python: Add Progspace.objfiles method
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
331will be @code{None} and 0 respectively.
332@end defun
333
334@findex gdb.post_event
335@defun gdb.post_event (event)
336Put @var{event}, a callable object taking no arguments, into
337@value{GDBN}'s internal event queue. This callable will be invoked at
338some later point, during @value{GDBN}'s event processing. Events
339posted using @code{post_event} will be run in the order in which they
340were posted; however, there is no way to know when they will be
341processed relative to other events inside @value{GDBN}.
342
343@value{GDBN} is not thread-safe. If your Python program uses multiple
344threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 345functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
346this. For example:
347
348@smallexample
349(@value{GDBP}) python
350>import threading
351>
352>class Writer():
353> def __init__(self, message):
354> self.message = message;
355> def __call__(self):
356> gdb.write(self.message)
357>
358>class MyThread1 (threading.Thread):
359> def run (self):
360> gdb.post_event(Writer("Hello "))
361>
362>class MyThread2 (threading.Thread):
363> def run (self):
364> gdb.post_event(Writer("World\n"))
365>
366>MyThread1().start()
367>MyThread2().start()
368>end
369(@value{GDBP}) Hello World
370@end smallexample
371@end defun
372
373@findex gdb.write
374@defun gdb.write (string @r{[}, stream{]})
375Print a string to @value{GDBN}'s paginated output stream. The
376optional @var{stream} determines the stream to print to. The default
377stream is @value{GDBN}'s standard output stream. Possible stream
378values are:
379
380@table @code
381@findex STDOUT
382@findex gdb.STDOUT
383@item gdb.STDOUT
384@value{GDBN}'s standard output stream.
385
386@findex STDERR
387@findex gdb.STDERR
388@item gdb.STDERR
389@value{GDBN}'s standard error stream.
390
391@findex STDLOG
392@findex gdb.STDLOG
393@item gdb.STDLOG
394@value{GDBN}'s log stream (@pxref{Logging Output}).
395@end table
396
397Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
398call this function and will automatically direct the output to the
399relevant stream.
400@end defun
401
402@findex gdb.flush
403@defun gdb.flush ()
404Flush the buffer of a @value{GDBN} paginated stream so that the
405contents are displayed immediately. @value{GDBN} will flush the
406contents of a stream automatically when it encounters a newline in the
407buffer. The optional @var{stream} determines the stream to flush. The
408default stream is @value{GDBN}'s standard output stream. Possible
409stream values are:
410
411@table @code
412@findex STDOUT
413@findex gdb.STDOUT
414@item gdb.STDOUT
415@value{GDBN}'s standard output stream.
416
417@findex STDERR
418@findex gdb.STDERR
419@item gdb.STDERR
420@value{GDBN}'s standard error stream.
421
422@findex STDLOG
423@findex gdb.STDLOG
424@item gdb.STDLOG
425@value{GDBN}'s log stream (@pxref{Logging Output}).
426
427@end table
428
429Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
430call this function for the relevant stream.
431@end defun
432
433@findex gdb.target_charset
434@defun gdb.target_charset ()
435Return the name of the current target character set (@pxref{Character
436Sets}). This differs from @code{gdb.parameter('target-charset')} in
437that @samp{auto} is never returned.
438@end defun
439
440@findex gdb.target_wide_charset
441@defun gdb.target_wide_charset ()
442Return the name of the current target wide character set
443(@pxref{Character Sets}). This differs from
444@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
445never returned.
446@end defun
447
448@findex gdb.solib_name
449@defun gdb.solib_name (address)
450Return the name of the shared library holding the given @var{address}
451as a string, or @code{None}.
452@end defun
453
454@findex gdb.decode_line
0d2a5839 455@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
456Return locations of the line specified by @var{expression}, or of the
457current line if no argument was given. This function returns a Python
458tuple containing two elements. The first element contains a string
459holding any unparsed section of @var{expression} (or @code{None} if
460the expression has been fully parsed). The second element contains
461either @code{None} or another tuple that contains all the locations
462that match the expression represented as @code{gdb.Symtab_and_line}
463objects (@pxref{Symbol Tables In Python}). If @var{expression} is
464provided, it is decoded the way that @value{GDBN}'s inbuilt
465@code{break} or @code{edit} commands do (@pxref{Specify Location}).
466@end defun
467
468@defun gdb.prompt_hook (current_prompt)
469@anchor{prompt_hook}
470
471If @var{prompt_hook} is callable, @value{GDBN} will call the method
472assigned to this operation before a prompt is displayed by
473@value{GDBN}.
474
475The parameter @code{current_prompt} contains the current @value{GDBN}
476prompt. This method must return a Python string, or @code{None}. If
477a string is returned, the @value{GDBN} prompt will be set to that
478string. If @code{None} is returned, @value{GDBN} will continue to use
479the current prompt.
480
481Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
482such as those used by readline for command input, and annotation
483related prompts are prohibited from being changed.
484@end defun
485
486@node Exception Handling
487@subsubsection Exception Handling
488@cindex python exceptions
489@cindex exceptions, python
490
491When executing the @code{python} command, Python exceptions
492uncaught within the Python code are translated to calls to
493@value{GDBN} error-reporting mechanism. If the command that called
494@code{python} does not handle the error, @value{GDBN} will
495terminate it and print an error message containing the Python
496exception name, the associated value, and the Python call stack
497backtrace at the point where the exception was raised. Example:
498
499@smallexample
500(@value{GDBP}) python print foo
501Traceback (most recent call last):
502 File "<string>", line 1, in <module>
503NameError: name 'foo' is not defined
504@end smallexample
505
506@value{GDBN} errors that happen in @value{GDBN} commands invoked by
507Python code are converted to Python exceptions. The type of the
508Python exception depends on the error.
509
510@ftable @code
511@item gdb.error
512This is the base class for most exceptions generated by @value{GDBN}.
513It is derived from @code{RuntimeError}, for compatibility with earlier
514versions of @value{GDBN}.
515
516If an error occurring in @value{GDBN} does not fit into some more
517specific category, then the generated exception will have this type.
518
519@item gdb.MemoryError
520This is a subclass of @code{gdb.error} which is thrown when an
521operation tried to access invalid memory in the inferior.
522
523@item KeyboardInterrupt
524User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
525prompt) is translated to a Python @code{KeyboardInterrupt} exception.
526@end ftable
527
528In all cases, your exception handler will see the @value{GDBN} error
529message as its value and the Python call stack backtrace at the Python
530statement closest to where the @value{GDBN} error occured as the
531traceback.
532
4a5a194a
TT
533
534When implementing @value{GDBN} commands in Python via
535@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
536to be able to throw an exception that doesn't cause a traceback to be
537printed. For example, the user may have invoked the command
538incorrectly. @value{GDBN} provides a special exception class that can
539be used for this purpose.
540
541@ftable @code
542@item gdb.GdbError
543When thrown from a command or function, this exception will cause the
544command or function to fail, but the Python stack will not be
545displayed. @value{GDBN} does not throw this exception itself, but
546rather recognizes it when thrown from user Python code. Example:
329baa95
DE
547
548@smallexample
549(gdb) python
550>class HelloWorld (gdb.Command):
551> """Greet the whole world."""
552> def __init__ (self):
553> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
554> def invoke (self, args, from_tty):
555> argv = gdb.string_to_argv (args)
556> if len (argv) != 0:
557> raise gdb.GdbError ("hello-world takes no arguments")
558> print "Hello, World!"
559>HelloWorld ()
560>end
561(gdb) hello-world 42
562hello-world takes no arguments
563@end smallexample
4a5a194a 564@end ftable
329baa95
DE
565
566@node Values From Inferior
567@subsubsection Values From Inferior
568@cindex values from inferior, with Python
569@cindex python, working with values from inferior
570
571@cindex @code{gdb.Value}
572@value{GDBN} provides values it obtains from the inferior program in
573an object of type @code{gdb.Value}. @value{GDBN} uses this object
574for its internal bookkeeping of the inferior's values, and for
575fetching values when necessary.
576
577Inferior values that are simple scalars can be used directly in
578Python expressions that are valid for the value's data type. Here's
579an example for an integer or floating-point value @code{some_val}:
580
581@smallexample
582bar = some_val + 2
583@end smallexample
584
585@noindent
586As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
587whose values are of the same type as those of @code{some_val}. Valid
588Python operations can also be performed on @code{gdb.Value} objects
589representing a @code{struct} or @code{class} object. For such cases,
590the overloaded operator (if present), is used to perform the operation.
591For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
592representing instances of a @code{class} which overloads the @code{+}
593operator, then one can use the @code{+} operator in their Python script
594as follows:
595
596@smallexample
597val3 = val1 + val2
598@end smallexample
599
600@noindent
601The result of the operation @code{val3} is also a @code{gdb.Value}
602object corresponding to the value returned by the overloaded @code{+}
603operator. In general, overloaded operators are invoked for the
604following operations: @code{+} (binary addition), @code{-} (binary
605subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
606@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
607
608Inferior values that are structures or instances of some class can
609be accessed using the Python @dfn{dictionary syntax}. For example, if
610@code{some_val} is a @code{gdb.Value} instance holding a structure, you
611can access its @code{foo} element with:
612
613@smallexample
614bar = some_val['foo']
615@end smallexample
616
617@cindex getting structure elements using gdb.Field objects as subscripts
618Again, @code{bar} will also be a @code{gdb.Value} object. Structure
619elements can also be accessed by using @code{gdb.Field} objects as
620subscripts (@pxref{Types In Python}, for more information on
621@code{gdb.Field} objects). For example, if @code{foo_field} is a
622@code{gdb.Field} object corresponding to element @code{foo} of the above
623structure, then @code{bar} can also be accessed as follows:
624
625@smallexample
626bar = some_val[foo_field]
627@end smallexample
628
629A @code{gdb.Value} that represents a function can be executed via
630inferior function call. Any arguments provided to the call must match
631the function's prototype, and must be provided in the order specified
632by that prototype.
633
634For example, @code{some_val} is a @code{gdb.Value} instance
635representing a function that takes two integers as arguments. To
636execute this function, call it like so:
637
638@smallexample
639result = some_val (10,20)
640@end smallexample
641
642Any values returned from a function call will be stored as a
643@code{gdb.Value}.
644
645The following attributes are provided:
646
647@defvar Value.address
648If this object is addressable, this read-only attribute holds a
649@code{gdb.Value} object representing the address. Otherwise,
650this attribute holds @code{None}.
651@end defvar
652
653@cindex optimized out value in Python
654@defvar Value.is_optimized_out
655This read-only boolean attribute is true if the compiler optimized out
656this value, thus it is not available for fetching from the inferior.
657@end defvar
658
659@defvar Value.type
660The type of this @code{gdb.Value}. The value of this attribute is a
661@code{gdb.Type} object (@pxref{Types In Python}).
662@end defvar
663
664@defvar Value.dynamic_type
9da10427
TT
665The dynamic type of this @code{gdb.Value}. This uses the object's
666virtual table and the C@t{++} run-time type information
667(@acronym{RTTI}) to determine the dynamic type of the value. If this
668value is of class type, it will return the class in which the value is
669embedded, if any. If this value is of pointer or reference to a class
670type, it will compute the dynamic type of the referenced object, and
671return a pointer or reference to that type, respectively. In all
672other cases, it will return the value's static type.
329baa95
DE
673
674Note that this feature will only work when debugging a C@t{++} program
675that includes @acronym{RTTI} for the object in question. Otherwise,
676it will just return the static type of the value as in @kbd{ptype foo}
677(@pxref{Symbols, ptype}).
678@end defvar
679
680@defvar Value.is_lazy
681The value of this read-only boolean attribute is @code{True} if this
682@code{gdb.Value} has not yet been fetched from the inferior.
683@value{GDBN} does not fetch values until necessary, for efficiency.
684For example:
685
686@smallexample
687myval = gdb.parse_and_eval ('somevar')
688@end smallexample
689
690The value of @code{somevar} is not fetched at this time. It will be
691fetched when the value is needed, or when the @code{fetch_lazy}
692method is invoked.
693@end defvar
694
695The following methods are provided:
696
697@defun Value.__init__ (@var{val})
698Many Python values can be converted directly to a @code{gdb.Value} via
699this object initializer. Specifically:
700
701@table @asis
702@item Python boolean
703A Python boolean is converted to the boolean type from the current
704language.
705
706@item Python integer
707A Python integer is converted to the C @code{long} type for the
708current architecture.
709
710@item Python long
711A Python long is converted to the C @code{long long} type for the
712current architecture.
713
714@item Python float
715A Python float is converted to the C @code{double} type for the
716current architecture.
717
718@item Python string
b3ce5e5f
DE
719A Python string is converted to a target string in the current target
720language using the current target encoding.
721If a character cannot be represented in the current target encoding,
722then an exception is thrown.
329baa95
DE
723
724@item @code{gdb.Value}
725If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
726
727@item @code{gdb.LazyString}
728If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
729Python}), then the lazy string's @code{value} method is called, and
730its result is used.
731@end table
732@end defun
733
734@defun Value.cast (type)
735Return a new instance of @code{gdb.Value} that is the result of
736casting this instance to the type described by @var{type}, which must
737be a @code{gdb.Type} object. If the cast cannot be performed for some
738reason, this method throws an exception.
739@end defun
740
741@defun Value.dereference ()
742For pointer data types, this method returns a new @code{gdb.Value} object
743whose contents is the object pointed to by the pointer. For example, if
744@code{foo} is a C pointer to an @code{int}, declared in your C program as
745
746@smallexample
747int *foo;
748@end smallexample
749
750@noindent
751then you can use the corresponding @code{gdb.Value} to access what
752@code{foo} points to like this:
753
754@smallexample
755bar = foo.dereference ()
756@end smallexample
757
758The result @code{bar} will be a @code{gdb.Value} object holding the
759value pointed to by @code{foo}.
760
761A similar function @code{Value.referenced_value} exists which also
762returns @code{gdb.Value} objects corresonding to the values pointed to
763by pointer values (and additionally, values referenced by reference
764values). However, the behavior of @code{Value.dereference}
765differs from @code{Value.referenced_value} by the fact that the
766behavior of @code{Value.dereference} is identical to applying the C
767unary operator @code{*} on a given value. For example, consider a
768reference to a pointer @code{ptrref}, declared in your C@t{++} program
769as
770
771@smallexample
772typedef int *intptr;
773...
774int val = 10;
775intptr ptr = &val;
776intptr &ptrref = ptr;
777@end smallexample
778
779Though @code{ptrref} is a reference value, one can apply the method
780@code{Value.dereference} to the @code{gdb.Value} object corresponding
781to it and obtain a @code{gdb.Value} which is identical to that
782corresponding to @code{val}. However, if you apply the method
783@code{Value.referenced_value}, the result would be a @code{gdb.Value}
784object identical to that corresponding to @code{ptr}.
785
786@smallexample
787py_ptrref = gdb.parse_and_eval ("ptrref")
788py_val = py_ptrref.dereference ()
789py_ptr = py_ptrref.referenced_value ()
790@end smallexample
791
792The @code{gdb.Value} object @code{py_val} is identical to that
793corresponding to @code{val}, and @code{py_ptr} is identical to that
794corresponding to @code{ptr}. In general, @code{Value.dereference} can
795be applied whenever the C unary operator @code{*} can be applied
796to the corresponding C value. For those cases where applying both
797@code{Value.dereference} and @code{Value.referenced_value} is allowed,
798the results obtained need not be identical (as we have seen in the above
799example). The results are however identical when applied on
800@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
801objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
802@end defun
803
804@defun Value.referenced_value ()
805For pointer or reference data types, this method returns a new
806@code{gdb.Value} object corresponding to the value referenced by the
807pointer/reference value. For pointer data types,
808@code{Value.dereference} and @code{Value.referenced_value} produce
809identical results. The difference between these methods is that
810@code{Value.dereference} cannot get the values referenced by reference
811values. For example, consider a reference to an @code{int}, declared
812in your C@t{++} program as
813
814@smallexample
815int val = 10;
816int &ref = val;
817@end smallexample
818
819@noindent
820then applying @code{Value.dereference} to the @code{gdb.Value} object
821corresponding to @code{ref} will result in an error, while applying
822@code{Value.referenced_value} will result in a @code{gdb.Value} object
823identical to that corresponding to @code{val}.
824
825@smallexample
826py_ref = gdb.parse_and_eval ("ref")
827er_ref = py_ref.dereference () # Results in error
828py_val = py_ref.referenced_value () # Returns the referenced value
829@end smallexample
830
831The @code{gdb.Value} object @code{py_val} is identical to that
832corresponding to @code{val}.
833@end defun
834
4c082a81
SC
835@defun Value.reference_value ()
836Return a @code{gdb.Value} object which is a reference to the value
837encapsulated by this instance.
838@end defun
839
840@defun Value.const_value ()
841Return a @code{gdb.Value} object which is a @code{const} version of the
842value encapsulated by this instance.
843@end defun
844
329baa95
DE
845@defun Value.dynamic_cast (type)
846Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
847operator were used. Consult a C@t{++} reference for details.
848@end defun
849
850@defun Value.reinterpret_cast (type)
851Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
852operator were used. Consult a C@t{++} reference for details.
853@end defun
854
855@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
856If this @code{gdb.Value} represents a string, then this method
857converts the contents to a Python string. Otherwise, this method will
858throw an exception.
859
b3ce5e5f
DE
860Values are interpreted as strings according to the rules of the
861current language. If the optional length argument is given, the
862string will be converted to that length, and will include any embedded
863zeroes that the string may contain. Otherwise, for languages
864where the string is zero-terminated, the entire string will be
865converted.
329baa95 866
b3ce5e5f
DE
867For example, in C-like languages, a value is a string if it is a pointer
868to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
869or @code{char32_t}.
329baa95
DE
870
871If the optional @var{encoding} argument is given, it must be a string
872naming the encoding of the string in the @code{gdb.Value}, such as
873@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
874the same encodings as the corresponding argument to Python's
875@code{string.decode} method, and the Python codec machinery will be used
876to convert the string. If @var{encoding} is not given, or if
877@var{encoding} is the empty string, then either the @code{target-charset}
878(@pxref{Character Sets}) will be used, or a language-specific encoding
879will be used, if the current language is able to supply one.
880
881The optional @var{errors} argument is the same as the corresponding
882argument to Python's @code{string.decode} method.
883
884If the optional @var{length} argument is given, the string will be
885fetched and converted to the given length.
886@end defun
887
888@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
889If this @code{gdb.Value} represents a string, then this method
890converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
891In Python}). Otherwise, this method will throw an exception.
892
893If the optional @var{encoding} argument is given, it must be a string
894naming the encoding of the @code{gdb.LazyString}. Some examples are:
895@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
896@var{encoding} argument is an encoding that @value{GDBN} does
897recognize, @value{GDBN} will raise an error.
898
899When a lazy string is printed, the @value{GDBN} encoding machinery is
900used to convert the string during printing. If the optional
901@var{encoding} argument is not provided, or is an empty string,
902@value{GDBN} will automatically select the encoding most suitable for
903the string type. For further information on encoding in @value{GDBN}
904please see @ref{Character Sets}.
905
906If the optional @var{length} argument is given, the string will be
907fetched and encoded to the length of characters specified. If
908the @var{length} argument is not provided, the string will be fetched
909and encoded until a null of appropriate width is found.
910@end defun
911
912@defun Value.fetch_lazy ()
913If the @code{gdb.Value} object is currently a lazy value
914(@code{gdb.Value.is_lazy} is @code{True}), then the value is
915fetched from the inferior. Any errors that occur in the process
916will produce a Python exception.
917
918If the @code{gdb.Value} object is not a lazy value, this method
919has no effect.
920
921This method does not return a value.
922@end defun
923
924
925@node Types In Python
926@subsubsection Types In Python
927@cindex types in Python
928@cindex Python, working with types
929
930@tindex gdb.Type
931@value{GDBN} represents types from the inferior using the class
932@code{gdb.Type}.
933
934The following type-related functions are available in the @code{gdb}
935module:
936
937@findex gdb.lookup_type
938@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 939This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
940
941If @var{block} is given, then @var{name} is looked up in that scope.
942Otherwise, it is searched for globally.
943
944Ordinarily, this function will return an instance of @code{gdb.Type}.
945If the named type cannot be found, it will throw an exception.
946@end defun
947
948If the type is a structure or class type, or an enum type, the fields
949of that type can be accessed using the Python @dfn{dictionary syntax}.
950For example, if @code{some_type} is a @code{gdb.Type} instance holding
951a structure type, you can access its @code{foo} field with:
952
953@smallexample
954bar = some_type['foo']
955@end smallexample
956
957@code{bar} will be a @code{gdb.Field} object; see below under the
958description of the @code{Type.fields} method for a description of the
959@code{gdb.Field} class.
960
961An instance of @code{Type} has the following attributes:
962
6d7bb824
TT
963@defvar Type.alignof
964The alignment of this type, in bytes. Type alignment comes from the
965debugging information; if it was not specified, then @value{GDBN} will
966use the relevant ABI to try to determine the alignment. In some
967cases, even this is not possible, and zero will be returned.
968@end defvar
969
329baa95
DE
970@defvar Type.code
971The type code for this type. The type code will be one of the
972@code{TYPE_CODE_} constants defined below.
973@end defvar
974
975@defvar Type.name
976The name of this type. If this type has no name, then @code{None}
977is returned.
978@end defvar
979
980@defvar Type.sizeof
981The size of this type, in target @code{char} units. Usually, a
982target's @code{char} type will be an 8-bit byte. However, on some
983unusual platforms, this type may have a different size.
984@end defvar
985
986@defvar Type.tag
987The tag name for this type. The tag name is the name after
988@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
989languages have this concept. If this type has no tag name, then
990@code{None} is returned.
991@end defvar
992
993The following methods are provided:
994
995@defun Type.fields ()
996For structure and union types, this method returns the fields. Range
997types have two fields, the minimum and maximum values. Enum types
998have one field per enum constant. Function and method types have one
999field per parameter. The base types of C@t{++} classes are also
1000represented as fields. If the type has no fields, or does not fit
1001into one of these categories, an empty sequence will be returned.
1002
1003Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1004@table @code
1005@item bitpos
1006This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1007(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1008in bits, from the start of the containing type.
1009
1010@item enumval
1011This attribute is only available for @code{enum} fields, and its value
1012is the enumeration member's integer representation.
1013
1014@item name
1015The name of the field, or @code{None} for anonymous fields.
1016
1017@item artificial
1018This is @code{True} if the field is artificial, usually meaning that
1019it was provided by the compiler and not the user. This attribute is
1020always provided, and is @code{False} if the field is not artificial.
1021
1022@item is_base_class
1023This is @code{True} if the field represents a base class of a C@t{++}
1024structure. This attribute is always provided, and is @code{False}
1025if the field is not a base class of the type that is the argument of
1026@code{fields}, or if that type was not a C@t{++} class.
1027
1028@item bitsize
1029If the field is packed, or is a bitfield, then this will have a
1030non-zero value, which is the size of the field in bits. Otherwise,
1031this will be zero; in this case the field's size is given by its type.
1032
1033@item type
1034The type of the field. This is usually an instance of @code{Type},
1035but it can be @code{None} in some situations.
1036
1037@item parent_type
1038The type which contains this field. This is an instance of
1039@code{gdb.Type}.
1040@end table
1041@end defun
1042
1043@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1044Return a new @code{gdb.Type} object which represents an array of this
1045type. If one argument is given, it is the inclusive upper bound of
1046the array; in this case the lower bound is zero. If two arguments are
1047given, the first argument is the lower bound of the array, and the
1048second argument is the upper bound of the array. An array's length
1049must not be negative, but the bounds can be.
1050@end defun
1051
1052@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1053Return a new @code{gdb.Type} object which represents a vector of this
1054type. If one argument is given, it is the inclusive upper bound of
1055the vector; in this case the lower bound is zero. If two arguments are
1056given, the first argument is the lower bound of the vector, and the
1057second argument is the upper bound of the vector. A vector's length
1058must not be negative, but the bounds can be.
1059
1060The difference between an @code{array} and a @code{vector} is that
1061arrays behave like in C: when used in expressions they decay to a pointer
1062to the first element whereas vectors are treated as first class values.
1063@end defun
1064
1065@defun Type.const ()
1066Return a new @code{gdb.Type} object which represents a
1067@code{const}-qualified variant of this type.
1068@end defun
1069
1070@defun Type.volatile ()
1071Return a new @code{gdb.Type} object which represents a
1072@code{volatile}-qualified variant of this type.
1073@end defun
1074
1075@defun Type.unqualified ()
1076Return a new @code{gdb.Type} object which represents an unqualified
1077variant of this type. That is, the result is neither @code{const} nor
1078@code{volatile}.
1079@end defun
1080
1081@defun Type.range ()
1082Return a Python @code{Tuple} object that contains two elements: the
1083low bound of the argument type and the high bound of that type. If
1084the type does not have a range, @value{GDBN} will raise a
1085@code{gdb.error} exception (@pxref{Exception Handling}).
1086@end defun
1087
1088@defun Type.reference ()
1089Return a new @code{gdb.Type} object which represents a reference to this
1090type.
1091@end defun
1092
1093@defun Type.pointer ()
1094Return a new @code{gdb.Type} object which represents a pointer to this
1095type.
1096@end defun
1097
1098@defun Type.strip_typedefs ()
1099Return a new @code{gdb.Type} that represents the real type,
1100after removing all layers of typedefs.
1101@end defun
1102
1103@defun Type.target ()
1104Return a new @code{gdb.Type} object which represents the target type
1105of this type.
1106
1107For a pointer type, the target type is the type of the pointed-to
1108object. For an array type (meaning C-like arrays), the target type is
1109the type of the elements of the array. For a function or method type,
1110the target type is the type of the return value. For a complex type,
1111the target type is the type of the elements. For a typedef, the
1112target type is the aliased type.
1113
1114If the type does not have a target, this method will throw an
1115exception.
1116@end defun
1117
1118@defun Type.template_argument (n @r{[}, block@r{]})
1119If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1120return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1121value of the @var{n}th template argument (indexed starting at 0).
329baa95 1122
1a6a384b
JL
1123If this @code{gdb.Type} is not a template type, or if the type has fewer
1124than @var{n} template arguments, this will throw an exception.
1125Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1126
1127If @var{block} is given, then @var{name} is looked up in that scope.
1128Otherwise, it is searched for globally.
1129@end defun
1130
59fb7612
SS
1131@defun Type.optimized_out ()
1132Return @code{gdb.Value} instance of this type whose value is optimized
1133out. This allows a frame decorator to indicate that the value of an
1134argument or a local variable is not known.
1135@end defun
329baa95
DE
1136
1137Each type has a code, which indicates what category this type falls
1138into. The available type categories are represented by constants
1139defined in the @code{gdb} module:
1140
b3ce5e5f
DE
1141@vtable @code
1142@vindex TYPE_CODE_PTR
329baa95
DE
1143@item gdb.TYPE_CODE_PTR
1144The type is a pointer.
1145
b3ce5e5f 1146@vindex TYPE_CODE_ARRAY
329baa95
DE
1147@item gdb.TYPE_CODE_ARRAY
1148The type is an array.
1149
b3ce5e5f 1150@vindex TYPE_CODE_STRUCT
329baa95
DE
1151@item gdb.TYPE_CODE_STRUCT
1152The type is a structure.
1153
b3ce5e5f 1154@vindex TYPE_CODE_UNION
329baa95
DE
1155@item gdb.TYPE_CODE_UNION
1156The type is a union.
1157
b3ce5e5f 1158@vindex TYPE_CODE_ENUM
329baa95
DE
1159@item gdb.TYPE_CODE_ENUM
1160The type is an enum.
1161
b3ce5e5f 1162@vindex TYPE_CODE_FLAGS
329baa95
DE
1163@item gdb.TYPE_CODE_FLAGS
1164A bit flags type, used for things such as status registers.
1165
b3ce5e5f 1166@vindex TYPE_CODE_FUNC
329baa95
DE
1167@item gdb.TYPE_CODE_FUNC
1168The type is a function.
1169
b3ce5e5f 1170@vindex TYPE_CODE_INT
329baa95
DE
1171@item gdb.TYPE_CODE_INT
1172The type is an integer type.
1173
b3ce5e5f 1174@vindex TYPE_CODE_FLT
329baa95
DE
1175@item gdb.TYPE_CODE_FLT
1176A floating point type.
1177
b3ce5e5f 1178@vindex TYPE_CODE_VOID
329baa95
DE
1179@item gdb.TYPE_CODE_VOID
1180The special type @code{void}.
1181
b3ce5e5f 1182@vindex TYPE_CODE_SET
329baa95
DE
1183@item gdb.TYPE_CODE_SET
1184A Pascal set type.
1185
b3ce5e5f 1186@vindex TYPE_CODE_RANGE
329baa95
DE
1187@item gdb.TYPE_CODE_RANGE
1188A range type, that is, an integer type with bounds.
1189
b3ce5e5f 1190@vindex TYPE_CODE_STRING
329baa95
DE
1191@item gdb.TYPE_CODE_STRING
1192A string type. Note that this is only used for certain languages with
1193language-defined string types; C strings are not represented this way.
1194
b3ce5e5f 1195@vindex TYPE_CODE_BITSTRING
329baa95
DE
1196@item gdb.TYPE_CODE_BITSTRING
1197A string of bits. It is deprecated.
1198
b3ce5e5f 1199@vindex TYPE_CODE_ERROR
329baa95
DE
1200@item gdb.TYPE_CODE_ERROR
1201An unknown or erroneous type.
1202
b3ce5e5f 1203@vindex TYPE_CODE_METHOD
329baa95 1204@item gdb.TYPE_CODE_METHOD
9c37b5ae 1205A method type, as found in C@t{++}.
329baa95 1206
b3ce5e5f 1207@vindex TYPE_CODE_METHODPTR
329baa95
DE
1208@item gdb.TYPE_CODE_METHODPTR
1209A pointer-to-member-function.
1210
b3ce5e5f 1211@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1212@item gdb.TYPE_CODE_MEMBERPTR
1213A pointer-to-member.
1214
b3ce5e5f 1215@vindex TYPE_CODE_REF
329baa95
DE
1216@item gdb.TYPE_CODE_REF
1217A reference type.
1218
3fcf899d
AV
1219@vindex TYPE_CODE_RVALUE_REF
1220@item gdb.TYPE_CODE_RVALUE_REF
1221A C@t{++}11 rvalue reference type.
1222
b3ce5e5f 1223@vindex TYPE_CODE_CHAR
329baa95
DE
1224@item gdb.TYPE_CODE_CHAR
1225A character type.
1226
b3ce5e5f 1227@vindex TYPE_CODE_BOOL
329baa95
DE
1228@item gdb.TYPE_CODE_BOOL
1229A boolean type.
1230
b3ce5e5f 1231@vindex TYPE_CODE_COMPLEX
329baa95
DE
1232@item gdb.TYPE_CODE_COMPLEX
1233A complex float type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1236@item gdb.TYPE_CODE_TYPEDEF
1237A typedef to some other type.
1238
b3ce5e5f 1239@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1240@item gdb.TYPE_CODE_NAMESPACE
1241A C@t{++} namespace.
1242
b3ce5e5f 1243@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1244@item gdb.TYPE_CODE_DECFLOAT
1245A decimal floating point type.
1246
b3ce5e5f 1247@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1248@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1249A function internal to @value{GDBN}. This is the type used to represent
1250convenience functions.
b3ce5e5f 1251@end vtable
329baa95
DE
1252
1253Further support for types is provided in the @code{gdb.types}
1254Python module (@pxref{gdb.types}).
1255
1256@node Pretty Printing API
1257@subsubsection Pretty Printing API
b3ce5e5f 1258@cindex python pretty printing api
329baa95 1259
329baa95 1260A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1261specific interface, defined here. An example output is provided
1262(@pxref{Pretty Printing}).
329baa95
DE
1263
1264@defun pretty_printer.children (self)
1265@value{GDBN} will call this method on a pretty-printer to compute the
1266children of the pretty-printer's value.
1267
1268This method must return an object conforming to the Python iterator
1269protocol. Each item returned by the iterator must be a tuple holding
1270two elements. The first element is the ``name'' of the child; the
1271second element is the child's value. The value can be any Python
1272object which is convertible to a @value{GDBN} value.
1273
1274This method is optional. If it does not exist, @value{GDBN} will act
1275as though the value has no children.
1276@end defun
1277
1278@defun pretty_printer.display_hint (self)
1279The CLI may call this method and use its result to change the
1280formatting of a value. The result will also be supplied to an MI
1281consumer as a @samp{displayhint} attribute of the variable being
1282printed.
1283
1284This method is optional. If it does exist, this method must return a
1285string.
1286
1287Some display hints are predefined by @value{GDBN}:
1288
1289@table @samp
1290@item array
1291Indicate that the object being printed is ``array-like''. The CLI
1292uses this to respect parameters such as @code{set print elements} and
1293@code{set print array}.
1294
1295@item map
1296Indicate that the object being printed is ``map-like'', and that the
1297children of this value can be assumed to alternate between keys and
1298values.
1299
1300@item string
1301Indicate that the object being printed is ``string-like''. If the
1302printer's @code{to_string} method returns a Python string of some
1303kind, then @value{GDBN} will call its internal language-specific
1304string-printing function to format the string. For the CLI this means
1305adding quotation marks, possibly escaping some characters, respecting
1306@code{set print elements}, and the like.
1307@end table
1308@end defun
1309
1310@defun pretty_printer.to_string (self)
1311@value{GDBN} will call this method to display the string
1312representation of the value passed to the object's constructor.
1313
1314When printing from the CLI, if the @code{to_string} method exists,
1315then @value{GDBN} will prepend its result to the values returned by
1316@code{children}. Exactly how this formatting is done is dependent on
1317the display hint, and may change as more hints are added. Also,
1318depending on the print settings (@pxref{Print Settings}), the CLI may
1319print just the result of @code{to_string} in a stack trace, omitting
1320the result of @code{children}.
1321
1322If this method returns a string, it is printed verbatim.
1323
1324Otherwise, if this method returns an instance of @code{gdb.Value},
1325then @value{GDBN} prints this value. This may result in a call to
1326another pretty-printer.
1327
1328If instead the method returns a Python value which is convertible to a
1329@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1330the resulting value. Again, this may result in a call to another
1331pretty-printer. Python scalars (integers, floats, and booleans) and
1332strings are convertible to @code{gdb.Value}; other types are not.
1333
1334Finally, if this method returns @code{None} then no further operations
1335are peformed in this method and nothing is printed.
1336
1337If the result is not one of these types, an exception is raised.
1338@end defun
1339
1340@value{GDBN} provides a function which can be used to look up the
1341default pretty-printer for a @code{gdb.Value}:
1342
1343@findex gdb.default_visualizer
1344@defun gdb.default_visualizer (value)
1345This function takes a @code{gdb.Value} object as an argument. If a
1346pretty-printer for this value exists, then it is returned. If no such
1347printer exists, then this returns @code{None}.
1348@end defun
1349
1350@node Selecting Pretty-Printers
1351@subsubsection Selecting Pretty-Printers
b3ce5e5f 1352@cindex selecting python pretty-printers
329baa95
DE
1353
1354The Python list @code{gdb.pretty_printers} contains an array of
1355functions or callable objects that have been registered via addition
1356as a pretty-printer. Printers in this list are called @code{global}
1357printers, they're available when debugging all inferiors.
1358Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1359Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1360attribute.
1361
1362Each function on these lists is passed a single @code{gdb.Value}
1363argument and should return a pretty-printer object conforming to the
1364interface definition above (@pxref{Pretty Printing API}). If a function
1365cannot create a pretty-printer for the value, it should return
1366@code{None}.
1367
1368@value{GDBN} first checks the @code{pretty_printers} attribute of each
1369@code{gdb.Objfile} in the current program space and iteratively calls
1370each enabled lookup routine in the list for that @code{gdb.Objfile}
1371until it receives a pretty-printer object.
1372If no pretty-printer is found in the objfile lists, @value{GDBN} then
1373searches the pretty-printer list of the current program space,
1374calling each enabled function until an object is returned.
1375After these lists have been exhausted, it tries the global
1376@code{gdb.pretty_printers} list, again calling each enabled function until an
1377object is returned.
1378
1379The order in which the objfiles are searched is not specified. For a
1380given list, functions are always invoked from the head of the list,
1381and iterated over sequentially until the end of the list, or a printer
1382object is returned.
1383
1384For various reasons a pretty-printer may not work.
1385For example, the underlying data structure may have changed and
1386the pretty-printer is out of date.
1387
1388The consequences of a broken pretty-printer are severe enough that
1389@value{GDBN} provides support for enabling and disabling individual
1390printers. For example, if @code{print frame-arguments} is on,
1391a backtrace can become highly illegible if any argument is printed
1392with a broken printer.
1393
1394Pretty-printers are enabled and disabled by attaching an @code{enabled}
1395attribute to the registered function or callable object. If this attribute
1396is present and its value is @code{False}, the printer is disabled, otherwise
1397the printer is enabled.
1398
1399@node Writing a Pretty-Printer
1400@subsubsection Writing a Pretty-Printer
1401@cindex writing a pretty-printer
1402
1403A pretty-printer consists of two parts: a lookup function to detect
1404if the type is supported, and the printer itself.
1405
1406Here is an example showing how a @code{std::string} printer might be
1407written. @xref{Pretty Printing API}, for details on the API this class
1408must provide.
1409
1410@smallexample
1411class StdStringPrinter(object):
1412 "Print a std::string"
1413
1414 def __init__(self, val):
1415 self.val = val
1416
1417 def to_string(self):
1418 return self.val['_M_dataplus']['_M_p']
1419
1420 def display_hint(self):
1421 return 'string'
1422@end smallexample
1423
1424And here is an example showing how a lookup function for the printer
1425example above might be written.
1426
1427@smallexample
1428def str_lookup_function(val):
1429 lookup_tag = val.type.tag
1430 if lookup_tag == None:
1431 return None
1432 regex = re.compile("^std::basic_string<char,.*>$")
1433 if regex.match(lookup_tag):
1434 return StdStringPrinter(val)
1435 return None
1436@end smallexample
1437
1438The example lookup function extracts the value's type, and attempts to
1439match it to a type that it can pretty-print. If it is a type the
1440printer can pretty-print, it will return a printer object. If not, it
1441returns @code{None}.
1442
1443We recommend that you put your core pretty-printers into a Python
1444package. If your pretty-printers are for use with a library, we
1445further recommend embedding a version number into the package name.
1446This practice will enable @value{GDBN} to load multiple versions of
1447your pretty-printers at the same time, because they will have
1448different names.
1449
1450You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1451can be evaluated multiple times without changing its meaning. An
1452ideal auto-load file will consist solely of @code{import}s of your
1453printer modules, followed by a call to a register pretty-printers with
1454the current objfile.
1455
1456Taken as a whole, this approach will scale nicely to multiple
1457inferiors, each potentially using a different library version.
1458Embedding a version number in the Python package name will ensure that
1459@value{GDBN} is able to load both sets of printers simultaneously.
1460Then, because the search for pretty-printers is done by objfile, and
1461because your auto-loaded code took care to register your library's
1462printers with a specific objfile, @value{GDBN} will find the correct
1463printers for the specific version of the library used by each
1464inferior.
1465
1466To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1467this code might appear in @code{gdb.libstdcxx.v6}:
1468
1469@smallexample
1470def register_printers(objfile):
1471 objfile.pretty_printers.append(str_lookup_function)
1472@end smallexample
1473
1474@noindent
1475And then the corresponding contents of the auto-load file would be:
1476
1477@smallexample
1478import gdb.libstdcxx.v6
1479gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1480@end smallexample
1481
1482The previous example illustrates a basic pretty-printer.
1483There are a few things that can be improved on.
1484The printer doesn't have a name, making it hard to identify in a
1485list of installed printers. The lookup function has a name, but
1486lookup functions can have arbitrary, even identical, names.
1487
1488Second, the printer only handles one type, whereas a library typically has
1489several types. One could install a lookup function for each desired type
1490in the library, but one could also have a single lookup function recognize
1491several types. The latter is the conventional way this is handled.
1492If a pretty-printer can handle multiple data types, then its
1493@dfn{subprinters} are the printers for the individual data types.
1494
1495The @code{gdb.printing} module provides a formal way of solving these
1496problems (@pxref{gdb.printing}).
1497Here is another example that handles multiple types.
1498
1499These are the types we are going to pretty-print:
1500
1501@smallexample
1502struct foo @{ int a, b; @};
1503struct bar @{ struct foo x, y; @};
1504@end smallexample
1505
1506Here are the printers:
1507
1508@smallexample
1509class fooPrinter:
1510 """Print a foo object."""
1511
1512 def __init__(self, val):
1513 self.val = val
1514
1515 def to_string(self):
1516 return ("a=<" + str(self.val["a"]) +
1517 "> b=<" + str(self.val["b"]) + ">")
1518
1519class barPrinter:
1520 """Print a bar object."""
1521
1522 def __init__(self, val):
1523 self.val = val
1524
1525 def to_string(self):
1526 return ("x=<" + str(self.val["x"]) +
1527 "> y=<" + str(self.val["y"]) + ">")
1528@end smallexample
1529
1530This example doesn't need a lookup function, that is handled by the
1531@code{gdb.printing} module. Instead a function is provided to build up
1532the object that handles the lookup.
1533
1534@smallexample
1535import gdb.printing
1536
1537def build_pretty_printer():
1538 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1539 "my_library")
1540 pp.add_printer('foo', '^foo$', fooPrinter)
1541 pp.add_printer('bar', '^bar$', barPrinter)
1542 return pp
1543@end smallexample
1544
1545And here is the autoload support:
1546
1547@smallexample
1548import gdb.printing
1549import my_library
1550gdb.printing.register_pretty_printer(
1551 gdb.current_objfile(),
1552 my_library.build_pretty_printer())
1553@end smallexample
1554
1555Finally, when this printer is loaded into @value{GDBN}, here is the
1556corresponding output of @samp{info pretty-printer}:
1557
1558@smallexample
1559(gdb) info pretty-printer
1560my_library.so:
1561 my_library
1562 foo
1563 bar
1564@end smallexample
1565
1566@node Type Printing API
1567@subsubsection Type Printing API
1568@cindex type printing API for Python
1569
1570@value{GDBN} provides a way for Python code to customize type display.
1571This is mainly useful for substituting canonical typedef names for
1572types.
1573
1574@cindex type printer
1575A @dfn{type printer} is just a Python object conforming to a certain
1576protocol. A simple base class implementing the protocol is provided;
1577see @ref{gdb.types}. A type printer must supply at least:
1578
1579@defivar type_printer enabled
1580A boolean which is True if the printer is enabled, and False
1581otherwise. This is manipulated by the @code{enable type-printer}
1582and @code{disable type-printer} commands.
1583@end defivar
1584
1585@defivar type_printer name
1586The name of the type printer. This must be a string. This is used by
1587the @code{enable type-printer} and @code{disable type-printer}
1588commands.
1589@end defivar
1590
1591@defmethod type_printer instantiate (self)
1592This is called by @value{GDBN} at the start of type-printing. It is
1593only called if the type printer is enabled. This method must return a
1594new object that supplies a @code{recognize} method, as described below.
1595@end defmethod
1596
1597
1598When displaying a type, say via the @code{ptype} command, @value{GDBN}
1599will compute a list of type recognizers. This is done by iterating
1600first over the per-objfile type printers (@pxref{Objfiles In Python}),
1601followed by the per-progspace type printers (@pxref{Progspaces In
1602Python}), and finally the global type printers.
1603
1604@value{GDBN} will call the @code{instantiate} method of each enabled
1605type printer. If this method returns @code{None}, then the result is
1606ignored; otherwise, it is appended to the list of recognizers.
1607
1608Then, when @value{GDBN} is going to display a type name, it iterates
1609over the list of recognizers. For each one, it calls the recognition
1610function, stopping if the function returns a non-@code{None} value.
1611The recognition function is defined as:
1612
1613@defmethod type_recognizer recognize (self, type)
1614If @var{type} is not recognized, return @code{None}. Otherwise,
1615return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1616The @var{type} argument will be an instance of @code{gdb.Type}
1617(@pxref{Types In Python}).
329baa95
DE
1618@end defmethod
1619
1620@value{GDBN} uses this two-pass approach so that type printers can
1621efficiently cache information without holding on to it too long. For
1622example, it can be convenient to look up type information in a type
1623printer and hold it for a recognizer's lifetime; if a single pass were
1624done then type printers would have to make use of the event system in
1625order to avoid holding information that could become stale as the
1626inferior changed.
1627
1628@node Frame Filter API
521b499b 1629@subsubsection Filtering Frames
329baa95
DE
1630@cindex frame filters api
1631
1632Frame filters are Python objects that manipulate the visibility of a
1633frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1634@value{GDBN}.
1635
1636Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1637commands (@pxref{GDB/MI}), those that return a collection of frames
1638are affected. The commands that work with frame filters are:
1639
1640@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1641@code{-stack-list-frames}
1642(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1643@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1644-stack-list-variables command}), @code{-stack-list-arguments}
1645@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1646@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1647-stack-list-locals command}).
1648
1649A frame filter works by taking an iterator as an argument, applying
1650actions to the contents of that iterator, and returning another
1651iterator (or, possibly, the same iterator it was provided in the case
1652where the filter does not perform any operations). Typically, frame
1653filters utilize tools such as the Python's @code{itertools} module to
1654work with and create new iterators from the source iterator.
1655Regardless of how a filter chooses to apply actions, it must not alter
1656the underlying @value{GDBN} frame or frames, or attempt to alter the
1657call-stack within @value{GDBN}. This preserves data integrity within
1658@value{GDBN}. Frame filters are executed on a priority basis and care
1659should be taken that some frame filters may have been executed before,
1660and that some frame filters will be executed after.
1661
1662An important consideration when designing frame filters, and well
1663worth reflecting upon, is that frame filters should avoid unwinding
1664the call stack if possible. Some stacks can run very deep, into the
1665tens of thousands in some cases. To search every frame when a frame
1666filter executes may be too expensive at that step. The frame filter
1667cannot know how many frames it has to iterate over, and it may have to
1668iterate through them all. This ends up duplicating effort as
1669@value{GDBN} performs this iteration when it prints the frames. If
1670the filter can defer unwinding frames until frame decorators are
1671executed, after the last filter has executed, it should. @xref{Frame
1672Decorator API}, for more information on decorators. Also, there are
1673examples for both frame decorators and filters in later chapters.
1674@xref{Writing a Frame Filter}, for more information.
1675
1676The Python dictionary @code{gdb.frame_filters} contains key/object
1677pairings that comprise a frame filter. Frame filters in this
1678dictionary are called @code{global} frame filters, and they are
1679available when debugging all inferiors. These frame filters must
1680register with the dictionary directly. In addition to the
1681@code{global} dictionary, there are other dictionaries that are loaded
1682with different inferiors via auto-loading (@pxref{Python
1683Auto-loading}). The two other areas where frame filter dictionaries
1684can be found are: @code{gdb.Progspace} which contains a
1685@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1686object which also contains a @code{frame_filters} dictionary
1687attribute.
1688
1689When a command is executed from @value{GDBN} that is compatible with
1690frame filters, @value{GDBN} combines the @code{global},
1691@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1692loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1693several frames, and thus several object files, might be in use.
1694@value{GDBN} then prunes any frame filter whose @code{enabled}
1695attribute is @code{False}. This pruned list is then sorted according
1696to the @code{priority} attribute in each filter.
1697
1698Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1699creates an iterator which wraps each frame in the call stack in a
1700@code{FrameDecorator} object, and calls each filter in order. The
1701output from the previous filter will always be the input to the next
1702filter, and so on.
1703
1704Frame filters have a mandatory interface which each frame filter must
1705implement, defined here:
1706
1707@defun FrameFilter.filter (iterator)
1708@value{GDBN} will call this method on a frame filter when it has
1709reached the order in the priority list for that filter.
1710
1711For example, if there are four frame filters:
1712
1713@smallexample
1714Name Priority
1715
1716Filter1 5
1717Filter2 10
1718Filter3 100
1719Filter4 1
1720@end smallexample
1721
1722The order that the frame filters will be called is:
1723
1724@smallexample
1725Filter3 -> Filter2 -> Filter1 -> Filter4
1726@end smallexample
1727
1728Note that the output from @code{Filter3} is passed to the input of
1729@code{Filter2}, and so on.
1730
1731This @code{filter} method is passed a Python iterator. This iterator
1732contains a sequence of frame decorators that wrap each
1733@code{gdb.Frame}, or a frame decorator that wraps another frame
1734decorator. The first filter that is executed in the sequence of frame
1735filters will receive an iterator entirely comprised of default
1736@code{FrameDecorator} objects. However, after each frame filter is
1737executed, the previous frame filter may have wrapped some or all of
1738the frame decorators with their own frame decorator. As frame
1739decorators must also conform to a mandatory interface, these
1740decorators can be assumed to act in a uniform manner (@pxref{Frame
1741Decorator API}).
1742
1743This method must return an object conforming to the Python iterator
1744protocol. Each item in the iterator must be an object conforming to
1745the frame decorator interface. If a frame filter does not wish to
1746perform any operations on this iterator, it should return that
1747iterator untouched.
1748
1749This method is not optional. If it does not exist, @value{GDBN} will
1750raise and print an error.
1751@end defun
1752
1753@defvar FrameFilter.name
1754The @code{name} attribute must be Python string which contains the
1755name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1756Management}). This attribute may contain any combination of letters
1757or numbers. Care should be taken to ensure that it is unique. This
1758attribute is mandatory.
1759@end defvar
1760
1761@defvar FrameFilter.enabled
1762The @code{enabled} attribute must be Python boolean. This attribute
1763indicates to @value{GDBN} whether the frame filter is enabled, and
1764should be considered when frame filters are executed. If
1765@code{enabled} is @code{True}, then the frame filter will be executed
1766when any of the backtrace commands detailed earlier in this chapter
1767are executed. If @code{enabled} is @code{False}, then the frame
1768filter will not be executed. This attribute is mandatory.
1769@end defvar
1770
1771@defvar FrameFilter.priority
1772The @code{priority} attribute must be Python integer. This attribute
1773controls the order of execution in relation to other frame filters.
1774There are no imposed limits on the range of @code{priority} other than
1775it must be a valid integer. The higher the @code{priority} attribute,
1776the sooner the frame filter will be executed in relation to other
1777frame filters. Although @code{priority} can be negative, it is
1778recommended practice to assume zero is the lowest priority that a
1779frame filter can be assigned. Frame filters that have the same
1780priority are executed in unsorted order in that priority slot. This
521b499b 1781attribute is mandatory. 100 is a good default priority.
329baa95
DE
1782@end defvar
1783
1784@node Frame Decorator API
521b499b 1785@subsubsection Decorating Frames
329baa95
DE
1786@cindex frame decorator api
1787
1788Frame decorators are sister objects to frame filters (@pxref{Frame
1789Filter API}). Frame decorators are applied by a frame filter and can
1790only be used in conjunction with frame filters.
1791
1792The purpose of a frame decorator is to customize the printed content
1793of each @code{gdb.Frame} in commands where frame filters are executed.
1794This concept is called decorating a frame. Frame decorators decorate
1795a @code{gdb.Frame} with Python code contained within each API call.
1796This separates the actual data contained in a @code{gdb.Frame} from
1797the decorated data produced by a frame decorator. This abstraction is
1798necessary to maintain integrity of the data contained in each
1799@code{gdb.Frame}.
1800
1801Frame decorators have a mandatory interface, defined below.
1802
1803@value{GDBN} already contains a frame decorator called
1804@code{FrameDecorator}. This contains substantial amounts of
1805boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1806recommended that other frame decorators inherit and extend this
1807object, and only to override the methods needed.
1808
521b499b
TT
1809@tindex gdb.FrameDecorator
1810@code{FrameDecorator} is defined in the Python module
1811@code{gdb.FrameDecorator}, so your code can import it like:
1812@smallexample
1813from gdb.FrameDecorator import FrameDecorator
1814@end smallexample
1815
329baa95
DE
1816@defun FrameDecorator.elided (self)
1817
1818The @code{elided} method groups frames together in a hierarchical
1819system. An example would be an interpreter, where multiple low-level
1820frames make up a single call in the interpreted language. In this
1821example, the frame filter would elide the low-level frames and present
1822a single high-level frame, representing the call in the interpreted
1823language, to the user.
1824
1825The @code{elided} function must return an iterable and this iterable
1826must contain the frames that are being elided wrapped in a suitable
1827frame decorator. If no frames are being elided this function may
1828return an empty iterable, or @code{None}. Elided frames are indented
1829from normal frames in a @code{CLI} backtrace, or in the case of
1830@code{GDB/MI}, are placed in the @code{children} field of the eliding
1831frame.
1832
1833It is the frame filter's task to also filter out the elided frames from
1834the source iterator. This will avoid printing the frame twice.
1835@end defun
1836
1837@defun FrameDecorator.function (self)
1838
1839This method returns the name of the function in the frame that is to
1840be printed.
1841
1842This method must return a Python string describing the function, or
1843@code{None}.
1844
1845If this function returns @code{None}, @value{GDBN} will not print any
1846data for this field.
1847@end defun
1848
1849@defun FrameDecorator.address (self)
1850
1851This method returns the address of the frame that is to be printed.
1852
1853This method must return a Python numeric integer type of sufficient
1854size to describe the address of the frame, or @code{None}.
1855
1856If this function returns a @code{None}, @value{GDBN} will not print
1857any data for this field.
1858@end defun
1859
1860@defun FrameDecorator.filename (self)
1861
1862This method returns the filename and path associated with this frame.
1863
1864This method must return a Python string containing the filename and
1865the path to the object file backing the frame, or @code{None}.
1866
1867If this function returns a @code{None}, @value{GDBN} will not print
1868any data for this field.
1869@end defun
1870
1871@defun FrameDecorator.line (self):
1872
1873This method returns the line number associated with the current
1874position within the function addressed by this frame.
1875
1876This method must return a Python integer type, or @code{None}.
1877
1878If this function returns a @code{None}, @value{GDBN} will not print
1879any data for this field.
1880@end defun
1881
1882@defun FrameDecorator.frame_args (self)
1883@anchor{frame_args}
1884
1885This method must return an iterable, or @code{None}. Returning an
1886empty iterable, or @code{None} means frame arguments will not be
1887printed for this frame. This iterable must contain objects that
1888implement two methods, described here.
1889
1890This object must implement a @code{argument} method which takes a
1891single @code{self} parameter and must return a @code{gdb.Symbol}
1892(@pxref{Symbols In Python}), or a Python string. The object must also
1893implement a @code{value} method which takes a single @code{self}
1894parameter and must return a @code{gdb.Value} (@pxref{Values From
1895Inferior}), a Python value, or @code{None}. If the @code{value}
1896method returns @code{None}, and the @code{argument} method returns a
1897@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1898the @code{gdb.Symbol} automatically.
1899
1900A brief example:
1901
1902@smallexample
1903class SymValueWrapper():
1904
1905 def __init__(self, symbol, value):
1906 self.sym = symbol
1907 self.val = value
1908
1909 def value(self):
1910 return self.val
1911
1912 def symbol(self):
1913 return self.sym
1914
1915class SomeFrameDecorator()
1916...
1917...
1918 def frame_args(self):
1919 args = []
1920 try:
1921 block = self.inferior_frame.block()
1922 except:
1923 return None
1924
1925 # Iterate over all symbols in a block. Only add
1926 # symbols that are arguments.
1927 for sym in block:
1928 if not sym.is_argument:
1929 continue
1930 args.append(SymValueWrapper(sym,None))
1931
1932 # Add example synthetic argument.
1933 args.append(SymValueWrapper(``foo'', 42))
1934
1935 return args
1936@end smallexample
1937@end defun
1938
1939@defun FrameDecorator.frame_locals (self)
1940
1941This method must return an iterable or @code{None}. Returning an
1942empty iterable, or @code{None} means frame local arguments will not be
1943printed for this frame.
1944
1945The object interface, the description of the various strategies for
1946reading frame locals, and the example are largely similar to those
1947described in the @code{frame_args} function, (@pxref{frame_args,,The
1948frame filter frame_args function}). Below is a modified example:
1949
1950@smallexample
1951class SomeFrameDecorator()
1952...
1953...
1954 def frame_locals(self):
1955 vars = []
1956 try:
1957 block = self.inferior_frame.block()
1958 except:
1959 return None
1960
1961 # Iterate over all symbols in a block. Add all
1962 # symbols, except arguments.
1963 for sym in block:
1964 if sym.is_argument:
1965 continue
1966 vars.append(SymValueWrapper(sym,None))
1967
1968 # Add an example of a synthetic local variable.
1969 vars.append(SymValueWrapper(``bar'', 99))
1970
1971 return vars
1972@end smallexample
1973@end defun
1974
1975@defun FrameDecorator.inferior_frame (self):
1976
1977This method must return the underlying @code{gdb.Frame} that this
1978frame decorator is decorating. @value{GDBN} requires the underlying
1979frame for internal frame information to determine how to print certain
1980values when printing a frame.
1981@end defun
1982
1983@node Writing a Frame Filter
1984@subsubsection Writing a Frame Filter
1985@cindex writing a frame filter
1986
1987There are three basic elements that a frame filter must implement: it
1988must correctly implement the documented interface (@pxref{Frame Filter
1989API}), it must register itself with @value{GDBN}, and finally, it must
1990decide if it is to work on the data provided by @value{GDBN}. In all
1991cases, whether it works on the iterator or not, each frame filter must
1992return an iterator. A bare-bones frame filter follows the pattern in
1993the following example.
1994
1995@smallexample
1996import gdb
1997
1998class FrameFilter():
1999
2000 def __init__(self):
2001 # Frame filter attribute creation.
2002 #
2003 # 'name' is the name of the filter that GDB will display.
2004 #
2005 # 'priority' is the priority of the filter relative to other
2006 # filters.
2007 #
2008 # 'enabled' is a boolean that indicates whether this filter is
2009 # enabled and should be executed.
2010
2011 self.name = "Foo"
2012 self.priority = 100
2013 self.enabled = True
2014
2015 # Register this frame filter with the global frame_filters
2016 # dictionary.
2017 gdb.frame_filters[self.name] = self
2018
2019 def filter(self, frame_iter):
2020 # Just return the iterator.
2021 return frame_iter
2022@end smallexample
2023
2024The frame filter in the example above implements the three
2025requirements for all frame filters. It implements the API, self
2026registers, and makes a decision on the iterator (in this case, it just
2027returns the iterator untouched).
2028
2029The first step is attribute creation and assignment, and as shown in
2030the comments the filter assigns the following attributes: @code{name},
2031@code{priority} and whether the filter should be enabled with the
2032@code{enabled} attribute.
2033
2034The second step is registering the frame filter with the dictionary or
2035dictionaries that the frame filter has interest in. As shown in the
2036comments, this filter just registers itself with the global dictionary
2037@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2038is a dictionary that is initialized in the @code{gdb} module when
2039@value{GDBN} starts. What dictionary a filter registers with is an
2040important consideration. Generally, if a filter is specific to a set
2041of code, it should be registered either in the @code{objfile} or
2042@code{progspace} dictionaries as they are specific to the program
2043currently loaded in @value{GDBN}. The global dictionary is always
2044present in @value{GDBN} and is never unloaded. Any filters registered
2045with the global dictionary will exist until @value{GDBN} exits. To
2046avoid filters that may conflict, it is generally better to register
2047frame filters against the dictionaries that more closely align with
2048the usage of the filter currently in question. @xref{Python
2049Auto-loading}, for further information on auto-loading Python scripts.
2050
2051@value{GDBN} takes a hands-off approach to frame filter registration,
2052therefore it is the frame filter's responsibility to ensure
2053registration has occurred, and that any exceptions are handled
2054appropriately. In particular, you may wish to handle exceptions
2055relating to Python dictionary key uniqueness. It is mandatory that
2056the dictionary key is the same as frame filter's @code{name}
2057attribute. When a user manages frame filters (@pxref{Frame Filter
2058Management}), the names @value{GDBN} will display are those contained
2059in the @code{name} attribute.
2060
2061The final step of this example is the implementation of the
2062@code{filter} method. As shown in the example comments, we define the
2063@code{filter} method and note that the method must take an iterator,
2064and also must return an iterator. In this bare-bones example, the
2065frame filter is not very useful as it just returns the iterator
2066untouched. However this is a valid operation for frame filters that
2067have the @code{enabled} attribute set, but decide not to operate on
2068any frames.
2069
2070In the next example, the frame filter operates on all frames and
2071utilizes a frame decorator to perform some work on the frames.
2072@xref{Frame Decorator API}, for further information on the frame
2073decorator interface.
2074
2075This example works on inlined frames. It highlights frames which are
2076inlined by tagging them with an ``[inlined]'' tag. By applying a
2077frame decorator to all frames with the Python @code{itertools imap}
2078method, the example defers actions to the frame decorator. Frame
2079decorators are only processed when @value{GDBN} prints the backtrace.
2080
2081This introduces a new decision making topic: whether to perform
2082decision making operations at the filtering step, or at the printing
2083step. In this example's approach, it does not perform any filtering
2084decisions at the filtering step beyond mapping a frame decorator to
2085each frame. This allows the actual decision making to be performed
2086when each frame is printed. This is an important consideration, and
2087well worth reflecting upon when designing a frame filter. An issue
2088that frame filters should avoid is unwinding the stack if possible.
2089Some stacks can run very deep, into the tens of thousands in some
2090cases. To search every frame to determine if it is inlined ahead of
2091time may be too expensive at the filtering step. The frame filter
2092cannot know how many frames it has to iterate over, and it would have
2093to iterate through them all. This ends up duplicating effort as
2094@value{GDBN} performs this iteration when it prints the frames.
2095
2096In this example decision making can be deferred to the printing step.
2097As each frame is printed, the frame decorator can examine each frame
2098in turn when @value{GDBN} iterates. From a performance viewpoint,
2099this is the most appropriate decision to make as it avoids duplicating
2100the effort that the printing step would undertake anyway. Also, if
2101there are many frame filters unwinding the stack during filtering, it
2102can substantially delay the printing of the backtrace which will
2103result in large memory usage, and a poor user experience.
2104
2105@smallexample
2106class InlineFilter():
2107
2108 def __init__(self):
2109 self.name = "InlinedFrameFilter"
2110 self.priority = 100
2111 self.enabled = True
2112 gdb.frame_filters[self.name] = self
2113
2114 def filter(self, frame_iter):
2115 frame_iter = itertools.imap(InlinedFrameDecorator,
2116 frame_iter)
2117 return frame_iter
2118@end smallexample
2119
2120This frame filter is somewhat similar to the earlier example, except
2121that the @code{filter} method applies a frame decorator object called
2122@code{InlinedFrameDecorator} to each element in the iterator. The
2123@code{imap} Python method is light-weight. It does not proactively
2124iterate over the iterator, but rather creates a new iterator which
2125wraps the existing one.
2126
2127Below is the frame decorator for this example.
2128
2129@smallexample
2130class InlinedFrameDecorator(FrameDecorator):
2131
2132 def __init__(self, fobj):
2133 super(InlinedFrameDecorator, self).__init__(fobj)
2134
2135 def function(self):
2136 frame = fobj.inferior_frame()
2137 name = str(frame.name())
2138
2139 if frame.type() == gdb.INLINE_FRAME:
2140 name = name + " [inlined]"
2141
2142 return name
2143@end smallexample
2144
2145This frame decorator only defines and overrides the @code{function}
2146method. It lets the supplied @code{FrameDecorator}, which is shipped
2147with @value{GDBN}, perform the other work associated with printing
2148this frame.
2149
2150The combination of these two objects create this output from a
2151backtrace:
2152
2153@smallexample
2154#0 0x004004e0 in bar () at inline.c:11
2155#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2156#2 0x00400566 in main () at inline.c:31
2157@end smallexample
2158
2159So in the case of this example, a frame decorator is applied to all
2160frames, regardless of whether they may be inlined or not. As
2161@value{GDBN} iterates over the iterator produced by the frame filters,
2162@value{GDBN} executes each frame decorator which then makes a decision
2163on what to print in the @code{function} callback. Using a strategy
2164like this is a way to defer decisions on the frame content to printing
2165time.
2166
2167@subheading Eliding Frames
2168
2169It might be that the above example is not desirable for representing
2170inlined frames, and a hierarchical approach may be preferred. If we
2171want to hierarchically represent frames, the @code{elided} frame
2172decorator interface might be preferable.
2173
2174This example approaches the issue with the @code{elided} method. This
2175example is quite long, but very simplistic. It is out-of-scope for
2176this section to write a complete example that comprehensively covers
2177all approaches of finding and printing inlined frames. However, this
2178example illustrates the approach an author might use.
2179
2180This example comprises of three sections.
2181
2182@smallexample
2183class InlineFrameFilter():
2184
2185 def __init__(self):
2186 self.name = "InlinedFrameFilter"
2187 self.priority = 100
2188 self.enabled = True
2189 gdb.frame_filters[self.name] = self
2190
2191 def filter(self, frame_iter):
2192 return ElidingInlineIterator(frame_iter)
2193@end smallexample
2194
2195This frame filter is very similar to the other examples. The only
2196difference is this frame filter is wrapping the iterator provided to
2197it (@code{frame_iter}) with a custom iterator called
2198@code{ElidingInlineIterator}. This again defers actions to when
2199@value{GDBN} prints the backtrace, as the iterator is not traversed
2200until printing.
2201
2202The iterator for this example is as follows. It is in this section of
2203the example where decisions are made on the content of the backtrace.
2204
2205@smallexample
2206class ElidingInlineIterator:
2207 def __init__(self, ii):
2208 self.input_iterator = ii
2209
2210 def __iter__(self):
2211 return self
2212
2213 def next(self):
2214 frame = next(self.input_iterator)
2215
2216 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2217 return frame
2218
2219 try:
2220 eliding_frame = next(self.input_iterator)
2221 except StopIteration:
2222 return frame
2223 return ElidingFrameDecorator(eliding_frame, [frame])
2224@end smallexample
2225
2226This iterator implements the Python iterator protocol. When the
2227@code{next} function is called (when @value{GDBN} prints each frame),
2228the iterator checks if this frame decorator, @code{frame}, is wrapping
2229an inlined frame. If it is not, it returns the existing frame decorator
2230untouched. If it is wrapping an inlined frame, it assumes that the
2231inlined frame was contained within the next oldest frame,
2232@code{eliding_frame}, which it fetches. It then creates and returns a
2233frame decorator, @code{ElidingFrameDecorator}, which contains both the
2234elided frame, and the eliding frame.
2235
2236@smallexample
2237class ElidingInlineDecorator(FrameDecorator):
2238
2239 def __init__(self, frame, elided_frames):
2240 super(ElidingInlineDecorator, self).__init__(frame)
2241 self.frame = frame
2242 self.elided_frames = elided_frames
2243
2244 def elided(self):
2245 return iter(self.elided_frames)
2246@end smallexample
2247
2248This frame decorator overrides one function and returns the inlined
2249frame in the @code{elided} method. As before it lets
2250@code{FrameDecorator} do the rest of the work involved in printing
2251this frame. This produces the following output.
2252
2253@smallexample
2254#0 0x004004e0 in bar () at inline.c:11
2255#2 0x00400529 in main () at inline.c:25
2256 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2257@end smallexample
2258
2259In that output, @code{max} which has been inlined into @code{main} is
2260printed hierarchically. Another approach would be to combine the
2261@code{function} method, and the @code{elided} method to both print a
2262marker in the inlined frame, and also show the hierarchical
2263relationship.
2264
d11916aa
SS
2265@node Unwinding Frames in Python
2266@subsubsection Unwinding Frames in Python
2267@cindex unwinding frames in Python
2268
2269In @value{GDBN} terminology ``unwinding'' is the process of finding
2270the previous frame (that is, caller's) from the current one. An
2271unwinder has three methods. The first one checks if it can handle
2272given frame (``sniff'' it). For the frames it can sniff an unwinder
2273provides two additional methods: it can return frame's ID, and it can
2274fetch registers from the previous frame. A running @value{GDBN}
2275mantains a list of the unwinders and calls each unwinder's sniffer in
2276turn until it finds the one that recognizes the current frame. There
2277is an API to register an unwinder.
2278
2279The unwinders that come with @value{GDBN} handle standard frames.
2280However, mixed language applications (for example, an application
2281running Java Virtual Machine) sometimes use frame layouts that cannot
2282be handled by the @value{GDBN} unwinders. You can write Python code
2283that can handle such custom frames.
2284
2285You implement a frame unwinder in Python as a class with which has two
2286attributes, @code{name} and @code{enabled}, with obvious meanings, and
2287a single method @code{__call__}, which examines a given frame and
2288returns an object (an instance of @code{gdb.UnwindInfo class)}
2289describing it. If an unwinder does not recognize a frame, it should
2290return @code{None}. The code in @value{GDBN} that enables writing
2291unwinders in Python uses this object to return frame's ID and previous
2292frame registers when @value{GDBN} core asks for them.
2293
e7b5068c
TT
2294An unwinder should do as little work as possible. Some otherwise
2295innocuous operations can cause problems (even crashes, as this code is
2296not not well-hardened yet). For example, making an inferior call from
2297an unwinder is unadvisable, as an inferior call will reset
2298@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2299unwinding.
2300
d11916aa
SS
2301@subheading Unwinder Input
2302
2303An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2304provides a method to read frame's registers:
2305
2306@defun PendingFrame.read_register (reg)
e7b5068c 2307This method returns the contents of the register @var{reg} in the
d11916aa
SS
2308frame as a @code{gdb.Value} object. @var{reg} can be either a
2309register number or a register name; the values are platform-specific.
2310They are usually found in the corresponding
e7b5068c
TT
2311@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2312@var{reg} does not name a register for the current architecture, this
2313method will throw an exception.
2314
2315Note that this method will always return a @code{gdb.Value} for a
2316valid register name. This does not mean that the value will be valid.
2317For example, you may request a register that an earlier unwinder could
2318not unwind---the value will be unavailable. Instead, the
2319@code{gdb.Value} returned from this method will be lazy; that is, its
2320underlying bits will not be fetched until it is first used. So,
2321attempting to use such a value will cause an exception at the point of
2322use.
2323
2324The type of the returned @code{gdb.Value} depends on the register and
2325the architecture. It is common for registers to have a scalar type,
2326like @code{long long}; but many other types are possible, such as
2327pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2328@end defun
2329
2330It also provides a factory method to create a @code{gdb.UnwindInfo}
2331instance to be returned to @value{GDBN}:
2332
2333@defun PendingFrame.create_unwind_info (frame_id)
2334Returns a new @code{gdb.UnwindInfo} instance identified by given
2335@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2336using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2337determine which function will be used, as follows:
2338
2339@table @code
d11916aa 2340@item sp, pc
e7b5068c
TT
2341The frame is identified by the given stack address and PC. The stack
2342address must be chosen so that it is constant throughout the lifetime
2343of the frame, so a typical choice is the value of the stack pointer at
2344the start of the function---in the DWARF standard, this would be the
2345``Call Frame Address''.
d11916aa 2346
e7b5068c
TT
2347This is the most common case by far. The other cases are documented
2348for completeness but are only useful in specialized situations.
2349
2350@item sp, pc, special
2351The frame is identified by the stack address, the PC, and a
2352``special'' address. The special address is used on architectures
2353that can have frames that do not change the stack, but which are still
2354distinct, for example the IA-64, which has a second stack for
2355registers. Both @var{sp} and @var{special} must be constant
2356throughout the lifetime of the frame.
d11916aa
SS
2357
2358@item sp
e7b5068c
TT
2359The frame is identified by the stack address only. Any other stack
2360frame with a matching @var{sp} will be considered to match this frame.
2361Inside gdb, this is called a ``wild frame''. You will never need
2362this.
d11916aa 2363@end table
e7b5068c
TT
2364
2365Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2366
2367@end defun
2368
2369@subheading Unwinder Output: UnwindInfo
2370
2371Use @code{PendingFrame.create_unwind_info} method described above to
2372create a @code{gdb.UnwindInfo} instance. Use the following method to
2373specify caller registers that have been saved in this frame:
2374
2375@defun gdb.UnwindInfo.add_saved_register (reg, value)
2376@var{reg} identifies the register. It can be a number or a name, just
2377as for the @code{PendingFrame.read_register} method above.
2378@var{value} is a register value (a @code{gdb.Value} object).
2379@end defun
2380
2381@subheading Unwinder Skeleton Code
2382
2383@value{GDBN} comes with the module containing the base @code{Unwinder}
2384class. Derive your unwinder class from it and structure the code as
2385follows:
2386
2387@smallexample
2388from gdb.unwinders import Unwinder
2389
2390class FrameId(object):
2391 def __init__(self, sp, pc):
2392 self.sp = sp
2393 self.pc = pc
2394
2395
2396class MyUnwinder(Unwinder):
2397 def __init__(....):
2398 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2399
2400 def __call__(pending_frame):
2401 if not <we recognize frame>:
2402 return None
2403 # Create UnwindInfo. Usually the frame is identified by the stack
2404 # pointer and the program counter.
2405 sp = pending_frame.read_register(<SP number>)
2406 pc = pending_frame.read_register(<PC number>)
2407 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2408
2409 # Find the values of the registers in the caller's frame and
2410 # save them in the result:
2411 unwind_info.add_saved_register(<register>, <value>)
2412 ....
2413
2414 # Return the result:
2415 return unwind_info
2416
2417@end smallexample
2418
2419@subheading Registering a Unwinder
2420
2421An object file, a program space, and the @value{GDBN} proper can have
2422unwinders registered with it.
2423
2424The @code{gdb.unwinders} module provides the function to register a
2425unwinder:
2426
2427@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2428@var{locus} is specifies an object file or a program space to which
2429@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2430@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2431added @var{unwinder} will be called before any other unwinder from the
2432same locus. Two unwinders in the same locus cannot have the same
2433name. An attempt to add a unwinder with already existing name raises
2434an exception unless @var{replace} is @code{True}, in which case the
2435old unwinder is deleted.
2436@end defun
2437
2438@subheading Unwinder Precedence
2439
2440@value{GDBN} first calls the unwinders from all the object files in no
2441particular order, then the unwinders from the current program space,
2442and finally the unwinders from @value{GDBN}.
2443
0c6e92a5
SC
2444@node Xmethods In Python
2445@subsubsection Xmethods In Python
2446@cindex xmethods in Python
2447
2448@dfn{Xmethods} are additional methods or replacements for existing
2449methods of a C@t{++} class. This feature is useful for those cases
2450where a method defined in C@t{++} source code could be inlined or
2451optimized out by the compiler, making it unavailable to @value{GDBN}.
2452For such cases, one can define an xmethod to serve as a replacement
2453for the method defined in the C@t{++} source code. @value{GDBN} will
2454then invoke the xmethod, instead of the C@t{++} method, to
2455evaluate expressions. One can also use xmethods when debugging
2456with core files. Moreover, when debugging live programs, invoking an
2457xmethod need not involve running the inferior (which can potentially
2458perturb its state). Hence, even if the C@t{++} method is available, it
2459is better to use its replacement xmethod if one is defined.
2460
2461The xmethods feature in Python is available via the concepts of an
2462@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2463implement an xmethod, one has to implement a matcher and a
2464corresponding worker for it (more than one worker can be
2465implemented, each catering to a different overloaded instance of the
2466method). Internally, @value{GDBN} invokes the @code{match} method of a
2467matcher to match the class type and method name. On a match, the
2468@code{match} method returns a list of matching @emph{worker} objects.
2469Each worker object typically corresponds to an overloaded instance of
2470the xmethod. They implement a @code{get_arg_types} method which
2471returns a sequence of types corresponding to the arguments the xmethod
2472requires. @value{GDBN} uses this sequence of types to perform
2473overload resolution and picks a winning xmethod worker. A winner
2474is also selected from among the methods @value{GDBN} finds in the
2475C@t{++} source code. Next, the winning xmethod worker and the
2476winning C@t{++} method are compared to select an overall winner. In
2477case of a tie between a xmethod worker and a C@t{++} method, the
2478xmethod worker is selected as the winner. That is, if a winning
2479xmethod worker is found to be equivalent to the winning C@t{++}
2480method, then the xmethod worker is treated as a replacement for
2481the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2482method. If the winning xmethod worker is the overall winner, then
897c3d32 2483the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2484of the worker object.
2485
2486If one wants to implement an xmethod as a replacement for an
2487existing C@t{++} method, then they have to implement an equivalent
2488xmethod which has exactly the same name and takes arguments of
2489exactly the same type as the C@t{++} method. If the user wants to
2490invoke the C@t{++} method even though a replacement xmethod is
2491available for that method, then they can disable the xmethod.
2492
2493@xref{Xmethod API}, for API to implement xmethods in Python.
2494@xref{Writing an Xmethod}, for implementing xmethods in Python.
2495
2496@node Xmethod API
2497@subsubsection Xmethod API
2498@cindex xmethod API
2499
2500The @value{GDBN} Python API provides classes, interfaces and functions
2501to implement, register and manipulate xmethods.
2502@xref{Xmethods In Python}.
2503
2504An xmethod matcher should be an instance of a class derived from
2505@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2506object with similar interface and attributes. An instance of
2507@code{XMethodMatcher} has the following attributes:
2508
2509@defvar name
2510The name of the matcher.
2511@end defvar
2512
2513@defvar enabled
2514A boolean value indicating whether the matcher is enabled or disabled.
2515@end defvar
2516
2517@defvar methods
2518A list of named methods managed by the matcher. Each object in the list
2519is an instance of the class @code{XMethod} defined in the module
2520@code{gdb.xmethod}, or any object with the following attributes:
2521
2522@table @code
2523
2524@item name
2525Name of the xmethod which should be unique for each xmethod
2526managed by the matcher.
2527
2528@item enabled
2529A boolean value indicating whether the xmethod is enabled or
2530disabled.
2531
2532@end table
2533
2534The class @code{XMethod} is a convenience class with same
2535attributes as above along with the following constructor:
2536
dd5d5494 2537@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2538Constructs an enabled xmethod with name @var{name}.
2539@end defun
2540@end defvar
2541
2542@noindent
2543The @code{XMethodMatcher} class has the following methods:
2544
dd5d5494 2545@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2546Constructs an enabled xmethod matcher with name @var{name}. The
2547@code{methods} attribute is initialized to @code{None}.
2548@end defun
2549
dd5d5494 2550@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2551Derived classes should override this method. It should return a
2552xmethod worker object (or a sequence of xmethod worker
2553objects) matching the @var{class_type} and @var{method_name}.
2554@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2555is a string value. If the matcher manages named methods as listed in
2556its @code{methods} attribute, then only those worker objects whose
2557corresponding entries in the @code{methods} list are enabled should be
2558returned.
2559@end defun
2560
2561An xmethod worker should be an instance of a class derived from
2562@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2563or support the following interface:
2564
dd5d5494 2565@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2566This method returns a sequence of @code{gdb.Type} objects corresponding
2567to the arguments that the xmethod takes. It can return an empty
2568sequence or @code{None} if the xmethod does not take any arguments.
2569If the xmethod takes a single argument, then a single
2570@code{gdb.Type} object corresponding to it can be returned.
2571@end defun
2572
2ce1cdbf
DE
2573@defun XMethodWorker.get_result_type (self, *args)
2574This method returns a @code{gdb.Type} object representing the type
2575of the result of invoking this xmethod.
2576The @var{args} argument is the same tuple of arguments that would be
2577passed to the @code{__call__} method of this worker.
2578@end defun
2579
dd5d5494 2580@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2581This is the method which does the @emph{work} of the xmethod. The
2582@var{args} arguments is the tuple of arguments to the xmethod. Each
2583element in this tuple is a gdb.Value object. The first element is
2584always the @code{this} pointer value.
2585@end defun
2586
2587For @value{GDBN} to lookup xmethods, the xmethod matchers
2588should be registered using the following function defined in the module
2589@code{gdb.xmethod}:
2590
dd5d5494 2591@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2592The @code{matcher} is registered with @code{locus}, replacing an
2593existing matcher with the same name as @code{matcher} if
2594@code{replace} is @code{True}. @code{locus} can be a
2595@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2596@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2597@code{None}. If it is @code{None}, then @code{matcher} is registered
2598globally.
2599@end defun
2600
2601@node Writing an Xmethod
2602@subsubsection Writing an Xmethod
2603@cindex writing xmethods in Python
2604
2605Implementing xmethods in Python will require implementing xmethod
2606matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2607the following C@t{++} class:
2608
2609@smallexample
2610class MyClass
2611@{
2612public:
2613 MyClass (int a) : a_(a) @{ @}
2614
2615 int geta (void) @{ return a_; @}
2616 int operator+ (int b);
2617
2618private:
2619 int a_;
2620@};
2621
2622int
2623MyClass::operator+ (int b)
2624@{
2625 return a_ + b;
2626@}
2627@end smallexample
2628
2629@noindent
2630Let us define two xmethods for the class @code{MyClass}, one
2631replacing the method @code{geta}, and another adding an overloaded
2632flavor of @code{operator+} which takes a @code{MyClass} argument (the
2633C@t{++} code above already has an overloaded @code{operator+}
2634which takes an @code{int} argument). The xmethod matcher can be
2635defined as follows:
2636
2637@smallexample
2638class MyClass_geta(gdb.xmethod.XMethod):
2639 def __init__(self):
2640 gdb.xmethod.XMethod.__init__(self, 'geta')
2641
2642 def get_worker(self, method_name):
2643 if method_name == 'geta':
2644 return MyClassWorker_geta()
2645
2646
2647class MyClass_sum(gdb.xmethod.XMethod):
2648 def __init__(self):
2649 gdb.xmethod.XMethod.__init__(self, 'sum')
2650
2651 def get_worker(self, method_name):
2652 if method_name == 'operator+':
2653 return MyClassWorker_plus()
2654
2655
2656class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2657 def __init__(self):
2658 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2659 # List of methods 'managed' by this matcher
2660 self.methods = [MyClass_geta(), MyClass_sum()]
2661
2662 def match(self, class_type, method_name):
2663 if class_type.tag != 'MyClass':
2664 return None
2665 workers = []
2666 for method in self.methods:
2667 if method.enabled:
2668 worker = method.get_worker(method_name)
2669 if worker:
2670 workers.append(worker)
2671
2672 return workers
2673@end smallexample
2674
2675@noindent
2676Notice that the @code{match} method of @code{MyClassMatcher} returns
2677a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2678method, and a worker object of type @code{MyClassWorker_plus} for the
2679@code{operator+} method. This is done indirectly via helper classes
2680derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2681@code{methods} attribute in a matcher as it is optional. However, if a
2682matcher manages more than one xmethod, it is a good practice to list the
2683xmethods in the @code{methods} attribute of the matcher. This will then
2684facilitate enabling and disabling individual xmethods via the
2685@code{enable/disable} commands. Notice also that a worker object is
2686returned only if the corresponding entry in the @code{methods} attribute
2687of the matcher is enabled.
2688
2689The implementation of the worker classes returned by the matcher setup
2690above is as follows:
2691
2692@smallexample
2693class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2694 def get_arg_types(self):
2695 return None
2ce1cdbf
DE
2696
2697 def get_result_type(self, obj):
2698 return gdb.lookup_type('int')
0c6e92a5
SC
2699
2700 def __call__(self, obj):
2701 return obj['a_']
2702
2703
2704class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2705 def get_arg_types(self):
2706 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2707
2708 def get_result_type(self, obj):
2709 return gdb.lookup_type('int')
0c6e92a5
SC
2710
2711 def __call__(self, obj, other):
2712 return obj['a_'] + other['a_']
2713@end smallexample
2714
2715For @value{GDBN} to actually lookup a xmethod, it has to be
2716registered with it. The matcher defined above is registered with
2717@value{GDBN} globally as follows:
2718
2719@smallexample
2720gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2721@end smallexample
2722
2723If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2724code as follows:
2725
2726@smallexample
2727MyClass obj(5);
2728@end smallexample
2729
2730@noindent
2731then, after loading the Python script defining the xmethod matchers
2732and workers into @code{GDBN}, invoking the method @code{geta} or using
2733the operator @code{+} on @code{obj} will invoke the xmethods
2734defined above:
2735
2736@smallexample
2737(gdb) p obj.geta()
2738$1 = 5
2739
2740(gdb) p obj + obj
2741$2 = 10
2742@end smallexample
2743
2744Consider another example with a C++ template class:
2745
2746@smallexample
2747template <class T>
2748class MyTemplate
2749@{
2750public:
2751 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2752 ~MyTemplate () @{ delete [] data_; @}
2753
2754 int footprint (void)
2755 @{
2756 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2757 @}
2758
2759private:
2760 int dsize_;
2761 T *data_;
2762@};
2763@end smallexample
2764
2765Let us implement an xmethod for the above class which serves as a
2766replacement for the @code{footprint} method. The full code listing
2767of the xmethod workers and xmethod matchers is as follows:
2768
2769@smallexample
2770class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2771 def __init__(self, class_type):
2772 self.class_type = class_type
2ce1cdbf 2773
0c6e92a5
SC
2774 def get_arg_types(self):
2775 return None
2ce1cdbf
DE
2776
2777 def get_result_type(self):
2778 return gdb.lookup_type('int')
2779
0c6e92a5
SC
2780 def __call__(self, obj):
2781 return (self.class_type.sizeof +
2782 obj['dsize_'] *
2783 self.class_type.template_argument(0).sizeof)
2784
2785
2786class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2787 def __init__(self):
2788 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2789
2790 def match(self, class_type, method_name):
2791 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2792 class_type.tag) and
2793 method_name == 'footprint'):
2794 return MyTemplateWorker_footprint(class_type)
2795@end smallexample
2796
2797Notice that, in this example, we have not used the @code{methods}
2798attribute of the matcher as the matcher manages only one xmethod. The
2799user can enable/disable this xmethod by enabling/disabling the matcher
2800itself.
2801
329baa95
DE
2802@node Inferiors In Python
2803@subsubsection Inferiors In Python
2804@cindex inferiors in Python
2805
2806@findex gdb.Inferior
2807Programs which are being run under @value{GDBN} are called inferiors
2808(@pxref{Inferiors and Programs}). Python scripts can access
2809information about and manipulate inferiors controlled by @value{GDBN}
2810via objects of the @code{gdb.Inferior} class.
2811
2812The following inferior-related functions are available in the @code{gdb}
2813module:
2814
2815@defun gdb.inferiors ()
2816Return a tuple containing all inferior objects.
2817@end defun
2818
2819@defun gdb.selected_inferior ()
2820Return an object representing the current inferior.
2821@end defun
2822
2823A @code{gdb.Inferior} object has the following attributes:
2824
2825@defvar Inferior.num
2826ID of inferior, as assigned by GDB.
2827@end defvar
2828
2829@defvar Inferior.pid
2830Process ID of the inferior, as assigned by the underlying operating
2831system.
2832@end defvar
2833
2834@defvar Inferior.was_attached
2835Boolean signaling whether the inferior was created using `attach', or
2836started by @value{GDBN} itself.
2837@end defvar
2838
a40bf0c2
SM
2839@defvar Inferior.progspace
2840The inferior's program space. @xref{Progspaces In Python}.
2841@end defvar
2842
329baa95
DE
2843A @code{gdb.Inferior} object has the following methods:
2844
2845@defun Inferior.is_valid ()
2846Returns @code{True} if the @code{gdb.Inferior} object is valid,
2847@code{False} if not. A @code{gdb.Inferior} object will become invalid
2848if the inferior no longer exists within @value{GDBN}. All other
2849@code{gdb.Inferior} methods will throw an exception if it is invalid
2850at the time the method is called.
2851@end defun
2852
2853@defun Inferior.threads ()
2854This method returns a tuple holding all the threads which are valid
2855when it is called. If there are no valid threads, the method will
2856return an empty tuple.
2857@end defun
2858
2859@findex Inferior.read_memory
2860@defun Inferior.read_memory (address, length)
a86c90e6 2861Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2862@var{address}. Returns a buffer object, which behaves much like an array
2863or a string. It can be modified and given to the
79778b30 2864@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2865value is a @code{memoryview} object.
2866@end defun
2867
2868@findex Inferior.write_memory
2869@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2870Write the contents of @var{buffer} to the inferior, starting at
2871@var{address}. The @var{buffer} parameter must be a Python object
2872which supports the buffer protocol, i.e., a string, an array or the
2873object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2874determines the number of addressable memory units from @var{buffer} to be
2875written.
329baa95
DE
2876@end defun
2877
2878@findex gdb.search_memory
2879@defun Inferior.search_memory (address, length, pattern)
2880Search a region of the inferior memory starting at @var{address} with
2881the given @var{length} using the search pattern supplied in
2882@var{pattern}. The @var{pattern} parameter must be a Python object
2883which supports the buffer protocol, i.e., a string, an array or the
2884object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2885containing the address where the pattern was found, or @code{None} if
2886the pattern could not be found.
2887@end defun
2888
da2c323b
KB
2889@findex Inferior.thread_from_thread_handle
2890@defun Inferior.thread_from_thread_handle (thread_handle)
2891Return the thread object corresponding to @var{thread_handle}, a thread
2892library specific data structure such as @code{pthread_t} for pthreads
2893library implementations.
2894@end defun
2895
329baa95
DE
2896@node Events In Python
2897@subsubsection Events In Python
2898@cindex inferior events in Python
2899
2900@value{GDBN} provides a general event facility so that Python code can be
2901notified of various state changes, particularly changes that occur in
2902the inferior.
2903
2904An @dfn{event} is just an object that describes some state change. The
2905type of the object and its attributes will vary depending on the details
2906of the change. All the existing events are described below.
2907
2908In order to be notified of an event, you must register an event handler
2909with an @dfn{event registry}. An event registry is an object in the
2910@code{gdb.events} module which dispatches particular events. A registry
2911provides methods to register and unregister event handlers:
2912
2913@defun EventRegistry.connect (object)
2914Add the given callable @var{object} to the registry. This object will be
2915called when an event corresponding to this registry occurs.
2916@end defun
2917
2918@defun EventRegistry.disconnect (object)
2919Remove the given @var{object} from the registry. Once removed, the object
2920will no longer receive notifications of events.
2921@end defun
2922
2923Here is an example:
2924
2925@smallexample
2926def exit_handler (event):
2927 print "event type: exit"
2928 print "exit code: %d" % (event.exit_code)
2929
2930gdb.events.exited.connect (exit_handler)
2931@end smallexample
2932
2933In the above example we connect our handler @code{exit_handler} to the
2934registry @code{events.exited}. Once connected, @code{exit_handler} gets
2935called when the inferior exits. The argument @dfn{event} in this example is
2936of type @code{gdb.ExitedEvent}. As you can see in the example the
2937@code{ExitedEvent} object has an attribute which indicates the exit code of
2938the inferior.
2939
2940The following is a listing of the event registries that are available and
2941details of the events they emit:
2942
2943@table @code
2944
2945@item events.cont
2946Emits @code{gdb.ThreadEvent}.
2947
2948Some events can be thread specific when @value{GDBN} is running in non-stop
2949mode. When represented in Python, these events all extend
2950@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2951events which are emitted by this or other modules might extend this event.
2952Examples of these events are @code{gdb.BreakpointEvent} and
2953@code{gdb.ContinueEvent}.
2954
2955@defvar ThreadEvent.inferior_thread
2956In non-stop mode this attribute will be set to the specific thread which was
2957involved in the emitted event. Otherwise, it will be set to @code{None}.
2958@end defvar
2959
2960Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2961
2962This event indicates that the inferior has been continued after a stop. For
2963inherited attribute refer to @code{gdb.ThreadEvent} above.
2964
2965@item events.exited
2966Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2967@code{events.ExitedEvent} has two attributes:
2968@defvar ExitedEvent.exit_code
2969An integer representing the exit code, if available, which the inferior
2970has returned. (The exit code could be unavailable if, for example,
2971@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2972the attribute does not exist.
2973@end defvar
373832b6 2974@defvar ExitedEvent.inferior
329baa95
DE
2975A reference to the inferior which triggered the @code{exited} event.
2976@end defvar
2977
2978@item events.stop
2979Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2980
2981Indicates that the inferior has stopped. All events emitted by this registry
2982extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2983will indicate the stopped thread when @value{GDBN} is running in non-stop
2984mode. Refer to @code{gdb.ThreadEvent} above for more details.
2985
2986Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2987
2988This event indicates that the inferior or one of its threads has received as
2989signal. @code{gdb.SignalEvent} has the following attributes:
2990
2991@defvar SignalEvent.stop_signal
2992A string representing the signal received by the inferior. A list of possible
2993signal values can be obtained by running the command @code{info signals} in
2994the @value{GDBN} command prompt.
2995@end defvar
2996
2997Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2998
2999@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3000been hit, and has the following attributes:
3001
3002@defvar BreakpointEvent.breakpoints
3003A sequence containing references to all the breakpoints (type
3004@code{gdb.Breakpoint}) that were hit.
3005@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3006@end defvar
3007@defvar BreakpointEvent.breakpoint
3008A reference to the first breakpoint that was hit.
3009This function is maintained for backward compatibility and is now deprecated
3010in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3011@end defvar
3012
3013@item events.new_objfile
3014Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3015been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3016
3017@defvar NewObjFileEvent.new_objfile
3018A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3019@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3020@end defvar
3021
4ffbba72
DE
3022@item events.clear_objfiles
3023Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3024files for a program space has been reset.
3025@code{gdb.ClearObjFilesEvent} has one attribute:
3026
3027@defvar ClearObjFilesEvent.progspace
3028A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3029been cleared. @xref{Progspaces In Python}.
3030@end defvar
3031
fb5af5e3
TT
3032@item events.inferior_call
3033Emits events just before and after a function in the inferior is
3034called by @value{GDBN}. Before an inferior call, this emits an event
3035of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3036this emits an event of type @code{gdb.InferiorCallPostEvent}.
3037
3038@table @code
3039@tindex gdb.InferiorCallPreEvent
3040@item @code{gdb.InferiorCallPreEvent}
3041Indicates that a function in the inferior is about to be called.
162078c8
NB
3042
3043@defvar InferiorCallPreEvent.ptid
3044The thread in which the call will be run.
3045@end defvar
3046
3047@defvar InferiorCallPreEvent.address
3048The location of the function to be called.
3049@end defvar
3050
fb5af5e3
TT
3051@tindex gdb.InferiorCallPostEvent
3052@item @code{gdb.InferiorCallPostEvent}
3053Indicates that a function in the inferior has just been called.
162078c8
NB
3054
3055@defvar InferiorCallPostEvent.ptid
3056The thread in which the call was run.
3057@end defvar
3058
3059@defvar InferiorCallPostEvent.address
3060The location of the function that was called.
3061@end defvar
fb5af5e3 3062@end table
162078c8
NB
3063
3064@item events.memory_changed
3065Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3066inferior has been modified by the @value{GDBN} user, for instance via a
3067command like @w{@code{set *addr = value}}. The event has the following
3068attributes:
3069
3070@defvar MemoryChangedEvent.address
3071The start address of the changed region.
3072@end defvar
3073
3074@defvar MemoryChangedEvent.length
3075Length in bytes of the changed region.
3076@end defvar
3077
3078@item events.register_changed
3079Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3080inferior has been modified by the @value{GDBN} user.
3081
3082@defvar RegisterChangedEvent.frame
3083A gdb.Frame object representing the frame in which the register was modified.
3084@end defvar
3085@defvar RegisterChangedEvent.regnum
3086Denotes which register was modified.
3087@end defvar
3088
dac790e1
TT
3089@item events.breakpoint_created
3090This is emitted when a new breakpoint has been created. The argument
3091that is passed is the new @code{gdb.Breakpoint} object.
3092
3093@item events.breakpoint_modified
3094This is emitted when a breakpoint has been modified in some way. The
3095argument that is passed is the new @code{gdb.Breakpoint} object.
3096
3097@item events.breakpoint_deleted
3098This is emitted when a breakpoint has been deleted. The argument that
3099is passed is the @code{gdb.Breakpoint} object. When this event is
3100emitted, the @code{gdb.Breakpoint} object will already be in its
3101invalid state; that is, the @code{is_valid} method will return
3102@code{False}.
3103
3f77c769
TT
3104@item events.before_prompt
3105This event carries no payload. It is emitted each time @value{GDBN}
3106presents a prompt to the user.
3107
7c96f8c1
TT
3108@item events.new_inferior
3109This is emitted when a new inferior is created. Note that the
3110inferior is not necessarily running; in fact, it may not even have an
3111associated executable.
3112
3113The event is of type @code{gdb.NewInferiorEvent}. This has a single
3114attribute:
3115
3116@defvar NewInferiorEvent.inferior
3117The new inferior, a @code{gdb.Inferior} object.
3118@end defvar
3119
3120@item events.inferior_deleted
3121This is emitted when an inferior has been deleted. Note that this is
3122not the same as process exit; it is notified when the inferior itself
3123is removed, say via @code{remove-inferiors}.
3124
3125The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3126attribute:
3127
3128@defvar NewInferiorEvent.inferior
3129The inferior that is being removed, a @code{gdb.Inferior} object.
3130@end defvar
3131
3132@item events.new_thread
3133This is emitted when @value{GDBN} notices a new thread. The event is of
3134type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3135This has a single attribute:
3136
3137@defvar NewThreadEvent.inferior_thread
3138The new thread.
3139@end defvar
3140
329baa95
DE
3141@end table
3142
3143@node Threads In Python
3144@subsubsection Threads In Python
3145@cindex threads in python
3146
3147@findex gdb.InferiorThread
3148Python scripts can access information about, and manipulate inferior threads
3149controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3150
3151The following thread-related functions are available in the @code{gdb}
3152module:
3153
3154@findex gdb.selected_thread
3155@defun gdb.selected_thread ()
3156This function returns the thread object for the selected thread. If there
3157is no selected thread, this will return @code{None}.
3158@end defun
3159
3160A @code{gdb.InferiorThread} object has the following attributes:
3161
3162@defvar InferiorThread.name
3163The name of the thread. If the user specified a name using
3164@code{thread name}, then this returns that name. Otherwise, if an
3165OS-supplied name is available, then it is returned. Otherwise, this
3166returns @code{None}.
3167
3168This attribute can be assigned to. The new value must be a string
3169object, which sets the new name, or @code{None}, which removes any
3170user-specified thread name.
3171@end defvar
3172
3173@defvar InferiorThread.num
5d5658a1 3174The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3175@end defvar
3176
22a02324
PA
3177@defvar InferiorThread.global_num
3178The global ID of the thread, as assigned by GDB. You can use this to
3179make Python breakpoints thread-specific, for example
3180(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3181@end defvar
3182
329baa95
DE
3183@defvar InferiorThread.ptid
3184ID of the thread, as assigned by the operating system. This attribute is a
3185tuple containing three integers. The first is the Process ID (PID); the second
3186is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3187Either the LWPID or TID may be 0, which indicates that the operating system
3188does not use that identifier.
3189@end defvar
3190
84654457
PA
3191@defvar InferiorThread.inferior
3192The inferior this thread belongs to. This attribute is represented as
3193a @code{gdb.Inferior} object. This attribute is not writable.
3194@end defvar
3195
329baa95
DE
3196A @code{gdb.InferiorThread} object has the following methods:
3197
3198@defun InferiorThread.is_valid ()
3199Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3200@code{False} if not. A @code{gdb.InferiorThread} object will become
3201invalid if the thread exits, or the inferior that the thread belongs
3202is deleted. All other @code{gdb.InferiorThread} methods will throw an
3203exception if it is invalid at the time the method is called.
3204@end defun
3205
3206@defun InferiorThread.switch ()
3207This changes @value{GDBN}'s currently selected thread to the one represented
3208by this object.
3209@end defun
3210
3211@defun InferiorThread.is_stopped ()
3212Return a Boolean indicating whether the thread is stopped.
3213@end defun
3214
3215@defun InferiorThread.is_running ()
3216Return a Boolean indicating whether the thread is running.
3217@end defun
3218
3219@defun InferiorThread.is_exited ()
3220Return a Boolean indicating whether the thread is exited.
3221@end defun
3222
0a0faf9f
TW
3223@node Recordings In Python
3224@subsubsection Recordings In Python
3225@cindex recordings in python
3226
3227The following recordings-related functions
3228(@pxref{Process Record and Replay}) are available in the @code{gdb}
3229module:
3230
3231@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3232Start a recording using the given @var{method} and @var{format}. If
3233no @var{format} is given, the default format for the recording method
3234is used. If no @var{method} is given, the default method will be used.
3235Returns a @code{gdb.Record} object on success. Throw an exception on
3236failure.
3237
3238The following strings can be passed as @var{method}:
3239
3240@itemize @bullet
3241@item
3242@code{"full"}
3243@item
3244@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3245@code{"bts"} or leave out for default format.
3246@end itemize
3247@end defun
3248
3249@defun gdb.current_recording ()
3250Access a currently running recording. Return a @code{gdb.Record}
3251object on success. Return @code{None} if no recording is currently
3252active.
3253@end defun
3254
3255@defun gdb.stop_recording ()
3256Stop the current recording. Throw an exception if no recording is
3257currently active. All record objects become invalid after this call.
3258@end defun
3259
3260A @code{gdb.Record} object has the following attributes:
3261
0a0faf9f
TW
3262@defvar Record.method
3263A string with the current recording method, e.g.@: @code{full} or
3264@code{btrace}.
3265@end defvar
3266
3267@defvar Record.format
3268A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3269@code{None}.
3270@end defvar
3271
3272@defvar Record.begin
3273A method specific instruction object representing the first instruction
3274in this recording.
3275@end defvar
3276
3277@defvar Record.end
3278A method specific instruction object representing the current
3279instruction, that is not actually part of the recording.
3280@end defvar
3281
3282@defvar Record.replay_position
3283The instruction representing the current replay position. If there is
3284no replay active, this will be @code{None}.
3285@end defvar
3286
3287@defvar Record.instruction_history
3288A list with all recorded instructions.
3289@end defvar
3290
3291@defvar Record.function_call_history
3292A list with all recorded function call segments.
3293@end defvar
3294
3295A @code{gdb.Record} object has the following methods:
3296
3297@defun Record.goto (instruction)
3298Move the replay position to the given @var{instruction}.
3299@end defun
3300
d050f7d7
TW
3301The common @code{gdb.Instruction} class that recording method specific
3302instruction objects inherit from, has the following attributes:
0a0faf9f 3303
d050f7d7 3304@defvar Instruction.pc
913aeadd 3305An integer representing this instruction's address.
0a0faf9f
TW
3306@end defvar
3307
d050f7d7 3308@defvar Instruction.data
913aeadd
TW
3309A buffer with the raw instruction data. In Python 3, the return value is a
3310@code{memoryview} object.
0a0faf9f
TW
3311@end defvar
3312
d050f7d7 3313@defvar Instruction.decoded
913aeadd 3314A human readable string with the disassembled instruction.
0a0faf9f
TW
3315@end defvar
3316
d050f7d7 3317@defvar Instruction.size
913aeadd 3318The size of the instruction in bytes.
0a0faf9f
TW
3319@end defvar
3320
d050f7d7
TW
3321Additionally @code{gdb.RecordInstruction} has the following attributes:
3322
3323@defvar RecordInstruction.number
3324An integer identifying this instruction. @code{number} corresponds to
3325the numbers seen in @code{record instruction-history}
3326(@pxref{Process Record and Replay}).
3327@end defvar
3328
3329@defvar RecordInstruction.sal
3330A @code{gdb.Symtab_and_line} object representing the associated symtab
3331and line of this instruction. May be @code{None} if no debug information is
3332available.
3333@end defvar
3334
0ed5da75 3335@defvar RecordInstruction.is_speculative
d050f7d7 3336A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3337@end defvar
3338
3339If an error occured during recording or decoding a recording, this error is
3340represented by a @code{gdb.RecordGap} object in the instruction list. It has
3341the following attributes:
3342
3343@defvar RecordGap.number
3344An integer identifying this gap. @code{number} corresponds to the numbers seen
3345in @code{record instruction-history} (@pxref{Process Record and Replay}).
3346@end defvar
3347
3348@defvar RecordGap.error_code
3349A numerical representation of the reason for the gap. The value is specific to
3350the current recording method.
3351@end defvar
3352
3353@defvar RecordGap.error_string
3354A human readable string with the reason for the gap.
0a0faf9f
TW
3355@end defvar
3356
14f819c8 3357A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3358
14f819c8
TW
3359@defvar RecordFunctionSegment.number
3360An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3361the numbers seen in @code{record function-call-history}
3362(@pxref{Process Record and Replay}).
3363@end defvar
3364
14f819c8 3365@defvar RecordFunctionSegment.symbol
0a0faf9f 3366A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3367@code{None} if no debug information is available.
0a0faf9f
TW
3368@end defvar
3369
14f819c8 3370@defvar RecordFunctionSegment.level
0a0faf9f
TW
3371An integer representing the function call's stack level. May be
3372@code{None} if the function call is a gap.
3373@end defvar
3374
14f819c8 3375@defvar RecordFunctionSegment.instructions
0ed5da75 3376A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3377associated with this function call.
0a0faf9f
TW
3378@end defvar
3379
14f819c8
TW
3380@defvar RecordFunctionSegment.up
3381A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3382function segment. If the call has not been recorded, this will be the
3383function segment to which control returns. If neither the call nor the
3384return have been recorded, this will be @code{None}.
3385@end defvar
3386
14f819c8
TW
3387@defvar RecordFunctionSegment.prev
3388A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3389segment of this function call. May be @code{None}.
3390@end defvar
3391
14f819c8
TW
3392@defvar RecordFunctionSegment.next
3393A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3394this function call. May be @code{None}.
3395@end defvar
3396
3397The following example demonstrates the usage of these objects and
3398functions to create a function that will rewind a record to the last
3399time a function in a different file was executed. This would typically
3400be used to track the execution of user provided callback functions in a
3401library which typically are not visible in a back trace.
3402
3403@smallexample
3404def bringback ():
3405 rec = gdb.current_recording ()
3406 if not rec:
3407 return
3408
3409 insn = rec.instruction_history
3410 if len (insn) == 0:
3411 return
3412
3413 try:
3414 position = insn.index (rec.replay_position)
3415 except:
3416 position = -1
3417 try:
3418 filename = insn[position].sal.symtab.fullname ()
3419 except:
3420 filename = None
3421
3422 for i in reversed (insn[:position]):
3423 try:
3424 current = i.sal.symtab.fullname ()
3425 except:
3426 current = None
3427
3428 if filename == current:
3429 continue
3430
3431 rec.goto (i)
3432 return
3433@end smallexample
3434
3435Another possible application is to write a function that counts the
3436number of code executions in a given line range. This line range can
3437contain parts of functions or span across several functions and is not
3438limited to be contiguous.
3439
3440@smallexample
3441def countrange (filename, linerange):
3442 count = 0
3443
3444 def filter_only (file_name):
3445 for call in gdb.current_recording ().function_call_history:
3446 try:
3447 if file_name in call.symbol.symtab.fullname ():
3448 yield call
3449 except:
3450 pass
3451
3452 for c in filter_only (filename):
3453 for i in c.instructions:
3454 try:
3455 if i.sal.line in linerange:
3456 count += 1
3457 break;
3458 except:
3459 pass
3460
3461 return count
3462@end smallexample
3463
329baa95
DE
3464@node Commands In Python
3465@subsubsection Commands In Python
3466
3467@cindex commands in python
3468@cindex python commands
3469You can implement new @value{GDBN} CLI commands in Python. A CLI
3470command is implemented using an instance of the @code{gdb.Command}
3471class, most commonly using a subclass.
3472
3473@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3474The object initializer for @code{Command} registers the new command
3475with @value{GDBN}. This initializer is normally invoked from the
3476subclass' own @code{__init__} method.
3477
3478@var{name} is the name of the command. If @var{name} consists of
3479multiple words, then the initial words are looked for as prefix
3480commands. In this case, if one of the prefix commands does not exist,
3481an exception is raised.
3482
3483There is no support for multi-line commands.
3484
3485@var{command_class} should be one of the @samp{COMMAND_} constants
3486defined below. This argument tells @value{GDBN} how to categorize the
3487new command in the help system.
3488
3489@var{completer_class} is an optional argument. If given, it should be
3490one of the @samp{COMPLETE_} constants defined below. This argument
3491tells @value{GDBN} how to perform completion for this command. If not
3492given, @value{GDBN} will attempt to complete using the object's
3493@code{complete} method (see below); if no such method is found, an
3494error will occur when completion is attempted.
3495
3496@var{prefix} is an optional argument. If @code{True}, then the new
3497command is a prefix command; sub-commands of this command may be
3498registered.
3499
3500The help text for the new command is taken from the Python
3501documentation string for the command's class, if there is one. If no
3502documentation string is provided, the default value ``This command is
3503not documented.'' is used.
3504@end defun
3505
3506@cindex don't repeat Python command
3507@defun Command.dont_repeat ()
3508By default, a @value{GDBN} command is repeated when the user enters a
3509blank line at the command prompt. A command can suppress this
3510behavior by invoking the @code{dont_repeat} method. This is similar
3511to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3512@end defun
3513
3514@defun Command.invoke (argument, from_tty)
3515This method is called by @value{GDBN} when this command is invoked.
3516
3517@var{argument} is a string. It is the argument to the command, after
3518leading and trailing whitespace has been stripped.
3519
3520@var{from_tty} is a boolean argument. When true, this means that the
3521command was entered by the user at the terminal; when false it means
3522that the command came from elsewhere.
3523
3524If this method throws an exception, it is turned into a @value{GDBN}
3525@code{error} call. Otherwise, the return value is ignored.
3526
3527@findex gdb.string_to_argv
3528To break @var{argument} up into an argv-like string use
3529@code{gdb.string_to_argv}. This function behaves identically to
3530@value{GDBN}'s internal argument lexer @code{buildargv}.
3531It is recommended to use this for consistency.
3532Arguments are separated by spaces and may be quoted.
3533Example:
3534
3535@smallexample
3536print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3537['1', '2 "3', '4 "5', "6 '7"]
3538@end smallexample
3539
3540@end defun
3541
3542@cindex completion of Python commands
3543@defun Command.complete (text, word)
3544This method is called by @value{GDBN} when the user attempts
3545completion on this command. All forms of completion are handled by
3546this method, that is, the @key{TAB} and @key{M-?} key bindings
3547(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3548complete}).
3549
697aa1b7
EZ
3550The arguments @var{text} and @var{word} are both strings; @var{text}
3551holds the complete command line up to the cursor's location, while
329baa95
DE
3552@var{word} holds the last word of the command line; this is computed
3553using a word-breaking heuristic.
3554
3555The @code{complete} method can return several values:
3556@itemize @bullet
3557@item
3558If the return value is a sequence, the contents of the sequence are
3559used as the completions. It is up to @code{complete} to ensure that the
3560contents actually do complete the word. A zero-length sequence is
3561allowed, it means that there were no completions available. Only
3562string elements of the sequence are used; other elements in the
3563sequence are ignored.
3564
3565@item
3566If the return value is one of the @samp{COMPLETE_} constants defined
3567below, then the corresponding @value{GDBN}-internal completion
3568function is invoked, and its result is used.
3569
3570@item
3571All other results are treated as though there were no available
3572completions.
3573@end itemize
3574@end defun
3575
3576When a new command is registered, it must be declared as a member of
3577some general class of commands. This is used to classify top-level
3578commands in the on-line help system; note that prefix commands are not
3579listed under their own category but rather that of their top-level
3580command. The available classifications are represented by constants
3581defined in the @code{gdb} module:
3582
3583@table @code
3584@findex COMMAND_NONE
3585@findex gdb.COMMAND_NONE
3586@item gdb.COMMAND_NONE
3587The command does not belong to any particular class. A command in
3588this category will not be displayed in any of the help categories.
3589
3590@findex COMMAND_RUNNING
3591@findex gdb.COMMAND_RUNNING
3592@item gdb.COMMAND_RUNNING
3593The command is related to running the inferior. For example,
3594@code{start}, @code{step}, and @code{continue} are in this category.
3595Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3596commands in this category.
3597
3598@findex COMMAND_DATA
3599@findex gdb.COMMAND_DATA
3600@item gdb.COMMAND_DATA
3601The command is related to data or variables. For example,
3602@code{call}, @code{find}, and @code{print} are in this category. Type
3603@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3604in this category.
3605
3606@findex COMMAND_STACK
3607@findex gdb.COMMAND_STACK
3608@item gdb.COMMAND_STACK
3609The command has to do with manipulation of the stack. For example,
3610@code{backtrace}, @code{frame}, and @code{return} are in this
3611category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3612list of commands in this category.
3613
3614@findex COMMAND_FILES
3615@findex gdb.COMMAND_FILES
3616@item gdb.COMMAND_FILES
3617This class is used for file-related commands. For example,
3618@code{file}, @code{list} and @code{section} are in this category.
3619Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3620commands in this category.
3621
3622@findex COMMAND_SUPPORT
3623@findex gdb.COMMAND_SUPPORT
3624@item gdb.COMMAND_SUPPORT
3625This should be used for ``support facilities'', generally meaning
3626things that are useful to the user when interacting with @value{GDBN},
3627but not related to the state of the inferior. For example,
3628@code{help}, @code{make}, and @code{shell} are in this category. Type
3629@kbd{help support} at the @value{GDBN} prompt to see a list of
3630commands in this category.
3631
3632@findex COMMAND_STATUS
3633@findex gdb.COMMAND_STATUS
3634@item gdb.COMMAND_STATUS
3635The command is an @samp{info}-related command, that is, related to the
3636state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3637and @code{show} are in this category. Type @kbd{help status} at the
3638@value{GDBN} prompt to see a list of commands in this category.
3639
3640@findex COMMAND_BREAKPOINTS
3641@findex gdb.COMMAND_BREAKPOINTS
3642@item gdb.COMMAND_BREAKPOINTS
3643The command has to do with breakpoints. For example, @code{break},
3644@code{clear}, and @code{delete} are in this category. Type @kbd{help
3645breakpoints} at the @value{GDBN} prompt to see a list of commands in
3646this category.
3647
3648@findex COMMAND_TRACEPOINTS
3649@findex gdb.COMMAND_TRACEPOINTS
3650@item gdb.COMMAND_TRACEPOINTS
3651The command has to do with tracepoints. For example, @code{trace},
3652@code{actions}, and @code{tfind} are in this category. Type
3653@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3654commands in this category.
3655
3656@findex COMMAND_USER
3657@findex gdb.COMMAND_USER
3658@item gdb.COMMAND_USER
3659The command is a general purpose command for the user, and typically
3660does not fit in one of the other categories.
3661Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3662a list of commands in this category, as well as the list of gdb macros
3663(@pxref{Sequences}).
3664
3665@findex COMMAND_OBSCURE
3666@findex gdb.COMMAND_OBSCURE
3667@item gdb.COMMAND_OBSCURE
3668The command is only used in unusual circumstances, or is not of
3669general interest to users. For example, @code{checkpoint},
3670@code{fork}, and @code{stop} are in this category. Type @kbd{help
3671obscure} at the @value{GDBN} prompt to see a list of commands in this
3672category.
3673
3674@findex COMMAND_MAINTENANCE
3675@findex gdb.COMMAND_MAINTENANCE
3676@item gdb.COMMAND_MAINTENANCE
3677The command is only useful to @value{GDBN} maintainers. The
3678@code{maintenance} and @code{flushregs} commands are in this category.
3679Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3680commands in this category.
3681@end table
3682
3683A new command can use a predefined completion function, either by
3684specifying it via an argument at initialization, or by returning it
3685from the @code{complete} method. These predefined completion
3686constants are all defined in the @code{gdb} module:
3687
b3ce5e5f
DE
3688@vtable @code
3689@vindex COMPLETE_NONE
329baa95
DE
3690@item gdb.COMPLETE_NONE
3691This constant means that no completion should be done.
3692
b3ce5e5f 3693@vindex COMPLETE_FILENAME
329baa95
DE
3694@item gdb.COMPLETE_FILENAME
3695This constant means that filename completion should be performed.
3696
b3ce5e5f 3697@vindex COMPLETE_LOCATION
329baa95
DE
3698@item gdb.COMPLETE_LOCATION
3699This constant means that location completion should be done.
3700@xref{Specify Location}.
3701
b3ce5e5f 3702@vindex COMPLETE_COMMAND
329baa95
DE
3703@item gdb.COMPLETE_COMMAND
3704This constant means that completion should examine @value{GDBN}
3705command names.
3706
b3ce5e5f 3707@vindex COMPLETE_SYMBOL
329baa95
DE
3708@item gdb.COMPLETE_SYMBOL
3709This constant means that completion should be done using symbol names
3710as the source.
3711
b3ce5e5f 3712@vindex COMPLETE_EXPRESSION
329baa95
DE
3713@item gdb.COMPLETE_EXPRESSION
3714This constant means that completion should be done on expressions.
3715Often this means completing on symbol names, but some language
3716parsers also have support for completing on field names.
b3ce5e5f 3717@end vtable
329baa95
DE
3718
3719The following code snippet shows how a trivial CLI command can be
3720implemented in Python:
3721
3722@smallexample
3723class HelloWorld (gdb.Command):
3724 """Greet the whole world."""
3725
3726 def __init__ (self):
3727 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3728
3729 def invoke (self, arg, from_tty):
3730 print "Hello, World!"
3731
3732HelloWorld ()
3733@end smallexample
3734
3735The last line instantiates the class, and is necessary to trigger the
3736registration of the command with @value{GDBN}. Depending on how the
3737Python code is read into @value{GDBN}, you may need to import the
3738@code{gdb} module explicitly.
3739
3740@node Parameters In Python
3741@subsubsection Parameters In Python
3742
3743@cindex parameters in python
3744@cindex python parameters
3745@tindex gdb.Parameter
3746@tindex Parameter
3747You can implement new @value{GDBN} parameters using Python. A new
3748parameter is implemented as an instance of the @code{gdb.Parameter}
3749class.
3750
3751Parameters are exposed to the user via the @code{set} and
3752@code{show} commands. @xref{Help}.
3753
3754There are many parameters that already exist and can be set in
3755@value{GDBN}. Two examples are: @code{set follow fork} and
3756@code{set charset}. Setting these parameters influences certain
3757behavior in @value{GDBN}. Similarly, you can define parameters that
3758can be used to influence behavior in custom Python scripts and commands.
3759
3760@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3761The object initializer for @code{Parameter} registers the new
3762parameter with @value{GDBN}. This initializer is normally invoked
3763from the subclass' own @code{__init__} method.
3764
3765@var{name} is the name of the new parameter. If @var{name} consists
3766of multiple words, then the initial words are looked for as prefix
3767parameters. An example of this can be illustrated with the
3768@code{set print} set of parameters. If @var{name} is
3769@code{print foo}, then @code{print} will be searched as the prefix
3770parameter. In this case the parameter can subsequently be accessed in
3771@value{GDBN} as @code{set print foo}.
3772
3773If @var{name} consists of multiple words, and no prefix parameter group
3774can be found, an exception is raised.
3775
3776@var{command-class} should be one of the @samp{COMMAND_} constants
3777(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3778categorize the new parameter in the help system.
3779
3780@var{parameter-class} should be one of the @samp{PARAM_} constants
3781defined below. This argument tells @value{GDBN} the type of the new
3782parameter; this information is used for input validation and
3783completion.
3784
3785If @var{parameter-class} is @code{PARAM_ENUM}, then
3786@var{enum-sequence} must be a sequence of strings. These strings
3787represent the possible values for the parameter.
3788
3789If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3790of a fourth argument will cause an exception to be thrown.
3791
3792The help text for the new parameter is taken from the Python
3793documentation string for the parameter's class, if there is one. If
3794there is no documentation string, a default value is used.
3795@end defun
3796
3797@defvar Parameter.set_doc
3798If this attribute exists, and is a string, then its value is used as
3799the help text for this parameter's @code{set} command. The value is
3800examined when @code{Parameter.__init__} is invoked; subsequent changes
3801have no effect.
3802@end defvar
3803
3804@defvar Parameter.show_doc
3805If this attribute exists, and is a string, then its value is used as
3806the help text for this parameter's @code{show} command. The value is
3807examined when @code{Parameter.__init__} is invoked; subsequent changes
3808have no effect.
3809@end defvar
3810
3811@defvar Parameter.value
3812The @code{value} attribute holds the underlying value of the
3813parameter. It can be read and assigned to just as any other
3814attribute. @value{GDBN} does validation when assignments are made.
3815@end defvar
3816
984ee559
TT
3817There are two methods that may be implemented in any @code{Parameter}
3818class. These are:
329baa95
DE
3819
3820@defun Parameter.get_set_string (self)
984ee559
TT
3821If this method exists, @value{GDBN} will call it when a
3822@var{parameter}'s value has been changed via the @code{set} API (for
3823example, @kbd{set foo off}). The @code{value} attribute has already
3824been populated with the new value and may be used in output. This
3825method must return a string. If the returned string is not empty,
3826@value{GDBN} will present it to the user.
329baa95
DE
3827@end defun
3828
3829@defun Parameter.get_show_string (self, svalue)
3830@value{GDBN} will call this method when a @var{parameter}'s
3831@code{show} API has been invoked (for example, @kbd{show foo}). The
3832argument @code{svalue} receives the string representation of the
3833current value. This method must return a string.
3834@end defun
3835
3836When a new parameter is defined, its type must be specified. The
3837available types are represented by constants defined in the @code{gdb}
3838module:
3839
3840@table @code
3841@findex PARAM_BOOLEAN
3842@findex gdb.PARAM_BOOLEAN
3843@item gdb.PARAM_BOOLEAN
3844The value is a plain boolean. The Python boolean values, @code{True}
3845and @code{False} are the only valid values.
3846
3847@findex PARAM_AUTO_BOOLEAN
3848@findex gdb.PARAM_AUTO_BOOLEAN
3849@item gdb.PARAM_AUTO_BOOLEAN
3850The value has three possible states: true, false, and @samp{auto}. In
3851Python, true and false are represented using boolean constants, and
3852@samp{auto} is represented using @code{None}.
3853
3854@findex PARAM_UINTEGER
3855@findex gdb.PARAM_UINTEGER
3856@item gdb.PARAM_UINTEGER
3857The value is an unsigned integer. The value of 0 should be
3858interpreted to mean ``unlimited''.
3859
3860@findex PARAM_INTEGER
3861@findex gdb.PARAM_INTEGER
3862@item gdb.PARAM_INTEGER
3863The value is a signed integer. The value of 0 should be interpreted
3864to mean ``unlimited''.
3865
3866@findex PARAM_STRING
3867@findex gdb.PARAM_STRING
3868@item gdb.PARAM_STRING
3869The value is a string. When the user modifies the string, any escape
3870sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3871translated into corresponding characters and encoded into the current
3872host charset.
3873
3874@findex PARAM_STRING_NOESCAPE
3875@findex gdb.PARAM_STRING_NOESCAPE
3876@item gdb.PARAM_STRING_NOESCAPE
3877The value is a string. When the user modifies the string, escapes are
3878passed through untranslated.
3879
3880@findex PARAM_OPTIONAL_FILENAME
3881@findex gdb.PARAM_OPTIONAL_FILENAME
3882@item gdb.PARAM_OPTIONAL_FILENAME
3883The value is a either a filename (a string), or @code{None}.
3884
3885@findex PARAM_FILENAME
3886@findex gdb.PARAM_FILENAME
3887@item gdb.PARAM_FILENAME
3888The value is a filename. This is just like
3889@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3890
3891@findex PARAM_ZINTEGER
3892@findex gdb.PARAM_ZINTEGER
3893@item gdb.PARAM_ZINTEGER
3894The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3895is interpreted as itself.
3896
0489430a
TT
3897@findex PARAM_ZUINTEGER
3898@findex gdb.PARAM_ZUINTEGER
3899@item gdb.PARAM_ZUINTEGER
3900The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3901except 0 is interpreted as itself, and the value cannot be negative.
3902
3903@findex PARAM_ZUINTEGER_UNLIMITED
3904@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3905@item gdb.PARAM_ZUINTEGER_UNLIMITED
3906The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3907except the special value -1 should be interpreted to mean
3908``unlimited''. Other negative values are not allowed.
3909
329baa95
DE
3910@findex PARAM_ENUM
3911@findex gdb.PARAM_ENUM
3912@item gdb.PARAM_ENUM
3913The value is a string, which must be one of a collection string
3914constants provided when the parameter is created.
3915@end table
3916
3917@node Functions In Python
3918@subsubsection Writing new convenience functions
3919
3920@cindex writing convenience functions
3921@cindex convenience functions in python
3922@cindex python convenience functions
3923@tindex gdb.Function
3924@tindex Function
3925You can implement new convenience functions (@pxref{Convenience Vars})
3926in Python. A convenience function is an instance of a subclass of the
3927class @code{gdb.Function}.
3928
3929@defun Function.__init__ (name)
3930The initializer for @code{Function} registers the new function with
3931@value{GDBN}. The argument @var{name} is the name of the function,
3932a string. The function will be visible to the user as a convenience
3933variable of type @code{internal function}, whose name is the same as
3934the given @var{name}.
3935
3936The documentation for the new function is taken from the documentation
3937string for the new class.
3938@end defun
3939
3940@defun Function.invoke (@var{*args})
3941When a convenience function is evaluated, its arguments are converted
3942to instances of @code{gdb.Value}, and then the function's
3943@code{invoke} method is called. Note that @value{GDBN} does not
3944predetermine the arity of convenience functions. Instead, all
3945available arguments are passed to @code{invoke}, following the
3946standard Python calling convention. In particular, a convenience
3947function can have default values for parameters without ill effect.
3948
3949The return value of this method is used as its value in the enclosing
3950expression. If an ordinary Python value is returned, it is converted
3951to a @code{gdb.Value} following the usual rules.
3952@end defun
3953
3954The following code snippet shows how a trivial convenience function can
3955be implemented in Python:
3956
3957@smallexample
3958class Greet (gdb.Function):
3959 """Return string to greet someone.
3960Takes a name as argument."""
3961
3962 def __init__ (self):
3963 super (Greet, self).__init__ ("greet")
3964
3965 def invoke (self, name):
3966 return "Hello, %s!" % name.string ()
3967
3968Greet ()
3969@end smallexample
3970
3971The last line instantiates the class, and is necessary to trigger the
3972registration of the function with @value{GDBN}. Depending on how the
3973Python code is read into @value{GDBN}, you may need to import the
3974@code{gdb} module explicitly.
3975
3976Now you can use the function in an expression:
3977
3978@smallexample
3979(gdb) print $greet("Bob")
3980$1 = "Hello, Bob!"
3981@end smallexample
3982
3983@node Progspaces In Python
3984@subsubsection Program Spaces In Python
3985
3986@cindex progspaces in python
3987@tindex gdb.Progspace
3988@tindex Progspace
3989A program space, or @dfn{progspace}, represents a symbolic view
3990of an address space.
3991It consists of all of the objfiles of the program.
3992@xref{Objfiles In Python}.
3993@xref{Inferiors and Programs, program spaces}, for more details
3994about program spaces.
3995
3996The following progspace-related functions are available in the
3997@code{gdb} module:
3998
3999@findex gdb.current_progspace
4000@defun gdb.current_progspace ()
4001This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4002@xref{Inferiors and Programs}. This is identical to
4003@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4004included for historical compatibility.
329baa95
DE
4005@end defun
4006
4007@findex gdb.progspaces
4008@defun gdb.progspaces ()
4009Return a sequence of all the progspaces currently known to @value{GDBN}.
4010@end defun
4011
4012Each progspace is represented by an instance of the @code{gdb.Progspace}
4013class.
4014
4015@defvar Progspace.filename
4016The file name of the progspace as a string.
4017@end defvar
4018
4019@defvar Progspace.pretty_printers
4020The @code{pretty_printers} attribute is a list of functions. It is
4021used to look up pretty-printers. A @code{Value} is passed to each
4022function in order; if the function returns @code{None}, then the
4023search continues. Otherwise, the return value should be an object
4024which is used to format the value. @xref{Pretty Printing API}, for more
4025information.
4026@end defvar
4027
4028@defvar Progspace.type_printers
4029The @code{type_printers} attribute is a list of type printer objects.
4030@xref{Type Printing API}, for more information.
4031@end defvar
4032
4033@defvar Progspace.frame_filters
4034The @code{frame_filters} attribute is a dictionary of frame filter
4035objects. @xref{Frame Filter API}, for more information.
4036@end defvar
4037
02be9a71
DE
4038One may add arbitrary attributes to @code{gdb.Progspace} objects
4039in the usual Python way.
4040This is useful if, for example, one needs to do some extra record keeping
4041associated with the program space.
4042
4043In this contrived example, we want to perform some processing when
4044an objfile with a certain symbol is loaded, but we only want to do
4045this once because it is expensive. To achieve this we record the results
4046with the program space because we can't predict when the desired objfile
4047will be loaded.
4048
4049@smallexample
4050(gdb) python
4051def clear_objfiles_handler(event):
4052 event.progspace.expensive_computation = None
4053def expensive(symbol):
4054 """A mock routine to perform an "expensive" computation on symbol."""
4055 print "Computing the answer to the ultimate question ..."
4056 return 42
4057def new_objfile_handler(event):
4058 objfile = event.new_objfile
4059 progspace = objfile.progspace
4060 if not hasattr(progspace, 'expensive_computation') or \
4061 progspace.expensive_computation is None:
4062 # We use 'main' for the symbol to keep the example simple.
4063 # Note: There's no current way to constrain the lookup
4064 # to one objfile.
4065 symbol = gdb.lookup_global_symbol('main')
4066 if symbol is not None:
4067 progspace.expensive_computation = expensive(symbol)
4068gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4069gdb.events.new_objfile.connect(new_objfile_handler)
4070end
4071(gdb) file /tmp/hello
4072Reading symbols from /tmp/hello...done.
4073Computing the answer to the ultimate question ...
4074(gdb) python print gdb.current_progspace().expensive_computation
407542
4076(gdb) run
4077Starting program: /tmp/hello
4078Hello.
4079[Inferior 1 (process 4242) exited normally]
4080@end smallexample
4081
0ae1a321
SM
4082A @code{gdb.Progspace} object has the following methods:
4083
4084@findex Progspace.objfiles
4085@defun Progspace.objfiles ()
4086Return a sequence of all the objfiles referenced by this program
4087space. @xref{Objfiles In Python}.
4088@end defun
4089
329baa95
DE
4090@node Objfiles In Python
4091@subsubsection Objfiles In Python
4092
4093@cindex objfiles in python
4094@tindex gdb.Objfile
4095@tindex Objfile
4096@value{GDBN} loads symbols for an inferior from various
4097symbol-containing files (@pxref{Files}). These include the primary
4098executable file, any shared libraries used by the inferior, and any
4099separate debug info files (@pxref{Separate Debug Files}).
4100@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4101
4102The following objfile-related functions are available in the
4103@code{gdb} module:
4104
4105@findex gdb.current_objfile
4106@defun gdb.current_objfile ()
4107When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4108sets the ``current objfile'' to the corresponding objfile. This
4109function returns the current objfile. If there is no current objfile,
4110this function returns @code{None}.
4111@end defun
4112
4113@findex gdb.objfiles
4114@defun gdb.objfiles ()
4115Return a sequence of all the objfiles current known to @value{GDBN}.
0ae1a321
SM
4116@xref{Objfiles In Python}. This is identical to
4117@code{gdb.selected_inferior().progspace.objfiles()} (@pxref{Progspaces In
4118Python}) and is included for historical compatibility.
329baa95
DE
4119@end defun
4120
6dddd6a5
DE
4121@findex gdb.lookup_objfile
4122@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4123Look up @var{name}, a file name or build ID, in the list of objfiles
4124for the current program space (@pxref{Progspaces In Python}).
4125If the objfile is not found throw the Python @code{ValueError} exception.
4126
4127If @var{name} is a relative file name, then it will match any
4128source file name with the same trailing components. For example, if
4129@var{name} is @samp{gcc/expr.c}, then it will match source file
4130name of @file{/build/trunk/gcc/expr.c}, but not
4131@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4132
4133If @var{by_build_id} is provided and is @code{True} then @var{name}
4134is the build ID of the objfile. Otherwise, @var{name} is a file name.
4135This is supported only on some operating systems, notably those which use
4136the ELF format for binary files and the @sc{gnu} Binutils. For more details
4137about this feature, see the description of the @option{--build-id}
f5a476a7 4138command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4139The GNU Linker}.
4140@end defun
4141
329baa95
DE
4142Each objfile is represented by an instance of the @code{gdb.Objfile}
4143class.
4144
4145@defvar Objfile.filename
1b549396
DE
4146The file name of the objfile as a string, with symbolic links resolved.
4147
4148The value is @code{None} if the objfile is no longer valid.
4149See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4150@end defvar
4151
3a8b707a
DE
4152@defvar Objfile.username
4153The file name of the objfile as specified by the user as a string.
4154
4155The value is @code{None} if the objfile is no longer valid.
4156See the @code{gdb.Objfile.is_valid} method, described below.
4157@end defvar
4158
a0be3e44
DE
4159@defvar Objfile.owner
4160For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4161object that debug info is being provided for.
4162Otherwise this is @code{None}.
4163Separate debug info objfiles are added with the
4164@code{gdb.Objfile.add_separate_debug_file} method, described below.
4165@end defvar
4166
7c50a931
DE
4167@defvar Objfile.build_id
4168The build ID of the objfile as a string.
4169If the objfile does not have a build ID then the value is @code{None}.
4170
4171This is supported only on some operating systems, notably those which use
4172the ELF format for binary files and the @sc{gnu} Binutils. For more details
4173about this feature, see the description of the @option{--build-id}
f5a476a7 4174command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4175The GNU Linker}.
4176@end defvar
4177
d096d8c1
DE
4178@defvar Objfile.progspace
4179The containing program space of the objfile as a @code{gdb.Progspace}
4180object. @xref{Progspaces In Python}.
4181@end defvar
4182
329baa95
DE
4183@defvar Objfile.pretty_printers
4184The @code{pretty_printers} attribute is a list of functions. It is
4185used to look up pretty-printers. A @code{Value} is passed to each
4186function in order; if the function returns @code{None}, then the
4187search continues. Otherwise, the return value should be an object
4188which is used to format the value. @xref{Pretty Printing API}, for more
4189information.
4190@end defvar
4191
4192@defvar Objfile.type_printers
4193The @code{type_printers} attribute is a list of type printer objects.
4194@xref{Type Printing API}, for more information.
4195@end defvar
4196
4197@defvar Objfile.frame_filters
4198The @code{frame_filters} attribute is a dictionary of frame filter
4199objects. @xref{Frame Filter API}, for more information.
4200@end defvar
4201
02be9a71
DE
4202One may add arbitrary attributes to @code{gdb.Objfile} objects
4203in the usual Python way.
4204This is useful if, for example, one needs to do some extra record keeping
4205associated with the objfile.
4206
4207In this contrived example we record the time when @value{GDBN}
4208loaded the objfile.
4209
4210@smallexample
4211(gdb) python
4212import datetime
4213def new_objfile_handler(event):
4214 # Set the time_loaded attribute of the new objfile.
4215 event.new_objfile.time_loaded = datetime.datetime.today()
4216gdb.events.new_objfile.connect(new_objfile_handler)
4217end
4218(gdb) file ./hello
4219Reading symbols from ./hello...done.
4220(gdb) python print gdb.objfiles()[0].time_loaded
42212014-10-09 11:41:36.770345
4222@end smallexample
4223
329baa95
DE
4224A @code{gdb.Objfile} object has the following methods:
4225
4226@defun Objfile.is_valid ()
4227Returns @code{True} if the @code{gdb.Objfile} object is valid,
4228@code{False} if not. A @code{gdb.Objfile} object can become invalid
4229if the object file it refers to is not loaded in @value{GDBN} any
4230longer. All other @code{gdb.Objfile} methods will throw an exception
4231if it is invalid at the time the method is called.
4232@end defun
4233
86e4ed39
DE
4234@defun Objfile.add_separate_debug_file (file)
4235Add @var{file} to the list of files that @value{GDBN} will search for
4236debug information for the objfile.
4237This is useful when the debug info has been removed from the program
4238and stored in a separate file. @value{GDBN} has built-in support for
4239finding separate debug info files (@pxref{Separate Debug Files}), but if
4240the file doesn't live in one of the standard places that @value{GDBN}
4241searches then this function can be used to add a debug info file
4242from a different place.
4243@end defun
4244
329baa95 4245@node Frames In Python
849cba3b 4246@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4247
4248@cindex frames in python
4249When the debugged program stops, @value{GDBN} is able to analyze its call
4250stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4251represents a frame in the stack. A @code{gdb.Frame} object is only valid
4252while its corresponding frame exists in the inferior's stack. If you try
4253to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4254exception (@pxref{Exception Handling}).
4255
4256Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4257operator, like:
4258
4259@smallexample
4260(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4261True
4262@end smallexample
4263
4264The following frame-related functions are available in the @code{gdb} module:
4265
4266@findex gdb.selected_frame
4267@defun gdb.selected_frame ()
4268Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4269@end defun
4270
4271@findex gdb.newest_frame
4272@defun gdb.newest_frame ()
4273Return the newest frame object for the selected thread.
4274@end defun
4275
4276@defun gdb.frame_stop_reason_string (reason)
4277Return a string explaining the reason why @value{GDBN} stopped unwinding
4278frames, as expressed by the given @var{reason} code (an integer, see the
4279@code{unwind_stop_reason} method further down in this section).
4280@end defun
4281
e0f3fd7c
TT
4282@findex gdb.invalidate_cached_frames
4283@defun gdb.invalidate_cached_frames
4284@value{GDBN} internally keeps a cache of the frames that have been
4285unwound. This function invalidates this cache.
4286
4287This function should not generally be called by ordinary Python code.
4288It is documented for the sake of completeness.
4289@end defun
4290
329baa95
DE
4291A @code{gdb.Frame} object has the following methods:
4292
4293@defun Frame.is_valid ()
4294Returns true if the @code{gdb.Frame} object is valid, false if not.
4295A frame object can become invalid if the frame it refers to doesn't
4296exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4297an exception if it is invalid at the time the method is called.
4298@end defun
4299
4300@defun Frame.name ()
4301Returns the function name of the frame, or @code{None} if it can't be
4302obtained.
4303@end defun
4304
4305@defun Frame.architecture ()
4306Returns the @code{gdb.Architecture} object corresponding to the frame's
4307architecture. @xref{Architectures In Python}.
4308@end defun
4309
4310@defun Frame.type ()
4311Returns the type of the frame. The value can be one of:
4312@table @code
4313@item gdb.NORMAL_FRAME
4314An ordinary stack frame.
4315
4316@item gdb.DUMMY_FRAME
4317A fake stack frame that was created by @value{GDBN} when performing an
4318inferior function call.
4319
4320@item gdb.INLINE_FRAME
4321A frame representing an inlined function. The function was inlined
4322into a @code{gdb.NORMAL_FRAME} that is older than this one.
4323
4324@item gdb.TAILCALL_FRAME
4325A frame representing a tail call. @xref{Tail Call Frames}.
4326
4327@item gdb.SIGTRAMP_FRAME
4328A signal trampoline frame. This is the frame created by the OS when
4329it calls into a signal handler.
4330
4331@item gdb.ARCH_FRAME
4332A fake stack frame representing a cross-architecture call.
4333
4334@item gdb.SENTINEL_FRAME
4335This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4336newest frame.
4337@end table
4338@end defun
4339
4340@defun Frame.unwind_stop_reason ()
4341Return an integer representing the reason why it's not possible to find
4342more frames toward the outermost frame. Use
4343@code{gdb.frame_stop_reason_string} to convert the value returned by this
4344function to a string. The value can be one of:
4345
4346@table @code
4347@item gdb.FRAME_UNWIND_NO_REASON
4348No particular reason (older frames should be available).
4349
4350@item gdb.FRAME_UNWIND_NULL_ID
4351The previous frame's analyzer returns an invalid result. This is no
4352longer used by @value{GDBN}, and is kept only for backward
4353compatibility.
4354
4355@item gdb.FRAME_UNWIND_OUTERMOST
4356This frame is the outermost.
4357
4358@item gdb.FRAME_UNWIND_UNAVAILABLE
4359Cannot unwind further, because that would require knowing the
4360values of registers or memory that have not been collected.
4361
4362@item gdb.FRAME_UNWIND_INNER_ID
4363This frame ID looks like it ought to belong to a NEXT frame,
4364but we got it for a PREV frame. Normally, this is a sign of
4365unwinder failure. It could also indicate stack corruption.
4366
4367@item gdb.FRAME_UNWIND_SAME_ID
4368This frame has the same ID as the previous one. That means
4369that unwinding further would almost certainly give us another
4370frame with exactly the same ID, so break the chain. Normally,
4371this is a sign of unwinder failure. It could also indicate
4372stack corruption.
4373
4374@item gdb.FRAME_UNWIND_NO_SAVED_PC
4375The frame unwinder did not find any saved PC, but we needed
4376one to unwind further.
4377
53e8a631
AB
4378@item gdb.FRAME_UNWIND_MEMORY_ERROR
4379The frame unwinder caused an error while trying to access memory.
4380
329baa95
DE
4381@item gdb.FRAME_UNWIND_FIRST_ERROR
4382Any stop reason greater or equal to this value indicates some kind
4383of error. This special value facilitates writing code that tests
4384for errors in unwinding in a way that will work correctly even if
4385the list of the other values is modified in future @value{GDBN}
4386versions. Using it, you could write:
4387@smallexample
4388reason = gdb.selected_frame().unwind_stop_reason ()
4389reason_str = gdb.frame_stop_reason_string (reason)
4390if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4391 print "An error occured: %s" % reason_str
4392@end smallexample
4393@end table
4394
4395@end defun
4396
4397@defun Frame.pc ()
4398Returns the frame's resume address.
4399@end defun
4400
4401@defun Frame.block ()
60c0454d
TT
4402Return the frame's code block. @xref{Blocks In Python}. If the frame
4403does not have a block -- for example, if there is no debugging
4404information for the code in question -- then this will throw an
4405exception.
329baa95
DE
4406@end defun
4407
4408@defun Frame.function ()
4409Return the symbol for the function corresponding to this frame.
4410@xref{Symbols In Python}.
4411@end defun
4412
4413@defun Frame.older ()
4414Return the frame that called this frame.
4415@end defun
4416
4417@defun Frame.newer ()
4418Return the frame called by this frame.
4419@end defun
4420
4421@defun Frame.find_sal ()
4422Return the frame's symtab and line object.
4423@xref{Symbol Tables In Python}.
4424@end defun
4425
5f3b99cf
SS
4426@defun Frame.read_register (register)
4427Return the value of @var{register} in this frame. The @var{register}
4428argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4429Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4430does not exist.
4431@end defun
4432
329baa95
DE
4433@defun Frame.read_var (variable @r{[}, block@r{]})
4434Return the value of @var{variable} in this frame. If the optional
4435argument @var{block} is provided, search for the variable from that
4436block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4437determined by the frame's current program counter). The @var{variable}
4438argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4439@code{gdb.Block} object.
4440@end defun
4441
4442@defun Frame.select ()
4443Set this frame to be the selected frame. @xref{Stack, ,Examining the
4444Stack}.
4445@end defun
4446
4447@node Blocks In Python
849cba3b 4448@subsubsection Accessing blocks from Python
329baa95
DE
4449
4450@cindex blocks in python
4451@tindex gdb.Block
4452
4453In @value{GDBN}, symbols are stored in blocks. A block corresponds
4454roughly to a scope in the source code. Blocks are organized
4455hierarchically, and are represented individually in Python as a
4456@code{gdb.Block}. Blocks rely on debugging information being
4457available.
4458
4459A frame has a block. Please see @ref{Frames In Python}, for a more
4460in-depth discussion of frames.
4461
4462The outermost block is known as the @dfn{global block}. The global
4463block typically holds public global variables and functions.
4464
4465The block nested just inside the global block is the @dfn{static
4466block}. The static block typically holds file-scoped variables and
4467functions.
4468
4469@value{GDBN} provides a method to get a block's superblock, but there
4470is currently no way to examine the sub-blocks of a block, or to
4471iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4472Python}).
4473
4474Here is a short example that should help explain blocks:
4475
4476@smallexample
4477/* This is in the global block. */
4478int global;
4479
4480/* This is in the static block. */
4481static int file_scope;
4482
4483/* 'function' is in the global block, and 'argument' is
4484 in a block nested inside of 'function'. */
4485int function (int argument)
4486@{
4487 /* 'local' is in a block inside 'function'. It may or may
4488 not be in the same block as 'argument'. */
4489 int local;
4490
4491 @{
4492 /* 'inner' is in a block whose superblock is the one holding
4493 'local'. */
4494 int inner;
4495
4496 /* If this call is expanded by the compiler, you may see
4497 a nested block here whose function is 'inline_function'
4498 and whose superblock is the one holding 'inner'. */
4499 inline_function ();
4500 @}
4501@}
4502@end smallexample
4503
4504A @code{gdb.Block} is iterable. The iterator returns the symbols
4505(@pxref{Symbols In Python}) local to the block. Python programs
4506should not assume that a specific block object will always contain a
4507given symbol, since changes in @value{GDBN} features and
4508infrastructure may cause symbols move across blocks in a symbol
4509table.
4510
4511The following block-related functions are available in the @code{gdb}
4512module:
4513
4514@findex gdb.block_for_pc
4515@defun gdb.block_for_pc (pc)
4516Return the innermost @code{gdb.Block} containing the given @var{pc}
4517value. If the block cannot be found for the @var{pc} value specified,
4518the function will return @code{None}.
4519@end defun
4520
4521A @code{gdb.Block} object has the following methods:
4522
4523@defun Block.is_valid ()
4524Returns @code{True} if the @code{gdb.Block} object is valid,
4525@code{False} if not. A block object can become invalid if the block it
4526refers to doesn't exist anymore in the inferior. All other
4527@code{gdb.Block} methods will throw an exception if it is invalid at
4528the time the method is called. The block's validity is also checked
4529during iteration over symbols of the block.
4530@end defun
4531
4532A @code{gdb.Block} object has the following attributes:
4533
4534@defvar Block.start
4535The start address of the block. This attribute is not writable.
4536@end defvar
4537
4538@defvar Block.end
22eb9e92
TT
4539One past the last address that appears in the block. This attribute
4540is not writable.
329baa95
DE
4541@end defvar
4542
4543@defvar Block.function
4544The name of the block represented as a @code{gdb.Symbol}. If the
4545block is not named, then this attribute holds @code{None}. This
4546attribute is not writable.
4547
4548For ordinary function blocks, the superblock is the static block.
4549However, you should note that it is possible for a function block to
4550have a superblock that is not the static block -- for instance this
4551happens for an inlined function.
4552@end defvar
4553
4554@defvar Block.superblock
4555The block containing this block. If this parent block does not exist,
4556this attribute holds @code{None}. This attribute is not writable.
4557@end defvar
4558
4559@defvar Block.global_block
4560The global block associated with this block. This attribute is not
4561writable.
4562@end defvar
4563
4564@defvar Block.static_block
4565The static block associated with this block. This attribute is not
4566writable.
4567@end defvar
4568
4569@defvar Block.is_global
4570@code{True} if the @code{gdb.Block} object is a global block,
4571@code{False} if not. This attribute is not
4572writable.
4573@end defvar
4574
4575@defvar Block.is_static
4576@code{True} if the @code{gdb.Block} object is a static block,
4577@code{False} if not. This attribute is not writable.
4578@end defvar
4579
4580@node Symbols In Python
849cba3b 4581@subsubsection Python representation of Symbols
329baa95
DE
4582
4583@cindex symbols in python
4584@tindex gdb.Symbol
4585
4586@value{GDBN} represents every variable, function and type as an
4587entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4588Similarly, Python represents these symbols in @value{GDBN} with the
4589@code{gdb.Symbol} object.
4590
4591The following symbol-related functions are available in the @code{gdb}
4592module:
4593
4594@findex gdb.lookup_symbol
4595@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4596This function searches for a symbol by name. The search scope can be
4597restricted to the parameters defined in the optional domain and block
4598arguments.
4599
4600@var{name} is the name of the symbol. It must be a string. The
4601optional @var{block} argument restricts the search to symbols visible
4602in that @var{block}. The @var{block} argument must be a
4603@code{gdb.Block} object. If omitted, the block for the current frame
4604is used. The optional @var{domain} argument restricts
4605the search to the domain type. The @var{domain} argument must be a
4606domain constant defined in the @code{gdb} module and described later
4607in this chapter.
4608
4609The result is a tuple of two elements.
4610The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4611is not found.
4612If the symbol is found, the second element is @code{True} if the symbol
4613is a field of a method's object (e.g., @code{this} in C@t{++}),
4614otherwise it is @code{False}.
4615If the symbol is not found, the second element is @code{False}.
4616@end defun
4617
4618@findex gdb.lookup_global_symbol
4619@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4620This function searches for a global symbol by name.
4621The search scope can be restricted to by the domain argument.
4622
4623@var{name} is the name of the symbol. It must be a string.
4624The optional @var{domain} argument restricts the search to the domain type.
4625The @var{domain} argument must be a domain constant defined in the @code{gdb}
4626module and described later in this chapter.
4627
4628The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4629is not found.
4630@end defun
4631
4632A @code{gdb.Symbol} object has the following attributes:
4633
4634@defvar Symbol.type
4635The type of the symbol or @code{None} if no type is recorded.
4636This attribute is represented as a @code{gdb.Type} object.
4637@xref{Types In Python}. This attribute is not writable.
4638@end defvar
4639
4640@defvar Symbol.symtab
4641The symbol table in which the symbol appears. This attribute is
4642represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4643Python}. This attribute is not writable.
4644@end defvar
4645
4646@defvar Symbol.line
4647The line number in the source code at which the symbol was defined.
4648This is an integer.
4649@end defvar
4650
4651@defvar Symbol.name
4652The name of the symbol as a string. This attribute is not writable.
4653@end defvar
4654
4655@defvar Symbol.linkage_name
4656The name of the symbol, as used by the linker (i.e., may be mangled).
4657This attribute is not writable.
4658@end defvar
4659
4660@defvar Symbol.print_name
4661The name of the symbol in a form suitable for output. This is either
4662@code{name} or @code{linkage_name}, depending on whether the user
4663asked @value{GDBN} to display demangled or mangled names.
4664@end defvar
4665
4666@defvar Symbol.addr_class
4667The address class of the symbol. This classifies how to find the value
4668of a symbol. Each address class is a constant defined in the
4669@code{gdb} module and described later in this chapter.
4670@end defvar
4671
4672@defvar Symbol.needs_frame
4673This is @code{True} if evaluating this symbol's value requires a frame
4674(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4675local variables will require a frame, but other symbols will not.
4676@end defvar
4677
4678@defvar Symbol.is_argument
4679@code{True} if the symbol is an argument of a function.
4680@end defvar
4681
4682@defvar Symbol.is_constant
4683@code{True} if the symbol is a constant.
4684@end defvar
4685
4686@defvar Symbol.is_function
4687@code{True} if the symbol is a function or a method.
4688@end defvar
4689
4690@defvar Symbol.is_variable
4691@code{True} if the symbol is a variable.
4692@end defvar
4693
4694A @code{gdb.Symbol} object has the following methods:
4695
4696@defun Symbol.is_valid ()
4697Returns @code{True} if the @code{gdb.Symbol} object is valid,
4698@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4699the symbol it refers to does not exist in @value{GDBN} any longer.
4700All other @code{gdb.Symbol} methods will throw an exception if it is
4701invalid at the time the method is called.
4702@end defun
4703
4704@defun Symbol.value (@r{[}frame@r{]})
4705Compute the value of the symbol, as a @code{gdb.Value}. For
4706functions, this computes the address of the function, cast to the
4707appropriate type. If the symbol requires a frame in order to compute
4708its value, then @var{frame} must be given. If @var{frame} is not
4709given, or if @var{frame} is invalid, then this method will throw an
4710exception.
4711@end defun
4712
4713The available domain categories in @code{gdb.Symbol} are represented
4714as constants in the @code{gdb} module:
4715
b3ce5e5f
DE
4716@vtable @code
4717@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4718@item gdb.SYMBOL_UNDEF_DOMAIN
4719This is used when a domain has not been discovered or none of the
4720following domains apply. This usually indicates an error either
4721in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4722
4723@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4724@item gdb.SYMBOL_VAR_DOMAIN
4725This domain contains variables, function names, typedef names and enum
4726type values.
b3ce5e5f
DE
4727
4728@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4729@item gdb.SYMBOL_STRUCT_DOMAIN
4730This domain holds struct, union and enum type names.
b3ce5e5f
DE
4731
4732@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4733@item gdb.SYMBOL_LABEL_DOMAIN
4734This domain contains names of labels (for gotos).
b3ce5e5f
DE
4735
4736@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4737@item gdb.SYMBOL_VARIABLES_DOMAIN
4738This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4739contains everything minus functions and types.
b3ce5e5f
DE
4740
4741@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4742@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4743This domain contains all functions.
b3ce5e5f
DE
4744
4745@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4746@item gdb.SYMBOL_TYPES_DOMAIN
4747This domain contains all types.
b3ce5e5f 4748@end vtable
329baa95
DE
4749
4750The available address class categories in @code{gdb.Symbol} are represented
4751as constants in the @code{gdb} module:
4752
b3ce5e5f
DE
4753@vtable @code
4754@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4755@item gdb.SYMBOL_LOC_UNDEF
4756If this is returned by address class, it indicates an error either in
4757the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4758
4759@vindex SYMBOL_LOC_CONST
329baa95
DE
4760@item gdb.SYMBOL_LOC_CONST
4761Value is constant int.
b3ce5e5f
DE
4762
4763@vindex SYMBOL_LOC_STATIC
329baa95
DE
4764@item gdb.SYMBOL_LOC_STATIC
4765Value is at a fixed address.
b3ce5e5f
DE
4766
4767@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4768@item gdb.SYMBOL_LOC_REGISTER
4769Value is in a register.
b3ce5e5f
DE
4770
4771@vindex SYMBOL_LOC_ARG
329baa95
DE
4772@item gdb.SYMBOL_LOC_ARG
4773Value is an argument. This value is at the offset stored within the
4774symbol inside the frame's argument list.
b3ce5e5f
DE
4775
4776@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4777@item gdb.SYMBOL_LOC_REF_ARG
4778Value address is stored in the frame's argument list. Just like
4779@code{LOC_ARG} except that the value's address is stored at the
4780offset, not the value itself.
b3ce5e5f
DE
4781
4782@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4783@item gdb.SYMBOL_LOC_REGPARM_ADDR
4784Value is a specified register. Just like @code{LOC_REGISTER} except
4785the register holds the address of the argument instead of the argument
4786itself.
b3ce5e5f
DE
4787
4788@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4789@item gdb.SYMBOL_LOC_LOCAL
4790Value is a local variable.
b3ce5e5f
DE
4791
4792@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4793@item gdb.SYMBOL_LOC_TYPEDEF
4794Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4795have this class.
b3ce5e5f
DE
4796
4797@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4798@item gdb.SYMBOL_LOC_BLOCK
4799Value is a block.
b3ce5e5f
DE
4800
4801@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4802@item gdb.SYMBOL_LOC_CONST_BYTES
4803Value is a byte-sequence.
b3ce5e5f
DE
4804
4805@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4806@item gdb.SYMBOL_LOC_UNRESOLVED
4807Value is at a fixed address, but the address of the variable has to be
4808determined from the minimal symbol table whenever the variable is
4809referenced.
b3ce5e5f
DE
4810
4811@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4812@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4813The value does not actually exist in the program.
b3ce5e5f
DE
4814
4815@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4816@item gdb.SYMBOL_LOC_COMPUTED
4817The value's address is a computed location.
b3ce5e5f 4818@end vtable
329baa95
DE
4819
4820@node Symbol Tables In Python
849cba3b 4821@subsubsection Symbol table representation in Python
329baa95
DE
4822
4823@cindex symbol tables in python
4824@tindex gdb.Symtab
4825@tindex gdb.Symtab_and_line
4826
4827Access to symbol table data maintained by @value{GDBN} on the inferior
4828is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4829@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4830from the @code{find_sal} method in @code{gdb.Frame} object.
4831@xref{Frames In Python}.
4832
4833For more information on @value{GDBN}'s symbol table management, see
4834@ref{Symbols, ,Examining the Symbol Table}, for more information.
4835
4836A @code{gdb.Symtab_and_line} object has the following attributes:
4837
4838@defvar Symtab_and_line.symtab
4839The symbol table object (@code{gdb.Symtab}) for this frame.
4840This attribute is not writable.
4841@end defvar
4842
4843@defvar Symtab_and_line.pc
4844Indicates the start of the address range occupied by code for the
4845current source line. This attribute is not writable.
4846@end defvar
4847
4848@defvar Symtab_and_line.last
4849Indicates the end of the address range occupied by code for the current
4850source line. This attribute is not writable.
4851@end defvar
4852
4853@defvar Symtab_and_line.line
4854Indicates the current line number for this object. This
4855attribute is not writable.
4856@end defvar
4857
4858A @code{gdb.Symtab_and_line} object has the following methods:
4859
4860@defun Symtab_and_line.is_valid ()
4861Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4862@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4863invalid if the Symbol table and line object it refers to does not
4864exist in @value{GDBN} any longer. All other
4865@code{gdb.Symtab_and_line} methods will throw an exception if it is
4866invalid at the time the method is called.
4867@end defun
4868
4869A @code{gdb.Symtab} object has the following attributes:
4870
4871@defvar Symtab.filename
4872The symbol table's source filename. This attribute is not writable.
4873@end defvar
4874
4875@defvar Symtab.objfile
4876The symbol table's backing object file. @xref{Objfiles In Python}.
4877This attribute is not writable.
4878@end defvar
4879
2b4fd423
DE
4880@defvar Symtab.producer
4881The name and possibly version number of the program that
4882compiled the code in the symbol table.
4883The contents of this string is up to the compiler.
4884If no producer information is available then @code{None} is returned.
4885This attribute is not writable.
4886@end defvar
4887
329baa95
DE
4888A @code{gdb.Symtab} object has the following methods:
4889
4890@defun Symtab.is_valid ()
4891Returns @code{True} if the @code{gdb.Symtab} object is valid,
4892@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4893the symbol table it refers to does not exist in @value{GDBN} any
4894longer. All other @code{gdb.Symtab} methods will throw an exception
4895if it is invalid at the time the method is called.
4896@end defun
4897
4898@defun Symtab.fullname ()
4899Return the symbol table's source absolute file name.
4900@end defun
4901
4902@defun Symtab.global_block ()
4903Return the global block of the underlying symbol table.
4904@xref{Blocks In Python}.
4905@end defun
4906
4907@defun Symtab.static_block ()
4908Return the static block of the underlying symbol table.
4909@xref{Blocks In Python}.
4910@end defun
4911
4912@defun Symtab.linetable ()
4913Return the line table associated with the symbol table.
4914@xref{Line Tables In Python}.
4915@end defun
4916
4917@node Line Tables In Python
4918@subsubsection Manipulating line tables using Python
4919
4920@cindex line tables in python
4921@tindex gdb.LineTable
4922
4923Python code can request and inspect line table information from a
4924symbol table that is loaded in @value{GDBN}. A line table is a
4925mapping of source lines to their executable locations in memory. To
4926acquire the line table information for a particular symbol table, use
4927the @code{linetable} function (@pxref{Symbol Tables In Python}).
4928
4929A @code{gdb.LineTable} is iterable. The iterator returns
4930@code{LineTableEntry} objects that correspond to the source line and
4931address for each line table entry. @code{LineTableEntry} objects have
4932the following attributes:
4933
4934@defvar LineTableEntry.line
4935The source line number for this line table entry. This number
4936corresponds to the actual line of source. This attribute is not
4937writable.
4938@end defvar
4939
4940@defvar LineTableEntry.pc
4941The address that is associated with the line table entry where the
4942executable code for that source line resides in memory. This
4943attribute is not writable.
4944@end defvar
4945
4946As there can be multiple addresses for a single source line, you may
4947receive multiple @code{LineTableEntry} objects with matching
4948@code{line} attributes, but with different @code{pc} attributes. The
4949iterator is sorted in ascending @code{pc} order. Here is a small
4950example illustrating iterating over a line table.
4951
4952@smallexample
4953symtab = gdb.selected_frame().find_sal().symtab
4954linetable = symtab.linetable()
4955for line in linetable:
4956 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4957@end smallexample
4958
4959This will have the following output:
4960
4961@smallexample
4962Line: 33 Address: 0x4005c8L
4963Line: 37 Address: 0x4005caL
4964Line: 39 Address: 0x4005d2L
4965Line: 40 Address: 0x4005f8L
4966Line: 42 Address: 0x4005ffL
4967Line: 44 Address: 0x400608L
4968Line: 42 Address: 0x40060cL
4969Line: 45 Address: 0x400615L
4970@end smallexample
4971
4972In addition to being able to iterate over a @code{LineTable}, it also
4973has the following direct access methods:
4974
4975@defun LineTable.line (line)
4976Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4977entries in the line table for the given @var{line}, which specifies
4978the source code line. If there are no entries for that source code
329baa95
DE
4979@var{line}, the Python @code{None} is returned.
4980@end defun
4981
4982@defun LineTable.has_line (line)
4983Return a Python @code{Boolean} indicating whether there is an entry in
4984the line table for this source line. Return @code{True} if an entry
4985is found, or @code{False} if not.
4986@end defun
4987
4988@defun LineTable.source_lines ()
4989Return a Python @code{List} of the source line numbers in the symbol
4990table. Only lines with executable code locations are returned. The
4991contents of the @code{List} will just be the source line entries
4992represented as Python @code{Long} values.
4993@end defun
4994
4995@node Breakpoints In Python
4996@subsubsection Manipulating breakpoints using Python
4997
4998@cindex breakpoints in python
4999@tindex gdb.Breakpoint
5000
5001Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5002class.
5003
0b982d68
SM
5004A breakpoint can be created using one of the two forms of the
5005@code{gdb.Breakpoint} constructor. The first one accepts a string
5006like one would pass to the @code{break}
5007(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5008(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5009create both breakpoints and watchpoints. The second accepts separate Python
5010arguments similar to @ref{Explicit Locations}, and can only be used to create
5011breakpoints.
5012
b89641ba 5013@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5014Create a new breakpoint according to @var{spec}, which is a string naming the
5015location of a breakpoint, or an expression that defines a watchpoint. The
5016string should describe a location in a format recognized by the @code{break}
5017command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5018watchpoint, by the @code{watch} command
5019(@pxref{Set Watchpoints, , Setting Watchpoints}).
5020
5021The optional @var{type} argument specifies the type of the breakpoint to create,
5022as defined below.
5023
5024The optional @var{wp_class} argument defines the class of watchpoint to create,
5025if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5026defaults to @code{gdb.WP_WRITE}.
5027
5028The optional @var{internal} argument allows the breakpoint to become invisible
5029to the user. The breakpoint will neither be reported when created, nor will it
5030be listed in the output from @code{info breakpoints} (but will be listed with
5031the @code{maint info breakpoints} command).
5032
5033The optional @var{temporary} argument makes the breakpoint a temporary
5034breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5035further access to the Python breakpoint after it has been hit will result in a
5036runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5037
5038The optional @var{qualified} argument is a boolean that allows interpreting
5039the function passed in @code{spec} as a fully-qualified name. It is equivalent
5040to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5041@ref{Explicit Locations}).
5042
0b982d68
SM
5043@end defun
5044
b89641ba 5045@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5046This second form of creating a new breakpoint specifies the explicit
5047location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5048be created in the specified source file @var{source}, at the specified
5049@var{function}, @var{label} and @var{line}.
5050
b89641ba
SM
5051@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5052explained previously.
329baa95
DE
5053@end defun
5054
cda75e70
TT
5055The available types are represented by constants defined in the @code{gdb}
5056module:
5057
5058@vtable @code
5059@vindex BP_BREAKPOINT
5060@item gdb.BP_BREAKPOINT
5061Normal code breakpoint.
5062
5063@vindex BP_WATCHPOINT
5064@item gdb.BP_WATCHPOINT
5065Watchpoint breakpoint.
5066
5067@vindex BP_HARDWARE_WATCHPOINT
5068@item gdb.BP_HARDWARE_WATCHPOINT
5069Hardware assisted watchpoint.
5070
5071@vindex BP_READ_WATCHPOINT
5072@item gdb.BP_READ_WATCHPOINT
5073Hardware assisted read watchpoint.
5074
5075@vindex BP_ACCESS_WATCHPOINT
5076@item gdb.BP_ACCESS_WATCHPOINT
5077Hardware assisted access watchpoint.
5078@end vtable
5079
5080The available watchpoint types represented by constants are defined in the
5081@code{gdb} module:
5082
5083@vtable @code
5084@vindex WP_READ
5085@item gdb.WP_READ
5086Read only watchpoint.
5087
5088@vindex WP_WRITE
5089@item gdb.WP_WRITE
5090Write only watchpoint.
5091
5092@vindex WP_ACCESS
5093@item gdb.WP_ACCESS
5094Read/Write watchpoint.
5095@end vtable
5096
329baa95
DE
5097@defun Breakpoint.stop (self)
5098The @code{gdb.Breakpoint} class can be sub-classed and, in
5099particular, you may choose to implement the @code{stop} method.
5100If this method is defined in a sub-class of @code{gdb.Breakpoint},
5101it will be called when the inferior reaches any location of a
5102breakpoint which instantiates that sub-class. If the method returns
5103@code{True}, the inferior will be stopped at the location of the
5104breakpoint, otherwise the inferior will continue.
5105
5106If there are multiple breakpoints at the same location with a
5107@code{stop} method, each one will be called regardless of the
5108return status of the previous. This ensures that all @code{stop}
5109methods have a chance to execute at that location. In this scenario
5110if one of the methods returns @code{True} but the others return
5111@code{False}, the inferior will still be stopped.
5112
5113You should not alter the execution state of the inferior (i.e.@:, step,
5114next, etc.), alter the current frame context (i.e.@:, change the current
5115active frame), or alter, add or delete any breakpoint. As a general
5116rule, you should not alter any data within @value{GDBN} or the inferior
5117at this time.
5118
5119Example @code{stop} implementation:
5120
5121@smallexample
5122class MyBreakpoint (gdb.Breakpoint):
5123 def stop (self):
5124 inf_val = gdb.parse_and_eval("foo")
5125 if inf_val == 3:
5126 return True
5127 return False
5128@end smallexample
5129@end defun
5130
329baa95
DE
5131@defun Breakpoint.is_valid ()
5132Return @code{True} if this @code{Breakpoint} object is valid,
5133@code{False} otherwise. A @code{Breakpoint} object can become invalid
5134if the user deletes the breakpoint. In this case, the object still
5135exists, but the underlying breakpoint does not. In the cases of
5136watchpoint scope, the watchpoint remains valid even if execution of the
5137inferior leaves the scope of that watchpoint.
5138@end defun
5139
fab3a15d 5140@defun Breakpoint.delete ()
329baa95
DE
5141Permanently deletes the @value{GDBN} breakpoint. This also
5142invalidates the Python @code{Breakpoint} object. Any further access
5143to this object's attributes or methods will raise an error.
5144@end defun
5145
5146@defvar Breakpoint.enabled
5147This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5148@code{False} otherwise. This attribute is writable. You can use it to enable
5149or disable the breakpoint.
329baa95
DE
5150@end defvar
5151
5152@defvar Breakpoint.silent
5153This attribute is @code{True} if the breakpoint is silent, and
5154@code{False} otherwise. This attribute is writable.
5155
5156Note that a breakpoint can also be silent if it has commands and the
5157first command is @code{silent}. This is not reported by the
5158@code{silent} attribute.
5159@end defvar
5160
93daf339
TT
5161@defvar Breakpoint.pending
5162This attribute is @code{True} if the breakpoint is pending, and
5163@code{False} otherwise. @xref{Set Breaks}. This attribute is
5164read-only.
5165@end defvar
5166
22a02324 5167@anchor{python_breakpoint_thread}
329baa95 5168@defvar Breakpoint.thread
5d5658a1
PA
5169If the breakpoint is thread-specific, this attribute holds the
5170thread's global id. If the breakpoint is not thread-specific, this
5171attribute is @code{None}. This attribute is writable.
329baa95
DE
5172@end defvar
5173
5174@defvar Breakpoint.task
5175If the breakpoint is Ada task-specific, this attribute holds the Ada task
5176id. If the breakpoint is not task-specific (or the underlying
5177language is not Ada), this attribute is @code{None}. This attribute
5178is writable.
5179@end defvar
5180
5181@defvar Breakpoint.ignore_count
5182This attribute holds the ignore count for the breakpoint, an integer.
5183This attribute is writable.
5184@end defvar
5185
5186@defvar Breakpoint.number
5187This attribute holds the breakpoint's number --- the identifier used by
5188the user to manipulate the breakpoint. This attribute is not writable.
5189@end defvar
5190
5191@defvar Breakpoint.type
5192This attribute holds the breakpoint's type --- the identifier used to
5193determine the actual breakpoint type or use-case. This attribute is not
5194writable.
5195@end defvar
5196
5197@defvar Breakpoint.visible
5198This attribute tells whether the breakpoint is visible to the user
5199when set, or when the @samp{info breakpoints} command is run. This
5200attribute is not writable.
5201@end defvar
5202
5203@defvar Breakpoint.temporary
5204This attribute indicates whether the breakpoint was created as a
5205temporary breakpoint. Temporary breakpoints are automatically deleted
5206after that breakpoint has been hit. Access to this attribute, and all
5207other attributes and functions other than the @code{is_valid}
5208function, will result in an error after the breakpoint has been hit
5209(as it has been automatically deleted). This attribute is not
5210writable.
5211@end defvar
5212
329baa95
DE
5213@defvar Breakpoint.hit_count
5214This attribute holds the hit count for the breakpoint, an integer.
5215This attribute is writable, but currently it can only be set to zero.
5216@end defvar
5217
5218@defvar Breakpoint.location
5219This attribute holds the location of the breakpoint, as specified by
5220the user. It is a string. If the breakpoint does not have a location
5221(that is, it is a watchpoint) the attribute's value is @code{None}. This
5222attribute is not writable.
5223@end defvar
5224
5225@defvar Breakpoint.expression
5226This attribute holds a breakpoint expression, as specified by
5227the user. It is a string. If the breakpoint does not have an
5228expression (the breakpoint is not a watchpoint) the attribute's value
5229is @code{None}. This attribute is not writable.
5230@end defvar
5231
5232@defvar Breakpoint.condition
5233This attribute holds the condition of the breakpoint, as specified by
5234the user. It is a string. If there is no condition, this attribute's
5235value is @code{None}. This attribute is writable.
5236@end defvar
5237
5238@defvar Breakpoint.commands
5239This attribute holds the commands attached to the breakpoint. If
5240there are commands, this attribute's value is a string holding all the
5241commands, separated by newlines. If there are no commands, this
a913fffb 5242attribute is @code{None}. This attribute is writable.
329baa95
DE
5243@end defvar
5244
5245@node Finish Breakpoints in Python
5246@subsubsection Finish Breakpoints
5247
5248@cindex python finish breakpoints
5249@tindex gdb.FinishBreakpoint
5250
5251A finish breakpoint is a temporary breakpoint set at the return address of
5252a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5253extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5254and deleted when the execution will run out of the breakpoint scope (i.e.@:
5255@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5256Finish breakpoints are thread specific and must be create with the right
5257thread selected.
5258
5259@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5260Create a finish breakpoint at the return address of the @code{gdb.Frame}
5261object @var{frame}. If @var{frame} is not provided, this defaults to the
5262newest frame. The optional @var{internal} argument allows the breakpoint to
5263become invisible to the user. @xref{Breakpoints In Python}, for further
5264details about this argument.
5265@end defun
5266
5267@defun FinishBreakpoint.out_of_scope (self)
5268In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5269@code{return} command, @dots{}), a function may not properly terminate, and
5270thus never hit the finish breakpoint. When @value{GDBN} notices such a
5271situation, the @code{out_of_scope} callback will be triggered.
5272
5273You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5274method:
5275
5276@smallexample
5277class MyFinishBreakpoint (gdb.FinishBreakpoint)
5278 def stop (self):
5279 print "normal finish"
5280 return True
5281
5282 def out_of_scope ():
5283 print "abnormal finish"
5284@end smallexample
5285@end defun
5286
5287@defvar FinishBreakpoint.return_value
5288When @value{GDBN} is stopped at a finish breakpoint and the frame
5289used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5290attribute will contain a @code{gdb.Value} object corresponding to the return
5291value of the function. The value will be @code{None} if the function return
5292type is @code{void} or if the return value was not computable. This attribute
5293is not writable.
5294@end defvar
5295
5296@node Lazy Strings In Python
849cba3b 5297@subsubsection Python representation of lazy strings
329baa95
DE
5298
5299@cindex lazy strings in python
5300@tindex gdb.LazyString
5301
5302A @dfn{lazy string} is a string whose contents is not retrieved or
5303encoded until it is needed.
5304
5305A @code{gdb.LazyString} is represented in @value{GDBN} as an
5306@code{address} that points to a region of memory, an @code{encoding}
5307that will be used to encode that region of memory, and a @code{length}
5308to delimit the region of memory that represents the string. The
5309difference between a @code{gdb.LazyString} and a string wrapped within
5310a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5311differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5312retrieved and encoded during printing, while a @code{gdb.Value}
5313wrapping a string is immediately retrieved and encoded on creation.
5314
5315A @code{gdb.LazyString} object has the following functions:
5316
5317@defun LazyString.value ()
5318Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5319will point to the string in memory, but will lose all the delayed
5320retrieval, encoding and handling that @value{GDBN} applies to a
5321@code{gdb.LazyString}.
5322@end defun
5323
5324@defvar LazyString.address
5325This attribute holds the address of the string. This attribute is not
5326writable.
5327@end defvar
5328
5329@defvar LazyString.length
5330This attribute holds the length of the string in characters. If the
5331length is -1, then the string will be fetched and encoded up to the
5332first null of appropriate width. This attribute is not writable.
5333@end defvar
5334
5335@defvar LazyString.encoding
5336This attribute holds the encoding that will be applied to the string
5337when the string is printed by @value{GDBN}. If the encoding is not
5338set, or contains an empty string, then @value{GDBN} will select the
5339most appropriate encoding when the string is printed. This attribute
5340is not writable.
5341@end defvar
5342
5343@defvar LazyString.type
5344This attribute holds the type that is represented by the lazy string's
f8d99587 5345type. For a lazy string this is a pointer or array type. To
329baa95
DE
5346resolve this to the lazy string's character type, use the type's
5347@code{target} method. @xref{Types In Python}. This attribute is not
5348writable.
5349@end defvar
5350
5351@node Architectures In Python
5352@subsubsection Python representation of architectures
5353@cindex Python architectures
5354
5355@value{GDBN} uses architecture specific parameters and artifacts in a
5356number of its various computations. An architecture is represented
5357by an instance of the @code{gdb.Architecture} class.
5358
5359A @code{gdb.Architecture} class has the following methods:
5360
5361@defun Architecture.name ()
5362Return the name (string value) of the architecture.
5363@end defun
5364
5365@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5366Return a list of disassembled instructions starting from the memory
5367address @var{start_pc}. The optional arguments @var{end_pc} and
5368@var{count} determine the number of instructions in the returned list.
5369If both the optional arguments @var{end_pc} and @var{count} are
5370specified, then a list of at most @var{count} disassembled instructions
5371whose start address falls in the closed memory address interval from
5372@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5373specified, but @var{count} is specified, then @var{count} number of
5374instructions starting from the address @var{start_pc} are returned. If
5375@var{count} is not specified but @var{end_pc} is specified, then all
5376instructions whose start address falls in the closed memory address
5377interval from @var{start_pc} to @var{end_pc} are returned. If neither
5378@var{end_pc} nor @var{count} are specified, then a single instruction at
5379@var{start_pc} is returned. For all of these cases, each element of the
5380returned list is a Python @code{dict} with the following string keys:
5381
5382@table @code
5383
5384@item addr
5385The value corresponding to this key is a Python long integer capturing
5386the memory address of the instruction.
5387
5388@item asm
5389The value corresponding to this key is a string value which represents
5390the instruction with assembly language mnemonics. The assembly
5391language flavor used is the same as that specified by the current CLI
5392variable @code{disassembly-flavor}. @xref{Machine Code}.
5393
5394@item length
5395The value corresponding to this key is the length (integer value) of the
5396instruction in bytes.
5397
5398@end table
5399@end defun
5400
5401@node Python Auto-loading
5402@subsection Python Auto-loading
5403@cindex Python auto-loading
5404
5405When a new object file is read (for example, due to the @code{file}
5406command, or because the inferior has loaded a shared library),
5407@value{GDBN} will look for Python support scripts in several ways:
5408@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5409@xref{Auto-loading extensions}.
5410
5411The auto-loading feature is useful for supplying application-specific
5412debugging commands and scripts.
5413
5414Auto-loading can be enabled or disabled,
5415and the list of auto-loaded scripts can be printed.
5416
5417@table @code
5418@anchor{set auto-load python-scripts}
5419@kindex set auto-load python-scripts
5420@item set auto-load python-scripts [on|off]
5421Enable or disable the auto-loading of Python scripts.
5422
5423@anchor{show auto-load python-scripts}
5424@kindex show auto-load python-scripts
5425@item show auto-load python-scripts
5426Show whether auto-loading of Python scripts is enabled or disabled.
5427
5428@anchor{info auto-load python-scripts}
5429@kindex info auto-load python-scripts
5430@cindex print list of auto-loaded Python scripts
5431@item info auto-load python-scripts [@var{regexp}]
5432Print the list of all Python scripts that @value{GDBN} auto-loaded.
5433
5434Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5435the @code{.debug_gdb_scripts} section and were either not found
5436(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5437@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5438This is useful because their names are not printed when @value{GDBN}
5439tries to load them and fails. There may be many of them, and printing
5440an error message for each one is problematic.
5441
5442If @var{regexp} is supplied only Python scripts with matching names are printed.
5443
5444Example:
5445
5446@smallexample
5447(gdb) info auto-load python-scripts
5448Loaded Script
5449Yes py-section-script.py
5450 full name: /tmp/py-section-script.py
5451No my-foo-pretty-printers.py
5452@end smallexample
5453@end table
5454
9f050062 5455When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5456@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5457function (@pxref{Objfiles In Python}). This can be useful for
5458registering objfile-specific pretty-printers and frame-filters.
5459
5460@node Python modules
5461@subsection Python modules
5462@cindex python modules
5463
5464@value{GDBN} comes with several modules to assist writing Python code.
5465
5466@menu
5467* gdb.printing:: Building and registering pretty-printers.
5468* gdb.types:: Utilities for working with types.
5469* gdb.prompt:: Utilities for prompt value substitution.
5470@end menu
5471
5472@node gdb.printing
5473@subsubsection gdb.printing
5474@cindex gdb.printing
5475
5476This module provides a collection of utilities for working with
5477pretty-printers.
5478
5479@table @code
5480@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5481This class specifies the API that makes @samp{info pretty-printer},
5482@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5483Pretty-printers should generally inherit from this class.
5484
5485@item SubPrettyPrinter (@var{name})
5486For printers that handle multiple types, this class specifies the
5487corresponding API for the subprinters.
5488
5489@item RegexpCollectionPrettyPrinter (@var{name})
5490Utility class for handling multiple printers, all recognized via
5491regular expressions.
5492@xref{Writing a Pretty-Printer}, for an example.
5493
5494@item FlagEnumerationPrinter (@var{name})
5495A pretty-printer which handles printing of @code{enum} values. Unlike
5496@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5497work properly when there is some overlap between the enumeration
697aa1b7
EZ
5498constants. The argument @var{name} is the name of the printer and
5499also the name of the @code{enum} type to look up.
329baa95
DE
5500
5501@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5502Register @var{printer} with the pretty-printer list of @var{obj}.
5503If @var{replace} is @code{True} then any existing copy of the printer
5504is replaced. Otherwise a @code{RuntimeError} exception is raised
5505if a printer with the same name already exists.
5506@end table
5507
5508@node gdb.types
5509@subsubsection gdb.types
5510@cindex gdb.types
5511
5512This module provides a collection of utilities for working with
5513@code{gdb.Type} objects.
5514
5515@table @code
5516@item get_basic_type (@var{type})
5517Return @var{type} with const and volatile qualifiers stripped,
5518and with typedefs and C@t{++} references converted to the underlying type.
5519
5520C@t{++} example:
5521
5522@smallexample
5523typedef const int const_int;
5524const_int foo (3);
5525const_int& foo_ref (foo);
5526int main () @{ return 0; @}
5527@end smallexample
5528
5529Then in gdb:
5530
5531@smallexample
5532(gdb) start
5533(gdb) python import gdb.types
5534(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5535(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5536int
5537@end smallexample
5538
5539@item has_field (@var{type}, @var{field})
5540Return @code{True} if @var{type}, assumed to be a type with fields
5541(e.g., a structure or union), has field @var{field}.
5542
5543@item make_enum_dict (@var{enum_type})
5544Return a Python @code{dictionary} type produced from @var{enum_type}.
5545
5546@item deep_items (@var{type})
5547Returns a Python iterator similar to the standard
5548@code{gdb.Type.iteritems} method, except that the iterator returned
5549by @code{deep_items} will recursively traverse anonymous struct or
5550union fields. For example:
5551
5552@smallexample
5553struct A
5554@{
5555 int a;
5556 union @{
5557 int b0;
5558 int b1;
5559 @};
5560@};
5561@end smallexample
5562
5563@noindent
5564Then in @value{GDBN}:
5565@smallexample
5566(@value{GDBP}) python import gdb.types
5567(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5568(@value{GDBP}) python print struct_a.keys ()
5569@{['a', '']@}
5570(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5571@{['a', 'b0', 'b1']@}
5572@end smallexample
5573
5574@item get_type_recognizers ()
5575Return a list of the enabled type recognizers for the current context.
5576This is called by @value{GDBN} during the type-printing process
5577(@pxref{Type Printing API}).
5578
5579@item apply_type_recognizers (recognizers, type_obj)
5580Apply the type recognizers, @var{recognizers}, to the type object
5581@var{type_obj}. If any recognizer returns a string, return that
5582string. Otherwise, return @code{None}. This is called by
5583@value{GDBN} during the type-printing process (@pxref{Type Printing
5584API}).
5585
5586@item register_type_printer (locus, printer)
697aa1b7
EZ
5587This is a convenience function to register a type printer
5588@var{printer}. The printer must implement the type printer protocol.
5589The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5590the printer is registered with that objfile; a @code{gdb.Progspace},
5591in which case the printer is registered with that progspace; or
5592@code{None}, in which case the printer is registered globally.
329baa95
DE
5593
5594@item TypePrinter
5595This is a base class that implements the type printer protocol. Type
5596printers are encouraged, but not required, to derive from this class.
5597It defines a constructor:
5598
5599@defmethod TypePrinter __init__ (self, name)
5600Initialize the type printer with the given name. The new printer
5601starts in the enabled state.
5602@end defmethod
5603
5604@end table
5605
5606@node gdb.prompt
5607@subsubsection gdb.prompt
5608@cindex gdb.prompt
5609
5610This module provides a method for prompt value-substitution.
5611
5612@table @code
5613@item substitute_prompt (@var{string})
5614Return @var{string} with escape sequences substituted by values. Some
5615escape sequences take arguments. You can specify arguments inside
5616``@{@}'' immediately following the escape sequence.
5617
5618The escape sequences you can pass to this function are:
5619
5620@table @code
5621@item \\
5622Substitute a backslash.
5623@item \e
5624Substitute an ESC character.
5625@item \f
5626Substitute the selected frame; an argument names a frame parameter.
5627@item \n
5628Substitute a newline.
5629@item \p
5630Substitute a parameter's value; the argument names the parameter.
5631@item \r
5632Substitute a carriage return.
5633@item \t
5634Substitute the selected thread; an argument names a thread parameter.
5635@item \v
5636Substitute the version of GDB.
5637@item \w
5638Substitute the current working directory.
5639@item \[
5640Begin a sequence of non-printing characters. These sequences are
5641typically used with the ESC character, and are not counted in the string
5642length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5643blue-colored ``(gdb)'' prompt where the length is five.
5644@item \]
5645End a sequence of non-printing characters.
5646@end table
5647
5648For example:
5649
5650@smallexample
5651substitute_prompt (``frame: \f,
5652 print arguments: \p@{print frame-arguments@}'')
5653@end smallexample
5654
5655@exdent will return the string:
5656
5657@smallexample
5658"frame: main, print arguments: scalars"
5659@end smallexample
5660@end table
This page took 0.600179 seconds and 4 git commands to generate.