@c @subheading -trace-actions
922fbb7b 20484
a2c02241 20485@c @subheading -trace-delete
922fbb7b 20486
a2c02241 20487@c @subheading -trace-disable
922fbb7b 20488
a2c02241 20489@c @subheading -trace-dump
922fbb7b 20490
a2c02241 20491@c @subheading -trace-enable
922fbb7b 20492
a2c02241 20493@c @subheading -trace-exists
922fbb7b 20494
a2c02241 20495@c @subheading -trace-find
922fbb7b 20496
a2c02241 20497@c @subheading -trace-frame-number
922fbb7b 20498
a2c02241 20499@c @subheading -trace-info
922fbb7b 20500
a2c02241 20501@c @subheading -trace-insert
922fbb7b 20502
a2c02241 20503@c @subheading -trace-list
922fbb7b 20504
a2c02241 20505@c @subheading -trace-pass-count
922fbb7b 20506
a2c02241 20507@c @subheading -trace-save
922fbb7b 20508
a2c02241 20509@c @subheading -trace-start
922fbb7b 20510
a2c02241 20511@c @subheading -trace-stop
922fbb7b 20512
922fbb7b 20513
a2c02241
NR
20514@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20515@node GDB/MI Symbol Query
20516@section @sc{gdb/mi} Symbol Query Commands
922fbb7b
AC
20517
20518
a2c02241
NR
20519@subheading The @code{-symbol-info-address} Command
20520@findex -symbol-info-address
922fbb7b
AC
20521
20522@subsubheading Synopsis
20523
20524@smallexample
a2c02241 20525 -symbol-info-address @var{symbol}
922fbb7b
AC
20526@end smallexample
20527
a2c02241 20528Describe where @var{symbol} is stored.
922fbb7b
AC
20529
20530@subsubheading @value{GDBN} Command
20531
a2c02241 20532The corresponding @value{GDBN} command is @samp{info address}.
922fbb7b
AC
20533
20534@subsubheading Example
20535N.A.
20536
20537
a2c02241
NR
20538@subheading The @code{-symbol-info-file} Command
20539@findex -symbol-info-file
922fbb7b
AC
20540
20541@subsubheading Synopsis
20542
20543@smallexample
a2c02241 20544 -symbol-info-file
922fbb7b
AC
20545@end smallexample
20546
a2c02241 20547Show the file for the symbol.
922fbb7b 20548
a2c02241 20549@subsubheading @value{GDBN} Command
922fbb7b 20550
a2c02241
NR
20551There's no equivalent @value{GDBN} command. @code{gdbtk} has
20552@samp{gdb_find_file}.
922fbb7b
AC
20553
20554@subsubheading Example
20555N.A.
20556
20557
a2c02241
NR
20558@subheading The @code{-symbol-info-function} Command
20559@findex -symbol-info-function
922fbb7b
AC
20560
20561@subsubheading Synopsis
20562
20563@smallexample
a2c02241 20564 -symbol-info-function
922fbb7b
AC
20565@end smallexample
20566
a2c02241 20567Show which function the symbol lives in.
922fbb7b
AC
20568
20569@subsubheading @value{GDBN} Command
20570
a2c02241 20571@samp{gdb_get_function} in @code{gdbtk}.
922fbb7b
AC
20572
20573@subsubheading Example
20574N.A.
20575
20576
a2c02241
NR
20577@subheading The @code{-symbol-info-line} Command
20578@findex -symbol-info-line
922fbb7b
AC
20579
20580@subsubheading Synopsis
20581
20582@smallexample
a2c02241 20583 -symbol-info-line
922fbb7b
AC
20584@end smallexample
20585
a2c02241 20586Show the core addresses of the code for a source line.
922fbb7b 20587
a2c02241 20588@subsubheading @value{GDBN} Command
922fbb7b 20589
a2c02241
NR
20590The corresponding @value{GDBN} command is @samp{info line}.
20591@code{gdbtk} has the @samp{gdb_get_line} and @samp{gdb_get_file} commands.
922fbb7b
AC
20592
20593@subsubheading Example
a2c02241 20594N.A.
922fbb7b
AC
20595
20596
a2c02241
NR
20597@subheading The @code{-symbol-info-symbol} Command
20598@findex -symbol-info-symbol
07f31aa6
DJ
20599
20600@subsubheading Synopsis
20601
a2c02241
NR
20602@smallexample
20603 -symbol-info-symbol @var{addr}
20604@end smallexample
07f31aa6 20605
a2c02241 20606Describe what symbol is at location @var{addr}.
07f31aa6 20607
a2c02241 20608@subsubheading @value{GDBN} Command
07f31aa6 20609
a2c02241 20610The corresponding @value{GDBN} command is @samp{info symbol}.
07f31aa6
DJ
20611
20612@subsubheading Example
a2c02241 20613N.A.
07f31aa6
DJ
20614
20615
a2c02241
NR
20616@subheading The @code{-symbol-list-functions} Command
20617@findex -symbol-list-functions
922fbb7b
AC
20618
20619@subsubheading Synopsis
20620
20621@smallexample
a2c02241 20622 -symbol-list-functions
922fbb7b
AC
20623@end smallexample
20624
a2c02241 20625List the functions in the executable.
922fbb7b
AC
20626
20627@subsubheading @value{GDBN} Command
20628
a2c02241
NR
20629@samp{info functions} in @value{GDBN}, @samp{gdb_listfunc} and
20630@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20631
20632@subsubheading Example
a2c02241 20633N.A.
922fbb7b
AC
20634
20635
a2c02241
NR
20636@subheading The @code{-symbol-list-lines} Command
20637@findex -symbol-list-lines
922fbb7b
AC
20638
20639@subsubheading Synopsis
20640
20641@smallexample
a2c02241 20642 -symbol-list-lines @var{filename}
922fbb7b
AC
20643@end smallexample
20644
a2c02241
NR
20645Print the list of lines that contain code and their associated program
20646addresses for the given source filename. The entries are sorted in
20647ascending PC order.
922fbb7b
AC
20648
20649@subsubheading @value{GDBN} Command
20650
a2c02241 20651There is no corresponding @value{GDBN} command.
922fbb7b
AC
20652
20653@subsubheading Example
a2c02241 20654@smallexample
594fe323 20655(gdb)
a2c02241
NR
20656-symbol-list-lines basics.c
20657^done,lines=[@{pc="0x08048554",line="7"@},@{pc="0x0804855a",line="8"@}]
594fe323 20658(gdb)
a2c02241 20659@end smallexample
922fbb7b
AC
20660
20661
a2c02241
NR
20662@subheading The @code{-symbol-list-types} Command
20663@findex -symbol-list-types
922fbb7b
AC
20664
20665@subsubheading Synopsis
20666
20667@smallexample
a2c02241 20668 -symbol-list-types
922fbb7b
AC
20669@end smallexample
20670
a2c02241 20671List all the type names.
922fbb7b
AC
20672
20673@subsubheading @value{GDBN} Command
20674
a2c02241
NR
20675The corresponding commands are @samp{info types} in @value{GDBN},
20676@samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20677
20678@subsubheading Example
20679N.A.
20680
20681
a2c02241
NR
20682@subheading The @code{-symbol-list-variables} Command
20683@findex -symbol-list-variables
922fbb7b
AC
20684
20685@subsubheading Synopsis
20686
20687@smallexample
a2c02241 20688 -symbol-list-variables
922fbb7b
AC
20689@end smallexample
20690
a2c02241 20691List all the global and static variable names.
922fbb7b
AC
20692
20693@subsubheading @value{GDBN} Command
20694
a2c02241 20695@samp{info variables} in @value{GDBN}, @samp{gdb_search} in @code{gdbtk}.
922fbb7b
AC
20696
20697@subsubheading Example
20698N.A.
20699
20700
a2c02241
NR
20701@subheading The @code{-symbol-locate} Command
20702@findex -symbol-locate
922fbb7b
AC
20703
20704@subsubheading Synopsis
20705
20706@smallexample
a2c02241 20707 -symbol-locate
922fbb7b
AC
20708@end smallexample
20709
922fbb7b
AC
20710@subsubheading @value{GDBN} Command
20711
a2c02241 20712@samp{gdb_loc} in @code{gdbtk}.
922fbb7b
AC
20713
20714@subsubheading Example
20715N.A.
20716
20717
a2c02241
NR
20718@subheading The @code{-symbol-type} Command
20719@findex -symbol-type
922fbb7b
AC
20720
20721@subsubheading Synopsis
20722
20723@smallexample
a2c02241 20724 -symbol-type @var{variable}
922fbb7b
AC
20725@end smallexample
20726
a2c02241 20727Show type of @var{variable}.
922fbb7b 20728
a2c02241 20729@subsubheading @value{GDBN} Command
922fbb7b 20730
a2c02241
NR
20731The corresponding @value{GDBN} command is @samp{ptype}, @code{gdbtk} has
20732@samp{gdb_obj_variable}.
20733
20734@subsubheading Example
20735N.A.
20736
20737
20738@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20739@node GDB/MI File Commands
20740@section @sc{gdb/mi} File Commands
20741
20742This section describes the GDB/MI commands to specify executable file names
20743and to read in and obtain symbol table information.
20744
20745@subheading The @code{-file-exec-and-symbols} Command
20746@findex -file-exec-and-symbols
20747
20748@subsubheading Synopsis
922fbb7b
AC
20749
20750@smallexample
a2c02241 20751 -file-exec-and-symbols @var{file}
922fbb7b
AC
20752@end smallexample
20753
a2c02241
NR
20754Specify the executable file to be debugged. This file is the one from
20755which the symbol table is also read. If no file is specified, the
20756command clears the executable and symbol information. If breakpoints
20757are set when using this command with no arguments, @value{GDBN} will produce
20758error messages. Otherwise, no output is produced, except a completion
20759notification.
20760
922fbb7b
AC
20761@subsubheading @value{GDBN} Command
20762
a2c02241 20763The corresponding @value{GDBN} command is @samp{file}.
922fbb7b
AC
20764
20765@subsubheading Example
20766
20767@smallexample
594fe323 20768(gdb)
a2c02241
NR
20769-file-exec-and-symbols /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20770^done
594fe323 20771(gdb)
922fbb7b
AC
20772@end smallexample
20773
922fbb7b 20774
a2c02241
NR
20775@subheading The @code{-file-exec-file} Command
20776@findex -file-exec-file
922fbb7b
AC
20777
20778@subsubheading Synopsis
20779
20780@smallexample
a2c02241 20781 -file-exec-file @var{file}
922fbb7b
AC
20782@end smallexample
20783
a2c02241
NR
20784Specify the executable file to be debugged. Unlike
20785@samp{-file-exec-and-symbols}, the symbol table is @emph{not} read
20786from this file. If used without argument, @value{GDBN} clears the information
20787about the executable file. No output is produced, except a completion
20788notification.
922fbb7b 20789
a2c02241
NR
20790@subsubheading @value{GDBN} Command
20791
20792The corresponding @value{GDBN} command is @samp{exec-file}.
922fbb7b
AC
20793
20794@subsubheading Example
a2c02241
NR
20795
20796@smallexample
594fe323 20797(gdb)
a2c02241
NR
20798-file-exec-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20799^done
594fe323 20800(gdb)
a2c02241 20801@end smallexample
922fbb7b
AC
20802
20803
a2c02241
NR
20804@subheading The @code{-file-list-exec-sections} Command
20805@findex -file-list-exec-sections
922fbb7b
AC
20806
20807@subsubheading Synopsis
20808
20809@smallexample
a2c02241 20810 -file-list-exec-sections
922fbb7b
AC
20811@end smallexample
20812
a2c02241
NR
20813List the sections of the current executable file.
20814
922fbb7b
AC
20815@subsubheading @value{GDBN} Command
20816
a2c02241
NR
20817The @value{GDBN} command @samp{info file} shows, among the rest, the same
20818information as this command. @code{gdbtk} has a corresponding command
20819@samp{gdb_load_info}.
922fbb7b
AC
20820
20821@subsubheading Example
20822N.A.
20823
20824
a2c02241
NR
20825@subheading The @code{-file-list-exec-source-file} Command
20826@findex -file-list-exec-source-file
922fbb7b
AC
20827
20828@subsubheading Synopsis
20829
20830@smallexample
a2c02241 20831 -file-list-exec-source-file
922fbb7b
AC
20832@end smallexample
20833
a2c02241
NR
20834List the line number, the current source file, and the absolute path
20835to the current source file for the current executable.
922fbb7b
AC
20836
20837@subsubheading @value{GDBN} Command
20838
a2c02241 20839The @value{GDBN} equivalent is @samp{info source}
922fbb7b
AC
20840
20841@subsubheading Example
20842
922fbb7b 20843@smallexample
594fe323 20844(gdb)
a2c02241
NR
20845123-file-list-exec-source-file
20846123^done,line="1",file="foo.c",fullname="/home/bar/foo.c"
594fe323 20847(gdb)
922fbb7b
AC
20848@end smallexample
20849
20850
a2c02241
NR
20851@subheading The @code{-file-list-exec-source-files} Command
20852@findex -file-list-exec-source-files
922fbb7b
AC
20853
20854@subsubheading Synopsis
20855
20856@smallexample
a2c02241 20857 -file-list-exec-source-files
922fbb7b
AC
20858@end smallexample
20859
a2c02241
NR
20860List the source files for the current executable.
20861
3f94c067
BW
20862It will always output the filename, but only when @value{GDBN} can find
20863the absolute file name of a source file, will it output the fullname.
922fbb7b
AC
20864
20865@subsubheading @value{GDBN} Command
20866
a2c02241
NR
20867The @value{GDBN} equivalent is @samp{info sources}.
20868@code{gdbtk} has an analogous command @samp{gdb_listfiles}.
922fbb7b
AC
20869
20870@subsubheading Example
922fbb7b 20871@smallexample
594fe323 20872(gdb)
a2c02241
NR
20873-file-list-exec-source-files
20874^done,files=[
20875@{file=foo.c,fullname=/home/foo.c@},
20876@{file=/home/bar.c,fullname=/home/bar.c@},
20877@{file=gdb_could_not_find_fullpath.c@}]
594fe323 20878(gdb)
922fbb7b
AC
20879@end smallexample
20880
a2c02241
NR
20881@subheading The @code{-file-list-shared-libraries} Command
20882@findex -file-list-shared-libraries
922fbb7b 20883
a2c02241 20884@subsubheading Synopsis
922fbb7b 20885
a2c02241
NR
20886@smallexample
20887 -file-list-shared-libraries
20888@end smallexample
922fbb7b 20889
a2c02241 20890List the shared libraries in the program.
922fbb7b 20891
a2c02241 20892@subsubheading @value{GDBN} Command
922fbb7b 20893
a2c02241 20894The corresponding @value{GDBN} command is @samp{info shared}.
922fbb7b 20895
a2c02241
NR
20896@subsubheading Example
20897N.A.
922fbb7b
AC
20898
20899
a2c02241
NR
20900@subheading The @code{-file-list-symbol-files} Command
20901@findex -file-list-symbol-files
922fbb7b 20902
a2c02241 20903@subsubheading Synopsis
922fbb7b 20904
a2c02241
NR
20905@smallexample
20906 -file-list-symbol-files
20907@end smallexample
922fbb7b 20908
a2c02241 20909List symbol files.
922fbb7b 20910
a2c02241 20911@subsubheading @value{GDBN} Command
922fbb7b 20912
a2c02241 20913The corresponding @value{GDBN} command is @samp{info file} (part of it).
922fbb7b 20914
a2c02241
NR
20915@subsubheading Example
20916N.A.
922fbb7b 20917
922fbb7b 20918
a2c02241
NR
20919@subheading The @code{-file-symbol-file} Command
20920@findex -file-symbol-file
922fbb7b 20921
a2c02241 20922@subsubheading Synopsis
922fbb7b 20923
a2c02241
NR
20924@smallexample
20925 -file-symbol-file @var{file}
20926@end smallexample
922fbb7b 20927
a2c02241
NR
20928Read symbol table info from the specified @var{file} argument. When
20929used without arguments, clears @value{GDBN}'s symbol table info. No output is
20930produced, except for a completion notification.
922fbb7b 20931
a2c02241 20932@subsubheading @value{GDBN} Command
922fbb7b 20933
a2c02241 20934The corresponding @value{GDBN} command is @samp{symbol-file}.
922fbb7b 20935
a2c02241 20936@subsubheading Example
922fbb7b 20937
a2c02241 20938@smallexample
594fe323 20939(gdb)
a2c02241
NR
20940-file-symbol-file /kwikemart/marge/ezannoni/TRUNK/mbx/hello.mbx
20941^done
594fe323 20942(gdb)
a2c02241 20943@end smallexample
922fbb7b 20944
a2c02241 20945@ignore
a2c02241
NR
20946@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20947@node GDB/MI Memory Overlay Commands
20948@section @sc{gdb/mi} Memory Overlay Commands
922fbb7b 20949
a2c02241 20950The memory overlay commands are not implemented.
922fbb7b 20951
a2c02241 20952@c @subheading -overlay-auto
922fbb7b 20953
a2c02241 20954@c @subheading -overlay-list-mapping-state
922fbb7b 20955
a2c02241 20956@c @subheading -overlay-list-overlays
922fbb7b 20957
a2c02241 20958@c @subheading -overlay-map
922fbb7b 20959
a2c02241 20960@c @subheading -overlay-off
922fbb7b 20961
a2c02241 20962@c @subheading -overlay-on
922fbb7b 20963
a2c02241 20964@c @subheading -overlay-unmap
922fbb7b 20965
a2c02241
NR
20966@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20967@node GDB/MI Signal Handling Commands
20968@section @sc{gdb/mi} Signal Handling Commands
922fbb7b 20969
a2c02241 20970Signal handling commands are not implemented.
922fbb7b 20971
a2c02241 20972@c @subheading -signal-handle
922fbb7b 20973
a2c02241 20974@c @subheading -signal-list-handle-actions
922fbb7b 20975
a2c02241
NR
20976@c @subheading -signal-list-signal-types
20977@end ignore
922fbb7b 20978
922fbb7b 20979
a2c02241
NR
20980@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20981@node GDB/MI Target Manipulation
20982@section @sc{gdb/mi} Target Manipulation Commands
922fbb7b
AC
20983
20984
a2c02241
NR
20985@subheading The @code{-target-attach} Command
20986@findex -target-attach
922fbb7b
AC
20987
20988@subsubheading Synopsis
20989
20990@smallexample
a2c02241 20991 -target-attach @var{pid} | @var{file}
922fbb7b
AC
20992@end smallexample
20993
a2c02241 20994Attach to a process @var{pid} or a file @var{file} outside of @value{GDBN}.
922fbb7b 20995
79a6e687 20996@subsubheading @value{GDBN} Command
922fbb7b 20997
a2c02241 20998The corresponding @value{GDBN} command is @samp{attach}.
922fbb7b 20999
a2c02241
NR
21000@subsubheading Example
21001N.A.
922fbb7b 21002
a2c02241
NR
21003
21004@subheading The @code{-target-compare-sections} Command
21005@findex -target-compare-sections
922fbb7b
AC
21006
21007@subsubheading Synopsis
21008
21009@smallexample
a2c02241 21010 -target-compare-sections [ @var{section} ]
922fbb7b
AC
21011@end smallexample
21012
a2c02241
NR
21013Compare data of section @var{section} on target to the exec file.
21014Without the argument, all sections are compared.
922fbb7b 21015
a2c02241 21016@subsubheading @value{GDBN} Command
922fbb7b 21017
a2c02241 21018The @value{GDBN} equivalent is @samp{compare-sections}.
922fbb7b 21019
a2c02241
NR
21020@subsubheading Example
21021N.A.
21022
21023
21024@subheading The @code{-target-detach} Command
21025@findex -target-detach
922fbb7b
AC
21026
21027@subsubheading Synopsis
21028
21029@smallexample
a2c02241 21030 -target-detach
922fbb7b
AC
21031@end smallexample
21032
a2c02241
NR
21033Detach from the remote target which normally resumes its execution.
21034There's no output.
21035
79a6e687 21036@subsubheading @value{GDBN} Command
a2c02241
NR
21037
21038The corresponding @value{GDBN} command is @samp{detach}.
21039
21040@subsubheading Example
922fbb7b
AC
21041
21042@smallexample
594fe323 21043(gdb)
a2c02241
NR
21044-target-detach
21045^done
594fe323 21046(gdb)
922fbb7b
AC
21047@end smallexample
21048
21049
a2c02241
NR
21050@subheading The @code{-target-disconnect} Command
21051@findex -target-disconnect
922fbb7b
AC
21052
21053@subsubheading Synopsis
21054
123dc839 21055@smallexample
a2c02241 21056 -target-disconnect
123dc839 21057@end smallexample
922fbb7b 21058
a2c02241
NR
21059Disconnect from the remote target. There's no output and the target is
21060generally not resumed.
21061
79a6e687 21062@subsubheading @value{GDBN} Command
a2c02241
NR
21063
21064The corresponding @value{GDBN} command is @samp{disconnect}.
bc8ced35
NR
21065
21066@subsubheading Example
922fbb7b
AC
21067
21068@smallexample
594fe323 21069(gdb)
a2c02241
NR
21070-target-disconnect
21071^done
594fe323 21072(gdb)
922fbb7b
AC
21073@end smallexample
21074
21075
a2c02241
NR
21076@subheading The @code{-target-download} Command
21077@findex -target-download
922fbb7b
AC
21078
21079@subsubheading Synopsis
21080
21081@smallexample
a2c02241 21082 -target-download
922fbb7b
AC
21083@end smallexample
21084
a2c02241
NR
21085Loads the executable onto the remote target.
21086It prints out an update message every half second, which includes the fields:
21087
21088@table @samp
21089@item section
21090The name of the section.
21091@item section-sent
21092The size of what has been sent so far for that section.
21093@item section-size
21094The size of the section.
21095@item total-sent
21096The total size of what was sent so far (the current and the previous sections).
21097@item total-size
21098The size of the overall executable to download.
21099@end table
21100
21101@noindent
21102Each message is sent as status record (@pxref{GDB/MI Output Syntax, ,
21103@sc{gdb/mi} Output Syntax}).
21104
21105In addition, it prints the name and size of the sections, as they are
21106downloaded. These messages include the following fields:
21107
21108@table @samp
21109@item section
21110The name of the section.
21111@item section-size
21112The size of the section.
21113@item total-size
21114The size of the overall executable to download.
21115@end table
21116
21117@noindent
21118At the end, a summary is printed.
21119
21120@subsubheading @value{GDBN} Command
21121
21122The corresponding @value{GDBN} command is @samp{load}.
21123
21124@subsubheading Example
21125
21126Note: each status message appears on a single line. Here the messages
21127have been broken down so that they can fit onto a page.
922fbb7b
AC
21128
21129@smallexample
594fe323 21130(gdb)
a2c02241
NR
21131-target-download
21132+download,@{section=".text",section-size="6668",total-size="9880"@}
21133+download,@{section=".text",section-sent="512",section-size="6668",
21134total-sent="512",total-size="9880"@}
21135+download,@{section=".text",section-sent="1024",section-size="6668",
21136total-sent="1024",total-size="9880"@}
21137+download,@{section=".text",section-sent="1536",section-size="6668",
21138total-sent="1536",total-size="9880"@}
21139+download,@{section=".text",section-sent="2048",section-size="6668",
21140total-sent="2048",total-size="9880"@}
21141+download,@{section=".text",section-sent="2560",section-size="6668",
21142total-sent="2560",total-size="9880"@}
21143+download,@{section=".text",section-sent="3072",section-size="6668",
21144total-sent="3072",total-size="9880"@}
21145+download,@{section=".text",section-sent="3584",section-size="6668",
21146total-sent="3584",total-size="9880"@}
21147+download,@{section=".text",section-sent="4096",section-size="6668",
21148total-sent="4096",total-size="9880"@}
21149+download,@{section=".text",section-sent="4608",section-size="6668",
21150total-sent="4608",total-size="9880"@}
21151+download,@{section=".text",section-sent="5120",section-size="6668",
21152total-sent="5120",total-size="9880"@}
21153+download,@{section=".text",section-sent="5632",section-size="6668",
21154total-sent="5632",total-size="9880"@}
21155+download,@{section=".text",section-sent="6144",section-size="6668",
21156total-sent="6144",total-size="9880"@}
21157+download,@{section=".text",section-sent="6656",section-size="6668",
21158total-sent="6656",total-size="9880"@}
21159+download,@{section=".init",section-size="28",total-size="9880"@}
21160+download,@{section=".fini",section-size="28",total-size="9880"@}
21161+download,@{section=".data",section-size="3156",total-size="9880"@}
21162+download,@{section=".data",section-sent="512",section-size="3156",
21163total-sent="7236",total-size="9880"@}
21164+download,@{section=".data",section-sent="1024",section-size="3156",
21165total-sent="7748",total-size="9880"@}
21166+download,@{section=".data",section-sent="1536",section-size="3156",
21167total-sent="8260",total-size="9880"@}
21168+download,@{section=".data",section-sent="2048",section-size="3156",
21169total-sent="8772",total-size="9880"@}
21170+download,@{section=".data",section-sent="2560",section-size="3156",
21171total-sent="9284",total-size="9880"@}
21172+download,@{section=".data",section-sent="3072",section-size="3156",
21173total-sent="9796",total-size="9880"@}
21174^done,address="0x10004",load-size="9880",transfer-rate="6586",
21175write-rate="429"
594fe323 21176(gdb)
922fbb7b
AC
21177@end smallexample
21178
21179
a2c02241
NR
21180@subheading The @code{-target-exec-status} Command
21181@findex -target-exec-status
922fbb7b
AC
21182
21183@subsubheading Synopsis
21184
21185@smallexample
a2c02241 21186 -target-exec-status
922fbb7b
AC
21187@end smallexample
21188
a2c02241
NR
21189Provide information on the state of the target (whether it is running or
21190not, for instance).
922fbb7b 21191
a2c02241 21192@subsubheading @value{GDBN} Command
922fbb7b 21193
a2c02241
NR
21194There's no equivalent @value{GDBN} command.
21195
21196@subsubheading Example
21197N.A.
922fbb7b 21198
a2c02241
NR
21199
21200@subheading The @code{-target-list-available-targets} Command
21201@findex -target-list-available-targets
922fbb7b
AC
21202
21203@subsubheading Synopsis
21204
21205@smallexample
a2c02241 21206 -target-list-available-targets
922fbb7b
AC
21207@end smallexample
21208
a2c02241 21209List the possible targets to connect to.
922fbb7b 21210
a2c02241 21211@subsubheading @value{GDBN} Command
922fbb7b 21212
a2c02241 21213The corresponding @value{GDBN} command is @samp{help target}.
922fbb7b 21214
a2c02241
NR
21215@subsubheading Example
21216N.A.
21217
21218
21219@subheading The @code{-target-list-current-targets} Command
21220@findex -target-list-current-targets
922fbb7b
AC
21221
21222@subsubheading Synopsis
21223
21224@smallexample
a2c02241 21225 -target-list-current-targets
922fbb7b
AC
21226@end smallexample
21227
a2c02241 21228Describe the current target.
922fbb7b 21229
a2c02241 21230@subsubheading @value{GDBN} Command
922fbb7b 21231
a2c02241
NR
21232The corresponding information is printed by @samp{info file} (among
21233other things).
922fbb7b 21234
a2c02241
NR
21235@subsubheading Example
21236N.A.
21237
21238
21239@subheading The @code{-target-list-parameters} Command
21240@findex -target-list-parameters
922fbb7b
AC
21241
21242@subsubheading Synopsis
21243
21244@smallexample
a2c02241 21245 -target-list-parameters
922fbb7b
AC
21246@end smallexample
21247
a2c02241
NR
21248@c ????
21249
21250@subsubheading @value{GDBN} Command
21251
21252No equivalent.
922fbb7b
AC
21253
21254@subsubheading Example
a2c02241
NR
21255N.A.
21256
21257
21258@subheading The @code{-target-select} Command
21259@findex -target-select
21260
21261@subsubheading Synopsis
922fbb7b
AC
21262
21263@smallexample
a2c02241 21264 -target-select @var{type} @var{parameters @dots{}}
922fbb7b
AC
21265@end smallexample
21266
a2c02241 21267Connect @value{GDBN} to the remote target. This command takes two args:
922fbb7b 21268
a2c02241
NR
21269@table @samp
21270@item @var{type}
21271The type of target, for instance @samp{async}, @samp{remote}, etc.
21272@item @var{parameters}
21273Device names, host names and the like. @xref{Target Commands, ,
79a6e687 21274Commands for Managing Targets}, for more details.
a2c02241
NR
21275@end table
21276
21277The output is a connection notification, followed by the address at
21278which the target program is, in the following form:
922fbb7b
AC
21279
21280@smallexample
a2c02241
NR
21281^connected,addr="@var{address}",func="@var{function name}",
21282 args=[@var{arg list}]
922fbb7b
AC
21283@end smallexample
21284
a2c02241
NR
21285@subsubheading @value{GDBN} Command
21286
21287The corresponding @value{GDBN} command is @samp{target}.
265eeb58
NR
21288
21289@subsubheading Example
922fbb7b 21290
265eeb58 21291@smallexample
594fe323 21292(gdb)
a2c02241
NR
21293-target-select async /dev/ttya
21294^connected,addr="0xfe00a300",func="??",args=[]
594fe323 21295(gdb)
265eeb58 21296@end smallexample
ef21caaf
NR
21297
21298@c %%%%%%%%%%%%%%%%%%%%%%%%%%%% SECTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21299@node GDB/MI Miscellaneous Commands
21300@section Miscellaneous @sc{gdb/mi} Commands
21301
21302@c @subheading -gdb-complete
21303
21304@subheading The @code{-gdb-exit} Command
21305@findex -gdb-exit
21306
21307@subsubheading Synopsis
21308
21309@smallexample
21310 -gdb-exit
21311@end smallexample
21312
21313Exit @value{GDBN} immediately.
21314
21315@subsubheading @value{GDBN} Command
21316
21317Approximately corresponds to @samp{quit}.
21318
21319@subsubheading Example
21320
21321@smallexample
594fe323 21322(gdb)
ef21caaf
NR
21323-gdb-exit
21324^exit
21325@end smallexample
21326
a2c02241
NR
21327
21328@subheading The @code{-exec-abort} Command
21329@findex -exec-abort
21330
21331@subsubheading Synopsis
21332
21333@smallexample
21334 -exec-abort
21335@end smallexample
21336
21337Kill the inferior running program.
21338
21339@subsubheading @value{GDBN} Command
21340
21341The corresponding @value{GDBN} command is @samp{kill}.
21342
21343@subsubheading Example
21344N.A.
21345
21346
ef21caaf
NR
21347@subheading The @code{-gdb-set} Command
21348@findex -gdb-set
21349
21350@subsubheading Synopsis
21351
21352@smallexample
21353 -gdb-set
21354@end smallexample
21355
21356Set an internal @value{GDBN} variable.
21357@c IS THIS A DOLLAR VARIABLE? OR SOMETHING LIKE ANNOTATE ?????
21358
21359@subsubheading @value{GDBN} Command
21360
21361The corresponding @value{GDBN} command is @samp{set}.
21362
21363@subsubheading Example
21364
21365@smallexample
594fe323 21366(gdb)
ef21caaf
NR
21367-gdb-set $foo=3
21368^done
594fe323 21369(gdb)
ef21caaf
NR
21370@end smallexample
21371
21372
21373@subheading The @code{-gdb-show} Command
21374@findex -gdb-show
21375
21376@subsubheading Synopsis
21377
21378@smallexample
21379 -gdb-show
21380@end smallexample
21381
21382Show the current value of a @value{GDBN} variable.
21383
79a6e687 21384@subsubheading @value{GDBN} Command
ef21caaf
NR
21385
21386The corresponding @value{GDBN} command is @samp{show}.
21387
21388@subsubheading Example
21389
21390@smallexample
594fe323 21391(gdb)
ef21caaf
NR
21392-gdb-show annotate
21393^done,value="0"
594fe323 21394(gdb)
ef21caaf
NR
21395@end smallexample
21396
21397@c @subheading -gdb-source
21398
21399
21400@subheading The @code{-gdb-version} Command
21401@findex -gdb-version
21402
21403@subsubheading Synopsis
21404
21405@smallexample
21406 -gdb-version
21407@end smallexample
21408
21409Show version information for @value{GDBN}. Used mostly in testing.
21410
21411@subsubheading @value{GDBN} Command
21412
21413The @value{GDBN} equivalent is @samp{show version}. @value{GDBN} by
21414default shows this information when you start an interactive session.
21415
21416@subsubheading Example
21417
21418@c This example modifies the actual output from GDB to avoid overfull
21419@c box in TeX.
21420@smallexample
594fe323 21421(gdb)
ef21caaf
NR
21422-gdb-version
21423~GNU gdb 5.2.1
21424~Copyright 2000 Free Software Foundation, Inc.
21425~GDB is free software, covered by the GNU General Public License, and
21426~you are welcome to change it and/or distribute copies of it under
21427~ certain conditions.
21428~Type "show copying" to see the conditions.
21429~There is absolutely no warranty for GDB. Type "show warranty" for
21430~ details.
21431~This GDB was configured as
21432 "--host=sparc-sun-solaris2.5.1 --target=ppc-eabi".
21433^done
594fe323 21434(gdb)
ef21caaf
NR
21435@end smallexample
21436
084344da
VP
21437@subheading The @code{-list-features} Command
21438@findex -list-features
21439
21440Returns a list of particular features of the MI protocol that
21441this version of gdb implements. A feature can be a command,
21442or a new field in an output of some command, or even an
21443important bugfix. While a frontend can sometimes detect presence
21444of a feature at runtime, it is easier to perform detection at debugger
21445startup.
21446
21447The command returns a list of strings, with each string naming an
21448available feature. Each returned string is just a name, it does not
21449have any internal structure. The list of possible feature names
21450is given below.
21451
21452Example output:
21453
21454@smallexample
21455(gdb) -list-features
21456^done,result=["feature1","feature2"]
21457@end smallexample
21458
21459The current list of features is:
21460
21461@itemize @minus
21462@item
21463@samp{frozen-varobjs}---indicates presence of the
21464@code{-var-set-frozen} command, as well as possible presense of the
21465@code{frozen} field in the output of @code{-varobj-create}.
21466@end itemize
21467
ef21caaf
NR
21468@subheading The @code{-interpreter-exec} Command
21469@findex -interpreter-exec
21470
21471@subheading Synopsis
21472
21473@smallexample
21474-interpreter-exec @var{interpreter} @var{command}
21475@end smallexample
a2c02241 21476@anchor{-interpreter-exec}
ef21caaf
NR
21477
21478Execute the specified @var{command} in the given @var{interpreter}.
21479
21480@subheading @value{GDBN} Command
21481
21482The corresponding @value{GDBN} command is @samp{interpreter-exec}.
21483
21484@subheading Example
21485
21486@smallexample
594fe323 21487(gdb)
ef21caaf
NR
21488-interpreter-exec console "break main"
21489&"During symbol reading, couldn't parse type; debugger out of date?.\n"
21490&"During symbol reading, bad structure-type format.\n"
21491~"Breakpoint 1 at 0x8074fc6: file ../../src/gdb/main.c, line 743.\n"
21492^done
594fe323 21493(gdb)
ef21caaf
NR
21494@end smallexample
21495
21496@subheading The @code{-inferior-tty-set} Command
21497@findex -inferior-tty-set
21498
21499@subheading Synopsis
21500
21501@smallexample
21502-inferior-tty-set /dev/pts/1
21503@end smallexample
21504
21505Set terminal for future runs of the program being debugged.
21506
21507@subheading @value{GDBN} Command
21508
21509The corresponding @value{GDBN} command is @samp{set inferior-tty} /dev/pts/1.
21510
21511@subheading Example
21512
21513@smallexample
594fe323 21514(gdb)
ef21caaf
NR
21515-inferior-tty-set /dev/pts/1
21516^done
594fe323 21517(gdb)
ef21caaf
NR
21518@end smallexample
21519
21520@subheading The @code{-inferior-tty-show} Command
21521@findex -inferior-tty-show
21522
21523@subheading Synopsis
21524
21525@smallexample
21526-inferior-tty-show
21527@end smallexample
21528
21529Show terminal for future runs of program being debugged.
21530
21531@subheading @value{GDBN} Command
21532
21533The corresponding @value{GDBN} command is @samp{show inferior-tty}.
21534
21535@subheading Example
21536
21537@smallexample
594fe323 21538(gdb)
ef21caaf
NR
21539-inferior-tty-set /dev/pts/1
21540^done
594fe323 21541(gdb)
ef21caaf
NR
21542-inferior-tty-show
21543^done,inferior_tty_terminal="/dev/pts/1"
594fe323 21544(gdb)
ef21caaf 21545@end smallexample
922fbb7b 21546
a4eefcd8
NR
21547@subheading The @code{-enable-timings} Command
21548@findex -enable-timings
21549
21550@subheading Synopsis
21551
21552@smallexample
21553-enable-timings [yes | no]
21554@end smallexample
21555
21556Toggle the printing of the wallclock, user and system times for an MI
21557command as a field in its output. This command is to help frontend
21558developers optimize the performance of their code. No argument is
21559equivalent to @samp{yes}.
21560
21561@subheading @value{GDBN} Command
21562
21563No equivalent.
21564
21565@subheading Example
21566
21567@smallexample
21568(gdb)
21569-enable-timings
21570^done
21571(gdb)
21572-break-insert main
21573^done,bkpt=@{number="1",type="breakpoint",disp="keep",enabled="y",
21574addr="0x080484ed",func="main",file="myprog.c",
21575fullname="/home/nickrob/myprog.c",line="73",times="0"@},
21576time=@{wallclock="0.05185",user="0.00800",system="0.00000"@}
21577(gdb)
21578-enable-timings no
21579^done
21580(gdb)
21581-exec-run
21582^running
21583(gdb)
21584*stopped,reason="breakpoint-hit",bkptno="1",thread-id="0",
21585frame=@{addr="0x080484ed",func="main",args=[@{name="argc",value="1"@},
21586@{name="argv",value="0xbfb60364"@}],file="myprog.c",
21587fullname="/home/nickrob/myprog.c",line="73"@}
21588(gdb)
21589@end smallexample
21590
922fbb7b
AC
21591@node Annotations
21592@chapter @value{GDBN} Annotations
21593
086432e2
AC
21594This chapter describes annotations in @value{GDBN}. Annotations were
21595designed to interface @value{GDBN} to graphical user interfaces or other
21596similar programs which want to interact with @value{GDBN} at a
922fbb7b
AC
21597relatively high level.
21598
d3e8051b 21599The annotation mechanism has largely been superseded by @sc{gdb/mi}
086432e2
AC
21600(@pxref{GDB/MI}).
21601
922fbb7b
AC
21602@ignore
21603This is Edition @value{EDITION}, @value{DATE}.
21604@end ignore
21605
21606@menu
21607* Annotations Overview:: What annotations are; the general syntax.
9e6c4bd5 21608* Server Prefix:: Issuing a command without affecting user state.
922fbb7b
AC
21609* Prompting:: Annotations marking @value{GDBN}'s need for input.
21610* Errors:: Annotations for error messages.
922fbb7b
AC
21611* Invalidation:: Some annotations describe things now invalid.
21612* Annotations for Running::
21613 Whether the program is running, how it stopped, etc.
21614* Source Annotations:: Annotations describing source code.
922fbb7b
AC
21615@end menu
21616
21617@node Annotations Overview
21618@section What is an Annotation?
21619@cindex annotations
21620
922fbb7b
AC
21621Annotations start with a newline character, two @samp{control-z}
21622characters, and the name of the annotation. If there is no additional
21623information associated with this annotation, the name of the annotation
21624is followed immediately by a newline. If there is additional
21625information, the name of the annotation is followed by a space, the
21626additional information, and a newline. The additional information
21627cannot contain newline characters.
21628
21629Any output not beginning with a newline and two @samp{control-z}
21630characters denotes literal output from @value{GDBN}. Currently there is
21631no need for @value{GDBN} to output a newline followed by two
21632@samp{control-z} characters, but if there was such a need, the
21633annotations could be extended with an @samp{escape} annotation which
21634means those three characters as output.
21635
086432e2
AC
21636The annotation @var{level}, which is specified using the
21637@option{--annotate} command line option (@pxref{Mode Options}), controls
21638how much information @value{GDBN} prints together with its prompt,
21639values of expressions, source lines, and other types of output. Level 0
d3e8051b 21640is for no annotations, level 1 is for use when @value{GDBN} is run as a
086432e2
AC
21641subprocess of @sc{gnu} Emacs, level 3 is the maximum annotation suitable
21642for programs that control @value{GDBN}, and level 2 annotations have
21643been made obsolete (@pxref{Limitations, , Limitations of the Annotation
09d4efe1
EZ
21644Interface, annotate, GDB's Obsolete Annotations}).
21645
21646@table @code
21647@kindex set annotate
21648@item set annotate @var{level}
e09f16f9 21649The @value{GDBN} command @code{set annotate} sets the level of
09d4efe1 21650annotations to the specified @var{level}.
9c16f35a
EZ
21651
21652@item show annotate
21653@kindex show annotate
21654Show the current annotation level.
09d4efe1
EZ
21655@end table
21656
21657This chapter describes level 3 annotations.
086432e2 21658
922fbb7b
AC
21659A simple example of starting up @value{GDBN} with annotations is:
21660
21661@smallexample
086432e2
AC
21662$ @kbd{gdb --annotate=3}
21663GNU gdb 6.0
21664Copyright 2003 Free Software Foundation, Inc.
922fbb7b
AC
21665GDB is free software, covered by the GNU General Public License,
21666and you are welcome to change it and/or distribute copies of it
21667under certain conditions.
21668Type "show copying" to see the conditions.
21669There is absolutely no warranty for GDB. Type "show warranty"
21670for details.
086432e2 21671This GDB was configured as "i386-pc-linux-gnu"
922fbb7b
AC
21672
21673^Z^Zpre-prompt
f7dc1244 21674(@value{GDBP})
922fbb7b 21675^Z^Zprompt
086432e2 21676@kbd{quit}
922fbb7b
AC
21677
21678^Z^Zpost-prompt
b383017d 21679$
922fbb7b
AC
21680@end smallexample
21681
21682Here @samp{quit} is input to @value{GDBN}; the rest is output from
21683@value{GDBN}. The three lines beginning @samp{^Z^Z} (where @samp{^Z}
21684denotes a @samp{control-z} character) are annotations; the rest is
21685output from @value{GDBN}.
21686
9e6c4bd5
NR
21687@node Server Prefix
21688@section The Server Prefix
21689@cindex server prefix
21690
21691If you prefix a command with @samp{server } then it will not affect
21692the command history, nor will it affect @value{GDBN}'s notion of which
21693command to repeat if @key{RET} is pressed on a line by itself. This
21694means that commands can be run behind a user's back by a front-end in
21695a transparent manner.
21696
21697The server prefix does not affect the recording of values into the value
21698history; to print a value without recording it into the value history,
21699use the @code{output} command instead of the @code{print} command.
21700
922fbb7b
AC
21701@node Prompting
21702@section Annotation for @value{GDBN} Input
21703
21704@cindex annotations for prompts
21705When @value{GDBN} prompts for input, it annotates this fact so it is possible
21706to know when to send output, when the output from a given command is
21707over, etc.
21708
21709Different kinds of input each have a different @dfn{input type}. Each
21710input type has three annotations: a @code{pre-} annotation, which
21711denotes the beginning of any prompt which is being output, a plain
21712annotation, which denotes the end of the prompt, and then a @code{post-}
21713annotation which denotes the end of any echo which may (or may not) be
21714associated with the input. For example, the @code{prompt} input type
21715features the following annotations:
21716
21717@smallexample
21718^Z^Zpre-prompt
21719^Z^Zprompt
21720^Z^Zpost-prompt
21721@end smallexample
21722
21723The input types are
21724
21725@table @code
e5ac9b53
EZ
21726@findex pre-prompt annotation
21727@findex prompt annotation
21728@findex post-prompt annotation
922fbb7b
AC
21729@item prompt
21730When @value{GDBN} is prompting for a command (the main @value{GDBN} prompt).
21731
e5ac9b53
EZ
21732@findex pre-commands annotation
21733@findex commands annotation
21734@findex post-commands annotation
922fbb7b
AC
21735@item commands
21736When @value{GDBN} prompts for a set of commands, like in the @code{commands}
21737command. The annotations are repeated for each command which is input.
21738
e5ac9b53
EZ
21739@findex pre-overload-choice annotation
21740@findex overload-choice annotation
21741@findex post-overload-choice annotation
922fbb7b
AC
21742@item overload-choice
21743When @value{GDBN} wants the user to select between various overloaded functions.
21744
e5ac9b53
EZ
21745@findex pre-query annotation
21746@findex query annotation
21747@findex post-query annotation
922fbb7b
AC
21748@item query
21749When @value{GDBN} wants the user to confirm a potentially dangerous operation.
21750
e5ac9b53
EZ
21751@findex pre-prompt-for-continue annotation
21752@findex prompt-for-continue annotation
21753@findex post-prompt-for-continue annotation
922fbb7b
AC
21754@item prompt-for-continue
21755When @value{GDBN} is asking the user to press return to continue. Note: Don't
21756expect this to work well; instead use @code{set height 0} to disable
21757prompting. This is because the counting of lines is buggy in the
21758presence of annotations.
21759@end table
21760
21761@node Errors
21762@section Errors
21763@cindex annotations for errors, warnings and interrupts
21764
e5ac9b53 21765@findex quit annotation
922fbb7b
AC
21766@smallexample
21767^Z^Zquit
21768@end smallexample
21769
21770This annotation occurs right before @value{GDBN} responds to an interrupt.
21771
e5ac9b53 21772@findex error annotation
922fbb7b
AC
21773@smallexample
21774^Z^Zerror
21775@end smallexample
21776
21777This annotation occurs right before @value{GDBN} responds to an error.
21778
21779Quit and error annotations indicate that any annotations which @value{GDBN} was
21780in the middle of may end abruptly. For example, if a
21781@code{value-history-begin} annotation is followed by a @code{error}, one
21782cannot expect to receive the matching @code{value-history-end}. One
21783cannot expect not to receive it either, however; an error annotation
21784does not necessarily mean that @value{GDBN} is immediately returning all the way
21785to the top level.
21786
e5ac9b53 21787@findex error-begin annotation
922fbb7b
AC
21788A quit or error annotation may be preceded by
21789
21790@smallexample
21791^Z^Zerror-begin
21792@end smallexample
21793
21794Any output between that and the quit or error annotation is the error
21795message.
21796
21797Warning messages are not yet annotated.
21798@c If we want to change that, need to fix warning(), type_error(),
21799@c range_error(), and possibly other places.
21800
922fbb7b
AC
21801@node Invalidation
21802@section Invalidation Notices
21803
21804@cindex annotations for invalidation messages
21805The following annotations say that certain pieces of state may have
21806changed.
21807
21808@table @code
e5ac9b53 21809@findex frames-invalid annotation
922fbb7b
AC
21810@item ^Z^Zframes-invalid
21811
21812The frames (for example, output from the @code{backtrace} command) may
21813have changed.
21814
e5ac9b53 21815@findex breakpoints-invalid annotation
922fbb7b
AC
21816@item ^Z^Zbreakpoints-invalid
21817
21818The breakpoints may have changed. For example, the user just added or
21819deleted a breakpoint.
21820@end table
21821
21822@node Annotations for Running
21823@section Running the Program
21824@cindex annotations for running programs
21825
e5ac9b53
EZ
21826@findex starting annotation
21827@findex stopping annotation
922fbb7b 21828When the program starts executing due to a @value{GDBN} command such as
b383017d 21829@code{step} or @code{continue},
922fbb7b
AC
21830
21831@smallexample
21832^Z^Zstarting
21833@end smallexample
21834
b383017d 21835is output. When the program stops,
922fbb7b
AC
21836
21837@smallexample
21838^Z^Zstopped
21839@end smallexample
21840
21841is output. Before the @code{stopped} annotation, a variety of
21842annotations describe how the program stopped.
21843
21844@table @code
e5ac9b53 21845@findex exited annotation
922fbb7b
AC
21846@item ^Z^Zexited @var{exit-status}
21847The program exited, and @var{exit-status} is the exit status (zero for
21848successful exit, otherwise nonzero).
21849
e5ac9b53
EZ
21850@findex signalled annotation
21851@findex signal-name annotation
21852@findex signal-name-end annotation
21853@findex signal-string annotation
21854@findex signal-string-end annotation
922fbb7b
AC
21855@item ^Z^Zsignalled
21856The program exited with a signal. After the @code{^Z^Zsignalled}, the
21857annotation continues:
21858
21859@smallexample
21860@var{intro-text}
21861^Z^Zsignal-name
21862@var{name}
21863^Z^Zsignal-name-end
21864@var{middle-text}
21865^Z^Zsignal-string
21866@var{string}
21867^Z^Zsignal-string-end
21868@var{end-text}
21869@end smallexample
21870
21871@noindent
21872where @var{name} is the name of the signal, such as @code{SIGILL} or
21873@code{SIGSEGV}, and @var{string} is the explanation of the signal, such
21874as @code{Illegal Instruction} or @code{Segmentation fault}.
21875@var{intro-text}, @var{middle-text}, and @var{end-text} are for the
21876user's benefit and have no particular format.
21877
e5ac9b53 21878@findex signal annotation
922fbb7b
AC
21879@item ^Z^Zsignal
21880The syntax of this annotation is just like @code{signalled}, but @value{GDBN} is
21881just saying that the program received the signal, not that it was
21882terminated with it.
21883
e5ac9b53 21884@findex breakpoint annotation
922fbb7b
AC
21885@item ^Z^Zbreakpoint @var{number}
21886The program hit breakpoint number @var{number}.
21887
e5ac9b53 21888@findex watchpoint annotation
922fbb7b
AC
21889@item ^Z^Zwatchpoint @var{number}
21890The program hit watchpoint number @var{number}.
21891@end table
21892
21893@node Source Annotations
21894@section Displaying Source
21895@cindex annotations for source display
21896
e5ac9b53 21897@findex source annotation
922fbb7b
AC
21898The following annotation is used instead of displaying source code:
21899
21900@smallexample
21901^Z^Zsource @var{filename}:@var{line}:@var{character}:@var{middle}:@var{addr}
21902@end smallexample
21903
21904where @var{filename} is an absolute file name indicating which source
21905file, @var{line} is the line number within that file (where 1 is the
21906first line in the file), @var{character} is the character position
21907within the file (where 0 is the first character in the file) (for most
21908debug formats this will necessarily point to the beginning of a line),
21909@var{middle} is @samp{middle} if @var{addr} is in the middle of the
21910line, or @samp{beg} if @var{addr} is at the beginning of the line, and
21911@var{addr} is the address in the target program associated with the
21912source which is being displayed. @var{addr} is in the form @samp{0x}
21913followed by one or more lowercase hex digits (note that this does not
21914depend on the language).
21915
8e04817f
AC
21916@node GDB Bugs
21917@chapter Reporting Bugs in @value{GDBN}
21918@cindex bugs in @value{GDBN}
21919@cindex reporting bugs in @value{GDBN}
c906108c 21920
8e04817f 21921Your bug reports play an essential role in making @value{GDBN} reliable.
c906108c 21922
8e04817f
AC
21923Reporting a bug may help you by bringing a solution to your problem, or it
21924may not. But in any case the principal function of a bug report is to help
21925the entire community by making the next version of @value{GDBN} work better. Bug
21926reports are your contribution to the maintenance of @value{GDBN}.
c906108c 21927
8e04817f
AC
21928In order for a bug report to serve its purpose, you must include the
21929information that enables us to fix the bug.
c4555f82
SC
21930
21931@menu
8e04817f
AC
21932* Bug Criteria:: Have you found a bug?
21933* Bug Reporting:: How to report bugs
c4555f82
SC
21934@end menu
21935
8e04817f 21936@node Bug Criteria
79a6e687 21937@section Have You Found a Bug?
8e04817f 21938@cindex bug criteria
c4555f82 21939
8e04817f 21940If you are not sure whether you have found a bug, here are some guidelines:
c4555f82
SC
21941
21942@itemize @bullet
8e04817f
AC
21943@cindex fatal signal
21944@cindex debugger crash
21945@cindex crash of debugger
c4555f82 21946@item
8e04817f
AC
21947If the debugger gets a fatal signal, for any input whatever, that is a
21948@value{GDBN} bug. Reliable debuggers never crash.
21949
21950@cindex error on valid input
21951@item
21952If @value{GDBN} produces an error message for valid input, that is a
21953bug. (Note that if you're cross debugging, the problem may also be
21954somewhere in the connection to the target.)
c4555f82 21955
8e04817f 21956@cindex invalid input
c4555f82 21957@item
8e04817f
AC
21958If @value{GDBN} does not produce an error message for invalid input,
21959that is a bug. However, you should note that your idea of
21960``invalid input'' might be our idea of ``an extension'' or ``support
21961for traditional practice''.
21962
21963@item
21964If you are an experienced user of debugging tools, your suggestions
21965for improvement of @value{GDBN} are welcome in any case.
c4555f82
SC
21966@end itemize
21967
8e04817f 21968@node Bug Reporting
79a6e687 21969@section How to Report Bugs
8e04817f
AC
21970@cindex bug reports
21971@cindex @value{GDBN} bugs, reporting
21972
21973A number of companies and individuals offer support for @sc{gnu} products.
21974If you obtained @value{GDBN} from a support organization, we recommend you
21975contact that organization first.
21976
21977You can find contact information for many support companies and
21978individuals in the file @file{etc/SERVICE} in the @sc{gnu} Emacs
21979distribution.
21980@c should add a web page ref...
21981
129188f6 21982In any event, we also recommend that you submit bug reports for
d3e8051b 21983@value{GDBN}. The preferred method is to submit them directly using
129188f6
AC
21984@uref{http://www.gnu.org/software/gdb/bugs/, @value{GDBN}'s Bugs web
21985page}. Alternatively, the @email{bug-gdb@@gnu.org, e-mail gateway} can
21986be used.
8e04817f
AC
21987
21988@strong{Do not send bug reports to @samp{info-gdb}, or to
21989@samp{help-gdb}, or to any newsgroups.} Most users of @value{GDBN} do
21990not want to receive bug reports. Those that do have arranged to receive
21991@samp{bug-gdb}.
21992
21993The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
21994serves as a repeater. The mailing list and the newsgroup carry exactly
21995the same messages. Often people think of posting bug reports to the
21996newsgroup instead of mailing them. This appears to work, but it has one
21997problem which can be crucial: a newsgroup posting often lacks a mail
21998path back to the sender. Thus, if we need to ask for more information,
21999we may be unable to reach you. For this reason, it is better to send
22000bug reports to the mailing list.
c4555f82 22001
8e04817f
AC
22002The fundamental principle of reporting bugs usefully is this:
22003@strong{report all the facts}. If you are not sure whether to state a
22004fact or leave it out, state it!
c4555f82 22005
8e04817f
AC
22006Often people omit facts because they think they know what causes the
22007problem and assume that some details do not matter. Thus, you might
22008assume that the name of the variable you use in an example does not matter.
22009Well, probably it does not, but one cannot be sure. Perhaps the bug is a
22010stray memory reference which happens to fetch from the location where that
22011name is stored in memory; perhaps, if the name were different, the contents
22012of that location would fool the debugger into doing the right thing despite
22013the bug. Play it safe and give a specific, complete example. That is the
22014easiest thing for you to do, and the most helpful.
c4555f82 22015
8e04817f
AC
22016Keep in mind that the purpose of a bug report is to enable us to fix the
22017bug. It may be that the bug has been reported previously, but neither
22018you nor we can know that unless your bug report is complete and
22019self-contained.
c4555f82 22020
8e04817f
AC
22021Sometimes people give a few sketchy facts and ask, ``Does this ring a
22022bell?'' Those bug reports are useless, and we urge everyone to
22023@emph{refuse to respond to them} except to chide the sender to report
22024bugs properly.
22025
22026To enable us to fix the bug, you should include all these things:
c4555f82
SC
22027
22028@itemize @bullet
22029@item
8e04817f
AC
22030The version of @value{GDBN}. @value{GDBN} announces it if you start
22031with no arguments; you can also print it at any time using @code{show
22032version}.
c4555f82 22033
8e04817f
AC
22034Without this, we will not know whether there is any point in looking for
22035the bug in the current version of @value{GDBN}.
c4555f82
SC
22036
22037@item
8e04817f
AC
22038The type of machine you are using, and the operating system name and
22039version number.
c4555f82
SC
22040
22041@item
c1468174 22042What compiler (and its version) was used to compile @value{GDBN}---e.g.@:
8e04817f 22043``@value{GCC}--2.8.1''.
c4555f82
SC
22044
22045@item
8e04817f 22046What compiler (and its version) was used to compile the program you are
c1468174 22047debugging---e.g.@: ``@value{GCC}--2.8.1'', or ``HP92453-01 A.10.32.03 HP
3f94c067
BW
22048C Compiler''. For @value{NGCC}, you can say @kbd{@value{GCC} --version}
22049to get this information; for other compilers, see the documentation for
22050those compilers.
c4555f82 22051
8e04817f
AC
22052@item
22053The command arguments you gave the compiler to compile your example and
22054observe the bug. For example, did you use @samp{-O}? To guarantee
22055you will not omit something important, list them all. A copy of the
22056Makefile (or the output from make) is sufficient.
c4555f82 22057
8e04817f
AC
22058If we were to try to guess the arguments, we would probably guess wrong
22059and then we might not encounter the bug.
c4555f82 22060
8e04817f
AC
22061@item
22062A complete input script, and all necessary source files, that will
22063reproduce the bug.
c4555f82 22064
8e04817f
AC
22065@item
22066A description of what behavior you observe that you believe is
22067incorrect. For example, ``It gets a fatal signal.''
c4555f82 22068
8e04817f
AC
22069Of course, if the bug is that @value{GDBN} gets a fatal signal, then we
22070will certainly notice it. But if the bug is incorrect output, we might
22071not notice unless it is glaringly wrong. You might as well not give us
22072a chance to make a mistake.
c4555f82 22073
8e04817f
AC
22074Even if the problem you experience is a fatal signal, you should still
22075say so explicitly. Suppose something strange is going on, such as, your
22076copy of @value{GDBN} is out of synch, or you have encountered a bug in
22077the C library on your system. (This has happened!) Your copy might
22078crash and ours would not. If you told us to expect a crash, then when
22079ours fails to crash, we would know that the bug was not happening for
22080us. If you had not told us to expect a crash, then we would not be able
22081to draw any conclusion from our observations.
c4555f82 22082
e0c07bf0
MC
22083@pindex script
22084@cindex recording a session script
22085To collect all this information, you can use a session recording program
22086such as @command{script}, which is available on many Unix systems.
22087Just run your @value{GDBN} session inside @command{script} and then
22088include the @file{typescript} file with your bug report.
22089
22090Another way to record a @value{GDBN} session is to run @value{GDBN}
22091inside Emacs and then save the entire buffer to a file.
22092
8e04817f
AC
22093@item
22094If you wish to suggest changes to the @value{GDBN} source, send us context
22095diffs. If you even discuss something in the @value{GDBN} source, refer to
22096it by context, not by line number.
c4555f82 22097
8e04817f
AC
22098The line numbers in our development sources will not match those in your
22099sources. Your line numbers would convey no useful information to us.
c4555f82 22100
8e04817f 22101@end itemize
c4555f82 22102
8e04817f 22103Here are some things that are not necessary:
c4555f82 22104
8e04817f
AC
22105@itemize @bullet
22106@item
22107A description of the envelope of the bug.
c4555f82 22108
8e04817f
AC
22109Often people who encounter a bug spend a lot of time investigating
22110which changes to the input file will make the bug go away and which
22111changes will not affect it.
c4555f82 22112
8e04817f
AC
22113This is often time consuming and not very useful, because the way we
22114will find the bug is by running a single example under the debugger
22115with breakpoints, not by pure deduction from a series of examples.
22116We recommend that you save your time for something else.
c4555f82 22117
8e04817f
AC
22118Of course, if you can find a simpler example to report @emph{instead}
22119of the original one, that is a convenience for us. Errors in the
22120output will be easier to spot, running under the debugger will take
22121less time, and so on.
c4555f82 22122
8e04817f
AC
22123However, simplification is not vital; if you do not want to do this,
22124report the bug anyway and send us the entire test case you used.
c4555f82 22125
8e04817f
AC
22126@item
22127A patch for the bug.
c4555f82 22128
8e04817f
AC
22129A patch for the bug does help us if it is a good one. But do not omit
22130the necessary information, such as the test case, on the assumption that
22131a patch is all we need. We might see problems with your patch and decide
22132to fix the problem another way, or we might not understand it at all.
c4555f82 22133
8e04817f
AC
22134Sometimes with a program as complicated as @value{GDBN} it is very hard to
22135construct an example that will make the program follow a certain path
22136through the code. If you do not send us the example, we will not be able
22137to construct one, so we will not be able to verify that the bug is fixed.
c4555f82 22138
8e04817f
AC
22139And if we cannot understand what bug you are trying to fix, or why your
22140patch should be an improvement, we will not install it. A test case will
22141help us to understand.
c4555f82 22142
8e04817f
AC
22143@item
22144A guess about what the bug is or what it depends on.
c4555f82 22145
8e04817f
AC
22146Such guesses are usually wrong. Even we cannot guess right about such
22147things without first using the debugger to find the facts.
22148@end itemize
c4555f82 22149
8e04817f
AC
22150@c The readline documentation is distributed with the readline code
22151@c and consists of the two following files:
22152@c rluser.texinfo
22153@c inc-hist.texinfo
22154@c Use -I with makeinfo to point to the appropriate directory,
22155@c environment var TEXINPUTS with TeX.
5bdf8622 22156@include rluser.texi
8e04817f 22157@include inc-hist.texinfo
c4555f82 22158
c4555f82 22159
8e04817f
AC
22160@node Formatting Documentation
22161@appendix Formatting Documentation
c4555f82 22162
8e04817f
AC
22163@cindex @value{GDBN} reference card
22164@cindex reference card
22165The @value{GDBN} 4 release includes an already-formatted reference card, ready
22166for printing with PostScript or Ghostscript, in the @file{gdb}
22167subdirectory of the main source directory@footnote{In
22168@file{gdb-@value{GDBVN}/gdb/refcard.ps} of the version @value{GDBVN}
22169release.}. If you can use PostScript or Ghostscript with your printer,
22170you can print the reference card immediately with @file{refcard.ps}.
c4555f82 22171
8e04817f
AC
22172The release also includes the source for the reference card. You
22173can format it, using @TeX{}, by typing:
c4555f82 22174
474c8240 22175@smallexample
8e04817f 22176make refcard.dvi
474c8240 22177@end smallexample
c4555f82 22178
8e04817f
AC
22179The @value{GDBN} reference card is designed to print in @dfn{landscape}
22180mode on US ``letter'' size paper;
22181that is, on a sheet 11 inches wide by 8.5 inches
22182high. You will need to specify this form of printing as an option to
22183your @sc{dvi} output program.
c4555f82 22184
8e04817f 22185@cindex documentation
c4555f82 22186
8e04817f
AC
22187All the documentation for @value{GDBN} comes as part of the machine-readable
22188distribution. The documentation is written in Texinfo format, which is
22189a documentation system that uses a single source file to produce both
22190on-line information and a printed manual. You can use one of the Info
22191formatting commands to create the on-line version of the documentation
22192and @TeX{} (or @code{texi2roff}) to typeset the printed version.
c4555f82 22193
8e04817f
AC
22194@value{GDBN} includes an already formatted copy of the on-line Info
22195version of this manual in the @file{gdb} subdirectory. The main Info
22196file is @file{gdb-@value{GDBVN}/gdb/gdb.info}, and it refers to
22197subordinate files matching @samp{gdb.info*} in the same directory. If
22198necessary, you can print out these files, or read them with any editor;
22199but they are easier to read using the @code{info} subsystem in @sc{gnu}
22200Emacs or the standalone @code{info} program, available as part of the
22201@sc{gnu} Texinfo distribution.
c4555f82 22202
8e04817f
AC
22203If you want to format these Info files yourself, you need one of the
22204Info formatting programs, such as @code{texinfo-format-buffer} or
22205@code{makeinfo}.
c4555f82 22206
8e04817f
AC
22207If you have @code{makeinfo} installed, and are in the top level
22208@value{GDBN} source directory (@file{gdb-@value{GDBVN}}, in the case of
22209version @value{GDBVN}), you can make the Info file by typing:
c4555f82 22210
474c8240 22211@smallexample
8e04817f
AC
22212cd gdb
22213make gdb.info
474c8240 22214@end smallexample
c4555f82 22215
8e04817f
AC
22216If you want to typeset and print copies of this manual, you need @TeX{},
22217a program to print its @sc{dvi} output files, and @file{texinfo.tex}, the
22218Texinfo definitions file.
c4555f82 22219
8e04817f
AC
22220@TeX{} is a typesetting program; it does not print files directly, but
22221produces output files called @sc{dvi} files. To print a typeset
22222document, you need a program to print @sc{dvi} files. If your system
22223has @TeX{} installed, chances are it has such a program. The precise
22224command to use depends on your system; @kbd{lpr -d} is common; another
22225(for PostScript devices) is @kbd{dvips}. The @sc{dvi} print command may
22226require a file name without any extension or a @samp{.dvi} extension.
c4555f82 22227
8e04817f
AC
22228@TeX{} also requires a macro definitions file called
22229@file{texinfo.tex}. This file tells @TeX{} how to typeset a document
22230written in Texinfo format. On its own, @TeX{} cannot either read or
22231typeset a Texinfo file. @file{texinfo.tex} is distributed with GDB
22232and is located in the @file{gdb-@var{version-number}/texinfo}
22233directory.
c4555f82 22234
8e04817f 22235If you have @TeX{} and a @sc{dvi} printer program installed, you can
d3e8051b 22236typeset and print this manual. First switch to the @file{gdb}
8e04817f
AC
22237subdirectory of the main source directory (for example, to
22238@file{gdb-@value{GDBVN}/gdb}) and type:
c4555f82 22239
474c8240 22240@smallexample
8e04817f 22241make gdb.dvi
474c8240 22242@end smallexample
c4555f82 22243
8e04817f 22244Then give @file{gdb.dvi} to your @sc{dvi} printing program.
c4555f82 22245
8e04817f
AC
22246@node Installing GDB
22247@appendix Installing @value{GDBN}
8e04817f 22248@cindex installation
c4555f82 22249
7fa2210b
DJ
22250@menu
22251* Requirements:: Requirements for building @value{GDBN}
db2e3e2e 22252* Running Configure:: Invoking the @value{GDBN} @file{configure} script
7fa2210b
DJ
22253* Separate Objdir:: Compiling @value{GDBN} in another directory
22254* Config Names:: Specifying names for hosts and targets
22255* Configure Options:: Summary of options for configure
22256@end menu
22257
22258@node Requirements
79a6e687 22259@section Requirements for Building @value{GDBN}
7fa2210b
DJ
22260@cindex building @value{GDBN}, requirements for
22261
22262Building @value{GDBN} requires various tools and packages to be available.
22263Other packages will be used only if they are found.
22264
79a6e687 22265@heading Tools/Packages Necessary for Building @value{GDBN}
7fa2210b
DJ
22266@table @asis
22267@item ISO C90 compiler
22268@value{GDBN} is written in ISO C90. It should be buildable with any
22269working C90 compiler, e.g.@: GCC.
22270
22271@end table
22272
79a6e687 22273@heading Tools/Packages Optional for Building @value{GDBN}
7fa2210b
DJ
22274@table @asis
22275@item Expat
123dc839 22276@anchor{Expat}
7fa2210b
DJ
22277@value{GDBN} can use the Expat XML parsing library. This library may be
22278included with your operating system distribution; if it is not, you
22279can get the latest version from @url{http://expat.sourceforge.net}.
db2e3e2e 22280The @file{configure} script will search for this library in several
7fa2210b
DJ
22281standard locations; if it is installed in an unusual path, you can
22282use the @option{--with-libexpat-prefix} option to specify its location.
22283
9cceb671
DJ
22284Expat is used for:
22285
22286@itemize @bullet
22287@item
22288Remote protocol memory maps (@pxref{Memory Map Format})
22289@item
22290Target descriptions (@pxref{Target Descriptions})
22291@item
22292Remote shared library lists (@pxref{Library List Format})
22293@item
22294MS-Windows shared libraries (@pxref{Shared Libraries})
22295@end itemize
7fa2210b
DJ
22296
22297@end table
22298
22299@node Running Configure
db2e3e2e 22300@section Invoking the @value{GDBN} @file{configure} Script
7fa2210b 22301@cindex configuring @value{GDBN}
db2e3e2e 22302@value{GDBN} comes with a @file{configure} script that automates the process
8e04817f
AC
22303of preparing @value{GDBN} for installation; you can then use @code{make} to
22304build the @code{gdb} program.
22305@iftex
22306@c irrelevant in info file; it's as current as the code it lives with.
22307@footnote{If you have a more recent version of @value{GDBN} than @value{GDBVN},
22308look at the @file{README} file in the sources; we may have improved the
22309installation procedures since publishing this manual.}
22310@end iftex
c4555f82 22311
8e04817f
AC
22312The @value{GDBN} distribution includes all the source code you need for
22313@value{GDBN} in a single directory, whose name is usually composed by
22314appending the version number to @samp{gdb}.
c4555f82 22315
8e04817f
AC
22316For example, the @value{GDBN} version @value{GDBVN} distribution is in the
22317@file{gdb-@value{GDBVN}} directory. That directory contains:
c4555f82 22318
8e04817f
AC
22319@table @code
22320@item gdb-@value{GDBVN}/configure @r{(and supporting files)}
22321script for configuring @value{GDBN} and all its supporting libraries
c4555f82 22322
8e04817f
AC
22323@item gdb-@value{GDBVN}/gdb
22324the source specific to @value{GDBN} itself
c4555f82 22325
8e04817f
AC
22326@item gdb-@value{GDBVN}/bfd
22327source for the Binary File Descriptor library
c906108c 22328
8e04817f
AC
22329@item gdb-@value{GDBVN}/include
22330@sc{gnu} include files
c906108c 22331
8e04817f
AC
22332@item gdb-@value{GDBVN}/libiberty
22333source for the @samp{-liberty} free software library
c906108c 22334
8e04817f
AC
22335@item gdb-@value{GDBVN}/opcodes
22336source for the library of opcode tables and disassemblers
c906108c 22337
8e04817f
AC
22338@item gdb-@value{GDBVN}/readline
22339source for the @sc{gnu} command-line interface
c906108c 22340
8e04817f
AC
22341@item gdb-@value{GDBVN}/glob
22342source for the @sc{gnu} filename pattern-matching subroutine
c906108c 22343
8e04817f
AC
22344@item gdb-@value{GDBVN}/mmalloc
22345source for the @sc{gnu} memory-mapped malloc package
22346@end table
c906108c 22347
db2e3e2e 22348The simplest way to configure and build @value{GDBN} is to run @file{configure}
8e04817f
AC
22349from the @file{gdb-@var{version-number}} source directory, which in
22350this example is the @file{gdb-@value{GDBVN}} directory.
c906108c 22351
8e04817f 22352First switch to the @file{gdb-@var{version-number}} source directory
db2e3e2e 22353if you are not already in it; then run @file{configure}. Pass the
8e04817f
AC
22354identifier for the platform on which @value{GDBN} will run as an
22355argument.
c906108c 22356
8e04817f 22357For example:
c906108c 22358
474c8240 22359@smallexample
8e04817f
AC
22360cd gdb-@value{GDBVN}
22361./configure @var{host}
22362make
474c8240 22363@end smallexample
c906108c 22364
8e04817f
AC
22365@noindent
22366where @var{host} is an identifier such as @samp{sun4} or
22367@samp{decstation}, that identifies the platform where @value{GDBN} will run.
db2e3e2e 22368(You can often leave off @var{host}; @file{configure} tries to guess the
8e04817f 22369correct value by examining your system.)
c906108c 22370
8e04817f
AC
22371Running @samp{configure @var{host}} and then running @code{make} builds the
22372@file{bfd}, @file{readline}, @file{mmalloc}, and @file{libiberty}
22373libraries, then @code{gdb} itself. The configured source files, and the
22374binaries, are left in the corresponding source directories.
c906108c 22375
8e04817f 22376@need 750
db2e3e2e 22377@file{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
8e04817f
AC
22378system does not recognize this automatically when you run a different
22379shell, you may need to run @code{sh} on it explicitly:
c906108c 22380
474c8240 22381@smallexample
8e04817f 22382sh configure @var{host}
474c8240 22383@end smallexample
c906108c 22384
db2e3e2e 22385If you run @file{configure} from a directory that contains source
8e04817f 22386directories for multiple libraries or programs, such as the
db2e3e2e
BW
22387@file{gdb-@value{GDBVN}} source directory for version @value{GDBVN},
22388@file{configure}
8e04817f
AC
22389creates configuration files for every directory level underneath (unless
22390you tell it not to, with the @samp{--norecursion} option).
22391
db2e3e2e 22392You should run the @file{configure} script from the top directory in the
94e91d6d 22393source tree, the @file{gdb-@var{version-number}} directory. If you run
db2e3e2e 22394@file{configure} from one of the subdirectories, you will configure only
94e91d6d 22395that subdirectory. That is usually not what you want. In particular,
db2e3e2e 22396if you run the first @file{configure} from the @file{gdb} subdirectory
94e91d6d
MC
22397of the @file{gdb-@var{version-number}} directory, you will omit the
22398configuration of @file{bfd}, @file{readline}, and other sibling
22399directories of the @file{gdb} subdirectory. This leads to build errors
22400about missing include files such as @file{bfd/bfd.h}.
c906108c 22401
8e04817f
AC
22402You can install @code{@value{GDBP}} anywhere; it has no hardwired paths.
22403However, you should make sure that the shell on your path (named by
22404the @samp{SHELL} environment variable) is publicly readable. Remember
22405that @value{GDBN} uses the shell to start your program---some systems refuse to
22406let @value{GDBN} debug child processes whose programs are not readable.
c906108c 22407
8e04817f 22408@node Separate Objdir
79a6e687 22409@section Compiling @value{GDBN} in Another Directory
c906108c 22410
8e04817f
AC
22411If you want to run @value{GDBN} versions for several host or target machines,
22412you need a different @code{gdb} compiled for each combination of
db2e3e2e 22413host and target. @file{configure} is designed to make this easy by
8e04817f
AC
22414allowing you to generate each configuration in a separate subdirectory,
22415rather than in the source directory. If your @code{make} program
22416handles the @samp{VPATH} feature (@sc{gnu} @code{make} does), running
22417@code{make} in each of these directories builds the @code{gdb}
22418program specified there.
c906108c 22419
db2e3e2e 22420To build @code{gdb} in a separate directory, run @file{configure}
8e04817f 22421with the @samp{--srcdir} option to specify where to find the source.
db2e3e2e
BW
22422(You also need to specify a path to find @file{configure}
22423itself from your working directory. If the path to @file{configure}
8e04817f
AC
22424would be the same as the argument to @samp{--srcdir}, you can leave out
22425the @samp{--srcdir} option; it is assumed.)
c906108c 22426
8e04817f
AC
22427For example, with version @value{GDBVN}, you can build @value{GDBN} in a
22428separate directory for a Sun 4 like this:
c906108c 22429
474c8240 22430@smallexample
8e04817f
AC
22431@group
22432cd gdb-@value{GDBVN}
22433mkdir ../gdb-sun4
22434cd ../gdb-sun4
22435../gdb-@value{GDBVN}/configure sun4
22436make
22437@end group
474c8240 22438@end smallexample
c906108c 22439
db2e3e2e 22440When @file{configure} builds a configuration using a remote source
8e04817f
AC
22441directory, it creates a tree for the binaries with the same structure
22442(and using the same names) as the tree under the source directory. In
22443the example, you'd find the Sun 4 library @file{libiberty.a} in the
22444directory @file{gdb-sun4/libiberty}, and @value{GDBN} itself in
22445@file{gdb-sun4/gdb}.
c906108c 22446
94e91d6d
MC
22447Make sure that your path to the @file{configure} script has just one
22448instance of @file{gdb} in it. If your path to @file{configure} looks
22449like @file{../gdb-@value{GDBVN}/gdb/configure}, you are configuring only
22450one subdirectory of @value{GDBN}, not the whole package. This leads to
22451build errors about missing include files such as @file{bfd/bfd.h}.
22452
8e04817f
AC
22453One popular reason to build several @value{GDBN} configurations in separate
22454directories is to configure @value{GDBN} for cross-compiling (where
22455@value{GDBN} runs on one machine---the @dfn{host}---while debugging
22456programs that run on another machine---the @dfn{target}).
22457You specify a cross-debugging target by
db2e3e2e 22458giving the @samp{--target=@var{target}} option to @file{configure}.
c906108c 22459
8e04817f
AC
22460When you run @code{make} to build a program or library, you must run
22461it in a configured directory---whatever directory you were in when you
db2e3e2e 22462called @file{configure} (or one of its subdirectories).
c906108c 22463
db2e3e2e 22464The @code{Makefile} that @file{configure} generates in each source
8e04817f
AC
22465directory also runs recursively. If you type @code{make} in a source
22466directory such as @file{gdb-@value{GDBVN}} (or in a separate configured
22467directory configured with @samp{--srcdir=@var{dirname}/gdb-@value{GDBVN}}), you
22468will build all the required libraries, and then build GDB.
c906108c 22469
8e04817f
AC
22470When you have multiple hosts or targets configured in separate
22471directories, you can run @code{make} on them in parallel (for example,
22472if they are NFS-mounted on each of the hosts); they will not interfere
22473with each other.
c906108c 22474
8e04817f 22475@node Config Names
79a6e687 22476@section Specifying Names for Hosts and Targets
c906108c 22477
db2e3e2e 22478The specifications used for hosts and targets in the @file{configure}
8e04817f
AC
22479script are based on a three-part naming scheme, but some short predefined
22480aliases are also supported. The full naming scheme encodes three pieces
22481of information in the following pattern:
c906108c 22482
474c8240 22483@smallexample
8e04817f 22484@var{architecture}-@var{vendor}-@var{os}
474c8240 22485@end smallexample
c906108c 22486
8e04817f
AC
22487For example, you can use the alias @code{sun4} as a @var{host} argument,
22488or as the value for @var{target} in a @code{--target=@var{target}}
22489option. The equivalent full name is @samp{sparc-sun-sunos4}.
c906108c 22490
db2e3e2e 22491The @file{configure} script accompanying @value{GDBN} does not provide
8e04817f 22492any query facility to list all supported host and target names or
db2e3e2e 22493aliases. @file{configure} calls the Bourne shell script
8e04817f
AC
22494@code{config.sub} to map abbreviations to full names; you can read the
22495script, if you wish, or you can use it to test your guesses on
22496abbreviations---for example:
c906108c 22497
8e04817f
AC
22498@smallexample
22499% sh config.sub i386-linux
22500i386-pc-linux-gnu
22501% sh config.sub alpha-linux
22502alpha-unknown-linux-gnu
22503% sh config.sub hp9k700
22504hppa1.1-hp-hpux
22505% sh config.sub sun4
22506sparc-sun-sunos4.1.1
22507% sh config.sub sun3
22508m68k-sun-sunos4.1.1
22509% sh config.sub i986v
22510Invalid configuration `i986v': machine `i986v' not recognized
22511@end smallexample
c906108c 22512
8e04817f
AC
22513@noindent
22514@code{config.sub} is also distributed in the @value{GDBN} source
22515directory (@file{gdb-@value{GDBVN}}, for version @value{GDBVN}).
d700128c 22516
8e04817f 22517@node Configure Options
db2e3e2e 22518@section @file{configure} Options
c906108c 22519
db2e3e2e
BW
22520Here is a summary of the @file{configure} options and arguments that
22521are most often useful for building @value{GDBN}. @file{configure} also has
8e04817f 22522several other options not listed here. @inforef{What Configure
db2e3e2e 22523Does,,configure.info}, for a full explanation of @file{configure}.
c906108c 22524
474c8240 22525@smallexample
8e04817f
AC
22526configure @r{[}--help@r{]}
22527 @r{[}--prefix=@var{dir}@r{]}
22528 @r{[}--exec-prefix=@var{dir}@r{]}
22529 @r{[}--srcdir=@var{dirname}@r{]}
22530 @r{[}--norecursion@r{]} @r{[}--rm@r{]}
22531 @r{[}--target=@var{target}@r{]}
22532 @var{host}
474c8240 22533@end smallexample
c906108c 22534
8e04817f
AC
22535@noindent
22536You may introduce options with a single @samp{-} rather than
22537@samp{--} if you prefer; but you may abbreviate option names if you use
22538@samp{--}.
c906108c 22539
8e04817f
AC
22540@table @code
22541@item --help
db2e3e2e 22542Display a quick summary of how to invoke @file{configure}.
c906108c 22543
8e04817f
AC
22544@item --prefix=@var{dir}
22545Configure the source to install programs and files under directory
22546@file{@var{dir}}.
c906108c 22547
8e04817f
AC
22548@item --exec-prefix=@var{dir}
22549Configure the source to install programs under directory
22550@file{@var{dir}}.
c906108c 22551
8e04817f
AC
22552@c avoid splitting the warning from the explanation:
22553@need 2000
22554@item --srcdir=@var{dirname}
22555@strong{Warning: using this option requires @sc{gnu} @code{make}, or another
22556@code{make} that implements the @code{VPATH} feature.}@*
22557Use this option to make configurations in directories separate from the
22558@value{GDBN} source directories. Among other things, you can use this to
22559build (or maintain) several configurations simultaneously, in separate
db2e3e2e 22560directories. @file{configure} writes configuration-specific files in
8e04817f 22561the current directory, but arranges for them to use the source in the
db2e3e2e 22562directory @var{dirname}. @file{configure} creates directories under
8e04817f
AC
22563the working directory in parallel to the source directories below
22564@var{dirname}.
c906108c 22565
8e04817f 22566@item --norecursion
db2e3e2e 22567Configure only the directory level where @file{configure} is executed; do not
8e04817f 22568propagate configuration to subdirectories.
c906108c 22569
8e04817f
AC
22570@item --target=@var{target}
22571Configure @value{GDBN} for cross-debugging programs running on the specified
22572@var{target}. Without this option, @value{GDBN} is configured to debug
22573programs that run on the same machine (@var{host}) as @value{GDBN} itself.
c906108c 22574
8e04817f 22575There is no convenient way to generate a list of all available targets.
c906108c 22576
8e04817f
AC
22577@item @var{host} @dots{}
22578Configure @value{GDBN} to run on the specified @var{host}.
c906108c 22579
8e04817f
AC
22580There is no convenient way to generate a list of all available hosts.
22581@end table
c906108c 22582
8e04817f
AC
22583There are many other options available as well, but they are generally
22584needed for special purposes only.
c906108c 22585
8e04817f
AC
22586@node Maintenance Commands
22587@appendix Maintenance Commands
22588@cindex maintenance commands
22589@cindex internal commands
c906108c 22590
8e04817f 22591In addition to commands intended for @value{GDBN} users, @value{GDBN}
09d4efe1
EZ
22592includes a number of commands intended for @value{GDBN} developers,
22593that are not documented elsewhere in this manual. These commands are
da316a69
EZ
22594provided here for reference. (For commands that turn on debugging
22595messages, see @ref{Debugging Output}.)
c906108c 22596
8e04817f 22597@table @code
09d4efe1
EZ
22598@kindex maint agent
22599@item maint agent @var{expression}
22600Translate the given @var{expression} into remote agent bytecodes.
22601This command is useful for debugging the Agent Expression mechanism
22602(@pxref{Agent Expressions}).
22603
8e04817f
AC
22604@kindex maint info breakpoints
22605@item @anchor{maint info breakpoints}maint info breakpoints
22606Using the same format as @samp{info breakpoints}, display both the
22607breakpoints you've set explicitly, and those @value{GDBN} is using for
22608internal purposes. Internal breakpoints are shown with negative
22609breakpoint numbers. The type column identifies what kind of breakpoint
22610is shown:
c906108c 22611
8e04817f
AC
22612@table @code
22613@item breakpoint
22614Normal, explicitly set breakpoint.
c906108c 22615
8e04817f
AC
22616@item watchpoint
22617Normal, explicitly set watchpoint.
c906108c 22618
8e04817f
AC
22619@item longjmp
22620Internal breakpoint, used to handle correctly stepping through
22621@code{longjmp} calls.
c906108c 22622
8e04817f
AC
22623@item longjmp resume
22624Internal breakpoint at the target of a @code{longjmp}.
c906108c 22625
8e04817f
AC
22626@item until
22627Temporary internal breakpoint used by the @value{GDBN} @code{until} command.
c906108c 22628
8e04817f
AC
22629@item finish
22630Temporary internal breakpoint used by the @value{GDBN} @code{finish} command.
c906108c 22631
8e04817f
AC
22632@item shlib events
22633Shared library events.
c906108c 22634
8e04817f 22635@end table
c906108c 22636
09d4efe1
EZ
22637@kindex maint check-symtabs
22638@item maint check-symtabs
22639Check the consistency of psymtabs and symtabs.
22640
22641@kindex maint cplus first_component
22642@item maint cplus first_component @var{name}
22643Print the first C@t{++} class/namespace component of @var{name}.
22644
22645@kindex maint cplus namespace
22646@item maint cplus namespace
22647Print the list of possible C@t{++} namespaces.
22648
22649@kindex maint demangle
22650@item maint demangle @var{name}
d3e8051b 22651Demangle a C@t{++} or Objective-C mangled @var{name}.
09d4efe1
EZ
22652
22653@kindex maint deprecate
22654@kindex maint undeprecate
22655@cindex deprecated commands
22656@item maint deprecate @var{command} @r{[}@var{replacement}@r{]}
22657@itemx maint undeprecate @var{command}
22658Deprecate or undeprecate the named @var{command}. Deprecated commands
22659cause @value{GDBN} to issue a warning when you use them. The optional
22660argument @var{replacement} says which newer command should be used in
22661favor of the deprecated one; if it is given, @value{GDBN} will mention
22662the replacement as part of the warning.
22663
22664@kindex maint dump-me
22665@item maint dump-me
721c2651 22666@cindex @code{SIGQUIT} signal, dump core of @value{GDBN}
09d4efe1 22667Cause a fatal signal in the debugger and force it to dump its core.
721c2651
EZ
22668This is supported only on systems which support aborting a program
22669with the @code{SIGQUIT} signal.
09d4efe1 22670
8d30a00d
AC
22671@kindex maint internal-error
22672@kindex maint internal-warning
09d4efe1
EZ
22673@item maint internal-error @r{[}@var{message-text}@r{]}
22674@itemx maint internal-warning @r{[}@var{message-text}@r{]}
8d30a00d
AC
22675Cause @value{GDBN} to call the internal function @code{internal_error}
22676or @code{internal_warning} and hence behave as though an internal error
22677or internal warning has been detected. In addition to reporting the
22678internal problem, these functions give the user the opportunity to
22679either quit @value{GDBN} or create a core file of the current
22680@value{GDBN} session.
22681
09d4efe1
EZ
22682These commands take an optional parameter @var{message-text} that is
22683used as the text of the error or warning message.
22684
d3e8051b 22685Here's an example of using @code{internal-error}:
09d4efe1 22686
8d30a00d 22687@smallexample
f7dc1244 22688(@value{GDBP}) @kbd{maint internal-error testing, 1, 2}
8d30a00d
AC
22689@dots{}/maint.c:121: internal-error: testing, 1, 2
22690A problem internal to GDB has been detected. Further
22691debugging may prove unreliable.
22692Quit this debugging session? (y or n) @kbd{n}
22693Create a core file? (y or n) @kbd{n}
f7dc1244 22694(@value{GDBP})
8d30a00d
AC
22695@end smallexample
22696
09d4efe1
EZ
22697@kindex maint packet
22698@item maint packet @var{text}
22699If @value{GDBN} is talking to an inferior via the serial protocol,
22700then this command sends the string @var{text} to the inferior, and
22701displays the response packet. @value{GDBN} supplies the initial
22702@samp{$} character, the terminating @samp{#} character, and the
22703checksum.
22704
22705@kindex maint print architecture
22706@item maint print architecture @r{[}@var{file}@r{]}
22707Print the entire architecture configuration. The optional argument
22708@var{file} names the file where the output goes.
8d30a00d 22709
81adfced
DJ
22710@kindex maint print c-tdesc
22711@item maint print c-tdesc
22712Print the current target description (@pxref{Target Descriptions}) as
22713a C source file. The created source file can be used in @value{GDBN}
22714when an XML parser is not available to parse the description.
22715
00905d52
AC
22716@kindex maint print dummy-frames
22717@item maint print dummy-frames
00905d52
AC
22718Prints the contents of @value{GDBN}'s internal dummy-frame stack.
22719
22720@smallexample
f7dc1244 22721(@value{GDBP}) @kbd{b add}
00905d52 22722@dots{}
f7dc1244 22723(@value{GDBP}) @kbd{print add(2,3)}
00905d52
AC
22724Breakpoint 2, add (a=2, b=3) at @dots{}
2272558 return (a + b);
22726The program being debugged stopped while in a function called from GDB.
22727@dots{}
f7dc1244 22728(@value{GDBP}) @kbd{maint print dummy-frames}
00905d52
AC
227290x1a57c80: pc=0x01014068 fp=0x0200bddc sp=0x0200bdd6
22730 top=0x0200bdd4 id=@{stack=0x200bddc,code=0x101405c@}
22731 call_lo=0x01014000 call_hi=0x01014001
f7dc1244 22732(@value{GDBP})
00905d52
AC
22733@end smallexample
22734
22735Takes an optional file parameter.
22736
0680b120
AC
22737@kindex maint print registers
22738@kindex maint print raw-registers
22739@kindex maint print cooked-registers
617073a9 22740@kindex maint print register-groups
09d4efe1
EZ
22741@item maint print registers @r{[}@var{file}@r{]}
22742@itemx maint print raw-registers @r{[}@var{file}@r{]}
22743@itemx maint print cooked-registers @r{[}@var{file}@r{]}
22744@itemx maint print register-groups @r{[}@var{file}@r{]}
0680b120
AC
22745Print @value{GDBN}'s internal register data structures.
22746
617073a9
AC
22747The command @code{maint print raw-registers} includes the contents of
22748the raw register cache; the command @code{maint print cooked-registers}
22749includes the (cooked) value of all registers; and the command
22750@code{maint print register-groups} includes the groups that each
22751register is a member of. @xref{Registers,, Registers, gdbint,
22752@value{GDBN} Internals}.
0680b120 22753
09d4efe1
EZ
22754These commands take an optional parameter, a file name to which to
22755write the information.
0680b120 22756
617073a9 22757@kindex maint print reggroups
09d4efe1
EZ
22758@item maint print reggroups @r{[}@var{file}@r{]}
22759Print @value{GDBN}'s internal register group data structures. The
22760optional argument @var{file} tells to what file to write the
22761information.
617073a9 22762
09d4efe1 22763The register groups info looks like this:
617073a9
AC
22764
22765@smallexample
f7dc1244 22766(@value{GDBP}) @kbd{maint print reggroups}
b383017d
RM
22767 Group Type
22768 general user
22769 float user
22770 all user
22771 vector user
22772 system user
22773 save internal
22774 restore internal
617073a9
AC
22775@end smallexample
22776
09d4efe1
EZ
22777@kindex flushregs
22778@item flushregs
22779This command forces @value{GDBN} to flush its internal register cache.
22780
22781@kindex maint print objfiles
22782@cindex info for known object files
22783@item maint print objfiles
22784Print a dump of all known object files. For each object file, this
22785command prints its name, address in memory, and all of its psymtabs
22786and symtabs.
22787
22788@kindex maint print statistics
22789@cindex bcache statistics
22790@item maint print statistics
22791This command prints, for each object file in the program, various data
22792about that object file followed by the byte cache (@dfn{bcache})
22793statistics for the object file. The objfile data includes the number
d3e8051b 22794of minimal, partial, full, and stabs symbols, the number of types
09d4efe1
EZ
22795defined by the objfile, the number of as yet unexpanded psym tables,
22796the number of line tables and string tables, and the amount of memory
22797used by the various tables. The bcache statistics include the counts,
22798sizes, and counts of duplicates of all and unique objects, max,
22799average, and median entry size, total memory used and its overhead and
22800savings, and various measures of the hash table size and chain
22801lengths.
22802
c7ba131e
JB
22803@kindex maint print target-stack
22804@cindex target stack description
22805@item maint print target-stack
22806A @dfn{target} is an interface between the debugger and a particular
22807kind of file or process. Targets can be stacked in @dfn{strata},
22808so that more than one target can potentially respond to a request.
22809In particular, memory accesses will walk down the stack of targets
22810until they find a target that is interested in handling that particular
22811address.
22812
22813This command prints a short description of each layer that was pushed on
22814the @dfn{target stack}, starting from the top layer down to the bottom one.
22815
09d4efe1
EZ
22816@kindex maint print type
22817@cindex type chain of a data type
22818@item maint print type @var{expr}
22819Print the type chain for a type specified by @var{expr}. The argument
22820can be either a type name or a symbol. If it is a symbol, the type of
22821that symbol is described. The type chain produced by this command is
22822a recursive definition of the data type as stored in @value{GDBN}'s
22823data structures, including its flags and contained types.
22824
22825@kindex maint set dwarf2 max-cache-age
22826@kindex maint show dwarf2 max-cache-age
22827@item maint set dwarf2 max-cache-age
22828@itemx maint show dwarf2 max-cache-age
22829Control the DWARF 2 compilation unit cache.
22830
22831@cindex DWARF 2 compilation units cache
22832In object files with inter-compilation-unit references, such as those
22833produced by the GCC option @samp{-feliminate-dwarf2-dups}, the DWARF 2
22834reader needs to frequently refer to previously read compilation units.
22835This setting controls how long a compilation unit will remain in the
22836cache if it is not referenced. A higher limit means that cached
22837compilation units will be stored in memory longer, and more total
22838memory will be used. Setting it to zero disables caching, which will
22839slow down @value{GDBN} startup, but reduce memory consumption.
22840
e7ba9c65
DJ
22841@kindex maint set profile
22842@kindex maint show profile
22843@cindex profiling GDB
22844@item maint set profile
22845@itemx maint show profile
22846Control profiling of @value{GDBN}.
22847
22848Profiling will be disabled until you use the @samp{maint set profile}
22849command to enable it. When you enable profiling, the system will begin
22850collecting timing and execution count data; when you disable profiling or
22851exit @value{GDBN}, the results will be written to a log file. Remember that
22852if you use profiling, @value{GDBN} will overwrite the profiling log file
22853(often called @file{gmon.out}). If you have a record of important profiling
22854data in a @file{gmon.out} file, be sure to move it to a safe location.
22855
22856Configuring with @samp{--enable-profiling} arranges for @value{GDBN} to be
b383017d 22857compiled with the @samp{-pg} compiler option.
e7ba9c65 22858
09d4efe1
EZ
22859@kindex maint show-debug-regs
22860@cindex x86 hardware debug registers
22861@item maint show-debug-regs
22862Control whether to show variables that mirror the x86 hardware debug
22863registers. Use @code{ON} to enable, @code{OFF} to disable. If
3f94c067 22864enabled, the debug registers values are shown when @value{GDBN} inserts or
09d4efe1
EZ
22865removes a hardware breakpoint or watchpoint, and when the inferior
22866triggers a hardware-assisted breakpoint or watchpoint.
22867
22868@kindex maint space
22869@cindex memory used by commands
22870@item maint space
22871Control whether to display memory usage for each command. If set to a
22872nonzero value, @value{GDBN} will display how much memory each command
22873took, following the command's own output. This can also be requested
22874by invoking @value{GDBN} with the @option{--statistics} command-line
22875switch (@pxref{Mode Options}).
22876
22877@kindex maint time
22878@cindex time of command execution
22879@item maint time
22880Control whether to display the execution time for each command. If
22881set to a nonzero value, @value{GDBN} will display how much time it
22882took to execute each command, following the command's own output.
22883This can also be requested by invoking @value{GDBN} with the
22884@option{--statistics} command-line switch (@pxref{Mode Options}).
22885
22886@kindex maint translate-address
22887@item maint translate-address @r{[}@var{section}@r{]} @var{addr}
22888Find the symbol stored at the location specified by the address
22889@var{addr} and an optional section name @var{section}. If found,
22890@value{GDBN} prints the name of the closest symbol and an offset from
22891the symbol's location to the specified address. This is similar to
22892the @code{info address} command (@pxref{Symbols}), except that this
22893command also allows to find symbols in other sections.
ae038cb0 22894
8e04817f 22895@end table
c906108c 22896
9c16f35a
EZ
22897The following command is useful for non-interactive invocations of
22898@value{GDBN}, such as in the test suite.
22899
22900@table @code
22901@item set watchdog @var{nsec}
22902@kindex set watchdog
22903@cindex watchdog timer
22904@cindex timeout for commands
22905Set the maximum number of seconds @value{GDBN} will wait for the
22906target operation to finish. If this time expires, @value{GDBN}
22907reports and error and the command is aborted.
22908
22909@item show watchdog
22910Show the current setting of the target wait timeout.
22911@end table
c906108c 22912
e0ce93ac 22913@node Remote Protocol
8e04817f 22914@appendix @value{GDBN} Remote Serial Protocol
c906108c 22915
ee2d5c50
AC
22916@menu
22917* Overview::
22918* Packets::
22919* Stop Reply Packets::
22920* General Query Packets::
22921* Register Packet Format::
9d29849a 22922* Tracepoint Packets::
9a6253be 22923* Interrupts::
ee2d5c50 22924* Examples::
79a6e687 22925* File-I/O Remote Protocol Extension::
cfa9d6d9 22926* Library List Format::
79a6e687 22927* Memory Map Format::
ee2d5c50
AC
22928@end menu
22929
22930@node Overview
22931@section Overview
22932
8e04817f
AC
22933There may be occasions when you need to know something about the
22934protocol---for example, if there is only one serial port to your target
22935machine, you might want your program to do something special if it
22936recognizes a packet meant for @value{GDBN}.
c906108c 22937
d2c6833e 22938In the examples below, @samp{->} and @samp{<-} are used to indicate
bf06d120 22939transmitted and received data, respectively.
c906108c 22940
8e04817f
AC
22941@cindex protocol, @value{GDBN} remote serial
22942@cindex serial protocol, @value{GDBN} remote
22943@cindex remote serial protocol
22944All @value{GDBN} commands and responses (other than acknowledgments) are
22945sent as a @var{packet}. A @var{packet} is introduced with the character
22946@samp{$}, the actual @var{packet-data}, and the terminating character
22947@samp{#} followed by a two-digit @var{checksum}:
c906108c 22948
474c8240 22949@smallexample
8e04817f 22950@code{$}@var{packet-data}@code{#}@var{checksum}
474c8240 22951@end smallexample
8e04817f 22952@noindent
c906108c 22953
8e04817f
AC
22954@cindex checksum, for @value{GDBN} remote
22955@noindent
22956The two-digit @var{checksum} is computed as the modulo 256 sum of all
22957characters between the leading @samp{$} and the trailing @samp{#} (an
22958eight bit unsigned checksum).
c906108c 22959
8e04817f
AC
22960Implementors should note that prior to @value{GDBN} 5.0 the protocol
22961specification also included an optional two-digit @var{sequence-id}:
c906108c 22962
474c8240 22963@smallexample
8e04817f 22964@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
474c8240 22965@end smallexample
c906108c 22966
8e04817f
AC
22967@cindex sequence-id, for @value{GDBN} remote
22968@noindent
22969That @var{sequence-id} was appended to the acknowledgment. @value{GDBN}
22970has never output @var{sequence-id}s. Stubs that handle packets added
22971since @value{GDBN} 5.0 must not accept @var{sequence-id}.
c906108c 22972
8e04817f
AC
22973@cindex acknowledgment, for @value{GDBN} remote
22974When either the host or the target machine receives a packet, the first
22975response expected is an acknowledgment: either @samp{+} (to indicate
22976the package was received correctly) or @samp{-} (to request
22977retransmission):
c906108c 22978
474c8240 22979@smallexample
d2c6833e
AC
22980-> @code{$}@var{packet-data}@code{#}@var{checksum}
22981<- @code{+}
474c8240 22982@end smallexample
8e04817f 22983@noindent
53a5351d 22984
8e04817f
AC
22985The host (@value{GDBN}) sends @var{command}s, and the target (the
22986debugging stub incorporated in your program) sends a @var{response}. In
22987the case of step and continue @var{command}s, the response is only sent
22988when the operation has completed (the target has again stopped).
c906108c 22989
8e04817f
AC
22990@var{packet-data} consists of a sequence of characters with the
22991exception of @samp{#} and @samp{$} (see @samp{X} packet for additional
22992exceptions).
c906108c 22993
ee2d5c50 22994@cindex remote protocol, field separator
0876f84a 22995Fields within the packet should be separated using @samp{,} @samp{;} or
8e04817f 22996@samp{:}. Except where otherwise noted all numbers are represented in
ee2d5c50 22997@sc{hex} with leading zeros suppressed.
c906108c 22998
8e04817f
AC
22999Implementors should note that prior to @value{GDBN} 5.0, the character
23000@samp{:} could not appear as the third character in a packet (as it
23001would potentially conflict with the @var{sequence-id}).
c906108c 23002
0876f84a
DJ
23003@cindex remote protocol, binary data
23004@anchor{Binary Data}
23005Binary data in most packets is encoded either as two hexadecimal
23006digits per byte of binary data. This allowed the traditional remote
23007protocol to work over connections which were only seven-bit clean.
23008Some packets designed more recently assume an eight-bit clean
23009connection, and use a more efficient encoding to send and receive
23010binary data.
23011
23012The binary data representation uses @code{7d} (@sc{ascii} @samp{@}})
23013as an escape character. Any escaped byte is transmitted as the escape
23014character followed by the original character XORed with @code{0x20}.
23015For example, the byte @code{0x7d} would be transmitted as the two
23016bytes @code{0x7d 0x5d}. The bytes @code{0x23} (@sc{ascii} @samp{#}),
23017@code{0x24} (@sc{ascii} @samp{$}), and @code{0x7d} (@sc{ascii}
23018@samp{@}}) must always be escaped. Responses sent by the stub
23019must also escape @code{0x2a} (@sc{ascii} @samp{*}), so that it
23020is not interpreted as the start of a run-length encoded sequence
23021(described next).
23022
8e04817f
AC
23023Response @var{data} can be run-length encoded to save space. A @samp{*}
23024means that the next character is an @sc{ascii} encoding giving a repeat count
23025which stands for that many repetitions of the character preceding the
23026@samp{*}. The encoding is @code{n+29}, yielding a printable character
23027where @code{n >=3} (which is where rle starts to win). The printable
23028characters @samp{$}, @samp{#}, @samp{+} and @samp{-} or with a numeric
23029value greater than 126 should not be used.
c906108c 23030
8e04817f 23031So:
474c8240 23032@smallexample
8e04817f 23033"@code{0* }"
474c8240 23034@end smallexample
8e04817f
AC
23035@noindent
23036means the same as "0000".
c906108c 23037
8e04817f
AC
23038The error response returned for some packets includes a two character
23039error number. That number is not well defined.
c906108c 23040
f8da2bff 23041@cindex empty response, for unsupported packets
8e04817f
AC
23042For any @var{command} not supported by the stub, an empty response
23043(@samp{$#00}) should be returned. That way it is possible to extend the
23044protocol. A newer @value{GDBN} can tell if a packet is supported based
23045on that response.
c906108c 23046
b383017d
RM
23047A stub is required to support the @samp{g}, @samp{G}, @samp{m}, @samp{M},
23048@samp{c}, and @samp{s} @var{command}s. All other @var{command}s are
8e04817f 23049optional.
c906108c 23050
ee2d5c50
AC
23051@node Packets
23052@section Packets
23053
23054The following table provides a complete list of all currently defined
23055@var{command}s and their corresponding response @var{data}.
79a6e687 23056@xref{File-I/O Remote Protocol Extension}, for details about the File
9c16f35a 23057I/O extension of the remote protocol.
ee2d5c50 23058
b8ff78ce
JB
23059Each packet's description has a template showing the packet's overall
23060syntax, followed by an explanation of the packet's meaning. We
23061include spaces in some of the templates for clarity; these are not
23062part of the packet's syntax. No @value{GDBN} packet uses spaces to
23063separate its components. For example, a template like @samp{foo
23064@var{bar} @var{baz}} describes a packet beginning with the three ASCII
23065bytes @samp{foo}, followed by a @var{bar}, followed directly by a
3f94c067 23066@var{baz}. @value{GDBN} does not transmit a space character between the
b8ff78ce
JB
23067@samp{foo} and the @var{bar}, or between the @var{bar} and the
23068@var{baz}.
23069
8ffe2530
JB
23070Note that all packet forms beginning with an upper- or lower-case
23071letter, other than those described here, are reserved for future use.
23072
b8ff78ce 23073Here are the packet descriptions.
ee2d5c50 23074
b8ff78ce 23075@table @samp
ee2d5c50 23076
b8ff78ce
JB
23077@item !
23078@cindex @samp{!} packet
8e04817f
AC
23079Enable extended mode. In extended mode, the remote server is made
23080persistent. The @samp{R} packet is used to restart the program being
23081debugged.
ee2d5c50
AC
23082
23083Reply:
23084@table @samp
23085@item OK
8e04817f 23086The remote target both supports and has enabled extended mode.
ee2d5c50 23087@end table
c906108c 23088
b8ff78ce
JB
23089@item ?
23090@cindex @samp{?} packet
ee2d5c50
AC
23091Indicate the reason the target halted. The reply is the same as for
23092step and continue.
c906108c 23093
ee2d5c50
AC
23094Reply:
23095@xref{Stop Reply Packets}, for the reply specifications.
23096
b8ff78ce
JB
23097@item A @var{arglen},@var{argnum},@var{arg},@dots{}
23098@cindex @samp{A} packet
23099Initialized @code{argv[]} array passed into program. @var{arglen}
23100specifies the number of bytes in the hex encoded byte stream
23101@var{arg}. See @code{gdbserver} for more details.
ee2d5c50
AC
23102
23103Reply:
23104@table @samp
23105@item OK
b8ff78ce
JB
23106The arguments were set.
23107@item E @var{NN}
23108An error occurred.
ee2d5c50
AC
23109@end table
23110
b8ff78ce
JB
23111@item b @var{baud}
23112@cindex @samp{b} packet
23113(Don't use this packet; its behavior is not well-defined.)
ee2d5c50
AC
23114Change the serial line speed to @var{baud}.
23115
23116JTC: @emph{When does the transport layer state change? When it's
23117received, or after the ACK is transmitted. In either case, there are
23118problems if the command or the acknowledgment packet is dropped.}
23119
23120Stan: @emph{If people really wanted to add something like this, and get
23121it working for the first time, they ought to modify ser-unix.c to send
23122some kind of out-of-band message to a specially-setup stub and have the
23123switch happen "in between" packets, so that from remote protocol's point
23124of view, nothing actually happened.}
23125
b8ff78ce
JB
23126@item B @var{addr},@var{mode}
23127@cindex @samp{B} packet
8e04817f 23128Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
2f870471
AC
23129breakpoint at @var{addr}.
23130
b8ff78ce 23131Don't use this packet. Use the @samp{Z} and @samp{z} packets instead
2f870471 23132(@pxref{insert breakpoint or watchpoint packet}).
c906108c 23133
4f553f88 23134@item c @r{[}@var{addr}@r{]}
b8ff78ce
JB
23135@cindex @samp{c} packet
23136Continue. @var{addr} is address to resume. If @var{addr} is omitted,
23137resume at current address.
c906108c 23138
ee2d5c50
AC
23139Reply:
23140@xref{Stop Reply Packets}, for the reply specifications.
23141
4f553f88 23142@item C @var{sig}@r{[};@var{addr}@r{]}
b8ff78ce 23143@cindex @samp{C} packet
8e04817f 23144Continue with signal @var{sig} (hex signal number). If
b8ff78ce 23145@samp{;@var{addr}} is omitted, resume at same address.
c906108c 23146
ee2d5c50
AC
23147Reply:
23148@xref{Stop Reply Packets}, for the reply specifications.
c906108c 23149
b8ff78ce
JB
23150@item d
23151@cindex @samp{d} packet
ee2d5c50
AC
23152Toggle debug flag.
23153
b8ff78ce
JB
23154Don't use this packet; instead, define a general set packet
23155(@pxref{General Query Packets}).
ee2d5c50 23156
b8ff78ce
JB
23157@item D
23158@cindex @samp{D} packet
ee2d5c50 23159Detach @value{GDBN} from the remote system. Sent to the remote target
07f31aa6 23160before @value{GDBN} disconnects via the @code{detach} command.
ee2d5c50
AC
23161
23162Reply:
23163@table @samp
10fac096
NW
23164@item OK
23165for success
b8ff78ce 23166@item E @var{NN}
10fac096 23167for an error
ee2d5c50 23168@end table
c906108c 23169
b8ff78ce
JB
23170@item F @var{RC},@var{EE},@var{CF};@var{XX}
23171@cindex @samp{F} packet
23172A reply from @value{GDBN} to an @samp{F} packet sent by the target.
23173This is part of the File-I/O protocol extension. @xref{File-I/O
79a6e687 23174Remote Protocol Extension}, for the specification.
ee2d5c50 23175
b8ff78ce 23176@item g
ee2d5c50 23177@anchor{read registers packet}
b8ff78ce 23178@cindex @samp{g} packet
ee2d5c50
AC
23179Read general registers.
23180
23181Reply:
23182@table @samp
23183@item @var{XX@dots{}}
8e04817f
AC
23184Each byte of register data is described by two hex digits. The bytes
23185with the register are transmitted in target byte order. The size of
b8ff78ce 23186each register and their position within the @samp{g} packet are
4a9bb1df
UW
23187determined by the @value{GDBN} internal gdbarch functions
23188@code{DEPRECATED_REGISTER_RAW_SIZE} and @code{gdbarch_register_name}. The
b8ff78ce
JB
23189specification of several standard @samp{g} packets is specified below.
23190@item E @var{NN}
ee2d5c50
AC
23191for an error.
23192@end table
c906108c 23193
b8ff78ce
JB
23194@item G @var{XX@dots{}}
23195@cindex @samp{G} packet
23196Write general registers. @xref{read registers packet}, for a
23197description of the @var{XX@dots{}} data.
ee2d5c50
AC
23198
23199Reply:
23200@table @samp
23201@item OK
23202for success
b8ff78ce 23203@item E @var{NN}
ee2d5c50
AC
23204for an error
23205@end table
23206
b8ff78ce
JB
23207@item H @var{c} @var{t}
23208@cindex @samp{H} packet
8e04817f 23209Set thread for subsequent operations (@samp{m}, @samp{M}, @samp{g},
ee2d5c50
AC
23210@samp{G}, et.al.). @var{c} depends on the operation to be performed: it
23211should be @samp{c} for step and continue operations, @samp{g} for other
b8ff78ce
JB
23212operations. The thread designator @var{t} may be @samp{-1}, meaning all
23213the threads, a thread number, or @samp{0} which means pick any thread.
ee2d5c50
AC
23214
23215Reply:
23216@table @samp
23217@item OK
23218for success
b8ff78ce 23219@item E @var{NN}
ee2d5c50
AC
23220for an error
23221@end table
c906108c 23222
8e04817f
AC
23223@c FIXME: JTC:
23224@c 'H': How restrictive (or permissive) is the thread model. If a
23225@c thread is selected and stopped, are other threads allowed
23226@c to continue to execute? As I mentioned above, I think the
23227@c semantics of each command when a thread is selected must be
23228@c described. For example:
23229@c
23230@c 'g': If the stub supports threads and a specific thread is
23231@c selected, returns the register block from that thread;
23232@c otherwise returns current registers.
23233@c
23234@c 'G' If the stub supports threads and a specific thread is
23235@c selected, sets the registers of the register block of
23236@c that thread; otherwise sets current registers.
c906108c 23237
b8ff78ce 23238@item i @r{[}@var{addr}@r{[},@var{nnn}@r{]]}
ee2d5c50 23239@anchor{cycle step packet}
b8ff78ce
JB
23240@cindex @samp{i} packet
23241Step the remote target by a single clock cycle. If @samp{,@var{nnn}} is
8e04817f
AC
23242present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
23243step starting at that address.
c906108c 23244
b8ff78ce
JB
23245@item I
23246@cindex @samp{I} packet
23247Signal, then cycle step. @xref{step with signal packet}. @xref{cycle
23248step packet}.
ee2d5c50 23249
b8ff78ce
JB
23250@item k
23251@cindex @samp{k} packet
23252Kill request.
c906108c 23253
ac282366 23254FIXME: @emph{There is no description of how to operate when a specific
ee2d5c50
AC
23255thread context has been selected (i.e.@: does 'k' kill only that
23256thread?)}.
c906108c 23257
b8ff78ce
JB
23258@item m @var{addr},@var{length}
23259@cindex @samp{m} packet
8e04817f 23260Read @var{length} bytes of memory starting at address @var{addr}.
fb031cdf
JB
23261Note that @var{addr} may not be aligned to any particular boundary.
23262
23263The stub need not use any particular size or alignment when gathering
23264data from memory for the response; even if @var{addr} is word-aligned
23265and @var{length} is a multiple of the word size, the stub is free to
23266use byte accesses, or not. For this reason, this packet may not be
23267suitable for accessing memory-mapped I/O devices.
c43c5473
JB
23268@cindex alignment of remote memory accesses
23269@cindex size of remote memory accesses
23270@cindex memory, alignment and size of remote accesses
c906108c 23271
ee2d5c50
AC
23272Reply:
23273@table @samp
23274@item @var{XX@dots{}}
599b237a 23275Memory contents; each byte is transmitted as a two-digit hexadecimal
b8ff78ce
JB
23276number. The reply may contain fewer bytes than requested if the
23277server was able to read only part of the region of memory.
23278@item E @var{NN}
ee2d5c50
AC
23279@var{NN} is errno
23280@end table
23281
b8ff78ce
JB
23282@item M @var{addr},@var{length}:@var{XX@dots{}}
23283@cindex @samp{M} packet
8e04817f 23284Write @var{length} bytes of memory starting at address @var{addr}.
b8ff78ce 23285@var{XX@dots{}} is the data; each byte is transmitted as a two-digit
599b237a 23286hexadecimal number.
ee2d5c50
AC
23287
23288Reply:
23289@table @samp
23290@item OK
23291for success
b8ff78ce 23292@item E @var{NN}
8e04817f
AC
23293for an error (this includes the case where only part of the data was
23294written).
ee2d5c50 23295@end table
c906108c 23296
b8ff78ce
JB
23297@item p @var{n}
23298@cindex @samp{p} packet
23299Read the value of register @var{n}; @var{n} is in hex.
2e868123
AC
23300@xref{read registers packet}, for a description of how the returned
23301register value is encoded.
ee2d5c50
AC
23302
23303Reply:
23304@table @samp
2e868123
AC
23305@item @var{XX@dots{}}
23306the register's value
b8ff78ce 23307@item E @var{NN}
2e868123
AC
23308for an error
23309@item
23310Indicating an unrecognized @var{query}.
ee2d5c50
AC
23311@end table
23312
b8ff78ce 23313@item P @var{n@dots{}}=@var{r@dots{}}
ee2d5c50 23314@anchor{write register packet}
b8ff78ce
JB
23315@cindex @samp{P} packet
23316Write register @var{n@dots{}} with value @var{r@dots{}}. The register
599b237a 23317number @var{n} is in hexadecimal, and @var{r@dots{}} contains two hex
8e04817f 23318digits for each byte in the register (target byte order).
c906108c 23319
ee2d5c50
AC
23320Reply:
23321@table @samp
23322@item OK
23323for success
b8ff78ce 23324@item E @var{NN}
ee2d5c50
AC
23325for an error
23326@end table
23327
5f3bebba
JB
23328@item q @var{name} @var{params}@dots{}
23329@itemx Q @var{name} @var{params}@dots{}
b8ff78ce 23330@cindex @samp{q} packet
b8ff78ce 23331@cindex @samp{Q} packet
5f3bebba
JB
23332General query (@samp{q}) and set (@samp{Q}). These packets are
23333described fully in @ref{General Query Packets}.
c906108c 23334
b8ff78ce
JB
23335@item r
23336@cindex @samp{r} packet
8e04817f 23337Reset the entire system.
c906108c 23338
b8ff78ce 23339Don't use this packet; use the @samp{R} packet instead.
ee2d5c50 23340
b8ff78ce
JB
23341@item R @var{XX}
23342@cindex @samp{R} packet
8e04817f
AC
23343Restart the program being debugged. @var{XX}, while needed, is ignored.
23344This packet is only available in extended mode.
ee2d5c50 23345
8e04817f 23346The @samp{R} packet has no reply.
ee2d5c50 23347
4f553f88 23348@item s @r{[}@var{addr}@r{]}
b8ff78ce
JB
23349@cindex @samp{s} packet
23350Single step. @var{addr} is the address at which to resume. If
23351@var{addr} is omitted, resume at same address.
c906108c 23352
ee2d5c50
AC
23353Reply:
23354@xref{Stop Reply Packets}, for the reply specifications.
23355
4f553f88 23356@item S @var{sig}@r{[};@var{addr}@r{]}
ee2d5c50 23357@anchor{step with signal packet}
b8ff78ce
JB
23358@cindex @samp{S} packet
23359Step with signal. This is analogous to the @samp{C} packet, but
23360requests a single-step, rather than a normal resumption of execution.
c906108c 23361
ee2d5c50
AC
23362Reply:
23363@xref{Stop Reply Packets}, for the reply specifications.
23364
b8ff78ce
JB
23365@item t @var{addr}:@var{PP},@var{MM}
23366@cindex @samp{t} packet
8e04817f 23367Search backwards starting at address @var{addr} for a match with pattern
ee2d5c50
AC
23368@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4 bytes.
23369@var{addr} must be at least 3 digits.
c906108c 23370
b8ff78ce
JB
23371@item T @var{XX}
23372@cindex @samp{T} packet
ee2d5c50 23373Find out if the thread XX is alive.
c906108c 23374
ee2d5c50
AC
23375Reply:
23376@table @samp
23377@item OK
23378thread is still alive
b8ff78ce 23379@item E @var{NN}
ee2d5c50
AC
23380thread is dead
23381@end table
23382
b8ff78ce
JB
23383@item v
23384Packets starting with @samp{v} are identified by a multi-letter name,
23385up to the first @samp{;} or @samp{?} (or the end of the packet).
86d30acc 23386
b8ff78ce
JB
23387@item vCont@r{[};@var{action}@r{[}:@var{tid}@r{]]}@dots{}
23388@cindex @samp{vCont} packet
23389Resume the inferior, specifying different actions for each thread.
86d30acc
DJ
23390If an action is specified with no @var{tid}, then it is applied to any
23391threads that don't have a specific action specified; if no default action is
23392specified then other threads should remain stopped. Specifying multiple
23393default actions is an error; specifying no actions is also an error.
23394Thread IDs are specified in hexadecimal. Currently supported actions are:
23395
b8ff78ce 23396@table @samp
86d30acc
DJ
23397@item c
23398Continue.
b8ff78ce 23399@item C @var{sig}
86d30acc
DJ
23400Continue with signal @var{sig}. @var{sig} should be two hex digits.
23401@item s
23402Step.
b8ff78ce 23403@item S @var{sig}
86d30acc
DJ
23404Step with signal @var{sig}. @var{sig} should be two hex digits.
23405@end table
23406
23407The optional @var{addr} argument normally associated with these packets is
b8ff78ce 23408not supported in @samp{vCont}.
86d30acc
DJ
23409
23410Reply:
23411@xref{Stop Reply Packets}, for the reply specifications.
23412
b8ff78ce
JB
23413@item vCont?
23414@cindex @samp{vCont?} packet
d3e8051b 23415Request a list of actions supported by the @samp{vCont} packet.
86d30acc
DJ
23416
23417Reply:
23418@table @samp
b8ff78ce
JB
23419@item vCont@r{[};@var{action}@dots{}@r{]}
23420The @samp{vCont} packet is supported. Each @var{action} is a supported
23421command in the @samp{vCont} packet.
86d30acc 23422@item
b8ff78ce 23423The @samp{vCont} packet is not supported.
86d30acc 23424@end table
ee2d5c50 23425
68437a39
DJ
23426@item vFlashErase:@var{addr},@var{length}
23427@cindex @samp{vFlashErase} packet
23428Direct the stub to erase @var{length} bytes of flash starting at
23429@var{addr}. The region may enclose any number of flash blocks, but
23430its start and end must fall on block boundaries, as indicated by the
79a6e687
BW
23431flash block size appearing in the memory map (@pxref{Memory Map
23432Format}). @value{GDBN} groups flash memory programming operations
68437a39
DJ
23433together, and sends a @samp{vFlashDone} request after each group; the
23434stub is allowed to delay erase operation until the @samp{vFlashDone}
23435packet is received.
23436
23437Reply:
23438@table @samp
23439@item OK
23440for success
23441@item E @var{NN}
23442for an error
23443@end table
23444
23445@item vFlashWrite:@var{addr}:@var{XX@dots{}}
23446@cindex @samp{vFlashWrite} packet
23447Direct the stub to write data to flash address @var{addr}. The data
23448is passed in binary form using the same encoding as for the @samp{X}
23449packet (@pxref{Binary Data}). The memory ranges specified by
23450@samp{vFlashWrite} packets preceding a @samp{vFlashDone} packet must
23451not overlap, and must appear in order of increasing addresses
23452(although @samp{vFlashErase} packets for higher addresses may already
23453have been received; the ordering is guaranteed only between
23454@samp{vFlashWrite} packets). If a packet writes to an address that was
23455neither erased by a preceding @samp{vFlashErase} packet nor by some other
23456target-specific method, the results are unpredictable.
23457
23458
23459Reply:
23460@table @samp
23461@item OK
23462for success
23463@item E.memtype
23464for vFlashWrite addressing non-flash memory
23465@item E @var{NN}
23466for an error
23467@end table
23468
23469@item vFlashDone
23470@cindex @samp{vFlashDone} packet
23471Indicate to the stub that flash programming operation is finished.
23472The stub is permitted to delay or batch the effects of a group of
23473@samp{vFlashErase} and @samp{vFlashWrite} packets until a
23474@samp{vFlashDone} packet is received. The contents of the affected
23475regions of flash memory are unpredictable until the @samp{vFlashDone}
23476request is completed.
23477
b8ff78ce 23478@item X @var{addr},@var{length}:@var{XX@dots{}}
9a6253be 23479@anchor{X packet}
b8ff78ce
JB
23480@cindex @samp{X} packet
23481Write data to memory, where the data is transmitted in binary.
23482@var{addr} is address, @var{length} is number of bytes,
0876f84a 23483@samp{@var{XX}@dots{}} is binary data (@pxref{Binary Data}).
c906108c 23484
ee2d5c50
AC
23485Reply:
23486@table @samp
23487@item OK
23488for success
b8ff78ce 23489@item E @var{NN}
ee2d5c50
AC
23490for an error
23491@end table
23492
b8ff78ce
JB
23493@item z @var{type},@var{addr},@var{length}
23494@itemx Z @var{type},@var{addr},@var{length}
2f870471 23495@anchor{insert breakpoint or watchpoint packet}
b8ff78ce
JB
23496@cindex @samp{z} packet
23497@cindex @samp{Z} packets
23498Insert (@samp{Z}) or remove (@samp{z}) a @var{type} breakpoint or
2f870471
AC
23499watchpoint starting at address @var{address} and covering the next
23500@var{length} bytes.
ee2d5c50 23501
2f870471
AC
23502Each breakpoint and watchpoint packet @var{type} is documented
23503separately.
23504
512217c7
AC
23505@emph{Implementation notes: A remote target shall return an empty string
23506for an unrecognized breakpoint or watchpoint packet @var{type}. A
23507remote target shall support either both or neither of a given
b8ff78ce 23508@samp{Z@var{type}@dots{}} and @samp{z@var{type}@dots{}} packet pair. To
2f870471
AC
23509avoid potential problems with duplicate packets, the operations should
23510be implemented in an idempotent way.}
23511
b8ff78ce
JB
23512@item z0,@var{addr},@var{length}
23513@itemx Z0,@var{addr},@var{length}
23514@cindex @samp{z0} packet
23515@cindex @samp{Z0} packet
23516Insert (@samp{Z0}) or remove (@samp{z0}) a memory breakpoint at address
23517@var{addr} of size @var{length}.
2f870471
AC
23518
23519A memory breakpoint is implemented by replacing the instruction at
23520@var{addr} with a software breakpoint or trap instruction. The
b8ff78ce 23521@var{length} is used by targets that indicates the size of the
2f870471
AC
23522breakpoint (in bytes) that should be inserted (e.g., the @sc{arm} and
23523@sc{mips} can insert either a 2 or 4 byte breakpoint).
c906108c 23524
2f870471
AC
23525@emph{Implementation note: It is possible for a target to copy or move
23526code that contains memory breakpoints (e.g., when implementing
23527overlays). The behavior of this packet, in the presence of such a
23528target, is not defined.}
c906108c 23529
ee2d5c50
AC
23530Reply:
23531@table @samp
2f870471
AC
23532@item OK
23533success
23534@item
23535not supported
b8ff78ce 23536@item E @var{NN}
ee2d5c50 23537for an error
2f870471
AC
23538@end table
23539
b8ff78ce
JB
23540@item z1,@var{addr},@var{length}
23541@itemx Z1,@var{addr},@var{length}
23542@cindex @samp{z1} packet
23543@cindex @samp{Z1} packet
23544Insert (@samp{Z1}) or remove (@samp{z1}) a hardware breakpoint at
23545address @var{addr} of size @var{length}.
2f870471
AC
23546
23547A hardware breakpoint is implemented using a mechanism that is not
23548dependant on being able to modify the target's memory.
23549
23550@emph{Implementation note: A hardware breakpoint is not affected by code
23551movement.}
23552
23553Reply:
23554@table @samp
ee2d5c50 23555@item OK
2f870471
AC
23556success
23557@item
23558not supported
b8ff78ce 23559@item E @var{NN}
2f870471
AC
23560for an error
23561@end table
23562
b8ff78ce
JB
23563@item z2,@var{addr},@var{length}
23564@itemx Z2,@var{addr},@var{length}
23565@cindex @samp{z2} packet
23566@cindex @samp{Z2} packet
23567Insert (@samp{Z2}) or remove (@samp{z2}) a write watchpoint.
2f870471
AC
23568
23569Reply:
23570@table @samp
23571@item OK
23572success
23573@item
23574not supported
b8ff78ce 23575@item E @var{NN}
2f870471
AC
23576for an error
23577@end table
23578
b8ff78ce
JB
23579@item z3,@var{addr},@var{length}
23580@itemx Z3,@var{addr},@var{length}
23581@cindex @samp{z3} packet
23582@cindex @samp{Z3} packet
23583Insert (@samp{Z3}) or remove (@samp{z3}) a read watchpoint.
2f870471
AC
23584
23585Reply:
23586@table @samp
23587@item OK
23588success
23589@item
23590not supported
b8ff78ce 23591@item E @var{NN}
2f870471
AC
23592for an error
23593@end table
23594
b8ff78ce
JB
23595@item z4,@var{addr},@var{length}
23596@itemx Z4,@var{addr},@var{length}
23597@cindex @samp{z4} packet
23598@cindex @samp{Z4} packet
23599Insert (@samp{Z4}) or remove (@samp{z4}) an access watchpoint.
2f870471
AC
23600
23601Reply:
23602@table @samp
23603@item OK
23604success
23605@item
23606not supported
b8ff78ce 23607@item E @var{NN}
2f870471 23608for an error
ee2d5c50
AC
23609@end table
23610
23611@end table
c906108c 23612
ee2d5c50
AC
23613@node Stop Reply Packets
23614@section Stop Reply Packets
23615@cindex stop reply packets
c906108c 23616
8e04817f
AC
23617The @samp{C}, @samp{c}, @samp{S}, @samp{s} and @samp{?} packets can
23618receive any of the below as a reply. In the case of the @samp{C},
23619@samp{c}, @samp{S} and @samp{s} packets, that reply is only returned
b8ff78ce 23620when the target halts. In the below the exact meaning of @dfn{signal
89be2091
DJ
23621number} is defined by the header @file{include/gdb/signals.h} in the
23622@value{GDBN} source code.
c906108c 23623
b8ff78ce
JB
23624As in the description of request packets, we include spaces in the
23625reply templates for clarity; these are not part of the reply packet's
23626syntax. No @value{GDBN} stop reply packet uses spaces to separate its
23627components.
c906108c 23628
b8ff78ce 23629@table @samp
ee2d5c50 23630
b8ff78ce 23631@item S @var{AA}
599b237a 23632The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23633number). This is equivalent to a @samp{T} response with no
23634@var{n}:@var{r} pairs.
c906108c 23635
b8ff78ce
JB
23636@item T @var{AA} @var{n1}:@var{r1};@var{n2}:@var{r2};@dots{}
23637@cindex @samp{T} packet reply
599b237a 23638The program received signal number @var{AA} (a two-digit hexadecimal
940178d3
JB
23639number). This is equivalent to an @samp{S} response, except that the
23640@samp{@var{n}:@var{r}} pairs can carry values of important registers
23641and other information directly in the stop reply packet, reducing
23642round-trip latency. Single-step and breakpoint traps are reported
23643this way. Each @samp{@var{n}:@var{r}} pair is interpreted as follows:
cfa9d6d9
DJ
23644
23645@itemize @bullet
b8ff78ce 23646@item
599b237a 23647If @var{n} is a hexadecimal number, it is a register number, and the
b8ff78ce
JB
23648corresponding @var{r} gives that register's value. @var{r} is a
23649series of bytes in target byte order, with each byte given by a
23650two-digit hex number.
cfa9d6d9 23651
b8ff78ce
JB
23652@item
23653If @var{n} is @samp{thread}, then @var{r} is the thread process ID, in
23654hex.
cfa9d6d9 23655
b8ff78ce 23656@item
cfa9d6d9
DJ
23657If @var{n} is a recognized @dfn{stop reason}, it describes a more
23658specific event that stopped the target. The currently defined stop
23659reasons are listed below. @var{aa} should be @samp{05}, the trap
23660signal. At most one stop reason should be present.
23661
b8ff78ce
JB
23662@item
23663Otherwise, @value{GDBN} should ignore this @samp{@var{n}:@var{r}} pair
23664and go on to the next; this allows us to extend the protocol in the
23665future.
cfa9d6d9
DJ
23666@end itemize
23667
23668The currently defined stop reasons are:
23669
23670@table @samp
23671@item watch
23672@itemx rwatch
23673@itemx awatch
23674The packet indicates a watchpoint hit, and @var{r} is the data address, in
23675hex.
23676
23677@cindex shared library events, remote reply
23678@item library
23679The packet indicates that the loaded libraries have changed.
23680@value{GDBN} should use @samp{qXfer:libraries:read} to fetch a new
23681list of loaded libraries. @var{r} is ignored.
23682@end table
ee2d5c50 23683
b8ff78ce 23684@item W @var{AA}
8e04817f 23685The process exited, and @var{AA} is the exit status. This is only
ee2d5c50
AC
23686applicable to certain targets.
23687
b8ff78ce 23688@item X @var{AA}
8e04817f 23689The process terminated with signal @var{AA}.
c906108c 23690
b8ff78ce
JB
23691@item O @var{XX}@dots{}
23692@samp{@var{XX}@dots{}} is hex encoding of @sc{ascii} data, to be
23693written as the program's console output. This can happen at any time
23694while the program is running and the debugger should continue to wait
23695for @samp{W}, @samp{T}, etc.
0ce1b118 23696
b8ff78ce 23697@item F @var{call-id},@var{parameter}@dots{}
0ce1b118
CV
23698@var{call-id} is the identifier which says which host system call should
23699be called. This is just the name of the function. Translation into the
23700correct system call is only applicable as it's defined in @value{GDBN}.
79a6e687 23701@xref{File-I/O Remote Protocol Extension}, for a list of implemented
0ce1b118
CV
23702system calls.
23703
b8ff78ce
JB
23704@samp{@var{parameter}@dots{}} is a list of parameters as defined for
23705this very system call.
0ce1b118 23706
b8ff78ce
JB
23707The target replies with this packet when it expects @value{GDBN} to
23708call a host system call on behalf of the target. @value{GDBN} replies
23709with an appropriate @samp{F} packet and keeps up waiting for the next
23710reply packet from the target. The latest @samp{C}, @samp{c}, @samp{S}
79a6e687
BW
23711or @samp{s} action is expected to be continued. @xref{File-I/O Remote
23712Protocol Extension}, for more details.
0ce1b118 23713
ee2d5c50
AC
23714@end table
23715
23716@node General Query Packets
23717@section General Query Packets
9c16f35a 23718@cindex remote query requests
c906108c 23719
5f3bebba
JB
23720Packets starting with @samp{q} are @dfn{general query packets};
23721packets starting with @samp{Q} are @dfn{general set packets}. General
23722query and set packets are a semi-unified form for retrieving and
23723sending information to and from the stub.
23724
23725The initial letter of a query or set packet is followed by a name
23726indicating what sort of thing the packet applies to. For example,
23727@value{GDBN} may use a @samp{qSymbol} packet to exchange symbol
23728definitions with the stub. These packet names follow some
23729conventions:
23730
23731@itemize @bullet
23732@item
23733The name must not contain commas, colons or semicolons.
23734@item
23735Most @value{GDBN} query and set packets have a leading upper case
23736letter.
23737@item
23738The names of custom vendor packets should use a company prefix, in
23739lower case, followed by a period. For example, packets designed at
23740the Acme Corporation might begin with @samp{qacme.foo} (for querying
23741foos) or @samp{Qacme.bar} (for setting bars).
23742@end itemize
23743
aa56d27a
JB
23744The name of a query or set packet should be separated from any
23745parameters by a @samp{:}; the parameters themselves should be
23746separated by @samp{,} or @samp{;}. Stubs must be careful to match the
369af7bd
DJ
23747full packet name, and check for a separator or the end of the packet,
23748in case two packet names share a common prefix. New packets should not begin
23749with @samp{qC}, @samp{qP}, or @samp{qL}@footnote{The @samp{qP} and @samp{qL}
23750packets predate these conventions, and have arguments without any terminator
23751for the packet name; we suspect they are in widespread use in places that
23752are difficult to upgrade. The @samp{qC} packet has no arguments, but some
23753existing stubs (e.g.@: RedBoot) are known to not check for the end of the
23754packet.}.
c906108c 23755
b8ff78ce
JB
23756Like the descriptions of the other packets, each description here
23757has a template showing the packet's overall syntax, followed by an
23758explanation of the packet's meaning. We include spaces in some of the
23759templates for clarity; these are not part of the packet's syntax. No
23760@value{GDBN} packet uses spaces to separate its components.
23761
5f3bebba
JB
23762Here are the currently defined query and set packets:
23763
b8ff78ce 23764@table @samp
c906108c 23765
b8ff78ce 23766@item qC
9c16f35a 23767@cindex current thread, remote request
b8ff78ce 23768@cindex @samp{qC} packet
ee2d5c50
AC
23769Return the current thread id.
23770
23771Reply:
23772@table @samp
b8ff78ce 23773@item QC @var{pid}
599b237a 23774Where @var{pid} is an unsigned hexadecimal process id.
b8ff78ce 23775@item @r{(anything else)}
ee2d5c50
AC
23776Any other reply implies the old pid.
23777@end table
23778
b8ff78ce 23779@item qCRC:@var{addr},@var{length}
ff2587ec 23780@cindex CRC of memory block, remote request
b8ff78ce
JB
23781@cindex @samp{qCRC} packet
23782Compute the CRC checksum of a block of memory.
ff2587ec
WZ
23783Reply:
23784@table @samp
b8ff78ce 23785@item E @var{NN}
ff2587ec 23786An error (such as memory fault)
b8ff78ce
JB
23787@item C @var{crc32}
23788The specified memory region's checksum is @var{crc32}.
ff2587ec
WZ
23789@end table
23790
b8ff78ce
JB
23791@item qfThreadInfo
23792@itemx qsThreadInfo
9c16f35a 23793@cindex list active threads, remote request
b8ff78ce
JB
23794@cindex @samp{qfThreadInfo} packet
23795@cindex @samp{qsThreadInfo} packet
23796Obtain a list of all active thread ids from the target (OS). Since there
8e04817f
AC
23797may be too many active threads to fit into one reply packet, this query
23798works iteratively: it may require more than one query/reply sequence to
23799obtain the entire list of threads. The first query of the sequence will
b8ff78ce
JB
23800be the @samp{qfThreadInfo} query; subsequent queries in the
23801sequence will be the @samp{qsThreadInfo} query.
ee2d5c50 23802
b8ff78ce 23803NOTE: This packet replaces the @samp{qL} query (see below).
ee2d5c50
AC
23804
23805Reply:
23806@table @samp
b8ff78ce 23807@item m @var{id}
ee2d5c50 23808A single thread id
b8ff78ce 23809@item m @var{id},@var{id}@dots{}
ee2d5c50 23810a comma-separated list of thread ids
b8ff78ce
JB
23811@item l
23812(lower case letter @samp{L}) denotes end of list.
ee2d5c50
AC
23813@end table
23814
23815In response to each query, the target will reply with a list of one or
e1aac25b
JB
23816more thread ids, in big-endian unsigned hex, separated by commas.
23817@value{GDBN} will respond to each reply with a request for more thread
b8ff78ce
JB
23818ids (using the @samp{qs} form of the query), until the target responds
23819with @samp{l} (lower-case el, for @dfn{last}).
c906108c 23820
b8ff78ce 23821@item qGetTLSAddr:@var{thread-id},@var{offset},@var{lm}
ff2587ec 23822@cindex get thread-local storage address, remote request
b8ff78ce 23823@cindex @samp{qGetTLSAddr} packet
ff2587ec
WZ
23824Fetch the address associated with thread local storage specified
23825by @var{thread-id}, @var{offset}, and @var{lm}.
23826
23827@var{thread-id} is the (big endian, hex encoded) thread id associated with the
23828thread for which to fetch the TLS address.
23829
23830@var{offset} is the (big endian, hex encoded) offset associated with the
23831thread local variable. (This offset is obtained from the debug
23832information associated with the variable.)
23833
db2e3e2e 23834@var{lm} is the (big endian, hex encoded) OS/ABI-specific encoding of the
ff2587ec
WZ
23835the load module associated with the thread local storage. For example,
23836a @sc{gnu}/Linux system will pass the link map address of the shared
23837object associated with the thread local storage under consideration.
23838Other operating environments may choose to represent the load module
23839differently, so the precise meaning of this parameter will vary.
ee2d5c50
AC
23840
23841Reply:
b8ff78ce
JB
23842@table @samp
23843@item @var{XX}@dots{}
ff2587ec
WZ
23844Hex encoded (big endian) bytes representing the address of the thread
23845local storage requested.
23846
b8ff78ce
JB
23847@item E @var{nn}
23848An error occurred. @var{nn} are hex digits.
ff2587ec 23849
b8ff78ce
JB
23850@item
23851An empty reply indicates that @samp{qGetTLSAddr} is not supported by the stub.
ee2d5c50
AC
23852@end table
23853
b8ff78ce 23854@item qL @var{startflag} @var{threadcount} @var{nextthread}
8e04817f
AC
23855Obtain thread information from RTOS. Where: @var{startflag} (one hex
23856digit) is one to indicate the first query and zero to indicate a
23857subsequent query; @var{threadcount} (two hex digits) is the maximum
23858number of threads the response packet can contain; and @var{nextthread}
23859(eight hex digits), for subsequent queries (@var{startflag} is zero), is
23860returned in the response as @var{argthread}.
ee2d5c50 23861
b8ff78ce 23862Don't use this packet; use the @samp{qfThreadInfo} query instead (see above).
ee2d5c50
AC
23863
23864Reply:
23865@table @samp
b8ff78ce 23866@item qM @var{count} @var{done} @var{argthread} @var{thread}@dots{}
8e04817f
AC
23867Where: @var{count} (two hex digits) is the number of threads being
23868returned; @var{done} (one hex digit) is zero to indicate more threads
23869and one indicates no further threads; @var{argthreadid} (eight hex
b8ff78ce 23870digits) is @var{nextthread} from the request packet; @var{thread}@dots{}
ee2d5c50 23871is a sequence of thread IDs from the target. @var{threadid} (eight hex
8e04817f 23872digits). See @code{remote.c:parse_threadlist_response()}.
ee2d5c50 23873@end table
c906108c 23874
b8ff78ce 23875@item qOffsets
9c16f35a 23876@cindex section offsets, remote request
b8ff78ce 23877@cindex @samp{qOffsets} packet
31d99776
DJ
23878Get section offsets that the target used when relocating the downloaded
23879image.
c906108c 23880
ee2d5c50
AC
23881Reply:
23882@table @samp
31d99776
DJ
23883@item Text=@var{xxx};Data=@var{yyy}@r{[};Bss=@var{zzz}@r{]}
23884Relocate the @code{Text} section by @var{xxx} from its original address.
23885Relocate the @code{Data} section by @var{yyy} from its original address.
23886If the object file format provides segment information (e.g.@: @sc{elf}
23887@samp{PT_LOAD} program headers), @value{GDBN} will relocate entire
23888segments by the supplied offsets.
23889
23890@emph{Note: while a @code{Bss} offset may be included in the response,
23891@value{GDBN} ignores this and instead applies the @code{Data} offset
23892to the @code{Bss} section.}
23893
23894@item TextSeg=@var{xxx}@r{[};DataSeg=@var{yyy}@r{]}
23895Relocate the first segment of the object file, which conventionally
23896contains program code, to a starting address of @var{xxx}. If
23897@samp{DataSeg} is specified, relocate the second segment, which
23898conventionally contains modifiable data, to a starting address of
23899@var{yyy}. @value{GDBN} will report an error if the object file
23900does not contain segment information, or does not contain at least
23901as many segments as mentioned in the reply. Extra segments are
23902kept at fixed offsets relative to the last relocated segment.
ee2d5c50
AC
23903@end table
23904
b8ff78ce 23905@item qP @var{mode} @var{threadid}
9c16f35a 23906@cindex thread information, remote request
b8ff78ce 23907@cindex @samp{qP} packet
8e04817f
AC
23908Returns information on @var{threadid}. Where: @var{mode} is a hex
23909encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
ee2d5c50 23910
aa56d27a
JB
23911Don't use this packet; use the @samp{qThreadExtraInfo} query instead
23912(see below).
23913
b8ff78ce 23914Reply: see @code{remote.c:remote_unpack_thread_info_response()}.
c906108c 23915
89be2091
DJ
23916@item QPassSignals: @var{signal} @r{[};@var{signal}@r{]}@dots{}
23917@cindex pass signals to inferior, remote request
23918@cindex @samp{QPassSignals} packet
23181151 23919@anchor{QPassSignals}
89be2091
DJ
23920Each listed @var{signal} should be passed directly to the inferior process.
23921Signals are numbered identically to continue packets and stop replies
23922(@pxref{Stop Reply Packets}). Each @var{signal} list item should be
23923strictly greater than the previous item. These signals do not need to stop
23924the inferior, or be reported to @value{GDBN}. All other signals should be
23925reported to @value{GDBN}. Multiple @samp{QPassSignals} packets do not
23926combine; any earlier @samp{QPassSignals} list is completely replaced by the
23927new list. This packet improves performance when using @samp{handle
23928@var{signal} nostop noprint pass}.
23929
23930Reply:
23931@table @samp
23932@item OK
23933The request succeeded.
23934
23935@item E @var{nn}
23936An error occurred. @var{nn} are hex digits.
23937
23938@item
23939An empty reply indicates that @samp{QPassSignals} is not supported by
23940the stub.
23941@end table
23942
23943Use of this packet is controlled by the @code{set remote pass-signals}
79a6e687 23944command (@pxref{Remote Configuration, set remote pass-signals}).
89be2091
DJ
23945This packet is not probed by default; the remote stub must request it,
23946by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
23947
b8ff78ce 23948@item qRcmd,@var{command}
ff2587ec 23949@cindex execute remote command, remote request
b8ff78ce 23950@cindex @samp{qRcmd} packet
ff2587ec 23951@var{command} (hex encoded) is passed to the local interpreter for
b8ff78ce
JB
23952execution. Invalid commands should be reported using the output
23953string. Before the final result packet, the target may also respond
23954with a number of intermediate @samp{O@var{output}} console output
23955packets. @emph{Implementors should note that providing access to a
23956stubs's interpreter may have security implications}.
fa93a9d8 23957
ff2587ec
WZ
23958Reply:
23959@table @samp
23960@item OK
23961A command response with no output.
23962@item @var{OUTPUT}
23963A command response with the hex encoded output string @var{OUTPUT}.
b8ff78ce 23964@item E @var{NN}
ff2587ec 23965Indicate a badly formed request.
b8ff78ce
JB
23966@item
23967An empty reply indicates that @samp{qRcmd} is not recognized.
ff2587ec 23968@end table
fa93a9d8 23969
aa56d27a
JB
23970(Note that the @code{qRcmd} packet's name is separated from the
23971command by a @samp{,}, not a @samp{:}, contrary to the naming
23972conventions above. Please don't use this packet as a model for new
23973packets.)
23974
be2a5f71
DJ
23975@item qSupported @r{[}:@var{gdbfeature} @r{[};@var{gdbfeature}@r{]}@dots{} @r{]}
23976@cindex supported packets, remote query
23977@cindex features of the remote protocol
23978@cindex @samp{qSupported} packet
0876f84a 23979@anchor{qSupported}
be2a5f71
DJ
23980Tell the remote stub about features supported by @value{GDBN}, and
23981query the stub for features it supports. This packet allows
23982@value{GDBN} and the remote stub to take advantage of each others'
23983features. @samp{qSupported} also consolidates multiple feature probes
23984at startup, to improve @value{GDBN} performance---a single larger
23985packet performs better than multiple smaller probe packets on
23986high-latency links. Some features may enable behavior which must not
23987be on by default, e.g.@: because it would confuse older clients or
23988stubs. Other features may describe packets which could be
23989automatically probed for, but are not. These features must be
23990reported before @value{GDBN} will use them. This ``default
23991unsupported'' behavior is not appropriate for all packets, but it
23992helps to keep the initial connection time under control with new
23993versions of @value{GDBN} which support increasing numbers of packets.
23994
23995Reply:
23996@table @samp
23997@item @var{stubfeature} @r{[};@var{stubfeature}@r{]}@dots{}
23998The stub supports or does not support each returned @var{stubfeature},
23999depending on the form of each @var{stubfeature} (see below for the
24000possible forms).
24001@item
24002An empty reply indicates that @samp{qSupported} is not recognized,
24003or that no features needed to be reported to @value{GDBN}.
24004@end table
24005
24006The allowed forms for each feature (either a @var{gdbfeature} in the
24007@samp{qSupported} packet, or a @var{stubfeature} in the response)
24008are:
24009
24010@table @samp
24011@item @var{name}=@var{value}
24012The remote protocol feature @var{name} is supported, and associated
24013with the specified @var{value}. The format of @var{value} depends
24014on the feature, but it must not include a semicolon.
24015@item @var{name}+
24016The remote protocol feature @var{name} is supported, and does not
24017need an associated value.
24018@item @var{name}-
24019The remote protocol feature @var{name} is not supported.
24020@item @var{name}?
24021The remote protocol feature @var{name} may be supported, and
24022@value{GDBN} should auto-detect support in some other way when it is
24023needed. This form will not be used for @var{gdbfeature} notifications,
24024but may be used for @var{stubfeature} responses.
24025@end table
24026
24027Whenever the stub receives a @samp{qSupported} request, the
24028supplied set of @value{GDBN} features should override any previous
24029request. This allows @value{GDBN} to put the stub in a known
24030state, even if the stub had previously been communicating with
24031a different version of @value{GDBN}.
24032
24033No values of @var{gdbfeature} (for the packet sent by @value{GDBN})
24034are defined yet. Stubs should ignore any unknown values for
24035@var{gdbfeature}. Any @value{GDBN} which sends a @samp{qSupported}
24036packet supports receiving packets of unlimited length (earlier
24037versions of @value{GDBN} may reject overly long responses). Values
24038for @var{gdbfeature} may be defined in the future to let the stub take
24039advantage of new features in @value{GDBN}, e.g.@: incompatible
24040improvements in the remote protocol---support for unlimited length
24041responses would be a @var{gdbfeature} example, if it were not implied by
24042the @samp{qSupported} query. The stub's reply should be independent
24043of the @var{gdbfeature} entries sent by @value{GDBN}; first @value{GDBN}
24044describes all the features it supports, and then the stub replies with
24045all the features it supports.
24046
24047Similarly, @value{GDBN} will silently ignore unrecognized stub feature
24048responses, as long as each response uses one of the standard forms.
24049
24050Some features are flags. A stub which supports a flag feature
24051should respond with a @samp{+} form response. Other features
24052require values, and the stub should respond with an @samp{=}
24053form response.
24054
24055Each feature has a default value, which @value{GDBN} will use if
24056@samp{qSupported} is not available or if the feature is not mentioned
24057in the @samp{qSupported} response. The default values are fixed; a
24058stub is free to omit any feature responses that match the defaults.
24059
24060Not all features can be probed, but for those which can, the probing
24061mechanism is useful: in some cases, a stub's internal
24062architecture may not allow the protocol layer to know some information
24063about the underlying target in advance. This is especially common in
24064stubs which may be configured for multiple targets.
24065
24066These are the currently defined stub features and their properties:
24067
cfa9d6d9 24068@multitable @columnfractions 0.35 0.2 0.12 0.2
be2a5f71
DJ
24069@c NOTE: The first row should be @headitem, but we do not yet require
24070@c a new enough version of Texinfo (4.7) to use @headitem.
0876f84a 24071@item Feature Name
be2a5f71
DJ
24072@tab Value Required
24073@tab Default
24074@tab Probe Allowed
24075
24076@item @samp{PacketSize}
24077@tab Yes
24078@tab @samp{-}
24079@tab No
24080
0876f84a
DJ
24081@item @samp{qXfer:auxv:read}
24082@tab No
24083@tab @samp{-}
24084@tab Yes
24085
23181151
DJ
24086@item @samp{qXfer:features:read}
24087@tab No
24088@tab @samp{-}
24089@tab Yes
24090
cfa9d6d9
DJ
24091@item @samp{qXfer:libraries:read}
24092@tab No
24093@tab @samp{-}
24094@tab Yes
24095
68437a39
DJ
24096@item @samp{qXfer:memory-map:read}
24097@tab No
24098@tab @samp{-}
24099@tab Yes
24100
0e7f50da
UW
24101@item @samp{qXfer:spu:read}
24102@tab No
24103@tab @samp{-}
24104@tab Yes
24105
24106@item @samp{qXfer:spu:write}
24107@tab No
24108@tab @samp{-}
24109@tab Yes
24110
89be2091
DJ
24111@item @samp{QPassSignals}
24112@tab No
24113@tab @samp{-}
24114@tab Yes
24115
be2a5f71
DJ
24116@end multitable
24117
24118These are the currently defined stub features, in more detail:
24119
24120@table @samp
24121@cindex packet size, remote protocol
24122@item PacketSize=@var{bytes}
24123The remote stub can accept packets up to at least @var{bytes} in
24124length. @value{GDBN} will send packets up to this size for bulk
24125transfers, and will never send larger packets. This is a limit on the
24126data characters in the packet, including the frame and checksum.
24127There is no trailing NUL byte in a remote protocol packet; if the stub
24128stores packets in a NUL-terminated format, it should allow an extra
24129byte in its buffer for the NUL. If this stub feature is not supported,
24130@value{GDBN} guesses based on the size of the @samp{g} packet response.
24131
0876f84a
DJ
24132@item qXfer:auxv:read
24133The remote stub understands the @samp{qXfer:auxv:read} packet
24134(@pxref{qXfer auxiliary vector read}).
24135
23181151
DJ
24136@item qXfer:features:read
24137The remote stub understands the @samp{qXfer:features:read} packet
24138(@pxref{qXfer target description read}).
24139
cfa9d6d9
DJ
24140@item qXfer:libraries:read
24141The remote stub understands the @samp{qXfer:libraries:read} packet
24142(@pxref{qXfer library list read}).
24143
23181151
DJ
24144@item qXfer:memory-map:read
24145The remote stub understands the @samp{qXfer:memory-map:read} packet
24146(@pxref{qXfer memory map read}).
24147
0e7f50da
UW
24148@item qXfer:spu:read
24149The remote stub understands the @samp{qXfer:spu:read} packet
24150(@pxref{qXfer spu read}).
24151
24152@item qXfer:spu:write
24153The remote stub understands the @samp{qXfer:spu:write} packet
24154(@pxref{qXfer spu write}).
24155
23181151
DJ
24156@item QPassSignals
24157The remote stub understands the @samp{QPassSignals} packet
24158(@pxref{QPassSignals}).
24159
be2a5f71
DJ
24160@end table
24161
b8ff78ce 24162@item qSymbol::
ff2587ec 24163@cindex symbol lookup, remote request
b8ff78ce 24164@cindex @samp{qSymbol} packet
ff2587ec
WZ
24165Notify the target that @value{GDBN} is prepared to serve symbol lookup
24166requests. Accept requests from the target for the values of symbols.
fa93a9d8
JB
24167
24168Reply:
ff2587ec 24169@table @samp
b8ff78ce 24170@item OK
ff2587ec 24171The target does not need to look up any (more) symbols.
b8ff78ce 24172@item qSymbol:@var{sym_name}
ff2587ec
WZ
24173The target requests the value of symbol @var{sym_name} (hex encoded).
24174@value{GDBN} may provide the value by using the
b8ff78ce
JB
24175@samp{qSymbol:@var{sym_value}:@var{sym_name}} message, described
24176below.
ff2587ec 24177@end table
83761cbd 24178
b8ff78ce 24179@item qSymbol:@var{sym_value}:@var{sym_name}
ff2587ec
WZ
24180Set the value of @var{sym_name} to @var{sym_value}.
24181
24182@var{sym_name} (hex encoded) is the name of a symbol whose value the
24183target has previously requested.
24184
24185@var{sym_value} (hex) is the value for symbol @var{sym_name}. If
24186@value{GDBN} cannot supply a value for @var{sym_name}, then this field
24187will be empty.
24188
24189Reply:
24190@table @samp
b8ff78ce 24191@item OK
ff2587ec 24192The target does not need to look up any (more) symbols.
b8ff78ce 24193@item qSymbol:@var{sym_name}
ff2587ec
WZ
24194The target requests the value of a new symbol @var{sym_name} (hex
24195encoded). @value{GDBN} will continue to supply the values of symbols
24196(if available), until the target ceases to request them.
fa93a9d8 24197@end table
0abb7bc7 24198
9d29849a
JB
24199@item QTDP
24200@itemx QTFrame
24201@xref{Tracepoint Packets}.
24202
b8ff78ce 24203@item qThreadExtraInfo,@var{id}
ff2587ec 24204@cindex thread attributes info, remote request
b8ff78ce
JB
24205@cindex @samp{qThreadExtraInfo} packet
24206Obtain a printable string description of a thread's attributes from
24207the target OS. @var{id} is a thread-id in big-endian hex. This
24208string may contain anything that the target OS thinks is interesting
24209for @value{GDBN} to tell the user about the thread. The string is
24210displayed in @value{GDBN}'s @code{info threads} display. Some
24211examples of possible thread extra info strings are @samp{Runnable}, or
24212@samp{Blocked on Mutex}.
ff2587ec
WZ
24213
24214Reply:
24215@table @samp
b8ff78ce
JB
24216@item @var{XX}@dots{}
24217Where @samp{@var{XX}@dots{}} is a hex encoding of @sc{ascii} data,
24218comprising the printable string containing the extra information about
24219the thread's attributes.
ff2587ec 24220@end table
814e32d7 24221
aa56d27a
JB
24222(Note that the @code{qThreadExtraInfo} packet's name is separated from
24223the command by a @samp{,}, not a @samp{:}, contrary to the naming
24224conventions above. Please don't use this packet as a model for new
24225packets.)
24226
9d29849a
JB
24227@item QTStart
24228@itemx QTStop
24229@itemx QTinit
24230@itemx QTro
24231@itemx qTStatus
24232@xref{Tracepoint Packets}.
24233
0876f84a
DJ
24234@item qXfer:@var{object}:read:@var{annex}:@var{offset},@var{length}
24235@cindex read special object, remote request
24236@cindex @samp{qXfer} packet
68437a39 24237@anchor{qXfer read}
0876f84a
DJ
24238Read uninterpreted bytes from the target's special data area
24239identified by the keyword @var{object}. Request @var{length} bytes
24240starting at @var{offset} bytes into the data. The content and
0e7f50da 24241encoding of @var{annex} is specific to @var{object}; it can supply
0876f84a
DJ
24242additional details about what data to access.
24243
24244Here are the specific requests of this form defined so far. All
24245@samp{qXfer:@var{object}:read:@dots{}} requests use the same reply
24246formats, listed below.
24247
24248@table @samp
24249@item qXfer:auxv:read::@var{offset},@var{length}
24250@anchor{qXfer auxiliary vector read}
24251Access the target's @dfn{auxiliary vector}. @xref{OS Information,
427c3a89 24252auxiliary vector}. Note @var{annex} must be empty.
0876f84a
DJ
24253
24254This packet is not probed by default; the remote stub must request it,
89be2091 24255by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
0876f84a 24256
23181151
DJ
24257@item qXfer:features:read:@var{annex}:@var{offset},@var{length}
24258@anchor{qXfer target description read}
24259Access the @dfn{target description}. @xref{Target Descriptions}. The
24260annex specifies which XML document to access. The main description is
24261always loaded from the @samp{target.xml} annex.
24262
24263This packet is not probed by default; the remote stub must request it,
24264by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24265
cfa9d6d9
DJ
24266@item qXfer:libraries:read:@var{annex}:@var{offset},@var{length}
24267@anchor{qXfer library list read}
24268Access the target's list of loaded libraries. @xref{Library List Format}.
24269The annex part of the generic @samp{qXfer} packet must be empty
24270(@pxref{qXfer read}).
24271
24272Targets which maintain a list of libraries in the program's memory do
24273not need to implement this packet; it is designed for platforms where
24274the operating system manages the list of loaded libraries.
24275
24276This packet is not probed by default; the remote stub must request it,
24277by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24278
68437a39
DJ
24279@item qXfer:memory-map:read::@var{offset},@var{length}
24280@anchor{qXfer memory map read}
79a6e687 24281Access the target's @dfn{memory-map}. @xref{Memory Map Format}. The
68437a39
DJ
24282annex part of the generic @samp{qXfer} packet must be empty
24283(@pxref{qXfer read}).
24284
0e7f50da
UW
24285This packet is not probed by default; the remote stub must request it,
24286by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24287
24288@item qXfer:spu:read:@var{annex}:@var{offset},@var{length}
24289@anchor{qXfer spu read}
24290Read contents of an @code{spufs} file on the target system. The
24291annex specifies which file to read; it must be of the form
24292@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24293in the target process, and @var{name} identifes the @code{spufs} file
24294in that context to be accessed.
24295
68437a39
DJ
24296This packet is not probed by default; the remote stub must request it,
24297by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24298@end table
24299
0876f84a
DJ
24300Reply:
24301@table @samp
24302@item m @var{data}
24303Data @var{data} (@pxref{Binary Data}) has been read from the
24304target. There may be more data at a higher address (although
24305it is permitted to return @samp{m} even for the last valid
24306block of data, as long as at least one byte of data was read).
24307@var{data} may have fewer bytes than the @var{length} in the
24308request.
24309
24310@item l @var{data}
24311Data @var{data} (@pxref{Binary Data}) has been read from the target.
24312There is no more data to be read. @var{data} may have fewer bytes
24313than the @var{length} in the request.
24314
24315@item l
24316The @var{offset} in the request is at the end of the data.
24317There is no more data to be read.
24318
24319@item E00
24320The request was malformed, or @var{annex} was invalid.
24321
24322@item E @var{nn}
24323The offset was invalid, or there was an error encountered reading the data.
24324@var{nn} is a hex-encoded @code{errno} value.
24325
24326@item
24327An empty reply indicates the @var{object} string was not recognized by
24328the stub, or that the object does not support reading.
24329@end table
24330
24331@item qXfer:@var{object}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24332@cindex write data into object, remote request
24333Write uninterpreted bytes into the target's special data area
24334identified by the keyword @var{object}, starting at @var{offset} bytes
0e7f50da 24335into the data. @var{data}@dots{} is the binary-encoded data
0876f84a 24336(@pxref{Binary Data}) to be written. The content and encoding of @var{annex}
0e7f50da 24337is specific to @var{object}; it can supply additional details about what data
0876f84a
DJ
24338to access.
24339
0e7f50da
UW
24340Here are the specific requests of this form defined so far. All
24341@samp{qXfer:@var{object}:write:@dots{}} requests use the same reply
24342formats, listed below.
24343
24344@table @samp
24345@item qXfer:@var{spu}:write:@var{annex}:@var{offset}:@var{data}@dots{}
24346@anchor{qXfer spu write}
24347Write @var{data} to an @code{spufs} file on the target system. The
24348annex specifies which file to write; it must be of the form
24349@file{@var{id}/@var{name}}, where @var{id} specifies an SPU context ID
24350in the target process, and @var{name} identifes the @code{spufs} file
24351in that context to be accessed.
24352
24353This packet is not probed by default; the remote stub must request it,
24354by supplying an appropriate @samp{qSupported} response (@pxref{qSupported}).
24355@end table
0876f84a
DJ
24356
24357Reply:
24358@table @samp
24359@item @var{nn}
24360@var{nn} (hex encoded) is the number of bytes written.
24361This may be fewer bytes than supplied in the request.
24362
24363@item E00
24364The request was malformed, or @var{annex} was invalid.
24365
24366@item E @var{nn}
24367The offset was invalid, or there was an error encountered writing the data.
24368@var{nn} is a hex-encoded @code{errno} value.
24369
24370@item
24371An empty reply indicates the @var{object} string was not
24372recognized by the stub, or that the object does not support writing.
24373@end table
24374
24375@item qXfer:@var{object}:@var{operation}:@dots{}
24376Requests of this form may be added in the future. When a stub does
24377not recognize the @var{object} keyword, or its support for
24378@var{object} does not recognize the @var{operation} keyword, the stub
24379must respond with an empty packet.
24380
ee2d5c50
AC
24381@end table
24382
24383@node Register Packet Format
24384@section Register Packet Format
eb12ee30 24385
b8ff78ce 24386The following @code{g}/@code{G} packets have previously been defined.
ee2d5c50
AC
24387In the below, some thirty-two bit registers are transferred as
24388sixty-four bits. Those registers should be zero/sign extended (which?)
599b237a
BW
24389to fill the space allocated. Register bytes are transferred in target
24390byte order. The two nibbles within a register byte are transferred
ee2d5c50 24391most-significant - least-significant.
eb12ee30 24392
ee2d5c50 24393@table @r
eb12ee30 24394
8e04817f 24395@item MIPS32
ee2d5c50 24396
599b237a 24397All registers are transferred as thirty-two bit quantities in the order:
8e04817f
AC
2439832 general-purpose; sr; lo; hi; bad; cause; pc; 32 floating-point
24399registers; fsr; fir; fp.
eb12ee30 24400
8e04817f 24401@item MIPS64
ee2d5c50 24402
599b237a 24403All registers are transferred as sixty-four bit quantities (including
8e04817f
AC
24404thirty-two bit registers such as @code{sr}). The ordering is the same
24405as @code{MIPS32}.
eb12ee30 24406
ee2d5c50
AC
24407@end table
24408
9d29849a
JB
24409@node Tracepoint Packets
24410@section Tracepoint Packets
24411@cindex tracepoint packets
24412@cindex packets, tracepoint
24413
24414Here we describe the packets @value{GDBN} uses to implement
24415tracepoints (@pxref{Tracepoints}).
24416
24417@table @samp
24418
24419@item QTDP:@var{n}:@var{addr}:@var{ena}:@var{step}:@var{pass}@r{[}-@r{]}
24420Create a new tracepoint, number @var{n}, at @var{addr}. If @var{ena}
24421is @samp{E}, then the tracepoint is enabled; if it is @samp{D}, then
24422the tracepoint is disabled. @var{step} is the tracepoint's step
24423count, and @var{pass} is its pass count. If the trailing @samp{-} is
24424present, further @samp{QTDP} packets will follow to specify this
24425tracepoint's actions.
24426
24427Replies:
24428@table @samp
24429@item OK
24430The packet was understood and carried out.
24431@item
24432The packet was not recognized.
24433@end table
24434
24435@item QTDP:-@var{n}:@var{addr}:@r{[}S@r{]}@var{action}@dots{}@r{[}-@r{]}
24436Define actions to be taken when a tracepoint is hit. @var{n} and
24437@var{addr} must be the same as in the initial @samp{QTDP} packet for
24438this tracepoint. This packet may only be sent immediately after
24439another @samp{QTDP} packet that ended with a @samp{-}. If the
24440trailing @samp{-} is present, further @samp{QTDP} packets will follow,
24441specifying more actions for this tracepoint.
24442
24443In the series of action packets for a given tracepoint, at most one
24444can have an @samp{S} before its first @var{action}. If such a packet
24445is sent, it and the following packets define ``while-stepping''
24446actions. Any prior packets define ordinary actions --- that is, those
24447taken when the tracepoint is first hit. If no action packet has an
24448@samp{S}, then all the packets in the series specify ordinary
24449tracepoint actions.
24450
24451The @samp{@var{action}@dots{}} portion of the packet is a series of
24452actions, concatenated without separators. Each action has one of the
24453following forms:
24454
24455@table @samp
24456
24457@item R @var{mask}
24458Collect the registers whose bits are set in @var{mask}. @var{mask} is
599b237a 24459a hexadecimal number whose @var{i}'th bit is set if register number
9d29849a
JB
24460@var{i} should be collected. (The least significant bit is numbered
24461zero.) Note that @var{mask} may be any number of digits long; it may
24462not fit in a 32-bit word.
24463
24464@item M @var{basereg},@var{offset},@var{len}
24465Collect @var{len} bytes of memory starting at the address in register
24466number @var{basereg}, plus @var{offset}. If @var{basereg} is
24467@samp{-1}, then the range has a fixed address: @var{offset} is the
24468address of the lowest byte to collect. The @var{basereg},
599b237a 24469@var{offset}, and @var{len} parameters are all unsigned hexadecimal
9d29849a
JB
24470values (the @samp{-1} value for @var{basereg} is a special case).
24471
24472@item X @var{len},@var{expr}
24473Evaluate @var{expr}, whose length is @var{len}, and collect memory as
24474it directs. @var{expr} is an agent expression, as described in
24475@ref{Agent Expressions}. Each byte of the expression is encoded as a
24476two-digit hex number in the packet; @var{len} is the number of bytes
24477in the expression (and thus one-half the number of hex digits in the
24478packet).
24479
24480@end table
24481
24482Any number of actions may be packed together in a single @samp{QTDP}
24483packet, as long as the packet does not exceed the maximum packet
c1947b85
JB
24484length (400 bytes, for many stubs). There may be only one @samp{R}
24485action per tracepoint, and it must precede any @samp{M} or @samp{X}
24486actions. Any registers referred to by @samp{M} and @samp{X} actions
24487must be collected by a preceding @samp{R} action. (The
24488``while-stepping'' actions are treated as if they were attached to a
24489separate tracepoint, as far as these restrictions are concerned.)
9d29849a
JB
24490
24491Replies:
24492@table @samp
24493@item OK
24494The packet was understood and carried out.
24495@item
24496The packet was not recognized.
24497@end table
24498
24499@item QTFrame:@var{n}
24500Select the @var{n}'th tracepoint frame from the buffer, and use the
24501register and memory contents recorded there to answer subsequent
24502request packets from @value{GDBN}.
24503
24504A successful reply from the stub indicates that the stub has found the
24505requested frame. The response is a series of parts, concatenated
24506without separators, describing the frame we selected. Each part has
24507one of the following forms:
24508
24509@table @samp
24510@item F @var{f}
24511The selected frame is number @var{n} in the trace frame buffer;
599b237a 24512@var{f} is a hexadecimal number. If @var{f} is @samp{-1}, then there
9d29849a
JB
24513was no frame matching the criteria in the request packet.
24514
24515@item T @var{t}
24516The selected trace frame records a hit of tracepoint number @var{t};
599b237a 24517@var{t} is a hexadecimal number.
9d29849a
JB
24518
24519@end table
24520
24521@item QTFrame:pc:@var{addr}
24522Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24523currently selected frame whose PC is @var{addr};
599b237a 24524@var{addr} is a hexadecimal number.
9d29849a
JB
24525
24526@item QTFrame:tdp:@var{t}
24527Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24528currently selected frame that is a hit of tracepoint @var{t}; @var{t}
599b237a 24529is a hexadecimal number.
9d29849a
JB
24530
24531@item QTFrame:range:@var{start}:@var{end}
24532Like @samp{QTFrame:@var{n}}, but select the first tracepoint frame after the
24533currently selected frame whose PC is between @var{start} (inclusive)
599b237a 24534and @var{end} (exclusive); @var{start} and @var{end} are hexadecimal
9d29849a
JB
24535numbers.
24536
24537@item QTFrame:outside:@var{start}:@var{end}
24538Like @samp{QTFrame:range:@var{start}:@var{end}}, but select the first
24539frame @emph{outside} the given range of addresses.
24540
24541@item QTStart
24542Begin the tracepoint experiment. Begin collecting data from tracepoint
24543hits in the trace frame buffer.
24544
24545@item QTStop
24546End the tracepoint experiment. Stop collecting trace frames.
24547
24548@item QTinit
24549Clear the table of tracepoints, and empty the trace frame buffer.
24550
24551@item QTro:@var{start1},@var{end1}:@var{start2},@var{end2}:@dots{}
24552Establish the given ranges of memory as ``transparent''. The stub
24553will answer requests for these ranges from memory's current contents,
24554if they were not collected as part of the tracepoint hit.
24555
24556@value{GDBN} uses this to mark read-only regions of memory, like those
24557containing program code. Since these areas never change, they should
24558still have the same contents they did when the tracepoint was hit, so
24559there's no reason for the stub to refuse to provide their contents.
24560
24561@item qTStatus
24562Ask the stub if there is a trace experiment running right now.
24563
24564Replies:
24565@table @samp
24566@item T0
24567There is no trace experiment running.
24568@item T1
24569There is a trace experiment running.
24570@end table
24571
24572@end table
24573
24574
9a6253be
KB
24575@node Interrupts
24576@section Interrupts
24577@cindex interrupts (remote protocol)
24578
24579When a program on the remote target is running, @value{GDBN} may
24580attempt to interrupt it by sending a @samp{Ctrl-C} or a @code{BREAK},
24581control of which is specified via @value{GDBN}'s @samp{remotebreak}
24582setting (@pxref{set remotebreak}).
24583
24584The precise meaning of @code{BREAK} is defined by the transport
24585mechanism and may, in fact, be undefined. @value{GDBN} does
24586not currently define a @code{BREAK} mechanism for any of the network
24587interfaces.
24588
24589@samp{Ctrl-C}, on the other hand, is defined and implemented for all
24590transport mechanisms. It is represented by sending the single byte
24591@code{0x03} without any of the usual packet overhead described in
24592the Overview section (@pxref{Overview}). When a @code{0x03} byte is
24593transmitted as part of a packet, it is considered to be packet data
24594and does @emph{not} represent an interrupt. E.g., an @samp{X} packet
0876f84a 24595(@pxref{X packet}), used for binary downloads, may include an unescaped
9a6253be
KB
24596@code{0x03} as part of its packet.
24597
24598Stubs are not required to recognize these interrupt mechanisms and the
24599precise meaning associated with receipt of the interrupt is
24600implementation defined. If the stub is successful at interrupting the
24601running program, it is expected that it will send one of the Stop
24602Reply Packets (@pxref{Stop Reply Packets}) to @value{GDBN} as a result
24603of successfully stopping the program. Interrupts received while the
24604program is stopped will be discarded.
24605
ee2d5c50
AC
24606@node Examples
24607@section Examples
eb12ee30 24608
8e04817f
AC
24609Example sequence of a target being re-started. Notice how the restart
24610does not get any direct output:
eb12ee30 24611
474c8240 24612@smallexample
d2c6833e
AC
24613-> @code{R00}
24614<- @code{+}
8e04817f 24615@emph{target restarts}
d2c6833e 24616-> @code{?}
8e04817f 24617<- @code{+}
d2c6833e
AC
24618<- @code{T001:1234123412341234}
24619-> @code{+}
474c8240 24620@end smallexample
eb12ee30 24621
8e04817f 24622Example sequence of a target being stepped by a single instruction:
eb12ee30 24623
474c8240 24624@smallexample
d2c6833e 24625-> @code{G1445@dots{}}
8e04817f 24626<- @code{+}
d2c6833e
AC
24627-> @code{s}
24628<- @code{+}
24629@emph{time passes}
24630<- @code{T001:1234123412341234}
8e04817f 24631-> @code{+}
d2c6833e 24632-> @code{g}
8e04817f 24633<- @code{+}
d2c6833e
AC
24634<- @code{1455@dots{}}
24635-> @code{+}
474c8240 24636@end smallexample
eb12ee30 24637
79a6e687
BW
24638@node File-I/O Remote Protocol Extension
24639@section File-I/O Remote Protocol Extension
0ce1b118
CV
24640@cindex File-I/O remote protocol extension
24641
24642@menu
24643* File-I/O Overview::
79a6e687
BW
24644* Protocol Basics::
24645* The F Request Packet::
24646* The F Reply Packet::
24647* The Ctrl-C Message::
0ce1b118 24648* Console I/O::
79a6e687 24649* List of Supported Calls::
db2e3e2e 24650* Protocol-specific Representation of Datatypes::
0ce1b118
CV
24651* Constants::
24652* File-I/O Examples::
24653@end menu
24654
24655@node File-I/O Overview
24656@subsection File-I/O Overview
24657@cindex file-i/o overview
24658
9c16f35a 24659The @dfn{File I/O remote protocol extension} (short: File-I/O) allows the
fc320d37 24660target to use the host's file system and console I/O to perform various
0ce1b118 24661system calls. System calls on the target system are translated into a
fc320d37
SL
24662remote protocol packet to the host system, which then performs the needed
24663actions and returns a response packet to the target system.
0ce1b118
CV
24664This simulates file system operations even on targets that lack file systems.
24665
fc320d37
SL
24666The protocol is defined to be independent of both the host and target systems.
24667It uses its own internal representation of datatypes and values. Both
0ce1b118 24668@value{GDBN} and the target's @value{GDBN} stub are responsible for
fc320d37
SL
24669translating the system-dependent value representations into the internal
24670protocol representations when data is transmitted.
0ce1b118 24671
fc320d37
SL
24672The communication is synchronous. A system call is possible only when
24673@value{GDBN} is waiting for a response from the @samp{C}, @samp{c}, @samp{S}
24674or @samp{s} packets. While @value{GDBN} handles the request for a system call,
0ce1b118 24675the target is stopped to allow deterministic access to the target's
fc320d37
SL
24676memory. Therefore File-I/O is not interruptible by target signals. On
24677the other hand, it is possible to interrupt File-I/O by a user interrupt
c8aa23ab 24678(@samp{Ctrl-C}) within @value{GDBN}.
0ce1b118
CV
24679
24680The target's request to perform a host system call does not finish
24681the latest @samp{C}, @samp{c}, @samp{S} or @samp{s} action. That means,
24682after finishing the system call, the target returns to continuing the
24683previous activity (continue, step). No additional continue or step
24684request from @value{GDBN} is required.
24685
24686@smallexample
f7dc1244 24687(@value{GDBP}) continue
0ce1b118
CV
24688 <- target requests 'system call X'
24689 target is stopped, @value{GDBN} executes system call
3f94c067
BW
24690 -> @value{GDBN} returns result
24691 ... target continues, @value{GDBN} returns to wait for the target
0ce1b118
CV
24692 <- target hits breakpoint and sends a Txx packet
24693@end smallexample
24694
fc320d37
SL
24695The protocol only supports I/O on the console and to regular files on
24696the host file system. Character or block special devices, pipes,
24697named pipes, sockets or any other communication method on the host
0ce1b118
CV
24698system are not supported by this protocol.
24699
79a6e687
BW
24700@node Protocol Basics
24701@subsection Protocol Basics
0ce1b118
CV
24702@cindex protocol basics, file-i/o
24703
fc320d37
SL
24704The File-I/O protocol uses the @code{F} packet as the request as well
24705as reply packet. Since a File-I/O system call can only occur when
24706@value{GDBN} is waiting for a response from the continuing or stepping target,
24707the File-I/O request is a reply that @value{GDBN} has to expect as a result
24708of a previous @samp{C}, @samp{c}, @samp{S} or @samp{s} packet.
0ce1b118
CV
24709This @code{F} packet contains all information needed to allow @value{GDBN}
24710to call the appropriate host system call:
24711
24712@itemize @bullet
b383017d 24713@item
0ce1b118
CV
24714A unique identifier for the requested system call.
24715
24716@item
24717All parameters to the system call. Pointers are given as addresses
24718in the target memory address space. Pointers to strings are given as
b383017d 24719pointer/length pair. Numerical values are given as they are.
db2e3e2e 24720Numerical control flags are given in a protocol-specific representation.
0ce1b118
CV
24721
24722@end itemize
24723
fc320d37 24724At this point, @value{GDBN} has to perform the following actions.
0ce1b118
CV
24725
24726@itemize @bullet
b383017d 24727@item
fc320d37
SL
24728If the parameters include pointer values to data needed as input to a
24729system call, @value{GDBN} requests this data from the target with a
0ce1b118
CV
24730standard @code{m} packet request. This additional communication has to be
24731expected by the target implementation and is handled as any other @code{m}
24732packet.
24733
24734@item
24735@value{GDBN} translates all value from protocol representation to host
24736representation as needed. Datatypes are coerced into the host types.
24737
24738@item
fc320d37 24739@value{GDBN} calls the system call.
0ce1b118
CV
24740
24741@item
24742It then coerces datatypes back to protocol representation.
24743
24744@item
fc320d37
SL
24745If the system call is expected to return data in buffer space specified
24746by pointer parameters to the call, the data is transmitted to the
0ce1b118
CV
24747target using a @code{M} or @code{X} packet. This packet has to be expected
24748by the target implementation and is handled as any other @code{M} or @code{X}
24749packet.
24750
24751@end itemize
24752
24753Eventually @value{GDBN} replies with another @code{F} packet which contains all
24754necessary information for the target to continue. This at least contains
24755
24756@itemize @bullet
24757@item
24758Return value.
24759
24760@item
24761@code{errno}, if has been changed by the system call.
24762
24763@item
24764``Ctrl-C'' flag.
24765
24766@end itemize
24767
24768After having done the needed type and value coercion, the target continues
24769the latest continue or step action.
24770
79a6e687
BW
24771@node The F Request Packet
24772@subsection The @code{F} Request Packet
0ce1b118
CV
24773@cindex file-i/o request packet
24774@cindex @code{F} request packet
24775
24776The @code{F} request packet has the following format:
24777
24778@table @samp
fc320d37 24779@item F@var{call-id},@var{parameter@dots{}}
0ce1b118
CV
24780
24781@var{call-id} is the identifier to indicate the host system call to be called.
24782This is just the name of the function.
24783
fc320d37
SL
24784@var{parameter@dots{}} are the parameters to the system call.
24785Parameters are hexadecimal integer values, either the actual values in case
24786of scalar datatypes, pointers to target buffer space in case of compound
24787datatypes and unspecified memory areas, or pointer/length pairs in case
24788of string parameters. These are appended to the @var{call-id} as a
24789comma-delimited list. All values are transmitted in ASCII
24790string representation, pointer/length pairs separated by a slash.
0ce1b118 24791
b383017d 24792@end table
0ce1b118 24793
fc320d37 24794
0ce1b118 24795
79a6e687
BW
24796@node The F Reply Packet
24797@subsection The @code{F} Reply Packet
0ce1b118
CV
24798@cindex file-i/o reply packet
24799@cindex @code{F} reply packet
24800
24801The @code{F} reply packet has the following format:
24802
24803@table @samp
24804
d3bdde98 24805@item F@var{retcode},@var{errno},@var{Ctrl-C flag};@var{call-specific attachment}
0ce1b118
CV
24806
24807@var{retcode} is the return code of the system call as hexadecimal value.
24808
db2e3e2e
BW
24809@var{errno} is the @code{errno} set by the call, in protocol-specific
24810representation.
0ce1b118
CV
24811This parameter can be omitted if the call was successful.
24812
fc320d37
SL
24813@var{Ctrl-C flag} is only sent if the user requested a break. In this
24814case, @var{errno} must be sent as well, even if the call was successful.
24815The @var{Ctrl-C flag} itself consists of the character @samp{C}:
0ce1b118
CV
24816
24817@smallexample
24818F0,0,C
24819@end smallexample
24820
24821@noindent
fc320d37 24822or, if the call was interrupted before the host call has been performed:
0ce1b118
CV
24823
24824@smallexample
24825F-1,4,C
24826@end smallexample
24827
24828@noindent
db2e3e2e 24829assuming 4 is the protocol-specific representation of @code{EINTR}.
0ce1b118
CV
24830
24831@end table
24832
0ce1b118 24833
79a6e687
BW
24834@node The Ctrl-C Message
24835@subsection The @samp{Ctrl-C} Message
0ce1b118
CV
24836@cindex ctrl-c message, in file-i/o protocol
24837
c8aa23ab 24838If the @samp{Ctrl-C} flag is set in the @value{GDBN}
79a6e687 24839reply packet (@pxref{The F Reply Packet}),
fc320d37 24840the target should behave as if it had
0ce1b118 24841gotten a break message. The meaning for the target is ``system call
fc320d37 24842interrupted by @code{SIGINT}''. Consequentially, the target should actually stop
0ce1b118 24843(as with a break message) and return to @value{GDBN} with a @code{T02}
c8aa23ab 24844packet.
fc320d37
SL
24845
24846It's important for the target to know in which
24847state the system call was interrupted. There are two possible cases:
0ce1b118
CV
24848
24849@itemize @bullet
24850@item
24851The system call hasn't been performed on the host yet.
24852
24853@item
24854The system call on the host has been finished.
24855
24856@end itemize
24857
24858These two states can be distinguished by the target by the value of the
24859returned @code{errno}. If it's the protocol representation of @code{EINTR}, the system
24860call hasn't been performed. This is equivalent to the @code{EINTR} handling
24861on POSIX systems. In any other case, the target may presume that the
fc320d37 24862system call has been finished --- successfully or not --- and should behave
0ce1b118
CV
24863as if the break message arrived right after the system call.
24864
fc320d37 24865@value{GDBN} must behave reliably. If the system call has not been called
0ce1b118
CV
24866yet, @value{GDBN} may send the @code{F} reply immediately, setting @code{EINTR} as
24867@code{errno} in the packet. If the system call on the host has been finished
fc320d37
SL
24868before the user requests a break, the full action must be finished by
24869@value{GDBN}. This requires sending @code{M} or @code{X} packets as necessary.
24870The @code{F} packet may only be sent when either nothing has happened
0ce1b118
CV
24871or the full action has been completed.
24872
24873@node Console I/O
24874@subsection Console I/O
24875@cindex console i/o as part of file-i/o
24876
d3e8051b 24877By default and if not explicitly closed by the target system, the file
0ce1b118
CV
24878descriptors 0, 1 and 2 are connected to the @value{GDBN} console. Output
24879on the @value{GDBN} console is handled as any other file output operation
24880(@code{write(1, @dots{})} or @code{write(2, @dots{})}). Console input is handled
24881by @value{GDBN} so that after the target read request from file descriptor
248820 all following typing is buffered until either one of the following
24883conditions is met:
24884
24885@itemize @bullet
24886@item
c8aa23ab 24887The user types @kbd{Ctrl-c}. The behaviour is as explained above, and the
0ce1b118
CV
24888@code{read}
24889system call is treated as finished.
24890
24891@item
7f9087cb 24892The user presses @key{RET}. This is treated as end of input with a trailing
fc320d37 24893newline.
0ce1b118
CV
24894
24895@item
c8aa23ab
EZ
24896The user types @kbd{Ctrl-d}. This is treated as end of input. No trailing
24897character (neither newline nor @samp{Ctrl-D}) is appended to the input.
0ce1b118
CV
24898
24899@end itemize
24900
fc320d37
SL
24901If the user has typed more characters than fit in the buffer given to
24902the @code{read} call, the trailing characters are buffered in @value{GDBN} until
24903either another @code{read(0, @dots{})} is requested by the target, or debugging
24904is stopped at the user's request.
0ce1b118 24905
0ce1b118 24906
79a6e687
BW
24907@node List of Supported Calls
24908@subsection List of Supported Calls
0ce1b118
CV
24909@cindex list of supported file-i/o calls
24910
24911@menu
24912* open::
24913* close::
24914* read::
24915* write::
24916* lseek::
24917* rename::
24918* unlink::
24919* stat/fstat::
24920* gettimeofday::
24921* isatty::
24922* system::
24923@end menu
24924
24925@node open
24926@unnumberedsubsubsec open
24927@cindex open, file-i/o system call
24928
fc320d37
SL
24929@table @asis
24930@item Synopsis:
0ce1b118 24931@smallexample
0ce1b118
CV
24932int open(const char *pathname, int flags);
24933int open(const char *pathname, int flags, mode_t mode);
0ce1b118
CV
24934@end smallexample
24935
fc320d37
SL
24936@item Request:
24937@samp{Fopen,@var{pathptr}/@var{len},@var{flags},@var{mode}}
24938
0ce1b118 24939@noindent
fc320d37 24940@var{flags} is the bitwise @code{OR} of the following values:
0ce1b118
CV
24941
24942@table @code
b383017d 24943@item O_CREAT
0ce1b118
CV
24944If the file does not exist it will be created. The host
24945rules apply as far as file ownership and time stamps
24946are concerned.
24947
b383017d 24948@item O_EXCL
fc320d37 24949When used with @code{O_CREAT}, if the file already exists it is
0ce1b118
CV
24950an error and open() fails.
24951
b383017d 24952@item O_TRUNC
0ce1b118 24953If the file already exists and the open mode allows
fc320d37
SL
24954writing (@code{O_RDWR} or @code{O_WRONLY} is given) it will be
24955truncated to zero length.
0ce1b118 24956
b383017d 24957@item O_APPEND
0ce1b118
CV
24958The file is opened in append mode.
24959
b383017d 24960@item O_RDONLY
0ce1b118
CV
24961The file is opened for reading only.
24962
b383017d 24963@item O_WRONLY
0ce1b118
CV
24964The file is opened for writing only.
24965
b383017d 24966@item O_RDWR
0ce1b118 24967The file is opened for reading and writing.
fc320d37 24968@end table
0ce1b118
CV
24969
24970@noindent
fc320d37 24971Other bits are silently ignored.
0ce1b118 24972
0ce1b118
CV
24973
24974@noindent
fc320d37 24975@var{mode} is the bitwise @code{OR} of the following values:
0ce1b118
CV
24976
24977@table @code
b383017d 24978@item S_IRUSR
0ce1b118
CV
24979User has read permission.
24980
b383017d 24981@item S_IWUSR
0ce1b118
CV
24982User has write permission.
24983
b383017d 24984@item S_IRGRP
0ce1b118
CV
24985Group has read permission.
24986
b383017d 24987@item S_IWGRP
0ce1b118
CV
24988Group has write permission.
24989
b383017d 24990@item S_IROTH
0ce1b118
CV
24991Others have read permission.
24992
b383017d 24993@item S_IWOTH
0ce1b118 24994Others have write permission.
fc320d37 24995@end table
0ce1b118
CV
24996
24997@noindent
fc320d37 24998Other bits are silently ignored.
0ce1b118 24999
0ce1b118 25000
fc320d37
SL
25001@item Return value:
25002@code{open} returns the new file descriptor or -1 if an error
25003occurred.
0ce1b118 25004
fc320d37 25005@item Errors:
0ce1b118
CV
25006
25007@table @code
b383017d 25008@item EEXIST
fc320d37 25009@var{pathname} already exists and @code{O_CREAT} and @code{O_EXCL} were used.
0ce1b118 25010
b383017d 25011@item EISDIR
fc320d37 25012@var{pathname} refers to a directory.
0ce1b118 25013
b383017d 25014@item EACCES
0ce1b118
CV
25015The requested access is not allowed.
25016
25017@item ENAMETOOLONG
fc320d37 25018@var{pathname} was too long.
0ce1b118 25019
b383017d 25020@item ENOENT
fc320d37 25021A directory component in @var{pathname} does not exist.
0ce1b118 25022
b383017d 25023@item ENODEV
fc320d37 25024@var{pathname} refers to a device, pipe, named pipe or socket.
0ce1b118 25025
b383017d 25026@item EROFS
fc320d37 25027@var{pathname} refers to a file on a read-only filesystem and
0ce1b118
CV
25028write access was requested.
25029
b383017d 25030@item EFAULT
fc320d37 25031@var{pathname} is an invalid pointer value.
0ce1b118 25032
b383017d 25033@item ENOSPC
0ce1b118
CV
25034No space on device to create the file.
25035
b383017d 25036@item EMFILE
0ce1b118
CV
25037The process already has the maximum number of files open.
25038
b383017d 25039@item ENFILE
0ce1b118
CV
25040The limit on the total number of files open on the system
25041has been reached.
25042
b383017d 25043@item EINTR
0ce1b118
CV
25044The call was interrupted by the user.
25045@end table
25046
fc320d37
SL
25047@end table
25048
0ce1b118
CV
25049@node close
25050@unnumberedsubsubsec close
25051@cindex close, file-i/o system call
25052
fc320d37
SL
25053@table @asis
25054@item Synopsis:
0ce1b118 25055@smallexample
0ce1b118 25056int close(int fd);
fc320d37 25057@end smallexample
0ce1b118 25058
fc320d37
SL
25059@item Request:
25060@samp{Fclose,@var{fd}}
0ce1b118 25061
fc320d37
SL
25062@item Return value:
25063@code{close} returns zero on success, or -1 if an error occurred.
0ce1b118 25064
fc320d37 25065@item Errors:
0ce1b118
CV
25066
25067@table @code
b383017d 25068@item EBADF
fc320d37 25069@var{fd} isn't a valid open file descriptor.
0ce1b118 25070
b383017d 25071@item EINTR
0ce1b118
CV
25072The call was interrupted by the user.
25073@end table
25074
fc320d37
SL
25075@end table
25076
0ce1b118
CV
25077@node read
25078@unnumberedsubsubsec read
25079@cindex read, file-i/o system call
25080
fc320d37
SL
25081@table @asis
25082@item Synopsis:
0ce1b118 25083@smallexample
0ce1b118 25084int read(int fd, void *buf, unsigned int count);
fc320d37 25085@end smallexample
0ce1b118 25086
fc320d37
SL
25087@item Request:
25088@samp{Fread,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25089
fc320d37 25090@item Return value:
0ce1b118
CV
25091On success, the number of bytes read is returned.
25092Zero indicates end of file. If count is zero, read
b383017d 25093returns zero as well. On error, -1 is returned.
0ce1b118 25094
fc320d37 25095@item Errors:
0ce1b118
CV
25096
25097@table @code
b383017d 25098@item EBADF
fc320d37 25099@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25100reading.
25101
b383017d 25102@item EFAULT
fc320d37 25103@var{bufptr} is an invalid pointer value.
0ce1b118 25104
b383017d 25105@item EINTR
0ce1b118
CV
25106The call was interrupted by the user.
25107@end table
25108
fc320d37
SL
25109@end table
25110
0ce1b118
CV
25111@node write
25112@unnumberedsubsubsec write
25113@cindex write, file-i/o system call
25114
fc320d37
SL
25115@table @asis
25116@item Synopsis:
0ce1b118 25117@smallexample
0ce1b118 25118int write(int fd, const void *buf, unsigned int count);
fc320d37 25119@end smallexample
0ce1b118 25120
fc320d37
SL
25121@item Request:
25122@samp{Fwrite,@var{fd},@var{bufptr},@var{count}}
0ce1b118 25123
fc320d37 25124@item Return value:
0ce1b118
CV
25125On success, the number of bytes written are returned.
25126Zero indicates nothing was written. On error, -1
25127is returned.
25128
fc320d37 25129@item Errors:
0ce1b118
CV
25130
25131@table @code
b383017d 25132@item EBADF
fc320d37 25133@var{fd} is not a valid file descriptor or is not open for
0ce1b118
CV
25134writing.
25135
b383017d 25136@item EFAULT
fc320d37 25137@var{bufptr} is an invalid pointer value.
0ce1b118 25138
b383017d 25139@item EFBIG
0ce1b118 25140An attempt was made to write a file that exceeds the
db2e3e2e 25141host-specific maximum file size allowed.
0ce1b118 25142
b383017d 25143@item ENOSPC
0ce1b118
CV
25144No space on device to write the data.
25145
b383017d 25146@item EINTR
0ce1b118
CV
25147The call was interrupted by the user.
25148@end table
25149
fc320d37
SL
25150@end table
25151
0ce1b118
CV
25152@node lseek
25153@unnumberedsubsubsec lseek
25154@cindex lseek, file-i/o system call
25155
fc320d37
SL
25156@table @asis
25157@item Synopsis:
0ce1b118 25158@smallexample
0ce1b118 25159long lseek (int fd, long offset, int flag);
0ce1b118
CV
25160@end smallexample
25161
fc320d37
SL
25162@item Request:
25163@samp{Flseek,@var{fd},@var{offset},@var{flag}}
25164
25165@var{flag} is one of:
0ce1b118
CV
25166
25167@table @code
b383017d 25168@item SEEK_SET
fc320d37 25169The offset is set to @var{offset} bytes.
0ce1b118 25170
b383017d 25171@item SEEK_CUR
fc320d37 25172The offset is set to its current location plus @var{offset}
0ce1b118
CV
25173bytes.
25174
b383017d 25175@item SEEK_END
fc320d37 25176The offset is set to the size of the file plus @var{offset}
0ce1b118
CV
25177bytes.
25178@end table
25179
fc320d37 25180@item Return value:
0ce1b118
CV
25181On success, the resulting unsigned offset in bytes from
25182the beginning of the file is returned. Otherwise, a
25183value of -1 is returned.
25184
fc320d37 25185@item Errors:
0ce1b118
CV
25186
25187@table @code
b383017d 25188@item EBADF
fc320d37 25189@var{fd} is not a valid open file descriptor.
0ce1b118 25190
b383017d 25191@item ESPIPE
fc320d37 25192@var{fd} is associated with the @value{GDBN} console.
0ce1b118 25193
b383017d 25194@item EINVAL
fc320d37 25195@var{flag} is not a proper value.
0ce1b118 25196
b383017d 25197@item EINTR
0ce1b118
CV
25198The call was interrupted by the user.
25199@end table
25200
fc320d37
SL
25201@end table
25202
0ce1b118
CV
25203@node rename
25204@unnumberedsubsubsec rename
25205@cindex rename, file-i/o system call
25206
fc320d37
SL
25207@table @asis
25208@item Synopsis:
0ce1b118 25209@smallexample
0ce1b118 25210int rename(const char *oldpath, const char *newpath);
fc320d37 25211@end smallexample
0ce1b118 25212
fc320d37
SL
25213@item Request:
25214@samp{Frename,@var{oldpathptr}/@var{len},@var{newpathptr}/@var{len}}
0ce1b118 25215
fc320d37 25216@item Return value:
0ce1b118
CV
25217On success, zero is returned. On error, -1 is returned.
25218
fc320d37 25219@item Errors:
0ce1b118
CV
25220
25221@table @code
b383017d 25222@item EISDIR
fc320d37 25223@var{newpath} is an existing directory, but @var{oldpath} is not a
0ce1b118
CV
25224directory.
25225
b383017d 25226@item EEXIST
fc320d37 25227@var{newpath} is a non-empty directory.
0ce1b118 25228
b383017d 25229@item EBUSY
fc320d37 25230@var{oldpath} or @var{newpath} is a directory that is in use by some
0ce1b118
CV
25231process.
25232
b383017d 25233@item EINVAL
0ce1b118
CV
25234An attempt was made to make a directory a subdirectory
25235of itself.
25236
b383017d 25237@item ENOTDIR
fc320d37
SL
25238A component used as a directory in @var{oldpath} or new
25239path is not a directory. Or @var{oldpath} is a directory
25240and @var{newpath} exists but is not a directory.
0ce1b118 25241
b383017d 25242@item EFAULT
fc320d37 25243@var{oldpathptr} or @var{newpathptr} are invalid pointer values.
0ce1b118 25244
b383017d 25245@item EACCES
0ce1b118
CV
25246No access to the file or the path of the file.
25247
25248@item ENAMETOOLONG
b383017d 25249
fc320d37 25250@var{oldpath} or @var{newpath} was too long.
0ce1b118 25251
b383017d 25252@item ENOENT
fc320d37 25253A directory component in @var{oldpath} or @var{newpath} does not exist.
0ce1b118 25254
b383017d 25255@item EROFS
0ce1b118
CV
25256The file is on a read-only filesystem.
25257
b383017d 25258@item ENOSPC
0ce1b118
CV
25259The device containing the file has no room for the new
25260directory entry.
25261
b383017d 25262@item EINTR
0ce1b118
CV
25263The call was interrupted by the user.
25264@end table
25265
fc320d37
SL
25266@end table
25267
0ce1b118
CV
25268@node unlink
25269@unnumberedsubsubsec unlink
25270@cindex unlink, file-i/o system call
25271
fc320d37
SL
25272@table @asis
25273@item Synopsis:
0ce1b118 25274@smallexample
0ce1b118 25275int unlink(const char *pathname);
fc320d37 25276@end smallexample
0ce1b118 25277
fc320d37
SL
25278@item Request:
25279@samp{Funlink,@var{pathnameptr}/@var{len}}
0ce1b118 25280
fc320d37 25281@item Return value:
0ce1b118
CV
25282On success, zero is returned. On error, -1 is returned.
25283
fc320d37 25284@item Errors:
0ce1b118
CV
25285
25286@table @code
b383017d 25287@item EACCES
0ce1b118
CV
25288No access to the file or the path of the file.
25289
b383017d 25290@item EPERM
0ce1b118
CV
25291The system does not allow unlinking of directories.
25292
b383017d 25293@item EBUSY
fc320d37 25294The file @var{pathname} cannot be unlinked because it's
0ce1b118
CV
25295being used by another process.
25296
b383017d 25297@item EFAULT
fc320d37 25298@var{pathnameptr} is an invalid pointer value.
0ce1b118
CV
25299
25300@item ENAMETOOLONG
fc320d37 25301@var{pathname} was too long.
0ce1b118 25302
b383017d 25303@item ENOENT
fc320d37 25304A directory component in @var{pathname} does not exist.
0ce1b118 25305
b383017d 25306@item ENOTDIR
0ce1b118
CV
25307A component of the path is not a directory.
25308
b383017d 25309@item EROFS
0ce1b118
CV
25310The file is on a read-only filesystem.
25311
b383017d 25312@item EINTR
0ce1b118
CV
25313The call was interrupted by the user.
25314@end table
25315
fc320d37
SL
25316@end table
25317
0ce1b118
CV
25318@node stat/fstat
25319@unnumberedsubsubsec stat/fstat
25320@cindex fstat, file-i/o system call
25321@cindex stat, file-i/o system call
25322
fc320d37
SL
25323@table @asis
25324@item Synopsis:
0ce1b118 25325@smallexample
0ce1b118
CV
25326int stat(const char *pathname, struct stat *buf);
25327int fstat(int fd, struct stat *buf);
fc320d37 25328@end smallexample
0ce1b118 25329
fc320d37
SL
25330@item Request:
25331@samp{Fstat,@var{pathnameptr}/@var{len},@var{bufptr}}@*
25332@samp{Ffstat,@var{fd},@var{bufptr}}
0ce1b118 25333
fc320d37 25334@item Return value:
0ce1b118
CV
25335On success, zero is returned. On error, -1 is returned.
25336
fc320d37 25337@item Errors:
0ce1b118
CV
25338
25339@table @code
b383017d 25340@item EBADF
fc320d37 25341@var{fd} is not a valid open file.
0ce1b118 25342
b383017d 25343@item ENOENT
fc320d37 25344A directory component in @var{pathname} does not exist or the
0ce1b118
CV
25345path is an empty string.
25346
b383017d 25347@item ENOTDIR
0ce1b118
CV
25348A component of the path is not a directory.
25349
b383017d 25350@item EFAULT
fc320d37 25351@var{pathnameptr} is an invalid pointer value.
0ce1b118 25352
b383017d 25353@item EACCES
0ce1b118
CV
25354No access to the file or the path of the file.
25355
25356@item ENAMETOOLONG
fc320d37 25357@var{pathname} was too long.
0ce1b118 25358
b383017d 25359@item EINTR
0ce1b118
CV
25360The call was interrupted by the user.
25361@end table
25362
fc320d37
SL
25363@end table
25364
0ce1b118
CV
25365@node gettimeofday
25366@unnumberedsubsubsec gettimeofday
25367@cindex gettimeofday, file-i/o system call
25368
fc320d37
SL
25369@table @asis
25370@item Synopsis:
0ce1b118 25371@smallexample
0ce1b118 25372int gettimeofday(struct timeval *tv, void *tz);
fc320d37 25373@end smallexample
0ce1b118 25374
fc320d37
SL
25375@item Request:
25376@samp{Fgettimeofday,@var{tvptr},@var{tzptr}}
0ce1b118 25377
fc320d37 25378@item Return value:
0ce1b118
CV
25379On success, 0 is returned, -1 otherwise.
25380
fc320d37 25381@item Errors:
0ce1b118
CV
25382
25383@table @code
b383017d 25384@item EINVAL
fc320d37 25385@var{tz} is a non-NULL pointer.
0ce1b118 25386
b383017d 25387@item EFAULT
fc320d37
SL
25388@var{tvptr} and/or @var{tzptr} is an invalid pointer value.
25389@end table
25390
0ce1b118
CV
25391@end table
25392
25393@node isatty
25394@unnumberedsubsubsec isatty
25395@cindex isatty, file-i/o system call
25396
fc320d37
SL
25397@table @asis
25398@item Synopsis:
0ce1b118 25399@smallexample
0ce1b118 25400int isatty(int fd);
fc320d37 25401@end smallexample
0ce1b118 25402
fc320d37
SL
25403@item Request:
25404@samp{Fisatty,@var{fd}}
0ce1b118 25405
fc320d37
SL
25406@item Return value:
25407Returns 1 if @var{fd} refers to the @value{GDBN} console, 0 otherwise.
0ce1b118 25408
fc320d37 25409@item Errors:
0ce1b118
CV
25410
25411@table @code
b383017d 25412@item EINTR
0ce1b118
CV
25413The call was interrupted by the user.
25414@end table
25415
fc320d37
SL
25416@end table
25417
25418Note that the @code{isatty} call is treated as a special case: it returns
254191 to the target if the file descriptor is attached
25420to the @value{GDBN} console, 0 otherwise. Implementing through system calls
25421would require implementing @code{ioctl} and would be more complex than
25422needed.
25423
25424
0ce1b118
CV
25425@node system
25426@unnumberedsubsubsec system
25427@cindex system, file-i/o system call
25428
fc320d37
SL
25429@table @asis
25430@item Synopsis:
0ce1b118 25431@smallexample
0ce1b118 25432int system(const char *command);
fc320d37 25433@end smallexample
0ce1b118 25434
fc320d37
SL
25435@item Request:
25436@samp{Fsystem,@var{commandptr}/@var{len}}
0ce1b118 25437
fc320d37 25438@item Return value:
5600ea19
NS
25439If @var{len} is zero, the return value indicates whether a shell is
25440available. A zero return value indicates a shell is not available.
25441For non-zero @var{len}, the value returned is -1 on error and the
25442return status of the command otherwise. Only the exit status of the
25443command is returned, which is extracted from the host's @code{system}
25444return value by calling @code{WEXITSTATUS(retval)}. In case
25445@file{/bin/sh} could not be executed, 127 is returned.
0ce1b118 25446
fc320d37 25447@item Errors:
0ce1b118
CV
25448
25449@table @code
b383017d 25450@item EINTR
0ce1b118
CV
25451The call was interrupted by the user.
25452@end table
25453
fc320d37
SL
25454@end table
25455
25456@value{GDBN} takes over the full task of calling the necessary host calls
25457to perform the @code{system} call. The return value of @code{system} on
25458the host is simplified before it's returned
25459to the target. Any termination signal information from the child process
25460is discarded, and the return value consists
25461entirely of the exit status of the called command.
25462
25463Due to security concerns, the @code{system} call is by default refused
25464by @value{GDBN}. The user has to allow this call explicitly with the
25465@code{set remote system-call-allowed 1} command.
25466
25467@table @code
25468@item set remote system-call-allowed
25469@kindex set remote system-call-allowed
25470Control whether to allow the @code{system} calls in the File I/O
25471protocol for the remote target. The default is zero (disabled).
25472
25473@item show remote system-call-allowed
25474@kindex show remote system-call-allowed
25475Show whether the @code{system} calls are allowed in the File I/O
25476protocol.
25477@end table
25478
db2e3e2e
BW
25479@node Protocol-specific Representation of Datatypes
25480@subsection Protocol-specific Representation of Datatypes
25481@cindex protocol-specific representation of datatypes, in file-i/o protocol
0ce1b118
CV
25482
25483@menu
79a6e687
BW
25484* Integral Datatypes::
25485* Pointer Values::
25486* Memory Transfer::
0ce1b118
CV
25487* struct stat::
25488* struct timeval::
25489@end menu
25490
79a6e687
BW
25491@node Integral Datatypes
25492@unnumberedsubsubsec Integral Datatypes
0ce1b118
CV
25493@cindex integral datatypes, in file-i/o protocol
25494
fc320d37
SL
25495The integral datatypes used in the system calls are @code{int},
25496@code{unsigned int}, @code{long}, @code{unsigned long},
25497@code{mode_t}, and @code{time_t}.
0ce1b118 25498
fc320d37 25499@code{int}, @code{unsigned int}, @code{mode_t} and @code{time_t} are
0ce1b118
CV
25500implemented as 32 bit values in this protocol.
25501
fc320d37 25502@code{long} and @code{unsigned long} are implemented as 64 bit types.
b383017d 25503
0ce1b118
CV
25504@xref{Limits}, for corresponding MIN and MAX values (similar to those
25505in @file{limits.h}) to allow range checking on host and target.
25506
25507@code{time_t} datatypes are defined as seconds since the Epoch.
25508
25509All integral datatypes transferred as part of a memory read or write of a
25510structured datatype e.g.@: a @code{struct stat} have to be given in big endian
25511byte order.
25512
79a6e687
BW
25513@node Pointer Values
25514@unnumberedsubsubsec Pointer Values
0ce1b118
CV
25515@cindex pointer values, in file-i/o protocol
25516
25517Pointers to target data are transmitted as they are. An exception
25518is made for pointers to buffers for which the length isn't
25519transmitted as part of the function call, namely strings. Strings
25520are transmitted as a pointer/length pair, both as hex values, e.g.@:
25521
25522@smallexample
25523@code{1aaf/12}
25524@end smallexample
25525
25526@noindent
25527which is a pointer to data of length 18 bytes at position 0x1aaf.
25528The length is defined as the full string length in bytes, including
fc320d37
SL
25529the trailing null byte. For example, the string @code{"hello world"}
25530at address 0x123456 is transmitted as
0ce1b118
CV
25531
25532@smallexample
fc320d37 25533@code{123456/d}
0ce1b118
CV
25534@end smallexample
25535
79a6e687
BW
25536@node Memory Transfer
25537@unnumberedsubsubsec Memory Transfer
fc320d37
SL
25538@cindex memory transfer, in file-i/o protocol
25539
25540Structured data which is transferred using a memory read or write (for
db2e3e2e 25541example, a @code{struct stat}) is expected to be in a protocol-specific format
fc320d37
SL
25542with all scalar multibyte datatypes being big endian. Translation to
25543this representation needs to be done both by the target before the @code{F}
25544packet is sent, and by @value{GDBN} before
25545it transfers memory to the target. Transferred pointers to structured
25546data should point to the already-coerced data at any time.
0ce1b118 25547
0ce1b118
CV
25548
25549@node struct stat
25550@unnumberedsubsubsec struct stat
25551@cindex struct stat, in file-i/o protocol
25552
fc320d37
SL
25553The buffer of type @code{struct stat} used by the target and @value{GDBN}
25554is defined as follows:
0ce1b118
CV
25555
25556@smallexample
25557struct stat @{
25558 unsigned int st_dev; /* device */
25559 unsigned int st_ino; /* inode */
25560 mode_t st_mode; /* protection */
25561 unsigned int st_nlink; /* number of hard links */
25562 unsigned int st_uid; /* user ID of owner */
25563 unsigned int st_gid; /* group ID of owner */
25564 unsigned int st_rdev; /* device type (if inode device) */
25565 unsigned long st_size; /* total size, in bytes */
25566 unsigned long st_blksize; /* blocksize for filesystem I/O */
25567 unsigned long st_blocks; /* number of blocks allocated */
25568 time_t st_atime; /* time of last access */
25569 time_t st_mtime; /* time of last modification */
25570 time_t st_ctime; /* time of last change */
25571@};
25572@end smallexample
25573
fc320d37 25574The integral datatypes conform to the definitions given in the
79a6e687 25575appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25576structure is of size 64 bytes.
25577
25578The values of several fields have a restricted meaning and/or
25579range of values.
25580
fc320d37 25581@table @code
0ce1b118 25582
fc320d37
SL
25583@item st_dev
25584A value of 0 represents a file, 1 the console.
0ce1b118 25585
fc320d37
SL
25586@item st_ino
25587No valid meaning for the target. Transmitted unchanged.
0ce1b118 25588
fc320d37
SL
25589@item st_mode
25590Valid mode bits are described in @ref{Constants}. Any other
25591bits have currently no meaning for the target.
0ce1b118 25592
fc320d37
SL
25593@item st_uid
25594@itemx st_gid
25595@itemx st_rdev
25596No valid meaning for the target. Transmitted unchanged.
0ce1b118 25597
fc320d37
SL
25598@item st_atime
25599@itemx st_mtime
25600@itemx st_ctime
25601These values have a host and file system dependent
25602accuracy. Especially on Windows hosts, the file system may not
25603support exact timing values.
25604@end table
0ce1b118 25605
fc320d37
SL
25606The target gets a @code{struct stat} of the above representation and is
25607responsible for coercing it to the target representation before
0ce1b118
CV
25608continuing.
25609
fc320d37
SL
25610Note that due to size differences between the host, target, and protocol
25611representations of @code{struct stat} members, these members could eventually
0ce1b118
CV
25612get truncated on the target.
25613
25614@node struct timeval
25615@unnumberedsubsubsec struct timeval
25616@cindex struct timeval, in file-i/o protocol
25617
fc320d37 25618The buffer of type @code{struct timeval} used by the File-I/O protocol
0ce1b118
CV
25619is defined as follows:
25620
25621@smallexample
b383017d 25622struct timeval @{
0ce1b118
CV
25623 time_t tv_sec; /* second */
25624 long tv_usec; /* microsecond */
25625@};
25626@end smallexample
25627
fc320d37 25628The integral datatypes conform to the definitions given in the
79a6e687 25629appropriate section (see @ref{Integral Datatypes}, for details) so this
0ce1b118
CV
25630structure is of size 8 bytes.
25631
25632@node Constants
25633@subsection Constants
25634@cindex constants, in file-i/o protocol
25635
25636The following values are used for the constants inside of the
fc320d37 25637protocol. @value{GDBN} and target are responsible for translating these
0ce1b118
CV
25638values before and after the call as needed.
25639
25640@menu
79a6e687
BW
25641* Open Flags::
25642* mode_t Values::
25643* Errno Values::
25644* Lseek Flags::
0ce1b118
CV
25645* Limits::
25646@end menu
25647
79a6e687
BW
25648@node Open Flags
25649@unnumberedsubsubsec Open Flags
0ce1b118
CV
25650@cindex open flags, in file-i/o protocol
25651
25652All values are given in hexadecimal representation.
25653
25654@smallexample
25655 O_RDONLY 0x0
25656 O_WRONLY 0x1
25657 O_RDWR 0x2
25658 O_APPEND 0x8
25659 O_CREAT 0x200
25660 O_TRUNC 0x400
25661 O_EXCL 0x800
25662@end smallexample
25663
79a6e687
BW
25664@node mode_t Values
25665@unnumberedsubsubsec mode_t Values
0ce1b118
CV
25666@cindex mode_t values, in file-i/o protocol
25667
25668All values are given in octal representation.
25669
25670@smallexample
25671 S_IFREG 0100000
25672 S_IFDIR 040000
25673 S_IRUSR 0400
25674 S_IWUSR 0200
25675 S_IXUSR 0100
25676 S_IRGRP 040
25677 S_IWGRP 020
25678 S_IXGRP 010
25679 S_IROTH 04
25680 S_IWOTH 02
25681 S_IXOTH 01
25682@end smallexample
25683
79a6e687
BW
25684@node Errno Values
25685@unnumberedsubsubsec Errno Values
0ce1b118
CV
25686@cindex errno values, in file-i/o protocol
25687
25688All values are given in decimal representation.
25689
25690@smallexample
25691 EPERM 1
25692 ENOENT 2
25693 EINTR 4
25694 EBADF 9
25695 EACCES 13
25696 EFAULT 14
25697 EBUSY 16
25698 EEXIST 17
25699 ENODEV 19
25700 ENOTDIR 20
25701 EISDIR 21
25702 EINVAL 22
25703 ENFILE 23
25704 EMFILE 24
25705 EFBIG 27
25706 ENOSPC 28
25707 ESPIPE 29
25708 EROFS 30
25709 ENAMETOOLONG 91
25710 EUNKNOWN 9999
25711@end smallexample
25712
fc320d37 25713 @code{EUNKNOWN} is used as a fallback error value if a host system returns
0ce1b118
CV
25714 any error value not in the list of supported error numbers.
25715
79a6e687
BW
25716@node Lseek Flags
25717@unnumberedsubsubsec Lseek Flags
0ce1b118
CV
25718@cindex lseek flags, in file-i/o protocol
25719
25720@smallexample
25721 SEEK_SET 0
25722 SEEK_CUR 1
25723 SEEK_END 2
25724@end smallexample
25725
25726@node Limits
25727@unnumberedsubsubsec Limits
25728@cindex limits, in file-i/o protocol
25729
25730All values are given in decimal representation.
25731
25732@smallexample
25733 INT_MIN -2147483648
25734 INT_MAX 2147483647
25735 UINT_MAX 4294967295
25736 LONG_MIN -9223372036854775808
25737 LONG_MAX 9223372036854775807
25738 ULONG_MAX 18446744073709551615
25739@end smallexample
25740
25741@node File-I/O Examples
25742@subsection File-I/O Examples
25743@cindex file-i/o examples
25744
25745Example sequence of a write call, file descriptor 3, buffer is at target
25746address 0x1234, 6 bytes should be written:
25747
25748@smallexample
25749<- @code{Fwrite,3,1234,6}
25750@emph{request memory read from target}
25751-> @code{m1234,6}
25752<- XXXXXX
25753@emph{return "6 bytes written"}
25754-> @code{F6}
25755@end smallexample
25756
25757Example sequence of a read call, file descriptor 3, buffer is at target
25758address 0x1234, 6 bytes should be read:
25759
25760@smallexample
25761<- @code{Fread,3,1234,6}
25762@emph{request memory write to target}
25763-> @code{X1234,6:XXXXXX}
25764@emph{return "6 bytes read"}
25765-> @code{F6}
25766@end smallexample
25767
25768Example sequence of a read call, call fails on the host due to invalid
fc320d37 25769file descriptor (@code{EBADF}):
0ce1b118
CV
25770
25771@smallexample
25772<- @code{Fread,3,1234,6}
25773-> @code{F-1,9}
25774@end smallexample
25775
c8aa23ab 25776Example sequence of a read call, user presses @kbd{Ctrl-c} before syscall on
0ce1b118
CV
25777host is called:
25778
25779@smallexample
25780<- @code{Fread,3,1234,6}
25781-> @code{F-1,4,C}
25782<- @code{T02}
25783@end smallexample
25784
c8aa23ab 25785Example sequence of a read call, user presses @kbd{Ctrl-c} after syscall on
0ce1b118
CV
25786host is called:
25787
25788@smallexample
25789<- @code{Fread,3,1234,6}
25790-> @code{X1234,6:XXXXXX}
25791<- @code{T02}
25792@end smallexample
25793
cfa9d6d9
DJ
25794@node Library List Format
25795@section Library List Format
25796@cindex library list format, remote protocol
25797
25798On some platforms, a dynamic loader (e.g.@: @file{ld.so}) runs in the
25799same process as your application to manage libraries. In this case,
25800@value{GDBN} can use the loader's symbol table and normal memory
25801operations to maintain a list of shared libraries. On other
25802platforms, the operating system manages loaded libraries.
25803@value{GDBN} can not retrieve the list of currently loaded libraries
25804through memory operations, so it uses the @samp{qXfer:libraries:read}
25805packet (@pxref{qXfer library list read}) instead. The remote stub
25806queries the target's operating system and reports which libraries
25807are loaded.
25808
25809The @samp{qXfer:libraries:read} packet returns an XML document which
25810lists loaded libraries and their offsets. Each library has an
25811associated name and one or more segment base addresses, which report
25812where the library was loaded in memory. The segment bases are start
25813addresses, not relocation offsets; they do not depend on the library's
25814link-time base addresses.
25815
9cceb671
DJ
25816@value{GDBN} must be linked with the Expat library to support XML
25817library lists. @xref{Expat}.
25818
cfa9d6d9
DJ
25819A simple memory map, with one loaded library relocated by a single
25820offset, looks like this:
25821
25822@smallexample
25823<library-list>
25824 <library name="/lib/libc.so.6">
25825 <segment address="0x10000000"/>
25826 </library>
25827</library-list>
25828@end smallexample
25829
25830The format of a library list is described by this DTD:
25831
25832@smallexample
25833<!-- library-list: Root element with versioning -->
25834<!ELEMENT library-list (library)*>
25835<!ATTLIST library-list version CDATA #FIXED "1.0">
25836<!ELEMENT library (segment)*>
25837<!ATTLIST library name CDATA #REQUIRED>
25838<!ELEMENT segment EMPTY>
25839<!ATTLIST segment address CDATA #REQUIRED>
25840@end smallexample
25841
79a6e687
BW
25842@node Memory Map Format
25843@section Memory Map Format
68437a39
DJ
25844@cindex memory map format
25845
25846To be able to write into flash memory, @value{GDBN} needs to obtain a
25847memory map from the target. This section describes the format of the
25848memory map.
25849
25850The memory map is obtained using the @samp{qXfer:memory-map:read}
25851(@pxref{qXfer memory map read}) packet and is an XML document that
9cceb671
DJ
25852lists memory regions.
25853
25854@value{GDBN} must be linked with the Expat library to support XML
25855memory maps. @xref{Expat}.
25856
25857The top-level structure of the document is shown below:
68437a39
DJ
25858
25859@smallexample
25860<?xml version="1.0"?>
25861<!DOCTYPE memory-map
25862 PUBLIC "+//IDN gnu.org//DTD GDB Memory Map V1.0//EN"
25863 "http://sourceware.org/gdb/gdb-memory-map.dtd">
25864<memory-map>
25865 region...
25866</memory-map>
25867@end smallexample
25868
25869Each region can be either:
25870
25871@itemize
25872
25873@item
25874A region of RAM starting at @var{addr} and extending for @var{length}
25875bytes from there:
25876
25877@smallexample
25878<memory type="ram" start="@var{addr}" length="@var{length}"/>
25879@end smallexample
25880
25881
25882@item
25883A region of read-only memory:
25884
25885@smallexample
25886<memory type="rom" start="@var{addr}" length="@var{length}"/>
25887@end smallexample
25888
25889
25890@item
25891A region of flash memory, with erasure blocks @var{blocksize}
25892bytes in length:
25893
25894@smallexample
25895<memory type="flash" start="@var{addr}" length="@var{length}">
25896 <property name="blocksize">@var{blocksize}</property>
25897</memory>
25898@end smallexample
25899
25900@end itemize
25901
25902Regions must not overlap. @value{GDBN} assumes that areas of memory not covered
25903by the memory map are RAM, and uses the ordinary @samp{M} and @samp{X}
25904packets to write to addresses in such ranges.
25905
25906The formal DTD for memory map format is given below:
25907
25908@smallexample
25909<!-- ................................................... -->
25910<!-- Memory Map XML DTD ................................ -->
25911<!-- File: memory-map.dtd .............................. -->
25912<!-- .................................... .............. -->
25913<!-- memory-map.dtd -->
25914<!-- memory-map: Root element with versioning -->
25915<!ELEMENT memory-map (memory | property)>
25916<!ATTLIST memory-map version CDATA #FIXED "1.0.0">
25917<!ELEMENT memory (property)>
25918<!-- memory: Specifies a memory region,
25919 and its type, or device. -->
25920<!ATTLIST memory type CDATA #REQUIRED
25921 start CDATA #REQUIRED
25922 length CDATA #REQUIRED
25923 device CDATA #IMPLIED>
25924<!-- property: Generic attribute tag -->
25925<!ELEMENT property (#PCDATA | property)*>
25926<!ATTLIST property name CDATA #REQUIRED>
25927@end smallexample
25928
f418dd93
DJ
25929@include agentexpr.texi
25930
23181151
DJ
25931@node Target Descriptions
25932@appendix Target Descriptions
25933@cindex target descriptions
25934
25935@strong{Warning:} target descriptions are still under active development,
25936and the contents and format may change between @value{GDBN} releases.
25937The format is expected to stabilize in the future.
25938
25939One of the challenges of using @value{GDBN} to debug embedded systems
25940is that there are so many minor variants of each processor
25941architecture in use. It is common practice for vendors to start with
25942a standard processor core --- ARM, PowerPC, or MIPS, for example ---
25943and then make changes to adapt it to a particular market niche. Some
25944architectures have hundreds of variants, available from dozens of
25945vendors. This leads to a number of problems:
25946
25947@itemize @bullet
25948@item
25949With so many different customized processors, it is difficult for
25950the @value{GDBN} maintainers to keep up with the changes.
25951@item
25952Since individual variants may have short lifetimes or limited
25953audiences, it may not be worthwhile to carry information about every
25954variant in the @value{GDBN} source tree.
25955@item
25956When @value{GDBN} does support the architecture of the embedded system
25957at hand, the task of finding the correct architecture name to give the
25958@command{set architecture} command can be error-prone.
25959@end itemize
25960
25961To address these problems, the @value{GDBN} remote protocol allows a
25962target system to not only identify itself to @value{GDBN}, but to
25963actually describe its own features. This lets @value{GDBN} support
25964processor variants it has never seen before --- to the extent that the
25965descriptions are accurate, and that @value{GDBN} understands them.
25966
9cceb671
DJ
25967@value{GDBN} must be linked with the Expat library to support XML
25968target descriptions. @xref{Expat}.
123dc839 25969
23181151
DJ
25970@menu
25971* Retrieving Descriptions:: How descriptions are fetched from a target.
25972* Target Description Format:: The contents of a target description.
123dc839
DJ
25973* Predefined Target Types:: Standard types available for target
25974 descriptions.
25975* Standard Target Features:: Features @value{GDBN} knows about.
23181151
DJ
25976@end menu
25977
25978@node Retrieving Descriptions
25979@section Retrieving Descriptions
25980
25981Target descriptions can be read from the target automatically, or
25982specified by the user manually. The default behavior is to read the
25983description from the target. @value{GDBN} retrieves it via the remote
25984protocol using @samp{qXfer} requests (@pxref{General Query Packets,
25985qXfer}). The @var{annex} in the @samp{qXfer} packet will be
25986@samp{target.xml}. The contents of the @samp{target.xml} annex are an
25987XML document, of the form described in @ref{Target Description
25988Format}.
25989
25990Alternatively, you can specify a file to read for the target description.
25991If a file is set, the target will not be queried. The commands to
25992specify a file are:
25993
25994@table @code
25995@cindex set tdesc filename
25996@item set tdesc filename @var{path}
25997Read the target description from @var{path}.
25998
25999@cindex unset tdesc filename
26000@item unset tdesc filename
26001Do not read the XML target description from a file. @value{GDBN}
26002will use the description supplied by the current target.
26003
26004@cindex show tdesc filename
26005@item show tdesc filename
26006Show the filename to read for a target description, if any.
26007@end table
26008
26009
26010@node Target Description Format
26011@section Target Description Format
26012@cindex target descriptions, XML format
26013
26014A target description annex is an @uref{http://www.w3.org/XML/, XML}
26015document which complies with the Document Type Definition provided in
26016the @value{GDBN} sources in @file{gdb/features/gdb-target.dtd}. This
26017means you can use generally available tools like @command{xmllint} to
26018check that your feature descriptions are well-formed and valid.
26019However, to help people unfamiliar with XML write descriptions for
26020their targets, we also describe the grammar here.
26021
123dc839
DJ
26022Target descriptions can identify the architecture of the remote target
26023and (for some architectures) provide information about custom register
26024sets. @value{GDBN} can use this information to autoconfigure for your
26025target, or to warn you if you connect to an unsupported target.
23181151
DJ
26026
26027Here is a simple target description:
26028
123dc839 26029@smallexample
1780a0ed 26030<target version="1.0">
23181151
DJ
26031 <architecture>i386:x86-64</architecture>
26032</target>
123dc839 26033@end smallexample
23181151
DJ
26034
26035@noindent
26036This minimal description only says that the target uses
26037the x86-64 architecture.
26038
123dc839
DJ
26039A target description has the following overall form, with [ ] marking
26040optional elements and @dots{} marking repeatable elements. The elements
26041are explained further below.
23181151 26042
123dc839 26043@smallexample
23181151
DJ
26044<?xml version="1.0"?>
26045<!DOCTYPE target SYSTEM "gdb-target.dtd">
1780a0ed 26046<target version="1.0">
123dc839
DJ
26047 @r{[}@var{architecture}@r{]}
26048 @r{[}@var{feature}@dots{}@r{]}
23181151 26049</target>
123dc839 26050@end smallexample
23181151
DJ
26051
26052@noindent
26053The description is generally insensitive to whitespace and line
26054breaks, under the usual common-sense rules. The XML version
26055declaration and document type declaration can generally be omitted
26056(@value{GDBN} does not require them), but specifying them may be
1780a0ed
DJ
26057useful for XML validation tools. The @samp{version} attribute for
26058@samp{<target>} may also be omitted, but we recommend
26059including it; if future versions of @value{GDBN} use an incompatible
26060revision of @file{gdb-target.dtd}, they will detect and report
26061the version mismatch.
23181151 26062
108546a0
DJ
26063@subsection Inclusion
26064@cindex target descriptions, inclusion
26065@cindex XInclude
26066@ifnotinfo
26067@cindex <xi:include>
26068@end ifnotinfo
26069
26070It can sometimes be valuable to split a target description up into
26071several different annexes, either for organizational purposes, or to
26072share files between different possible target descriptions. You can
26073divide a description into multiple files by replacing any element of
26074the target description with an inclusion directive of the form:
26075
123dc839 26076@smallexample
108546a0 26077<xi:include href="@var{document}"/>
123dc839 26078@end smallexample
108546a0
DJ
26079
26080@noindent
26081When @value{GDBN} encounters an element of this form, it will retrieve
26082the named XML @var{document}, and replace the inclusion directive with
26083the contents of that document. If the current description was read
26084using @samp{qXfer}, then so will be the included document;
26085@var{document} will be interpreted as the name of an annex. If the
26086current description was read from a file, @value{GDBN} will look for
26087@var{document} as a file in the same directory where it found the
26088original description.
26089
123dc839
DJ
26090@subsection Architecture
26091@cindex <architecture>
26092
26093An @samp{<architecture>} element has this form:
26094
26095@smallexample
26096 <architecture>@var{arch}</architecture>
26097@end smallexample
26098
26099@var{arch} is an architecture name from the same selection
26100accepted by @code{set architecture} (@pxref{Targets, ,Specifying a
26101Debugging Target}).
26102
26103@subsection Features
26104@cindex <feature>
26105
26106Each @samp{<feature>} describes some logical portion of the target
26107system. Features are currently used to describe available CPU
26108registers and the types of their contents. A @samp{<feature>} element
26109has this form:
26110
26111@smallexample
26112<feature name="@var{name}">
26113 @r{[}@var{type}@dots{}@r{]}
26114 @var{reg}@dots{}
26115</feature>
26116@end smallexample
26117
26118@noindent
26119Each feature's name should be unique within the description. The name
26120of a feature does not matter unless @value{GDBN} has some special
26121knowledge of the contents of that feature; if it does, the feature
26122should have its standard name. @xref{Standard Target Features}.
26123
26124@subsection Types
26125
26126Any register's value is a collection of bits which @value{GDBN} must
26127interpret. The default interpretation is a two's complement integer,
26128but other types can be requested by name in the register description.
26129Some predefined types are provided by @value{GDBN} (@pxref{Predefined
26130Target Types}), and the description can define additional composite types.
26131
26132Each type element must have an @samp{id} attribute, which gives
26133a unique (within the containing @samp{<feature>}) name to the type.
26134Types must be defined before they are used.
26135
26136@cindex <vector>
26137Some targets offer vector registers, which can be treated as arrays
26138of scalar elements. These types are written as @samp{<vector>} elements,
26139specifying the array element type, @var{type}, and the number of elements,
26140@var{count}:
26141
26142@smallexample
26143<vector id="@var{id}" type="@var{type}" count="@var{count}"/>
26144@end smallexample
26145
26146@cindex <union>
26147If a register's value is usefully viewed in multiple ways, define it
26148with a union type containing the useful representations. The
26149@samp{<union>} element contains one or more @samp{<field>} elements,
26150each of which has a @var{name} and a @var{type}:
26151
26152@smallexample
26153<union id="@var{id}">
26154 <field name="@var{name}" type="@var{type}"/>
26155 @dots{}
26156</union>
26157@end smallexample
26158
26159@subsection Registers
26160@cindex <reg>
26161
26162Each register is represented as an element with this form:
26163
26164@smallexample
26165<reg name="@var{name}"
26166 bitsize="@var{size}"
26167 @r{[}regnum="@var{num}"@r{]}
26168 @r{[}save-restore="@var{save-restore}"@r{]}
26169 @r{[}type="@var{type}"@r{]}
26170 @r{[}group="@var{group}"@r{]}/>
26171@end smallexample
26172
26173@noindent
26174The components are as follows:
26175
26176@table @var
26177
26178@item name
26179The register's name; it must be unique within the target description.
26180
26181@item bitsize
26182The register's size, in bits.
26183
26184@item regnum
26185The register's number. If omitted, a register's number is one greater
26186than that of the previous register (either in the current feature or in
26187a preceeding feature); the first register in the target description
26188defaults to zero. This register number is used to read or write
26189the register; e.g.@: it is used in the remote @code{p} and @code{P}
26190packets, and registers appear in the @code{g} and @code{G} packets
26191in order of increasing register number.
26192
26193@item save-restore
26194Whether the register should be preserved across inferior function
26195calls; this must be either @code{yes} or @code{no}. The default is
26196@code{yes}, which is appropriate for most registers except for
26197some system control registers; this is not related to the target's
26198ABI.
26199
26200@item type
26201The type of the register. @var{type} may be a predefined type, a type
26202defined in the current feature, or one of the special types @code{int}
26203and @code{float}. @code{int} is an integer type of the correct size
26204for @var{bitsize}, and @code{float} is a floating point type (in the
26205architecture's normal floating point format) of the correct size for
26206@var{bitsize}. The default is @code{int}.
26207
26208@item group
26209The register group to which this register belongs. @var{group} must
26210be either @code{general}, @code{float}, or @code{vector}. If no
26211@var{group} is specified, @value{GDBN} will not display the register
26212in @code{info registers}.
26213
26214@end table
26215
26216@node Predefined Target Types
26217@section Predefined Target Types
26218@cindex target descriptions, predefined types
26219
26220Type definitions in the self-description can build up composite types
26221from basic building blocks, but can not define fundamental types. Instead,
26222standard identifiers are provided by @value{GDBN} for the fundamental
26223types. The currently supported types are:
26224
26225@table @code
26226
26227@item int8
26228@itemx int16
26229@itemx int32
26230@itemx int64
7cc46491 26231@itemx int128
123dc839
DJ
26232Signed integer types holding the specified number of bits.
26233
26234@item uint8
26235@itemx uint16
26236@itemx uint32
26237@itemx uint64
7cc46491 26238@itemx uint128
123dc839
DJ
26239Unsigned integer types holding the specified number of bits.
26240
26241@item code_ptr
26242@itemx data_ptr
26243Pointers to unspecified code and data. The program counter and
26244any dedicated return address register may be marked as code
26245pointers; printing a code pointer converts it into a symbolic
26246address. The stack pointer and any dedicated address registers
26247may be marked as data pointers.
26248
6e3bbd1a
PB
26249@item ieee_single
26250Single precision IEEE floating point.
26251
26252@item ieee_double
26253Double precision IEEE floating point.
26254
123dc839
DJ
26255@item arm_fpa_ext
26256The 12-byte extended precision format used by ARM FPA registers.
26257
26258@end table
26259
26260@node Standard Target Features
26261@section Standard Target Features
26262@cindex target descriptions, standard features
26263
26264A target description must contain either no registers or all the
26265target's registers. If the description contains no registers, then
26266@value{GDBN} will assume a default register layout, selected based on
26267the architecture. If the description contains any registers, the
26268default layout will not be used; the standard registers must be
26269described in the target description, in such a way that @value{GDBN}
26270can recognize them.
26271
26272This is accomplished by giving specific names to feature elements
26273which contain standard registers. @value{GDBN} will look for features
26274with those names and verify that they contain the expected registers;
26275if any known feature is missing required registers, or if any required
26276feature is missing, @value{GDBN} will reject the target
26277description. You can add additional registers to any of the
26278standard features --- @value{GDBN} will display them just as if
26279they were added to an unrecognized feature.
26280
26281This section lists the known features and their expected contents.
26282Sample XML documents for these features are included in the
26283@value{GDBN} source tree, in the directory @file{gdb/features}.
26284
26285Names recognized by @value{GDBN} should include the name of the
26286company or organization which selected the name, and the overall
26287architecture to which the feature applies; so e.g.@: the feature
26288containing ARM core registers is named @samp{org.gnu.gdb.arm.core}.
26289
ff6f572f
DJ
26290The names of registers are not case sensitive for the purpose
26291of recognizing standard features, but @value{GDBN} will only display
26292registers using the capitalization used in the description.
26293
e9c17194
VP
26294@menu
26295* ARM Features::
26296* M68K Features::
26297@end menu
26298
26299
26300@node ARM Features
123dc839
DJ
26301@subsection ARM Features
26302@cindex target descriptions, ARM features
26303
26304The @samp{org.gnu.gdb.arm.core} feature is required for ARM targets.
26305It should contain registers @samp{r0} through @samp{r13}, @samp{sp},
26306@samp{lr}, @samp{pc}, and @samp{cpsr}.
26307
26308The @samp{org.gnu.gdb.arm.fpa} feature is optional. If present, it
26309should contain registers @samp{f0} through @samp{f7} and @samp{fps}.
26310
ff6f572f
DJ
26311The @samp{org.gnu.gdb.xscale.iwmmxt} feature is optional. If present,
26312it should contain at least registers @samp{wR0} through @samp{wR15} and
26313@samp{wCGR0} through @samp{wCGR3}. The @samp{wCID}, @samp{wCon},
26314@samp{wCSSF}, and @samp{wCASF} registers are optional.
23181151 26315
f8b73d13
DJ
26316@subsection MIPS Features
26317@cindex target descriptions, MIPS features
26318
26319The @samp{org.gnu.gdb.mips.cpu} feature is required for MIPS targets.
26320It should contain registers @samp{r0} through @samp{r31}, @samp{lo},
26321@samp{hi}, and @samp{pc}. They may be 32-bit or 64-bit depending
26322on the target.
26323
26324The @samp{org.gnu.gdb.mips.cp0} feature is also required. It should
26325contain at least the @samp{status}, @samp{badvaddr}, and @samp{cause}
26326registers. They may be 32-bit or 64-bit depending on the target.
26327
26328The @samp{org.gnu.gdb.mips.fpu} feature is currently required, though
26329it may be optional in a future version of @value{GDBN}. It should
26330contain registers @samp{f0} through @samp{f31}, @samp{fcsr}, and
26331@samp{fir}. They may be 32-bit or 64-bit depending on the target.
26332
822b6570
DJ
26333The @samp{org.gnu.gdb.mips.linux} feature is optional. It should
26334contain a single register, @samp{restart}, which is used by the
26335Linux kernel to control restartable syscalls.
26336
e9c17194
VP
26337@node M68K Features
26338@subsection M68K Features
26339@cindex target descriptions, M68K features
26340
26341@table @code
26342@item @samp{org.gnu.gdb.m68k.core}
26343@itemx @samp{org.gnu.gdb.coldfire.core}
26344@itemx @samp{org.gnu.gdb.fido.core}
26345One of those features must be always present.
26346The feature that is present determines which flavor of m86k is
26347used. The feature that is present should contain registers
26348@samp{d0} through @samp{d7}, @samp{a0} through @samp{a5}, @samp{fp},
26349@samp{sp}, @samp{ps} and @samp{pc}.
26350
26351@item @samp{org.gnu.gdb.coldfire.fp}
26352This feature is optional. If present, it should contain registers
26353@samp{fp0} through @samp{fp7}, @samp{fpcontrol}, @samp{fpstatus} and
26354@samp{fpiaddr}.
26355@end table
26356
7cc46491
DJ
26357@subsection PowerPC Features
26358@cindex target descriptions, PowerPC features
26359
26360The @samp{org.gnu.gdb.power.core} feature is required for PowerPC
26361targets. It should contain registers @samp{r0} through @samp{r31},
26362@samp{pc}, @samp{msr}, @samp{cr}, @samp{lr}, @samp{ctr}, and
26363@samp{xer}. They may be 32-bit or 64-bit depending on the target.
26364
26365The @samp{org.gnu.gdb.power.fpu} feature is optional. It should
26366contain registers @samp{f0} through @samp{f31} and @samp{fpscr}.
26367
26368The @samp{org.gnu.gdb.power.altivec} feature is optional. It should
26369contain registers @samp{vr0} through @samp{vr31}, @samp{vscr},
26370and @samp{vrsave}.
26371
26372The @samp{org.gnu.gdb.power.spe} feature is optional. It should
26373contain registers @samp{ev0h} through @samp{ev31h}, @samp{acc}, and
26374@samp{spefscr}. SPE targets should provide 32-bit registers in
26375@samp{org.gnu.gdb.power.core} and provide the upper halves in
26376@samp{ev0h} through @samp{ev31h}. @value{GDBN} will combine
26377these to present registers @samp{ev0} through @samp{ev31} to the
26378user.
26379
aab4e0ec 26380@include gpl.texi
eb12ee30 26381
2154891a 26382@raisesections
6826cf00 26383@include fdl.texi
2154891a 26384@lowersections
6826cf00 26385
6d2ebf8b 26386@node Index
c906108c
SS
26387@unnumbered Index
26388
26389@printindex cp
26390
26391@tex
26392% I think something like @colophon should be in texinfo. In the
26393% meantime:
26394\long\def\colophon{\hbox to0pt{}\vfill
26395\centerline{The body of this manual is set in}
26396\centerline{\fontname\tenrm,}
26397\centerline{with headings in {\bf\fontname\tenbf}}
26398\centerline{and examples in {\tt\fontname\tentt}.}
26399\centerline{{\it\fontname\tenit\/},}
26400\centerline{{\bf\fontname\tenbf}, and}
26401\centerline{{\sl\fontname\tensl\/}}
26402\centerline{are used for emphasis.}\vfill}
26403\page\colophon
26404% Blame: doc@cygnus.com, 1991.
26405@end tex
26406
c906108c 26407@bye
This page took 3.769796 seconds and 4 git commands to generate.