Introduce assign_operation
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
3666a048 1@c Copyright (C) 2008--2021 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
329baa95
DE
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
116@end table
117
118@node Python API
119@subsection Python API
120@cindex python api
121@cindex programming in python
122
123You can get quick online help for @value{GDBN}'s Python API by issuing
124the command @w{@kbd{python help (gdb)}}.
125
126Functions and methods which have two or more optional arguments allow
127them to be specified using keyword syntax. This allows passing some
128optional arguments while skipping others. Example:
129@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
130
131@menu
132* Basic Python:: Basic Python Functions.
133* Exception Handling:: How Python exceptions are translated.
134* Values From Inferior:: Python representation of values.
135* Types In Python:: Python representation of types.
136* Pretty Printing API:: Pretty-printing values.
137* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
138* Writing a Pretty-Printer:: Writing a Pretty-Printer.
139* Type Printing API:: Pretty-printing types.
140* Frame Filter API:: Filtering Frames.
141* Frame Decorator API:: Decorating Frames.
142* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 143* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
144* Xmethods In Python:: Adding and replacing methods of C++ classes.
145* Xmethod API:: Xmethod types.
146* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
147* Inferiors In Python:: Python representation of inferiors (processes)
148* Events In Python:: Listening for events from @value{GDBN}.
149* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 150* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
151* Commands In Python:: Implementing new commands in Python.
152* Parameters In Python:: Adding new @value{GDBN} parameters.
153* Functions In Python:: Writing new convenience functions.
154* Progspaces In Python:: Program spaces.
155* Objfiles In Python:: Object files.
156* Frames In Python:: Accessing inferior stack frames from Python.
157* Blocks In Python:: Accessing blocks from Python.
158* Symbols In Python:: Python representation of symbols.
159* Symbol Tables In Python:: Python representation of symbol tables.
160* Line Tables In Python:: Python representation of line tables.
161* Breakpoints In Python:: Manipulating breakpoints using Python.
162* Finish Breakpoints in Python:: Setting Breakpoints on function return
163 using Python.
164* Lazy Strings In Python:: Python representation of lazy strings.
165* Architectures In Python:: Python representation of architectures.
0f767f94 166* Registers In Python:: Python representation of registers.
01b1af32 167* TUI Windows In Python:: Implementing new TUI windows.
329baa95
DE
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
f3bdc2db 562> print ("Hello, World!")
329baa95
DE
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
760f7560 774returns @code{gdb.Value} objects corresponding to the values pointed to
329baa95
DE
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
52093e1b
MB
867@defun Value.format_string (...)
868Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
869command does. Invoked with no arguments, this is equivalent to calling
870the @code{str} function on the @code{gdb.Value}. The representation of
871the same value may change across different versions of @value{GDBN}, so
872you shouldn't, for instance, parse the strings returned by this method.
873
874All the arguments are keyword only. If an argument is not specified, the
875current global default setting is used.
876
877@table @code
878@item raw
879@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
880used to format the value. @code{False} if enabled pretty-printers
881matching the type represented by the @code{gdb.Value} should be used to
882format it.
883
884@item pretty_arrays
885@code{True} if arrays should be pretty printed to be more convenient to
886read, @code{False} if they shouldn't (see @code{set print array} in
887@ref{Print Settings}).
888
889@item pretty_structs
890@code{True} if structs should be pretty printed to be more convenient to
891read, @code{False} if they shouldn't (see @code{set print pretty} in
892@ref{Print Settings}).
893
894@item array_indexes
895@code{True} if array indexes should be included in the string
896representation of arrays, @code{False} if they shouldn't (see @code{set
897print array-indexes} in @ref{Print Settings}).
898
899@item symbols
900@code{True} if the string representation of a pointer should include the
901corresponding symbol name (if one exists), @code{False} if it shouldn't
902(see @code{set print symbol} in @ref{Print Settings}).
903
904@item unions
905@code{True} if unions which are contained in other structures or unions
906should be expanded, @code{False} if they shouldn't (see @code{set print
907union} in @ref{Print Settings}).
908
4aea001f
HD
909@item address
910@code{True} if the string representation of a pointer should include the
911address, @code{False} if it shouldn't (see @code{set print address} in
912@ref{Print Settings}).
913
52093e1b
MB
914@item deref_refs
915@code{True} if C@t{++} references should be resolved to the value they
916refer to, @code{False} (the default) if they shouldn't. Note that, unlike
917for the @code{print} command, references are not automatically expanded
918when using the @code{format_string} method or the @code{str}
919function. There is no global @code{print} setting to change the default
920behaviour.
921
922@item actual_objects
923@code{True} if the representation of a pointer to an object should
924identify the @emph{actual} (derived) type of the object rather than the
925@emph{declared} type, using the virtual function table. @code{False} if
926the @emph{declared} type should be used. (See @code{set print object} in
927@ref{Print Settings}).
928
9f121239 929@item static_members
52093e1b
MB
930@code{True} if static members should be included in the string
931representation of a C@t{++} object, @code{False} if they shouldn't (see
932@code{set print static-members} in @ref{Print Settings}).
933
934@item max_elements
935Number of array elements to print, or @code{0} to print an unlimited
936number of elements (see @code{set print elements} in @ref{Print
937Settings}).
938
2e62ab40
AB
939@item max_depth
940The maximum depth to print for nested structs and unions, or @code{-1}
941to print an unlimited number of elements (see @code{set print
942max-depth} in @ref{Print Settings}).
943
52093e1b
MB
944@item repeat_threshold
945Set the threshold for suppressing display of repeated array elements, or
946@code{0} to represent all elements, even if repeated. (See @code{set
947print repeats} in @ref{Print Settings}).
948
949@item format
950A string containing a single character representing the format to use for
951the returned string. For instance, @code{'x'} is equivalent to using the
952@value{GDBN} command @code{print} with the @code{/x} option and formats
953the value as a hexadecimal number.
954@end table
955@end defun
956
329baa95
DE
957@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
958If this @code{gdb.Value} represents a string, then this method
959converts the contents to a Python string. Otherwise, this method will
960throw an exception.
961
b3ce5e5f
DE
962Values are interpreted as strings according to the rules of the
963current language. If the optional length argument is given, the
964string will be converted to that length, and will include any embedded
965zeroes that the string may contain. Otherwise, for languages
966where the string is zero-terminated, the entire string will be
967converted.
329baa95 968
b3ce5e5f
DE
969For example, in C-like languages, a value is a string if it is a pointer
970to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
971or @code{char32_t}.
329baa95
DE
972
973If the optional @var{encoding} argument is given, it must be a string
974naming the encoding of the string in the @code{gdb.Value}, such as
975@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
976the same encodings as the corresponding argument to Python's
977@code{string.decode} method, and the Python codec machinery will be used
978to convert the string. If @var{encoding} is not given, or if
979@var{encoding} is the empty string, then either the @code{target-charset}
980(@pxref{Character Sets}) will be used, or a language-specific encoding
981will be used, if the current language is able to supply one.
982
983The optional @var{errors} argument is the same as the corresponding
984argument to Python's @code{string.decode} method.
985
986If the optional @var{length} argument is given, the string will be
987fetched and converted to the given length.
988@end defun
989
990@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
991If this @code{gdb.Value} represents a string, then this method
992converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
993In Python}). Otherwise, this method will throw an exception.
994
995If the optional @var{encoding} argument is given, it must be a string
996naming the encoding of the @code{gdb.LazyString}. Some examples are:
997@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
998@var{encoding} argument is an encoding that @value{GDBN} does
999recognize, @value{GDBN} will raise an error.
1000
1001When a lazy string is printed, the @value{GDBN} encoding machinery is
1002used to convert the string during printing. If the optional
1003@var{encoding} argument is not provided, or is an empty string,
1004@value{GDBN} will automatically select the encoding most suitable for
1005the string type. For further information on encoding in @value{GDBN}
1006please see @ref{Character Sets}.
1007
1008If the optional @var{length} argument is given, the string will be
1009fetched and encoded to the length of characters specified. If
1010the @var{length} argument is not provided, the string will be fetched
1011and encoded until a null of appropriate width is found.
1012@end defun
1013
1014@defun Value.fetch_lazy ()
1015If the @code{gdb.Value} object is currently a lazy value
1016(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1017fetched from the inferior. Any errors that occur in the process
1018will produce a Python exception.
1019
1020If the @code{gdb.Value} object is not a lazy value, this method
1021has no effect.
1022
1023This method does not return a value.
1024@end defun
1025
1026
1027@node Types In Python
1028@subsubsection Types In Python
1029@cindex types in Python
1030@cindex Python, working with types
1031
1032@tindex gdb.Type
1033@value{GDBN} represents types from the inferior using the class
1034@code{gdb.Type}.
1035
1036The following type-related functions are available in the @code{gdb}
1037module:
1038
1039@findex gdb.lookup_type
1040@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1041This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1042
1043If @var{block} is given, then @var{name} is looked up in that scope.
1044Otherwise, it is searched for globally.
1045
1046Ordinarily, this function will return an instance of @code{gdb.Type}.
1047If the named type cannot be found, it will throw an exception.
1048@end defun
1049
1050If the type is a structure or class type, or an enum type, the fields
1051of that type can be accessed using the Python @dfn{dictionary syntax}.
1052For example, if @code{some_type} is a @code{gdb.Type} instance holding
1053a structure type, you can access its @code{foo} field with:
1054
1055@smallexample
1056bar = some_type['foo']
1057@end smallexample
1058
1059@code{bar} will be a @code{gdb.Field} object; see below under the
1060description of the @code{Type.fields} method for a description of the
1061@code{gdb.Field} class.
1062
1063An instance of @code{Type} has the following attributes:
1064
6d7bb824
TT
1065@defvar Type.alignof
1066The alignment of this type, in bytes. Type alignment comes from the
1067debugging information; if it was not specified, then @value{GDBN} will
1068use the relevant ABI to try to determine the alignment. In some
1069cases, even this is not possible, and zero will be returned.
1070@end defvar
1071
329baa95
DE
1072@defvar Type.code
1073The type code for this type. The type code will be one of the
1074@code{TYPE_CODE_} constants defined below.
1075@end defvar
1076
1acda803
TT
1077@defvar Type.dynamic
1078A boolean indicating whether this type is dynamic. In some
1079situations, such as Rust @code{enum} types or Ada variant records, the
45fc7c99
TT
1080concrete type of a value may vary depending on its contents. That is,
1081the declared type of a variable, or the type returned by
1082@code{gdb.lookup_type} may be dynamic; while the type of the
1083variable's value will be a concrete instance of that dynamic type.
1084
1085For example, consider this code:
1086@smallexample
1087int n;
1088int array[n];
1089@end smallexample
1090
1091Here, at least conceptually (whether your compiler actually does this
1092is a separate issue), examining @w{@code{gdb.lookup_symbol("array", ...).type}}
1093could yield a @code{gdb.Type} which reports a size of @code{None}.
1094This is the dynamic type.
1095
1096However, examining @code{gdb.parse_and_eval("array").type} would yield
1097a concrete type, whose length would be known.
1acda803
TT
1098@end defvar
1099
329baa95
DE
1100@defvar Type.name
1101The name of this type. If this type has no name, then @code{None}
1102is returned.
1103@end defvar
1104
1105@defvar Type.sizeof
1106The size of this type, in target @code{char} units. Usually, a
1107target's @code{char} type will be an 8-bit byte. However, on some
1acda803
TT
1108unusual platforms, this type may have a different size. A dynamic
1109type may not have a fixed size; in this case, this attribute's value
1110will be @code{None}.
329baa95
DE
1111@end defvar
1112
1113@defvar Type.tag
1114The tag name for this type. The tag name is the name after
1115@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1116languages have this concept. If this type has no tag name, then
1117@code{None} is returned.
1118@end defvar
1119
e1f2e1a2
CB
1120@defvar Type.objfile
1121The @code{gdb.Objfile} that this type was defined in, or @code{None} if
1122there is no associated objfile.
1123@end defvar
1124
329baa95
DE
1125The following methods are provided:
1126
1127@defun Type.fields ()
1128For structure and union types, this method returns the fields. Range
1129types have two fields, the minimum and maximum values. Enum types
1130have one field per enum constant. Function and method types have one
1131field per parameter. The base types of C@t{++} classes are also
1132represented as fields. If the type has no fields, or does not fit
1133into one of these categories, an empty sequence will be returned.
1134
1135Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1136@table @code
1137@item bitpos
1138This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1139(as in C@t{++}) fields. The value is the position, counting
1acda803
TT
1140in bits, from the start of the containing type. Note that, in a
1141dynamic type, the position of a field may not be constant. In this
45fc7c99
TT
1142case, the value will be @code{None}. Also, a dynamic type may have
1143fields that do not appear in a corresponding concrete type.
329baa95
DE
1144
1145@item enumval
1146This attribute is only available for @code{enum} fields, and its value
1147is the enumeration member's integer representation.
1148
1149@item name
1150The name of the field, or @code{None} for anonymous fields.
1151
1152@item artificial
1153This is @code{True} if the field is artificial, usually meaning that
1154it was provided by the compiler and not the user. This attribute is
1155always provided, and is @code{False} if the field is not artificial.
1156
1157@item is_base_class
1158This is @code{True} if the field represents a base class of a C@t{++}
1159structure. This attribute is always provided, and is @code{False}
1160if the field is not a base class of the type that is the argument of
1161@code{fields}, or if that type was not a C@t{++} class.
1162
1163@item bitsize
1164If the field is packed, or is a bitfield, then this will have a
1165non-zero value, which is the size of the field in bits. Otherwise,
1166this will be zero; in this case the field's size is given by its type.
1167
1168@item type
1169The type of the field. This is usually an instance of @code{Type},
1170but it can be @code{None} in some situations.
1171
1172@item parent_type
1173The type which contains this field. This is an instance of
1174@code{gdb.Type}.
1175@end table
1176@end defun
1177
1178@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1179Return a new @code{gdb.Type} object which represents an array of this
1180type. If one argument is given, it is the inclusive upper bound of
1181the array; in this case the lower bound is zero. If two arguments are
1182given, the first argument is the lower bound of the array, and the
1183second argument is the upper bound of the array. An array's length
1184must not be negative, but the bounds can be.
1185@end defun
1186
1187@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1188Return a new @code{gdb.Type} object which represents a vector of this
1189type. If one argument is given, it is the inclusive upper bound of
1190the vector; in this case the lower bound is zero. If two arguments are
1191given, the first argument is the lower bound of the vector, and the
1192second argument is the upper bound of the vector. A vector's length
1193must not be negative, but the bounds can be.
1194
1195The difference between an @code{array} and a @code{vector} is that
1196arrays behave like in C: when used in expressions they decay to a pointer
1197to the first element whereas vectors are treated as first class values.
1198@end defun
1199
1200@defun Type.const ()
1201Return a new @code{gdb.Type} object which represents a
1202@code{const}-qualified variant of this type.
1203@end defun
1204
1205@defun Type.volatile ()
1206Return a new @code{gdb.Type} object which represents a
1207@code{volatile}-qualified variant of this type.
1208@end defun
1209
1210@defun Type.unqualified ()
1211Return a new @code{gdb.Type} object which represents an unqualified
1212variant of this type. That is, the result is neither @code{const} nor
1213@code{volatile}.
1214@end defun
1215
1216@defun Type.range ()
1217Return a Python @code{Tuple} object that contains two elements: the
1218low bound of the argument type and the high bound of that type. If
1219the type does not have a range, @value{GDBN} will raise a
1220@code{gdb.error} exception (@pxref{Exception Handling}).
1221@end defun
1222
1223@defun Type.reference ()
1224Return a new @code{gdb.Type} object which represents a reference to this
1225type.
1226@end defun
1227
1228@defun Type.pointer ()
1229Return a new @code{gdb.Type} object which represents a pointer to this
1230type.
1231@end defun
1232
1233@defun Type.strip_typedefs ()
1234Return a new @code{gdb.Type} that represents the real type,
1235after removing all layers of typedefs.
1236@end defun
1237
1238@defun Type.target ()
1239Return a new @code{gdb.Type} object which represents the target type
1240of this type.
1241
1242For a pointer type, the target type is the type of the pointed-to
1243object. For an array type (meaning C-like arrays), the target type is
1244the type of the elements of the array. For a function or method type,
1245the target type is the type of the return value. For a complex type,
1246the target type is the type of the elements. For a typedef, the
1247target type is the aliased type.
1248
1249If the type does not have a target, this method will throw an
1250exception.
1251@end defun
1252
1253@defun Type.template_argument (n @r{[}, block@r{]})
1254If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1255return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1256value of the @var{n}th template argument (indexed starting at 0).
329baa95 1257
1a6a384b
JL
1258If this @code{gdb.Type} is not a template type, or if the type has fewer
1259than @var{n} template arguments, this will throw an exception.
1260Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1261
1262If @var{block} is given, then @var{name} is looked up in that scope.
1263Otherwise, it is searched for globally.
1264@end defun
1265
59fb7612
SS
1266@defun Type.optimized_out ()
1267Return @code{gdb.Value} instance of this type whose value is optimized
1268out. This allows a frame decorator to indicate that the value of an
1269argument or a local variable is not known.
1270@end defun
329baa95
DE
1271
1272Each type has a code, which indicates what category this type falls
1273into. The available type categories are represented by constants
1274defined in the @code{gdb} module:
1275
b3ce5e5f
DE
1276@vtable @code
1277@vindex TYPE_CODE_PTR
329baa95
DE
1278@item gdb.TYPE_CODE_PTR
1279The type is a pointer.
1280
b3ce5e5f 1281@vindex TYPE_CODE_ARRAY
329baa95
DE
1282@item gdb.TYPE_CODE_ARRAY
1283The type is an array.
1284
b3ce5e5f 1285@vindex TYPE_CODE_STRUCT
329baa95
DE
1286@item gdb.TYPE_CODE_STRUCT
1287The type is a structure.
1288
b3ce5e5f 1289@vindex TYPE_CODE_UNION
329baa95
DE
1290@item gdb.TYPE_CODE_UNION
1291The type is a union.
1292
b3ce5e5f 1293@vindex TYPE_CODE_ENUM
329baa95
DE
1294@item gdb.TYPE_CODE_ENUM
1295The type is an enum.
1296
b3ce5e5f 1297@vindex TYPE_CODE_FLAGS
329baa95
DE
1298@item gdb.TYPE_CODE_FLAGS
1299A bit flags type, used for things such as status registers.
1300
b3ce5e5f 1301@vindex TYPE_CODE_FUNC
329baa95
DE
1302@item gdb.TYPE_CODE_FUNC
1303The type is a function.
1304
b3ce5e5f 1305@vindex TYPE_CODE_INT
329baa95
DE
1306@item gdb.TYPE_CODE_INT
1307The type is an integer type.
1308
b3ce5e5f 1309@vindex TYPE_CODE_FLT
329baa95
DE
1310@item gdb.TYPE_CODE_FLT
1311A floating point type.
1312
b3ce5e5f 1313@vindex TYPE_CODE_VOID
329baa95
DE
1314@item gdb.TYPE_CODE_VOID
1315The special type @code{void}.
1316
b3ce5e5f 1317@vindex TYPE_CODE_SET
329baa95
DE
1318@item gdb.TYPE_CODE_SET
1319A Pascal set type.
1320
b3ce5e5f 1321@vindex TYPE_CODE_RANGE
329baa95
DE
1322@item gdb.TYPE_CODE_RANGE
1323A range type, that is, an integer type with bounds.
1324
b3ce5e5f 1325@vindex TYPE_CODE_STRING
329baa95
DE
1326@item gdb.TYPE_CODE_STRING
1327A string type. Note that this is only used for certain languages with
1328language-defined string types; C strings are not represented this way.
1329
b3ce5e5f 1330@vindex TYPE_CODE_BITSTRING
329baa95
DE
1331@item gdb.TYPE_CODE_BITSTRING
1332A string of bits. It is deprecated.
1333
b3ce5e5f 1334@vindex TYPE_CODE_ERROR
329baa95
DE
1335@item gdb.TYPE_CODE_ERROR
1336An unknown or erroneous type.
1337
b3ce5e5f 1338@vindex TYPE_CODE_METHOD
329baa95 1339@item gdb.TYPE_CODE_METHOD
9c37b5ae 1340A method type, as found in C@t{++}.
329baa95 1341
b3ce5e5f 1342@vindex TYPE_CODE_METHODPTR
329baa95
DE
1343@item gdb.TYPE_CODE_METHODPTR
1344A pointer-to-member-function.
1345
b3ce5e5f 1346@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1347@item gdb.TYPE_CODE_MEMBERPTR
1348A pointer-to-member.
1349
b3ce5e5f 1350@vindex TYPE_CODE_REF
329baa95
DE
1351@item gdb.TYPE_CODE_REF
1352A reference type.
1353
3fcf899d
AV
1354@vindex TYPE_CODE_RVALUE_REF
1355@item gdb.TYPE_CODE_RVALUE_REF
1356A C@t{++}11 rvalue reference type.
1357
b3ce5e5f 1358@vindex TYPE_CODE_CHAR
329baa95
DE
1359@item gdb.TYPE_CODE_CHAR
1360A character type.
1361
b3ce5e5f 1362@vindex TYPE_CODE_BOOL
329baa95
DE
1363@item gdb.TYPE_CODE_BOOL
1364A boolean type.
1365
b3ce5e5f 1366@vindex TYPE_CODE_COMPLEX
329baa95
DE
1367@item gdb.TYPE_CODE_COMPLEX
1368A complex float type.
1369
b3ce5e5f 1370@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1371@item gdb.TYPE_CODE_TYPEDEF
1372A typedef to some other type.
1373
b3ce5e5f 1374@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1375@item gdb.TYPE_CODE_NAMESPACE
1376A C@t{++} namespace.
1377
b3ce5e5f 1378@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1379@item gdb.TYPE_CODE_DECFLOAT
1380A decimal floating point type.
1381
b3ce5e5f 1382@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1383@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1384A function internal to @value{GDBN}. This is the type used to represent
1385convenience functions.
b3ce5e5f 1386@end vtable
329baa95
DE
1387
1388Further support for types is provided in the @code{gdb.types}
1389Python module (@pxref{gdb.types}).
1390
1391@node Pretty Printing API
1392@subsubsection Pretty Printing API
b3ce5e5f 1393@cindex python pretty printing api
329baa95 1394
329baa95 1395A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1396specific interface, defined here. An example output is provided
1397(@pxref{Pretty Printing}).
329baa95
DE
1398
1399@defun pretty_printer.children (self)
1400@value{GDBN} will call this method on a pretty-printer to compute the
1401children of the pretty-printer's value.
1402
1403This method must return an object conforming to the Python iterator
1404protocol. Each item returned by the iterator must be a tuple holding
1405two elements. The first element is the ``name'' of the child; the
1406second element is the child's value. The value can be any Python
1407object which is convertible to a @value{GDBN} value.
1408
1409This method is optional. If it does not exist, @value{GDBN} will act
1410as though the value has no children.
2e62ab40 1411
a97c8e56
TT
1412For efficiency, the @code{children} method should lazily compute its
1413results. This will let @value{GDBN} read as few elements as
1414necessary, for example when various print settings (@pxref{Print
1415Settings}) or @code{-var-list-children} (@pxref{GDB/MI Variable
1416Objects}) limit the number of elements to be displayed.
1417
2e62ab40
AB
1418Children may be hidden from display based on the value of @samp{set
1419print max-depth} (@pxref{Print Settings}).
329baa95
DE
1420@end defun
1421
1422@defun pretty_printer.display_hint (self)
1423The CLI may call this method and use its result to change the
1424formatting of a value. The result will also be supplied to an MI
1425consumer as a @samp{displayhint} attribute of the variable being
1426printed.
1427
1428This method is optional. If it does exist, this method must return a
9f9aa852 1429string or the special value @code{None}.
329baa95
DE
1430
1431Some display hints are predefined by @value{GDBN}:
1432
1433@table @samp
1434@item array
1435Indicate that the object being printed is ``array-like''. The CLI
1436uses this to respect parameters such as @code{set print elements} and
1437@code{set print array}.
1438
1439@item map
1440Indicate that the object being printed is ``map-like'', and that the
1441children of this value can be assumed to alternate between keys and
1442values.
1443
1444@item string
1445Indicate that the object being printed is ``string-like''. If the
1446printer's @code{to_string} method returns a Python string of some
1447kind, then @value{GDBN} will call its internal language-specific
1448string-printing function to format the string. For the CLI this means
1449adding quotation marks, possibly escaping some characters, respecting
1450@code{set print elements}, and the like.
1451@end table
9f9aa852
AB
1452
1453The special value @code{None} causes @value{GDBN} to apply the default
1454display rules.
329baa95
DE
1455@end defun
1456
1457@defun pretty_printer.to_string (self)
1458@value{GDBN} will call this method to display the string
1459representation of the value passed to the object's constructor.
1460
1461When printing from the CLI, if the @code{to_string} method exists,
1462then @value{GDBN} will prepend its result to the values returned by
1463@code{children}. Exactly how this formatting is done is dependent on
1464the display hint, and may change as more hints are added. Also,
1465depending on the print settings (@pxref{Print Settings}), the CLI may
1466print just the result of @code{to_string} in a stack trace, omitting
1467the result of @code{children}.
1468
1469If this method returns a string, it is printed verbatim.
1470
1471Otherwise, if this method returns an instance of @code{gdb.Value},
1472then @value{GDBN} prints this value. This may result in a call to
1473another pretty-printer.
1474
1475If instead the method returns a Python value which is convertible to a
1476@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1477the resulting value. Again, this may result in a call to another
1478pretty-printer. Python scalars (integers, floats, and booleans) and
1479strings are convertible to @code{gdb.Value}; other types are not.
1480
1481Finally, if this method returns @code{None} then no further operations
1482are peformed in this method and nothing is printed.
1483
1484If the result is not one of these types, an exception is raised.
1485@end defun
1486
1487@value{GDBN} provides a function which can be used to look up the
1488default pretty-printer for a @code{gdb.Value}:
1489
1490@findex gdb.default_visualizer
1491@defun gdb.default_visualizer (value)
1492This function takes a @code{gdb.Value} object as an argument. If a
1493pretty-printer for this value exists, then it is returned. If no such
1494printer exists, then this returns @code{None}.
1495@end defun
1496
1497@node Selecting Pretty-Printers
1498@subsubsection Selecting Pretty-Printers
b3ce5e5f 1499@cindex selecting python pretty-printers
329baa95 1500
48869a5f
TT
1501@value{GDBN} provides several ways to register a pretty-printer:
1502globally, per program space, and per objfile. When choosing how to
1503register your pretty-printer, a good rule is to register it with the
1504smallest scope possible: that is prefer a specific objfile first, then
1505a program space, and only register a printer globally as a last
1506resort.
1507
1508@findex gdb.pretty_printers
1509@defvar gdb.pretty_printers
329baa95
DE
1510The Python list @code{gdb.pretty_printers} contains an array of
1511functions or callable objects that have been registered via addition
1512as a pretty-printer. Printers in this list are called @code{global}
1513printers, they're available when debugging all inferiors.
48869a5f
TT
1514@end defvar
1515
329baa95
DE
1516Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1517Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1518attribute.
1519
1520Each function on these lists is passed a single @code{gdb.Value}
1521argument and should return a pretty-printer object conforming to the
1522interface definition above (@pxref{Pretty Printing API}). If a function
1523cannot create a pretty-printer for the value, it should return
1524@code{None}.
1525
1526@value{GDBN} first checks the @code{pretty_printers} attribute of each
1527@code{gdb.Objfile} in the current program space and iteratively calls
1528each enabled lookup routine in the list for that @code{gdb.Objfile}
1529until it receives a pretty-printer object.
1530If no pretty-printer is found in the objfile lists, @value{GDBN} then
1531searches the pretty-printer list of the current program space,
1532calling each enabled function until an object is returned.
1533After these lists have been exhausted, it tries the global
1534@code{gdb.pretty_printers} list, again calling each enabled function until an
1535object is returned.
1536
1537The order in which the objfiles are searched is not specified. For a
1538given list, functions are always invoked from the head of the list,
1539and iterated over sequentially until the end of the list, or a printer
1540object is returned.
1541
1542For various reasons a pretty-printer may not work.
1543For example, the underlying data structure may have changed and
1544the pretty-printer is out of date.
1545
1546The consequences of a broken pretty-printer are severe enough that
1547@value{GDBN} provides support for enabling and disabling individual
1548printers. For example, if @code{print frame-arguments} is on,
1549a backtrace can become highly illegible if any argument is printed
1550with a broken printer.
1551
1552Pretty-printers are enabled and disabled by attaching an @code{enabled}
1553attribute to the registered function or callable object. If this attribute
1554is present and its value is @code{False}, the printer is disabled, otherwise
1555the printer is enabled.
1556
1557@node Writing a Pretty-Printer
1558@subsubsection Writing a Pretty-Printer
1559@cindex writing a pretty-printer
1560
1561A pretty-printer consists of two parts: a lookup function to detect
1562if the type is supported, and the printer itself.
1563
1564Here is an example showing how a @code{std::string} printer might be
1565written. @xref{Pretty Printing API}, for details on the API this class
1566must provide.
1567
1568@smallexample
1569class StdStringPrinter(object):
1570 "Print a std::string"
1571
1572 def __init__(self, val):
1573 self.val = val
1574
1575 def to_string(self):
1576 return self.val['_M_dataplus']['_M_p']
1577
1578 def display_hint(self):
1579 return 'string'
1580@end smallexample
1581
1582And here is an example showing how a lookup function for the printer
1583example above might be written.
1584
1585@smallexample
1586def str_lookup_function(val):
1587 lookup_tag = val.type.tag
1588 if lookup_tag == None:
1589 return None
1590 regex = re.compile("^std::basic_string<char,.*>$")
1591 if regex.match(lookup_tag):
1592 return StdStringPrinter(val)
1593 return None
1594@end smallexample
1595
1596The example lookup function extracts the value's type, and attempts to
1597match it to a type that it can pretty-print. If it is a type the
1598printer can pretty-print, it will return a printer object. If not, it
1599returns @code{None}.
1600
1601We recommend that you put your core pretty-printers into a Python
1602package. If your pretty-printers are for use with a library, we
1603further recommend embedding a version number into the package name.
1604This practice will enable @value{GDBN} to load multiple versions of
1605your pretty-printers at the same time, because they will have
1606different names.
1607
1608You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1609can be evaluated multiple times without changing its meaning. An
1610ideal auto-load file will consist solely of @code{import}s of your
1611printer modules, followed by a call to a register pretty-printers with
1612the current objfile.
1613
1614Taken as a whole, this approach will scale nicely to multiple
1615inferiors, each potentially using a different library version.
1616Embedding a version number in the Python package name will ensure that
1617@value{GDBN} is able to load both sets of printers simultaneously.
1618Then, because the search for pretty-printers is done by objfile, and
1619because your auto-loaded code took care to register your library's
1620printers with a specific objfile, @value{GDBN} will find the correct
1621printers for the specific version of the library used by each
1622inferior.
1623
1624To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1625this code might appear in @code{gdb.libstdcxx.v6}:
1626
1627@smallexample
1628def register_printers(objfile):
1629 objfile.pretty_printers.append(str_lookup_function)
1630@end smallexample
1631
1632@noindent
1633And then the corresponding contents of the auto-load file would be:
1634
1635@smallexample
1636import gdb.libstdcxx.v6
1637gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1638@end smallexample
1639
1640The previous example illustrates a basic pretty-printer.
1641There are a few things that can be improved on.
1642The printer doesn't have a name, making it hard to identify in a
1643list of installed printers. The lookup function has a name, but
1644lookup functions can have arbitrary, even identical, names.
1645
1646Second, the printer only handles one type, whereas a library typically has
1647several types. One could install a lookup function for each desired type
1648in the library, but one could also have a single lookup function recognize
1649several types. The latter is the conventional way this is handled.
1650If a pretty-printer can handle multiple data types, then its
1651@dfn{subprinters} are the printers for the individual data types.
1652
1653The @code{gdb.printing} module provides a formal way of solving these
1654problems (@pxref{gdb.printing}).
1655Here is another example that handles multiple types.
1656
1657These are the types we are going to pretty-print:
1658
1659@smallexample
1660struct foo @{ int a, b; @};
1661struct bar @{ struct foo x, y; @};
1662@end smallexample
1663
1664Here are the printers:
1665
1666@smallexample
1667class fooPrinter:
1668 """Print a foo object."""
1669
1670 def __init__(self, val):
1671 self.val = val
1672
1673 def to_string(self):
1674 return ("a=<" + str(self.val["a"]) +
1675 "> b=<" + str(self.val["b"]) + ">")
1676
1677class barPrinter:
1678 """Print a bar object."""
1679
1680 def __init__(self, val):
1681 self.val = val
1682
1683 def to_string(self):
1684 return ("x=<" + str(self.val["x"]) +
1685 "> y=<" + str(self.val["y"]) + ">")
1686@end smallexample
1687
1688This example doesn't need a lookup function, that is handled by the
1689@code{gdb.printing} module. Instead a function is provided to build up
1690the object that handles the lookup.
1691
1692@smallexample
1693import gdb.printing
1694
1695def build_pretty_printer():
1696 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1697 "my_library")
1698 pp.add_printer('foo', '^foo$', fooPrinter)
1699 pp.add_printer('bar', '^bar$', barPrinter)
1700 return pp
1701@end smallexample
1702
1703And here is the autoload support:
1704
1705@smallexample
1706import gdb.printing
1707import my_library
1708gdb.printing.register_pretty_printer(
1709 gdb.current_objfile(),
1710 my_library.build_pretty_printer())
1711@end smallexample
1712
1713Finally, when this printer is loaded into @value{GDBN}, here is the
1714corresponding output of @samp{info pretty-printer}:
1715
1716@smallexample
1717(gdb) info pretty-printer
1718my_library.so:
1719 my_library
1720 foo
1721 bar
1722@end smallexample
1723
1724@node Type Printing API
1725@subsubsection Type Printing API
1726@cindex type printing API for Python
1727
1728@value{GDBN} provides a way for Python code to customize type display.
1729This is mainly useful for substituting canonical typedef names for
1730types.
1731
1732@cindex type printer
1733A @dfn{type printer} is just a Python object conforming to a certain
1734protocol. A simple base class implementing the protocol is provided;
1735see @ref{gdb.types}. A type printer must supply at least:
1736
1737@defivar type_printer enabled
1738A boolean which is True if the printer is enabled, and False
1739otherwise. This is manipulated by the @code{enable type-printer}
1740and @code{disable type-printer} commands.
1741@end defivar
1742
1743@defivar type_printer name
1744The name of the type printer. This must be a string. This is used by
1745the @code{enable type-printer} and @code{disable type-printer}
1746commands.
1747@end defivar
1748
1749@defmethod type_printer instantiate (self)
1750This is called by @value{GDBN} at the start of type-printing. It is
1751only called if the type printer is enabled. This method must return a
1752new object that supplies a @code{recognize} method, as described below.
1753@end defmethod
1754
1755
1756When displaying a type, say via the @code{ptype} command, @value{GDBN}
1757will compute a list of type recognizers. This is done by iterating
1758first over the per-objfile type printers (@pxref{Objfiles In Python}),
1759followed by the per-progspace type printers (@pxref{Progspaces In
1760Python}), and finally the global type printers.
1761
1762@value{GDBN} will call the @code{instantiate} method of each enabled
1763type printer. If this method returns @code{None}, then the result is
1764ignored; otherwise, it is appended to the list of recognizers.
1765
1766Then, when @value{GDBN} is going to display a type name, it iterates
1767over the list of recognizers. For each one, it calls the recognition
1768function, stopping if the function returns a non-@code{None} value.
1769The recognition function is defined as:
1770
1771@defmethod type_recognizer recognize (self, type)
1772If @var{type} is not recognized, return @code{None}. Otherwise,
1773return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1774The @var{type} argument will be an instance of @code{gdb.Type}
1775(@pxref{Types In Python}).
329baa95
DE
1776@end defmethod
1777
1778@value{GDBN} uses this two-pass approach so that type printers can
1779efficiently cache information without holding on to it too long. For
1780example, it can be convenient to look up type information in a type
1781printer and hold it for a recognizer's lifetime; if a single pass were
1782done then type printers would have to make use of the event system in
1783order to avoid holding information that could become stale as the
1784inferior changed.
1785
1786@node Frame Filter API
521b499b 1787@subsubsection Filtering Frames
329baa95
DE
1788@cindex frame filters api
1789
1790Frame filters are Python objects that manipulate the visibility of a
1791frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1792@value{GDBN}.
1793
1794Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1795commands (@pxref{GDB/MI}), those that return a collection of frames
1796are affected. The commands that work with frame filters are:
1797
1798@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1799@code{-stack-list-frames}
1800(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1801@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1802-stack-list-variables command}), @code{-stack-list-arguments}
1803@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1804@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1805-stack-list-locals command}).
1806
1807A frame filter works by taking an iterator as an argument, applying
1808actions to the contents of that iterator, and returning another
1809iterator (or, possibly, the same iterator it was provided in the case
1810where the filter does not perform any operations). Typically, frame
1811filters utilize tools such as the Python's @code{itertools} module to
1812work with and create new iterators from the source iterator.
1813Regardless of how a filter chooses to apply actions, it must not alter
1814the underlying @value{GDBN} frame or frames, or attempt to alter the
1815call-stack within @value{GDBN}. This preserves data integrity within
1816@value{GDBN}. Frame filters are executed on a priority basis and care
1817should be taken that some frame filters may have been executed before,
1818and that some frame filters will be executed after.
1819
1820An important consideration when designing frame filters, and well
1821worth reflecting upon, is that frame filters should avoid unwinding
1822the call stack if possible. Some stacks can run very deep, into the
1823tens of thousands in some cases. To search every frame when a frame
1824filter executes may be too expensive at that step. The frame filter
1825cannot know how many frames it has to iterate over, and it may have to
1826iterate through them all. This ends up duplicating effort as
1827@value{GDBN} performs this iteration when it prints the frames. If
1828the filter can defer unwinding frames until frame decorators are
1829executed, after the last filter has executed, it should. @xref{Frame
1830Decorator API}, for more information on decorators. Also, there are
1831examples for both frame decorators and filters in later chapters.
1832@xref{Writing a Frame Filter}, for more information.
1833
1834The Python dictionary @code{gdb.frame_filters} contains key/object
1835pairings that comprise a frame filter. Frame filters in this
1836dictionary are called @code{global} frame filters, and they are
1837available when debugging all inferiors. These frame filters must
1838register with the dictionary directly. In addition to the
1839@code{global} dictionary, there are other dictionaries that are loaded
1840with different inferiors via auto-loading (@pxref{Python
1841Auto-loading}). The two other areas where frame filter dictionaries
1842can be found are: @code{gdb.Progspace} which contains a
1843@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1844object which also contains a @code{frame_filters} dictionary
1845attribute.
1846
1847When a command is executed from @value{GDBN} that is compatible with
1848frame filters, @value{GDBN} combines the @code{global},
1849@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1850loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1851several frames, and thus several object files, might be in use.
1852@value{GDBN} then prunes any frame filter whose @code{enabled}
1853attribute is @code{False}. This pruned list is then sorted according
1854to the @code{priority} attribute in each filter.
1855
1856Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1857creates an iterator which wraps each frame in the call stack in a
1858@code{FrameDecorator} object, and calls each filter in order. The
1859output from the previous filter will always be the input to the next
1860filter, and so on.
1861
1862Frame filters have a mandatory interface which each frame filter must
1863implement, defined here:
1864
1865@defun FrameFilter.filter (iterator)
1866@value{GDBN} will call this method on a frame filter when it has
1867reached the order in the priority list for that filter.
1868
1869For example, if there are four frame filters:
1870
1871@smallexample
1872Name Priority
1873
1874Filter1 5
1875Filter2 10
1876Filter3 100
1877Filter4 1
1878@end smallexample
1879
1880The order that the frame filters will be called is:
1881
1882@smallexample
1883Filter3 -> Filter2 -> Filter1 -> Filter4
1884@end smallexample
1885
1886Note that the output from @code{Filter3} is passed to the input of
1887@code{Filter2}, and so on.
1888
1889This @code{filter} method is passed a Python iterator. This iterator
1890contains a sequence of frame decorators that wrap each
1891@code{gdb.Frame}, or a frame decorator that wraps another frame
1892decorator. The first filter that is executed in the sequence of frame
1893filters will receive an iterator entirely comprised of default
1894@code{FrameDecorator} objects. However, after each frame filter is
1895executed, the previous frame filter may have wrapped some or all of
1896the frame decorators with their own frame decorator. As frame
1897decorators must also conform to a mandatory interface, these
1898decorators can be assumed to act in a uniform manner (@pxref{Frame
1899Decorator API}).
1900
1901This method must return an object conforming to the Python iterator
1902protocol. Each item in the iterator must be an object conforming to
1903the frame decorator interface. If a frame filter does not wish to
1904perform any operations on this iterator, it should return that
1905iterator untouched.
1906
1907This method is not optional. If it does not exist, @value{GDBN} will
1908raise and print an error.
1909@end defun
1910
1911@defvar FrameFilter.name
1912The @code{name} attribute must be Python string which contains the
1913name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1914Management}). This attribute may contain any combination of letters
1915or numbers. Care should be taken to ensure that it is unique. This
1916attribute is mandatory.
1917@end defvar
1918
1919@defvar FrameFilter.enabled
1920The @code{enabled} attribute must be Python boolean. This attribute
1921indicates to @value{GDBN} whether the frame filter is enabled, and
1922should be considered when frame filters are executed. If
1923@code{enabled} is @code{True}, then the frame filter will be executed
1924when any of the backtrace commands detailed earlier in this chapter
1925are executed. If @code{enabled} is @code{False}, then the frame
1926filter will not be executed. This attribute is mandatory.
1927@end defvar
1928
1929@defvar FrameFilter.priority
1930The @code{priority} attribute must be Python integer. This attribute
1931controls the order of execution in relation to other frame filters.
1932There are no imposed limits on the range of @code{priority} other than
1933it must be a valid integer. The higher the @code{priority} attribute,
1934the sooner the frame filter will be executed in relation to other
1935frame filters. Although @code{priority} can be negative, it is
1936recommended practice to assume zero is the lowest priority that a
1937frame filter can be assigned. Frame filters that have the same
1938priority are executed in unsorted order in that priority slot. This
521b499b 1939attribute is mandatory. 100 is a good default priority.
329baa95
DE
1940@end defvar
1941
1942@node Frame Decorator API
521b499b 1943@subsubsection Decorating Frames
329baa95
DE
1944@cindex frame decorator api
1945
1946Frame decorators are sister objects to frame filters (@pxref{Frame
1947Filter API}). Frame decorators are applied by a frame filter and can
1948only be used in conjunction with frame filters.
1949
1950The purpose of a frame decorator is to customize the printed content
1951of each @code{gdb.Frame} in commands where frame filters are executed.
1952This concept is called decorating a frame. Frame decorators decorate
1953a @code{gdb.Frame} with Python code contained within each API call.
1954This separates the actual data contained in a @code{gdb.Frame} from
1955the decorated data produced by a frame decorator. This abstraction is
1956necessary to maintain integrity of the data contained in each
1957@code{gdb.Frame}.
1958
1959Frame decorators have a mandatory interface, defined below.
1960
1961@value{GDBN} already contains a frame decorator called
1962@code{FrameDecorator}. This contains substantial amounts of
1963boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1964recommended that other frame decorators inherit and extend this
1965object, and only to override the methods needed.
1966
521b499b
TT
1967@tindex gdb.FrameDecorator
1968@code{FrameDecorator} is defined in the Python module
1969@code{gdb.FrameDecorator}, so your code can import it like:
1970@smallexample
1971from gdb.FrameDecorator import FrameDecorator
1972@end smallexample
1973
329baa95
DE
1974@defun FrameDecorator.elided (self)
1975
1976The @code{elided} method groups frames together in a hierarchical
1977system. An example would be an interpreter, where multiple low-level
1978frames make up a single call in the interpreted language. In this
1979example, the frame filter would elide the low-level frames and present
1980a single high-level frame, representing the call in the interpreted
1981language, to the user.
1982
1983The @code{elided} function must return an iterable and this iterable
1984must contain the frames that are being elided wrapped in a suitable
1985frame decorator. If no frames are being elided this function may
1986return an empty iterable, or @code{None}. Elided frames are indented
1987from normal frames in a @code{CLI} backtrace, or in the case of
1988@code{GDB/MI}, are placed in the @code{children} field of the eliding
1989frame.
1990
1991It is the frame filter's task to also filter out the elided frames from
1992the source iterator. This will avoid printing the frame twice.
1993@end defun
1994
1995@defun FrameDecorator.function (self)
1996
1997This method returns the name of the function in the frame that is to
1998be printed.
1999
2000This method must return a Python string describing the function, or
2001@code{None}.
2002
2003If this function returns @code{None}, @value{GDBN} will not print any
2004data for this field.
2005@end defun
2006
2007@defun FrameDecorator.address (self)
2008
2009This method returns the address of the frame that is to be printed.
2010
2011This method must return a Python numeric integer type of sufficient
2012size to describe the address of the frame, or @code{None}.
2013
2014If this function returns a @code{None}, @value{GDBN} will not print
2015any data for this field.
2016@end defun
2017
2018@defun FrameDecorator.filename (self)
2019
2020This method returns the filename and path associated with this frame.
2021
2022This method must return a Python string containing the filename and
2023the path to the object file backing the frame, or @code{None}.
2024
2025If this function returns a @code{None}, @value{GDBN} will not print
2026any data for this field.
2027@end defun
2028
2029@defun FrameDecorator.line (self):
2030
2031This method returns the line number associated with the current
2032position within the function addressed by this frame.
2033
2034This method must return a Python integer type, or @code{None}.
2035
2036If this function returns a @code{None}, @value{GDBN} will not print
2037any data for this field.
2038@end defun
2039
2040@defun FrameDecorator.frame_args (self)
2041@anchor{frame_args}
2042
2043This method must return an iterable, or @code{None}. Returning an
2044empty iterable, or @code{None} means frame arguments will not be
2045printed for this frame. This iterable must contain objects that
2046implement two methods, described here.
2047
6596a5d4 2048This object must implement a @code{symbol} method which takes a
329baa95
DE
2049single @code{self} parameter and must return a @code{gdb.Symbol}
2050(@pxref{Symbols In Python}), or a Python string. The object must also
2051implement a @code{value} method which takes a single @code{self}
2052parameter and must return a @code{gdb.Value} (@pxref{Values From
2053Inferior}), a Python value, or @code{None}. If the @code{value}
2054method returns @code{None}, and the @code{argument} method returns a
2055@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2056the @code{gdb.Symbol} automatically.
2057
2058A brief example:
2059
2060@smallexample
2061class SymValueWrapper():
2062
2063 def __init__(self, symbol, value):
2064 self.sym = symbol
2065 self.val = value
2066
2067 def value(self):
2068 return self.val
2069
2070 def symbol(self):
2071 return self.sym
2072
2073class SomeFrameDecorator()
2074...
2075...
2076 def frame_args(self):
2077 args = []
2078 try:
2079 block = self.inferior_frame.block()
2080 except:
2081 return None
2082
2083 # Iterate over all symbols in a block. Only add
2084 # symbols that are arguments.
2085 for sym in block:
2086 if not sym.is_argument:
2087 continue
2088 args.append(SymValueWrapper(sym,None))
2089
2090 # Add example synthetic argument.
2091 args.append(SymValueWrapper(``foo'', 42))
2092
2093 return args
2094@end smallexample
2095@end defun
2096
2097@defun FrameDecorator.frame_locals (self)
2098
2099This method must return an iterable or @code{None}. Returning an
2100empty iterable, or @code{None} means frame local arguments will not be
2101printed for this frame.
2102
2103The object interface, the description of the various strategies for
2104reading frame locals, and the example are largely similar to those
2105described in the @code{frame_args} function, (@pxref{frame_args,,The
2106frame filter frame_args function}). Below is a modified example:
2107
2108@smallexample
2109class SomeFrameDecorator()
2110...
2111...
2112 def frame_locals(self):
2113 vars = []
2114 try:
2115 block = self.inferior_frame.block()
2116 except:
2117 return None
2118
2119 # Iterate over all symbols in a block. Add all
2120 # symbols, except arguments.
2121 for sym in block:
2122 if sym.is_argument:
2123 continue
2124 vars.append(SymValueWrapper(sym,None))
2125
2126 # Add an example of a synthetic local variable.
2127 vars.append(SymValueWrapper(``bar'', 99))
2128
2129 return vars
2130@end smallexample
2131@end defun
2132
2133@defun FrameDecorator.inferior_frame (self):
2134
2135This method must return the underlying @code{gdb.Frame} that this
2136frame decorator is decorating. @value{GDBN} requires the underlying
2137frame for internal frame information to determine how to print certain
2138values when printing a frame.
2139@end defun
2140
2141@node Writing a Frame Filter
2142@subsubsection Writing a Frame Filter
2143@cindex writing a frame filter
2144
2145There are three basic elements that a frame filter must implement: it
2146must correctly implement the documented interface (@pxref{Frame Filter
2147API}), it must register itself with @value{GDBN}, and finally, it must
2148decide if it is to work on the data provided by @value{GDBN}. In all
2149cases, whether it works on the iterator or not, each frame filter must
2150return an iterator. A bare-bones frame filter follows the pattern in
2151the following example.
2152
2153@smallexample
2154import gdb
2155
2156class FrameFilter():
2157
2158 def __init__(self):
2159 # Frame filter attribute creation.
2160 #
2161 # 'name' is the name of the filter that GDB will display.
2162 #
2163 # 'priority' is the priority of the filter relative to other
2164 # filters.
2165 #
2166 # 'enabled' is a boolean that indicates whether this filter is
2167 # enabled and should be executed.
2168
2169 self.name = "Foo"
2170 self.priority = 100
2171 self.enabled = True
2172
2173 # Register this frame filter with the global frame_filters
2174 # dictionary.
2175 gdb.frame_filters[self.name] = self
2176
2177 def filter(self, frame_iter):
2178 # Just return the iterator.
2179 return frame_iter
2180@end smallexample
2181
2182The frame filter in the example above implements the three
2183requirements for all frame filters. It implements the API, self
2184registers, and makes a decision on the iterator (in this case, it just
2185returns the iterator untouched).
2186
2187The first step is attribute creation and assignment, and as shown in
2188the comments the filter assigns the following attributes: @code{name},
2189@code{priority} and whether the filter should be enabled with the
2190@code{enabled} attribute.
2191
2192The second step is registering the frame filter with the dictionary or
2193dictionaries that the frame filter has interest in. As shown in the
2194comments, this filter just registers itself with the global dictionary
2195@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2196is a dictionary that is initialized in the @code{gdb} module when
2197@value{GDBN} starts. What dictionary a filter registers with is an
2198important consideration. Generally, if a filter is specific to a set
2199of code, it should be registered either in the @code{objfile} or
2200@code{progspace} dictionaries as they are specific to the program
2201currently loaded in @value{GDBN}. The global dictionary is always
2202present in @value{GDBN} and is never unloaded. Any filters registered
2203with the global dictionary will exist until @value{GDBN} exits. To
2204avoid filters that may conflict, it is generally better to register
2205frame filters against the dictionaries that more closely align with
2206the usage of the filter currently in question. @xref{Python
2207Auto-loading}, for further information on auto-loading Python scripts.
2208
2209@value{GDBN} takes a hands-off approach to frame filter registration,
2210therefore it is the frame filter's responsibility to ensure
2211registration has occurred, and that any exceptions are handled
2212appropriately. In particular, you may wish to handle exceptions
2213relating to Python dictionary key uniqueness. It is mandatory that
2214the dictionary key is the same as frame filter's @code{name}
2215attribute. When a user manages frame filters (@pxref{Frame Filter
2216Management}), the names @value{GDBN} will display are those contained
2217in the @code{name} attribute.
2218
2219The final step of this example is the implementation of the
2220@code{filter} method. As shown in the example comments, we define the
2221@code{filter} method and note that the method must take an iterator,
2222and also must return an iterator. In this bare-bones example, the
2223frame filter is not very useful as it just returns the iterator
2224untouched. However this is a valid operation for frame filters that
2225have the @code{enabled} attribute set, but decide not to operate on
2226any frames.
2227
2228In the next example, the frame filter operates on all frames and
2229utilizes a frame decorator to perform some work on the frames.
2230@xref{Frame Decorator API}, for further information on the frame
2231decorator interface.
2232
2233This example works on inlined frames. It highlights frames which are
2234inlined by tagging them with an ``[inlined]'' tag. By applying a
2235frame decorator to all frames with the Python @code{itertools imap}
2236method, the example defers actions to the frame decorator. Frame
2237decorators are only processed when @value{GDBN} prints the backtrace.
2238
2239This introduces a new decision making topic: whether to perform
2240decision making operations at the filtering step, or at the printing
2241step. In this example's approach, it does not perform any filtering
2242decisions at the filtering step beyond mapping a frame decorator to
2243each frame. This allows the actual decision making to be performed
2244when each frame is printed. This is an important consideration, and
2245well worth reflecting upon when designing a frame filter. An issue
2246that frame filters should avoid is unwinding the stack if possible.
2247Some stacks can run very deep, into the tens of thousands in some
2248cases. To search every frame to determine if it is inlined ahead of
2249time may be too expensive at the filtering step. The frame filter
2250cannot know how many frames it has to iterate over, and it would have
2251to iterate through them all. This ends up duplicating effort as
2252@value{GDBN} performs this iteration when it prints the frames.
2253
2254In this example decision making can be deferred to the printing step.
2255As each frame is printed, the frame decorator can examine each frame
2256in turn when @value{GDBN} iterates. From a performance viewpoint,
2257this is the most appropriate decision to make as it avoids duplicating
2258the effort that the printing step would undertake anyway. Also, if
2259there are many frame filters unwinding the stack during filtering, it
2260can substantially delay the printing of the backtrace which will
2261result in large memory usage, and a poor user experience.
2262
2263@smallexample
2264class InlineFilter():
2265
2266 def __init__(self):
2267 self.name = "InlinedFrameFilter"
2268 self.priority = 100
2269 self.enabled = True
2270 gdb.frame_filters[self.name] = self
2271
2272 def filter(self, frame_iter):
2273 frame_iter = itertools.imap(InlinedFrameDecorator,
2274 frame_iter)
2275 return frame_iter
2276@end smallexample
2277
2278This frame filter is somewhat similar to the earlier example, except
2279that the @code{filter} method applies a frame decorator object called
2280@code{InlinedFrameDecorator} to each element in the iterator. The
2281@code{imap} Python method is light-weight. It does not proactively
2282iterate over the iterator, but rather creates a new iterator which
2283wraps the existing one.
2284
2285Below is the frame decorator for this example.
2286
2287@smallexample
2288class InlinedFrameDecorator(FrameDecorator):
2289
2290 def __init__(self, fobj):
2291 super(InlinedFrameDecorator, self).__init__(fobj)
2292
2293 def function(self):
2294 frame = fobj.inferior_frame()
2295 name = str(frame.name())
2296
2297 if frame.type() == gdb.INLINE_FRAME:
2298 name = name + " [inlined]"
2299
2300 return name
2301@end smallexample
2302
2303This frame decorator only defines and overrides the @code{function}
2304method. It lets the supplied @code{FrameDecorator}, which is shipped
2305with @value{GDBN}, perform the other work associated with printing
2306this frame.
2307
2308The combination of these two objects create this output from a
2309backtrace:
2310
2311@smallexample
2312#0 0x004004e0 in bar () at inline.c:11
2313#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2314#2 0x00400566 in main () at inline.c:31
2315@end smallexample
2316
2317So in the case of this example, a frame decorator is applied to all
2318frames, regardless of whether they may be inlined or not. As
2319@value{GDBN} iterates over the iterator produced by the frame filters,
2320@value{GDBN} executes each frame decorator which then makes a decision
2321on what to print in the @code{function} callback. Using a strategy
2322like this is a way to defer decisions on the frame content to printing
2323time.
2324
2325@subheading Eliding Frames
2326
2327It might be that the above example is not desirable for representing
2328inlined frames, and a hierarchical approach may be preferred. If we
2329want to hierarchically represent frames, the @code{elided} frame
2330decorator interface might be preferable.
2331
2332This example approaches the issue with the @code{elided} method. This
2333example is quite long, but very simplistic. It is out-of-scope for
2334this section to write a complete example that comprehensively covers
2335all approaches of finding and printing inlined frames. However, this
2336example illustrates the approach an author might use.
2337
2338This example comprises of three sections.
2339
2340@smallexample
2341class InlineFrameFilter():
2342
2343 def __init__(self):
2344 self.name = "InlinedFrameFilter"
2345 self.priority = 100
2346 self.enabled = True
2347 gdb.frame_filters[self.name] = self
2348
2349 def filter(self, frame_iter):
2350 return ElidingInlineIterator(frame_iter)
2351@end smallexample
2352
2353This frame filter is very similar to the other examples. The only
2354difference is this frame filter is wrapping the iterator provided to
2355it (@code{frame_iter}) with a custom iterator called
2356@code{ElidingInlineIterator}. This again defers actions to when
2357@value{GDBN} prints the backtrace, as the iterator is not traversed
2358until printing.
2359
2360The iterator for this example is as follows. It is in this section of
2361the example where decisions are made on the content of the backtrace.
2362
2363@smallexample
2364class ElidingInlineIterator:
2365 def __init__(self, ii):
2366 self.input_iterator = ii
2367
2368 def __iter__(self):
2369 return self
2370
2371 def next(self):
2372 frame = next(self.input_iterator)
2373
2374 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2375 return frame
2376
2377 try:
2378 eliding_frame = next(self.input_iterator)
2379 except StopIteration:
2380 return frame
2381 return ElidingFrameDecorator(eliding_frame, [frame])
2382@end smallexample
2383
2384This iterator implements the Python iterator protocol. When the
2385@code{next} function is called (when @value{GDBN} prints each frame),
2386the iterator checks if this frame decorator, @code{frame}, is wrapping
2387an inlined frame. If it is not, it returns the existing frame decorator
2388untouched. If it is wrapping an inlined frame, it assumes that the
2389inlined frame was contained within the next oldest frame,
2390@code{eliding_frame}, which it fetches. It then creates and returns a
2391frame decorator, @code{ElidingFrameDecorator}, which contains both the
2392elided frame, and the eliding frame.
2393
2394@smallexample
2395class ElidingInlineDecorator(FrameDecorator):
2396
2397 def __init__(self, frame, elided_frames):
2398 super(ElidingInlineDecorator, self).__init__(frame)
2399 self.frame = frame
2400 self.elided_frames = elided_frames
2401
2402 def elided(self):
2403 return iter(self.elided_frames)
2404@end smallexample
2405
2406This frame decorator overrides one function and returns the inlined
2407frame in the @code{elided} method. As before it lets
2408@code{FrameDecorator} do the rest of the work involved in printing
2409this frame. This produces the following output.
2410
2411@smallexample
2412#0 0x004004e0 in bar () at inline.c:11
2413#2 0x00400529 in main () at inline.c:25
2414 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2415@end smallexample
2416
2417In that output, @code{max} which has been inlined into @code{main} is
2418printed hierarchically. Another approach would be to combine the
2419@code{function} method, and the @code{elided} method to both print a
2420marker in the inlined frame, and also show the hierarchical
2421relationship.
2422
d11916aa
SS
2423@node Unwinding Frames in Python
2424@subsubsection Unwinding Frames in Python
2425@cindex unwinding frames in Python
2426
2427In @value{GDBN} terminology ``unwinding'' is the process of finding
2428the previous frame (that is, caller's) from the current one. An
2429unwinder has three methods. The first one checks if it can handle
2430given frame (``sniff'' it). For the frames it can sniff an unwinder
2431provides two additional methods: it can return frame's ID, and it can
2432fetch registers from the previous frame. A running @value{GDBN}
2433mantains a list of the unwinders and calls each unwinder's sniffer in
2434turn until it finds the one that recognizes the current frame. There
2435is an API to register an unwinder.
2436
2437The unwinders that come with @value{GDBN} handle standard frames.
2438However, mixed language applications (for example, an application
2439running Java Virtual Machine) sometimes use frame layouts that cannot
2440be handled by the @value{GDBN} unwinders. You can write Python code
2441that can handle such custom frames.
2442
2443You implement a frame unwinder in Python as a class with which has two
2444attributes, @code{name} and @code{enabled}, with obvious meanings, and
2445a single method @code{__call__}, which examines a given frame and
2446returns an object (an instance of @code{gdb.UnwindInfo class)}
2447describing it. If an unwinder does not recognize a frame, it should
2448return @code{None}. The code in @value{GDBN} that enables writing
2449unwinders in Python uses this object to return frame's ID and previous
2450frame registers when @value{GDBN} core asks for them.
2451
e7b5068c
TT
2452An unwinder should do as little work as possible. Some otherwise
2453innocuous operations can cause problems (even crashes, as this code is
2454not not well-hardened yet). For example, making an inferior call from
2455an unwinder is unadvisable, as an inferior call will reset
2456@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2457unwinding.
2458
d11916aa
SS
2459@subheading Unwinder Input
2460
2461An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2462provides a method to read frame's registers:
2463
2464@defun PendingFrame.read_register (reg)
e7b5068c 2465This method returns the contents of the register @var{reg} in the
43d5901d
AB
2466frame as a @code{gdb.Value} object. For a description of the
2467acceptable values of @var{reg} see
2468@ref{gdbpy_frame_read_register,,Frame.read_register}. If @var{reg}
2469does not name a register for the current architecture, this method
2470will throw an exception.
e7b5068c
TT
2471
2472Note that this method will always return a @code{gdb.Value} for a
2473valid register name. This does not mean that the value will be valid.
2474For example, you may request a register that an earlier unwinder could
2475not unwind---the value will be unavailable. Instead, the
2476@code{gdb.Value} returned from this method will be lazy; that is, its
2477underlying bits will not be fetched until it is first used. So,
2478attempting to use such a value will cause an exception at the point of
2479use.
2480
2481The type of the returned @code{gdb.Value} depends on the register and
2482the architecture. It is common for registers to have a scalar type,
2483like @code{long long}; but many other types are possible, such as
2484pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2485@end defun
2486
2487It also provides a factory method to create a @code{gdb.UnwindInfo}
2488instance to be returned to @value{GDBN}:
2489
2490@defun PendingFrame.create_unwind_info (frame_id)
2491Returns a new @code{gdb.UnwindInfo} instance identified by given
2492@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2493using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2494determine which function will be used, as follows:
2495
2496@table @code
d11916aa 2497@item sp, pc
e7b5068c
TT
2498The frame is identified by the given stack address and PC. The stack
2499address must be chosen so that it is constant throughout the lifetime
2500of the frame, so a typical choice is the value of the stack pointer at
2501the start of the function---in the DWARF standard, this would be the
2502``Call Frame Address''.
d11916aa 2503
e7b5068c
TT
2504This is the most common case by far. The other cases are documented
2505for completeness but are only useful in specialized situations.
2506
2507@item sp, pc, special
2508The frame is identified by the stack address, the PC, and a
2509``special'' address. The special address is used on architectures
2510that can have frames that do not change the stack, but which are still
2511distinct, for example the IA-64, which has a second stack for
2512registers. Both @var{sp} and @var{special} must be constant
2513throughout the lifetime of the frame.
d11916aa
SS
2514
2515@item sp
e7b5068c
TT
2516The frame is identified by the stack address only. Any other stack
2517frame with a matching @var{sp} will be considered to match this frame.
2518Inside gdb, this is called a ``wild frame''. You will never need
2519this.
d11916aa 2520@end table
e7b5068c
TT
2521
2522Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2523
2524@end defun
2525
87dbc774
AB
2526@defun PendingFrame.architecture ()
2527Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2528for this @code{gdb.PendingFrame}. This represents the architecture of
2529the particular frame being unwound.
2530@end defun
2531
d11916aa
SS
2532@subheading Unwinder Output: UnwindInfo
2533
2534Use @code{PendingFrame.create_unwind_info} method described above to
2535create a @code{gdb.UnwindInfo} instance. Use the following method to
2536specify caller registers that have been saved in this frame:
2537
2538@defun gdb.UnwindInfo.add_saved_register (reg, value)
43d5901d
AB
2539@var{reg} identifies the register, for a description of the acceptable
2540values see @ref{gdbpy_frame_read_register,,Frame.read_register}.
d11916aa
SS
2541@var{value} is a register value (a @code{gdb.Value} object).
2542@end defun
2543
2544@subheading Unwinder Skeleton Code
2545
2546@value{GDBN} comes with the module containing the base @code{Unwinder}
2547class. Derive your unwinder class from it and structure the code as
2548follows:
2549
2550@smallexample
2551from gdb.unwinders import Unwinder
2552
2553class FrameId(object):
2554 def __init__(self, sp, pc):
2555 self.sp = sp
2556 self.pc = pc
2557
2558
2559class MyUnwinder(Unwinder):
2560 def __init__(....):
6b92c0d3 2561 super(MyUnwinder, self).__init___(<expects unwinder name argument>)
d11916aa
SS
2562
2563 def __call__(pending_frame):
2564 if not <we recognize frame>:
2565 return None
2566 # Create UnwindInfo. Usually the frame is identified by the stack
2567 # pointer and the program counter.
2568 sp = pending_frame.read_register(<SP number>)
2569 pc = pending_frame.read_register(<PC number>)
2570 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2571
2572 # Find the values of the registers in the caller's frame and
2573 # save them in the result:
2574 unwind_info.add_saved_register(<register>, <value>)
2575 ....
2576
2577 # Return the result:
2578 return unwind_info
2579
2580@end smallexample
2581
2582@subheading Registering a Unwinder
2583
2584An object file, a program space, and the @value{GDBN} proper can have
2585unwinders registered with it.
2586
2587The @code{gdb.unwinders} module provides the function to register a
2588unwinder:
2589
2590@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2591@var{locus} is specifies an object file or a program space to which
2592@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2593@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2594added @var{unwinder} will be called before any other unwinder from the
2595same locus. Two unwinders in the same locus cannot have the same
2596name. An attempt to add a unwinder with already existing name raises
2597an exception unless @var{replace} is @code{True}, in which case the
2598old unwinder is deleted.
2599@end defun
2600
2601@subheading Unwinder Precedence
2602
2603@value{GDBN} first calls the unwinders from all the object files in no
2604particular order, then the unwinders from the current program space,
2605and finally the unwinders from @value{GDBN}.
2606
0c6e92a5
SC
2607@node Xmethods In Python
2608@subsubsection Xmethods In Python
2609@cindex xmethods in Python
2610
2611@dfn{Xmethods} are additional methods or replacements for existing
2612methods of a C@t{++} class. This feature is useful for those cases
2613where a method defined in C@t{++} source code could be inlined or
2614optimized out by the compiler, making it unavailable to @value{GDBN}.
2615For such cases, one can define an xmethod to serve as a replacement
2616for the method defined in the C@t{++} source code. @value{GDBN} will
2617then invoke the xmethod, instead of the C@t{++} method, to
2618evaluate expressions. One can also use xmethods when debugging
2619with core files. Moreover, when debugging live programs, invoking an
2620xmethod need not involve running the inferior (which can potentially
2621perturb its state). Hence, even if the C@t{++} method is available, it
2622is better to use its replacement xmethod if one is defined.
2623
2624The xmethods feature in Python is available via the concepts of an
2625@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2626implement an xmethod, one has to implement a matcher and a
2627corresponding worker for it (more than one worker can be
2628implemented, each catering to a different overloaded instance of the
2629method). Internally, @value{GDBN} invokes the @code{match} method of a
2630matcher to match the class type and method name. On a match, the
2631@code{match} method returns a list of matching @emph{worker} objects.
2632Each worker object typically corresponds to an overloaded instance of
2633the xmethod. They implement a @code{get_arg_types} method which
2634returns a sequence of types corresponding to the arguments the xmethod
2635requires. @value{GDBN} uses this sequence of types to perform
2636overload resolution and picks a winning xmethod worker. A winner
2637is also selected from among the methods @value{GDBN} finds in the
2638C@t{++} source code. Next, the winning xmethod worker and the
2639winning C@t{++} method are compared to select an overall winner. In
2640case of a tie between a xmethod worker and a C@t{++} method, the
2641xmethod worker is selected as the winner. That is, if a winning
2642xmethod worker is found to be equivalent to the winning C@t{++}
2643method, then the xmethod worker is treated as a replacement for
2644the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2645method. If the winning xmethod worker is the overall winner, then
897c3d32 2646the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2647of the worker object.
2648
2649If one wants to implement an xmethod as a replacement for an
2650existing C@t{++} method, then they have to implement an equivalent
2651xmethod which has exactly the same name and takes arguments of
2652exactly the same type as the C@t{++} method. If the user wants to
2653invoke the C@t{++} method even though a replacement xmethod is
2654available for that method, then they can disable the xmethod.
2655
2656@xref{Xmethod API}, for API to implement xmethods in Python.
2657@xref{Writing an Xmethod}, for implementing xmethods in Python.
2658
2659@node Xmethod API
2660@subsubsection Xmethod API
2661@cindex xmethod API
2662
2663The @value{GDBN} Python API provides classes, interfaces and functions
2664to implement, register and manipulate xmethods.
2665@xref{Xmethods In Python}.
2666
2667An xmethod matcher should be an instance of a class derived from
2668@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2669object with similar interface and attributes. An instance of
2670@code{XMethodMatcher} has the following attributes:
2671
2672@defvar name
2673The name of the matcher.
2674@end defvar
2675
2676@defvar enabled
2677A boolean value indicating whether the matcher is enabled or disabled.
2678@end defvar
2679
2680@defvar methods
2681A list of named methods managed by the matcher. Each object in the list
2682is an instance of the class @code{XMethod} defined in the module
2683@code{gdb.xmethod}, or any object with the following attributes:
2684
2685@table @code
2686
2687@item name
2688Name of the xmethod which should be unique for each xmethod
2689managed by the matcher.
2690
2691@item enabled
2692A boolean value indicating whether the xmethod is enabled or
2693disabled.
2694
2695@end table
2696
2697The class @code{XMethod} is a convenience class with same
2698attributes as above along with the following constructor:
2699
dd5d5494 2700@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2701Constructs an enabled xmethod with name @var{name}.
2702@end defun
2703@end defvar
2704
2705@noindent
2706The @code{XMethodMatcher} class has the following methods:
2707
dd5d5494 2708@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2709Constructs an enabled xmethod matcher with name @var{name}. The
2710@code{methods} attribute is initialized to @code{None}.
2711@end defun
2712
dd5d5494 2713@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2714Derived classes should override this method. It should return a
2715xmethod worker object (or a sequence of xmethod worker
2716objects) matching the @var{class_type} and @var{method_name}.
2717@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2718is a string value. If the matcher manages named methods as listed in
2719its @code{methods} attribute, then only those worker objects whose
2720corresponding entries in the @code{methods} list are enabled should be
2721returned.
2722@end defun
2723
2724An xmethod worker should be an instance of a class derived from
2725@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2726or support the following interface:
2727
dd5d5494 2728@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2729This method returns a sequence of @code{gdb.Type} objects corresponding
2730to the arguments that the xmethod takes. It can return an empty
2731sequence or @code{None} if the xmethod does not take any arguments.
2732If the xmethod takes a single argument, then a single
2733@code{gdb.Type} object corresponding to it can be returned.
2734@end defun
2735
2ce1cdbf
DE
2736@defun XMethodWorker.get_result_type (self, *args)
2737This method returns a @code{gdb.Type} object representing the type
2738of the result of invoking this xmethod.
2739The @var{args} argument is the same tuple of arguments that would be
2740passed to the @code{__call__} method of this worker.
2741@end defun
2742
dd5d5494 2743@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2744This is the method which does the @emph{work} of the xmethod. The
2745@var{args} arguments is the tuple of arguments to the xmethod. Each
2746element in this tuple is a gdb.Value object. The first element is
2747always the @code{this} pointer value.
2748@end defun
2749
2750For @value{GDBN} to lookup xmethods, the xmethod matchers
2751should be registered using the following function defined in the module
2752@code{gdb.xmethod}:
2753
dd5d5494 2754@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2755The @code{matcher} is registered with @code{locus}, replacing an
2756existing matcher with the same name as @code{matcher} if
2757@code{replace} is @code{True}. @code{locus} can be a
2758@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2759@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2760@code{None}. If it is @code{None}, then @code{matcher} is registered
2761globally.
2762@end defun
2763
2764@node Writing an Xmethod
2765@subsubsection Writing an Xmethod
2766@cindex writing xmethods in Python
2767
2768Implementing xmethods in Python will require implementing xmethod
2769matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2770the following C@t{++} class:
2771
2772@smallexample
2773class MyClass
2774@{
2775public:
2776 MyClass (int a) : a_(a) @{ @}
2777
2778 int geta (void) @{ return a_; @}
2779 int operator+ (int b);
2780
2781private:
2782 int a_;
2783@};
2784
2785int
2786MyClass::operator+ (int b)
2787@{
2788 return a_ + b;
2789@}
2790@end smallexample
2791
2792@noindent
2793Let us define two xmethods for the class @code{MyClass}, one
2794replacing the method @code{geta}, and another adding an overloaded
2795flavor of @code{operator+} which takes a @code{MyClass} argument (the
2796C@t{++} code above already has an overloaded @code{operator+}
2797which takes an @code{int} argument). The xmethod matcher can be
2798defined as follows:
2799
2800@smallexample
2801class MyClass_geta(gdb.xmethod.XMethod):
2802 def __init__(self):
2803 gdb.xmethod.XMethod.__init__(self, 'geta')
2804
2805 def get_worker(self, method_name):
2806 if method_name == 'geta':
2807 return MyClassWorker_geta()
2808
2809
2810class MyClass_sum(gdb.xmethod.XMethod):
2811 def __init__(self):
2812 gdb.xmethod.XMethod.__init__(self, 'sum')
2813
2814 def get_worker(self, method_name):
2815 if method_name == 'operator+':
2816 return MyClassWorker_plus()
2817
2818
2819class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2820 def __init__(self):
2821 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2822 # List of methods 'managed' by this matcher
2823 self.methods = [MyClass_geta(), MyClass_sum()]
2824
2825 def match(self, class_type, method_name):
2826 if class_type.tag != 'MyClass':
2827 return None
2828 workers = []
2829 for method in self.methods:
2830 if method.enabled:
2831 worker = method.get_worker(method_name)
2832 if worker:
2833 workers.append(worker)
2834
2835 return workers
2836@end smallexample
2837
2838@noindent
2839Notice that the @code{match} method of @code{MyClassMatcher} returns
2840a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2841method, and a worker object of type @code{MyClassWorker_plus} for the
2842@code{operator+} method. This is done indirectly via helper classes
2843derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2844@code{methods} attribute in a matcher as it is optional. However, if a
2845matcher manages more than one xmethod, it is a good practice to list the
2846xmethods in the @code{methods} attribute of the matcher. This will then
2847facilitate enabling and disabling individual xmethods via the
2848@code{enable/disable} commands. Notice also that a worker object is
2849returned only if the corresponding entry in the @code{methods} attribute
2850of the matcher is enabled.
2851
2852The implementation of the worker classes returned by the matcher setup
2853above is as follows:
2854
2855@smallexample
2856class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2857 def get_arg_types(self):
2858 return None
2ce1cdbf
DE
2859
2860 def get_result_type(self, obj):
2861 return gdb.lookup_type('int')
0c6e92a5
SC
2862
2863 def __call__(self, obj):
2864 return obj['a_']
2865
2866
2867class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2868 def get_arg_types(self):
2869 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2870
2871 def get_result_type(self, obj):
2872 return gdb.lookup_type('int')
0c6e92a5
SC
2873
2874 def __call__(self, obj, other):
2875 return obj['a_'] + other['a_']
2876@end smallexample
2877
2878For @value{GDBN} to actually lookup a xmethod, it has to be
2879registered with it. The matcher defined above is registered with
2880@value{GDBN} globally as follows:
2881
2882@smallexample
2883gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2884@end smallexample
2885
2886If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2887code as follows:
2888
2889@smallexample
2890MyClass obj(5);
2891@end smallexample
2892
2893@noindent
2894then, after loading the Python script defining the xmethod matchers
2895and workers into @code{GDBN}, invoking the method @code{geta} or using
2896the operator @code{+} on @code{obj} will invoke the xmethods
2897defined above:
2898
2899@smallexample
2900(gdb) p obj.geta()
2901$1 = 5
2902
2903(gdb) p obj + obj
2904$2 = 10
2905@end smallexample
2906
2907Consider another example with a C++ template class:
2908
2909@smallexample
2910template <class T>
2911class MyTemplate
2912@{
2913public:
2914 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2915 ~MyTemplate () @{ delete [] data_; @}
2916
2917 int footprint (void)
2918 @{
2919 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2920 @}
2921
2922private:
2923 int dsize_;
2924 T *data_;
2925@};
2926@end smallexample
2927
2928Let us implement an xmethod for the above class which serves as a
2929replacement for the @code{footprint} method. The full code listing
2930of the xmethod workers and xmethod matchers is as follows:
2931
2932@smallexample
2933class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2934 def __init__(self, class_type):
2935 self.class_type = class_type
2ce1cdbf 2936
0c6e92a5
SC
2937 def get_arg_types(self):
2938 return None
2ce1cdbf
DE
2939
2940 def get_result_type(self):
2941 return gdb.lookup_type('int')
2942
0c6e92a5
SC
2943 def __call__(self, obj):
2944 return (self.class_type.sizeof +
2945 obj['dsize_'] *
2946 self.class_type.template_argument(0).sizeof)
2947
2948
2949class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2950 def __init__(self):
2951 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2952
2953 def match(self, class_type, method_name):
2954 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2955 class_type.tag) and
2956 method_name == 'footprint'):
2957 return MyTemplateWorker_footprint(class_type)
2958@end smallexample
2959
2960Notice that, in this example, we have not used the @code{methods}
2961attribute of the matcher as the matcher manages only one xmethod. The
2962user can enable/disable this xmethod by enabling/disabling the matcher
2963itself.
2964
329baa95
DE
2965@node Inferiors In Python
2966@subsubsection Inferiors In Python
2967@cindex inferiors in Python
2968
2969@findex gdb.Inferior
2970Programs which are being run under @value{GDBN} are called inferiors
65c574f6 2971(@pxref{Inferiors Connections and Programs}). Python scripts can access
329baa95
DE
2972information about and manipulate inferiors controlled by @value{GDBN}
2973via objects of the @code{gdb.Inferior} class.
2974
2975The following inferior-related functions are available in the @code{gdb}
2976module:
2977
2978@defun gdb.inferiors ()
2979Return a tuple containing all inferior objects.
2980@end defun
2981
2982@defun gdb.selected_inferior ()
2983Return an object representing the current inferior.
2984@end defun
2985
2986A @code{gdb.Inferior} object has the following attributes:
2987
2988@defvar Inferior.num
2989ID of inferior, as assigned by GDB.
2990@end defvar
2991
2992@defvar Inferior.pid
2993Process ID of the inferior, as assigned by the underlying operating
2994system.
2995@end defvar
2996
2997@defvar Inferior.was_attached
2998Boolean signaling whether the inferior was created using `attach', or
2999started by @value{GDBN} itself.
3000@end defvar
3001
a40bf0c2
SM
3002@defvar Inferior.progspace
3003The inferior's program space. @xref{Progspaces In Python}.
3004@end defvar
3005
329baa95
DE
3006A @code{gdb.Inferior} object has the following methods:
3007
3008@defun Inferior.is_valid ()
3009Returns @code{True} if the @code{gdb.Inferior} object is valid,
3010@code{False} if not. A @code{gdb.Inferior} object will become invalid
3011if the inferior no longer exists within @value{GDBN}. All other
3012@code{gdb.Inferior} methods will throw an exception if it is invalid
3013at the time the method is called.
3014@end defun
3015
3016@defun Inferior.threads ()
3017This method returns a tuple holding all the threads which are valid
3018when it is called. If there are no valid threads, the method will
3019return an empty tuple.
3020@end defun
3021
add5ded5
TT
3022@defun Inferior.architecture ()
3023Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
3024for this inferior. This represents the architecture of the inferior
3025as a whole. Some platforms can have multiple architectures in a
3026single address space, so this may not match the architecture of a
163cffef 3027particular frame (@pxref{Frames In Python}).
9e1698c6 3028@end defun
add5ded5 3029
329baa95
DE
3030@findex Inferior.read_memory
3031@defun Inferior.read_memory (address, length)
a86c90e6 3032Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
3033@var{address}. Returns a buffer object, which behaves much like an array
3034or a string. It can be modified and given to the
79778b30 3035@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
3036value is a @code{memoryview} object.
3037@end defun
3038
3039@findex Inferior.write_memory
3040@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
3041Write the contents of @var{buffer} to the inferior, starting at
3042@var{address}. The @var{buffer} parameter must be a Python object
3043which supports the buffer protocol, i.e., a string, an array or the
3044object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
3045determines the number of addressable memory units from @var{buffer} to be
3046written.
329baa95
DE
3047@end defun
3048
3049@findex gdb.search_memory
3050@defun Inferior.search_memory (address, length, pattern)
3051Search a region of the inferior memory starting at @var{address} with
3052the given @var{length} using the search pattern supplied in
3053@var{pattern}. The @var{pattern} parameter must be a Python object
3054which supports the buffer protocol, i.e., a string, an array or the
3055object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3056containing the address where the pattern was found, or @code{None} if
3057the pattern could not be found.
3058@end defun
3059
2b0c8b01 3060@findex Inferior.thread_from_handle
da2c323b 3061@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3062@defun Inferior.thread_from_handle (handle)
3063Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3064library specific data structure such as @code{pthread_t} for pthreads
3065library implementations.
2b0c8b01
KB
3066
3067The function @code{Inferior.thread_from_thread_handle} provides
3068the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3069is deprecated.
da2c323b
KB
3070@end defun
3071
329baa95
DE
3072@node Events In Python
3073@subsubsection Events In Python
3074@cindex inferior events in Python
3075
3076@value{GDBN} provides a general event facility so that Python code can be
3077notified of various state changes, particularly changes that occur in
3078the inferior.
3079
3080An @dfn{event} is just an object that describes some state change. The
3081type of the object and its attributes will vary depending on the details
3082of the change. All the existing events are described below.
3083
3084In order to be notified of an event, you must register an event handler
3085with an @dfn{event registry}. An event registry is an object in the
3086@code{gdb.events} module which dispatches particular events. A registry
3087provides methods to register and unregister event handlers:
3088
3089@defun EventRegistry.connect (object)
3090Add the given callable @var{object} to the registry. This object will be
3091called when an event corresponding to this registry occurs.
3092@end defun
3093
3094@defun EventRegistry.disconnect (object)
3095Remove the given @var{object} from the registry. Once removed, the object
3096will no longer receive notifications of events.
3097@end defun
3098
3099Here is an example:
3100
3101@smallexample
3102def exit_handler (event):
f3bdc2db
MB
3103 print ("event type: exit")
3104 print ("exit code: %d" % (event.exit_code))
329baa95
DE
3105
3106gdb.events.exited.connect (exit_handler)
3107@end smallexample
3108
3109In the above example we connect our handler @code{exit_handler} to the
3110registry @code{events.exited}. Once connected, @code{exit_handler} gets
3111called when the inferior exits. The argument @dfn{event} in this example is
3112of type @code{gdb.ExitedEvent}. As you can see in the example the
3113@code{ExitedEvent} object has an attribute which indicates the exit code of
3114the inferior.
3115
3116The following is a listing of the event registries that are available and
3117details of the events they emit:
3118
3119@table @code
3120
3121@item events.cont
3122Emits @code{gdb.ThreadEvent}.
3123
3124Some events can be thread specific when @value{GDBN} is running in non-stop
3125mode. When represented in Python, these events all extend
3126@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3127events which are emitted by this or other modules might extend this event.
3128Examples of these events are @code{gdb.BreakpointEvent} and
3129@code{gdb.ContinueEvent}.
3130
3131@defvar ThreadEvent.inferior_thread
3132In non-stop mode this attribute will be set to the specific thread which was
3133involved in the emitted event. Otherwise, it will be set to @code{None}.
3134@end defvar
3135
3136Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3137
3138This event indicates that the inferior has been continued after a stop. For
3139inherited attribute refer to @code{gdb.ThreadEvent} above.
3140
3141@item events.exited
3142Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3143@code{events.ExitedEvent} has two attributes:
3144@defvar ExitedEvent.exit_code
3145An integer representing the exit code, if available, which the inferior
3146has returned. (The exit code could be unavailable if, for example,
3147@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3148the attribute does not exist.
3149@end defvar
373832b6 3150@defvar ExitedEvent.inferior
329baa95
DE
3151A reference to the inferior which triggered the @code{exited} event.
3152@end defvar
3153
3154@item events.stop
3155Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3156
3157Indicates that the inferior has stopped. All events emitted by this registry
3158extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3159will indicate the stopped thread when @value{GDBN} is running in non-stop
3160mode. Refer to @code{gdb.ThreadEvent} above for more details.
3161
3162Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3163
3164This event indicates that the inferior or one of its threads has received as
3165signal. @code{gdb.SignalEvent} has the following attributes:
3166
3167@defvar SignalEvent.stop_signal
3168A string representing the signal received by the inferior. A list of possible
3169signal values can be obtained by running the command @code{info signals} in
3170the @value{GDBN} command prompt.
3171@end defvar
3172
3173Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3174
3175@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3176been hit, and has the following attributes:
3177
3178@defvar BreakpointEvent.breakpoints
3179A sequence containing references to all the breakpoints (type
3180@code{gdb.Breakpoint}) that were hit.
3181@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3182@end defvar
3183@defvar BreakpointEvent.breakpoint
3184A reference to the first breakpoint that was hit.
3185This function is maintained for backward compatibility and is now deprecated
3186in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3187@end defvar
3188
3189@item events.new_objfile
3190Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3191been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3192
3193@defvar NewObjFileEvent.new_objfile
3194A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3195@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3196@end defvar
3197
4ffbba72
DE
3198@item events.clear_objfiles
3199Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3200files for a program space has been reset.
3201@code{gdb.ClearObjFilesEvent} has one attribute:
3202
3203@defvar ClearObjFilesEvent.progspace
3204A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3205been cleared. @xref{Progspaces In Python}.
3206@end defvar
3207
fb5af5e3
TT
3208@item events.inferior_call
3209Emits events just before and after a function in the inferior is
3210called by @value{GDBN}. Before an inferior call, this emits an event
3211of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3212this emits an event of type @code{gdb.InferiorCallPostEvent}.
3213
3214@table @code
3215@tindex gdb.InferiorCallPreEvent
3216@item @code{gdb.InferiorCallPreEvent}
3217Indicates that a function in the inferior is about to be called.
162078c8
NB
3218
3219@defvar InferiorCallPreEvent.ptid
3220The thread in which the call will be run.
3221@end defvar
3222
3223@defvar InferiorCallPreEvent.address
3224The location of the function to be called.
3225@end defvar
3226
fb5af5e3
TT
3227@tindex gdb.InferiorCallPostEvent
3228@item @code{gdb.InferiorCallPostEvent}
3229Indicates that a function in the inferior has just been called.
162078c8
NB
3230
3231@defvar InferiorCallPostEvent.ptid
3232The thread in which the call was run.
3233@end defvar
3234
3235@defvar InferiorCallPostEvent.address
3236The location of the function that was called.
3237@end defvar
fb5af5e3 3238@end table
162078c8
NB
3239
3240@item events.memory_changed
3241Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3242inferior has been modified by the @value{GDBN} user, for instance via a
3243command like @w{@code{set *addr = value}}. The event has the following
3244attributes:
3245
3246@defvar MemoryChangedEvent.address
3247The start address of the changed region.
3248@end defvar
3249
3250@defvar MemoryChangedEvent.length
3251Length in bytes of the changed region.
3252@end defvar
3253
3254@item events.register_changed
3255Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3256inferior has been modified by the @value{GDBN} user.
3257
3258@defvar RegisterChangedEvent.frame
3259A gdb.Frame object representing the frame in which the register was modified.
3260@end defvar
3261@defvar RegisterChangedEvent.regnum
3262Denotes which register was modified.
3263@end defvar
3264
dac790e1
TT
3265@item events.breakpoint_created
3266This is emitted when a new breakpoint has been created. The argument
3267that is passed is the new @code{gdb.Breakpoint} object.
3268
3269@item events.breakpoint_modified
3270This is emitted when a breakpoint has been modified in some way. The
3271argument that is passed is the new @code{gdb.Breakpoint} object.
3272
3273@item events.breakpoint_deleted
3274This is emitted when a breakpoint has been deleted. The argument that
3275is passed is the @code{gdb.Breakpoint} object. When this event is
3276emitted, the @code{gdb.Breakpoint} object will already be in its
3277invalid state; that is, the @code{is_valid} method will return
3278@code{False}.
3279
3f77c769
TT
3280@item events.before_prompt
3281This event carries no payload. It is emitted each time @value{GDBN}
3282presents a prompt to the user.
3283
7c96f8c1
TT
3284@item events.new_inferior
3285This is emitted when a new inferior is created. Note that the
3286inferior is not necessarily running; in fact, it may not even have an
3287associated executable.
3288
3289The event is of type @code{gdb.NewInferiorEvent}. This has a single
3290attribute:
3291
3292@defvar NewInferiorEvent.inferior
3293The new inferior, a @code{gdb.Inferior} object.
3294@end defvar
3295
3296@item events.inferior_deleted
3297This is emitted when an inferior has been deleted. Note that this is
3298not the same as process exit; it is notified when the inferior itself
3299is removed, say via @code{remove-inferiors}.
3300
3301The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3302attribute:
3303
3304@defvar NewInferiorEvent.inferior
3305The inferior that is being removed, a @code{gdb.Inferior} object.
3306@end defvar
3307
3308@item events.new_thread
3309This is emitted when @value{GDBN} notices a new thread. The event is of
3310type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3311This has a single attribute:
3312
3313@defvar NewThreadEvent.inferior_thread
3314The new thread.
3315@end defvar
3316
329baa95
DE
3317@end table
3318
3319@node Threads In Python
3320@subsubsection Threads In Python
3321@cindex threads in python
3322
3323@findex gdb.InferiorThread
3324Python scripts can access information about, and manipulate inferior threads
3325controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3326
3327The following thread-related functions are available in the @code{gdb}
3328module:
3329
3330@findex gdb.selected_thread
3331@defun gdb.selected_thread ()
3332This function returns the thread object for the selected thread. If there
3333is no selected thread, this will return @code{None}.
3334@end defun
3335
14796d29 3336To get the list of threads for an inferior, use the @code{Inferior.threads()}
0ca4866a 3337method. @xref{Inferiors In Python}.
14796d29 3338
329baa95
DE
3339A @code{gdb.InferiorThread} object has the following attributes:
3340
3341@defvar InferiorThread.name
3342The name of the thread. If the user specified a name using
3343@code{thread name}, then this returns that name. Otherwise, if an
3344OS-supplied name is available, then it is returned. Otherwise, this
3345returns @code{None}.
3346
3347This attribute can be assigned to. The new value must be a string
3348object, which sets the new name, or @code{None}, which removes any
3349user-specified thread name.
3350@end defvar
3351
3352@defvar InferiorThread.num
5d5658a1 3353The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3354@end defvar
3355
22a02324
PA
3356@defvar InferiorThread.global_num
3357The global ID of the thread, as assigned by GDB. You can use this to
3358make Python breakpoints thread-specific, for example
3359(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3360@end defvar
3361
329baa95
DE
3362@defvar InferiorThread.ptid
3363ID of the thread, as assigned by the operating system. This attribute is a
3364tuple containing three integers. The first is the Process ID (PID); the second
3365is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3366Either the LWPID or TID may be 0, which indicates that the operating system
3367does not use that identifier.
3368@end defvar
3369
84654457
PA
3370@defvar InferiorThread.inferior
3371The inferior this thread belongs to. This attribute is represented as
3372a @code{gdb.Inferior} object. This attribute is not writable.
3373@end defvar
3374
329baa95
DE
3375A @code{gdb.InferiorThread} object has the following methods:
3376
3377@defun InferiorThread.is_valid ()
3378Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3379@code{False} if not. A @code{gdb.InferiorThread} object will become
3380invalid if the thread exits, or the inferior that the thread belongs
3381is deleted. All other @code{gdb.InferiorThread} methods will throw an
3382exception if it is invalid at the time the method is called.
3383@end defun
3384
3385@defun InferiorThread.switch ()
3386This changes @value{GDBN}'s currently selected thread to the one represented
3387by this object.
3388@end defun
3389
3390@defun InferiorThread.is_stopped ()
3391Return a Boolean indicating whether the thread is stopped.
3392@end defun
3393
3394@defun InferiorThread.is_running ()
3395Return a Boolean indicating whether the thread is running.
3396@end defun
3397
3398@defun InferiorThread.is_exited ()
3399Return a Boolean indicating whether the thread is exited.
3400@end defun
3401
c369f8f0
KB
3402@defun InferiorThread.handle ()
3403Return the thread object's handle, represented as a Python @code{bytes}
3404object. A @code{gdb.Value} representation of the handle may be
3405constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3406the Python @code{bytes} representation of the handle and @var{type} is
3407a @code{gdb.Type} for the handle type.
3408@end defun
3409
0a0faf9f
TW
3410@node Recordings In Python
3411@subsubsection Recordings In Python
3412@cindex recordings in python
3413
3414The following recordings-related functions
3415(@pxref{Process Record and Replay}) are available in the @code{gdb}
3416module:
3417
3418@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3419Start a recording using the given @var{method} and @var{format}. If
3420no @var{format} is given, the default format for the recording method
3421is used. If no @var{method} is given, the default method will be used.
3422Returns a @code{gdb.Record} object on success. Throw an exception on
3423failure.
3424
3425The following strings can be passed as @var{method}:
3426
3427@itemize @bullet
3428@item
3429@code{"full"}
3430@item
3431@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3432@code{"bts"} or leave out for default format.
3433@end itemize
3434@end defun
3435
3436@defun gdb.current_recording ()
3437Access a currently running recording. Return a @code{gdb.Record}
3438object on success. Return @code{None} if no recording is currently
3439active.
3440@end defun
3441
3442@defun gdb.stop_recording ()
3443Stop the current recording. Throw an exception if no recording is
3444currently active. All record objects become invalid after this call.
3445@end defun
3446
3447A @code{gdb.Record} object has the following attributes:
3448
0a0faf9f
TW
3449@defvar Record.method
3450A string with the current recording method, e.g.@: @code{full} or
3451@code{btrace}.
3452@end defvar
3453
3454@defvar Record.format
3455A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3456@code{None}.
3457@end defvar
3458
3459@defvar Record.begin
3460A method specific instruction object representing the first instruction
3461in this recording.
3462@end defvar
3463
3464@defvar Record.end
3465A method specific instruction object representing the current
3466instruction, that is not actually part of the recording.
3467@end defvar
3468
3469@defvar Record.replay_position
3470The instruction representing the current replay position. If there is
3471no replay active, this will be @code{None}.
3472@end defvar
3473
3474@defvar Record.instruction_history
3475A list with all recorded instructions.
3476@end defvar
3477
3478@defvar Record.function_call_history
3479A list with all recorded function call segments.
3480@end defvar
3481
3482A @code{gdb.Record} object has the following methods:
3483
3484@defun Record.goto (instruction)
3485Move the replay position to the given @var{instruction}.
3486@end defun
3487
d050f7d7
TW
3488The common @code{gdb.Instruction} class that recording method specific
3489instruction objects inherit from, has the following attributes:
0a0faf9f 3490
d050f7d7 3491@defvar Instruction.pc
913aeadd 3492An integer representing this instruction's address.
0a0faf9f
TW
3493@end defvar
3494
d050f7d7 3495@defvar Instruction.data
913aeadd
TW
3496A buffer with the raw instruction data. In Python 3, the return value is a
3497@code{memoryview} object.
0a0faf9f
TW
3498@end defvar
3499
d050f7d7 3500@defvar Instruction.decoded
913aeadd 3501A human readable string with the disassembled instruction.
0a0faf9f
TW
3502@end defvar
3503
d050f7d7 3504@defvar Instruction.size
913aeadd 3505The size of the instruction in bytes.
0a0faf9f
TW
3506@end defvar
3507
d050f7d7
TW
3508Additionally @code{gdb.RecordInstruction} has the following attributes:
3509
3510@defvar RecordInstruction.number
3511An integer identifying this instruction. @code{number} corresponds to
3512the numbers seen in @code{record instruction-history}
3513(@pxref{Process Record and Replay}).
3514@end defvar
3515
3516@defvar RecordInstruction.sal
3517A @code{gdb.Symtab_and_line} object representing the associated symtab
3518and line of this instruction. May be @code{None} if no debug information is
3519available.
3520@end defvar
3521
0ed5da75 3522@defvar RecordInstruction.is_speculative
d050f7d7 3523A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3524@end defvar
3525
3526If an error occured during recording or decoding a recording, this error is
3527represented by a @code{gdb.RecordGap} object in the instruction list. It has
3528the following attributes:
3529
3530@defvar RecordGap.number
3531An integer identifying this gap. @code{number} corresponds to the numbers seen
3532in @code{record instruction-history} (@pxref{Process Record and Replay}).
3533@end defvar
3534
3535@defvar RecordGap.error_code
3536A numerical representation of the reason for the gap. The value is specific to
3537the current recording method.
3538@end defvar
3539
3540@defvar RecordGap.error_string
3541A human readable string with the reason for the gap.
0a0faf9f
TW
3542@end defvar
3543
14f819c8 3544A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3545
14f819c8
TW
3546@defvar RecordFunctionSegment.number
3547An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3548the numbers seen in @code{record function-call-history}
3549(@pxref{Process Record and Replay}).
3550@end defvar
3551
14f819c8 3552@defvar RecordFunctionSegment.symbol
0a0faf9f 3553A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3554@code{None} if no debug information is available.
0a0faf9f
TW
3555@end defvar
3556
14f819c8 3557@defvar RecordFunctionSegment.level
0a0faf9f
TW
3558An integer representing the function call's stack level. May be
3559@code{None} if the function call is a gap.
3560@end defvar
3561
14f819c8 3562@defvar RecordFunctionSegment.instructions
0ed5da75 3563A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3564associated with this function call.
0a0faf9f
TW
3565@end defvar
3566
14f819c8
TW
3567@defvar RecordFunctionSegment.up
3568A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3569function segment. If the call has not been recorded, this will be the
3570function segment to which control returns. If neither the call nor the
3571return have been recorded, this will be @code{None}.
3572@end defvar
3573
14f819c8
TW
3574@defvar RecordFunctionSegment.prev
3575A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3576segment of this function call. May be @code{None}.
3577@end defvar
3578
14f819c8
TW
3579@defvar RecordFunctionSegment.next
3580A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3581this function call. May be @code{None}.
3582@end defvar
3583
3584The following example demonstrates the usage of these objects and
3585functions to create a function that will rewind a record to the last
3586time a function in a different file was executed. This would typically
3587be used to track the execution of user provided callback functions in a
3588library which typically are not visible in a back trace.
3589
3590@smallexample
3591def bringback ():
3592 rec = gdb.current_recording ()
3593 if not rec:
3594 return
3595
3596 insn = rec.instruction_history
3597 if len (insn) == 0:
3598 return
3599
3600 try:
3601 position = insn.index (rec.replay_position)
3602 except:
3603 position = -1
3604 try:
3605 filename = insn[position].sal.symtab.fullname ()
3606 except:
3607 filename = None
3608
3609 for i in reversed (insn[:position]):
3610 try:
3611 current = i.sal.symtab.fullname ()
3612 except:
3613 current = None
3614
3615 if filename == current:
3616 continue
3617
3618 rec.goto (i)
3619 return
3620@end smallexample
3621
3622Another possible application is to write a function that counts the
3623number of code executions in a given line range. This line range can
3624contain parts of functions or span across several functions and is not
3625limited to be contiguous.
3626
3627@smallexample
3628def countrange (filename, linerange):
3629 count = 0
3630
3631 def filter_only (file_name):
3632 for call in gdb.current_recording ().function_call_history:
3633 try:
3634 if file_name in call.symbol.symtab.fullname ():
3635 yield call
3636 except:
3637 pass
3638
3639 for c in filter_only (filename):
3640 for i in c.instructions:
3641 try:
3642 if i.sal.line in linerange:
3643 count += 1
3644 break;
3645 except:
3646 pass
3647
3648 return count
3649@end smallexample
3650
329baa95
DE
3651@node Commands In Python
3652@subsubsection Commands In Python
3653
3654@cindex commands in python
3655@cindex python commands
3656You can implement new @value{GDBN} CLI commands in Python. A CLI
3657command is implemented using an instance of the @code{gdb.Command}
3658class, most commonly using a subclass.
3659
3660@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3661The object initializer for @code{Command} registers the new command
3662with @value{GDBN}. This initializer is normally invoked from the
3663subclass' own @code{__init__} method.
3664
3665@var{name} is the name of the command. If @var{name} consists of
3666multiple words, then the initial words are looked for as prefix
3667commands. In this case, if one of the prefix commands does not exist,
3668an exception is raised.
3669
3670There is no support for multi-line commands.
3671
3672@var{command_class} should be one of the @samp{COMMAND_} constants
3673defined below. This argument tells @value{GDBN} how to categorize the
3674new command in the help system.
3675
3676@var{completer_class} is an optional argument. If given, it should be
3677one of the @samp{COMPLETE_} constants defined below. This argument
3678tells @value{GDBN} how to perform completion for this command. If not
3679given, @value{GDBN} will attempt to complete using the object's
3680@code{complete} method (see below); if no such method is found, an
3681error will occur when completion is attempted.
3682
3683@var{prefix} is an optional argument. If @code{True}, then the new
3684command is a prefix command; sub-commands of this command may be
3685registered.
3686
3687The help text for the new command is taken from the Python
3688documentation string for the command's class, if there is one. If no
3689documentation string is provided, the default value ``This command is
3690not documented.'' is used.
3691@end defun
3692
3693@cindex don't repeat Python command
3694@defun Command.dont_repeat ()
3695By default, a @value{GDBN} command is repeated when the user enters a
3696blank line at the command prompt. A command can suppress this
3697behavior by invoking the @code{dont_repeat} method. This is similar
3698to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3699@end defun
3700
3701@defun Command.invoke (argument, from_tty)
3702This method is called by @value{GDBN} when this command is invoked.
3703
3704@var{argument} is a string. It is the argument to the command, after
3705leading and trailing whitespace has been stripped.
3706
3707@var{from_tty} is a boolean argument. When true, this means that the
3708command was entered by the user at the terminal; when false it means
3709that the command came from elsewhere.
3710
3711If this method throws an exception, it is turned into a @value{GDBN}
3712@code{error} call. Otherwise, the return value is ignored.
3713
3714@findex gdb.string_to_argv
3715To break @var{argument} up into an argv-like string use
3716@code{gdb.string_to_argv}. This function behaves identically to
3717@value{GDBN}'s internal argument lexer @code{buildargv}.
3718It is recommended to use this for consistency.
3719Arguments are separated by spaces and may be quoted.
3720Example:
3721
3722@smallexample
3723print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3724['1', '2 "3', '4 "5', "6 '7"]
3725@end smallexample
3726
3727@end defun
3728
3729@cindex completion of Python commands
3730@defun Command.complete (text, word)
3731This method is called by @value{GDBN} when the user attempts
3732completion on this command. All forms of completion are handled by
3733this method, that is, the @key{TAB} and @key{M-?} key bindings
3734(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3735complete}).
3736
697aa1b7
EZ
3737The arguments @var{text} and @var{word} are both strings; @var{text}
3738holds the complete command line up to the cursor's location, while
329baa95
DE
3739@var{word} holds the last word of the command line; this is computed
3740using a word-breaking heuristic.
3741
3742The @code{complete} method can return several values:
3743@itemize @bullet
3744@item
3745If the return value is a sequence, the contents of the sequence are
3746used as the completions. It is up to @code{complete} to ensure that the
3747contents actually do complete the word. A zero-length sequence is
3748allowed, it means that there were no completions available. Only
3749string elements of the sequence are used; other elements in the
3750sequence are ignored.
3751
3752@item
3753If the return value is one of the @samp{COMPLETE_} constants defined
3754below, then the corresponding @value{GDBN}-internal completion
3755function is invoked, and its result is used.
3756
3757@item
3758All other results are treated as though there were no available
3759completions.
3760@end itemize
3761@end defun
3762
3763When a new command is registered, it must be declared as a member of
3764some general class of commands. This is used to classify top-level
3765commands in the on-line help system; note that prefix commands are not
3766listed under their own category but rather that of their top-level
3767command. The available classifications are represented by constants
3768defined in the @code{gdb} module:
3769
3770@table @code
3771@findex COMMAND_NONE
3772@findex gdb.COMMAND_NONE
3773@item gdb.COMMAND_NONE
3774The command does not belong to any particular class. A command in
3775this category will not be displayed in any of the help categories.
3776
3777@findex COMMAND_RUNNING
3778@findex gdb.COMMAND_RUNNING
3779@item gdb.COMMAND_RUNNING
3780The command is related to running the inferior. For example,
3781@code{start}, @code{step}, and @code{continue} are in this category.
3782Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3783commands in this category.
3784
3785@findex COMMAND_DATA
3786@findex gdb.COMMAND_DATA
3787@item gdb.COMMAND_DATA
3788The command is related to data or variables. For example,
3789@code{call}, @code{find}, and @code{print} are in this category. Type
3790@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3791in this category.
3792
3793@findex COMMAND_STACK
3794@findex gdb.COMMAND_STACK
3795@item gdb.COMMAND_STACK
3796The command has to do with manipulation of the stack. For example,
3797@code{backtrace}, @code{frame}, and @code{return} are in this
3798category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3799list of commands in this category.
3800
3801@findex COMMAND_FILES
3802@findex gdb.COMMAND_FILES
3803@item gdb.COMMAND_FILES
3804This class is used for file-related commands. For example,
3805@code{file}, @code{list} and @code{section} are in this category.
3806Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3807commands in this category.
3808
3809@findex COMMAND_SUPPORT
3810@findex gdb.COMMAND_SUPPORT
3811@item gdb.COMMAND_SUPPORT
3812This should be used for ``support facilities'', generally meaning
3813things that are useful to the user when interacting with @value{GDBN},
3814but not related to the state of the inferior. For example,
3815@code{help}, @code{make}, and @code{shell} are in this category. Type
3816@kbd{help support} at the @value{GDBN} prompt to see a list of
3817commands in this category.
3818
3819@findex COMMAND_STATUS
3820@findex gdb.COMMAND_STATUS
3821@item gdb.COMMAND_STATUS
3822The command is an @samp{info}-related command, that is, related to the
3823state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3824and @code{show} are in this category. Type @kbd{help status} at the
3825@value{GDBN} prompt to see a list of commands in this category.
3826
3827@findex COMMAND_BREAKPOINTS
3828@findex gdb.COMMAND_BREAKPOINTS
3829@item gdb.COMMAND_BREAKPOINTS
3830The command has to do with breakpoints. For example, @code{break},
3831@code{clear}, and @code{delete} are in this category. Type @kbd{help
3832breakpoints} at the @value{GDBN} prompt to see a list of commands in
3833this category.
3834
3835@findex COMMAND_TRACEPOINTS
3836@findex gdb.COMMAND_TRACEPOINTS
3837@item gdb.COMMAND_TRACEPOINTS
3838The command has to do with tracepoints. For example, @code{trace},
3839@code{actions}, and @code{tfind} are in this category. Type
3840@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3841commands in this category.
3842
2b2fbab8
TT
3843@findex COMMAND_TUI
3844@findex gdb.COMMAND_TUI
3845@item gdb.COMMAND_TUI
3846The command has to do with the text user interface (@pxref{TUI}).
3847Type @kbd{help tui} at the @value{GDBN} prompt to see a list of
3848commands in this category.
3849
329baa95
DE
3850@findex COMMAND_USER
3851@findex gdb.COMMAND_USER
3852@item gdb.COMMAND_USER
3853The command is a general purpose command for the user, and typically
3854does not fit in one of the other categories.
3855Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3856a list of commands in this category, as well as the list of gdb macros
3857(@pxref{Sequences}).
3858
3859@findex COMMAND_OBSCURE
3860@findex gdb.COMMAND_OBSCURE
3861@item gdb.COMMAND_OBSCURE
3862The command is only used in unusual circumstances, or is not of
3863general interest to users. For example, @code{checkpoint},
3864@code{fork}, and @code{stop} are in this category. Type @kbd{help
3865obscure} at the @value{GDBN} prompt to see a list of commands in this
3866category.
3867
3868@findex COMMAND_MAINTENANCE
3869@findex gdb.COMMAND_MAINTENANCE
3870@item gdb.COMMAND_MAINTENANCE
3871The command is only useful to @value{GDBN} maintainers. The
3872@code{maintenance} and @code{flushregs} commands are in this category.
3873Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3874commands in this category.
3875@end table
3876
3877A new command can use a predefined completion function, either by
3878specifying it via an argument at initialization, or by returning it
3879from the @code{complete} method. These predefined completion
3880constants are all defined in the @code{gdb} module:
3881
b3ce5e5f
DE
3882@vtable @code
3883@vindex COMPLETE_NONE
329baa95
DE
3884@item gdb.COMPLETE_NONE
3885This constant means that no completion should be done.
3886
b3ce5e5f 3887@vindex COMPLETE_FILENAME
329baa95
DE
3888@item gdb.COMPLETE_FILENAME
3889This constant means that filename completion should be performed.
3890
b3ce5e5f 3891@vindex COMPLETE_LOCATION
329baa95
DE
3892@item gdb.COMPLETE_LOCATION
3893This constant means that location completion should be done.
3894@xref{Specify Location}.
3895
b3ce5e5f 3896@vindex COMPLETE_COMMAND
329baa95
DE
3897@item gdb.COMPLETE_COMMAND
3898This constant means that completion should examine @value{GDBN}
3899command names.
3900
b3ce5e5f 3901@vindex COMPLETE_SYMBOL
329baa95
DE
3902@item gdb.COMPLETE_SYMBOL
3903This constant means that completion should be done using symbol names
3904as the source.
3905
b3ce5e5f 3906@vindex COMPLETE_EXPRESSION
329baa95
DE
3907@item gdb.COMPLETE_EXPRESSION
3908This constant means that completion should be done on expressions.
3909Often this means completing on symbol names, but some language
3910parsers also have support for completing on field names.
b3ce5e5f 3911@end vtable
329baa95
DE
3912
3913The following code snippet shows how a trivial CLI command can be
3914implemented in Python:
3915
3916@smallexample
3917class HelloWorld (gdb.Command):
3918 """Greet the whole world."""
3919
3920 def __init__ (self):
3921 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3922
3923 def invoke (self, arg, from_tty):
f3bdc2db 3924 print ("Hello, World!")
329baa95
DE
3925
3926HelloWorld ()
3927@end smallexample
3928
3929The last line instantiates the class, and is necessary to trigger the
3930registration of the command with @value{GDBN}. Depending on how the
3931Python code is read into @value{GDBN}, you may need to import the
3932@code{gdb} module explicitly.
3933
3934@node Parameters In Python
3935@subsubsection Parameters In Python
3936
3937@cindex parameters in python
3938@cindex python parameters
3939@tindex gdb.Parameter
3940@tindex Parameter
3941You can implement new @value{GDBN} parameters using Python. A new
3942parameter is implemented as an instance of the @code{gdb.Parameter}
3943class.
3944
3945Parameters are exposed to the user via the @code{set} and
3946@code{show} commands. @xref{Help}.
3947
3948There are many parameters that already exist and can be set in
3949@value{GDBN}. Two examples are: @code{set follow fork} and
3950@code{set charset}. Setting these parameters influences certain
3951behavior in @value{GDBN}. Similarly, you can define parameters that
3952can be used to influence behavior in custom Python scripts and commands.
3953
3954@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3955The object initializer for @code{Parameter} registers the new
3956parameter with @value{GDBN}. This initializer is normally invoked
3957from the subclass' own @code{__init__} method.
3958
3959@var{name} is the name of the new parameter. If @var{name} consists
3960of multiple words, then the initial words are looked for as prefix
3961parameters. An example of this can be illustrated with the
3962@code{set print} set of parameters. If @var{name} is
3963@code{print foo}, then @code{print} will be searched as the prefix
3964parameter. In this case the parameter can subsequently be accessed in
3965@value{GDBN} as @code{set print foo}.
3966
3967If @var{name} consists of multiple words, and no prefix parameter group
3968can be found, an exception is raised.
3969
3970@var{command-class} should be one of the @samp{COMMAND_} constants
3971(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3972categorize the new parameter in the help system.
3973
3974@var{parameter-class} should be one of the @samp{PARAM_} constants
3975defined below. This argument tells @value{GDBN} the type of the new
3976parameter; this information is used for input validation and
3977completion.
3978
3979If @var{parameter-class} is @code{PARAM_ENUM}, then
3980@var{enum-sequence} must be a sequence of strings. These strings
3981represent the possible values for the parameter.
3982
3983If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3984of a fourth argument will cause an exception to be thrown.
3985
3986The help text for the new parameter is taken from the Python
3987documentation string for the parameter's class, if there is one. If
3988there is no documentation string, a default value is used.
3989@end defun
3990
3991@defvar Parameter.set_doc
3992If this attribute exists, and is a string, then its value is used as
3993the help text for this parameter's @code{set} command. The value is
3994examined when @code{Parameter.__init__} is invoked; subsequent changes
3995have no effect.
3996@end defvar
3997
3998@defvar Parameter.show_doc
3999If this attribute exists, and is a string, then its value is used as
4000the help text for this parameter's @code{show} command. The value is
4001examined when @code{Parameter.__init__} is invoked; subsequent changes
4002have no effect.
4003@end defvar
4004
4005@defvar Parameter.value
4006The @code{value} attribute holds the underlying value of the
4007parameter. It can be read and assigned to just as any other
4008attribute. @value{GDBN} does validation when assignments are made.
4009@end defvar
4010
984ee559
TT
4011There are two methods that may be implemented in any @code{Parameter}
4012class. These are:
329baa95
DE
4013
4014@defun Parameter.get_set_string (self)
984ee559
TT
4015If this method exists, @value{GDBN} will call it when a
4016@var{parameter}'s value has been changed via the @code{set} API (for
4017example, @kbd{set foo off}). The @code{value} attribute has already
4018been populated with the new value and may be used in output. This
4019method must return a string. If the returned string is not empty,
4020@value{GDBN} will present it to the user.
ae778caf
TT
4021
4022If this method raises the @code{gdb.GdbError} exception
4023(@pxref{Exception Handling}), then @value{GDBN} will print the
4024exception's string and the @code{set} command will fail. Note,
4025however, that the @code{value} attribute will not be reset in this
4026case. So, if your parameter must validate values, it should store the
4027old value internally and reset the exposed value, like so:
4028
4029@smallexample
4030class ExampleParam (gdb.Parameter):
4031 def __init__ (self, name):
4032 super (ExampleParam, self).__init__ (name,
4033 gdb.COMMAND_DATA,
4034 gdb.PARAM_BOOLEAN)
4035 self.value = True
4036 self.saved_value = True
4037 def validate(self):
4038 return False
4039 def get_set_string (self):
4040 if not self.validate():
4041 self.value = self.saved_value
4042 raise gdb.GdbError('Failed to validate')
4043 self.saved_value = self.value
4044@end smallexample
329baa95
DE
4045@end defun
4046
4047@defun Parameter.get_show_string (self, svalue)
4048@value{GDBN} will call this method when a @var{parameter}'s
4049@code{show} API has been invoked (for example, @kbd{show foo}). The
4050argument @code{svalue} receives the string representation of the
4051current value. This method must return a string.
4052@end defun
4053
4054When a new parameter is defined, its type must be specified. The
4055available types are represented by constants defined in the @code{gdb}
4056module:
4057
4058@table @code
4059@findex PARAM_BOOLEAN
4060@findex gdb.PARAM_BOOLEAN
4061@item gdb.PARAM_BOOLEAN
4062The value is a plain boolean. The Python boolean values, @code{True}
4063and @code{False} are the only valid values.
4064
4065@findex PARAM_AUTO_BOOLEAN
4066@findex gdb.PARAM_AUTO_BOOLEAN
4067@item gdb.PARAM_AUTO_BOOLEAN
4068The value has three possible states: true, false, and @samp{auto}. In
4069Python, true and false are represented using boolean constants, and
4070@samp{auto} is represented using @code{None}.
4071
4072@findex PARAM_UINTEGER
4073@findex gdb.PARAM_UINTEGER
4074@item gdb.PARAM_UINTEGER
4075The value is an unsigned integer. The value of 0 should be
4076interpreted to mean ``unlimited''.
4077
4078@findex PARAM_INTEGER
4079@findex gdb.PARAM_INTEGER
4080@item gdb.PARAM_INTEGER
4081The value is a signed integer. The value of 0 should be interpreted
4082to mean ``unlimited''.
4083
4084@findex PARAM_STRING
4085@findex gdb.PARAM_STRING
4086@item gdb.PARAM_STRING
4087The value is a string. When the user modifies the string, any escape
4088sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4089translated into corresponding characters and encoded into the current
4090host charset.
4091
4092@findex PARAM_STRING_NOESCAPE
4093@findex gdb.PARAM_STRING_NOESCAPE
4094@item gdb.PARAM_STRING_NOESCAPE
4095The value is a string. When the user modifies the string, escapes are
4096passed through untranslated.
4097
4098@findex PARAM_OPTIONAL_FILENAME
4099@findex gdb.PARAM_OPTIONAL_FILENAME
4100@item gdb.PARAM_OPTIONAL_FILENAME
4101The value is a either a filename (a string), or @code{None}.
4102
4103@findex PARAM_FILENAME
4104@findex gdb.PARAM_FILENAME
4105@item gdb.PARAM_FILENAME
4106The value is a filename. This is just like
4107@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4108
4109@findex PARAM_ZINTEGER
4110@findex gdb.PARAM_ZINTEGER
4111@item gdb.PARAM_ZINTEGER
4112The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4113is interpreted as itself.
4114
0489430a
TT
4115@findex PARAM_ZUINTEGER
4116@findex gdb.PARAM_ZUINTEGER
4117@item gdb.PARAM_ZUINTEGER
4118The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4119except 0 is interpreted as itself, and the value cannot be negative.
4120
4121@findex PARAM_ZUINTEGER_UNLIMITED
4122@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4123@item gdb.PARAM_ZUINTEGER_UNLIMITED
4124The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4125except the special value -1 should be interpreted to mean
4126``unlimited''. Other negative values are not allowed.
4127
329baa95
DE
4128@findex PARAM_ENUM
4129@findex gdb.PARAM_ENUM
4130@item gdb.PARAM_ENUM
4131The value is a string, which must be one of a collection string
4132constants provided when the parameter is created.
4133@end table
4134
4135@node Functions In Python
4136@subsubsection Writing new convenience functions
4137
4138@cindex writing convenience functions
4139@cindex convenience functions in python
4140@cindex python convenience functions
4141@tindex gdb.Function
4142@tindex Function
4143You can implement new convenience functions (@pxref{Convenience Vars})
4144in Python. A convenience function is an instance of a subclass of the
4145class @code{gdb.Function}.
4146
4147@defun Function.__init__ (name)
4148The initializer for @code{Function} registers the new function with
4149@value{GDBN}. The argument @var{name} is the name of the function,
4150a string. The function will be visible to the user as a convenience
4151variable of type @code{internal function}, whose name is the same as
4152the given @var{name}.
4153
4154The documentation for the new function is taken from the documentation
4155string for the new class.
4156@end defun
4157
4158@defun Function.invoke (@var{*args})
4159When a convenience function is evaluated, its arguments are converted
4160to instances of @code{gdb.Value}, and then the function's
4161@code{invoke} method is called. Note that @value{GDBN} does not
4162predetermine the arity of convenience functions. Instead, all
4163available arguments are passed to @code{invoke}, following the
4164standard Python calling convention. In particular, a convenience
4165function can have default values for parameters without ill effect.
4166
4167The return value of this method is used as its value in the enclosing
4168expression. If an ordinary Python value is returned, it is converted
4169to a @code{gdb.Value} following the usual rules.
4170@end defun
4171
4172The following code snippet shows how a trivial convenience function can
4173be implemented in Python:
4174
4175@smallexample
4176class Greet (gdb.Function):
4177 """Return string to greet someone.
4178Takes a name as argument."""
4179
4180 def __init__ (self):
4181 super (Greet, self).__init__ ("greet")
4182
4183 def invoke (self, name):
4184 return "Hello, %s!" % name.string ()
4185
4186Greet ()
4187@end smallexample
4188
4189The last line instantiates the class, and is necessary to trigger the
4190registration of the function with @value{GDBN}. Depending on how the
4191Python code is read into @value{GDBN}, you may need to import the
4192@code{gdb} module explicitly.
4193
4194Now you can use the function in an expression:
4195
4196@smallexample
4197(gdb) print $greet("Bob")
4198$1 = "Hello, Bob!"
4199@end smallexample
4200
4201@node Progspaces In Python
4202@subsubsection Program Spaces In Python
4203
4204@cindex progspaces in python
4205@tindex gdb.Progspace
4206@tindex Progspace
4207A program space, or @dfn{progspace}, represents a symbolic view
4208of an address space.
4209It consists of all of the objfiles of the program.
4210@xref{Objfiles In Python}.
65c574f6 4211@xref{Inferiors Connections and Programs, program spaces}, for more details
329baa95
DE
4212about program spaces.
4213
4214The following progspace-related functions are available in the
4215@code{gdb} module:
4216
4217@findex gdb.current_progspace
4218@defun gdb.current_progspace ()
4219This function returns the program space of the currently selected inferior.
65c574f6 4220@xref{Inferiors Connections and Programs}. This is identical to
a40bf0c2
SM
4221@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4222included for historical compatibility.
329baa95
DE
4223@end defun
4224
4225@findex gdb.progspaces
4226@defun gdb.progspaces ()
4227Return a sequence of all the progspaces currently known to @value{GDBN}.
4228@end defun
4229
4230Each progspace is represented by an instance of the @code{gdb.Progspace}
4231class.
4232
4233@defvar Progspace.filename
4234The file name of the progspace as a string.
4235@end defvar
4236
4237@defvar Progspace.pretty_printers
4238The @code{pretty_printers} attribute is a list of functions. It is
4239used to look up pretty-printers. A @code{Value} is passed to each
4240function in order; if the function returns @code{None}, then the
4241search continues. Otherwise, the return value should be an object
4242which is used to format the value. @xref{Pretty Printing API}, for more
4243information.
4244@end defvar
4245
4246@defvar Progspace.type_printers
4247The @code{type_printers} attribute is a list of type printer objects.
4248@xref{Type Printing API}, for more information.
4249@end defvar
4250
4251@defvar Progspace.frame_filters
4252The @code{frame_filters} attribute is a dictionary of frame filter
4253objects. @xref{Frame Filter API}, for more information.
4254@end defvar
4255
8743a9cd
TT
4256A program space has the following methods:
4257
4258@findex Progspace.block_for_pc
4259@defun Progspace.block_for_pc (pc)
4260Return the innermost @code{gdb.Block} containing the given @var{pc}
4261value. If the block cannot be found for the @var{pc} value specified,
4262the function will return @code{None}.
4263@end defun
4264
4265@findex Progspace.find_pc_line
4266@defun Progspace.find_pc_line (pc)
4267Return the @code{gdb.Symtab_and_line} object corresponding to the
4268@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4269of @var{pc} is passed as an argument, then the @code{symtab} and
4270@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4271object will be @code{None} and 0 respectively.
4272@end defun
4273
4274@findex Progspace.is_valid
4275@defun Progspace.is_valid ()
4276Returns @code{True} if the @code{gdb.Progspace} object is valid,
4277@code{False} if not. A @code{gdb.Progspace} object can become invalid
4278if the program space file it refers to is not referenced by any
4279inferior. All other @code{gdb.Progspace} methods will throw an
4280exception if it is invalid at the time the method is called.
4281@end defun
4282
4283@findex Progspace.objfiles
4284@defun Progspace.objfiles ()
4285Return a sequence of all the objfiles referenced by this program
4286space. @xref{Objfiles In Python}.
4287@end defun
4288
4289@findex Progspace.solib_name
4290@defun Progspace.solib_name (address)
4291Return the name of the shared library holding the given @var{address}
4292as a string, or @code{None}.
4293@end defun
4294
02be9a71
DE
4295One may add arbitrary attributes to @code{gdb.Progspace} objects
4296in the usual Python way.
4297This is useful if, for example, one needs to do some extra record keeping
4298associated with the program space.
4299
4300In this contrived example, we want to perform some processing when
4301an objfile with a certain symbol is loaded, but we only want to do
4302this once because it is expensive. To achieve this we record the results
4303with the program space because we can't predict when the desired objfile
4304will be loaded.
4305
4306@smallexample
4307(gdb) python
4308def clear_objfiles_handler(event):
4309 event.progspace.expensive_computation = None
4310def expensive(symbol):
4311 """A mock routine to perform an "expensive" computation on symbol."""
f3bdc2db 4312 print ("Computing the answer to the ultimate question ...")
02be9a71
DE
4313 return 42
4314def new_objfile_handler(event):
4315 objfile = event.new_objfile
4316 progspace = objfile.progspace
4317 if not hasattr(progspace, 'expensive_computation') or \
4318 progspace.expensive_computation is None:
4319 # We use 'main' for the symbol to keep the example simple.
4320 # Note: There's no current way to constrain the lookup
4321 # to one objfile.
4322 symbol = gdb.lookup_global_symbol('main')
4323 if symbol is not None:
4324 progspace.expensive_computation = expensive(symbol)
4325gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4326gdb.events.new_objfile.connect(new_objfile_handler)
4327end
4328(gdb) file /tmp/hello
0bab6cf1 4329Reading symbols from /tmp/hello...
02be9a71
DE
4330Computing the answer to the ultimate question ...
4331(gdb) python print gdb.current_progspace().expensive_computation
433242
4333(gdb) run
4334Starting program: /tmp/hello
4335Hello.
4336[Inferior 1 (process 4242) exited normally]
4337@end smallexample
4338
329baa95
DE
4339@node Objfiles In Python
4340@subsubsection Objfiles In Python
4341
4342@cindex objfiles in python
4343@tindex gdb.Objfile
4344@tindex Objfile
4345@value{GDBN} loads symbols for an inferior from various
4346symbol-containing files (@pxref{Files}). These include the primary
4347executable file, any shared libraries used by the inferior, and any
4348separate debug info files (@pxref{Separate Debug Files}).
4349@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4350
4351The following objfile-related functions are available in the
4352@code{gdb} module:
4353
4354@findex gdb.current_objfile
4355@defun gdb.current_objfile ()
4356When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4357sets the ``current objfile'' to the corresponding objfile. This
4358function returns the current objfile. If there is no current objfile,
4359this function returns @code{None}.
4360@end defun
4361
4362@findex gdb.objfiles
4363@defun gdb.objfiles ()
74d3fbbb
SM
4364Return a sequence of objfiles referenced by the current program space.
4365@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4366to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4367historical compatibility.
329baa95
DE
4368@end defun
4369
6dddd6a5
DE
4370@findex gdb.lookup_objfile
4371@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4372Look up @var{name}, a file name or build ID, in the list of objfiles
4373for the current program space (@pxref{Progspaces In Python}).
4374If the objfile is not found throw the Python @code{ValueError} exception.
4375
4376If @var{name} is a relative file name, then it will match any
4377source file name with the same trailing components. For example, if
4378@var{name} is @samp{gcc/expr.c}, then it will match source file
4379name of @file{/build/trunk/gcc/expr.c}, but not
4380@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4381
4382If @var{by_build_id} is provided and is @code{True} then @var{name}
4383is the build ID of the objfile. Otherwise, @var{name} is a file name.
4384This is supported only on some operating systems, notably those which use
4385the ELF format for binary files and the @sc{gnu} Binutils. For more details
4386about this feature, see the description of the @option{--build-id}
f5a476a7 4387command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4388The GNU Linker}.
4389@end defun
4390
329baa95
DE
4391Each objfile is represented by an instance of the @code{gdb.Objfile}
4392class.
4393
4394@defvar Objfile.filename
1b549396
DE
4395The file name of the objfile as a string, with symbolic links resolved.
4396
4397The value is @code{None} if the objfile is no longer valid.
4398See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4399@end defvar
4400
3a8b707a
DE
4401@defvar Objfile.username
4402The file name of the objfile as specified by the user as a string.
4403
4404The value is @code{None} if the objfile is no longer valid.
4405See the @code{gdb.Objfile.is_valid} method, described below.
4406@end defvar
4407
a0be3e44
DE
4408@defvar Objfile.owner
4409For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4410object that debug info is being provided for.
4411Otherwise this is @code{None}.
4412Separate debug info objfiles are added with the
4413@code{gdb.Objfile.add_separate_debug_file} method, described below.
4414@end defvar
4415
7c50a931
DE
4416@defvar Objfile.build_id
4417The build ID of the objfile as a string.
4418If the objfile does not have a build ID then the value is @code{None}.
4419
4420This is supported only on some operating systems, notably those which use
4421the ELF format for binary files and the @sc{gnu} Binutils. For more details
4422about this feature, see the description of the @option{--build-id}
f5a476a7 4423command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4424The GNU Linker}.
4425@end defvar
4426
d096d8c1
DE
4427@defvar Objfile.progspace
4428The containing program space of the objfile as a @code{gdb.Progspace}
4429object. @xref{Progspaces In Python}.
4430@end defvar
4431
329baa95
DE
4432@defvar Objfile.pretty_printers
4433The @code{pretty_printers} attribute is a list of functions. It is
4434used to look up pretty-printers. A @code{Value} is passed to each
4435function in order; if the function returns @code{None}, then the
4436search continues. Otherwise, the return value should be an object
4437which is used to format the value. @xref{Pretty Printing API}, for more
4438information.
4439@end defvar
4440
4441@defvar Objfile.type_printers
4442The @code{type_printers} attribute is a list of type printer objects.
4443@xref{Type Printing API}, for more information.
4444@end defvar
4445
4446@defvar Objfile.frame_filters
4447The @code{frame_filters} attribute is a dictionary of frame filter
4448objects. @xref{Frame Filter API}, for more information.
4449@end defvar
4450
02be9a71
DE
4451One may add arbitrary attributes to @code{gdb.Objfile} objects
4452in the usual Python way.
4453This is useful if, for example, one needs to do some extra record keeping
4454associated with the objfile.
4455
4456In this contrived example we record the time when @value{GDBN}
4457loaded the objfile.
4458
4459@smallexample
4460(gdb) python
4461import datetime
4462def new_objfile_handler(event):
4463 # Set the time_loaded attribute of the new objfile.
4464 event.new_objfile.time_loaded = datetime.datetime.today()
4465gdb.events.new_objfile.connect(new_objfile_handler)
4466end
4467(gdb) file ./hello
0bab6cf1 4468Reading symbols from ./hello...
02be9a71
DE
4469(gdb) python print gdb.objfiles()[0].time_loaded
44702014-10-09 11:41:36.770345
4471@end smallexample
4472
329baa95
DE
4473A @code{gdb.Objfile} object has the following methods:
4474
4475@defun Objfile.is_valid ()
4476Returns @code{True} if the @code{gdb.Objfile} object is valid,
4477@code{False} if not. A @code{gdb.Objfile} object can become invalid
4478if the object file it refers to is not loaded in @value{GDBN} any
4479longer. All other @code{gdb.Objfile} methods will throw an exception
4480if it is invalid at the time the method is called.
4481@end defun
4482
86e4ed39
DE
4483@defun Objfile.add_separate_debug_file (file)
4484Add @var{file} to the list of files that @value{GDBN} will search for
4485debug information for the objfile.
4486This is useful when the debug info has been removed from the program
4487and stored in a separate file. @value{GDBN} has built-in support for
4488finding separate debug info files (@pxref{Separate Debug Files}), but if
4489the file doesn't live in one of the standard places that @value{GDBN}
4490searches then this function can be used to add a debug info file
4491from a different place.
4492@end defun
4493
c620ed88
CB
4494@defun Objfile.lookup_global_symbol (name @r{[}, domain@r{]})
4495Search for a global symbol named @var{name} in this objfile. Optionally, the
4496search scope can be restricted with the @var{domain} argument.
4497The @var{domain} argument must be a domain constant defined in the @code{gdb}
4498module and described in @ref{Symbols In Python}. This function is similar to
4499@code{gdb.lookup_global_symbol}, except that the search is limited to this
4500objfile.
4501
4502The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4503is not found.
4504@end defun
4505
4506@defun Objfile.lookup_static_symbol (name @r{[}, domain@r{]})
4507Like @code{Objfile.lookup_global_symbol}, but searches for a global
4508symbol with static linkage named @var{name} in this objfile.
4509@end defun
4510
329baa95 4511@node Frames In Python
849cba3b 4512@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4513
4514@cindex frames in python
4515When the debugged program stops, @value{GDBN} is able to analyze its call
4516stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4517represents a frame in the stack. A @code{gdb.Frame} object is only valid
4518while its corresponding frame exists in the inferior's stack. If you try
4519to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4520exception (@pxref{Exception Handling}).
4521
4522Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4523operator, like:
4524
4525@smallexample
4526(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4527True
4528@end smallexample
4529
4530The following frame-related functions are available in the @code{gdb} module:
4531
4532@findex gdb.selected_frame
4533@defun gdb.selected_frame ()
4534Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4535@end defun
4536
4537@findex gdb.newest_frame
4538@defun gdb.newest_frame ()
4539Return the newest frame object for the selected thread.
4540@end defun
4541
4542@defun gdb.frame_stop_reason_string (reason)
4543Return a string explaining the reason why @value{GDBN} stopped unwinding
4544frames, as expressed by the given @var{reason} code (an integer, see the
4545@code{unwind_stop_reason} method further down in this section).
4546@end defun
4547
e0f3fd7c
TT
4548@findex gdb.invalidate_cached_frames
4549@defun gdb.invalidate_cached_frames
4550@value{GDBN} internally keeps a cache of the frames that have been
4551unwound. This function invalidates this cache.
4552
4553This function should not generally be called by ordinary Python code.
4554It is documented for the sake of completeness.
4555@end defun
4556
329baa95
DE
4557A @code{gdb.Frame} object has the following methods:
4558
4559@defun Frame.is_valid ()
4560Returns true if the @code{gdb.Frame} object is valid, false if not.
4561A frame object can become invalid if the frame it refers to doesn't
4562exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4563an exception if it is invalid at the time the method is called.
4564@end defun
4565
4566@defun Frame.name ()
4567Returns the function name of the frame, or @code{None} if it can't be
4568obtained.
4569@end defun
4570
4571@defun Frame.architecture ()
4572Returns the @code{gdb.Architecture} object corresponding to the frame's
4573architecture. @xref{Architectures In Python}.
4574@end defun
4575
4576@defun Frame.type ()
4577Returns the type of the frame. The value can be one of:
4578@table @code
4579@item gdb.NORMAL_FRAME
4580An ordinary stack frame.
4581
4582@item gdb.DUMMY_FRAME
4583A fake stack frame that was created by @value{GDBN} when performing an
4584inferior function call.
4585
4586@item gdb.INLINE_FRAME
4587A frame representing an inlined function. The function was inlined
4588into a @code{gdb.NORMAL_FRAME} that is older than this one.
4589
4590@item gdb.TAILCALL_FRAME
4591A frame representing a tail call. @xref{Tail Call Frames}.
4592
4593@item gdb.SIGTRAMP_FRAME
4594A signal trampoline frame. This is the frame created by the OS when
4595it calls into a signal handler.
4596
4597@item gdb.ARCH_FRAME
4598A fake stack frame representing a cross-architecture call.
4599
4600@item gdb.SENTINEL_FRAME
4601This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4602newest frame.
4603@end table
4604@end defun
4605
4606@defun Frame.unwind_stop_reason ()
4607Return an integer representing the reason why it's not possible to find
4608more frames toward the outermost frame. Use
4609@code{gdb.frame_stop_reason_string} to convert the value returned by this
4610function to a string. The value can be one of:
4611
4612@table @code
4613@item gdb.FRAME_UNWIND_NO_REASON
4614No particular reason (older frames should be available).
4615
4616@item gdb.FRAME_UNWIND_NULL_ID
4617The previous frame's analyzer returns an invalid result. This is no
4618longer used by @value{GDBN}, and is kept only for backward
4619compatibility.
4620
4621@item gdb.FRAME_UNWIND_OUTERMOST
4622This frame is the outermost.
4623
4624@item gdb.FRAME_UNWIND_UNAVAILABLE
4625Cannot unwind further, because that would require knowing the
4626values of registers or memory that have not been collected.
4627
4628@item gdb.FRAME_UNWIND_INNER_ID
4629This frame ID looks like it ought to belong to a NEXT frame,
4630but we got it for a PREV frame. Normally, this is a sign of
4631unwinder failure. It could also indicate stack corruption.
4632
4633@item gdb.FRAME_UNWIND_SAME_ID
4634This frame has the same ID as the previous one. That means
4635that unwinding further would almost certainly give us another
4636frame with exactly the same ID, so break the chain. Normally,
4637this is a sign of unwinder failure. It could also indicate
4638stack corruption.
4639
4640@item gdb.FRAME_UNWIND_NO_SAVED_PC
4641The frame unwinder did not find any saved PC, but we needed
4642one to unwind further.
4643
53e8a631
AB
4644@item gdb.FRAME_UNWIND_MEMORY_ERROR
4645The frame unwinder caused an error while trying to access memory.
4646
329baa95
DE
4647@item gdb.FRAME_UNWIND_FIRST_ERROR
4648Any stop reason greater or equal to this value indicates some kind
4649of error. This special value facilitates writing code that tests
4650for errors in unwinding in a way that will work correctly even if
4651the list of the other values is modified in future @value{GDBN}
4652versions. Using it, you could write:
4653@smallexample
4654reason = gdb.selected_frame().unwind_stop_reason ()
4655reason_str = gdb.frame_stop_reason_string (reason)
4656if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
f3bdc2db 4657 print ("An error occured: %s" % reason_str)
329baa95
DE
4658@end smallexample
4659@end table
4660
4661@end defun
4662
4663@defun Frame.pc ()
4664Returns the frame's resume address.
4665@end defun
4666
4667@defun Frame.block ()
60c0454d
TT
4668Return the frame's code block. @xref{Blocks In Python}. If the frame
4669does not have a block -- for example, if there is no debugging
4670information for the code in question -- then this will throw an
4671exception.
329baa95
DE
4672@end defun
4673
4674@defun Frame.function ()
4675Return the symbol for the function corresponding to this frame.
4676@xref{Symbols In Python}.
4677@end defun
4678
4679@defun Frame.older ()
4680Return the frame that called this frame.
4681@end defun
4682
4683@defun Frame.newer ()
4684Return the frame called by this frame.
4685@end defun
4686
4687@defun Frame.find_sal ()
4688Return the frame's symtab and line object.
4689@xref{Symbol Tables In Python}.
4690@end defun
4691
0f767f94 4692@anchor{gdbpy_frame_read_register}
5f3b99cf 4693@defun Frame.read_register (register)
43d5901d
AB
4694Return the value of @var{register} in this frame. Returns a
4695@code{Gdb.Value} object. Throws an exception if @var{register} does
4696not exist. The @var{register} argument must be one of the following:
4697@enumerate
4698@item
4699A string that is the name of a valid register (e.g., @code{'sp'} or
4700@code{'rax'}).
4701@item
4702A @code{gdb.RegisterDescriptor} object (@pxref{Registers In Python}).
4703@item
4704A @value{GDBN} internal, platform specific number. Using these
4705numbers is supported for historic reasons, but is not recommended as
4706future changes to @value{GDBN} could change the mapping between
4707numbers and the registers they represent, breaking any Python code
4708that uses the platform-specific numbers. The numbers are usually
4709found in the corresponding @file{@var{platform}-tdep.h} file in the
4710@value{GDBN} source tree.
4711@end enumerate
4712Using a string to access registers will be slightly slower than the
4713other two methods as @value{GDBN} must look up the mapping between
4714name and internal register number. If performance is critical
4715consider looking up and caching a @code{gdb.RegisterDescriptor}
4716object.
5f3b99cf
SS
4717@end defun
4718
329baa95
DE
4719@defun Frame.read_var (variable @r{[}, block@r{]})
4720Return the value of @var{variable} in this frame. If the optional
4721argument @var{block} is provided, search for the variable from that
4722block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4723determined by the frame's current program counter). The @var{variable}
4724argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4725@code{gdb.Block} object.
4726@end defun
4727
4728@defun Frame.select ()
4729Set this frame to be the selected frame. @xref{Stack, ,Examining the
4730Stack}.
4731@end defun
4732
4733@node Blocks In Python
849cba3b 4734@subsubsection Accessing blocks from Python
329baa95
DE
4735
4736@cindex blocks in python
4737@tindex gdb.Block
4738
4739In @value{GDBN}, symbols are stored in blocks. A block corresponds
4740roughly to a scope in the source code. Blocks are organized
4741hierarchically, and are represented individually in Python as a
4742@code{gdb.Block}. Blocks rely on debugging information being
4743available.
4744
4745A frame has a block. Please see @ref{Frames In Python}, for a more
4746in-depth discussion of frames.
4747
4748The outermost block is known as the @dfn{global block}. The global
4749block typically holds public global variables and functions.
4750
4751The block nested just inside the global block is the @dfn{static
4752block}. The static block typically holds file-scoped variables and
4753functions.
4754
4755@value{GDBN} provides a method to get a block's superblock, but there
4756is currently no way to examine the sub-blocks of a block, or to
4757iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4758Python}).
4759
4760Here is a short example that should help explain blocks:
4761
4762@smallexample
4763/* This is in the global block. */
4764int global;
4765
4766/* This is in the static block. */
4767static int file_scope;
4768
4769/* 'function' is in the global block, and 'argument' is
4770 in a block nested inside of 'function'. */
4771int function (int argument)
4772@{
4773 /* 'local' is in a block inside 'function'. It may or may
4774 not be in the same block as 'argument'. */
4775 int local;
4776
4777 @{
4778 /* 'inner' is in a block whose superblock is the one holding
4779 'local'. */
4780 int inner;
4781
4782 /* If this call is expanded by the compiler, you may see
4783 a nested block here whose function is 'inline_function'
4784 and whose superblock is the one holding 'inner'. */
4785 inline_function ();
4786 @}
4787@}
4788@end smallexample
4789
4790A @code{gdb.Block} is iterable. The iterator returns the symbols
4791(@pxref{Symbols In Python}) local to the block. Python programs
4792should not assume that a specific block object will always contain a
4793given symbol, since changes in @value{GDBN} features and
4794infrastructure may cause symbols move across blocks in a symbol
0b27c27d
CB
4795table. You can also use Python's @dfn{dictionary syntax} to access
4796variables in this block, e.g.:
4797
4798@smallexample
4799symbol = some_block['variable'] # symbol is of type gdb.Symbol
4800@end smallexample
329baa95
DE
4801
4802The following block-related functions are available in the @code{gdb}
4803module:
4804
4805@findex gdb.block_for_pc
4806@defun gdb.block_for_pc (pc)
4807Return the innermost @code{gdb.Block} containing the given @var{pc}
4808value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4809the function will return @code{None}. This is identical to
4810@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4811historical compatibility.
329baa95
DE
4812@end defun
4813
4814A @code{gdb.Block} object has the following methods:
4815
4816@defun Block.is_valid ()
4817Returns @code{True} if the @code{gdb.Block} object is valid,
4818@code{False} if not. A block object can become invalid if the block it
4819refers to doesn't exist anymore in the inferior. All other
4820@code{gdb.Block} methods will throw an exception if it is invalid at
4821the time the method is called. The block's validity is also checked
4822during iteration over symbols of the block.
4823@end defun
4824
4825A @code{gdb.Block} object has the following attributes:
4826
4827@defvar Block.start
4828The start address of the block. This attribute is not writable.
4829@end defvar
4830
4831@defvar Block.end
22eb9e92
TT
4832One past the last address that appears in the block. This attribute
4833is not writable.
329baa95
DE
4834@end defvar
4835
4836@defvar Block.function
4837The name of the block represented as a @code{gdb.Symbol}. If the
4838block is not named, then this attribute holds @code{None}. This
4839attribute is not writable.
4840
4841For ordinary function blocks, the superblock is the static block.
4842However, you should note that it is possible for a function block to
4843have a superblock that is not the static block -- for instance this
4844happens for an inlined function.
4845@end defvar
4846
4847@defvar Block.superblock
4848The block containing this block. If this parent block does not exist,
4849this attribute holds @code{None}. This attribute is not writable.
4850@end defvar
4851
4852@defvar Block.global_block
4853The global block associated with this block. This attribute is not
4854writable.
4855@end defvar
4856
4857@defvar Block.static_block
4858The static block associated with this block. This attribute is not
4859writable.
4860@end defvar
4861
4862@defvar Block.is_global
4863@code{True} if the @code{gdb.Block} object is a global block,
4864@code{False} if not. This attribute is not
4865writable.
4866@end defvar
4867
4868@defvar Block.is_static
4869@code{True} if the @code{gdb.Block} object is a static block,
4870@code{False} if not. This attribute is not writable.
4871@end defvar
4872
4873@node Symbols In Python
849cba3b 4874@subsubsection Python representation of Symbols
329baa95
DE
4875
4876@cindex symbols in python
4877@tindex gdb.Symbol
4878
4879@value{GDBN} represents every variable, function and type as an
4880entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4881Similarly, Python represents these symbols in @value{GDBN} with the
4882@code{gdb.Symbol} object.
4883
4884The following symbol-related functions are available in the @code{gdb}
4885module:
4886
4887@findex gdb.lookup_symbol
4888@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4889This function searches for a symbol by name. The search scope can be
4890restricted to the parameters defined in the optional domain and block
4891arguments.
4892
4893@var{name} is the name of the symbol. It must be a string. The
4894optional @var{block} argument restricts the search to symbols visible
4895in that @var{block}. The @var{block} argument must be a
4896@code{gdb.Block} object. If omitted, the block for the current frame
4897is used. The optional @var{domain} argument restricts
4898the search to the domain type. The @var{domain} argument must be a
4899domain constant defined in the @code{gdb} module and described later
4900in this chapter.
4901
4902The result is a tuple of two elements.
4903The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4904is not found.
4905If the symbol is found, the second element is @code{True} if the symbol
4906is a field of a method's object (e.g., @code{this} in C@t{++}),
4907otherwise it is @code{False}.
4908If the symbol is not found, the second element is @code{False}.
4909@end defun
4910
4911@findex gdb.lookup_global_symbol
4912@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4913This function searches for a global symbol by name.
4914The search scope can be restricted to by the domain argument.
4915
4916@var{name} is the name of the symbol. It must be a string.
4917The optional @var{domain} argument restricts the search to the domain type.
4918The @var{domain} argument must be a domain constant defined in the @code{gdb}
4919module and described later in this chapter.
4920
4921The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4922is not found.
4923@end defun
4924
2906593f
CB
4925@findex gdb.lookup_static_symbol
4926@defun gdb.lookup_static_symbol (name @r{[}, domain@r{]})
4927This function searches for a global symbol with static linkage by name.
4928The search scope can be restricted to by the domain argument.
4929
4930@var{name} is the name of the symbol. It must be a string.
4931The optional @var{domain} argument restricts the search to the domain type.
4932The @var{domain} argument must be a domain constant defined in the @code{gdb}
4933module and described later in this chapter.
4934
4935The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4936is not found.
4937
4938Note that this function will not find function-scoped static variables. To look
4939up such variables, iterate over the variables of the function's
4940@code{gdb.Block} and check that @code{block.addr_class} is
4941@code{gdb.SYMBOL_LOC_STATIC}.
09ff83af
AB
4942
4943There can be multiple global symbols with static linkage with the same
4944name. This function will only return the first matching symbol that
4945it finds. Which symbol is found depends on where @value{GDBN} is
4946currently stopped, as @value{GDBN} will first search for matching
4947symbols in the current object file, and then search all other object
4948files. If the application is not yet running then @value{GDBN} will
4949search all object files in the order they appear in the debug
4950information.
2906593f
CB
4951@end defun
4952
086baaf1
AB
4953@findex gdb.lookup_static_symbols
4954@defun gdb.lookup_static_symbols (name @r{[}, domain@r{]})
4955Similar to @code{gdb.lookup_static_symbol}, this function searches for
4956global symbols with static linkage by name, and optionally restricted
4957by the domain argument. However, this function returns a list of all
4958matching symbols found, not just the first one.
4959
4960@var{name} is the name of the symbol. It must be a string.
4961The optional @var{domain} argument restricts the search to the domain type.
4962The @var{domain} argument must be a domain constant defined in the @code{gdb}
4963module and described later in this chapter.
4964
4965The result is a list of @code{gdb.Symbol} objects which could be empty
4966if no matching symbols were found.
4967
4968Note that this function will not find function-scoped static variables. To look
4969up such variables, iterate over the variables of the function's
4970@code{gdb.Block} and check that @code{block.addr_class} is
4971@code{gdb.SYMBOL_LOC_STATIC}.
4972@end defun
4973
329baa95
DE
4974A @code{gdb.Symbol} object has the following attributes:
4975
4976@defvar Symbol.type
4977The type of the symbol or @code{None} if no type is recorded.
4978This attribute is represented as a @code{gdb.Type} object.
4979@xref{Types In Python}. This attribute is not writable.
4980@end defvar
4981
4982@defvar Symbol.symtab
4983The symbol table in which the symbol appears. This attribute is
4984represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4985Python}. This attribute is not writable.
4986@end defvar
4987
4988@defvar Symbol.line
4989The line number in the source code at which the symbol was defined.
4990This is an integer.
4991@end defvar
4992
4993@defvar Symbol.name
4994The name of the symbol as a string. This attribute is not writable.
4995@end defvar
4996
4997@defvar Symbol.linkage_name
4998The name of the symbol, as used by the linker (i.e., may be mangled).
4999This attribute is not writable.
5000@end defvar
5001
5002@defvar Symbol.print_name
5003The name of the symbol in a form suitable for output. This is either
5004@code{name} or @code{linkage_name}, depending on whether the user
5005asked @value{GDBN} to display demangled or mangled names.
5006@end defvar
5007
5008@defvar Symbol.addr_class
5009The address class of the symbol. This classifies how to find the value
5010of a symbol. Each address class is a constant defined in the
5011@code{gdb} module and described later in this chapter.
5012@end defvar
5013
5014@defvar Symbol.needs_frame
5015This is @code{True} if evaluating this symbol's value requires a frame
5016(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
5017local variables will require a frame, but other symbols will not.
5018@end defvar
5019
5020@defvar Symbol.is_argument
5021@code{True} if the symbol is an argument of a function.
5022@end defvar
5023
5024@defvar Symbol.is_constant
5025@code{True} if the symbol is a constant.
5026@end defvar
5027
5028@defvar Symbol.is_function
5029@code{True} if the symbol is a function or a method.
5030@end defvar
5031
5032@defvar Symbol.is_variable
5033@code{True} if the symbol is a variable.
5034@end defvar
5035
5036A @code{gdb.Symbol} object has the following methods:
5037
5038@defun Symbol.is_valid ()
5039Returns @code{True} if the @code{gdb.Symbol} object is valid,
5040@code{False} if not. A @code{gdb.Symbol} object can become invalid if
5041the symbol it refers to does not exist in @value{GDBN} any longer.
5042All other @code{gdb.Symbol} methods will throw an exception if it is
5043invalid at the time the method is called.
5044@end defun
5045
5046@defun Symbol.value (@r{[}frame@r{]})
5047Compute the value of the symbol, as a @code{gdb.Value}. For
5048functions, this computes the address of the function, cast to the
5049appropriate type. If the symbol requires a frame in order to compute
5050its value, then @var{frame} must be given. If @var{frame} is not
5051given, or if @var{frame} is invalid, then this method will throw an
5052exception.
5053@end defun
5054
5055The available domain categories in @code{gdb.Symbol} are represented
5056as constants in the @code{gdb} module:
5057
b3ce5e5f
DE
5058@vtable @code
5059@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
5060@item gdb.SYMBOL_UNDEF_DOMAIN
5061This is used when a domain has not been discovered or none of the
5062following domains apply. This usually indicates an error either
5063in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5064
5065@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
5066@item gdb.SYMBOL_VAR_DOMAIN
5067This domain contains variables, function names, typedef names and enum
5068type values.
b3ce5e5f
DE
5069
5070@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
5071@item gdb.SYMBOL_STRUCT_DOMAIN
5072This domain holds struct, union and enum type names.
b3ce5e5f
DE
5073
5074@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
5075@item gdb.SYMBOL_LABEL_DOMAIN
5076This domain contains names of labels (for gotos).
b3ce5e5f 5077
51e78fc5
TT
5078@vindex SYMBOL_MODULE_DOMAIN
5079@item gdb.SYMBOL_MODULE_DOMAIN
5080This domain contains names of Fortran module types.
5081
5082@vindex SYMBOL_COMMON_BLOCK_DOMAIN
5083@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
5084This domain contains names of Fortran common blocks.
b3ce5e5f 5085@end vtable
329baa95
DE
5086
5087The available address class categories in @code{gdb.Symbol} are represented
5088as constants in the @code{gdb} module:
5089
b3ce5e5f
DE
5090@vtable @code
5091@vindex SYMBOL_LOC_UNDEF
329baa95
DE
5092@item gdb.SYMBOL_LOC_UNDEF
5093If this is returned by address class, it indicates an error either in
5094the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5095
5096@vindex SYMBOL_LOC_CONST
329baa95
DE
5097@item gdb.SYMBOL_LOC_CONST
5098Value is constant int.
b3ce5e5f
DE
5099
5100@vindex SYMBOL_LOC_STATIC
329baa95
DE
5101@item gdb.SYMBOL_LOC_STATIC
5102Value is at a fixed address.
b3ce5e5f
DE
5103
5104@vindex SYMBOL_LOC_REGISTER
329baa95
DE
5105@item gdb.SYMBOL_LOC_REGISTER
5106Value is in a register.
b3ce5e5f
DE
5107
5108@vindex SYMBOL_LOC_ARG
329baa95
DE
5109@item gdb.SYMBOL_LOC_ARG
5110Value is an argument. This value is at the offset stored within the
5111symbol inside the frame's argument list.
b3ce5e5f
DE
5112
5113@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
5114@item gdb.SYMBOL_LOC_REF_ARG
5115Value address is stored in the frame's argument list. Just like
5116@code{LOC_ARG} except that the value's address is stored at the
5117offset, not the value itself.
b3ce5e5f
DE
5118
5119@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
5120@item gdb.SYMBOL_LOC_REGPARM_ADDR
5121Value is a specified register. Just like @code{LOC_REGISTER} except
5122the register holds the address of the argument instead of the argument
5123itself.
b3ce5e5f
DE
5124
5125@vindex SYMBOL_LOC_LOCAL
329baa95
DE
5126@item gdb.SYMBOL_LOC_LOCAL
5127Value is a local variable.
b3ce5e5f
DE
5128
5129@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
5130@item gdb.SYMBOL_LOC_TYPEDEF
5131Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
5132have this class.
b3ce5e5f
DE
5133
5134@vindex SYMBOL_LOC_BLOCK
329baa95
DE
5135@item gdb.SYMBOL_LOC_BLOCK
5136Value is a block.
b3ce5e5f
DE
5137
5138@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
5139@item gdb.SYMBOL_LOC_CONST_BYTES
5140Value is a byte-sequence.
b3ce5e5f
DE
5141
5142@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
5143@item gdb.SYMBOL_LOC_UNRESOLVED
5144Value is at a fixed address, but the address of the variable has to be
5145determined from the minimal symbol table whenever the variable is
5146referenced.
b3ce5e5f
DE
5147
5148@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
5149@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5150The value does not actually exist in the program.
b3ce5e5f
DE
5151
5152@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5153@item gdb.SYMBOL_LOC_COMPUTED
5154The value's address is a computed location.
51e78fc5
TT
5155
5156@vindex SYMBOL_LOC_COMPUTED
5157@item gdb.SYMBOL_LOC_COMPUTED
5158The value's address is a symbol. This is only used for Fortran common
5159blocks.
b3ce5e5f 5160@end vtable
329baa95
DE
5161
5162@node Symbol Tables In Python
849cba3b 5163@subsubsection Symbol table representation in Python
329baa95
DE
5164
5165@cindex symbol tables in python
5166@tindex gdb.Symtab
5167@tindex gdb.Symtab_and_line
5168
5169Access to symbol table data maintained by @value{GDBN} on the inferior
5170is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5171@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5172from the @code{find_sal} method in @code{gdb.Frame} object.
5173@xref{Frames In Python}.
5174
5175For more information on @value{GDBN}'s symbol table management, see
5176@ref{Symbols, ,Examining the Symbol Table}, for more information.
5177
5178A @code{gdb.Symtab_and_line} object has the following attributes:
5179
5180@defvar Symtab_and_line.symtab
5181The symbol table object (@code{gdb.Symtab}) for this frame.
5182This attribute is not writable.
5183@end defvar
5184
5185@defvar Symtab_and_line.pc
5186Indicates the start of the address range occupied by code for the
5187current source line. This attribute is not writable.
5188@end defvar
5189
5190@defvar Symtab_and_line.last
5191Indicates the end of the address range occupied by code for the current
5192source line. This attribute is not writable.
5193@end defvar
5194
5195@defvar Symtab_and_line.line
5196Indicates the current line number for this object. This
5197attribute is not writable.
5198@end defvar
5199
5200A @code{gdb.Symtab_and_line} object has the following methods:
5201
5202@defun Symtab_and_line.is_valid ()
5203Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5204@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5205invalid if the Symbol table and line object it refers to does not
5206exist in @value{GDBN} any longer. All other
5207@code{gdb.Symtab_and_line} methods will throw an exception if it is
5208invalid at the time the method is called.
5209@end defun
5210
5211A @code{gdb.Symtab} object has the following attributes:
5212
5213@defvar Symtab.filename
5214The symbol table's source filename. This attribute is not writable.
5215@end defvar
5216
5217@defvar Symtab.objfile
5218The symbol table's backing object file. @xref{Objfiles In Python}.
5219This attribute is not writable.
5220@end defvar
5221
2b4fd423
DE
5222@defvar Symtab.producer
5223The name and possibly version number of the program that
5224compiled the code in the symbol table.
5225The contents of this string is up to the compiler.
5226If no producer information is available then @code{None} is returned.
5227This attribute is not writable.
5228@end defvar
5229
329baa95
DE
5230A @code{gdb.Symtab} object has the following methods:
5231
5232@defun Symtab.is_valid ()
5233Returns @code{True} if the @code{gdb.Symtab} object is valid,
5234@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5235the symbol table it refers to does not exist in @value{GDBN} any
5236longer. All other @code{gdb.Symtab} methods will throw an exception
5237if it is invalid at the time the method is called.
5238@end defun
5239
5240@defun Symtab.fullname ()
5241Return the symbol table's source absolute file name.
5242@end defun
5243
5244@defun Symtab.global_block ()
5245Return the global block of the underlying symbol table.
5246@xref{Blocks In Python}.
5247@end defun
5248
5249@defun Symtab.static_block ()
5250Return the static block of the underlying symbol table.
5251@xref{Blocks In Python}.
5252@end defun
5253
5254@defun Symtab.linetable ()
5255Return the line table associated with the symbol table.
5256@xref{Line Tables In Python}.
5257@end defun
5258
5259@node Line Tables In Python
5260@subsubsection Manipulating line tables using Python
5261
5262@cindex line tables in python
5263@tindex gdb.LineTable
5264
5265Python code can request and inspect line table information from a
5266symbol table that is loaded in @value{GDBN}. A line table is a
5267mapping of source lines to their executable locations in memory. To
5268acquire the line table information for a particular symbol table, use
5269the @code{linetable} function (@pxref{Symbol Tables In Python}).
5270
5271A @code{gdb.LineTable} is iterable. The iterator returns
5272@code{LineTableEntry} objects that correspond to the source line and
5273address for each line table entry. @code{LineTableEntry} objects have
5274the following attributes:
5275
5276@defvar LineTableEntry.line
5277The source line number for this line table entry. This number
5278corresponds to the actual line of source. This attribute is not
5279writable.
5280@end defvar
5281
5282@defvar LineTableEntry.pc
5283The address that is associated with the line table entry where the
5284executable code for that source line resides in memory. This
5285attribute is not writable.
5286@end defvar
5287
5288As there can be multiple addresses for a single source line, you may
5289receive multiple @code{LineTableEntry} objects with matching
5290@code{line} attributes, but with different @code{pc} attributes. The
5291iterator is sorted in ascending @code{pc} order. Here is a small
5292example illustrating iterating over a line table.
5293
5294@smallexample
5295symtab = gdb.selected_frame().find_sal().symtab
5296linetable = symtab.linetable()
5297for line in linetable:
f3bdc2db 5298 print ("Line: "+str(line.line)+" Address: "+hex(line.pc))
329baa95
DE
5299@end smallexample
5300
5301This will have the following output:
5302
5303@smallexample
5304Line: 33 Address: 0x4005c8L
5305Line: 37 Address: 0x4005caL
5306Line: 39 Address: 0x4005d2L
5307Line: 40 Address: 0x4005f8L
5308Line: 42 Address: 0x4005ffL
5309Line: 44 Address: 0x400608L
5310Line: 42 Address: 0x40060cL
5311Line: 45 Address: 0x400615L
5312@end smallexample
5313
5314In addition to being able to iterate over a @code{LineTable}, it also
5315has the following direct access methods:
5316
5317@defun LineTable.line (line)
5318Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5319entries in the line table for the given @var{line}, which specifies
5320the source code line. If there are no entries for that source code
329baa95
DE
5321@var{line}, the Python @code{None} is returned.
5322@end defun
5323
5324@defun LineTable.has_line (line)
5325Return a Python @code{Boolean} indicating whether there is an entry in
5326the line table for this source line. Return @code{True} if an entry
5327is found, or @code{False} if not.
5328@end defun
5329
5330@defun LineTable.source_lines ()
5331Return a Python @code{List} of the source line numbers in the symbol
5332table. Only lines with executable code locations are returned. The
5333contents of the @code{List} will just be the source line entries
5334represented as Python @code{Long} values.
5335@end defun
5336
5337@node Breakpoints In Python
5338@subsubsection Manipulating breakpoints using Python
5339
5340@cindex breakpoints in python
5341@tindex gdb.Breakpoint
5342
5343Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5344class.
5345
0b982d68
SM
5346A breakpoint can be created using one of the two forms of the
5347@code{gdb.Breakpoint} constructor. The first one accepts a string
5348like one would pass to the @code{break}
5349(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5350(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5351create both breakpoints and watchpoints. The second accepts separate Python
5352arguments similar to @ref{Explicit Locations}, and can only be used to create
5353breakpoints.
5354
b89641ba 5355@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5356Create a new breakpoint according to @var{spec}, which is a string naming the
5357location of a breakpoint, or an expression that defines a watchpoint. The
5358string should describe a location in a format recognized by the @code{break}
5359command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5360watchpoint, by the @code{watch} command
5361(@pxref{Set Watchpoints, , Setting Watchpoints}).
5362
5363The optional @var{type} argument specifies the type of the breakpoint to create,
5364as defined below.
5365
5366The optional @var{wp_class} argument defines the class of watchpoint to create,
5367if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5368defaults to @code{gdb.WP_WRITE}.
5369
5370The optional @var{internal} argument allows the breakpoint to become invisible
5371to the user. The breakpoint will neither be reported when created, nor will it
5372be listed in the output from @code{info breakpoints} (but will be listed with
5373the @code{maint info breakpoints} command).
5374
5375The optional @var{temporary} argument makes the breakpoint a temporary
5376breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5377further access to the Python breakpoint after it has been hit will result in a
5378runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5379
5380The optional @var{qualified} argument is a boolean that allows interpreting
5381the function passed in @code{spec} as a fully-qualified name. It is equivalent
5382to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5383@ref{Explicit Locations}).
5384
0b982d68
SM
5385@end defun
5386
b89641ba 5387@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5388This second form of creating a new breakpoint specifies the explicit
5389location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5390be created in the specified source file @var{source}, at the specified
5391@var{function}, @var{label} and @var{line}.
5392
b89641ba
SM
5393@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5394explained previously.
329baa95
DE
5395@end defun
5396
cda75e70
TT
5397The available types are represented by constants defined in the @code{gdb}
5398module:
5399
5400@vtable @code
5401@vindex BP_BREAKPOINT
5402@item gdb.BP_BREAKPOINT
5403Normal code breakpoint.
5404
325d39e4
HD
5405@vindex BP_HARDWARE_BREAKPOINT
5406@item gdb.BP_HARDWARE_BREAKPOINT
5407Hardware assisted code breakpoint.
5408
cda75e70
TT
5409@vindex BP_WATCHPOINT
5410@item gdb.BP_WATCHPOINT
5411Watchpoint breakpoint.
5412
5413@vindex BP_HARDWARE_WATCHPOINT
5414@item gdb.BP_HARDWARE_WATCHPOINT
5415Hardware assisted watchpoint.
5416
5417@vindex BP_READ_WATCHPOINT
5418@item gdb.BP_READ_WATCHPOINT
5419Hardware assisted read watchpoint.
5420
5421@vindex BP_ACCESS_WATCHPOINT
5422@item gdb.BP_ACCESS_WATCHPOINT
5423Hardware assisted access watchpoint.
5424@end vtable
5425
5426The available watchpoint types represented by constants are defined in the
5427@code{gdb} module:
5428
5429@vtable @code
5430@vindex WP_READ
5431@item gdb.WP_READ
5432Read only watchpoint.
5433
5434@vindex WP_WRITE
5435@item gdb.WP_WRITE
5436Write only watchpoint.
5437
5438@vindex WP_ACCESS
5439@item gdb.WP_ACCESS
5440Read/Write watchpoint.
5441@end vtable
5442
329baa95
DE
5443@defun Breakpoint.stop (self)
5444The @code{gdb.Breakpoint} class can be sub-classed and, in
5445particular, you may choose to implement the @code{stop} method.
5446If this method is defined in a sub-class of @code{gdb.Breakpoint},
5447it will be called when the inferior reaches any location of a
5448breakpoint which instantiates that sub-class. If the method returns
5449@code{True}, the inferior will be stopped at the location of the
5450breakpoint, otherwise the inferior will continue.
5451
5452If there are multiple breakpoints at the same location with a
5453@code{stop} method, each one will be called regardless of the
5454return status of the previous. This ensures that all @code{stop}
5455methods have a chance to execute at that location. In this scenario
5456if one of the methods returns @code{True} but the others return
5457@code{False}, the inferior will still be stopped.
5458
5459You should not alter the execution state of the inferior (i.e.@:, step,
5460next, etc.), alter the current frame context (i.e.@:, change the current
5461active frame), or alter, add or delete any breakpoint. As a general
5462rule, you should not alter any data within @value{GDBN} or the inferior
5463at this time.
5464
5465Example @code{stop} implementation:
5466
5467@smallexample
5468class MyBreakpoint (gdb.Breakpoint):
5469 def stop (self):
5470 inf_val = gdb.parse_and_eval("foo")
5471 if inf_val == 3:
5472 return True
5473 return False
5474@end smallexample
5475@end defun
5476
329baa95
DE
5477@defun Breakpoint.is_valid ()
5478Return @code{True} if this @code{Breakpoint} object is valid,
5479@code{False} otherwise. A @code{Breakpoint} object can become invalid
5480if the user deletes the breakpoint. In this case, the object still
5481exists, but the underlying breakpoint does not. In the cases of
5482watchpoint scope, the watchpoint remains valid even if execution of the
5483inferior leaves the scope of that watchpoint.
5484@end defun
5485
fab3a15d 5486@defun Breakpoint.delete ()
329baa95
DE
5487Permanently deletes the @value{GDBN} breakpoint. This also
5488invalidates the Python @code{Breakpoint} object. Any further access
5489to this object's attributes or methods will raise an error.
5490@end defun
5491
5492@defvar Breakpoint.enabled
5493This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5494@code{False} otherwise. This attribute is writable. You can use it to enable
5495or disable the breakpoint.
329baa95
DE
5496@end defvar
5497
5498@defvar Breakpoint.silent
5499This attribute is @code{True} if the breakpoint is silent, and
5500@code{False} otherwise. This attribute is writable.
5501
5502Note that a breakpoint can also be silent if it has commands and the
5503first command is @code{silent}. This is not reported by the
5504@code{silent} attribute.
5505@end defvar
5506
93daf339
TT
5507@defvar Breakpoint.pending
5508This attribute is @code{True} if the breakpoint is pending, and
5509@code{False} otherwise. @xref{Set Breaks}. This attribute is
5510read-only.
5511@end defvar
5512
22a02324 5513@anchor{python_breakpoint_thread}
329baa95 5514@defvar Breakpoint.thread
5d5658a1
PA
5515If the breakpoint is thread-specific, this attribute holds the
5516thread's global id. If the breakpoint is not thread-specific, this
5517attribute is @code{None}. This attribute is writable.
329baa95
DE
5518@end defvar
5519
5520@defvar Breakpoint.task
5521If the breakpoint is Ada task-specific, this attribute holds the Ada task
5522id. If the breakpoint is not task-specific (or the underlying
5523language is not Ada), this attribute is @code{None}. This attribute
5524is writable.
5525@end defvar
5526
5527@defvar Breakpoint.ignore_count
5528This attribute holds the ignore count for the breakpoint, an integer.
5529This attribute is writable.
5530@end defvar
5531
5532@defvar Breakpoint.number
5533This attribute holds the breakpoint's number --- the identifier used by
5534the user to manipulate the breakpoint. This attribute is not writable.
5535@end defvar
5536
5537@defvar Breakpoint.type
5538This attribute holds the breakpoint's type --- the identifier used to
5539determine the actual breakpoint type or use-case. This attribute is not
5540writable.
5541@end defvar
5542
5543@defvar Breakpoint.visible
5544This attribute tells whether the breakpoint is visible to the user
5545when set, or when the @samp{info breakpoints} command is run. This
5546attribute is not writable.
5547@end defvar
5548
5549@defvar Breakpoint.temporary
5550This attribute indicates whether the breakpoint was created as a
5551temporary breakpoint. Temporary breakpoints are automatically deleted
5552after that breakpoint has been hit. Access to this attribute, and all
5553other attributes and functions other than the @code{is_valid}
5554function, will result in an error after the breakpoint has been hit
5555(as it has been automatically deleted). This attribute is not
5556writable.
5557@end defvar
5558
329baa95
DE
5559@defvar Breakpoint.hit_count
5560This attribute holds the hit count for the breakpoint, an integer.
5561This attribute is writable, but currently it can only be set to zero.
5562@end defvar
5563
5564@defvar Breakpoint.location
5565This attribute holds the location of the breakpoint, as specified by
5566the user. It is a string. If the breakpoint does not have a location
5567(that is, it is a watchpoint) the attribute's value is @code{None}. This
5568attribute is not writable.
5569@end defvar
5570
5571@defvar Breakpoint.expression
5572This attribute holds a breakpoint expression, as specified by
5573the user. It is a string. If the breakpoint does not have an
5574expression (the breakpoint is not a watchpoint) the attribute's value
5575is @code{None}. This attribute is not writable.
5576@end defvar
5577
5578@defvar Breakpoint.condition
5579This attribute holds the condition of the breakpoint, as specified by
5580the user. It is a string. If there is no condition, this attribute's
5581value is @code{None}. This attribute is writable.
5582@end defvar
5583
5584@defvar Breakpoint.commands
5585This attribute holds the commands attached to the breakpoint. If
5586there are commands, this attribute's value is a string holding all the
5587commands, separated by newlines. If there are no commands, this
a913fffb 5588attribute is @code{None}. This attribute is writable.
329baa95
DE
5589@end defvar
5590
5591@node Finish Breakpoints in Python
5592@subsubsection Finish Breakpoints
5593
5594@cindex python finish breakpoints
5595@tindex gdb.FinishBreakpoint
5596
5597A finish breakpoint is a temporary breakpoint set at the return address of
5598a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5599extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5600and deleted when the execution will run out of the breakpoint scope (i.e.@:
5601@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5602Finish breakpoints are thread specific and must be create with the right
5603thread selected.
5604
5605@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5606Create a finish breakpoint at the return address of the @code{gdb.Frame}
5607object @var{frame}. If @var{frame} is not provided, this defaults to the
5608newest frame. The optional @var{internal} argument allows the breakpoint to
5609become invisible to the user. @xref{Breakpoints In Python}, for further
5610details about this argument.
5611@end defun
5612
5613@defun FinishBreakpoint.out_of_scope (self)
5614In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5615@code{return} command, @dots{}), a function may not properly terminate, and
5616thus never hit the finish breakpoint. When @value{GDBN} notices such a
5617situation, the @code{out_of_scope} callback will be triggered.
5618
5619You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5620method:
5621
5622@smallexample
5623class MyFinishBreakpoint (gdb.FinishBreakpoint)
5624 def stop (self):
f3bdc2db 5625 print ("normal finish")
329baa95
DE
5626 return True
5627
5628 def out_of_scope ():
f3bdc2db 5629 print ("abnormal finish")
329baa95
DE
5630@end smallexample
5631@end defun
5632
5633@defvar FinishBreakpoint.return_value
5634When @value{GDBN} is stopped at a finish breakpoint and the frame
5635used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5636attribute will contain a @code{gdb.Value} object corresponding to the return
5637value of the function. The value will be @code{None} if the function return
5638type is @code{void} or if the return value was not computable. This attribute
5639is not writable.
5640@end defvar
5641
5642@node Lazy Strings In Python
849cba3b 5643@subsubsection Python representation of lazy strings
329baa95
DE
5644
5645@cindex lazy strings in python
5646@tindex gdb.LazyString
5647
5648A @dfn{lazy string} is a string whose contents is not retrieved or
5649encoded until it is needed.
5650
5651A @code{gdb.LazyString} is represented in @value{GDBN} as an
5652@code{address} that points to a region of memory, an @code{encoding}
5653that will be used to encode that region of memory, and a @code{length}
5654to delimit the region of memory that represents the string. The
5655difference between a @code{gdb.LazyString} and a string wrapped within
5656a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5657differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5658retrieved and encoded during printing, while a @code{gdb.Value}
5659wrapping a string is immediately retrieved and encoded on creation.
5660
5661A @code{gdb.LazyString} object has the following functions:
5662
5663@defun LazyString.value ()
5664Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5665will point to the string in memory, but will lose all the delayed
5666retrieval, encoding and handling that @value{GDBN} applies to a
5667@code{gdb.LazyString}.
5668@end defun
5669
5670@defvar LazyString.address
5671This attribute holds the address of the string. This attribute is not
5672writable.
5673@end defvar
5674
5675@defvar LazyString.length
5676This attribute holds the length of the string in characters. If the
5677length is -1, then the string will be fetched and encoded up to the
5678first null of appropriate width. This attribute is not writable.
5679@end defvar
5680
5681@defvar LazyString.encoding
5682This attribute holds the encoding that will be applied to the string
5683when the string is printed by @value{GDBN}. If the encoding is not
5684set, or contains an empty string, then @value{GDBN} will select the
5685most appropriate encoding when the string is printed. This attribute
5686is not writable.
5687@end defvar
5688
5689@defvar LazyString.type
5690This attribute holds the type that is represented by the lazy string's
f8d99587 5691type. For a lazy string this is a pointer or array type. To
329baa95
DE
5692resolve this to the lazy string's character type, use the type's
5693@code{target} method. @xref{Types In Python}. This attribute is not
5694writable.
5695@end defvar
5696
5697@node Architectures In Python
5698@subsubsection Python representation of architectures
5699@cindex Python architectures
5700
5701@value{GDBN} uses architecture specific parameters and artifacts in a
5702number of its various computations. An architecture is represented
5703by an instance of the @code{gdb.Architecture} class.
5704
5705A @code{gdb.Architecture} class has the following methods:
5706
5707@defun Architecture.name ()
5708Return the name (string value) of the architecture.
5709@end defun
5710
5711@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5712Return a list of disassembled instructions starting from the memory
5713address @var{start_pc}. The optional arguments @var{end_pc} and
5714@var{count} determine the number of instructions in the returned list.
5715If both the optional arguments @var{end_pc} and @var{count} are
5716specified, then a list of at most @var{count} disassembled instructions
5717whose start address falls in the closed memory address interval from
5718@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5719specified, but @var{count} is specified, then @var{count} number of
5720instructions starting from the address @var{start_pc} are returned. If
5721@var{count} is not specified but @var{end_pc} is specified, then all
5722instructions whose start address falls in the closed memory address
5723interval from @var{start_pc} to @var{end_pc} are returned. If neither
5724@var{end_pc} nor @var{count} are specified, then a single instruction at
5725@var{start_pc} is returned. For all of these cases, each element of the
5726returned list is a Python @code{dict} with the following string keys:
5727
5728@table @code
5729
5730@item addr
5731The value corresponding to this key is a Python long integer capturing
5732the memory address of the instruction.
5733
5734@item asm
5735The value corresponding to this key is a string value which represents
5736the instruction with assembly language mnemonics. The assembly
5737language flavor used is the same as that specified by the current CLI
5738variable @code{disassembly-flavor}. @xref{Machine Code}.
5739
5740@item length
5741The value corresponding to this key is the length (integer value) of the
5742instruction in bytes.
5743
5744@end table
5745@end defun
5746
0f767f94
AB
5747@anchor{gdbpy_architecture_registers}
5748@defun Architecture.registers (@r{[} @var{reggroup} @r{]})
5749Return a @code{gdb.RegisterDescriptorIterator} (@pxref{Registers In
5750Python}) for all of the registers in @var{reggroup}, a string that is
5751the name of a register group. If @var{reggroup} is omitted, or is the
5752empty string, then the register group @samp{all} is assumed.
5753@end defun
5754
64cb3757
AB
5755@anchor{gdbpy_architecture_reggroups}
5756@defun Architecture.register_groups ()
5757Return a @code{gdb.RegisterGroupsIterator} (@pxref{Registers In
5758Python}) for all of the register groups available for the
5759@code{gdb.Architecture}.
5760@end defun
5761
0f767f94
AB
5762@node Registers In Python
5763@subsubsection Registers In Python
5764@cindex Registers In Python
5765
5766Python code can request from a @code{gdb.Architecture} information
5767about the set of registers available
5768(@pxref{gdbpy_architecture_registers,,@code{Architecture.registers}}).
5769The register information is returned as a
5770@code{gdb.RegisterDescriptorIterator}, which is an iterator that in
5771turn returns @code{gdb.RegisterDescriptor} objects.
5772
5773A @code{gdb.RegisterDescriptor} does not provide the value of a
5774register (@pxref{gdbpy_frame_read_register,,@code{Frame.read_register}}
5775for reading a register's value), instead the @code{RegisterDescriptor}
5776is a way to discover which registers are available for a particular
5777architecture.
5778
5779A @code{gdb.RegisterDescriptor} has the following read-only properties:
5780
5781@defvar RegisterDescriptor.name
5782The name of this register.
5783@end defvar
5784
14fa8fb3
AB
5785It is also possible to lookup a register descriptor based on its name
5786using the following @code{gdb.RegisterDescriptorIterator} function:
5787
5788@defun RegisterDescriptorIterator.find (@var{name})
5789Takes @var{name} as an argument, which must be a string, and returns a
5790@code{gdb.RegisterDescriptor} for the register with that name, or
5791@code{None} if there is no register with that name.
5792@end defun
5793
64cb3757
AB
5794Python code can also request from a @code{gdb.Architecture}
5795information about the set of register groups available on a given
5796architecture
5797(@pxref{gdbpy_architecture_reggroups,,@code{Architecture.register_groups}}).
5798
5799Every register can be a member of zero or more register groups. Some
5800register groups are used internally within @value{GDBN} to control
5801things like which registers must be saved when calling into the
5802program being debugged (@pxref{Calling,,Calling Program Functions}).
5803Other register groups exist to allow users to easily see related sets
5804of registers in commands like @code{info registers}
5805(@pxref{info_registers_reggroup,,@code{info registers
5806@var{reggroup}}}).
5807
5808The register groups information is returned as a
5809@code{gdb.RegisterGroupsIterator}, which is an iterator that in turn
5810returns @code{gdb.RegisterGroup} objects.
5811
5812A @code{gdb.RegisterGroup} object has the following read-only
5813properties:
5814
5815@defvar RegisterGroup.name
5816A string that is the name of this register group.
5817@end defvar
5818
01b1af32
TT
5819@node TUI Windows In Python
5820@subsubsection Implementing new TUI windows
5821@cindex Python TUI Windows
5822
5823New TUI (@pxref{TUI}) windows can be implemented in Python.
5824
5825@findex gdb.register_window_type
5826@defun gdb.register_window_type (@var{name}, @var{factory})
5827Because TUI windows are created and destroyed depending on the layout
5828the user chooses, new window types are implemented by registering a
5829factory function with @value{GDBN}.
5830
5831@var{name} is the name of the new window. It's an error to try to
5832replace one of the built-in windows, but other window types can be
5833replaced.
5834
5835@var{function} is a factory function that is called to create the TUI
5836window. This is called with a single argument of type
5837@code{gdb.TuiWindow}, described below. It should return an object
5838that implements the TUI window protocol, also described below.
5839@end defun
5840
e8460459 5841As mentioned above, when a factory function is called, it is passed
01b1af32
TT
5842an object of type @code{gdb.TuiWindow}. This object has these
5843methods and attributes:
5844
5845@defun TuiWindow.is_valid ()
5846This method returns @code{True} when this window is valid. When the
5847user changes the TUI layout, windows no longer visible in the new
5848layout will be destroyed. At this point, the @code{gdb.TuiWindow}
5849will no longer be valid, and methods (and attributes) other than
5850@code{is_valid} will throw an exception.
29db1eb3
AB
5851
5852When the TUI is disabled using @code{tui disable} (@pxref{TUI
5853Commands,,tui disable}) the window is hidden rather than destroyed,
5854but @code{is_valid} will still return @code{False} and other methods
5855(and attributes) will still throw an exception.
01b1af32
TT
5856@end defun
5857
5858@defvar TuiWindow.width
5859This attribute holds the width of the window. It is not writable.
5860@end defvar
5861
5862@defvar TuiWindow.height
5863This attribute holds the height of the window. It is not writable.
5864@end defvar
5865
5866@defvar TuiWindow.title
5867This attribute holds the window's title, a string. This is normally
5868displayed above the window. This attribute can be modified.
5869@end defvar
5870
5871@defun TuiWindow.erase ()
5872Remove all the contents of the window.
5873@end defun
5874
5875@defun TuiWindow.write (@var{string})
5876Write @var{string} to the window. @var{string} can contain ANSI
5877terminal escape styling sequences; @value{GDBN} will translate these
5878as appropriate for the terminal.
5879@end defun
5880
5881The factory function that you supply should return an object
5882conforming to the TUI window protocol. These are the method that can
5883be called on this object, which is referred to below as the ``window
5884object''. The methods documented below are optional; if the object
5885does not implement one of these methods, @value{GDBN} will not attempt
5886to call it. Additional new methods may be added to the window
5887protocol in the future. @value{GDBN} guarantees that they will begin
5888with a lower-case letter, so you can start implementation methods with
5889upper-case letters or underscore to avoid any future conflicts.
5890
5891@defun Window.close ()
5892When the TUI window is closed, the @code{gdb.TuiWindow} object will be
5893put into an invalid state. At this time, @value{GDBN} will call
5894@code{close} method on the window object.
5895
5896After this method is called, @value{GDBN} will discard any references
5897it holds on this window object, and will no longer call methods on
5898this object.
5899@end defun
5900
5901@defun Window.render ()
5902In some situations, a TUI window can change size. For example, this
5903can happen if the user resizes the terminal, or changes the layout.
5904When this happens, @value{GDBN} will call the @code{render} method on
5905the window object.
5906
5907If your window is intended to update in response to changes in the
5908inferior, you will probably also want to register event listeners and
5909send output to the @code{gdb.TuiWindow}.
5910@end defun
5911
5912@defun Window.hscroll (@var{num})
5913This is a request to scroll the window horizontally. @var{num} is the
5914amount by which to scroll, with negative numbers meaning to scroll
5915right. In the TUI model, it is the viewport that moves, not the
5916contents. A positive argument should cause the viewport to move
5917right, and so the content should appear to move to the left.
5918@end defun
5919
5920@defun Window.vscroll (@var{num})
5921This is a request to scroll the window vertically. @var{num} is the
5922amount by which to scroll, with negative numbers meaning to scroll
5923backward. In the TUI model, it is the viewport that moves, not the
5924contents. A positive argument should cause the viewport to move down,
5925and so the content should appear to move up.
5926@end defun
5927
329baa95
DE
5928@node Python Auto-loading
5929@subsection Python Auto-loading
5930@cindex Python auto-loading
5931
5932When a new object file is read (for example, due to the @code{file}
5933command, or because the inferior has loaded a shared library),
5934@value{GDBN} will look for Python support scripts in several ways:
5935@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5936@xref{Auto-loading extensions}.
5937
5938The auto-loading feature is useful for supplying application-specific
5939debugging commands and scripts.
5940
5941Auto-loading can be enabled or disabled,
5942and the list of auto-loaded scripts can be printed.
5943
5944@table @code
5945@anchor{set auto-load python-scripts}
5946@kindex set auto-load python-scripts
5947@item set auto-load python-scripts [on|off]
5948Enable or disable the auto-loading of Python scripts.
5949
5950@anchor{show auto-load python-scripts}
5951@kindex show auto-load python-scripts
5952@item show auto-load python-scripts
5953Show whether auto-loading of Python scripts is enabled or disabled.
5954
5955@anchor{info auto-load python-scripts}
5956@kindex info auto-load python-scripts
5957@cindex print list of auto-loaded Python scripts
5958@item info auto-load python-scripts [@var{regexp}]
5959Print the list of all Python scripts that @value{GDBN} auto-loaded.
5960
5961Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5962the @code{.debug_gdb_scripts} section and were either not found
5963(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5964@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5965This is useful because their names are not printed when @value{GDBN}
5966tries to load them and fails. There may be many of them, and printing
5967an error message for each one is problematic.
5968
5969If @var{regexp} is supplied only Python scripts with matching names are printed.
5970
5971Example:
5972
5973@smallexample
5974(gdb) info auto-load python-scripts
5975Loaded Script
5976Yes py-section-script.py
5977 full name: /tmp/py-section-script.py
5978No my-foo-pretty-printers.py
5979@end smallexample
5980@end table
5981
9f050062 5982When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5983@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5984function (@pxref{Objfiles In Python}). This can be useful for
5985registering objfile-specific pretty-printers and frame-filters.
5986
5987@node Python modules
5988@subsection Python modules
5989@cindex python modules
5990
5991@value{GDBN} comes with several modules to assist writing Python code.
5992
5993@menu
5994* gdb.printing:: Building and registering pretty-printers.
5995* gdb.types:: Utilities for working with types.
5996* gdb.prompt:: Utilities for prompt value substitution.
5997@end menu
5998
5999@node gdb.printing
6000@subsubsection gdb.printing
6001@cindex gdb.printing
6002
6003This module provides a collection of utilities for working with
6004pretty-printers.
6005
6006@table @code
6007@item PrettyPrinter (@var{name}, @var{subprinters}=None)
6008This class specifies the API that makes @samp{info pretty-printer},
6009@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
6010Pretty-printers should generally inherit from this class.
6011
6012@item SubPrettyPrinter (@var{name})
6013For printers that handle multiple types, this class specifies the
6014corresponding API for the subprinters.
6015
6016@item RegexpCollectionPrettyPrinter (@var{name})
6017Utility class for handling multiple printers, all recognized via
6018regular expressions.
6019@xref{Writing a Pretty-Printer}, for an example.
6020
6021@item FlagEnumerationPrinter (@var{name})
6022A pretty-printer which handles printing of @code{enum} values. Unlike
6023@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
6024work properly when there is some overlap between the enumeration
697aa1b7
EZ
6025constants. The argument @var{name} is the name of the printer and
6026also the name of the @code{enum} type to look up.
329baa95
DE
6027
6028@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
6029Register @var{printer} with the pretty-printer list of @var{obj}.
6030If @var{replace} is @code{True} then any existing copy of the printer
6031is replaced. Otherwise a @code{RuntimeError} exception is raised
6032if a printer with the same name already exists.
6033@end table
6034
6035@node gdb.types
6036@subsubsection gdb.types
6037@cindex gdb.types
6038
6039This module provides a collection of utilities for working with
6040@code{gdb.Type} objects.
6041
6042@table @code
6043@item get_basic_type (@var{type})
6044Return @var{type} with const and volatile qualifiers stripped,
6045and with typedefs and C@t{++} references converted to the underlying type.
6046
6047C@t{++} example:
6048
6049@smallexample
6050typedef const int const_int;
6051const_int foo (3);
6052const_int& foo_ref (foo);
6053int main () @{ return 0; @}
6054@end smallexample
6055
6056Then in gdb:
6057
6058@smallexample
6059(gdb) start
6060(gdb) python import gdb.types
6061(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
6062(gdb) python print gdb.types.get_basic_type(foo_ref.type)
6063int
6064@end smallexample
6065
6066@item has_field (@var{type}, @var{field})
6067Return @code{True} if @var{type}, assumed to be a type with fields
6068(e.g., a structure or union), has field @var{field}.
6069
6070@item make_enum_dict (@var{enum_type})
6071Return a Python @code{dictionary} type produced from @var{enum_type}.
6072
6073@item deep_items (@var{type})
6074Returns a Python iterator similar to the standard
6075@code{gdb.Type.iteritems} method, except that the iterator returned
6076by @code{deep_items} will recursively traverse anonymous struct or
6077union fields. For example:
6078
6079@smallexample
6080struct A
6081@{
6082 int a;
6083 union @{
6084 int b0;
6085 int b1;
6086 @};
6087@};
6088@end smallexample
6089
6090@noindent
6091Then in @value{GDBN}:
6092@smallexample
6093(@value{GDBP}) python import gdb.types
6094(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
6095(@value{GDBP}) python print struct_a.keys ()
6096@{['a', '']@}
6097(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
6098@{['a', 'b0', 'b1']@}
6099@end smallexample
6100
6101@item get_type_recognizers ()
6102Return a list of the enabled type recognizers for the current context.
6103This is called by @value{GDBN} during the type-printing process
6104(@pxref{Type Printing API}).
6105
6106@item apply_type_recognizers (recognizers, type_obj)
6107Apply the type recognizers, @var{recognizers}, to the type object
6108@var{type_obj}. If any recognizer returns a string, return that
6109string. Otherwise, return @code{None}. This is called by
6110@value{GDBN} during the type-printing process (@pxref{Type Printing
6111API}).
6112
6113@item register_type_printer (locus, printer)
697aa1b7
EZ
6114This is a convenience function to register a type printer
6115@var{printer}. The printer must implement the type printer protocol.
6116The @var{locus} argument is either a @code{gdb.Objfile}, in which case
6117the printer is registered with that objfile; a @code{gdb.Progspace},
6118in which case the printer is registered with that progspace; or
6119@code{None}, in which case the printer is registered globally.
329baa95
DE
6120
6121@item TypePrinter
6122This is a base class that implements the type printer protocol. Type
6123printers are encouraged, but not required, to derive from this class.
6124It defines a constructor:
6125
6126@defmethod TypePrinter __init__ (self, name)
6127Initialize the type printer with the given name. The new printer
6128starts in the enabled state.
6129@end defmethod
6130
6131@end table
6132
6133@node gdb.prompt
6134@subsubsection gdb.prompt
6135@cindex gdb.prompt
6136
6137This module provides a method for prompt value-substitution.
6138
6139@table @code
6140@item substitute_prompt (@var{string})
6141Return @var{string} with escape sequences substituted by values. Some
6142escape sequences take arguments. You can specify arguments inside
6143``@{@}'' immediately following the escape sequence.
6144
6145The escape sequences you can pass to this function are:
6146
6147@table @code
6148@item \\
6149Substitute a backslash.
6150@item \e
6151Substitute an ESC character.
6152@item \f
6153Substitute the selected frame; an argument names a frame parameter.
6154@item \n
6155Substitute a newline.
6156@item \p
6157Substitute a parameter's value; the argument names the parameter.
6158@item \r
6159Substitute a carriage return.
6160@item \t
6161Substitute the selected thread; an argument names a thread parameter.
6162@item \v
6163Substitute the version of GDB.
6164@item \w
6165Substitute the current working directory.
6166@item \[
6167Begin a sequence of non-printing characters. These sequences are
6168typically used with the ESC character, and are not counted in the string
6169length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
6170blue-colored ``(gdb)'' prompt where the length is five.
6171@item \]
6172End a sequence of non-printing characters.
6173@end table
6174
6175For example:
6176
6177@smallexample
77bb17b6 6178substitute_prompt ("frame: \f, args: \p@{print frame-arguments@}")
329baa95
DE
6179@end smallexample
6180
6181@exdent will return the string:
6182
6183@smallexample
77bb17b6 6184"frame: main, args: scalars"
329baa95
DE
6185@end smallexample
6186@end table
This page took 0.824041 seconds and 4 git commands to generate.