Allow TUI windows in Python
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
b811d2c2 1@c Copyright (C) 2008--2020 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
329baa95
DE
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
116@end table
117
118@node Python API
119@subsection Python API
120@cindex python api
121@cindex programming in python
122
123You can get quick online help for @value{GDBN}'s Python API by issuing
124the command @w{@kbd{python help (gdb)}}.
125
126Functions and methods which have two or more optional arguments allow
127them to be specified using keyword syntax. This allows passing some
128optional arguments while skipping others. Example:
129@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
130
131@menu
132* Basic Python:: Basic Python Functions.
133* Exception Handling:: How Python exceptions are translated.
134* Values From Inferior:: Python representation of values.
135* Types In Python:: Python representation of types.
136* Pretty Printing API:: Pretty-printing values.
137* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
138* Writing a Pretty-Printer:: Writing a Pretty-Printer.
139* Type Printing API:: Pretty-printing types.
140* Frame Filter API:: Filtering Frames.
141* Frame Decorator API:: Decorating Frames.
142* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 143* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
144* Xmethods In Python:: Adding and replacing methods of C++ classes.
145* Xmethod API:: Xmethod types.
146* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
147* Inferiors In Python:: Python representation of inferiors (processes)
148* Events In Python:: Listening for events from @value{GDBN}.
149* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 150* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
151* Commands In Python:: Implementing new commands in Python.
152* Parameters In Python:: Adding new @value{GDBN} parameters.
153* Functions In Python:: Writing new convenience functions.
154* Progspaces In Python:: Program spaces.
155* Objfiles In Python:: Object files.
156* Frames In Python:: Accessing inferior stack frames from Python.
157* Blocks In Python:: Accessing blocks from Python.
158* Symbols In Python:: Python representation of symbols.
159* Symbol Tables In Python:: Python representation of symbol tables.
160* Line Tables In Python:: Python representation of line tables.
161* Breakpoints In Python:: Manipulating breakpoints using Python.
162* Finish Breakpoints in Python:: Setting Breakpoints on function return
163 using Python.
164* Lazy Strings In Python:: Python representation of lazy strings.
165* Architectures In Python:: Python representation of architectures.
01b1af32 166* TUI Windows In Python:: Implementing new TUI windows.
329baa95
DE
167@end menu
168
169@node Basic Python
170@subsubsection Basic Python
171
172@cindex python stdout
173@cindex python pagination
174At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
175@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
176A Python program which outputs to one of these streams may have its
177output interrupted by the user (@pxref{Screen Size}). In this
178situation, a Python @code{KeyboardInterrupt} exception is thrown.
179
180Some care must be taken when writing Python code to run in
181@value{GDBN}. Two things worth noting in particular:
182
183@itemize @bullet
184@item
185@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
186Python code must not override these, or even change the options using
187@code{sigaction}. If your program changes the handling of these
188signals, @value{GDBN} will most likely stop working correctly. Note
189that it is unfortunately common for GUI toolkits to install a
190@code{SIGCHLD} handler.
191
192@item
193@value{GDBN} takes care to mark its internal file descriptors as
194close-on-exec. However, this cannot be done in a thread-safe way on
195all platforms. Your Python programs should be aware of this and
196should both create new file descriptors with the close-on-exec flag
197set and arrange to close unneeded file descriptors before starting a
198child process.
199@end itemize
200
201@cindex python functions
202@cindex python module
203@cindex gdb module
204@value{GDBN} introduces a new Python module, named @code{gdb}. All
205methods and classes added by @value{GDBN} are placed in this module.
206@value{GDBN} automatically @code{import}s the @code{gdb} module for
207use in all scripts evaluated by the @code{python} command.
208
1256af7d
SM
209Some types of the @code{gdb} module come with a textual representation
210(accessible through the @code{repr} or @code{str} functions). These are
211offered for debugging purposes only, expect them to change over time.
212
329baa95
DE
213@findex gdb.PYTHONDIR
214@defvar gdb.PYTHONDIR
215A string containing the python directory (@pxref{Python}).
216@end defvar
217
218@findex gdb.execute
219@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
220Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
221If a GDB exception happens while @var{command} runs, it is
222translated as described in @ref{Exception Handling,,Exception Handling}.
223
697aa1b7 224The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
225command as having originated from the user invoking it interactively.
226It must be a boolean value. If omitted, it defaults to @code{False}.
227
228By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
229@value{GDBN}'s standard output (and to the log output if logging is
230turned on). If the @var{to_string} parameter is
329baa95
DE
231@code{True}, then output will be collected by @code{gdb.execute} and
232returned as a string. The default is @code{False}, in which case the
233return value is @code{None}. If @var{to_string} is @code{True}, the
234@value{GDBN} virtual terminal will be temporarily set to unlimited width
235and height, and its pagination will be disabled; @pxref{Screen Size}.
236@end defun
237
238@findex gdb.breakpoints
239@defun gdb.breakpoints ()
240Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
241@xref{Breakpoints In Python}, for more information. In @value{GDBN}
242version 7.11 and earlier, this function returned @code{None} if there
243were no breakpoints. This peculiarity was subsequently fixed, and now
244@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
245@end defun
246
d8ae99a7
PM
247@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
248Return a Python list holding a collection of newly set
249@code{gdb.Breakpoint} objects matching function names defined by the
250@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
251system functions (those not explicitly defined in the inferior) will
252also be included in the match. The @var{throttle} keyword takes an
253integer that defines the maximum number of pattern matches for
254functions matched by the @var{regex} pattern. If the number of
255matches exceeds the integer value of @var{throttle}, a
256@code{RuntimeError} will be raised and no breakpoints will be created.
257If @var{throttle} is not defined then there is no imposed limit on the
258maximum number of matches and breakpoints to be created. The
259@var{symtabs} keyword takes a Python iterable that yields a collection
260of @code{gdb.Symtab} objects and will restrict the search to those
261functions only contained within the @code{gdb.Symtab} objects.
262@end defun
263
329baa95
DE
264@findex gdb.parameter
265@defun gdb.parameter (parameter)
697aa1b7
EZ
266Return the value of a @value{GDBN} @var{parameter} given by its name,
267a string; the parameter name string may contain spaces if the parameter has a
268multi-part name. For example, @samp{print object} is a valid
269parameter name.
329baa95
DE
270
271If the named parameter does not exist, this function throws a
272@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
273parameter's value is converted to a Python value of the appropriate
274type, and returned.
275@end defun
276
277@findex gdb.history
278@defun gdb.history (number)
279Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 280History}). The @var{number} argument indicates which history element to return.
329baa95
DE
281If @var{number} is negative, then @value{GDBN} will take its absolute value
282and count backward from the last element (i.e., the most recent element) to
283find the value to return. If @var{number} is zero, then @value{GDBN} will
284return the most recent element. If the element specified by @var{number}
285doesn't exist in the value history, a @code{gdb.error} exception will be
286raised.
287
288If no exception is raised, the return value is always an instance of
289@code{gdb.Value} (@pxref{Values From Inferior}).
290@end defun
291
7729052b
TT
292@findex gdb.convenience_variable
293@defun gdb.convenience_variable (name)
294Return the value of the convenience variable (@pxref{Convenience
295Vars}) named @var{name}. @var{name} must be a string. The name
296should not include the @samp{$} that is used to mark a convenience
297variable in an expression. If the convenience variable does not
298exist, then @code{None} is returned.
299@end defun
300
301@findex gdb.set_convenience_variable
302@defun gdb.set_convenience_variable (name, value)
303Set the value of the convenience variable (@pxref{Convenience Vars})
304named @var{name}. @var{name} must be a string. The name should not
305include the @samp{$} that is used to mark a convenience variable in an
306expression. If @var{value} is @code{None}, then the convenience
307variable is removed. Otherwise, if @var{value} is not a
308@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
309using the @code{gdb.Value} constructor.
310@end defun
311
329baa95
DE
312@findex gdb.parse_and_eval
313@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
314Parse @var{expression}, which must be a string, as an expression in
315the current language, evaluate it, and return the result as a
316@code{gdb.Value}.
329baa95
DE
317
318This function can be useful when implementing a new command
319(@pxref{Commands In Python}), as it provides a way to parse the
320command's argument as an expression. It is also useful simply to
7729052b 321compute values.
329baa95
DE
322@end defun
323
324@findex gdb.find_pc_line
325@defun gdb.find_pc_line (pc)
326Return the @code{gdb.Symtab_and_line} object corresponding to the
327@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
328value of @var{pc} is passed as an argument, then the @code{symtab} and
329@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
330will be @code{None} and 0 respectively. This is identical to
331@code{gdb.current_progspace().find_pc_line(pc)} and is included for
332historical compatibility.
329baa95
DE
333@end defun
334
335@findex gdb.post_event
336@defun gdb.post_event (event)
337Put @var{event}, a callable object taking no arguments, into
338@value{GDBN}'s internal event queue. This callable will be invoked at
339some later point, during @value{GDBN}'s event processing. Events
340posted using @code{post_event} will be run in the order in which they
341were posted; however, there is no way to know when they will be
342processed relative to other events inside @value{GDBN}.
343
344@value{GDBN} is not thread-safe. If your Python program uses multiple
345threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 346functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
347this. For example:
348
349@smallexample
350(@value{GDBP}) python
351>import threading
352>
353>class Writer():
354> def __init__(self, message):
355> self.message = message;
356> def __call__(self):
357> gdb.write(self.message)
358>
359>class MyThread1 (threading.Thread):
360> def run (self):
361> gdb.post_event(Writer("Hello "))
362>
363>class MyThread2 (threading.Thread):
364> def run (self):
365> gdb.post_event(Writer("World\n"))
366>
367>MyThread1().start()
368>MyThread2().start()
369>end
370(@value{GDBP}) Hello World
371@end smallexample
372@end defun
373
374@findex gdb.write
375@defun gdb.write (string @r{[}, stream{]})
376Print a string to @value{GDBN}'s paginated output stream. The
377optional @var{stream} determines the stream to print to. The default
378stream is @value{GDBN}'s standard output stream. Possible stream
379values are:
380
381@table @code
382@findex STDOUT
383@findex gdb.STDOUT
384@item gdb.STDOUT
385@value{GDBN}'s standard output stream.
386
387@findex STDERR
388@findex gdb.STDERR
389@item gdb.STDERR
390@value{GDBN}'s standard error stream.
391
392@findex STDLOG
393@findex gdb.STDLOG
394@item gdb.STDLOG
395@value{GDBN}'s log stream (@pxref{Logging Output}).
396@end table
397
398Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
399call this function and will automatically direct the output to the
400relevant stream.
401@end defun
402
403@findex gdb.flush
404@defun gdb.flush ()
405Flush the buffer of a @value{GDBN} paginated stream so that the
406contents are displayed immediately. @value{GDBN} will flush the
407contents of a stream automatically when it encounters a newline in the
408buffer. The optional @var{stream} determines the stream to flush. The
409default stream is @value{GDBN}'s standard output stream. Possible
410stream values are:
411
412@table @code
413@findex STDOUT
414@findex gdb.STDOUT
415@item gdb.STDOUT
416@value{GDBN}'s standard output stream.
417
418@findex STDERR
419@findex gdb.STDERR
420@item gdb.STDERR
421@value{GDBN}'s standard error stream.
422
423@findex STDLOG
424@findex gdb.STDLOG
425@item gdb.STDLOG
426@value{GDBN}'s log stream (@pxref{Logging Output}).
427
428@end table
429
430Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
431call this function for the relevant stream.
432@end defun
433
434@findex gdb.target_charset
435@defun gdb.target_charset ()
436Return the name of the current target character set (@pxref{Character
437Sets}). This differs from @code{gdb.parameter('target-charset')} in
438that @samp{auto} is never returned.
439@end defun
440
441@findex gdb.target_wide_charset
442@defun gdb.target_wide_charset ()
443Return the name of the current target wide character set
444(@pxref{Character Sets}). This differs from
445@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
446never returned.
447@end defun
448
449@findex gdb.solib_name
450@defun gdb.solib_name (address)
451Return the name of the shared library holding the given @var{address}
8743a9cd
TT
452as a string, or @code{None}. This is identical to
453@code{gdb.current_progspace().solib_name(address)} and is included for
454historical compatibility.
329baa95
DE
455@end defun
456
457@findex gdb.decode_line
0d2a5839 458@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
459Return locations of the line specified by @var{expression}, or of the
460current line if no argument was given. This function returns a Python
461tuple containing two elements. The first element contains a string
462holding any unparsed section of @var{expression} (or @code{None} if
463the expression has been fully parsed). The second element contains
464either @code{None} or another tuple that contains all the locations
465that match the expression represented as @code{gdb.Symtab_and_line}
466objects (@pxref{Symbol Tables In Python}). If @var{expression} is
467provided, it is decoded the way that @value{GDBN}'s inbuilt
468@code{break} or @code{edit} commands do (@pxref{Specify Location}).
469@end defun
470
471@defun gdb.prompt_hook (current_prompt)
472@anchor{prompt_hook}
473
474If @var{prompt_hook} is callable, @value{GDBN} will call the method
475assigned to this operation before a prompt is displayed by
476@value{GDBN}.
477
478The parameter @code{current_prompt} contains the current @value{GDBN}
479prompt. This method must return a Python string, or @code{None}. If
480a string is returned, the @value{GDBN} prompt will be set to that
481string. If @code{None} is returned, @value{GDBN} will continue to use
482the current prompt.
483
484Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
485such as those used by readline for command input, and annotation
486related prompts are prohibited from being changed.
487@end defun
488
489@node Exception Handling
490@subsubsection Exception Handling
491@cindex python exceptions
492@cindex exceptions, python
493
494When executing the @code{python} command, Python exceptions
495uncaught within the Python code are translated to calls to
496@value{GDBN} error-reporting mechanism. If the command that called
497@code{python} does not handle the error, @value{GDBN} will
498terminate it and print an error message containing the Python
499exception name, the associated value, and the Python call stack
500backtrace at the point where the exception was raised. Example:
501
502@smallexample
503(@value{GDBP}) python print foo
504Traceback (most recent call last):
505 File "<string>", line 1, in <module>
506NameError: name 'foo' is not defined
507@end smallexample
508
509@value{GDBN} errors that happen in @value{GDBN} commands invoked by
510Python code are converted to Python exceptions. The type of the
511Python exception depends on the error.
512
513@ftable @code
514@item gdb.error
515This is the base class for most exceptions generated by @value{GDBN}.
516It is derived from @code{RuntimeError}, for compatibility with earlier
517versions of @value{GDBN}.
518
519If an error occurring in @value{GDBN} does not fit into some more
520specific category, then the generated exception will have this type.
521
522@item gdb.MemoryError
523This is a subclass of @code{gdb.error} which is thrown when an
524operation tried to access invalid memory in the inferior.
525
526@item KeyboardInterrupt
527User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
528prompt) is translated to a Python @code{KeyboardInterrupt} exception.
529@end ftable
530
531In all cases, your exception handler will see the @value{GDBN} error
532message as its value and the Python call stack backtrace at the Python
533statement closest to where the @value{GDBN} error occured as the
534traceback.
535
4a5a194a
TT
536
537When implementing @value{GDBN} commands in Python via
538@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
539to be able to throw an exception that doesn't cause a traceback to be
540printed. For example, the user may have invoked the command
541incorrectly. @value{GDBN} provides a special exception class that can
542be used for this purpose.
543
544@ftable @code
545@item gdb.GdbError
546When thrown from a command or function, this exception will cause the
547command or function to fail, but the Python stack will not be
548displayed. @value{GDBN} does not throw this exception itself, but
549rather recognizes it when thrown from user Python code. Example:
329baa95
DE
550
551@smallexample
552(gdb) python
553>class HelloWorld (gdb.Command):
554> """Greet the whole world."""
555> def __init__ (self):
556> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
557> def invoke (self, args, from_tty):
558> argv = gdb.string_to_argv (args)
559> if len (argv) != 0:
560> raise gdb.GdbError ("hello-world takes no arguments")
561> print "Hello, World!"
562>HelloWorld ()
563>end
564(gdb) hello-world 42
565hello-world takes no arguments
566@end smallexample
4a5a194a 567@end ftable
329baa95
DE
568
569@node Values From Inferior
570@subsubsection Values From Inferior
571@cindex values from inferior, with Python
572@cindex python, working with values from inferior
573
574@cindex @code{gdb.Value}
575@value{GDBN} provides values it obtains from the inferior program in
576an object of type @code{gdb.Value}. @value{GDBN} uses this object
577for its internal bookkeeping of the inferior's values, and for
578fetching values when necessary.
579
580Inferior values that are simple scalars can be used directly in
581Python expressions that are valid for the value's data type. Here's
582an example for an integer or floating-point value @code{some_val}:
583
584@smallexample
585bar = some_val + 2
586@end smallexample
587
588@noindent
589As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
590whose values are of the same type as those of @code{some_val}. Valid
591Python operations can also be performed on @code{gdb.Value} objects
592representing a @code{struct} or @code{class} object. For such cases,
593the overloaded operator (if present), is used to perform the operation.
594For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
595representing instances of a @code{class} which overloads the @code{+}
596operator, then one can use the @code{+} operator in their Python script
597as follows:
598
599@smallexample
600val3 = val1 + val2
601@end smallexample
602
603@noindent
604The result of the operation @code{val3} is also a @code{gdb.Value}
605object corresponding to the value returned by the overloaded @code{+}
606operator. In general, overloaded operators are invoked for the
607following operations: @code{+} (binary addition), @code{-} (binary
608subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
609@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
610
611Inferior values that are structures or instances of some class can
612be accessed using the Python @dfn{dictionary syntax}. For example, if
613@code{some_val} is a @code{gdb.Value} instance holding a structure, you
614can access its @code{foo} element with:
615
616@smallexample
617bar = some_val['foo']
618@end smallexample
619
620@cindex getting structure elements using gdb.Field objects as subscripts
621Again, @code{bar} will also be a @code{gdb.Value} object. Structure
622elements can also be accessed by using @code{gdb.Field} objects as
623subscripts (@pxref{Types In Python}, for more information on
624@code{gdb.Field} objects). For example, if @code{foo_field} is a
625@code{gdb.Field} object corresponding to element @code{foo} of the above
626structure, then @code{bar} can also be accessed as follows:
627
628@smallexample
629bar = some_val[foo_field]
630@end smallexample
631
632A @code{gdb.Value} that represents a function can be executed via
633inferior function call. Any arguments provided to the call must match
634the function's prototype, and must be provided in the order specified
635by that prototype.
636
637For example, @code{some_val} is a @code{gdb.Value} instance
638representing a function that takes two integers as arguments. To
639execute this function, call it like so:
640
641@smallexample
642result = some_val (10,20)
643@end smallexample
644
645Any values returned from a function call will be stored as a
646@code{gdb.Value}.
647
648The following attributes are provided:
649
650@defvar Value.address
651If this object is addressable, this read-only attribute holds a
652@code{gdb.Value} object representing the address. Otherwise,
653this attribute holds @code{None}.
654@end defvar
655
656@cindex optimized out value in Python
657@defvar Value.is_optimized_out
658This read-only boolean attribute is true if the compiler optimized out
659this value, thus it is not available for fetching from the inferior.
660@end defvar
661
662@defvar Value.type
663The type of this @code{gdb.Value}. The value of this attribute is a
664@code{gdb.Type} object (@pxref{Types In Python}).
665@end defvar
666
667@defvar Value.dynamic_type
9da10427
TT
668The dynamic type of this @code{gdb.Value}. This uses the object's
669virtual table and the C@t{++} run-time type information
670(@acronym{RTTI}) to determine the dynamic type of the value. If this
671value is of class type, it will return the class in which the value is
672embedded, if any. If this value is of pointer or reference to a class
673type, it will compute the dynamic type of the referenced object, and
674return a pointer or reference to that type, respectively. In all
675other cases, it will return the value's static type.
329baa95
DE
676
677Note that this feature will only work when debugging a C@t{++} program
678that includes @acronym{RTTI} for the object in question. Otherwise,
679it will just return the static type of the value as in @kbd{ptype foo}
680(@pxref{Symbols, ptype}).
681@end defvar
682
683@defvar Value.is_lazy
684The value of this read-only boolean attribute is @code{True} if this
685@code{gdb.Value} has not yet been fetched from the inferior.
686@value{GDBN} does not fetch values until necessary, for efficiency.
687For example:
688
689@smallexample
690myval = gdb.parse_and_eval ('somevar')
691@end smallexample
692
693The value of @code{somevar} is not fetched at this time. It will be
694fetched when the value is needed, or when the @code{fetch_lazy}
695method is invoked.
696@end defvar
697
698The following methods are provided:
699
700@defun Value.__init__ (@var{val})
701Many Python values can be converted directly to a @code{gdb.Value} via
702this object initializer. Specifically:
703
704@table @asis
705@item Python boolean
706A Python boolean is converted to the boolean type from the current
707language.
708
709@item Python integer
710A Python integer is converted to the C @code{long} type for the
711current architecture.
712
713@item Python long
714A Python long is converted to the C @code{long long} type for the
715current architecture.
716
717@item Python float
718A Python float is converted to the C @code{double} type for the
719current architecture.
720
721@item Python string
b3ce5e5f
DE
722A Python string is converted to a target string in the current target
723language using the current target encoding.
724If a character cannot be represented in the current target encoding,
725then an exception is thrown.
329baa95
DE
726
727@item @code{gdb.Value}
728If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
729
730@item @code{gdb.LazyString}
731If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
732Python}), then the lazy string's @code{value} method is called, and
733its result is used.
734@end table
735@end defun
736
ff6c8b35 737@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
738This second form of the @code{gdb.Value} constructor returns a
739@code{gdb.Value} of type @var{type} where the value contents are taken
740from the Python buffer object specified by @var{val}. The number of
741bytes in the Python buffer object must be greater than or equal to the
742size of @var{type}.
743@end defun
744
329baa95
DE
745@defun Value.cast (type)
746Return a new instance of @code{gdb.Value} that is the result of
747casting this instance to the type described by @var{type}, which must
748be a @code{gdb.Type} object. If the cast cannot be performed for some
749reason, this method throws an exception.
750@end defun
751
752@defun Value.dereference ()
753For pointer data types, this method returns a new @code{gdb.Value} object
754whose contents is the object pointed to by the pointer. For example, if
755@code{foo} is a C pointer to an @code{int}, declared in your C program as
756
757@smallexample
758int *foo;
759@end smallexample
760
761@noindent
762then you can use the corresponding @code{gdb.Value} to access what
763@code{foo} points to like this:
764
765@smallexample
766bar = foo.dereference ()
767@end smallexample
768
769The result @code{bar} will be a @code{gdb.Value} object holding the
770value pointed to by @code{foo}.
771
772A similar function @code{Value.referenced_value} exists which also
760f7560 773returns @code{gdb.Value} objects corresponding to the values pointed to
329baa95
DE
774by pointer values (and additionally, values referenced by reference
775values). However, the behavior of @code{Value.dereference}
776differs from @code{Value.referenced_value} by the fact that the
777behavior of @code{Value.dereference} is identical to applying the C
778unary operator @code{*} on a given value. For example, consider a
779reference to a pointer @code{ptrref}, declared in your C@t{++} program
780as
781
782@smallexample
783typedef int *intptr;
784...
785int val = 10;
786intptr ptr = &val;
787intptr &ptrref = ptr;
788@end smallexample
789
790Though @code{ptrref} is a reference value, one can apply the method
791@code{Value.dereference} to the @code{gdb.Value} object corresponding
792to it and obtain a @code{gdb.Value} which is identical to that
793corresponding to @code{val}. However, if you apply the method
794@code{Value.referenced_value}, the result would be a @code{gdb.Value}
795object identical to that corresponding to @code{ptr}.
796
797@smallexample
798py_ptrref = gdb.parse_and_eval ("ptrref")
799py_val = py_ptrref.dereference ()
800py_ptr = py_ptrref.referenced_value ()
801@end smallexample
802
803The @code{gdb.Value} object @code{py_val} is identical to that
804corresponding to @code{val}, and @code{py_ptr} is identical to that
805corresponding to @code{ptr}. In general, @code{Value.dereference} can
806be applied whenever the C unary operator @code{*} can be applied
807to the corresponding C value. For those cases where applying both
808@code{Value.dereference} and @code{Value.referenced_value} is allowed,
809the results obtained need not be identical (as we have seen in the above
810example). The results are however identical when applied on
811@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
812objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
813@end defun
814
815@defun Value.referenced_value ()
816For pointer or reference data types, this method returns a new
817@code{gdb.Value} object corresponding to the value referenced by the
818pointer/reference value. For pointer data types,
819@code{Value.dereference} and @code{Value.referenced_value} produce
820identical results. The difference between these methods is that
821@code{Value.dereference} cannot get the values referenced by reference
822values. For example, consider a reference to an @code{int}, declared
823in your C@t{++} program as
824
825@smallexample
826int val = 10;
827int &ref = val;
828@end smallexample
829
830@noindent
831then applying @code{Value.dereference} to the @code{gdb.Value} object
832corresponding to @code{ref} will result in an error, while applying
833@code{Value.referenced_value} will result in a @code{gdb.Value} object
834identical to that corresponding to @code{val}.
835
836@smallexample
837py_ref = gdb.parse_and_eval ("ref")
838er_ref = py_ref.dereference () # Results in error
839py_val = py_ref.referenced_value () # Returns the referenced value
840@end smallexample
841
842The @code{gdb.Value} object @code{py_val} is identical to that
843corresponding to @code{val}.
844@end defun
845
4c082a81
SC
846@defun Value.reference_value ()
847Return a @code{gdb.Value} object which is a reference to the value
848encapsulated by this instance.
849@end defun
850
851@defun Value.const_value ()
852Return a @code{gdb.Value} object which is a @code{const} version of the
853value encapsulated by this instance.
854@end defun
855
329baa95
DE
856@defun Value.dynamic_cast (type)
857Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
858operator were used. Consult a C@t{++} reference for details.
859@end defun
860
861@defun Value.reinterpret_cast (type)
862Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
863operator were used. Consult a C@t{++} reference for details.
864@end defun
865
52093e1b
MB
866@defun Value.format_string (...)
867Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
868command does. Invoked with no arguments, this is equivalent to calling
869the @code{str} function on the @code{gdb.Value}. The representation of
870the same value may change across different versions of @value{GDBN}, so
871you shouldn't, for instance, parse the strings returned by this method.
872
873All the arguments are keyword only. If an argument is not specified, the
874current global default setting is used.
875
876@table @code
877@item raw
878@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
879used to format the value. @code{False} if enabled pretty-printers
880matching the type represented by the @code{gdb.Value} should be used to
881format it.
882
883@item pretty_arrays
884@code{True} if arrays should be pretty printed to be more convenient to
885read, @code{False} if they shouldn't (see @code{set print array} in
886@ref{Print Settings}).
887
888@item pretty_structs
889@code{True} if structs should be pretty printed to be more convenient to
890read, @code{False} if they shouldn't (see @code{set print pretty} in
891@ref{Print Settings}).
892
893@item array_indexes
894@code{True} if array indexes should be included in the string
895representation of arrays, @code{False} if they shouldn't (see @code{set
896print array-indexes} in @ref{Print Settings}).
897
898@item symbols
899@code{True} if the string representation of a pointer should include the
900corresponding symbol name (if one exists), @code{False} if it shouldn't
901(see @code{set print symbol} in @ref{Print Settings}).
902
903@item unions
904@code{True} if unions which are contained in other structures or unions
905should be expanded, @code{False} if they shouldn't (see @code{set print
906union} in @ref{Print Settings}).
907
908@item deref_refs
909@code{True} if C@t{++} references should be resolved to the value they
910refer to, @code{False} (the default) if they shouldn't. Note that, unlike
911for the @code{print} command, references are not automatically expanded
912when using the @code{format_string} method or the @code{str}
913function. There is no global @code{print} setting to change the default
914behaviour.
915
916@item actual_objects
917@code{True} if the representation of a pointer to an object should
918identify the @emph{actual} (derived) type of the object rather than the
919@emph{declared} type, using the virtual function table. @code{False} if
920the @emph{declared} type should be used. (See @code{set print object} in
921@ref{Print Settings}).
922
923@item static_fields
924@code{True} if static members should be included in the string
925representation of a C@t{++} object, @code{False} if they shouldn't (see
926@code{set print static-members} in @ref{Print Settings}).
927
928@item max_elements
929Number of array elements to print, or @code{0} to print an unlimited
930number of elements (see @code{set print elements} in @ref{Print
931Settings}).
932
2e62ab40
AB
933@item max_depth
934The maximum depth to print for nested structs and unions, or @code{-1}
935to print an unlimited number of elements (see @code{set print
936max-depth} in @ref{Print Settings}).
937
52093e1b
MB
938@item repeat_threshold
939Set the threshold for suppressing display of repeated array elements, or
940@code{0} to represent all elements, even if repeated. (See @code{set
941print repeats} in @ref{Print Settings}).
942
943@item format
944A string containing a single character representing the format to use for
945the returned string. For instance, @code{'x'} is equivalent to using the
946@value{GDBN} command @code{print} with the @code{/x} option and formats
947the value as a hexadecimal number.
948@end table
949@end defun
950
329baa95
DE
951@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
952If this @code{gdb.Value} represents a string, then this method
953converts the contents to a Python string. Otherwise, this method will
954throw an exception.
955
b3ce5e5f
DE
956Values are interpreted as strings according to the rules of the
957current language. If the optional length argument is given, the
958string will be converted to that length, and will include any embedded
959zeroes that the string may contain. Otherwise, for languages
960where the string is zero-terminated, the entire string will be
961converted.
329baa95 962
b3ce5e5f
DE
963For example, in C-like languages, a value is a string if it is a pointer
964to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
965or @code{char32_t}.
329baa95
DE
966
967If the optional @var{encoding} argument is given, it must be a string
968naming the encoding of the string in the @code{gdb.Value}, such as
969@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
970the same encodings as the corresponding argument to Python's
971@code{string.decode} method, and the Python codec machinery will be used
972to convert the string. If @var{encoding} is not given, or if
973@var{encoding} is the empty string, then either the @code{target-charset}
974(@pxref{Character Sets}) will be used, or a language-specific encoding
975will be used, if the current language is able to supply one.
976
977The optional @var{errors} argument is the same as the corresponding
978argument to Python's @code{string.decode} method.
979
980If the optional @var{length} argument is given, the string will be
981fetched and converted to the given length.
982@end defun
983
984@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
985If this @code{gdb.Value} represents a string, then this method
986converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
987In Python}). Otherwise, this method will throw an exception.
988
989If the optional @var{encoding} argument is given, it must be a string
990naming the encoding of the @code{gdb.LazyString}. Some examples are:
991@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
992@var{encoding} argument is an encoding that @value{GDBN} does
993recognize, @value{GDBN} will raise an error.
994
995When a lazy string is printed, the @value{GDBN} encoding machinery is
996used to convert the string during printing. If the optional
997@var{encoding} argument is not provided, or is an empty string,
998@value{GDBN} will automatically select the encoding most suitable for
999the string type. For further information on encoding in @value{GDBN}
1000please see @ref{Character Sets}.
1001
1002If the optional @var{length} argument is given, the string will be
1003fetched and encoded to the length of characters specified. If
1004the @var{length} argument is not provided, the string will be fetched
1005and encoded until a null of appropriate width is found.
1006@end defun
1007
1008@defun Value.fetch_lazy ()
1009If the @code{gdb.Value} object is currently a lazy value
1010(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1011fetched from the inferior. Any errors that occur in the process
1012will produce a Python exception.
1013
1014If the @code{gdb.Value} object is not a lazy value, this method
1015has no effect.
1016
1017This method does not return a value.
1018@end defun
1019
1020
1021@node Types In Python
1022@subsubsection Types In Python
1023@cindex types in Python
1024@cindex Python, working with types
1025
1026@tindex gdb.Type
1027@value{GDBN} represents types from the inferior using the class
1028@code{gdb.Type}.
1029
1030The following type-related functions are available in the @code{gdb}
1031module:
1032
1033@findex gdb.lookup_type
1034@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1035This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1036
1037If @var{block} is given, then @var{name} is looked up in that scope.
1038Otherwise, it is searched for globally.
1039
1040Ordinarily, this function will return an instance of @code{gdb.Type}.
1041If the named type cannot be found, it will throw an exception.
1042@end defun
1043
1044If the type is a structure or class type, or an enum type, the fields
1045of that type can be accessed using the Python @dfn{dictionary syntax}.
1046For example, if @code{some_type} is a @code{gdb.Type} instance holding
1047a structure type, you can access its @code{foo} field with:
1048
1049@smallexample
1050bar = some_type['foo']
1051@end smallexample
1052
1053@code{bar} will be a @code{gdb.Field} object; see below under the
1054description of the @code{Type.fields} method for a description of the
1055@code{gdb.Field} class.
1056
1057An instance of @code{Type} has the following attributes:
1058
6d7bb824
TT
1059@defvar Type.alignof
1060The alignment of this type, in bytes. Type alignment comes from the
1061debugging information; if it was not specified, then @value{GDBN} will
1062use the relevant ABI to try to determine the alignment. In some
1063cases, even this is not possible, and zero will be returned.
1064@end defvar
1065
329baa95
DE
1066@defvar Type.code
1067The type code for this type. The type code will be one of the
1068@code{TYPE_CODE_} constants defined below.
1069@end defvar
1070
1071@defvar Type.name
1072The name of this type. If this type has no name, then @code{None}
1073is returned.
1074@end defvar
1075
1076@defvar Type.sizeof
1077The size of this type, in target @code{char} units. Usually, a
1078target's @code{char} type will be an 8-bit byte. However, on some
1079unusual platforms, this type may have a different size.
1080@end defvar
1081
1082@defvar Type.tag
1083The tag name for this type. The tag name is the name after
1084@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1085languages have this concept. If this type has no tag name, then
1086@code{None} is returned.
1087@end defvar
1088
e1f2e1a2
CB
1089@defvar Type.objfile
1090The @code{gdb.Objfile} that this type was defined in, or @code{None} if
1091there is no associated objfile.
1092@end defvar
1093
329baa95
DE
1094The following methods are provided:
1095
1096@defun Type.fields ()
1097For structure and union types, this method returns the fields. Range
1098types have two fields, the minimum and maximum values. Enum types
1099have one field per enum constant. Function and method types have one
1100field per parameter. The base types of C@t{++} classes are also
1101represented as fields. If the type has no fields, or does not fit
1102into one of these categories, an empty sequence will be returned.
1103
1104Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1105@table @code
1106@item bitpos
1107This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1108(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1109in bits, from the start of the containing type.
1110
1111@item enumval
1112This attribute is only available for @code{enum} fields, and its value
1113is the enumeration member's integer representation.
1114
1115@item name
1116The name of the field, or @code{None} for anonymous fields.
1117
1118@item artificial
1119This is @code{True} if the field is artificial, usually meaning that
1120it was provided by the compiler and not the user. This attribute is
1121always provided, and is @code{False} if the field is not artificial.
1122
1123@item is_base_class
1124This is @code{True} if the field represents a base class of a C@t{++}
1125structure. This attribute is always provided, and is @code{False}
1126if the field is not a base class of the type that is the argument of
1127@code{fields}, or if that type was not a C@t{++} class.
1128
1129@item bitsize
1130If the field is packed, or is a bitfield, then this will have a
1131non-zero value, which is the size of the field in bits. Otherwise,
1132this will be zero; in this case the field's size is given by its type.
1133
1134@item type
1135The type of the field. This is usually an instance of @code{Type},
1136but it can be @code{None} in some situations.
1137
1138@item parent_type
1139The type which contains this field. This is an instance of
1140@code{gdb.Type}.
1141@end table
1142@end defun
1143
1144@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1145Return a new @code{gdb.Type} object which represents an array of this
1146type. If one argument is given, it is the inclusive upper bound of
1147the array; in this case the lower bound is zero. If two arguments are
1148given, the first argument is the lower bound of the array, and the
1149second argument is the upper bound of the array. An array's length
1150must not be negative, but the bounds can be.
1151@end defun
1152
1153@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1154Return a new @code{gdb.Type} object which represents a vector of this
1155type. If one argument is given, it is the inclusive upper bound of
1156the vector; in this case the lower bound is zero. If two arguments are
1157given, the first argument is the lower bound of the vector, and the
1158second argument is the upper bound of the vector. A vector's length
1159must not be negative, but the bounds can be.
1160
1161The difference between an @code{array} and a @code{vector} is that
1162arrays behave like in C: when used in expressions they decay to a pointer
1163to the first element whereas vectors are treated as first class values.
1164@end defun
1165
1166@defun Type.const ()
1167Return a new @code{gdb.Type} object which represents a
1168@code{const}-qualified variant of this type.
1169@end defun
1170
1171@defun Type.volatile ()
1172Return a new @code{gdb.Type} object which represents a
1173@code{volatile}-qualified variant of this type.
1174@end defun
1175
1176@defun Type.unqualified ()
1177Return a new @code{gdb.Type} object which represents an unqualified
1178variant of this type. That is, the result is neither @code{const} nor
1179@code{volatile}.
1180@end defun
1181
1182@defun Type.range ()
1183Return a Python @code{Tuple} object that contains two elements: the
1184low bound of the argument type and the high bound of that type. If
1185the type does not have a range, @value{GDBN} will raise a
1186@code{gdb.error} exception (@pxref{Exception Handling}).
1187@end defun
1188
1189@defun Type.reference ()
1190Return a new @code{gdb.Type} object which represents a reference to this
1191type.
1192@end defun
1193
1194@defun Type.pointer ()
1195Return a new @code{gdb.Type} object which represents a pointer to this
1196type.
1197@end defun
1198
1199@defun Type.strip_typedefs ()
1200Return a new @code{gdb.Type} that represents the real type,
1201after removing all layers of typedefs.
1202@end defun
1203
1204@defun Type.target ()
1205Return a new @code{gdb.Type} object which represents the target type
1206of this type.
1207
1208For a pointer type, the target type is the type of the pointed-to
1209object. For an array type (meaning C-like arrays), the target type is
1210the type of the elements of the array. For a function or method type,
1211the target type is the type of the return value. For a complex type,
1212the target type is the type of the elements. For a typedef, the
1213target type is the aliased type.
1214
1215If the type does not have a target, this method will throw an
1216exception.
1217@end defun
1218
1219@defun Type.template_argument (n @r{[}, block@r{]})
1220If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1221return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1222value of the @var{n}th template argument (indexed starting at 0).
329baa95 1223
1a6a384b
JL
1224If this @code{gdb.Type} is not a template type, or if the type has fewer
1225than @var{n} template arguments, this will throw an exception.
1226Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1227
1228If @var{block} is given, then @var{name} is looked up in that scope.
1229Otherwise, it is searched for globally.
1230@end defun
1231
59fb7612
SS
1232@defun Type.optimized_out ()
1233Return @code{gdb.Value} instance of this type whose value is optimized
1234out. This allows a frame decorator to indicate that the value of an
1235argument or a local variable is not known.
1236@end defun
329baa95
DE
1237
1238Each type has a code, which indicates what category this type falls
1239into. The available type categories are represented by constants
1240defined in the @code{gdb} module:
1241
b3ce5e5f
DE
1242@vtable @code
1243@vindex TYPE_CODE_PTR
329baa95
DE
1244@item gdb.TYPE_CODE_PTR
1245The type is a pointer.
1246
b3ce5e5f 1247@vindex TYPE_CODE_ARRAY
329baa95
DE
1248@item gdb.TYPE_CODE_ARRAY
1249The type is an array.
1250
b3ce5e5f 1251@vindex TYPE_CODE_STRUCT
329baa95
DE
1252@item gdb.TYPE_CODE_STRUCT
1253The type is a structure.
1254
b3ce5e5f 1255@vindex TYPE_CODE_UNION
329baa95
DE
1256@item gdb.TYPE_CODE_UNION
1257The type is a union.
1258
b3ce5e5f 1259@vindex TYPE_CODE_ENUM
329baa95
DE
1260@item gdb.TYPE_CODE_ENUM
1261The type is an enum.
1262
b3ce5e5f 1263@vindex TYPE_CODE_FLAGS
329baa95
DE
1264@item gdb.TYPE_CODE_FLAGS
1265A bit flags type, used for things such as status registers.
1266
b3ce5e5f 1267@vindex TYPE_CODE_FUNC
329baa95
DE
1268@item gdb.TYPE_CODE_FUNC
1269The type is a function.
1270
b3ce5e5f 1271@vindex TYPE_CODE_INT
329baa95
DE
1272@item gdb.TYPE_CODE_INT
1273The type is an integer type.
1274
b3ce5e5f 1275@vindex TYPE_CODE_FLT
329baa95
DE
1276@item gdb.TYPE_CODE_FLT
1277A floating point type.
1278
b3ce5e5f 1279@vindex TYPE_CODE_VOID
329baa95
DE
1280@item gdb.TYPE_CODE_VOID
1281The special type @code{void}.
1282
b3ce5e5f 1283@vindex TYPE_CODE_SET
329baa95
DE
1284@item gdb.TYPE_CODE_SET
1285A Pascal set type.
1286
b3ce5e5f 1287@vindex TYPE_CODE_RANGE
329baa95
DE
1288@item gdb.TYPE_CODE_RANGE
1289A range type, that is, an integer type with bounds.
1290
b3ce5e5f 1291@vindex TYPE_CODE_STRING
329baa95
DE
1292@item gdb.TYPE_CODE_STRING
1293A string type. Note that this is only used for certain languages with
1294language-defined string types; C strings are not represented this way.
1295
b3ce5e5f 1296@vindex TYPE_CODE_BITSTRING
329baa95
DE
1297@item gdb.TYPE_CODE_BITSTRING
1298A string of bits. It is deprecated.
1299
b3ce5e5f 1300@vindex TYPE_CODE_ERROR
329baa95
DE
1301@item gdb.TYPE_CODE_ERROR
1302An unknown or erroneous type.
1303
b3ce5e5f 1304@vindex TYPE_CODE_METHOD
329baa95 1305@item gdb.TYPE_CODE_METHOD
9c37b5ae 1306A method type, as found in C@t{++}.
329baa95 1307
b3ce5e5f 1308@vindex TYPE_CODE_METHODPTR
329baa95
DE
1309@item gdb.TYPE_CODE_METHODPTR
1310A pointer-to-member-function.
1311
b3ce5e5f 1312@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1313@item gdb.TYPE_CODE_MEMBERPTR
1314A pointer-to-member.
1315
b3ce5e5f 1316@vindex TYPE_CODE_REF
329baa95
DE
1317@item gdb.TYPE_CODE_REF
1318A reference type.
1319
3fcf899d
AV
1320@vindex TYPE_CODE_RVALUE_REF
1321@item gdb.TYPE_CODE_RVALUE_REF
1322A C@t{++}11 rvalue reference type.
1323
b3ce5e5f 1324@vindex TYPE_CODE_CHAR
329baa95
DE
1325@item gdb.TYPE_CODE_CHAR
1326A character type.
1327
b3ce5e5f 1328@vindex TYPE_CODE_BOOL
329baa95
DE
1329@item gdb.TYPE_CODE_BOOL
1330A boolean type.
1331
b3ce5e5f 1332@vindex TYPE_CODE_COMPLEX
329baa95
DE
1333@item gdb.TYPE_CODE_COMPLEX
1334A complex float type.
1335
b3ce5e5f 1336@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1337@item gdb.TYPE_CODE_TYPEDEF
1338A typedef to some other type.
1339
b3ce5e5f 1340@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1341@item gdb.TYPE_CODE_NAMESPACE
1342A C@t{++} namespace.
1343
b3ce5e5f 1344@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1345@item gdb.TYPE_CODE_DECFLOAT
1346A decimal floating point type.
1347
b3ce5e5f 1348@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1349@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1350A function internal to @value{GDBN}. This is the type used to represent
1351convenience functions.
b3ce5e5f 1352@end vtable
329baa95
DE
1353
1354Further support for types is provided in the @code{gdb.types}
1355Python module (@pxref{gdb.types}).
1356
1357@node Pretty Printing API
1358@subsubsection Pretty Printing API
b3ce5e5f 1359@cindex python pretty printing api
329baa95 1360
329baa95 1361A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1362specific interface, defined here. An example output is provided
1363(@pxref{Pretty Printing}).
329baa95
DE
1364
1365@defun pretty_printer.children (self)
1366@value{GDBN} will call this method on a pretty-printer to compute the
1367children of the pretty-printer's value.
1368
1369This method must return an object conforming to the Python iterator
1370protocol. Each item returned by the iterator must be a tuple holding
1371two elements. The first element is the ``name'' of the child; the
1372second element is the child's value. The value can be any Python
1373object which is convertible to a @value{GDBN} value.
1374
1375This method is optional. If it does not exist, @value{GDBN} will act
1376as though the value has no children.
2e62ab40 1377
a97c8e56
TT
1378For efficiency, the @code{children} method should lazily compute its
1379results. This will let @value{GDBN} read as few elements as
1380necessary, for example when various print settings (@pxref{Print
1381Settings}) or @code{-var-list-children} (@pxref{GDB/MI Variable
1382Objects}) limit the number of elements to be displayed.
1383
2e62ab40
AB
1384Children may be hidden from display based on the value of @samp{set
1385print max-depth} (@pxref{Print Settings}).
329baa95
DE
1386@end defun
1387
1388@defun pretty_printer.display_hint (self)
1389The CLI may call this method and use its result to change the
1390formatting of a value. The result will also be supplied to an MI
1391consumer as a @samp{displayhint} attribute of the variable being
1392printed.
1393
1394This method is optional. If it does exist, this method must return a
9f9aa852 1395string or the special value @code{None}.
329baa95
DE
1396
1397Some display hints are predefined by @value{GDBN}:
1398
1399@table @samp
1400@item array
1401Indicate that the object being printed is ``array-like''. The CLI
1402uses this to respect parameters such as @code{set print elements} and
1403@code{set print array}.
1404
1405@item map
1406Indicate that the object being printed is ``map-like'', and that the
1407children of this value can be assumed to alternate between keys and
1408values.
1409
1410@item string
1411Indicate that the object being printed is ``string-like''. If the
1412printer's @code{to_string} method returns a Python string of some
1413kind, then @value{GDBN} will call its internal language-specific
1414string-printing function to format the string. For the CLI this means
1415adding quotation marks, possibly escaping some characters, respecting
1416@code{set print elements}, and the like.
1417@end table
9f9aa852
AB
1418
1419The special value @code{None} causes @value{GDBN} to apply the default
1420display rules.
329baa95
DE
1421@end defun
1422
1423@defun pretty_printer.to_string (self)
1424@value{GDBN} will call this method to display the string
1425representation of the value passed to the object's constructor.
1426
1427When printing from the CLI, if the @code{to_string} method exists,
1428then @value{GDBN} will prepend its result to the values returned by
1429@code{children}. Exactly how this formatting is done is dependent on
1430the display hint, and may change as more hints are added. Also,
1431depending on the print settings (@pxref{Print Settings}), the CLI may
1432print just the result of @code{to_string} in a stack trace, omitting
1433the result of @code{children}.
1434
1435If this method returns a string, it is printed verbatim.
1436
1437Otherwise, if this method returns an instance of @code{gdb.Value},
1438then @value{GDBN} prints this value. This may result in a call to
1439another pretty-printer.
1440
1441If instead the method returns a Python value which is convertible to a
1442@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1443the resulting value. Again, this may result in a call to another
1444pretty-printer. Python scalars (integers, floats, and booleans) and
1445strings are convertible to @code{gdb.Value}; other types are not.
1446
1447Finally, if this method returns @code{None} then no further operations
1448are peformed in this method and nothing is printed.
1449
1450If the result is not one of these types, an exception is raised.
1451@end defun
1452
1453@value{GDBN} provides a function which can be used to look up the
1454default pretty-printer for a @code{gdb.Value}:
1455
1456@findex gdb.default_visualizer
1457@defun gdb.default_visualizer (value)
1458This function takes a @code{gdb.Value} object as an argument. If a
1459pretty-printer for this value exists, then it is returned. If no such
1460printer exists, then this returns @code{None}.
1461@end defun
1462
1463@node Selecting Pretty-Printers
1464@subsubsection Selecting Pretty-Printers
b3ce5e5f 1465@cindex selecting python pretty-printers
329baa95 1466
48869a5f
TT
1467@value{GDBN} provides several ways to register a pretty-printer:
1468globally, per program space, and per objfile. When choosing how to
1469register your pretty-printer, a good rule is to register it with the
1470smallest scope possible: that is prefer a specific objfile first, then
1471a program space, and only register a printer globally as a last
1472resort.
1473
1474@findex gdb.pretty_printers
1475@defvar gdb.pretty_printers
329baa95
DE
1476The Python list @code{gdb.pretty_printers} contains an array of
1477functions or callable objects that have been registered via addition
1478as a pretty-printer. Printers in this list are called @code{global}
1479printers, they're available when debugging all inferiors.
48869a5f
TT
1480@end defvar
1481
329baa95
DE
1482Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1483Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1484attribute.
1485
1486Each function on these lists is passed a single @code{gdb.Value}
1487argument and should return a pretty-printer object conforming to the
1488interface definition above (@pxref{Pretty Printing API}). If a function
1489cannot create a pretty-printer for the value, it should return
1490@code{None}.
1491
1492@value{GDBN} first checks the @code{pretty_printers} attribute of each
1493@code{gdb.Objfile} in the current program space and iteratively calls
1494each enabled lookup routine in the list for that @code{gdb.Objfile}
1495until it receives a pretty-printer object.
1496If no pretty-printer is found in the objfile lists, @value{GDBN} then
1497searches the pretty-printer list of the current program space,
1498calling each enabled function until an object is returned.
1499After these lists have been exhausted, it tries the global
1500@code{gdb.pretty_printers} list, again calling each enabled function until an
1501object is returned.
1502
1503The order in which the objfiles are searched is not specified. For a
1504given list, functions are always invoked from the head of the list,
1505and iterated over sequentially until the end of the list, or a printer
1506object is returned.
1507
1508For various reasons a pretty-printer may not work.
1509For example, the underlying data structure may have changed and
1510the pretty-printer is out of date.
1511
1512The consequences of a broken pretty-printer are severe enough that
1513@value{GDBN} provides support for enabling and disabling individual
1514printers. For example, if @code{print frame-arguments} is on,
1515a backtrace can become highly illegible if any argument is printed
1516with a broken printer.
1517
1518Pretty-printers are enabled and disabled by attaching an @code{enabled}
1519attribute to the registered function or callable object. If this attribute
1520is present and its value is @code{False}, the printer is disabled, otherwise
1521the printer is enabled.
1522
1523@node Writing a Pretty-Printer
1524@subsubsection Writing a Pretty-Printer
1525@cindex writing a pretty-printer
1526
1527A pretty-printer consists of two parts: a lookup function to detect
1528if the type is supported, and the printer itself.
1529
1530Here is an example showing how a @code{std::string} printer might be
1531written. @xref{Pretty Printing API}, for details on the API this class
1532must provide.
1533
1534@smallexample
1535class StdStringPrinter(object):
1536 "Print a std::string"
1537
1538 def __init__(self, val):
1539 self.val = val
1540
1541 def to_string(self):
1542 return self.val['_M_dataplus']['_M_p']
1543
1544 def display_hint(self):
1545 return 'string'
1546@end smallexample
1547
1548And here is an example showing how a lookup function for the printer
1549example above might be written.
1550
1551@smallexample
1552def str_lookup_function(val):
1553 lookup_tag = val.type.tag
1554 if lookup_tag == None:
1555 return None
1556 regex = re.compile("^std::basic_string<char,.*>$")
1557 if regex.match(lookup_tag):
1558 return StdStringPrinter(val)
1559 return None
1560@end smallexample
1561
1562The example lookup function extracts the value's type, and attempts to
1563match it to a type that it can pretty-print. If it is a type the
1564printer can pretty-print, it will return a printer object. If not, it
1565returns @code{None}.
1566
1567We recommend that you put your core pretty-printers into a Python
1568package. If your pretty-printers are for use with a library, we
1569further recommend embedding a version number into the package name.
1570This practice will enable @value{GDBN} to load multiple versions of
1571your pretty-printers at the same time, because they will have
1572different names.
1573
1574You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1575can be evaluated multiple times without changing its meaning. An
1576ideal auto-load file will consist solely of @code{import}s of your
1577printer modules, followed by a call to a register pretty-printers with
1578the current objfile.
1579
1580Taken as a whole, this approach will scale nicely to multiple
1581inferiors, each potentially using a different library version.
1582Embedding a version number in the Python package name will ensure that
1583@value{GDBN} is able to load both sets of printers simultaneously.
1584Then, because the search for pretty-printers is done by objfile, and
1585because your auto-loaded code took care to register your library's
1586printers with a specific objfile, @value{GDBN} will find the correct
1587printers for the specific version of the library used by each
1588inferior.
1589
1590To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1591this code might appear in @code{gdb.libstdcxx.v6}:
1592
1593@smallexample
1594def register_printers(objfile):
1595 objfile.pretty_printers.append(str_lookup_function)
1596@end smallexample
1597
1598@noindent
1599And then the corresponding contents of the auto-load file would be:
1600
1601@smallexample
1602import gdb.libstdcxx.v6
1603gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1604@end smallexample
1605
1606The previous example illustrates a basic pretty-printer.
1607There are a few things that can be improved on.
1608The printer doesn't have a name, making it hard to identify in a
1609list of installed printers. The lookup function has a name, but
1610lookup functions can have arbitrary, even identical, names.
1611
1612Second, the printer only handles one type, whereas a library typically has
1613several types. One could install a lookup function for each desired type
1614in the library, but one could also have a single lookup function recognize
1615several types. The latter is the conventional way this is handled.
1616If a pretty-printer can handle multiple data types, then its
1617@dfn{subprinters} are the printers for the individual data types.
1618
1619The @code{gdb.printing} module provides a formal way of solving these
1620problems (@pxref{gdb.printing}).
1621Here is another example that handles multiple types.
1622
1623These are the types we are going to pretty-print:
1624
1625@smallexample
1626struct foo @{ int a, b; @};
1627struct bar @{ struct foo x, y; @};
1628@end smallexample
1629
1630Here are the printers:
1631
1632@smallexample
1633class fooPrinter:
1634 """Print a foo object."""
1635
1636 def __init__(self, val):
1637 self.val = val
1638
1639 def to_string(self):
1640 return ("a=<" + str(self.val["a"]) +
1641 "> b=<" + str(self.val["b"]) + ">")
1642
1643class barPrinter:
1644 """Print a bar object."""
1645
1646 def __init__(self, val):
1647 self.val = val
1648
1649 def to_string(self):
1650 return ("x=<" + str(self.val["x"]) +
1651 "> y=<" + str(self.val["y"]) + ">")
1652@end smallexample
1653
1654This example doesn't need a lookup function, that is handled by the
1655@code{gdb.printing} module. Instead a function is provided to build up
1656the object that handles the lookup.
1657
1658@smallexample
1659import gdb.printing
1660
1661def build_pretty_printer():
1662 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1663 "my_library")
1664 pp.add_printer('foo', '^foo$', fooPrinter)
1665 pp.add_printer('bar', '^bar$', barPrinter)
1666 return pp
1667@end smallexample
1668
1669And here is the autoload support:
1670
1671@smallexample
1672import gdb.printing
1673import my_library
1674gdb.printing.register_pretty_printer(
1675 gdb.current_objfile(),
1676 my_library.build_pretty_printer())
1677@end smallexample
1678
1679Finally, when this printer is loaded into @value{GDBN}, here is the
1680corresponding output of @samp{info pretty-printer}:
1681
1682@smallexample
1683(gdb) info pretty-printer
1684my_library.so:
1685 my_library
1686 foo
1687 bar
1688@end smallexample
1689
1690@node Type Printing API
1691@subsubsection Type Printing API
1692@cindex type printing API for Python
1693
1694@value{GDBN} provides a way for Python code to customize type display.
1695This is mainly useful for substituting canonical typedef names for
1696types.
1697
1698@cindex type printer
1699A @dfn{type printer} is just a Python object conforming to a certain
1700protocol. A simple base class implementing the protocol is provided;
1701see @ref{gdb.types}. A type printer must supply at least:
1702
1703@defivar type_printer enabled
1704A boolean which is True if the printer is enabled, and False
1705otherwise. This is manipulated by the @code{enable type-printer}
1706and @code{disable type-printer} commands.
1707@end defivar
1708
1709@defivar type_printer name
1710The name of the type printer. This must be a string. This is used by
1711the @code{enable type-printer} and @code{disable type-printer}
1712commands.
1713@end defivar
1714
1715@defmethod type_printer instantiate (self)
1716This is called by @value{GDBN} at the start of type-printing. It is
1717only called if the type printer is enabled. This method must return a
1718new object that supplies a @code{recognize} method, as described below.
1719@end defmethod
1720
1721
1722When displaying a type, say via the @code{ptype} command, @value{GDBN}
1723will compute a list of type recognizers. This is done by iterating
1724first over the per-objfile type printers (@pxref{Objfiles In Python}),
1725followed by the per-progspace type printers (@pxref{Progspaces In
1726Python}), and finally the global type printers.
1727
1728@value{GDBN} will call the @code{instantiate} method of each enabled
1729type printer. If this method returns @code{None}, then the result is
1730ignored; otherwise, it is appended to the list of recognizers.
1731
1732Then, when @value{GDBN} is going to display a type name, it iterates
1733over the list of recognizers. For each one, it calls the recognition
1734function, stopping if the function returns a non-@code{None} value.
1735The recognition function is defined as:
1736
1737@defmethod type_recognizer recognize (self, type)
1738If @var{type} is not recognized, return @code{None}. Otherwise,
1739return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1740The @var{type} argument will be an instance of @code{gdb.Type}
1741(@pxref{Types In Python}).
329baa95
DE
1742@end defmethod
1743
1744@value{GDBN} uses this two-pass approach so that type printers can
1745efficiently cache information without holding on to it too long. For
1746example, it can be convenient to look up type information in a type
1747printer and hold it for a recognizer's lifetime; if a single pass were
1748done then type printers would have to make use of the event system in
1749order to avoid holding information that could become stale as the
1750inferior changed.
1751
1752@node Frame Filter API
521b499b 1753@subsubsection Filtering Frames
329baa95
DE
1754@cindex frame filters api
1755
1756Frame filters are Python objects that manipulate the visibility of a
1757frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1758@value{GDBN}.
1759
1760Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1761commands (@pxref{GDB/MI}), those that return a collection of frames
1762are affected. The commands that work with frame filters are:
1763
1764@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1765@code{-stack-list-frames}
1766(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1767@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1768-stack-list-variables command}), @code{-stack-list-arguments}
1769@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1770@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1771-stack-list-locals command}).
1772
1773A frame filter works by taking an iterator as an argument, applying
1774actions to the contents of that iterator, and returning another
1775iterator (or, possibly, the same iterator it was provided in the case
1776where the filter does not perform any operations). Typically, frame
1777filters utilize tools such as the Python's @code{itertools} module to
1778work with and create new iterators from the source iterator.
1779Regardless of how a filter chooses to apply actions, it must not alter
1780the underlying @value{GDBN} frame or frames, or attempt to alter the
1781call-stack within @value{GDBN}. This preserves data integrity within
1782@value{GDBN}. Frame filters are executed on a priority basis and care
1783should be taken that some frame filters may have been executed before,
1784and that some frame filters will be executed after.
1785
1786An important consideration when designing frame filters, and well
1787worth reflecting upon, is that frame filters should avoid unwinding
1788the call stack if possible. Some stacks can run very deep, into the
1789tens of thousands in some cases. To search every frame when a frame
1790filter executes may be too expensive at that step. The frame filter
1791cannot know how many frames it has to iterate over, and it may have to
1792iterate through them all. This ends up duplicating effort as
1793@value{GDBN} performs this iteration when it prints the frames. If
1794the filter can defer unwinding frames until frame decorators are
1795executed, after the last filter has executed, it should. @xref{Frame
1796Decorator API}, for more information on decorators. Also, there are
1797examples for both frame decorators and filters in later chapters.
1798@xref{Writing a Frame Filter}, for more information.
1799
1800The Python dictionary @code{gdb.frame_filters} contains key/object
1801pairings that comprise a frame filter. Frame filters in this
1802dictionary are called @code{global} frame filters, and they are
1803available when debugging all inferiors. These frame filters must
1804register with the dictionary directly. In addition to the
1805@code{global} dictionary, there are other dictionaries that are loaded
1806with different inferiors via auto-loading (@pxref{Python
1807Auto-loading}). The two other areas where frame filter dictionaries
1808can be found are: @code{gdb.Progspace} which contains a
1809@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1810object which also contains a @code{frame_filters} dictionary
1811attribute.
1812
1813When a command is executed from @value{GDBN} that is compatible with
1814frame filters, @value{GDBN} combines the @code{global},
1815@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1816loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1817several frames, and thus several object files, might be in use.
1818@value{GDBN} then prunes any frame filter whose @code{enabled}
1819attribute is @code{False}. This pruned list is then sorted according
1820to the @code{priority} attribute in each filter.
1821
1822Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1823creates an iterator which wraps each frame in the call stack in a
1824@code{FrameDecorator} object, and calls each filter in order. The
1825output from the previous filter will always be the input to the next
1826filter, and so on.
1827
1828Frame filters have a mandatory interface which each frame filter must
1829implement, defined here:
1830
1831@defun FrameFilter.filter (iterator)
1832@value{GDBN} will call this method on a frame filter when it has
1833reached the order in the priority list for that filter.
1834
1835For example, if there are four frame filters:
1836
1837@smallexample
1838Name Priority
1839
1840Filter1 5
1841Filter2 10
1842Filter3 100
1843Filter4 1
1844@end smallexample
1845
1846The order that the frame filters will be called is:
1847
1848@smallexample
1849Filter3 -> Filter2 -> Filter1 -> Filter4
1850@end smallexample
1851
1852Note that the output from @code{Filter3} is passed to the input of
1853@code{Filter2}, and so on.
1854
1855This @code{filter} method is passed a Python iterator. This iterator
1856contains a sequence of frame decorators that wrap each
1857@code{gdb.Frame}, or a frame decorator that wraps another frame
1858decorator. The first filter that is executed in the sequence of frame
1859filters will receive an iterator entirely comprised of default
1860@code{FrameDecorator} objects. However, after each frame filter is
1861executed, the previous frame filter may have wrapped some or all of
1862the frame decorators with their own frame decorator. As frame
1863decorators must also conform to a mandatory interface, these
1864decorators can be assumed to act in a uniform manner (@pxref{Frame
1865Decorator API}).
1866
1867This method must return an object conforming to the Python iterator
1868protocol. Each item in the iterator must be an object conforming to
1869the frame decorator interface. If a frame filter does not wish to
1870perform any operations on this iterator, it should return that
1871iterator untouched.
1872
1873This method is not optional. If it does not exist, @value{GDBN} will
1874raise and print an error.
1875@end defun
1876
1877@defvar FrameFilter.name
1878The @code{name} attribute must be Python string which contains the
1879name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1880Management}). This attribute may contain any combination of letters
1881or numbers. Care should be taken to ensure that it is unique. This
1882attribute is mandatory.
1883@end defvar
1884
1885@defvar FrameFilter.enabled
1886The @code{enabled} attribute must be Python boolean. This attribute
1887indicates to @value{GDBN} whether the frame filter is enabled, and
1888should be considered when frame filters are executed. If
1889@code{enabled} is @code{True}, then the frame filter will be executed
1890when any of the backtrace commands detailed earlier in this chapter
1891are executed. If @code{enabled} is @code{False}, then the frame
1892filter will not be executed. This attribute is mandatory.
1893@end defvar
1894
1895@defvar FrameFilter.priority
1896The @code{priority} attribute must be Python integer. This attribute
1897controls the order of execution in relation to other frame filters.
1898There are no imposed limits on the range of @code{priority} other than
1899it must be a valid integer. The higher the @code{priority} attribute,
1900the sooner the frame filter will be executed in relation to other
1901frame filters. Although @code{priority} can be negative, it is
1902recommended practice to assume zero is the lowest priority that a
1903frame filter can be assigned. Frame filters that have the same
1904priority are executed in unsorted order in that priority slot. This
521b499b 1905attribute is mandatory. 100 is a good default priority.
329baa95
DE
1906@end defvar
1907
1908@node Frame Decorator API
521b499b 1909@subsubsection Decorating Frames
329baa95
DE
1910@cindex frame decorator api
1911
1912Frame decorators are sister objects to frame filters (@pxref{Frame
1913Filter API}). Frame decorators are applied by a frame filter and can
1914only be used in conjunction with frame filters.
1915
1916The purpose of a frame decorator is to customize the printed content
1917of each @code{gdb.Frame} in commands where frame filters are executed.
1918This concept is called decorating a frame. Frame decorators decorate
1919a @code{gdb.Frame} with Python code contained within each API call.
1920This separates the actual data contained in a @code{gdb.Frame} from
1921the decorated data produced by a frame decorator. This abstraction is
1922necessary to maintain integrity of the data contained in each
1923@code{gdb.Frame}.
1924
1925Frame decorators have a mandatory interface, defined below.
1926
1927@value{GDBN} already contains a frame decorator called
1928@code{FrameDecorator}. This contains substantial amounts of
1929boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1930recommended that other frame decorators inherit and extend this
1931object, and only to override the methods needed.
1932
521b499b
TT
1933@tindex gdb.FrameDecorator
1934@code{FrameDecorator} is defined in the Python module
1935@code{gdb.FrameDecorator}, so your code can import it like:
1936@smallexample
1937from gdb.FrameDecorator import FrameDecorator
1938@end smallexample
1939
329baa95
DE
1940@defun FrameDecorator.elided (self)
1941
1942The @code{elided} method groups frames together in a hierarchical
1943system. An example would be an interpreter, where multiple low-level
1944frames make up a single call in the interpreted language. In this
1945example, the frame filter would elide the low-level frames and present
1946a single high-level frame, representing the call in the interpreted
1947language, to the user.
1948
1949The @code{elided} function must return an iterable and this iterable
1950must contain the frames that are being elided wrapped in a suitable
1951frame decorator. If no frames are being elided this function may
1952return an empty iterable, or @code{None}. Elided frames are indented
1953from normal frames in a @code{CLI} backtrace, or in the case of
1954@code{GDB/MI}, are placed in the @code{children} field of the eliding
1955frame.
1956
1957It is the frame filter's task to also filter out the elided frames from
1958the source iterator. This will avoid printing the frame twice.
1959@end defun
1960
1961@defun FrameDecorator.function (self)
1962
1963This method returns the name of the function in the frame that is to
1964be printed.
1965
1966This method must return a Python string describing the function, or
1967@code{None}.
1968
1969If this function returns @code{None}, @value{GDBN} will not print any
1970data for this field.
1971@end defun
1972
1973@defun FrameDecorator.address (self)
1974
1975This method returns the address of the frame that is to be printed.
1976
1977This method must return a Python numeric integer type of sufficient
1978size to describe the address of the frame, or @code{None}.
1979
1980If this function returns a @code{None}, @value{GDBN} will not print
1981any data for this field.
1982@end defun
1983
1984@defun FrameDecorator.filename (self)
1985
1986This method returns the filename and path associated with this frame.
1987
1988This method must return a Python string containing the filename and
1989the path to the object file backing the frame, or @code{None}.
1990
1991If this function returns a @code{None}, @value{GDBN} will not print
1992any data for this field.
1993@end defun
1994
1995@defun FrameDecorator.line (self):
1996
1997This method returns the line number associated with the current
1998position within the function addressed by this frame.
1999
2000This method must return a Python integer type, or @code{None}.
2001
2002If this function returns a @code{None}, @value{GDBN} will not print
2003any data for this field.
2004@end defun
2005
2006@defun FrameDecorator.frame_args (self)
2007@anchor{frame_args}
2008
2009This method must return an iterable, or @code{None}. Returning an
2010empty iterable, or @code{None} means frame arguments will not be
2011printed for this frame. This iterable must contain objects that
2012implement two methods, described here.
2013
2014This object must implement a @code{argument} method which takes a
2015single @code{self} parameter and must return a @code{gdb.Symbol}
2016(@pxref{Symbols In Python}), or a Python string. The object must also
2017implement a @code{value} method which takes a single @code{self}
2018parameter and must return a @code{gdb.Value} (@pxref{Values From
2019Inferior}), a Python value, or @code{None}. If the @code{value}
2020method returns @code{None}, and the @code{argument} method returns a
2021@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2022the @code{gdb.Symbol} automatically.
2023
2024A brief example:
2025
2026@smallexample
2027class SymValueWrapper():
2028
2029 def __init__(self, symbol, value):
2030 self.sym = symbol
2031 self.val = value
2032
2033 def value(self):
2034 return self.val
2035
2036 def symbol(self):
2037 return self.sym
2038
2039class SomeFrameDecorator()
2040...
2041...
2042 def frame_args(self):
2043 args = []
2044 try:
2045 block = self.inferior_frame.block()
2046 except:
2047 return None
2048
2049 # Iterate over all symbols in a block. Only add
2050 # symbols that are arguments.
2051 for sym in block:
2052 if not sym.is_argument:
2053 continue
2054 args.append(SymValueWrapper(sym,None))
2055
2056 # Add example synthetic argument.
2057 args.append(SymValueWrapper(``foo'', 42))
2058
2059 return args
2060@end smallexample
2061@end defun
2062
2063@defun FrameDecorator.frame_locals (self)
2064
2065This method must return an iterable or @code{None}. Returning an
2066empty iterable, or @code{None} means frame local arguments will not be
2067printed for this frame.
2068
2069The object interface, the description of the various strategies for
2070reading frame locals, and the example are largely similar to those
2071described in the @code{frame_args} function, (@pxref{frame_args,,The
2072frame filter frame_args function}). Below is a modified example:
2073
2074@smallexample
2075class SomeFrameDecorator()
2076...
2077...
2078 def frame_locals(self):
2079 vars = []
2080 try:
2081 block = self.inferior_frame.block()
2082 except:
2083 return None
2084
2085 # Iterate over all symbols in a block. Add all
2086 # symbols, except arguments.
2087 for sym in block:
2088 if sym.is_argument:
2089 continue
2090 vars.append(SymValueWrapper(sym,None))
2091
2092 # Add an example of a synthetic local variable.
2093 vars.append(SymValueWrapper(``bar'', 99))
2094
2095 return vars
2096@end smallexample
2097@end defun
2098
2099@defun FrameDecorator.inferior_frame (self):
2100
2101This method must return the underlying @code{gdb.Frame} that this
2102frame decorator is decorating. @value{GDBN} requires the underlying
2103frame for internal frame information to determine how to print certain
2104values when printing a frame.
2105@end defun
2106
2107@node Writing a Frame Filter
2108@subsubsection Writing a Frame Filter
2109@cindex writing a frame filter
2110
2111There are three basic elements that a frame filter must implement: it
2112must correctly implement the documented interface (@pxref{Frame Filter
2113API}), it must register itself with @value{GDBN}, and finally, it must
2114decide if it is to work on the data provided by @value{GDBN}. In all
2115cases, whether it works on the iterator or not, each frame filter must
2116return an iterator. A bare-bones frame filter follows the pattern in
2117the following example.
2118
2119@smallexample
2120import gdb
2121
2122class FrameFilter():
2123
2124 def __init__(self):
2125 # Frame filter attribute creation.
2126 #
2127 # 'name' is the name of the filter that GDB will display.
2128 #
2129 # 'priority' is the priority of the filter relative to other
2130 # filters.
2131 #
2132 # 'enabled' is a boolean that indicates whether this filter is
2133 # enabled and should be executed.
2134
2135 self.name = "Foo"
2136 self.priority = 100
2137 self.enabled = True
2138
2139 # Register this frame filter with the global frame_filters
2140 # dictionary.
2141 gdb.frame_filters[self.name] = self
2142
2143 def filter(self, frame_iter):
2144 # Just return the iterator.
2145 return frame_iter
2146@end smallexample
2147
2148The frame filter in the example above implements the three
2149requirements for all frame filters. It implements the API, self
2150registers, and makes a decision on the iterator (in this case, it just
2151returns the iterator untouched).
2152
2153The first step is attribute creation and assignment, and as shown in
2154the comments the filter assigns the following attributes: @code{name},
2155@code{priority} and whether the filter should be enabled with the
2156@code{enabled} attribute.
2157
2158The second step is registering the frame filter with the dictionary or
2159dictionaries that the frame filter has interest in. As shown in the
2160comments, this filter just registers itself with the global dictionary
2161@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2162is a dictionary that is initialized in the @code{gdb} module when
2163@value{GDBN} starts. What dictionary a filter registers with is an
2164important consideration. Generally, if a filter is specific to a set
2165of code, it should be registered either in the @code{objfile} or
2166@code{progspace} dictionaries as they are specific to the program
2167currently loaded in @value{GDBN}. The global dictionary is always
2168present in @value{GDBN} and is never unloaded. Any filters registered
2169with the global dictionary will exist until @value{GDBN} exits. To
2170avoid filters that may conflict, it is generally better to register
2171frame filters against the dictionaries that more closely align with
2172the usage of the filter currently in question. @xref{Python
2173Auto-loading}, for further information on auto-loading Python scripts.
2174
2175@value{GDBN} takes a hands-off approach to frame filter registration,
2176therefore it is the frame filter's responsibility to ensure
2177registration has occurred, and that any exceptions are handled
2178appropriately. In particular, you may wish to handle exceptions
2179relating to Python dictionary key uniqueness. It is mandatory that
2180the dictionary key is the same as frame filter's @code{name}
2181attribute. When a user manages frame filters (@pxref{Frame Filter
2182Management}), the names @value{GDBN} will display are those contained
2183in the @code{name} attribute.
2184
2185The final step of this example is the implementation of the
2186@code{filter} method. As shown in the example comments, we define the
2187@code{filter} method and note that the method must take an iterator,
2188and also must return an iterator. In this bare-bones example, the
2189frame filter is not very useful as it just returns the iterator
2190untouched. However this is a valid operation for frame filters that
2191have the @code{enabled} attribute set, but decide not to operate on
2192any frames.
2193
2194In the next example, the frame filter operates on all frames and
2195utilizes a frame decorator to perform some work on the frames.
2196@xref{Frame Decorator API}, for further information on the frame
2197decorator interface.
2198
2199This example works on inlined frames. It highlights frames which are
2200inlined by tagging them with an ``[inlined]'' tag. By applying a
2201frame decorator to all frames with the Python @code{itertools imap}
2202method, the example defers actions to the frame decorator. Frame
2203decorators are only processed when @value{GDBN} prints the backtrace.
2204
2205This introduces a new decision making topic: whether to perform
2206decision making operations at the filtering step, or at the printing
2207step. In this example's approach, it does not perform any filtering
2208decisions at the filtering step beyond mapping a frame decorator to
2209each frame. This allows the actual decision making to be performed
2210when each frame is printed. This is an important consideration, and
2211well worth reflecting upon when designing a frame filter. An issue
2212that frame filters should avoid is unwinding the stack if possible.
2213Some stacks can run very deep, into the tens of thousands in some
2214cases. To search every frame to determine if it is inlined ahead of
2215time may be too expensive at the filtering step. The frame filter
2216cannot know how many frames it has to iterate over, and it would have
2217to iterate through them all. This ends up duplicating effort as
2218@value{GDBN} performs this iteration when it prints the frames.
2219
2220In this example decision making can be deferred to the printing step.
2221As each frame is printed, the frame decorator can examine each frame
2222in turn when @value{GDBN} iterates. From a performance viewpoint,
2223this is the most appropriate decision to make as it avoids duplicating
2224the effort that the printing step would undertake anyway. Also, if
2225there are many frame filters unwinding the stack during filtering, it
2226can substantially delay the printing of the backtrace which will
2227result in large memory usage, and a poor user experience.
2228
2229@smallexample
2230class InlineFilter():
2231
2232 def __init__(self):
2233 self.name = "InlinedFrameFilter"
2234 self.priority = 100
2235 self.enabled = True
2236 gdb.frame_filters[self.name] = self
2237
2238 def filter(self, frame_iter):
2239 frame_iter = itertools.imap(InlinedFrameDecorator,
2240 frame_iter)
2241 return frame_iter
2242@end smallexample
2243
2244This frame filter is somewhat similar to the earlier example, except
2245that the @code{filter} method applies a frame decorator object called
2246@code{InlinedFrameDecorator} to each element in the iterator. The
2247@code{imap} Python method is light-weight. It does not proactively
2248iterate over the iterator, but rather creates a new iterator which
2249wraps the existing one.
2250
2251Below is the frame decorator for this example.
2252
2253@smallexample
2254class InlinedFrameDecorator(FrameDecorator):
2255
2256 def __init__(self, fobj):
2257 super(InlinedFrameDecorator, self).__init__(fobj)
2258
2259 def function(self):
2260 frame = fobj.inferior_frame()
2261 name = str(frame.name())
2262
2263 if frame.type() == gdb.INLINE_FRAME:
2264 name = name + " [inlined]"
2265
2266 return name
2267@end smallexample
2268
2269This frame decorator only defines and overrides the @code{function}
2270method. It lets the supplied @code{FrameDecorator}, which is shipped
2271with @value{GDBN}, perform the other work associated with printing
2272this frame.
2273
2274The combination of these two objects create this output from a
2275backtrace:
2276
2277@smallexample
2278#0 0x004004e0 in bar () at inline.c:11
2279#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2280#2 0x00400566 in main () at inline.c:31
2281@end smallexample
2282
2283So in the case of this example, a frame decorator is applied to all
2284frames, regardless of whether they may be inlined or not. As
2285@value{GDBN} iterates over the iterator produced by the frame filters,
2286@value{GDBN} executes each frame decorator which then makes a decision
2287on what to print in the @code{function} callback. Using a strategy
2288like this is a way to defer decisions on the frame content to printing
2289time.
2290
2291@subheading Eliding Frames
2292
2293It might be that the above example is not desirable for representing
2294inlined frames, and a hierarchical approach may be preferred. If we
2295want to hierarchically represent frames, the @code{elided} frame
2296decorator interface might be preferable.
2297
2298This example approaches the issue with the @code{elided} method. This
2299example is quite long, but very simplistic. It is out-of-scope for
2300this section to write a complete example that comprehensively covers
2301all approaches of finding and printing inlined frames. However, this
2302example illustrates the approach an author might use.
2303
2304This example comprises of three sections.
2305
2306@smallexample
2307class InlineFrameFilter():
2308
2309 def __init__(self):
2310 self.name = "InlinedFrameFilter"
2311 self.priority = 100
2312 self.enabled = True
2313 gdb.frame_filters[self.name] = self
2314
2315 def filter(self, frame_iter):
2316 return ElidingInlineIterator(frame_iter)
2317@end smallexample
2318
2319This frame filter is very similar to the other examples. The only
2320difference is this frame filter is wrapping the iterator provided to
2321it (@code{frame_iter}) with a custom iterator called
2322@code{ElidingInlineIterator}. This again defers actions to when
2323@value{GDBN} prints the backtrace, as the iterator is not traversed
2324until printing.
2325
2326The iterator for this example is as follows. It is in this section of
2327the example where decisions are made on the content of the backtrace.
2328
2329@smallexample
2330class ElidingInlineIterator:
2331 def __init__(self, ii):
2332 self.input_iterator = ii
2333
2334 def __iter__(self):
2335 return self
2336
2337 def next(self):
2338 frame = next(self.input_iterator)
2339
2340 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2341 return frame
2342
2343 try:
2344 eliding_frame = next(self.input_iterator)
2345 except StopIteration:
2346 return frame
2347 return ElidingFrameDecorator(eliding_frame, [frame])
2348@end smallexample
2349
2350This iterator implements the Python iterator protocol. When the
2351@code{next} function is called (when @value{GDBN} prints each frame),
2352the iterator checks if this frame decorator, @code{frame}, is wrapping
2353an inlined frame. If it is not, it returns the existing frame decorator
2354untouched. If it is wrapping an inlined frame, it assumes that the
2355inlined frame was contained within the next oldest frame,
2356@code{eliding_frame}, which it fetches. It then creates and returns a
2357frame decorator, @code{ElidingFrameDecorator}, which contains both the
2358elided frame, and the eliding frame.
2359
2360@smallexample
2361class ElidingInlineDecorator(FrameDecorator):
2362
2363 def __init__(self, frame, elided_frames):
2364 super(ElidingInlineDecorator, self).__init__(frame)
2365 self.frame = frame
2366 self.elided_frames = elided_frames
2367
2368 def elided(self):
2369 return iter(self.elided_frames)
2370@end smallexample
2371
2372This frame decorator overrides one function and returns the inlined
2373frame in the @code{elided} method. As before it lets
2374@code{FrameDecorator} do the rest of the work involved in printing
2375this frame. This produces the following output.
2376
2377@smallexample
2378#0 0x004004e0 in bar () at inline.c:11
2379#2 0x00400529 in main () at inline.c:25
2380 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2381@end smallexample
2382
2383In that output, @code{max} which has been inlined into @code{main} is
2384printed hierarchically. Another approach would be to combine the
2385@code{function} method, and the @code{elided} method to both print a
2386marker in the inlined frame, and also show the hierarchical
2387relationship.
2388
d11916aa
SS
2389@node Unwinding Frames in Python
2390@subsubsection Unwinding Frames in Python
2391@cindex unwinding frames in Python
2392
2393In @value{GDBN} terminology ``unwinding'' is the process of finding
2394the previous frame (that is, caller's) from the current one. An
2395unwinder has three methods. The first one checks if it can handle
2396given frame (``sniff'' it). For the frames it can sniff an unwinder
2397provides two additional methods: it can return frame's ID, and it can
2398fetch registers from the previous frame. A running @value{GDBN}
2399mantains a list of the unwinders and calls each unwinder's sniffer in
2400turn until it finds the one that recognizes the current frame. There
2401is an API to register an unwinder.
2402
2403The unwinders that come with @value{GDBN} handle standard frames.
2404However, mixed language applications (for example, an application
2405running Java Virtual Machine) sometimes use frame layouts that cannot
2406be handled by the @value{GDBN} unwinders. You can write Python code
2407that can handle such custom frames.
2408
2409You implement a frame unwinder in Python as a class with which has two
2410attributes, @code{name} and @code{enabled}, with obvious meanings, and
2411a single method @code{__call__}, which examines a given frame and
2412returns an object (an instance of @code{gdb.UnwindInfo class)}
2413describing it. If an unwinder does not recognize a frame, it should
2414return @code{None}. The code in @value{GDBN} that enables writing
2415unwinders in Python uses this object to return frame's ID and previous
2416frame registers when @value{GDBN} core asks for them.
2417
e7b5068c
TT
2418An unwinder should do as little work as possible. Some otherwise
2419innocuous operations can cause problems (even crashes, as this code is
2420not not well-hardened yet). For example, making an inferior call from
2421an unwinder is unadvisable, as an inferior call will reset
2422@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2423unwinding.
2424
d11916aa
SS
2425@subheading Unwinder Input
2426
2427An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2428provides a method to read frame's registers:
2429
2430@defun PendingFrame.read_register (reg)
e7b5068c 2431This method returns the contents of the register @var{reg} in the
d11916aa
SS
2432frame as a @code{gdb.Value} object. @var{reg} can be either a
2433register number or a register name; the values are platform-specific.
2434They are usually found in the corresponding
e7b5068c
TT
2435@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2436@var{reg} does not name a register for the current architecture, this
2437method will throw an exception.
2438
2439Note that this method will always return a @code{gdb.Value} for a
2440valid register name. This does not mean that the value will be valid.
2441For example, you may request a register that an earlier unwinder could
2442not unwind---the value will be unavailable. Instead, the
2443@code{gdb.Value} returned from this method will be lazy; that is, its
2444underlying bits will not be fetched until it is first used. So,
2445attempting to use such a value will cause an exception at the point of
2446use.
2447
2448The type of the returned @code{gdb.Value} depends on the register and
2449the architecture. It is common for registers to have a scalar type,
2450like @code{long long}; but many other types are possible, such as
2451pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2452@end defun
2453
2454It also provides a factory method to create a @code{gdb.UnwindInfo}
2455instance to be returned to @value{GDBN}:
2456
2457@defun PendingFrame.create_unwind_info (frame_id)
2458Returns a new @code{gdb.UnwindInfo} instance identified by given
2459@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2460using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2461determine which function will be used, as follows:
2462
2463@table @code
d11916aa 2464@item sp, pc
e7b5068c
TT
2465The frame is identified by the given stack address and PC. The stack
2466address must be chosen so that it is constant throughout the lifetime
2467of the frame, so a typical choice is the value of the stack pointer at
2468the start of the function---in the DWARF standard, this would be the
2469``Call Frame Address''.
d11916aa 2470
e7b5068c
TT
2471This is the most common case by far. The other cases are documented
2472for completeness but are only useful in specialized situations.
2473
2474@item sp, pc, special
2475The frame is identified by the stack address, the PC, and a
2476``special'' address. The special address is used on architectures
2477that can have frames that do not change the stack, but which are still
2478distinct, for example the IA-64, which has a second stack for
2479registers. Both @var{sp} and @var{special} must be constant
2480throughout the lifetime of the frame.
d11916aa
SS
2481
2482@item sp
e7b5068c
TT
2483The frame is identified by the stack address only. Any other stack
2484frame with a matching @var{sp} will be considered to match this frame.
2485Inside gdb, this is called a ``wild frame''. You will never need
2486this.
d11916aa 2487@end table
e7b5068c
TT
2488
2489Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2490
2491@end defun
2492
2493@subheading Unwinder Output: UnwindInfo
2494
2495Use @code{PendingFrame.create_unwind_info} method described above to
2496create a @code{gdb.UnwindInfo} instance. Use the following method to
2497specify caller registers that have been saved in this frame:
2498
2499@defun gdb.UnwindInfo.add_saved_register (reg, value)
2500@var{reg} identifies the register. It can be a number or a name, just
2501as for the @code{PendingFrame.read_register} method above.
2502@var{value} is a register value (a @code{gdb.Value} object).
2503@end defun
2504
2505@subheading Unwinder Skeleton Code
2506
2507@value{GDBN} comes with the module containing the base @code{Unwinder}
2508class. Derive your unwinder class from it and structure the code as
2509follows:
2510
2511@smallexample
2512from gdb.unwinders import Unwinder
2513
2514class FrameId(object):
2515 def __init__(self, sp, pc):
2516 self.sp = sp
2517 self.pc = pc
2518
2519
2520class MyUnwinder(Unwinder):
2521 def __init__(....):
6b92c0d3 2522 super(MyUnwinder, self).__init___(<expects unwinder name argument>)
d11916aa
SS
2523
2524 def __call__(pending_frame):
2525 if not <we recognize frame>:
2526 return None
2527 # Create UnwindInfo. Usually the frame is identified by the stack
2528 # pointer and the program counter.
2529 sp = pending_frame.read_register(<SP number>)
2530 pc = pending_frame.read_register(<PC number>)
2531 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2532
2533 # Find the values of the registers in the caller's frame and
2534 # save them in the result:
2535 unwind_info.add_saved_register(<register>, <value>)
2536 ....
2537
2538 # Return the result:
2539 return unwind_info
2540
2541@end smallexample
2542
2543@subheading Registering a Unwinder
2544
2545An object file, a program space, and the @value{GDBN} proper can have
2546unwinders registered with it.
2547
2548The @code{gdb.unwinders} module provides the function to register a
2549unwinder:
2550
2551@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2552@var{locus} is specifies an object file or a program space to which
2553@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2554@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2555added @var{unwinder} will be called before any other unwinder from the
2556same locus. Two unwinders in the same locus cannot have the same
2557name. An attempt to add a unwinder with already existing name raises
2558an exception unless @var{replace} is @code{True}, in which case the
2559old unwinder is deleted.
2560@end defun
2561
2562@subheading Unwinder Precedence
2563
2564@value{GDBN} first calls the unwinders from all the object files in no
2565particular order, then the unwinders from the current program space,
2566and finally the unwinders from @value{GDBN}.
2567
0c6e92a5
SC
2568@node Xmethods In Python
2569@subsubsection Xmethods In Python
2570@cindex xmethods in Python
2571
2572@dfn{Xmethods} are additional methods or replacements for existing
2573methods of a C@t{++} class. This feature is useful for those cases
2574where a method defined in C@t{++} source code could be inlined or
2575optimized out by the compiler, making it unavailable to @value{GDBN}.
2576For such cases, one can define an xmethod to serve as a replacement
2577for the method defined in the C@t{++} source code. @value{GDBN} will
2578then invoke the xmethod, instead of the C@t{++} method, to
2579evaluate expressions. One can also use xmethods when debugging
2580with core files. Moreover, when debugging live programs, invoking an
2581xmethod need not involve running the inferior (which can potentially
2582perturb its state). Hence, even if the C@t{++} method is available, it
2583is better to use its replacement xmethod if one is defined.
2584
2585The xmethods feature in Python is available via the concepts of an
2586@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2587implement an xmethod, one has to implement a matcher and a
2588corresponding worker for it (more than one worker can be
2589implemented, each catering to a different overloaded instance of the
2590method). Internally, @value{GDBN} invokes the @code{match} method of a
2591matcher to match the class type and method name. On a match, the
2592@code{match} method returns a list of matching @emph{worker} objects.
2593Each worker object typically corresponds to an overloaded instance of
2594the xmethod. They implement a @code{get_arg_types} method which
2595returns a sequence of types corresponding to the arguments the xmethod
2596requires. @value{GDBN} uses this sequence of types to perform
2597overload resolution and picks a winning xmethod worker. A winner
2598is also selected from among the methods @value{GDBN} finds in the
2599C@t{++} source code. Next, the winning xmethod worker and the
2600winning C@t{++} method are compared to select an overall winner. In
2601case of a tie between a xmethod worker and a C@t{++} method, the
2602xmethod worker is selected as the winner. That is, if a winning
2603xmethod worker is found to be equivalent to the winning C@t{++}
2604method, then the xmethod worker is treated as a replacement for
2605the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2606method. If the winning xmethod worker is the overall winner, then
897c3d32 2607the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2608of the worker object.
2609
2610If one wants to implement an xmethod as a replacement for an
2611existing C@t{++} method, then they have to implement an equivalent
2612xmethod which has exactly the same name and takes arguments of
2613exactly the same type as the C@t{++} method. If the user wants to
2614invoke the C@t{++} method even though a replacement xmethod is
2615available for that method, then they can disable the xmethod.
2616
2617@xref{Xmethod API}, for API to implement xmethods in Python.
2618@xref{Writing an Xmethod}, for implementing xmethods in Python.
2619
2620@node Xmethod API
2621@subsubsection Xmethod API
2622@cindex xmethod API
2623
2624The @value{GDBN} Python API provides classes, interfaces and functions
2625to implement, register and manipulate xmethods.
2626@xref{Xmethods In Python}.
2627
2628An xmethod matcher should be an instance of a class derived from
2629@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2630object with similar interface and attributes. An instance of
2631@code{XMethodMatcher} has the following attributes:
2632
2633@defvar name
2634The name of the matcher.
2635@end defvar
2636
2637@defvar enabled
2638A boolean value indicating whether the matcher is enabled or disabled.
2639@end defvar
2640
2641@defvar methods
2642A list of named methods managed by the matcher. Each object in the list
2643is an instance of the class @code{XMethod} defined in the module
2644@code{gdb.xmethod}, or any object with the following attributes:
2645
2646@table @code
2647
2648@item name
2649Name of the xmethod which should be unique for each xmethod
2650managed by the matcher.
2651
2652@item enabled
2653A boolean value indicating whether the xmethod is enabled or
2654disabled.
2655
2656@end table
2657
2658The class @code{XMethod} is a convenience class with same
2659attributes as above along with the following constructor:
2660
dd5d5494 2661@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2662Constructs an enabled xmethod with name @var{name}.
2663@end defun
2664@end defvar
2665
2666@noindent
2667The @code{XMethodMatcher} class has the following methods:
2668
dd5d5494 2669@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2670Constructs an enabled xmethod matcher with name @var{name}. The
2671@code{methods} attribute is initialized to @code{None}.
2672@end defun
2673
dd5d5494 2674@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2675Derived classes should override this method. It should return a
2676xmethod worker object (or a sequence of xmethod worker
2677objects) matching the @var{class_type} and @var{method_name}.
2678@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2679is a string value. If the matcher manages named methods as listed in
2680its @code{methods} attribute, then only those worker objects whose
2681corresponding entries in the @code{methods} list are enabled should be
2682returned.
2683@end defun
2684
2685An xmethod worker should be an instance of a class derived from
2686@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2687or support the following interface:
2688
dd5d5494 2689@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2690This method returns a sequence of @code{gdb.Type} objects corresponding
2691to the arguments that the xmethod takes. It can return an empty
2692sequence or @code{None} if the xmethod does not take any arguments.
2693If the xmethod takes a single argument, then a single
2694@code{gdb.Type} object corresponding to it can be returned.
2695@end defun
2696
2ce1cdbf
DE
2697@defun XMethodWorker.get_result_type (self, *args)
2698This method returns a @code{gdb.Type} object representing the type
2699of the result of invoking this xmethod.
2700The @var{args} argument is the same tuple of arguments that would be
2701passed to the @code{__call__} method of this worker.
2702@end defun
2703
dd5d5494 2704@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2705This is the method which does the @emph{work} of the xmethod. The
2706@var{args} arguments is the tuple of arguments to the xmethod. Each
2707element in this tuple is a gdb.Value object. The first element is
2708always the @code{this} pointer value.
2709@end defun
2710
2711For @value{GDBN} to lookup xmethods, the xmethod matchers
2712should be registered using the following function defined in the module
2713@code{gdb.xmethod}:
2714
dd5d5494 2715@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2716The @code{matcher} is registered with @code{locus}, replacing an
2717existing matcher with the same name as @code{matcher} if
2718@code{replace} is @code{True}. @code{locus} can be a
2719@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2720@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2721@code{None}. If it is @code{None}, then @code{matcher} is registered
2722globally.
2723@end defun
2724
2725@node Writing an Xmethod
2726@subsubsection Writing an Xmethod
2727@cindex writing xmethods in Python
2728
2729Implementing xmethods in Python will require implementing xmethod
2730matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2731the following C@t{++} class:
2732
2733@smallexample
2734class MyClass
2735@{
2736public:
2737 MyClass (int a) : a_(a) @{ @}
2738
2739 int geta (void) @{ return a_; @}
2740 int operator+ (int b);
2741
2742private:
2743 int a_;
2744@};
2745
2746int
2747MyClass::operator+ (int b)
2748@{
2749 return a_ + b;
2750@}
2751@end smallexample
2752
2753@noindent
2754Let us define two xmethods for the class @code{MyClass}, one
2755replacing the method @code{geta}, and another adding an overloaded
2756flavor of @code{operator+} which takes a @code{MyClass} argument (the
2757C@t{++} code above already has an overloaded @code{operator+}
2758which takes an @code{int} argument). The xmethod matcher can be
2759defined as follows:
2760
2761@smallexample
2762class MyClass_geta(gdb.xmethod.XMethod):
2763 def __init__(self):
2764 gdb.xmethod.XMethod.__init__(self, 'geta')
2765
2766 def get_worker(self, method_name):
2767 if method_name == 'geta':
2768 return MyClassWorker_geta()
2769
2770
2771class MyClass_sum(gdb.xmethod.XMethod):
2772 def __init__(self):
2773 gdb.xmethod.XMethod.__init__(self, 'sum')
2774
2775 def get_worker(self, method_name):
2776 if method_name == 'operator+':
2777 return MyClassWorker_plus()
2778
2779
2780class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2781 def __init__(self):
2782 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2783 # List of methods 'managed' by this matcher
2784 self.methods = [MyClass_geta(), MyClass_sum()]
2785
2786 def match(self, class_type, method_name):
2787 if class_type.tag != 'MyClass':
2788 return None
2789 workers = []
2790 for method in self.methods:
2791 if method.enabled:
2792 worker = method.get_worker(method_name)
2793 if worker:
2794 workers.append(worker)
2795
2796 return workers
2797@end smallexample
2798
2799@noindent
2800Notice that the @code{match} method of @code{MyClassMatcher} returns
2801a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2802method, and a worker object of type @code{MyClassWorker_plus} for the
2803@code{operator+} method. This is done indirectly via helper classes
2804derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2805@code{methods} attribute in a matcher as it is optional. However, if a
2806matcher manages more than one xmethod, it is a good practice to list the
2807xmethods in the @code{methods} attribute of the matcher. This will then
2808facilitate enabling and disabling individual xmethods via the
2809@code{enable/disable} commands. Notice also that a worker object is
2810returned only if the corresponding entry in the @code{methods} attribute
2811of the matcher is enabled.
2812
2813The implementation of the worker classes returned by the matcher setup
2814above is as follows:
2815
2816@smallexample
2817class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2818 def get_arg_types(self):
2819 return None
2ce1cdbf
DE
2820
2821 def get_result_type(self, obj):
2822 return gdb.lookup_type('int')
0c6e92a5
SC
2823
2824 def __call__(self, obj):
2825 return obj['a_']
2826
2827
2828class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2829 def get_arg_types(self):
2830 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2831
2832 def get_result_type(self, obj):
2833 return gdb.lookup_type('int')
0c6e92a5
SC
2834
2835 def __call__(self, obj, other):
2836 return obj['a_'] + other['a_']
2837@end smallexample
2838
2839For @value{GDBN} to actually lookup a xmethod, it has to be
2840registered with it. The matcher defined above is registered with
2841@value{GDBN} globally as follows:
2842
2843@smallexample
2844gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2845@end smallexample
2846
2847If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2848code as follows:
2849
2850@smallexample
2851MyClass obj(5);
2852@end smallexample
2853
2854@noindent
2855then, after loading the Python script defining the xmethod matchers
2856and workers into @code{GDBN}, invoking the method @code{geta} or using
2857the operator @code{+} on @code{obj} will invoke the xmethods
2858defined above:
2859
2860@smallexample
2861(gdb) p obj.geta()
2862$1 = 5
2863
2864(gdb) p obj + obj
2865$2 = 10
2866@end smallexample
2867
2868Consider another example with a C++ template class:
2869
2870@smallexample
2871template <class T>
2872class MyTemplate
2873@{
2874public:
2875 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2876 ~MyTemplate () @{ delete [] data_; @}
2877
2878 int footprint (void)
2879 @{
2880 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2881 @}
2882
2883private:
2884 int dsize_;
2885 T *data_;
2886@};
2887@end smallexample
2888
2889Let us implement an xmethod for the above class which serves as a
2890replacement for the @code{footprint} method. The full code listing
2891of the xmethod workers and xmethod matchers is as follows:
2892
2893@smallexample
2894class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2895 def __init__(self, class_type):
2896 self.class_type = class_type
2ce1cdbf 2897
0c6e92a5
SC
2898 def get_arg_types(self):
2899 return None
2ce1cdbf
DE
2900
2901 def get_result_type(self):
2902 return gdb.lookup_type('int')
2903
0c6e92a5
SC
2904 def __call__(self, obj):
2905 return (self.class_type.sizeof +
2906 obj['dsize_'] *
2907 self.class_type.template_argument(0).sizeof)
2908
2909
2910class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2911 def __init__(self):
2912 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2913
2914 def match(self, class_type, method_name):
2915 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2916 class_type.tag) and
2917 method_name == 'footprint'):
2918 return MyTemplateWorker_footprint(class_type)
2919@end smallexample
2920
2921Notice that, in this example, we have not used the @code{methods}
2922attribute of the matcher as the matcher manages only one xmethod. The
2923user can enable/disable this xmethod by enabling/disabling the matcher
2924itself.
2925
329baa95
DE
2926@node Inferiors In Python
2927@subsubsection Inferiors In Python
2928@cindex inferiors in Python
2929
2930@findex gdb.Inferior
2931Programs which are being run under @value{GDBN} are called inferiors
65c574f6 2932(@pxref{Inferiors Connections and Programs}). Python scripts can access
329baa95
DE
2933information about and manipulate inferiors controlled by @value{GDBN}
2934via objects of the @code{gdb.Inferior} class.
2935
2936The following inferior-related functions are available in the @code{gdb}
2937module:
2938
2939@defun gdb.inferiors ()
2940Return a tuple containing all inferior objects.
2941@end defun
2942
2943@defun gdb.selected_inferior ()
2944Return an object representing the current inferior.
2945@end defun
2946
2947A @code{gdb.Inferior} object has the following attributes:
2948
2949@defvar Inferior.num
2950ID of inferior, as assigned by GDB.
2951@end defvar
2952
2953@defvar Inferior.pid
2954Process ID of the inferior, as assigned by the underlying operating
2955system.
2956@end defvar
2957
2958@defvar Inferior.was_attached
2959Boolean signaling whether the inferior was created using `attach', or
2960started by @value{GDBN} itself.
2961@end defvar
2962
a40bf0c2
SM
2963@defvar Inferior.progspace
2964The inferior's program space. @xref{Progspaces In Python}.
2965@end defvar
2966
329baa95
DE
2967A @code{gdb.Inferior} object has the following methods:
2968
2969@defun Inferior.is_valid ()
2970Returns @code{True} if the @code{gdb.Inferior} object is valid,
2971@code{False} if not. A @code{gdb.Inferior} object will become invalid
2972if the inferior no longer exists within @value{GDBN}. All other
2973@code{gdb.Inferior} methods will throw an exception if it is invalid
2974at the time the method is called.
2975@end defun
2976
2977@defun Inferior.threads ()
2978This method returns a tuple holding all the threads which are valid
2979when it is called. If there are no valid threads, the method will
2980return an empty tuple.
2981@end defun
2982
add5ded5
TT
2983@defun Inferior.architecture ()
2984Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2985for this inferior. This represents the architecture of the inferior
2986as a whole. Some platforms can have multiple architectures in a
2987single address space, so this may not match the architecture of a
163cffef 2988particular frame (@pxref{Frames In Python}).
9e1698c6 2989@end defun
add5ded5 2990
329baa95
DE
2991@findex Inferior.read_memory
2992@defun Inferior.read_memory (address, length)
a86c90e6 2993Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2994@var{address}. Returns a buffer object, which behaves much like an array
2995or a string. It can be modified and given to the
79778b30 2996@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2997value is a @code{memoryview} object.
2998@end defun
2999
3000@findex Inferior.write_memory
3001@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
3002Write the contents of @var{buffer} to the inferior, starting at
3003@var{address}. The @var{buffer} parameter must be a Python object
3004which supports the buffer protocol, i.e., a string, an array or the
3005object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
3006determines the number of addressable memory units from @var{buffer} to be
3007written.
329baa95
DE
3008@end defun
3009
3010@findex gdb.search_memory
3011@defun Inferior.search_memory (address, length, pattern)
3012Search a region of the inferior memory starting at @var{address} with
3013the given @var{length} using the search pattern supplied in
3014@var{pattern}. The @var{pattern} parameter must be a Python object
3015which supports the buffer protocol, i.e., a string, an array or the
3016object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3017containing the address where the pattern was found, or @code{None} if
3018the pattern could not be found.
3019@end defun
3020
2b0c8b01 3021@findex Inferior.thread_from_handle
da2c323b 3022@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3023@defun Inferior.thread_from_handle (handle)
3024Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3025library specific data structure such as @code{pthread_t} for pthreads
3026library implementations.
2b0c8b01
KB
3027
3028The function @code{Inferior.thread_from_thread_handle} provides
3029the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3030is deprecated.
da2c323b
KB
3031@end defun
3032
329baa95
DE
3033@node Events In Python
3034@subsubsection Events In Python
3035@cindex inferior events in Python
3036
3037@value{GDBN} provides a general event facility so that Python code can be
3038notified of various state changes, particularly changes that occur in
3039the inferior.
3040
3041An @dfn{event} is just an object that describes some state change. The
3042type of the object and its attributes will vary depending on the details
3043of the change. All the existing events are described below.
3044
3045In order to be notified of an event, you must register an event handler
3046with an @dfn{event registry}. An event registry is an object in the
3047@code{gdb.events} module which dispatches particular events. A registry
3048provides methods to register and unregister event handlers:
3049
3050@defun EventRegistry.connect (object)
3051Add the given callable @var{object} to the registry. This object will be
3052called when an event corresponding to this registry occurs.
3053@end defun
3054
3055@defun EventRegistry.disconnect (object)
3056Remove the given @var{object} from the registry. Once removed, the object
3057will no longer receive notifications of events.
3058@end defun
3059
3060Here is an example:
3061
3062@smallexample
3063def exit_handler (event):
3064 print "event type: exit"
3065 print "exit code: %d" % (event.exit_code)
3066
3067gdb.events.exited.connect (exit_handler)
3068@end smallexample
3069
3070In the above example we connect our handler @code{exit_handler} to the
3071registry @code{events.exited}. Once connected, @code{exit_handler} gets
3072called when the inferior exits. The argument @dfn{event} in this example is
3073of type @code{gdb.ExitedEvent}. As you can see in the example the
3074@code{ExitedEvent} object has an attribute which indicates the exit code of
3075the inferior.
3076
3077The following is a listing of the event registries that are available and
3078details of the events they emit:
3079
3080@table @code
3081
3082@item events.cont
3083Emits @code{gdb.ThreadEvent}.
3084
3085Some events can be thread specific when @value{GDBN} is running in non-stop
3086mode. When represented in Python, these events all extend
3087@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3088events which are emitted by this or other modules might extend this event.
3089Examples of these events are @code{gdb.BreakpointEvent} and
3090@code{gdb.ContinueEvent}.
3091
3092@defvar ThreadEvent.inferior_thread
3093In non-stop mode this attribute will be set to the specific thread which was
3094involved in the emitted event. Otherwise, it will be set to @code{None}.
3095@end defvar
3096
3097Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3098
3099This event indicates that the inferior has been continued after a stop. For
3100inherited attribute refer to @code{gdb.ThreadEvent} above.
3101
3102@item events.exited
3103Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3104@code{events.ExitedEvent} has two attributes:
3105@defvar ExitedEvent.exit_code
3106An integer representing the exit code, if available, which the inferior
3107has returned. (The exit code could be unavailable if, for example,
3108@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3109the attribute does not exist.
3110@end defvar
373832b6 3111@defvar ExitedEvent.inferior
329baa95
DE
3112A reference to the inferior which triggered the @code{exited} event.
3113@end defvar
3114
3115@item events.stop
3116Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3117
3118Indicates that the inferior has stopped. All events emitted by this registry
3119extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3120will indicate the stopped thread when @value{GDBN} is running in non-stop
3121mode. Refer to @code{gdb.ThreadEvent} above for more details.
3122
3123Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3124
3125This event indicates that the inferior or one of its threads has received as
3126signal. @code{gdb.SignalEvent} has the following attributes:
3127
3128@defvar SignalEvent.stop_signal
3129A string representing the signal received by the inferior. A list of possible
3130signal values can be obtained by running the command @code{info signals} in
3131the @value{GDBN} command prompt.
3132@end defvar
3133
3134Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3135
3136@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3137been hit, and has the following attributes:
3138
3139@defvar BreakpointEvent.breakpoints
3140A sequence containing references to all the breakpoints (type
3141@code{gdb.Breakpoint}) that were hit.
3142@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3143@end defvar
3144@defvar BreakpointEvent.breakpoint
3145A reference to the first breakpoint that was hit.
3146This function is maintained for backward compatibility and is now deprecated
3147in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3148@end defvar
3149
3150@item events.new_objfile
3151Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3152been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3153
3154@defvar NewObjFileEvent.new_objfile
3155A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3156@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3157@end defvar
3158
4ffbba72
DE
3159@item events.clear_objfiles
3160Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3161files for a program space has been reset.
3162@code{gdb.ClearObjFilesEvent} has one attribute:
3163
3164@defvar ClearObjFilesEvent.progspace
3165A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3166been cleared. @xref{Progspaces In Python}.
3167@end defvar
3168
fb5af5e3
TT
3169@item events.inferior_call
3170Emits events just before and after a function in the inferior is
3171called by @value{GDBN}. Before an inferior call, this emits an event
3172of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3173this emits an event of type @code{gdb.InferiorCallPostEvent}.
3174
3175@table @code
3176@tindex gdb.InferiorCallPreEvent
3177@item @code{gdb.InferiorCallPreEvent}
3178Indicates that a function in the inferior is about to be called.
162078c8
NB
3179
3180@defvar InferiorCallPreEvent.ptid
3181The thread in which the call will be run.
3182@end defvar
3183
3184@defvar InferiorCallPreEvent.address
3185The location of the function to be called.
3186@end defvar
3187
fb5af5e3
TT
3188@tindex gdb.InferiorCallPostEvent
3189@item @code{gdb.InferiorCallPostEvent}
3190Indicates that a function in the inferior has just been called.
162078c8
NB
3191
3192@defvar InferiorCallPostEvent.ptid
3193The thread in which the call was run.
3194@end defvar
3195
3196@defvar InferiorCallPostEvent.address
3197The location of the function that was called.
3198@end defvar
fb5af5e3 3199@end table
162078c8
NB
3200
3201@item events.memory_changed
3202Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3203inferior has been modified by the @value{GDBN} user, for instance via a
3204command like @w{@code{set *addr = value}}. The event has the following
3205attributes:
3206
3207@defvar MemoryChangedEvent.address
3208The start address of the changed region.
3209@end defvar
3210
3211@defvar MemoryChangedEvent.length
3212Length in bytes of the changed region.
3213@end defvar
3214
3215@item events.register_changed
3216Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3217inferior has been modified by the @value{GDBN} user.
3218
3219@defvar RegisterChangedEvent.frame
3220A gdb.Frame object representing the frame in which the register was modified.
3221@end defvar
3222@defvar RegisterChangedEvent.regnum
3223Denotes which register was modified.
3224@end defvar
3225
dac790e1
TT
3226@item events.breakpoint_created
3227This is emitted when a new breakpoint has been created. The argument
3228that is passed is the new @code{gdb.Breakpoint} object.
3229
3230@item events.breakpoint_modified
3231This is emitted when a breakpoint has been modified in some way. The
3232argument that is passed is the new @code{gdb.Breakpoint} object.
3233
3234@item events.breakpoint_deleted
3235This is emitted when a breakpoint has been deleted. The argument that
3236is passed is the @code{gdb.Breakpoint} object. When this event is
3237emitted, the @code{gdb.Breakpoint} object will already be in its
3238invalid state; that is, the @code{is_valid} method will return
3239@code{False}.
3240
3f77c769
TT
3241@item events.before_prompt
3242This event carries no payload. It is emitted each time @value{GDBN}
3243presents a prompt to the user.
3244
7c96f8c1
TT
3245@item events.new_inferior
3246This is emitted when a new inferior is created. Note that the
3247inferior is not necessarily running; in fact, it may not even have an
3248associated executable.
3249
3250The event is of type @code{gdb.NewInferiorEvent}. This has a single
3251attribute:
3252
3253@defvar NewInferiorEvent.inferior
3254The new inferior, a @code{gdb.Inferior} object.
3255@end defvar
3256
3257@item events.inferior_deleted
3258This is emitted when an inferior has been deleted. Note that this is
3259not the same as process exit; it is notified when the inferior itself
3260is removed, say via @code{remove-inferiors}.
3261
3262The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3263attribute:
3264
3265@defvar NewInferiorEvent.inferior
3266The inferior that is being removed, a @code{gdb.Inferior} object.
3267@end defvar
3268
3269@item events.new_thread
3270This is emitted when @value{GDBN} notices a new thread. The event is of
3271type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3272This has a single attribute:
3273
3274@defvar NewThreadEvent.inferior_thread
3275The new thread.
3276@end defvar
3277
329baa95
DE
3278@end table
3279
3280@node Threads In Python
3281@subsubsection Threads In Python
3282@cindex threads in python
3283
3284@findex gdb.InferiorThread
3285Python scripts can access information about, and manipulate inferior threads
3286controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3287
3288The following thread-related functions are available in the @code{gdb}
3289module:
3290
3291@findex gdb.selected_thread
3292@defun gdb.selected_thread ()
3293This function returns the thread object for the selected thread. If there
3294is no selected thread, this will return @code{None}.
3295@end defun
3296
14796d29
CB
3297To get the list of threads for an inferior, use the @code{Inferior.threads()}
3298method. @xref{Inferiors In Python}
3299
329baa95
DE
3300A @code{gdb.InferiorThread} object has the following attributes:
3301
3302@defvar InferiorThread.name
3303The name of the thread. If the user specified a name using
3304@code{thread name}, then this returns that name. Otherwise, if an
3305OS-supplied name is available, then it is returned. Otherwise, this
3306returns @code{None}.
3307
3308This attribute can be assigned to. The new value must be a string
3309object, which sets the new name, or @code{None}, which removes any
3310user-specified thread name.
3311@end defvar
3312
3313@defvar InferiorThread.num
5d5658a1 3314The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3315@end defvar
3316
22a02324
PA
3317@defvar InferiorThread.global_num
3318The global ID of the thread, as assigned by GDB. You can use this to
3319make Python breakpoints thread-specific, for example
3320(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3321@end defvar
3322
329baa95
DE
3323@defvar InferiorThread.ptid
3324ID of the thread, as assigned by the operating system. This attribute is a
3325tuple containing three integers. The first is the Process ID (PID); the second
3326is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3327Either the LWPID or TID may be 0, which indicates that the operating system
3328does not use that identifier.
3329@end defvar
3330
84654457
PA
3331@defvar InferiorThread.inferior
3332The inferior this thread belongs to. This attribute is represented as
3333a @code{gdb.Inferior} object. This attribute is not writable.
3334@end defvar
3335
329baa95
DE
3336A @code{gdb.InferiorThread} object has the following methods:
3337
3338@defun InferiorThread.is_valid ()
3339Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3340@code{False} if not. A @code{gdb.InferiorThread} object will become
3341invalid if the thread exits, or the inferior that the thread belongs
3342is deleted. All other @code{gdb.InferiorThread} methods will throw an
3343exception if it is invalid at the time the method is called.
3344@end defun
3345
3346@defun InferiorThread.switch ()
3347This changes @value{GDBN}'s currently selected thread to the one represented
3348by this object.
3349@end defun
3350
3351@defun InferiorThread.is_stopped ()
3352Return a Boolean indicating whether the thread is stopped.
3353@end defun
3354
3355@defun InferiorThread.is_running ()
3356Return a Boolean indicating whether the thread is running.
3357@end defun
3358
3359@defun InferiorThread.is_exited ()
3360Return a Boolean indicating whether the thread is exited.
3361@end defun
3362
c369f8f0
KB
3363@defun InferiorThread.handle ()
3364Return the thread object's handle, represented as a Python @code{bytes}
3365object. A @code{gdb.Value} representation of the handle may be
3366constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3367the Python @code{bytes} representation of the handle and @var{type} is
3368a @code{gdb.Type} for the handle type.
3369@end defun
3370
0a0faf9f
TW
3371@node Recordings In Python
3372@subsubsection Recordings In Python
3373@cindex recordings in python
3374
3375The following recordings-related functions
3376(@pxref{Process Record and Replay}) are available in the @code{gdb}
3377module:
3378
3379@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3380Start a recording using the given @var{method} and @var{format}. If
3381no @var{format} is given, the default format for the recording method
3382is used. If no @var{method} is given, the default method will be used.
3383Returns a @code{gdb.Record} object on success. Throw an exception on
3384failure.
3385
3386The following strings can be passed as @var{method}:
3387
3388@itemize @bullet
3389@item
3390@code{"full"}
3391@item
3392@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3393@code{"bts"} or leave out for default format.
3394@end itemize
3395@end defun
3396
3397@defun gdb.current_recording ()
3398Access a currently running recording. Return a @code{gdb.Record}
3399object on success. Return @code{None} if no recording is currently
3400active.
3401@end defun
3402
3403@defun gdb.stop_recording ()
3404Stop the current recording. Throw an exception if no recording is
3405currently active. All record objects become invalid after this call.
3406@end defun
3407
3408A @code{gdb.Record} object has the following attributes:
3409
0a0faf9f
TW
3410@defvar Record.method
3411A string with the current recording method, e.g.@: @code{full} or
3412@code{btrace}.
3413@end defvar
3414
3415@defvar Record.format
3416A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3417@code{None}.
3418@end defvar
3419
3420@defvar Record.begin
3421A method specific instruction object representing the first instruction
3422in this recording.
3423@end defvar
3424
3425@defvar Record.end
3426A method specific instruction object representing the current
3427instruction, that is not actually part of the recording.
3428@end defvar
3429
3430@defvar Record.replay_position
3431The instruction representing the current replay position. If there is
3432no replay active, this will be @code{None}.
3433@end defvar
3434
3435@defvar Record.instruction_history
3436A list with all recorded instructions.
3437@end defvar
3438
3439@defvar Record.function_call_history
3440A list with all recorded function call segments.
3441@end defvar
3442
3443A @code{gdb.Record} object has the following methods:
3444
3445@defun Record.goto (instruction)
3446Move the replay position to the given @var{instruction}.
3447@end defun
3448
d050f7d7
TW
3449The common @code{gdb.Instruction} class that recording method specific
3450instruction objects inherit from, has the following attributes:
0a0faf9f 3451
d050f7d7 3452@defvar Instruction.pc
913aeadd 3453An integer representing this instruction's address.
0a0faf9f
TW
3454@end defvar
3455
d050f7d7 3456@defvar Instruction.data
913aeadd
TW
3457A buffer with the raw instruction data. In Python 3, the return value is a
3458@code{memoryview} object.
0a0faf9f
TW
3459@end defvar
3460
d050f7d7 3461@defvar Instruction.decoded
913aeadd 3462A human readable string with the disassembled instruction.
0a0faf9f
TW
3463@end defvar
3464
d050f7d7 3465@defvar Instruction.size
913aeadd 3466The size of the instruction in bytes.
0a0faf9f
TW
3467@end defvar
3468
d050f7d7
TW
3469Additionally @code{gdb.RecordInstruction} has the following attributes:
3470
3471@defvar RecordInstruction.number
3472An integer identifying this instruction. @code{number} corresponds to
3473the numbers seen in @code{record instruction-history}
3474(@pxref{Process Record and Replay}).
3475@end defvar
3476
3477@defvar RecordInstruction.sal
3478A @code{gdb.Symtab_and_line} object representing the associated symtab
3479and line of this instruction. May be @code{None} if no debug information is
3480available.
3481@end defvar
3482
0ed5da75 3483@defvar RecordInstruction.is_speculative
d050f7d7 3484A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3485@end defvar
3486
3487If an error occured during recording or decoding a recording, this error is
3488represented by a @code{gdb.RecordGap} object in the instruction list. It has
3489the following attributes:
3490
3491@defvar RecordGap.number
3492An integer identifying this gap. @code{number} corresponds to the numbers seen
3493in @code{record instruction-history} (@pxref{Process Record and Replay}).
3494@end defvar
3495
3496@defvar RecordGap.error_code
3497A numerical representation of the reason for the gap. The value is specific to
3498the current recording method.
3499@end defvar
3500
3501@defvar RecordGap.error_string
3502A human readable string with the reason for the gap.
0a0faf9f
TW
3503@end defvar
3504
14f819c8 3505A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3506
14f819c8
TW
3507@defvar RecordFunctionSegment.number
3508An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3509the numbers seen in @code{record function-call-history}
3510(@pxref{Process Record and Replay}).
3511@end defvar
3512
14f819c8 3513@defvar RecordFunctionSegment.symbol
0a0faf9f 3514A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3515@code{None} if no debug information is available.
0a0faf9f
TW
3516@end defvar
3517
14f819c8 3518@defvar RecordFunctionSegment.level
0a0faf9f
TW
3519An integer representing the function call's stack level. May be
3520@code{None} if the function call is a gap.
3521@end defvar
3522
14f819c8 3523@defvar RecordFunctionSegment.instructions
0ed5da75 3524A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3525associated with this function call.
0a0faf9f
TW
3526@end defvar
3527
14f819c8
TW
3528@defvar RecordFunctionSegment.up
3529A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3530function segment. If the call has not been recorded, this will be the
3531function segment to which control returns. If neither the call nor the
3532return have been recorded, this will be @code{None}.
3533@end defvar
3534
14f819c8
TW
3535@defvar RecordFunctionSegment.prev
3536A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3537segment of this function call. May be @code{None}.
3538@end defvar
3539
14f819c8
TW
3540@defvar RecordFunctionSegment.next
3541A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3542this function call. May be @code{None}.
3543@end defvar
3544
3545The following example demonstrates the usage of these objects and
3546functions to create a function that will rewind a record to the last
3547time a function in a different file was executed. This would typically
3548be used to track the execution of user provided callback functions in a
3549library which typically are not visible in a back trace.
3550
3551@smallexample
3552def bringback ():
3553 rec = gdb.current_recording ()
3554 if not rec:
3555 return
3556
3557 insn = rec.instruction_history
3558 if len (insn) == 0:
3559 return
3560
3561 try:
3562 position = insn.index (rec.replay_position)
3563 except:
3564 position = -1
3565 try:
3566 filename = insn[position].sal.symtab.fullname ()
3567 except:
3568 filename = None
3569
3570 for i in reversed (insn[:position]):
3571 try:
3572 current = i.sal.symtab.fullname ()
3573 except:
3574 current = None
3575
3576 if filename == current:
3577 continue
3578
3579 rec.goto (i)
3580 return
3581@end smallexample
3582
3583Another possible application is to write a function that counts the
3584number of code executions in a given line range. This line range can
3585contain parts of functions or span across several functions and is not
3586limited to be contiguous.
3587
3588@smallexample
3589def countrange (filename, linerange):
3590 count = 0
3591
3592 def filter_only (file_name):
3593 for call in gdb.current_recording ().function_call_history:
3594 try:
3595 if file_name in call.symbol.symtab.fullname ():
3596 yield call
3597 except:
3598 pass
3599
3600 for c in filter_only (filename):
3601 for i in c.instructions:
3602 try:
3603 if i.sal.line in linerange:
3604 count += 1
3605 break;
3606 except:
3607 pass
3608
3609 return count
3610@end smallexample
3611
329baa95
DE
3612@node Commands In Python
3613@subsubsection Commands In Python
3614
3615@cindex commands in python
3616@cindex python commands
3617You can implement new @value{GDBN} CLI commands in Python. A CLI
3618command is implemented using an instance of the @code{gdb.Command}
3619class, most commonly using a subclass.
3620
3621@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3622The object initializer for @code{Command} registers the new command
3623with @value{GDBN}. This initializer is normally invoked from the
3624subclass' own @code{__init__} method.
3625
3626@var{name} is the name of the command. If @var{name} consists of
3627multiple words, then the initial words are looked for as prefix
3628commands. In this case, if one of the prefix commands does not exist,
3629an exception is raised.
3630
3631There is no support for multi-line commands.
3632
3633@var{command_class} should be one of the @samp{COMMAND_} constants
3634defined below. This argument tells @value{GDBN} how to categorize the
3635new command in the help system.
3636
3637@var{completer_class} is an optional argument. If given, it should be
3638one of the @samp{COMPLETE_} constants defined below. This argument
3639tells @value{GDBN} how to perform completion for this command. If not
3640given, @value{GDBN} will attempt to complete using the object's
3641@code{complete} method (see below); if no such method is found, an
3642error will occur when completion is attempted.
3643
3644@var{prefix} is an optional argument. If @code{True}, then the new
3645command is a prefix command; sub-commands of this command may be
3646registered.
3647
3648The help text for the new command is taken from the Python
3649documentation string for the command's class, if there is one. If no
3650documentation string is provided, the default value ``This command is
3651not documented.'' is used.
3652@end defun
3653
3654@cindex don't repeat Python command
3655@defun Command.dont_repeat ()
3656By default, a @value{GDBN} command is repeated when the user enters a
3657blank line at the command prompt. A command can suppress this
3658behavior by invoking the @code{dont_repeat} method. This is similar
3659to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3660@end defun
3661
3662@defun Command.invoke (argument, from_tty)
3663This method is called by @value{GDBN} when this command is invoked.
3664
3665@var{argument} is a string. It is the argument to the command, after
3666leading and trailing whitespace has been stripped.
3667
3668@var{from_tty} is a boolean argument. When true, this means that the
3669command was entered by the user at the terminal; when false it means
3670that the command came from elsewhere.
3671
3672If this method throws an exception, it is turned into a @value{GDBN}
3673@code{error} call. Otherwise, the return value is ignored.
3674
3675@findex gdb.string_to_argv
3676To break @var{argument} up into an argv-like string use
3677@code{gdb.string_to_argv}. This function behaves identically to
3678@value{GDBN}'s internal argument lexer @code{buildargv}.
3679It is recommended to use this for consistency.
3680Arguments are separated by spaces and may be quoted.
3681Example:
3682
3683@smallexample
3684print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3685['1', '2 "3', '4 "5', "6 '7"]
3686@end smallexample
3687
3688@end defun
3689
3690@cindex completion of Python commands
3691@defun Command.complete (text, word)
3692This method is called by @value{GDBN} when the user attempts
3693completion on this command. All forms of completion are handled by
3694this method, that is, the @key{TAB} and @key{M-?} key bindings
3695(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3696complete}).
3697
697aa1b7
EZ
3698The arguments @var{text} and @var{word} are both strings; @var{text}
3699holds the complete command line up to the cursor's location, while
329baa95
DE
3700@var{word} holds the last word of the command line; this is computed
3701using a word-breaking heuristic.
3702
3703The @code{complete} method can return several values:
3704@itemize @bullet
3705@item
3706If the return value is a sequence, the contents of the sequence are
3707used as the completions. It is up to @code{complete} to ensure that the
3708contents actually do complete the word. A zero-length sequence is
3709allowed, it means that there were no completions available. Only
3710string elements of the sequence are used; other elements in the
3711sequence are ignored.
3712
3713@item
3714If the return value is one of the @samp{COMPLETE_} constants defined
3715below, then the corresponding @value{GDBN}-internal completion
3716function is invoked, and its result is used.
3717
3718@item
3719All other results are treated as though there were no available
3720completions.
3721@end itemize
3722@end defun
3723
3724When a new command is registered, it must be declared as a member of
3725some general class of commands. This is used to classify top-level
3726commands in the on-line help system; note that prefix commands are not
3727listed under their own category but rather that of their top-level
3728command. The available classifications are represented by constants
3729defined in the @code{gdb} module:
3730
3731@table @code
3732@findex COMMAND_NONE
3733@findex gdb.COMMAND_NONE
3734@item gdb.COMMAND_NONE
3735The command does not belong to any particular class. A command in
3736this category will not be displayed in any of the help categories.
3737
3738@findex COMMAND_RUNNING
3739@findex gdb.COMMAND_RUNNING
3740@item gdb.COMMAND_RUNNING
3741The command is related to running the inferior. For example,
3742@code{start}, @code{step}, and @code{continue} are in this category.
3743Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3744commands in this category.
3745
3746@findex COMMAND_DATA
3747@findex gdb.COMMAND_DATA
3748@item gdb.COMMAND_DATA
3749The command is related to data or variables. For example,
3750@code{call}, @code{find}, and @code{print} are in this category. Type
3751@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3752in this category.
3753
3754@findex COMMAND_STACK
3755@findex gdb.COMMAND_STACK
3756@item gdb.COMMAND_STACK
3757The command has to do with manipulation of the stack. For example,
3758@code{backtrace}, @code{frame}, and @code{return} are in this
3759category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3760list of commands in this category.
3761
3762@findex COMMAND_FILES
3763@findex gdb.COMMAND_FILES
3764@item gdb.COMMAND_FILES
3765This class is used for file-related commands. For example,
3766@code{file}, @code{list} and @code{section} are in this category.
3767Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3768commands in this category.
3769
3770@findex COMMAND_SUPPORT
3771@findex gdb.COMMAND_SUPPORT
3772@item gdb.COMMAND_SUPPORT
3773This should be used for ``support facilities'', generally meaning
3774things that are useful to the user when interacting with @value{GDBN},
3775but not related to the state of the inferior. For example,
3776@code{help}, @code{make}, and @code{shell} are in this category. Type
3777@kbd{help support} at the @value{GDBN} prompt to see a list of
3778commands in this category.
3779
3780@findex COMMAND_STATUS
3781@findex gdb.COMMAND_STATUS
3782@item gdb.COMMAND_STATUS
3783The command is an @samp{info}-related command, that is, related to the
3784state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3785and @code{show} are in this category. Type @kbd{help status} at the
3786@value{GDBN} prompt to see a list of commands in this category.
3787
3788@findex COMMAND_BREAKPOINTS
3789@findex gdb.COMMAND_BREAKPOINTS
3790@item gdb.COMMAND_BREAKPOINTS
3791The command has to do with breakpoints. For example, @code{break},
3792@code{clear}, and @code{delete} are in this category. Type @kbd{help
3793breakpoints} at the @value{GDBN} prompt to see a list of commands in
3794this category.
3795
3796@findex COMMAND_TRACEPOINTS
3797@findex gdb.COMMAND_TRACEPOINTS
3798@item gdb.COMMAND_TRACEPOINTS
3799The command has to do with tracepoints. For example, @code{trace},
3800@code{actions}, and @code{tfind} are in this category. Type
3801@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3802commands in this category.
3803
3804@findex COMMAND_USER
3805@findex gdb.COMMAND_USER
3806@item gdb.COMMAND_USER
3807The command is a general purpose command for the user, and typically
3808does not fit in one of the other categories.
3809Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3810a list of commands in this category, as well as the list of gdb macros
3811(@pxref{Sequences}).
3812
3813@findex COMMAND_OBSCURE
3814@findex gdb.COMMAND_OBSCURE
3815@item gdb.COMMAND_OBSCURE
3816The command is only used in unusual circumstances, or is not of
3817general interest to users. For example, @code{checkpoint},
3818@code{fork}, and @code{stop} are in this category. Type @kbd{help
3819obscure} at the @value{GDBN} prompt to see a list of commands in this
3820category.
3821
3822@findex COMMAND_MAINTENANCE
3823@findex gdb.COMMAND_MAINTENANCE
3824@item gdb.COMMAND_MAINTENANCE
3825The command is only useful to @value{GDBN} maintainers. The
3826@code{maintenance} and @code{flushregs} commands are in this category.
3827Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3828commands in this category.
3829@end table
3830
3831A new command can use a predefined completion function, either by
3832specifying it via an argument at initialization, or by returning it
3833from the @code{complete} method. These predefined completion
3834constants are all defined in the @code{gdb} module:
3835
b3ce5e5f
DE
3836@vtable @code
3837@vindex COMPLETE_NONE
329baa95
DE
3838@item gdb.COMPLETE_NONE
3839This constant means that no completion should be done.
3840
b3ce5e5f 3841@vindex COMPLETE_FILENAME
329baa95
DE
3842@item gdb.COMPLETE_FILENAME
3843This constant means that filename completion should be performed.
3844
b3ce5e5f 3845@vindex COMPLETE_LOCATION
329baa95
DE
3846@item gdb.COMPLETE_LOCATION
3847This constant means that location completion should be done.
3848@xref{Specify Location}.
3849
b3ce5e5f 3850@vindex COMPLETE_COMMAND
329baa95
DE
3851@item gdb.COMPLETE_COMMAND
3852This constant means that completion should examine @value{GDBN}
3853command names.
3854
b3ce5e5f 3855@vindex COMPLETE_SYMBOL
329baa95
DE
3856@item gdb.COMPLETE_SYMBOL
3857This constant means that completion should be done using symbol names
3858as the source.
3859
b3ce5e5f 3860@vindex COMPLETE_EXPRESSION
329baa95
DE
3861@item gdb.COMPLETE_EXPRESSION
3862This constant means that completion should be done on expressions.
3863Often this means completing on symbol names, but some language
3864parsers also have support for completing on field names.
b3ce5e5f 3865@end vtable
329baa95
DE
3866
3867The following code snippet shows how a trivial CLI command can be
3868implemented in Python:
3869
3870@smallexample
3871class HelloWorld (gdb.Command):
3872 """Greet the whole world."""
3873
3874 def __init__ (self):
3875 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3876
3877 def invoke (self, arg, from_tty):
3878 print "Hello, World!"
3879
3880HelloWorld ()
3881@end smallexample
3882
3883The last line instantiates the class, and is necessary to trigger the
3884registration of the command with @value{GDBN}. Depending on how the
3885Python code is read into @value{GDBN}, you may need to import the
3886@code{gdb} module explicitly.
3887
3888@node Parameters In Python
3889@subsubsection Parameters In Python
3890
3891@cindex parameters in python
3892@cindex python parameters
3893@tindex gdb.Parameter
3894@tindex Parameter
3895You can implement new @value{GDBN} parameters using Python. A new
3896parameter is implemented as an instance of the @code{gdb.Parameter}
3897class.
3898
3899Parameters are exposed to the user via the @code{set} and
3900@code{show} commands. @xref{Help}.
3901
3902There are many parameters that already exist and can be set in
3903@value{GDBN}. Two examples are: @code{set follow fork} and
3904@code{set charset}. Setting these parameters influences certain
3905behavior in @value{GDBN}. Similarly, you can define parameters that
3906can be used to influence behavior in custom Python scripts and commands.
3907
3908@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3909The object initializer for @code{Parameter} registers the new
3910parameter with @value{GDBN}. This initializer is normally invoked
3911from the subclass' own @code{__init__} method.
3912
3913@var{name} is the name of the new parameter. If @var{name} consists
3914of multiple words, then the initial words are looked for as prefix
3915parameters. An example of this can be illustrated with the
3916@code{set print} set of parameters. If @var{name} is
3917@code{print foo}, then @code{print} will be searched as the prefix
3918parameter. In this case the parameter can subsequently be accessed in
3919@value{GDBN} as @code{set print foo}.
3920
3921If @var{name} consists of multiple words, and no prefix parameter group
3922can be found, an exception is raised.
3923
3924@var{command-class} should be one of the @samp{COMMAND_} constants
3925(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3926categorize the new parameter in the help system.
3927
3928@var{parameter-class} should be one of the @samp{PARAM_} constants
3929defined below. This argument tells @value{GDBN} the type of the new
3930parameter; this information is used for input validation and
3931completion.
3932
3933If @var{parameter-class} is @code{PARAM_ENUM}, then
3934@var{enum-sequence} must be a sequence of strings. These strings
3935represent the possible values for the parameter.
3936
3937If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3938of a fourth argument will cause an exception to be thrown.
3939
3940The help text for the new parameter is taken from the Python
3941documentation string for the parameter's class, if there is one. If
3942there is no documentation string, a default value is used.
3943@end defun
3944
3945@defvar Parameter.set_doc
3946If this attribute exists, and is a string, then its value is used as
3947the help text for this parameter's @code{set} command. The value is
3948examined when @code{Parameter.__init__} is invoked; subsequent changes
3949have no effect.
3950@end defvar
3951
3952@defvar Parameter.show_doc
3953If this attribute exists, and is a string, then its value is used as
3954the help text for this parameter's @code{show} command. The value is
3955examined when @code{Parameter.__init__} is invoked; subsequent changes
3956have no effect.
3957@end defvar
3958
3959@defvar Parameter.value
3960The @code{value} attribute holds the underlying value of the
3961parameter. It can be read and assigned to just as any other
3962attribute. @value{GDBN} does validation when assignments are made.
3963@end defvar
3964
984ee559
TT
3965There are two methods that may be implemented in any @code{Parameter}
3966class. These are:
329baa95
DE
3967
3968@defun Parameter.get_set_string (self)
984ee559
TT
3969If this method exists, @value{GDBN} will call it when a
3970@var{parameter}'s value has been changed via the @code{set} API (for
3971example, @kbd{set foo off}). The @code{value} attribute has already
3972been populated with the new value and may be used in output. This
3973method must return a string. If the returned string is not empty,
3974@value{GDBN} will present it to the user.
ae778caf
TT
3975
3976If this method raises the @code{gdb.GdbError} exception
3977(@pxref{Exception Handling}), then @value{GDBN} will print the
3978exception's string and the @code{set} command will fail. Note,
3979however, that the @code{value} attribute will not be reset in this
3980case. So, if your parameter must validate values, it should store the
3981old value internally and reset the exposed value, like so:
3982
3983@smallexample
3984class ExampleParam (gdb.Parameter):
3985 def __init__ (self, name):
3986 super (ExampleParam, self).__init__ (name,
3987 gdb.COMMAND_DATA,
3988 gdb.PARAM_BOOLEAN)
3989 self.value = True
3990 self.saved_value = True
3991 def validate(self):
3992 return False
3993 def get_set_string (self):
3994 if not self.validate():
3995 self.value = self.saved_value
3996 raise gdb.GdbError('Failed to validate')
3997 self.saved_value = self.value
3998@end smallexample
329baa95
DE
3999@end defun
4000
4001@defun Parameter.get_show_string (self, svalue)
4002@value{GDBN} will call this method when a @var{parameter}'s
4003@code{show} API has been invoked (for example, @kbd{show foo}). The
4004argument @code{svalue} receives the string representation of the
4005current value. This method must return a string.
4006@end defun
4007
4008When a new parameter is defined, its type must be specified. The
4009available types are represented by constants defined in the @code{gdb}
4010module:
4011
4012@table @code
4013@findex PARAM_BOOLEAN
4014@findex gdb.PARAM_BOOLEAN
4015@item gdb.PARAM_BOOLEAN
4016The value is a plain boolean. The Python boolean values, @code{True}
4017and @code{False} are the only valid values.
4018
4019@findex PARAM_AUTO_BOOLEAN
4020@findex gdb.PARAM_AUTO_BOOLEAN
4021@item gdb.PARAM_AUTO_BOOLEAN
4022The value has three possible states: true, false, and @samp{auto}. In
4023Python, true and false are represented using boolean constants, and
4024@samp{auto} is represented using @code{None}.
4025
4026@findex PARAM_UINTEGER
4027@findex gdb.PARAM_UINTEGER
4028@item gdb.PARAM_UINTEGER
4029The value is an unsigned integer. The value of 0 should be
4030interpreted to mean ``unlimited''.
4031
4032@findex PARAM_INTEGER
4033@findex gdb.PARAM_INTEGER
4034@item gdb.PARAM_INTEGER
4035The value is a signed integer. The value of 0 should be interpreted
4036to mean ``unlimited''.
4037
4038@findex PARAM_STRING
4039@findex gdb.PARAM_STRING
4040@item gdb.PARAM_STRING
4041The value is a string. When the user modifies the string, any escape
4042sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4043translated into corresponding characters and encoded into the current
4044host charset.
4045
4046@findex PARAM_STRING_NOESCAPE
4047@findex gdb.PARAM_STRING_NOESCAPE
4048@item gdb.PARAM_STRING_NOESCAPE
4049The value is a string. When the user modifies the string, escapes are
4050passed through untranslated.
4051
4052@findex PARAM_OPTIONAL_FILENAME
4053@findex gdb.PARAM_OPTIONAL_FILENAME
4054@item gdb.PARAM_OPTIONAL_FILENAME
4055The value is a either a filename (a string), or @code{None}.
4056
4057@findex PARAM_FILENAME
4058@findex gdb.PARAM_FILENAME
4059@item gdb.PARAM_FILENAME
4060The value is a filename. This is just like
4061@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4062
4063@findex PARAM_ZINTEGER
4064@findex gdb.PARAM_ZINTEGER
4065@item gdb.PARAM_ZINTEGER
4066The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4067is interpreted as itself.
4068
0489430a
TT
4069@findex PARAM_ZUINTEGER
4070@findex gdb.PARAM_ZUINTEGER
4071@item gdb.PARAM_ZUINTEGER
4072The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4073except 0 is interpreted as itself, and the value cannot be negative.
4074
4075@findex PARAM_ZUINTEGER_UNLIMITED
4076@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4077@item gdb.PARAM_ZUINTEGER_UNLIMITED
4078The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4079except the special value -1 should be interpreted to mean
4080``unlimited''. Other negative values are not allowed.
4081
329baa95
DE
4082@findex PARAM_ENUM
4083@findex gdb.PARAM_ENUM
4084@item gdb.PARAM_ENUM
4085The value is a string, which must be one of a collection string
4086constants provided when the parameter is created.
4087@end table
4088
4089@node Functions In Python
4090@subsubsection Writing new convenience functions
4091
4092@cindex writing convenience functions
4093@cindex convenience functions in python
4094@cindex python convenience functions
4095@tindex gdb.Function
4096@tindex Function
4097You can implement new convenience functions (@pxref{Convenience Vars})
4098in Python. A convenience function is an instance of a subclass of the
4099class @code{gdb.Function}.
4100
4101@defun Function.__init__ (name)
4102The initializer for @code{Function} registers the new function with
4103@value{GDBN}. The argument @var{name} is the name of the function,
4104a string. The function will be visible to the user as a convenience
4105variable of type @code{internal function}, whose name is the same as
4106the given @var{name}.
4107
4108The documentation for the new function is taken from the documentation
4109string for the new class.
4110@end defun
4111
4112@defun Function.invoke (@var{*args})
4113When a convenience function is evaluated, its arguments are converted
4114to instances of @code{gdb.Value}, and then the function's
4115@code{invoke} method is called. Note that @value{GDBN} does not
4116predetermine the arity of convenience functions. Instead, all
4117available arguments are passed to @code{invoke}, following the
4118standard Python calling convention. In particular, a convenience
4119function can have default values for parameters without ill effect.
4120
4121The return value of this method is used as its value in the enclosing
4122expression. If an ordinary Python value is returned, it is converted
4123to a @code{gdb.Value} following the usual rules.
4124@end defun
4125
4126The following code snippet shows how a trivial convenience function can
4127be implemented in Python:
4128
4129@smallexample
4130class Greet (gdb.Function):
4131 """Return string to greet someone.
4132Takes a name as argument."""
4133
4134 def __init__ (self):
4135 super (Greet, self).__init__ ("greet")
4136
4137 def invoke (self, name):
4138 return "Hello, %s!" % name.string ()
4139
4140Greet ()
4141@end smallexample
4142
4143The last line instantiates the class, and is necessary to trigger the
4144registration of the function with @value{GDBN}. Depending on how the
4145Python code is read into @value{GDBN}, you may need to import the
4146@code{gdb} module explicitly.
4147
4148Now you can use the function in an expression:
4149
4150@smallexample
4151(gdb) print $greet("Bob")
4152$1 = "Hello, Bob!"
4153@end smallexample
4154
4155@node Progspaces In Python
4156@subsubsection Program Spaces In Python
4157
4158@cindex progspaces in python
4159@tindex gdb.Progspace
4160@tindex Progspace
4161A program space, or @dfn{progspace}, represents a symbolic view
4162of an address space.
4163It consists of all of the objfiles of the program.
4164@xref{Objfiles In Python}.
65c574f6 4165@xref{Inferiors Connections and Programs, program spaces}, for more details
329baa95
DE
4166about program spaces.
4167
4168The following progspace-related functions are available in the
4169@code{gdb} module:
4170
4171@findex gdb.current_progspace
4172@defun gdb.current_progspace ()
4173This function returns the program space of the currently selected inferior.
65c574f6 4174@xref{Inferiors Connections and Programs}. This is identical to
a40bf0c2
SM
4175@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4176included for historical compatibility.
329baa95
DE
4177@end defun
4178
4179@findex gdb.progspaces
4180@defun gdb.progspaces ()
4181Return a sequence of all the progspaces currently known to @value{GDBN}.
4182@end defun
4183
4184Each progspace is represented by an instance of the @code{gdb.Progspace}
4185class.
4186
4187@defvar Progspace.filename
4188The file name of the progspace as a string.
4189@end defvar
4190
4191@defvar Progspace.pretty_printers
4192The @code{pretty_printers} attribute is a list of functions. It is
4193used to look up pretty-printers. A @code{Value} is passed to each
4194function in order; if the function returns @code{None}, then the
4195search continues. Otherwise, the return value should be an object
4196which is used to format the value. @xref{Pretty Printing API}, for more
4197information.
4198@end defvar
4199
4200@defvar Progspace.type_printers
4201The @code{type_printers} attribute is a list of type printer objects.
4202@xref{Type Printing API}, for more information.
4203@end defvar
4204
4205@defvar Progspace.frame_filters
4206The @code{frame_filters} attribute is a dictionary of frame filter
4207objects. @xref{Frame Filter API}, for more information.
4208@end defvar
4209
8743a9cd
TT
4210A program space has the following methods:
4211
4212@findex Progspace.block_for_pc
4213@defun Progspace.block_for_pc (pc)
4214Return the innermost @code{gdb.Block} containing the given @var{pc}
4215value. If the block cannot be found for the @var{pc} value specified,
4216the function will return @code{None}.
4217@end defun
4218
4219@findex Progspace.find_pc_line
4220@defun Progspace.find_pc_line (pc)
4221Return the @code{gdb.Symtab_and_line} object corresponding to the
4222@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4223of @var{pc} is passed as an argument, then the @code{symtab} and
4224@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4225object will be @code{None} and 0 respectively.
4226@end defun
4227
4228@findex Progspace.is_valid
4229@defun Progspace.is_valid ()
4230Returns @code{True} if the @code{gdb.Progspace} object is valid,
4231@code{False} if not. A @code{gdb.Progspace} object can become invalid
4232if the program space file it refers to is not referenced by any
4233inferior. All other @code{gdb.Progspace} methods will throw an
4234exception if it is invalid at the time the method is called.
4235@end defun
4236
4237@findex Progspace.objfiles
4238@defun Progspace.objfiles ()
4239Return a sequence of all the objfiles referenced by this program
4240space. @xref{Objfiles In Python}.
4241@end defun
4242
4243@findex Progspace.solib_name
4244@defun Progspace.solib_name (address)
4245Return the name of the shared library holding the given @var{address}
4246as a string, or @code{None}.
4247@end defun
4248
02be9a71
DE
4249One may add arbitrary attributes to @code{gdb.Progspace} objects
4250in the usual Python way.
4251This is useful if, for example, one needs to do some extra record keeping
4252associated with the program space.
4253
4254In this contrived example, we want to perform some processing when
4255an objfile with a certain symbol is loaded, but we only want to do
4256this once because it is expensive. To achieve this we record the results
4257with the program space because we can't predict when the desired objfile
4258will be loaded.
4259
4260@smallexample
4261(gdb) python
4262def clear_objfiles_handler(event):
4263 event.progspace.expensive_computation = None
4264def expensive(symbol):
4265 """A mock routine to perform an "expensive" computation on symbol."""
4266 print "Computing the answer to the ultimate question ..."
4267 return 42
4268def new_objfile_handler(event):
4269 objfile = event.new_objfile
4270 progspace = objfile.progspace
4271 if not hasattr(progspace, 'expensive_computation') or \
4272 progspace.expensive_computation is None:
4273 # We use 'main' for the symbol to keep the example simple.
4274 # Note: There's no current way to constrain the lookup
4275 # to one objfile.
4276 symbol = gdb.lookup_global_symbol('main')
4277 if symbol is not None:
4278 progspace.expensive_computation = expensive(symbol)
4279gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4280gdb.events.new_objfile.connect(new_objfile_handler)
4281end
4282(gdb) file /tmp/hello
4283Reading symbols from /tmp/hello...done.
4284Computing the answer to the ultimate question ...
4285(gdb) python print gdb.current_progspace().expensive_computation
428642
4287(gdb) run
4288Starting program: /tmp/hello
4289Hello.
4290[Inferior 1 (process 4242) exited normally]
4291@end smallexample
4292
329baa95
DE
4293@node Objfiles In Python
4294@subsubsection Objfiles In Python
4295
4296@cindex objfiles in python
4297@tindex gdb.Objfile
4298@tindex Objfile
4299@value{GDBN} loads symbols for an inferior from various
4300symbol-containing files (@pxref{Files}). These include the primary
4301executable file, any shared libraries used by the inferior, and any
4302separate debug info files (@pxref{Separate Debug Files}).
4303@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4304
4305The following objfile-related functions are available in the
4306@code{gdb} module:
4307
4308@findex gdb.current_objfile
4309@defun gdb.current_objfile ()
4310When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4311sets the ``current objfile'' to the corresponding objfile. This
4312function returns the current objfile. If there is no current objfile,
4313this function returns @code{None}.
4314@end defun
4315
4316@findex gdb.objfiles
4317@defun gdb.objfiles ()
74d3fbbb
SM
4318Return a sequence of objfiles referenced by the current program space.
4319@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4320to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4321historical compatibility.
329baa95
DE
4322@end defun
4323
6dddd6a5
DE
4324@findex gdb.lookup_objfile
4325@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4326Look up @var{name}, a file name or build ID, in the list of objfiles
4327for the current program space (@pxref{Progspaces In Python}).
4328If the objfile is not found throw the Python @code{ValueError} exception.
4329
4330If @var{name} is a relative file name, then it will match any
4331source file name with the same trailing components. For example, if
4332@var{name} is @samp{gcc/expr.c}, then it will match source file
4333name of @file{/build/trunk/gcc/expr.c}, but not
4334@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4335
4336If @var{by_build_id} is provided and is @code{True} then @var{name}
4337is the build ID of the objfile. Otherwise, @var{name} is a file name.
4338This is supported only on some operating systems, notably those which use
4339the ELF format for binary files and the @sc{gnu} Binutils. For more details
4340about this feature, see the description of the @option{--build-id}
f5a476a7 4341command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4342The GNU Linker}.
4343@end defun
4344
329baa95
DE
4345Each objfile is represented by an instance of the @code{gdb.Objfile}
4346class.
4347
4348@defvar Objfile.filename
1b549396
DE
4349The file name of the objfile as a string, with symbolic links resolved.
4350
4351The value is @code{None} if the objfile is no longer valid.
4352See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4353@end defvar
4354
3a8b707a
DE
4355@defvar Objfile.username
4356The file name of the objfile as specified by the user as a string.
4357
4358The value is @code{None} if the objfile is no longer valid.
4359See the @code{gdb.Objfile.is_valid} method, described below.
4360@end defvar
4361
a0be3e44
DE
4362@defvar Objfile.owner
4363For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4364object that debug info is being provided for.
4365Otherwise this is @code{None}.
4366Separate debug info objfiles are added with the
4367@code{gdb.Objfile.add_separate_debug_file} method, described below.
4368@end defvar
4369
7c50a931
DE
4370@defvar Objfile.build_id
4371The build ID of the objfile as a string.
4372If the objfile does not have a build ID then the value is @code{None}.
4373
4374This is supported only on some operating systems, notably those which use
4375the ELF format for binary files and the @sc{gnu} Binutils. For more details
4376about this feature, see the description of the @option{--build-id}
f5a476a7 4377command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4378The GNU Linker}.
4379@end defvar
4380
d096d8c1
DE
4381@defvar Objfile.progspace
4382The containing program space of the objfile as a @code{gdb.Progspace}
4383object. @xref{Progspaces In Python}.
4384@end defvar
4385
329baa95
DE
4386@defvar Objfile.pretty_printers
4387The @code{pretty_printers} attribute is a list of functions. It is
4388used to look up pretty-printers. A @code{Value} is passed to each
4389function in order; if the function returns @code{None}, then the
4390search continues. Otherwise, the return value should be an object
4391which is used to format the value. @xref{Pretty Printing API}, for more
4392information.
4393@end defvar
4394
4395@defvar Objfile.type_printers
4396The @code{type_printers} attribute is a list of type printer objects.
4397@xref{Type Printing API}, for more information.
4398@end defvar
4399
4400@defvar Objfile.frame_filters
4401The @code{frame_filters} attribute is a dictionary of frame filter
4402objects. @xref{Frame Filter API}, for more information.
4403@end defvar
4404
02be9a71
DE
4405One may add arbitrary attributes to @code{gdb.Objfile} objects
4406in the usual Python way.
4407This is useful if, for example, one needs to do some extra record keeping
4408associated with the objfile.
4409
4410In this contrived example we record the time when @value{GDBN}
4411loaded the objfile.
4412
4413@smallexample
4414(gdb) python
4415import datetime
4416def new_objfile_handler(event):
4417 # Set the time_loaded attribute of the new objfile.
4418 event.new_objfile.time_loaded = datetime.datetime.today()
4419gdb.events.new_objfile.connect(new_objfile_handler)
4420end
4421(gdb) file ./hello
4422Reading symbols from ./hello...done.
4423(gdb) python print gdb.objfiles()[0].time_loaded
44242014-10-09 11:41:36.770345
4425@end smallexample
4426
329baa95
DE
4427A @code{gdb.Objfile} object has the following methods:
4428
4429@defun Objfile.is_valid ()
4430Returns @code{True} if the @code{gdb.Objfile} object is valid,
4431@code{False} if not. A @code{gdb.Objfile} object can become invalid
4432if the object file it refers to is not loaded in @value{GDBN} any
4433longer. All other @code{gdb.Objfile} methods will throw an exception
4434if it is invalid at the time the method is called.
4435@end defun
4436
86e4ed39
DE
4437@defun Objfile.add_separate_debug_file (file)
4438Add @var{file} to the list of files that @value{GDBN} will search for
4439debug information for the objfile.
4440This is useful when the debug info has been removed from the program
4441and stored in a separate file. @value{GDBN} has built-in support for
4442finding separate debug info files (@pxref{Separate Debug Files}), but if
4443the file doesn't live in one of the standard places that @value{GDBN}
4444searches then this function can be used to add a debug info file
4445from a different place.
4446@end defun
4447
c620ed88
CB
4448@defun Objfile.lookup_global_symbol (name @r{[}, domain@r{]})
4449Search for a global symbol named @var{name} in this objfile. Optionally, the
4450search scope can be restricted with the @var{domain} argument.
4451The @var{domain} argument must be a domain constant defined in the @code{gdb}
4452module and described in @ref{Symbols In Python}. This function is similar to
4453@code{gdb.lookup_global_symbol}, except that the search is limited to this
4454objfile.
4455
4456The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4457is not found.
4458@end defun
4459
4460@defun Objfile.lookup_static_symbol (name @r{[}, domain@r{]})
4461Like @code{Objfile.lookup_global_symbol}, but searches for a global
4462symbol with static linkage named @var{name} in this objfile.
4463@end defun
4464
329baa95 4465@node Frames In Python
849cba3b 4466@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4467
4468@cindex frames in python
4469When the debugged program stops, @value{GDBN} is able to analyze its call
4470stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4471represents a frame in the stack. A @code{gdb.Frame} object is only valid
4472while its corresponding frame exists in the inferior's stack. If you try
4473to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4474exception (@pxref{Exception Handling}).
4475
4476Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4477operator, like:
4478
4479@smallexample
4480(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4481True
4482@end smallexample
4483
4484The following frame-related functions are available in the @code{gdb} module:
4485
4486@findex gdb.selected_frame
4487@defun gdb.selected_frame ()
4488Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4489@end defun
4490
4491@findex gdb.newest_frame
4492@defun gdb.newest_frame ()
4493Return the newest frame object for the selected thread.
4494@end defun
4495
4496@defun gdb.frame_stop_reason_string (reason)
4497Return a string explaining the reason why @value{GDBN} stopped unwinding
4498frames, as expressed by the given @var{reason} code (an integer, see the
4499@code{unwind_stop_reason} method further down in this section).
4500@end defun
4501
e0f3fd7c
TT
4502@findex gdb.invalidate_cached_frames
4503@defun gdb.invalidate_cached_frames
4504@value{GDBN} internally keeps a cache of the frames that have been
4505unwound. This function invalidates this cache.
4506
4507This function should not generally be called by ordinary Python code.
4508It is documented for the sake of completeness.
4509@end defun
4510
329baa95
DE
4511A @code{gdb.Frame} object has the following methods:
4512
4513@defun Frame.is_valid ()
4514Returns true if the @code{gdb.Frame} object is valid, false if not.
4515A frame object can become invalid if the frame it refers to doesn't
4516exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4517an exception if it is invalid at the time the method is called.
4518@end defun
4519
4520@defun Frame.name ()
4521Returns the function name of the frame, or @code{None} if it can't be
4522obtained.
4523@end defun
4524
4525@defun Frame.architecture ()
4526Returns the @code{gdb.Architecture} object corresponding to the frame's
4527architecture. @xref{Architectures In Python}.
4528@end defun
4529
4530@defun Frame.type ()
4531Returns the type of the frame. The value can be one of:
4532@table @code
4533@item gdb.NORMAL_FRAME
4534An ordinary stack frame.
4535
4536@item gdb.DUMMY_FRAME
4537A fake stack frame that was created by @value{GDBN} when performing an
4538inferior function call.
4539
4540@item gdb.INLINE_FRAME
4541A frame representing an inlined function. The function was inlined
4542into a @code{gdb.NORMAL_FRAME} that is older than this one.
4543
4544@item gdb.TAILCALL_FRAME
4545A frame representing a tail call. @xref{Tail Call Frames}.
4546
4547@item gdb.SIGTRAMP_FRAME
4548A signal trampoline frame. This is the frame created by the OS when
4549it calls into a signal handler.
4550
4551@item gdb.ARCH_FRAME
4552A fake stack frame representing a cross-architecture call.
4553
4554@item gdb.SENTINEL_FRAME
4555This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4556newest frame.
4557@end table
4558@end defun
4559
4560@defun Frame.unwind_stop_reason ()
4561Return an integer representing the reason why it's not possible to find
4562more frames toward the outermost frame. Use
4563@code{gdb.frame_stop_reason_string} to convert the value returned by this
4564function to a string. The value can be one of:
4565
4566@table @code
4567@item gdb.FRAME_UNWIND_NO_REASON
4568No particular reason (older frames should be available).
4569
4570@item gdb.FRAME_UNWIND_NULL_ID
4571The previous frame's analyzer returns an invalid result. This is no
4572longer used by @value{GDBN}, and is kept only for backward
4573compatibility.
4574
4575@item gdb.FRAME_UNWIND_OUTERMOST
4576This frame is the outermost.
4577
4578@item gdb.FRAME_UNWIND_UNAVAILABLE
4579Cannot unwind further, because that would require knowing the
4580values of registers or memory that have not been collected.
4581
4582@item gdb.FRAME_UNWIND_INNER_ID
4583This frame ID looks like it ought to belong to a NEXT frame,
4584but we got it for a PREV frame. Normally, this is a sign of
4585unwinder failure. It could also indicate stack corruption.
4586
4587@item gdb.FRAME_UNWIND_SAME_ID
4588This frame has the same ID as the previous one. That means
4589that unwinding further would almost certainly give us another
4590frame with exactly the same ID, so break the chain. Normally,
4591this is a sign of unwinder failure. It could also indicate
4592stack corruption.
4593
4594@item gdb.FRAME_UNWIND_NO_SAVED_PC
4595The frame unwinder did not find any saved PC, but we needed
4596one to unwind further.
4597
53e8a631
AB
4598@item gdb.FRAME_UNWIND_MEMORY_ERROR
4599The frame unwinder caused an error while trying to access memory.
4600
329baa95
DE
4601@item gdb.FRAME_UNWIND_FIRST_ERROR
4602Any stop reason greater or equal to this value indicates some kind
4603of error. This special value facilitates writing code that tests
4604for errors in unwinding in a way that will work correctly even if
4605the list of the other values is modified in future @value{GDBN}
4606versions. Using it, you could write:
4607@smallexample
4608reason = gdb.selected_frame().unwind_stop_reason ()
4609reason_str = gdb.frame_stop_reason_string (reason)
4610if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4611 print "An error occured: %s" % reason_str
4612@end smallexample
4613@end table
4614
4615@end defun
4616
4617@defun Frame.pc ()
4618Returns the frame's resume address.
4619@end defun
4620
4621@defun Frame.block ()
60c0454d
TT
4622Return the frame's code block. @xref{Blocks In Python}. If the frame
4623does not have a block -- for example, if there is no debugging
4624information for the code in question -- then this will throw an
4625exception.
329baa95
DE
4626@end defun
4627
4628@defun Frame.function ()
4629Return the symbol for the function corresponding to this frame.
4630@xref{Symbols In Python}.
4631@end defun
4632
4633@defun Frame.older ()
4634Return the frame that called this frame.
4635@end defun
4636
4637@defun Frame.newer ()
4638Return the frame called by this frame.
4639@end defun
4640
4641@defun Frame.find_sal ()
4642Return the frame's symtab and line object.
4643@xref{Symbol Tables In Python}.
4644@end defun
4645
5f3b99cf
SS
4646@defun Frame.read_register (register)
4647Return the value of @var{register} in this frame. The @var{register}
4648argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4649Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4650does not exist.
4651@end defun
4652
329baa95
DE
4653@defun Frame.read_var (variable @r{[}, block@r{]})
4654Return the value of @var{variable} in this frame. If the optional
4655argument @var{block} is provided, search for the variable from that
4656block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4657determined by the frame's current program counter). The @var{variable}
4658argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4659@code{gdb.Block} object.
4660@end defun
4661
4662@defun Frame.select ()
4663Set this frame to be the selected frame. @xref{Stack, ,Examining the
4664Stack}.
4665@end defun
4666
4667@node Blocks In Python
849cba3b 4668@subsubsection Accessing blocks from Python
329baa95
DE
4669
4670@cindex blocks in python
4671@tindex gdb.Block
4672
4673In @value{GDBN}, symbols are stored in blocks. A block corresponds
4674roughly to a scope in the source code. Blocks are organized
4675hierarchically, and are represented individually in Python as a
4676@code{gdb.Block}. Blocks rely on debugging information being
4677available.
4678
4679A frame has a block. Please see @ref{Frames In Python}, for a more
4680in-depth discussion of frames.
4681
4682The outermost block is known as the @dfn{global block}. The global
4683block typically holds public global variables and functions.
4684
4685The block nested just inside the global block is the @dfn{static
4686block}. The static block typically holds file-scoped variables and
4687functions.
4688
4689@value{GDBN} provides a method to get a block's superblock, but there
4690is currently no way to examine the sub-blocks of a block, or to
4691iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4692Python}).
4693
4694Here is a short example that should help explain blocks:
4695
4696@smallexample
4697/* This is in the global block. */
4698int global;
4699
4700/* This is in the static block. */
4701static int file_scope;
4702
4703/* 'function' is in the global block, and 'argument' is
4704 in a block nested inside of 'function'. */
4705int function (int argument)
4706@{
4707 /* 'local' is in a block inside 'function'. It may or may
4708 not be in the same block as 'argument'. */
4709 int local;
4710
4711 @{
4712 /* 'inner' is in a block whose superblock is the one holding
4713 'local'. */
4714 int inner;
4715
4716 /* If this call is expanded by the compiler, you may see
4717 a nested block here whose function is 'inline_function'
4718 and whose superblock is the one holding 'inner'. */
4719 inline_function ();
4720 @}
4721@}
4722@end smallexample
4723
4724A @code{gdb.Block} is iterable. The iterator returns the symbols
4725(@pxref{Symbols In Python}) local to the block. Python programs
4726should not assume that a specific block object will always contain a
4727given symbol, since changes in @value{GDBN} features and
4728infrastructure may cause symbols move across blocks in a symbol
0b27c27d
CB
4729table. You can also use Python's @dfn{dictionary syntax} to access
4730variables in this block, e.g.:
4731
4732@smallexample
4733symbol = some_block['variable'] # symbol is of type gdb.Symbol
4734@end smallexample
329baa95
DE
4735
4736The following block-related functions are available in the @code{gdb}
4737module:
4738
4739@findex gdb.block_for_pc
4740@defun gdb.block_for_pc (pc)
4741Return the innermost @code{gdb.Block} containing the given @var{pc}
4742value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4743the function will return @code{None}. This is identical to
4744@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4745historical compatibility.
329baa95
DE
4746@end defun
4747
4748A @code{gdb.Block} object has the following methods:
4749
4750@defun Block.is_valid ()
4751Returns @code{True} if the @code{gdb.Block} object is valid,
4752@code{False} if not. A block object can become invalid if the block it
4753refers to doesn't exist anymore in the inferior. All other
4754@code{gdb.Block} methods will throw an exception if it is invalid at
4755the time the method is called. The block's validity is also checked
4756during iteration over symbols of the block.
4757@end defun
4758
4759A @code{gdb.Block} object has the following attributes:
4760
4761@defvar Block.start
4762The start address of the block. This attribute is not writable.
4763@end defvar
4764
4765@defvar Block.end
22eb9e92
TT
4766One past the last address that appears in the block. This attribute
4767is not writable.
329baa95
DE
4768@end defvar
4769
4770@defvar Block.function
4771The name of the block represented as a @code{gdb.Symbol}. If the
4772block is not named, then this attribute holds @code{None}. This
4773attribute is not writable.
4774
4775For ordinary function blocks, the superblock is the static block.
4776However, you should note that it is possible for a function block to
4777have a superblock that is not the static block -- for instance this
4778happens for an inlined function.
4779@end defvar
4780
4781@defvar Block.superblock
4782The block containing this block. If this parent block does not exist,
4783this attribute holds @code{None}. This attribute is not writable.
4784@end defvar
4785
4786@defvar Block.global_block
4787The global block associated with this block. This attribute is not
4788writable.
4789@end defvar
4790
4791@defvar Block.static_block
4792The static block associated with this block. This attribute is not
4793writable.
4794@end defvar
4795
4796@defvar Block.is_global
4797@code{True} if the @code{gdb.Block} object is a global block,
4798@code{False} if not. This attribute is not
4799writable.
4800@end defvar
4801
4802@defvar Block.is_static
4803@code{True} if the @code{gdb.Block} object is a static block,
4804@code{False} if not. This attribute is not writable.
4805@end defvar
4806
4807@node Symbols In Python
849cba3b 4808@subsubsection Python representation of Symbols
329baa95
DE
4809
4810@cindex symbols in python
4811@tindex gdb.Symbol
4812
4813@value{GDBN} represents every variable, function and type as an
4814entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4815Similarly, Python represents these symbols in @value{GDBN} with the
4816@code{gdb.Symbol} object.
4817
4818The following symbol-related functions are available in the @code{gdb}
4819module:
4820
4821@findex gdb.lookup_symbol
4822@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4823This function searches for a symbol by name. The search scope can be
4824restricted to the parameters defined in the optional domain and block
4825arguments.
4826
4827@var{name} is the name of the symbol. It must be a string. The
4828optional @var{block} argument restricts the search to symbols visible
4829in that @var{block}. The @var{block} argument must be a
4830@code{gdb.Block} object. If omitted, the block for the current frame
4831is used. The optional @var{domain} argument restricts
4832the search to the domain type. The @var{domain} argument must be a
4833domain constant defined in the @code{gdb} module and described later
4834in this chapter.
4835
4836The result is a tuple of two elements.
4837The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4838is not found.
4839If the symbol is found, the second element is @code{True} if the symbol
4840is a field of a method's object (e.g., @code{this} in C@t{++}),
4841otherwise it is @code{False}.
4842If the symbol is not found, the second element is @code{False}.
4843@end defun
4844
4845@findex gdb.lookup_global_symbol
4846@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4847This function searches for a global symbol by name.
4848The search scope can be restricted to by the domain argument.
4849
4850@var{name} is the name of the symbol. It must be a string.
4851The optional @var{domain} argument restricts the search to the domain type.
4852The @var{domain} argument must be a domain constant defined in the @code{gdb}
4853module and described later in this chapter.
4854
4855The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4856is not found.
4857@end defun
4858
2906593f
CB
4859@findex gdb.lookup_static_symbol
4860@defun gdb.lookup_static_symbol (name @r{[}, domain@r{]})
4861This function searches for a global symbol with static linkage by name.
4862The search scope can be restricted to by the domain argument.
4863
4864@var{name} is the name of the symbol. It must be a string.
4865The optional @var{domain} argument restricts the search to the domain type.
4866The @var{domain} argument must be a domain constant defined in the @code{gdb}
4867module and described later in this chapter.
4868
4869The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4870is not found.
4871
4872Note that this function will not find function-scoped static variables. To look
4873up such variables, iterate over the variables of the function's
4874@code{gdb.Block} and check that @code{block.addr_class} is
4875@code{gdb.SYMBOL_LOC_STATIC}.
09ff83af
AB
4876
4877There can be multiple global symbols with static linkage with the same
4878name. This function will only return the first matching symbol that
4879it finds. Which symbol is found depends on where @value{GDBN} is
4880currently stopped, as @value{GDBN} will first search for matching
4881symbols in the current object file, and then search all other object
4882files. If the application is not yet running then @value{GDBN} will
4883search all object files in the order they appear in the debug
4884information.
2906593f
CB
4885@end defun
4886
086baaf1
AB
4887@findex gdb.lookup_static_symbols
4888@defun gdb.lookup_static_symbols (name @r{[}, domain@r{]})
4889Similar to @code{gdb.lookup_static_symbol}, this function searches for
4890global symbols with static linkage by name, and optionally restricted
4891by the domain argument. However, this function returns a list of all
4892matching symbols found, not just the first one.
4893
4894@var{name} is the name of the symbol. It must be a string.
4895The optional @var{domain} argument restricts the search to the domain type.
4896The @var{domain} argument must be a domain constant defined in the @code{gdb}
4897module and described later in this chapter.
4898
4899The result is a list of @code{gdb.Symbol} objects which could be empty
4900if no matching symbols were found.
4901
4902Note that this function will not find function-scoped static variables. To look
4903up such variables, iterate over the variables of the function's
4904@code{gdb.Block} and check that @code{block.addr_class} is
4905@code{gdb.SYMBOL_LOC_STATIC}.
4906@end defun
4907
329baa95
DE
4908A @code{gdb.Symbol} object has the following attributes:
4909
4910@defvar Symbol.type
4911The type of the symbol or @code{None} if no type is recorded.
4912This attribute is represented as a @code{gdb.Type} object.
4913@xref{Types In Python}. This attribute is not writable.
4914@end defvar
4915
4916@defvar Symbol.symtab
4917The symbol table in which the symbol appears. This attribute is
4918represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4919Python}. This attribute is not writable.
4920@end defvar
4921
4922@defvar Symbol.line
4923The line number in the source code at which the symbol was defined.
4924This is an integer.
4925@end defvar
4926
4927@defvar Symbol.name
4928The name of the symbol as a string. This attribute is not writable.
4929@end defvar
4930
4931@defvar Symbol.linkage_name
4932The name of the symbol, as used by the linker (i.e., may be mangled).
4933This attribute is not writable.
4934@end defvar
4935
4936@defvar Symbol.print_name
4937The name of the symbol in a form suitable for output. This is either
4938@code{name} or @code{linkage_name}, depending on whether the user
4939asked @value{GDBN} to display demangled or mangled names.
4940@end defvar
4941
4942@defvar Symbol.addr_class
4943The address class of the symbol. This classifies how to find the value
4944of a symbol. Each address class is a constant defined in the
4945@code{gdb} module and described later in this chapter.
4946@end defvar
4947
4948@defvar Symbol.needs_frame
4949This is @code{True} if evaluating this symbol's value requires a frame
4950(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4951local variables will require a frame, but other symbols will not.
4952@end defvar
4953
4954@defvar Symbol.is_argument
4955@code{True} if the symbol is an argument of a function.
4956@end defvar
4957
4958@defvar Symbol.is_constant
4959@code{True} if the symbol is a constant.
4960@end defvar
4961
4962@defvar Symbol.is_function
4963@code{True} if the symbol is a function or a method.
4964@end defvar
4965
4966@defvar Symbol.is_variable
4967@code{True} if the symbol is a variable.
4968@end defvar
4969
4970A @code{gdb.Symbol} object has the following methods:
4971
4972@defun Symbol.is_valid ()
4973Returns @code{True} if the @code{gdb.Symbol} object is valid,
4974@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4975the symbol it refers to does not exist in @value{GDBN} any longer.
4976All other @code{gdb.Symbol} methods will throw an exception if it is
4977invalid at the time the method is called.
4978@end defun
4979
4980@defun Symbol.value (@r{[}frame@r{]})
4981Compute the value of the symbol, as a @code{gdb.Value}. For
4982functions, this computes the address of the function, cast to the
4983appropriate type. If the symbol requires a frame in order to compute
4984its value, then @var{frame} must be given. If @var{frame} is not
4985given, or if @var{frame} is invalid, then this method will throw an
4986exception.
4987@end defun
4988
4989The available domain categories in @code{gdb.Symbol} are represented
4990as constants in the @code{gdb} module:
4991
b3ce5e5f
DE
4992@vtable @code
4993@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4994@item gdb.SYMBOL_UNDEF_DOMAIN
4995This is used when a domain has not been discovered or none of the
4996following domains apply. This usually indicates an error either
4997in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4998
4999@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
5000@item gdb.SYMBOL_VAR_DOMAIN
5001This domain contains variables, function names, typedef names and enum
5002type values.
b3ce5e5f
DE
5003
5004@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
5005@item gdb.SYMBOL_STRUCT_DOMAIN
5006This domain holds struct, union and enum type names.
b3ce5e5f
DE
5007
5008@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
5009@item gdb.SYMBOL_LABEL_DOMAIN
5010This domain contains names of labels (for gotos).
b3ce5e5f 5011
51e78fc5
TT
5012@vindex SYMBOL_MODULE_DOMAIN
5013@item gdb.SYMBOL_MODULE_DOMAIN
5014This domain contains names of Fortran module types.
5015
5016@vindex SYMBOL_COMMON_BLOCK_DOMAIN
5017@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
5018This domain contains names of Fortran common blocks.
b3ce5e5f 5019@end vtable
329baa95
DE
5020
5021The available address class categories in @code{gdb.Symbol} are represented
5022as constants in the @code{gdb} module:
5023
b3ce5e5f
DE
5024@vtable @code
5025@vindex SYMBOL_LOC_UNDEF
329baa95
DE
5026@item gdb.SYMBOL_LOC_UNDEF
5027If this is returned by address class, it indicates an error either in
5028the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
5029
5030@vindex SYMBOL_LOC_CONST
329baa95
DE
5031@item gdb.SYMBOL_LOC_CONST
5032Value is constant int.
b3ce5e5f
DE
5033
5034@vindex SYMBOL_LOC_STATIC
329baa95
DE
5035@item gdb.SYMBOL_LOC_STATIC
5036Value is at a fixed address.
b3ce5e5f
DE
5037
5038@vindex SYMBOL_LOC_REGISTER
329baa95
DE
5039@item gdb.SYMBOL_LOC_REGISTER
5040Value is in a register.
b3ce5e5f
DE
5041
5042@vindex SYMBOL_LOC_ARG
329baa95
DE
5043@item gdb.SYMBOL_LOC_ARG
5044Value is an argument. This value is at the offset stored within the
5045symbol inside the frame's argument list.
b3ce5e5f
DE
5046
5047@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
5048@item gdb.SYMBOL_LOC_REF_ARG
5049Value address is stored in the frame's argument list. Just like
5050@code{LOC_ARG} except that the value's address is stored at the
5051offset, not the value itself.
b3ce5e5f
DE
5052
5053@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
5054@item gdb.SYMBOL_LOC_REGPARM_ADDR
5055Value is a specified register. Just like @code{LOC_REGISTER} except
5056the register holds the address of the argument instead of the argument
5057itself.
b3ce5e5f
DE
5058
5059@vindex SYMBOL_LOC_LOCAL
329baa95
DE
5060@item gdb.SYMBOL_LOC_LOCAL
5061Value is a local variable.
b3ce5e5f
DE
5062
5063@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
5064@item gdb.SYMBOL_LOC_TYPEDEF
5065Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
5066have this class.
b3ce5e5f
DE
5067
5068@vindex SYMBOL_LOC_BLOCK
329baa95
DE
5069@item gdb.SYMBOL_LOC_BLOCK
5070Value is a block.
b3ce5e5f
DE
5071
5072@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
5073@item gdb.SYMBOL_LOC_CONST_BYTES
5074Value is a byte-sequence.
b3ce5e5f
DE
5075
5076@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
5077@item gdb.SYMBOL_LOC_UNRESOLVED
5078Value is at a fixed address, but the address of the variable has to be
5079determined from the minimal symbol table whenever the variable is
5080referenced.
b3ce5e5f
DE
5081
5082@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
5083@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5084The value does not actually exist in the program.
b3ce5e5f
DE
5085
5086@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5087@item gdb.SYMBOL_LOC_COMPUTED
5088The value's address is a computed location.
51e78fc5
TT
5089
5090@vindex SYMBOL_LOC_COMPUTED
5091@item gdb.SYMBOL_LOC_COMPUTED
5092The value's address is a symbol. This is only used for Fortran common
5093blocks.
b3ce5e5f 5094@end vtable
329baa95
DE
5095
5096@node Symbol Tables In Python
849cba3b 5097@subsubsection Symbol table representation in Python
329baa95
DE
5098
5099@cindex symbol tables in python
5100@tindex gdb.Symtab
5101@tindex gdb.Symtab_and_line
5102
5103Access to symbol table data maintained by @value{GDBN} on the inferior
5104is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5105@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5106from the @code{find_sal} method in @code{gdb.Frame} object.
5107@xref{Frames In Python}.
5108
5109For more information on @value{GDBN}'s symbol table management, see
5110@ref{Symbols, ,Examining the Symbol Table}, for more information.
5111
5112A @code{gdb.Symtab_and_line} object has the following attributes:
5113
5114@defvar Symtab_and_line.symtab
5115The symbol table object (@code{gdb.Symtab}) for this frame.
5116This attribute is not writable.
5117@end defvar
5118
5119@defvar Symtab_and_line.pc
5120Indicates the start of the address range occupied by code for the
5121current source line. This attribute is not writable.
5122@end defvar
5123
5124@defvar Symtab_and_line.last
5125Indicates the end of the address range occupied by code for the current
5126source line. This attribute is not writable.
5127@end defvar
5128
5129@defvar Symtab_and_line.line
5130Indicates the current line number for this object. This
5131attribute is not writable.
5132@end defvar
5133
5134A @code{gdb.Symtab_and_line} object has the following methods:
5135
5136@defun Symtab_and_line.is_valid ()
5137Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5138@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5139invalid if the Symbol table and line object it refers to does not
5140exist in @value{GDBN} any longer. All other
5141@code{gdb.Symtab_and_line} methods will throw an exception if it is
5142invalid at the time the method is called.
5143@end defun
5144
5145A @code{gdb.Symtab} object has the following attributes:
5146
5147@defvar Symtab.filename
5148The symbol table's source filename. This attribute is not writable.
5149@end defvar
5150
5151@defvar Symtab.objfile
5152The symbol table's backing object file. @xref{Objfiles In Python}.
5153This attribute is not writable.
5154@end defvar
5155
2b4fd423
DE
5156@defvar Symtab.producer
5157The name and possibly version number of the program that
5158compiled the code in the symbol table.
5159The contents of this string is up to the compiler.
5160If no producer information is available then @code{None} is returned.
5161This attribute is not writable.
5162@end defvar
5163
329baa95
DE
5164A @code{gdb.Symtab} object has the following methods:
5165
5166@defun Symtab.is_valid ()
5167Returns @code{True} if the @code{gdb.Symtab} object is valid,
5168@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5169the symbol table it refers to does not exist in @value{GDBN} any
5170longer. All other @code{gdb.Symtab} methods will throw an exception
5171if it is invalid at the time the method is called.
5172@end defun
5173
5174@defun Symtab.fullname ()
5175Return the symbol table's source absolute file name.
5176@end defun
5177
5178@defun Symtab.global_block ()
5179Return the global block of the underlying symbol table.
5180@xref{Blocks In Python}.
5181@end defun
5182
5183@defun Symtab.static_block ()
5184Return the static block of the underlying symbol table.
5185@xref{Blocks In Python}.
5186@end defun
5187
5188@defun Symtab.linetable ()
5189Return the line table associated with the symbol table.
5190@xref{Line Tables In Python}.
5191@end defun
5192
5193@node Line Tables In Python
5194@subsubsection Manipulating line tables using Python
5195
5196@cindex line tables in python
5197@tindex gdb.LineTable
5198
5199Python code can request and inspect line table information from a
5200symbol table that is loaded in @value{GDBN}. A line table is a
5201mapping of source lines to their executable locations in memory. To
5202acquire the line table information for a particular symbol table, use
5203the @code{linetable} function (@pxref{Symbol Tables In Python}).
5204
5205A @code{gdb.LineTable} is iterable. The iterator returns
5206@code{LineTableEntry} objects that correspond to the source line and
5207address for each line table entry. @code{LineTableEntry} objects have
5208the following attributes:
5209
5210@defvar LineTableEntry.line
5211The source line number for this line table entry. This number
5212corresponds to the actual line of source. This attribute is not
5213writable.
5214@end defvar
5215
5216@defvar LineTableEntry.pc
5217The address that is associated with the line table entry where the
5218executable code for that source line resides in memory. This
5219attribute is not writable.
5220@end defvar
5221
5222As there can be multiple addresses for a single source line, you may
5223receive multiple @code{LineTableEntry} objects with matching
5224@code{line} attributes, but with different @code{pc} attributes. The
5225iterator is sorted in ascending @code{pc} order. Here is a small
5226example illustrating iterating over a line table.
5227
5228@smallexample
5229symtab = gdb.selected_frame().find_sal().symtab
5230linetable = symtab.linetable()
5231for line in linetable:
5232 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5233@end smallexample
5234
5235This will have the following output:
5236
5237@smallexample
5238Line: 33 Address: 0x4005c8L
5239Line: 37 Address: 0x4005caL
5240Line: 39 Address: 0x4005d2L
5241Line: 40 Address: 0x4005f8L
5242Line: 42 Address: 0x4005ffL
5243Line: 44 Address: 0x400608L
5244Line: 42 Address: 0x40060cL
5245Line: 45 Address: 0x400615L
5246@end smallexample
5247
5248In addition to being able to iterate over a @code{LineTable}, it also
5249has the following direct access methods:
5250
5251@defun LineTable.line (line)
5252Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5253entries in the line table for the given @var{line}, which specifies
5254the source code line. If there are no entries for that source code
329baa95
DE
5255@var{line}, the Python @code{None} is returned.
5256@end defun
5257
5258@defun LineTable.has_line (line)
5259Return a Python @code{Boolean} indicating whether there is an entry in
5260the line table for this source line. Return @code{True} if an entry
5261is found, or @code{False} if not.
5262@end defun
5263
5264@defun LineTable.source_lines ()
5265Return a Python @code{List} of the source line numbers in the symbol
5266table. Only lines with executable code locations are returned. The
5267contents of the @code{List} will just be the source line entries
5268represented as Python @code{Long} values.
5269@end defun
5270
5271@node Breakpoints In Python
5272@subsubsection Manipulating breakpoints using Python
5273
5274@cindex breakpoints in python
5275@tindex gdb.Breakpoint
5276
5277Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5278class.
5279
0b982d68
SM
5280A breakpoint can be created using one of the two forms of the
5281@code{gdb.Breakpoint} constructor. The first one accepts a string
5282like one would pass to the @code{break}
5283(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5284(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5285create both breakpoints and watchpoints. The second accepts separate Python
5286arguments similar to @ref{Explicit Locations}, and can only be used to create
5287breakpoints.
5288
b89641ba 5289@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5290Create a new breakpoint according to @var{spec}, which is a string naming the
5291location of a breakpoint, or an expression that defines a watchpoint. The
5292string should describe a location in a format recognized by the @code{break}
5293command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5294watchpoint, by the @code{watch} command
5295(@pxref{Set Watchpoints, , Setting Watchpoints}).
5296
5297The optional @var{type} argument specifies the type of the breakpoint to create,
5298as defined below.
5299
5300The optional @var{wp_class} argument defines the class of watchpoint to create,
5301if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5302defaults to @code{gdb.WP_WRITE}.
5303
5304The optional @var{internal} argument allows the breakpoint to become invisible
5305to the user. The breakpoint will neither be reported when created, nor will it
5306be listed in the output from @code{info breakpoints} (but will be listed with
5307the @code{maint info breakpoints} command).
5308
5309The optional @var{temporary} argument makes the breakpoint a temporary
5310breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5311further access to the Python breakpoint after it has been hit will result in a
5312runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5313
5314The optional @var{qualified} argument is a boolean that allows interpreting
5315the function passed in @code{spec} as a fully-qualified name. It is equivalent
5316to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5317@ref{Explicit Locations}).
5318
0b982d68
SM
5319@end defun
5320
b89641ba 5321@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5322This second form of creating a new breakpoint specifies the explicit
5323location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5324be created in the specified source file @var{source}, at the specified
5325@var{function}, @var{label} and @var{line}.
5326
b89641ba
SM
5327@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5328explained previously.
329baa95
DE
5329@end defun
5330
cda75e70
TT
5331The available types are represented by constants defined in the @code{gdb}
5332module:
5333
5334@vtable @code
5335@vindex BP_BREAKPOINT
5336@item gdb.BP_BREAKPOINT
5337Normal code breakpoint.
5338
5339@vindex BP_WATCHPOINT
5340@item gdb.BP_WATCHPOINT
5341Watchpoint breakpoint.
5342
5343@vindex BP_HARDWARE_WATCHPOINT
5344@item gdb.BP_HARDWARE_WATCHPOINT
5345Hardware assisted watchpoint.
5346
5347@vindex BP_READ_WATCHPOINT
5348@item gdb.BP_READ_WATCHPOINT
5349Hardware assisted read watchpoint.
5350
5351@vindex BP_ACCESS_WATCHPOINT
5352@item gdb.BP_ACCESS_WATCHPOINT
5353Hardware assisted access watchpoint.
5354@end vtable
5355
5356The available watchpoint types represented by constants are defined in the
5357@code{gdb} module:
5358
5359@vtable @code
5360@vindex WP_READ
5361@item gdb.WP_READ
5362Read only watchpoint.
5363
5364@vindex WP_WRITE
5365@item gdb.WP_WRITE
5366Write only watchpoint.
5367
5368@vindex WP_ACCESS
5369@item gdb.WP_ACCESS
5370Read/Write watchpoint.
5371@end vtable
5372
329baa95
DE
5373@defun Breakpoint.stop (self)
5374The @code{gdb.Breakpoint} class can be sub-classed and, in
5375particular, you may choose to implement the @code{stop} method.
5376If this method is defined in a sub-class of @code{gdb.Breakpoint},
5377it will be called when the inferior reaches any location of a
5378breakpoint which instantiates that sub-class. If the method returns
5379@code{True}, the inferior will be stopped at the location of the
5380breakpoint, otherwise the inferior will continue.
5381
5382If there are multiple breakpoints at the same location with a
5383@code{stop} method, each one will be called regardless of the
5384return status of the previous. This ensures that all @code{stop}
5385methods have a chance to execute at that location. In this scenario
5386if one of the methods returns @code{True} but the others return
5387@code{False}, the inferior will still be stopped.
5388
5389You should not alter the execution state of the inferior (i.e.@:, step,
5390next, etc.), alter the current frame context (i.e.@:, change the current
5391active frame), or alter, add or delete any breakpoint. As a general
5392rule, you should not alter any data within @value{GDBN} or the inferior
5393at this time.
5394
5395Example @code{stop} implementation:
5396
5397@smallexample
5398class MyBreakpoint (gdb.Breakpoint):
5399 def stop (self):
5400 inf_val = gdb.parse_and_eval("foo")
5401 if inf_val == 3:
5402 return True
5403 return False
5404@end smallexample
5405@end defun
5406
329baa95
DE
5407@defun Breakpoint.is_valid ()
5408Return @code{True} if this @code{Breakpoint} object is valid,
5409@code{False} otherwise. A @code{Breakpoint} object can become invalid
5410if the user deletes the breakpoint. In this case, the object still
5411exists, but the underlying breakpoint does not. In the cases of
5412watchpoint scope, the watchpoint remains valid even if execution of the
5413inferior leaves the scope of that watchpoint.
5414@end defun
5415
fab3a15d 5416@defun Breakpoint.delete ()
329baa95
DE
5417Permanently deletes the @value{GDBN} breakpoint. This also
5418invalidates the Python @code{Breakpoint} object. Any further access
5419to this object's attributes or methods will raise an error.
5420@end defun
5421
5422@defvar Breakpoint.enabled
5423This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5424@code{False} otherwise. This attribute is writable. You can use it to enable
5425or disable the breakpoint.
329baa95
DE
5426@end defvar
5427
5428@defvar Breakpoint.silent
5429This attribute is @code{True} if the breakpoint is silent, and
5430@code{False} otherwise. This attribute is writable.
5431
5432Note that a breakpoint can also be silent if it has commands and the
5433first command is @code{silent}. This is not reported by the
5434@code{silent} attribute.
5435@end defvar
5436
93daf339
TT
5437@defvar Breakpoint.pending
5438This attribute is @code{True} if the breakpoint is pending, and
5439@code{False} otherwise. @xref{Set Breaks}. This attribute is
5440read-only.
5441@end defvar
5442
22a02324 5443@anchor{python_breakpoint_thread}
329baa95 5444@defvar Breakpoint.thread
5d5658a1
PA
5445If the breakpoint is thread-specific, this attribute holds the
5446thread's global id. If the breakpoint is not thread-specific, this
5447attribute is @code{None}. This attribute is writable.
329baa95
DE
5448@end defvar
5449
5450@defvar Breakpoint.task
5451If the breakpoint is Ada task-specific, this attribute holds the Ada task
5452id. If the breakpoint is not task-specific (or the underlying
5453language is not Ada), this attribute is @code{None}. This attribute
5454is writable.
5455@end defvar
5456
5457@defvar Breakpoint.ignore_count
5458This attribute holds the ignore count for the breakpoint, an integer.
5459This attribute is writable.
5460@end defvar
5461
5462@defvar Breakpoint.number
5463This attribute holds the breakpoint's number --- the identifier used by
5464the user to manipulate the breakpoint. This attribute is not writable.
5465@end defvar
5466
5467@defvar Breakpoint.type
5468This attribute holds the breakpoint's type --- the identifier used to
5469determine the actual breakpoint type or use-case. This attribute is not
5470writable.
5471@end defvar
5472
5473@defvar Breakpoint.visible
5474This attribute tells whether the breakpoint is visible to the user
5475when set, or when the @samp{info breakpoints} command is run. This
5476attribute is not writable.
5477@end defvar
5478
5479@defvar Breakpoint.temporary
5480This attribute indicates whether the breakpoint was created as a
5481temporary breakpoint. Temporary breakpoints are automatically deleted
5482after that breakpoint has been hit. Access to this attribute, and all
5483other attributes and functions other than the @code{is_valid}
5484function, will result in an error after the breakpoint has been hit
5485(as it has been automatically deleted). This attribute is not
5486writable.
5487@end defvar
5488
329baa95
DE
5489@defvar Breakpoint.hit_count
5490This attribute holds the hit count for the breakpoint, an integer.
5491This attribute is writable, but currently it can only be set to zero.
5492@end defvar
5493
5494@defvar Breakpoint.location
5495This attribute holds the location of the breakpoint, as specified by
5496the user. It is a string. If the breakpoint does not have a location
5497(that is, it is a watchpoint) the attribute's value is @code{None}. This
5498attribute is not writable.
5499@end defvar
5500
5501@defvar Breakpoint.expression
5502This attribute holds a breakpoint expression, as specified by
5503the user. It is a string. If the breakpoint does not have an
5504expression (the breakpoint is not a watchpoint) the attribute's value
5505is @code{None}. This attribute is not writable.
5506@end defvar
5507
5508@defvar Breakpoint.condition
5509This attribute holds the condition of the breakpoint, as specified by
5510the user. It is a string. If there is no condition, this attribute's
5511value is @code{None}. This attribute is writable.
5512@end defvar
5513
5514@defvar Breakpoint.commands
5515This attribute holds the commands attached to the breakpoint. If
5516there are commands, this attribute's value is a string holding all the
5517commands, separated by newlines. If there are no commands, this
a913fffb 5518attribute is @code{None}. This attribute is writable.
329baa95
DE
5519@end defvar
5520
5521@node Finish Breakpoints in Python
5522@subsubsection Finish Breakpoints
5523
5524@cindex python finish breakpoints
5525@tindex gdb.FinishBreakpoint
5526
5527A finish breakpoint is a temporary breakpoint set at the return address of
5528a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5529extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5530and deleted when the execution will run out of the breakpoint scope (i.e.@:
5531@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5532Finish breakpoints are thread specific and must be create with the right
5533thread selected.
5534
5535@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5536Create a finish breakpoint at the return address of the @code{gdb.Frame}
5537object @var{frame}. If @var{frame} is not provided, this defaults to the
5538newest frame. The optional @var{internal} argument allows the breakpoint to
5539become invisible to the user. @xref{Breakpoints In Python}, for further
5540details about this argument.
5541@end defun
5542
5543@defun FinishBreakpoint.out_of_scope (self)
5544In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5545@code{return} command, @dots{}), a function may not properly terminate, and
5546thus never hit the finish breakpoint. When @value{GDBN} notices such a
5547situation, the @code{out_of_scope} callback will be triggered.
5548
5549You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5550method:
5551
5552@smallexample
5553class MyFinishBreakpoint (gdb.FinishBreakpoint)
5554 def stop (self):
5555 print "normal finish"
5556 return True
5557
5558 def out_of_scope ():
5559 print "abnormal finish"
5560@end smallexample
5561@end defun
5562
5563@defvar FinishBreakpoint.return_value
5564When @value{GDBN} is stopped at a finish breakpoint and the frame
5565used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5566attribute will contain a @code{gdb.Value} object corresponding to the return
5567value of the function. The value will be @code{None} if the function return
5568type is @code{void} or if the return value was not computable. This attribute
5569is not writable.
5570@end defvar
5571
5572@node Lazy Strings In Python
849cba3b 5573@subsubsection Python representation of lazy strings
329baa95
DE
5574
5575@cindex lazy strings in python
5576@tindex gdb.LazyString
5577
5578A @dfn{lazy string} is a string whose contents is not retrieved or
5579encoded until it is needed.
5580
5581A @code{gdb.LazyString} is represented in @value{GDBN} as an
5582@code{address} that points to a region of memory, an @code{encoding}
5583that will be used to encode that region of memory, and a @code{length}
5584to delimit the region of memory that represents the string. The
5585difference between a @code{gdb.LazyString} and a string wrapped within
5586a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5587differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5588retrieved and encoded during printing, while a @code{gdb.Value}
5589wrapping a string is immediately retrieved and encoded on creation.
5590
5591A @code{gdb.LazyString} object has the following functions:
5592
5593@defun LazyString.value ()
5594Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5595will point to the string in memory, but will lose all the delayed
5596retrieval, encoding and handling that @value{GDBN} applies to a
5597@code{gdb.LazyString}.
5598@end defun
5599
5600@defvar LazyString.address
5601This attribute holds the address of the string. This attribute is not
5602writable.
5603@end defvar
5604
5605@defvar LazyString.length
5606This attribute holds the length of the string in characters. If the
5607length is -1, then the string will be fetched and encoded up to the
5608first null of appropriate width. This attribute is not writable.
5609@end defvar
5610
5611@defvar LazyString.encoding
5612This attribute holds the encoding that will be applied to the string
5613when the string is printed by @value{GDBN}. If the encoding is not
5614set, or contains an empty string, then @value{GDBN} will select the
5615most appropriate encoding when the string is printed. This attribute
5616is not writable.
5617@end defvar
5618
5619@defvar LazyString.type
5620This attribute holds the type that is represented by the lazy string's
f8d99587 5621type. For a lazy string this is a pointer or array type. To
329baa95
DE
5622resolve this to the lazy string's character type, use the type's
5623@code{target} method. @xref{Types In Python}. This attribute is not
5624writable.
5625@end defvar
5626
5627@node Architectures In Python
5628@subsubsection Python representation of architectures
5629@cindex Python architectures
5630
5631@value{GDBN} uses architecture specific parameters and artifacts in a
5632number of its various computations. An architecture is represented
5633by an instance of the @code{gdb.Architecture} class.
5634
5635A @code{gdb.Architecture} class has the following methods:
5636
5637@defun Architecture.name ()
5638Return the name (string value) of the architecture.
5639@end defun
5640
5641@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5642Return a list of disassembled instructions starting from the memory
5643address @var{start_pc}. The optional arguments @var{end_pc} and
5644@var{count} determine the number of instructions in the returned list.
5645If both the optional arguments @var{end_pc} and @var{count} are
5646specified, then a list of at most @var{count} disassembled instructions
5647whose start address falls in the closed memory address interval from
5648@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5649specified, but @var{count} is specified, then @var{count} number of
5650instructions starting from the address @var{start_pc} are returned. If
5651@var{count} is not specified but @var{end_pc} is specified, then all
5652instructions whose start address falls in the closed memory address
5653interval from @var{start_pc} to @var{end_pc} are returned. If neither
5654@var{end_pc} nor @var{count} are specified, then a single instruction at
5655@var{start_pc} is returned. For all of these cases, each element of the
5656returned list is a Python @code{dict} with the following string keys:
5657
5658@table @code
5659
5660@item addr
5661The value corresponding to this key is a Python long integer capturing
5662the memory address of the instruction.
5663
5664@item asm
5665The value corresponding to this key is a string value which represents
5666the instruction with assembly language mnemonics. The assembly
5667language flavor used is the same as that specified by the current CLI
5668variable @code{disassembly-flavor}. @xref{Machine Code}.
5669
5670@item length
5671The value corresponding to this key is the length (integer value) of the
5672instruction in bytes.
5673
5674@end table
5675@end defun
5676
01b1af32
TT
5677@node TUI Windows In Python
5678@subsubsection Implementing new TUI windows
5679@cindex Python TUI Windows
5680
5681New TUI (@pxref{TUI}) windows can be implemented in Python.
5682
5683@findex gdb.register_window_type
5684@defun gdb.register_window_type (@var{name}, @var{factory})
5685Because TUI windows are created and destroyed depending on the layout
5686the user chooses, new window types are implemented by registering a
5687factory function with @value{GDBN}.
5688
5689@var{name} is the name of the new window. It's an error to try to
5690replace one of the built-in windows, but other window types can be
5691replaced.
5692
5693@var{function} is a factory function that is called to create the TUI
5694window. This is called with a single argument of type
5695@code{gdb.TuiWindow}, described below. It should return an object
5696that implements the TUI window protocol, also described below.
5697@end defun
5698
5699As mentioned above, when a factory function is called, it is passed a
5700an object of type @code{gdb.TuiWindow}. This object has these
5701methods and attributes:
5702
5703@defun TuiWindow.is_valid ()
5704This method returns @code{True} when this window is valid. When the
5705user changes the TUI layout, windows no longer visible in the new
5706layout will be destroyed. At this point, the @code{gdb.TuiWindow}
5707will no longer be valid, and methods (and attributes) other than
5708@code{is_valid} will throw an exception.
5709@end defun
5710
5711@defvar TuiWindow.width
5712This attribute holds the width of the window. It is not writable.
5713@end defvar
5714
5715@defvar TuiWindow.height
5716This attribute holds the height of the window. It is not writable.
5717@end defvar
5718
5719@defvar TuiWindow.title
5720This attribute holds the window's title, a string. This is normally
5721displayed above the window. This attribute can be modified.
5722@end defvar
5723
5724@defun TuiWindow.erase ()
5725Remove all the contents of the window.
5726@end defun
5727
5728@defun TuiWindow.write (@var{string})
5729Write @var{string} to the window. @var{string} can contain ANSI
5730terminal escape styling sequences; @value{GDBN} will translate these
5731as appropriate for the terminal.
5732@end defun
5733
5734The factory function that you supply should return an object
5735conforming to the TUI window protocol. These are the method that can
5736be called on this object, which is referred to below as the ``window
5737object''. The methods documented below are optional; if the object
5738does not implement one of these methods, @value{GDBN} will not attempt
5739to call it. Additional new methods may be added to the window
5740protocol in the future. @value{GDBN} guarantees that they will begin
5741with a lower-case letter, so you can start implementation methods with
5742upper-case letters or underscore to avoid any future conflicts.
5743
5744@defun Window.close ()
5745When the TUI window is closed, the @code{gdb.TuiWindow} object will be
5746put into an invalid state. At this time, @value{GDBN} will call
5747@code{close} method on the window object.
5748
5749After this method is called, @value{GDBN} will discard any references
5750it holds on this window object, and will no longer call methods on
5751this object.
5752@end defun
5753
5754@defun Window.render ()
5755In some situations, a TUI window can change size. For example, this
5756can happen if the user resizes the terminal, or changes the layout.
5757When this happens, @value{GDBN} will call the @code{render} method on
5758the window object.
5759
5760If your window is intended to update in response to changes in the
5761inferior, you will probably also want to register event listeners and
5762send output to the @code{gdb.TuiWindow}.
5763@end defun
5764
5765@defun Window.hscroll (@var{num})
5766This is a request to scroll the window horizontally. @var{num} is the
5767amount by which to scroll, with negative numbers meaning to scroll
5768right. In the TUI model, it is the viewport that moves, not the
5769contents. A positive argument should cause the viewport to move
5770right, and so the content should appear to move to the left.
5771@end defun
5772
5773@defun Window.vscroll (@var{num})
5774This is a request to scroll the window vertically. @var{num} is the
5775amount by which to scroll, with negative numbers meaning to scroll
5776backward. In the TUI model, it is the viewport that moves, not the
5777contents. A positive argument should cause the viewport to move down,
5778and so the content should appear to move up.
5779@end defun
5780
329baa95
DE
5781@node Python Auto-loading
5782@subsection Python Auto-loading
5783@cindex Python auto-loading
5784
5785When a new object file is read (for example, due to the @code{file}
5786command, or because the inferior has loaded a shared library),
5787@value{GDBN} will look for Python support scripts in several ways:
5788@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5789@xref{Auto-loading extensions}.
5790
5791The auto-loading feature is useful for supplying application-specific
5792debugging commands and scripts.
5793
5794Auto-loading can be enabled or disabled,
5795and the list of auto-loaded scripts can be printed.
5796
5797@table @code
5798@anchor{set auto-load python-scripts}
5799@kindex set auto-load python-scripts
5800@item set auto-load python-scripts [on|off]
5801Enable or disable the auto-loading of Python scripts.
5802
5803@anchor{show auto-load python-scripts}
5804@kindex show auto-load python-scripts
5805@item show auto-load python-scripts
5806Show whether auto-loading of Python scripts is enabled or disabled.
5807
5808@anchor{info auto-load python-scripts}
5809@kindex info auto-load python-scripts
5810@cindex print list of auto-loaded Python scripts
5811@item info auto-load python-scripts [@var{regexp}]
5812Print the list of all Python scripts that @value{GDBN} auto-loaded.
5813
5814Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5815the @code{.debug_gdb_scripts} section and were either not found
5816(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5817@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5818This is useful because their names are not printed when @value{GDBN}
5819tries to load them and fails. There may be many of them, and printing
5820an error message for each one is problematic.
5821
5822If @var{regexp} is supplied only Python scripts with matching names are printed.
5823
5824Example:
5825
5826@smallexample
5827(gdb) info auto-load python-scripts
5828Loaded Script
5829Yes py-section-script.py
5830 full name: /tmp/py-section-script.py
5831No my-foo-pretty-printers.py
5832@end smallexample
5833@end table
5834
9f050062 5835When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5836@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5837function (@pxref{Objfiles In Python}). This can be useful for
5838registering objfile-specific pretty-printers and frame-filters.
5839
5840@node Python modules
5841@subsection Python modules
5842@cindex python modules
5843
5844@value{GDBN} comes with several modules to assist writing Python code.
5845
5846@menu
5847* gdb.printing:: Building and registering pretty-printers.
5848* gdb.types:: Utilities for working with types.
5849* gdb.prompt:: Utilities for prompt value substitution.
5850@end menu
5851
5852@node gdb.printing
5853@subsubsection gdb.printing
5854@cindex gdb.printing
5855
5856This module provides a collection of utilities for working with
5857pretty-printers.
5858
5859@table @code
5860@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5861This class specifies the API that makes @samp{info pretty-printer},
5862@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5863Pretty-printers should generally inherit from this class.
5864
5865@item SubPrettyPrinter (@var{name})
5866For printers that handle multiple types, this class specifies the
5867corresponding API for the subprinters.
5868
5869@item RegexpCollectionPrettyPrinter (@var{name})
5870Utility class for handling multiple printers, all recognized via
5871regular expressions.
5872@xref{Writing a Pretty-Printer}, for an example.
5873
5874@item FlagEnumerationPrinter (@var{name})
5875A pretty-printer which handles printing of @code{enum} values. Unlike
5876@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5877work properly when there is some overlap between the enumeration
697aa1b7
EZ
5878constants. The argument @var{name} is the name of the printer and
5879also the name of the @code{enum} type to look up.
329baa95
DE
5880
5881@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5882Register @var{printer} with the pretty-printer list of @var{obj}.
5883If @var{replace} is @code{True} then any existing copy of the printer
5884is replaced. Otherwise a @code{RuntimeError} exception is raised
5885if a printer with the same name already exists.
5886@end table
5887
5888@node gdb.types
5889@subsubsection gdb.types
5890@cindex gdb.types
5891
5892This module provides a collection of utilities for working with
5893@code{gdb.Type} objects.
5894
5895@table @code
5896@item get_basic_type (@var{type})
5897Return @var{type} with const and volatile qualifiers stripped,
5898and with typedefs and C@t{++} references converted to the underlying type.
5899
5900C@t{++} example:
5901
5902@smallexample
5903typedef const int const_int;
5904const_int foo (3);
5905const_int& foo_ref (foo);
5906int main () @{ return 0; @}
5907@end smallexample
5908
5909Then in gdb:
5910
5911@smallexample
5912(gdb) start
5913(gdb) python import gdb.types
5914(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5915(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5916int
5917@end smallexample
5918
5919@item has_field (@var{type}, @var{field})
5920Return @code{True} if @var{type}, assumed to be a type with fields
5921(e.g., a structure or union), has field @var{field}.
5922
5923@item make_enum_dict (@var{enum_type})
5924Return a Python @code{dictionary} type produced from @var{enum_type}.
5925
5926@item deep_items (@var{type})
5927Returns a Python iterator similar to the standard
5928@code{gdb.Type.iteritems} method, except that the iterator returned
5929by @code{deep_items} will recursively traverse anonymous struct or
5930union fields. For example:
5931
5932@smallexample
5933struct A
5934@{
5935 int a;
5936 union @{
5937 int b0;
5938 int b1;
5939 @};
5940@};
5941@end smallexample
5942
5943@noindent
5944Then in @value{GDBN}:
5945@smallexample
5946(@value{GDBP}) python import gdb.types
5947(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5948(@value{GDBP}) python print struct_a.keys ()
5949@{['a', '']@}
5950(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5951@{['a', 'b0', 'b1']@}
5952@end smallexample
5953
5954@item get_type_recognizers ()
5955Return a list of the enabled type recognizers for the current context.
5956This is called by @value{GDBN} during the type-printing process
5957(@pxref{Type Printing API}).
5958
5959@item apply_type_recognizers (recognizers, type_obj)
5960Apply the type recognizers, @var{recognizers}, to the type object
5961@var{type_obj}. If any recognizer returns a string, return that
5962string. Otherwise, return @code{None}. This is called by
5963@value{GDBN} during the type-printing process (@pxref{Type Printing
5964API}).
5965
5966@item register_type_printer (locus, printer)
697aa1b7
EZ
5967This is a convenience function to register a type printer
5968@var{printer}. The printer must implement the type printer protocol.
5969The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5970the printer is registered with that objfile; a @code{gdb.Progspace},
5971in which case the printer is registered with that progspace; or
5972@code{None}, in which case the printer is registered globally.
329baa95
DE
5973
5974@item TypePrinter
5975This is a base class that implements the type printer protocol. Type
5976printers are encouraged, but not required, to derive from this class.
5977It defines a constructor:
5978
5979@defmethod TypePrinter __init__ (self, name)
5980Initialize the type printer with the given name. The new printer
5981starts in the enabled state.
5982@end defmethod
5983
5984@end table
5985
5986@node gdb.prompt
5987@subsubsection gdb.prompt
5988@cindex gdb.prompt
5989
5990This module provides a method for prompt value-substitution.
5991
5992@table @code
5993@item substitute_prompt (@var{string})
5994Return @var{string} with escape sequences substituted by values. Some
5995escape sequences take arguments. You can specify arguments inside
5996``@{@}'' immediately following the escape sequence.
5997
5998The escape sequences you can pass to this function are:
5999
6000@table @code
6001@item \\
6002Substitute a backslash.
6003@item \e
6004Substitute an ESC character.
6005@item \f
6006Substitute the selected frame; an argument names a frame parameter.
6007@item \n
6008Substitute a newline.
6009@item \p
6010Substitute a parameter's value; the argument names the parameter.
6011@item \r
6012Substitute a carriage return.
6013@item \t
6014Substitute the selected thread; an argument names a thread parameter.
6015@item \v
6016Substitute the version of GDB.
6017@item \w
6018Substitute the current working directory.
6019@item \[
6020Begin a sequence of non-printing characters. These sequences are
6021typically used with the ESC character, and are not counted in the string
6022length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
6023blue-colored ``(gdb)'' prompt where the length is five.
6024@item \]
6025End a sequence of non-printing characters.
6026@end table
6027
6028For example:
6029
6030@smallexample
77bb17b6 6031substitute_prompt ("frame: \f, args: \p@{print frame-arguments@}")
329baa95
DE
6032@end smallexample
6033
6034@exdent will return the string:
6035
6036@smallexample
77bb17b6 6037"frame: main, args: scalars"
329baa95
DE
6038@end smallexample
6039@end table
This page took 0.725759 seconds and 4 git commands to generate.