MI: extract command completion logic from complete_command()
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
42a4f53d 1@c Copyright (C) 2008-2019 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
774returns @code{gdb.Value} objects corresonding to the values pointed to
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
52093e1b
MB
867@defun Value.format_string (...)
868Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
869command does. Invoked with no arguments, this is equivalent to calling
870the @code{str} function on the @code{gdb.Value}. The representation of
871the same value may change across different versions of @value{GDBN}, so
872you shouldn't, for instance, parse the strings returned by this method.
873
874All the arguments are keyword only. If an argument is not specified, the
875current global default setting is used.
876
877@table @code
878@item raw
879@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
880used to format the value. @code{False} if enabled pretty-printers
881matching the type represented by the @code{gdb.Value} should be used to
882format it.
883
884@item pretty_arrays
885@code{True} if arrays should be pretty printed to be more convenient to
886read, @code{False} if they shouldn't (see @code{set print array} in
887@ref{Print Settings}).
888
889@item pretty_structs
890@code{True} if structs should be pretty printed to be more convenient to
891read, @code{False} if they shouldn't (see @code{set print pretty} in
892@ref{Print Settings}).
893
894@item array_indexes
895@code{True} if array indexes should be included in the string
896representation of arrays, @code{False} if they shouldn't (see @code{set
897print array-indexes} in @ref{Print Settings}).
898
899@item symbols
900@code{True} if the string representation of a pointer should include the
901corresponding symbol name (if one exists), @code{False} if it shouldn't
902(see @code{set print symbol} in @ref{Print Settings}).
903
904@item unions
905@code{True} if unions which are contained in other structures or unions
906should be expanded, @code{False} if they shouldn't (see @code{set print
907union} in @ref{Print Settings}).
908
909@item deref_refs
910@code{True} if C@t{++} references should be resolved to the value they
911refer to, @code{False} (the default) if they shouldn't. Note that, unlike
912for the @code{print} command, references are not automatically expanded
913when using the @code{format_string} method or the @code{str}
914function. There is no global @code{print} setting to change the default
915behaviour.
916
917@item actual_objects
918@code{True} if the representation of a pointer to an object should
919identify the @emph{actual} (derived) type of the object rather than the
920@emph{declared} type, using the virtual function table. @code{False} if
921the @emph{declared} type should be used. (See @code{set print object} in
922@ref{Print Settings}).
923
924@item static_fields
925@code{True} if static members should be included in the string
926representation of a C@t{++} object, @code{False} if they shouldn't (see
927@code{set print static-members} in @ref{Print Settings}).
928
929@item max_elements
930Number of array elements to print, or @code{0} to print an unlimited
931number of elements (see @code{set print elements} in @ref{Print
932Settings}).
933
2e62ab40
AB
934@item max_depth
935The maximum depth to print for nested structs and unions, or @code{-1}
936to print an unlimited number of elements (see @code{set print
937max-depth} in @ref{Print Settings}).
938
52093e1b
MB
939@item repeat_threshold
940Set the threshold for suppressing display of repeated array elements, or
941@code{0} to represent all elements, even if repeated. (See @code{set
942print repeats} in @ref{Print Settings}).
943
944@item format
945A string containing a single character representing the format to use for
946the returned string. For instance, @code{'x'} is equivalent to using the
947@value{GDBN} command @code{print} with the @code{/x} option and formats
948the value as a hexadecimal number.
949@end table
950@end defun
951
329baa95
DE
952@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
953If this @code{gdb.Value} represents a string, then this method
954converts the contents to a Python string. Otherwise, this method will
955throw an exception.
956
b3ce5e5f
DE
957Values are interpreted as strings according to the rules of the
958current language. If the optional length argument is given, the
959string will be converted to that length, and will include any embedded
960zeroes that the string may contain. Otherwise, for languages
961where the string is zero-terminated, the entire string will be
962converted.
329baa95 963
b3ce5e5f
DE
964For example, in C-like languages, a value is a string if it is a pointer
965to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
966or @code{char32_t}.
329baa95
DE
967
968If the optional @var{encoding} argument is given, it must be a string
969naming the encoding of the string in the @code{gdb.Value}, such as
970@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
971the same encodings as the corresponding argument to Python's
972@code{string.decode} method, and the Python codec machinery will be used
973to convert the string. If @var{encoding} is not given, or if
974@var{encoding} is the empty string, then either the @code{target-charset}
975(@pxref{Character Sets}) will be used, or a language-specific encoding
976will be used, if the current language is able to supply one.
977
978The optional @var{errors} argument is the same as the corresponding
979argument to Python's @code{string.decode} method.
980
981If the optional @var{length} argument is given, the string will be
982fetched and converted to the given length.
983@end defun
984
985@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
986If this @code{gdb.Value} represents a string, then this method
987converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
988In Python}). Otherwise, this method will throw an exception.
989
990If the optional @var{encoding} argument is given, it must be a string
991naming the encoding of the @code{gdb.LazyString}. Some examples are:
992@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
993@var{encoding} argument is an encoding that @value{GDBN} does
994recognize, @value{GDBN} will raise an error.
995
996When a lazy string is printed, the @value{GDBN} encoding machinery is
997used to convert the string during printing. If the optional
998@var{encoding} argument is not provided, or is an empty string,
999@value{GDBN} will automatically select the encoding most suitable for
1000the string type. For further information on encoding in @value{GDBN}
1001please see @ref{Character Sets}.
1002
1003If the optional @var{length} argument is given, the string will be
1004fetched and encoded to the length of characters specified. If
1005the @var{length} argument is not provided, the string will be fetched
1006and encoded until a null of appropriate width is found.
1007@end defun
1008
1009@defun Value.fetch_lazy ()
1010If the @code{gdb.Value} object is currently a lazy value
1011(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1012fetched from the inferior. Any errors that occur in the process
1013will produce a Python exception.
1014
1015If the @code{gdb.Value} object is not a lazy value, this method
1016has no effect.
1017
1018This method does not return a value.
1019@end defun
1020
1021
1022@node Types In Python
1023@subsubsection Types In Python
1024@cindex types in Python
1025@cindex Python, working with types
1026
1027@tindex gdb.Type
1028@value{GDBN} represents types from the inferior using the class
1029@code{gdb.Type}.
1030
1031The following type-related functions are available in the @code{gdb}
1032module:
1033
1034@findex gdb.lookup_type
1035@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1036This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1037
1038If @var{block} is given, then @var{name} is looked up in that scope.
1039Otherwise, it is searched for globally.
1040
1041Ordinarily, this function will return an instance of @code{gdb.Type}.
1042If the named type cannot be found, it will throw an exception.
1043@end defun
1044
1045If the type is a structure or class type, or an enum type, the fields
1046of that type can be accessed using the Python @dfn{dictionary syntax}.
1047For example, if @code{some_type} is a @code{gdb.Type} instance holding
1048a structure type, you can access its @code{foo} field with:
1049
1050@smallexample
1051bar = some_type['foo']
1052@end smallexample
1053
1054@code{bar} will be a @code{gdb.Field} object; see below under the
1055description of the @code{Type.fields} method for a description of the
1056@code{gdb.Field} class.
1057
1058An instance of @code{Type} has the following attributes:
1059
6d7bb824
TT
1060@defvar Type.alignof
1061The alignment of this type, in bytes. Type alignment comes from the
1062debugging information; if it was not specified, then @value{GDBN} will
1063use the relevant ABI to try to determine the alignment. In some
1064cases, even this is not possible, and zero will be returned.
1065@end defvar
1066
329baa95
DE
1067@defvar Type.code
1068The type code for this type. The type code will be one of the
1069@code{TYPE_CODE_} constants defined below.
1070@end defvar
1071
1072@defvar Type.name
1073The name of this type. If this type has no name, then @code{None}
1074is returned.
1075@end defvar
1076
1077@defvar Type.sizeof
1078The size of this type, in target @code{char} units. Usually, a
1079target's @code{char} type will be an 8-bit byte. However, on some
1080unusual platforms, this type may have a different size.
1081@end defvar
1082
1083@defvar Type.tag
1084The tag name for this type. The tag name is the name after
1085@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1086languages have this concept. If this type has no tag name, then
1087@code{None} is returned.
1088@end defvar
1089
1090The following methods are provided:
1091
1092@defun Type.fields ()
1093For structure and union types, this method returns the fields. Range
1094types have two fields, the minimum and maximum values. Enum types
1095have one field per enum constant. Function and method types have one
1096field per parameter. The base types of C@t{++} classes are also
1097represented as fields. If the type has no fields, or does not fit
1098into one of these categories, an empty sequence will be returned.
1099
1100Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1101@table @code
1102@item bitpos
1103This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1104(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1105in bits, from the start of the containing type.
1106
1107@item enumval
1108This attribute is only available for @code{enum} fields, and its value
1109is the enumeration member's integer representation.
1110
1111@item name
1112The name of the field, or @code{None} for anonymous fields.
1113
1114@item artificial
1115This is @code{True} if the field is artificial, usually meaning that
1116it was provided by the compiler and not the user. This attribute is
1117always provided, and is @code{False} if the field is not artificial.
1118
1119@item is_base_class
1120This is @code{True} if the field represents a base class of a C@t{++}
1121structure. This attribute is always provided, and is @code{False}
1122if the field is not a base class of the type that is the argument of
1123@code{fields}, or if that type was not a C@t{++} class.
1124
1125@item bitsize
1126If the field is packed, or is a bitfield, then this will have a
1127non-zero value, which is the size of the field in bits. Otherwise,
1128this will be zero; in this case the field's size is given by its type.
1129
1130@item type
1131The type of the field. This is usually an instance of @code{Type},
1132but it can be @code{None} in some situations.
1133
1134@item parent_type
1135The type which contains this field. This is an instance of
1136@code{gdb.Type}.
1137@end table
1138@end defun
1139
1140@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1141Return a new @code{gdb.Type} object which represents an array of this
1142type. If one argument is given, it is the inclusive upper bound of
1143the array; in this case the lower bound is zero. If two arguments are
1144given, the first argument is the lower bound of the array, and the
1145second argument is the upper bound of the array. An array's length
1146must not be negative, but the bounds can be.
1147@end defun
1148
1149@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1150Return a new @code{gdb.Type} object which represents a vector of this
1151type. If one argument is given, it is the inclusive upper bound of
1152the vector; in this case the lower bound is zero. If two arguments are
1153given, the first argument is the lower bound of the vector, and the
1154second argument is the upper bound of the vector. A vector's length
1155must not be negative, but the bounds can be.
1156
1157The difference between an @code{array} and a @code{vector} is that
1158arrays behave like in C: when used in expressions they decay to a pointer
1159to the first element whereas vectors are treated as first class values.
1160@end defun
1161
1162@defun Type.const ()
1163Return a new @code{gdb.Type} object which represents a
1164@code{const}-qualified variant of this type.
1165@end defun
1166
1167@defun Type.volatile ()
1168Return a new @code{gdb.Type} object which represents a
1169@code{volatile}-qualified variant of this type.
1170@end defun
1171
1172@defun Type.unqualified ()
1173Return a new @code{gdb.Type} object which represents an unqualified
1174variant of this type. That is, the result is neither @code{const} nor
1175@code{volatile}.
1176@end defun
1177
1178@defun Type.range ()
1179Return a Python @code{Tuple} object that contains two elements: the
1180low bound of the argument type and the high bound of that type. If
1181the type does not have a range, @value{GDBN} will raise a
1182@code{gdb.error} exception (@pxref{Exception Handling}).
1183@end defun
1184
1185@defun Type.reference ()
1186Return a new @code{gdb.Type} object which represents a reference to this
1187type.
1188@end defun
1189
1190@defun Type.pointer ()
1191Return a new @code{gdb.Type} object which represents a pointer to this
1192type.
1193@end defun
1194
1195@defun Type.strip_typedefs ()
1196Return a new @code{gdb.Type} that represents the real type,
1197after removing all layers of typedefs.
1198@end defun
1199
1200@defun Type.target ()
1201Return a new @code{gdb.Type} object which represents the target type
1202of this type.
1203
1204For a pointer type, the target type is the type of the pointed-to
1205object. For an array type (meaning C-like arrays), the target type is
1206the type of the elements of the array. For a function or method type,
1207the target type is the type of the return value. For a complex type,
1208the target type is the type of the elements. For a typedef, the
1209target type is the aliased type.
1210
1211If the type does not have a target, this method will throw an
1212exception.
1213@end defun
1214
1215@defun Type.template_argument (n @r{[}, block@r{]})
1216If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1217return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1218value of the @var{n}th template argument (indexed starting at 0).
329baa95 1219
1a6a384b
JL
1220If this @code{gdb.Type} is not a template type, or if the type has fewer
1221than @var{n} template arguments, this will throw an exception.
1222Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1223
1224If @var{block} is given, then @var{name} is looked up in that scope.
1225Otherwise, it is searched for globally.
1226@end defun
1227
59fb7612
SS
1228@defun Type.optimized_out ()
1229Return @code{gdb.Value} instance of this type whose value is optimized
1230out. This allows a frame decorator to indicate that the value of an
1231argument or a local variable is not known.
1232@end defun
329baa95
DE
1233
1234Each type has a code, which indicates what category this type falls
1235into. The available type categories are represented by constants
1236defined in the @code{gdb} module:
1237
b3ce5e5f
DE
1238@vtable @code
1239@vindex TYPE_CODE_PTR
329baa95
DE
1240@item gdb.TYPE_CODE_PTR
1241The type is a pointer.
1242
b3ce5e5f 1243@vindex TYPE_CODE_ARRAY
329baa95
DE
1244@item gdb.TYPE_CODE_ARRAY
1245The type is an array.
1246
b3ce5e5f 1247@vindex TYPE_CODE_STRUCT
329baa95
DE
1248@item gdb.TYPE_CODE_STRUCT
1249The type is a structure.
1250
b3ce5e5f 1251@vindex TYPE_CODE_UNION
329baa95
DE
1252@item gdb.TYPE_CODE_UNION
1253The type is a union.
1254
b3ce5e5f 1255@vindex TYPE_CODE_ENUM
329baa95
DE
1256@item gdb.TYPE_CODE_ENUM
1257The type is an enum.
1258
b3ce5e5f 1259@vindex TYPE_CODE_FLAGS
329baa95
DE
1260@item gdb.TYPE_CODE_FLAGS
1261A bit flags type, used for things such as status registers.
1262
b3ce5e5f 1263@vindex TYPE_CODE_FUNC
329baa95
DE
1264@item gdb.TYPE_CODE_FUNC
1265The type is a function.
1266
b3ce5e5f 1267@vindex TYPE_CODE_INT
329baa95
DE
1268@item gdb.TYPE_CODE_INT
1269The type is an integer type.
1270
b3ce5e5f 1271@vindex TYPE_CODE_FLT
329baa95
DE
1272@item gdb.TYPE_CODE_FLT
1273A floating point type.
1274
b3ce5e5f 1275@vindex TYPE_CODE_VOID
329baa95
DE
1276@item gdb.TYPE_CODE_VOID
1277The special type @code{void}.
1278
b3ce5e5f 1279@vindex TYPE_CODE_SET
329baa95
DE
1280@item gdb.TYPE_CODE_SET
1281A Pascal set type.
1282
b3ce5e5f 1283@vindex TYPE_CODE_RANGE
329baa95
DE
1284@item gdb.TYPE_CODE_RANGE
1285A range type, that is, an integer type with bounds.
1286
b3ce5e5f 1287@vindex TYPE_CODE_STRING
329baa95
DE
1288@item gdb.TYPE_CODE_STRING
1289A string type. Note that this is only used for certain languages with
1290language-defined string types; C strings are not represented this way.
1291
b3ce5e5f 1292@vindex TYPE_CODE_BITSTRING
329baa95
DE
1293@item gdb.TYPE_CODE_BITSTRING
1294A string of bits. It is deprecated.
1295
b3ce5e5f 1296@vindex TYPE_CODE_ERROR
329baa95
DE
1297@item gdb.TYPE_CODE_ERROR
1298An unknown or erroneous type.
1299
b3ce5e5f 1300@vindex TYPE_CODE_METHOD
329baa95 1301@item gdb.TYPE_CODE_METHOD
9c37b5ae 1302A method type, as found in C@t{++}.
329baa95 1303
b3ce5e5f 1304@vindex TYPE_CODE_METHODPTR
329baa95
DE
1305@item gdb.TYPE_CODE_METHODPTR
1306A pointer-to-member-function.
1307
b3ce5e5f 1308@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1309@item gdb.TYPE_CODE_MEMBERPTR
1310A pointer-to-member.
1311
b3ce5e5f 1312@vindex TYPE_CODE_REF
329baa95
DE
1313@item gdb.TYPE_CODE_REF
1314A reference type.
1315
3fcf899d
AV
1316@vindex TYPE_CODE_RVALUE_REF
1317@item gdb.TYPE_CODE_RVALUE_REF
1318A C@t{++}11 rvalue reference type.
1319
b3ce5e5f 1320@vindex TYPE_CODE_CHAR
329baa95
DE
1321@item gdb.TYPE_CODE_CHAR
1322A character type.
1323
b3ce5e5f 1324@vindex TYPE_CODE_BOOL
329baa95
DE
1325@item gdb.TYPE_CODE_BOOL
1326A boolean type.
1327
b3ce5e5f 1328@vindex TYPE_CODE_COMPLEX
329baa95
DE
1329@item gdb.TYPE_CODE_COMPLEX
1330A complex float type.
1331
b3ce5e5f 1332@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1333@item gdb.TYPE_CODE_TYPEDEF
1334A typedef to some other type.
1335
b3ce5e5f 1336@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1337@item gdb.TYPE_CODE_NAMESPACE
1338A C@t{++} namespace.
1339
b3ce5e5f 1340@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1341@item gdb.TYPE_CODE_DECFLOAT
1342A decimal floating point type.
1343
b3ce5e5f 1344@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1345@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1346A function internal to @value{GDBN}. This is the type used to represent
1347convenience functions.
b3ce5e5f 1348@end vtable
329baa95
DE
1349
1350Further support for types is provided in the @code{gdb.types}
1351Python module (@pxref{gdb.types}).
1352
1353@node Pretty Printing API
1354@subsubsection Pretty Printing API
b3ce5e5f 1355@cindex python pretty printing api
329baa95 1356
329baa95 1357A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1358specific interface, defined here. An example output is provided
1359(@pxref{Pretty Printing}).
329baa95
DE
1360
1361@defun pretty_printer.children (self)
1362@value{GDBN} will call this method on a pretty-printer to compute the
1363children of the pretty-printer's value.
1364
1365This method must return an object conforming to the Python iterator
1366protocol. Each item returned by the iterator must be a tuple holding
1367two elements. The first element is the ``name'' of the child; the
1368second element is the child's value. The value can be any Python
1369object which is convertible to a @value{GDBN} value.
1370
1371This method is optional. If it does not exist, @value{GDBN} will act
1372as though the value has no children.
2e62ab40 1373
a97c8e56
TT
1374For efficiency, the @code{children} method should lazily compute its
1375results. This will let @value{GDBN} read as few elements as
1376necessary, for example when various print settings (@pxref{Print
1377Settings}) or @code{-var-list-children} (@pxref{GDB/MI Variable
1378Objects}) limit the number of elements to be displayed.
1379
2e62ab40
AB
1380Children may be hidden from display based on the value of @samp{set
1381print max-depth} (@pxref{Print Settings}).
329baa95
DE
1382@end defun
1383
1384@defun pretty_printer.display_hint (self)
1385The CLI may call this method and use its result to change the
1386formatting of a value. The result will also be supplied to an MI
1387consumer as a @samp{displayhint} attribute of the variable being
1388printed.
1389
1390This method is optional. If it does exist, this method must return a
9f9aa852 1391string or the special value @code{None}.
329baa95
DE
1392
1393Some display hints are predefined by @value{GDBN}:
1394
1395@table @samp
1396@item array
1397Indicate that the object being printed is ``array-like''. The CLI
1398uses this to respect parameters such as @code{set print elements} and
1399@code{set print array}.
1400
1401@item map
1402Indicate that the object being printed is ``map-like'', and that the
1403children of this value can be assumed to alternate between keys and
1404values.
1405
1406@item string
1407Indicate that the object being printed is ``string-like''. If the
1408printer's @code{to_string} method returns a Python string of some
1409kind, then @value{GDBN} will call its internal language-specific
1410string-printing function to format the string. For the CLI this means
1411adding quotation marks, possibly escaping some characters, respecting
1412@code{set print elements}, and the like.
1413@end table
9f9aa852
AB
1414
1415The special value @code{None} causes @value{GDBN} to apply the default
1416display rules.
329baa95
DE
1417@end defun
1418
1419@defun pretty_printer.to_string (self)
1420@value{GDBN} will call this method to display the string
1421representation of the value passed to the object's constructor.
1422
1423When printing from the CLI, if the @code{to_string} method exists,
1424then @value{GDBN} will prepend its result to the values returned by
1425@code{children}. Exactly how this formatting is done is dependent on
1426the display hint, and may change as more hints are added. Also,
1427depending on the print settings (@pxref{Print Settings}), the CLI may
1428print just the result of @code{to_string} in a stack trace, omitting
1429the result of @code{children}.
1430
1431If this method returns a string, it is printed verbatim.
1432
1433Otherwise, if this method returns an instance of @code{gdb.Value},
1434then @value{GDBN} prints this value. This may result in a call to
1435another pretty-printer.
1436
1437If instead the method returns a Python value which is convertible to a
1438@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1439the resulting value. Again, this may result in a call to another
1440pretty-printer. Python scalars (integers, floats, and booleans) and
1441strings are convertible to @code{gdb.Value}; other types are not.
1442
1443Finally, if this method returns @code{None} then no further operations
1444are peformed in this method and nothing is printed.
1445
1446If the result is not one of these types, an exception is raised.
1447@end defun
1448
1449@value{GDBN} provides a function which can be used to look up the
1450default pretty-printer for a @code{gdb.Value}:
1451
1452@findex gdb.default_visualizer
1453@defun gdb.default_visualizer (value)
1454This function takes a @code{gdb.Value} object as an argument. If a
1455pretty-printer for this value exists, then it is returned. If no such
1456printer exists, then this returns @code{None}.
1457@end defun
1458
1459@node Selecting Pretty-Printers
1460@subsubsection Selecting Pretty-Printers
b3ce5e5f 1461@cindex selecting python pretty-printers
329baa95 1462
48869a5f
TT
1463@value{GDBN} provides several ways to register a pretty-printer:
1464globally, per program space, and per objfile. When choosing how to
1465register your pretty-printer, a good rule is to register it with the
1466smallest scope possible: that is prefer a specific objfile first, then
1467a program space, and only register a printer globally as a last
1468resort.
1469
1470@findex gdb.pretty_printers
1471@defvar gdb.pretty_printers
329baa95
DE
1472The Python list @code{gdb.pretty_printers} contains an array of
1473functions or callable objects that have been registered via addition
1474as a pretty-printer. Printers in this list are called @code{global}
1475printers, they're available when debugging all inferiors.
48869a5f
TT
1476@end defvar
1477
329baa95
DE
1478Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1479Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1480attribute.
1481
1482Each function on these lists is passed a single @code{gdb.Value}
1483argument and should return a pretty-printer object conforming to the
1484interface definition above (@pxref{Pretty Printing API}). If a function
1485cannot create a pretty-printer for the value, it should return
1486@code{None}.
1487
1488@value{GDBN} first checks the @code{pretty_printers} attribute of each
1489@code{gdb.Objfile} in the current program space and iteratively calls
1490each enabled lookup routine in the list for that @code{gdb.Objfile}
1491until it receives a pretty-printer object.
1492If no pretty-printer is found in the objfile lists, @value{GDBN} then
1493searches the pretty-printer list of the current program space,
1494calling each enabled function until an object is returned.
1495After these lists have been exhausted, it tries the global
1496@code{gdb.pretty_printers} list, again calling each enabled function until an
1497object is returned.
1498
1499The order in which the objfiles are searched is not specified. For a
1500given list, functions are always invoked from the head of the list,
1501and iterated over sequentially until the end of the list, or a printer
1502object is returned.
1503
1504For various reasons a pretty-printer may not work.
1505For example, the underlying data structure may have changed and
1506the pretty-printer is out of date.
1507
1508The consequences of a broken pretty-printer are severe enough that
1509@value{GDBN} provides support for enabling and disabling individual
1510printers. For example, if @code{print frame-arguments} is on,
1511a backtrace can become highly illegible if any argument is printed
1512with a broken printer.
1513
1514Pretty-printers are enabled and disabled by attaching an @code{enabled}
1515attribute to the registered function or callable object. If this attribute
1516is present and its value is @code{False}, the printer is disabled, otherwise
1517the printer is enabled.
1518
1519@node Writing a Pretty-Printer
1520@subsubsection Writing a Pretty-Printer
1521@cindex writing a pretty-printer
1522
1523A pretty-printer consists of two parts: a lookup function to detect
1524if the type is supported, and the printer itself.
1525
1526Here is an example showing how a @code{std::string} printer might be
1527written. @xref{Pretty Printing API}, for details on the API this class
1528must provide.
1529
1530@smallexample
1531class StdStringPrinter(object):
1532 "Print a std::string"
1533
1534 def __init__(self, val):
1535 self.val = val
1536
1537 def to_string(self):
1538 return self.val['_M_dataplus']['_M_p']
1539
1540 def display_hint(self):
1541 return 'string'
1542@end smallexample
1543
1544And here is an example showing how a lookup function for the printer
1545example above might be written.
1546
1547@smallexample
1548def str_lookup_function(val):
1549 lookup_tag = val.type.tag
1550 if lookup_tag == None:
1551 return None
1552 regex = re.compile("^std::basic_string<char,.*>$")
1553 if regex.match(lookup_tag):
1554 return StdStringPrinter(val)
1555 return None
1556@end smallexample
1557
1558The example lookup function extracts the value's type, and attempts to
1559match it to a type that it can pretty-print. If it is a type the
1560printer can pretty-print, it will return a printer object. If not, it
1561returns @code{None}.
1562
1563We recommend that you put your core pretty-printers into a Python
1564package. If your pretty-printers are for use with a library, we
1565further recommend embedding a version number into the package name.
1566This practice will enable @value{GDBN} to load multiple versions of
1567your pretty-printers at the same time, because they will have
1568different names.
1569
1570You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1571can be evaluated multiple times without changing its meaning. An
1572ideal auto-load file will consist solely of @code{import}s of your
1573printer modules, followed by a call to a register pretty-printers with
1574the current objfile.
1575
1576Taken as a whole, this approach will scale nicely to multiple
1577inferiors, each potentially using a different library version.
1578Embedding a version number in the Python package name will ensure that
1579@value{GDBN} is able to load both sets of printers simultaneously.
1580Then, because the search for pretty-printers is done by objfile, and
1581because your auto-loaded code took care to register your library's
1582printers with a specific objfile, @value{GDBN} will find the correct
1583printers for the specific version of the library used by each
1584inferior.
1585
1586To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1587this code might appear in @code{gdb.libstdcxx.v6}:
1588
1589@smallexample
1590def register_printers(objfile):
1591 objfile.pretty_printers.append(str_lookup_function)
1592@end smallexample
1593
1594@noindent
1595And then the corresponding contents of the auto-load file would be:
1596
1597@smallexample
1598import gdb.libstdcxx.v6
1599gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1600@end smallexample
1601
1602The previous example illustrates a basic pretty-printer.
1603There are a few things that can be improved on.
1604The printer doesn't have a name, making it hard to identify in a
1605list of installed printers. The lookup function has a name, but
1606lookup functions can have arbitrary, even identical, names.
1607
1608Second, the printer only handles one type, whereas a library typically has
1609several types. One could install a lookup function for each desired type
1610in the library, but one could also have a single lookup function recognize
1611several types. The latter is the conventional way this is handled.
1612If a pretty-printer can handle multiple data types, then its
1613@dfn{subprinters} are the printers for the individual data types.
1614
1615The @code{gdb.printing} module provides a formal way of solving these
1616problems (@pxref{gdb.printing}).
1617Here is another example that handles multiple types.
1618
1619These are the types we are going to pretty-print:
1620
1621@smallexample
1622struct foo @{ int a, b; @};
1623struct bar @{ struct foo x, y; @};
1624@end smallexample
1625
1626Here are the printers:
1627
1628@smallexample
1629class fooPrinter:
1630 """Print a foo object."""
1631
1632 def __init__(self, val):
1633 self.val = val
1634
1635 def to_string(self):
1636 return ("a=<" + str(self.val["a"]) +
1637 "> b=<" + str(self.val["b"]) + ">")
1638
1639class barPrinter:
1640 """Print a bar object."""
1641
1642 def __init__(self, val):
1643 self.val = val
1644
1645 def to_string(self):
1646 return ("x=<" + str(self.val["x"]) +
1647 "> y=<" + str(self.val["y"]) + ">")
1648@end smallexample
1649
1650This example doesn't need a lookup function, that is handled by the
1651@code{gdb.printing} module. Instead a function is provided to build up
1652the object that handles the lookup.
1653
1654@smallexample
1655import gdb.printing
1656
1657def build_pretty_printer():
1658 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1659 "my_library")
1660 pp.add_printer('foo', '^foo$', fooPrinter)
1661 pp.add_printer('bar', '^bar$', barPrinter)
1662 return pp
1663@end smallexample
1664
1665And here is the autoload support:
1666
1667@smallexample
1668import gdb.printing
1669import my_library
1670gdb.printing.register_pretty_printer(
1671 gdb.current_objfile(),
1672 my_library.build_pretty_printer())
1673@end smallexample
1674
1675Finally, when this printer is loaded into @value{GDBN}, here is the
1676corresponding output of @samp{info pretty-printer}:
1677
1678@smallexample
1679(gdb) info pretty-printer
1680my_library.so:
1681 my_library
1682 foo
1683 bar
1684@end smallexample
1685
1686@node Type Printing API
1687@subsubsection Type Printing API
1688@cindex type printing API for Python
1689
1690@value{GDBN} provides a way for Python code to customize type display.
1691This is mainly useful for substituting canonical typedef names for
1692types.
1693
1694@cindex type printer
1695A @dfn{type printer} is just a Python object conforming to a certain
1696protocol. A simple base class implementing the protocol is provided;
1697see @ref{gdb.types}. A type printer must supply at least:
1698
1699@defivar type_printer enabled
1700A boolean which is True if the printer is enabled, and False
1701otherwise. This is manipulated by the @code{enable type-printer}
1702and @code{disable type-printer} commands.
1703@end defivar
1704
1705@defivar type_printer name
1706The name of the type printer. This must be a string. This is used by
1707the @code{enable type-printer} and @code{disable type-printer}
1708commands.
1709@end defivar
1710
1711@defmethod type_printer instantiate (self)
1712This is called by @value{GDBN} at the start of type-printing. It is
1713only called if the type printer is enabled. This method must return a
1714new object that supplies a @code{recognize} method, as described below.
1715@end defmethod
1716
1717
1718When displaying a type, say via the @code{ptype} command, @value{GDBN}
1719will compute a list of type recognizers. This is done by iterating
1720first over the per-objfile type printers (@pxref{Objfiles In Python}),
1721followed by the per-progspace type printers (@pxref{Progspaces In
1722Python}), and finally the global type printers.
1723
1724@value{GDBN} will call the @code{instantiate} method of each enabled
1725type printer. If this method returns @code{None}, then the result is
1726ignored; otherwise, it is appended to the list of recognizers.
1727
1728Then, when @value{GDBN} is going to display a type name, it iterates
1729over the list of recognizers. For each one, it calls the recognition
1730function, stopping if the function returns a non-@code{None} value.
1731The recognition function is defined as:
1732
1733@defmethod type_recognizer recognize (self, type)
1734If @var{type} is not recognized, return @code{None}. Otherwise,
1735return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1736The @var{type} argument will be an instance of @code{gdb.Type}
1737(@pxref{Types In Python}).
329baa95
DE
1738@end defmethod
1739
1740@value{GDBN} uses this two-pass approach so that type printers can
1741efficiently cache information without holding on to it too long. For
1742example, it can be convenient to look up type information in a type
1743printer and hold it for a recognizer's lifetime; if a single pass were
1744done then type printers would have to make use of the event system in
1745order to avoid holding information that could become stale as the
1746inferior changed.
1747
1748@node Frame Filter API
521b499b 1749@subsubsection Filtering Frames
329baa95
DE
1750@cindex frame filters api
1751
1752Frame filters are Python objects that manipulate the visibility of a
1753frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1754@value{GDBN}.
1755
1756Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1757commands (@pxref{GDB/MI}), those that return a collection of frames
1758are affected. The commands that work with frame filters are:
1759
1760@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1761@code{-stack-list-frames}
1762(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1763@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1764-stack-list-variables command}), @code{-stack-list-arguments}
1765@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1766@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1767-stack-list-locals command}).
1768
1769A frame filter works by taking an iterator as an argument, applying
1770actions to the contents of that iterator, and returning another
1771iterator (or, possibly, the same iterator it was provided in the case
1772where the filter does not perform any operations). Typically, frame
1773filters utilize tools such as the Python's @code{itertools} module to
1774work with and create new iterators from the source iterator.
1775Regardless of how a filter chooses to apply actions, it must not alter
1776the underlying @value{GDBN} frame or frames, or attempt to alter the
1777call-stack within @value{GDBN}. This preserves data integrity within
1778@value{GDBN}. Frame filters are executed on a priority basis and care
1779should be taken that some frame filters may have been executed before,
1780and that some frame filters will be executed after.
1781
1782An important consideration when designing frame filters, and well
1783worth reflecting upon, is that frame filters should avoid unwinding
1784the call stack if possible. Some stacks can run very deep, into the
1785tens of thousands in some cases. To search every frame when a frame
1786filter executes may be too expensive at that step. The frame filter
1787cannot know how many frames it has to iterate over, and it may have to
1788iterate through them all. This ends up duplicating effort as
1789@value{GDBN} performs this iteration when it prints the frames. If
1790the filter can defer unwinding frames until frame decorators are
1791executed, after the last filter has executed, it should. @xref{Frame
1792Decorator API}, for more information on decorators. Also, there are
1793examples for both frame decorators and filters in later chapters.
1794@xref{Writing a Frame Filter}, for more information.
1795
1796The Python dictionary @code{gdb.frame_filters} contains key/object
1797pairings that comprise a frame filter. Frame filters in this
1798dictionary are called @code{global} frame filters, and they are
1799available when debugging all inferiors. These frame filters must
1800register with the dictionary directly. In addition to the
1801@code{global} dictionary, there are other dictionaries that are loaded
1802with different inferiors via auto-loading (@pxref{Python
1803Auto-loading}). The two other areas where frame filter dictionaries
1804can be found are: @code{gdb.Progspace} which contains a
1805@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1806object which also contains a @code{frame_filters} dictionary
1807attribute.
1808
1809When a command is executed from @value{GDBN} that is compatible with
1810frame filters, @value{GDBN} combines the @code{global},
1811@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1812loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1813several frames, and thus several object files, might be in use.
1814@value{GDBN} then prunes any frame filter whose @code{enabled}
1815attribute is @code{False}. This pruned list is then sorted according
1816to the @code{priority} attribute in each filter.
1817
1818Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1819creates an iterator which wraps each frame in the call stack in a
1820@code{FrameDecorator} object, and calls each filter in order. The
1821output from the previous filter will always be the input to the next
1822filter, and so on.
1823
1824Frame filters have a mandatory interface which each frame filter must
1825implement, defined here:
1826
1827@defun FrameFilter.filter (iterator)
1828@value{GDBN} will call this method on a frame filter when it has
1829reached the order in the priority list for that filter.
1830
1831For example, if there are four frame filters:
1832
1833@smallexample
1834Name Priority
1835
1836Filter1 5
1837Filter2 10
1838Filter3 100
1839Filter4 1
1840@end smallexample
1841
1842The order that the frame filters will be called is:
1843
1844@smallexample
1845Filter3 -> Filter2 -> Filter1 -> Filter4
1846@end smallexample
1847
1848Note that the output from @code{Filter3} is passed to the input of
1849@code{Filter2}, and so on.
1850
1851This @code{filter} method is passed a Python iterator. This iterator
1852contains a sequence of frame decorators that wrap each
1853@code{gdb.Frame}, or a frame decorator that wraps another frame
1854decorator. The first filter that is executed in the sequence of frame
1855filters will receive an iterator entirely comprised of default
1856@code{FrameDecorator} objects. However, after each frame filter is
1857executed, the previous frame filter may have wrapped some or all of
1858the frame decorators with their own frame decorator. As frame
1859decorators must also conform to a mandatory interface, these
1860decorators can be assumed to act in a uniform manner (@pxref{Frame
1861Decorator API}).
1862
1863This method must return an object conforming to the Python iterator
1864protocol. Each item in the iterator must be an object conforming to
1865the frame decorator interface. If a frame filter does not wish to
1866perform any operations on this iterator, it should return that
1867iterator untouched.
1868
1869This method is not optional. If it does not exist, @value{GDBN} will
1870raise and print an error.
1871@end defun
1872
1873@defvar FrameFilter.name
1874The @code{name} attribute must be Python string which contains the
1875name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1876Management}). This attribute may contain any combination of letters
1877or numbers. Care should be taken to ensure that it is unique. This
1878attribute is mandatory.
1879@end defvar
1880
1881@defvar FrameFilter.enabled
1882The @code{enabled} attribute must be Python boolean. This attribute
1883indicates to @value{GDBN} whether the frame filter is enabled, and
1884should be considered when frame filters are executed. If
1885@code{enabled} is @code{True}, then the frame filter will be executed
1886when any of the backtrace commands detailed earlier in this chapter
1887are executed. If @code{enabled} is @code{False}, then the frame
1888filter will not be executed. This attribute is mandatory.
1889@end defvar
1890
1891@defvar FrameFilter.priority
1892The @code{priority} attribute must be Python integer. This attribute
1893controls the order of execution in relation to other frame filters.
1894There are no imposed limits on the range of @code{priority} other than
1895it must be a valid integer. The higher the @code{priority} attribute,
1896the sooner the frame filter will be executed in relation to other
1897frame filters. Although @code{priority} can be negative, it is
1898recommended practice to assume zero is the lowest priority that a
1899frame filter can be assigned. Frame filters that have the same
1900priority are executed in unsorted order in that priority slot. This
521b499b 1901attribute is mandatory. 100 is a good default priority.
329baa95
DE
1902@end defvar
1903
1904@node Frame Decorator API
521b499b 1905@subsubsection Decorating Frames
329baa95
DE
1906@cindex frame decorator api
1907
1908Frame decorators are sister objects to frame filters (@pxref{Frame
1909Filter API}). Frame decorators are applied by a frame filter and can
1910only be used in conjunction with frame filters.
1911
1912The purpose of a frame decorator is to customize the printed content
1913of each @code{gdb.Frame} in commands where frame filters are executed.
1914This concept is called decorating a frame. Frame decorators decorate
1915a @code{gdb.Frame} with Python code contained within each API call.
1916This separates the actual data contained in a @code{gdb.Frame} from
1917the decorated data produced by a frame decorator. This abstraction is
1918necessary to maintain integrity of the data contained in each
1919@code{gdb.Frame}.
1920
1921Frame decorators have a mandatory interface, defined below.
1922
1923@value{GDBN} already contains a frame decorator called
1924@code{FrameDecorator}. This contains substantial amounts of
1925boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1926recommended that other frame decorators inherit and extend this
1927object, and only to override the methods needed.
1928
521b499b
TT
1929@tindex gdb.FrameDecorator
1930@code{FrameDecorator} is defined in the Python module
1931@code{gdb.FrameDecorator}, so your code can import it like:
1932@smallexample
1933from gdb.FrameDecorator import FrameDecorator
1934@end smallexample
1935
329baa95
DE
1936@defun FrameDecorator.elided (self)
1937
1938The @code{elided} method groups frames together in a hierarchical
1939system. An example would be an interpreter, where multiple low-level
1940frames make up a single call in the interpreted language. In this
1941example, the frame filter would elide the low-level frames and present
1942a single high-level frame, representing the call in the interpreted
1943language, to the user.
1944
1945The @code{elided} function must return an iterable and this iterable
1946must contain the frames that are being elided wrapped in a suitable
1947frame decorator. If no frames are being elided this function may
1948return an empty iterable, or @code{None}. Elided frames are indented
1949from normal frames in a @code{CLI} backtrace, or in the case of
1950@code{GDB/MI}, are placed in the @code{children} field of the eliding
1951frame.
1952
1953It is the frame filter's task to also filter out the elided frames from
1954the source iterator. This will avoid printing the frame twice.
1955@end defun
1956
1957@defun FrameDecorator.function (self)
1958
1959This method returns the name of the function in the frame that is to
1960be printed.
1961
1962This method must return a Python string describing the function, or
1963@code{None}.
1964
1965If this function returns @code{None}, @value{GDBN} will not print any
1966data for this field.
1967@end defun
1968
1969@defun FrameDecorator.address (self)
1970
1971This method returns the address of the frame that is to be printed.
1972
1973This method must return a Python numeric integer type of sufficient
1974size to describe the address of the frame, or @code{None}.
1975
1976If this function returns a @code{None}, @value{GDBN} will not print
1977any data for this field.
1978@end defun
1979
1980@defun FrameDecorator.filename (self)
1981
1982This method returns the filename and path associated with this frame.
1983
1984This method must return a Python string containing the filename and
1985the path to the object file backing the frame, or @code{None}.
1986
1987If this function returns a @code{None}, @value{GDBN} will not print
1988any data for this field.
1989@end defun
1990
1991@defun FrameDecorator.line (self):
1992
1993This method returns the line number associated with the current
1994position within the function addressed by this frame.
1995
1996This method must return a Python integer type, or @code{None}.
1997
1998If this function returns a @code{None}, @value{GDBN} will not print
1999any data for this field.
2000@end defun
2001
2002@defun FrameDecorator.frame_args (self)
2003@anchor{frame_args}
2004
2005This method must return an iterable, or @code{None}. Returning an
2006empty iterable, or @code{None} means frame arguments will not be
2007printed for this frame. This iterable must contain objects that
2008implement two methods, described here.
2009
2010This object must implement a @code{argument} method which takes a
2011single @code{self} parameter and must return a @code{gdb.Symbol}
2012(@pxref{Symbols In Python}), or a Python string. The object must also
2013implement a @code{value} method which takes a single @code{self}
2014parameter and must return a @code{gdb.Value} (@pxref{Values From
2015Inferior}), a Python value, or @code{None}. If the @code{value}
2016method returns @code{None}, and the @code{argument} method returns a
2017@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2018the @code{gdb.Symbol} automatically.
2019
2020A brief example:
2021
2022@smallexample
2023class SymValueWrapper():
2024
2025 def __init__(self, symbol, value):
2026 self.sym = symbol
2027 self.val = value
2028
2029 def value(self):
2030 return self.val
2031
2032 def symbol(self):
2033 return self.sym
2034
2035class SomeFrameDecorator()
2036...
2037...
2038 def frame_args(self):
2039 args = []
2040 try:
2041 block = self.inferior_frame.block()
2042 except:
2043 return None
2044
2045 # Iterate over all symbols in a block. Only add
2046 # symbols that are arguments.
2047 for sym in block:
2048 if not sym.is_argument:
2049 continue
2050 args.append(SymValueWrapper(sym,None))
2051
2052 # Add example synthetic argument.
2053 args.append(SymValueWrapper(``foo'', 42))
2054
2055 return args
2056@end smallexample
2057@end defun
2058
2059@defun FrameDecorator.frame_locals (self)
2060
2061This method must return an iterable or @code{None}. Returning an
2062empty iterable, or @code{None} means frame local arguments will not be
2063printed for this frame.
2064
2065The object interface, the description of the various strategies for
2066reading frame locals, and the example are largely similar to those
2067described in the @code{frame_args} function, (@pxref{frame_args,,The
2068frame filter frame_args function}). Below is a modified example:
2069
2070@smallexample
2071class SomeFrameDecorator()
2072...
2073...
2074 def frame_locals(self):
2075 vars = []
2076 try:
2077 block = self.inferior_frame.block()
2078 except:
2079 return None
2080
2081 # Iterate over all symbols in a block. Add all
2082 # symbols, except arguments.
2083 for sym in block:
2084 if sym.is_argument:
2085 continue
2086 vars.append(SymValueWrapper(sym,None))
2087
2088 # Add an example of a synthetic local variable.
2089 vars.append(SymValueWrapper(``bar'', 99))
2090
2091 return vars
2092@end smallexample
2093@end defun
2094
2095@defun FrameDecorator.inferior_frame (self):
2096
2097This method must return the underlying @code{gdb.Frame} that this
2098frame decorator is decorating. @value{GDBN} requires the underlying
2099frame for internal frame information to determine how to print certain
2100values when printing a frame.
2101@end defun
2102
2103@node Writing a Frame Filter
2104@subsubsection Writing a Frame Filter
2105@cindex writing a frame filter
2106
2107There are three basic elements that a frame filter must implement: it
2108must correctly implement the documented interface (@pxref{Frame Filter
2109API}), it must register itself with @value{GDBN}, and finally, it must
2110decide if it is to work on the data provided by @value{GDBN}. In all
2111cases, whether it works on the iterator or not, each frame filter must
2112return an iterator. A bare-bones frame filter follows the pattern in
2113the following example.
2114
2115@smallexample
2116import gdb
2117
2118class FrameFilter():
2119
2120 def __init__(self):
2121 # Frame filter attribute creation.
2122 #
2123 # 'name' is the name of the filter that GDB will display.
2124 #
2125 # 'priority' is the priority of the filter relative to other
2126 # filters.
2127 #
2128 # 'enabled' is a boolean that indicates whether this filter is
2129 # enabled and should be executed.
2130
2131 self.name = "Foo"
2132 self.priority = 100
2133 self.enabled = True
2134
2135 # Register this frame filter with the global frame_filters
2136 # dictionary.
2137 gdb.frame_filters[self.name] = self
2138
2139 def filter(self, frame_iter):
2140 # Just return the iterator.
2141 return frame_iter
2142@end smallexample
2143
2144The frame filter in the example above implements the three
2145requirements for all frame filters. It implements the API, self
2146registers, and makes a decision on the iterator (in this case, it just
2147returns the iterator untouched).
2148
2149The first step is attribute creation and assignment, and as shown in
2150the comments the filter assigns the following attributes: @code{name},
2151@code{priority} and whether the filter should be enabled with the
2152@code{enabled} attribute.
2153
2154The second step is registering the frame filter with the dictionary or
2155dictionaries that the frame filter has interest in. As shown in the
2156comments, this filter just registers itself with the global dictionary
2157@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2158is a dictionary that is initialized in the @code{gdb} module when
2159@value{GDBN} starts. What dictionary a filter registers with is an
2160important consideration. Generally, if a filter is specific to a set
2161of code, it should be registered either in the @code{objfile} or
2162@code{progspace} dictionaries as they are specific to the program
2163currently loaded in @value{GDBN}. The global dictionary is always
2164present in @value{GDBN} and is never unloaded. Any filters registered
2165with the global dictionary will exist until @value{GDBN} exits. To
2166avoid filters that may conflict, it is generally better to register
2167frame filters against the dictionaries that more closely align with
2168the usage of the filter currently in question. @xref{Python
2169Auto-loading}, for further information on auto-loading Python scripts.
2170
2171@value{GDBN} takes a hands-off approach to frame filter registration,
2172therefore it is the frame filter's responsibility to ensure
2173registration has occurred, and that any exceptions are handled
2174appropriately. In particular, you may wish to handle exceptions
2175relating to Python dictionary key uniqueness. It is mandatory that
2176the dictionary key is the same as frame filter's @code{name}
2177attribute. When a user manages frame filters (@pxref{Frame Filter
2178Management}), the names @value{GDBN} will display are those contained
2179in the @code{name} attribute.
2180
2181The final step of this example is the implementation of the
2182@code{filter} method. As shown in the example comments, we define the
2183@code{filter} method and note that the method must take an iterator,
2184and also must return an iterator. In this bare-bones example, the
2185frame filter is not very useful as it just returns the iterator
2186untouched. However this is a valid operation for frame filters that
2187have the @code{enabled} attribute set, but decide not to operate on
2188any frames.
2189
2190In the next example, the frame filter operates on all frames and
2191utilizes a frame decorator to perform some work on the frames.
2192@xref{Frame Decorator API}, for further information on the frame
2193decorator interface.
2194
2195This example works on inlined frames. It highlights frames which are
2196inlined by tagging them with an ``[inlined]'' tag. By applying a
2197frame decorator to all frames with the Python @code{itertools imap}
2198method, the example defers actions to the frame decorator. Frame
2199decorators are only processed when @value{GDBN} prints the backtrace.
2200
2201This introduces a new decision making topic: whether to perform
2202decision making operations at the filtering step, or at the printing
2203step. In this example's approach, it does not perform any filtering
2204decisions at the filtering step beyond mapping a frame decorator to
2205each frame. This allows the actual decision making to be performed
2206when each frame is printed. This is an important consideration, and
2207well worth reflecting upon when designing a frame filter. An issue
2208that frame filters should avoid is unwinding the stack if possible.
2209Some stacks can run very deep, into the tens of thousands in some
2210cases. To search every frame to determine if it is inlined ahead of
2211time may be too expensive at the filtering step. The frame filter
2212cannot know how many frames it has to iterate over, and it would have
2213to iterate through them all. This ends up duplicating effort as
2214@value{GDBN} performs this iteration when it prints the frames.
2215
2216In this example decision making can be deferred to the printing step.
2217As each frame is printed, the frame decorator can examine each frame
2218in turn when @value{GDBN} iterates. From a performance viewpoint,
2219this is the most appropriate decision to make as it avoids duplicating
2220the effort that the printing step would undertake anyway. Also, if
2221there are many frame filters unwinding the stack during filtering, it
2222can substantially delay the printing of the backtrace which will
2223result in large memory usage, and a poor user experience.
2224
2225@smallexample
2226class InlineFilter():
2227
2228 def __init__(self):
2229 self.name = "InlinedFrameFilter"
2230 self.priority = 100
2231 self.enabled = True
2232 gdb.frame_filters[self.name] = self
2233
2234 def filter(self, frame_iter):
2235 frame_iter = itertools.imap(InlinedFrameDecorator,
2236 frame_iter)
2237 return frame_iter
2238@end smallexample
2239
2240This frame filter is somewhat similar to the earlier example, except
2241that the @code{filter} method applies a frame decorator object called
2242@code{InlinedFrameDecorator} to each element in the iterator. The
2243@code{imap} Python method is light-weight. It does not proactively
2244iterate over the iterator, but rather creates a new iterator which
2245wraps the existing one.
2246
2247Below is the frame decorator for this example.
2248
2249@smallexample
2250class InlinedFrameDecorator(FrameDecorator):
2251
2252 def __init__(self, fobj):
2253 super(InlinedFrameDecorator, self).__init__(fobj)
2254
2255 def function(self):
2256 frame = fobj.inferior_frame()
2257 name = str(frame.name())
2258
2259 if frame.type() == gdb.INLINE_FRAME:
2260 name = name + " [inlined]"
2261
2262 return name
2263@end smallexample
2264
2265This frame decorator only defines and overrides the @code{function}
2266method. It lets the supplied @code{FrameDecorator}, which is shipped
2267with @value{GDBN}, perform the other work associated with printing
2268this frame.
2269
2270The combination of these two objects create this output from a
2271backtrace:
2272
2273@smallexample
2274#0 0x004004e0 in bar () at inline.c:11
2275#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2276#2 0x00400566 in main () at inline.c:31
2277@end smallexample
2278
2279So in the case of this example, a frame decorator is applied to all
2280frames, regardless of whether they may be inlined or not. As
2281@value{GDBN} iterates over the iterator produced by the frame filters,
2282@value{GDBN} executes each frame decorator which then makes a decision
2283on what to print in the @code{function} callback. Using a strategy
2284like this is a way to defer decisions on the frame content to printing
2285time.
2286
2287@subheading Eliding Frames
2288
2289It might be that the above example is not desirable for representing
2290inlined frames, and a hierarchical approach may be preferred. If we
2291want to hierarchically represent frames, the @code{elided} frame
2292decorator interface might be preferable.
2293
2294This example approaches the issue with the @code{elided} method. This
2295example is quite long, but very simplistic. It is out-of-scope for
2296this section to write a complete example that comprehensively covers
2297all approaches of finding and printing inlined frames. However, this
2298example illustrates the approach an author might use.
2299
2300This example comprises of three sections.
2301
2302@smallexample
2303class InlineFrameFilter():
2304
2305 def __init__(self):
2306 self.name = "InlinedFrameFilter"
2307 self.priority = 100
2308 self.enabled = True
2309 gdb.frame_filters[self.name] = self
2310
2311 def filter(self, frame_iter):
2312 return ElidingInlineIterator(frame_iter)
2313@end smallexample
2314
2315This frame filter is very similar to the other examples. The only
2316difference is this frame filter is wrapping the iterator provided to
2317it (@code{frame_iter}) with a custom iterator called
2318@code{ElidingInlineIterator}. This again defers actions to when
2319@value{GDBN} prints the backtrace, as the iterator is not traversed
2320until printing.
2321
2322The iterator for this example is as follows. It is in this section of
2323the example where decisions are made on the content of the backtrace.
2324
2325@smallexample
2326class ElidingInlineIterator:
2327 def __init__(self, ii):
2328 self.input_iterator = ii
2329
2330 def __iter__(self):
2331 return self
2332
2333 def next(self):
2334 frame = next(self.input_iterator)
2335
2336 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2337 return frame
2338
2339 try:
2340 eliding_frame = next(self.input_iterator)
2341 except StopIteration:
2342 return frame
2343 return ElidingFrameDecorator(eliding_frame, [frame])
2344@end smallexample
2345
2346This iterator implements the Python iterator protocol. When the
2347@code{next} function is called (when @value{GDBN} prints each frame),
2348the iterator checks if this frame decorator, @code{frame}, is wrapping
2349an inlined frame. If it is not, it returns the existing frame decorator
2350untouched. If it is wrapping an inlined frame, it assumes that the
2351inlined frame was contained within the next oldest frame,
2352@code{eliding_frame}, which it fetches. It then creates and returns a
2353frame decorator, @code{ElidingFrameDecorator}, which contains both the
2354elided frame, and the eliding frame.
2355
2356@smallexample
2357class ElidingInlineDecorator(FrameDecorator):
2358
2359 def __init__(self, frame, elided_frames):
2360 super(ElidingInlineDecorator, self).__init__(frame)
2361 self.frame = frame
2362 self.elided_frames = elided_frames
2363
2364 def elided(self):
2365 return iter(self.elided_frames)
2366@end smallexample
2367
2368This frame decorator overrides one function and returns the inlined
2369frame in the @code{elided} method. As before it lets
2370@code{FrameDecorator} do the rest of the work involved in printing
2371this frame. This produces the following output.
2372
2373@smallexample
2374#0 0x004004e0 in bar () at inline.c:11
2375#2 0x00400529 in main () at inline.c:25
2376 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2377@end smallexample
2378
2379In that output, @code{max} which has been inlined into @code{main} is
2380printed hierarchically. Another approach would be to combine the
2381@code{function} method, and the @code{elided} method to both print a
2382marker in the inlined frame, and also show the hierarchical
2383relationship.
2384
d11916aa
SS
2385@node Unwinding Frames in Python
2386@subsubsection Unwinding Frames in Python
2387@cindex unwinding frames in Python
2388
2389In @value{GDBN} terminology ``unwinding'' is the process of finding
2390the previous frame (that is, caller's) from the current one. An
2391unwinder has three methods. The first one checks if it can handle
2392given frame (``sniff'' it). For the frames it can sniff an unwinder
2393provides two additional methods: it can return frame's ID, and it can
2394fetch registers from the previous frame. A running @value{GDBN}
2395mantains a list of the unwinders and calls each unwinder's sniffer in
2396turn until it finds the one that recognizes the current frame. There
2397is an API to register an unwinder.
2398
2399The unwinders that come with @value{GDBN} handle standard frames.
2400However, mixed language applications (for example, an application
2401running Java Virtual Machine) sometimes use frame layouts that cannot
2402be handled by the @value{GDBN} unwinders. You can write Python code
2403that can handle such custom frames.
2404
2405You implement a frame unwinder in Python as a class with which has two
2406attributes, @code{name} and @code{enabled}, with obvious meanings, and
2407a single method @code{__call__}, which examines a given frame and
2408returns an object (an instance of @code{gdb.UnwindInfo class)}
2409describing it. If an unwinder does not recognize a frame, it should
2410return @code{None}. The code in @value{GDBN} that enables writing
2411unwinders in Python uses this object to return frame's ID and previous
2412frame registers when @value{GDBN} core asks for them.
2413
e7b5068c
TT
2414An unwinder should do as little work as possible. Some otherwise
2415innocuous operations can cause problems (even crashes, as this code is
2416not not well-hardened yet). For example, making an inferior call from
2417an unwinder is unadvisable, as an inferior call will reset
2418@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2419unwinding.
2420
d11916aa
SS
2421@subheading Unwinder Input
2422
2423An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2424provides a method to read frame's registers:
2425
2426@defun PendingFrame.read_register (reg)
e7b5068c 2427This method returns the contents of the register @var{reg} in the
d11916aa
SS
2428frame as a @code{gdb.Value} object. @var{reg} can be either a
2429register number or a register name; the values are platform-specific.
2430They are usually found in the corresponding
e7b5068c
TT
2431@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2432@var{reg} does not name a register for the current architecture, this
2433method will throw an exception.
2434
2435Note that this method will always return a @code{gdb.Value} for a
2436valid register name. This does not mean that the value will be valid.
2437For example, you may request a register that an earlier unwinder could
2438not unwind---the value will be unavailable. Instead, the
2439@code{gdb.Value} returned from this method will be lazy; that is, its
2440underlying bits will not be fetched until it is first used. So,
2441attempting to use such a value will cause an exception at the point of
2442use.
2443
2444The type of the returned @code{gdb.Value} depends on the register and
2445the architecture. It is common for registers to have a scalar type,
2446like @code{long long}; but many other types are possible, such as
2447pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2448@end defun
2449
2450It also provides a factory method to create a @code{gdb.UnwindInfo}
2451instance to be returned to @value{GDBN}:
2452
2453@defun PendingFrame.create_unwind_info (frame_id)
2454Returns a new @code{gdb.UnwindInfo} instance identified by given
2455@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2456using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2457determine which function will be used, as follows:
2458
2459@table @code
d11916aa 2460@item sp, pc
e7b5068c
TT
2461The frame is identified by the given stack address and PC. The stack
2462address must be chosen so that it is constant throughout the lifetime
2463of the frame, so a typical choice is the value of the stack pointer at
2464the start of the function---in the DWARF standard, this would be the
2465``Call Frame Address''.
d11916aa 2466
e7b5068c
TT
2467This is the most common case by far. The other cases are documented
2468for completeness but are only useful in specialized situations.
2469
2470@item sp, pc, special
2471The frame is identified by the stack address, the PC, and a
2472``special'' address. The special address is used on architectures
2473that can have frames that do not change the stack, but which are still
2474distinct, for example the IA-64, which has a second stack for
2475registers. Both @var{sp} and @var{special} must be constant
2476throughout the lifetime of the frame.
d11916aa
SS
2477
2478@item sp
e7b5068c
TT
2479The frame is identified by the stack address only. Any other stack
2480frame with a matching @var{sp} will be considered to match this frame.
2481Inside gdb, this is called a ``wild frame''. You will never need
2482this.
d11916aa 2483@end table
e7b5068c
TT
2484
2485Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2486
2487@end defun
2488
2489@subheading Unwinder Output: UnwindInfo
2490
2491Use @code{PendingFrame.create_unwind_info} method described above to
2492create a @code{gdb.UnwindInfo} instance. Use the following method to
2493specify caller registers that have been saved in this frame:
2494
2495@defun gdb.UnwindInfo.add_saved_register (reg, value)
2496@var{reg} identifies the register. It can be a number or a name, just
2497as for the @code{PendingFrame.read_register} method above.
2498@var{value} is a register value (a @code{gdb.Value} object).
2499@end defun
2500
2501@subheading Unwinder Skeleton Code
2502
2503@value{GDBN} comes with the module containing the base @code{Unwinder}
2504class. Derive your unwinder class from it and structure the code as
2505follows:
2506
2507@smallexample
2508from gdb.unwinders import Unwinder
2509
2510class FrameId(object):
2511 def __init__(self, sp, pc):
2512 self.sp = sp
2513 self.pc = pc
2514
2515
2516class MyUnwinder(Unwinder):
2517 def __init__(....):
2518 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2519
2520 def __call__(pending_frame):
2521 if not <we recognize frame>:
2522 return None
2523 # Create UnwindInfo. Usually the frame is identified by the stack
2524 # pointer and the program counter.
2525 sp = pending_frame.read_register(<SP number>)
2526 pc = pending_frame.read_register(<PC number>)
2527 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2528
2529 # Find the values of the registers in the caller's frame and
2530 # save them in the result:
2531 unwind_info.add_saved_register(<register>, <value>)
2532 ....
2533
2534 # Return the result:
2535 return unwind_info
2536
2537@end smallexample
2538
2539@subheading Registering a Unwinder
2540
2541An object file, a program space, and the @value{GDBN} proper can have
2542unwinders registered with it.
2543
2544The @code{gdb.unwinders} module provides the function to register a
2545unwinder:
2546
2547@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2548@var{locus} is specifies an object file or a program space to which
2549@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2550@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2551added @var{unwinder} will be called before any other unwinder from the
2552same locus. Two unwinders in the same locus cannot have the same
2553name. An attempt to add a unwinder with already existing name raises
2554an exception unless @var{replace} is @code{True}, in which case the
2555old unwinder is deleted.
2556@end defun
2557
2558@subheading Unwinder Precedence
2559
2560@value{GDBN} first calls the unwinders from all the object files in no
2561particular order, then the unwinders from the current program space,
2562and finally the unwinders from @value{GDBN}.
2563
0c6e92a5
SC
2564@node Xmethods In Python
2565@subsubsection Xmethods In Python
2566@cindex xmethods in Python
2567
2568@dfn{Xmethods} are additional methods or replacements for existing
2569methods of a C@t{++} class. This feature is useful for those cases
2570where a method defined in C@t{++} source code could be inlined or
2571optimized out by the compiler, making it unavailable to @value{GDBN}.
2572For such cases, one can define an xmethod to serve as a replacement
2573for the method defined in the C@t{++} source code. @value{GDBN} will
2574then invoke the xmethod, instead of the C@t{++} method, to
2575evaluate expressions. One can also use xmethods when debugging
2576with core files. Moreover, when debugging live programs, invoking an
2577xmethod need not involve running the inferior (which can potentially
2578perturb its state). Hence, even if the C@t{++} method is available, it
2579is better to use its replacement xmethod if one is defined.
2580
2581The xmethods feature in Python is available via the concepts of an
2582@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2583implement an xmethod, one has to implement a matcher and a
2584corresponding worker for it (more than one worker can be
2585implemented, each catering to a different overloaded instance of the
2586method). Internally, @value{GDBN} invokes the @code{match} method of a
2587matcher to match the class type and method name. On a match, the
2588@code{match} method returns a list of matching @emph{worker} objects.
2589Each worker object typically corresponds to an overloaded instance of
2590the xmethod. They implement a @code{get_arg_types} method which
2591returns a sequence of types corresponding to the arguments the xmethod
2592requires. @value{GDBN} uses this sequence of types to perform
2593overload resolution and picks a winning xmethod worker. A winner
2594is also selected from among the methods @value{GDBN} finds in the
2595C@t{++} source code. Next, the winning xmethod worker and the
2596winning C@t{++} method are compared to select an overall winner. In
2597case of a tie between a xmethod worker and a C@t{++} method, the
2598xmethod worker is selected as the winner. That is, if a winning
2599xmethod worker is found to be equivalent to the winning C@t{++}
2600method, then the xmethod worker is treated as a replacement for
2601the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2602method. If the winning xmethod worker is the overall winner, then
897c3d32 2603the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2604of the worker object.
2605
2606If one wants to implement an xmethod as a replacement for an
2607existing C@t{++} method, then they have to implement an equivalent
2608xmethod which has exactly the same name and takes arguments of
2609exactly the same type as the C@t{++} method. If the user wants to
2610invoke the C@t{++} method even though a replacement xmethod is
2611available for that method, then they can disable the xmethod.
2612
2613@xref{Xmethod API}, for API to implement xmethods in Python.
2614@xref{Writing an Xmethod}, for implementing xmethods in Python.
2615
2616@node Xmethod API
2617@subsubsection Xmethod API
2618@cindex xmethod API
2619
2620The @value{GDBN} Python API provides classes, interfaces and functions
2621to implement, register and manipulate xmethods.
2622@xref{Xmethods In Python}.
2623
2624An xmethod matcher should be an instance of a class derived from
2625@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2626object with similar interface and attributes. An instance of
2627@code{XMethodMatcher} has the following attributes:
2628
2629@defvar name
2630The name of the matcher.
2631@end defvar
2632
2633@defvar enabled
2634A boolean value indicating whether the matcher is enabled or disabled.
2635@end defvar
2636
2637@defvar methods
2638A list of named methods managed by the matcher. Each object in the list
2639is an instance of the class @code{XMethod} defined in the module
2640@code{gdb.xmethod}, or any object with the following attributes:
2641
2642@table @code
2643
2644@item name
2645Name of the xmethod which should be unique for each xmethod
2646managed by the matcher.
2647
2648@item enabled
2649A boolean value indicating whether the xmethod is enabled or
2650disabled.
2651
2652@end table
2653
2654The class @code{XMethod} is a convenience class with same
2655attributes as above along with the following constructor:
2656
dd5d5494 2657@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2658Constructs an enabled xmethod with name @var{name}.
2659@end defun
2660@end defvar
2661
2662@noindent
2663The @code{XMethodMatcher} class has the following methods:
2664
dd5d5494 2665@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2666Constructs an enabled xmethod matcher with name @var{name}. The
2667@code{methods} attribute is initialized to @code{None}.
2668@end defun
2669
dd5d5494 2670@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2671Derived classes should override this method. It should return a
2672xmethod worker object (or a sequence of xmethod worker
2673objects) matching the @var{class_type} and @var{method_name}.
2674@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2675is a string value. If the matcher manages named methods as listed in
2676its @code{methods} attribute, then only those worker objects whose
2677corresponding entries in the @code{methods} list are enabled should be
2678returned.
2679@end defun
2680
2681An xmethod worker should be an instance of a class derived from
2682@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2683or support the following interface:
2684
dd5d5494 2685@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2686This method returns a sequence of @code{gdb.Type} objects corresponding
2687to the arguments that the xmethod takes. It can return an empty
2688sequence or @code{None} if the xmethod does not take any arguments.
2689If the xmethod takes a single argument, then a single
2690@code{gdb.Type} object corresponding to it can be returned.
2691@end defun
2692
2ce1cdbf
DE
2693@defun XMethodWorker.get_result_type (self, *args)
2694This method returns a @code{gdb.Type} object representing the type
2695of the result of invoking this xmethod.
2696The @var{args} argument is the same tuple of arguments that would be
2697passed to the @code{__call__} method of this worker.
2698@end defun
2699
dd5d5494 2700@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2701This is the method which does the @emph{work} of the xmethod. The
2702@var{args} arguments is the tuple of arguments to the xmethod. Each
2703element in this tuple is a gdb.Value object. The first element is
2704always the @code{this} pointer value.
2705@end defun
2706
2707For @value{GDBN} to lookup xmethods, the xmethod matchers
2708should be registered using the following function defined in the module
2709@code{gdb.xmethod}:
2710
dd5d5494 2711@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2712The @code{matcher} is registered with @code{locus}, replacing an
2713existing matcher with the same name as @code{matcher} if
2714@code{replace} is @code{True}. @code{locus} can be a
2715@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2716@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2717@code{None}. If it is @code{None}, then @code{matcher} is registered
2718globally.
2719@end defun
2720
2721@node Writing an Xmethod
2722@subsubsection Writing an Xmethod
2723@cindex writing xmethods in Python
2724
2725Implementing xmethods in Python will require implementing xmethod
2726matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2727the following C@t{++} class:
2728
2729@smallexample
2730class MyClass
2731@{
2732public:
2733 MyClass (int a) : a_(a) @{ @}
2734
2735 int geta (void) @{ return a_; @}
2736 int operator+ (int b);
2737
2738private:
2739 int a_;
2740@};
2741
2742int
2743MyClass::operator+ (int b)
2744@{
2745 return a_ + b;
2746@}
2747@end smallexample
2748
2749@noindent
2750Let us define two xmethods for the class @code{MyClass}, one
2751replacing the method @code{geta}, and another adding an overloaded
2752flavor of @code{operator+} which takes a @code{MyClass} argument (the
2753C@t{++} code above already has an overloaded @code{operator+}
2754which takes an @code{int} argument). The xmethod matcher can be
2755defined as follows:
2756
2757@smallexample
2758class MyClass_geta(gdb.xmethod.XMethod):
2759 def __init__(self):
2760 gdb.xmethod.XMethod.__init__(self, 'geta')
2761
2762 def get_worker(self, method_name):
2763 if method_name == 'geta':
2764 return MyClassWorker_geta()
2765
2766
2767class MyClass_sum(gdb.xmethod.XMethod):
2768 def __init__(self):
2769 gdb.xmethod.XMethod.__init__(self, 'sum')
2770
2771 def get_worker(self, method_name):
2772 if method_name == 'operator+':
2773 return MyClassWorker_plus()
2774
2775
2776class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2777 def __init__(self):
2778 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2779 # List of methods 'managed' by this matcher
2780 self.methods = [MyClass_geta(), MyClass_sum()]
2781
2782 def match(self, class_type, method_name):
2783 if class_type.tag != 'MyClass':
2784 return None
2785 workers = []
2786 for method in self.methods:
2787 if method.enabled:
2788 worker = method.get_worker(method_name)
2789 if worker:
2790 workers.append(worker)
2791
2792 return workers
2793@end smallexample
2794
2795@noindent
2796Notice that the @code{match} method of @code{MyClassMatcher} returns
2797a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2798method, and a worker object of type @code{MyClassWorker_plus} for the
2799@code{operator+} method. This is done indirectly via helper classes
2800derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2801@code{methods} attribute in a matcher as it is optional. However, if a
2802matcher manages more than one xmethod, it is a good practice to list the
2803xmethods in the @code{methods} attribute of the matcher. This will then
2804facilitate enabling and disabling individual xmethods via the
2805@code{enable/disable} commands. Notice also that a worker object is
2806returned only if the corresponding entry in the @code{methods} attribute
2807of the matcher is enabled.
2808
2809The implementation of the worker classes returned by the matcher setup
2810above is as follows:
2811
2812@smallexample
2813class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2814 def get_arg_types(self):
2815 return None
2ce1cdbf
DE
2816
2817 def get_result_type(self, obj):
2818 return gdb.lookup_type('int')
0c6e92a5
SC
2819
2820 def __call__(self, obj):
2821 return obj['a_']
2822
2823
2824class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2825 def get_arg_types(self):
2826 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2827
2828 def get_result_type(self, obj):
2829 return gdb.lookup_type('int')
0c6e92a5
SC
2830
2831 def __call__(self, obj, other):
2832 return obj['a_'] + other['a_']
2833@end smallexample
2834
2835For @value{GDBN} to actually lookup a xmethod, it has to be
2836registered with it. The matcher defined above is registered with
2837@value{GDBN} globally as follows:
2838
2839@smallexample
2840gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2841@end smallexample
2842
2843If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2844code as follows:
2845
2846@smallexample
2847MyClass obj(5);
2848@end smallexample
2849
2850@noindent
2851then, after loading the Python script defining the xmethod matchers
2852and workers into @code{GDBN}, invoking the method @code{geta} or using
2853the operator @code{+} on @code{obj} will invoke the xmethods
2854defined above:
2855
2856@smallexample
2857(gdb) p obj.geta()
2858$1 = 5
2859
2860(gdb) p obj + obj
2861$2 = 10
2862@end smallexample
2863
2864Consider another example with a C++ template class:
2865
2866@smallexample
2867template <class T>
2868class MyTemplate
2869@{
2870public:
2871 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2872 ~MyTemplate () @{ delete [] data_; @}
2873
2874 int footprint (void)
2875 @{
2876 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2877 @}
2878
2879private:
2880 int dsize_;
2881 T *data_;
2882@};
2883@end smallexample
2884
2885Let us implement an xmethod for the above class which serves as a
2886replacement for the @code{footprint} method. The full code listing
2887of the xmethod workers and xmethod matchers is as follows:
2888
2889@smallexample
2890class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2891 def __init__(self, class_type):
2892 self.class_type = class_type
2ce1cdbf 2893
0c6e92a5
SC
2894 def get_arg_types(self):
2895 return None
2ce1cdbf
DE
2896
2897 def get_result_type(self):
2898 return gdb.lookup_type('int')
2899
0c6e92a5
SC
2900 def __call__(self, obj):
2901 return (self.class_type.sizeof +
2902 obj['dsize_'] *
2903 self.class_type.template_argument(0).sizeof)
2904
2905
2906class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2907 def __init__(self):
2908 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2909
2910 def match(self, class_type, method_name):
2911 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2912 class_type.tag) and
2913 method_name == 'footprint'):
2914 return MyTemplateWorker_footprint(class_type)
2915@end smallexample
2916
2917Notice that, in this example, we have not used the @code{methods}
2918attribute of the matcher as the matcher manages only one xmethod. The
2919user can enable/disable this xmethod by enabling/disabling the matcher
2920itself.
2921
329baa95
DE
2922@node Inferiors In Python
2923@subsubsection Inferiors In Python
2924@cindex inferiors in Python
2925
2926@findex gdb.Inferior
2927Programs which are being run under @value{GDBN} are called inferiors
2928(@pxref{Inferiors and Programs}). Python scripts can access
2929information about and manipulate inferiors controlled by @value{GDBN}
2930via objects of the @code{gdb.Inferior} class.
2931
2932The following inferior-related functions are available in the @code{gdb}
2933module:
2934
2935@defun gdb.inferiors ()
2936Return a tuple containing all inferior objects.
2937@end defun
2938
2939@defun gdb.selected_inferior ()
2940Return an object representing the current inferior.
2941@end defun
2942
2943A @code{gdb.Inferior} object has the following attributes:
2944
2945@defvar Inferior.num
2946ID of inferior, as assigned by GDB.
2947@end defvar
2948
2949@defvar Inferior.pid
2950Process ID of the inferior, as assigned by the underlying operating
2951system.
2952@end defvar
2953
2954@defvar Inferior.was_attached
2955Boolean signaling whether the inferior was created using `attach', or
2956started by @value{GDBN} itself.
2957@end defvar
2958
a40bf0c2
SM
2959@defvar Inferior.progspace
2960The inferior's program space. @xref{Progspaces In Python}.
2961@end defvar
2962
329baa95
DE
2963A @code{gdb.Inferior} object has the following methods:
2964
2965@defun Inferior.is_valid ()
2966Returns @code{True} if the @code{gdb.Inferior} object is valid,
2967@code{False} if not. A @code{gdb.Inferior} object will become invalid
2968if the inferior no longer exists within @value{GDBN}. All other
2969@code{gdb.Inferior} methods will throw an exception if it is invalid
2970at the time the method is called.
2971@end defun
2972
2973@defun Inferior.threads ()
2974This method returns a tuple holding all the threads which are valid
2975when it is called. If there are no valid threads, the method will
2976return an empty tuple.
2977@end defun
2978
add5ded5
TT
2979@defun Inferior.architecture ()
2980Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2981for this inferior. This represents the architecture of the inferior
2982as a whole. Some platforms can have multiple architectures in a
2983single address space, so this may not match the architecture of a
163cffef 2984particular frame (@pxref{Frames In Python}).
9e1698c6 2985@end defun
add5ded5 2986
329baa95
DE
2987@findex Inferior.read_memory
2988@defun Inferior.read_memory (address, length)
a86c90e6 2989Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2990@var{address}. Returns a buffer object, which behaves much like an array
2991or a string. It can be modified and given to the
79778b30 2992@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2993value is a @code{memoryview} object.
2994@end defun
2995
2996@findex Inferior.write_memory
2997@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2998Write the contents of @var{buffer} to the inferior, starting at
2999@var{address}. The @var{buffer} parameter must be a Python object
3000which supports the buffer protocol, i.e., a string, an array or the
3001object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
3002determines the number of addressable memory units from @var{buffer} to be
3003written.
329baa95
DE
3004@end defun
3005
3006@findex gdb.search_memory
3007@defun Inferior.search_memory (address, length, pattern)
3008Search a region of the inferior memory starting at @var{address} with
3009the given @var{length} using the search pattern supplied in
3010@var{pattern}. The @var{pattern} parameter must be a Python object
3011which supports the buffer protocol, i.e., a string, an array or the
3012object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3013containing the address where the pattern was found, or @code{None} if
3014the pattern could not be found.
3015@end defun
3016
2b0c8b01 3017@findex Inferior.thread_from_handle
da2c323b 3018@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3019@defun Inferior.thread_from_handle (handle)
3020Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3021library specific data structure such as @code{pthread_t} for pthreads
3022library implementations.
2b0c8b01
KB
3023
3024The function @code{Inferior.thread_from_thread_handle} provides
3025the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3026is deprecated.
da2c323b
KB
3027@end defun
3028
329baa95
DE
3029@node Events In Python
3030@subsubsection Events In Python
3031@cindex inferior events in Python
3032
3033@value{GDBN} provides a general event facility so that Python code can be
3034notified of various state changes, particularly changes that occur in
3035the inferior.
3036
3037An @dfn{event} is just an object that describes some state change. The
3038type of the object and its attributes will vary depending on the details
3039of the change. All the existing events are described below.
3040
3041In order to be notified of an event, you must register an event handler
3042with an @dfn{event registry}. An event registry is an object in the
3043@code{gdb.events} module which dispatches particular events. A registry
3044provides methods to register and unregister event handlers:
3045
3046@defun EventRegistry.connect (object)
3047Add the given callable @var{object} to the registry. This object will be
3048called when an event corresponding to this registry occurs.
3049@end defun
3050
3051@defun EventRegistry.disconnect (object)
3052Remove the given @var{object} from the registry. Once removed, the object
3053will no longer receive notifications of events.
3054@end defun
3055
3056Here is an example:
3057
3058@smallexample
3059def exit_handler (event):
3060 print "event type: exit"
3061 print "exit code: %d" % (event.exit_code)
3062
3063gdb.events.exited.connect (exit_handler)
3064@end smallexample
3065
3066In the above example we connect our handler @code{exit_handler} to the
3067registry @code{events.exited}. Once connected, @code{exit_handler} gets
3068called when the inferior exits. The argument @dfn{event} in this example is
3069of type @code{gdb.ExitedEvent}. As you can see in the example the
3070@code{ExitedEvent} object has an attribute which indicates the exit code of
3071the inferior.
3072
3073The following is a listing of the event registries that are available and
3074details of the events they emit:
3075
3076@table @code
3077
3078@item events.cont
3079Emits @code{gdb.ThreadEvent}.
3080
3081Some events can be thread specific when @value{GDBN} is running in non-stop
3082mode. When represented in Python, these events all extend
3083@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3084events which are emitted by this or other modules might extend this event.
3085Examples of these events are @code{gdb.BreakpointEvent} and
3086@code{gdb.ContinueEvent}.
3087
3088@defvar ThreadEvent.inferior_thread
3089In non-stop mode this attribute will be set to the specific thread which was
3090involved in the emitted event. Otherwise, it will be set to @code{None}.
3091@end defvar
3092
3093Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3094
3095This event indicates that the inferior has been continued after a stop. For
3096inherited attribute refer to @code{gdb.ThreadEvent} above.
3097
3098@item events.exited
3099Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3100@code{events.ExitedEvent} has two attributes:
3101@defvar ExitedEvent.exit_code
3102An integer representing the exit code, if available, which the inferior
3103has returned. (The exit code could be unavailable if, for example,
3104@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3105the attribute does not exist.
3106@end defvar
373832b6 3107@defvar ExitedEvent.inferior
329baa95
DE
3108A reference to the inferior which triggered the @code{exited} event.
3109@end defvar
3110
3111@item events.stop
3112Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3113
3114Indicates that the inferior has stopped. All events emitted by this registry
3115extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3116will indicate the stopped thread when @value{GDBN} is running in non-stop
3117mode. Refer to @code{gdb.ThreadEvent} above for more details.
3118
3119Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3120
3121This event indicates that the inferior or one of its threads has received as
3122signal. @code{gdb.SignalEvent} has the following attributes:
3123
3124@defvar SignalEvent.stop_signal
3125A string representing the signal received by the inferior. A list of possible
3126signal values can be obtained by running the command @code{info signals} in
3127the @value{GDBN} command prompt.
3128@end defvar
3129
3130Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3131
3132@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3133been hit, and has the following attributes:
3134
3135@defvar BreakpointEvent.breakpoints
3136A sequence containing references to all the breakpoints (type
3137@code{gdb.Breakpoint}) that were hit.
3138@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3139@end defvar
3140@defvar BreakpointEvent.breakpoint
3141A reference to the first breakpoint that was hit.
3142This function is maintained for backward compatibility and is now deprecated
3143in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3144@end defvar
3145
3146@item events.new_objfile
3147Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3148been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3149
3150@defvar NewObjFileEvent.new_objfile
3151A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3152@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3153@end defvar
3154
4ffbba72
DE
3155@item events.clear_objfiles
3156Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3157files for a program space has been reset.
3158@code{gdb.ClearObjFilesEvent} has one attribute:
3159
3160@defvar ClearObjFilesEvent.progspace
3161A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3162been cleared. @xref{Progspaces In Python}.
3163@end defvar
3164
fb5af5e3
TT
3165@item events.inferior_call
3166Emits events just before and after a function in the inferior is
3167called by @value{GDBN}. Before an inferior call, this emits an event
3168of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3169this emits an event of type @code{gdb.InferiorCallPostEvent}.
3170
3171@table @code
3172@tindex gdb.InferiorCallPreEvent
3173@item @code{gdb.InferiorCallPreEvent}
3174Indicates that a function in the inferior is about to be called.
162078c8
NB
3175
3176@defvar InferiorCallPreEvent.ptid
3177The thread in which the call will be run.
3178@end defvar
3179
3180@defvar InferiorCallPreEvent.address
3181The location of the function to be called.
3182@end defvar
3183
fb5af5e3
TT
3184@tindex gdb.InferiorCallPostEvent
3185@item @code{gdb.InferiorCallPostEvent}
3186Indicates that a function in the inferior has just been called.
162078c8
NB
3187
3188@defvar InferiorCallPostEvent.ptid
3189The thread in which the call was run.
3190@end defvar
3191
3192@defvar InferiorCallPostEvent.address
3193The location of the function that was called.
3194@end defvar
fb5af5e3 3195@end table
162078c8
NB
3196
3197@item events.memory_changed
3198Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3199inferior has been modified by the @value{GDBN} user, for instance via a
3200command like @w{@code{set *addr = value}}. The event has the following
3201attributes:
3202
3203@defvar MemoryChangedEvent.address
3204The start address of the changed region.
3205@end defvar
3206
3207@defvar MemoryChangedEvent.length
3208Length in bytes of the changed region.
3209@end defvar
3210
3211@item events.register_changed
3212Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3213inferior has been modified by the @value{GDBN} user.
3214
3215@defvar RegisterChangedEvent.frame
3216A gdb.Frame object representing the frame in which the register was modified.
3217@end defvar
3218@defvar RegisterChangedEvent.regnum
3219Denotes which register was modified.
3220@end defvar
3221
dac790e1
TT
3222@item events.breakpoint_created
3223This is emitted when a new breakpoint has been created. The argument
3224that is passed is the new @code{gdb.Breakpoint} object.
3225
3226@item events.breakpoint_modified
3227This is emitted when a breakpoint has been modified in some way. The
3228argument that is passed is the new @code{gdb.Breakpoint} object.
3229
3230@item events.breakpoint_deleted
3231This is emitted when a breakpoint has been deleted. The argument that
3232is passed is the @code{gdb.Breakpoint} object. When this event is
3233emitted, the @code{gdb.Breakpoint} object will already be in its
3234invalid state; that is, the @code{is_valid} method will return
3235@code{False}.
3236
3f77c769
TT
3237@item events.before_prompt
3238This event carries no payload. It is emitted each time @value{GDBN}
3239presents a prompt to the user.
3240
7c96f8c1
TT
3241@item events.new_inferior
3242This is emitted when a new inferior is created. Note that the
3243inferior is not necessarily running; in fact, it may not even have an
3244associated executable.
3245
3246The event is of type @code{gdb.NewInferiorEvent}. This has a single
3247attribute:
3248
3249@defvar NewInferiorEvent.inferior
3250The new inferior, a @code{gdb.Inferior} object.
3251@end defvar
3252
3253@item events.inferior_deleted
3254This is emitted when an inferior has been deleted. Note that this is
3255not the same as process exit; it is notified when the inferior itself
3256is removed, say via @code{remove-inferiors}.
3257
3258The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3259attribute:
3260
3261@defvar NewInferiorEvent.inferior
3262The inferior that is being removed, a @code{gdb.Inferior} object.
3263@end defvar
3264
3265@item events.new_thread
3266This is emitted when @value{GDBN} notices a new thread. The event is of
3267type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3268This has a single attribute:
3269
3270@defvar NewThreadEvent.inferior_thread
3271The new thread.
3272@end defvar
3273
329baa95
DE
3274@end table
3275
3276@node Threads In Python
3277@subsubsection Threads In Python
3278@cindex threads in python
3279
3280@findex gdb.InferiorThread
3281Python scripts can access information about, and manipulate inferior threads
3282controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3283
3284The following thread-related functions are available in the @code{gdb}
3285module:
3286
3287@findex gdb.selected_thread
3288@defun gdb.selected_thread ()
3289This function returns the thread object for the selected thread. If there
3290is no selected thread, this will return @code{None}.
3291@end defun
3292
3293A @code{gdb.InferiorThread} object has the following attributes:
3294
3295@defvar InferiorThread.name
3296The name of the thread. If the user specified a name using
3297@code{thread name}, then this returns that name. Otherwise, if an
3298OS-supplied name is available, then it is returned. Otherwise, this
3299returns @code{None}.
3300
3301This attribute can be assigned to. The new value must be a string
3302object, which sets the new name, or @code{None}, which removes any
3303user-specified thread name.
3304@end defvar
3305
3306@defvar InferiorThread.num
5d5658a1 3307The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3308@end defvar
3309
22a02324
PA
3310@defvar InferiorThread.global_num
3311The global ID of the thread, as assigned by GDB. You can use this to
3312make Python breakpoints thread-specific, for example
3313(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3314@end defvar
3315
329baa95
DE
3316@defvar InferiorThread.ptid
3317ID of the thread, as assigned by the operating system. This attribute is a
3318tuple containing three integers. The first is the Process ID (PID); the second
3319is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3320Either the LWPID or TID may be 0, which indicates that the operating system
3321does not use that identifier.
3322@end defvar
3323
84654457
PA
3324@defvar InferiorThread.inferior
3325The inferior this thread belongs to. This attribute is represented as
3326a @code{gdb.Inferior} object. This attribute is not writable.
3327@end defvar
3328
329baa95
DE
3329A @code{gdb.InferiorThread} object has the following methods:
3330
3331@defun InferiorThread.is_valid ()
3332Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3333@code{False} if not. A @code{gdb.InferiorThread} object will become
3334invalid if the thread exits, or the inferior that the thread belongs
3335is deleted. All other @code{gdb.InferiorThread} methods will throw an
3336exception if it is invalid at the time the method is called.
3337@end defun
3338
3339@defun InferiorThread.switch ()
3340This changes @value{GDBN}'s currently selected thread to the one represented
3341by this object.
3342@end defun
3343
3344@defun InferiorThread.is_stopped ()
3345Return a Boolean indicating whether the thread is stopped.
3346@end defun
3347
3348@defun InferiorThread.is_running ()
3349Return a Boolean indicating whether the thread is running.
3350@end defun
3351
3352@defun InferiorThread.is_exited ()
3353Return a Boolean indicating whether the thread is exited.
3354@end defun
3355
c369f8f0
KB
3356@defun InferiorThread.handle ()
3357Return the thread object's handle, represented as a Python @code{bytes}
3358object. A @code{gdb.Value} representation of the handle may be
3359constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3360the Python @code{bytes} representation of the handle and @var{type} is
3361a @code{gdb.Type} for the handle type.
3362@end defun
3363
0a0faf9f
TW
3364@node Recordings In Python
3365@subsubsection Recordings In Python
3366@cindex recordings in python
3367
3368The following recordings-related functions
3369(@pxref{Process Record and Replay}) are available in the @code{gdb}
3370module:
3371
3372@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3373Start a recording using the given @var{method} and @var{format}. If
3374no @var{format} is given, the default format for the recording method
3375is used. If no @var{method} is given, the default method will be used.
3376Returns a @code{gdb.Record} object on success. Throw an exception on
3377failure.
3378
3379The following strings can be passed as @var{method}:
3380
3381@itemize @bullet
3382@item
3383@code{"full"}
3384@item
3385@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3386@code{"bts"} or leave out for default format.
3387@end itemize
3388@end defun
3389
3390@defun gdb.current_recording ()
3391Access a currently running recording. Return a @code{gdb.Record}
3392object on success. Return @code{None} if no recording is currently
3393active.
3394@end defun
3395
3396@defun gdb.stop_recording ()
3397Stop the current recording. Throw an exception if no recording is
3398currently active. All record objects become invalid after this call.
3399@end defun
3400
3401A @code{gdb.Record} object has the following attributes:
3402
0a0faf9f
TW
3403@defvar Record.method
3404A string with the current recording method, e.g.@: @code{full} or
3405@code{btrace}.
3406@end defvar
3407
3408@defvar Record.format
3409A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3410@code{None}.
3411@end defvar
3412
3413@defvar Record.begin
3414A method specific instruction object representing the first instruction
3415in this recording.
3416@end defvar
3417
3418@defvar Record.end
3419A method specific instruction object representing the current
3420instruction, that is not actually part of the recording.
3421@end defvar
3422
3423@defvar Record.replay_position
3424The instruction representing the current replay position. If there is
3425no replay active, this will be @code{None}.
3426@end defvar
3427
3428@defvar Record.instruction_history
3429A list with all recorded instructions.
3430@end defvar
3431
3432@defvar Record.function_call_history
3433A list with all recorded function call segments.
3434@end defvar
3435
3436A @code{gdb.Record} object has the following methods:
3437
3438@defun Record.goto (instruction)
3439Move the replay position to the given @var{instruction}.
3440@end defun
3441
d050f7d7
TW
3442The common @code{gdb.Instruction} class that recording method specific
3443instruction objects inherit from, has the following attributes:
0a0faf9f 3444
d050f7d7 3445@defvar Instruction.pc
913aeadd 3446An integer representing this instruction's address.
0a0faf9f
TW
3447@end defvar
3448
d050f7d7 3449@defvar Instruction.data
913aeadd
TW
3450A buffer with the raw instruction data. In Python 3, the return value is a
3451@code{memoryview} object.
0a0faf9f
TW
3452@end defvar
3453
d050f7d7 3454@defvar Instruction.decoded
913aeadd 3455A human readable string with the disassembled instruction.
0a0faf9f
TW
3456@end defvar
3457
d050f7d7 3458@defvar Instruction.size
913aeadd 3459The size of the instruction in bytes.
0a0faf9f
TW
3460@end defvar
3461
d050f7d7
TW
3462Additionally @code{gdb.RecordInstruction} has the following attributes:
3463
3464@defvar RecordInstruction.number
3465An integer identifying this instruction. @code{number} corresponds to
3466the numbers seen in @code{record instruction-history}
3467(@pxref{Process Record and Replay}).
3468@end defvar
3469
3470@defvar RecordInstruction.sal
3471A @code{gdb.Symtab_and_line} object representing the associated symtab
3472and line of this instruction. May be @code{None} if no debug information is
3473available.
3474@end defvar
3475
0ed5da75 3476@defvar RecordInstruction.is_speculative
d050f7d7 3477A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3478@end defvar
3479
3480If an error occured during recording or decoding a recording, this error is
3481represented by a @code{gdb.RecordGap} object in the instruction list. It has
3482the following attributes:
3483
3484@defvar RecordGap.number
3485An integer identifying this gap. @code{number} corresponds to the numbers seen
3486in @code{record instruction-history} (@pxref{Process Record and Replay}).
3487@end defvar
3488
3489@defvar RecordGap.error_code
3490A numerical representation of the reason for the gap. The value is specific to
3491the current recording method.
3492@end defvar
3493
3494@defvar RecordGap.error_string
3495A human readable string with the reason for the gap.
0a0faf9f
TW
3496@end defvar
3497
14f819c8 3498A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3499
14f819c8
TW
3500@defvar RecordFunctionSegment.number
3501An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3502the numbers seen in @code{record function-call-history}
3503(@pxref{Process Record and Replay}).
3504@end defvar
3505
14f819c8 3506@defvar RecordFunctionSegment.symbol
0a0faf9f 3507A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3508@code{None} if no debug information is available.
0a0faf9f
TW
3509@end defvar
3510
14f819c8 3511@defvar RecordFunctionSegment.level
0a0faf9f
TW
3512An integer representing the function call's stack level. May be
3513@code{None} if the function call is a gap.
3514@end defvar
3515
14f819c8 3516@defvar RecordFunctionSegment.instructions
0ed5da75 3517A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3518associated with this function call.
0a0faf9f
TW
3519@end defvar
3520
14f819c8
TW
3521@defvar RecordFunctionSegment.up
3522A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3523function segment. If the call has not been recorded, this will be the
3524function segment to which control returns. If neither the call nor the
3525return have been recorded, this will be @code{None}.
3526@end defvar
3527
14f819c8
TW
3528@defvar RecordFunctionSegment.prev
3529A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3530segment of this function call. May be @code{None}.
3531@end defvar
3532
14f819c8
TW
3533@defvar RecordFunctionSegment.next
3534A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3535this function call. May be @code{None}.
3536@end defvar
3537
3538The following example demonstrates the usage of these objects and
3539functions to create a function that will rewind a record to the last
3540time a function in a different file was executed. This would typically
3541be used to track the execution of user provided callback functions in a
3542library which typically are not visible in a back trace.
3543
3544@smallexample
3545def bringback ():
3546 rec = gdb.current_recording ()
3547 if not rec:
3548 return
3549
3550 insn = rec.instruction_history
3551 if len (insn) == 0:
3552 return
3553
3554 try:
3555 position = insn.index (rec.replay_position)
3556 except:
3557 position = -1
3558 try:
3559 filename = insn[position].sal.symtab.fullname ()
3560 except:
3561 filename = None
3562
3563 for i in reversed (insn[:position]):
3564 try:
3565 current = i.sal.symtab.fullname ()
3566 except:
3567 current = None
3568
3569 if filename == current:
3570 continue
3571
3572 rec.goto (i)
3573 return
3574@end smallexample
3575
3576Another possible application is to write a function that counts the
3577number of code executions in a given line range. This line range can
3578contain parts of functions or span across several functions and is not
3579limited to be contiguous.
3580
3581@smallexample
3582def countrange (filename, linerange):
3583 count = 0
3584
3585 def filter_only (file_name):
3586 for call in gdb.current_recording ().function_call_history:
3587 try:
3588 if file_name in call.symbol.symtab.fullname ():
3589 yield call
3590 except:
3591 pass
3592
3593 for c in filter_only (filename):
3594 for i in c.instructions:
3595 try:
3596 if i.sal.line in linerange:
3597 count += 1
3598 break;
3599 except:
3600 pass
3601
3602 return count
3603@end smallexample
3604
329baa95
DE
3605@node Commands In Python
3606@subsubsection Commands In Python
3607
3608@cindex commands in python
3609@cindex python commands
3610You can implement new @value{GDBN} CLI commands in Python. A CLI
3611command is implemented using an instance of the @code{gdb.Command}
3612class, most commonly using a subclass.
3613
3614@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3615The object initializer for @code{Command} registers the new command
3616with @value{GDBN}. This initializer is normally invoked from the
3617subclass' own @code{__init__} method.
3618
3619@var{name} is the name of the command. If @var{name} consists of
3620multiple words, then the initial words are looked for as prefix
3621commands. In this case, if one of the prefix commands does not exist,
3622an exception is raised.
3623
3624There is no support for multi-line commands.
3625
3626@var{command_class} should be one of the @samp{COMMAND_} constants
3627defined below. This argument tells @value{GDBN} how to categorize the
3628new command in the help system.
3629
3630@var{completer_class} is an optional argument. If given, it should be
3631one of the @samp{COMPLETE_} constants defined below. This argument
3632tells @value{GDBN} how to perform completion for this command. If not
3633given, @value{GDBN} will attempt to complete using the object's
3634@code{complete} method (see below); if no such method is found, an
3635error will occur when completion is attempted.
3636
3637@var{prefix} is an optional argument. If @code{True}, then the new
3638command is a prefix command; sub-commands of this command may be
3639registered.
3640
3641The help text for the new command is taken from the Python
3642documentation string for the command's class, if there is one. If no
3643documentation string is provided, the default value ``This command is
3644not documented.'' is used.
3645@end defun
3646
3647@cindex don't repeat Python command
3648@defun Command.dont_repeat ()
3649By default, a @value{GDBN} command is repeated when the user enters a
3650blank line at the command prompt. A command can suppress this
3651behavior by invoking the @code{dont_repeat} method. This is similar
3652to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3653@end defun
3654
3655@defun Command.invoke (argument, from_tty)
3656This method is called by @value{GDBN} when this command is invoked.
3657
3658@var{argument} is a string. It is the argument to the command, after
3659leading and trailing whitespace has been stripped.
3660
3661@var{from_tty} is a boolean argument. When true, this means that the
3662command was entered by the user at the terminal; when false it means
3663that the command came from elsewhere.
3664
3665If this method throws an exception, it is turned into a @value{GDBN}
3666@code{error} call. Otherwise, the return value is ignored.
3667
3668@findex gdb.string_to_argv
3669To break @var{argument} up into an argv-like string use
3670@code{gdb.string_to_argv}. This function behaves identically to
3671@value{GDBN}'s internal argument lexer @code{buildargv}.
3672It is recommended to use this for consistency.
3673Arguments are separated by spaces and may be quoted.
3674Example:
3675
3676@smallexample
3677print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3678['1', '2 "3', '4 "5', "6 '7"]
3679@end smallexample
3680
3681@end defun
3682
3683@cindex completion of Python commands
3684@defun Command.complete (text, word)
3685This method is called by @value{GDBN} when the user attempts
3686completion on this command. All forms of completion are handled by
3687this method, that is, the @key{TAB} and @key{M-?} key bindings
3688(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3689complete}).
3690
697aa1b7
EZ
3691The arguments @var{text} and @var{word} are both strings; @var{text}
3692holds the complete command line up to the cursor's location, while
329baa95
DE
3693@var{word} holds the last word of the command line; this is computed
3694using a word-breaking heuristic.
3695
3696The @code{complete} method can return several values:
3697@itemize @bullet
3698@item
3699If the return value is a sequence, the contents of the sequence are
3700used as the completions. It is up to @code{complete} to ensure that the
3701contents actually do complete the word. A zero-length sequence is
3702allowed, it means that there were no completions available. Only
3703string elements of the sequence are used; other elements in the
3704sequence are ignored.
3705
3706@item
3707If the return value is one of the @samp{COMPLETE_} constants defined
3708below, then the corresponding @value{GDBN}-internal completion
3709function is invoked, and its result is used.
3710
3711@item
3712All other results are treated as though there were no available
3713completions.
3714@end itemize
3715@end defun
3716
3717When a new command is registered, it must be declared as a member of
3718some general class of commands. This is used to classify top-level
3719commands in the on-line help system; note that prefix commands are not
3720listed under their own category but rather that of their top-level
3721command. The available classifications are represented by constants
3722defined in the @code{gdb} module:
3723
3724@table @code
3725@findex COMMAND_NONE
3726@findex gdb.COMMAND_NONE
3727@item gdb.COMMAND_NONE
3728The command does not belong to any particular class. A command in
3729this category will not be displayed in any of the help categories.
3730
3731@findex COMMAND_RUNNING
3732@findex gdb.COMMAND_RUNNING
3733@item gdb.COMMAND_RUNNING
3734The command is related to running the inferior. For example,
3735@code{start}, @code{step}, and @code{continue} are in this category.
3736Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3737commands in this category.
3738
3739@findex COMMAND_DATA
3740@findex gdb.COMMAND_DATA
3741@item gdb.COMMAND_DATA
3742The command is related to data or variables. For example,
3743@code{call}, @code{find}, and @code{print} are in this category. Type
3744@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3745in this category.
3746
3747@findex COMMAND_STACK
3748@findex gdb.COMMAND_STACK
3749@item gdb.COMMAND_STACK
3750The command has to do with manipulation of the stack. For example,
3751@code{backtrace}, @code{frame}, and @code{return} are in this
3752category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3753list of commands in this category.
3754
3755@findex COMMAND_FILES
3756@findex gdb.COMMAND_FILES
3757@item gdb.COMMAND_FILES
3758This class is used for file-related commands. For example,
3759@code{file}, @code{list} and @code{section} are in this category.
3760Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3761commands in this category.
3762
3763@findex COMMAND_SUPPORT
3764@findex gdb.COMMAND_SUPPORT
3765@item gdb.COMMAND_SUPPORT
3766This should be used for ``support facilities'', generally meaning
3767things that are useful to the user when interacting with @value{GDBN},
3768but not related to the state of the inferior. For example,
3769@code{help}, @code{make}, and @code{shell} are in this category. Type
3770@kbd{help support} at the @value{GDBN} prompt to see a list of
3771commands in this category.
3772
3773@findex COMMAND_STATUS
3774@findex gdb.COMMAND_STATUS
3775@item gdb.COMMAND_STATUS
3776The command is an @samp{info}-related command, that is, related to the
3777state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3778and @code{show} are in this category. Type @kbd{help status} at the
3779@value{GDBN} prompt to see a list of commands in this category.
3780
3781@findex COMMAND_BREAKPOINTS
3782@findex gdb.COMMAND_BREAKPOINTS
3783@item gdb.COMMAND_BREAKPOINTS
3784The command has to do with breakpoints. For example, @code{break},
3785@code{clear}, and @code{delete} are in this category. Type @kbd{help
3786breakpoints} at the @value{GDBN} prompt to see a list of commands in
3787this category.
3788
3789@findex COMMAND_TRACEPOINTS
3790@findex gdb.COMMAND_TRACEPOINTS
3791@item gdb.COMMAND_TRACEPOINTS
3792The command has to do with tracepoints. For example, @code{trace},
3793@code{actions}, and @code{tfind} are in this category. Type
3794@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3795commands in this category.
3796
3797@findex COMMAND_USER
3798@findex gdb.COMMAND_USER
3799@item gdb.COMMAND_USER
3800The command is a general purpose command for the user, and typically
3801does not fit in one of the other categories.
3802Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3803a list of commands in this category, as well as the list of gdb macros
3804(@pxref{Sequences}).
3805
3806@findex COMMAND_OBSCURE
3807@findex gdb.COMMAND_OBSCURE
3808@item gdb.COMMAND_OBSCURE
3809The command is only used in unusual circumstances, or is not of
3810general interest to users. For example, @code{checkpoint},
3811@code{fork}, and @code{stop} are in this category. Type @kbd{help
3812obscure} at the @value{GDBN} prompt to see a list of commands in this
3813category.
3814
3815@findex COMMAND_MAINTENANCE
3816@findex gdb.COMMAND_MAINTENANCE
3817@item gdb.COMMAND_MAINTENANCE
3818The command is only useful to @value{GDBN} maintainers. The
3819@code{maintenance} and @code{flushregs} commands are in this category.
3820Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3821commands in this category.
3822@end table
3823
3824A new command can use a predefined completion function, either by
3825specifying it via an argument at initialization, or by returning it
3826from the @code{complete} method. These predefined completion
3827constants are all defined in the @code{gdb} module:
3828
b3ce5e5f
DE
3829@vtable @code
3830@vindex COMPLETE_NONE
329baa95
DE
3831@item gdb.COMPLETE_NONE
3832This constant means that no completion should be done.
3833
b3ce5e5f 3834@vindex COMPLETE_FILENAME
329baa95
DE
3835@item gdb.COMPLETE_FILENAME
3836This constant means that filename completion should be performed.
3837
b3ce5e5f 3838@vindex COMPLETE_LOCATION
329baa95
DE
3839@item gdb.COMPLETE_LOCATION
3840This constant means that location completion should be done.
3841@xref{Specify Location}.
3842
b3ce5e5f 3843@vindex COMPLETE_COMMAND
329baa95
DE
3844@item gdb.COMPLETE_COMMAND
3845This constant means that completion should examine @value{GDBN}
3846command names.
3847
b3ce5e5f 3848@vindex COMPLETE_SYMBOL
329baa95
DE
3849@item gdb.COMPLETE_SYMBOL
3850This constant means that completion should be done using symbol names
3851as the source.
3852
b3ce5e5f 3853@vindex COMPLETE_EXPRESSION
329baa95
DE
3854@item gdb.COMPLETE_EXPRESSION
3855This constant means that completion should be done on expressions.
3856Often this means completing on symbol names, but some language
3857parsers also have support for completing on field names.
b3ce5e5f 3858@end vtable
329baa95
DE
3859
3860The following code snippet shows how a trivial CLI command can be
3861implemented in Python:
3862
3863@smallexample
3864class HelloWorld (gdb.Command):
3865 """Greet the whole world."""
3866
3867 def __init__ (self):
3868 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3869
3870 def invoke (self, arg, from_tty):
3871 print "Hello, World!"
3872
3873HelloWorld ()
3874@end smallexample
3875
3876The last line instantiates the class, and is necessary to trigger the
3877registration of the command with @value{GDBN}. Depending on how the
3878Python code is read into @value{GDBN}, you may need to import the
3879@code{gdb} module explicitly.
3880
3881@node Parameters In Python
3882@subsubsection Parameters In Python
3883
3884@cindex parameters in python
3885@cindex python parameters
3886@tindex gdb.Parameter
3887@tindex Parameter
3888You can implement new @value{GDBN} parameters using Python. A new
3889parameter is implemented as an instance of the @code{gdb.Parameter}
3890class.
3891
3892Parameters are exposed to the user via the @code{set} and
3893@code{show} commands. @xref{Help}.
3894
3895There are many parameters that already exist and can be set in
3896@value{GDBN}. Two examples are: @code{set follow fork} and
3897@code{set charset}. Setting these parameters influences certain
3898behavior in @value{GDBN}. Similarly, you can define parameters that
3899can be used to influence behavior in custom Python scripts and commands.
3900
3901@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3902The object initializer for @code{Parameter} registers the new
3903parameter with @value{GDBN}. This initializer is normally invoked
3904from the subclass' own @code{__init__} method.
3905
3906@var{name} is the name of the new parameter. If @var{name} consists
3907of multiple words, then the initial words are looked for as prefix
3908parameters. An example of this can be illustrated with the
3909@code{set print} set of parameters. If @var{name} is
3910@code{print foo}, then @code{print} will be searched as the prefix
3911parameter. In this case the parameter can subsequently be accessed in
3912@value{GDBN} as @code{set print foo}.
3913
3914If @var{name} consists of multiple words, and no prefix parameter group
3915can be found, an exception is raised.
3916
3917@var{command-class} should be one of the @samp{COMMAND_} constants
3918(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3919categorize the new parameter in the help system.
3920
3921@var{parameter-class} should be one of the @samp{PARAM_} constants
3922defined below. This argument tells @value{GDBN} the type of the new
3923parameter; this information is used for input validation and
3924completion.
3925
3926If @var{parameter-class} is @code{PARAM_ENUM}, then
3927@var{enum-sequence} must be a sequence of strings. These strings
3928represent the possible values for the parameter.
3929
3930If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3931of a fourth argument will cause an exception to be thrown.
3932
3933The help text for the new parameter is taken from the Python
3934documentation string for the parameter's class, if there is one. If
3935there is no documentation string, a default value is used.
3936@end defun
3937
3938@defvar Parameter.set_doc
3939If this attribute exists, and is a string, then its value is used as
3940the help text for this parameter's @code{set} command. The value is
3941examined when @code{Parameter.__init__} is invoked; subsequent changes
3942have no effect.
3943@end defvar
3944
3945@defvar Parameter.show_doc
3946If this attribute exists, and is a string, then its value is used as
3947the help text for this parameter's @code{show} command. The value is
3948examined when @code{Parameter.__init__} is invoked; subsequent changes
3949have no effect.
3950@end defvar
3951
3952@defvar Parameter.value
3953The @code{value} attribute holds the underlying value of the
3954parameter. It can be read and assigned to just as any other
3955attribute. @value{GDBN} does validation when assignments are made.
3956@end defvar
3957
984ee559
TT
3958There are two methods that may be implemented in any @code{Parameter}
3959class. These are:
329baa95
DE
3960
3961@defun Parameter.get_set_string (self)
984ee559
TT
3962If this method exists, @value{GDBN} will call it when a
3963@var{parameter}'s value has been changed via the @code{set} API (for
3964example, @kbd{set foo off}). The @code{value} attribute has already
3965been populated with the new value and may be used in output. This
3966method must return a string. If the returned string is not empty,
3967@value{GDBN} will present it to the user.
ae778caf
TT
3968
3969If this method raises the @code{gdb.GdbError} exception
3970(@pxref{Exception Handling}), then @value{GDBN} will print the
3971exception's string and the @code{set} command will fail. Note,
3972however, that the @code{value} attribute will not be reset in this
3973case. So, if your parameter must validate values, it should store the
3974old value internally and reset the exposed value, like so:
3975
3976@smallexample
3977class ExampleParam (gdb.Parameter):
3978 def __init__ (self, name):
3979 super (ExampleParam, self).__init__ (name,
3980 gdb.COMMAND_DATA,
3981 gdb.PARAM_BOOLEAN)
3982 self.value = True
3983 self.saved_value = True
3984 def validate(self):
3985 return False
3986 def get_set_string (self):
3987 if not self.validate():
3988 self.value = self.saved_value
3989 raise gdb.GdbError('Failed to validate')
3990 self.saved_value = self.value
3991@end smallexample
329baa95
DE
3992@end defun
3993
3994@defun Parameter.get_show_string (self, svalue)
3995@value{GDBN} will call this method when a @var{parameter}'s
3996@code{show} API has been invoked (for example, @kbd{show foo}). The
3997argument @code{svalue} receives the string representation of the
3998current value. This method must return a string.
3999@end defun
4000
4001When a new parameter is defined, its type must be specified. The
4002available types are represented by constants defined in the @code{gdb}
4003module:
4004
4005@table @code
4006@findex PARAM_BOOLEAN
4007@findex gdb.PARAM_BOOLEAN
4008@item gdb.PARAM_BOOLEAN
4009The value is a plain boolean. The Python boolean values, @code{True}
4010and @code{False} are the only valid values.
4011
4012@findex PARAM_AUTO_BOOLEAN
4013@findex gdb.PARAM_AUTO_BOOLEAN
4014@item gdb.PARAM_AUTO_BOOLEAN
4015The value has three possible states: true, false, and @samp{auto}. In
4016Python, true and false are represented using boolean constants, and
4017@samp{auto} is represented using @code{None}.
4018
4019@findex PARAM_UINTEGER
4020@findex gdb.PARAM_UINTEGER
4021@item gdb.PARAM_UINTEGER
4022The value is an unsigned integer. The value of 0 should be
4023interpreted to mean ``unlimited''.
4024
4025@findex PARAM_INTEGER
4026@findex gdb.PARAM_INTEGER
4027@item gdb.PARAM_INTEGER
4028The value is a signed integer. The value of 0 should be interpreted
4029to mean ``unlimited''.
4030
4031@findex PARAM_STRING
4032@findex gdb.PARAM_STRING
4033@item gdb.PARAM_STRING
4034The value is a string. When the user modifies the string, any escape
4035sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4036translated into corresponding characters and encoded into the current
4037host charset.
4038
4039@findex PARAM_STRING_NOESCAPE
4040@findex gdb.PARAM_STRING_NOESCAPE
4041@item gdb.PARAM_STRING_NOESCAPE
4042The value is a string. When the user modifies the string, escapes are
4043passed through untranslated.
4044
4045@findex PARAM_OPTIONAL_FILENAME
4046@findex gdb.PARAM_OPTIONAL_FILENAME
4047@item gdb.PARAM_OPTIONAL_FILENAME
4048The value is a either a filename (a string), or @code{None}.
4049
4050@findex PARAM_FILENAME
4051@findex gdb.PARAM_FILENAME
4052@item gdb.PARAM_FILENAME
4053The value is a filename. This is just like
4054@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4055
4056@findex PARAM_ZINTEGER
4057@findex gdb.PARAM_ZINTEGER
4058@item gdb.PARAM_ZINTEGER
4059The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4060is interpreted as itself.
4061
0489430a
TT
4062@findex PARAM_ZUINTEGER
4063@findex gdb.PARAM_ZUINTEGER
4064@item gdb.PARAM_ZUINTEGER
4065The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4066except 0 is interpreted as itself, and the value cannot be negative.
4067
4068@findex PARAM_ZUINTEGER_UNLIMITED
4069@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4070@item gdb.PARAM_ZUINTEGER_UNLIMITED
4071The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4072except the special value -1 should be interpreted to mean
4073``unlimited''. Other negative values are not allowed.
4074
329baa95
DE
4075@findex PARAM_ENUM
4076@findex gdb.PARAM_ENUM
4077@item gdb.PARAM_ENUM
4078The value is a string, which must be one of a collection string
4079constants provided when the parameter is created.
4080@end table
4081
4082@node Functions In Python
4083@subsubsection Writing new convenience functions
4084
4085@cindex writing convenience functions
4086@cindex convenience functions in python
4087@cindex python convenience functions
4088@tindex gdb.Function
4089@tindex Function
4090You can implement new convenience functions (@pxref{Convenience Vars})
4091in Python. A convenience function is an instance of a subclass of the
4092class @code{gdb.Function}.
4093
4094@defun Function.__init__ (name)
4095The initializer for @code{Function} registers the new function with
4096@value{GDBN}. The argument @var{name} is the name of the function,
4097a string. The function will be visible to the user as a convenience
4098variable of type @code{internal function}, whose name is the same as
4099the given @var{name}.
4100
4101The documentation for the new function is taken from the documentation
4102string for the new class.
4103@end defun
4104
4105@defun Function.invoke (@var{*args})
4106When a convenience function is evaluated, its arguments are converted
4107to instances of @code{gdb.Value}, and then the function's
4108@code{invoke} method is called. Note that @value{GDBN} does not
4109predetermine the arity of convenience functions. Instead, all
4110available arguments are passed to @code{invoke}, following the
4111standard Python calling convention. In particular, a convenience
4112function can have default values for parameters without ill effect.
4113
4114The return value of this method is used as its value in the enclosing
4115expression. If an ordinary Python value is returned, it is converted
4116to a @code{gdb.Value} following the usual rules.
4117@end defun
4118
4119The following code snippet shows how a trivial convenience function can
4120be implemented in Python:
4121
4122@smallexample
4123class Greet (gdb.Function):
4124 """Return string to greet someone.
4125Takes a name as argument."""
4126
4127 def __init__ (self):
4128 super (Greet, self).__init__ ("greet")
4129
4130 def invoke (self, name):
4131 return "Hello, %s!" % name.string ()
4132
4133Greet ()
4134@end smallexample
4135
4136The last line instantiates the class, and is necessary to trigger the
4137registration of the function with @value{GDBN}. Depending on how the
4138Python code is read into @value{GDBN}, you may need to import the
4139@code{gdb} module explicitly.
4140
4141Now you can use the function in an expression:
4142
4143@smallexample
4144(gdb) print $greet("Bob")
4145$1 = "Hello, Bob!"
4146@end smallexample
4147
4148@node Progspaces In Python
4149@subsubsection Program Spaces In Python
4150
4151@cindex progspaces in python
4152@tindex gdb.Progspace
4153@tindex Progspace
4154A program space, or @dfn{progspace}, represents a symbolic view
4155of an address space.
4156It consists of all of the objfiles of the program.
4157@xref{Objfiles In Python}.
4158@xref{Inferiors and Programs, program spaces}, for more details
4159about program spaces.
4160
4161The following progspace-related functions are available in the
4162@code{gdb} module:
4163
4164@findex gdb.current_progspace
4165@defun gdb.current_progspace ()
4166This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4167@xref{Inferiors and Programs}. This is identical to
4168@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4169included for historical compatibility.
329baa95
DE
4170@end defun
4171
4172@findex gdb.progspaces
4173@defun gdb.progspaces ()
4174Return a sequence of all the progspaces currently known to @value{GDBN}.
4175@end defun
4176
4177Each progspace is represented by an instance of the @code{gdb.Progspace}
4178class.
4179
4180@defvar Progspace.filename
4181The file name of the progspace as a string.
4182@end defvar
4183
4184@defvar Progspace.pretty_printers
4185The @code{pretty_printers} attribute is a list of functions. It is
4186used to look up pretty-printers. A @code{Value} is passed to each
4187function in order; if the function returns @code{None}, then the
4188search continues. Otherwise, the return value should be an object
4189which is used to format the value. @xref{Pretty Printing API}, for more
4190information.
4191@end defvar
4192
4193@defvar Progspace.type_printers
4194The @code{type_printers} attribute is a list of type printer objects.
4195@xref{Type Printing API}, for more information.
4196@end defvar
4197
4198@defvar Progspace.frame_filters
4199The @code{frame_filters} attribute is a dictionary of frame filter
4200objects. @xref{Frame Filter API}, for more information.
4201@end defvar
4202
8743a9cd
TT
4203A program space has the following methods:
4204
4205@findex Progspace.block_for_pc
4206@defun Progspace.block_for_pc (pc)
4207Return the innermost @code{gdb.Block} containing the given @var{pc}
4208value. If the block cannot be found for the @var{pc} value specified,
4209the function will return @code{None}.
4210@end defun
4211
4212@findex Progspace.find_pc_line
4213@defun Progspace.find_pc_line (pc)
4214Return the @code{gdb.Symtab_and_line} object corresponding to the
4215@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4216of @var{pc} is passed as an argument, then the @code{symtab} and
4217@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4218object will be @code{None} and 0 respectively.
4219@end defun
4220
4221@findex Progspace.is_valid
4222@defun Progspace.is_valid ()
4223Returns @code{True} if the @code{gdb.Progspace} object is valid,
4224@code{False} if not. A @code{gdb.Progspace} object can become invalid
4225if the program space file it refers to is not referenced by any
4226inferior. All other @code{gdb.Progspace} methods will throw an
4227exception if it is invalid at the time the method is called.
4228@end defun
4229
4230@findex Progspace.objfiles
4231@defun Progspace.objfiles ()
4232Return a sequence of all the objfiles referenced by this program
4233space. @xref{Objfiles In Python}.
4234@end defun
4235
4236@findex Progspace.solib_name
4237@defun Progspace.solib_name (address)
4238Return the name of the shared library holding the given @var{address}
4239as a string, or @code{None}.
4240@end defun
4241
02be9a71
DE
4242One may add arbitrary attributes to @code{gdb.Progspace} objects
4243in the usual Python way.
4244This is useful if, for example, one needs to do some extra record keeping
4245associated with the program space.
4246
4247In this contrived example, we want to perform some processing when
4248an objfile with a certain symbol is loaded, but we only want to do
4249this once because it is expensive. To achieve this we record the results
4250with the program space because we can't predict when the desired objfile
4251will be loaded.
4252
4253@smallexample
4254(gdb) python
4255def clear_objfiles_handler(event):
4256 event.progspace.expensive_computation = None
4257def expensive(symbol):
4258 """A mock routine to perform an "expensive" computation on symbol."""
4259 print "Computing the answer to the ultimate question ..."
4260 return 42
4261def new_objfile_handler(event):
4262 objfile = event.new_objfile
4263 progspace = objfile.progspace
4264 if not hasattr(progspace, 'expensive_computation') or \
4265 progspace.expensive_computation is None:
4266 # We use 'main' for the symbol to keep the example simple.
4267 # Note: There's no current way to constrain the lookup
4268 # to one objfile.
4269 symbol = gdb.lookup_global_symbol('main')
4270 if symbol is not None:
4271 progspace.expensive_computation = expensive(symbol)
4272gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4273gdb.events.new_objfile.connect(new_objfile_handler)
4274end
4275(gdb) file /tmp/hello
4276Reading symbols from /tmp/hello...done.
4277Computing the answer to the ultimate question ...
4278(gdb) python print gdb.current_progspace().expensive_computation
427942
4280(gdb) run
4281Starting program: /tmp/hello
4282Hello.
4283[Inferior 1 (process 4242) exited normally]
4284@end smallexample
4285
329baa95
DE
4286@node Objfiles In Python
4287@subsubsection Objfiles In Python
4288
4289@cindex objfiles in python
4290@tindex gdb.Objfile
4291@tindex Objfile
4292@value{GDBN} loads symbols for an inferior from various
4293symbol-containing files (@pxref{Files}). These include the primary
4294executable file, any shared libraries used by the inferior, and any
4295separate debug info files (@pxref{Separate Debug Files}).
4296@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4297
4298The following objfile-related functions are available in the
4299@code{gdb} module:
4300
4301@findex gdb.current_objfile
4302@defun gdb.current_objfile ()
4303When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4304sets the ``current objfile'' to the corresponding objfile. This
4305function returns the current objfile. If there is no current objfile,
4306this function returns @code{None}.
4307@end defun
4308
4309@findex gdb.objfiles
4310@defun gdb.objfiles ()
74d3fbbb
SM
4311Return a sequence of objfiles referenced by the current program space.
4312@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4313to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4314historical compatibility.
329baa95
DE
4315@end defun
4316
6dddd6a5
DE
4317@findex gdb.lookup_objfile
4318@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4319Look up @var{name}, a file name or build ID, in the list of objfiles
4320for the current program space (@pxref{Progspaces In Python}).
4321If the objfile is not found throw the Python @code{ValueError} exception.
4322
4323If @var{name} is a relative file name, then it will match any
4324source file name with the same trailing components. For example, if
4325@var{name} is @samp{gcc/expr.c}, then it will match source file
4326name of @file{/build/trunk/gcc/expr.c}, but not
4327@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4328
4329If @var{by_build_id} is provided and is @code{True} then @var{name}
4330is the build ID of the objfile. Otherwise, @var{name} is a file name.
4331This is supported only on some operating systems, notably those which use
4332the ELF format for binary files and the @sc{gnu} Binutils. For more details
4333about this feature, see the description of the @option{--build-id}
f5a476a7 4334command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4335The GNU Linker}.
4336@end defun
4337
329baa95
DE
4338Each objfile is represented by an instance of the @code{gdb.Objfile}
4339class.
4340
4341@defvar Objfile.filename
1b549396
DE
4342The file name of the objfile as a string, with symbolic links resolved.
4343
4344The value is @code{None} if the objfile is no longer valid.
4345See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4346@end defvar
4347
3a8b707a
DE
4348@defvar Objfile.username
4349The file name of the objfile as specified by the user as a string.
4350
4351The value is @code{None} if the objfile is no longer valid.
4352See the @code{gdb.Objfile.is_valid} method, described below.
4353@end defvar
4354
a0be3e44
DE
4355@defvar Objfile.owner
4356For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4357object that debug info is being provided for.
4358Otherwise this is @code{None}.
4359Separate debug info objfiles are added with the
4360@code{gdb.Objfile.add_separate_debug_file} method, described below.
4361@end defvar
4362
7c50a931
DE
4363@defvar Objfile.build_id
4364The build ID of the objfile as a string.
4365If the objfile does not have a build ID then the value is @code{None}.
4366
4367This is supported only on some operating systems, notably those which use
4368the ELF format for binary files and the @sc{gnu} Binutils. For more details
4369about this feature, see the description of the @option{--build-id}
f5a476a7 4370command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4371The GNU Linker}.
4372@end defvar
4373
d096d8c1
DE
4374@defvar Objfile.progspace
4375The containing program space of the objfile as a @code{gdb.Progspace}
4376object. @xref{Progspaces In Python}.
4377@end defvar
4378
329baa95
DE
4379@defvar Objfile.pretty_printers
4380The @code{pretty_printers} attribute is a list of functions. It is
4381used to look up pretty-printers. A @code{Value} is passed to each
4382function in order; if the function returns @code{None}, then the
4383search continues. Otherwise, the return value should be an object
4384which is used to format the value. @xref{Pretty Printing API}, for more
4385information.
4386@end defvar
4387
4388@defvar Objfile.type_printers
4389The @code{type_printers} attribute is a list of type printer objects.
4390@xref{Type Printing API}, for more information.
4391@end defvar
4392
4393@defvar Objfile.frame_filters
4394The @code{frame_filters} attribute is a dictionary of frame filter
4395objects. @xref{Frame Filter API}, for more information.
4396@end defvar
4397
02be9a71
DE
4398One may add arbitrary attributes to @code{gdb.Objfile} objects
4399in the usual Python way.
4400This is useful if, for example, one needs to do some extra record keeping
4401associated with the objfile.
4402
4403In this contrived example we record the time when @value{GDBN}
4404loaded the objfile.
4405
4406@smallexample
4407(gdb) python
4408import datetime
4409def new_objfile_handler(event):
4410 # Set the time_loaded attribute of the new objfile.
4411 event.new_objfile.time_loaded = datetime.datetime.today()
4412gdb.events.new_objfile.connect(new_objfile_handler)
4413end
4414(gdb) file ./hello
4415Reading symbols from ./hello...done.
4416(gdb) python print gdb.objfiles()[0].time_loaded
44172014-10-09 11:41:36.770345
4418@end smallexample
4419
329baa95
DE
4420A @code{gdb.Objfile} object has the following methods:
4421
4422@defun Objfile.is_valid ()
4423Returns @code{True} if the @code{gdb.Objfile} object is valid,
4424@code{False} if not. A @code{gdb.Objfile} object can become invalid
4425if the object file it refers to is not loaded in @value{GDBN} any
4426longer. All other @code{gdb.Objfile} methods will throw an exception
4427if it is invalid at the time the method is called.
4428@end defun
4429
86e4ed39
DE
4430@defun Objfile.add_separate_debug_file (file)
4431Add @var{file} to the list of files that @value{GDBN} will search for
4432debug information for the objfile.
4433This is useful when the debug info has been removed from the program
4434and stored in a separate file. @value{GDBN} has built-in support for
4435finding separate debug info files (@pxref{Separate Debug Files}), but if
4436the file doesn't live in one of the standard places that @value{GDBN}
4437searches then this function can be used to add a debug info file
4438from a different place.
4439@end defun
4440
329baa95 4441@node Frames In Python
849cba3b 4442@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4443
4444@cindex frames in python
4445When the debugged program stops, @value{GDBN} is able to analyze its call
4446stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4447represents a frame in the stack. A @code{gdb.Frame} object is only valid
4448while its corresponding frame exists in the inferior's stack. If you try
4449to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4450exception (@pxref{Exception Handling}).
4451
4452Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4453operator, like:
4454
4455@smallexample
4456(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4457True
4458@end smallexample
4459
4460The following frame-related functions are available in the @code{gdb} module:
4461
4462@findex gdb.selected_frame
4463@defun gdb.selected_frame ()
4464Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4465@end defun
4466
4467@findex gdb.newest_frame
4468@defun gdb.newest_frame ()
4469Return the newest frame object for the selected thread.
4470@end defun
4471
4472@defun gdb.frame_stop_reason_string (reason)
4473Return a string explaining the reason why @value{GDBN} stopped unwinding
4474frames, as expressed by the given @var{reason} code (an integer, see the
4475@code{unwind_stop_reason} method further down in this section).
4476@end defun
4477
e0f3fd7c
TT
4478@findex gdb.invalidate_cached_frames
4479@defun gdb.invalidate_cached_frames
4480@value{GDBN} internally keeps a cache of the frames that have been
4481unwound. This function invalidates this cache.
4482
4483This function should not generally be called by ordinary Python code.
4484It is documented for the sake of completeness.
4485@end defun
4486
329baa95
DE
4487A @code{gdb.Frame} object has the following methods:
4488
4489@defun Frame.is_valid ()
4490Returns true if the @code{gdb.Frame} object is valid, false if not.
4491A frame object can become invalid if the frame it refers to doesn't
4492exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4493an exception if it is invalid at the time the method is called.
4494@end defun
4495
4496@defun Frame.name ()
4497Returns the function name of the frame, or @code{None} if it can't be
4498obtained.
4499@end defun
4500
4501@defun Frame.architecture ()
4502Returns the @code{gdb.Architecture} object corresponding to the frame's
4503architecture. @xref{Architectures In Python}.
4504@end defun
4505
4506@defun Frame.type ()
4507Returns the type of the frame. The value can be one of:
4508@table @code
4509@item gdb.NORMAL_FRAME
4510An ordinary stack frame.
4511
4512@item gdb.DUMMY_FRAME
4513A fake stack frame that was created by @value{GDBN} when performing an
4514inferior function call.
4515
4516@item gdb.INLINE_FRAME
4517A frame representing an inlined function. The function was inlined
4518into a @code{gdb.NORMAL_FRAME} that is older than this one.
4519
4520@item gdb.TAILCALL_FRAME
4521A frame representing a tail call. @xref{Tail Call Frames}.
4522
4523@item gdb.SIGTRAMP_FRAME
4524A signal trampoline frame. This is the frame created by the OS when
4525it calls into a signal handler.
4526
4527@item gdb.ARCH_FRAME
4528A fake stack frame representing a cross-architecture call.
4529
4530@item gdb.SENTINEL_FRAME
4531This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4532newest frame.
4533@end table
4534@end defun
4535
4536@defun Frame.unwind_stop_reason ()
4537Return an integer representing the reason why it's not possible to find
4538more frames toward the outermost frame. Use
4539@code{gdb.frame_stop_reason_string} to convert the value returned by this
4540function to a string. The value can be one of:
4541
4542@table @code
4543@item gdb.FRAME_UNWIND_NO_REASON
4544No particular reason (older frames should be available).
4545
4546@item gdb.FRAME_UNWIND_NULL_ID
4547The previous frame's analyzer returns an invalid result. This is no
4548longer used by @value{GDBN}, and is kept only for backward
4549compatibility.
4550
4551@item gdb.FRAME_UNWIND_OUTERMOST
4552This frame is the outermost.
4553
4554@item gdb.FRAME_UNWIND_UNAVAILABLE
4555Cannot unwind further, because that would require knowing the
4556values of registers or memory that have not been collected.
4557
4558@item gdb.FRAME_UNWIND_INNER_ID
4559This frame ID looks like it ought to belong to a NEXT frame,
4560but we got it for a PREV frame. Normally, this is a sign of
4561unwinder failure. It could also indicate stack corruption.
4562
4563@item gdb.FRAME_UNWIND_SAME_ID
4564This frame has the same ID as the previous one. That means
4565that unwinding further would almost certainly give us another
4566frame with exactly the same ID, so break the chain. Normally,
4567this is a sign of unwinder failure. It could also indicate
4568stack corruption.
4569
4570@item gdb.FRAME_UNWIND_NO_SAVED_PC
4571The frame unwinder did not find any saved PC, but we needed
4572one to unwind further.
4573
53e8a631
AB
4574@item gdb.FRAME_UNWIND_MEMORY_ERROR
4575The frame unwinder caused an error while trying to access memory.
4576
329baa95
DE
4577@item gdb.FRAME_UNWIND_FIRST_ERROR
4578Any stop reason greater or equal to this value indicates some kind
4579of error. This special value facilitates writing code that tests
4580for errors in unwinding in a way that will work correctly even if
4581the list of the other values is modified in future @value{GDBN}
4582versions. Using it, you could write:
4583@smallexample
4584reason = gdb.selected_frame().unwind_stop_reason ()
4585reason_str = gdb.frame_stop_reason_string (reason)
4586if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4587 print "An error occured: %s" % reason_str
4588@end smallexample
4589@end table
4590
4591@end defun
4592
4593@defun Frame.pc ()
4594Returns the frame's resume address.
4595@end defun
4596
4597@defun Frame.block ()
60c0454d
TT
4598Return the frame's code block. @xref{Blocks In Python}. If the frame
4599does not have a block -- for example, if there is no debugging
4600information for the code in question -- then this will throw an
4601exception.
329baa95
DE
4602@end defun
4603
4604@defun Frame.function ()
4605Return the symbol for the function corresponding to this frame.
4606@xref{Symbols In Python}.
4607@end defun
4608
4609@defun Frame.older ()
4610Return the frame that called this frame.
4611@end defun
4612
4613@defun Frame.newer ()
4614Return the frame called by this frame.
4615@end defun
4616
4617@defun Frame.find_sal ()
4618Return the frame's symtab and line object.
4619@xref{Symbol Tables In Python}.
4620@end defun
4621
5f3b99cf
SS
4622@defun Frame.read_register (register)
4623Return the value of @var{register} in this frame. The @var{register}
4624argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4625Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4626does not exist.
4627@end defun
4628
329baa95
DE
4629@defun Frame.read_var (variable @r{[}, block@r{]})
4630Return the value of @var{variable} in this frame. If the optional
4631argument @var{block} is provided, search for the variable from that
4632block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4633determined by the frame's current program counter). The @var{variable}
4634argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4635@code{gdb.Block} object.
4636@end defun
4637
4638@defun Frame.select ()
4639Set this frame to be the selected frame. @xref{Stack, ,Examining the
4640Stack}.
4641@end defun
4642
4643@node Blocks In Python
849cba3b 4644@subsubsection Accessing blocks from Python
329baa95
DE
4645
4646@cindex blocks in python
4647@tindex gdb.Block
4648
4649In @value{GDBN}, symbols are stored in blocks. A block corresponds
4650roughly to a scope in the source code. Blocks are organized
4651hierarchically, and are represented individually in Python as a
4652@code{gdb.Block}. Blocks rely on debugging information being
4653available.
4654
4655A frame has a block. Please see @ref{Frames In Python}, for a more
4656in-depth discussion of frames.
4657
4658The outermost block is known as the @dfn{global block}. The global
4659block typically holds public global variables and functions.
4660
4661The block nested just inside the global block is the @dfn{static
4662block}. The static block typically holds file-scoped variables and
4663functions.
4664
4665@value{GDBN} provides a method to get a block's superblock, but there
4666is currently no way to examine the sub-blocks of a block, or to
4667iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4668Python}).
4669
4670Here is a short example that should help explain blocks:
4671
4672@smallexample
4673/* This is in the global block. */
4674int global;
4675
4676/* This is in the static block. */
4677static int file_scope;
4678
4679/* 'function' is in the global block, and 'argument' is
4680 in a block nested inside of 'function'. */
4681int function (int argument)
4682@{
4683 /* 'local' is in a block inside 'function'. It may or may
4684 not be in the same block as 'argument'. */
4685 int local;
4686
4687 @{
4688 /* 'inner' is in a block whose superblock is the one holding
4689 'local'. */
4690 int inner;
4691
4692 /* If this call is expanded by the compiler, you may see
4693 a nested block here whose function is 'inline_function'
4694 and whose superblock is the one holding 'inner'. */
4695 inline_function ();
4696 @}
4697@}
4698@end smallexample
4699
4700A @code{gdb.Block} is iterable. The iterator returns the symbols
4701(@pxref{Symbols In Python}) local to the block. Python programs
4702should not assume that a specific block object will always contain a
4703given symbol, since changes in @value{GDBN} features and
4704infrastructure may cause symbols move across blocks in a symbol
4705table.
4706
4707The following block-related functions are available in the @code{gdb}
4708module:
4709
4710@findex gdb.block_for_pc
4711@defun gdb.block_for_pc (pc)
4712Return the innermost @code{gdb.Block} containing the given @var{pc}
4713value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4714the function will return @code{None}. This is identical to
4715@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4716historical compatibility.
329baa95
DE
4717@end defun
4718
4719A @code{gdb.Block} object has the following methods:
4720
4721@defun Block.is_valid ()
4722Returns @code{True} if the @code{gdb.Block} object is valid,
4723@code{False} if not. A block object can become invalid if the block it
4724refers to doesn't exist anymore in the inferior. All other
4725@code{gdb.Block} methods will throw an exception if it is invalid at
4726the time the method is called. The block's validity is also checked
4727during iteration over symbols of the block.
4728@end defun
4729
4730A @code{gdb.Block} object has the following attributes:
4731
4732@defvar Block.start
4733The start address of the block. This attribute is not writable.
4734@end defvar
4735
4736@defvar Block.end
22eb9e92
TT
4737One past the last address that appears in the block. This attribute
4738is not writable.
329baa95
DE
4739@end defvar
4740
4741@defvar Block.function
4742The name of the block represented as a @code{gdb.Symbol}. If the
4743block is not named, then this attribute holds @code{None}. This
4744attribute is not writable.
4745
4746For ordinary function blocks, the superblock is the static block.
4747However, you should note that it is possible for a function block to
4748have a superblock that is not the static block -- for instance this
4749happens for an inlined function.
4750@end defvar
4751
4752@defvar Block.superblock
4753The block containing this block. If this parent block does not exist,
4754this attribute holds @code{None}. This attribute is not writable.
4755@end defvar
4756
4757@defvar Block.global_block
4758The global block associated with this block. This attribute is not
4759writable.
4760@end defvar
4761
4762@defvar Block.static_block
4763The static block associated with this block. This attribute is not
4764writable.
4765@end defvar
4766
4767@defvar Block.is_global
4768@code{True} if the @code{gdb.Block} object is a global block,
4769@code{False} if not. This attribute is not
4770writable.
4771@end defvar
4772
4773@defvar Block.is_static
4774@code{True} if the @code{gdb.Block} object is a static block,
4775@code{False} if not. This attribute is not writable.
4776@end defvar
4777
4778@node Symbols In Python
849cba3b 4779@subsubsection Python representation of Symbols
329baa95
DE
4780
4781@cindex symbols in python
4782@tindex gdb.Symbol
4783
4784@value{GDBN} represents every variable, function and type as an
4785entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4786Similarly, Python represents these symbols in @value{GDBN} with the
4787@code{gdb.Symbol} object.
4788
4789The following symbol-related functions are available in the @code{gdb}
4790module:
4791
4792@findex gdb.lookup_symbol
4793@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4794This function searches for a symbol by name. The search scope can be
4795restricted to the parameters defined in the optional domain and block
4796arguments.
4797
4798@var{name} is the name of the symbol. It must be a string. The
4799optional @var{block} argument restricts the search to symbols visible
4800in that @var{block}. The @var{block} argument must be a
4801@code{gdb.Block} object. If omitted, the block for the current frame
4802is used. The optional @var{domain} argument restricts
4803the search to the domain type. The @var{domain} argument must be a
4804domain constant defined in the @code{gdb} module and described later
4805in this chapter.
4806
4807The result is a tuple of two elements.
4808The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4809is not found.
4810If the symbol is found, the second element is @code{True} if the symbol
4811is a field of a method's object (e.g., @code{this} in C@t{++}),
4812otherwise it is @code{False}.
4813If the symbol is not found, the second element is @code{False}.
4814@end defun
4815
4816@findex gdb.lookup_global_symbol
4817@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4818This function searches for a global symbol by name.
4819The search scope can be restricted to by the domain argument.
4820
4821@var{name} is the name of the symbol. It must be a string.
4822The optional @var{domain} argument restricts the search to the domain type.
4823The @var{domain} argument must be a domain constant defined in the @code{gdb}
4824module and described later in this chapter.
4825
4826The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4827is not found.
4828@end defun
4829
4830A @code{gdb.Symbol} object has the following attributes:
4831
4832@defvar Symbol.type
4833The type of the symbol or @code{None} if no type is recorded.
4834This attribute is represented as a @code{gdb.Type} object.
4835@xref{Types In Python}. This attribute is not writable.
4836@end defvar
4837
4838@defvar Symbol.symtab
4839The symbol table in which the symbol appears. This attribute is
4840represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4841Python}. This attribute is not writable.
4842@end defvar
4843
4844@defvar Symbol.line
4845The line number in the source code at which the symbol was defined.
4846This is an integer.
4847@end defvar
4848
4849@defvar Symbol.name
4850The name of the symbol as a string. This attribute is not writable.
4851@end defvar
4852
4853@defvar Symbol.linkage_name
4854The name of the symbol, as used by the linker (i.e., may be mangled).
4855This attribute is not writable.
4856@end defvar
4857
4858@defvar Symbol.print_name
4859The name of the symbol in a form suitable for output. This is either
4860@code{name} or @code{linkage_name}, depending on whether the user
4861asked @value{GDBN} to display demangled or mangled names.
4862@end defvar
4863
4864@defvar Symbol.addr_class
4865The address class of the symbol. This classifies how to find the value
4866of a symbol. Each address class is a constant defined in the
4867@code{gdb} module and described later in this chapter.
4868@end defvar
4869
4870@defvar Symbol.needs_frame
4871This is @code{True} if evaluating this symbol's value requires a frame
4872(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4873local variables will require a frame, but other symbols will not.
4874@end defvar
4875
4876@defvar Symbol.is_argument
4877@code{True} if the symbol is an argument of a function.
4878@end defvar
4879
4880@defvar Symbol.is_constant
4881@code{True} if the symbol is a constant.
4882@end defvar
4883
4884@defvar Symbol.is_function
4885@code{True} if the symbol is a function or a method.
4886@end defvar
4887
4888@defvar Symbol.is_variable
4889@code{True} if the symbol is a variable.
4890@end defvar
4891
4892A @code{gdb.Symbol} object has the following methods:
4893
4894@defun Symbol.is_valid ()
4895Returns @code{True} if the @code{gdb.Symbol} object is valid,
4896@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4897the symbol it refers to does not exist in @value{GDBN} any longer.
4898All other @code{gdb.Symbol} methods will throw an exception if it is
4899invalid at the time the method is called.
4900@end defun
4901
4902@defun Symbol.value (@r{[}frame@r{]})
4903Compute the value of the symbol, as a @code{gdb.Value}. For
4904functions, this computes the address of the function, cast to the
4905appropriate type. If the symbol requires a frame in order to compute
4906its value, then @var{frame} must be given. If @var{frame} is not
4907given, or if @var{frame} is invalid, then this method will throw an
4908exception.
4909@end defun
4910
4911The available domain categories in @code{gdb.Symbol} are represented
4912as constants in the @code{gdb} module:
4913
b3ce5e5f
DE
4914@vtable @code
4915@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4916@item gdb.SYMBOL_UNDEF_DOMAIN
4917This is used when a domain has not been discovered or none of the
4918following domains apply. This usually indicates an error either
4919in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4920
4921@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4922@item gdb.SYMBOL_VAR_DOMAIN
4923This domain contains variables, function names, typedef names and enum
4924type values.
b3ce5e5f
DE
4925
4926@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4927@item gdb.SYMBOL_STRUCT_DOMAIN
4928This domain holds struct, union and enum type names.
b3ce5e5f
DE
4929
4930@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4931@item gdb.SYMBOL_LABEL_DOMAIN
4932This domain contains names of labels (for gotos).
b3ce5e5f 4933
51e78fc5
TT
4934@vindex SYMBOL_MODULE_DOMAIN
4935@item gdb.SYMBOL_MODULE_DOMAIN
4936This domain contains names of Fortran module types.
4937
4938@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4939@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4940This domain contains names of Fortran common blocks.
b3ce5e5f 4941@end vtable
329baa95
DE
4942
4943The available address class categories in @code{gdb.Symbol} are represented
4944as constants in the @code{gdb} module:
4945
b3ce5e5f
DE
4946@vtable @code
4947@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4948@item gdb.SYMBOL_LOC_UNDEF
4949If this is returned by address class, it indicates an error either in
4950the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4951
4952@vindex SYMBOL_LOC_CONST
329baa95
DE
4953@item gdb.SYMBOL_LOC_CONST
4954Value is constant int.
b3ce5e5f
DE
4955
4956@vindex SYMBOL_LOC_STATIC
329baa95
DE
4957@item gdb.SYMBOL_LOC_STATIC
4958Value is at a fixed address.
b3ce5e5f
DE
4959
4960@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4961@item gdb.SYMBOL_LOC_REGISTER
4962Value is in a register.
b3ce5e5f
DE
4963
4964@vindex SYMBOL_LOC_ARG
329baa95
DE
4965@item gdb.SYMBOL_LOC_ARG
4966Value is an argument. This value is at the offset stored within the
4967symbol inside the frame's argument list.
b3ce5e5f
DE
4968
4969@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4970@item gdb.SYMBOL_LOC_REF_ARG
4971Value address is stored in the frame's argument list. Just like
4972@code{LOC_ARG} except that the value's address is stored at the
4973offset, not the value itself.
b3ce5e5f
DE
4974
4975@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4976@item gdb.SYMBOL_LOC_REGPARM_ADDR
4977Value is a specified register. Just like @code{LOC_REGISTER} except
4978the register holds the address of the argument instead of the argument
4979itself.
b3ce5e5f
DE
4980
4981@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4982@item gdb.SYMBOL_LOC_LOCAL
4983Value is a local variable.
b3ce5e5f
DE
4984
4985@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4986@item gdb.SYMBOL_LOC_TYPEDEF
4987Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4988have this class.
b3ce5e5f
DE
4989
4990@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4991@item gdb.SYMBOL_LOC_BLOCK
4992Value is a block.
b3ce5e5f
DE
4993
4994@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4995@item gdb.SYMBOL_LOC_CONST_BYTES
4996Value is a byte-sequence.
b3ce5e5f
DE
4997
4998@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4999@item gdb.SYMBOL_LOC_UNRESOLVED
5000Value is at a fixed address, but the address of the variable has to be
5001determined from the minimal symbol table whenever the variable is
5002referenced.
b3ce5e5f
DE
5003
5004@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
5005@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5006The value does not actually exist in the program.
b3ce5e5f
DE
5007
5008@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5009@item gdb.SYMBOL_LOC_COMPUTED
5010The value's address is a computed location.
51e78fc5
TT
5011
5012@vindex SYMBOL_LOC_COMPUTED
5013@item gdb.SYMBOL_LOC_COMPUTED
5014The value's address is a symbol. This is only used for Fortran common
5015blocks.
b3ce5e5f 5016@end vtable
329baa95
DE
5017
5018@node Symbol Tables In Python
849cba3b 5019@subsubsection Symbol table representation in Python
329baa95
DE
5020
5021@cindex symbol tables in python
5022@tindex gdb.Symtab
5023@tindex gdb.Symtab_and_line
5024
5025Access to symbol table data maintained by @value{GDBN} on the inferior
5026is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5027@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5028from the @code{find_sal} method in @code{gdb.Frame} object.
5029@xref{Frames In Python}.
5030
5031For more information on @value{GDBN}'s symbol table management, see
5032@ref{Symbols, ,Examining the Symbol Table}, for more information.
5033
5034A @code{gdb.Symtab_and_line} object has the following attributes:
5035
5036@defvar Symtab_and_line.symtab
5037The symbol table object (@code{gdb.Symtab}) for this frame.
5038This attribute is not writable.
5039@end defvar
5040
5041@defvar Symtab_and_line.pc
5042Indicates the start of the address range occupied by code for the
5043current source line. This attribute is not writable.
5044@end defvar
5045
5046@defvar Symtab_and_line.last
5047Indicates the end of the address range occupied by code for the current
5048source line. This attribute is not writable.
5049@end defvar
5050
5051@defvar Symtab_and_line.line
5052Indicates the current line number for this object. This
5053attribute is not writable.
5054@end defvar
5055
5056A @code{gdb.Symtab_and_line} object has the following methods:
5057
5058@defun Symtab_and_line.is_valid ()
5059Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5060@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5061invalid if the Symbol table and line object it refers to does not
5062exist in @value{GDBN} any longer. All other
5063@code{gdb.Symtab_and_line} methods will throw an exception if it is
5064invalid at the time the method is called.
5065@end defun
5066
5067A @code{gdb.Symtab} object has the following attributes:
5068
5069@defvar Symtab.filename
5070The symbol table's source filename. This attribute is not writable.
5071@end defvar
5072
5073@defvar Symtab.objfile
5074The symbol table's backing object file. @xref{Objfiles In Python}.
5075This attribute is not writable.
5076@end defvar
5077
2b4fd423
DE
5078@defvar Symtab.producer
5079The name and possibly version number of the program that
5080compiled the code in the symbol table.
5081The contents of this string is up to the compiler.
5082If no producer information is available then @code{None} is returned.
5083This attribute is not writable.
5084@end defvar
5085
329baa95
DE
5086A @code{gdb.Symtab} object has the following methods:
5087
5088@defun Symtab.is_valid ()
5089Returns @code{True} if the @code{gdb.Symtab} object is valid,
5090@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5091the symbol table it refers to does not exist in @value{GDBN} any
5092longer. All other @code{gdb.Symtab} methods will throw an exception
5093if it is invalid at the time the method is called.
5094@end defun
5095
5096@defun Symtab.fullname ()
5097Return the symbol table's source absolute file name.
5098@end defun
5099
5100@defun Symtab.global_block ()
5101Return the global block of the underlying symbol table.
5102@xref{Blocks In Python}.
5103@end defun
5104
5105@defun Symtab.static_block ()
5106Return the static block of the underlying symbol table.
5107@xref{Blocks In Python}.
5108@end defun
5109
5110@defun Symtab.linetable ()
5111Return the line table associated with the symbol table.
5112@xref{Line Tables In Python}.
5113@end defun
5114
5115@node Line Tables In Python
5116@subsubsection Manipulating line tables using Python
5117
5118@cindex line tables in python
5119@tindex gdb.LineTable
5120
5121Python code can request and inspect line table information from a
5122symbol table that is loaded in @value{GDBN}. A line table is a
5123mapping of source lines to their executable locations in memory. To
5124acquire the line table information for a particular symbol table, use
5125the @code{linetable} function (@pxref{Symbol Tables In Python}).
5126
5127A @code{gdb.LineTable} is iterable. The iterator returns
5128@code{LineTableEntry} objects that correspond to the source line and
5129address for each line table entry. @code{LineTableEntry} objects have
5130the following attributes:
5131
5132@defvar LineTableEntry.line
5133The source line number for this line table entry. This number
5134corresponds to the actual line of source. This attribute is not
5135writable.
5136@end defvar
5137
5138@defvar LineTableEntry.pc
5139The address that is associated with the line table entry where the
5140executable code for that source line resides in memory. This
5141attribute is not writable.
5142@end defvar
5143
5144As there can be multiple addresses for a single source line, you may
5145receive multiple @code{LineTableEntry} objects with matching
5146@code{line} attributes, but with different @code{pc} attributes. The
5147iterator is sorted in ascending @code{pc} order. Here is a small
5148example illustrating iterating over a line table.
5149
5150@smallexample
5151symtab = gdb.selected_frame().find_sal().symtab
5152linetable = symtab.linetable()
5153for line in linetable:
5154 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5155@end smallexample
5156
5157This will have the following output:
5158
5159@smallexample
5160Line: 33 Address: 0x4005c8L
5161Line: 37 Address: 0x4005caL
5162Line: 39 Address: 0x4005d2L
5163Line: 40 Address: 0x4005f8L
5164Line: 42 Address: 0x4005ffL
5165Line: 44 Address: 0x400608L
5166Line: 42 Address: 0x40060cL
5167Line: 45 Address: 0x400615L
5168@end smallexample
5169
5170In addition to being able to iterate over a @code{LineTable}, it also
5171has the following direct access methods:
5172
5173@defun LineTable.line (line)
5174Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5175entries in the line table for the given @var{line}, which specifies
5176the source code line. If there are no entries for that source code
329baa95
DE
5177@var{line}, the Python @code{None} is returned.
5178@end defun
5179
5180@defun LineTable.has_line (line)
5181Return a Python @code{Boolean} indicating whether there is an entry in
5182the line table for this source line. Return @code{True} if an entry
5183is found, or @code{False} if not.
5184@end defun
5185
5186@defun LineTable.source_lines ()
5187Return a Python @code{List} of the source line numbers in the symbol
5188table. Only lines with executable code locations are returned. The
5189contents of the @code{List} will just be the source line entries
5190represented as Python @code{Long} values.
5191@end defun
5192
5193@node Breakpoints In Python
5194@subsubsection Manipulating breakpoints using Python
5195
5196@cindex breakpoints in python
5197@tindex gdb.Breakpoint
5198
5199Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5200class.
5201
0b982d68
SM
5202A breakpoint can be created using one of the two forms of the
5203@code{gdb.Breakpoint} constructor. The first one accepts a string
5204like one would pass to the @code{break}
5205(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5206(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5207create both breakpoints and watchpoints. The second accepts separate Python
5208arguments similar to @ref{Explicit Locations}, and can only be used to create
5209breakpoints.
5210
b89641ba 5211@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5212Create a new breakpoint according to @var{spec}, which is a string naming the
5213location of a breakpoint, or an expression that defines a watchpoint. The
5214string should describe a location in a format recognized by the @code{break}
5215command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5216watchpoint, by the @code{watch} command
5217(@pxref{Set Watchpoints, , Setting Watchpoints}).
5218
5219The optional @var{type} argument specifies the type of the breakpoint to create,
5220as defined below.
5221
5222The optional @var{wp_class} argument defines the class of watchpoint to create,
5223if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5224defaults to @code{gdb.WP_WRITE}.
5225
5226The optional @var{internal} argument allows the breakpoint to become invisible
5227to the user. The breakpoint will neither be reported when created, nor will it
5228be listed in the output from @code{info breakpoints} (but will be listed with
5229the @code{maint info breakpoints} command).
5230
5231The optional @var{temporary} argument makes the breakpoint a temporary
5232breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5233further access to the Python breakpoint after it has been hit will result in a
5234runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5235
5236The optional @var{qualified} argument is a boolean that allows interpreting
5237the function passed in @code{spec} as a fully-qualified name. It is equivalent
5238to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5239@ref{Explicit Locations}).
5240
0b982d68
SM
5241@end defun
5242
b89641ba 5243@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5244This second form of creating a new breakpoint specifies the explicit
5245location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5246be created in the specified source file @var{source}, at the specified
5247@var{function}, @var{label} and @var{line}.
5248
b89641ba
SM
5249@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5250explained previously.
329baa95
DE
5251@end defun
5252
cda75e70
TT
5253The available types are represented by constants defined in the @code{gdb}
5254module:
5255
5256@vtable @code
5257@vindex BP_BREAKPOINT
5258@item gdb.BP_BREAKPOINT
5259Normal code breakpoint.
5260
5261@vindex BP_WATCHPOINT
5262@item gdb.BP_WATCHPOINT
5263Watchpoint breakpoint.
5264
5265@vindex BP_HARDWARE_WATCHPOINT
5266@item gdb.BP_HARDWARE_WATCHPOINT
5267Hardware assisted watchpoint.
5268
5269@vindex BP_READ_WATCHPOINT
5270@item gdb.BP_READ_WATCHPOINT
5271Hardware assisted read watchpoint.
5272
5273@vindex BP_ACCESS_WATCHPOINT
5274@item gdb.BP_ACCESS_WATCHPOINT
5275Hardware assisted access watchpoint.
5276@end vtable
5277
5278The available watchpoint types represented by constants are defined in the
5279@code{gdb} module:
5280
5281@vtable @code
5282@vindex WP_READ
5283@item gdb.WP_READ
5284Read only watchpoint.
5285
5286@vindex WP_WRITE
5287@item gdb.WP_WRITE
5288Write only watchpoint.
5289
5290@vindex WP_ACCESS
5291@item gdb.WP_ACCESS
5292Read/Write watchpoint.
5293@end vtable
5294
329baa95
DE
5295@defun Breakpoint.stop (self)
5296The @code{gdb.Breakpoint} class can be sub-classed and, in
5297particular, you may choose to implement the @code{stop} method.
5298If this method is defined in a sub-class of @code{gdb.Breakpoint},
5299it will be called when the inferior reaches any location of a
5300breakpoint which instantiates that sub-class. If the method returns
5301@code{True}, the inferior will be stopped at the location of the
5302breakpoint, otherwise the inferior will continue.
5303
5304If there are multiple breakpoints at the same location with a
5305@code{stop} method, each one will be called regardless of the
5306return status of the previous. This ensures that all @code{stop}
5307methods have a chance to execute at that location. In this scenario
5308if one of the methods returns @code{True} but the others return
5309@code{False}, the inferior will still be stopped.
5310
5311You should not alter the execution state of the inferior (i.e.@:, step,
5312next, etc.), alter the current frame context (i.e.@:, change the current
5313active frame), or alter, add or delete any breakpoint. As a general
5314rule, you should not alter any data within @value{GDBN} or the inferior
5315at this time.
5316
5317Example @code{stop} implementation:
5318
5319@smallexample
5320class MyBreakpoint (gdb.Breakpoint):
5321 def stop (self):
5322 inf_val = gdb.parse_and_eval("foo")
5323 if inf_val == 3:
5324 return True
5325 return False
5326@end smallexample
5327@end defun
5328
329baa95
DE
5329@defun Breakpoint.is_valid ()
5330Return @code{True} if this @code{Breakpoint} object is valid,
5331@code{False} otherwise. A @code{Breakpoint} object can become invalid
5332if the user deletes the breakpoint. In this case, the object still
5333exists, but the underlying breakpoint does not. In the cases of
5334watchpoint scope, the watchpoint remains valid even if execution of the
5335inferior leaves the scope of that watchpoint.
5336@end defun
5337
fab3a15d 5338@defun Breakpoint.delete ()
329baa95
DE
5339Permanently deletes the @value{GDBN} breakpoint. This also
5340invalidates the Python @code{Breakpoint} object. Any further access
5341to this object's attributes or methods will raise an error.
5342@end defun
5343
5344@defvar Breakpoint.enabled
5345This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5346@code{False} otherwise. This attribute is writable. You can use it to enable
5347or disable the breakpoint.
329baa95
DE
5348@end defvar
5349
5350@defvar Breakpoint.silent
5351This attribute is @code{True} if the breakpoint is silent, and
5352@code{False} otherwise. This attribute is writable.
5353
5354Note that a breakpoint can also be silent if it has commands and the
5355first command is @code{silent}. This is not reported by the
5356@code{silent} attribute.
5357@end defvar
5358
93daf339
TT
5359@defvar Breakpoint.pending
5360This attribute is @code{True} if the breakpoint is pending, and
5361@code{False} otherwise. @xref{Set Breaks}. This attribute is
5362read-only.
5363@end defvar
5364
22a02324 5365@anchor{python_breakpoint_thread}
329baa95 5366@defvar Breakpoint.thread
5d5658a1
PA
5367If the breakpoint is thread-specific, this attribute holds the
5368thread's global id. If the breakpoint is not thread-specific, this
5369attribute is @code{None}. This attribute is writable.
329baa95
DE
5370@end defvar
5371
5372@defvar Breakpoint.task
5373If the breakpoint is Ada task-specific, this attribute holds the Ada task
5374id. If the breakpoint is not task-specific (or the underlying
5375language is not Ada), this attribute is @code{None}. This attribute
5376is writable.
5377@end defvar
5378
5379@defvar Breakpoint.ignore_count
5380This attribute holds the ignore count for the breakpoint, an integer.
5381This attribute is writable.
5382@end defvar
5383
5384@defvar Breakpoint.number
5385This attribute holds the breakpoint's number --- the identifier used by
5386the user to manipulate the breakpoint. This attribute is not writable.
5387@end defvar
5388
5389@defvar Breakpoint.type
5390This attribute holds the breakpoint's type --- the identifier used to
5391determine the actual breakpoint type or use-case. This attribute is not
5392writable.
5393@end defvar
5394
5395@defvar Breakpoint.visible
5396This attribute tells whether the breakpoint is visible to the user
5397when set, or when the @samp{info breakpoints} command is run. This
5398attribute is not writable.
5399@end defvar
5400
5401@defvar Breakpoint.temporary
5402This attribute indicates whether the breakpoint was created as a
5403temporary breakpoint. Temporary breakpoints are automatically deleted
5404after that breakpoint has been hit. Access to this attribute, and all
5405other attributes and functions other than the @code{is_valid}
5406function, will result in an error after the breakpoint has been hit
5407(as it has been automatically deleted). This attribute is not
5408writable.
5409@end defvar
5410
329baa95
DE
5411@defvar Breakpoint.hit_count
5412This attribute holds the hit count for the breakpoint, an integer.
5413This attribute is writable, but currently it can only be set to zero.
5414@end defvar
5415
5416@defvar Breakpoint.location
5417This attribute holds the location of the breakpoint, as specified by
5418the user. It is a string. If the breakpoint does not have a location
5419(that is, it is a watchpoint) the attribute's value is @code{None}. This
5420attribute is not writable.
5421@end defvar
5422
5423@defvar Breakpoint.expression
5424This attribute holds a breakpoint expression, as specified by
5425the user. It is a string. If the breakpoint does not have an
5426expression (the breakpoint is not a watchpoint) the attribute's value
5427is @code{None}. This attribute is not writable.
5428@end defvar
5429
5430@defvar Breakpoint.condition
5431This attribute holds the condition of the breakpoint, as specified by
5432the user. It is a string. If there is no condition, this attribute's
5433value is @code{None}. This attribute is writable.
5434@end defvar
5435
5436@defvar Breakpoint.commands
5437This attribute holds the commands attached to the breakpoint. If
5438there are commands, this attribute's value is a string holding all the
5439commands, separated by newlines. If there are no commands, this
a913fffb 5440attribute is @code{None}. This attribute is writable.
329baa95
DE
5441@end defvar
5442
5443@node Finish Breakpoints in Python
5444@subsubsection Finish Breakpoints
5445
5446@cindex python finish breakpoints
5447@tindex gdb.FinishBreakpoint
5448
5449A finish breakpoint is a temporary breakpoint set at the return address of
5450a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5451extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5452and deleted when the execution will run out of the breakpoint scope (i.e.@:
5453@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5454Finish breakpoints are thread specific and must be create with the right
5455thread selected.
5456
5457@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5458Create a finish breakpoint at the return address of the @code{gdb.Frame}
5459object @var{frame}. If @var{frame} is not provided, this defaults to the
5460newest frame. The optional @var{internal} argument allows the breakpoint to
5461become invisible to the user. @xref{Breakpoints In Python}, for further
5462details about this argument.
5463@end defun
5464
5465@defun FinishBreakpoint.out_of_scope (self)
5466In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5467@code{return} command, @dots{}), a function may not properly terminate, and
5468thus never hit the finish breakpoint. When @value{GDBN} notices such a
5469situation, the @code{out_of_scope} callback will be triggered.
5470
5471You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5472method:
5473
5474@smallexample
5475class MyFinishBreakpoint (gdb.FinishBreakpoint)
5476 def stop (self):
5477 print "normal finish"
5478 return True
5479
5480 def out_of_scope ():
5481 print "abnormal finish"
5482@end smallexample
5483@end defun
5484
5485@defvar FinishBreakpoint.return_value
5486When @value{GDBN} is stopped at a finish breakpoint and the frame
5487used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5488attribute will contain a @code{gdb.Value} object corresponding to the return
5489value of the function. The value will be @code{None} if the function return
5490type is @code{void} or if the return value was not computable. This attribute
5491is not writable.
5492@end defvar
5493
5494@node Lazy Strings In Python
849cba3b 5495@subsubsection Python representation of lazy strings
329baa95
DE
5496
5497@cindex lazy strings in python
5498@tindex gdb.LazyString
5499
5500A @dfn{lazy string} is a string whose contents is not retrieved or
5501encoded until it is needed.
5502
5503A @code{gdb.LazyString} is represented in @value{GDBN} as an
5504@code{address} that points to a region of memory, an @code{encoding}
5505that will be used to encode that region of memory, and a @code{length}
5506to delimit the region of memory that represents the string. The
5507difference between a @code{gdb.LazyString} and a string wrapped within
5508a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5509differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5510retrieved and encoded during printing, while a @code{gdb.Value}
5511wrapping a string is immediately retrieved and encoded on creation.
5512
5513A @code{gdb.LazyString} object has the following functions:
5514
5515@defun LazyString.value ()
5516Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5517will point to the string in memory, but will lose all the delayed
5518retrieval, encoding and handling that @value{GDBN} applies to a
5519@code{gdb.LazyString}.
5520@end defun
5521
5522@defvar LazyString.address
5523This attribute holds the address of the string. This attribute is not
5524writable.
5525@end defvar
5526
5527@defvar LazyString.length
5528This attribute holds the length of the string in characters. If the
5529length is -1, then the string will be fetched and encoded up to the
5530first null of appropriate width. This attribute is not writable.
5531@end defvar
5532
5533@defvar LazyString.encoding
5534This attribute holds the encoding that will be applied to the string
5535when the string is printed by @value{GDBN}. If the encoding is not
5536set, or contains an empty string, then @value{GDBN} will select the
5537most appropriate encoding when the string is printed. This attribute
5538is not writable.
5539@end defvar
5540
5541@defvar LazyString.type
5542This attribute holds the type that is represented by the lazy string's
f8d99587 5543type. For a lazy string this is a pointer or array type. To
329baa95
DE
5544resolve this to the lazy string's character type, use the type's
5545@code{target} method. @xref{Types In Python}. This attribute is not
5546writable.
5547@end defvar
5548
5549@node Architectures In Python
5550@subsubsection Python representation of architectures
5551@cindex Python architectures
5552
5553@value{GDBN} uses architecture specific parameters and artifacts in a
5554number of its various computations. An architecture is represented
5555by an instance of the @code{gdb.Architecture} class.
5556
5557A @code{gdb.Architecture} class has the following methods:
5558
5559@defun Architecture.name ()
5560Return the name (string value) of the architecture.
5561@end defun
5562
5563@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5564Return a list of disassembled instructions starting from the memory
5565address @var{start_pc}. The optional arguments @var{end_pc} and
5566@var{count} determine the number of instructions in the returned list.
5567If both the optional arguments @var{end_pc} and @var{count} are
5568specified, then a list of at most @var{count} disassembled instructions
5569whose start address falls in the closed memory address interval from
5570@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5571specified, but @var{count} is specified, then @var{count} number of
5572instructions starting from the address @var{start_pc} are returned. If
5573@var{count} is not specified but @var{end_pc} is specified, then all
5574instructions whose start address falls in the closed memory address
5575interval from @var{start_pc} to @var{end_pc} are returned. If neither
5576@var{end_pc} nor @var{count} are specified, then a single instruction at
5577@var{start_pc} is returned. For all of these cases, each element of the
5578returned list is a Python @code{dict} with the following string keys:
5579
5580@table @code
5581
5582@item addr
5583The value corresponding to this key is a Python long integer capturing
5584the memory address of the instruction.
5585
5586@item asm
5587The value corresponding to this key is a string value which represents
5588the instruction with assembly language mnemonics. The assembly
5589language flavor used is the same as that specified by the current CLI
5590variable @code{disassembly-flavor}. @xref{Machine Code}.
5591
5592@item length
5593The value corresponding to this key is the length (integer value) of the
5594instruction in bytes.
5595
5596@end table
5597@end defun
5598
5599@node Python Auto-loading
5600@subsection Python Auto-loading
5601@cindex Python auto-loading
5602
5603When a new object file is read (for example, due to the @code{file}
5604command, or because the inferior has loaded a shared library),
5605@value{GDBN} will look for Python support scripts in several ways:
5606@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5607@xref{Auto-loading extensions}.
5608
5609The auto-loading feature is useful for supplying application-specific
5610debugging commands and scripts.
5611
5612Auto-loading can be enabled or disabled,
5613and the list of auto-loaded scripts can be printed.
5614
5615@table @code
5616@anchor{set auto-load python-scripts}
5617@kindex set auto-load python-scripts
5618@item set auto-load python-scripts [on|off]
5619Enable or disable the auto-loading of Python scripts.
5620
5621@anchor{show auto-load python-scripts}
5622@kindex show auto-load python-scripts
5623@item show auto-load python-scripts
5624Show whether auto-loading of Python scripts is enabled or disabled.
5625
5626@anchor{info auto-load python-scripts}
5627@kindex info auto-load python-scripts
5628@cindex print list of auto-loaded Python scripts
5629@item info auto-load python-scripts [@var{regexp}]
5630Print the list of all Python scripts that @value{GDBN} auto-loaded.
5631
5632Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5633the @code{.debug_gdb_scripts} section and were either not found
5634(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5635@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5636This is useful because their names are not printed when @value{GDBN}
5637tries to load them and fails. There may be many of them, and printing
5638an error message for each one is problematic.
5639
5640If @var{regexp} is supplied only Python scripts with matching names are printed.
5641
5642Example:
5643
5644@smallexample
5645(gdb) info auto-load python-scripts
5646Loaded Script
5647Yes py-section-script.py
5648 full name: /tmp/py-section-script.py
5649No my-foo-pretty-printers.py
5650@end smallexample
5651@end table
5652
9f050062 5653When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5654@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5655function (@pxref{Objfiles In Python}). This can be useful for
5656registering objfile-specific pretty-printers and frame-filters.
5657
5658@node Python modules
5659@subsection Python modules
5660@cindex python modules
5661
5662@value{GDBN} comes with several modules to assist writing Python code.
5663
5664@menu
5665* gdb.printing:: Building and registering pretty-printers.
5666* gdb.types:: Utilities for working with types.
5667* gdb.prompt:: Utilities for prompt value substitution.
5668@end menu
5669
5670@node gdb.printing
5671@subsubsection gdb.printing
5672@cindex gdb.printing
5673
5674This module provides a collection of utilities for working with
5675pretty-printers.
5676
5677@table @code
5678@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5679This class specifies the API that makes @samp{info pretty-printer},
5680@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5681Pretty-printers should generally inherit from this class.
5682
5683@item SubPrettyPrinter (@var{name})
5684For printers that handle multiple types, this class specifies the
5685corresponding API for the subprinters.
5686
5687@item RegexpCollectionPrettyPrinter (@var{name})
5688Utility class for handling multiple printers, all recognized via
5689regular expressions.
5690@xref{Writing a Pretty-Printer}, for an example.
5691
5692@item FlagEnumerationPrinter (@var{name})
5693A pretty-printer which handles printing of @code{enum} values. Unlike
5694@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5695work properly when there is some overlap between the enumeration
697aa1b7
EZ
5696constants. The argument @var{name} is the name of the printer and
5697also the name of the @code{enum} type to look up.
329baa95
DE
5698
5699@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5700Register @var{printer} with the pretty-printer list of @var{obj}.
5701If @var{replace} is @code{True} then any existing copy of the printer
5702is replaced. Otherwise a @code{RuntimeError} exception is raised
5703if a printer with the same name already exists.
5704@end table
5705
5706@node gdb.types
5707@subsubsection gdb.types
5708@cindex gdb.types
5709
5710This module provides a collection of utilities for working with
5711@code{gdb.Type} objects.
5712
5713@table @code
5714@item get_basic_type (@var{type})
5715Return @var{type} with const and volatile qualifiers stripped,
5716and with typedefs and C@t{++} references converted to the underlying type.
5717
5718C@t{++} example:
5719
5720@smallexample
5721typedef const int const_int;
5722const_int foo (3);
5723const_int& foo_ref (foo);
5724int main () @{ return 0; @}
5725@end smallexample
5726
5727Then in gdb:
5728
5729@smallexample
5730(gdb) start
5731(gdb) python import gdb.types
5732(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5733(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5734int
5735@end smallexample
5736
5737@item has_field (@var{type}, @var{field})
5738Return @code{True} if @var{type}, assumed to be a type with fields
5739(e.g., a structure or union), has field @var{field}.
5740
5741@item make_enum_dict (@var{enum_type})
5742Return a Python @code{dictionary} type produced from @var{enum_type}.
5743
5744@item deep_items (@var{type})
5745Returns a Python iterator similar to the standard
5746@code{gdb.Type.iteritems} method, except that the iterator returned
5747by @code{deep_items} will recursively traverse anonymous struct or
5748union fields. For example:
5749
5750@smallexample
5751struct A
5752@{
5753 int a;
5754 union @{
5755 int b0;
5756 int b1;
5757 @};
5758@};
5759@end smallexample
5760
5761@noindent
5762Then in @value{GDBN}:
5763@smallexample
5764(@value{GDBP}) python import gdb.types
5765(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5766(@value{GDBP}) python print struct_a.keys ()
5767@{['a', '']@}
5768(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5769@{['a', 'b0', 'b1']@}
5770@end smallexample
5771
5772@item get_type_recognizers ()
5773Return a list of the enabled type recognizers for the current context.
5774This is called by @value{GDBN} during the type-printing process
5775(@pxref{Type Printing API}).
5776
5777@item apply_type_recognizers (recognizers, type_obj)
5778Apply the type recognizers, @var{recognizers}, to the type object
5779@var{type_obj}. If any recognizer returns a string, return that
5780string. Otherwise, return @code{None}. This is called by
5781@value{GDBN} during the type-printing process (@pxref{Type Printing
5782API}).
5783
5784@item register_type_printer (locus, printer)
697aa1b7
EZ
5785This is a convenience function to register a type printer
5786@var{printer}. The printer must implement the type printer protocol.
5787The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5788the printer is registered with that objfile; a @code{gdb.Progspace},
5789in which case the printer is registered with that progspace; or
5790@code{None}, in which case the printer is registered globally.
329baa95
DE
5791
5792@item TypePrinter
5793This is a base class that implements the type printer protocol. Type
5794printers are encouraged, but not required, to derive from this class.
5795It defines a constructor:
5796
5797@defmethod TypePrinter __init__ (self, name)
5798Initialize the type printer with the given name. The new printer
5799starts in the enabled state.
5800@end defmethod
5801
5802@end table
5803
5804@node gdb.prompt
5805@subsubsection gdb.prompt
5806@cindex gdb.prompt
5807
5808This module provides a method for prompt value-substitution.
5809
5810@table @code
5811@item substitute_prompt (@var{string})
5812Return @var{string} with escape sequences substituted by values. Some
5813escape sequences take arguments. You can specify arguments inside
5814``@{@}'' immediately following the escape sequence.
5815
5816The escape sequences you can pass to this function are:
5817
5818@table @code
5819@item \\
5820Substitute a backslash.
5821@item \e
5822Substitute an ESC character.
5823@item \f
5824Substitute the selected frame; an argument names a frame parameter.
5825@item \n
5826Substitute a newline.
5827@item \p
5828Substitute a parameter's value; the argument names the parameter.
5829@item \r
5830Substitute a carriage return.
5831@item \t
5832Substitute the selected thread; an argument names a thread parameter.
5833@item \v
5834Substitute the version of GDB.
5835@item \w
5836Substitute the current working directory.
5837@item \[
5838Begin a sequence of non-printing characters. These sequences are
5839typically used with the ESC character, and are not counted in the string
5840length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5841blue-colored ``(gdb)'' prompt where the length is five.
5842@item \]
5843End a sequence of non-printing characters.
5844@end table
5845
5846For example:
5847
5848@smallexample
5849substitute_prompt (``frame: \f,
5850 print arguments: \p@{print frame-arguments@}'')
5851@end smallexample
5852
5853@exdent will return the string:
5854
5855@smallexample
5856"frame: main, print arguments: scalars"
5857@end smallexample
5858@end table
This page took 0.71853 seconds and 4 git commands to generate.