Fix library-list.dtd -> library-list-svr4.dtd
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
329baa95
DE
1@c Copyright (C) 2008-2014 Free Software Foundation, Inc.
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
0c6e92a5
SC
147* Xmethods In Python:: Adding and replacing methods of C++ classes.
148* Xmethod API:: Xmethod types.
149* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
150* Inferiors In Python:: Python representation of inferiors (processes)
151* Events In Python:: Listening for events from @value{GDBN}.
152* Threads In Python:: Accessing inferior threads from Python.
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
210@findex gdb.PYTHONDIR
211@defvar gdb.PYTHONDIR
212A string containing the python directory (@pxref{Python}).
213@end defvar
214
215@findex gdb.execute
216@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
217Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
218If a GDB exception happens while @var{command} runs, it is
219translated as described in @ref{Exception Handling,,Exception Handling}.
220
697aa1b7 221The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
222command as having originated from the user invoking it interactively.
223It must be a boolean value. If omitted, it defaults to @code{False}.
224
225By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
226@value{GDBN}'s standard output (and to the log output if logging is
227turned on). If the @var{to_string} parameter is
329baa95
DE
228@code{True}, then output will be collected by @code{gdb.execute} and
229returned as a string. The default is @code{False}, in which case the
230return value is @code{None}. If @var{to_string} is @code{True}, the
231@value{GDBN} virtual terminal will be temporarily set to unlimited width
232and height, and its pagination will be disabled; @pxref{Screen Size}.
233@end defun
234
235@findex gdb.breakpoints
236@defun gdb.breakpoints ()
237Return a sequence holding all of @value{GDBN}'s breakpoints.
238@xref{Breakpoints In Python}, for more information.
239@end defun
240
241@findex gdb.parameter
242@defun gdb.parameter (parameter)
697aa1b7
EZ
243Return the value of a @value{GDBN} @var{parameter} given by its name,
244a string; the parameter name string may contain spaces if the parameter has a
245multi-part name. For example, @samp{print object} is a valid
246parameter name.
329baa95
DE
247
248If the named parameter does not exist, this function throws a
249@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
250parameter's value is converted to a Python value of the appropriate
251type, and returned.
252@end defun
253
254@findex gdb.history
255@defun gdb.history (number)
256Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 257History}). The @var{number} argument indicates which history element to return.
329baa95
DE
258If @var{number} is negative, then @value{GDBN} will take its absolute value
259and count backward from the last element (i.e., the most recent element) to
260find the value to return. If @var{number} is zero, then @value{GDBN} will
261return the most recent element. If the element specified by @var{number}
262doesn't exist in the value history, a @code{gdb.error} exception will be
263raised.
264
265If no exception is raised, the return value is always an instance of
266@code{gdb.Value} (@pxref{Values From Inferior}).
267@end defun
268
269@findex gdb.parse_and_eval
270@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
271Parse @var{expression}, which must be a string, as an expression in
272the current language, evaluate it, and return the result as a
273@code{gdb.Value}.
329baa95
DE
274
275This function can be useful when implementing a new command
276(@pxref{Commands In Python}), as it provides a way to parse the
277command's argument as an expression. It is also useful simply to
278compute values, for example, it is the only way to get the value of a
279convenience variable (@pxref{Convenience Vars}) as a @code{gdb.Value}.
280@end defun
281
282@findex gdb.find_pc_line
283@defun gdb.find_pc_line (pc)
284Return the @code{gdb.Symtab_and_line} object corresponding to the
285@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
286value of @var{pc} is passed as an argument, then the @code{symtab} and
287@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
288will be @code{None} and 0 respectively.
289@end defun
290
291@findex gdb.post_event
292@defun gdb.post_event (event)
293Put @var{event}, a callable object taking no arguments, into
294@value{GDBN}'s internal event queue. This callable will be invoked at
295some later point, during @value{GDBN}'s event processing. Events
296posted using @code{post_event} will be run in the order in which they
297were posted; however, there is no way to know when they will be
298processed relative to other events inside @value{GDBN}.
299
300@value{GDBN} is not thread-safe. If your Python program uses multiple
301threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 302functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
303this. For example:
304
305@smallexample
306(@value{GDBP}) python
307>import threading
308>
309>class Writer():
310> def __init__(self, message):
311> self.message = message;
312> def __call__(self):
313> gdb.write(self.message)
314>
315>class MyThread1 (threading.Thread):
316> def run (self):
317> gdb.post_event(Writer("Hello "))
318>
319>class MyThread2 (threading.Thread):
320> def run (self):
321> gdb.post_event(Writer("World\n"))
322>
323>MyThread1().start()
324>MyThread2().start()
325>end
326(@value{GDBP}) Hello World
327@end smallexample
328@end defun
329
330@findex gdb.write
331@defun gdb.write (string @r{[}, stream{]})
332Print a string to @value{GDBN}'s paginated output stream. The
333optional @var{stream} determines the stream to print to. The default
334stream is @value{GDBN}'s standard output stream. Possible stream
335values are:
336
337@table @code
338@findex STDOUT
339@findex gdb.STDOUT
340@item gdb.STDOUT
341@value{GDBN}'s standard output stream.
342
343@findex STDERR
344@findex gdb.STDERR
345@item gdb.STDERR
346@value{GDBN}'s standard error stream.
347
348@findex STDLOG
349@findex gdb.STDLOG
350@item gdb.STDLOG
351@value{GDBN}'s log stream (@pxref{Logging Output}).
352@end table
353
354Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
355call this function and will automatically direct the output to the
356relevant stream.
357@end defun
358
359@findex gdb.flush
360@defun gdb.flush ()
361Flush the buffer of a @value{GDBN} paginated stream so that the
362contents are displayed immediately. @value{GDBN} will flush the
363contents of a stream automatically when it encounters a newline in the
364buffer. The optional @var{stream} determines the stream to flush. The
365default stream is @value{GDBN}'s standard output stream. Possible
366stream values are:
367
368@table @code
369@findex STDOUT
370@findex gdb.STDOUT
371@item gdb.STDOUT
372@value{GDBN}'s standard output stream.
373
374@findex STDERR
375@findex gdb.STDERR
376@item gdb.STDERR
377@value{GDBN}'s standard error stream.
378
379@findex STDLOG
380@findex gdb.STDLOG
381@item gdb.STDLOG
382@value{GDBN}'s log stream (@pxref{Logging Output}).
383
384@end table
385
386Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
387call this function for the relevant stream.
388@end defun
389
390@findex gdb.target_charset
391@defun gdb.target_charset ()
392Return the name of the current target character set (@pxref{Character
393Sets}). This differs from @code{gdb.parameter('target-charset')} in
394that @samp{auto} is never returned.
395@end defun
396
397@findex gdb.target_wide_charset
398@defun gdb.target_wide_charset ()
399Return the name of the current target wide character set
400(@pxref{Character Sets}). This differs from
401@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
402never returned.
403@end defun
404
405@findex gdb.solib_name
406@defun gdb.solib_name (address)
407Return the name of the shared library holding the given @var{address}
408as a string, or @code{None}.
409@end defun
410
411@findex gdb.decode_line
412@defun gdb.decode_line @r{[}expression@r{]}
413Return locations of the line specified by @var{expression}, or of the
414current line if no argument was given. This function returns a Python
415tuple containing two elements. The first element contains a string
416holding any unparsed section of @var{expression} (or @code{None} if
417the expression has been fully parsed). The second element contains
418either @code{None} or another tuple that contains all the locations
419that match the expression represented as @code{gdb.Symtab_and_line}
420objects (@pxref{Symbol Tables In Python}). If @var{expression} is
421provided, it is decoded the way that @value{GDBN}'s inbuilt
422@code{break} or @code{edit} commands do (@pxref{Specify Location}).
423@end defun
424
425@defun gdb.prompt_hook (current_prompt)
426@anchor{prompt_hook}
427
428If @var{prompt_hook} is callable, @value{GDBN} will call the method
429assigned to this operation before a prompt is displayed by
430@value{GDBN}.
431
432The parameter @code{current_prompt} contains the current @value{GDBN}
433prompt. This method must return a Python string, or @code{None}. If
434a string is returned, the @value{GDBN} prompt will be set to that
435string. If @code{None} is returned, @value{GDBN} will continue to use
436the current prompt.
437
438Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
439such as those used by readline for command input, and annotation
440related prompts are prohibited from being changed.
441@end defun
442
443@node Exception Handling
444@subsubsection Exception Handling
445@cindex python exceptions
446@cindex exceptions, python
447
448When executing the @code{python} command, Python exceptions
449uncaught within the Python code are translated to calls to
450@value{GDBN} error-reporting mechanism. If the command that called
451@code{python} does not handle the error, @value{GDBN} will
452terminate it and print an error message containing the Python
453exception name, the associated value, and the Python call stack
454backtrace at the point where the exception was raised. Example:
455
456@smallexample
457(@value{GDBP}) python print foo
458Traceback (most recent call last):
459 File "<string>", line 1, in <module>
460NameError: name 'foo' is not defined
461@end smallexample
462
463@value{GDBN} errors that happen in @value{GDBN} commands invoked by
464Python code are converted to Python exceptions. The type of the
465Python exception depends on the error.
466
467@ftable @code
468@item gdb.error
469This is the base class for most exceptions generated by @value{GDBN}.
470It is derived from @code{RuntimeError}, for compatibility with earlier
471versions of @value{GDBN}.
472
473If an error occurring in @value{GDBN} does not fit into some more
474specific category, then the generated exception will have this type.
475
476@item gdb.MemoryError
477This is a subclass of @code{gdb.error} which is thrown when an
478operation tried to access invalid memory in the inferior.
479
480@item KeyboardInterrupt
481User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
482prompt) is translated to a Python @code{KeyboardInterrupt} exception.
483@end ftable
484
485In all cases, your exception handler will see the @value{GDBN} error
486message as its value and the Python call stack backtrace at the Python
487statement closest to where the @value{GDBN} error occured as the
488traceback.
489
490@findex gdb.GdbError
491When implementing @value{GDBN} commands in Python via @code{gdb.Command},
492it is useful to be able to throw an exception that doesn't cause a
493traceback to be printed. For example, the user may have invoked the
494command incorrectly. Use the @code{gdb.GdbError} exception
495to handle this case. Example:
496
497@smallexample
498(gdb) python
499>class HelloWorld (gdb.Command):
500> """Greet the whole world."""
501> def __init__ (self):
502> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
503> def invoke (self, args, from_tty):
504> argv = gdb.string_to_argv (args)
505> if len (argv) != 0:
506> raise gdb.GdbError ("hello-world takes no arguments")
507> print "Hello, World!"
508>HelloWorld ()
509>end
510(gdb) hello-world 42
511hello-world takes no arguments
512@end smallexample
513
514@node Values From Inferior
515@subsubsection Values From Inferior
516@cindex values from inferior, with Python
517@cindex python, working with values from inferior
518
519@cindex @code{gdb.Value}
520@value{GDBN} provides values it obtains from the inferior program in
521an object of type @code{gdb.Value}. @value{GDBN} uses this object
522for its internal bookkeeping of the inferior's values, and for
523fetching values when necessary.
524
525Inferior values that are simple scalars can be used directly in
526Python expressions that are valid for the value's data type. Here's
527an example for an integer or floating-point value @code{some_val}:
528
529@smallexample
530bar = some_val + 2
531@end smallexample
532
533@noindent
534As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
535whose values are of the same type as those of @code{some_val}. Valid
536Python operations can also be performed on @code{gdb.Value} objects
537representing a @code{struct} or @code{class} object. For such cases,
538the overloaded operator (if present), is used to perform the operation.
539For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
540representing instances of a @code{class} which overloads the @code{+}
541operator, then one can use the @code{+} operator in their Python script
542as follows:
543
544@smallexample
545val3 = val1 + val2
546@end smallexample
547
548@noindent
549The result of the operation @code{val3} is also a @code{gdb.Value}
550object corresponding to the value returned by the overloaded @code{+}
551operator. In general, overloaded operators are invoked for the
552following operations: @code{+} (binary addition), @code{-} (binary
553subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
554@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
555
556Inferior values that are structures or instances of some class can
557be accessed using the Python @dfn{dictionary syntax}. For example, if
558@code{some_val} is a @code{gdb.Value} instance holding a structure, you
559can access its @code{foo} element with:
560
561@smallexample
562bar = some_val['foo']
563@end smallexample
564
565@cindex getting structure elements using gdb.Field objects as subscripts
566Again, @code{bar} will also be a @code{gdb.Value} object. Structure
567elements can also be accessed by using @code{gdb.Field} objects as
568subscripts (@pxref{Types In Python}, for more information on
569@code{gdb.Field} objects). For example, if @code{foo_field} is a
570@code{gdb.Field} object corresponding to element @code{foo} of the above
571structure, then @code{bar} can also be accessed as follows:
572
573@smallexample
574bar = some_val[foo_field]
575@end smallexample
576
577A @code{gdb.Value} that represents a function can be executed via
578inferior function call. Any arguments provided to the call must match
579the function's prototype, and must be provided in the order specified
580by that prototype.
581
582For example, @code{some_val} is a @code{gdb.Value} instance
583representing a function that takes two integers as arguments. To
584execute this function, call it like so:
585
586@smallexample
587result = some_val (10,20)
588@end smallexample
589
590Any values returned from a function call will be stored as a
591@code{gdb.Value}.
592
593The following attributes are provided:
594
595@defvar Value.address
596If this object is addressable, this read-only attribute holds a
597@code{gdb.Value} object representing the address. Otherwise,
598this attribute holds @code{None}.
599@end defvar
600
601@cindex optimized out value in Python
602@defvar Value.is_optimized_out
603This read-only boolean attribute is true if the compiler optimized out
604this value, thus it is not available for fetching from the inferior.
605@end defvar
606
607@defvar Value.type
608The type of this @code{gdb.Value}. The value of this attribute is a
609@code{gdb.Type} object (@pxref{Types In Python}).
610@end defvar
611
612@defvar Value.dynamic_type
613The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
614type information (@acronym{RTTI}) to determine the dynamic type of the
615value. If this value is of class type, it will return the class in
616which the value is embedded, if any. If this value is of pointer or
617reference to a class type, it will compute the dynamic type of the
618referenced object, and return a pointer or reference to that type,
619respectively. In all other cases, it will return the value's static
620type.
621
622Note that this feature will only work when debugging a C@t{++} program
623that includes @acronym{RTTI} for the object in question. Otherwise,
624it will just return the static type of the value as in @kbd{ptype foo}
625(@pxref{Symbols, ptype}).
626@end defvar
627
628@defvar Value.is_lazy
629The value of this read-only boolean attribute is @code{True} if this
630@code{gdb.Value} has not yet been fetched from the inferior.
631@value{GDBN} does not fetch values until necessary, for efficiency.
632For example:
633
634@smallexample
635myval = gdb.parse_and_eval ('somevar')
636@end smallexample
637
638The value of @code{somevar} is not fetched at this time. It will be
639fetched when the value is needed, or when the @code{fetch_lazy}
640method is invoked.
641@end defvar
642
643The following methods are provided:
644
645@defun Value.__init__ (@var{val})
646Many Python values can be converted directly to a @code{gdb.Value} via
647this object initializer. Specifically:
648
649@table @asis
650@item Python boolean
651A Python boolean is converted to the boolean type from the current
652language.
653
654@item Python integer
655A Python integer is converted to the C @code{long} type for the
656current architecture.
657
658@item Python long
659A Python long is converted to the C @code{long long} type for the
660current architecture.
661
662@item Python float
663A Python float is converted to the C @code{double} type for the
664current architecture.
665
666@item Python string
b3ce5e5f
DE
667A Python string is converted to a target string in the current target
668language using the current target encoding.
669If a character cannot be represented in the current target encoding,
670then an exception is thrown.
329baa95
DE
671
672@item @code{gdb.Value}
673If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
674
675@item @code{gdb.LazyString}
676If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
677Python}), then the lazy string's @code{value} method is called, and
678its result is used.
679@end table
680@end defun
681
682@defun Value.cast (type)
683Return a new instance of @code{gdb.Value} that is the result of
684casting this instance to the type described by @var{type}, which must
685be a @code{gdb.Type} object. If the cast cannot be performed for some
686reason, this method throws an exception.
687@end defun
688
689@defun Value.dereference ()
690For pointer data types, this method returns a new @code{gdb.Value} object
691whose contents is the object pointed to by the pointer. For example, if
692@code{foo} is a C pointer to an @code{int}, declared in your C program as
693
694@smallexample
695int *foo;
696@end smallexample
697
698@noindent
699then you can use the corresponding @code{gdb.Value} to access what
700@code{foo} points to like this:
701
702@smallexample
703bar = foo.dereference ()
704@end smallexample
705
706The result @code{bar} will be a @code{gdb.Value} object holding the
707value pointed to by @code{foo}.
708
709A similar function @code{Value.referenced_value} exists which also
710returns @code{gdb.Value} objects corresonding to the values pointed to
711by pointer values (and additionally, values referenced by reference
712values). However, the behavior of @code{Value.dereference}
713differs from @code{Value.referenced_value} by the fact that the
714behavior of @code{Value.dereference} is identical to applying the C
715unary operator @code{*} on a given value. For example, consider a
716reference to a pointer @code{ptrref}, declared in your C@t{++} program
717as
718
719@smallexample
720typedef int *intptr;
721...
722int val = 10;
723intptr ptr = &val;
724intptr &ptrref = ptr;
725@end smallexample
726
727Though @code{ptrref} is a reference value, one can apply the method
728@code{Value.dereference} to the @code{gdb.Value} object corresponding
729to it and obtain a @code{gdb.Value} which is identical to that
730corresponding to @code{val}. However, if you apply the method
731@code{Value.referenced_value}, the result would be a @code{gdb.Value}
732object identical to that corresponding to @code{ptr}.
733
734@smallexample
735py_ptrref = gdb.parse_and_eval ("ptrref")
736py_val = py_ptrref.dereference ()
737py_ptr = py_ptrref.referenced_value ()
738@end smallexample
739
740The @code{gdb.Value} object @code{py_val} is identical to that
741corresponding to @code{val}, and @code{py_ptr} is identical to that
742corresponding to @code{ptr}. In general, @code{Value.dereference} can
743be applied whenever the C unary operator @code{*} can be applied
744to the corresponding C value. For those cases where applying both
745@code{Value.dereference} and @code{Value.referenced_value} is allowed,
746the results obtained need not be identical (as we have seen in the above
747example). The results are however identical when applied on
748@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
749objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
750@end defun
751
752@defun Value.referenced_value ()
753For pointer or reference data types, this method returns a new
754@code{gdb.Value} object corresponding to the value referenced by the
755pointer/reference value. For pointer data types,
756@code{Value.dereference} and @code{Value.referenced_value} produce
757identical results. The difference between these methods is that
758@code{Value.dereference} cannot get the values referenced by reference
759values. For example, consider a reference to an @code{int}, declared
760in your C@t{++} program as
761
762@smallexample
763int val = 10;
764int &ref = val;
765@end smallexample
766
767@noindent
768then applying @code{Value.dereference} to the @code{gdb.Value} object
769corresponding to @code{ref} will result in an error, while applying
770@code{Value.referenced_value} will result in a @code{gdb.Value} object
771identical to that corresponding to @code{val}.
772
773@smallexample
774py_ref = gdb.parse_and_eval ("ref")
775er_ref = py_ref.dereference () # Results in error
776py_val = py_ref.referenced_value () # Returns the referenced value
777@end smallexample
778
779The @code{gdb.Value} object @code{py_val} is identical to that
780corresponding to @code{val}.
781@end defun
782
783@defun Value.dynamic_cast (type)
784Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
785operator were used. Consult a C@t{++} reference for details.
786@end defun
787
788@defun Value.reinterpret_cast (type)
789Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
790operator were used. Consult a C@t{++} reference for details.
791@end defun
792
793@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
794If this @code{gdb.Value} represents a string, then this method
795converts the contents to a Python string. Otherwise, this method will
796throw an exception.
797
b3ce5e5f
DE
798Values are interpreted as strings according to the rules of the
799current language. If the optional length argument is given, the
800string will be converted to that length, and will include any embedded
801zeroes that the string may contain. Otherwise, for languages
802where the string is zero-terminated, the entire string will be
803converted.
329baa95 804
b3ce5e5f
DE
805For example, in C-like languages, a value is a string if it is a pointer
806to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
807or @code{char32_t}.
329baa95
DE
808
809If the optional @var{encoding} argument is given, it must be a string
810naming the encoding of the string in the @code{gdb.Value}, such as
811@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
812the same encodings as the corresponding argument to Python's
813@code{string.decode} method, and the Python codec machinery will be used
814to convert the string. If @var{encoding} is not given, or if
815@var{encoding} is the empty string, then either the @code{target-charset}
816(@pxref{Character Sets}) will be used, or a language-specific encoding
817will be used, if the current language is able to supply one.
818
819The optional @var{errors} argument is the same as the corresponding
820argument to Python's @code{string.decode} method.
821
822If the optional @var{length} argument is given, the string will be
823fetched and converted to the given length.
824@end defun
825
826@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
827If this @code{gdb.Value} represents a string, then this method
828converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
829In Python}). Otherwise, this method will throw an exception.
830
831If the optional @var{encoding} argument is given, it must be a string
832naming the encoding of the @code{gdb.LazyString}. Some examples are:
833@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
834@var{encoding} argument is an encoding that @value{GDBN} does
835recognize, @value{GDBN} will raise an error.
836
837When a lazy string is printed, the @value{GDBN} encoding machinery is
838used to convert the string during printing. If the optional
839@var{encoding} argument is not provided, or is an empty string,
840@value{GDBN} will automatically select the encoding most suitable for
841the string type. For further information on encoding in @value{GDBN}
842please see @ref{Character Sets}.
843
844If the optional @var{length} argument is given, the string will be
845fetched and encoded to the length of characters specified. If
846the @var{length} argument is not provided, the string will be fetched
847and encoded until a null of appropriate width is found.
848@end defun
849
850@defun Value.fetch_lazy ()
851If the @code{gdb.Value} object is currently a lazy value
852(@code{gdb.Value.is_lazy} is @code{True}), then the value is
853fetched from the inferior. Any errors that occur in the process
854will produce a Python exception.
855
856If the @code{gdb.Value} object is not a lazy value, this method
857has no effect.
858
859This method does not return a value.
860@end defun
861
862
863@node Types In Python
864@subsubsection Types In Python
865@cindex types in Python
866@cindex Python, working with types
867
868@tindex gdb.Type
869@value{GDBN} represents types from the inferior using the class
870@code{gdb.Type}.
871
872The following type-related functions are available in the @code{gdb}
873module:
874
875@findex gdb.lookup_type
876@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 877This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
878
879If @var{block} is given, then @var{name} is looked up in that scope.
880Otherwise, it is searched for globally.
881
882Ordinarily, this function will return an instance of @code{gdb.Type}.
883If the named type cannot be found, it will throw an exception.
884@end defun
885
886If the type is a structure or class type, or an enum type, the fields
887of that type can be accessed using the Python @dfn{dictionary syntax}.
888For example, if @code{some_type} is a @code{gdb.Type} instance holding
889a structure type, you can access its @code{foo} field with:
890
891@smallexample
892bar = some_type['foo']
893@end smallexample
894
895@code{bar} will be a @code{gdb.Field} object; see below under the
896description of the @code{Type.fields} method for a description of the
897@code{gdb.Field} class.
898
899An instance of @code{Type} has the following attributes:
900
901@defvar Type.code
902The type code for this type. The type code will be one of the
903@code{TYPE_CODE_} constants defined below.
904@end defvar
905
906@defvar Type.name
907The name of this type. If this type has no name, then @code{None}
908is returned.
909@end defvar
910
911@defvar Type.sizeof
912The size of this type, in target @code{char} units. Usually, a
913target's @code{char} type will be an 8-bit byte. However, on some
914unusual platforms, this type may have a different size.
915@end defvar
916
917@defvar Type.tag
918The tag name for this type. The tag name is the name after
919@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
920languages have this concept. If this type has no tag name, then
921@code{None} is returned.
922@end defvar
923
924The following methods are provided:
925
926@defun Type.fields ()
927For structure and union types, this method returns the fields. Range
928types have two fields, the minimum and maximum values. Enum types
929have one field per enum constant. Function and method types have one
930field per parameter. The base types of C@t{++} classes are also
931represented as fields. If the type has no fields, or does not fit
932into one of these categories, an empty sequence will be returned.
933
934Each field is a @code{gdb.Field} object, with some pre-defined attributes:
935@table @code
936@item bitpos
937This attribute is not available for @code{enum} or @code{static}
938(as in C@t{++} or Java) fields. The value is the position, counting
939in bits, from the start of the containing type.
940
941@item enumval
942This attribute is only available for @code{enum} fields, and its value
943is the enumeration member's integer representation.
944
945@item name
946The name of the field, or @code{None} for anonymous fields.
947
948@item artificial
949This is @code{True} if the field is artificial, usually meaning that
950it was provided by the compiler and not the user. This attribute is
951always provided, and is @code{False} if the field is not artificial.
952
953@item is_base_class
954This is @code{True} if the field represents a base class of a C@t{++}
955structure. This attribute is always provided, and is @code{False}
956if the field is not a base class of the type that is the argument of
957@code{fields}, or if that type was not a C@t{++} class.
958
959@item bitsize
960If the field is packed, or is a bitfield, then this will have a
961non-zero value, which is the size of the field in bits. Otherwise,
962this will be zero; in this case the field's size is given by its type.
963
964@item type
965The type of the field. This is usually an instance of @code{Type},
966but it can be @code{None} in some situations.
967
968@item parent_type
969The type which contains this field. This is an instance of
970@code{gdb.Type}.
971@end table
972@end defun
973
974@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
975Return a new @code{gdb.Type} object which represents an array of this
976type. If one argument is given, it is the inclusive upper bound of
977the array; in this case the lower bound is zero. If two arguments are
978given, the first argument is the lower bound of the array, and the
979second argument is the upper bound of the array. An array's length
980must not be negative, but the bounds can be.
981@end defun
982
983@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
984Return a new @code{gdb.Type} object which represents a vector of this
985type. If one argument is given, it is the inclusive upper bound of
986the vector; in this case the lower bound is zero. If two arguments are
987given, the first argument is the lower bound of the vector, and the
988second argument is the upper bound of the vector. A vector's length
989must not be negative, but the bounds can be.
990
991The difference between an @code{array} and a @code{vector} is that
992arrays behave like in C: when used in expressions they decay to a pointer
993to the first element whereas vectors are treated as first class values.
994@end defun
995
996@defun Type.const ()
997Return a new @code{gdb.Type} object which represents a
998@code{const}-qualified variant of this type.
999@end defun
1000
1001@defun Type.volatile ()
1002Return a new @code{gdb.Type} object which represents a
1003@code{volatile}-qualified variant of this type.
1004@end defun
1005
1006@defun Type.unqualified ()
1007Return a new @code{gdb.Type} object which represents an unqualified
1008variant of this type. That is, the result is neither @code{const} nor
1009@code{volatile}.
1010@end defun
1011
1012@defun Type.range ()
1013Return a Python @code{Tuple} object that contains two elements: the
1014low bound of the argument type and the high bound of that type. If
1015the type does not have a range, @value{GDBN} will raise a
1016@code{gdb.error} exception (@pxref{Exception Handling}).
1017@end defun
1018
1019@defun Type.reference ()
1020Return a new @code{gdb.Type} object which represents a reference to this
1021type.
1022@end defun
1023
1024@defun Type.pointer ()
1025Return a new @code{gdb.Type} object which represents a pointer to this
1026type.
1027@end defun
1028
1029@defun Type.strip_typedefs ()
1030Return a new @code{gdb.Type} that represents the real type,
1031after removing all layers of typedefs.
1032@end defun
1033
1034@defun Type.target ()
1035Return a new @code{gdb.Type} object which represents the target type
1036of this type.
1037
1038For a pointer type, the target type is the type of the pointed-to
1039object. For an array type (meaning C-like arrays), the target type is
1040the type of the elements of the array. For a function or method type,
1041the target type is the type of the return value. For a complex type,
1042the target type is the type of the elements. For a typedef, the
1043target type is the aliased type.
1044
1045If the type does not have a target, this method will throw an
1046exception.
1047@end defun
1048
1049@defun Type.template_argument (n @r{[}, block@r{]})
1050If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1051return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1052value of the @var{n}th template argument (indexed starting at 0).
329baa95 1053
1a6a384b
JL
1054If this @code{gdb.Type} is not a template type, or if the type has fewer
1055than @var{n} template arguments, this will throw an exception.
1056Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1057
1058If @var{block} is given, then @var{name} is looked up in that scope.
1059Otherwise, it is searched for globally.
1060@end defun
1061
1062
1063Each type has a code, which indicates what category this type falls
1064into. The available type categories are represented by constants
1065defined in the @code{gdb} module:
1066
b3ce5e5f
DE
1067@vtable @code
1068@vindex TYPE_CODE_PTR
329baa95
DE
1069@item gdb.TYPE_CODE_PTR
1070The type is a pointer.
1071
b3ce5e5f 1072@vindex TYPE_CODE_ARRAY
329baa95
DE
1073@item gdb.TYPE_CODE_ARRAY
1074The type is an array.
1075
b3ce5e5f 1076@vindex TYPE_CODE_STRUCT
329baa95
DE
1077@item gdb.TYPE_CODE_STRUCT
1078The type is a structure.
1079
b3ce5e5f 1080@vindex TYPE_CODE_UNION
329baa95
DE
1081@item gdb.TYPE_CODE_UNION
1082The type is a union.
1083
b3ce5e5f 1084@vindex TYPE_CODE_ENUM
329baa95
DE
1085@item gdb.TYPE_CODE_ENUM
1086The type is an enum.
1087
b3ce5e5f 1088@vindex TYPE_CODE_FLAGS
329baa95
DE
1089@item gdb.TYPE_CODE_FLAGS
1090A bit flags type, used for things such as status registers.
1091
b3ce5e5f 1092@vindex TYPE_CODE_FUNC
329baa95
DE
1093@item gdb.TYPE_CODE_FUNC
1094The type is a function.
1095
b3ce5e5f 1096@vindex TYPE_CODE_INT
329baa95
DE
1097@item gdb.TYPE_CODE_INT
1098The type is an integer type.
1099
b3ce5e5f 1100@vindex TYPE_CODE_FLT
329baa95
DE
1101@item gdb.TYPE_CODE_FLT
1102A floating point type.
1103
b3ce5e5f 1104@vindex TYPE_CODE_VOID
329baa95
DE
1105@item gdb.TYPE_CODE_VOID
1106The special type @code{void}.
1107
b3ce5e5f 1108@vindex TYPE_CODE_SET
329baa95
DE
1109@item gdb.TYPE_CODE_SET
1110A Pascal set type.
1111
b3ce5e5f 1112@vindex TYPE_CODE_RANGE
329baa95
DE
1113@item gdb.TYPE_CODE_RANGE
1114A range type, that is, an integer type with bounds.
1115
b3ce5e5f 1116@vindex TYPE_CODE_STRING
329baa95
DE
1117@item gdb.TYPE_CODE_STRING
1118A string type. Note that this is only used for certain languages with
1119language-defined string types; C strings are not represented this way.
1120
b3ce5e5f 1121@vindex TYPE_CODE_BITSTRING
329baa95
DE
1122@item gdb.TYPE_CODE_BITSTRING
1123A string of bits. It is deprecated.
1124
b3ce5e5f 1125@vindex TYPE_CODE_ERROR
329baa95
DE
1126@item gdb.TYPE_CODE_ERROR
1127An unknown or erroneous type.
1128
b3ce5e5f 1129@vindex TYPE_CODE_METHOD
329baa95
DE
1130@item gdb.TYPE_CODE_METHOD
1131A method type, as found in C@t{++} or Java.
1132
b3ce5e5f 1133@vindex TYPE_CODE_METHODPTR
329baa95
DE
1134@item gdb.TYPE_CODE_METHODPTR
1135A pointer-to-member-function.
1136
b3ce5e5f 1137@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1138@item gdb.TYPE_CODE_MEMBERPTR
1139A pointer-to-member.
1140
b3ce5e5f 1141@vindex TYPE_CODE_REF
329baa95
DE
1142@item gdb.TYPE_CODE_REF
1143A reference type.
1144
b3ce5e5f 1145@vindex TYPE_CODE_CHAR
329baa95
DE
1146@item gdb.TYPE_CODE_CHAR
1147A character type.
1148
b3ce5e5f 1149@vindex TYPE_CODE_BOOL
329baa95
DE
1150@item gdb.TYPE_CODE_BOOL
1151A boolean type.
1152
b3ce5e5f 1153@vindex TYPE_CODE_COMPLEX
329baa95
DE
1154@item gdb.TYPE_CODE_COMPLEX
1155A complex float type.
1156
b3ce5e5f 1157@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1158@item gdb.TYPE_CODE_TYPEDEF
1159A typedef to some other type.
1160
b3ce5e5f 1161@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1162@item gdb.TYPE_CODE_NAMESPACE
1163A C@t{++} namespace.
1164
b3ce5e5f 1165@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1166@item gdb.TYPE_CODE_DECFLOAT
1167A decimal floating point type.
1168
b3ce5e5f 1169@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1170@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1171A function internal to @value{GDBN}. This is the type used to represent
1172convenience functions.
b3ce5e5f 1173@end vtable
329baa95
DE
1174
1175Further support for types is provided in the @code{gdb.types}
1176Python module (@pxref{gdb.types}).
1177
1178@node Pretty Printing API
1179@subsubsection Pretty Printing API
b3ce5e5f 1180@cindex python pretty printing api
329baa95
DE
1181
1182An example output is provided (@pxref{Pretty Printing}).
1183
1184A pretty-printer is just an object that holds a value and implements a
1185specific interface, defined here.
1186
1187@defun pretty_printer.children (self)
1188@value{GDBN} will call this method on a pretty-printer to compute the
1189children of the pretty-printer's value.
1190
1191This method must return an object conforming to the Python iterator
1192protocol. Each item returned by the iterator must be a tuple holding
1193two elements. The first element is the ``name'' of the child; the
1194second element is the child's value. The value can be any Python
1195object which is convertible to a @value{GDBN} value.
1196
1197This method is optional. If it does not exist, @value{GDBN} will act
1198as though the value has no children.
1199@end defun
1200
1201@defun pretty_printer.display_hint (self)
1202The CLI may call this method and use its result to change the
1203formatting of a value. The result will also be supplied to an MI
1204consumer as a @samp{displayhint} attribute of the variable being
1205printed.
1206
1207This method is optional. If it does exist, this method must return a
1208string.
1209
1210Some display hints are predefined by @value{GDBN}:
1211
1212@table @samp
1213@item array
1214Indicate that the object being printed is ``array-like''. The CLI
1215uses this to respect parameters such as @code{set print elements} and
1216@code{set print array}.
1217
1218@item map
1219Indicate that the object being printed is ``map-like'', and that the
1220children of this value can be assumed to alternate between keys and
1221values.
1222
1223@item string
1224Indicate that the object being printed is ``string-like''. If the
1225printer's @code{to_string} method returns a Python string of some
1226kind, then @value{GDBN} will call its internal language-specific
1227string-printing function to format the string. For the CLI this means
1228adding quotation marks, possibly escaping some characters, respecting
1229@code{set print elements}, and the like.
1230@end table
1231@end defun
1232
1233@defun pretty_printer.to_string (self)
1234@value{GDBN} will call this method to display the string
1235representation of the value passed to the object's constructor.
1236
1237When printing from the CLI, if the @code{to_string} method exists,
1238then @value{GDBN} will prepend its result to the values returned by
1239@code{children}. Exactly how this formatting is done is dependent on
1240the display hint, and may change as more hints are added. Also,
1241depending on the print settings (@pxref{Print Settings}), the CLI may
1242print just the result of @code{to_string} in a stack trace, omitting
1243the result of @code{children}.
1244
1245If this method returns a string, it is printed verbatim.
1246
1247Otherwise, if this method returns an instance of @code{gdb.Value},
1248then @value{GDBN} prints this value. This may result in a call to
1249another pretty-printer.
1250
1251If instead the method returns a Python value which is convertible to a
1252@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1253the resulting value. Again, this may result in a call to another
1254pretty-printer. Python scalars (integers, floats, and booleans) and
1255strings are convertible to @code{gdb.Value}; other types are not.
1256
1257Finally, if this method returns @code{None} then no further operations
1258are peformed in this method and nothing is printed.
1259
1260If the result is not one of these types, an exception is raised.
1261@end defun
1262
1263@value{GDBN} provides a function which can be used to look up the
1264default pretty-printer for a @code{gdb.Value}:
1265
1266@findex gdb.default_visualizer
1267@defun gdb.default_visualizer (value)
1268This function takes a @code{gdb.Value} object as an argument. If a
1269pretty-printer for this value exists, then it is returned. If no such
1270printer exists, then this returns @code{None}.
1271@end defun
1272
1273@node Selecting Pretty-Printers
1274@subsubsection Selecting Pretty-Printers
b3ce5e5f 1275@cindex selecting python pretty-printers
329baa95
DE
1276
1277The Python list @code{gdb.pretty_printers} contains an array of
1278functions or callable objects that have been registered via addition
1279as a pretty-printer. Printers in this list are called @code{global}
1280printers, they're available when debugging all inferiors.
1281Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1282Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1283attribute.
1284
1285Each function on these lists is passed a single @code{gdb.Value}
1286argument and should return a pretty-printer object conforming to the
1287interface definition above (@pxref{Pretty Printing API}). If a function
1288cannot create a pretty-printer for the value, it should return
1289@code{None}.
1290
1291@value{GDBN} first checks the @code{pretty_printers} attribute of each
1292@code{gdb.Objfile} in the current program space and iteratively calls
1293each enabled lookup routine in the list for that @code{gdb.Objfile}
1294until it receives a pretty-printer object.
1295If no pretty-printer is found in the objfile lists, @value{GDBN} then
1296searches the pretty-printer list of the current program space,
1297calling each enabled function until an object is returned.
1298After these lists have been exhausted, it tries the global
1299@code{gdb.pretty_printers} list, again calling each enabled function until an
1300object is returned.
1301
1302The order in which the objfiles are searched is not specified. For a
1303given list, functions are always invoked from the head of the list,
1304and iterated over sequentially until the end of the list, or a printer
1305object is returned.
1306
1307For various reasons a pretty-printer may not work.
1308For example, the underlying data structure may have changed and
1309the pretty-printer is out of date.
1310
1311The consequences of a broken pretty-printer are severe enough that
1312@value{GDBN} provides support for enabling and disabling individual
1313printers. For example, if @code{print frame-arguments} is on,
1314a backtrace can become highly illegible if any argument is printed
1315with a broken printer.
1316
1317Pretty-printers are enabled and disabled by attaching an @code{enabled}
1318attribute to the registered function or callable object. If this attribute
1319is present and its value is @code{False}, the printer is disabled, otherwise
1320the printer is enabled.
1321
1322@node Writing a Pretty-Printer
1323@subsubsection Writing a Pretty-Printer
1324@cindex writing a pretty-printer
1325
1326A pretty-printer consists of two parts: a lookup function to detect
1327if the type is supported, and the printer itself.
1328
1329Here is an example showing how a @code{std::string} printer might be
1330written. @xref{Pretty Printing API}, for details on the API this class
1331must provide.
1332
1333@smallexample
1334class StdStringPrinter(object):
1335 "Print a std::string"
1336
1337 def __init__(self, val):
1338 self.val = val
1339
1340 def to_string(self):
1341 return self.val['_M_dataplus']['_M_p']
1342
1343 def display_hint(self):
1344 return 'string'
1345@end smallexample
1346
1347And here is an example showing how a lookup function for the printer
1348example above might be written.
1349
1350@smallexample
1351def str_lookup_function(val):
1352 lookup_tag = val.type.tag
1353 if lookup_tag == None:
1354 return None
1355 regex = re.compile("^std::basic_string<char,.*>$")
1356 if regex.match(lookup_tag):
1357 return StdStringPrinter(val)
1358 return None
1359@end smallexample
1360
1361The example lookup function extracts the value's type, and attempts to
1362match it to a type that it can pretty-print. If it is a type the
1363printer can pretty-print, it will return a printer object. If not, it
1364returns @code{None}.
1365
1366We recommend that you put your core pretty-printers into a Python
1367package. If your pretty-printers are for use with a library, we
1368further recommend embedding a version number into the package name.
1369This practice will enable @value{GDBN} to load multiple versions of
1370your pretty-printers at the same time, because they will have
1371different names.
1372
1373You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1374can be evaluated multiple times without changing its meaning. An
1375ideal auto-load file will consist solely of @code{import}s of your
1376printer modules, followed by a call to a register pretty-printers with
1377the current objfile.
1378
1379Taken as a whole, this approach will scale nicely to multiple
1380inferiors, each potentially using a different library version.
1381Embedding a version number in the Python package name will ensure that
1382@value{GDBN} is able to load both sets of printers simultaneously.
1383Then, because the search for pretty-printers is done by objfile, and
1384because your auto-loaded code took care to register your library's
1385printers with a specific objfile, @value{GDBN} will find the correct
1386printers for the specific version of the library used by each
1387inferior.
1388
1389To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1390this code might appear in @code{gdb.libstdcxx.v6}:
1391
1392@smallexample
1393def register_printers(objfile):
1394 objfile.pretty_printers.append(str_lookup_function)
1395@end smallexample
1396
1397@noindent
1398And then the corresponding contents of the auto-load file would be:
1399
1400@smallexample
1401import gdb.libstdcxx.v6
1402gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1403@end smallexample
1404
1405The previous example illustrates a basic pretty-printer.
1406There are a few things that can be improved on.
1407The printer doesn't have a name, making it hard to identify in a
1408list of installed printers. The lookup function has a name, but
1409lookup functions can have arbitrary, even identical, names.
1410
1411Second, the printer only handles one type, whereas a library typically has
1412several types. One could install a lookup function for each desired type
1413in the library, but one could also have a single lookup function recognize
1414several types. The latter is the conventional way this is handled.
1415If a pretty-printer can handle multiple data types, then its
1416@dfn{subprinters} are the printers for the individual data types.
1417
1418The @code{gdb.printing} module provides a formal way of solving these
1419problems (@pxref{gdb.printing}).
1420Here is another example that handles multiple types.
1421
1422These are the types we are going to pretty-print:
1423
1424@smallexample
1425struct foo @{ int a, b; @};
1426struct bar @{ struct foo x, y; @};
1427@end smallexample
1428
1429Here are the printers:
1430
1431@smallexample
1432class fooPrinter:
1433 """Print a foo object."""
1434
1435 def __init__(self, val):
1436 self.val = val
1437
1438 def to_string(self):
1439 return ("a=<" + str(self.val["a"]) +
1440 "> b=<" + str(self.val["b"]) + ">")
1441
1442class barPrinter:
1443 """Print a bar object."""
1444
1445 def __init__(self, val):
1446 self.val = val
1447
1448 def to_string(self):
1449 return ("x=<" + str(self.val["x"]) +
1450 "> y=<" + str(self.val["y"]) + ">")
1451@end smallexample
1452
1453This example doesn't need a lookup function, that is handled by the
1454@code{gdb.printing} module. Instead a function is provided to build up
1455the object that handles the lookup.
1456
1457@smallexample
1458import gdb.printing
1459
1460def build_pretty_printer():
1461 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1462 "my_library")
1463 pp.add_printer('foo', '^foo$', fooPrinter)
1464 pp.add_printer('bar', '^bar$', barPrinter)
1465 return pp
1466@end smallexample
1467
1468And here is the autoload support:
1469
1470@smallexample
1471import gdb.printing
1472import my_library
1473gdb.printing.register_pretty_printer(
1474 gdb.current_objfile(),
1475 my_library.build_pretty_printer())
1476@end smallexample
1477
1478Finally, when this printer is loaded into @value{GDBN}, here is the
1479corresponding output of @samp{info pretty-printer}:
1480
1481@smallexample
1482(gdb) info pretty-printer
1483my_library.so:
1484 my_library
1485 foo
1486 bar
1487@end smallexample
1488
1489@node Type Printing API
1490@subsubsection Type Printing API
1491@cindex type printing API for Python
1492
1493@value{GDBN} provides a way for Python code to customize type display.
1494This is mainly useful for substituting canonical typedef names for
1495types.
1496
1497@cindex type printer
1498A @dfn{type printer} is just a Python object conforming to a certain
1499protocol. A simple base class implementing the protocol is provided;
1500see @ref{gdb.types}. A type printer must supply at least:
1501
1502@defivar type_printer enabled
1503A boolean which is True if the printer is enabled, and False
1504otherwise. This is manipulated by the @code{enable type-printer}
1505and @code{disable type-printer} commands.
1506@end defivar
1507
1508@defivar type_printer name
1509The name of the type printer. This must be a string. This is used by
1510the @code{enable type-printer} and @code{disable type-printer}
1511commands.
1512@end defivar
1513
1514@defmethod type_printer instantiate (self)
1515This is called by @value{GDBN} at the start of type-printing. It is
1516only called if the type printer is enabled. This method must return a
1517new object that supplies a @code{recognize} method, as described below.
1518@end defmethod
1519
1520
1521When displaying a type, say via the @code{ptype} command, @value{GDBN}
1522will compute a list of type recognizers. This is done by iterating
1523first over the per-objfile type printers (@pxref{Objfiles In Python}),
1524followed by the per-progspace type printers (@pxref{Progspaces In
1525Python}), and finally the global type printers.
1526
1527@value{GDBN} will call the @code{instantiate} method of each enabled
1528type printer. If this method returns @code{None}, then the result is
1529ignored; otherwise, it is appended to the list of recognizers.
1530
1531Then, when @value{GDBN} is going to display a type name, it iterates
1532over the list of recognizers. For each one, it calls the recognition
1533function, stopping if the function returns a non-@code{None} value.
1534The recognition function is defined as:
1535
1536@defmethod type_recognizer recognize (self, type)
1537If @var{type} is not recognized, return @code{None}. Otherwise,
1538return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1539The @var{type} argument will be an instance of @code{gdb.Type}
1540(@pxref{Types In Python}).
329baa95
DE
1541@end defmethod
1542
1543@value{GDBN} uses this two-pass approach so that type printers can
1544efficiently cache information without holding on to it too long. For
1545example, it can be convenient to look up type information in a type
1546printer and hold it for a recognizer's lifetime; if a single pass were
1547done then type printers would have to make use of the event system in
1548order to avoid holding information that could become stale as the
1549inferior changed.
1550
1551@node Frame Filter API
1552@subsubsection Filtering Frames.
1553@cindex frame filters api
1554
1555Frame filters are Python objects that manipulate the visibility of a
1556frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1557@value{GDBN}.
1558
1559Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1560commands (@pxref{GDB/MI}), those that return a collection of frames
1561are affected. The commands that work with frame filters are:
1562
1563@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1564@code{-stack-list-frames}
1565(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1566@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1567-stack-list-variables command}), @code{-stack-list-arguments}
1568@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1569@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1570-stack-list-locals command}).
1571
1572A frame filter works by taking an iterator as an argument, applying
1573actions to the contents of that iterator, and returning another
1574iterator (or, possibly, the same iterator it was provided in the case
1575where the filter does not perform any operations). Typically, frame
1576filters utilize tools such as the Python's @code{itertools} module to
1577work with and create new iterators from the source iterator.
1578Regardless of how a filter chooses to apply actions, it must not alter
1579the underlying @value{GDBN} frame or frames, or attempt to alter the
1580call-stack within @value{GDBN}. This preserves data integrity within
1581@value{GDBN}. Frame filters are executed on a priority basis and care
1582should be taken that some frame filters may have been executed before,
1583and that some frame filters will be executed after.
1584
1585An important consideration when designing frame filters, and well
1586worth reflecting upon, is that frame filters should avoid unwinding
1587the call stack if possible. Some stacks can run very deep, into the
1588tens of thousands in some cases. To search every frame when a frame
1589filter executes may be too expensive at that step. The frame filter
1590cannot know how many frames it has to iterate over, and it may have to
1591iterate through them all. This ends up duplicating effort as
1592@value{GDBN} performs this iteration when it prints the frames. If
1593the filter can defer unwinding frames until frame decorators are
1594executed, after the last filter has executed, it should. @xref{Frame
1595Decorator API}, for more information on decorators. Also, there are
1596examples for both frame decorators and filters in later chapters.
1597@xref{Writing a Frame Filter}, for more information.
1598
1599The Python dictionary @code{gdb.frame_filters} contains key/object
1600pairings that comprise a frame filter. Frame filters in this
1601dictionary are called @code{global} frame filters, and they are
1602available when debugging all inferiors. These frame filters must
1603register with the dictionary directly. In addition to the
1604@code{global} dictionary, there are other dictionaries that are loaded
1605with different inferiors via auto-loading (@pxref{Python
1606Auto-loading}). The two other areas where frame filter dictionaries
1607can be found are: @code{gdb.Progspace} which contains a
1608@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1609object which also contains a @code{frame_filters} dictionary
1610attribute.
1611
1612When a command is executed from @value{GDBN} that is compatible with
1613frame filters, @value{GDBN} combines the @code{global},
1614@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1615loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1616several frames, and thus several object files, might be in use.
1617@value{GDBN} then prunes any frame filter whose @code{enabled}
1618attribute is @code{False}. This pruned list is then sorted according
1619to the @code{priority} attribute in each filter.
1620
1621Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1622creates an iterator which wraps each frame in the call stack in a
1623@code{FrameDecorator} object, and calls each filter in order. The
1624output from the previous filter will always be the input to the next
1625filter, and so on.
1626
1627Frame filters have a mandatory interface which each frame filter must
1628implement, defined here:
1629
1630@defun FrameFilter.filter (iterator)
1631@value{GDBN} will call this method on a frame filter when it has
1632reached the order in the priority list for that filter.
1633
1634For example, if there are four frame filters:
1635
1636@smallexample
1637Name Priority
1638
1639Filter1 5
1640Filter2 10
1641Filter3 100
1642Filter4 1
1643@end smallexample
1644
1645The order that the frame filters will be called is:
1646
1647@smallexample
1648Filter3 -> Filter2 -> Filter1 -> Filter4
1649@end smallexample
1650
1651Note that the output from @code{Filter3} is passed to the input of
1652@code{Filter2}, and so on.
1653
1654This @code{filter} method is passed a Python iterator. This iterator
1655contains a sequence of frame decorators that wrap each
1656@code{gdb.Frame}, or a frame decorator that wraps another frame
1657decorator. The first filter that is executed in the sequence of frame
1658filters will receive an iterator entirely comprised of default
1659@code{FrameDecorator} objects. However, after each frame filter is
1660executed, the previous frame filter may have wrapped some or all of
1661the frame decorators with their own frame decorator. As frame
1662decorators must also conform to a mandatory interface, these
1663decorators can be assumed to act in a uniform manner (@pxref{Frame
1664Decorator API}).
1665
1666This method must return an object conforming to the Python iterator
1667protocol. Each item in the iterator must be an object conforming to
1668the frame decorator interface. If a frame filter does not wish to
1669perform any operations on this iterator, it should return that
1670iterator untouched.
1671
1672This method is not optional. If it does not exist, @value{GDBN} will
1673raise and print an error.
1674@end defun
1675
1676@defvar FrameFilter.name
1677The @code{name} attribute must be Python string which contains the
1678name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1679Management}). This attribute may contain any combination of letters
1680or numbers. Care should be taken to ensure that it is unique. This
1681attribute is mandatory.
1682@end defvar
1683
1684@defvar FrameFilter.enabled
1685The @code{enabled} attribute must be Python boolean. This attribute
1686indicates to @value{GDBN} whether the frame filter is enabled, and
1687should be considered when frame filters are executed. If
1688@code{enabled} is @code{True}, then the frame filter will be executed
1689when any of the backtrace commands detailed earlier in this chapter
1690are executed. If @code{enabled} is @code{False}, then the frame
1691filter will not be executed. This attribute is mandatory.
1692@end defvar
1693
1694@defvar FrameFilter.priority
1695The @code{priority} attribute must be Python integer. This attribute
1696controls the order of execution in relation to other frame filters.
1697There are no imposed limits on the range of @code{priority} other than
1698it must be a valid integer. The higher the @code{priority} attribute,
1699the sooner the frame filter will be executed in relation to other
1700frame filters. Although @code{priority} can be negative, it is
1701recommended practice to assume zero is the lowest priority that a
1702frame filter can be assigned. Frame filters that have the same
1703priority are executed in unsorted order in that priority slot. This
1704attribute is mandatory.
1705@end defvar
1706
1707@node Frame Decorator API
1708@subsubsection Decorating Frames.
1709@cindex frame decorator api
1710
1711Frame decorators are sister objects to frame filters (@pxref{Frame
1712Filter API}). Frame decorators are applied by a frame filter and can
1713only be used in conjunction with frame filters.
1714
1715The purpose of a frame decorator is to customize the printed content
1716of each @code{gdb.Frame} in commands where frame filters are executed.
1717This concept is called decorating a frame. Frame decorators decorate
1718a @code{gdb.Frame} with Python code contained within each API call.
1719This separates the actual data contained in a @code{gdb.Frame} from
1720the decorated data produced by a frame decorator. This abstraction is
1721necessary to maintain integrity of the data contained in each
1722@code{gdb.Frame}.
1723
1724Frame decorators have a mandatory interface, defined below.
1725
1726@value{GDBN} already contains a frame decorator called
1727@code{FrameDecorator}. This contains substantial amounts of
1728boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1729recommended that other frame decorators inherit and extend this
1730object, and only to override the methods needed.
1731
1732@defun FrameDecorator.elided (self)
1733
1734The @code{elided} method groups frames together in a hierarchical
1735system. An example would be an interpreter, where multiple low-level
1736frames make up a single call in the interpreted language. In this
1737example, the frame filter would elide the low-level frames and present
1738a single high-level frame, representing the call in the interpreted
1739language, to the user.
1740
1741The @code{elided} function must return an iterable and this iterable
1742must contain the frames that are being elided wrapped in a suitable
1743frame decorator. If no frames are being elided this function may
1744return an empty iterable, or @code{None}. Elided frames are indented
1745from normal frames in a @code{CLI} backtrace, or in the case of
1746@code{GDB/MI}, are placed in the @code{children} field of the eliding
1747frame.
1748
1749It is the frame filter's task to also filter out the elided frames from
1750the source iterator. This will avoid printing the frame twice.
1751@end defun
1752
1753@defun FrameDecorator.function (self)
1754
1755This method returns the name of the function in the frame that is to
1756be printed.
1757
1758This method must return a Python string describing the function, or
1759@code{None}.
1760
1761If this function returns @code{None}, @value{GDBN} will not print any
1762data for this field.
1763@end defun
1764
1765@defun FrameDecorator.address (self)
1766
1767This method returns the address of the frame that is to be printed.
1768
1769This method must return a Python numeric integer type of sufficient
1770size to describe the address of the frame, or @code{None}.
1771
1772If this function returns a @code{None}, @value{GDBN} will not print
1773any data for this field.
1774@end defun
1775
1776@defun FrameDecorator.filename (self)
1777
1778This method returns the filename and path associated with this frame.
1779
1780This method must return a Python string containing the filename and
1781the path to the object file backing the frame, or @code{None}.
1782
1783If this function returns a @code{None}, @value{GDBN} will not print
1784any data for this field.
1785@end defun
1786
1787@defun FrameDecorator.line (self):
1788
1789This method returns the line number associated with the current
1790position within the function addressed by this frame.
1791
1792This method must return a Python integer type, or @code{None}.
1793
1794If this function returns a @code{None}, @value{GDBN} will not print
1795any data for this field.
1796@end defun
1797
1798@defun FrameDecorator.frame_args (self)
1799@anchor{frame_args}
1800
1801This method must return an iterable, or @code{None}. Returning an
1802empty iterable, or @code{None} means frame arguments will not be
1803printed for this frame. This iterable must contain objects that
1804implement two methods, described here.
1805
1806This object must implement a @code{argument} method which takes a
1807single @code{self} parameter and must return a @code{gdb.Symbol}
1808(@pxref{Symbols In Python}), or a Python string. The object must also
1809implement a @code{value} method which takes a single @code{self}
1810parameter and must return a @code{gdb.Value} (@pxref{Values From
1811Inferior}), a Python value, or @code{None}. If the @code{value}
1812method returns @code{None}, and the @code{argument} method returns a
1813@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1814the @code{gdb.Symbol} automatically.
1815
1816A brief example:
1817
1818@smallexample
1819class SymValueWrapper():
1820
1821 def __init__(self, symbol, value):
1822 self.sym = symbol
1823 self.val = value
1824
1825 def value(self):
1826 return self.val
1827
1828 def symbol(self):
1829 return self.sym
1830
1831class SomeFrameDecorator()
1832...
1833...
1834 def frame_args(self):
1835 args = []
1836 try:
1837 block = self.inferior_frame.block()
1838 except:
1839 return None
1840
1841 # Iterate over all symbols in a block. Only add
1842 # symbols that are arguments.
1843 for sym in block:
1844 if not sym.is_argument:
1845 continue
1846 args.append(SymValueWrapper(sym,None))
1847
1848 # Add example synthetic argument.
1849 args.append(SymValueWrapper(``foo'', 42))
1850
1851 return args
1852@end smallexample
1853@end defun
1854
1855@defun FrameDecorator.frame_locals (self)
1856
1857This method must return an iterable or @code{None}. Returning an
1858empty iterable, or @code{None} means frame local arguments will not be
1859printed for this frame.
1860
1861The object interface, the description of the various strategies for
1862reading frame locals, and the example are largely similar to those
1863described in the @code{frame_args} function, (@pxref{frame_args,,The
1864frame filter frame_args function}). Below is a modified example:
1865
1866@smallexample
1867class SomeFrameDecorator()
1868...
1869...
1870 def frame_locals(self):
1871 vars = []
1872 try:
1873 block = self.inferior_frame.block()
1874 except:
1875 return None
1876
1877 # Iterate over all symbols in a block. Add all
1878 # symbols, except arguments.
1879 for sym in block:
1880 if sym.is_argument:
1881 continue
1882 vars.append(SymValueWrapper(sym,None))
1883
1884 # Add an example of a synthetic local variable.
1885 vars.append(SymValueWrapper(``bar'', 99))
1886
1887 return vars
1888@end smallexample
1889@end defun
1890
1891@defun FrameDecorator.inferior_frame (self):
1892
1893This method must return the underlying @code{gdb.Frame} that this
1894frame decorator is decorating. @value{GDBN} requires the underlying
1895frame for internal frame information to determine how to print certain
1896values when printing a frame.
1897@end defun
1898
1899@node Writing a Frame Filter
1900@subsubsection Writing a Frame Filter
1901@cindex writing a frame filter
1902
1903There are three basic elements that a frame filter must implement: it
1904must correctly implement the documented interface (@pxref{Frame Filter
1905API}), it must register itself with @value{GDBN}, and finally, it must
1906decide if it is to work on the data provided by @value{GDBN}. In all
1907cases, whether it works on the iterator or not, each frame filter must
1908return an iterator. A bare-bones frame filter follows the pattern in
1909the following example.
1910
1911@smallexample
1912import gdb
1913
1914class FrameFilter():
1915
1916 def __init__(self):
1917 # Frame filter attribute creation.
1918 #
1919 # 'name' is the name of the filter that GDB will display.
1920 #
1921 # 'priority' is the priority of the filter relative to other
1922 # filters.
1923 #
1924 # 'enabled' is a boolean that indicates whether this filter is
1925 # enabled and should be executed.
1926
1927 self.name = "Foo"
1928 self.priority = 100
1929 self.enabled = True
1930
1931 # Register this frame filter with the global frame_filters
1932 # dictionary.
1933 gdb.frame_filters[self.name] = self
1934
1935 def filter(self, frame_iter):
1936 # Just return the iterator.
1937 return frame_iter
1938@end smallexample
1939
1940The frame filter in the example above implements the three
1941requirements for all frame filters. It implements the API, self
1942registers, and makes a decision on the iterator (in this case, it just
1943returns the iterator untouched).
1944
1945The first step is attribute creation and assignment, and as shown in
1946the comments the filter assigns the following attributes: @code{name},
1947@code{priority} and whether the filter should be enabled with the
1948@code{enabled} attribute.
1949
1950The second step is registering the frame filter with the dictionary or
1951dictionaries that the frame filter has interest in. As shown in the
1952comments, this filter just registers itself with the global dictionary
1953@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
1954is a dictionary that is initialized in the @code{gdb} module when
1955@value{GDBN} starts. What dictionary a filter registers with is an
1956important consideration. Generally, if a filter is specific to a set
1957of code, it should be registered either in the @code{objfile} or
1958@code{progspace} dictionaries as they are specific to the program
1959currently loaded in @value{GDBN}. The global dictionary is always
1960present in @value{GDBN} and is never unloaded. Any filters registered
1961with the global dictionary will exist until @value{GDBN} exits. To
1962avoid filters that may conflict, it is generally better to register
1963frame filters against the dictionaries that more closely align with
1964the usage of the filter currently in question. @xref{Python
1965Auto-loading}, for further information on auto-loading Python scripts.
1966
1967@value{GDBN} takes a hands-off approach to frame filter registration,
1968therefore it is the frame filter's responsibility to ensure
1969registration has occurred, and that any exceptions are handled
1970appropriately. In particular, you may wish to handle exceptions
1971relating to Python dictionary key uniqueness. It is mandatory that
1972the dictionary key is the same as frame filter's @code{name}
1973attribute. When a user manages frame filters (@pxref{Frame Filter
1974Management}), the names @value{GDBN} will display are those contained
1975in the @code{name} attribute.
1976
1977The final step of this example is the implementation of the
1978@code{filter} method. As shown in the example comments, we define the
1979@code{filter} method and note that the method must take an iterator,
1980and also must return an iterator. In this bare-bones example, the
1981frame filter is not very useful as it just returns the iterator
1982untouched. However this is a valid operation for frame filters that
1983have the @code{enabled} attribute set, but decide not to operate on
1984any frames.
1985
1986In the next example, the frame filter operates on all frames and
1987utilizes a frame decorator to perform some work on the frames.
1988@xref{Frame Decorator API}, for further information on the frame
1989decorator interface.
1990
1991This example works on inlined frames. It highlights frames which are
1992inlined by tagging them with an ``[inlined]'' tag. By applying a
1993frame decorator to all frames with the Python @code{itertools imap}
1994method, the example defers actions to the frame decorator. Frame
1995decorators are only processed when @value{GDBN} prints the backtrace.
1996
1997This introduces a new decision making topic: whether to perform
1998decision making operations at the filtering step, or at the printing
1999step. In this example's approach, it does not perform any filtering
2000decisions at the filtering step beyond mapping a frame decorator to
2001each frame. This allows the actual decision making to be performed
2002when each frame is printed. This is an important consideration, and
2003well worth reflecting upon when designing a frame filter. An issue
2004that frame filters should avoid is unwinding the stack if possible.
2005Some stacks can run very deep, into the tens of thousands in some
2006cases. To search every frame to determine if it is inlined ahead of
2007time may be too expensive at the filtering step. The frame filter
2008cannot know how many frames it has to iterate over, and it would have
2009to iterate through them all. This ends up duplicating effort as
2010@value{GDBN} performs this iteration when it prints the frames.
2011
2012In this example decision making can be deferred to the printing step.
2013As each frame is printed, the frame decorator can examine each frame
2014in turn when @value{GDBN} iterates. From a performance viewpoint,
2015this is the most appropriate decision to make as it avoids duplicating
2016the effort that the printing step would undertake anyway. Also, if
2017there are many frame filters unwinding the stack during filtering, it
2018can substantially delay the printing of the backtrace which will
2019result in large memory usage, and a poor user experience.
2020
2021@smallexample
2022class InlineFilter():
2023
2024 def __init__(self):
2025 self.name = "InlinedFrameFilter"
2026 self.priority = 100
2027 self.enabled = True
2028 gdb.frame_filters[self.name] = self
2029
2030 def filter(self, frame_iter):
2031 frame_iter = itertools.imap(InlinedFrameDecorator,
2032 frame_iter)
2033 return frame_iter
2034@end smallexample
2035
2036This frame filter is somewhat similar to the earlier example, except
2037that the @code{filter} method applies a frame decorator object called
2038@code{InlinedFrameDecorator} to each element in the iterator. The
2039@code{imap} Python method is light-weight. It does not proactively
2040iterate over the iterator, but rather creates a new iterator which
2041wraps the existing one.
2042
2043Below is the frame decorator for this example.
2044
2045@smallexample
2046class InlinedFrameDecorator(FrameDecorator):
2047
2048 def __init__(self, fobj):
2049 super(InlinedFrameDecorator, self).__init__(fobj)
2050
2051 def function(self):
2052 frame = fobj.inferior_frame()
2053 name = str(frame.name())
2054
2055 if frame.type() == gdb.INLINE_FRAME:
2056 name = name + " [inlined]"
2057
2058 return name
2059@end smallexample
2060
2061This frame decorator only defines and overrides the @code{function}
2062method. It lets the supplied @code{FrameDecorator}, which is shipped
2063with @value{GDBN}, perform the other work associated with printing
2064this frame.
2065
2066The combination of these two objects create this output from a
2067backtrace:
2068
2069@smallexample
2070#0 0x004004e0 in bar () at inline.c:11
2071#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2072#2 0x00400566 in main () at inline.c:31
2073@end smallexample
2074
2075So in the case of this example, a frame decorator is applied to all
2076frames, regardless of whether they may be inlined or not. As
2077@value{GDBN} iterates over the iterator produced by the frame filters,
2078@value{GDBN} executes each frame decorator which then makes a decision
2079on what to print in the @code{function} callback. Using a strategy
2080like this is a way to defer decisions on the frame content to printing
2081time.
2082
2083@subheading Eliding Frames
2084
2085It might be that the above example is not desirable for representing
2086inlined frames, and a hierarchical approach may be preferred. If we
2087want to hierarchically represent frames, the @code{elided} frame
2088decorator interface might be preferable.
2089
2090This example approaches the issue with the @code{elided} method. This
2091example is quite long, but very simplistic. It is out-of-scope for
2092this section to write a complete example that comprehensively covers
2093all approaches of finding and printing inlined frames. However, this
2094example illustrates the approach an author might use.
2095
2096This example comprises of three sections.
2097
2098@smallexample
2099class InlineFrameFilter():
2100
2101 def __init__(self):
2102 self.name = "InlinedFrameFilter"
2103 self.priority = 100
2104 self.enabled = True
2105 gdb.frame_filters[self.name] = self
2106
2107 def filter(self, frame_iter):
2108 return ElidingInlineIterator(frame_iter)
2109@end smallexample
2110
2111This frame filter is very similar to the other examples. The only
2112difference is this frame filter is wrapping the iterator provided to
2113it (@code{frame_iter}) with a custom iterator called
2114@code{ElidingInlineIterator}. This again defers actions to when
2115@value{GDBN} prints the backtrace, as the iterator is not traversed
2116until printing.
2117
2118The iterator for this example is as follows. It is in this section of
2119the example where decisions are made on the content of the backtrace.
2120
2121@smallexample
2122class ElidingInlineIterator:
2123 def __init__(self, ii):
2124 self.input_iterator = ii
2125
2126 def __iter__(self):
2127 return self
2128
2129 def next(self):
2130 frame = next(self.input_iterator)
2131
2132 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2133 return frame
2134
2135 try:
2136 eliding_frame = next(self.input_iterator)
2137 except StopIteration:
2138 return frame
2139 return ElidingFrameDecorator(eliding_frame, [frame])
2140@end smallexample
2141
2142This iterator implements the Python iterator protocol. When the
2143@code{next} function is called (when @value{GDBN} prints each frame),
2144the iterator checks if this frame decorator, @code{frame}, is wrapping
2145an inlined frame. If it is not, it returns the existing frame decorator
2146untouched. If it is wrapping an inlined frame, it assumes that the
2147inlined frame was contained within the next oldest frame,
2148@code{eliding_frame}, which it fetches. It then creates and returns a
2149frame decorator, @code{ElidingFrameDecorator}, which contains both the
2150elided frame, and the eliding frame.
2151
2152@smallexample
2153class ElidingInlineDecorator(FrameDecorator):
2154
2155 def __init__(self, frame, elided_frames):
2156 super(ElidingInlineDecorator, self).__init__(frame)
2157 self.frame = frame
2158 self.elided_frames = elided_frames
2159
2160 def elided(self):
2161 return iter(self.elided_frames)
2162@end smallexample
2163
2164This frame decorator overrides one function and returns the inlined
2165frame in the @code{elided} method. As before it lets
2166@code{FrameDecorator} do the rest of the work involved in printing
2167this frame. This produces the following output.
2168
2169@smallexample
2170#0 0x004004e0 in bar () at inline.c:11
2171#2 0x00400529 in main () at inline.c:25
2172 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2173@end smallexample
2174
2175In that output, @code{max} which has been inlined into @code{main} is
2176printed hierarchically. Another approach would be to combine the
2177@code{function} method, and the @code{elided} method to both print a
2178marker in the inlined frame, and also show the hierarchical
2179relationship.
2180
0c6e92a5
SC
2181@node Xmethods In Python
2182@subsubsection Xmethods In Python
2183@cindex xmethods in Python
2184
2185@dfn{Xmethods} are additional methods or replacements for existing
2186methods of a C@t{++} class. This feature is useful for those cases
2187where a method defined in C@t{++} source code could be inlined or
2188optimized out by the compiler, making it unavailable to @value{GDBN}.
2189For such cases, one can define an xmethod to serve as a replacement
2190for the method defined in the C@t{++} source code. @value{GDBN} will
2191then invoke the xmethod, instead of the C@t{++} method, to
2192evaluate expressions. One can also use xmethods when debugging
2193with core files. Moreover, when debugging live programs, invoking an
2194xmethod need not involve running the inferior (which can potentially
2195perturb its state). Hence, even if the C@t{++} method is available, it
2196is better to use its replacement xmethod if one is defined.
2197
2198The xmethods feature in Python is available via the concepts of an
2199@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2200implement an xmethod, one has to implement a matcher and a
2201corresponding worker for it (more than one worker can be
2202implemented, each catering to a different overloaded instance of the
2203method). Internally, @value{GDBN} invokes the @code{match} method of a
2204matcher to match the class type and method name. On a match, the
2205@code{match} method returns a list of matching @emph{worker} objects.
2206Each worker object typically corresponds to an overloaded instance of
2207the xmethod. They implement a @code{get_arg_types} method which
2208returns a sequence of types corresponding to the arguments the xmethod
2209requires. @value{GDBN} uses this sequence of types to perform
2210overload resolution and picks a winning xmethod worker. A winner
2211is also selected from among the methods @value{GDBN} finds in the
2212C@t{++} source code. Next, the winning xmethod worker and the
2213winning C@t{++} method are compared to select an overall winner. In
2214case of a tie between a xmethod worker and a C@t{++} method, the
2215xmethod worker is selected as the winner. That is, if a winning
2216xmethod worker is found to be equivalent to the winning C@t{++}
2217method, then the xmethod worker is treated as a replacement for
2218the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2219method. If the winning xmethod worker is the overall winner, then
2220the corresponding xmethod is invoked via the @code{invoke} method
2221of the worker object.
2222
2223If one wants to implement an xmethod as a replacement for an
2224existing C@t{++} method, then they have to implement an equivalent
2225xmethod which has exactly the same name and takes arguments of
2226exactly the same type as the C@t{++} method. If the user wants to
2227invoke the C@t{++} method even though a replacement xmethod is
2228available for that method, then they can disable the xmethod.
2229
2230@xref{Xmethod API}, for API to implement xmethods in Python.
2231@xref{Writing an Xmethod}, for implementing xmethods in Python.
2232
2233@node Xmethod API
2234@subsubsection Xmethod API
2235@cindex xmethod API
2236
2237The @value{GDBN} Python API provides classes, interfaces and functions
2238to implement, register and manipulate xmethods.
2239@xref{Xmethods In Python}.
2240
2241An xmethod matcher should be an instance of a class derived from
2242@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2243object with similar interface and attributes. An instance of
2244@code{XMethodMatcher} has the following attributes:
2245
2246@defvar name
2247The name of the matcher.
2248@end defvar
2249
2250@defvar enabled
2251A boolean value indicating whether the matcher is enabled or disabled.
2252@end defvar
2253
2254@defvar methods
2255A list of named methods managed by the matcher. Each object in the list
2256is an instance of the class @code{XMethod} defined in the module
2257@code{gdb.xmethod}, or any object with the following attributes:
2258
2259@table @code
2260
2261@item name
2262Name of the xmethod which should be unique for each xmethod
2263managed by the matcher.
2264
2265@item enabled
2266A boolean value indicating whether the xmethod is enabled or
2267disabled.
2268
2269@end table
2270
2271The class @code{XMethod} is a convenience class with same
2272attributes as above along with the following constructor:
2273
dd5d5494 2274@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2275Constructs an enabled xmethod with name @var{name}.
2276@end defun
2277@end defvar
2278
2279@noindent
2280The @code{XMethodMatcher} class has the following methods:
2281
dd5d5494 2282@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2283Constructs an enabled xmethod matcher with name @var{name}. The
2284@code{methods} attribute is initialized to @code{None}.
2285@end defun
2286
dd5d5494 2287@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2288Derived classes should override this method. It should return a
2289xmethod worker object (or a sequence of xmethod worker
2290objects) matching the @var{class_type} and @var{method_name}.
2291@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2292is a string value. If the matcher manages named methods as listed in
2293its @code{methods} attribute, then only those worker objects whose
2294corresponding entries in the @code{methods} list are enabled should be
2295returned.
2296@end defun
2297
2298An xmethod worker should be an instance of a class derived from
2299@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2300or support the following interface:
2301
dd5d5494 2302@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2303This method returns a sequence of @code{gdb.Type} objects corresponding
2304to the arguments that the xmethod takes. It can return an empty
2305sequence or @code{None} if the xmethod does not take any arguments.
2306If the xmethod takes a single argument, then a single
2307@code{gdb.Type} object corresponding to it can be returned.
2308@end defun
2309
dd5d5494 2310@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2311This is the method which does the @emph{work} of the xmethod. The
2312@var{args} arguments is the tuple of arguments to the xmethod. Each
2313element in this tuple is a gdb.Value object. The first element is
2314always the @code{this} pointer value.
2315@end defun
2316
2317For @value{GDBN} to lookup xmethods, the xmethod matchers
2318should be registered using the following function defined in the module
2319@code{gdb.xmethod}:
2320
dd5d5494 2321@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2322The @code{matcher} is registered with @code{locus}, replacing an
2323existing matcher with the same name as @code{matcher} if
2324@code{replace} is @code{True}. @code{locus} can be a
2325@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2326@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2327@code{None}. If it is @code{None}, then @code{matcher} is registered
2328globally.
2329@end defun
2330
2331@node Writing an Xmethod
2332@subsubsection Writing an Xmethod
2333@cindex writing xmethods in Python
2334
2335Implementing xmethods in Python will require implementing xmethod
2336matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2337the following C@t{++} class:
2338
2339@smallexample
2340class MyClass
2341@{
2342public:
2343 MyClass (int a) : a_(a) @{ @}
2344
2345 int geta (void) @{ return a_; @}
2346 int operator+ (int b);
2347
2348private:
2349 int a_;
2350@};
2351
2352int
2353MyClass::operator+ (int b)
2354@{
2355 return a_ + b;
2356@}
2357@end smallexample
2358
2359@noindent
2360Let us define two xmethods for the class @code{MyClass}, one
2361replacing the method @code{geta}, and another adding an overloaded
2362flavor of @code{operator+} which takes a @code{MyClass} argument (the
2363C@t{++} code above already has an overloaded @code{operator+}
2364which takes an @code{int} argument). The xmethod matcher can be
2365defined as follows:
2366
2367@smallexample
2368class MyClass_geta(gdb.xmethod.XMethod):
2369 def __init__(self):
2370 gdb.xmethod.XMethod.__init__(self, 'geta')
2371
2372 def get_worker(self, method_name):
2373 if method_name == 'geta':
2374 return MyClassWorker_geta()
2375
2376
2377class MyClass_sum(gdb.xmethod.XMethod):
2378 def __init__(self):
2379 gdb.xmethod.XMethod.__init__(self, 'sum')
2380
2381 def get_worker(self, method_name):
2382 if method_name == 'operator+':
2383 return MyClassWorker_plus()
2384
2385
2386class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2387 def __init__(self):
2388 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2389 # List of methods 'managed' by this matcher
2390 self.methods = [MyClass_geta(), MyClass_sum()]
2391
2392 def match(self, class_type, method_name):
2393 if class_type.tag != 'MyClass':
2394 return None
2395 workers = []
2396 for method in self.methods:
2397 if method.enabled:
2398 worker = method.get_worker(method_name)
2399 if worker:
2400 workers.append(worker)
2401
2402 return workers
2403@end smallexample
2404
2405@noindent
2406Notice that the @code{match} method of @code{MyClassMatcher} returns
2407a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2408method, and a worker object of type @code{MyClassWorker_plus} for the
2409@code{operator+} method. This is done indirectly via helper classes
2410derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2411@code{methods} attribute in a matcher as it is optional. However, if a
2412matcher manages more than one xmethod, it is a good practice to list the
2413xmethods in the @code{methods} attribute of the matcher. This will then
2414facilitate enabling and disabling individual xmethods via the
2415@code{enable/disable} commands. Notice also that a worker object is
2416returned only if the corresponding entry in the @code{methods} attribute
2417of the matcher is enabled.
2418
2419The implementation of the worker classes returned by the matcher setup
2420above is as follows:
2421
2422@smallexample
2423class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2424 def get_arg_types(self):
2425 return None
2426
2427 def __call__(self, obj):
2428 return obj['a_']
2429
2430
2431class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2432 def get_arg_types(self):
2433 return gdb.lookup_type('MyClass')
2434
2435 def __call__(self, obj, other):
2436 return obj['a_'] + other['a_']
2437@end smallexample
2438
2439For @value{GDBN} to actually lookup a xmethod, it has to be
2440registered with it. The matcher defined above is registered with
2441@value{GDBN} globally as follows:
2442
2443@smallexample
2444gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2445@end smallexample
2446
2447If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2448code as follows:
2449
2450@smallexample
2451MyClass obj(5);
2452@end smallexample
2453
2454@noindent
2455then, after loading the Python script defining the xmethod matchers
2456and workers into @code{GDBN}, invoking the method @code{geta} or using
2457the operator @code{+} on @code{obj} will invoke the xmethods
2458defined above:
2459
2460@smallexample
2461(gdb) p obj.geta()
2462$1 = 5
2463
2464(gdb) p obj + obj
2465$2 = 10
2466@end smallexample
2467
2468Consider another example with a C++ template class:
2469
2470@smallexample
2471template <class T>
2472class MyTemplate
2473@{
2474public:
2475 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2476 ~MyTemplate () @{ delete [] data_; @}
2477
2478 int footprint (void)
2479 @{
2480 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2481 @}
2482
2483private:
2484 int dsize_;
2485 T *data_;
2486@};
2487@end smallexample
2488
2489Let us implement an xmethod for the above class which serves as a
2490replacement for the @code{footprint} method. The full code listing
2491of the xmethod workers and xmethod matchers is as follows:
2492
2493@smallexample
2494class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2495 def __init__(self, class_type):
2496 self.class_type = class_type
2497
2498 def get_arg_types(self):
2499 return None
2500
2501 def __call__(self, obj):
2502 return (self.class_type.sizeof +
2503 obj['dsize_'] *
2504 self.class_type.template_argument(0).sizeof)
2505
2506
2507class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2508 def __init__(self):
2509 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2510
2511 def match(self, class_type, method_name):
2512 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2513 class_type.tag) and
2514 method_name == 'footprint'):
2515 return MyTemplateWorker_footprint(class_type)
2516@end smallexample
2517
2518Notice that, in this example, we have not used the @code{methods}
2519attribute of the matcher as the matcher manages only one xmethod. The
2520user can enable/disable this xmethod by enabling/disabling the matcher
2521itself.
2522
329baa95
DE
2523@node Inferiors In Python
2524@subsubsection Inferiors In Python
2525@cindex inferiors in Python
2526
2527@findex gdb.Inferior
2528Programs which are being run under @value{GDBN} are called inferiors
2529(@pxref{Inferiors and Programs}). Python scripts can access
2530information about and manipulate inferiors controlled by @value{GDBN}
2531via objects of the @code{gdb.Inferior} class.
2532
2533The following inferior-related functions are available in the @code{gdb}
2534module:
2535
2536@defun gdb.inferiors ()
2537Return a tuple containing all inferior objects.
2538@end defun
2539
2540@defun gdb.selected_inferior ()
2541Return an object representing the current inferior.
2542@end defun
2543
2544A @code{gdb.Inferior} object has the following attributes:
2545
2546@defvar Inferior.num
2547ID of inferior, as assigned by GDB.
2548@end defvar
2549
2550@defvar Inferior.pid
2551Process ID of the inferior, as assigned by the underlying operating
2552system.
2553@end defvar
2554
2555@defvar Inferior.was_attached
2556Boolean signaling whether the inferior was created using `attach', or
2557started by @value{GDBN} itself.
2558@end defvar
2559
2560A @code{gdb.Inferior} object has the following methods:
2561
2562@defun Inferior.is_valid ()
2563Returns @code{True} if the @code{gdb.Inferior} object is valid,
2564@code{False} if not. A @code{gdb.Inferior} object will become invalid
2565if the inferior no longer exists within @value{GDBN}. All other
2566@code{gdb.Inferior} methods will throw an exception if it is invalid
2567at the time the method is called.
2568@end defun
2569
2570@defun Inferior.threads ()
2571This method returns a tuple holding all the threads which are valid
2572when it is called. If there are no valid threads, the method will
2573return an empty tuple.
2574@end defun
2575
2576@findex Inferior.read_memory
2577@defun Inferior.read_memory (address, length)
2578Read @var{length} bytes of memory from the inferior, starting at
2579@var{address}. Returns a buffer object, which behaves much like an array
2580or a string. It can be modified and given to the
2581@code{Inferior.write_memory} function. In @code{Python} 3, the return
2582value is a @code{memoryview} object.
2583@end defun
2584
2585@findex Inferior.write_memory
2586@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2587Write the contents of @var{buffer} to the inferior, starting at
2588@var{address}. The @var{buffer} parameter must be a Python object
2589which supports the buffer protocol, i.e., a string, an array or the
2590object returned from @code{Inferior.read_memory}. If given, @var{length}
2591determines the number of bytes from @var{buffer} to be written.
2592@end defun
2593
2594@findex gdb.search_memory
2595@defun Inferior.search_memory (address, length, pattern)
2596Search a region of the inferior memory starting at @var{address} with
2597the given @var{length} using the search pattern supplied in
2598@var{pattern}. The @var{pattern} parameter must be a Python object
2599which supports the buffer protocol, i.e., a string, an array or the
2600object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2601containing the address where the pattern was found, or @code{None} if
2602the pattern could not be found.
2603@end defun
2604
2605@node Events In Python
2606@subsubsection Events In Python
2607@cindex inferior events in Python
2608
2609@value{GDBN} provides a general event facility so that Python code can be
2610notified of various state changes, particularly changes that occur in
2611the inferior.
2612
2613An @dfn{event} is just an object that describes some state change. The
2614type of the object and its attributes will vary depending on the details
2615of the change. All the existing events are described below.
2616
2617In order to be notified of an event, you must register an event handler
2618with an @dfn{event registry}. An event registry is an object in the
2619@code{gdb.events} module which dispatches particular events. A registry
2620provides methods to register and unregister event handlers:
2621
2622@defun EventRegistry.connect (object)
2623Add the given callable @var{object} to the registry. This object will be
2624called when an event corresponding to this registry occurs.
2625@end defun
2626
2627@defun EventRegistry.disconnect (object)
2628Remove the given @var{object} from the registry. Once removed, the object
2629will no longer receive notifications of events.
2630@end defun
2631
2632Here is an example:
2633
2634@smallexample
2635def exit_handler (event):
2636 print "event type: exit"
2637 print "exit code: %d" % (event.exit_code)
2638
2639gdb.events.exited.connect (exit_handler)
2640@end smallexample
2641
2642In the above example we connect our handler @code{exit_handler} to the
2643registry @code{events.exited}. Once connected, @code{exit_handler} gets
2644called when the inferior exits. The argument @dfn{event} in this example is
2645of type @code{gdb.ExitedEvent}. As you can see in the example the
2646@code{ExitedEvent} object has an attribute which indicates the exit code of
2647the inferior.
2648
2649The following is a listing of the event registries that are available and
2650details of the events they emit:
2651
2652@table @code
2653
2654@item events.cont
2655Emits @code{gdb.ThreadEvent}.
2656
2657Some events can be thread specific when @value{GDBN} is running in non-stop
2658mode. When represented in Python, these events all extend
2659@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2660events which are emitted by this or other modules might extend this event.
2661Examples of these events are @code{gdb.BreakpointEvent} and
2662@code{gdb.ContinueEvent}.
2663
2664@defvar ThreadEvent.inferior_thread
2665In non-stop mode this attribute will be set to the specific thread which was
2666involved in the emitted event. Otherwise, it will be set to @code{None}.
2667@end defvar
2668
2669Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2670
2671This event indicates that the inferior has been continued after a stop. For
2672inherited attribute refer to @code{gdb.ThreadEvent} above.
2673
2674@item events.exited
2675Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2676@code{events.ExitedEvent} has two attributes:
2677@defvar ExitedEvent.exit_code
2678An integer representing the exit code, if available, which the inferior
2679has returned. (The exit code could be unavailable if, for example,
2680@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2681the attribute does not exist.
2682@end defvar
2683@defvar ExitedEvent inferior
2684A reference to the inferior which triggered the @code{exited} event.
2685@end defvar
2686
2687@item events.stop
2688Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2689
2690Indicates that the inferior has stopped. All events emitted by this registry
2691extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2692will indicate the stopped thread when @value{GDBN} is running in non-stop
2693mode. Refer to @code{gdb.ThreadEvent} above for more details.
2694
2695Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2696
2697This event indicates that the inferior or one of its threads has received as
2698signal. @code{gdb.SignalEvent} has the following attributes:
2699
2700@defvar SignalEvent.stop_signal
2701A string representing the signal received by the inferior. A list of possible
2702signal values can be obtained by running the command @code{info signals} in
2703the @value{GDBN} command prompt.
2704@end defvar
2705
2706Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2707
2708@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2709been hit, and has the following attributes:
2710
2711@defvar BreakpointEvent.breakpoints
2712A sequence containing references to all the breakpoints (type
2713@code{gdb.Breakpoint}) that were hit.
2714@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
2715@end defvar
2716@defvar BreakpointEvent.breakpoint
2717A reference to the first breakpoint that was hit.
2718This function is maintained for backward compatibility and is now deprecated
2719in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
2720@end defvar
2721
2722@item events.new_objfile
2723Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
2724been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
2725
2726@defvar NewObjFileEvent.new_objfile
2727A reference to the object file (@code{gdb.Objfile}) which has been loaded.
2728@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
2729@end defvar
2730
2731@end table
2732
2733@node Threads In Python
2734@subsubsection Threads In Python
2735@cindex threads in python
2736
2737@findex gdb.InferiorThread
2738Python scripts can access information about, and manipulate inferior threads
2739controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
2740
2741The following thread-related functions are available in the @code{gdb}
2742module:
2743
2744@findex gdb.selected_thread
2745@defun gdb.selected_thread ()
2746This function returns the thread object for the selected thread. If there
2747is no selected thread, this will return @code{None}.
2748@end defun
2749
2750A @code{gdb.InferiorThread} object has the following attributes:
2751
2752@defvar InferiorThread.name
2753The name of the thread. If the user specified a name using
2754@code{thread name}, then this returns that name. Otherwise, if an
2755OS-supplied name is available, then it is returned. Otherwise, this
2756returns @code{None}.
2757
2758This attribute can be assigned to. The new value must be a string
2759object, which sets the new name, or @code{None}, which removes any
2760user-specified thread name.
2761@end defvar
2762
2763@defvar InferiorThread.num
2764ID of the thread, as assigned by GDB.
2765@end defvar
2766
2767@defvar InferiorThread.ptid
2768ID of the thread, as assigned by the operating system. This attribute is a
2769tuple containing three integers. The first is the Process ID (PID); the second
2770is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
2771Either the LWPID or TID may be 0, which indicates that the operating system
2772does not use that identifier.
2773@end defvar
2774
2775A @code{gdb.InferiorThread} object has the following methods:
2776
2777@defun InferiorThread.is_valid ()
2778Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
2779@code{False} if not. A @code{gdb.InferiorThread} object will become
2780invalid if the thread exits, or the inferior that the thread belongs
2781is deleted. All other @code{gdb.InferiorThread} methods will throw an
2782exception if it is invalid at the time the method is called.
2783@end defun
2784
2785@defun InferiorThread.switch ()
2786This changes @value{GDBN}'s currently selected thread to the one represented
2787by this object.
2788@end defun
2789
2790@defun InferiorThread.is_stopped ()
2791Return a Boolean indicating whether the thread is stopped.
2792@end defun
2793
2794@defun InferiorThread.is_running ()
2795Return a Boolean indicating whether the thread is running.
2796@end defun
2797
2798@defun InferiorThread.is_exited ()
2799Return a Boolean indicating whether the thread is exited.
2800@end defun
2801
2802@node Commands In Python
2803@subsubsection Commands In Python
2804
2805@cindex commands in python
2806@cindex python commands
2807You can implement new @value{GDBN} CLI commands in Python. A CLI
2808command is implemented using an instance of the @code{gdb.Command}
2809class, most commonly using a subclass.
2810
2811@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
2812The object initializer for @code{Command} registers the new command
2813with @value{GDBN}. This initializer is normally invoked from the
2814subclass' own @code{__init__} method.
2815
2816@var{name} is the name of the command. If @var{name} consists of
2817multiple words, then the initial words are looked for as prefix
2818commands. In this case, if one of the prefix commands does not exist,
2819an exception is raised.
2820
2821There is no support for multi-line commands.
2822
2823@var{command_class} should be one of the @samp{COMMAND_} constants
2824defined below. This argument tells @value{GDBN} how to categorize the
2825new command in the help system.
2826
2827@var{completer_class} is an optional argument. If given, it should be
2828one of the @samp{COMPLETE_} constants defined below. This argument
2829tells @value{GDBN} how to perform completion for this command. If not
2830given, @value{GDBN} will attempt to complete using the object's
2831@code{complete} method (see below); if no such method is found, an
2832error will occur when completion is attempted.
2833
2834@var{prefix} is an optional argument. If @code{True}, then the new
2835command is a prefix command; sub-commands of this command may be
2836registered.
2837
2838The help text for the new command is taken from the Python
2839documentation string for the command's class, if there is one. If no
2840documentation string is provided, the default value ``This command is
2841not documented.'' is used.
2842@end defun
2843
2844@cindex don't repeat Python command
2845@defun Command.dont_repeat ()
2846By default, a @value{GDBN} command is repeated when the user enters a
2847blank line at the command prompt. A command can suppress this
2848behavior by invoking the @code{dont_repeat} method. This is similar
2849to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
2850@end defun
2851
2852@defun Command.invoke (argument, from_tty)
2853This method is called by @value{GDBN} when this command is invoked.
2854
2855@var{argument} is a string. It is the argument to the command, after
2856leading and trailing whitespace has been stripped.
2857
2858@var{from_tty} is a boolean argument. When true, this means that the
2859command was entered by the user at the terminal; when false it means
2860that the command came from elsewhere.
2861
2862If this method throws an exception, it is turned into a @value{GDBN}
2863@code{error} call. Otherwise, the return value is ignored.
2864
2865@findex gdb.string_to_argv
2866To break @var{argument} up into an argv-like string use
2867@code{gdb.string_to_argv}. This function behaves identically to
2868@value{GDBN}'s internal argument lexer @code{buildargv}.
2869It is recommended to use this for consistency.
2870Arguments are separated by spaces and may be quoted.
2871Example:
2872
2873@smallexample
2874print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
2875['1', '2 "3', '4 "5', "6 '7"]
2876@end smallexample
2877
2878@end defun
2879
2880@cindex completion of Python commands
2881@defun Command.complete (text, word)
2882This method is called by @value{GDBN} when the user attempts
2883completion on this command. All forms of completion are handled by
2884this method, that is, the @key{TAB} and @key{M-?} key bindings
2885(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
2886complete}).
2887
697aa1b7
EZ
2888The arguments @var{text} and @var{word} are both strings; @var{text}
2889holds the complete command line up to the cursor's location, while
329baa95
DE
2890@var{word} holds the last word of the command line; this is computed
2891using a word-breaking heuristic.
2892
2893The @code{complete} method can return several values:
2894@itemize @bullet
2895@item
2896If the return value is a sequence, the contents of the sequence are
2897used as the completions. It is up to @code{complete} to ensure that the
2898contents actually do complete the word. A zero-length sequence is
2899allowed, it means that there were no completions available. Only
2900string elements of the sequence are used; other elements in the
2901sequence are ignored.
2902
2903@item
2904If the return value is one of the @samp{COMPLETE_} constants defined
2905below, then the corresponding @value{GDBN}-internal completion
2906function is invoked, and its result is used.
2907
2908@item
2909All other results are treated as though there were no available
2910completions.
2911@end itemize
2912@end defun
2913
2914When a new command is registered, it must be declared as a member of
2915some general class of commands. This is used to classify top-level
2916commands in the on-line help system; note that prefix commands are not
2917listed under their own category but rather that of their top-level
2918command. The available classifications are represented by constants
2919defined in the @code{gdb} module:
2920
2921@table @code
2922@findex COMMAND_NONE
2923@findex gdb.COMMAND_NONE
2924@item gdb.COMMAND_NONE
2925The command does not belong to any particular class. A command in
2926this category will not be displayed in any of the help categories.
2927
2928@findex COMMAND_RUNNING
2929@findex gdb.COMMAND_RUNNING
2930@item gdb.COMMAND_RUNNING
2931The command is related to running the inferior. For example,
2932@code{start}, @code{step}, and @code{continue} are in this category.
2933Type @kbd{help running} at the @value{GDBN} prompt to see a list of
2934commands in this category.
2935
2936@findex COMMAND_DATA
2937@findex gdb.COMMAND_DATA
2938@item gdb.COMMAND_DATA
2939The command is related to data or variables. For example,
2940@code{call}, @code{find}, and @code{print} are in this category. Type
2941@kbd{help data} at the @value{GDBN} prompt to see a list of commands
2942in this category.
2943
2944@findex COMMAND_STACK
2945@findex gdb.COMMAND_STACK
2946@item gdb.COMMAND_STACK
2947The command has to do with manipulation of the stack. For example,
2948@code{backtrace}, @code{frame}, and @code{return} are in this
2949category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
2950list of commands in this category.
2951
2952@findex COMMAND_FILES
2953@findex gdb.COMMAND_FILES
2954@item gdb.COMMAND_FILES
2955This class is used for file-related commands. For example,
2956@code{file}, @code{list} and @code{section} are in this category.
2957Type @kbd{help files} at the @value{GDBN} prompt to see a list of
2958commands in this category.
2959
2960@findex COMMAND_SUPPORT
2961@findex gdb.COMMAND_SUPPORT
2962@item gdb.COMMAND_SUPPORT
2963This should be used for ``support facilities'', generally meaning
2964things that are useful to the user when interacting with @value{GDBN},
2965but not related to the state of the inferior. For example,
2966@code{help}, @code{make}, and @code{shell} are in this category. Type
2967@kbd{help support} at the @value{GDBN} prompt to see a list of
2968commands in this category.
2969
2970@findex COMMAND_STATUS
2971@findex gdb.COMMAND_STATUS
2972@item gdb.COMMAND_STATUS
2973The command is an @samp{info}-related command, that is, related to the
2974state of @value{GDBN} itself. For example, @code{info}, @code{macro},
2975and @code{show} are in this category. Type @kbd{help status} at the
2976@value{GDBN} prompt to see a list of commands in this category.
2977
2978@findex COMMAND_BREAKPOINTS
2979@findex gdb.COMMAND_BREAKPOINTS
2980@item gdb.COMMAND_BREAKPOINTS
2981The command has to do with breakpoints. For example, @code{break},
2982@code{clear}, and @code{delete} are in this category. Type @kbd{help
2983breakpoints} at the @value{GDBN} prompt to see a list of commands in
2984this category.
2985
2986@findex COMMAND_TRACEPOINTS
2987@findex gdb.COMMAND_TRACEPOINTS
2988@item gdb.COMMAND_TRACEPOINTS
2989The command has to do with tracepoints. For example, @code{trace},
2990@code{actions}, and @code{tfind} are in this category. Type
2991@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
2992commands in this category.
2993
2994@findex COMMAND_USER
2995@findex gdb.COMMAND_USER
2996@item gdb.COMMAND_USER
2997The command is a general purpose command for the user, and typically
2998does not fit in one of the other categories.
2999Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3000a list of commands in this category, as well as the list of gdb macros
3001(@pxref{Sequences}).
3002
3003@findex COMMAND_OBSCURE
3004@findex gdb.COMMAND_OBSCURE
3005@item gdb.COMMAND_OBSCURE
3006The command is only used in unusual circumstances, or is not of
3007general interest to users. For example, @code{checkpoint},
3008@code{fork}, and @code{stop} are in this category. Type @kbd{help
3009obscure} at the @value{GDBN} prompt to see a list of commands in this
3010category.
3011
3012@findex COMMAND_MAINTENANCE
3013@findex gdb.COMMAND_MAINTENANCE
3014@item gdb.COMMAND_MAINTENANCE
3015The command is only useful to @value{GDBN} maintainers. The
3016@code{maintenance} and @code{flushregs} commands are in this category.
3017Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3018commands in this category.
3019@end table
3020
3021A new command can use a predefined completion function, either by
3022specifying it via an argument at initialization, or by returning it
3023from the @code{complete} method. These predefined completion
3024constants are all defined in the @code{gdb} module:
3025
b3ce5e5f
DE
3026@vtable @code
3027@vindex COMPLETE_NONE
329baa95
DE
3028@item gdb.COMPLETE_NONE
3029This constant means that no completion should be done.
3030
b3ce5e5f 3031@vindex COMPLETE_FILENAME
329baa95
DE
3032@item gdb.COMPLETE_FILENAME
3033This constant means that filename completion should be performed.
3034
b3ce5e5f 3035@vindex COMPLETE_LOCATION
329baa95
DE
3036@item gdb.COMPLETE_LOCATION
3037This constant means that location completion should be done.
3038@xref{Specify Location}.
3039
b3ce5e5f 3040@vindex COMPLETE_COMMAND
329baa95
DE
3041@item gdb.COMPLETE_COMMAND
3042This constant means that completion should examine @value{GDBN}
3043command names.
3044
b3ce5e5f 3045@vindex COMPLETE_SYMBOL
329baa95
DE
3046@item gdb.COMPLETE_SYMBOL
3047This constant means that completion should be done using symbol names
3048as the source.
3049
b3ce5e5f 3050@vindex COMPLETE_EXPRESSION
329baa95
DE
3051@item gdb.COMPLETE_EXPRESSION
3052This constant means that completion should be done on expressions.
3053Often this means completing on symbol names, but some language
3054parsers also have support for completing on field names.
b3ce5e5f 3055@end vtable
329baa95
DE
3056
3057The following code snippet shows how a trivial CLI command can be
3058implemented in Python:
3059
3060@smallexample
3061class HelloWorld (gdb.Command):
3062 """Greet the whole world."""
3063
3064 def __init__ (self):
3065 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3066
3067 def invoke (self, arg, from_tty):
3068 print "Hello, World!"
3069
3070HelloWorld ()
3071@end smallexample
3072
3073The last line instantiates the class, and is necessary to trigger the
3074registration of the command with @value{GDBN}. Depending on how the
3075Python code is read into @value{GDBN}, you may need to import the
3076@code{gdb} module explicitly.
3077
3078@node Parameters In Python
3079@subsubsection Parameters In Python
3080
3081@cindex parameters in python
3082@cindex python parameters
3083@tindex gdb.Parameter
3084@tindex Parameter
3085You can implement new @value{GDBN} parameters using Python. A new
3086parameter is implemented as an instance of the @code{gdb.Parameter}
3087class.
3088
3089Parameters are exposed to the user via the @code{set} and
3090@code{show} commands. @xref{Help}.
3091
3092There are many parameters that already exist and can be set in
3093@value{GDBN}. Two examples are: @code{set follow fork} and
3094@code{set charset}. Setting these parameters influences certain
3095behavior in @value{GDBN}. Similarly, you can define parameters that
3096can be used to influence behavior in custom Python scripts and commands.
3097
3098@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3099The object initializer for @code{Parameter} registers the new
3100parameter with @value{GDBN}. This initializer is normally invoked
3101from the subclass' own @code{__init__} method.
3102
3103@var{name} is the name of the new parameter. If @var{name} consists
3104of multiple words, then the initial words are looked for as prefix
3105parameters. An example of this can be illustrated with the
3106@code{set print} set of parameters. If @var{name} is
3107@code{print foo}, then @code{print} will be searched as the prefix
3108parameter. In this case the parameter can subsequently be accessed in
3109@value{GDBN} as @code{set print foo}.
3110
3111If @var{name} consists of multiple words, and no prefix parameter group
3112can be found, an exception is raised.
3113
3114@var{command-class} should be one of the @samp{COMMAND_} constants
3115(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3116categorize the new parameter in the help system.
3117
3118@var{parameter-class} should be one of the @samp{PARAM_} constants
3119defined below. This argument tells @value{GDBN} the type of the new
3120parameter; this information is used for input validation and
3121completion.
3122
3123If @var{parameter-class} is @code{PARAM_ENUM}, then
3124@var{enum-sequence} must be a sequence of strings. These strings
3125represent the possible values for the parameter.
3126
3127If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3128of a fourth argument will cause an exception to be thrown.
3129
3130The help text for the new parameter is taken from the Python
3131documentation string for the parameter's class, if there is one. If
3132there is no documentation string, a default value is used.
3133@end defun
3134
3135@defvar Parameter.set_doc
3136If this attribute exists, and is a string, then its value is used as
3137the help text for this parameter's @code{set} command. The value is
3138examined when @code{Parameter.__init__} is invoked; subsequent changes
3139have no effect.
3140@end defvar
3141
3142@defvar Parameter.show_doc
3143If this attribute exists, and is a string, then its value is used as
3144the help text for this parameter's @code{show} command. The value is
3145examined when @code{Parameter.__init__} is invoked; subsequent changes
3146have no effect.
3147@end defvar
3148
3149@defvar Parameter.value
3150The @code{value} attribute holds the underlying value of the
3151parameter. It can be read and assigned to just as any other
3152attribute. @value{GDBN} does validation when assignments are made.
3153@end defvar
3154
3155There are two methods that should be implemented in any
3156@code{Parameter} class. These are:
3157
3158@defun Parameter.get_set_string (self)
3159@value{GDBN} will call this method when a @var{parameter}'s value has
3160been changed via the @code{set} API (for example, @kbd{set foo off}).
3161The @code{value} attribute has already been populated with the new
3162value and may be used in output. This method must return a string.
3163@end defun
3164
3165@defun Parameter.get_show_string (self, svalue)
3166@value{GDBN} will call this method when a @var{parameter}'s
3167@code{show} API has been invoked (for example, @kbd{show foo}). The
3168argument @code{svalue} receives the string representation of the
3169current value. This method must return a string.
3170@end defun
3171
3172When a new parameter is defined, its type must be specified. The
3173available types are represented by constants defined in the @code{gdb}
3174module:
3175
3176@table @code
3177@findex PARAM_BOOLEAN
3178@findex gdb.PARAM_BOOLEAN
3179@item gdb.PARAM_BOOLEAN
3180The value is a plain boolean. The Python boolean values, @code{True}
3181and @code{False} are the only valid values.
3182
3183@findex PARAM_AUTO_BOOLEAN
3184@findex gdb.PARAM_AUTO_BOOLEAN
3185@item gdb.PARAM_AUTO_BOOLEAN
3186The value has three possible states: true, false, and @samp{auto}. In
3187Python, true and false are represented using boolean constants, and
3188@samp{auto} is represented using @code{None}.
3189
3190@findex PARAM_UINTEGER
3191@findex gdb.PARAM_UINTEGER
3192@item gdb.PARAM_UINTEGER
3193The value is an unsigned integer. The value of 0 should be
3194interpreted to mean ``unlimited''.
3195
3196@findex PARAM_INTEGER
3197@findex gdb.PARAM_INTEGER
3198@item gdb.PARAM_INTEGER
3199The value is a signed integer. The value of 0 should be interpreted
3200to mean ``unlimited''.
3201
3202@findex PARAM_STRING
3203@findex gdb.PARAM_STRING
3204@item gdb.PARAM_STRING
3205The value is a string. When the user modifies the string, any escape
3206sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3207translated into corresponding characters and encoded into the current
3208host charset.
3209
3210@findex PARAM_STRING_NOESCAPE
3211@findex gdb.PARAM_STRING_NOESCAPE
3212@item gdb.PARAM_STRING_NOESCAPE
3213The value is a string. When the user modifies the string, escapes are
3214passed through untranslated.
3215
3216@findex PARAM_OPTIONAL_FILENAME
3217@findex gdb.PARAM_OPTIONAL_FILENAME
3218@item gdb.PARAM_OPTIONAL_FILENAME
3219The value is a either a filename (a string), or @code{None}.
3220
3221@findex PARAM_FILENAME
3222@findex gdb.PARAM_FILENAME
3223@item gdb.PARAM_FILENAME
3224The value is a filename. This is just like
3225@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3226
3227@findex PARAM_ZINTEGER
3228@findex gdb.PARAM_ZINTEGER
3229@item gdb.PARAM_ZINTEGER
3230The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3231is interpreted as itself.
3232
3233@findex PARAM_ENUM
3234@findex gdb.PARAM_ENUM
3235@item gdb.PARAM_ENUM
3236The value is a string, which must be one of a collection string
3237constants provided when the parameter is created.
3238@end table
3239
3240@node Functions In Python
3241@subsubsection Writing new convenience functions
3242
3243@cindex writing convenience functions
3244@cindex convenience functions in python
3245@cindex python convenience functions
3246@tindex gdb.Function
3247@tindex Function
3248You can implement new convenience functions (@pxref{Convenience Vars})
3249in Python. A convenience function is an instance of a subclass of the
3250class @code{gdb.Function}.
3251
3252@defun Function.__init__ (name)
3253The initializer for @code{Function} registers the new function with
3254@value{GDBN}. The argument @var{name} is the name of the function,
3255a string. The function will be visible to the user as a convenience
3256variable of type @code{internal function}, whose name is the same as
3257the given @var{name}.
3258
3259The documentation for the new function is taken from the documentation
3260string for the new class.
3261@end defun
3262
3263@defun Function.invoke (@var{*args})
3264When a convenience function is evaluated, its arguments are converted
3265to instances of @code{gdb.Value}, and then the function's
3266@code{invoke} method is called. Note that @value{GDBN} does not
3267predetermine the arity of convenience functions. Instead, all
3268available arguments are passed to @code{invoke}, following the
3269standard Python calling convention. In particular, a convenience
3270function can have default values for parameters without ill effect.
3271
3272The return value of this method is used as its value in the enclosing
3273expression. If an ordinary Python value is returned, it is converted
3274to a @code{gdb.Value} following the usual rules.
3275@end defun
3276
3277The following code snippet shows how a trivial convenience function can
3278be implemented in Python:
3279
3280@smallexample
3281class Greet (gdb.Function):
3282 """Return string to greet someone.
3283Takes a name as argument."""
3284
3285 def __init__ (self):
3286 super (Greet, self).__init__ ("greet")
3287
3288 def invoke (self, name):
3289 return "Hello, %s!" % name.string ()
3290
3291Greet ()
3292@end smallexample
3293
3294The last line instantiates the class, and is necessary to trigger the
3295registration of the function with @value{GDBN}. Depending on how the
3296Python code is read into @value{GDBN}, you may need to import the
3297@code{gdb} module explicitly.
3298
3299Now you can use the function in an expression:
3300
3301@smallexample
3302(gdb) print $greet("Bob")
3303$1 = "Hello, Bob!"
3304@end smallexample
3305
3306@node Progspaces In Python
3307@subsubsection Program Spaces In Python
3308
3309@cindex progspaces in python
3310@tindex gdb.Progspace
3311@tindex Progspace
3312A program space, or @dfn{progspace}, represents a symbolic view
3313of an address space.
3314It consists of all of the objfiles of the program.
3315@xref{Objfiles In Python}.
3316@xref{Inferiors and Programs, program spaces}, for more details
3317about program spaces.
3318
3319The following progspace-related functions are available in the
3320@code{gdb} module:
3321
3322@findex gdb.current_progspace
3323@defun gdb.current_progspace ()
3324This function returns the program space of the currently selected inferior.
3325@xref{Inferiors and Programs}.
3326@end defun
3327
3328@findex gdb.progspaces
3329@defun gdb.progspaces ()
3330Return a sequence of all the progspaces currently known to @value{GDBN}.
3331@end defun
3332
3333Each progspace is represented by an instance of the @code{gdb.Progspace}
3334class.
3335
3336@defvar Progspace.filename
3337The file name of the progspace as a string.
3338@end defvar
3339
3340@defvar Progspace.pretty_printers
3341The @code{pretty_printers} attribute is a list of functions. It is
3342used to look up pretty-printers. A @code{Value} is passed to each
3343function in order; if the function returns @code{None}, then the
3344search continues. Otherwise, the return value should be an object
3345which is used to format the value. @xref{Pretty Printing API}, for more
3346information.
3347@end defvar
3348
3349@defvar Progspace.type_printers
3350The @code{type_printers} attribute is a list of type printer objects.
3351@xref{Type Printing API}, for more information.
3352@end defvar
3353
3354@defvar Progspace.frame_filters
3355The @code{frame_filters} attribute is a dictionary of frame filter
3356objects. @xref{Frame Filter API}, for more information.
3357@end defvar
3358
3359@node Objfiles In Python
3360@subsubsection Objfiles In Python
3361
3362@cindex objfiles in python
3363@tindex gdb.Objfile
3364@tindex Objfile
3365@value{GDBN} loads symbols for an inferior from various
3366symbol-containing files (@pxref{Files}). These include the primary
3367executable file, any shared libraries used by the inferior, and any
3368separate debug info files (@pxref{Separate Debug Files}).
3369@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
3370
3371The following objfile-related functions are available in the
3372@code{gdb} module:
3373
3374@findex gdb.current_objfile
3375@defun gdb.current_objfile ()
3376When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
3377sets the ``current objfile'' to the corresponding objfile. This
3378function returns the current objfile. If there is no current objfile,
3379this function returns @code{None}.
3380@end defun
3381
3382@findex gdb.objfiles
3383@defun gdb.objfiles ()
3384Return a sequence of all the objfiles current known to @value{GDBN}.
3385@xref{Objfiles In Python}.
3386@end defun
3387
3388Each objfile is represented by an instance of the @code{gdb.Objfile}
3389class.
3390
3391@defvar Objfile.filename
3392The file name of the objfile as a string.
3393@end defvar
3394
3395@defvar Objfile.pretty_printers
3396The @code{pretty_printers} attribute is a list of functions. It is
3397used to look up pretty-printers. A @code{Value} is passed to each
3398function in order; if the function returns @code{None}, then the
3399search continues. Otherwise, the return value should be an object
3400which is used to format the value. @xref{Pretty Printing API}, for more
3401information.
3402@end defvar
3403
3404@defvar Objfile.type_printers
3405The @code{type_printers} attribute is a list of type printer objects.
3406@xref{Type Printing API}, for more information.
3407@end defvar
3408
3409@defvar Objfile.frame_filters
3410The @code{frame_filters} attribute is a dictionary of frame filter
3411objects. @xref{Frame Filter API}, for more information.
3412@end defvar
3413
3414A @code{gdb.Objfile} object has the following methods:
3415
3416@defun Objfile.is_valid ()
3417Returns @code{True} if the @code{gdb.Objfile} object is valid,
3418@code{False} if not. A @code{gdb.Objfile} object can become invalid
3419if the object file it refers to is not loaded in @value{GDBN} any
3420longer. All other @code{gdb.Objfile} methods will throw an exception
3421if it is invalid at the time the method is called.
3422@end defun
3423
3424@node Frames In Python
3425@subsubsection Accessing inferior stack frames from Python.
3426
3427@cindex frames in python
3428When the debugged program stops, @value{GDBN} is able to analyze its call
3429stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
3430represents a frame in the stack. A @code{gdb.Frame} object is only valid
3431while its corresponding frame exists in the inferior's stack. If you try
3432to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
3433exception (@pxref{Exception Handling}).
3434
3435Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
3436operator, like:
3437
3438@smallexample
3439(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
3440True
3441@end smallexample
3442
3443The following frame-related functions are available in the @code{gdb} module:
3444
3445@findex gdb.selected_frame
3446@defun gdb.selected_frame ()
3447Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
3448@end defun
3449
3450@findex gdb.newest_frame
3451@defun gdb.newest_frame ()
3452Return the newest frame object for the selected thread.
3453@end defun
3454
3455@defun gdb.frame_stop_reason_string (reason)
3456Return a string explaining the reason why @value{GDBN} stopped unwinding
3457frames, as expressed by the given @var{reason} code (an integer, see the
3458@code{unwind_stop_reason} method further down in this section).
3459@end defun
3460
3461A @code{gdb.Frame} object has the following methods:
3462
3463@defun Frame.is_valid ()
3464Returns true if the @code{gdb.Frame} object is valid, false if not.
3465A frame object can become invalid if the frame it refers to doesn't
3466exist anymore in the inferior. All @code{gdb.Frame} methods will throw
3467an exception if it is invalid at the time the method is called.
3468@end defun
3469
3470@defun Frame.name ()
3471Returns the function name of the frame, or @code{None} if it can't be
3472obtained.
3473@end defun
3474
3475@defun Frame.architecture ()
3476Returns the @code{gdb.Architecture} object corresponding to the frame's
3477architecture. @xref{Architectures In Python}.
3478@end defun
3479
3480@defun Frame.type ()
3481Returns the type of the frame. The value can be one of:
3482@table @code
3483@item gdb.NORMAL_FRAME
3484An ordinary stack frame.
3485
3486@item gdb.DUMMY_FRAME
3487A fake stack frame that was created by @value{GDBN} when performing an
3488inferior function call.
3489
3490@item gdb.INLINE_FRAME
3491A frame representing an inlined function. The function was inlined
3492into a @code{gdb.NORMAL_FRAME} that is older than this one.
3493
3494@item gdb.TAILCALL_FRAME
3495A frame representing a tail call. @xref{Tail Call Frames}.
3496
3497@item gdb.SIGTRAMP_FRAME
3498A signal trampoline frame. This is the frame created by the OS when
3499it calls into a signal handler.
3500
3501@item gdb.ARCH_FRAME
3502A fake stack frame representing a cross-architecture call.
3503
3504@item gdb.SENTINEL_FRAME
3505This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
3506newest frame.
3507@end table
3508@end defun
3509
3510@defun Frame.unwind_stop_reason ()
3511Return an integer representing the reason why it's not possible to find
3512more frames toward the outermost frame. Use
3513@code{gdb.frame_stop_reason_string} to convert the value returned by this
3514function to a string. The value can be one of:
3515
3516@table @code
3517@item gdb.FRAME_UNWIND_NO_REASON
3518No particular reason (older frames should be available).
3519
3520@item gdb.FRAME_UNWIND_NULL_ID
3521The previous frame's analyzer returns an invalid result. This is no
3522longer used by @value{GDBN}, and is kept only for backward
3523compatibility.
3524
3525@item gdb.FRAME_UNWIND_OUTERMOST
3526This frame is the outermost.
3527
3528@item gdb.FRAME_UNWIND_UNAVAILABLE
3529Cannot unwind further, because that would require knowing the
3530values of registers or memory that have not been collected.
3531
3532@item gdb.FRAME_UNWIND_INNER_ID
3533This frame ID looks like it ought to belong to a NEXT frame,
3534but we got it for a PREV frame. Normally, this is a sign of
3535unwinder failure. It could also indicate stack corruption.
3536
3537@item gdb.FRAME_UNWIND_SAME_ID
3538This frame has the same ID as the previous one. That means
3539that unwinding further would almost certainly give us another
3540frame with exactly the same ID, so break the chain. Normally,
3541this is a sign of unwinder failure. It could also indicate
3542stack corruption.
3543
3544@item gdb.FRAME_UNWIND_NO_SAVED_PC
3545The frame unwinder did not find any saved PC, but we needed
3546one to unwind further.
3547
53e8a631
AB
3548@item gdb.FRAME_UNWIND_MEMORY_ERROR
3549The frame unwinder caused an error while trying to access memory.
3550
329baa95
DE
3551@item gdb.FRAME_UNWIND_FIRST_ERROR
3552Any stop reason greater or equal to this value indicates some kind
3553of error. This special value facilitates writing code that tests
3554for errors in unwinding in a way that will work correctly even if
3555the list of the other values is modified in future @value{GDBN}
3556versions. Using it, you could write:
3557@smallexample
3558reason = gdb.selected_frame().unwind_stop_reason ()
3559reason_str = gdb.frame_stop_reason_string (reason)
3560if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
3561 print "An error occured: %s" % reason_str
3562@end smallexample
3563@end table
3564
3565@end defun
3566
3567@defun Frame.pc ()
3568Returns the frame's resume address.
3569@end defun
3570
3571@defun Frame.block ()
3572Return the frame's code block. @xref{Blocks In Python}.
3573@end defun
3574
3575@defun Frame.function ()
3576Return the symbol for the function corresponding to this frame.
3577@xref{Symbols In Python}.
3578@end defun
3579
3580@defun Frame.older ()
3581Return the frame that called this frame.
3582@end defun
3583
3584@defun Frame.newer ()
3585Return the frame called by this frame.
3586@end defun
3587
3588@defun Frame.find_sal ()
3589Return the frame's symtab and line object.
3590@xref{Symbol Tables In Python}.
3591@end defun
3592
5f3b99cf
SS
3593@defun Frame.read_register (register)
3594Return the value of @var{register} in this frame. The @var{register}
3595argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
3596Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
3597does not exist.
3598@end defun
3599
329baa95
DE
3600@defun Frame.read_var (variable @r{[}, block@r{]})
3601Return the value of @var{variable} in this frame. If the optional
3602argument @var{block} is provided, search for the variable from that
3603block; otherwise start at the frame's current block (which is
697aa1b7
EZ
3604determined by the frame's current program counter). The @var{variable}
3605argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
3606@code{gdb.Block} object.
3607@end defun
3608
3609@defun Frame.select ()
3610Set this frame to be the selected frame. @xref{Stack, ,Examining the
3611Stack}.
3612@end defun
3613
3614@node Blocks In Python
3615@subsubsection Accessing blocks from Python.
3616
3617@cindex blocks in python
3618@tindex gdb.Block
3619
3620In @value{GDBN}, symbols are stored in blocks. A block corresponds
3621roughly to a scope in the source code. Blocks are organized
3622hierarchically, and are represented individually in Python as a
3623@code{gdb.Block}. Blocks rely on debugging information being
3624available.
3625
3626A frame has a block. Please see @ref{Frames In Python}, for a more
3627in-depth discussion of frames.
3628
3629The outermost block is known as the @dfn{global block}. The global
3630block typically holds public global variables and functions.
3631
3632The block nested just inside the global block is the @dfn{static
3633block}. The static block typically holds file-scoped variables and
3634functions.
3635
3636@value{GDBN} provides a method to get a block's superblock, but there
3637is currently no way to examine the sub-blocks of a block, or to
3638iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
3639Python}).
3640
3641Here is a short example that should help explain blocks:
3642
3643@smallexample
3644/* This is in the global block. */
3645int global;
3646
3647/* This is in the static block. */
3648static int file_scope;
3649
3650/* 'function' is in the global block, and 'argument' is
3651 in a block nested inside of 'function'. */
3652int function (int argument)
3653@{
3654 /* 'local' is in a block inside 'function'. It may or may
3655 not be in the same block as 'argument'. */
3656 int local;
3657
3658 @{
3659 /* 'inner' is in a block whose superblock is the one holding
3660 'local'. */
3661 int inner;
3662
3663 /* If this call is expanded by the compiler, you may see
3664 a nested block here whose function is 'inline_function'
3665 and whose superblock is the one holding 'inner'. */
3666 inline_function ();
3667 @}
3668@}
3669@end smallexample
3670
3671A @code{gdb.Block} is iterable. The iterator returns the symbols
3672(@pxref{Symbols In Python}) local to the block. Python programs
3673should not assume that a specific block object will always contain a
3674given symbol, since changes in @value{GDBN} features and
3675infrastructure may cause symbols move across blocks in a symbol
3676table.
3677
3678The following block-related functions are available in the @code{gdb}
3679module:
3680
3681@findex gdb.block_for_pc
3682@defun gdb.block_for_pc (pc)
3683Return the innermost @code{gdb.Block} containing the given @var{pc}
3684value. If the block cannot be found for the @var{pc} value specified,
3685the function will return @code{None}.
3686@end defun
3687
3688A @code{gdb.Block} object has the following methods:
3689
3690@defun Block.is_valid ()
3691Returns @code{True} if the @code{gdb.Block} object is valid,
3692@code{False} if not. A block object can become invalid if the block it
3693refers to doesn't exist anymore in the inferior. All other
3694@code{gdb.Block} methods will throw an exception if it is invalid at
3695the time the method is called. The block's validity is also checked
3696during iteration over symbols of the block.
3697@end defun
3698
3699A @code{gdb.Block} object has the following attributes:
3700
3701@defvar Block.start
3702The start address of the block. This attribute is not writable.
3703@end defvar
3704
3705@defvar Block.end
3706The end address of the block. This attribute is not writable.
3707@end defvar
3708
3709@defvar Block.function
3710The name of the block represented as a @code{gdb.Symbol}. If the
3711block is not named, then this attribute holds @code{None}. This
3712attribute is not writable.
3713
3714For ordinary function blocks, the superblock is the static block.
3715However, you should note that it is possible for a function block to
3716have a superblock that is not the static block -- for instance this
3717happens for an inlined function.
3718@end defvar
3719
3720@defvar Block.superblock
3721The block containing this block. If this parent block does not exist,
3722this attribute holds @code{None}. This attribute is not writable.
3723@end defvar
3724
3725@defvar Block.global_block
3726The global block associated with this block. This attribute is not
3727writable.
3728@end defvar
3729
3730@defvar Block.static_block
3731The static block associated with this block. This attribute is not
3732writable.
3733@end defvar
3734
3735@defvar Block.is_global
3736@code{True} if the @code{gdb.Block} object is a global block,
3737@code{False} if not. This attribute is not
3738writable.
3739@end defvar
3740
3741@defvar Block.is_static
3742@code{True} if the @code{gdb.Block} object is a static block,
3743@code{False} if not. This attribute is not writable.
3744@end defvar
3745
3746@node Symbols In Python
3747@subsubsection Python representation of Symbols.
3748
3749@cindex symbols in python
3750@tindex gdb.Symbol
3751
3752@value{GDBN} represents every variable, function and type as an
3753entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
3754Similarly, Python represents these symbols in @value{GDBN} with the
3755@code{gdb.Symbol} object.
3756
3757The following symbol-related functions are available in the @code{gdb}
3758module:
3759
3760@findex gdb.lookup_symbol
3761@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
3762This function searches for a symbol by name. The search scope can be
3763restricted to the parameters defined in the optional domain and block
3764arguments.
3765
3766@var{name} is the name of the symbol. It must be a string. The
3767optional @var{block} argument restricts the search to symbols visible
3768in that @var{block}. The @var{block} argument must be a
3769@code{gdb.Block} object. If omitted, the block for the current frame
3770is used. The optional @var{domain} argument restricts
3771the search to the domain type. The @var{domain} argument must be a
3772domain constant defined in the @code{gdb} module and described later
3773in this chapter.
3774
3775The result is a tuple of two elements.
3776The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
3777is not found.
3778If the symbol is found, the second element is @code{True} if the symbol
3779is a field of a method's object (e.g., @code{this} in C@t{++}),
3780otherwise it is @code{False}.
3781If the symbol is not found, the second element is @code{False}.
3782@end defun
3783
3784@findex gdb.lookup_global_symbol
3785@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
3786This function searches for a global symbol by name.
3787The search scope can be restricted to by the domain argument.
3788
3789@var{name} is the name of the symbol. It must be a string.
3790The optional @var{domain} argument restricts the search to the domain type.
3791The @var{domain} argument must be a domain constant defined in the @code{gdb}
3792module and described later in this chapter.
3793
3794The result is a @code{gdb.Symbol} object or @code{None} if the symbol
3795is not found.
3796@end defun
3797
3798A @code{gdb.Symbol} object has the following attributes:
3799
3800@defvar Symbol.type
3801The type of the symbol or @code{None} if no type is recorded.
3802This attribute is represented as a @code{gdb.Type} object.
3803@xref{Types In Python}. This attribute is not writable.
3804@end defvar
3805
3806@defvar Symbol.symtab
3807The symbol table in which the symbol appears. This attribute is
3808represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
3809Python}. This attribute is not writable.
3810@end defvar
3811
3812@defvar Symbol.line
3813The line number in the source code at which the symbol was defined.
3814This is an integer.
3815@end defvar
3816
3817@defvar Symbol.name
3818The name of the symbol as a string. This attribute is not writable.
3819@end defvar
3820
3821@defvar Symbol.linkage_name
3822The name of the symbol, as used by the linker (i.e., may be mangled).
3823This attribute is not writable.
3824@end defvar
3825
3826@defvar Symbol.print_name
3827The name of the symbol in a form suitable for output. This is either
3828@code{name} or @code{linkage_name}, depending on whether the user
3829asked @value{GDBN} to display demangled or mangled names.
3830@end defvar
3831
3832@defvar Symbol.addr_class
3833The address class of the symbol. This classifies how to find the value
3834of a symbol. Each address class is a constant defined in the
3835@code{gdb} module and described later in this chapter.
3836@end defvar
3837
3838@defvar Symbol.needs_frame
3839This is @code{True} if evaluating this symbol's value requires a frame
3840(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
3841local variables will require a frame, but other symbols will not.
3842@end defvar
3843
3844@defvar Symbol.is_argument
3845@code{True} if the symbol is an argument of a function.
3846@end defvar
3847
3848@defvar Symbol.is_constant
3849@code{True} if the symbol is a constant.
3850@end defvar
3851
3852@defvar Symbol.is_function
3853@code{True} if the symbol is a function or a method.
3854@end defvar
3855
3856@defvar Symbol.is_variable
3857@code{True} if the symbol is a variable.
3858@end defvar
3859
3860A @code{gdb.Symbol} object has the following methods:
3861
3862@defun Symbol.is_valid ()
3863Returns @code{True} if the @code{gdb.Symbol} object is valid,
3864@code{False} if not. A @code{gdb.Symbol} object can become invalid if
3865the symbol it refers to does not exist in @value{GDBN} any longer.
3866All other @code{gdb.Symbol} methods will throw an exception if it is
3867invalid at the time the method is called.
3868@end defun
3869
3870@defun Symbol.value (@r{[}frame@r{]})
3871Compute the value of the symbol, as a @code{gdb.Value}. For
3872functions, this computes the address of the function, cast to the
3873appropriate type. If the symbol requires a frame in order to compute
3874its value, then @var{frame} must be given. If @var{frame} is not
3875given, or if @var{frame} is invalid, then this method will throw an
3876exception.
3877@end defun
3878
3879The available domain categories in @code{gdb.Symbol} are represented
3880as constants in the @code{gdb} module:
3881
b3ce5e5f
DE
3882@vtable @code
3883@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
3884@item gdb.SYMBOL_UNDEF_DOMAIN
3885This is used when a domain has not been discovered or none of the
3886following domains apply. This usually indicates an error either
3887in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
3888
3889@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
3890@item gdb.SYMBOL_VAR_DOMAIN
3891This domain contains variables, function names, typedef names and enum
3892type values.
b3ce5e5f
DE
3893
3894@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
3895@item gdb.SYMBOL_STRUCT_DOMAIN
3896This domain holds struct, union and enum type names.
b3ce5e5f
DE
3897
3898@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
3899@item gdb.SYMBOL_LABEL_DOMAIN
3900This domain contains names of labels (for gotos).
b3ce5e5f
DE
3901
3902@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
3903@item gdb.SYMBOL_VARIABLES_DOMAIN
3904This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
3905contains everything minus functions and types.
b3ce5e5f
DE
3906
3907@vindex SYMBOL_FUNCTIONS_DOMAIN
329baa95
DE
3908@item gdb.SYMBOL_FUNCTION_DOMAIN
3909This domain contains all functions.
b3ce5e5f
DE
3910
3911@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
3912@item gdb.SYMBOL_TYPES_DOMAIN
3913This domain contains all types.
b3ce5e5f 3914@end vtable
329baa95
DE
3915
3916The available address class categories in @code{gdb.Symbol} are represented
3917as constants in the @code{gdb} module:
3918
b3ce5e5f
DE
3919@vtable @code
3920@vindex SYMBOL_LOC_UNDEF
329baa95
DE
3921@item gdb.SYMBOL_LOC_UNDEF
3922If this is returned by address class, it indicates an error either in
3923the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
3924
3925@vindex SYMBOL_LOC_CONST
329baa95
DE
3926@item gdb.SYMBOL_LOC_CONST
3927Value is constant int.
b3ce5e5f
DE
3928
3929@vindex SYMBOL_LOC_STATIC
329baa95
DE
3930@item gdb.SYMBOL_LOC_STATIC
3931Value is at a fixed address.
b3ce5e5f
DE
3932
3933@vindex SYMBOL_LOC_REGISTER
329baa95
DE
3934@item gdb.SYMBOL_LOC_REGISTER
3935Value is in a register.
b3ce5e5f
DE
3936
3937@vindex SYMBOL_LOC_ARG
329baa95
DE
3938@item gdb.SYMBOL_LOC_ARG
3939Value is an argument. This value is at the offset stored within the
3940symbol inside the frame's argument list.
b3ce5e5f
DE
3941
3942@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
3943@item gdb.SYMBOL_LOC_REF_ARG
3944Value address is stored in the frame's argument list. Just like
3945@code{LOC_ARG} except that the value's address is stored at the
3946offset, not the value itself.
b3ce5e5f
DE
3947
3948@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
3949@item gdb.SYMBOL_LOC_REGPARM_ADDR
3950Value is a specified register. Just like @code{LOC_REGISTER} except
3951the register holds the address of the argument instead of the argument
3952itself.
b3ce5e5f
DE
3953
3954@vindex SYMBOL_LOC_LOCAL
329baa95
DE
3955@item gdb.SYMBOL_LOC_LOCAL
3956Value is a local variable.
b3ce5e5f
DE
3957
3958@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
3959@item gdb.SYMBOL_LOC_TYPEDEF
3960Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
3961have this class.
b3ce5e5f
DE
3962
3963@vindex SYMBOL_LOC_BLOCK
329baa95
DE
3964@item gdb.SYMBOL_LOC_BLOCK
3965Value is a block.
b3ce5e5f
DE
3966
3967@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
3968@item gdb.SYMBOL_LOC_CONST_BYTES
3969Value is a byte-sequence.
b3ce5e5f
DE
3970
3971@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
3972@item gdb.SYMBOL_LOC_UNRESOLVED
3973Value is at a fixed address, but the address of the variable has to be
3974determined from the minimal symbol table whenever the variable is
3975referenced.
b3ce5e5f
DE
3976
3977@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
3978@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
3979The value does not actually exist in the program.
b3ce5e5f
DE
3980
3981@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
3982@item gdb.SYMBOL_LOC_COMPUTED
3983The value's address is a computed location.
b3ce5e5f 3984@end vtable
329baa95
DE
3985
3986@node Symbol Tables In Python
3987@subsubsection Symbol table representation in Python.
3988
3989@cindex symbol tables in python
3990@tindex gdb.Symtab
3991@tindex gdb.Symtab_and_line
3992
3993Access to symbol table data maintained by @value{GDBN} on the inferior
3994is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
3995@code{gdb.Symtab}. Symbol table and line data for a frame is returned
3996from the @code{find_sal} method in @code{gdb.Frame} object.
3997@xref{Frames In Python}.
3998
3999For more information on @value{GDBN}'s symbol table management, see
4000@ref{Symbols, ,Examining the Symbol Table}, for more information.
4001
4002A @code{gdb.Symtab_and_line} object has the following attributes:
4003
4004@defvar Symtab_and_line.symtab
4005The symbol table object (@code{gdb.Symtab}) for this frame.
4006This attribute is not writable.
4007@end defvar
4008
4009@defvar Symtab_and_line.pc
4010Indicates the start of the address range occupied by code for the
4011current source line. This attribute is not writable.
4012@end defvar
4013
4014@defvar Symtab_and_line.last
4015Indicates the end of the address range occupied by code for the current
4016source line. This attribute is not writable.
4017@end defvar
4018
4019@defvar Symtab_and_line.line
4020Indicates the current line number for this object. This
4021attribute is not writable.
4022@end defvar
4023
4024A @code{gdb.Symtab_and_line} object has the following methods:
4025
4026@defun Symtab_and_line.is_valid ()
4027Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4028@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4029invalid if the Symbol table and line object it refers to does not
4030exist in @value{GDBN} any longer. All other
4031@code{gdb.Symtab_and_line} methods will throw an exception if it is
4032invalid at the time the method is called.
4033@end defun
4034
4035A @code{gdb.Symtab} object has the following attributes:
4036
4037@defvar Symtab.filename
4038The symbol table's source filename. This attribute is not writable.
4039@end defvar
4040
4041@defvar Symtab.objfile
4042The symbol table's backing object file. @xref{Objfiles In Python}.
4043This attribute is not writable.
4044@end defvar
4045
2b4fd423
DE
4046@defvar Symtab.producer
4047The name and possibly version number of the program that
4048compiled the code in the symbol table.
4049The contents of this string is up to the compiler.
4050If no producer information is available then @code{None} is returned.
4051This attribute is not writable.
4052@end defvar
4053
329baa95
DE
4054A @code{gdb.Symtab} object has the following methods:
4055
4056@defun Symtab.is_valid ()
4057Returns @code{True} if the @code{gdb.Symtab} object is valid,
4058@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4059the symbol table it refers to does not exist in @value{GDBN} any
4060longer. All other @code{gdb.Symtab} methods will throw an exception
4061if it is invalid at the time the method is called.
4062@end defun
4063
4064@defun Symtab.fullname ()
4065Return the symbol table's source absolute file name.
4066@end defun
4067
4068@defun Symtab.global_block ()
4069Return the global block of the underlying symbol table.
4070@xref{Blocks In Python}.
4071@end defun
4072
4073@defun Symtab.static_block ()
4074Return the static block of the underlying symbol table.
4075@xref{Blocks In Python}.
4076@end defun
4077
4078@defun Symtab.linetable ()
4079Return the line table associated with the symbol table.
4080@xref{Line Tables In Python}.
4081@end defun
4082
4083@node Line Tables In Python
4084@subsubsection Manipulating line tables using Python
4085
4086@cindex line tables in python
4087@tindex gdb.LineTable
4088
4089Python code can request and inspect line table information from a
4090symbol table that is loaded in @value{GDBN}. A line table is a
4091mapping of source lines to their executable locations in memory. To
4092acquire the line table information for a particular symbol table, use
4093the @code{linetable} function (@pxref{Symbol Tables In Python}).
4094
4095A @code{gdb.LineTable} is iterable. The iterator returns
4096@code{LineTableEntry} objects that correspond to the source line and
4097address for each line table entry. @code{LineTableEntry} objects have
4098the following attributes:
4099
4100@defvar LineTableEntry.line
4101The source line number for this line table entry. This number
4102corresponds to the actual line of source. This attribute is not
4103writable.
4104@end defvar
4105
4106@defvar LineTableEntry.pc
4107The address that is associated with the line table entry where the
4108executable code for that source line resides in memory. This
4109attribute is not writable.
4110@end defvar
4111
4112As there can be multiple addresses for a single source line, you may
4113receive multiple @code{LineTableEntry} objects with matching
4114@code{line} attributes, but with different @code{pc} attributes. The
4115iterator is sorted in ascending @code{pc} order. Here is a small
4116example illustrating iterating over a line table.
4117
4118@smallexample
4119symtab = gdb.selected_frame().find_sal().symtab
4120linetable = symtab.linetable()
4121for line in linetable:
4122 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4123@end smallexample
4124
4125This will have the following output:
4126
4127@smallexample
4128Line: 33 Address: 0x4005c8L
4129Line: 37 Address: 0x4005caL
4130Line: 39 Address: 0x4005d2L
4131Line: 40 Address: 0x4005f8L
4132Line: 42 Address: 0x4005ffL
4133Line: 44 Address: 0x400608L
4134Line: 42 Address: 0x40060cL
4135Line: 45 Address: 0x400615L
4136@end smallexample
4137
4138In addition to being able to iterate over a @code{LineTable}, it also
4139has the following direct access methods:
4140
4141@defun LineTable.line (line)
4142Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4143entries in the line table for the given @var{line}, which specifies
4144the source code line. If there are no entries for that source code
329baa95
DE
4145@var{line}, the Python @code{None} is returned.
4146@end defun
4147
4148@defun LineTable.has_line (line)
4149Return a Python @code{Boolean} indicating whether there is an entry in
4150the line table for this source line. Return @code{True} if an entry
4151is found, or @code{False} if not.
4152@end defun
4153
4154@defun LineTable.source_lines ()
4155Return a Python @code{List} of the source line numbers in the symbol
4156table. Only lines with executable code locations are returned. The
4157contents of the @code{List} will just be the source line entries
4158represented as Python @code{Long} values.
4159@end defun
4160
4161@node Breakpoints In Python
4162@subsubsection Manipulating breakpoints using Python
4163
4164@cindex breakpoints in python
4165@tindex gdb.Breakpoint
4166
4167Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4168class.
4169
4170@defun Breakpoint.__init__ (spec @r{[}, type @r{[}, wp_class @r{[},internal @r{[},temporary@r{]]]]})
697aa1b7
EZ
4171Create a new breakpoint according to @var{spec}, which is a string
4172naming the location of the breakpoint, or an expression that defines a
4173watchpoint. The contents can be any location recognized by the
4174@code{break} command, or in the case of a watchpoint, by the
4175@code{watch} command. The optional @var{type} denotes the breakpoint
4176to create from the types defined later in this chapter. This argument
4177can be either @code{gdb.BP_BREAKPOINT} or @code{gdb.BP_WATCHPOINT}; it
329baa95
DE
4178defaults to @code{gdb.BP_BREAKPOINT}. The optional @var{internal}
4179argument allows the breakpoint to become invisible to the user. The
4180breakpoint will neither be reported when created, nor will it be
4181listed in the output from @code{info breakpoints} (but will be listed
4182with the @code{maint info breakpoints} command). The optional
4183@var{temporary} argument makes the breakpoint a temporary breakpoint.
4184Temporary breakpoints are deleted after they have been hit. Any
4185further access to the Python breakpoint after it has been hit will
4186result in a runtime error (as that breakpoint has now been
4187automatically deleted). The optional @var{wp_class} argument defines
4188the class of watchpoint to create, if @var{type} is
4189@code{gdb.BP_WATCHPOINT}. If a watchpoint class is not provided, it
4190is assumed to be a @code{gdb.WP_WRITE} class.
4191@end defun
4192
4193@defun Breakpoint.stop (self)
4194The @code{gdb.Breakpoint} class can be sub-classed and, in
4195particular, you may choose to implement the @code{stop} method.
4196If this method is defined in a sub-class of @code{gdb.Breakpoint},
4197it will be called when the inferior reaches any location of a
4198breakpoint which instantiates that sub-class. If the method returns
4199@code{True}, the inferior will be stopped at the location of the
4200breakpoint, otherwise the inferior will continue.
4201
4202If there are multiple breakpoints at the same location with a
4203@code{stop} method, each one will be called regardless of the
4204return status of the previous. This ensures that all @code{stop}
4205methods have a chance to execute at that location. In this scenario
4206if one of the methods returns @code{True} but the others return
4207@code{False}, the inferior will still be stopped.
4208
4209You should not alter the execution state of the inferior (i.e.@:, step,
4210next, etc.), alter the current frame context (i.e.@:, change the current
4211active frame), or alter, add or delete any breakpoint. As a general
4212rule, you should not alter any data within @value{GDBN} or the inferior
4213at this time.
4214
4215Example @code{stop} implementation:
4216
4217@smallexample
4218class MyBreakpoint (gdb.Breakpoint):
4219 def stop (self):
4220 inf_val = gdb.parse_and_eval("foo")
4221 if inf_val == 3:
4222 return True
4223 return False
4224@end smallexample
4225@end defun
4226
4227The available watchpoint types represented by constants are defined in the
4228@code{gdb} module:
4229
b3ce5e5f
DE
4230@vtable @code
4231@vindex WP_READ
329baa95
DE
4232@item gdb.WP_READ
4233Read only watchpoint.
4234
b3ce5e5f 4235@vindex WP_WRITE
329baa95
DE
4236@item gdb.WP_WRITE
4237Write only watchpoint.
4238
b3ce5e5f 4239@vindex WP_ACCESS
329baa95
DE
4240@item gdb.WP_ACCESS
4241Read/Write watchpoint.
b3ce5e5f 4242@end vtable
329baa95
DE
4243
4244@defun Breakpoint.is_valid ()
4245Return @code{True} if this @code{Breakpoint} object is valid,
4246@code{False} otherwise. A @code{Breakpoint} object can become invalid
4247if the user deletes the breakpoint. In this case, the object still
4248exists, but the underlying breakpoint does not. In the cases of
4249watchpoint scope, the watchpoint remains valid even if execution of the
4250inferior leaves the scope of that watchpoint.
4251@end defun
4252
4253@defun Breakpoint.delete
4254Permanently deletes the @value{GDBN} breakpoint. This also
4255invalidates the Python @code{Breakpoint} object. Any further access
4256to this object's attributes or methods will raise an error.
4257@end defun
4258
4259@defvar Breakpoint.enabled
4260This attribute is @code{True} if the breakpoint is enabled, and
4261@code{False} otherwise. This attribute is writable.
4262@end defvar
4263
4264@defvar Breakpoint.silent
4265This attribute is @code{True} if the breakpoint is silent, and
4266@code{False} otherwise. This attribute is writable.
4267
4268Note that a breakpoint can also be silent if it has commands and the
4269first command is @code{silent}. This is not reported by the
4270@code{silent} attribute.
4271@end defvar
4272
4273@defvar Breakpoint.thread
4274If the breakpoint is thread-specific, this attribute holds the thread
4275id. If the breakpoint is not thread-specific, this attribute is
4276@code{None}. This attribute is writable.
4277@end defvar
4278
4279@defvar Breakpoint.task
4280If the breakpoint is Ada task-specific, this attribute holds the Ada task
4281id. If the breakpoint is not task-specific (or the underlying
4282language is not Ada), this attribute is @code{None}. This attribute
4283is writable.
4284@end defvar
4285
4286@defvar Breakpoint.ignore_count
4287This attribute holds the ignore count for the breakpoint, an integer.
4288This attribute is writable.
4289@end defvar
4290
4291@defvar Breakpoint.number
4292This attribute holds the breakpoint's number --- the identifier used by
4293the user to manipulate the breakpoint. This attribute is not writable.
4294@end defvar
4295
4296@defvar Breakpoint.type
4297This attribute holds the breakpoint's type --- the identifier used to
4298determine the actual breakpoint type or use-case. This attribute is not
4299writable.
4300@end defvar
4301
4302@defvar Breakpoint.visible
4303This attribute tells whether the breakpoint is visible to the user
4304when set, or when the @samp{info breakpoints} command is run. This
4305attribute is not writable.
4306@end defvar
4307
4308@defvar Breakpoint.temporary
4309This attribute indicates whether the breakpoint was created as a
4310temporary breakpoint. Temporary breakpoints are automatically deleted
4311after that breakpoint has been hit. Access to this attribute, and all
4312other attributes and functions other than the @code{is_valid}
4313function, will result in an error after the breakpoint has been hit
4314(as it has been automatically deleted). This attribute is not
4315writable.
4316@end defvar
4317
4318The available types are represented by constants defined in the @code{gdb}
4319module:
4320
b3ce5e5f
DE
4321@vtable @code
4322@vindex BP_BREAKPOINT
329baa95
DE
4323@item gdb.BP_BREAKPOINT
4324Normal code breakpoint.
4325
b3ce5e5f 4326@vindex BP_WATCHPOINT
329baa95
DE
4327@item gdb.BP_WATCHPOINT
4328Watchpoint breakpoint.
4329
b3ce5e5f 4330@vindex BP_HARDWARE_WATCHPOINT
329baa95
DE
4331@item gdb.BP_HARDWARE_WATCHPOINT
4332Hardware assisted watchpoint.
4333
b3ce5e5f 4334@vindex BP_READ_WATCHPOINT
329baa95
DE
4335@item gdb.BP_READ_WATCHPOINT
4336Hardware assisted read watchpoint.
4337
b3ce5e5f 4338@vindex BP_ACCESS_WATCHPOINT
329baa95
DE
4339@item gdb.BP_ACCESS_WATCHPOINT
4340Hardware assisted access watchpoint.
b3ce5e5f 4341@end vtable
329baa95
DE
4342
4343@defvar Breakpoint.hit_count
4344This attribute holds the hit count for the breakpoint, an integer.
4345This attribute is writable, but currently it can only be set to zero.
4346@end defvar
4347
4348@defvar Breakpoint.location
4349This attribute holds the location of the breakpoint, as specified by
4350the user. It is a string. If the breakpoint does not have a location
4351(that is, it is a watchpoint) the attribute's value is @code{None}. This
4352attribute is not writable.
4353@end defvar
4354
4355@defvar Breakpoint.expression
4356This attribute holds a breakpoint expression, as specified by
4357the user. It is a string. If the breakpoint does not have an
4358expression (the breakpoint is not a watchpoint) the attribute's value
4359is @code{None}. This attribute is not writable.
4360@end defvar
4361
4362@defvar Breakpoint.condition
4363This attribute holds the condition of the breakpoint, as specified by
4364the user. It is a string. If there is no condition, this attribute's
4365value is @code{None}. This attribute is writable.
4366@end defvar
4367
4368@defvar Breakpoint.commands
4369This attribute holds the commands attached to the breakpoint. If
4370there are commands, this attribute's value is a string holding all the
4371commands, separated by newlines. If there are no commands, this
4372attribute is @code{None}. This attribute is not writable.
4373@end defvar
4374
4375@node Finish Breakpoints in Python
4376@subsubsection Finish Breakpoints
4377
4378@cindex python finish breakpoints
4379@tindex gdb.FinishBreakpoint
4380
4381A finish breakpoint is a temporary breakpoint set at the return address of
4382a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
4383extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
4384and deleted when the execution will run out of the breakpoint scope (i.e.@:
4385@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
4386Finish breakpoints are thread specific and must be create with the right
4387thread selected.
4388
4389@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
4390Create a finish breakpoint at the return address of the @code{gdb.Frame}
4391object @var{frame}. If @var{frame} is not provided, this defaults to the
4392newest frame. The optional @var{internal} argument allows the breakpoint to
4393become invisible to the user. @xref{Breakpoints In Python}, for further
4394details about this argument.
4395@end defun
4396
4397@defun FinishBreakpoint.out_of_scope (self)
4398In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
4399@code{return} command, @dots{}), a function may not properly terminate, and
4400thus never hit the finish breakpoint. When @value{GDBN} notices such a
4401situation, the @code{out_of_scope} callback will be triggered.
4402
4403You may want to sub-class @code{gdb.FinishBreakpoint} and override this
4404method:
4405
4406@smallexample
4407class MyFinishBreakpoint (gdb.FinishBreakpoint)
4408 def stop (self):
4409 print "normal finish"
4410 return True
4411
4412 def out_of_scope ():
4413 print "abnormal finish"
4414@end smallexample
4415@end defun
4416
4417@defvar FinishBreakpoint.return_value
4418When @value{GDBN} is stopped at a finish breakpoint and the frame
4419used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
4420attribute will contain a @code{gdb.Value} object corresponding to the return
4421value of the function. The value will be @code{None} if the function return
4422type is @code{void} or if the return value was not computable. This attribute
4423is not writable.
4424@end defvar
4425
4426@node Lazy Strings In Python
4427@subsubsection Python representation of lazy strings.
4428
4429@cindex lazy strings in python
4430@tindex gdb.LazyString
4431
4432A @dfn{lazy string} is a string whose contents is not retrieved or
4433encoded until it is needed.
4434
4435A @code{gdb.LazyString} is represented in @value{GDBN} as an
4436@code{address} that points to a region of memory, an @code{encoding}
4437that will be used to encode that region of memory, and a @code{length}
4438to delimit the region of memory that represents the string. The
4439difference between a @code{gdb.LazyString} and a string wrapped within
4440a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
4441differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
4442retrieved and encoded during printing, while a @code{gdb.Value}
4443wrapping a string is immediately retrieved and encoded on creation.
4444
4445A @code{gdb.LazyString} object has the following functions:
4446
4447@defun LazyString.value ()
4448Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
4449will point to the string in memory, but will lose all the delayed
4450retrieval, encoding and handling that @value{GDBN} applies to a
4451@code{gdb.LazyString}.
4452@end defun
4453
4454@defvar LazyString.address
4455This attribute holds the address of the string. This attribute is not
4456writable.
4457@end defvar
4458
4459@defvar LazyString.length
4460This attribute holds the length of the string in characters. If the
4461length is -1, then the string will be fetched and encoded up to the
4462first null of appropriate width. This attribute is not writable.
4463@end defvar
4464
4465@defvar LazyString.encoding
4466This attribute holds the encoding that will be applied to the string
4467when the string is printed by @value{GDBN}. If the encoding is not
4468set, or contains an empty string, then @value{GDBN} will select the
4469most appropriate encoding when the string is printed. This attribute
4470is not writable.
4471@end defvar
4472
4473@defvar LazyString.type
4474This attribute holds the type that is represented by the lazy string's
4475type. For a lazy string this will always be a pointer type. To
4476resolve this to the lazy string's character type, use the type's
4477@code{target} method. @xref{Types In Python}. This attribute is not
4478writable.
4479@end defvar
4480
4481@node Architectures In Python
4482@subsubsection Python representation of architectures
4483@cindex Python architectures
4484
4485@value{GDBN} uses architecture specific parameters and artifacts in a
4486number of its various computations. An architecture is represented
4487by an instance of the @code{gdb.Architecture} class.
4488
4489A @code{gdb.Architecture} class has the following methods:
4490
4491@defun Architecture.name ()
4492Return the name (string value) of the architecture.
4493@end defun
4494
4495@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
4496Return a list of disassembled instructions starting from the memory
4497address @var{start_pc}. The optional arguments @var{end_pc} and
4498@var{count} determine the number of instructions in the returned list.
4499If both the optional arguments @var{end_pc} and @var{count} are
4500specified, then a list of at most @var{count} disassembled instructions
4501whose start address falls in the closed memory address interval from
4502@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
4503specified, but @var{count} is specified, then @var{count} number of
4504instructions starting from the address @var{start_pc} are returned. If
4505@var{count} is not specified but @var{end_pc} is specified, then all
4506instructions whose start address falls in the closed memory address
4507interval from @var{start_pc} to @var{end_pc} are returned. If neither
4508@var{end_pc} nor @var{count} are specified, then a single instruction at
4509@var{start_pc} is returned. For all of these cases, each element of the
4510returned list is a Python @code{dict} with the following string keys:
4511
4512@table @code
4513
4514@item addr
4515The value corresponding to this key is a Python long integer capturing
4516the memory address of the instruction.
4517
4518@item asm
4519The value corresponding to this key is a string value which represents
4520the instruction with assembly language mnemonics. The assembly
4521language flavor used is the same as that specified by the current CLI
4522variable @code{disassembly-flavor}. @xref{Machine Code}.
4523
4524@item length
4525The value corresponding to this key is the length (integer value) of the
4526instruction in bytes.
4527
4528@end table
4529@end defun
4530
4531@node Python Auto-loading
4532@subsection Python Auto-loading
4533@cindex Python auto-loading
4534
4535When a new object file is read (for example, due to the @code{file}
4536command, or because the inferior has loaded a shared library),
4537@value{GDBN} will look for Python support scripts in several ways:
4538@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
4539@xref{Auto-loading extensions}.
4540
4541The auto-loading feature is useful for supplying application-specific
4542debugging commands and scripts.
4543
4544Auto-loading can be enabled or disabled,
4545and the list of auto-loaded scripts can be printed.
4546
4547@table @code
4548@anchor{set auto-load python-scripts}
4549@kindex set auto-load python-scripts
4550@item set auto-load python-scripts [on|off]
4551Enable or disable the auto-loading of Python scripts.
4552
4553@anchor{show auto-load python-scripts}
4554@kindex show auto-load python-scripts
4555@item show auto-load python-scripts
4556Show whether auto-loading of Python scripts is enabled or disabled.
4557
4558@anchor{info auto-load python-scripts}
4559@kindex info auto-load python-scripts
4560@cindex print list of auto-loaded Python scripts
4561@item info auto-load python-scripts [@var{regexp}]
4562Print the list of all Python scripts that @value{GDBN} auto-loaded.
4563
4564Also printed is the list of Python scripts that were mentioned in
4565the @code{.debug_gdb_scripts} section and were not found
4566(@pxref{dotdebug_gdb_scripts section}).
4567This is useful because their names are not printed when @value{GDBN}
4568tries to load them and fails. There may be many of them, and printing
4569an error message for each one is problematic.
4570
4571If @var{regexp} is supplied only Python scripts with matching names are printed.
4572
4573Example:
4574
4575@smallexample
4576(gdb) info auto-load python-scripts
4577Loaded Script
4578Yes py-section-script.py
4579 full name: /tmp/py-section-script.py
4580No my-foo-pretty-printers.py
4581@end smallexample
4582@end table
4583
4584When reading an auto-loaded file, @value{GDBN} sets the
4585@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
4586function (@pxref{Objfiles In Python}). This can be useful for
4587registering objfile-specific pretty-printers and frame-filters.
4588
4589@node Python modules
4590@subsection Python modules
4591@cindex python modules
4592
4593@value{GDBN} comes with several modules to assist writing Python code.
4594
4595@menu
4596* gdb.printing:: Building and registering pretty-printers.
4597* gdb.types:: Utilities for working with types.
4598* gdb.prompt:: Utilities for prompt value substitution.
4599@end menu
4600
4601@node gdb.printing
4602@subsubsection gdb.printing
4603@cindex gdb.printing
4604
4605This module provides a collection of utilities for working with
4606pretty-printers.
4607
4608@table @code
4609@item PrettyPrinter (@var{name}, @var{subprinters}=None)
4610This class specifies the API that makes @samp{info pretty-printer},
4611@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
4612Pretty-printers should generally inherit from this class.
4613
4614@item SubPrettyPrinter (@var{name})
4615For printers that handle multiple types, this class specifies the
4616corresponding API for the subprinters.
4617
4618@item RegexpCollectionPrettyPrinter (@var{name})
4619Utility class for handling multiple printers, all recognized via
4620regular expressions.
4621@xref{Writing a Pretty-Printer}, for an example.
4622
4623@item FlagEnumerationPrinter (@var{name})
4624A pretty-printer which handles printing of @code{enum} values. Unlike
4625@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
4626work properly when there is some overlap between the enumeration
697aa1b7
EZ
4627constants. The argument @var{name} is the name of the printer and
4628also the name of the @code{enum} type to look up.
329baa95
DE
4629
4630@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
4631Register @var{printer} with the pretty-printer list of @var{obj}.
4632If @var{replace} is @code{True} then any existing copy of the printer
4633is replaced. Otherwise a @code{RuntimeError} exception is raised
4634if a printer with the same name already exists.
4635@end table
4636
4637@node gdb.types
4638@subsubsection gdb.types
4639@cindex gdb.types
4640
4641This module provides a collection of utilities for working with
4642@code{gdb.Type} objects.
4643
4644@table @code
4645@item get_basic_type (@var{type})
4646Return @var{type} with const and volatile qualifiers stripped,
4647and with typedefs and C@t{++} references converted to the underlying type.
4648
4649C@t{++} example:
4650
4651@smallexample
4652typedef const int const_int;
4653const_int foo (3);
4654const_int& foo_ref (foo);
4655int main () @{ return 0; @}
4656@end smallexample
4657
4658Then in gdb:
4659
4660@smallexample
4661(gdb) start
4662(gdb) python import gdb.types
4663(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
4664(gdb) python print gdb.types.get_basic_type(foo_ref.type)
4665int
4666@end smallexample
4667
4668@item has_field (@var{type}, @var{field})
4669Return @code{True} if @var{type}, assumed to be a type with fields
4670(e.g., a structure or union), has field @var{field}.
4671
4672@item make_enum_dict (@var{enum_type})
4673Return a Python @code{dictionary} type produced from @var{enum_type}.
4674
4675@item deep_items (@var{type})
4676Returns a Python iterator similar to the standard
4677@code{gdb.Type.iteritems} method, except that the iterator returned
4678by @code{deep_items} will recursively traverse anonymous struct or
4679union fields. For example:
4680
4681@smallexample
4682struct A
4683@{
4684 int a;
4685 union @{
4686 int b0;
4687 int b1;
4688 @};
4689@};
4690@end smallexample
4691
4692@noindent
4693Then in @value{GDBN}:
4694@smallexample
4695(@value{GDBP}) python import gdb.types
4696(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
4697(@value{GDBP}) python print struct_a.keys ()
4698@{['a', '']@}
4699(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
4700@{['a', 'b0', 'b1']@}
4701@end smallexample
4702
4703@item get_type_recognizers ()
4704Return a list of the enabled type recognizers for the current context.
4705This is called by @value{GDBN} during the type-printing process
4706(@pxref{Type Printing API}).
4707
4708@item apply_type_recognizers (recognizers, type_obj)
4709Apply the type recognizers, @var{recognizers}, to the type object
4710@var{type_obj}. If any recognizer returns a string, return that
4711string. Otherwise, return @code{None}. This is called by
4712@value{GDBN} during the type-printing process (@pxref{Type Printing
4713API}).
4714
4715@item register_type_printer (locus, printer)
697aa1b7
EZ
4716This is a convenience function to register a type printer
4717@var{printer}. The printer must implement the type printer protocol.
4718The @var{locus} argument is either a @code{gdb.Objfile}, in which case
4719the printer is registered with that objfile; a @code{gdb.Progspace},
4720in which case the printer is registered with that progspace; or
4721@code{None}, in which case the printer is registered globally.
329baa95
DE
4722
4723@item TypePrinter
4724This is a base class that implements the type printer protocol. Type
4725printers are encouraged, but not required, to derive from this class.
4726It defines a constructor:
4727
4728@defmethod TypePrinter __init__ (self, name)
4729Initialize the type printer with the given name. The new printer
4730starts in the enabled state.
4731@end defmethod
4732
4733@end table
4734
4735@node gdb.prompt
4736@subsubsection gdb.prompt
4737@cindex gdb.prompt
4738
4739This module provides a method for prompt value-substitution.
4740
4741@table @code
4742@item substitute_prompt (@var{string})
4743Return @var{string} with escape sequences substituted by values. Some
4744escape sequences take arguments. You can specify arguments inside
4745``@{@}'' immediately following the escape sequence.
4746
4747The escape sequences you can pass to this function are:
4748
4749@table @code
4750@item \\
4751Substitute a backslash.
4752@item \e
4753Substitute an ESC character.
4754@item \f
4755Substitute the selected frame; an argument names a frame parameter.
4756@item \n
4757Substitute a newline.
4758@item \p
4759Substitute a parameter's value; the argument names the parameter.
4760@item \r
4761Substitute a carriage return.
4762@item \t
4763Substitute the selected thread; an argument names a thread parameter.
4764@item \v
4765Substitute the version of GDB.
4766@item \w
4767Substitute the current working directory.
4768@item \[
4769Begin a sequence of non-printing characters. These sequences are
4770typically used with the ESC character, and are not counted in the string
4771length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
4772blue-colored ``(gdb)'' prompt where the length is five.
4773@item \]
4774End a sequence of non-printing characters.
4775@end table
4776
4777For example:
4778
4779@smallexample
4780substitute_prompt (``frame: \f,
4781 print arguments: \p@{print frame-arguments@}'')
4782@end smallexample
4783
4784@exdent will return the string:
4785
4786@smallexample
4787"frame: main, print arguments: scalars"
4788@end smallexample
4789@end table
This page took 0.294627 seconds and 4 git commands to generate.