Move the using directives to buildsym_compunit
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
d8ae99a7
PM
246@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
247Return a Python list holding a collection of newly set
248@code{gdb.Breakpoint} objects matching function names defined by the
249@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
250system functions (those not explicitly defined in the inferior) will
251also be included in the match. The @var{throttle} keyword takes an
252integer that defines the maximum number of pattern matches for
253functions matched by the @var{regex} pattern. If the number of
254matches exceeds the integer value of @var{throttle}, a
255@code{RuntimeError} will be raised and no breakpoints will be created.
256If @var{throttle} is not defined then there is no imposed limit on the
257maximum number of matches and breakpoints to be created. The
258@var{symtabs} keyword takes a Python iterable that yields a collection
259of @code{gdb.Symtab} objects and will restrict the search to those
260functions only contained within the @code{gdb.Symtab} objects.
261@end defun
262
329baa95
DE
263@findex gdb.parameter
264@defun gdb.parameter (parameter)
697aa1b7
EZ
265Return the value of a @value{GDBN} @var{parameter} given by its name,
266a string; the parameter name string may contain spaces if the parameter has a
267multi-part name. For example, @samp{print object} is a valid
268parameter name.
329baa95
DE
269
270If the named parameter does not exist, this function throws a
271@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
272parameter's value is converted to a Python value of the appropriate
273type, and returned.
274@end defun
275
276@findex gdb.history
277@defun gdb.history (number)
278Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 279History}). The @var{number} argument indicates which history element to return.
329baa95
DE
280If @var{number} is negative, then @value{GDBN} will take its absolute value
281and count backward from the last element (i.e., the most recent element) to
282find the value to return. If @var{number} is zero, then @value{GDBN} will
283return the most recent element. If the element specified by @var{number}
284doesn't exist in the value history, a @code{gdb.error} exception will be
285raised.
286
287If no exception is raised, the return value is always an instance of
288@code{gdb.Value} (@pxref{Values From Inferior}).
289@end defun
290
7729052b
TT
291@findex gdb.convenience_variable
292@defun gdb.convenience_variable (name)
293Return the value of the convenience variable (@pxref{Convenience
294Vars}) named @var{name}. @var{name} must be a string. The name
295should not include the @samp{$} that is used to mark a convenience
296variable in an expression. If the convenience variable does not
297exist, then @code{None} is returned.
298@end defun
299
300@findex gdb.set_convenience_variable
301@defun gdb.set_convenience_variable (name, value)
302Set the value of the convenience variable (@pxref{Convenience Vars})
303named @var{name}. @var{name} must be a string. The name should not
304include the @samp{$} that is used to mark a convenience variable in an
305expression. If @var{value} is @code{None}, then the convenience
306variable is removed. Otherwise, if @var{value} is not a
307@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
308using the @code{gdb.Value} constructor.
309@end defun
310
329baa95
DE
311@findex gdb.parse_and_eval
312@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
313Parse @var{expression}, which must be a string, as an expression in
314the current language, evaluate it, and return the result as a
315@code{gdb.Value}.
329baa95
DE
316
317This function can be useful when implementing a new command
318(@pxref{Commands In Python}), as it provides a way to parse the
319command's argument as an expression. It is also useful simply to
7729052b 320compute values.
329baa95
DE
321@end defun
322
323@findex gdb.find_pc_line
324@defun gdb.find_pc_line (pc)
325Return the @code{gdb.Symtab_and_line} object corresponding to the
326@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
327value of @var{pc} is passed as an argument, then the @code{symtab} and
328@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
329will be @code{None} and 0 respectively.
330@end defun
331
332@findex gdb.post_event
333@defun gdb.post_event (event)
334Put @var{event}, a callable object taking no arguments, into
335@value{GDBN}'s internal event queue. This callable will be invoked at
336some later point, during @value{GDBN}'s event processing. Events
337posted using @code{post_event} will be run in the order in which they
338were posted; however, there is no way to know when they will be
339processed relative to other events inside @value{GDBN}.
340
341@value{GDBN} is not thread-safe. If your Python program uses multiple
342threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 343functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
344this. For example:
345
346@smallexample
347(@value{GDBP}) python
348>import threading
349>
350>class Writer():
351> def __init__(self, message):
352> self.message = message;
353> def __call__(self):
354> gdb.write(self.message)
355>
356>class MyThread1 (threading.Thread):
357> def run (self):
358> gdb.post_event(Writer("Hello "))
359>
360>class MyThread2 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("World\n"))
363>
364>MyThread1().start()
365>MyThread2().start()
366>end
367(@value{GDBP}) Hello World
368@end smallexample
369@end defun
370
371@findex gdb.write
372@defun gdb.write (string @r{[}, stream{]})
373Print a string to @value{GDBN}'s paginated output stream. The
374optional @var{stream} determines the stream to print to. The default
375stream is @value{GDBN}'s standard output stream. Possible stream
376values are:
377
378@table @code
379@findex STDOUT
380@findex gdb.STDOUT
381@item gdb.STDOUT
382@value{GDBN}'s standard output stream.
383
384@findex STDERR
385@findex gdb.STDERR
386@item gdb.STDERR
387@value{GDBN}'s standard error stream.
388
389@findex STDLOG
390@findex gdb.STDLOG
391@item gdb.STDLOG
392@value{GDBN}'s log stream (@pxref{Logging Output}).
393@end table
394
395Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
396call this function and will automatically direct the output to the
397relevant stream.
398@end defun
399
400@findex gdb.flush
401@defun gdb.flush ()
402Flush the buffer of a @value{GDBN} paginated stream so that the
403contents are displayed immediately. @value{GDBN} will flush the
404contents of a stream automatically when it encounters a newline in the
405buffer. The optional @var{stream} determines the stream to flush. The
406default stream is @value{GDBN}'s standard output stream. Possible
407stream values are:
408
409@table @code
410@findex STDOUT
411@findex gdb.STDOUT
412@item gdb.STDOUT
413@value{GDBN}'s standard output stream.
414
415@findex STDERR
416@findex gdb.STDERR
417@item gdb.STDERR
418@value{GDBN}'s standard error stream.
419
420@findex STDLOG
421@findex gdb.STDLOG
422@item gdb.STDLOG
423@value{GDBN}'s log stream (@pxref{Logging Output}).
424
425@end table
426
427Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
428call this function for the relevant stream.
429@end defun
430
431@findex gdb.target_charset
432@defun gdb.target_charset ()
433Return the name of the current target character set (@pxref{Character
434Sets}). This differs from @code{gdb.parameter('target-charset')} in
435that @samp{auto} is never returned.
436@end defun
437
438@findex gdb.target_wide_charset
439@defun gdb.target_wide_charset ()
440Return the name of the current target wide character set
441(@pxref{Character Sets}). This differs from
442@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
443never returned.
444@end defun
445
446@findex gdb.solib_name
447@defun gdb.solib_name (address)
448Return the name of the shared library holding the given @var{address}
449as a string, or @code{None}.
450@end defun
451
452@findex gdb.decode_line
453@defun gdb.decode_line @r{[}expression@r{]}
454Return locations of the line specified by @var{expression}, or of the
455current line if no argument was given. This function returns a Python
456tuple containing two elements. The first element contains a string
457holding any unparsed section of @var{expression} (or @code{None} if
458the expression has been fully parsed). The second element contains
459either @code{None} or another tuple that contains all the locations
460that match the expression represented as @code{gdb.Symtab_and_line}
461objects (@pxref{Symbol Tables In Python}). If @var{expression} is
462provided, it is decoded the way that @value{GDBN}'s inbuilt
463@code{break} or @code{edit} commands do (@pxref{Specify Location}).
464@end defun
465
466@defun gdb.prompt_hook (current_prompt)
467@anchor{prompt_hook}
468
469If @var{prompt_hook} is callable, @value{GDBN} will call the method
470assigned to this operation before a prompt is displayed by
471@value{GDBN}.
472
473The parameter @code{current_prompt} contains the current @value{GDBN}
474prompt. This method must return a Python string, or @code{None}. If
475a string is returned, the @value{GDBN} prompt will be set to that
476string. If @code{None} is returned, @value{GDBN} will continue to use
477the current prompt.
478
479Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
480such as those used by readline for command input, and annotation
481related prompts are prohibited from being changed.
482@end defun
483
484@node Exception Handling
485@subsubsection Exception Handling
486@cindex python exceptions
487@cindex exceptions, python
488
489When executing the @code{python} command, Python exceptions
490uncaught within the Python code are translated to calls to
491@value{GDBN} error-reporting mechanism. If the command that called
492@code{python} does not handle the error, @value{GDBN} will
493terminate it and print an error message containing the Python
494exception name, the associated value, and the Python call stack
495backtrace at the point where the exception was raised. Example:
496
497@smallexample
498(@value{GDBP}) python print foo
499Traceback (most recent call last):
500 File "<string>", line 1, in <module>
501NameError: name 'foo' is not defined
502@end smallexample
503
504@value{GDBN} errors that happen in @value{GDBN} commands invoked by
505Python code are converted to Python exceptions. The type of the
506Python exception depends on the error.
507
508@ftable @code
509@item gdb.error
510This is the base class for most exceptions generated by @value{GDBN}.
511It is derived from @code{RuntimeError}, for compatibility with earlier
512versions of @value{GDBN}.
513
514If an error occurring in @value{GDBN} does not fit into some more
515specific category, then the generated exception will have this type.
516
517@item gdb.MemoryError
518This is a subclass of @code{gdb.error} which is thrown when an
519operation tried to access invalid memory in the inferior.
520
521@item KeyboardInterrupt
522User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
523prompt) is translated to a Python @code{KeyboardInterrupt} exception.
524@end ftable
525
526In all cases, your exception handler will see the @value{GDBN} error
527message as its value and the Python call stack backtrace at the Python
528statement closest to where the @value{GDBN} error occured as the
529traceback.
530
531@findex gdb.GdbError
532When implementing @value{GDBN} commands in Python via @code{gdb.Command},
533it is useful to be able to throw an exception that doesn't cause a
534traceback to be printed. For example, the user may have invoked the
535command incorrectly. Use the @code{gdb.GdbError} exception
536to handle this case. Example:
537
538@smallexample
539(gdb) python
540>class HelloWorld (gdb.Command):
541> """Greet the whole world."""
542> def __init__ (self):
543> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
544> def invoke (self, args, from_tty):
545> argv = gdb.string_to_argv (args)
546> if len (argv) != 0:
547> raise gdb.GdbError ("hello-world takes no arguments")
548> print "Hello, World!"
549>HelloWorld ()
550>end
551(gdb) hello-world 42
552hello-world takes no arguments
553@end smallexample
554
555@node Values From Inferior
556@subsubsection Values From Inferior
557@cindex values from inferior, with Python
558@cindex python, working with values from inferior
559
560@cindex @code{gdb.Value}
561@value{GDBN} provides values it obtains from the inferior program in
562an object of type @code{gdb.Value}. @value{GDBN} uses this object
563for its internal bookkeeping of the inferior's values, and for
564fetching values when necessary.
565
566Inferior values that are simple scalars can be used directly in
567Python expressions that are valid for the value's data type. Here's
568an example for an integer or floating-point value @code{some_val}:
569
570@smallexample
571bar = some_val + 2
572@end smallexample
573
574@noindent
575As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
576whose values are of the same type as those of @code{some_val}. Valid
577Python operations can also be performed on @code{gdb.Value} objects
578representing a @code{struct} or @code{class} object. For such cases,
579the overloaded operator (if present), is used to perform the operation.
580For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
581representing instances of a @code{class} which overloads the @code{+}
582operator, then one can use the @code{+} operator in their Python script
583as follows:
584
585@smallexample
586val3 = val1 + val2
587@end smallexample
588
589@noindent
590The result of the operation @code{val3} is also a @code{gdb.Value}
591object corresponding to the value returned by the overloaded @code{+}
592operator. In general, overloaded operators are invoked for the
593following operations: @code{+} (binary addition), @code{-} (binary
594subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
595@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
596
597Inferior values that are structures or instances of some class can
598be accessed using the Python @dfn{dictionary syntax}. For example, if
599@code{some_val} is a @code{gdb.Value} instance holding a structure, you
600can access its @code{foo} element with:
601
602@smallexample
603bar = some_val['foo']
604@end smallexample
605
606@cindex getting structure elements using gdb.Field objects as subscripts
607Again, @code{bar} will also be a @code{gdb.Value} object. Structure
608elements can also be accessed by using @code{gdb.Field} objects as
609subscripts (@pxref{Types In Python}, for more information on
610@code{gdb.Field} objects). For example, if @code{foo_field} is a
611@code{gdb.Field} object corresponding to element @code{foo} of the above
612structure, then @code{bar} can also be accessed as follows:
613
614@smallexample
615bar = some_val[foo_field]
616@end smallexample
617
618A @code{gdb.Value} that represents a function can be executed via
619inferior function call. Any arguments provided to the call must match
620the function's prototype, and must be provided in the order specified
621by that prototype.
622
623For example, @code{some_val} is a @code{gdb.Value} instance
624representing a function that takes two integers as arguments. To
625execute this function, call it like so:
626
627@smallexample
628result = some_val (10,20)
629@end smallexample
630
631Any values returned from a function call will be stored as a
632@code{gdb.Value}.
633
634The following attributes are provided:
635
636@defvar Value.address
637If this object is addressable, this read-only attribute holds a
638@code{gdb.Value} object representing the address. Otherwise,
639this attribute holds @code{None}.
640@end defvar
641
642@cindex optimized out value in Python
643@defvar Value.is_optimized_out
644This read-only boolean attribute is true if the compiler optimized out
645this value, thus it is not available for fetching from the inferior.
646@end defvar
647
648@defvar Value.type
649The type of this @code{gdb.Value}. The value of this attribute is a
650@code{gdb.Type} object (@pxref{Types In Python}).
651@end defvar
652
653@defvar Value.dynamic_type
654The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
655type information (@acronym{RTTI}) to determine the dynamic type of the
656value. If this value is of class type, it will return the class in
657which the value is embedded, if any. If this value is of pointer or
658reference to a class type, it will compute the dynamic type of the
659referenced object, and return a pointer or reference to that type,
660respectively. In all other cases, it will return the value's static
661type.
662
663Note that this feature will only work when debugging a C@t{++} program
664that includes @acronym{RTTI} for the object in question. Otherwise,
665it will just return the static type of the value as in @kbd{ptype foo}
666(@pxref{Symbols, ptype}).
667@end defvar
668
669@defvar Value.is_lazy
670The value of this read-only boolean attribute is @code{True} if this
671@code{gdb.Value} has not yet been fetched from the inferior.
672@value{GDBN} does not fetch values until necessary, for efficiency.
673For example:
674
675@smallexample
676myval = gdb.parse_and_eval ('somevar')
677@end smallexample
678
679The value of @code{somevar} is not fetched at this time. It will be
680fetched when the value is needed, or when the @code{fetch_lazy}
681method is invoked.
682@end defvar
683
684The following methods are provided:
685
686@defun Value.__init__ (@var{val})
687Many Python values can be converted directly to a @code{gdb.Value} via
688this object initializer. Specifically:
689
690@table @asis
691@item Python boolean
692A Python boolean is converted to the boolean type from the current
693language.
694
695@item Python integer
696A Python integer is converted to the C @code{long} type for the
697current architecture.
698
699@item Python long
700A Python long is converted to the C @code{long long} type for the
701current architecture.
702
703@item Python float
704A Python float is converted to the C @code{double} type for the
705current architecture.
706
707@item Python string
b3ce5e5f
DE
708A Python string is converted to a target string in the current target
709language using the current target encoding.
710If a character cannot be represented in the current target encoding,
711then an exception is thrown.
329baa95
DE
712
713@item @code{gdb.Value}
714If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
715
716@item @code{gdb.LazyString}
717If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
718Python}), then the lazy string's @code{value} method is called, and
719its result is used.
720@end table
721@end defun
722
723@defun Value.cast (type)
724Return a new instance of @code{gdb.Value} that is the result of
725casting this instance to the type described by @var{type}, which must
726be a @code{gdb.Type} object. If the cast cannot be performed for some
727reason, this method throws an exception.
728@end defun
729
730@defun Value.dereference ()
731For pointer data types, this method returns a new @code{gdb.Value} object
732whose contents is the object pointed to by the pointer. For example, if
733@code{foo} is a C pointer to an @code{int}, declared in your C program as
734
735@smallexample
736int *foo;
737@end smallexample
738
739@noindent
740then you can use the corresponding @code{gdb.Value} to access what
741@code{foo} points to like this:
742
743@smallexample
744bar = foo.dereference ()
745@end smallexample
746
747The result @code{bar} will be a @code{gdb.Value} object holding the
748value pointed to by @code{foo}.
749
750A similar function @code{Value.referenced_value} exists which also
751returns @code{gdb.Value} objects corresonding to the values pointed to
752by pointer values (and additionally, values referenced by reference
753values). However, the behavior of @code{Value.dereference}
754differs from @code{Value.referenced_value} by the fact that the
755behavior of @code{Value.dereference} is identical to applying the C
756unary operator @code{*} on a given value. For example, consider a
757reference to a pointer @code{ptrref}, declared in your C@t{++} program
758as
759
760@smallexample
761typedef int *intptr;
762...
763int val = 10;
764intptr ptr = &val;
765intptr &ptrref = ptr;
766@end smallexample
767
768Though @code{ptrref} is a reference value, one can apply the method
769@code{Value.dereference} to the @code{gdb.Value} object corresponding
770to it and obtain a @code{gdb.Value} which is identical to that
771corresponding to @code{val}. However, if you apply the method
772@code{Value.referenced_value}, the result would be a @code{gdb.Value}
773object identical to that corresponding to @code{ptr}.
774
775@smallexample
776py_ptrref = gdb.parse_and_eval ("ptrref")
777py_val = py_ptrref.dereference ()
778py_ptr = py_ptrref.referenced_value ()
779@end smallexample
780
781The @code{gdb.Value} object @code{py_val} is identical to that
782corresponding to @code{val}, and @code{py_ptr} is identical to that
783corresponding to @code{ptr}. In general, @code{Value.dereference} can
784be applied whenever the C unary operator @code{*} can be applied
785to the corresponding C value. For those cases where applying both
786@code{Value.dereference} and @code{Value.referenced_value} is allowed,
787the results obtained need not be identical (as we have seen in the above
788example). The results are however identical when applied on
789@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
790objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
791@end defun
792
793@defun Value.referenced_value ()
794For pointer or reference data types, this method returns a new
795@code{gdb.Value} object corresponding to the value referenced by the
796pointer/reference value. For pointer data types,
797@code{Value.dereference} and @code{Value.referenced_value} produce
798identical results. The difference between these methods is that
799@code{Value.dereference} cannot get the values referenced by reference
800values. For example, consider a reference to an @code{int}, declared
801in your C@t{++} program as
802
803@smallexample
804int val = 10;
805int &ref = val;
806@end smallexample
807
808@noindent
809then applying @code{Value.dereference} to the @code{gdb.Value} object
810corresponding to @code{ref} will result in an error, while applying
811@code{Value.referenced_value} will result in a @code{gdb.Value} object
812identical to that corresponding to @code{val}.
813
814@smallexample
815py_ref = gdb.parse_and_eval ("ref")
816er_ref = py_ref.dereference () # Results in error
817py_val = py_ref.referenced_value () # Returns the referenced value
818@end smallexample
819
820The @code{gdb.Value} object @code{py_val} is identical to that
821corresponding to @code{val}.
822@end defun
823
4c082a81
SC
824@defun Value.reference_value ()
825Return a @code{gdb.Value} object which is a reference to the value
826encapsulated by this instance.
827@end defun
828
829@defun Value.const_value ()
830Return a @code{gdb.Value} object which is a @code{const} version of the
831value encapsulated by this instance.
832@end defun
833
329baa95
DE
834@defun Value.dynamic_cast (type)
835Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
836operator were used. Consult a C@t{++} reference for details.
837@end defun
838
839@defun Value.reinterpret_cast (type)
840Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
841operator were used. Consult a C@t{++} reference for details.
842@end defun
843
844@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
845If this @code{gdb.Value} represents a string, then this method
846converts the contents to a Python string. Otherwise, this method will
847throw an exception.
848
b3ce5e5f
DE
849Values are interpreted as strings according to the rules of the
850current language. If the optional length argument is given, the
851string will be converted to that length, and will include any embedded
852zeroes that the string may contain. Otherwise, for languages
853where the string is zero-terminated, the entire string will be
854converted.
329baa95 855
b3ce5e5f
DE
856For example, in C-like languages, a value is a string if it is a pointer
857to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
858or @code{char32_t}.
329baa95
DE
859
860If the optional @var{encoding} argument is given, it must be a string
861naming the encoding of the string in the @code{gdb.Value}, such as
862@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
863the same encodings as the corresponding argument to Python's
864@code{string.decode} method, and the Python codec machinery will be used
865to convert the string. If @var{encoding} is not given, or if
866@var{encoding} is the empty string, then either the @code{target-charset}
867(@pxref{Character Sets}) will be used, or a language-specific encoding
868will be used, if the current language is able to supply one.
869
870The optional @var{errors} argument is the same as the corresponding
871argument to Python's @code{string.decode} method.
872
873If the optional @var{length} argument is given, the string will be
874fetched and converted to the given length.
875@end defun
876
877@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
878If this @code{gdb.Value} represents a string, then this method
879converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
880In Python}). Otherwise, this method will throw an exception.
881
882If the optional @var{encoding} argument is given, it must be a string
883naming the encoding of the @code{gdb.LazyString}. Some examples are:
884@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
885@var{encoding} argument is an encoding that @value{GDBN} does
886recognize, @value{GDBN} will raise an error.
887
888When a lazy string is printed, the @value{GDBN} encoding machinery is
889used to convert the string during printing. If the optional
890@var{encoding} argument is not provided, or is an empty string,
891@value{GDBN} will automatically select the encoding most suitable for
892the string type. For further information on encoding in @value{GDBN}
893please see @ref{Character Sets}.
894
895If the optional @var{length} argument is given, the string will be
896fetched and encoded to the length of characters specified. If
897the @var{length} argument is not provided, the string will be fetched
898and encoded until a null of appropriate width is found.
899@end defun
900
901@defun Value.fetch_lazy ()
902If the @code{gdb.Value} object is currently a lazy value
903(@code{gdb.Value.is_lazy} is @code{True}), then the value is
904fetched from the inferior. Any errors that occur in the process
905will produce a Python exception.
906
907If the @code{gdb.Value} object is not a lazy value, this method
908has no effect.
909
910This method does not return a value.
911@end defun
912
913
914@node Types In Python
915@subsubsection Types In Python
916@cindex types in Python
917@cindex Python, working with types
918
919@tindex gdb.Type
920@value{GDBN} represents types from the inferior using the class
921@code{gdb.Type}.
922
923The following type-related functions are available in the @code{gdb}
924module:
925
926@findex gdb.lookup_type
927@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 928This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
929
930If @var{block} is given, then @var{name} is looked up in that scope.
931Otherwise, it is searched for globally.
932
933Ordinarily, this function will return an instance of @code{gdb.Type}.
934If the named type cannot be found, it will throw an exception.
935@end defun
936
937If the type is a structure or class type, or an enum type, the fields
938of that type can be accessed using the Python @dfn{dictionary syntax}.
939For example, if @code{some_type} is a @code{gdb.Type} instance holding
940a structure type, you can access its @code{foo} field with:
941
942@smallexample
943bar = some_type['foo']
944@end smallexample
945
946@code{bar} will be a @code{gdb.Field} object; see below under the
947description of the @code{Type.fields} method for a description of the
948@code{gdb.Field} class.
949
950An instance of @code{Type} has the following attributes:
951
6d7bb824
TT
952@defvar Type.alignof
953The alignment of this type, in bytes. Type alignment comes from the
954debugging information; if it was not specified, then @value{GDBN} will
955use the relevant ABI to try to determine the alignment. In some
956cases, even this is not possible, and zero will be returned.
957@end defvar
958
329baa95
DE
959@defvar Type.code
960The type code for this type. The type code will be one of the
961@code{TYPE_CODE_} constants defined below.
962@end defvar
963
964@defvar Type.name
965The name of this type. If this type has no name, then @code{None}
966is returned.
967@end defvar
968
969@defvar Type.sizeof
970The size of this type, in target @code{char} units. Usually, a
971target's @code{char} type will be an 8-bit byte. However, on some
972unusual platforms, this type may have a different size.
973@end defvar
974
975@defvar Type.tag
976The tag name for this type. The tag name is the name after
977@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
978languages have this concept. If this type has no tag name, then
979@code{None} is returned.
980@end defvar
981
982The following methods are provided:
983
984@defun Type.fields ()
985For structure and union types, this method returns the fields. Range
986types have two fields, the minimum and maximum values. Enum types
987have one field per enum constant. Function and method types have one
988field per parameter. The base types of C@t{++} classes are also
989represented as fields. If the type has no fields, or does not fit
990into one of these categories, an empty sequence will be returned.
991
992Each field is a @code{gdb.Field} object, with some pre-defined attributes:
993@table @code
994@item bitpos
995This attribute is not available for @code{enum} or @code{static}
9c37b5ae 996(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
997in bits, from the start of the containing type.
998
999@item enumval
1000This attribute is only available for @code{enum} fields, and its value
1001is the enumeration member's integer representation.
1002
1003@item name
1004The name of the field, or @code{None} for anonymous fields.
1005
1006@item artificial
1007This is @code{True} if the field is artificial, usually meaning that
1008it was provided by the compiler and not the user. This attribute is
1009always provided, and is @code{False} if the field is not artificial.
1010
1011@item is_base_class
1012This is @code{True} if the field represents a base class of a C@t{++}
1013structure. This attribute is always provided, and is @code{False}
1014if the field is not a base class of the type that is the argument of
1015@code{fields}, or if that type was not a C@t{++} class.
1016
1017@item bitsize
1018If the field is packed, or is a bitfield, then this will have a
1019non-zero value, which is the size of the field in bits. Otherwise,
1020this will be zero; in this case the field's size is given by its type.
1021
1022@item type
1023The type of the field. This is usually an instance of @code{Type},
1024but it can be @code{None} in some situations.
1025
1026@item parent_type
1027The type which contains this field. This is an instance of
1028@code{gdb.Type}.
1029@end table
1030@end defun
1031
1032@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1033Return a new @code{gdb.Type} object which represents an array of this
1034type. If one argument is given, it is the inclusive upper bound of
1035the array; in this case the lower bound is zero. If two arguments are
1036given, the first argument is the lower bound of the array, and the
1037second argument is the upper bound of the array. An array's length
1038must not be negative, but the bounds can be.
1039@end defun
1040
1041@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1042Return a new @code{gdb.Type} object which represents a vector of this
1043type. If one argument is given, it is the inclusive upper bound of
1044the vector; in this case the lower bound is zero. If two arguments are
1045given, the first argument is the lower bound of the vector, and the
1046second argument is the upper bound of the vector. A vector's length
1047must not be negative, but the bounds can be.
1048
1049The difference between an @code{array} and a @code{vector} is that
1050arrays behave like in C: when used in expressions they decay to a pointer
1051to the first element whereas vectors are treated as first class values.
1052@end defun
1053
1054@defun Type.const ()
1055Return a new @code{gdb.Type} object which represents a
1056@code{const}-qualified variant of this type.
1057@end defun
1058
1059@defun Type.volatile ()
1060Return a new @code{gdb.Type} object which represents a
1061@code{volatile}-qualified variant of this type.
1062@end defun
1063
1064@defun Type.unqualified ()
1065Return a new @code{gdb.Type} object which represents an unqualified
1066variant of this type. That is, the result is neither @code{const} nor
1067@code{volatile}.
1068@end defun
1069
1070@defun Type.range ()
1071Return a Python @code{Tuple} object that contains two elements: the
1072low bound of the argument type and the high bound of that type. If
1073the type does not have a range, @value{GDBN} will raise a
1074@code{gdb.error} exception (@pxref{Exception Handling}).
1075@end defun
1076
1077@defun Type.reference ()
1078Return a new @code{gdb.Type} object which represents a reference to this
1079type.
1080@end defun
1081
1082@defun Type.pointer ()
1083Return a new @code{gdb.Type} object which represents a pointer to this
1084type.
1085@end defun
1086
1087@defun Type.strip_typedefs ()
1088Return a new @code{gdb.Type} that represents the real type,
1089after removing all layers of typedefs.
1090@end defun
1091
1092@defun Type.target ()
1093Return a new @code{gdb.Type} object which represents the target type
1094of this type.
1095
1096For a pointer type, the target type is the type of the pointed-to
1097object. For an array type (meaning C-like arrays), the target type is
1098the type of the elements of the array. For a function or method type,
1099the target type is the type of the return value. For a complex type,
1100the target type is the type of the elements. For a typedef, the
1101target type is the aliased type.
1102
1103If the type does not have a target, this method will throw an
1104exception.
1105@end defun
1106
1107@defun Type.template_argument (n @r{[}, block@r{]})
1108If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1109return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1110value of the @var{n}th template argument (indexed starting at 0).
329baa95 1111
1a6a384b
JL
1112If this @code{gdb.Type} is not a template type, or if the type has fewer
1113than @var{n} template arguments, this will throw an exception.
1114Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1115
1116If @var{block} is given, then @var{name} is looked up in that scope.
1117Otherwise, it is searched for globally.
1118@end defun
1119
59fb7612
SS
1120@defun Type.optimized_out ()
1121Return @code{gdb.Value} instance of this type whose value is optimized
1122out. This allows a frame decorator to indicate that the value of an
1123argument or a local variable is not known.
1124@end defun
329baa95
DE
1125
1126Each type has a code, which indicates what category this type falls
1127into. The available type categories are represented by constants
1128defined in the @code{gdb} module:
1129
b3ce5e5f
DE
1130@vtable @code
1131@vindex TYPE_CODE_PTR
329baa95
DE
1132@item gdb.TYPE_CODE_PTR
1133The type is a pointer.
1134
b3ce5e5f 1135@vindex TYPE_CODE_ARRAY
329baa95
DE
1136@item gdb.TYPE_CODE_ARRAY
1137The type is an array.
1138
b3ce5e5f 1139@vindex TYPE_CODE_STRUCT
329baa95
DE
1140@item gdb.TYPE_CODE_STRUCT
1141The type is a structure.
1142
b3ce5e5f 1143@vindex TYPE_CODE_UNION
329baa95
DE
1144@item gdb.TYPE_CODE_UNION
1145The type is a union.
1146
b3ce5e5f 1147@vindex TYPE_CODE_ENUM
329baa95
DE
1148@item gdb.TYPE_CODE_ENUM
1149The type is an enum.
1150
b3ce5e5f 1151@vindex TYPE_CODE_FLAGS
329baa95
DE
1152@item gdb.TYPE_CODE_FLAGS
1153A bit flags type, used for things such as status registers.
1154
b3ce5e5f 1155@vindex TYPE_CODE_FUNC
329baa95
DE
1156@item gdb.TYPE_CODE_FUNC
1157The type is a function.
1158
b3ce5e5f 1159@vindex TYPE_CODE_INT
329baa95
DE
1160@item gdb.TYPE_CODE_INT
1161The type is an integer type.
1162
b3ce5e5f 1163@vindex TYPE_CODE_FLT
329baa95
DE
1164@item gdb.TYPE_CODE_FLT
1165A floating point type.
1166
b3ce5e5f 1167@vindex TYPE_CODE_VOID
329baa95
DE
1168@item gdb.TYPE_CODE_VOID
1169The special type @code{void}.
1170
b3ce5e5f 1171@vindex TYPE_CODE_SET
329baa95
DE
1172@item gdb.TYPE_CODE_SET
1173A Pascal set type.
1174
b3ce5e5f 1175@vindex TYPE_CODE_RANGE
329baa95
DE
1176@item gdb.TYPE_CODE_RANGE
1177A range type, that is, an integer type with bounds.
1178
b3ce5e5f 1179@vindex TYPE_CODE_STRING
329baa95
DE
1180@item gdb.TYPE_CODE_STRING
1181A string type. Note that this is only used for certain languages with
1182language-defined string types; C strings are not represented this way.
1183
b3ce5e5f 1184@vindex TYPE_CODE_BITSTRING
329baa95
DE
1185@item gdb.TYPE_CODE_BITSTRING
1186A string of bits. It is deprecated.
1187
b3ce5e5f 1188@vindex TYPE_CODE_ERROR
329baa95
DE
1189@item gdb.TYPE_CODE_ERROR
1190An unknown or erroneous type.
1191
b3ce5e5f 1192@vindex TYPE_CODE_METHOD
329baa95 1193@item gdb.TYPE_CODE_METHOD
9c37b5ae 1194A method type, as found in C@t{++}.
329baa95 1195
b3ce5e5f 1196@vindex TYPE_CODE_METHODPTR
329baa95
DE
1197@item gdb.TYPE_CODE_METHODPTR
1198A pointer-to-member-function.
1199
b3ce5e5f 1200@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1201@item gdb.TYPE_CODE_MEMBERPTR
1202A pointer-to-member.
1203
b3ce5e5f 1204@vindex TYPE_CODE_REF
329baa95
DE
1205@item gdb.TYPE_CODE_REF
1206A reference type.
1207
3fcf899d
AV
1208@vindex TYPE_CODE_RVALUE_REF
1209@item gdb.TYPE_CODE_RVALUE_REF
1210A C@t{++}11 rvalue reference type.
1211
b3ce5e5f 1212@vindex TYPE_CODE_CHAR
329baa95
DE
1213@item gdb.TYPE_CODE_CHAR
1214A character type.
1215
b3ce5e5f 1216@vindex TYPE_CODE_BOOL
329baa95
DE
1217@item gdb.TYPE_CODE_BOOL
1218A boolean type.
1219
b3ce5e5f 1220@vindex TYPE_CODE_COMPLEX
329baa95
DE
1221@item gdb.TYPE_CODE_COMPLEX
1222A complex float type.
1223
b3ce5e5f 1224@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1225@item gdb.TYPE_CODE_TYPEDEF
1226A typedef to some other type.
1227
b3ce5e5f 1228@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1229@item gdb.TYPE_CODE_NAMESPACE
1230A C@t{++} namespace.
1231
b3ce5e5f 1232@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1233@item gdb.TYPE_CODE_DECFLOAT
1234A decimal floating point type.
1235
b3ce5e5f 1236@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1237@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1238A function internal to @value{GDBN}. This is the type used to represent
1239convenience functions.
b3ce5e5f 1240@end vtable
329baa95
DE
1241
1242Further support for types is provided in the @code{gdb.types}
1243Python module (@pxref{gdb.types}).
1244
1245@node Pretty Printing API
1246@subsubsection Pretty Printing API
b3ce5e5f 1247@cindex python pretty printing api
329baa95
DE
1248
1249An example output is provided (@pxref{Pretty Printing}).
1250
1251A pretty-printer is just an object that holds a value and implements a
1252specific interface, defined here.
1253
1254@defun pretty_printer.children (self)
1255@value{GDBN} will call this method on a pretty-printer to compute the
1256children of the pretty-printer's value.
1257
1258This method must return an object conforming to the Python iterator
1259protocol. Each item returned by the iterator must be a tuple holding
1260two elements. The first element is the ``name'' of the child; the
1261second element is the child's value. The value can be any Python
1262object which is convertible to a @value{GDBN} value.
1263
1264This method is optional. If it does not exist, @value{GDBN} will act
1265as though the value has no children.
1266@end defun
1267
1268@defun pretty_printer.display_hint (self)
1269The CLI may call this method and use its result to change the
1270formatting of a value. The result will also be supplied to an MI
1271consumer as a @samp{displayhint} attribute of the variable being
1272printed.
1273
1274This method is optional. If it does exist, this method must return a
1275string.
1276
1277Some display hints are predefined by @value{GDBN}:
1278
1279@table @samp
1280@item array
1281Indicate that the object being printed is ``array-like''. The CLI
1282uses this to respect parameters such as @code{set print elements} and
1283@code{set print array}.
1284
1285@item map
1286Indicate that the object being printed is ``map-like'', and that the
1287children of this value can be assumed to alternate between keys and
1288values.
1289
1290@item string
1291Indicate that the object being printed is ``string-like''. If the
1292printer's @code{to_string} method returns a Python string of some
1293kind, then @value{GDBN} will call its internal language-specific
1294string-printing function to format the string. For the CLI this means
1295adding quotation marks, possibly escaping some characters, respecting
1296@code{set print elements}, and the like.
1297@end table
1298@end defun
1299
1300@defun pretty_printer.to_string (self)
1301@value{GDBN} will call this method to display the string
1302representation of the value passed to the object's constructor.
1303
1304When printing from the CLI, if the @code{to_string} method exists,
1305then @value{GDBN} will prepend its result to the values returned by
1306@code{children}. Exactly how this formatting is done is dependent on
1307the display hint, and may change as more hints are added. Also,
1308depending on the print settings (@pxref{Print Settings}), the CLI may
1309print just the result of @code{to_string} in a stack trace, omitting
1310the result of @code{children}.
1311
1312If this method returns a string, it is printed verbatim.
1313
1314Otherwise, if this method returns an instance of @code{gdb.Value},
1315then @value{GDBN} prints this value. This may result in a call to
1316another pretty-printer.
1317
1318If instead the method returns a Python value which is convertible to a
1319@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1320the resulting value. Again, this may result in a call to another
1321pretty-printer. Python scalars (integers, floats, and booleans) and
1322strings are convertible to @code{gdb.Value}; other types are not.
1323
1324Finally, if this method returns @code{None} then no further operations
1325are peformed in this method and nothing is printed.
1326
1327If the result is not one of these types, an exception is raised.
1328@end defun
1329
1330@value{GDBN} provides a function which can be used to look up the
1331default pretty-printer for a @code{gdb.Value}:
1332
1333@findex gdb.default_visualizer
1334@defun gdb.default_visualizer (value)
1335This function takes a @code{gdb.Value} object as an argument. If a
1336pretty-printer for this value exists, then it is returned. If no such
1337printer exists, then this returns @code{None}.
1338@end defun
1339
1340@node Selecting Pretty-Printers
1341@subsubsection Selecting Pretty-Printers
b3ce5e5f 1342@cindex selecting python pretty-printers
329baa95
DE
1343
1344The Python list @code{gdb.pretty_printers} contains an array of
1345functions or callable objects that have been registered via addition
1346as a pretty-printer. Printers in this list are called @code{global}
1347printers, they're available when debugging all inferiors.
1348Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1349Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1350attribute.
1351
1352Each function on these lists is passed a single @code{gdb.Value}
1353argument and should return a pretty-printer object conforming to the
1354interface definition above (@pxref{Pretty Printing API}). If a function
1355cannot create a pretty-printer for the value, it should return
1356@code{None}.
1357
1358@value{GDBN} first checks the @code{pretty_printers} attribute of each
1359@code{gdb.Objfile} in the current program space and iteratively calls
1360each enabled lookup routine in the list for that @code{gdb.Objfile}
1361until it receives a pretty-printer object.
1362If no pretty-printer is found in the objfile lists, @value{GDBN} then
1363searches the pretty-printer list of the current program space,
1364calling each enabled function until an object is returned.
1365After these lists have been exhausted, it tries the global
1366@code{gdb.pretty_printers} list, again calling each enabled function until an
1367object is returned.
1368
1369The order in which the objfiles are searched is not specified. For a
1370given list, functions are always invoked from the head of the list,
1371and iterated over sequentially until the end of the list, or a printer
1372object is returned.
1373
1374For various reasons a pretty-printer may not work.
1375For example, the underlying data structure may have changed and
1376the pretty-printer is out of date.
1377
1378The consequences of a broken pretty-printer are severe enough that
1379@value{GDBN} provides support for enabling and disabling individual
1380printers. For example, if @code{print frame-arguments} is on,
1381a backtrace can become highly illegible if any argument is printed
1382with a broken printer.
1383
1384Pretty-printers are enabled and disabled by attaching an @code{enabled}
1385attribute to the registered function or callable object. If this attribute
1386is present and its value is @code{False}, the printer is disabled, otherwise
1387the printer is enabled.
1388
1389@node Writing a Pretty-Printer
1390@subsubsection Writing a Pretty-Printer
1391@cindex writing a pretty-printer
1392
1393A pretty-printer consists of two parts: a lookup function to detect
1394if the type is supported, and the printer itself.
1395
1396Here is an example showing how a @code{std::string} printer might be
1397written. @xref{Pretty Printing API}, for details on the API this class
1398must provide.
1399
1400@smallexample
1401class StdStringPrinter(object):
1402 "Print a std::string"
1403
1404 def __init__(self, val):
1405 self.val = val
1406
1407 def to_string(self):
1408 return self.val['_M_dataplus']['_M_p']
1409
1410 def display_hint(self):
1411 return 'string'
1412@end smallexample
1413
1414And here is an example showing how a lookup function for the printer
1415example above might be written.
1416
1417@smallexample
1418def str_lookup_function(val):
1419 lookup_tag = val.type.tag
1420 if lookup_tag == None:
1421 return None
1422 regex = re.compile("^std::basic_string<char,.*>$")
1423 if regex.match(lookup_tag):
1424 return StdStringPrinter(val)
1425 return None
1426@end smallexample
1427
1428The example lookup function extracts the value's type, and attempts to
1429match it to a type that it can pretty-print. If it is a type the
1430printer can pretty-print, it will return a printer object. If not, it
1431returns @code{None}.
1432
1433We recommend that you put your core pretty-printers into a Python
1434package. If your pretty-printers are for use with a library, we
1435further recommend embedding a version number into the package name.
1436This practice will enable @value{GDBN} to load multiple versions of
1437your pretty-printers at the same time, because they will have
1438different names.
1439
1440You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1441can be evaluated multiple times without changing its meaning. An
1442ideal auto-load file will consist solely of @code{import}s of your
1443printer modules, followed by a call to a register pretty-printers with
1444the current objfile.
1445
1446Taken as a whole, this approach will scale nicely to multiple
1447inferiors, each potentially using a different library version.
1448Embedding a version number in the Python package name will ensure that
1449@value{GDBN} is able to load both sets of printers simultaneously.
1450Then, because the search for pretty-printers is done by objfile, and
1451because your auto-loaded code took care to register your library's
1452printers with a specific objfile, @value{GDBN} will find the correct
1453printers for the specific version of the library used by each
1454inferior.
1455
1456To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1457this code might appear in @code{gdb.libstdcxx.v6}:
1458
1459@smallexample
1460def register_printers(objfile):
1461 objfile.pretty_printers.append(str_lookup_function)
1462@end smallexample
1463
1464@noindent
1465And then the corresponding contents of the auto-load file would be:
1466
1467@smallexample
1468import gdb.libstdcxx.v6
1469gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1470@end smallexample
1471
1472The previous example illustrates a basic pretty-printer.
1473There are a few things that can be improved on.
1474The printer doesn't have a name, making it hard to identify in a
1475list of installed printers. The lookup function has a name, but
1476lookup functions can have arbitrary, even identical, names.
1477
1478Second, the printer only handles one type, whereas a library typically has
1479several types. One could install a lookup function for each desired type
1480in the library, but one could also have a single lookup function recognize
1481several types. The latter is the conventional way this is handled.
1482If a pretty-printer can handle multiple data types, then its
1483@dfn{subprinters} are the printers for the individual data types.
1484
1485The @code{gdb.printing} module provides a formal way of solving these
1486problems (@pxref{gdb.printing}).
1487Here is another example that handles multiple types.
1488
1489These are the types we are going to pretty-print:
1490
1491@smallexample
1492struct foo @{ int a, b; @};
1493struct bar @{ struct foo x, y; @};
1494@end smallexample
1495
1496Here are the printers:
1497
1498@smallexample
1499class fooPrinter:
1500 """Print a foo object."""
1501
1502 def __init__(self, val):
1503 self.val = val
1504
1505 def to_string(self):
1506 return ("a=<" + str(self.val["a"]) +
1507 "> b=<" + str(self.val["b"]) + ">")
1508
1509class barPrinter:
1510 """Print a bar object."""
1511
1512 def __init__(self, val):
1513 self.val = val
1514
1515 def to_string(self):
1516 return ("x=<" + str(self.val["x"]) +
1517 "> y=<" + str(self.val["y"]) + ">")
1518@end smallexample
1519
1520This example doesn't need a lookup function, that is handled by the
1521@code{gdb.printing} module. Instead a function is provided to build up
1522the object that handles the lookup.
1523
1524@smallexample
1525import gdb.printing
1526
1527def build_pretty_printer():
1528 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1529 "my_library")
1530 pp.add_printer('foo', '^foo$', fooPrinter)
1531 pp.add_printer('bar', '^bar$', barPrinter)
1532 return pp
1533@end smallexample
1534
1535And here is the autoload support:
1536
1537@smallexample
1538import gdb.printing
1539import my_library
1540gdb.printing.register_pretty_printer(
1541 gdb.current_objfile(),
1542 my_library.build_pretty_printer())
1543@end smallexample
1544
1545Finally, when this printer is loaded into @value{GDBN}, here is the
1546corresponding output of @samp{info pretty-printer}:
1547
1548@smallexample
1549(gdb) info pretty-printer
1550my_library.so:
1551 my_library
1552 foo
1553 bar
1554@end smallexample
1555
1556@node Type Printing API
1557@subsubsection Type Printing API
1558@cindex type printing API for Python
1559
1560@value{GDBN} provides a way for Python code to customize type display.
1561This is mainly useful for substituting canonical typedef names for
1562types.
1563
1564@cindex type printer
1565A @dfn{type printer} is just a Python object conforming to a certain
1566protocol. A simple base class implementing the protocol is provided;
1567see @ref{gdb.types}. A type printer must supply at least:
1568
1569@defivar type_printer enabled
1570A boolean which is True if the printer is enabled, and False
1571otherwise. This is manipulated by the @code{enable type-printer}
1572and @code{disable type-printer} commands.
1573@end defivar
1574
1575@defivar type_printer name
1576The name of the type printer. This must be a string. This is used by
1577the @code{enable type-printer} and @code{disable type-printer}
1578commands.
1579@end defivar
1580
1581@defmethod type_printer instantiate (self)
1582This is called by @value{GDBN} at the start of type-printing. It is
1583only called if the type printer is enabled. This method must return a
1584new object that supplies a @code{recognize} method, as described below.
1585@end defmethod
1586
1587
1588When displaying a type, say via the @code{ptype} command, @value{GDBN}
1589will compute a list of type recognizers. This is done by iterating
1590first over the per-objfile type printers (@pxref{Objfiles In Python}),
1591followed by the per-progspace type printers (@pxref{Progspaces In
1592Python}), and finally the global type printers.
1593
1594@value{GDBN} will call the @code{instantiate} method of each enabled
1595type printer. If this method returns @code{None}, then the result is
1596ignored; otherwise, it is appended to the list of recognizers.
1597
1598Then, when @value{GDBN} is going to display a type name, it iterates
1599over the list of recognizers. For each one, it calls the recognition
1600function, stopping if the function returns a non-@code{None} value.
1601The recognition function is defined as:
1602
1603@defmethod type_recognizer recognize (self, type)
1604If @var{type} is not recognized, return @code{None}. Otherwise,
1605return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1606The @var{type} argument will be an instance of @code{gdb.Type}
1607(@pxref{Types In Python}).
329baa95
DE
1608@end defmethod
1609
1610@value{GDBN} uses this two-pass approach so that type printers can
1611efficiently cache information without holding on to it too long. For
1612example, it can be convenient to look up type information in a type
1613printer and hold it for a recognizer's lifetime; if a single pass were
1614done then type printers would have to make use of the event system in
1615order to avoid holding information that could become stale as the
1616inferior changed.
1617
1618@node Frame Filter API
1619@subsubsection Filtering Frames.
1620@cindex frame filters api
1621
1622Frame filters are Python objects that manipulate the visibility of a
1623frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1624@value{GDBN}.
1625
1626Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1627commands (@pxref{GDB/MI}), those that return a collection of frames
1628are affected. The commands that work with frame filters are:
1629
1630@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1631@code{-stack-list-frames}
1632(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1633@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1634-stack-list-variables command}), @code{-stack-list-arguments}
1635@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1636@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1637-stack-list-locals command}).
1638
1639A frame filter works by taking an iterator as an argument, applying
1640actions to the contents of that iterator, and returning another
1641iterator (or, possibly, the same iterator it was provided in the case
1642where the filter does not perform any operations). Typically, frame
1643filters utilize tools such as the Python's @code{itertools} module to
1644work with and create new iterators from the source iterator.
1645Regardless of how a filter chooses to apply actions, it must not alter
1646the underlying @value{GDBN} frame or frames, or attempt to alter the
1647call-stack within @value{GDBN}. This preserves data integrity within
1648@value{GDBN}. Frame filters are executed on a priority basis and care
1649should be taken that some frame filters may have been executed before,
1650and that some frame filters will be executed after.
1651
1652An important consideration when designing frame filters, and well
1653worth reflecting upon, is that frame filters should avoid unwinding
1654the call stack if possible. Some stacks can run very deep, into the
1655tens of thousands in some cases. To search every frame when a frame
1656filter executes may be too expensive at that step. The frame filter
1657cannot know how many frames it has to iterate over, and it may have to
1658iterate through them all. This ends up duplicating effort as
1659@value{GDBN} performs this iteration when it prints the frames. If
1660the filter can defer unwinding frames until frame decorators are
1661executed, after the last filter has executed, it should. @xref{Frame
1662Decorator API}, for more information on decorators. Also, there are
1663examples for both frame decorators and filters in later chapters.
1664@xref{Writing a Frame Filter}, for more information.
1665
1666The Python dictionary @code{gdb.frame_filters} contains key/object
1667pairings that comprise a frame filter. Frame filters in this
1668dictionary are called @code{global} frame filters, and they are
1669available when debugging all inferiors. These frame filters must
1670register with the dictionary directly. In addition to the
1671@code{global} dictionary, there are other dictionaries that are loaded
1672with different inferiors via auto-loading (@pxref{Python
1673Auto-loading}). The two other areas where frame filter dictionaries
1674can be found are: @code{gdb.Progspace} which contains a
1675@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1676object which also contains a @code{frame_filters} dictionary
1677attribute.
1678
1679When a command is executed from @value{GDBN} that is compatible with
1680frame filters, @value{GDBN} combines the @code{global},
1681@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1682loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1683several frames, and thus several object files, might be in use.
1684@value{GDBN} then prunes any frame filter whose @code{enabled}
1685attribute is @code{False}. This pruned list is then sorted according
1686to the @code{priority} attribute in each filter.
1687
1688Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1689creates an iterator which wraps each frame in the call stack in a
1690@code{FrameDecorator} object, and calls each filter in order. The
1691output from the previous filter will always be the input to the next
1692filter, and so on.
1693
1694Frame filters have a mandatory interface which each frame filter must
1695implement, defined here:
1696
1697@defun FrameFilter.filter (iterator)
1698@value{GDBN} will call this method on a frame filter when it has
1699reached the order in the priority list for that filter.
1700
1701For example, if there are four frame filters:
1702
1703@smallexample
1704Name Priority
1705
1706Filter1 5
1707Filter2 10
1708Filter3 100
1709Filter4 1
1710@end smallexample
1711
1712The order that the frame filters will be called is:
1713
1714@smallexample
1715Filter3 -> Filter2 -> Filter1 -> Filter4
1716@end smallexample
1717
1718Note that the output from @code{Filter3} is passed to the input of
1719@code{Filter2}, and so on.
1720
1721This @code{filter} method is passed a Python iterator. This iterator
1722contains a sequence of frame decorators that wrap each
1723@code{gdb.Frame}, or a frame decorator that wraps another frame
1724decorator. The first filter that is executed in the sequence of frame
1725filters will receive an iterator entirely comprised of default
1726@code{FrameDecorator} objects. However, after each frame filter is
1727executed, the previous frame filter may have wrapped some or all of
1728the frame decorators with their own frame decorator. As frame
1729decorators must also conform to a mandatory interface, these
1730decorators can be assumed to act in a uniform manner (@pxref{Frame
1731Decorator API}).
1732
1733This method must return an object conforming to the Python iterator
1734protocol. Each item in the iterator must be an object conforming to
1735the frame decorator interface. If a frame filter does not wish to
1736perform any operations on this iterator, it should return that
1737iterator untouched.
1738
1739This method is not optional. If it does not exist, @value{GDBN} will
1740raise and print an error.
1741@end defun
1742
1743@defvar FrameFilter.name
1744The @code{name} attribute must be Python string which contains the
1745name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1746Management}). This attribute may contain any combination of letters
1747or numbers. Care should be taken to ensure that it is unique. This
1748attribute is mandatory.
1749@end defvar
1750
1751@defvar FrameFilter.enabled
1752The @code{enabled} attribute must be Python boolean. This attribute
1753indicates to @value{GDBN} whether the frame filter is enabled, and
1754should be considered when frame filters are executed. If
1755@code{enabled} is @code{True}, then the frame filter will be executed
1756when any of the backtrace commands detailed earlier in this chapter
1757are executed. If @code{enabled} is @code{False}, then the frame
1758filter will not be executed. This attribute is mandatory.
1759@end defvar
1760
1761@defvar FrameFilter.priority
1762The @code{priority} attribute must be Python integer. This attribute
1763controls the order of execution in relation to other frame filters.
1764There are no imposed limits on the range of @code{priority} other than
1765it must be a valid integer. The higher the @code{priority} attribute,
1766the sooner the frame filter will be executed in relation to other
1767frame filters. Although @code{priority} can be negative, it is
1768recommended practice to assume zero is the lowest priority that a
1769frame filter can be assigned. Frame filters that have the same
1770priority are executed in unsorted order in that priority slot. This
1771attribute is mandatory.
1772@end defvar
1773
1774@node Frame Decorator API
1775@subsubsection Decorating Frames.
1776@cindex frame decorator api
1777
1778Frame decorators are sister objects to frame filters (@pxref{Frame
1779Filter API}). Frame decorators are applied by a frame filter and can
1780only be used in conjunction with frame filters.
1781
1782The purpose of a frame decorator is to customize the printed content
1783of each @code{gdb.Frame} in commands where frame filters are executed.
1784This concept is called decorating a frame. Frame decorators decorate
1785a @code{gdb.Frame} with Python code contained within each API call.
1786This separates the actual data contained in a @code{gdb.Frame} from
1787the decorated data produced by a frame decorator. This abstraction is
1788necessary to maintain integrity of the data contained in each
1789@code{gdb.Frame}.
1790
1791Frame decorators have a mandatory interface, defined below.
1792
1793@value{GDBN} already contains a frame decorator called
1794@code{FrameDecorator}. This contains substantial amounts of
1795boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1796recommended that other frame decorators inherit and extend this
1797object, and only to override the methods needed.
1798
1799@defun FrameDecorator.elided (self)
1800
1801The @code{elided} method groups frames together in a hierarchical
1802system. An example would be an interpreter, where multiple low-level
1803frames make up a single call in the interpreted language. In this
1804example, the frame filter would elide the low-level frames and present
1805a single high-level frame, representing the call in the interpreted
1806language, to the user.
1807
1808The @code{elided} function must return an iterable and this iterable
1809must contain the frames that are being elided wrapped in a suitable
1810frame decorator. If no frames are being elided this function may
1811return an empty iterable, or @code{None}. Elided frames are indented
1812from normal frames in a @code{CLI} backtrace, or in the case of
1813@code{GDB/MI}, are placed in the @code{children} field of the eliding
1814frame.
1815
1816It is the frame filter's task to also filter out the elided frames from
1817the source iterator. This will avoid printing the frame twice.
1818@end defun
1819
1820@defun FrameDecorator.function (self)
1821
1822This method returns the name of the function in the frame that is to
1823be printed.
1824
1825This method must return a Python string describing the function, or
1826@code{None}.
1827
1828If this function returns @code{None}, @value{GDBN} will not print any
1829data for this field.
1830@end defun
1831
1832@defun FrameDecorator.address (self)
1833
1834This method returns the address of the frame that is to be printed.
1835
1836This method must return a Python numeric integer type of sufficient
1837size to describe the address of the frame, or @code{None}.
1838
1839If this function returns a @code{None}, @value{GDBN} will not print
1840any data for this field.
1841@end defun
1842
1843@defun FrameDecorator.filename (self)
1844
1845This method returns the filename and path associated with this frame.
1846
1847This method must return a Python string containing the filename and
1848the path to the object file backing the frame, or @code{None}.
1849
1850If this function returns a @code{None}, @value{GDBN} will not print
1851any data for this field.
1852@end defun
1853
1854@defun FrameDecorator.line (self):
1855
1856This method returns the line number associated with the current
1857position within the function addressed by this frame.
1858
1859This method must return a Python integer type, or @code{None}.
1860
1861If this function returns a @code{None}, @value{GDBN} will not print
1862any data for this field.
1863@end defun
1864
1865@defun FrameDecorator.frame_args (self)
1866@anchor{frame_args}
1867
1868This method must return an iterable, or @code{None}. Returning an
1869empty iterable, or @code{None} means frame arguments will not be
1870printed for this frame. This iterable must contain objects that
1871implement two methods, described here.
1872
1873This object must implement a @code{argument} method which takes a
1874single @code{self} parameter and must return a @code{gdb.Symbol}
1875(@pxref{Symbols In Python}), or a Python string. The object must also
1876implement a @code{value} method which takes a single @code{self}
1877parameter and must return a @code{gdb.Value} (@pxref{Values From
1878Inferior}), a Python value, or @code{None}. If the @code{value}
1879method returns @code{None}, and the @code{argument} method returns a
1880@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1881the @code{gdb.Symbol} automatically.
1882
1883A brief example:
1884
1885@smallexample
1886class SymValueWrapper():
1887
1888 def __init__(self, symbol, value):
1889 self.sym = symbol
1890 self.val = value
1891
1892 def value(self):
1893 return self.val
1894
1895 def symbol(self):
1896 return self.sym
1897
1898class SomeFrameDecorator()
1899...
1900...
1901 def frame_args(self):
1902 args = []
1903 try:
1904 block = self.inferior_frame.block()
1905 except:
1906 return None
1907
1908 # Iterate over all symbols in a block. Only add
1909 # symbols that are arguments.
1910 for sym in block:
1911 if not sym.is_argument:
1912 continue
1913 args.append(SymValueWrapper(sym,None))
1914
1915 # Add example synthetic argument.
1916 args.append(SymValueWrapper(``foo'', 42))
1917
1918 return args
1919@end smallexample
1920@end defun
1921
1922@defun FrameDecorator.frame_locals (self)
1923
1924This method must return an iterable or @code{None}. Returning an
1925empty iterable, or @code{None} means frame local arguments will not be
1926printed for this frame.
1927
1928The object interface, the description of the various strategies for
1929reading frame locals, and the example are largely similar to those
1930described in the @code{frame_args} function, (@pxref{frame_args,,The
1931frame filter frame_args function}). Below is a modified example:
1932
1933@smallexample
1934class SomeFrameDecorator()
1935...
1936...
1937 def frame_locals(self):
1938 vars = []
1939 try:
1940 block = self.inferior_frame.block()
1941 except:
1942 return None
1943
1944 # Iterate over all symbols in a block. Add all
1945 # symbols, except arguments.
1946 for sym in block:
1947 if sym.is_argument:
1948 continue
1949 vars.append(SymValueWrapper(sym,None))
1950
1951 # Add an example of a synthetic local variable.
1952 vars.append(SymValueWrapper(``bar'', 99))
1953
1954 return vars
1955@end smallexample
1956@end defun
1957
1958@defun FrameDecorator.inferior_frame (self):
1959
1960This method must return the underlying @code{gdb.Frame} that this
1961frame decorator is decorating. @value{GDBN} requires the underlying
1962frame for internal frame information to determine how to print certain
1963values when printing a frame.
1964@end defun
1965
1966@node Writing a Frame Filter
1967@subsubsection Writing a Frame Filter
1968@cindex writing a frame filter
1969
1970There are three basic elements that a frame filter must implement: it
1971must correctly implement the documented interface (@pxref{Frame Filter
1972API}), it must register itself with @value{GDBN}, and finally, it must
1973decide if it is to work on the data provided by @value{GDBN}. In all
1974cases, whether it works on the iterator or not, each frame filter must
1975return an iterator. A bare-bones frame filter follows the pattern in
1976the following example.
1977
1978@smallexample
1979import gdb
1980
1981class FrameFilter():
1982
1983 def __init__(self):
1984 # Frame filter attribute creation.
1985 #
1986 # 'name' is the name of the filter that GDB will display.
1987 #
1988 # 'priority' is the priority of the filter relative to other
1989 # filters.
1990 #
1991 # 'enabled' is a boolean that indicates whether this filter is
1992 # enabled and should be executed.
1993
1994 self.name = "Foo"
1995 self.priority = 100
1996 self.enabled = True
1997
1998 # Register this frame filter with the global frame_filters
1999 # dictionary.
2000 gdb.frame_filters[self.name] = self
2001
2002 def filter(self, frame_iter):
2003 # Just return the iterator.
2004 return frame_iter
2005@end smallexample
2006
2007The frame filter in the example above implements the three
2008requirements for all frame filters. It implements the API, self
2009registers, and makes a decision on the iterator (in this case, it just
2010returns the iterator untouched).
2011
2012The first step is attribute creation and assignment, and as shown in
2013the comments the filter assigns the following attributes: @code{name},
2014@code{priority} and whether the filter should be enabled with the
2015@code{enabled} attribute.
2016
2017The second step is registering the frame filter with the dictionary or
2018dictionaries that the frame filter has interest in. As shown in the
2019comments, this filter just registers itself with the global dictionary
2020@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2021is a dictionary that is initialized in the @code{gdb} module when
2022@value{GDBN} starts. What dictionary a filter registers with is an
2023important consideration. Generally, if a filter is specific to a set
2024of code, it should be registered either in the @code{objfile} or
2025@code{progspace} dictionaries as they are specific to the program
2026currently loaded in @value{GDBN}. The global dictionary is always
2027present in @value{GDBN} and is never unloaded. Any filters registered
2028with the global dictionary will exist until @value{GDBN} exits. To
2029avoid filters that may conflict, it is generally better to register
2030frame filters against the dictionaries that more closely align with
2031the usage of the filter currently in question. @xref{Python
2032Auto-loading}, for further information on auto-loading Python scripts.
2033
2034@value{GDBN} takes a hands-off approach to frame filter registration,
2035therefore it is the frame filter's responsibility to ensure
2036registration has occurred, and that any exceptions are handled
2037appropriately. In particular, you may wish to handle exceptions
2038relating to Python dictionary key uniqueness. It is mandatory that
2039the dictionary key is the same as frame filter's @code{name}
2040attribute. When a user manages frame filters (@pxref{Frame Filter
2041Management}), the names @value{GDBN} will display are those contained
2042in the @code{name} attribute.
2043
2044The final step of this example is the implementation of the
2045@code{filter} method. As shown in the example comments, we define the
2046@code{filter} method and note that the method must take an iterator,
2047and also must return an iterator. In this bare-bones example, the
2048frame filter is not very useful as it just returns the iterator
2049untouched. However this is a valid operation for frame filters that
2050have the @code{enabled} attribute set, but decide not to operate on
2051any frames.
2052
2053In the next example, the frame filter operates on all frames and
2054utilizes a frame decorator to perform some work on the frames.
2055@xref{Frame Decorator API}, for further information on the frame
2056decorator interface.
2057
2058This example works on inlined frames. It highlights frames which are
2059inlined by tagging them with an ``[inlined]'' tag. By applying a
2060frame decorator to all frames with the Python @code{itertools imap}
2061method, the example defers actions to the frame decorator. Frame
2062decorators are only processed when @value{GDBN} prints the backtrace.
2063
2064This introduces a new decision making topic: whether to perform
2065decision making operations at the filtering step, or at the printing
2066step. In this example's approach, it does not perform any filtering
2067decisions at the filtering step beyond mapping a frame decorator to
2068each frame. This allows the actual decision making to be performed
2069when each frame is printed. This is an important consideration, and
2070well worth reflecting upon when designing a frame filter. An issue
2071that frame filters should avoid is unwinding the stack if possible.
2072Some stacks can run very deep, into the tens of thousands in some
2073cases. To search every frame to determine if it is inlined ahead of
2074time may be too expensive at the filtering step. The frame filter
2075cannot know how many frames it has to iterate over, and it would have
2076to iterate through them all. This ends up duplicating effort as
2077@value{GDBN} performs this iteration when it prints the frames.
2078
2079In this example decision making can be deferred to the printing step.
2080As each frame is printed, the frame decorator can examine each frame
2081in turn when @value{GDBN} iterates. From a performance viewpoint,
2082this is the most appropriate decision to make as it avoids duplicating
2083the effort that the printing step would undertake anyway. Also, if
2084there are many frame filters unwinding the stack during filtering, it
2085can substantially delay the printing of the backtrace which will
2086result in large memory usage, and a poor user experience.
2087
2088@smallexample
2089class InlineFilter():
2090
2091 def __init__(self):
2092 self.name = "InlinedFrameFilter"
2093 self.priority = 100
2094 self.enabled = True
2095 gdb.frame_filters[self.name] = self
2096
2097 def filter(self, frame_iter):
2098 frame_iter = itertools.imap(InlinedFrameDecorator,
2099 frame_iter)
2100 return frame_iter
2101@end smallexample
2102
2103This frame filter is somewhat similar to the earlier example, except
2104that the @code{filter} method applies a frame decorator object called
2105@code{InlinedFrameDecorator} to each element in the iterator. The
2106@code{imap} Python method is light-weight. It does not proactively
2107iterate over the iterator, but rather creates a new iterator which
2108wraps the existing one.
2109
2110Below is the frame decorator for this example.
2111
2112@smallexample
2113class InlinedFrameDecorator(FrameDecorator):
2114
2115 def __init__(self, fobj):
2116 super(InlinedFrameDecorator, self).__init__(fobj)
2117
2118 def function(self):
2119 frame = fobj.inferior_frame()
2120 name = str(frame.name())
2121
2122 if frame.type() == gdb.INLINE_FRAME:
2123 name = name + " [inlined]"
2124
2125 return name
2126@end smallexample
2127
2128This frame decorator only defines and overrides the @code{function}
2129method. It lets the supplied @code{FrameDecorator}, which is shipped
2130with @value{GDBN}, perform the other work associated with printing
2131this frame.
2132
2133The combination of these two objects create this output from a
2134backtrace:
2135
2136@smallexample
2137#0 0x004004e0 in bar () at inline.c:11
2138#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2139#2 0x00400566 in main () at inline.c:31
2140@end smallexample
2141
2142So in the case of this example, a frame decorator is applied to all
2143frames, regardless of whether they may be inlined or not. As
2144@value{GDBN} iterates over the iterator produced by the frame filters,
2145@value{GDBN} executes each frame decorator which then makes a decision
2146on what to print in the @code{function} callback. Using a strategy
2147like this is a way to defer decisions on the frame content to printing
2148time.
2149
2150@subheading Eliding Frames
2151
2152It might be that the above example is not desirable for representing
2153inlined frames, and a hierarchical approach may be preferred. If we
2154want to hierarchically represent frames, the @code{elided} frame
2155decorator interface might be preferable.
2156
2157This example approaches the issue with the @code{elided} method. This
2158example is quite long, but very simplistic. It is out-of-scope for
2159this section to write a complete example that comprehensively covers
2160all approaches of finding and printing inlined frames. However, this
2161example illustrates the approach an author might use.
2162
2163This example comprises of three sections.
2164
2165@smallexample
2166class InlineFrameFilter():
2167
2168 def __init__(self):
2169 self.name = "InlinedFrameFilter"
2170 self.priority = 100
2171 self.enabled = True
2172 gdb.frame_filters[self.name] = self
2173
2174 def filter(self, frame_iter):
2175 return ElidingInlineIterator(frame_iter)
2176@end smallexample
2177
2178This frame filter is very similar to the other examples. The only
2179difference is this frame filter is wrapping the iterator provided to
2180it (@code{frame_iter}) with a custom iterator called
2181@code{ElidingInlineIterator}. This again defers actions to when
2182@value{GDBN} prints the backtrace, as the iterator is not traversed
2183until printing.
2184
2185The iterator for this example is as follows. It is in this section of
2186the example where decisions are made on the content of the backtrace.
2187
2188@smallexample
2189class ElidingInlineIterator:
2190 def __init__(self, ii):
2191 self.input_iterator = ii
2192
2193 def __iter__(self):
2194 return self
2195
2196 def next(self):
2197 frame = next(self.input_iterator)
2198
2199 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2200 return frame
2201
2202 try:
2203 eliding_frame = next(self.input_iterator)
2204 except StopIteration:
2205 return frame
2206 return ElidingFrameDecorator(eliding_frame, [frame])
2207@end smallexample
2208
2209This iterator implements the Python iterator protocol. When the
2210@code{next} function is called (when @value{GDBN} prints each frame),
2211the iterator checks if this frame decorator, @code{frame}, is wrapping
2212an inlined frame. If it is not, it returns the existing frame decorator
2213untouched. If it is wrapping an inlined frame, it assumes that the
2214inlined frame was contained within the next oldest frame,
2215@code{eliding_frame}, which it fetches. It then creates and returns a
2216frame decorator, @code{ElidingFrameDecorator}, which contains both the
2217elided frame, and the eliding frame.
2218
2219@smallexample
2220class ElidingInlineDecorator(FrameDecorator):
2221
2222 def __init__(self, frame, elided_frames):
2223 super(ElidingInlineDecorator, self).__init__(frame)
2224 self.frame = frame
2225 self.elided_frames = elided_frames
2226
2227 def elided(self):
2228 return iter(self.elided_frames)
2229@end smallexample
2230
2231This frame decorator overrides one function and returns the inlined
2232frame in the @code{elided} method. As before it lets
2233@code{FrameDecorator} do the rest of the work involved in printing
2234this frame. This produces the following output.
2235
2236@smallexample
2237#0 0x004004e0 in bar () at inline.c:11
2238#2 0x00400529 in main () at inline.c:25
2239 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2240@end smallexample
2241
2242In that output, @code{max} which has been inlined into @code{main} is
2243printed hierarchically. Another approach would be to combine the
2244@code{function} method, and the @code{elided} method to both print a
2245marker in the inlined frame, and also show the hierarchical
2246relationship.
2247
d11916aa
SS
2248@node Unwinding Frames in Python
2249@subsubsection Unwinding Frames in Python
2250@cindex unwinding frames in Python
2251
2252In @value{GDBN} terminology ``unwinding'' is the process of finding
2253the previous frame (that is, caller's) from the current one. An
2254unwinder has three methods. The first one checks if it can handle
2255given frame (``sniff'' it). For the frames it can sniff an unwinder
2256provides two additional methods: it can return frame's ID, and it can
2257fetch registers from the previous frame. A running @value{GDBN}
2258mantains a list of the unwinders and calls each unwinder's sniffer in
2259turn until it finds the one that recognizes the current frame. There
2260is an API to register an unwinder.
2261
2262The unwinders that come with @value{GDBN} handle standard frames.
2263However, mixed language applications (for example, an application
2264running Java Virtual Machine) sometimes use frame layouts that cannot
2265be handled by the @value{GDBN} unwinders. You can write Python code
2266that can handle such custom frames.
2267
2268You implement a frame unwinder in Python as a class with which has two
2269attributes, @code{name} and @code{enabled}, with obvious meanings, and
2270a single method @code{__call__}, which examines a given frame and
2271returns an object (an instance of @code{gdb.UnwindInfo class)}
2272describing it. If an unwinder does not recognize a frame, it should
2273return @code{None}. The code in @value{GDBN} that enables writing
2274unwinders in Python uses this object to return frame's ID and previous
2275frame registers when @value{GDBN} core asks for them.
2276
2277@subheading Unwinder Input
2278
2279An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2280provides a method to read frame's registers:
2281
2282@defun PendingFrame.read_register (reg)
2283This method returns the contents of the register @var{regn} in the
2284frame as a @code{gdb.Value} object. @var{reg} can be either a
2285register number or a register name; the values are platform-specific.
2286They are usually found in the corresponding
2287@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree.
2288@end defun
2289
2290It also provides a factory method to create a @code{gdb.UnwindInfo}
2291instance to be returned to @value{GDBN}:
2292
2293@defun PendingFrame.create_unwind_info (frame_id)
2294Returns a new @code{gdb.UnwindInfo} instance identified by given
2295@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2296using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2297determine which function will be used, as follows:
2298
2299@table @code
2300@item sp, pc, special
2301@code{frame_id_build_special (@var{frame_id}.sp, @var{frame_id}.pc, @var{frame_id}.special)}
2302
2303@item sp, pc
2304@code{frame_id_build (@var{frame_id}.sp, @var{frame_id}.pc)}
2305
2306This is the most common case.
2307
2308@item sp
2309@code{frame_id_build_wild (@var{frame_id}.sp)}
2310@end table
2311The attribute values should be @code{gdb.Value}
2312
2313@end defun
2314
2315@subheading Unwinder Output: UnwindInfo
2316
2317Use @code{PendingFrame.create_unwind_info} method described above to
2318create a @code{gdb.UnwindInfo} instance. Use the following method to
2319specify caller registers that have been saved in this frame:
2320
2321@defun gdb.UnwindInfo.add_saved_register (reg, value)
2322@var{reg} identifies the register. It can be a number or a name, just
2323as for the @code{PendingFrame.read_register} method above.
2324@var{value} is a register value (a @code{gdb.Value} object).
2325@end defun
2326
2327@subheading Unwinder Skeleton Code
2328
2329@value{GDBN} comes with the module containing the base @code{Unwinder}
2330class. Derive your unwinder class from it and structure the code as
2331follows:
2332
2333@smallexample
2334from gdb.unwinders import Unwinder
2335
2336class FrameId(object):
2337 def __init__(self, sp, pc):
2338 self.sp = sp
2339 self.pc = pc
2340
2341
2342class MyUnwinder(Unwinder):
2343 def __init__(....):
2344 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2345
2346 def __call__(pending_frame):
2347 if not <we recognize frame>:
2348 return None
2349 # Create UnwindInfo. Usually the frame is identified by the stack
2350 # pointer and the program counter.
2351 sp = pending_frame.read_register(<SP number>)
2352 pc = pending_frame.read_register(<PC number>)
2353 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2354
2355 # Find the values of the registers in the caller's frame and
2356 # save them in the result:
2357 unwind_info.add_saved_register(<register>, <value>)
2358 ....
2359
2360 # Return the result:
2361 return unwind_info
2362
2363@end smallexample
2364
2365@subheading Registering a Unwinder
2366
2367An object file, a program space, and the @value{GDBN} proper can have
2368unwinders registered with it.
2369
2370The @code{gdb.unwinders} module provides the function to register a
2371unwinder:
2372
2373@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2374@var{locus} is specifies an object file or a program space to which
2375@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2376@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2377added @var{unwinder} will be called before any other unwinder from the
2378same locus. Two unwinders in the same locus cannot have the same
2379name. An attempt to add a unwinder with already existing name raises
2380an exception unless @var{replace} is @code{True}, in which case the
2381old unwinder is deleted.
2382@end defun
2383
2384@subheading Unwinder Precedence
2385
2386@value{GDBN} first calls the unwinders from all the object files in no
2387particular order, then the unwinders from the current program space,
2388and finally the unwinders from @value{GDBN}.
2389
0c6e92a5
SC
2390@node Xmethods In Python
2391@subsubsection Xmethods In Python
2392@cindex xmethods in Python
2393
2394@dfn{Xmethods} are additional methods or replacements for existing
2395methods of a C@t{++} class. This feature is useful for those cases
2396where a method defined in C@t{++} source code could be inlined or
2397optimized out by the compiler, making it unavailable to @value{GDBN}.
2398For such cases, one can define an xmethod to serve as a replacement
2399for the method defined in the C@t{++} source code. @value{GDBN} will
2400then invoke the xmethod, instead of the C@t{++} method, to
2401evaluate expressions. One can also use xmethods when debugging
2402with core files. Moreover, when debugging live programs, invoking an
2403xmethod need not involve running the inferior (which can potentially
2404perturb its state). Hence, even if the C@t{++} method is available, it
2405is better to use its replacement xmethod if one is defined.
2406
2407The xmethods feature in Python is available via the concepts of an
2408@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2409implement an xmethod, one has to implement a matcher and a
2410corresponding worker for it (more than one worker can be
2411implemented, each catering to a different overloaded instance of the
2412method). Internally, @value{GDBN} invokes the @code{match} method of a
2413matcher to match the class type and method name. On a match, the
2414@code{match} method returns a list of matching @emph{worker} objects.
2415Each worker object typically corresponds to an overloaded instance of
2416the xmethod. They implement a @code{get_arg_types} method which
2417returns a sequence of types corresponding to the arguments the xmethod
2418requires. @value{GDBN} uses this sequence of types to perform
2419overload resolution and picks a winning xmethod worker. A winner
2420is also selected from among the methods @value{GDBN} finds in the
2421C@t{++} source code. Next, the winning xmethod worker and the
2422winning C@t{++} method are compared to select an overall winner. In
2423case of a tie between a xmethod worker and a C@t{++} method, the
2424xmethod worker is selected as the winner. That is, if a winning
2425xmethod worker is found to be equivalent to the winning C@t{++}
2426method, then the xmethod worker is treated as a replacement for
2427the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2428method. If the winning xmethod worker is the overall winner, then
897c3d32 2429the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2430of the worker object.
2431
2432If one wants to implement an xmethod as a replacement for an
2433existing C@t{++} method, then they have to implement an equivalent
2434xmethod which has exactly the same name and takes arguments of
2435exactly the same type as the C@t{++} method. If the user wants to
2436invoke the C@t{++} method even though a replacement xmethod is
2437available for that method, then they can disable the xmethod.
2438
2439@xref{Xmethod API}, for API to implement xmethods in Python.
2440@xref{Writing an Xmethod}, for implementing xmethods in Python.
2441
2442@node Xmethod API
2443@subsubsection Xmethod API
2444@cindex xmethod API
2445
2446The @value{GDBN} Python API provides classes, interfaces and functions
2447to implement, register and manipulate xmethods.
2448@xref{Xmethods In Python}.
2449
2450An xmethod matcher should be an instance of a class derived from
2451@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2452object with similar interface and attributes. An instance of
2453@code{XMethodMatcher} has the following attributes:
2454
2455@defvar name
2456The name of the matcher.
2457@end defvar
2458
2459@defvar enabled
2460A boolean value indicating whether the matcher is enabled or disabled.
2461@end defvar
2462
2463@defvar methods
2464A list of named methods managed by the matcher. Each object in the list
2465is an instance of the class @code{XMethod} defined in the module
2466@code{gdb.xmethod}, or any object with the following attributes:
2467
2468@table @code
2469
2470@item name
2471Name of the xmethod which should be unique for each xmethod
2472managed by the matcher.
2473
2474@item enabled
2475A boolean value indicating whether the xmethod is enabled or
2476disabled.
2477
2478@end table
2479
2480The class @code{XMethod} is a convenience class with same
2481attributes as above along with the following constructor:
2482
dd5d5494 2483@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2484Constructs an enabled xmethod with name @var{name}.
2485@end defun
2486@end defvar
2487
2488@noindent
2489The @code{XMethodMatcher} class has the following methods:
2490
dd5d5494 2491@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2492Constructs an enabled xmethod matcher with name @var{name}. The
2493@code{methods} attribute is initialized to @code{None}.
2494@end defun
2495
dd5d5494 2496@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2497Derived classes should override this method. It should return a
2498xmethod worker object (or a sequence of xmethod worker
2499objects) matching the @var{class_type} and @var{method_name}.
2500@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2501is a string value. If the matcher manages named methods as listed in
2502its @code{methods} attribute, then only those worker objects whose
2503corresponding entries in the @code{methods} list are enabled should be
2504returned.
2505@end defun
2506
2507An xmethod worker should be an instance of a class derived from
2508@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2509or support the following interface:
2510
dd5d5494 2511@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2512This method returns a sequence of @code{gdb.Type} objects corresponding
2513to the arguments that the xmethod takes. It can return an empty
2514sequence or @code{None} if the xmethod does not take any arguments.
2515If the xmethod takes a single argument, then a single
2516@code{gdb.Type} object corresponding to it can be returned.
2517@end defun
2518
2ce1cdbf
DE
2519@defun XMethodWorker.get_result_type (self, *args)
2520This method returns a @code{gdb.Type} object representing the type
2521of the result of invoking this xmethod.
2522The @var{args} argument is the same tuple of arguments that would be
2523passed to the @code{__call__} method of this worker.
2524@end defun
2525
dd5d5494 2526@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2527This is the method which does the @emph{work} of the xmethod. The
2528@var{args} arguments is the tuple of arguments to the xmethod. Each
2529element in this tuple is a gdb.Value object. The first element is
2530always the @code{this} pointer value.
2531@end defun
2532
2533For @value{GDBN} to lookup xmethods, the xmethod matchers
2534should be registered using the following function defined in the module
2535@code{gdb.xmethod}:
2536
dd5d5494 2537@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2538The @code{matcher} is registered with @code{locus}, replacing an
2539existing matcher with the same name as @code{matcher} if
2540@code{replace} is @code{True}. @code{locus} can be a
2541@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2542@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2543@code{None}. If it is @code{None}, then @code{matcher} is registered
2544globally.
2545@end defun
2546
2547@node Writing an Xmethod
2548@subsubsection Writing an Xmethod
2549@cindex writing xmethods in Python
2550
2551Implementing xmethods in Python will require implementing xmethod
2552matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2553the following C@t{++} class:
2554
2555@smallexample
2556class MyClass
2557@{
2558public:
2559 MyClass (int a) : a_(a) @{ @}
2560
2561 int geta (void) @{ return a_; @}
2562 int operator+ (int b);
2563
2564private:
2565 int a_;
2566@};
2567
2568int
2569MyClass::operator+ (int b)
2570@{
2571 return a_ + b;
2572@}
2573@end smallexample
2574
2575@noindent
2576Let us define two xmethods for the class @code{MyClass}, one
2577replacing the method @code{geta}, and another adding an overloaded
2578flavor of @code{operator+} which takes a @code{MyClass} argument (the
2579C@t{++} code above already has an overloaded @code{operator+}
2580which takes an @code{int} argument). The xmethod matcher can be
2581defined as follows:
2582
2583@smallexample
2584class MyClass_geta(gdb.xmethod.XMethod):
2585 def __init__(self):
2586 gdb.xmethod.XMethod.__init__(self, 'geta')
2587
2588 def get_worker(self, method_name):
2589 if method_name == 'geta':
2590 return MyClassWorker_geta()
2591
2592
2593class MyClass_sum(gdb.xmethod.XMethod):
2594 def __init__(self):
2595 gdb.xmethod.XMethod.__init__(self, 'sum')
2596
2597 def get_worker(self, method_name):
2598 if method_name == 'operator+':
2599 return MyClassWorker_plus()
2600
2601
2602class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2603 def __init__(self):
2604 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2605 # List of methods 'managed' by this matcher
2606 self.methods = [MyClass_geta(), MyClass_sum()]
2607
2608 def match(self, class_type, method_name):
2609 if class_type.tag != 'MyClass':
2610 return None
2611 workers = []
2612 for method in self.methods:
2613 if method.enabled:
2614 worker = method.get_worker(method_name)
2615 if worker:
2616 workers.append(worker)
2617
2618 return workers
2619@end smallexample
2620
2621@noindent
2622Notice that the @code{match} method of @code{MyClassMatcher} returns
2623a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2624method, and a worker object of type @code{MyClassWorker_plus} for the
2625@code{operator+} method. This is done indirectly via helper classes
2626derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2627@code{methods} attribute in a matcher as it is optional. However, if a
2628matcher manages more than one xmethod, it is a good practice to list the
2629xmethods in the @code{methods} attribute of the matcher. This will then
2630facilitate enabling and disabling individual xmethods via the
2631@code{enable/disable} commands. Notice also that a worker object is
2632returned only if the corresponding entry in the @code{methods} attribute
2633of the matcher is enabled.
2634
2635The implementation of the worker classes returned by the matcher setup
2636above is as follows:
2637
2638@smallexample
2639class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2640 def get_arg_types(self):
2641 return None
2ce1cdbf
DE
2642
2643 def get_result_type(self, obj):
2644 return gdb.lookup_type('int')
0c6e92a5
SC
2645
2646 def __call__(self, obj):
2647 return obj['a_']
2648
2649
2650class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2651 def get_arg_types(self):
2652 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2653
2654 def get_result_type(self, obj):
2655 return gdb.lookup_type('int')
0c6e92a5
SC
2656
2657 def __call__(self, obj, other):
2658 return obj['a_'] + other['a_']
2659@end smallexample
2660
2661For @value{GDBN} to actually lookup a xmethod, it has to be
2662registered with it. The matcher defined above is registered with
2663@value{GDBN} globally as follows:
2664
2665@smallexample
2666gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2667@end smallexample
2668
2669If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2670code as follows:
2671
2672@smallexample
2673MyClass obj(5);
2674@end smallexample
2675
2676@noindent
2677then, after loading the Python script defining the xmethod matchers
2678and workers into @code{GDBN}, invoking the method @code{geta} or using
2679the operator @code{+} on @code{obj} will invoke the xmethods
2680defined above:
2681
2682@smallexample
2683(gdb) p obj.geta()
2684$1 = 5
2685
2686(gdb) p obj + obj
2687$2 = 10
2688@end smallexample
2689
2690Consider another example with a C++ template class:
2691
2692@smallexample
2693template <class T>
2694class MyTemplate
2695@{
2696public:
2697 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2698 ~MyTemplate () @{ delete [] data_; @}
2699
2700 int footprint (void)
2701 @{
2702 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2703 @}
2704
2705private:
2706 int dsize_;
2707 T *data_;
2708@};
2709@end smallexample
2710
2711Let us implement an xmethod for the above class which serves as a
2712replacement for the @code{footprint} method. The full code listing
2713of the xmethod workers and xmethod matchers is as follows:
2714
2715@smallexample
2716class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2717 def __init__(self, class_type):
2718 self.class_type = class_type
2ce1cdbf 2719
0c6e92a5
SC
2720 def get_arg_types(self):
2721 return None
2ce1cdbf
DE
2722
2723 def get_result_type(self):
2724 return gdb.lookup_type('int')
2725
0c6e92a5
SC
2726 def __call__(self, obj):
2727 return (self.class_type.sizeof +
2728 obj['dsize_'] *
2729 self.class_type.template_argument(0).sizeof)
2730
2731
2732class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2733 def __init__(self):
2734 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2735
2736 def match(self, class_type, method_name):
2737 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2738 class_type.tag) and
2739 method_name == 'footprint'):
2740 return MyTemplateWorker_footprint(class_type)
2741@end smallexample
2742
2743Notice that, in this example, we have not used the @code{methods}
2744attribute of the matcher as the matcher manages only one xmethod. The
2745user can enable/disable this xmethod by enabling/disabling the matcher
2746itself.
2747
329baa95
DE
2748@node Inferiors In Python
2749@subsubsection Inferiors In Python
2750@cindex inferiors in Python
2751
2752@findex gdb.Inferior
2753Programs which are being run under @value{GDBN} are called inferiors
2754(@pxref{Inferiors and Programs}). Python scripts can access
2755information about and manipulate inferiors controlled by @value{GDBN}
2756via objects of the @code{gdb.Inferior} class.
2757
2758The following inferior-related functions are available in the @code{gdb}
2759module:
2760
2761@defun gdb.inferiors ()
2762Return a tuple containing all inferior objects.
2763@end defun
2764
2765@defun gdb.selected_inferior ()
2766Return an object representing the current inferior.
2767@end defun
2768
2769A @code{gdb.Inferior} object has the following attributes:
2770
2771@defvar Inferior.num
2772ID of inferior, as assigned by GDB.
2773@end defvar
2774
2775@defvar Inferior.pid
2776Process ID of the inferior, as assigned by the underlying operating
2777system.
2778@end defvar
2779
2780@defvar Inferior.was_attached
2781Boolean signaling whether the inferior was created using `attach', or
2782started by @value{GDBN} itself.
2783@end defvar
2784
2785A @code{gdb.Inferior} object has the following methods:
2786
2787@defun Inferior.is_valid ()
2788Returns @code{True} if the @code{gdb.Inferior} object is valid,
2789@code{False} if not. A @code{gdb.Inferior} object will become invalid
2790if the inferior no longer exists within @value{GDBN}. All other
2791@code{gdb.Inferior} methods will throw an exception if it is invalid
2792at the time the method is called.
2793@end defun
2794
2795@defun Inferior.threads ()
2796This method returns a tuple holding all the threads which are valid
2797when it is called. If there are no valid threads, the method will
2798return an empty tuple.
2799@end defun
2800
2801@findex Inferior.read_memory
2802@defun Inferior.read_memory (address, length)
a86c90e6 2803Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2804@var{address}. Returns a buffer object, which behaves much like an array
2805or a string. It can be modified and given to the
79778b30 2806@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2807value is a @code{memoryview} object.
2808@end defun
2809
2810@findex Inferior.write_memory
2811@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2812Write the contents of @var{buffer} to the inferior, starting at
2813@var{address}. The @var{buffer} parameter must be a Python object
2814which supports the buffer protocol, i.e., a string, an array or the
2815object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2816determines the number of addressable memory units from @var{buffer} to be
2817written.
329baa95
DE
2818@end defun
2819
2820@findex gdb.search_memory
2821@defun Inferior.search_memory (address, length, pattern)
2822Search a region of the inferior memory starting at @var{address} with
2823the given @var{length} using the search pattern supplied in
2824@var{pattern}. The @var{pattern} parameter must be a Python object
2825which supports the buffer protocol, i.e., a string, an array or the
2826object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2827containing the address where the pattern was found, or @code{None} if
2828the pattern could not be found.
2829@end defun
2830
da2c323b
KB
2831@findex Inferior.thread_from_thread_handle
2832@defun Inferior.thread_from_thread_handle (thread_handle)
2833Return the thread object corresponding to @var{thread_handle}, a thread
2834library specific data structure such as @code{pthread_t} for pthreads
2835library implementations.
2836@end defun
2837
329baa95
DE
2838@node Events In Python
2839@subsubsection Events In Python
2840@cindex inferior events in Python
2841
2842@value{GDBN} provides a general event facility so that Python code can be
2843notified of various state changes, particularly changes that occur in
2844the inferior.
2845
2846An @dfn{event} is just an object that describes some state change. The
2847type of the object and its attributes will vary depending on the details
2848of the change. All the existing events are described below.
2849
2850In order to be notified of an event, you must register an event handler
2851with an @dfn{event registry}. An event registry is an object in the
2852@code{gdb.events} module which dispatches particular events. A registry
2853provides methods to register and unregister event handlers:
2854
2855@defun EventRegistry.connect (object)
2856Add the given callable @var{object} to the registry. This object will be
2857called when an event corresponding to this registry occurs.
2858@end defun
2859
2860@defun EventRegistry.disconnect (object)
2861Remove the given @var{object} from the registry. Once removed, the object
2862will no longer receive notifications of events.
2863@end defun
2864
2865Here is an example:
2866
2867@smallexample
2868def exit_handler (event):
2869 print "event type: exit"
2870 print "exit code: %d" % (event.exit_code)
2871
2872gdb.events.exited.connect (exit_handler)
2873@end smallexample
2874
2875In the above example we connect our handler @code{exit_handler} to the
2876registry @code{events.exited}. Once connected, @code{exit_handler} gets
2877called when the inferior exits. The argument @dfn{event} in this example is
2878of type @code{gdb.ExitedEvent}. As you can see in the example the
2879@code{ExitedEvent} object has an attribute which indicates the exit code of
2880the inferior.
2881
2882The following is a listing of the event registries that are available and
2883details of the events they emit:
2884
2885@table @code
2886
2887@item events.cont
2888Emits @code{gdb.ThreadEvent}.
2889
2890Some events can be thread specific when @value{GDBN} is running in non-stop
2891mode. When represented in Python, these events all extend
2892@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2893events which are emitted by this or other modules might extend this event.
2894Examples of these events are @code{gdb.BreakpointEvent} and
2895@code{gdb.ContinueEvent}.
2896
2897@defvar ThreadEvent.inferior_thread
2898In non-stop mode this attribute will be set to the specific thread which was
2899involved in the emitted event. Otherwise, it will be set to @code{None}.
2900@end defvar
2901
2902Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2903
2904This event indicates that the inferior has been continued after a stop. For
2905inherited attribute refer to @code{gdb.ThreadEvent} above.
2906
2907@item events.exited
2908Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2909@code{events.ExitedEvent} has two attributes:
2910@defvar ExitedEvent.exit_code
2911An integer representing the exit code, if available, which the inferior
2912has returned. (The exit code could be unavailable if, for example,
2913@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2914the attribute does not exist.
2915@end defvar
373832b6 2916@defvar ExitedEvent.inferior
329baa95
DE
2917A reference to the inferior which triggered the @code{exited} event.
2918@end defvar
2919
2920@item events.stop
2921Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2922
2923Indicates that the inferior has stopped. All events emitted by this registry
2924extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2925will indicate the stopped thread when @value{GDBN} is running in non-stop
2926mode. Refer to @code{gdb.ThreadEvent} above for more details.
2927
2928Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2929
2930This event indicates that the inferior or one of its threads has received as
2931signal. @code{gdb.SignalEvent} has the following attributes:
2932
2933@defvar SignalEvent.stop_signal
2934A string representing the signal received by the inferior. A list of possible
2935signal values can be obtained by running the command @code{info signals} in
2936the @value{GDBN} command prompt.
2937@end defvar
2938
2939Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2940
2941@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2942been hit, and has the following attributes:
2943
2944@defvar BreakpointEvent.breakpoints
2945A sequence containing references to all the breakpoints (type
2946@code{gdb.Breakpoint}) that were hit.
2947@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2948@end defvar
2949@defvar BreakpointEvent.breakpoint
2950A reference to the first breakpoint that was hit.
2951This function is maintained for backward compatibility and is now deprecated
2952in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2953@end defvar
2954
2955@item events.new_objfile
2956Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2957been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2958
2959@defvar NewObjFileEvent.new_objfile
2960A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2961@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2962@end defvar
2963
4ffbba72
DE
2964@item events.clear_objfiles
2965Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
2966files for a program space has been reset.
2967@code{gdb.ClearObjFilesEvent} has one attribute:
2968
2969@defvar ClearObjFilesEvent.progspace
2970A reference to the program space (@code{gdb.Progspace}) whose objfile list has
2971been cleared. @xref{Progspaces In Python}.
2972@end defvar
2973
162078c8
NB
2974@item events.inferior_call_pre
2975Emits @code{gdb.InferiorCallPreEvent} which indicates that a function in
2976the inferior is about to be called.
2977
2978@defvar InferiorCallPreEvent.ptid
2979The thread in which the call will be run.
2980@end defvar
2981
2982@defvar InferiorCallPreEvent.address
2983The location of the function to be called.
2984@end defvar
2985
2986@item events.inferior_call_post
2987Emits @code{gdb.InferiorCallPostEvent} which indicates that a function in
2988the inferior has returned.
2989
2990@defvar InferiorCallPostEvent.ptid
2991The thread in which the call was run.
2992@end defvar
2993
2994@defvar InferiorCallPostEvent.address
2995The location of the function that was called.
2996@end defvar
2997
2998@item events.memory_changed
2999Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3000inferior has been modified by the @value{GDBN} user, for instance via a
3001command like @w{@code{set *addr = value}}. The event has the following
3002attributes:
3003
3004@defvar MemoryChangedEvent.address
3005The start address of the changed region.
3006@end defvar
3007
3008@defvar MemoryChangedEvent.length
3009Length in bytes of the changed region.
3010@end defvar
3011
3012@item events.register_changed
3013Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3014inferior has been modified by the @value{GDBN} user.
3015
3016@defvar RegisterChangedEvent.frame
3017A gdb.Frame object representing the frame in which the register was modified.
3018@end defvar
3019@defvar RegisterChangedEvent.regnum
3020Denotes which register was modified.
3021@end defvar
3022
dac790e1
TT
3023@item events.breakpoint_created
3024This is emitted when a new breakpoint has been created. The argument
3025that is passed is the new @code{gdb.Breakpoint} object.
3026
3027@item events.breakpoint_modified
3028This is emitted when a breakpoint has been modified in some way. The
3029argument that is passed is the new @code{gdb.Breakpoint} object.
3030
3031@item events.breakpoint_deleted
3032This is emitted when a breakpoint has been deleted. The argument that
3033is passed is the @code{gdb.Breakpoint} object. When this event is
3034emitted, the @code{gdb.Breakpoint} object will already be in its
3035invalid state; that is, the @code{is_valid} method will return
3036@code{False}.
3037
3f77c769
TT
3038@item events.before_prompt
3039This event carries no payload. It is emitted each time @value{GDBN}
3040presents a prompt to the user.
3041
7c96f8c1
TT
3042@item events.new_inferior
3043This is emitted when a new inferior is created. Note that the
3044inferior is not necessarily running; in fact, it may not even have an
3045associated executable.
3046
3047The event is of type @code{gdb.NewInferiorEvent}. This has a single
3048attribute:
3049
3050@defvar NewInferiorEvent.inferior
3051The new inferior, a @code{gdb.Inferior} object.
3052@end defvar
3053
3054@item events.inferior_deleted
3055This is emitted when an inferior has been deleted. Note that this is
3056not the same as process exit; it is notified when the inferior itself
3057is removed, say via @code{remove-inferiors}.
3058
3059The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3060attribute:
3061
3062@defvar NewInferiorEvent.inferior
3063The inferior that is being removed, a @code{gdb.Inferior} object.
3064@end defvar
3065
3066@item events.new_thread
3067This is emitted when @value{GDBN} notices a new thread. The event is of
3068type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3069This has a single attribute:
3070
3071@defvar NewThreadEvent.inferior_thread
3072The new thread.
3073@end defvar
3074
329baa95
DE
3075@end table
3076
3077@node Threads In Python
3078@subsubsection Threads In Python
3079@cindex threads in python
3080
3081@findex gdb.InferiorThread
3082Python scripts can access information about, and manipulate inferior threads
3083controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3084
3085The following thread-related functions are available in the @code{gdb}
3086module:
3087
3088@findex gdb.selected_thread
3089@defun gdb.selected_thread ()
3090This function returns the thread object for the selected thread. If there
3091is no selected thread, this will return @code{None}.
3092@end defun
3093
3094A @code{gdb.InferiorThread} object has the following attributes:
3095
3096@defvar InferiorThread.name
3097The name of the thread. If the user specified a name using
3098@code{thread name}, then this returns that name. Otherwise, if an
3099OS-supplied name is available, then it is returned. Otherwise, this
3100returns @code{None}.
3101
3102This attribute can be assigned to. The new value must be a string
3103object, which sets the new name, or @code{None}, which removes any
3104user-specified thread name.
3105@end defvar
3106
3107@defvar InferiorThread.num
5d5658a1 3108The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3109@end defvar
3110
22a02324
PA
3111@defvar InferiorThread.global_num
3112The global ID of the thread, as assigned by GDB. You can use this to
3113make Python breakpoints thread-specific, for example
3114(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3115@end defvar
3116
329baa95
DE
3117@defvar InferiorThread.ptid
3118ID of the thread, as assigned by the operating system. This attribute is a
3119tuple containing three integers. The first is the Process ID (PID); the second
3120is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3121Either the LWPID or TID may be 0, which indicates that the operating system
3122does not use that identifier.
3123@end defvar
3124
84654457
PA
3125@defvar InferiorThread.inferior
3126The inferior this thread belongs to. This attribute is represented as
3127a @code{gdb.Inferior} object. This attribute is not writable.
3128@end defvar
3129
329baa95
DE
3130A @code{gdb.InferiorThread} object has the following methods:
3131
3132@defun InferiorThread.is_valid ()
3133Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3134@code{False} if not. A @code{gdb.InferiorThread} object will become
3135invalid if the thread exits, or the inferior that the thread belongs
3136is deleted. All other @code{gdb.InferiorThread} methods will throw an
3137exception if it is invalid at the time the method is called.
3138@end defun
3139
3140@defun InferiorThread.switch ()
3141This changes @value{GDBN}'s currently selected thread to the one represented
3142by this object.
3143@end defun
3144
3145@defun InferiorThread.is_stopped ()
3146Return a Boolean indicating whether the thread is stopped.
3147@end defun
3148
3149@defun InferiorThread.is_running ()
3150Return a Boolean indicating whether the thread is running.
3151@end defun
3152
3153@defun InferiorThread.is_exited ()
3154Return a Boolean indicating whether the thread is exited.
3155@end defun
3156
0a0faf9f
TW
3157@node Recordings In Python
3158@subsubsection Recordings In Python
3159@cindex recordings in python
3160
3161The following recordings-related functions
3162(@pxref{Process Record and Replay}) are available in the @code{gdb}
3163module:
3164
3165@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3166Start a recording using the given @var{method} and @var{format}. If
3167no @var{format} is given, the default format for the recording method
3168is used. If no @var{method} is given, the default method will be used.
3169Returns a @code{gdb.Record} object on success. Throw an exception on
3170failure.
3171
3172The following strings can be passed as @var{method}:
3173
3174@itemize @bullet
3175@item
3176@code{"full"}
3177@item
3178@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3179@code{"bts"} or leave out for default format.
3180@end itemize
3181@end defun
3182
3183@defun gdb.current_recording ()
3184Access a currently running recording. Return a @code{gdb.Record}
3185object on success. Return @code{None} if no recording is currently
3186active.
3187@end defun
3188
3189@defun gdb.stop_recording ()
3190Stop the current recording. Throw an exception if no recording is
3191currently active. All record objects become invalid after this call.
3192@end defun
3193
3194A @code{gdb.Record} object has the following attributes:
3195
0a0faf9f
TW
3196@defvar Record.method
3197A string with the current recording method, e.g.@: @code{full} or
3198@code{btrace}.
3199@end defvar
3200
3201@defvar Record.format
3202A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3203@code{None}.
3204@end defvar
3205
3206@defvar Record.begin
3207A method specific instruction object representing the first instruction
3208in this recording.
3209@end defvar
3210
3211@defvar Record.end
3212A method specific instruction object representing the current
3213instruction, that is not actually part of the recording.
3214@end defvar
3215
3216@defvar Record.replay_position
3217The instruction representing the current replay position. If there is
3218no replay active, this will be @code{None}.
3219@end defvar
3220
3221@defvar Record.instruction_history
3222A list with all recorded instructions.
3223@end defvar
3224
3225@defvar Record.function_call_history
3226A list with all recorded function call segments.
3227@end defvar
3228
3229A @code{gdb.Record} object has the following methods:
3230
3231@defun Record.goto (instruction)
3232Move the replay position to the given @var{instruction}.
3233@end defun
3234
d050f7d7
TW
3235The common @code{gdb.Instruction} class that recording method specific
3236instruction objects inherit from, has the following attributes:
0a0faf9f 3237
d050f7d7 3238@defvar Instruction.pc
913aeadd 3239An integer representing this instruction's address.
0a0faf9f
TW
3240@end defvar
3241
d050f7d7 3242@defvar Instruction.data
913aeadd
TW
3243A buffer with the raw instruction data. In Python 3, the return value is a
3244@code{memoryview} object.
0a0faf9f
TW
3245@end defvar
3246
d050f7d7 3247@defvar Instruction.decoded
913aeadd 3248A human readable string with the disassembled instruction.
0a0faf9f
TW
3249@end defvar
3250
d050f7d7 3251@defvar Instruction.size
913aeadd 3252The size of the instruction in bytes.
0a0faf9f
TW
3253@end defvar
3254
d050f7d7
TW
3255Additionally @code{gdb.RecordInstruction} has the following attributes:
3256
3257@defvar RecordInstruction.number
3258An integer identifying this instruction. @code{number} corresponds to
3259the numbers seen in @code{record instruction-history}
3260(@pxref{Process Record and Replay}).
3261@end defvar
3262
3263@defvar RecordInstruction.sal
3264A @code{gdb.Symtab_and_line} object representing the associated symtab
3265and line of this instruction. May be @code{None} if no debug information is
3266available.
3267@end defvar
3268
0ed5da75 3269@defvar RecordInstruction.is_speculative
d050f7d7 3270A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3271@end defvar
3272
3273If an error occured during recording or decoding a recording, this error is
3274represented by a @code{gdb.RecordGap} object in the instruction list. It has
3275the following attributes:
3276
3277@defvar RecordGap.number
3278An integer identifying this gap. @code{number} corresponds to the numbers seen
3279in @code{record instruction-history} (@pxref{Process Record and Replay}).
3280@end defvar
3281
3282@defvar RecordGap.error_code
3283A numerical representation of the reason for the gap. The value is specific to
3284the current recording method.
3285@end defvar
3286
3287@defvar RecordGap.error_string
3288A human readable string with the reason for the gap.
0a0faf9f
TW
3289@end defvar
3290
14f819c8 3291A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3292
14f819c8
TW
3293@defvar RecordFunctionSegment.number
3294An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3295the numbers seen in @code{record function-call-history}
3296(@pxref{Process Record and Replay}).
3297@end defvar
3298
14f819c8 3299@defvar RecordFunctionSegment.symbol
0a0faf9f 3300A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3301@code{None} if no debug information is available.
0a0faf9f
TW
3302@end defvar
3303
14f819c8 3304@defvar RecordFunctionSegment.level
0a0faf9f
TW
3305An integer representing the function call's stack level. May be
3306@code{None} if the function call is a gap.
3307@end defvar
3308
14f819c8 3309@defvar RecordFunctionSegment.instructions
0ed5da75 3310A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3311associated with this function call.
0a0faf9f
TW
3312@end defvar
3313
14f819c8
TW
3314@defvar RecordFunctionSegment.up
3315A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3316function segment. If the call has not been recorded, this will be the
3317function segment to which control returns. If neither the call nor the
3318return have been recorded, this will be @code{None}.
3319@end defvar
3320
14f819c8
TW
3321@defvar RecordFunctionSegment.prev
3322A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3323segment of this function call. May be @code{None}.
3324@end defvar
3325
14f819c8
TW
3326@defvar RecordFunctionSegment.next
3327A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3328this function call. May be @code{None}.
3329@end defvar
3330
3331The following example demonstrates the usage of these objects and
3332functions to create a function that will rewind a record to the last
3333time a function in a different file was executed. This would typically
3334be used to track the execution of user provided callback functions in a
3335library which typically are not visible in a back trace.
3336
3337@smallexample
3338def bringback ():
3339 rec = gdb.current_recording ()
3340 if not rec:
3341 return
3342
3343 insn = rec.instruction_history
3344 if len (insn) == 0:
3345 return
3346
3347 try:
3348 position = insn.index (rec.replay_position)
3349 except:
3350 position = -1
3351 try:
3352 filename = insn[position].sal.symtab.fullname ()
3353 except:
3354 filename = None
3355
3356 for i in reversed (insn[:position]):
3357 try:
3358 current = i.sal.symtab.fullname ()
3359 except:
3360 current = None
3361
3362 if filename == current:
3363 continue
3364
3365 rec.goto (i)
3366 return
3367@end smallexample
3368
3369Another possible application is to write a function that counts the
3370number of code executions in a given line range. This line range can
3371contain parts of functions or span across several functions and is not
3372limited to be contiguous.
3373
3374@smallexample
3375def countrange (filename, linerange):
3376 count = 0
3377
3378 def filter_only (file_name):
3379 for call in gdb.current_recording ().function_call_history:
3380 try:
3381 if file_name in call.symbol.symtab.fullname ():
3382 yield call
3383 except:
3384 pass
3385
3386 for c in filter_only (filename):
3387 for i in c.instructions:
3388 try:
3389 if i.sal.line in linerange:
3390 count += 1
3391 break;
3392 except:
3393 pass
3394
3395 return count
3396@end smallexample
3397
329baa95
DE
3398@node Commands In Python
3399@subsubsection Commands In Python
3400
3401@cindex commands in python
3402@cindex python commands
3403You can implement new @value{GDBN} CLI commands in Python. A CLI
3404command is implemented using an instance of the @code{gdb.Command}
3405class, most commonly using a subclass.
3406
3407@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3408The object initializer for @code{Command} registers the new command
3409with @value{GDBN}. This initializer is normally invoked from the
3410subclass' own @code{__init__} method.
3411
3412@var{name} is the name of the command. If @var{name} consists of
3413multiple words, then the initial words are looked for as prefix
3414commands. In this case, if one of the prefix commands does not exist,
3415an exception is raised.
3416
3417There is no support for multi-line commands.
3418
3419@var{command_class} should be one of the @samp{COMMAND_} constants
3420defined below. This argument tells @value{GDBN} how to categorize the
3421new command in the help system.
3422
3423@var{completer_class} is an optional argument. If given, it should be
3424one of the @samp{COMPLETE_} constants defined below. This argument
3425tells @value{GDBN} how to perform completion for this command. If not
3426given, @value{GDBN} will attempt to complete using the object's
3427@code{complete} method (see below); if no such method is found, an
3428error will occur when completion is attempted.
3429
3430@var{prefix} is an optional argument. If @code{True}, then the new
3431command is a prefix command; sub-commands of this command may be
3432registered.
3433
3434The help text for the new command is taken from the Python
3435documentation string for the command's class, if there is one. If no
3436documentation string is provided, the default value ``This command is
3437not documented.'' is used.
3438@end defun
3439
3440@cindex don't repeat Python command
3441@defun Command.dont_repeat ()
3442By default, a @value{GDBN} command is repeated when the user enters a
3443blank line at the command prompt. A command can suppress this
3444behavior by invoking the @code{dont_repeat} method. This is similar
3445to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3446@end defun
3447
3448@defun Command.invoke (argument, from_tty)
3449This method is called by @value{GDBN} when this command is invoked.
3450
3451@var{argument} is a string. It is the argument to the command, after
3452leading and trailing whitespace has been stripped.
3453
3454@var{from_tty} is a boolean argument. When true, this means that the
3455command was entered by the user at the terminal; when false it means
3456that the command came from elsewhere.
3457
3458If this method throws an exception, it is turned into a @value{GDBN}
3459@code{error} call. Otherwise, the return value is ignored.
3460
3461@findex gdb.string_to_argv
3462To break @var{argument} up into an argv-like string use
3463@code{gdb.string_to_argv}. This function behaves identically to
3464@value{GDBN}'s internal argument lexer @code{buildargv}.
3465It is recommended to use this for consistency.
3466Arguments are separated by spaces and may be quoted.
3467Example:
3468
3469@smallexample
3470print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3471['1', '2 "3', '4 "5', "6 '7"]
3472@end smallexample
3473
3474@end defun
3475
3476@cindex completion of Python commands
3477@defun Command.complete (text, word)
3478This method is called by @value{GDBN} when the user attempts
3479completion on this command. All forms of completion are handled by
3480this method, that is, the @key{TAB} and @key{M-?} key bindings
3481(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3482complete}).
3483
697aa1b7
EZ
3484The arguments @var{text} and @var{word} are both strings; @var{text}
3485holds the complete command line up to the cursor's location, while
329baa95
DE
3486@var{word} holds the last word of the command line; this is computed
3487using a word-breaking heuristic.
3488
3489The @code{complete} method can return several values:
3490@itemize @bullet
3491@item
3492If the return value is a sequence, the contents of the sequence are
3493used as the completions. It is up to @code{complete} to ensure that the
3494contents actually do complete the word. A zero-length sequence is
3495allowed, it means that there were no completions available. Only
3496string elements of the sequence are used; other elements in the
3497sequence are ignored.
3498
3499@item
3500If the return value is one of the @samp{COMPLETE_} constants defined
3501below, then the corresponding @value{GDBN}-internal completion
3502function is invoked, and its result is used.
3503
3504@item
3505All other results are treated as though there were no available
3506completions.
3507@end itemize
3508@end defun
3509
3510When a new command is registered, it must be declared as a member of
3511some general class of commands. This is used to classify top-level
3512commands in the on-line help system; note that prefix commands are not
3513listed under their own category but rather that of their top-level
3514command. The available classifications are represented by constants
3515defined in the @code{gdb} module:
3516
3517@table @code
3518@findex COMMAND_NONE
3519@findex gdb.COMMAND_NONE
3520@item gdb.COMMAND_NONE
3521The command does not belong to any particular class. A command in
3522this category will not be displayed in any of the help categories.
3523
3524@findex COMMAND_RUNNING
3525@findex gdb.COMMAND_RUNNING
3526@item gdb.COMMAND_RUNNING
3527The command is related to running the inferior. For example,
3528@code{start}, @code{step}, and @code{continue} are in this category.
3529Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3530commands in this category.
3531
3532@findex COMMAND_DATA
3533@findex gdb.COMMAND_DATA
3534@item gdb.COMMAND_DATA
3535The command is related to data or variables. For example,
3536@code{call}, @code{find}, and @code{print} are in this category. Type
3537@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3538in this category.
3539
3540@findex COMMAND_STACK
3541@findex gdb.COMMAND_STACK
3542@item gdb.COMMAND_STACK
3543The command has to do with manipulation of the stack. For example,
3544@code{backtrace}, @code{frame}, and @code{return} are in this
3545category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3546list of commands in this category.
3547
3548@findex COMMAND_FILES
3549@findex gdb.COMMAND_FILES
3550@item gdb.COMMAND_FILES
3551This class is used for file-related commands. For example,
3552@code{file}, @code{list} and @code{section} are in this category.
3553Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3554commands in this category.
3555
3556@findex COMMAND_SUPPORT
3557@findex gdb.COMMAND_SUPPORT
3558@item gdb.COMMAND_SUPPORT
3559This should be used for ``support facilities'', generally meaning
3560things that are useful to the user when interacting with @value{GDBN},
3561but not related to the state of the inferior. For example,
3562@code{help}, @code{make}, and @code{shell} are in this category. Type
3563@kbd{help support} at the @value{GDBN} prompt to see a list of
3564commands in this category.
3565
3566@findex COMMAND_STATUS
3567@findex gdb.COMMAND_STATUS
3568@item gdb.COMMAND_STATUS
3569The command is an @samp{info}-related command, that is, related to the
3570state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3571and @code{show} are in this category. Type @kbd{help status} at the
3572@value{GDBN} prompt to see a list of commands in this category.
3573
3574@findex COMMAND_BREAKPOINTS
3575@findex gdb.COMMAND_BREAKPOINTS
3576@item gdb.COMMAND_BREAKPOINTS
3577The command has to do with breakpoints. For example, @code{break},
3578@code{clear}, and @code{delete} are in this category. Type @kbd{help
3579breakpoints} at the @value{GDBN} prompt to see a list of commands in
3580this category.
3581
3582@findex COMMAND_TRACEPOINTS
3583@findex gdb.COMMAND_TRACEPOINTS
3584@item gdb.COMMAND_TRACEPOINTS
3585The command has to do with tracepoints. For example, @code{trace},
3586@code{actions}, and @code{tfind} are in this category. Type
3587@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3588commands in this category.
3589
3590@findex COMMAND_USER
3591@findex gdb.COMMAND_USER
3592@item gdb.COMMAND_USER
3593The command is a general purpose command for the user, and typically
3594does not fit in one of the other categories.
3595Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3596a list of commands in this category, as well as the list of gdb macros
3597(@pxref{Sequences}).
3598
3599@findex COMMAND_OBSCURE
3600@findex gdb.COMMAND_OBSCURE
3601@item gdb.COMMAND_OBSCURE
3602The command is only used in unusual circumstances, or is not of
3603general interest to users. For example, @code{checkpoint},
3604@code{fork}, and @code{stop} are in this category. Type @kbd{help
3605obscure} at the @value{GDBN} prompt to see a list of commands in this
3606category.
3607
3608@findex COMMAND_MAINTENANCE
3609@findex gdb.COMMAND_MAINTENANCE
3610@item gdb.COMMAND_MAINTENANCE
3611The command is only useful to @value{GDBN} maintainers. The
3612@code{maintenance} and @code{flushregs} commands are in this category.
3613Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3614commands in this category.
3615@end table
3616
3617A new command can use a predefined completion function, either by
3618specifying it via an argument at initialization, or by returning it
3619from the @code{complete} method. These predefined completion
3620constants are all defined in the @code{gdb} module:
3621
b3ce5e5f
DE
3622@vtable @code
3623@vindex COMPLETE_NONE
329baa95
DE
3624@item gdb.COMPLETE_NONE
3625This constant means that no completion should be done.
3626
b3ce5e5f 3627@vindex COMPLETE_FILENAME
329baa95
DE
3628@item gdb.COMPLETE_FILENAME
3629This constant means that filename completion should be performed.
3630
b3ce5e5f 3631@vindex COMPLETE_LOCATION
329baa95
DE
3632@item gdb.COMPLETE_LOCATION
3633This constant means that location completion should be done.
3634@xref{Specify Location}.
3635
b3ce5e5f 3636@vindex COMPLETE_COMMAND
329baa95
DE
3637@item gdb.COMPLETE_COMMAND
3638This constant means that completion should examine @value{GDBN}
3639command names.
3640
b3ce5e5f 3641@vindex COMPLETE_SYMBOL
329baa95
DE
3642@item gdb.COMPLETE_SYMBOL
3643This constant means that completion should be done using symbol names
3644as the source.
3645
b3ce5e5f 3646@vindex COMPLETE_EXPRESSION
329baa95
DE
3647@item gdb.COMPLETE_EXPRESSION
3648This constant means that completion should be done on expressions.
3649Often this means completing on symbol names, but some language
3650parsers also have support for completing on field names.
b3ce5e5f 3651@end vtable
329baa95
DE
3652
3653The following code snippet shows how a trivial CLI command can be
3654implemented in Python:
3655
3656@smallexample
3657class HelloWorld (gdb.Command):
3658 """Greet the whole world."""
3659
3660 def __init__ (self):
3661 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3662
3663 def invoke (self, arg, from_tty):
3664 print "Hello, World!"
3665
3666HelloWorld ()
3667@end smallexample
3668
3669The last line instantiates the class, and is necessary to trigger the
3670registration of the command with @value{GDBN}. Depending on how the
3671Python code is read into @value{GDBN}, you may need to import the
3672@code{gdb} module explicitly.
3673
3674@node Parameters In Python
3675@subsubsection Parameters In Python
3676
3677@cindex parameters in python
3678@cindex python parameters
3679@tindex gdb.Parameter
3680@tindex Parameter
3681You can implement new @value{GDBN} parameters using Python. A new
3682parameter is implemented as an instance of the @code{gdb.Parameter}
3683class.
3684
3685Parameters are exposed to the user via the @code{set} and
3686@code{show} commands. @xref{Help}.
3687
3688There are many parameters that already exist and can be set in
3689@value{GDBN}. Two examples are: @code{set follow fork} and
3690@code{set charset}. Setting these parameters influences certain
3691behavior in @value{GDBN}. Similarly, you can define parameters that
3692can be used to influence behavior in custom Python scripts and commands.
3693
3694@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3695The object initializer for @code{Parameter} registers the new
3696parameter with @value{GDBN}. This initializer is normally invoked
3697from the subclass' own @code{__init__} method.
3698
3699@var{name} is the name of the new parameter. If @var{name} consists
3700of multiple words, then the initial words are looked for as prefix
3701parameters. An example of this can be illustrated with the
3702@code{set print} set of parameters. If @var{name} is
3703@code{print foo}, then @code{print} will be searched as the prefix
3704parameter. In this case the parameter can subsequently be accessed in
3705@value{GDBN} as @code{set print foo}.
3706
3707If @var{name} consists of multiple words, and no prefix parameter group
3708can be found, an exception is raised.
3709
3710@var{command-class} should be one of the @samp{COMMAND_} constants
3711(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3712categorize the new parameter in the help system.
3713
3714@var{parameter-class} should be one of the @samp{PARAM_} constants
3715defined below. This argument tells @value{GDBN} the type of the new
3716parameter; this information is used for input validation and
3717completion.
3718
3719If @var{parameter-class} is @code{PARAM_ENUM}, then
3720@var{enum-sequence} must be a sequence of strings. These strings
3721represent the possible values for the parameter.
3722
3723If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3724of a fourth argument will cause an exception to be thrown.
3725
3726The help text for the new parameter is taken from the Python
3727documentation string for the parameter's class, if there is one. If
3728there is no documentation string, a default value is used.
3729@end defun
3730
3731@defvar Parameter.set_doc
3732If this attribute exists, and is a string, then its value is used as
3733the help text for this parameter's @code{set} command. The value is
3734examined when @code{Parameter.__init__} is invoked; subsequent changes
3735have no effect.
3736@end defvar
3737
3738@defvar Parameter.show_doc
3739If this attribute exists, and is a string, then its value is used as
3740the help text for this parameter's @code{show} command. The value is
3741examined when @code{Parameter.__init__} is invoked; subsequent changes
3742have no effect.
3743@end defvar
3744
3745@defvar Parameter.value
3746The @code{value} attribute holds the underlying value of the
3747parameter. It can be read and assigned to just as any other
3748attribute. @value{GDBN} does validation when assignments are made.
3749@end defvar
3750
984ee559
TT
3751There are two methods that may be implemented in any @code{Parameter}
3752class. These are:
329baa95
DE
3753
3754@defun Parameter.get_set_string (self)
984ee559
TT
3755If this method exists, @value{GDBN} will call it when a
3756@var{parameter}'s value has been changed via the @code{set} API (for
3757example, @kbd{set foo off}). The @code{value} attribute has already
3758been populated with the new value and may be used in output. This
3759method must return a string. If the returned string is not empty,
3760@value{GDBN} will present it to the user.
329baa95
DE
3761@end defun
3762
3763@defun Parameter.get_show_string (self, svalue)
3764@value{GDBN} will call this method when a @var{parameter}'s
3765@code{show} API has been invoked (for example, @kbd{show foo}). The
3766argument @code{svalue} receives the string representation of the
3767current value. This method must return a string.
3768@end defun
3769
3770When a new parameter is defined, its type must be specified. The
3771available types are represented by constants defined in the @code{gdb}
3772module:
3773
3774@table @code
3775@findex PARAM_BOOLEAN
3776@findex gdb.PARAM_BOOLEAN
3777@item gdb.PARAM_BOOLEAN
3778The value is a plain boolean. The Python boolean values, @code{True}
3779and @code{False} are the only valid values.
3780
3781@findex PARAM_AUTO_BOOLEAN
3782@findex gdb.PARAM_AUTO_BOOLEAN
3783@item gdb.PARAM_AUTO_BOOLEAN
3784The value has three possible states: true, false, and @samp{auto}. In
3785Python, true and false are represented using boolean constants, and
3786@samp{auto} is represented using @code{None}.
3787
3788@findex PARAM_UINTEGER
3789@findex gdb.PARAM_UINTEGER
3790@item gdb.PARAM_UINTEGER
3791The value is an unsigned integer. The value of 0 should be
3792interpreted to mean ``unlimited''.
3793
3794@findex PARAM_INTEGER
3795@findex gdb.PARAM_INTEGER
3796@item gdb.PARAM_INTEGER
3797The value is a signed integer. The value of 0 should be interpreted
3798to mean ``unlimited''.
3799
3800@findex PARAM_STRING
3801@findex gdb.PARAM_STRING
3802@item gdb.PARAM_STRING
3803The value is a string. When the user modifies the string, any escape
3804sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3805translated into corresponding characters and encoded into the current
3806host charset.
3807
3808@findex PARAM_STRING_NOESCAPE
3809@findex gdb.PARAM_STRING_NOESCAPE
3810@item gdb.PARAM_STRING_NOESCAPE
3811The value is a string. When the user modifies the string, escapes are
3812passed through untranslated.
3813
3814@findex PARAM_OPTIONAL_FILENAME
3815@findex gdb.PARAM_OPTIONAL_FILENAME
3816@item gdb.PARAM_OPTIONAL_FILENAME
3817The value is a either a filename (a string), or @code{None}.
3818
3819@findex PARAM_FILENAME
3820@findex gdb.PARAM_FILENAME
3821@item gdb.PARAM_FILENAME
3822The value is a filename. This is just like
3823@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3824
3825@findex PARAM_ZINTEGER
3826@findex gdb.PARAM_ZINTEGER
3827@item gdb.PARAM_ZINTEGER
3828The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3829is interpreted as itself.
3830
0489430a
TT
3831@findex PARAM_ZUINTEGER
3832@findex gdb.PARAM_ZUINTEGER
3833@item gdb.PARAM_ZUINTEGER
3834The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3835except 0 is interpreted as itself, and the value cannot be negative.
3836
3837@findex PARAM_ZUINTEGER_UNLIMITED
3838@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3839@item gdb.PARAM_ZUINTEGER_UNLIMITED
3840The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3841except the special value -1 should be interpreted to mean
3842``unlimited''. Other negative values are not allowed.
3843
329baa95
DE
3844@findex PARAM_ENUM
3845@findex gdb.PARAM_ENUM
3846@item gdb.PARAM_ENUM
3847The value is a string, which must be one of a collection string
3848constants provided when the parameter is created.
3849@end table
3850
3851@node Functions In Python
3852@subsubsection Writing new convenience functions
3853
3854@cindex writing convenience functions
3855@cindex convenience functions in python
3856@cindex python convenience functions
3857@tindex gdb.Function
3858@tindex Function
3859You can implement new convenience functions (@pxref{Convenience Vars})
3860in Python. A convenience function is an instance of a subclass of the
3861class @code{gdb.Function}.
3862
3863@defun Function.__init__ (name)
3864The initializer for @code{Function} registers the new function with
3865@value{GDBN}. The argument @var{name} is the name of the function,
3866a string. The function will be visible to the user as a convenience
3867variable of type @code{internal function}, whose name is the same as
3868the given @var{name}.
3869
3870The documentation for the new function is taken from the documentation
3871string for the new class.
3872@end defun
3873
3874@defun Function.invoke (@var{*args})
3875When a convenience function is evaluated, its arguments are converted
3876to instances of @code{gdb.Value}, and then the function's
3877@code{invoke} method is called. Note that @value{GDBN} does not
3878predetermine the arity of convenience functions. Instead, all
3879available arguments are passed to @code{invoke}, following the
3880standard Python calling convention. In particular, a convenience
3881function can have default values for parameters without ill effect.
3882
3883The return value of this method is used as its value in the enclosing
3884expression. If an ordinary Python value is returned, it is converted
3885to a @code{gdb.Value} following the usual rules.
3886@end defun
3887
3888The following code snippet shows how a trivial convenience function can
3889be implemented in Python:
3890
3891@smallexample
3892class Greet (gdb.Function):
3893 """Return string to greet someone.
3894Takes a name as argument."""
3895
3896 def __init__ (self):
3897 super (Greet, self).__init__ ("greet")
3898
3899 def invoke (self, name):
3900 return "Hello, %s!" % name.string ()
3901
3902Greet ()
3903@end smallexample
3904
3905The last line instantiates the class, and is necessary to trigger the
3906registration of the function with @value{GDBN}. Depending on how the
3907Python code is read into @value{GDBN}, you may need to import the
3908@code{gdb} module explicitly.
3909
3910Now you can use the function in an expression:
3911
3912@smallexample
3913(gdb) print $greet("Bob")
3914$1 = "Hello, Bob!"
3915@end smallexample
3916
3917@node Progspaces In Python
3918@subsubsection Program Spaces In Python
3919
3920@cindex progspaces in python
3921@tindex gdb.Progspace
3922@tindex Progspace
3923A program space, or @dfn{progspace}, represents a symbolic view
3924of an address space.
3925It consists of all of the objfiles of the program.
3926@xref{Objfiles In Python}.
3927@xref{Inferiors and Programs, program spaces}, for more details
3928about program spaces.
3929
3930The following progspace-related functions are available in the
3931@code{gdb} module:
3932
3933@findex gdb.current_progspace
3934@defun gdb.current_progspace ()
3935This function returns the program space of the currently selected inferior.
3936@xref{Inferiors and Programs}.
3937@end defun
3938
3939@findex gdb.progspaces
3940@defun gdb.progspaces ()
3941Return a sequence of all the progspaces currently known to @value{GDBN}.
3942@end defun
3943
3944Each progspace is represented by an instance of the @code{gdb.Progspace}
3945class.
3946
3947@defvar Progspace.filename
3948The file name of the progspace as a string.
3949@end defvar
3950
3951@defvar Progspace.pretty_printers
3952The @code{pretty_printers} attribute is a list of functions. It is
3953used to look up pretty-printers. A @code{Value} is passed to each
3954function in order; if the function returns @code{None}, then the
3955search continues. Otherwise, the return value should be an object
3956which is used to format the value. @xref{Pretty Printing API}, for more
3957information.
3958@end defvar
3959
3960@defvar Progspace.type_printers
3961The @code{type_printers} attribute is a list of type printer objects.
3962@xref{Type Printing API}, for more information.
3963@end defvar
3964
3965@defvar Progspace.frame_filters
3966The @code{frame_filters} attribute is a dictionary of frame filter
3967objects. @xref{Frame Filter API}, for more information.
3968@end defvar
3969
02be9a71
DE
3970One may add arbitrary attributes to @code{gdb.Progspace} objects
3971in the usual Python way.
3972This is useful if, for example, one needs to do some extra record keeping
3973associated with the program space.
3974
3975In this contrived example, we want to perform some processing when
3976an objfile with a certain symbol is loaded, but we only want to do
3977this once because it is expensive. To achieve this we record the results
3978with the program space because we can't predict when the desired objfile
3979will be loaded.
3980
3981@smallexample
3982(gdb) python
3983def clear_objfiles_handler(event):
3984 event.progspace.expensive_computation = None
3985def expensive(symbol):
3986 """A mock routine to perform an "expensive" computation on symbol."""
3987 print "Computing the answer to the ultimate question ..."
3988 return 42
3989def new_objfile_handler(event):
3990 objfile = event.new_objfile
3991 progspace = objfile.progspace
3992 if not hasattr(progspace, 'expensive_computation') or \
3993 progspace.expensive_computation is None:
3994 # We use 'main' for the symbol to keep the example simple.
3995 # Note: There's no current way to constrain the lookup
3996 # to one objfile.
3997 symbol = gdb.lookup_global_symbol('main')
3998 if symbol is not None:
3999 progspace.expensive_computation = expensive(symbol)
4000gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4001gdb.events.new_objfile.connect(new_objfile_handler)
4002end
4003(gdb) file /tmp/hello
4004Reading symbols from /tmp/hello...done.
4005Computing the answer to the ultimate question ...
4006(gdb) python print gdb.current_progspace().expensive_computation
400742
4008(gdb) run
4009Starting program: /tmp/hello
4010Hello.
4011[Inferior 1 (process 4242) exited normally]
4012@end smallexample
4013
329baa95
DE
4014@node Objfiles In Python
4015@subsubsection Objfiles In Python
4016
4017@cindex objfiles in python
4018@tindex gdb.Objfile
4019@tindex Objfile
4020@value{GDBN} loads symbols for an inferior from various
4021symbol-containing files (@pxref{Files}). These include the primary
4022executable file, any shared libraries used by the inferior, and any
4023separate debug info files (@pxref{Separate Debug Files}).
4024@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4025
4026The following objfile-related functions are available in the
4027@code{gdb} module:
4028
4029@findex gdb.current_objfile
4030@defun gdb.current_objfile ()
4031When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4032sets the ``current objfile'' to the corresponding objfile. This
4033function returns the current objfile. If there is no current objfile,
4034this function returns @code{None}.
4035@end defun
4036
4037@findex gdb.objfiles
4038@defun gdb.objfiles ()
4039Return a sequence of all the objfiles current known to @value{GDBN}.
4040@xref{Objfiles In Python}.
4041@end defun
4042
6dddd6a5
DE
4043@findex gdb.lookup_objfile
4044@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4045Look up @var{name}, a file name or build ID, in the list of objfiles
4046for the current program space (@pxref{Progspaces In Python}).
4047If the objfile is not found throw the Python @code{ValueError} exception.
4048
4049If @var{name} is a relative file name, then it will match any
4050source file name with the same trailing components. For example, if
4051@var{name} is @samp{gcc/expr.c}, then it will match source file
4052name of @file{/build/trunk/gcc/expr.c}, but not
4053@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4054
4055If @var{by_build_id} is provided and is @code{True} then @var{name}
4056is the build ID of the objfile. Otherwise, @var{name} is a file name.
4057This is supported only on some operating systems, notably those which use
4058the ELF format for binary files and the @sc{gnu} Binutils. For more details
4059about this feature, see the description of the @option{--build-id}
4060command-line option in @ref{Options, , Command Line Options, ld.info,
4061The GNU Linker}.
4062@end defun
4063
329baa95
DE
4064Each objfile is represented by an instance of the @code{gdb.Objfile}
4065class.
4066
4067@defvar Objfile.filename
1b549396
DE
4068The file name of the objfile as a string, with symbolic links resolved.
4069
4070The value is @code{None} if the objfile is no longer valid.
4071See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4072@end defvar
4073
3a8b707a
DE
4074@defvar Objfile.username
4075The file name of the objfile as specified by the user as a string.
4076
4077The value is @code{None} if the objfile is no longer valid.
4078See the @code{gdb.Objfile.is_valid} method, described below.
4079@end defvar
4080
a0be3e44
DE
4081@defvar Objfile.owner
4082For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4083object that debug info is being provided for.
4084Otherwise this is @code{None}.
4085Separate debug info objfiles are added with the
4086@code{gdb.Objfile.add_separate_debug_file} method, described below.
4087@end defvar
4088
7c50a931
DE
4089@defvar Objfile.build_id
4090The build ID of the objfile as a string.
4091If the objfile does not have a build ID then the value is @code{None}.
4092
4093This is supported only on some operating systems, notably those which use
4094the ELF format for binary files and the @sc{gnu} Binutils. For more details
4095about this feature, see the description of the @option{--build-id}
4096command-line option in @ref{Options, , Command Line Options, ld.info,
4097The GNU Linker}.
4098@end defvar
4099
d096d8c1
DE
4100@defvar Objfile.progspace
4101The containing program space of the objfile as a @code{gdb.Progspace}
4102object. @xref{Progspaces In Python}.
4103@end defvar
4104
329baa95
DE
4105@defvar Objfile.pretty_printers
4106The @code{pretty_printers} attribute is a list of functions. It is
4107used to look up pretty-printers. A @code{Value} is passed to each
4108function in order; if the function returns @code{None}, then the
4109search continues. Otherwise, the return value should be an object
4110which is used to format the value. @xref{Pretty Printing API}, for more
4111information.
4112@end defvar
4113
4114@defvar Objfile.type_printers
4115The @code{type_printers} attribute is a list of type printer objects.
4116@xref{Type Printing API}, for more information.
4117@end defvar
4118
4119@defvar Objfile.frame_filters
4120The @code{frame_filters} attribute is a dictionary of frame filter
4121objects. @xref{Frame Filter API}, for more information.
4122@end defvar
4123
02be9a71
DE
4124One may add arbitrary attributes to @code{gdb.Objfile} objects
4125in the usual Python way.
4126This is useful if, for example, one needs to do some extra record keeping
4127associated with the objfile.
4128
4129In this contrived example we record the time when @value{GDBN}
4130loaded the objfile.
4131
4132@smallexample
4133(gdb) python
4134import datetime
4135def new_objfile_handler(event):
4136 # Set the time_loaded attribute of the new objfile.
4137 event.new_objfile.time_loaded = datetime.datetime.today()
4138gdb.events.new_objfile.connect(new_objfile_handler)
4139end
4140(gdb) file ./hello
4141Reading symbols from ./hello...done.
4142(gdb) python print gdb.objfiles()[0].time_loaded
41432014-10-09 11:41:36.770345
4144@end smallexample
4145
329baa95
DE
4146A @code{gdb.Objfile} object has the following methods:
4147
4148@defun Objfile.is_valid ()
4149Returns @code{True} if the @code{gdb.Objfile} object is valid,
4150@code{False} if not. A @code{gdb.Objfile} object can become invalid
4151if the object file it refers to is not loaded in @value{GDBN} any
4152longer. All other @code{gdb.Objfile} methods will throw an exception
4153if it is invalid at the time the method is called.
4154@end defun
4155
86e4ed39
DE
4156@defun Objfile.add_separate_debug_file (file)
4157Add @var{file} to the list of files that @value{GDBN} will search for
4158debug information for the objfile.
4159This is useful when the debug info has been removed from the program
4160and stored in a separate file. @value{GDBN} has built-in support for
4161finding separate debug info files (@pxref{Separate Debug Files}), but if
4162the file doesn't live in one of the standard places that @value{GDBN}
4163searches then this function can be used to add a debug info file
4164from a different place.
4165@end defun
4166
329baa95
DE
4167@node Frames In Python
4168@subsubsection Accessing inferior stack frames from Python.
4169
4170@cindex frames in python
4171When the debugged program stops, @value{GDBN} is able to analyze its call
4172stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4173represents a frame in the stack. A @code{gdb.Frame} object is only valid
4174while its corresponding frame exists in the inferior's stack. If you try
4175to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4176exception (@pxref{Exception Handling}).
4177
4178Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4179operator, like:
4180
4181@smallexample
4182(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4183True
4184@end smallexample
4185
4186The following frame-related functions are available in the @code{gdb} module:
4187
4188@findex gdb.selected_frame
4189@defun gdb.selected_frame ()
4190Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4191@end defun
4192
4193@findex gdb.newest_frame
4194@defun gdb.newest_frame ()
4195Return the newest frame object for the selected thread.
4196@end defun
4197
4198@defun gdb.frame_stop_reason_string (reason)
4199Return a string explaining the reason why @value{GDBN} stopped unwinding
4200frames, as expressed by the given @var{reason} code (an integer, see the
4201@code{unwind_stop_reason} method further down in this section).
4202@end defun
4203
e0f3fd7c
TT
4204@findex gdb.invalidate_cached_frames
4205@defun gdb.invalidate_cached_frames
4206@value{GDBN} internally keeps a cache of the frames that have been
4207unwound. This function invalidates this cache.
4208
4209This function should not generally be called by ordinary Python code.
4210It is documented for the sake of completeness.
4211@end defun
4212
329baa95
DE
4213A @code{gdb.Frame} object has the following methods:
4214
4215@defun Frame.is_valid ()
4216Returns true if the @code{gdb.Frame} object is valid, false if not.
4217A frame object can become invalid if the frame it refers to doesn't
4218exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4219an exception if it is invalid at the time the method is called.
4220@end defun
4221
4222@defun Frame.name ()
4223Returns the function name of the frame, or @code{None} if it can't be
4224obtained.
4225@end defun
4226
4227@defun Frame.architecture ()
4228Returns the @code{gdb.Architecture} object corresponding to the frame's
4229architecture. @xref{Architectures In Python}.
4230@end defun
4231
4232@defun Frame.type ()
4233Returns the type of the frame. The value can be one of:
4234@table @code
4235@item gdb.NORMAL_FRAME
4236An ordinary stack frame.
4237
4238@item gdb.DUMMY_FRAME
4239A fake stack frame that was created by @value{GDBN} when performing an
4240inferior function call.
4241
4242@item gdb.INLINE_FRAME
4243A frame representing an inlined function. The function was inlined
4244into a @code{gdb.NORMAL_FRAME} that is older than this one.
4245
4246@item gdb.TAILCALL_FRAME
4247A frame representing a tail call. @xref{Tail Call Frames}.
4248
4249@item gdb.SIGTRAMP_FRAME
4250A signal trampoline frame. This is the frame created by the OS when
4251it calls into a signal handler.
4252
4253@item gdb.ARCH_FRAME
4254A fake stack frame representing a cross-architecture call.
4255
4256@item gdb.SENTINEL_FRAME
4257This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4258newest frame.
4259@end table
4260@end defun
4261
4262@defun Frame.unwind_stop_reason ()
4263Return an integer representing the reason why it's not possible to find
4264more frames toward the outermost frame. Use
4265@code{gdb.frame_stop_reason_string} to convert the value returned by this
4266function to a string. The value can be one of:
4267
4268@table @code
4269@item gdb.FRAME_UNWIND_NO_REASON
4270No particular reason (older frames should be available).
4271
4272@item gdb.FRAME_UNWIND_NULL_ID
4273The previous frame's analyzer returns an invalid result. This is no
4274longer used by @value{GDBN}, and is kept only for backward
4275compatibility.
4276
4277@item gdb.FRAME_UNWIND_OUTERMOST
4278This frame is the outermost.
4279
4280@item gdb.FRAME_UNWIND_UNAVAILABLE
4281Cannot unwind further, because that would require knowing the
4282values of registers or memory that have not been collected.
4283
4284@item gdb.FRAME_UNWIND_INNER_ID
4285This frame ID looks like it ought to belong to a NEXT frame,
4286but we got it for a PREV frame. Normally, this is a sign of
4287unwinder failure. It could also indicate stack corruption.
4288
4289@item gdb.FRAME_UNWIND_SAME_ID
4290This frame has the same ID as the previous one. That means
4291that unwinding further would almost certainly give us another
4292frame with exactly the same ID, so break the chain. Normally,
4293this is a sign of unwinder failure. It could also indicate
4294stack corruption.
4295
4296@item gdb.FRAME_UNWIND_NO_SAVED_PC
4297The frame unwinder did not find any saved PC, but we needed
4298one to unwind further.
4299
53e8a631
AB
4300@item gdb.FRAME_UNWIND_MEMORY_ERROR
4301The frame unwinder caused an error while trying to access memory.
4302
329baa95
DE
4303@item gdb.FRAME_UNWIND_FIRST_ERROR
4304Any stop reason greater or equal to this value indicates some kind
4305of error. This special value facilitates writing code that tests
4306for errors in unwinding in a way that will work correctly even if
4307the list of the other values is modified in future @value{GDBN}
4308versions. Using it, you could write:
4309@smallexample
4310reason = gdb.selected_frame().unwind_stop_reason ()
4311reason_str = gdb.frame_stop_reason_string (reason)
4312if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4313 print "An error occured: %s" % reason_str
4314@end smallexample
4315@end table
4316
4317@end defun
4318
4319@defun Frame.pc ()
4320Returns the frame's resume address.
4321@end defun
4322
4323@defun Frame.block ()
4324Return the frame's code block. @xref{Blocks In Python}.
4325@end defun
4326
4327@defun Frame.function ()
4328Return the symbol for the function corresponding to this frame.
4329@xref{Symbols In Python}.
4330@end defun
4331
4332@defun Frame.older ()
4333Return the frame that called this frame.
4334@end defun
4335
4336@defun Frame.newer ()
4337Return the frame called by this frame.
4338@end defun
4339
4340@defun Frame.find_sal ()
4341Return the frame's symtab and line object.
4342@xref{Symbol Tables In Python}.
4343@end defun
4344
5f3b99cf
SS
4345@defun Frame.read_register (register)
4346Return the value of @var{register} in this frame. The @var{register}
4347argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4348Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4349does not exist.
4350@end defun
4351
329baa95
DE
4352@defun Frame.read_var (variable @r{[}, block@r{]})
4353Return the value of @var{variable} in this frame. If the optional
4354argument @var{block} is provided, search for the variable from that
4355block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4356determined by the frame's current program counter). The @var{variable}
4357argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4358@code{gdb.Block} object.
4359@end defun
4360
4361@defun Frame.select ()
4362Set this frame to be the selected frame. @xref{Stack, ,Examining the
4363Stack}.
4364@end defun
4365
4366@node Blocks In Python
4367@subsubsection Accessing blocks from Python.
4368
4369@cindex blocks in python
4370@tindex gdb.Block
4371
4372In @value{GDBN}, symbols are stored in blocks. A block corresponds
4373roughly to a scope in the source code. Blocks are organized
4374hierarchically, and are represented individually in Python as a
4375@code{gdb.Block}. Blocks rely on debugging information being
4376available.
4377
4378A frame has a block. Please see @ref{Frames In Python}, for a more
4379in-depth discussion of frames.
4380
4381The outermost block is known as the @dfn{global block}. The global
4382block typically holds public global variables and functions.
4383
4384The block nested just inside the global block is the @dfn{static
4385block}. The static block typically holds file-scoped variables and
4386functions.
4387
4388@value{GDBN} provides a method to get a block's superblock, but there
4389is currently no way to examine the sub-blocks of a block, or to
4390iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4391Python}).
4392
4393Here is a short example that should help explain blocks:
4394
4395@smallexample
4396/* This is in the global block. */
4397int global;
4398
4399/* This is in the static block. */
4400static int file_scope;
4401
4402/* 'function' is in the global block, and 'argument' is
4403 in a block nested inside of 'function'. */
4404int function (int argument)
4405@{
4406 /* 'local' is in a block inside 'function'. It may or may
4407 not be in the same block as 'argument'. */
4408 int local;
4409
4410 @{
4411 /* 'inner' is in a block whose superblock is the one holding
4412 'local'. */
4413 int inner;
4414
4415 /* If this call is expanded by the compiler, you may see
4416 a nested block here whose function is 'inline_function'
4417 and whose superblock is the one holding 'inner'. */
4418 inline_function ();
4419 @}
4420@}
4421@end smallexample
4422
4423A @code{gdb.Block} is iterable. The iterator returns the symbols
4424(@pxref{Symbols In Python}) local to the block. Python programs
4425should not assume that a specific block object will always contain a
4426given symbol, since changes in @value{GDBN} features and
4427infrastructure may cause symbols move across blocks in a symbol
4428table.
4429
4430The following block-related functions are available in the @code{gdb}
4431module:
4432
4433@findex gdb.block_for_pc
4434@defun gdb.block_for_pc (pc)
4435Return the innermost @code{gdb.Block} containing the given @var{pc}
4436value. If the block cannot be found for the @var{pc} value specified,
4437the function will return @code{None}.
4438@end defun
4439
4440A @code{gdb.Block} object has the following methods:
4441
4442@defun Block.is_valid ()
4443Returns @code{True} if the @code{gdb.Block} object is valid,
4444@code{False} if not. A block object can become invalid if the block it
4445refers to doesn't exist anymore in the inferior. All other
4446@code{gdb.Block} methods will throw an exception if it is invalid at
4447the time the method is called. The block's validity is also checked
4448during iteration over symbols of the block.
4449@end defun
4450
4451A @code{gdb.Block} object has the following attributes:
4452
4453@defvar Block.start
4454The start address of the block. This attribute is not writable.
4455@end defvar
4456
4457@defvar Block.end
4458The end address of the block. This attribute is not writable.
4459@end defvar
4460
4461@defvar Block.function
4462The name of the block represented as a @code{gdb.Symbol}. If the
4463block is not named, then this attribute holds @code{None}. This
4464attribute is not writable.
4465
4466For ordinary function blocks, the superblock is the static block.
4467However, you should note that it is possible for a function block to
4468have a superblock that is not the static block -- for instance this
4469happens for an inlined function.
4470@end defvar
4471
4472@defvar Block.superblock
4473The block containing this block. If this parent block does not exist,
4474this attribute holds @code{None}. This attribute is not writable.
4475@end defvar
4476
4477@defvar Block.global_block
4478The global block associated with this block. This attribute is not
4479writable.
4480@end defvar
4481
4482@defvar Block.static_block
4483The static block associated with this block. This attribute is not
4484writable.
4485@end defvar
4486
4487@defvar Block.is_global
4488@code{True} if the @code{gdb.Block} object is a global block,
4489@code{False} if not. This attribute is not
4490writable.
4491@end defvar
4492
4493@defvar Block.is_static
4494@code{True} if the @code{gdb.Block} object is a static block,
4495@code{False} if not. This attribute is not writable.
4496@end defvar
4497
4498@node Symbols In Python
4499@subsubsection Python representation of Symbols.
4500
4501@cindex symbols in python
4502@tindex gdb.Symbol
4503
4504@value{GDBN} represents every variable, function and type as an
4505entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4506Similarly, Python represents these symbols in @value{GDBN} with the
4507@code{gdb.Symbol} object.
4508
4509The following symbol-related functions are available in the @code{gdb}
4510module:
4511
4512@findex gdb.lookup_symbol
4513@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4514This function searches for a symbol by name. The search scope can be
4515restricted to the parameters defined in the optional domain and block
4516arguments.
4517
4518@var{name} is the name of the symbol. It must be a string. The
4519optional @var{block} argument restricts the search to symbols visible
4520in that @var{block}. The @var{block} argument must be a
4521@code{gdb.Block} object. If omitted, the block for the current frame
4522is used. The optional @var{domain} argument restricts
4523the search to the domain type. The @var{domain} argument must be a
4524domain constant defined in the @code{gdb} module and described later
4525in this chapter.
4526
4527The result is a tuple of two elements.
4528The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4529is not found.
4530If the symbol is found, the second element is @code{True} if the symbol
4531is a field of a method's object (e.g., @code{this} in C@t{++}),
4532otherwise it is @code{False}.
4533If the symbol is not found, the second element is @code{False}.
4534@end defun
4535
4536@findex gdb.lookup_global_symbol
4537@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4538This function searches for a global symbol by name.
4539The search scope can be restricted to by the domain argument.
4540
4541@var{name} is the name of the symbol. It must be a string.
4542The optional @var{domain} argument restricts the search to the domain type.
4543The @var{domain} argument must be a domain constant defined in the @code{gdb}
4544module and described later in this chapter.
4545
4546The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4547is not found.
4548@end defun
4549
4550A @code{gdb.Symbol} object has the following attributes:
4551
4552@defvar Symbol.type
4553The type of the symbol or @code{None} if no type is recorded.
4554This attribute is represented as a @code{gdb.Type} object.
4555@xref{Types In Python}. This attribute is not writable.
4556@end defvar
4557
4558@defvar Symbol.symtab
4559The symbol table in which the symbol appears. This attribute is
4560represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4561Python}. This attribute is not writable.
4562@end defvar
4563
4564@defvar Symbol.line
4565The line number in the source code at which the symbol was defined.
4566This is an integer.
4567@end defvar
4568
4569@defvar Symbol.name
4570The name of the symbol as a string. This attribute is not writable.
4571@end defvar
4572
4573@defvar Symbol.linkage_name
4574The name of the symbol, as used by the linker (i.e., may be mangled).
4575This attribute is not writable.
4576@end defvar
4577
4578@defvar Symbol.print_name
4579The name of the symbol in a form suitable for output. This is either
4580@code{name} or @code{linkage_name}, depending on whether the user
4581asked @value{GDBN} to display demangled or mangled names.
4582@end defvar
4583
4584@defvar Symbol.addr_class
4585The address class of the symbol. This classifies how to find the value
4586of a symbol. Each address class is a constant defined in the
4587@code{gdb} module and described later in this chapter.
4588@end defvar
4589
4590@defvar Symbol.needs_frame
4591This is @code{True} if evaluating this symbol's value requires a frame
4592(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4593local variables will require a frame, but other symbols will not.
4594@end defvar
4595
4596@defvar Symbol.is_argument
4597@code{True} if the symbol is an argument of a function.
4598@end defvar
4599
4600@defvar Symbol.is_constant
4601@code{True} if the symbol is a constant.
4602@end defvar
4603
4604@defvar Symbol.is_function
4605@code{True} if the symbol is a function or a method.
4606@end defvar
4607
4608@defvar Symbol.is_variable
4609@code{True} if the symbol is a variable.
4610@end defvar
4611
4612A @code{gdb.Symbol} object has the following methods:
4613
4614@defun Symbol.is_valid ()
4615Returns @code{True} if the @code{gdb.Symbol} object is valid,
4616@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4617the symbol it refers to does not exist in @value{GDBN} any longer.
4618All other @code{gdb.Symbol} methods will throw an exception if it is
4619invalid at the time the method is called.
4620@end defun
4621
4622@defun Symbol.value (@r{[}frame@r{]})
4623Compute the value of the symbol, as a @code{gdb.Value}. For
4624functions, this computes the address of the function, cast to the
4625appropriate type. If the symbol requires a frame in order to compute
4626its value, then @var{frame} must be given. If @var{frame} is not
4627given, or if @var{frame} is invalid, then this method will throw an
4628exception.
4629@end defun
4630
4631The available domain categories in @code{gdb.Symbol} are represented
4632as constants in the @code{gdb} module:
4633
b3ce5e5f
DE
4634@vtable @code
4635@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4636@item gdb.SYMBOL_UNDEF_DOMAIN
4637This is used when a domain has not been discovered or none of the
4638following domains apply. This usually indicates an error either
4639in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4640
4641@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4642@item gdb.SYMBOL_VAR_DOMAIN
4643This domain contains variables, function names, typedef names and enum
4644type values.
b3ce5e5f
DE
4645
4646@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4647@item gdb.SYMBOL_STRUCT_DOMAIN
4648This domain holds struct, union and enum type names.
b3ce5e5f
DE
4649
4650@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4651@item gdb.SYMBOL_LABEL_DOMAIN
4652This domain contains names of labels (for gotos).
b3ce5e5f
DE
4653
4654@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4655@item gdb.SYMBOL_VARIABLES_DOMAIN
4656This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4657contains everything minus functions and types.
b3ce5e5f
DE
4658
4659@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4660@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4661This domain contains all functions.
b3ce5e5f
DE
4662
4663@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4664@item gdb.SYMBOL_TYPES_DOMAIN
4665This domain contains all types.
b3ce5e5f 4666@end vtable
329baa95
DE
4667
4668The available address class categories in @code{gdb.Symbol} are represented
4669as constants in the @code{gdb} module:
4670
b3ce5e5f
DE
4671@vtable @code
4672@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4673@item gdb.SYMBOL_LOC_UNDEF
4674If this is returned by address class, it indicates an error either in
4675the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4676
4677@vindex SYMBOL_LOC_CONST
329baa95
DE
4678@item gdb.SYMBOL_LOC_CONST
4679Value is constant int.
b3ce5e5f
DE
4680
4681@vindex SYMBOL_LOC_STATIC
329baa95
DE
4682@item gdb.SYMBOL_LOC_STATIC
4683Value is at a fixed address.
b3ce5e5f
DE
4684
4685@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4686@item gdb.SYMBOL_LOC_REGISTER
4687Value is in a register.
b3ce5e5f
DE
4688
4689@vindex SYMBOL_LOC_ARG
329baa95
DE
4690@item gdb.SYMBOL_LOC_ARG
4691Value is an argument. This value is at the offset stored within the
4692symbol inside the frame's argument list.
b3ce5e5f
DE
4693
4694@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4695@item gdb.SYMBOL_LOC_REF_ARG
4696Value address is stored in the frame's argument list. Just like
4697@code{LOC_ARG} except that the value's address is stored at the
4698offset, not the value itself.
b3ce5e5f
DE
4699
4700@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4701@item gdb.SYMBOL_LOC_REGPARM_ADDR
4702Value is a specified register. Just like @code{LOC_REGISTER} except
4703the register holds the address of the argument instead of the argument
4704itself.
b3ce5e5f
DE
4705
4706@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4707@item gdb.SYMBOL_LOC_LOCAL
4708Value is a local variable.
b3ce5e5f
DE
4709
4710@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4711@item gdb.SYMBOL_LOC_TYPEDEF
4712Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4713have this class.
b3ce5e5f
DE
4714
4715@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4716@item gdb.SYMBOL_LOC_BLOCK
4717Value is a block.
b3ce5e5f
DE
4718
4719@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4720@item gdb.SYMBOL_LOC_CONST_BYTES
4721Value is a byte-sequence.
b3ce5e5f
DE
4722
4723@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4724@item gdb.SYMBOL_LOC_UNRESOLVED
4725Value is at a fixed address, but the address of the variable has to be
4726determined from the minimal symbol table whenever the variable is
4727referenced.
b3ce5e5f
DE
4728
4729@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4730@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4731The value does not actually exist in the program.
b3ce5e5f
DE
4732
4733@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4734@item gdb.SYMBOL_LOC_COMPUTED
4735The value's address is a computed location.
b3ce5e5f 4736@end vtable
329baa95
DE
4737
4738@node Symbol Tables In Python
4739@subsubsection Symbol table representation in Python.
4740
4741@cindex symbol tables in python
4742@tindex gdb.Symtab
4743@tindex gdb.Symtab_and_line
4744
4745Access to symbol table data maintained by @value{GDBN} on the inferior
4746is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4747@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4748from the @code{find_sal} method in @code{gdb.Frame} object.
4749@xref{Frames In Python}.
4750
4751For more information on @value{GDBN}'s symbol table management, see
4752@ref{Symbols, ,Examining the Symbol Table}, for more information.
4753
4754A @code{gdb.Symtab_and_line} object has the following attributes:
4755
4756@defvar Symtab_and_line.symtab
4757The symbol table object (@code{gdb.Symtab}) for this frame.
4758This attribute is not writable.
4759@end defvar
4760
4761@defvar Symtab_and_line.pc
4762Indicates the start of the address range occupied by code for the
4763current source line. This attribute is not writable.
4764@end defvar
4765
4766@defvar Symtab_and_line.last
4767Indicates the end of the address range occupied by code for the current
4768source line. This attribute is not writable.
4769@end defvar
4770
4771@defvar Symtab_and_line.line
4772Indicates the current line number for this object. This
4773attribute is not writable.
4774@end defvar
4775
4776A @code{gdb.Symtab_and_line} object has the following methods:
4777
4778@defun Symtab_and_line.is_valid ()
4779Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4780@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4781invalid if the Symbol table and line object it refers to does not
4782exist in @value{GDBN} any longer. All other
4783@code{gdb.Symtab_and_line} methods will throw an exception if it is
4784invalid at the time the method is called.
4785@end defun
4786
4787A @code{gdb.Symtab} object has the following attributes:
4788
4789@defvar Symtab.filename
4790The symbol table's source filename. This attribute is not writable.
4791@end defvar
4792
4793@defvar Symtab.objfile
4794The symbol table's backing object file. @xref{Objfiles In Python}.
4795This attribute is not writable.
4796@end defvar
4797
2b4fd423
DE
4798@defvar Symtab.producer
4799The name and possibly version number of the program that
4800compiled the code in the symbol table.
4801The contents of this string is up to the compiler.
4802If no producer information is available then @code{None} is returned.
4803This attribute is not writable.
4804@end defvar
4805
329baa95
DE
4806A @code{gdb.Symtab} object has the following methods:
4807
4808@defun Symtab.is_valid ()
4809Returns @code{True} if the @code{gdb.Symtab} object is valid,
4810@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4811the symbol table it refers to does not exist in @value{GDBN} any
4812longer. All other @code{gdb.Symtab} methods will throw an exception
4813if it is invalid at the time the method is called.
4814@end defun
4815
4816@defun Symtab.fullname ()
4817Return the symbol table's source absolute file name.
4818@end defun
4819
4820@defun Symtab.global_block ()
4821Return the global block of the underlying symbol table.
4822@xref{Blocks In Python}.
4823@end defun
4824
4825@defun Symtab.static_block ()
4826Return the static block of the underlying symbol table.
4827@xref{Blocks In Python}.
4828@end defun
4829
4830@defun Symtab.linetable ()
4831Return the line table associated with the symbol table.
4832@xref{Line Tables In Python}.
4833@end defun
4834
4835@node Line Tables In Python
4836@subsubsection Manipulating line tables using Python
4837
4838@cindex line tables in python
4839@tindex gdb.LineTable
4840
4841Python code can request and inspect line table information from a
4842symbol table that is loaded in @value{GDBN}. A line table is a
4843mapping of source lines to their executable locations in memory. To
4844acquire the line table information for a particular symbol table, use
4845the @code{linetable} function (@pxref{Symbol Tables In Python}).
4846
4847A @code{gdb.LineTable} is iterable. The iterator returns
4848@code{LineTableEntry} objects that correspond to the source line and
4849address for each line table entry. @code{LineTableEntry} objects have
4850the following attributes:
4851
4852@defvar LineTableEntry.line
4853The source line number for this line table entry. This number
4854corresponds to the actual line of source. This attribute is not
4855writable.
4856@end defvar
4857
4858@defvar LineTableEntry.pc
4859The address that is associated with the line table entry where the
4860executable code for that source line resides in memory. This
4861attribute is not writable.
4862@end defvar
4863
4864As there can be multiple addresses for a single source line, you may
4865receive multiple @code{LineTableEntry} objects with matching
4866@code{line} attributes, but with different @code{pc} attributes. The
4867iterator is sorted in ascending @code{pc} order. Here is a small
4868example illustrating iterating over a line table.
4869
4870@smallexample
4871symtab = gdb.selected_frame().find_sal().symtab
4872linetable = symtab.linetable()
4873for line in linetable:
4874 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4875@end smallexample
4876
4877This will have the following output:
4878
4879@smallexample
4880Line: 33 Address: 0x4005c8L
4881Line: 37 Address: 0x4005caL
4882Line: 39 Address: 0x4005d2L
4883Line: 40 Address: 0x4005f8L
4884Line: 42 Address: 0x4005ffL
4885Line: 44 Address: 0x400608L
4886Line: 42 Address: 0x40060cL
4887Line: 45 Address: 0x400615L
4888@end smallexample
4889
4890In addition to being able to iterate over a @code{LineTable}, it also
4891has the following direct access methods:
4892
4893@defun LineTable.line (line)
4894Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4895entries in the line table for the given @var{line}, which specifies
4896the source code line. If there are no entries for that source code
329baa95
DE
4897@var{line}, the Python @code{None} is returned.
4898@end defun
4899
4900@defun LineTable.has_line (line)
4901Return a Python @code{Boolean} indicating whether there is an entry in
4902the line table for this source line. Return @code{True} if an entry
4903is found, or @code{False} if not.
4904@end defun
4905
4906@defun LineTable.source_lines ()
4907Return a Python @code{List} of the source line numbers in the symbol
4908table. Only lines with executable code locations are returned. The
4909contents of the @code{List} will just be the source line entries
4910represented as Python @code{Long} values.
4911@end defun
4912
4913@node Breakpoints In Python
4914@subsubsection Manipulating breakpoints using Python
4915
4916@cindex breakpoints in python
4917@tindex gdb.Breakpoint
4918
4919Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4920class.
4921
0b982d68
SM
4922A breakpoint can be created using one of the two forms of the
4923@code{gdb.Breakpoint} constructor. The first one accepts a string
4924like one would pass to the @code{break}
4925(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
4926(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
4927create both breakpoints and watchpoints. The second accepts separate Python
4928arguments similar to @ref{Explicit Locations}, and can only be used to create
4929breakpoints.
4930
b89641ba 4931@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4932Create a new breakpoint according to @var{spec}, which is a string naming the
4933location of a breakpoint, or an expression that defines a watchpoint. The
4934string should describe a location in a format recognized by the @code{break}
4935command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
4936watchpoint, by the @code{watch} command
4937(@pxref{Set Watchpoints, , Setting Watchpoints}).
4938
4939The optional @var{type} argument specifies the type of the breakpoint to create,
4940as defined below.
4941
4942The optional @var{wp_class} argument defines the class of watchpoint to create,
4943if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
4944defaults to @code{gdb.WP_WRITE}.
4945
4946The optional @var{internal} argument allows the breakpoint to become invisible
4947to the user. The breakpoint will neither be reported when created, nor will it
4948be listed in the output from @code{info breakpoints} (but will be listed with
4949the @code{maint info breakpoints} command).
4950
4951The optional @var{temporary} argument makes the breakpoint a temporary
4952breakpoint. Temporary breakpoints are deleted after they have been hit. Any
4953further access to the Python breakpoint after it has been hit will result in a
4954runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
4955
4956The optional @var{qualified} argument is a boolean that allows interpreting
4957the function passed in @code{spec} as a fully-qualified name. It is equivalent
4958to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
4959@ref{Explicit Locations}).
4960
0b982d68
SM
4961@end defun
4962
b89641ba 4963@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4964This second form of creating a new breakpoint specifies the explicit
4965location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
4966be created in the specified source file @var{source}, at the specified
4967@var{function}, @var{label} and @var{line}.
4968
b89641ba
SM
4969@var{internal}, @var{temporary} and @var{qualified} have the same usage as
4970explained previously.
329baa95
DE
4971@end defun
4972
cda75e70
TT
4973The available types are represented by constants defined in the @code{gdb}
4974module:
4975
4976@vtable @code
4977@vindex BP_BREAKPOINT
4978@item gdb.BP_BREAKPOINT
4979Normal code breakpoint.
4980
4981@vindex BP_WATCHPOINT
4982@item gdb.BP_WATCHPOINT
4983Watchpoint breakpoint.
4984
4985@vindex BP_HARDWARE_WATCHPOINT
4986@item gdb.BP_HARDWARE_WATCHPOINT
4987Hardware assisted watchpoint.
4988
4989@vindex BP_READ_WATCHPOINT
4990@item gdb.BP_READ_WATCHPOINT
4991Hardware assisted read watchpoint.
4992
4993@vindex BP_ACCESS_WATCHPOINT
4994@item gdb.BP_ACCESS_WATCHPOINT
4995Hardware assisted access watchpoint.
4996@end vtable
4997
4998The available watchpoint types represented by constants are defined in the
4999@code{gdb} module:
5000
5001@vtable @code
5002@vindex WP_READ
5003@item gdb.WP_READ
5004Read only watchpoint.
5005
5006@vindex WP_WRITE
5007@item gdb.WP_WRITE
5008Write only watchpoint.
5009
5010@vindex WP_ACCESS
5011@item gdb.WP_ACCESS
5012Read/Write watchpoint.
5013@end vtable
5014
329baa95
DE
5015@defun Breakpoint.stop (self)
5016The @code{gdb.Breakpoint} class can be sub-classed and, in
5017particular, you may choose to implement the @code{stop} method.
5018If this method is defined in a sub-class of @code{gdb.Breakpoint},
5019it will be called when the inferior reaches any location of a
5020breakpoint which instantiates that sub-class. If the method returns
5021@code{True}, the inferior will be stopped at the location of the
5022breakpoint, otherwise the inferior will continue.
5023
5024If there are multiple breakpoints at the same location with a
5025@code{stop} method, each one will be called regardless of the
5026return status of the previous. This ensures that all @code{stop}
5027methods have a chance to execute at that location. In this scenario
5028if one of the methods returns @code{True} but the others return
5029@code{False}, the inferior will still be stopped.
5030
5031You should not alter the execution state of the inferior (i.e.@:, step,
5032next, etc.), alter the current frame context (i.e.@:, change the current
5033active frame), or alter, add or delete any breakpoint. As a general
5034rule, you should not alter any data within @value{GDBN} or the inferior
5035at this time.
5036
5037Example @code{stop} implementation:
5038
5039@smallexample
5040class MyBreakpoint (gdb.Breakpoint):
5041 def stop (self):
5042 inf_val = gdb.parse_and_eval("foo")
5043 if inf_val == 3:
5044 return True
5045 return False
5046@end smallexample
5047@end defun
5048
329baa95
DE
5049@defun Breakpoint.is_valid ()
5050Return @code{True} if this @code{Breakpoint} object is valid,
5051@code{False} otherwise. A @code{Breakpoint} object can become invalid
5052if the user deletes the breakpoint. In this case, the object still
5053exists, but the underlying breakpoint does not. In the cases of
5054watchpoint scope, the watchpoint remains valid even if execution of the
5055inferior leaves the scope of that watchpoint.
5056@end defun
5057
fab3a15d 5058@defun Breakpoint.delete ()
329baa95
DE
5059Permanently deletes the @value{GDBN} breakpoint. This also
5060invalidates the Python @code{Breakpoint} object. Any further access
5061to this object's attributes or methods will raise an error.
5062@end defun
5063
5064@defvar Breakpoint.enabled
5065This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5066@code{False} otherwise. This attribute is writable. You can use it to enable
5067or disable the breakpoint.
329baa95
DE
5068@end defvar
5069
5070@defvar Breakpoint.silent
5071This attribute is @code{True} if the breakpoint is silent, and
5072@code{False} otherwise. This attribute is writable.
5073
5074Note that a breakpoint can also be silent if it has commands and the
5075first command is @code{silent}. This is not reported by the
5076@code{silent} attribute.
5077@end defvar
5078
93daf339
TT
5079@defvar Breakpoint.pending
5080This attribute is @code{True} if the breakpoint is pending, and
5081@code{False} otherwise. @xref{Set Breaks}. This attribute is
5082read-only.
5083@end defvar
5084
22a02324 5085@anchor{python_breakpoint_thread}
329baa95 5086@defvar Breakpoint.thread
5d5658a1
PA
5087If the breakpoint is thread-specific, this attribute holds the
5088thread's global id. If the breakpoint is not thread-specific, this
5089attribute is @code{None}. This attribute is writable.
329baa95
DE
5090@end defvar
5091
5092@defvar Breakpoint.task
5093If the breakpoint is Ada task-specific, this attribute holds the Ada task
5094id. If the breakpoint is not task-specific (or the underlying
5095language is not Ada), this attribute is @code{None}. This attribute
5096is writable.
5097@end defvar
5098
5099@defvar Breakpoint.ignore_count
5100This attribute holds the ignore count for the breakpoint, an integer.
5101This attribute is writable.
5102@end defvar
5103
5104@defvar Breakpoint.number
5105This attribute holds the breakpoint's number --- the identifier used by
5106the user to manipulate the breakpoint. This attribute is not writable.
5107@end defvar
5108
5109@defvar Breakpoint.type
5110This attribute holds the breakpoint's type --- the identifier used to
5111determine the actual breakpoint type or use-case. This attribute is not
5112writable.
5113@end defvar
5114
5115@defvar Breakpoint.visible
5116This attribute tells whether the breakpoint is visible to the user
5117when set, or when the @samp{info breakpoints} command is run. This
5118attribute is not writable.
5119@end defvar
5120
5121@defvar Breakpoint.temporary
5122This attribute indicates whether the breakpoint was created as a
5123temporary breakpoint. Temporary breakpoints are automatically deleted
5124after that breakpoint has been hit. Access to this attribute, and all
5125other attributes and functions other than the @code{is_valid}
5126function, will result in an error after the breakpoint has been hit
5127(as it has been automatically deleted). This attribute is not
5128writable.
5129@end defvar
5130
329baa95
DE
5131@defvar Breakpoint.hit_count
5132This attribute holds the hit count for the breakpoint, an integer.
5133This attribute is writable, but currently it can only be set to zero.
5134@end defvar
5135
5136@defvar Breakpoint.location
5137This attribute holds the location of the breakpoint, as specified by
5138the user. It is a string. If the breakpoint does not have a location
5139(that is, it is a watchpoint) the attribute's value is @code{None}. This
5140attribute is not writable.
5141@end defvar
5142
5143@defvar Breakpoint.expression
5144This attribute holds a breakpoint expression, as specified by
5145the user. It is a string. If the breakpoint does not have an
5146expression (the breakpoint is not a watchpoint) the attribute's value
5147is @code{None}. This attribute is not writable.
5148@end defvar
5149
5150@defvar Breakpoint.condition
5151This attribute holds the condition of the breakpoint, as specified by
5152the user. It is a string. If there is no condition, this attribute's
5153value is @code{None}. This attribute is writable.
5154@end defvar
5155
5156@defvar Breakpoint.commands
5157This attribute holds the commands attached to the breakpoint. If
5158there are commands, this attribute's value is a string holding all the
5159commands, separated by newlines. If there are no commands, this
a913fffb 5160attribute is @code{None}. This attribute is writable.
329baa95
DE
5161@end defvar
5162
5163@node Finish Breakpoints in Python
5164@subsubsection Finish Breakpoints
5165
5166@cindex python finish breakpoints
5167@tindex gdb.FinishBreakpoint
5168
5169A finish breakpoint is a temporary breakpoint set at the return address of
5170a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5171extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5172and deleted when the execution will run out of the breakpoint scope (i.e.@:
5173@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5174Finish breakpoints are thread specific and must be create with the right
5175thread selected.
5176
5177@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5178Create a finish breakpoint at the return address of the @code{gdb.Frame}
5179object @var{frame}. If @var{frame} is not provided, this defaults to the
5180newest frame. The optional @var{internal} argument allows the breakpoint to
5181become invisible to the user. @xref{Breakpoints In Python}, for further
5182details about this argument.
5183@end defun
5184
5185@defun FinishBreakpoint.out_of_scope (self)
5186In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5187@code{return} command, @dots{}), a function may not properly terminate, and
5188thus never hit the finish breakpoint. When @value{GDBN} notices such a
5189situation, the @code{out_of_scope} callback will be triggered.
5190
5191You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5192method:
5193
5194@smallexample
5195class MyFinishBreakpoint (gdb.FinishBreakpoint)
5196 def stop (self):
5197 print "normal finish"
5198 return True
5199
5200 def out_of_scope ():
5201 print "abnormal finish"
5202@end smallexample
5203@end defun
5204
5205@defvar FinishBreakpoint.return_value
5206When @value{GDBN} is stopped at a finish breakpoint and the frame
5207used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5208attribute will contain a @code{gdb.Value} object corresponding to the return
5209value of the function. The value will be @code{None} if the function return
5210type is @code{void} or if the return value was not computable. This attribute
5211is not writable.
5212@end defvar
5213
5214@node Lazy Strings In Python
5215@subsubsection Python representation of lazy strings.
5216
5217@cindex lazy strings in python
5218@tindex gdb.LazyString
5219
5220A @dfn{lazy string} is a string whose contents is not retrieved or
5221encoded until it is needed.
5222
5223A @code{gdb.LazyString} is represented in @value{GDBN} as an
5224@code{address} that points to a region of memory, an @code{encoding}
5225that will be used to encode that region of memory, and a @code{length}
5226to delimit the region of memory that represents the string. The
5227difference between a @code{gdb.LazyString} and a string wrapped within
5228a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5229differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5230retrieved and encoded during printing, while a @code{gdb.Value}
5231wrapping a string is immediately retrieved and encoded on creation.
5232
5233A @code{gdb.LazyString} object has the following functions:
5234
5235@defun LazyString.value ()
5236Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5237will point to the string in memory, but will lose all the delayed
5238retrieval, encoding and handling that @value{GDBN} applies to a
5239@code{gdb.LazyString}.
5240@end defun
5241
5242@defvar LazyString.address
5243This attribute holds the address of the string. This attribute is not
5244writable.
5245@end defvar
5246
5247@defvar LazyString.length
5248This attribute holds the length of the string in characters. If the
5249length is -1, then the string will be fetched and encoded up to the
5250first null of appropriate width. This attribute is not writable.
5251@end defvar
5252
5253@defvar LazyString.encoding
5254This attribute holds the encoding that will be applied to the string
5255when the string is printed by @value{GDBN}. If the encoding is not
5256set, or contains an empty string, then @value{GDBN} will select the
5257most appropriate encoding when the string is printed. This attribute
5258is not writable.
5259@end defvar
5260
5261@defvar LazyString.type
5262This attribute holds the type that is represented by the lazy string's
f8d99587 5263type. For a lazy string this is a pointer or array type. To
329baa95
DE
5264resolve this to the lazy string's character type, use the type's
5265@code{target} method. @xref{Types In Python}. This attribute is not
5266writable.
5267@end defvar
5268
5269@node Architectures In Python
5270@subsubsection Python representation of architectures
5271@cindex Python architectures
5272
5273@value{GDBN} uses architecture specific parameters and artifacts in a
5274number of its various computations. An architecture is represented
5275by an instance of the @code{gdb.Architecture} class.
5276
5277A @code{gdb.Architecture} class has the following methods:
5278
5279@defun Architecture.name ()
5280Return the name (string value) of the architecture.
5281@end defun
5282
5283@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5284Return a list of disassembled instructions starting from the memory
5285address @var{start_pc}. The optional arguments @var{end_pc} and
5286@var{count} determine the number of instructions in the returned list.
5287If both the optional arguments @var{end_pc} and @var{count} are
5288specified, then a list of at most @var{count} disassembled instructions
5289whose start address falls in the closed memory address interval from
5290@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5291specified, but @var{count} is specified, then @var{count} number of
5292instructions starting from the address @var{start_pc} are returned. If
5293@var{count} is not specified but @var{end_pc} is specified, then all
5294instructions whose start address falls in the closed memory address
5295interval from @var{start_pc} to @var{end_pc} are returned. If neither
5296@var{end_pc} nor @var{count} are specified, then a single instruction at
5297@var{start_pc} is returned. For all of these cases, each element of the
5298returned list is a Python @code{dict} with the following string keys:
5299
5300@table @code
5301
5302@item addr
5303The value corresponding to this key is a Python long integer capturing
5304the memory address of the instruction.
5305
5306@item asm
5307The value corresponding to this key is a string value which represents
5308the instruction with assembly language mnemonics. The assembly
5309language flavor used is the same as that specified by the current CLI
5310variable @code{disassembly-flavor}. @xref{Machine Code}.
5311
5312@item length
5313The value corresponding to this key is the length (integer value) of the
5314instruction in bytes.
5315
5316@end table
5317@end defun
5318
5319@node Python Auto-loading
5320@subsection Python Auto-loading
5321@cindex Python auto-loading
5322
5323When a new object file is read (for example, due to the @code{file}
5324command, or because the inferior has loaded a shared library),
5325@value{GDBN} will look for Python support scripts in several ways:
5326@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5327@xref{Auto-loading extensions}.
5328
5329The auto-loading feature is useful for supplying application-specific
5330debugging commands and scripts.
5331
5332Auto-loading can be enabled or disabled,
5333and the list of auto-loaded scripts can be printed.
5334
5335@table @code
5336@anchor{set auto-load python-scripts}
5337@kindex set auto-load python-scripts
5338@item set auto-load python-scripts [on|off]
5339Enable or disable the auto-loading of Python scripts.
5340
5341@anchor{show auto-load python-scripts}
5342@kindex show auto-load python-scripts
5343@item show auto-load python-scripts
5344Show whether auto-loading of Python scripts is enabled or disabled.
5345
5346@anchor{info auto-load python-scripts}
5347@kindex info auto-load python-scripts
5348@cindex print list of auto-loaded Python scripts
5349@item info auto-load python-scripts [@var{regexp}]
5350Print the list of all Python scripts that @value{GDBN} auto-loaded.
5351
5352Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5353the @code{.debug_gdb_scripts} section and were either not found
5354(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5355@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5356This is useful because their names are not printed when @value{GDBN}
5357tries to load them and fails. There may be many of them, and printing
5358an error message for each one is problematic.
5359
5360If @var{regexp} is supplied only Python scripts with matching names are printed.
5361
5362Example:
5363
5364@smallexample
5365(gdb) info auto-load python-scripts
5366Loaded Script
5367Yes py-section-script.py
5368 full name: /tmp/py-section-script.py
5369No my-foo-pretty-printers.py
5370@end smallexample
5371@end table
5372
9f050062 5373When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5374@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5375function (@pxref{Objfiles In Python}). This can be useful for
5376registering objfile-specific pretty-printers and frame-filters.
5377
5378@node Python modules
5379@subsection Python modules
5380@cindex python modules
5381
5382@value{GDBN} comes with several modules to assist writing Python code.
5383
5384@menu
5385* gdb.printing:: Building and registering pretty-printers.
5386* gdb.types:: Utilities for working with types.
5387* gdb.prompt:: Utilities for prompt value substitution.
5388@end menu
5389
5390@node gdb.printing
5391@subsubsection gdb.printing
5392@cindex gdb.printing
5393
5394This module provides a collection of utilities for working with
5395pretty-printers.
5396
5397@table @code
5398@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5399This class specifies the API that makes @samp{info pretty-printer},
5400@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5401Pretty-printers should generally inherit from this class.
5402
5403@item SubPrettyPrinter (@var{name})
5404For printers that handle multiple types, this class specifies the
5405corresponding API for the subprinters.
5406
5407@item RegexpCollectionPrettyPrinter (@var{name})
5408Utility class for handling multiple printers, all recognized via
5409regular expressions.
5410@xref{Writing a Pretty-Printer}, for an example.
5411
5412@item FlagEnumerationPrinter (@var{name})
5413A pretty-printer which handles printing of @code{enum} values. Unlike
5414@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5415work properly when there is some overlap between the enumeration
697aa1b7
EZ
5416constants. The argument @var{name} is the name of the printer and
5417also the name of the @code{enum} type to look up.
329baa95
DE
5418
5419@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5420Register @var{printer} with the pretty-printer list of @var{obj}.
5421If @var{replace} is @code{True} then any existing copy of the printer
5422is replaced. Otherwise a @code{RuntimeError} exception is raised
5423if a printer with the same name already exists.
5424@end table
5425
5426@node gdb.types
5427@subsubsection gdb.types
5428@cindex gdb.types
5429
5430This module provides a collection of utilities for working with
5431@code{gdb.Type} objects.
5432
5433@table @code
5434@item get_basic_type (@var{type})
5435Return @var{type} with const and volatile qualifiers stripped,
5436and with typedefs and C@t{++} references converted to the underlying type.
5437
5438C@t{++} example:
5439
5440@smallexample
5441typedef const int const_int;
5442const_int foo (3);
5443const_int& foo_ref (foo);
5444int main () @{ return 0; @}
5445@end smallexample
5446
5447Then in gdb:
5448
5449@smallexample
5450(gdb) start
5451(gdb) python import gdb.types
5452(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5453(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5454int
5455@end smallexample
5456
5457@item has_field (@var{type}, @var{field})
5458Return @code{True} if @var{type}, assumed to be a type with fields
5459(e.g., a structure or union), has field @var{field}.
5460
5461@item make_enum_dict (@var{enum_type})
5462Return a Python @code{dictionary} type produced from @var{enum_type}.
5463
5464@item deep_items (@var{type})
5465Returns a Python iterator similar to the standard
5466@code{gdb.Type.iteritems} method, except that the iterator returned
5467by @code{deep_items} will recursively traverse anonymous struct or
5468union fields. For example:
5469
5470@smallexample
5471struct A
5472@{
5473 int a;
5474 union @{
5475 int b0;
5476 int b1;
5477 @};
5478@};
5479@end smallexample
5480
5481@noindent
5482Then in @value{GDBN}:
5483@smallexample
5484(@value{GDBP}) python import gdb.types
5485(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5486(@value{GDBP}) python print struct_a.keys ()
5487@{['a', '']@}
5488(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5489@{['a', 'b0', 'b1']@}
5490@end smallexample
5491
5492@item get_type_recognizers ()
5493Return a list of the enabled type recognizers for the current context.
5494This is called by @value{GDBN} during the type-printing process
5495(@pxref{Type Printing API}).
5496
5497@item apply_type_recognizers (recognizers, type_obj)
5498Apply the type recognizers, @var{recognizers}, to the type object
5499@var{type_obj}. If any recognizer returns a string, return that
5500string. Otherwise, return @code{None}. This is called by
5501@value{GDBN} during the type-printing process (@pxref{Type Printing
5502API}).
5503
5504@item register_type_printer (locus, printer)
697aa1b7
EZ
5505This is a convenience function to register a type printer
5506@var{printer}. The printer must implement the type printer protocol.
5507The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5508the printer is registered with that objfile; a @code{gdb.Progspace},
5509in which case the printer is registered with that progspace; or
5510@code{None}, in which case the printer is registered globally.
329baa95
DE
5511
5512@item TypePrinter
5513This is a base class that implements the type printer protocol. Type
5514printers are encouraged, but not required, to derive from this class.
5515It defines a constructor:
5516
5517@defmethod TypePrinter __init__ (self, name)
5518Initialize the type printer with the given name. The new printer
5519starts in the enabled state.
5520@end defmethod
5521
5522@end table
5523
5524@node gdb.prompt
5525@subsubsection gdb.prompt
5526@cindex gdb.prompt
5527
5528This module provides a method for prompt value-substitution.
5529
5530@table @code
5531@item substitute_prompt (@var{string})
5532Return @var{string} with escape sequences substituted by values. Some
5533escape sequences take arguments. You can specify arguments inside
5534``@{@}'' immediately following the escape sequence.
5535
5536The escape sequences you can pass to this function are:
5537
5538@table @code
5539@item \\
5540Substitute a backslash.
5541@item \e
5542Substitute an ESC character.
5543@item \f
5544Substitute the selected frame; an argument names a frame parameter.
5545@item \n
5546Substitute a newline.
5547@item \p
5548Substitute a parameter's value; the argument names the parameter.
5549@item \r
5550Substitute a carriage return.
5551@item \t
5552Substitute the selected thread; an argument names a thread parameter.
5553@item \v
5554Substitute the version of GDB.
5555@item \w
5556Substitute the current working directory.
5557@item \[
5558Begin a sequence of non-printing characters. These sequences are
5559typically used with the ESC character, and are not counted in the string
5560length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5561blue-colored ``(gdb)'' prompt where the length is five.
5562@item \]
5563End a sequence of non-printing characters.
5564@end table
5565
5566For example:
5567
5568@smallexample
5569substitute_prompt (``frame: \f,
5570 print arguments: \p@{print frame-arguments@}'')
5571@end smallexample
5572
5573@exdent will return the string:
5574
5575@smallexample
5576"frame: main, print arguments: scalars"
5577@end smallexample
5578@end table
This page took 0.72463 seconds and 4 git commands to generate.