gdb: Introduce new language field la_is_string_type_p
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
42a4f53d 1@c Copyright (C) 2008-2019 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
774returns @code{gdb.Value} objects corresonding to the values pointed to
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
52093e1b
MB
867@defun Value.format_string (...)
868Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
869command does. Invoked with no arguments, this is equivalent to calling
870the @code{str} function on the @code{gdb.Value}. The representation of
871the same value may change across different versions of @value{GDBN}, so
872you shouldn't, for instance, parse the strings returned by this method.
873
874All the arguments are keyword only. If an argument is not specified, the
875current global default setting is used.
876
877@table @code
878@item raw
879@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
880used to format the value. @code{False} if enabled pretty-printers
881matching the type represented by the @code{gdb.Value} should be used to
882format it.
883
884@item pretty_arrays
885@code{True} if arrays should be pretty printed to be more convenient to
886read, @code{False} if they shouldn't (see @code{set print array} in
887@ref{Print Settings}).
888
889@item pretty_structs
890@code{True} if structs should be pretty printed to be more convenient to
891read, @code{False} if they shouldn't (see @code{set print pretty} in
892@ref{Print Settings}).
893
894@item array_indexes
895@code{True} if array indexes should be included in the string
896representation of arrays, @code{False} if they shouldn't (see @code{set
897print array-indexes} in @ref{Print Settings}).
898
899@item symbols
900@code{True} if the string representation of a pointer should include the
901corresponding symbol name (if one exists), @code{False} if it shouldn't
902(see @code{set print symbol} in @ref{Print Settings}).
903
904@item unions
905@code{True} if unions which are contained in other structures or unions
906should be expanded, @code{False} if they shouldn't (see @code{set print
907union} in @ref{Print Settings}).
908
909@item deref_refs
910@code{True} if C@t{++} references should be resolved to the value they
911refer to, @code{False} (the default) if they shouldn't. Note that, unlike
912for the @code{print} command, references are not automatically expanded
913when using the @code{format_string} method or the @code{str}
914function. There is no global @code{print} setting to change the default
915behaviour.
916
917@item actual_objects
918@code{True} if the representation of a pointer to an object should
919identify the @emph{actual} (derived) type of the object rather than the
920@emph{declared} type, using the virtual function table. @code{False} if
921the @emph{declared} type should be used. (See @code{set print object} in
922@ref{Print Settings}).
923
924@item static_fields
925@code{True} if static members should be included in the string
926representation of a C@t{++} object, @code{False} if they shouldn't (see
927@code{set print static-members} in @ref{Print Settings}).
928
929@item max_elements
930Number of array elements to print, or @code{0} to print an unlimited
931number of elements (see @code{set print elements} in @ref{Print
932Settings}).
933
934@item repeat_threshold
935Set the threshold for suppressing display of repeated array elements, or
936@code{0} to represent all elements, even if repeated. (See @code{set
937print repeats} in @ref{Print Settings}).
938
939@item format
940A string containing a single character representing the format to use for
941the returned string. For instance, @code{'x'} is equivalent to using the
942@value{GDBN} command @code{print} with the @code{/x} option and formats
943the value as a hexadecimal number.
944@end table
945@end defun
946
329baa95
DE
947@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
948If this @code{gdb.Value} represents a string, then this method
949converts the contents to a Python string. Otherwise, this method will
950throw an exception.
951
b3ce5e5f
DE
952Values are interpreted as strings according to the rules of the
953current language. If the optional length argument is given, the
954string will be converted to that length, and will include any embedded
955zeroes that the string may contain. Otherwise, for languages
956where the string is zero-terminated, the entire string will be
957converted.
329baa95 958
b3ce5e5f
DE
959For example, in C-like languages, a value is a string if it is a pointer
960to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
961or @code{char32_t}.
329baa95
DE
962
963If the optional @var{encoding} argument is given, it must be a string
964naming the encoding of the string in the @code{gdb.Value}, such as
965@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
966the same encodings as the corresponding argument to Python's
967@code{string.decode} method, and the Python codec machinery will be used
968to convert the string. If @var{encoding} is not given, or if
969@var{encoding} is the empty string, then either the @code{target-charset}
970(@pxref{Character Sets}) will be used, or a language-specific encoding
971will be used, if the current language is able to supply one.
972
973The optional @var{errors} argument is the same as the corresponding
974argument to Python's @code{string.decode} method.
975
976If the optional @var{length} argument is given, the string will be
977fetched and converted to the given length.
978@end defun
979
980@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
981If this @code{gdb.Value} represents a string, then this method
982converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
983In Python}). Otherwise, this method will throw an exception.
984
985If the optional @var{encoding} argument is given, it must be a string
986naming the encoding of the @code{gdb.LazyString}. Some examples are:
987@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
988@var{encoding} argument is an encoding that @value{GDBN} does
989recognize, @value{GDBN} will raise an error.
990
991When a lazy string is printed, the @value{GDBN} encoding machinery is
992used to convert the string during printing. If the optional
993@var{encoding} argument is not provided, or is an empty string,
994@value{GDBN} will automatically select the encoding most suitable for
995the string type. For further information on encoding in @value{GDBN}
996please see @ref{Character Sets}.
997
998If the optional @var{length} argument is given, the string will be
999fetched and encoded to the length of characters specified. If
1000the @var{length} argument is not provided, the string will be fetched
1001and encoded until a null of appropriate width is found.
1002@end defun
1003
1004@defun Value.fetch_lazy ()
1005If the @code{gdb.Value} object is currently a lazy value
1006(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1007fetched from the inferior. Any errors that occur in the process
1008will produce a Python exception.
1009
1010If the @code{gdb.Value} object is not a lazy value, this method
1011has no effect.
1012
1013This method does not return a value.
1014@end defun
1015
1016
1017@node Types In Python
1018@subsubsection Types In Python
1019@cindex types in Python
1020@cindex Python, working with types
1021
1022@tindex gdb.Type
1023@value{GDBN} represents types from the inferior using the class
1024@code{gdb.Type}.
1025
1026The following type-related functions are available in the @code{gdb}
1027module:
1028
1029@findex gdb.lookup_type
1030@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1031This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1032
1033If @var{block} is given, then @var{name} is looked up in that scope.
1034Otherwise, it is searched for globally.
1035
1036Ordinarily, this function will return an instance of @code{gdb.Type}.
1037If the named type cannot be found, it will throw an exception.
1038@end defun
1039
1040If the type is a structure or class type, or an enum type, the fields
1041of that type can be accessed using the Python @dfn{dictionary syntax}.
1042For example, if @code{some_type} is a @code{gdb.Type} instance holding
1043a structure type, you can access its @code{foo} field with:
1044
1045@smallexample
1046bar = some_type['foo']
1047@end smallexample
1048
1049@code{bar} will be a @code{gdb.Field} object; see below under the
1050description of the @code{Type.fields} method for a description of the
1051@code{gdb.Field} class.
1052
1053An instance of @code{Type} has the following attributes:
1054
6d7bb824
TT
1055@defvar Type.alignof
1056The alignment of this type, in bytes. Type alignment comes from the
1057debugging information; if it was not specified, then @value{GDBN} will
1058use the relevant ABI to try to determine the alignment. In some
1059cases, even this is not possible, and zero will be returned.
1060@end defvar
1061
329baa95
DE
1062@defvar Type.code
1063The type code for this type. The type code will be one of the
1064@code{TYPE_CODE_} constants defined below.
1065@end defvar
1066
1067@defvar Type.name
1068The name of this type. If this type has no name, then @code{None}
1069is returned.
1070@end defvar
1071
1072@defvar Type.sizeof
1073The size of this type, in target @code{char} units. Usually, a
1074target's @code{char} type will be an 8-bit byte. However, on some
1075unusual platforms, this type may have a different size.
1076@end defvar
1077
1078@defvar Type.tag
1079The tag name for this type. The tag name is the name after
1080@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1081languages have this concept. If this type has no tag name, then
1082@code{None} is returned.
1083@end defvar
1084
1085The following methods are provided:
1086
1087@defun Type.fields ()
1088For structure and union types, this method returns the fields. Range
1089types have two fields, the minimum and maximum values. Enum types
1090have one field per enum constant. Function and method types have one
1091field per parameter. The base types of C@t{++} classes are also
1092represented as fields. If the type has no fields, or does not fit
1093into one of these categories, an empty sequence will be returned.
1094
1095Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1096@table @code
1097@item bitpos
1098This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1099(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1100in bits, from the start of the containing type.
1101
1102@item enumval
1103This attribute is only available for @code{enum} fields, and its value
1104is the enumeration member's integer representation.
1105
1106@item name
1107The name of the field, or @code{None} for anonymous fields.
1108
1109@item artificial
1110This is @code{True} if the field is artificial, usually meaning that
1111it was provided by the compiler and not the user. This attribute is
1112always provided, and is @code{False} if the field is not artificial.
1113
1114@item is_base_class
1115This is @code{True} if the field represents a base class of a C@t{++}
1116structure. This attribute is always provided, and is @code{False}
1117if the field is not a base class of the type that is the argument of
1118@code{fields}, or if that type was not a C@t{++} class.
1119
1120@item bitsize
1121If the field is packed, or is a bitfield, then this will have a
1122non-zero value, which is the size of the field in bits. Otherwise,
1123this will be zero; in this case the field's size is given by its type.
1124
1125@item type
1126The type of the field. This is usually an instance of @code{Type},
1127but it can be @code{None} in some situations.
1128
1129@item parent_type
1130The type which contains this field. This is an instance of
1131@code{gdb.Type}.
1132@end table
1133@end defun
1134
1135@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1136Return a new @code{gdb.Type} object which represents an array of this
1137type. If one argument is given, it is the inclusive upper bound of
1138the array; in this case the lower bound is zero. If two arguments are
1139given, the first argument is the lower bound of the array, and the
1140second argument is the upper bound of the array. An array's length
1141must not be negative, but the bounds can be.
1142@end defun
1143
1144@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1145Return a new @code{gdb.Type} object which represents a vector of this
1146type. If one argument is given, it is the inclusive upper bound of
1147the vector; in this case the lower bound is zero. If two arguments are
1148given, the first argument is the lower bound of the vector, and the
1149second argument is the upper bound of the vector. A vector's length
1150must not be negative, but the bounds can be.
1151
1152The difference between an @code{array} and a @code{vector} is that
1153arrays behave like in C: when used in expressions they decay to a pointer
1154to the first element whereas vectors are treated as first class values.
1155@end defun
1156
1157@defun Type.const ()
1158Return a new @code{gdb.Type} object which represents a
1159@code{const}-qualified variant of this type.
1160@end defun
1161
1162@defun Type.volatile ()
1163Return a new @code{gdb.Type} object which represents a
1164@code{volatile}-qualified variant of this type.
1165@end defun
1166
1167@defun Type.unqualified ()
1168Return a new @code{gdb.Type} object which represents an unqualified
1169variant of this type. That is, the result is neither @code{const} nor
1170@code{volatile}.
1171@end defun
1172
1173@defun Type.range ()
1174Return a Python @code{Tuple} object that contains two elements: the
1175low bound of the argument type and the high bound of that type. If
1176the type does not have a range, @value{GDBN} will raise a
1177@code{gdb.error} exception (@pxref{Exception Handling}).
1178@end defun
1179
1180@defun Type.reference ()
1181Return a new @code{gdb.Type} object which represents a reference to this
1182type.
1183@end defun
1184
1185@defun Type.pointer ()
1186Return a new @code{gdb.Type} object which represents a pointer to this
1187type.
1188@end defun
1189
1190@defun Type.strip_typedefs ()
1191Return a new @code{gdb.Type} that represents the real type,
1192after removing all layers of typedefs.
1193@end defun
1194
1195@defun Type.target ()
1196Return a new @code{gdb.Type} object which represents the target type
1197of this type.
1198
1199For a pointer type, the target type is the type of the pointed-to
1200object. For an array type (meaning C-like arrays), the target type is
1201the type of the elements of the array. For a function or method type,
1202the target type is the type of the return value. For a complex type,
1203the target type is the type of the elements. For a typedef, the
1204target type is the aliased type.
1205
1206If the type does not have a target, this method will throw an
1207exception.
1208@end defun
1209
1210@defun Type.template_argument (n @r{[}, block@r{]})
1211If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1212return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1213value of the @var{n}th template argument (indexed starting at 0).
329baa95 1214
1a6a384b
JL
1215If this @code{gdb.Type} is not a template type, or if the type has fewer
1216than @var{n} template arguments, this will throw an exception.
1217Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1218
1219If @var{block} is given, then @var{name} is looked up in that scope.
1220Otherwise, it is searched for globally.
1221@end defun
1222
59fb7612
SS
1223@defun Type.optimized_out ()
1224Return @code{gdb.Value} instance of this type whose value is optimized
1225out. This allows a frame decorator to indicate that the value of an
1226argument or a local variable is not known.
1227@end defun
329baa95
DE
1228
1229Each type has a code, which indicates what category this type falls
1230into. The available type categories are represented by constants
1231defined in the @code{gdb} module:
1232
b3ce5e5f
DE
1233@vtable @code
1234@vindex TYPE_CODE_PTR
329baa95
DE
1235@item gdb.TYPE_CODE_PTR
1236The type is a pointer.
1237
b3ce5e5f 1238@vindex TYPE_CODE_ARRAY
329baa95
DE
1239@item gdb.TYPE_CODE_ARRAY
1240The type is an array.
1241
b3ce5e5f 1242@vindex TYPE_CODE_STRUCT
329baa95
DE
1243@item gdb.TYPE_CODE_STRUCT
1244The type is a structure.
1245
b3ce5e5f 1246@vindex TYPE_CODE_UNION
329baa95
DE
1247@item gdb.TYPE_CODE_UNION
1248The type is a union.
1249
b3ce5e5f 1250@vindex TYPE_CODE_ENUM
329baa95
DE
1251@item gdb.TYPE_CODE_ENUM
1252The type is an enum.
1253
b3ce5e5f 1254@vindex TYPE_CODE_FLAGS
329baa95
DE
1255@item gdb.TYPE_CODE_FLAGS
1256A bit flags type, used for things such as status registers.
1257
b3ce5e5f 1258@vindex TYPE_CODE_FUNC
329baa95
DE
1259@item gdb.TYPE_CODE_FUNC
1260The type is a function.
1261
b3ce5e5f 1262@vindex TYPE_CODE_INT
329baa95
DE
1263@item gdb.TYPE_CODE_INT
1264The type is an integer type.
1265
b3ce5e5f 1266@vindex TYPE_CODE_FLT
329baa95
DE
1267@item gdb.TYPE_CODE_FLT
1268A floating point type.
1269
b3ce5e5f 1270@vindex TYPE_CODE_VOID
329baa95
DE
1271@item gdb.TYPE_CODE_VOID
1272The special type @code{void}.
1273
b3ce5e5f 1274@vindex TYPE_CODE_SET
329baa95
DE
1275@item gdb.TYPE_CODE_SET
1276A Pascal set type.
1277
b3ce5e5f 1278@vindex TYPE_CODE_RANGE
329baa95
DE
1279@item gdb.TYPE_CODE_RANGE
1280A range type, that is, an integer type with bounds.
1281
b3ce5e5f 1282@vindex TYPE_CODE_STRING
329baa95
DE
1283@item gdb.TYPE_CODE_STRING
1284A string type. Note that this is only used for certain languages with
1285language-defined string types; C strings are not represented this way.
1286
b3ce5e5f 1287@vindex TYPE_CODE_BITSTRING
329baa95
DE
1288@item gdb.TYPE_CODE_BITSTRING
1289A string of bits. It is deprecated.
1290
b3ce5e5f 1291@vindex TYPE_CODE_ERROR
329baa95
DE
1292@item gdb.TYPE_CODE_ERROR
1293An unknown or erroneous type.
1294
b3ce5e5f 1295@vindex TYPE_CODE_METHOD
329baa95 1296@item gdb.TYPE_CODE_METHOD
9c37b5ae 1297A method type, as found in C@t{++}.
329baa95 1298
b3ce5e5f 1299@vindex TYPE_CODE_METHODPTR
329baa95
DE
1300@item gdb.TYPE_CODE_METHODPTR
1301A pointer-to-member-function.
1302
b3ce5e5f 1303@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1304@item gdb.TYPE_CODE_MEMBERPTR
1305A pointer-to-member.
1306
b3ce5e5f 1307@vindex TYPE_CODE_REF
329baa95
DE
1308@item gdb.TYPE_CODE_REF
1309A reference type.
1310
3fcf899d
AV
1311@vindex TYPE_CODE_RVALUE_REF
1312@item gdb.TYPE_CODE_RVALUE_REF
1313A C@t{++}11 rvalue reference type.
1314
b3ce5e5f 1315@vindex TYPE_CODE_CHAR
329baa95
DE
1316@item gdb.TYPE_CODE_CHAR
1317A character type.
1318
b3ce5e5f 1319@vindex TYPE_CODE_BOOL
329baa95
DE
1320@item gdb.TYPE_CODE_BOOL
1321A boolean type.
1322
b3ce5e5f 1323@vindex TYPE_CODE_COMPLEX
329baa95
DE
1324@item gdb.TYPE_CODE_COMPLEX
1325A complex float type.
1326
b3ce5e5f 1327@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1328@item gdb.TYPE_CODE_TYPEDEF
1329A typedef to some other type.
1330
b3ce5e5f 1331@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1332@item gdb.TYPE_CODE_NAMESPACE
1333A C@t{++} namespace.
1334
b3ce5e5f 1335@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1336@item gdb.TYPE_CODE_DECFLOAT
1337A decimal floating point type.
1338
b3ce5e5f 1339@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1340@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1341A function internal to @value{GDBN}. This is the type used to represent
1342convenience functions.
b3ce5e5f 1343@end vtable
329baa95
DE
1344
1345Further support for types is provided in the @code{gdb.types}
1346Python module (@pxref{gdb.types}).
1347
1348@node Pretty Printing API
1349@subsubsection Pretty Printing API
b3ce5e5f 1350@cindex python pretty printing api
329baa95 1351
329baa95 1352A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1353specific interface, defined here. An example output is provided
1354(@pxref{Pretty Printing}).
329baa95
DE
1355
1356@defun pretty_printer.children (self)
1357@value{GDBN} will call this method on a pretty-printer to compute the
1358children of the pretty-printer's value.
1359
1360This method must return an object conforming to the Python iterator
1361protocol. Each item returned by the iterator must be a tuple holding
1362two elements. The first element is the ``name'' of the child; the
1363second element is the child's value. The value can be any Python
1364object which is convertible to a @value{GDBN} value.
1365
1366This method is optional. If it does not exist, @value{GDBN} will act
1367as though the value has no children.
1368@end defun
1369
1370@defun pretty_printer.display_hint (self)
1371The CLI may call this method and use its result to change the
1372formatting of a value. The result will also be supplied to an MI
1373consumer as a @samp{displayhint} attribute of the variable being
1374printed.
1375
1376This method is optional. If it does exist, this method must return a
9f9aa852 1377string or the special value @code{None}.
329baa95
DE
1378
1379Some display hints are predefined by @value{GDBN}:
1380
1381@table @samp
1382@item array
1383Indicate that the object being printed is ``array-like''. The CLI
1384uses this to respect parameters such as @code{set print elements} and
1385@code{set print array}.
1386
1387@item map
1388Indicate that the object being printed is ``map-like'', and that the
1389children of this value can be assumed to alternate between keys and
1390values.
1391
1392@item string
1393Indicate that the object being printed is ``string-like''. If the
1394printer's @code{to_string} method returns a Python string of some
1395kind, then @value{GDBN} will call its internal language-specific
1396string-printing function to format the string. For the CLI this means
1397adding quotation marks, possibly escaping some characters, respecting
1398@code{set print elements}, and the like.
1399@end table
9f9aa852
AB
1400
1401The special value @code{None} causes @value{GDBN} to apply the default
1402display rules.
329baa95
DE
1403@end defun
1404
1405@defun pretty_printer.to_string (self)
1406@value{GDBN} will call this method to display the string
1407representation of the value passed to the object's constructor.
1408
1409When printing from the CLI, if the @code{to_string} method exists,
1410then @value{GDBN} will prepend its result to the values returned by
1411@code{children}. Exactly how this formatting is done is dependent on
1412the display hint, and may change as more hints are added. Also,
1413depending on the print settings (@pxref{Print Settings}), the CLI may
1414print just the result of @code{to_string} in a stack trace, omitting
1415the result of @code{children}.
1416
1417If this method returns a string, it is printed verbatim.
1418
1419Otherwise, if this method returns an instance of @code{gdb.Value},
1420then @value{GDBN} prints this value. This may result in a call to
1421another pretty-printer.
1422
1423If instead the method returns a Python value which is convertible to a
1424@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1425the resulting value. Again, this may result in a call to another
1426pretty-printer. Python scalars (integers, floats, and booleans) and
1427strings are convertible to @code{gdb.Value}; other types are not.
1428
1429Finally, if this method returns @code{None} then no further operations
1430are peformed in this method and nothing is printed.
1431
1432If the result is not one of these types, an exception is raised.
1433@end defun
1434
1435@value{GDBN} provides a function which can be used to look up the
1436default pretty-printer for a @code{gdb.Value}:
1437
1438@findex gdb.default_visualizer
1439@defun gdb.default_visualizer (value)
1440This function takes a @code{gdb.Value} object as an argument. If a
1441pretty-printer for this value exists, then it is returned. If no such
1442printer exists, then this returns @code{None}.
1443@end defun
1444
1445@node Selecting Pretty-Printers
1446@subsubsection Selecting Pretty-Printers
b3ce5e5f 1447@cindex selecting python pretty-printers
329baa95 1448
48869a5f
TT
1449@value{GDBN} provides several ways to register a pretty-printer:
1450globally, per program space, and per objfile. When choosing how to
1451register your pretty-printer, a good rule is to register it with the
1452smallest scope possible: that is prefer a specific objfile first, then
1453a program space, and only register a printer globally as a last
1454resort.
1455
1456@findex gdb.pretty_printers
1457@defvar gdb.pretty_printers
329baa95
DE
1458The Python list @code{gdb.pretty_printers} contains an array of
1459functions or callable objects that have been registered via addition
1460as a pretty-printer. Printers in this list are called @code{global}
1461printers, they're available when debugging all inferiors.
48869a5f
TT
1462@end defvar
1463
329baa95
DE
1464Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1465Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1466attribute.
1467
1468Each function on these lists is passed a single @code{gdb.Value}
1469argument and should return a pretty-printer object conforming to the
1470interface definition above (@pxref{Pretty Printing API}). If a function
1471cannot create a pretty-printer for the value, it should return
1472@code{None}.
1473
1474@value{GDBN} first checks the @code{pretty_printers} attribute of each
1475@code{gdb.Objfile} in the current program space and iteratively calls
1476each enabled lookup routine in the list for that @code{gdb.Objfile}
1477until it receives a pretty-printer object.
1478If no pretty-printer is found in the objfile lists, @value{GDBN} then
1479searches the pretty-printer list of the current program space,
1480calling each enabled function until an object is returned.
1481After these lists have been exhausted, it tries the global
1482@code{gdb.pretty_printers} list, again calling each enabled function until an
1483object is returned.
1484
1485The order in which the objfiles are searched is not specified. For a
1486given list, functions are always invoked from the head of the list,
1487and iterated over sequentially until the end of the list, or a printer
1488object is returned.
1489
1490For various reasons a pretty-printer may not work.
1491For example, the underlying data structure may have changed and
1492the pretty-printer is out of date.
1493
1494The consequences of a broken pretty-printer are severe enough that
1495@value{GDBN} provides support for enabling and disabling individual
1496printers. For example, if @code{print frame-arguments} is on,
1497a backtrace can become highly illegible if any argument is printed
1498with a broken printer.
1499
1500Pretty-printers are enabled and disabled by attaching an @code{enabled}
1501attribute to the registered function or callable object. If this attribute
1502is present and its value is @code{False}, the printer is disabled, otherwise
1503the printer is enabled.
1504
1505@node Writing a Pretty-Printer
1506@subsubsection Writing a Pretty-Printer
1507@cindex writing a pretty-printer
1508
1509A pretty-printer consists of two parts: a lookup function to detect
1510if the type is supported, and the printer itself.
1511
1512Here is an example showing how a @code{std::string} printer might be
1513written. @xref{Pretty Printing API}, for details on the API this class
1514must provide.
1515
1516@smallexample
1517class StdStringPrinter(object):
1518 "Print a std::string"
1519
1520 def __init__(self, val):
1521 self.val = val
1522
1523 def to_string(self):
1524 return self.val['_M_dataplus']['_M_p']
1525
1526 def display_hint(self):
1527 return 'string'
1528@end smallexample
1529
1530And here is an example showing how a lookup function for the printer
1531example above might be written.
1532
1533@smallexample
1534def str_lookup_function(val):
1535 lookup_tag = val.type.tag
1536 if lookup_tag == None:
1537 return None
1538 regex = re.compile("^std::basic_string<char,.*>$")
1539 if regex.match(lookup_tag):
1540 return StdStringPrinter(val)
1541 return None
1542@end smallexample
1543
1544The example lookup function extracts the value's type, and attempts to
1545match it to a type that it can pretty-print. If it is a type the
1546printer can pretty-print, it will return a printer object. If not, it
1547returns @code{None}.
1548
1549We recommend that you put your core pretty-printers into a Python
1550package. If your pretty-printers are for use with a library, we
1551further recommend embedding a version number into the package name.
1552This practice will enable @value{GDBN} to load multiple versions of
1553your pretty-printers at the same time, because they will have
1554different names.
1555
1556You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1557can be evaluated multiple times without changing its meaning. An
1558ideal auto-load file will consist solely of @code{import}s of your
1559printer modules, followed by a call to a register pretty-printers with
1560the current objfile.
1561
1562Taken as a whole, this approach will scale nicely to multiple
1563inferiors, each potentially using a different library version.
1564Embedding a version number in the Python package name will ensure that
1565@value{GDBN} is able to load both sets of printers simultaneously.
1566Then, because the search for pretty-printers is done by objfile, and
1567because your auto-loaded code took care to register your library's
1568printers with a specific objfile, @value{GDBN} will find the correct
1569printers for the specific version of the library used by each
1570inferior.
1571
1572To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1573this code might appear in @code{gdb.libstdcxx.v6}:
1574
1575@smallexample
1576def register_printers(objfile):
1577 objfile.pretty_printers.append(str_lookup_function)
1578@end smallexample
1579
1580@noindent
1581And then the corresponding contents of the auto-load file would be:
1582
1583@smallexample
1584import gdb.libstdcxx.v6
1585gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1586@end smallexample
1587
1588The previous example illustrates a basic pretty-printer.
1589There are a few things that can be improved on.
1590The printer doesn't have a name, making it hard to identify in a
1591list of installed printers. The lookup function has a name, but
1592lookup functions can have arbitrary, even identical, names.
1593
1594Second, the printer only handles one type, whereas a library typically has
1595several types. One could install a lookup function for each desired type
1596in the library, but one could also have a single lookup function recognize
1597several types. The latter is the conventional way this is handled.
1598If a pretty-printer can handle multiple data types, then its
1599@dfn{subprinters} are the printers for the individual data types.
1600
1601The @code{gdb.printing} module provides a formal way of solving these
1602problems (@pxref{gdb.printing}).
1603Here is another example that handles multiple types.
1604
1605These are the types we are going to pretty-print:
1606
1607@smallexample
1608struct foo @{ int a, b; @};
1609struct bar @{ struct foo x, y; @};
1610@end smallexample
1611
1612Here are the printers:
1613
1614@smallexample
1615class fooPrinter:
1616 """Print a foo object."""
1617
1618 def __init__(self, val):
1619 self.val = val
1620
1621 def to_string(self):
1622 return ("a=<" + str(self.val["a"]) +
1623 "> b=<" + str(self.val["b"]) + ">")
1624
1625class barPrinter:
1626 """Print a bar object."""
1627
1628 def __init__(self, val):
1629 self.val = val
1630
1631 def to_string(self):
1632 return ("x=<" + str(self.val["x"]) +
1633 "> y=<" + str(self.val["y"]) + ">")
1634@end smallexample
1635
1636This example doesn't need a lookup function, that is handled by the
1637@code{gdb.printing} module. Instead a function is provided to build up
1638the object that handles the lookup.
1639
1640@smallexample
1641import gdb.printing
1642
1643def build_pretty_printer():
1644 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1645 "my_library")
1646 pp.add_printer('foo', '^foo$', fooPrinter)
1647 pp.add_printer('bar', '^bar$', barPrinter)
1648 return pp
1649@end smallexample
1650
1651And here is the autoload support:
1652
1653@smallexample
1654import gdb.printing
1655import my_library
1656gdb.printing.register_pretty_printer(
1657 gdb.current_objfile(),
1658 my_library.build_pretty_printer())
1659@end smallexample
1660
1661Finally, when this printer is loaded into @value{GDBN}, here is the
1662corresponding output of @samp{info pretty-printer}:
1663
1664@smallexample
1665(gdb) info pretty-printer
1666my_library.so:
1667 my_library
1668 foo
1669 bar
1670@end smallexample
1671
1672@node Type Printing API
1673@subsubsection Type Printing API
1674@cindex type printing API for Python
1675
1676@value{GDBN} provides a way for Python code to customize type display.
1677This is mainly useful for substituting canonical typedef names for
1678types.
1679
1680@cindex type printer
1681A @dfn{type printer} is just a Python object conforming to a certain
1682protocol. A simple base class implementing the protocol is provided;
1683see @ref{gdb.types}. A type printer must supply at least:
1684
1685@defivar type_printer enabled
1686A boolean which is True if the printer is enabled, and False
1687otherwise. This is manipulated by the @code{enable type-printer}
1688and @code{disable type-printer} commands.
1689@end defivar
1690
1691@defivar type_printer name
1692The name of the type printer. This must be a string. This is used by
1693the @code{enable type-printer} and @code{disable type-printer}
1694commands.
1695@end defivar
1696
1697@defmethod type_printer instantiate (self)
1698This is called by @value{GDBN} at the start of type-printing. It is
1699only called if the type printer is enabled. This method must return a
1700new object that supplies a @code{recognize} method, as described below.
1701@end defmethod
1702
1703
1704When displaying a type, say via the @code{ptype} command, @value{GDBN}
1705will compute a list of type recognizers. This is done by iterating
1706first over the per-objfile type printers (@pxref{Objfiles In Python}),
1707followed by the per-progspace type printers (@pxref{Progspaces In
1708Python}), and finally the global type printers.
1709
1710@value{GDBN} will call the @code{instantiate} method of each enabled
1711type printer. If this method returns @code{None}, then the result is
1712ignored; otherwise, it is appended to the list of recognizers.
1713
1714Then, when @value{GDBN} is going to display a type name, it iterates
1715over the list of recognizers. For each one, it calls the recognition
1716function, stopping if the function returns a non-@code{None} value.
1717The recognition function is defined as:
1718
1719@defmethod type_recognizer recognize (self, type)
1720If @var{type} is not recognized, return @code{None}. Otherwise,
1721return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1722The @var{type} argument will be an instance of @code{gdb.Type}
1723(@pxref{Types In Python}).
329baa95
DE
1724@end defmethod
1725
1726@value{GDBN} uses this two-pass approach so that type printers can
1727efficiently cache information without holding on to it too long. For
1728example, it can be convenient to look up type information in a type
1729printer and hold it for a recognizer's lifetime; if a single pass were
1730done then type printers would have to make use of the event system in
1731order to avoid holding information that could become stale as the
1732inferior changed.
1733
1734@node Frame Filter API
521b499b 1735@subsubsection Filtering Frames
329baa95
DE
1736@cindex frame filters api
1737
1738Frame filters are Python objects that manipulate the visibility of a
1739frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1740@value{GDBN}.
1741
1742Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1743commands (@pxref{GDB/MI}), those that return a collection of frames
1744are affected. The commands that work with frame filters are:
1745
1746@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1747@code{-stack-list-frames}
1748(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1749@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1750-stack-list-variables command}), @code{-stack-list-arguments}
1751@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1752@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1753-stack-list-locals command}).
1754
1755A frame filter works by taking an iterator as an argument, applying
1756actions to the contents of that iterator, and returning another
1757iterator (or, possibly, the same iterator it was provided in the case
1758where the filter does not perform any operations). Typically, frame
1759filters utilize tools such as the Python's @code{itertools} module to
1760work with and create new iterators from the source iterator.
1761Regardless of how a filter chooses to apply actions, it must not alter
1762the underlying @value{GDBN} frame or frames, or attempt to alter the
1763call-stack within @value{GDBN}. This preserves data integrity within
1764@value{GDBN}. Frame filters are executed on a priority basis and care
1765should be taken that some frame filters may have been executed before,
1766and that some frame filters will be executed after.
1767
1768An important consideration when designing frame filters, and well
1769worth reflecting upon, is that frame filters should avoid unwinding
1770the call stack if possible. Some stacks can run very deep, into the
1771tens of thousands in some cases. To search every frame when a frame
1772filter executes may be too expensive at that step. The frame filter
1773cannot know how many frames it has to iterate over, and it may have to
1774iterate through them all. This ends up duplicating effort as
1775@value{GDBN} performs this iteration when it prints the frames. If
1776the filter can defer unwinding frames until frame decorators are
1777executed, after the last filter has executed, it should. @xref{Frame
1778Decorator API}, for more information on decorators. Also, there are
1779examples for both frame decorators and filters in later chapters.
1780@xref{Writing a Frame Filter}, for more information.
1781
1782The Python dictionary @code{gdb.frame_filters} contains key/object
1783pairings that comprise a frame filter. Frame filters in this
1784dictionary are called @code{global} frame filters, and they are
1785available when debugging all inferiors. These frame filters must
1786register with the dictionary directly. In addition to the
1787@code{global} dictionary, there are other dictionaries that are loaded
1788with different inferiors via auto-loading (@pxref{Python
1789Auto-loading}). The two other areas where frame filter dictionaries
1790can be found are: @code{gdb.Progspace} which contains a
1791@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1792object which also contains a @code{frame_filters} dictionary
1793attribute.
1794
1795When a command is executed from @value{GDBN} that is compatible with
1796frame filters, @value{GDBN} combines the @code{global},
1797@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1798loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1799several frames, and thus several object files, might be in use.
1800@value{GDBN} then prunes any frame filter whose @code{enabled}
1801attribute is @code{False}. This pruned list is then sorted according
1802to the @code{priority} attribute in each filter.
1803
1804Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1805creates an iterator which wraps each frame in the call stack in a
1806@code{FrameDecorator} object, and calls each filter in order. The
1807output from the previous filter will always be the input to the next
1808filter, and so on.
1809
1810Frame filters have a mandatory interface which each frame filter must
1811implement, defined here:
1812
1813@defun FrameFilter.filter (iterator)
1814@value{GDBN} will call this method on a frame filter when it has
1815reached the order in the priority list for that filter.
1816
1817For example, if there are four frame filters:
1818
1819@smallexample
1820Name Priority
1821
1822Filter1 5
1823Filter2 10
1824Filter3 100
1825Filter4 1
1826@end smallexample
1827
1828The order that the frame filters will be called is:
1829
1830@smallexample
1831Filter3 -> Filter2 -> Filter1 -> Filter4
1832@end smallexample
1833
1834Note that the output from @code{Filter3} is passed to the input of
1835@code{Filter2}, and so on.
1836
1837This @code{filter} method is passed a Python iterator. This iterator
1838contains a sequence of frame decorators that wrap each
1839@code{gdb.Frame}, or a frame decorator that wraps another frame
1840decorator. The first filter that is executed in the sequence of frame
1841filters will receive an iterator entirely comprised of default
1842@code{FrameDecorator} objects. However, after each frame filter is
1843executed, the previous frame filter may have wrapped some or all of
1844the frame decorators with their own frame decorator. As frame
1845decorators must also conform to a mandatory interface, these
1846decorators can be assumed to act in a uniform manner (@pxref{Frame
1847Decorator API}).
1848
1849This method must return an object conforming to the Python iterator
1850protocol. Each item in the iterator must be an object conforming to
1851the frame decorator interface. If a frame filter does not wish to
1852perform any operations on this iterator, it should return that
1853iterator untouched.
1854
1855This method is not optional. If it does not exist, @value{GDBN} will
1856raise and print an error.
1857@end defun
1858
1859@defvar FrameFilter.name
1860The @code{name} attribute must be Python string which contains the
1861name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1862Management}). This attribute may contain any combination of letters
1863or numbers. Care should be taken to ensure that it is unique. This
1864attribute is mandatory.
1865@end defvar
1866
1867@defvar FrameFilter.enabled
1868The @code{enabled} attribute must be Python boolean. This attribute
1869indicates to @value{GDBN} whether the frame filter is enabled, and
1870should be considered when frame filters are executed. If
1871@code{enabled} is @code{True}, then the frame filter will be executed
1872when any of the backtrace commands detailed earlier in this chapter
1873are executed. If @code{enabled} is @code{False}, then the frame
1874filter will not be executed. This attribute is mandatory.
1875@end defvar
1876
1877@defvar FrameFilter.priority
1878The @code{priority} attribute must be Python integer. This attribute
1879controls the order of execution in relation to other frame filters.
1880There are no imposed limits on the range of @code{priority} other than
1881it must be a valid integer. The higher the @code{priority} attribute,
1882the sooner the frame filter will be executed in relation to other
1883frame filters. Although @code{priority} can be negative, it is
1884recommended practice to assume zero is the lowest priority that a
1885frame filter can be assigned. Frame filters that have the same
1886priority are executed in unsorted order in that priority slot. This
521b499b 1887attribute is mandatory. 100 is a good default priority.
329baa95
DE
1888@end defvar
1889
1890@node Frame Decorator API
521b499b 1891@subsubsection Decorating Frames
329baa95
DE
1892@cindex frame decorator api
1893
1894Frame decorators are sister objects to frame filters (@pxref{Frame
1895Filter API}). Frame decorators are applied by a frame filter and can
1896only be used in conjunction with frame filters.
1897
1898The purpose of a frame decorator is to customize the printed content
1899of each @code{gdb.Frame} in commands where frame filters are executed.
1900This concept is called decorating a frame. Frame decorators decorate
1901a @code{gdb.Frame} with Python code contained within each API call.
1902This separates the actual data contained in a @code{gdb.Frame} from
1903the decorated data produced by a frame decorator. This abstraction is
1904necessary to maintain integrity of the data contained in each
1905@code{gdb.Frame}.
1906
1907Frame decorators have a mandatory interface, defined below.
1908
1909@value{GDBN} already contains a frame decorator called
1910@code{FrameDecorator}. This contains substantial amounts of
1911boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1912recommended that other frame decorators inherit and extend this
1913object, and only to override the methods needed.
1914
521b499b
TT
1915@tindex gdb.FrameDecorator
1916@code{FrameDecorator} is defined in the Python module
1917@code{gdb.FrameDecorator}, so your code can import it like:
1918@smallexample
1919from gdb.FrameDecorator import FrameDecorator
1920@end smallexample
1921
329baa95
DE
1922@defun FrameDecorator.elided (self)
1923
1924The @code{elided} method groups frames together in a hierarchical
1925system. An example would be an interpreter, where multiple low-level
1926frames make up a single call in the interpreted language. In this
1927example, the frame filter would elide the low-level frames and present
1928a single high-level frame, representing the call in the interpreted
1929language, to the user.
1930
1931The @code{elided} function must return an iterable and this iterable
1932must contain the frames that are being elided wrapped in a suitable
1933frame decorator. If no frames are being elided this function may
1934return an empty iterable, or @code{None}. Elided frames are indented
1935from normal frames in a @code{CLI} backtrace, or in the case of
1936@code{GDB/MI}, are placed in the @code{children} field of the eliding
1937frame.
1938
1939It is the frame filter's task to also filter out the elided frames from
1940the source iterator. This will avoid printing the frame twice.
1941@end defun
1942
1943@defun FrameDecorator.function (self)
1944
1945This method returns the name of the function in the frame that is to
1946be printed.
1947
1948This method must return a Python string describing the function, or
1949@code{None}.
1950
1951If this function returns @code{None}, @value{GDBN} will not print any
1952data for this field.
1953@end defun
1954
1955@defun FrameDecorator.address (self)
1956
1957This method returns the address of the frame that is to be printed.
1958
1959This method must return a Python numeric integer type of sufficient
1960size to describe the address of the frame, or @code{None}.
1961
1962If this function returns a @code{None}, @value{GDBN} will not print
1963any data for this field.
1964@end defun
1965
1966@defun FrameDecorator.filename (self)
1967
1968This method returns the filename and path associated with this frame.
1969
1970This method must return a Python string containing the filename and
1971the path to the object file backing the frame, or @code{None}.
1972
1973If this function returns a @code{None}, @value{GDBN} will not print
1974any data for this field.
1975@end defun
1976
1977@defun FrameDecorator.line (self):
1978
1979This method returns the line number associated with the current
1980position within the function addressed by this frame.
1981
1982This method must return a Python integer type, or @code{None}.
1983
1984If this function returns a @code{None}, @value{GDBN} will not print
1985any data for this field.
1986@end defun
1987
1988@defun FrameDecorator.frame_args (self)
1989@anchor{frame_args}
1990
1991This method must return an iterable, or @code{None}. Returning an
1992empty iterable, or @code{None} means frame arguments will not be
1993printed for this frame. This iterable must contain objects that
1994implement two methods, described here.
1995
1996This object must implement a @code{argument} method which takes a
1997single @code{self} parameter and must return a @code{gdb.Symbol}
1998(@pxref{Symbols In Python}), or a Python string. The object must also
1999implement a @code{value} method which takes a single @code{self}
2000parameter and must return a @code{gdb.Value} (@pxref{Values From
2001Inferior}), a Python value, or @code{None}. If the @code{value}
2002method returns @code{None}, and the @code{argument} method returns a
2003@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2004the @code{gdb.Symbol} automatically.
2005
2006A brief example:
2007
2008@smallexample
2009class SymValueWrapper():
2010
2011 def __init__(self, symbol, value):
2012 self.sym = symbol
2013 self.val = value
2014
2015 def value(self):
2016 return self.val
2017
2018 def symbol(self):
2019 return self.sym
2020
2021class SomeFrameDecorator()
2022...
2023...
2024 def frame_args(self):
2025 args = []
2026 try:
2027 block = self.inferior_frame.block()
2028 except:
2029 return None
2030
2031 # Iterate over all symbols in a block. Only add
2032 # symbols that are arguments.
2033 for sym in block:
2034 if not sym.is_argument:
2035 continue
2036 args.append(SymValueWrapper(sym,None))
2037
2038 # Add example synthetic argument.
2039 args.append(SymValueWrapper(``foo'', 42))
2040
2041 return args
2042@end smallexample
2043@end defun
2044
2045@defun FrameDecorator.frame_locals (self)
2046
2047This method must return an iterable or @code{None}. Returning an
2048empty iterable, or @code{None} means frame local arguments will not be
2049printed for this frame.
2050
2051The object interface, the description of the various strategies for
2052reading frame locals, and the example are largely similar to those
2053described in the @code{frame_args} function, (@pxref{frame_args,,The
2054frame filter frame_args function}). Below is a modified example:
2055
2056@smallexample
2057class SomeFrameDecorator()
2058...
2059...
2060 def frame_locals(self):
2061 vars = []
2062 try:
2063 block = self.inferior_frame.block()
2064 except:
2065 return None
2066
2067 # Iterate over all symbols in a block. Add all
2068 # symbols, except arguments.
2069 for sym in block:
2070 if sym.is_argument:
2071 continue
2072 vars.append(SymValueWrapper(sym,None))
2073
2074 # Add an example of a synthetic local variable.
2075 vars.append(SymValueWrapper(``bar'', 99))
2076
2077 return vars
2078@end smallexample
2079@end defun
2080
2081@defun FrameDecorator.inferior_frame (self):
2082
2083This method must return the underlying @code{gdb.Frame} that this
2084frame decorator is decorating. @value{GDBN} requires the underlying
2085frame for internal frame information to determine how to print certain
2086values when printing a frame.
2087@end defun
2088
2089@node Writing a Frame Filter
2090@subsubsection Writing a Frame Filter
2091@cindex writing a frame filter
2092
2093There are three basic elements that a frame filter must implement: it
2094must correctly implement the documented interface (@pxref{Frame Filter
2095API}), it must register itself with @value{GDBN}, and finally, it must
2096decide if it is to work on the data provided by @value{GDBN}. In all
2097cases, whether it works on the iterator or not, each frame filter must
2098return an iterator. A bare-bones frame filter follows the pattern in
2099the following example.
2100
2101@smallexample
2102import gdb
2103
2104class FrameFilter():
2105
2106 def __init__(self):
2107 # Frame filter attribute creation.
2108 #
2109 # 'name' is the name of the filter that GDB will display.
2110 #
2111 # 'priority' is the priority of the filter relative to other
2112 # filters.
2113 #
2114 # 'enabled' is a boolean that indicates whether this filter is
2115 # enabled and should be executed.
2116
2117 self.name = "Foo"
2118 self.priority = 100
2119 self.enabled = True
2120
2121 # Register this frame filter with the global frame_filters
2122 # dictionary.
2123 gdb.frame_filters[self.name] = self
2124
2125 def filter(self, frame_iter):
2126 # Just return the iterator.
2127 return frame_iter
2128@end smallexample
2129
2130The frame filter in the example above implements the three
2131requirements for all frame filters. It implements the API, self
2132registers, and makes a decision on the iterator (in this case, it just
2133returns the iterator untouched).
2134
2135The first step is attribute creation and assignment, and as shown in
2136the comments the filter assigns the following attributes: @code{name},
2137@code{priority} and whether the filter should be enabled with the
2138@code{enabled} attribute.
2139
2140The second step is registering the frame filter with the dictionary or
2141dictionaries that the frame filter has interest in. As shown in the
2142comments, this filter just registers itself with the global dictionary
2143@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2144is a dictionary that is initialized in the @code{gdb} module when
2145@value{GDBN} starts. What dictionary a filter registers with is an
2146important consideration. Generally, if a filter is specific to a set
2147of code, it should be registered either in the @code{objfile} or
2148@code{progspace} dictionaries as they are specific to the program
2149currently loaded in @value{GDBN}. The global dictionary is always
2150present in @value{GDBN} and is never unloaded. Any filters registered
2151with the global dictionary will exist until @value{GDBN} exits. To
2152avoid filters that may conflict, it is generally better to register
2153frame filters against the dictionaries that more closely align with
2154the usage of the filter currently in question. @xref{Python
2155Auto-loading}, for further information on auto-loading Python scripts.
2156
2157@value{GDBN} takes a hands-off approach to frame filter registration,
2158therefore it is the frame filter's responsibility to ensure
2159registration has occurred, and that any exceptions are handled
2160appropriately. In particular, you may wish to handle exceptions
2161relating to Python dictionary key uniqueness. It is mandatory that
2162the dictionary key is the same as frame filter's @code{name}
2163attribute. When a user manages frame filters (@pxref{Frame Filter
2164Management}), the names @value{GDBN} will display are those contained
2165in the @code{name} attribute.
2166
2167The final step of this example is the implementation of the
2168@code{filter} method. As shown in the example comments, we define the
2169@code{filter} method and note that the method must take an iterator,
2170and also must return an iterator. In this bare-bones example, the
2171frame filter is not very useful as it just returns the iterator
2172untouched. However this is a valid operation for frame filters that
2173have the @code{enabled} attribute set, but decide not to operate on
2174any frames.
2175
2176In the next example, the frame filter operates on all frames and
2177utilizes a frame decorator to perform some work on the frames.
2178@xref{Frame Decorator API}, for further information on the frame
2179decorator interface.
2180
2181This example works on inlined frames. It highlights frames which are
2182inlined by tagging them with an ``[inlined]'' tag. By applying a
2183frame decorator to all frames with the Python @code{itertools imap}
2184method, the example defers actions to the frame decorator. Frame
2185decorators are only processed when @value{GDBN} prints the backtrace.
2186
2187This introduces a new decision making topic: whether to perform
2188decision making operations at the filtering step, or at the printing
2189step. In this example's approach, it does not perform any filtering
2190decisions at the filtering step beyond mapping a frame decorator to
2191each frame. This allows the actual decision making to be performed
2192when each frame is printed. This is an important consideration, and
2193well worth reflecting upon when designing a frame filter. An issue
2194that frame filters should avoid is unwinding the stack if possible.
2195Some stacks can run very deep, into the tens of thousands in some
2196cases. To search every frame to determine if it is inlined ahead of
2197time may be too expensive at the filtering step. The frame filter
2198cannot know how many frames it has to iterate over, and it would have
2199to iterate through them all. This ends up duplicating effort as
2200@value{GDBN} performs this iteration when it prints the frames.
2201
2202In this example decision making can be deferred to the printing step.
2203As each frame is printed, the frame decorator can examine each frame
2204in turn when @value{GDBN} iterates. From a performance viewpoint,
2205this is the most appropriate decision to make as it avoids duplicating
2206the effort that the printing step would undertake anyway. Also, if
2207there are many frame filters unwinding the stack during filtering, it
2208can substantially delay the printing of the backtrace which will
2209result in large memory usage, and a poor user experience.
2210
2211@smallexample
2212class InlineFilter():
2213
2214 def __init__(self):
2215 self.name = "InlinedFrameFilter"
2216 self.priority = 100
2217 self.enabled = True
2218 gdb.frame_filters[self.name] = self
2219
2220 def filter(self, frame_iter):
2221 frame_iter = itertools.imap(InlinedFrameDecorator,
2222 frame_iter)
2223 return frame_iter
2224@end smallexample
2225
2226This frame filter is somewhat similar to the earlier example, except
2227that the @code{filter} method applies a frame decorator object called
2228@code{InlinedFrameDecorator} to each element in the iterator. The
2229@code{imap} Python method is light-weight. It does not proactively
2230iterate over the iterator, but rather creates a new iterator which
2231wraps the existing one.
2232
2233Below is the frame decorator for this example.
2234
2235@smallexample
2236class InlinedFrameDecorator(FrameDecorator):
2237
2238 def __init__(self, fobj):
2239 super(InlinedFrameDecorator, self).__init__(fobj)
2240
2241 def function(self):
2242 frame = fobj.inferior_frame()
2243 name = str(frame.name())
2244
2245 if frame.type() == gdb.INLINE_FRAME:
2246 name = name + " [inlined]"
2247
2248 return name
2249@end smallexample
2250
2251This frame decorator only defines and overrides the @code{function}
2252method. It lets the supplied @code{FrameDecorator}, which is shipped
2253with @value{GDBN}, perform the other work associated with printing
2254this frame.
2255
2256The combination of these two objects create this output from a
2257backtrace:
2258
2259@smallexample
2260#0 0x004004e0 in bar () at inline.c:11
2261#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2262#2 0x00400566 in main () at inline.c:31
2263@end smallexample
2264
2265So in the case of this example, a frame decorator is applied to all
2266frames, regardless of whether they may be inlined or not. As
2267@value{GDBN} iterates over the iterator produced by the frame filters,
2268@value{GDBN} executes each frame decorator which then makes a decision
2269on what to print in the @code{function} callback. Using a strategy
2270like this is a way to defer decisions on the frame content to printing
2271time.
2272
2273@subheading Eliding Frames
2274
2275It might be that the above example is not desirable for representing
2276inlined frames, and a hierarchical approach may be preferred. If we
2277want to hierarchically represent frames, the @code{elided} frame
2278decorator interface might be preferable.
2279
2280This example approaches the issue with the @code{elided} method. This
2281example is quite long, but very simplistic. It is out-of-scope for
2282this section to write a complete example that comprehensively covers
2283all approaches of finding and printing inlined frames. However, this
2284example illustrates the approach an author might use.
2285
2286This example comprises of three sections.
2287
2288@smallexample
2289class InlineFrameFilter():
2290
2291 def __init__(self):
2292 self.name = "InlinedFrameFilter"
2293 self.priority = 100
2294 self.enabled = True
2295 gdb.frame_filters[self.name] = self
2296
2297 def filter(self, frame_iter):
2298 return ElidingInlineIterator(frame_iter)
2299@end smallexample
2300
2301This frame filter is very similar to the other examples. The only
2302difference is this frame filter is wrapping the iterator provided to
2303it (@code{frame_iter}) with a custom iterator called
2304@code{ElidingInlineIterator}. This again defers actions to when
2305@value{GDBN} prints the backtrace, as the iterator is not traversed
2306until printing.
2307
2308The iterator for this example is as follows. It is in this section of
2309the example where decisions are made on the content of the backtrace.
2310
2311@smallexample
2312class ElidingInlineIterator:
2313 def __init__(self, ii):
2314 self.input_iterator = ii
2315
2316 def __iter__(self):
2317 return self
2318
2319 def next(self):
2320 frame = next(self.input_iterator)
2321
2322 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2323 return frame
2324
2325 try:
2326 eliding_frame = next(self.input_iterator)
2327 except StopIteration:
2328 return frame
2329 return ElidingFrameDecorator(eliding_frame, [frame])
2330@end smallexample
2331
2332This iterator implements the Python iterator protocol. When the
2333@code{next} function is called (when @value{GDBN} prints each frame),
2334the iterator checks if this frame decorator, @code{frame}, is wrapping
2335an inlined frame. If it is not, it returns the existing frame decorator
2336untouched. If it is wrapping an inlined frame, it assumes that the
2337inlined frame was contained within the next oldest frame,
2338@code{eliding_frame}, which it fetches. It then creates and returns a
2339frame decorator, @code{ElidingFrameDecorator}, which contains both the
2340elided frame, and the eliding frame.
2341
2342@smallexample
2343class ElidingInlineDecorator(FrameDecorator):
2344
2345 def __init__(self, frame, elided_frames):
2346 super(ElidingInlineDecorator, self).__init__(frame)
2347 self.frame = frame
2348 self.elided_frames = elided_frames
2349
2350 def elided(self):
2351 return iter(self.elided_frames)
2352@end smallexample
2353
2354This frame decorator overrides one function and returns the inlined
2355frame in the @code{elided} method. As before it lets
2356@code{FrameDecorator} do the rest of the work involved in printing
2357this frame. This produces the following output.
2358
2359@smallexample
2360#0 0x004004e0 in bar () at inline.c:11
2361#2 0x00400529 in main () at inline.c:25
2362 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2363@end smallexample
2364
2365In that output, @code{max} which has been inlined into @code{main} is
2366printed hierarchically. Another approach would be to combine the
2367@code{function} method, and the @code{elided} method to both print a
2368marker in the inlined frame, and also show the hierarchical
2369relationship.
2370
d11916aa
SS
2371@node Unwinding Frames in Python
2372@subsubsection Unwinding Frames in Python
2373@cindex unwinding frames in Python
2374
2375In @value{GDBN} terminology ``unwinding'' is the process of finding
2376the previous frame (that is, caller's) from the current one. An
2377unwinder has three methods. The first one checks if it can handle
2378given frame (``sniff'' it). For the frames it can sniff an unwinder
2379provides two additional methods: it can return frame's ID, and it can
2380fetch registers from the previous frame. A running @value{GDBN}
2381mantains a list of the unwinders and calls each unwinder's sniffer in
2382turn until it finds the one that recognizes the current frame. There
2383is an API to register an unwinder.
2384
2385The unwinders that come with @value{GDBN} handle standard frames.
2386However, mixed language applications (for example, an application
2387running Java Virtual Machine) sometimes use frame layouts that cannot
2388be handled by the @value{GDBN} unwinders. You can write Python code
2389that can handle such custom frames.
2390
2391You implement a frame unwinder in Python as a class with which has two
2392attributes, @code{name} and @code{enabled}, with obvious meanings, and
2393a single method @code{__call__}, which examines a given frame and
2394returns an object (an instance of @code{gdb.UnwindInfo class)}
2395describing it. If an unwinder does not recognize a frame, it should
2396return @code{None}. The code in @value{GDBN} that enables writing
2397unwinders in Python uses this object to return frame's ID and previous
2398frame registers when @value{GDBN} core asks for them.
2399
e7b5068c
TT
2400An unwinder should do as little work as possible. Some otherwise
2401innocuous operations can cause problems (even crashes, as this code is
2402not not well-hardened yet). For example, making an inferior call from
2403an unwinder is unadvisable, as an inferior call will reset
2404@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2405unwinding.
2406
d11916aa
SS
2407@subheading Unwinder Input
2408
2409An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2410provides a method to read frame's registers:
2411
2412@defun PendingFrame.read_register (reg)
e7b5068c 2413This method returns the contents of the register @var{reg} in the
d11916aa
SS
2414frame as a @code{gdb.Value} object. @var{reg} can be either a
2415register number or a register name; the values are platform-specific.
2416They are usually found in the corresponding
e7b5068c
TT
2417@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2418@var{reg} does not name a register for the current architecture, this
2419method will throw an exception.
2420
2421Note that this method will always return a @code{gdb.Value} for a
2422valid register name. This does not mean that the value will be valid.
2423For example, you may request a register that an earlier unwinder could
2424not unwind---the value will be unavailable. Instead, the
2425@code{gdb.Value} returned from this method will be lazy; that is, its
2426underlying bits will not be fetched until it is first used. So,
2427attempting to use such a value will cause an exception at the point of
2428use.
2429
2430The type of the returned @code{gdb.Value} depends on the register and
2431the architecture. It is common for registers to have a scalar type,
2432like @code{long long}; but many other types are possible, such as
2433pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2434@end defun
2435
2436It also provides a factory method to create a @code{gdb.UnwindInfo}
2437instance to be returned to @value{GDBN}:
2438
2439@defun PendingFrame.create_unwind_info (frame_id)
2440Returns a new @code{gdb.UnwindInfo} instance identified by given
2441@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2442using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2443determine which function will be used, as follows:
2444
2445@table @code
d11916aa 2446@item sp, pc
e7b5068c
TT
2447The frame is identified by the given stack address and PC. The stack
2448address must be chosen so that it is constant throughout the lifetime
2449of the frame, so a typical choice is the value of the stack pointer at
2450the start of the function---in the DWARF standard, this would be the
2451``Call Frame Address''.
d11916aa 2452
e7b5068c
TT
2453This is the most common case by far. The other cases are documented
2454for completeness but are only useful in specialized situations.
2455
2456@item sp, pc, special
2457The frame is identified by the stack address, the PC, and a
2458``special'' address. The special address is used on architectures
2459that can have frames that do not change the stack, but which are still
2460distinct, for example the IA-64, which has a second stack for
2461registers. Both @var{sp} and @var{special} must be constant
2462throughout the lifetime of the frame.
d11916aa
SS
2463
2464@item sp
e7b5068c
TT
2465The frame is identified by the stack address only. Any other stack
2466frame with a matching @var{sp} will be considered to match this frame.
2467Inside gdb, this is called a ``wild frame''. You will never need
2468this.
d11916aa 2469@end table
e7b5068c
TT
2470
2471Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2472
2473@end defun
2474
2475@subheading Unwinder Output: UnwindInfo
2476
2477Use @code{PendingFrame.create_unwind_info} method described above to
2478create a @code{gdb.UnwindInfo} instance. Use the following method to
2479specify caller registers that have been saved in this frame:
2480
2481@defun gdb.UnwindInfo.add_saved_register (reg, value)
2482@var{reg} identifies the register. It can be a number or a name, just
2483as for the @code{PendingFrame.read_register} method above.
2484@var{value} is a register value (a @code{gdb.Value} object).
2485@end defun
2486
2487@subheading Unwinder Skeleton Code
2488
2489@value{GDBN} comes with the module containing the base @code{Unwinder}
2490class. Derive your unwinder class from it and structure the code as
2491follows:
2492
2493@smallexample
2494from gdb.unwinders import Unwinder
2495
2496class FrameId(object):
2497 def __init__(self, sp, pc):
2498 self.sp = sp
2499 self.pc = pc
2500
2501
2502class MyUnwinder(Unwinder):
2503 def __init__(....):
2504 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2505
2506 def __call__(pending_frame):
2507 if not <we recognize frame>:
2508 return None
2509 # Create UnwindInfo. Usually the frame is identified by the stack
2510 # pointer and the program counter.
2511 sp = pending_frame.read_register(<SP number>)
2512 pc = pending_frame.read_register(<PC number>)
2513 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2514
2515 # Find the values of the registers in the caller's frame and
2516 # save them in the result:
2517 unwind_info.add_saved_register(<register>, <value>)
2518 ....
2519
2520 # Return the result:
2521 return unwind_info
2522
2523@end smallexample
2524
2525@subheading Registering a Unwinder
2526
2527An object file, a program space, and the @value{GDBN} proper can have
2528unwinders registered with it.
2529
2530The @code{gdb.unwinders} module provides the function to register a
2531unwinder:
2532
2533@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2534@var{locus} is specifies an object file or a program space to which
2535@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2536@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2537added @var{unwinder} will be called before any other unwinder from the
2538same locus. Two unwinders in the same locus cannot have the same
2539name. An attempt to add a unwinder with already existing name raises
2540an exception unless @var{replace} is @code{True}, in which case the
2541old unwinder is deleted.
2542@end defun
2543
2544@subheading Unwinder Precedence
2545
2546@value{GDBN} first calls the unwinders from all the object files in no
2547particular order, then the unwinders from the current program space,
2548and finally the unwinders from @value{GDBN}.
2549
0c6e92a5
SC
2550@node Xmethods In Python
2551@subsubsection Xmethods In Python
2552@cindex xmethods in Python
2553
2554@dfn{Xmethods} are additional methods or replacements for existing
2555methods of a C@t{++} class. This feature is useful for those cases
2556where a method defined in C@t{++} source code could be inlined or
2557optimized out by the compiler, making it unavailable to @value{GDBN}.
2558For such cases, one can define an xmethod to serve as a replacement
2559for the method defined in the C@t{++} source code. @value{GDBN} will
2560then invoke the xmethod, instead of the C@t{++} method, to
2561evaluate expressions. One can also use xmethods when debugging
2562with core files. Moreover, when debugging live programs, invoking an
2563xmethod need not involve running the inferior (which can potentially
2564perturb its state). Hence, even if the C@t{++} method is available, it
2565is better to use its replacement xmethod if one is defined.
2566
2567The xmethods feature in Python is available via the concepts of an
2568@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2569implement an xmethod, one has to implement a matcher and a
2570corresponding worker for it (more than one worker can be
2571implemented, each catering to a different overloaded instance of the
2572method). Internally, @value{GDBN} invokes the @code{match} method of a
2573matcher to match the class type and method name. On a match, the
2574@code{match} method returns a list of matching @emph{worker} objects.
2575Each worker object typically corresponds to an overloaded instance of
2576the xmethod. They implement a @code{get_arg_types} method which
2577returns a sequence of types corresponding to the arguments the xmethod
2578requires. @value{GDBN} uses this sequence of types to perform
2579overload resolution and picks a winning xmethod worker. A winner
2580is also selected from among the methods @value{GDBN} finds in the
2581C@t{++} source code. Next, the winning xmethod worker and the
2582winning C@t{++} method are compared to select an overall winner. In
2583case of a tie between a xmethod worker and a C@t{++} method, the
2584xmethod worker is selected as the winner. That is, if a winning
2585xmethod worker is found to be equivalent to the winning C@t{++}
2586method, then the xmethod worker is treated as a replacement for
2587the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2588method. If the winning xmethod worker is the overall winner, then
897c3d32 2589the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2590of the worker object.
2591
2592If one wants to implement an xmethod as a replacement for an
2593existing C@t{++} method, then they have to implement an equivalent
2594xmethod which has exactly the same name and takes arguments of
2595exactly the same type as the C@t{++} method. If the user wants to
2596invoke the C@t{++} method even though a replacement xmethod is
2597available for that method, then they can disable the xmethod.
2598
2599@xref{Xmethod API}, for API to implement xmethods in Python.
2600@xref{Writing an Xmethod}, for implementing xmethods in Python.
2601
2602@node Xmethod API
2603@subsubsection Xmethod API
2604@cindex xmethod API
2605
2606The @value{GDBN} Python API provides classes, interfaces and functions
2607to implement, register and manipulate xmethods.
2608@xref{Xmethods In Python}.
2609
2610An xmethod matcher should be an instance of a class derived from
2611@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2612object with similar interface and attributes. An instance of
2613@code{XMethodMatcher} has the following attributes:
2614
2615@defvar name
2616The name of the matcher.
2617@end defvar
2618
2619@defvar enabled
2620A boolean value indicating whether the matcher is enabled or disabled.
2621@end defvar
2622
2623@defvar methods
2624A list of named methods managed by the matcher. Each object in the list
2625is an instance of the class @code{XMethod} defined in the module
2626@code{gdb.xmethod}, or any object with the following attributes:
2627
2628@table @code
2629
2630@item name
2631Name of the xmethod which should be unique for each xmethod
2632managed by the matcher.
2633
2634@item enabled
2635A boolean value indicating whether the xmethod is enabled or
2636disabled.
2637
2638@end table
2639
2640The class @code{XMethod} is a convenience class with same
2641attributes as above along with the following constructor:
2642
dd5d5494 2643@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2644Constructs an enabled xmethod with name @var{name}.
2645@end defun
2646@end defvar
2647
2648@noindent
2649The @code{XMethodMatcher} class has the following methods:
2650
dd5d5494 2651@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2652Constructs an enabled xmethod matcher with name @var{name}. The
2653@code{methods} attribute is initialized to @code{None}.
2654@end defun
2655
dd5d5494 2656@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2657Derived classes should override this method. It should return a
2658xmethod worker object (or a sequence of xmethod worker
2659objects) matching the @var{class_type} and @var{method_name}.
2660@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2661is a string value. If the matcher manages named methods as listed in
2662its @code{methods} attribute, then only those worker objects whose
2663corresponding entries in the @code{methods} list are enabled should be
2664returned.
2665@end defun
2666
2667An xmethod worker should be an instance of a class derived from
2668@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2669or support the following interface:
2670
dd5d5494 2671@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2672This method returns a sequence of @code{gdb.Type} objects corresponding
2673to the arguments that the xmethod takes. It can return an empty
2674sequence or @code{None} if the xmethod does not take any arguments.
2675If the xmethod takes a single argument, then a single
2676@code{gdb.Type} object corresponding to it can be returned.
2677@end defun
2678
2ce1cdbf
DE
2679@defun XMethodWorker.get_result_type (self, *args)
2680This method returns a @code{gdb.Type} object representing the type
2681of the result of invoking this xmethod.
2682The @var{args} argument is the same tuple of arguments that would be
2683passed to the @code{__call__} method of this worker.
2684@end defun
2685
dd5d5494 2686@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2687This is the method which does the @emph{work} of the xmethod. The
2688@var{args} arguments is the tuple of arguments to the xmethod. Each
2689element in this tuple is a gdb.Value object. The first element is
2690always the @code{this} pointer value.
2691@end defun
2692
2693For @value{GDBN} to lookup xmethods, the xmethod matchers
2694should be registered using the following function defined in the module
2695@code{gdb.xmethod}:
2696
dd5d5494 2697@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2698The @code{matcher} is registered with @code{locus}, replacing an
2699existing matcher with the same name as @code{matcher} if
2700@code{replace} is @code{True}. @code{locus} can be a
2701@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2702@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2703@code{None}. If it is @code{None}, then @code{matcher} is registered
2704globally.
2705@end defun
2706
2707@node Writing an Xmethod
2708@subsubsection Writing an Xmethod
2709@cindex writing xmethods in Python
2710
2711Implementing xmethods in Python will require implementing xmethod
2712matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2713the following C@t{++} class:
2714
2715@smallexample
2716class MyClass
2717@{
2718public:
2719 MyClass (int a) : a_(a) @{ @}
2720
2721 int geta (void) @{ return a_; @}
2722 int operator+ (int b);
2723
2724private:
2725 int a_;
2726@};
2727
2728int
2729MyClass::operator+ (int b)
2730@{
2731 return a_ + b;
2732@}
2733@end smallexample
2734
2735@noindent
2736Let us define two xmethods for the class @code{MyClass}, one
2737replacing the method @code{geta}, and another adding an overloaded
2738flavor of @code{operator+} which takes a @code{MyClass} argument (the
2739C@t{++} code above already has an overloaded @code{operator+}
2740which takes an @code{int} argument). The xmethod matcher can be
2741defined as follows:
2742
2743@smallexample
2744class MyClass_geta(gdb.xmethod.XMethod):
2745 def __init__(self):
2746 gdb.xmethod.XMethod.__init__(self, 'geta')
2747
2748 def get_worker(self, method_name):
2749 if method_name == 'geta':
2750 return MyClassWorker_geta()
2751
2752
2753class MyClass_sum(gdb.xmethod.XMethod):
2754 def __init__(self):
2755 gdb.xmethod.XMethod.__init__(self, 'sum')
2756
2757 def get_worker(self, method_name):
2758 if method_name == 'operator+':
2759 return MyClassWorker_plus()
2760
2761
2762class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2763 def __init__(self):
2764 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2765 # List of methods 'managed' by this matcher
2766 self.methods = [MyClass_geta(), MyClass_sum()]
2767
2768 def match(self, class_type, method_name):
2769 if class_type.tag != 'MyClass':
2770 return None
2771 workers = []
2772 for method in self.methods:
2773 if method.enabled:
2774 worker = method.get_worker(method_name)
2775 if worker:
2776 workers.append(worker)
2777
2778 return workers
2779@end smallexample
2780
2781@noindent
2782Notice that the @code{match} method of @code{MyClassMatcher} returns
2783a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2784method, and a worker object of type @code{MyClassWorker_plus} for the
2785@code{operator+} method. This is done indirectly via helper classes
2786derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2787@code{methods} attribute in a matcher as it is optional. However, if a
2788matcher manages more than one xmethod, it is a good practice to list the
2789xmethods in the @code{methods} attribute of the matcher. This will then
2790facilitate enabling and disabling individual xmethods via the
2791@code{enable/disable} commands. Notice also that a worker object is
2792returned only if the corresponding entry in the @code{methods} attribute
2793of the matcher is enabled.
2794
2795The implementation of the worker classes returned by the matcher setup
2796above is as follows:
2797
2798@smallexample
2799class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2800 def get_arg_types(self):
2801 return None
2ce1cdbf
DE
2802
2803 def get_result_type(self, obj):
2804 return gdb.lookup_type('int')
0c6e92a5
SC
2805
2806 def __call__(self, obj):
2807 return obj['a_']
2808
2809
2810class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2811 def get_arg_types(self):
2812 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2813
2814 def get_result_type(self, obj):
2815 return gdb.lookup_type('int')
0c6e92a5
SC
2816
2817 def __call__(self, obj, other):
2818 return obj['a_'] + other['a_']
2819@end smallexample
2820
2821For @value{GDBN} to actually lookup a xmethod, it has to be
2822registered with it. The matcher defined above is registered with
2823@value{GDBN} globally as follows:
2824
2825@smallexample
2826gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2827@end smallexample
2828
2829If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2830code as follows:
2831
2832@smallexample
2833MyClass obj(5);
2834@end smallexample
2835
2836@noindent
2837then, after loading the Python script defining the xmethod matchers
2838and workers into @code{GDBN}, invoking the method @code{geta} or using
2839the operator @code{+} on @code{obj} will invoke the xmethods
2840defined above:
2841
2842@smallexample
2843(gdb) p obj.geta()
2844$1 = 5
2845
2846(gdb) p obj + obj
2847$2 = 10
2848@end smallexample
2849
2850Consider another example with a C++ template class:
2851
2852@smallexample
2853template <class T>
2854class MyTemplate
2855@{
2856public:
2857 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2858 ~MyTemplate () @{ delete [] data_; @}
2859
2860 int footprint (void)
2861 @{
2862 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2863 @}
2864
2865private:
2866 int dsize_;
2867 T *data_;
2868@};
2869@end smallexample
2870
2871Let us implement an xmethod for the above class which serves as a
2872replacement for the @code{footprint} method. The full code listing
2873of the xmethod workers and xmethod matchers is as follows:
2874
2875@smallexample
2876class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2877 def __init__(self, class_type):
2878 self.class_type = class_type
2ce1cdbf 2879
0c6e92a5
SC
2880 def get_arg_types(self):
2881 return None
2ce1cdbf
DE
2882
2883 def get_result_type(self):
2884 return gdb.lookup_type('int')
2885
0c6e92a5
SC
2886 def __call__(self, obj):
2887 return (self.class_type.sizeof +
2888 obj['dsize_'] *
2889 self.class_type.template_argument(0).sizeof)
2890
2891
2892class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2893 def __init__(self):
2894 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2895
2896 def match(self, class_type, method_name):
2897 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2898 class_type.tag) and
2899 method_name == 'footprint'):
2900 return MyTemplateWorker_footprint(class_type)
2901@end smallexample
2902
2903Notice that, in this example, we have not used the @code{methods}
2904attribute of the matcher as the matcher manages only one xmethod. The
2905user can enable/disable this xmethod by enabling/disabling the matcher
2906itself.
2907
329baa95
DE
2908@node Inferiors In Python
2909@subsubsection Inferiors In Python
2910@cindex inferiors in Python
2911
2912@findex gdb.Inferior
2913Programs which are being run under @value{GDBN} are called inferiors
2914(@pxref{Inferiors and Programs}). Python scripts can access
2915information about and manipulate inferiors controlled by @value{GDBN}
2916via objects of the @code{gdb.Inferior} class.
2917
2918The following inferior-related functions are available in the @code{gdb}
2919module:
2920
2921@defun gdb.inferiors ()
2922Return a tuple containing all inferior objects.
2923@end defun
2924
2925@defun gdb.selected_inferior ()
2926Return an object representing the current inferior.
2927@end defun
2928
2929A @code{gdb.Inferior} object has the following attributes:
2930
2931@defvar Inferior.num
2932ID of inferior, as assigned by GDB.
2933@end defvar
2934
2935@defvar Inferior.pid
2936Process ID of the inferior, as assigned by the underlying operating
2937system.
2938@end defvar
2939
2940@defvar Inferior.was_attached
2941Boolean signaling whether the inferior was created using `attach', or
2942started by @value{GDBN} itself.
2943@end defvar
2944
a40bf0c2
SM
2945@defvar Inferior.progspace
2946The inferior's program space. @xref{Progspaces In Python}.
2947@end defvar
2948
329baa95
DE
2949A @code{gdb.Inferior} object has the following methods:
2950
2951@defun Inferior.is_valid ()
2952Returns @code{True} if the @code{gdb.Inferior} object is valid,
2953@code{False} if not. A @code{gdb.Inferior} object will become invalid
2954if the inferior no longer exists within @value{GDBN}. All other
2955@code{gdb.Inferior} methods will throw an exception if it is invalid
2956at the time the method is called.
2957@end defun
2958
2959@defun Inferior.threads ()
2960This method returns a tuple holding all the threads which are valid
2961when it is called. If there are no valid threads, the method will
2962return an empty tuple.
2963@end defun
2964
add5ded5
TT
2965@defun Inferior.architecture ()
2966Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2967for this inferior. This represents the architecture of the inferior
2968as a whole. Some platforms can have multiple architectures in a
2969single address space, so this may not match the architecture of a
163cffef 2970particular frame (@pxref{Frames In Python}).
9e1698c6 2971@end defun
add5ded5 2972
329baa95
DE
2973@findex Inferior.read_memory
2974@defun Inferior.read_memory (address, length)
a86c90e6 2975Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2976@var{address}. Returns a buffer object, which behaves much like an array
2977or a string. It can be modified and given to the
79778b30 2978@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2979value is a @code{memoryview} object.
2980@end defun
2981
2982@findex Inferior.write_memory
2983@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2984Write the contents of @var{buffer} to the inferior, starting at
2985@var{address}. The @var{buffer} parameter must be a Python object
2986which supports the buffer protocol, i.e., a string, an array or the
2987object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2988determines the number of addressable memory units from @var{buffer} to be
2989written.
329baa95
DE
2990@end defun
2991
2992@findex gdb.search_memory
2993@defun Inferior.search_memory (address, length, pattern)
2994Search a region of the inferior memory starting at @var{address} with
2995the given @var{length} using the search pattern supplied in
2996@var{pattern}. The @var{pattern} parameter must be a Python object
2997which supports the buffer protocol, i.e., a string, an array or the
2998object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2999containing the address where the pattern was found, or @code{None} if
3000the pattern could not be found.
3001@end defun
3002
2b0c8b01 3003@findex Inferior.thread_from_handle
da2c323b 3004@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3005@defun Inferior.thread_from_handle (handle)
3006Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3007library specific data structure such as @code{pthread_t} for pthreads
3008library implementations.
2b0c8b01
KB
3009
3010The function @code{Inferior.thread_from_thread_handle} provides
3011the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3012is deprecated.
da2c323b
KB
3013@end defun
3014
329baa95
DE
3015@node Events In Python
3016@subsubsection Events In Python
3017@cindex inferior events in Python
3018
3019@value{GDBN} provides a general event facility so that Python code can be
3020notified of various state changes, particularly changes that occur in
3021the inferior.
3022
3023An @dfn{event} is just an object that describes some state change. The
3024type of the object and its attributes will vary depending on the details
3025of the change. All the existing events are described below.
3026
3027In order to be notified of an event, you must register an event handler
3028with an @dfn{event registry}. An event registry is an object in the
3029@code{gdb.events} module which dispatches particular events. A registry
3030provides methods to register and unregister event handlers:
3031
3032@defun EventRegistry.connect (object)
3033Add the given callable @var{object} to the registry. This object will be
3034called when an event corresponding to this registry occurs.
3035@end defun
3036
3037@defun EventRegistry.disconnect (object)
3038Remove the given @var{object} from the registry. Once removed, the object
3039will no longer receive notifications of events.
3040@end defun
3041
3042Here is an example:
3043
3044@smallexample
3045def exit_handler (event):
3046 print "event type: exit"
3047 print "exit code: %d" % (event.exit_code)
3048
3049gdb.events.exited.connect (exit_handler)
3050@end smallexample
3051
3052In the above example we connect our handler @code{exit_handler} to the
3053registry @code{events.exited}. Once connected, @code{exit_handler} gets
3054called when the inferior exits. The argument @dfn{event} in this example is
3055of type @code{gdb.ExitedEvent}. As you can see in the example the
3056@code{ExitedEvent} object has an attribute which indicates the exit code of
3057the inferior.
3058
3059The following is a listing of the event registries that are available and
3060details of the events they emit:
3061
3062@table @code
3063
3064@item events.cont
3065Emits @code{gdb.ThreadEvent}.
3066
3067Some events can be thread specific when @value{GDBN} is running in non-stop
3068mode. When represented in Python, these events all extend
3069@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3070events which are emitted by this or other modules might extend this event.
3071Examples of these events are @code{gdb.BreakpointEvent} and
3072@code{gdb.ContinueEvent}.
3073
3074@defvar ThreadEvent.inferior_thread
3075In non-stop mode this attribute will be set to the specific thread which was
3076involved in the emitted event. Otherwise, it will be set to @code{None}.
3077@end defvar
3078
3079Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3080
3081This event indicates that the inferior has been continued after a stop. For
3082inherited attribute refer to @code{gdb.ThreadEvent} above.
3083
3084@item events.exited
3085Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3086@code{events.ExitedEvent} has two attributes:
3087@defvar ExitedEvent.exit_code
3088An integer representing the exit code, if available, which the inferior
3089has returned. (The exit code could be unavailable if, for example,
3090@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3091the attribute does not exist.
3092@end defvar
373832b6 3093@defvar ExitedEvent.inferior
329baa95
DE
3094A reference to the inferior which triggered the @code{exited} event.
3095@end defvar
3096
3097@item events.stop
3098Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3099
3100Indicates that the inferior has stopped. All events emitted by this registry
3101extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3102will indicate the stopped thread when @value{GDBN} is running in non-stop
3103mode. Refer to @code{gdb.ThreadEvent} above for more details.
3104
3105Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3106
3107This event indicates that the inferior or one of its threads has received as
3108signal. @code{gdb.SignalEvent} has the following attributes:
3109
3110@defvar SignalEvent.stop_signal
3111A string representing the signal received by the inferior. A list of possible
3112signal values can be obtained by running the command @code{info signals} in
3113the @value{GDBN} command prompt.
3114@end defvar
3115
3116Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3117
3118@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3119been hit, and has the following attributes:
3120
3121@defvar BreakpointEvent.breakpoints
3122A sequence containing references to all the breakpoints (type
3123@code{gdb.Breakpoint}) that were hit.
3124@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3125@end defvar
3126@defvar BreakpointEvent.breakpoint
3127A reference to the first breakpoint that was hit.
3128This function is maintained for backward compatibility and is now deprecated
3129in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3130@end defvar
3131
3132@item events.new_objfile
3133Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3134been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3135
3136@defvar NewObjFileEvent.new_objfile
3137A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3138@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3139@end defvar
3140
4ffbba72
DE
3141@item events.clear_objfiles
3142Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3143files for a program space has been reset.
3144@code{gdb.ClearObjFilesEvent} has one attribute:
3145
3146@defvar ClearObjFilesEvent.progspace
3147A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3148been cleared. @xref{Progspaces In Python}.
3149@end defvar
3150
fb5af5e3
TT
3151@item events.inferior_call
3152Emits events just before and after a function in the inferior is
3153called by @value{GDBN}. Before an inferior call, this emits an event
3154of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3155this emits an event of type @code{gdb.InferiorCallPostEvent}.
3156
3157@table @code
3158@tindex gdb.InferiorCallPreEvent
3159@item @code{gdb.InferiorCallPreEvent}
3160Indicates that a function in the inferior is about to be called.
162078c8
NB
3161
3162@defvar InferiorCallPreEvent.ptid
3163The thread in which the call will be run.
3164@end defvar
3165
3166@defvar InferiorCallPreEvent.address
3167The location of the function to be called.
3168@end defvar
3169
fb5af5e3
TT
3170@tindex gdb.InferiorCallPostEvent
3171@item @code{gdb.InferiorCallPostEvent}
3172Indicates that a function in the inferior has just been called.
162078c8
NB
3173
3174@defvar InferiorCallPostEvent.ptid
3175The thread in which the call was run.
3176@end defvar
3177
3178@defvar InferiorCallPostEvent.address
3179The location of the function that was called.
3180@end defvar
fb5af5e3 3181@end table
162078c8
NB
3182
3183@item events.memory_changed
3184Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3185inferior has been modified by the @value{GDBN} user, for instance via a
3186command like @w{@code{set *addr = value}}. The event has the following
3187attributes:
3188
3189@defvar MemoryChangedEvent.address
3190The start address of the changed region.
3191@end defvar
3192
3193@defvar MemoryChangedEvent.length
3194Length in bytes of the changed region.
3195@end defvar
3196
3197@item events.register_changed
3198Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3199inferior has been modified by the @value{GDBN} user.
3200
3201@defvar RegisterChangedEvent.frame
3202A gdb.Frame object representing the frame in which the register was modified.
3203@end defvar
3204@defvar RegisterChangedEvent.regnum
3205Denotes which register was modified.
3206@end defvar
3207
dac790e1
TT
3208@item events.breakpoint_created
3209This is emitted when a new breakpoint has been created. The argument
3210that is passed is the new @code{gdb.Breakpoint} object.
3211
3212@item events.breakpoint_modified
3213This is emitted when a breakpoint has been modified in some way. The
3214argument that is passed is the new @code{gdb.Breakpoint} object.
3215
3216@item events.breakpoint_deleted
3217This is emitted when a breakpoint has been deleted. The argument that
3218is passed is the @code{gdb.Breakpoint} object. When this event is
3219emitted, the @code{gdb.Breakpoint} object will already be in its
3220invalid state; that is, the @code{is_valid} method will return
3221@code{False}.
3222
3f77c769
TT
3223@item events.before_prompt
3224This event carries no payload. It is emitted each time @value{GDBN}
3225presents a prompt to the user.
3226
7c96f8c1
TT
3227@item events.new_inferior
3228This is emitted when a new inferior is created. Note that the
3229inferior is not necessarily running; in fact, it may not even have an
3230associated executable.
3231
3232The event is of type @code{gdb.NewInferiorEvent}. This has a single
3233attribute:
3234
3235@defvar NewInferiorEvent.inferior
3236The new inferior, a @code{gdb.Inferior} object.
3237@end defvar
3238
3239@item events.inferior_deleted
3240This is emitted when an inferior has been deleted. Note that this is
3241not the same as process exit; it is notified when the inferior itself
3242is removed, say via @code{remove-inferiors}.
3243
3244The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3245attribute:
3246
3247@defvar NewInferiorEvent.inferior
3248The inferior that is being removed, a @code{gdb.Inferior} object.
3249@end defvar
3250
3251@item events.new_thread
3252This is emitted when @value{GDBN} notices a new thread. The event is of
3253type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3254This has a single attribute:
3255
3256@defvar NewThreadEvent.inferior_thread
3257The new thread.
3258@end defvar
3259
329baa95
DE
3260@end table
3261
3262@node Threads In Python
3263@subsubsection Threads In Python
3264@cindex threads in python
3265
3266@findex gdb.InferiorThread
3267Python scripts can access information about, and manipulate inferior threads
3268controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3269
3270The following thread-related functions are available in the @code{gdb}
3271module:
3272
3273@findex gdb.selected_thread
3274@defun gdb.selected_thread ()
3275This function returns the thread object for the selected thread. If there
3276is no selected thread, this will return @code{None}.
3277@end defun
3278
3279A @code{gdb.InferiorThread} object has the following attributes:
3280
3281@defvar InferiorThread.name
3282The name of the thread. If the user specified a name using
3283@code{thread name}, then this returns that name. Otherwise, if an
3284OS-supplied name is available, then it is returned. Otherwise, this
3285returns @code{None}.
3286
3287This attribute can be assigned to. The new value must be a string
3288object, which sets the new name, or @code{None}, which removes any
3289user-specified thread name.
3290@end defvar
3291
3292@defvar InferiorThread.num
5d5658a1 3293The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3294@end defvar
3295
22a02324
PA
3296@defvar InferiorThread.global_num
3297The global ID of the thread, as assigned by GDB. You can use this to
3298make Python breakpoints thread-specific, for example
3299(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3300@end defvar
3301
329baa95
DE
3302@defvar InferiorThread.ptid
3303ID of the thread, as assigned by the operating system. This attribute is a
3304tuple containing three integers. The first is the Process ID (PID); the second
3305is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3306Either the LWPID or TID may be 0, which indicates that the operating system
3307does not use that identifier.
3308@end defvar
3309
84654457
PA
3310@defvar InferiorThread.inferior
3311The inferior this thread belongs to. This attribute is represented as
3312a @code{gdb.Inferior} object. This attribute is not writable.
3313@end defvar
3314
329baa95
DE
3315A @code{gdb.InferiorThread} object has the following methods:
3316
3317@defun InferiorThread.is_valid ()
3318Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3319@code{False} if not. A @code{gdb.InferiorThread} object will become
3320invalid if the thread exits, or the inferior that the thread belongs
3321is deleted. All other @code{gdb.InferiorThread} methods will throw an
3322exception if it is invalid at the time the method is called.
3323@end defun
3324
3325@defun InferiorThread.switch ()
3326This changes @value{GDBN}'s currently selected thread to the one represented
3327by this object.
3328@end defun
3329
3330@defun InferiorThread.is_stopped ()
3331Return a Boolean indicating whether the thread is stopped.
3332@end defun
3333
3334@defun InferiorThread.is_running ()
3335Return a Boolean indicating whether the thread is running.
3336@end defun
3337
3338@defun InferiorThread.is_exited ()
3339Return a Boolean indicating whether the thread is exited.
3340@end defun
3341
c369f8f0
KB
3342@defun InferiorThread.handle ()
3343Return the thread object's handle, represented as a Python @code{bytes}
3344object. A @code{gdb.Value} representation of the handle may be
3345constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3346the Python @code{bytes} representation of the handle and @var{type} is
3347a @code{gdb.Type} for the handle type.
3348@end defun
3349
0a0faf9f
TW
3350@node Recordings In Python
3351@subsubsection Recordings In Python
3352@cindex recordings in python
3353
3354The following recordings-related functions
3355(@pxref{Process Record and Replay}) are available in the @code{gdb}
3356module:
3357
3358@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3359Start a recording using the given @var{method} and @var{format}. If
3360no @var{format} is given, the default format for the recording method
3361is used. If no @var{method} is given, the default method will be used.
3362Returns a @code{gdb.Record} object on success. Throw an exception on
3363failure.
3364
3365The following strings can be passed as @var{method}:
3366
3367@itemize @bullet
3368@item
3369@code{"full"}
3370@item
3371@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3372@code{"bts"} or leave out for default format.
3373@end itemize
3374@end defun
3375
3376@defun gdb.current_recording ()
3377Access a currently running recording. Return a @code{gdb.Record}
3378object on success. Return @code{None} if no recording is currently
3379active.
3380@end defun
3381
3382@defun gdb.stop_recording ()
3383Stop the current recording. Throw an exception if no recording is
3384currently active. All record objects become invalid after this call.
3385@end defun
3386
3387A @code{gdb.Record} object has the following attributes:
3388
0a0faf9f
TW
3389@defvar Record.method
3390A string with the current recording method, e.g.@: @code{full} or
3391@code{btrace}.
3392@end defvar
3393
3394@defvar Record.format
3395A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3396@code{None}.
3397@end defvar
3398
3399@defvar Record.begin
3400A method specific instruction object representing the first instruction
3401in this recording.
3402@end defvar
3403
3404@defvar Record.end
3405A method specific instruction object representing the current
3406instruction, that is not actually part of the recording.
3407@end defvar
3408
3409@defvar Record.replay_position
3410The instruction representing the current replay position. If there is
3411no replay active, this will be @code{None}.
3412@end defvar
3413
3414@defvar Record.instruction_history
3415A list with all recorded instructions.
3416@end defvar
3417
3418@defvar Record.function_call_history
3419A list with all recorded function call segments.
3420@end defvar
3421
3422A @code{gdb.Record} object has the following methods:
3423
3424@defun Record.goto (instruction)
3425Move the replay position to the given @var{instruction}.
3426@end defun
3427
d050f7d7
TW
3428The common @code{gdb.Instruction} class that recording method specific
3429instruction objects inherit from, has the following attributes:
0a0faf9f 3430
d050f7d7 3431@defvar Instruction.pc
913aeadd 3432An integer representing this instruction's address.
0a0faf9f
TW
3433@end defvar
3434
d050f7d7 3435@defvar Instruction.data
913aeadd
TW
3436A buffer with the raw instruction data. In Python 3, the return value is a
3437@code{memoryview} object.
0a0faf9f
TW
3438@end defvar
3439
d050f7d7 3440@defvar Instruction.decoded
913aeadd 3441A human readable string with the disassembled instruction.
0a0faf9f
TW
3442@end defvar
3443
d050f7d7 3444@defvar Instruction.size
913aeadd 3445The size of the instruction in bytes.
0a0faf9f
TW
3446@end defvar
3447
d050f7d7
TW
3448Additionally @code{gdb.RecordInstruction} has the following attributes:
3449
3450@defvar RecordInstruction.number
3451An integer identifying this instruction. @code{number} corresponds to
3452the numbers seen in @code{record instruction-history}
3453(@pxref{Process Record and Replay}).
3454@end defvar
3455
3456@defvar RecordInstruction.sal
3457A @code{gdb.Symtab_and_line} object representing the associated symtab
3458and line of this instruction. May be @code{None} if no debug information is
3459available.
3460@end defvar
3461
0ed5da75 3462@defvar RecordInstruction.is_speculative
d050f7d7 3463A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3464@end defvar
3465
3466If an error occured during recording or decoding a recording, this error is
3467represented by a @code{gdb.RecordGap} object in the instruction list. It has
3468the following attributes:
3469
3470@defvar RecordGap.number
3471An integer identifying this gap. @code{number} corresponds to the numbers seen
3472in @code{record instruction-history} (@pxref{Process Record and Replay}).
3473@end defvar
3474
3475@defvar RecordGap.error_code
3476A numerical representation of the reason for the gap. The value is specific to
3477the current recording method.
3478@end defvar
3479
3480@defvar RecordGap.error_string
3481A human readable string with the reason for the gap.
0a0faf9f
TW
3482@end defvar
3483
14f819c8 3484A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3485
14f819c8
TW
3486@defvar RecordFunctionSegment.number
3487An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3488the numbers seen in @code{record function-call-history}
3489(@pxref{Process Record and Replay}).
3490@end defvar
3491
14f819c8 3492@defvar RecordFunctionSegment.symbol
0a0faf9f 3493A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3494@code{None} if no debug information is available.
0a0faf9f
TW
3495@end defvar
3496
14f819c8 3497@defvar RecordFunctionSegment.level
0a0faf9f
TW
3498An integer representing the function call's stack level. May be
3499@code{None} if the function call is a gap.
3500@end defvar
3501
14f819c8 3502@defvar RecordFunctionSegment.instructions
0ed5da75 3503A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3504associated with this function call.
0a0faf9f
TW
3505@end defvar
3506
14f819c8
TW
3507@defvar RecordFunctionSegment.up
3508A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3509function segment. If the call has not been recorded, this will be the
3510function segment to which control returns. If neither the call nor the
3511return have been recorded, this will be @code{None}.
3512@end defvar
3513
14f819c8
TW
3514@defvar RecordFunctionSegment.prev
3515A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3516segment of this function call. May be @code{None}.
3517@end defvar
3518
14f819c8
TW
3519@defvar RecordFunctionSegment.next
3520A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3521this function call. May be @code{None}.
3522@end defvar
3523
3524The following example demonstrates the usage of these objects and
3525functions to create a function that will rewind a record to the last
3526time a function in a different file was executed. This would typically
3527be used to track the execution of user provided callback functions in a
3528library which typically are not visible in a back trace.
3529
3530@smallexample
3531def bringback ():
3532 rec = gdb.current_recording ()
3533 if not rec:
3534 return
3535
3536 insn = rec.instruction_history
3537 if len (insn) == 0:
3538 return
3539
3540 try:
3541 position = insn.index (rec.replay_position)
3542 except:
3543 position = -1
3544 try:
3545 filename = insn[position].sal.symtab.fullname ()
3546 except:
3547 filename = None
3548
3549 for i in reversed (insn[:position]):
3550 try:
3551 current = i.sal.symtab.fullname ()
3552 except:
3553 current = None
3554
3555 if filename == current:
3556 continue
3557
3558 rec.goto (i)
3559 return
3560@end smallexample
3561
3562Another possible application is to write a function that counts the
3563number of code executions in a given line range. This line range can
3564contain parts of functions or span across several functions and is not
3565limited to be contiguous.
3566
3567@smallexample
3568def countrange (filename, linerange):
3569 count = 0
3570
3571 def filter_only (file_name):
3572 for call in gdb.current_recording ().function_call_history:
3573 try:
3574 if file_name in call.symbol.symtab.fullname ():
3575 yield call
3576 except:
3577 pass
3578
3579 for c in filter_only (filename):
3580 for i in c.instructions:
3581 try:
3582 if i.sal.line in linerange:
3583 count += 1
3584 break;
3585 except:
3586 pass
3587
3588 return count
3589@end smallexample
3590
329baa95
DE
3591@node Commands In Python
3592@subsubsection Commands In Python
3593
3594@cindex commands in python
3595@cindex python commands
3596You can implement new @value{GDBN} CLI commands in Python. A CLI
3597command is implemented using an instance of the @code{gdb.Command}
3598class, most commonly using a subclass.
3599
3600@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3601The object initializer for @code{Command} registers the new command
3602with @value{GDBN}. This initializer is normally invoked from the
3603subclass' own @code{__init__} method.
3604
3605@var{name} is the name of the command. If @var{name} consists of
3606multiple words, then the initial words are looked for as prefix
3607commands. In this case, if one of the prefix commands does not exist,
3608an exception is raised.
3609
3610There is no support for multi-line commands.
3611
3612@var{command_class} should be one of the @samp{COMMAND_} constants
3613defined below. This argument tells @value{GDBN} how to categorize the
3614new command in the help system.
3615
3616@var{completer_class} is an optional argument. If given, it should be
3617one of the @samp{COMPLETE_} constants defined below. This argument
3618tells @value{GDBN} how to perform completion for this command. If not
3619given, @value{GDBN} will attempt to complete using the object's
3620@code{complete} method (see below); if no such method is found, an
3621error will occur when completion is attempted.
3622
3623@var{prefix} is an optional argument. If @code{True}, then the new
3624command is a prefix command; sub-commands of this command may be
3625registered.
3626
3627The help text for the new command is taken from the Python
3628documentation string for the command's class, if there is one. If no
3629documentation string is provided, the default value ``This command is
3630not documented.'' is used.
3631@end defun
3632
3633@cindex don't repeat Python command
3634@defun Command.dont_repeat ()
3635By default, a @value{GDBN} command is repeated when the user enters a
3636blank line at the command prompt. A command can suppress this
3637behavior by invoking the @code{dont_repeat} method. This is similar
3638to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3639@end defun
3640
3641@defun Command.invoke (argument, from_tty)
3642This method is called by @value{GDBN} when this command is invoked.
3643
3644@var{argument} is a string. It is the argument to the command, after
3645leading and trailing whitespace has been stripped.
3646
3647@var{from_tty} is a boolean argument. When true, this means that the
3648command was entered by the user at the terminal; when false it means
3649that the command came from elsewhere.
3650
3651If this method throws an exception, it is turned into a @value{GDBN}
3652@code{error} call. Otherwise, the return value is ignored.
3653
3654@findex gdb.string_to_argv
3655To break @var{argument} up into an argv-like string use
3656@code{gdb.string_to_argv}. This function behaves identically to
3657@value{GDBN}'s internal argument lexer @code{buildargv}.
3658It is recommended to use this for consistency.
3659Arguments are separated by spaces and may be quoted.
3660Example:
3661
3662@smallexample
3663print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3664['1', '2 "3', '4 "5', "6 '7"]
3665@end smallexample
3666
3667@end defun
3668
3669@cindex completion of Python commands
3670@defun Command.complete (text, word)
3671This method is called by @value{GDBN} when the user attempts
3672completion on this command. All forms of completion are handled by
3673this method, that is, the @key{TAB} and @key{M-?} key bindings
3674(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3675complete}).
3676
697aa1b7
EZ
3677The arguments @var{text} and @var{word} are both strings; @var{text}
3678holds the complete command line up to the cursor's location, while
329baa95
DE
3679@var{word} holds the last word of the command line; this is computed
3680using a word-breaking heuristic.
3681
3682The @code{complete} method can return several values:
3683@itemize @bullet
3684@item
3685If the return value is a sequence, the contents of the sequence are
3686used as the completions. It is up to @code{complete} to ensure that the
3687contents actually do complete the word. A zero-length sequence is
3688allowed, it means that there were no completions available. Only
3689string elements of the sequence are used; other elements in the
3690sequence are ignored.
3691
3692@item
3693If the return value is one of the @samp{COMPLETE_} constants defined
3694below, then the corresponding @value{GDBN}-internal completion
3695function is invoked, and its result is used.
3696
3697@item
3698All other results are treated as though there were no available
3699completions.
3700@end itemize
3701@end defun
3702
3703When a new command is registered, it must be declared as a member of
3704some general class of commands. This is used to classify top-level
3705commands in the on-line help system; note that prefix commands are not
3706listed under their own category but rather that of their top-level
3707command. The available classifications are represented by constants
3708defined in the @code{gdb} module:
3709
3710@table @code
3711@findex COMMAND_NONE
3712@findex gdb.COMMAND_NONE
3713@item gdb.COMMAND_NONE
3714The command does not belong to any particular class. A command in
3715this category will not be displayed in any of the help categories.
3716
3717@findex COMMAND_RUNNING
3718@findex gdb.COMMAND_RUNNING
3719@item gdb.COMMAND_RUNNING
3720The command is related to running the inferior. For example,
3721@code{start}, @code{step}, and @code{continue} are in this category.
3722Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3723commands in this category.
3724
3725@findex COMMAND_DATA
3726@findex gdb.COMMAND_DATA
3727@item gdb.COMMAND_DATA
3728The command is related to data or variables. For example,
3729@code{call}, @code{find}, and @code{print} are in this category. Type
3730@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3731in this category.
3732
3733@findex COMMAND_STACK
3734@findex gdb.COMMAND_STACK
3735@item gdb.COMMAND_STACK
3736The command has to do with manipulation of the stack. For example,
3737@code{backtrace}, @code{frame}, and @code{return} are in this
3738category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3739list of commands in this category.
3740
3741@findex COMMAND_FILES
3742@findex gdb.COMMAND_FILES
3743@item gdb.COMMAND_FILES
3744This class is used for file-related commands. For example,
3745@code{file}, @code{list} and @code{section} are in this category.
3746Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3747commands in this category.
3748
3749@findex COMMAND_SUPPORT
3750@findex gdb.COMMAND_SUPPORT
3751@item gdb.COMMAND_SUPPORT
3752This should be used for ``support facilities'', generally meaning
3753things that are useful to the user when interacting with @value{GDBN},
3754but not related to the state of the inferior. For example,
3755@code{help}, @code{make}, and @code{shell} are in this category. Type
3756@kbd{help support} at the @value{GDBN} prompt to see a list of
3757commands in this category.
3758
3759@findex COMMAND_STATUS
3760@findex gdb.COMMAND_STATUS
3761@item gdb.COMMAND_STATUS
3762The command is an @samp{info}-related command, that is, related to the
3763state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3764and @code{show} are in this category. Type @kbd{help status} at the
3765@value{GDBN} prompt to see a list of commands in this category.
3766
3767@findex COMMAND_BREAKPOINTS
3768@findex gdb.COMMAND_BREAKPOINTS
3769@item gdb.COMMAND_BREAKPOINTS
3770The command has to do with breakpoints. For example, @code{break},
3771@code{clear}, and @code{delete} are in this category. Type @kbd{help
3772breakpoints} at the @value{GDBN} prompt to see a list of commands in
3773this category.
3774
3775@findex COMMAND_TRACEPOINTS
3776@findex gdb.COMMAND_TRACEPOINTS
3777@item gdb.COMMAND_TRACEPOINTS
3778The command has to do with tracepoints. For example, @code{trace},
3779@code{actions}, and @code{tfind} are in this category. Type
3780@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3781commands in this category.
3782
3783@findex COMMAND_USER
3784@findex gdb.COMMAND_USER
3785@item gdb.COMMAND_USER
3786The command is a general purpose command for the user, and typically
3787does not fit in one of the other categories.
3788Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3789a list of commands in this category, as well as the list of gdb macros
3790(@pxref{Sequences}).
3791
3792@findex COMMAND_OBSCURE
3793@findex gdb.COMMAND_OBSCURE
3794@item gdb.COMMAND_OBSCURE
3795The command is only used in unusual circumstances, or is not of
3796general interest to users. For example, @code{checkpoint},
3797@code{fork}, and @code{stop} are in this category. Type @kbd{help
3798obscure} at the @value{GDBN} prompt to see a list of commands in this
3799category.
3800
3801@findex COMMAND_MAINTENANCE
3802@findex gdb.COMMAND_MAINTENANCE
3803@item gdb.COMMAND_MAINTENANCE
3804The command is only useful to @value{GDBN} maintainers. The
3805@code{maintenance} and @code{flushregs} commands are in this category.
3806Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3807commands in this category.
3808@end table
3809
3810A new command can use a predefined completion function, either by
3811specifying it via an argument at initialization, or by returning it
3812from the @code{complete} method. These predefined completion
3813constants are all defined in the @code{gdb} module:
3814
b3ce5e5f
DE
3815@vtable @code
3816@vindex COMPLETE_NONE
329baa95
DE
3817@item gdb.COMPLETE_NONE
3818This constant means that no completion should be done.
3819
b3ce5e5f 3820@vindex COMPLETE_FILENAME
329baa95
DE
3821@item gdb.COMPLETE_FILENAME
3822This constant means that filename completion should be performed.
3823
b3ce5e5f 3824@vindex COMPLETE_LOCATION
329baa95
DE
3825@item gdb.COMPLETE_LOCATION
3826This constant means that location completion should be done.
3827@xref{Specify Location}.
3828
b3ce5e5f 3829@vindex COMPLETE_COMMAND
329baa95
DE
3830@item gdb.COMPLETE_COMMAND
3831This constant means that completion should examine @value{GDBN}
3832command names.
3833
b3ce5e5f 3834@vindex COMPLETE_SYMBOL
329baa95
DE
3835@item gdb.COMPLETE_SYMBOL
3836This constant means that completion should be done using symbol names
3837as the source.
3838
b3ce5e5f 3839@vindex COMPLETE_EXPRESSION
329baa95
DE
3840@item gdb.COMPLETE_EXPRESSION
3841This constant means that completion should be done on expressions.
3842Often this means completing on symbol names, but some language
3843parsers also have support for completing on field names.
b3ce5e5f 3844@end vtable
329baa95
DE
3845
3846The following code snippet shows how a trivial CLI command can be
3847implemented in Python:
3848
3849@smallexample
3850class HelloWorld (gdb.Command):
3851 """Greet the whole world."""
3852
3853 def __init__ (self):
3854 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3855
3856 def invoke (self, arg, from_tty):
3857 print "Hello, World!"
3858
3859HelloWorld ()
3860@end smallexample
3861
3862The last line instantiates the class, and is necessary to trigger the
3863registration of the command with @value{GDBN}. Depending on how the
3864Python code is read into @value{GDBN}, you may need to import the
3865@code{gdb} module explicitly.
3866
3867@node Parameters In Python
3868@subsubsection Parameters In Python
3869
3870@cindex parameters in python
3871@cindex python parameters
3872@tindex gdb.Parameter
3873@tindex Parameter
3874You can implement new @value{GDBN} parameters using Python. A new
3875parameter is implemented as an instance of the @code{gdb.Parameter}
3876class.
3877
3878Parameters are exposed to the user via the @code{set} and
3879@code{show} commands. @xref{Help}.
3880
3881There are many parameters that already exist and can be set in
3882@value{GDBN}. Two examples are: @code{set follow fork} and
3883@code{set charset}. Setting these parameters influences certain
3884behavior in @value{GDBN}. Similarly, you can define parameters that
3885can be used to influence behavior in custom Python scripts and commands.
3886
3887@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3888The object initializer for @code{Parameter} registers the new
3889parameter with @value{GDBN}. This initializer is normally invoked
3890from the subclass' own @code{__init__} method.
3891
3892@var{name} is the name of the new parameter. If @var{name} consists
3893of multiple words, then the initial words are looked for as prefix
3894parameters. An example of this can be illustrated with the
3895@code{set print} set of parameters. If @var{name} is
3896@code{print foo}, then @code{print} will be searched as the prefix
3897parameter. In this case the parameter can subsequently be accessed in
3898@value{GDBN} as @code{set print foo}.
3899
3900If @var{name} consists of multiple words, and no prefix parameter group
3901can be found, an exception is raised.
3902
3903@var{command-class} should be one of the @samp{COMMAND_} constants
3904(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3905categorize the new parameter in the help system.
3906
3907@var{parameter-class} should be one of the @samp{PARAM_} constants
3908defined below. This argument tells @value{GDBN} the type of the new
3909parameter; this information is used for input validation and
3910completion.
3911
3912If @var{parameter-class} is @code{PARAM_ENUM}, then
3913@var{enum-sequence} must be a sequence of strings. These strings
3914represent the possible values for the parameter.
3915
3916If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3917of a fourth argument will cause an exception to be thrown.
3918
3919The help text for the new parameter is taken from the Python
3920documentation string for the parameter's class, if there is one. If
3921there is no documentation string, a default value is used.
3922@end defun
3923
3924@defvar Parameter.set_doc
3925If this attribute exists, and is a string, then its value is used as
3926the help text for this parameter's @code{set} command. The value is
3927examined when @code{Parameter.__init__} is invoked; subsequent changes
3928have no effect.
3929@end defvar
3930
3931@defvar Parameter.show_doc
3932If this attribute exists, and is a string, then its value is used as
3933the help text for this parameter's @code{show} command. The value is
3934examined when @code{Parameter.__init__} is invoked; subsequent changes
3935have no effect.
3936@end defvar
3937
3938@defvar Parameter.value
3939The @code{value} attribute holds the underlying value of the
3940parameter. It can be read and assigned to just as any other
3941attribute. @value{GDBN} does validation when assignments are made.
3942@end defvar
3943
984ee559
TT
3944There are two methods that may be implemented in any @code{Parameter}
3945class. These are:
329baa95
DE
3946
3947@defun Parameter.get_set_string (self)
984ee559
TT
3948If this method exists, @value{GDBN} will call it when a
3949@var{parameter}'s value has been changed via the @code{set} API (for
3950example, @kbd{set foo off}). The @code{value} attribute has already
3951been populated with the new value and may be used in output. This
3952method must return a string. If the returned string is not empty,
3953@value{GDBN} will present it to the user.
ae778caf
TT
3954
3955If this method raises the @code{gdb.GdbError} exception
3956(@pxref{Exception Handling}), then @value{GDBN} will print the
3957exception's string and the @code{set} command will fail. Note,
3958however, that the @code{value} attribute will not be reset in this
3959case. So, if your parameter must validate values, it should store the
3960old value internally and reset the exposed value, like so:
3961
3962@smallexample
3963class ExampleParam (gdb.Parameter):
3964 def __init__ (self, name):
3965 super (ExampleParam, self).__init__ (name,
3966 gdb.COMMAND_DATA,
3967 gdb.PARAM_BOOLEAN)
3968 self.value = True
3969 self.saved_value = True
3970 def validate(self):
3971 return False
3972 def get_set_string (self):
3973 if not self.validate():
3974 self.value = self.saved_value
3975 raise gdb.GdbError('Failed to validate')
3976 self.saved_value = self.value
3977@end smallexample
329baa95
DE
3978@end defun
3979
3980@defun Parameter.get_show_string (self, svalue)
3981@value{GDBN} will call this method when a @var{parameter}'s
3982@code{show} API has been invoked (for example, @kbd{show foo}). The
3983argument @code{svalue} receives the string representation of the
3984current value. This method must return a string.
3985@end defun
3986
3987When a new parameter is defined, its type must be specified. The
3988available types are represented by constants defined in the @code{gdb}
3989module:
3990
3991@table @code
3992@findex PARAM_BOOLEAN
3993@findex gdb.PARAM_BOOLEAN
3994@item gdb.PARAM_BOOLEAN
3995The value is a plain boolean. The Python boolean values, @code{True}
3996and @code{False} are the only valid values.
3997
3998@findex PARAM_AUTO_BOOLEAN
3999@findex gdb.PARAM_AUTO_BOOLEAN
4000@item gdb.PARAM_AUTO_BOOLEAN
4001The value has three possible states: true, false, and @samp{auto}. In
4002Python, true and false are represented using boolean constants, and
4003@samp{auto} is represented using @code{None}.
4004
4005@findex PARAM_UINTEGER
4006@findex gdb.PARAM_UINTEGER
4007@item gdb.PARAM_UINTEGER
4008The value is an unsigned integer. The value of 0 should be
4009interpreted to mean ``unlimited''.
4010
4011@findex PARAM_INTEGER
4012@findex gdb.PARAM_INTEGER
4013@item gdb.PARAM_INTEGER
4014The value is a signed integer. The value of 0 should be interpreted
4015to mean ``unlimited''.
4016
4017@findex PARAM_STRING
4018@findex gdb.PARAM_STRING
4019@item gdb.PARAM_STRING
4020The value is a string. When the user modifies the string, any escape
4021sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4022translated into corresponding characters and encoded into the current
4023host charset.
4024
4025@findex PARAM_STRING_NOESCAPE
4026@findex gdb.PARAM_STRING_NOESCAPE
4027@item gdb.PARAM_STRING_NOESCAPE
4028The value is a string. When the user modifies the string, escapes are
4029passed through untranslated.
4030
4031@findex PARAM_OPTIONAL_FILENAME
4032@findex gdb.PARAM_OPTIONAL_FILENAME
4033@item gdb.PARAM_OPTIONAL_FILENAME
4034The value is a either a filename (a string), or @code{None}.
4035
4036@findex PARAM_FILENAME
4037@findex gdb.PARAM_FILENAME
4038@item gdb.PARAM_FILENAME
4039The value is a filename. This is just like
4040@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4041
4042@findex PARAM_ZINTEGER
4043@findex gdb.PARAM_ZINTEGER
4044@item gdb.PARAM_ZINTEGER
4045The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4046is interpreted as itself.
4047
0489430a
TT
4048@findex PARAM_ZUINTEGER
4049@findex gdb.PARAM_ZUINTEGER
4050@item gdb.PARAM_ZUINTEGER
4051The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4052except 0 is interpreted as itself, and the value cannot be negative.
4053
4054@findex PARAM_ZUINTEGER_UNLIMITED
4055@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4056@item gdb.PARAM_ZUINTEGER_UNLIMITED
4057The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4058except the special value -1 should be interpreted to mean
4059``unlimited''. Other negative values are not allowed.
4060
329baa95
DE
4061@findex PARAM_ENUM
4062@findex gdb.PARAM_ENUM
4063@item gdb.PARAM_ENUM
4064The value is a string, which must be one of a collection string
4065constants provided when the parameter is created.
4066@end table
4067
4068@node Functions In Python
4069@subsubsection Writing new convenience functions
4070
4071@cindex writing convenience functions
4072@cindex convenience functions in python
4073@cindex python convenience functions
4074@tindex gdb.Function
4075@tindex Function
4076You can implement new convenience functions (@pxref{Convenience Vars})
4077in Python. A convenience function is an instance of a subclass of the
4078class @code{gdb.Function}.
4079
4080@defun Function.__init__ (name)
4081The initializer for @code{Function} registers the new function with
4082@value{GDBN}. The argument @var{name} is the name of the function,
4083a string. The function will be visible to the user as a convenience
4084variable of type @code{internal function}, whose name is the same as
4085the given @var{name}.
4086
4087The documentation for the new function is taken from the documentation
4088string for the new class.
4089@end defun
4090
4091@defun Function.invoke (@var{*args})
4092When a convenience function is evaluated, its arguments are converted
4093to instances of @code{gdb.Value}, and then the function's
4094@code{invoke} method is called. Note that @value{GDBN} does not
4095predetermine the arity of convenience functions. Instead, all
4096available arguments are passed to @code{invoke}, following the
4097standard Python calling convention. In particular, a convenience
4098function can have default values for parameters without ill effect.
4099
4100The return value of this method is used as its value in the enclosing
4101expression. If an ordinary Python value is returned, it is converted
4102to a @code{gdb.Value} following the usual rules.
4103@end defun
4104
4105The following code snippet shows how a trivial convenience function can
4106be implemented in Python:
4107
4108@smallexample
4109class Greet (gdb.Function):
4110 """Return string to greet someone.
4111Takes a name as argument."""
4112
4113 def __init__ (self):
4114 super (Greet, self).__init__ ("greet")
4115
4116 def invoke (self, name):
4117 return "Hello, %s!" % name.string ()
4118
4119Greet ()
4120@end smallexample
4121
4122The last line instantiates the class, and is necessary to trigger the
4123registration of the function with @value{GDBN}. Depending on how the
4124Python code is read into @value{GDBN}, you may need to import the
4125@code{gdb} module explicitly.
4126
4127Now you can use the function in an expression:
4128
4129@smallexample
4130(gdb) print $greet("Bob")
4131$1 = "Hello, Bob!"
4132@end smallexample
4133
4134@node Progspaces In Python
4135@subsubsection Program Spaces In Python
4136
4137@cindex progspaces in python
4138@tindex gdb.Progspace
4139@tindex Progspace
4140A program space, or @dfn{progspace}, represents a symbolic view
4141of an address space.
4142It consists of all of the objfiles of the program.
4143@xref{Objfiles In Python}.
4144@xref{Inferiors and Programs, program spaces}, for more details
4145about program spaces.
4146
4147The following progspace-related functions are available in the
4148@code{gdb} module:
4149
4150@findex gdb.current_progspace
4151@defun gdb.current_progspace ()
4152This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4153@xref{Inferiors and Programs}. This is identical to
4154@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4155included for historical compatibility.
329baa95
DE
4156@end defun
4157
4158@findex gdb.progspaces
4159@defun gdb.progspaces ()
4160Return a sequence of all the progspaces currently known to @value{GDBN}.
4161@end defun
4162
4163Each progspace is represented by an instance of the @code{gdb.Progspace}
4164class.
4165
4166@defvar Progspace.filename
4167The file name of the progspace as a string.
4168@end defvar
4169
4170@defvar Progspace.pretty_printers
4171The @code{pretty_printers} attribute is a list of functions. It is
4172used to look up pretty-printers. A @code{Value} is passed to each
4173function in order; if the function returns @code{None}, then the
4174search continues. Otherwise, the return value should be an object
4175which is used to format the value. @xref{Pretty Printing API}, for more
4176information.
4177@end defvar
4178
4179@defvar Progspace.type_printers
4180The @code{type_printers} attribute is a list of type printer objects.
4181@xref{Type Printing API}, for more information.
4182@end defvar
4183
4184@defvar Progspace.frame_filters
4185The @code{frame_filters} attribute is a dictionary of frame filter
4186objects. @xref{Frame Filter API}, for more information.
4187@end defvar
4188
8743a9cd
TT
4189A program space has the following methods:
4190
4191@findex Progspace.block_for_pc
4192@defun Progspace.block_for_pc (pc)
4193Return the innermost @code{gdb.Block} containing the given @var{pc}
4194value. If the block cannot be found for the @var{pc} value specified,
4195the function will return @code{None}.
4196@end defun
4197
4198@findex Progspace.find_pc_line
4199@defun Progspace.find_pc_line (pc)
4200Return the @code{gdb.Symtab_and_line} object corresponding to the
4201@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4202of @var{pc} is passed as an argument, then the @code{symtab} and
4203@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4204object will be @code{None} and 0 respectively.
4205@end defun
4206
4207@findex Progspace.is_valid
4208@defun Progspace.is_valid ()
4209Returns @code{True} if the @code{gdb.Progspace} object is valid,
4210@code{False} if not. A @code{gdb.Progspace} object can become invalid
4211if the program space file it refers to is not referenced by any
4212inferior. All other @code{gdb.Progspace} methods will throw an
4213exception if it is invalid at the time the method is called.
4214@end defun
4215
4216@findex Progspace.objfiles
4217@defun Progspace.objfiles ()
4218Return a sequence of all the objfiles referenced by this program
4219space. @xref{Objfiles In Python}.
4220@end defun
4221
4222@findex Progspace.solib_name
4223@defun Progspace.solib_name (address)
4224Return the name of the shared library holding the given @var{address}
4225as a string, or @code{None}.
4226@end defun
4227
02be9a71
DE
4228One may add arbitrary attributes to @code{gdb.Progspace} objects
4229in the usual Python way.
4230This is useful if, for example, one needs to do some extra record keeping
4231associated with the program space.
4232
4233In this contrived example, we want to perform some processing when
4234an objfile with a certain symbol is loaded, but we only want to do
4235this once because it is expensive. To achieve this we record the results
4236with the program space because we can't predict when the desired objfile
4237will be loaded.
4238
4239@smallexample
4240(gdb) python
4241def clear_objfiles_handler(event):
4242 event.progspace.expensive_computation = None
4243def expensive(symbol):
4244 """A mock routine to perform an "expensive" computation on symbol."""
4245 print "Computing the answer to the ultimate question ..."
4246 return 42
4247def new_objfile_handler(event):
4248 objfile = event.new_objfile
4249 progspace = objfile.progspace
4250 if not hasattr(progspace, 'expensive_computation') or \
4251 progspace.expensive_computation is None:
4252 # We use 'main' for the symbol to keep the example simple.
4253 # Note: There's no current way to constrain the lookup
4254 # to one objfile.
4255 symbol = gdb.lookup_global_symbol('main')
4256 if symbol is not None:
4257 progspace.expensive_computation = expensive(symbol)
4258gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4259gdb.events.new_objfile.connect(new_objfile_handler)
4260end
4261(gdb) file /tmp/hello
4262Reading symbols from /tmp/hello...done.
4263Computing the answer to the ultimate question ...
4264(gdb) python print gdb.current_progspace().expensive_computation
426542
4266(gdb) run
4267Starting program: /tmp/hello
4268Hello.
4269[Inferior 1 (process 4242) exited normally]
4270@end smallexample
4271
329baa95
DE
4272@node Objfiles In Python
4273@subsubsection Objfiles In Python
4274
4275@cindex objfiles in python
4276@tindex gdb.Objfile
4277@tindex Objfile
4278@value{GDBN} loads symbols for an inferior from various
4279symbol-containing files (@pxref{Files}). These include the primary
4280executable file, any shared libraries used by the inferior, and any
4281separate debug info files (@pxref{Separate Debug Files}).
4282@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4283
4284The following objfile-related functions are available in the
4285@code{gdb} module:
4286
4287@findex gdb.current_objfile
4288@defun gdb.current_objfile ()
4289When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4290sets the ``current objfile'' to the corresponding objfile. This
4291function returns the current objfile. If there is no current objfile,
4292this function returns @code{None}.
4293@end defun
4294
4295@findex gdb.objfiles
4296@defun gdb.objfiles ()
74d3fbbb
SM
4297Return a sequence of objfiles referenced by the current program space.
4298@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4299to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4300historical compatibility.
329baa95
DE
4301@end defun
4302
6dddd6a5
DE
4303@findex gdb.lookup_objfile
4304@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4305Look up @var{name}, a file name or build ID, in the list of objfiles
4306for the current program space (@pxref{Progspaces In Python}).
4307If the objfile is not found throw the Python @code{ValueError} exception.
4308
4309If @var{name} is a relative file name, then it will match any
4310source file name with the same trailing components. For example, if
4311@var{name} is @samp{gcc/expr.c}, then it will match source file
4312name of @file{/build/trunk/gcc/expr.c}, but not
4313@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4314
4315If @var{by_build_id} is provided and is @code{True} then @var{name}
4316is the build ID of the objfile. Otherwise, @var{name} is a file name.
4317This is supported only on some operating systems, notably those which use
4318the ELF format for binary files and the @sc{gnu} Binutils. For more details
4319about this feature, see the description of the @option{--build-id}
f5a476a7 4320command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4321The GNU Linker}.
4322@end defun
4323
329baa95
DE
4324Each objfile is represented by an instance of the @code{gdb.Objfile}
4325class.
4326
4327@defvar Objfile.filename
1b549396
DE
4328The file name of the objfile as a string, with symbolic links resolved.
4329
4330The value is @code{None} if the objfile is no longer valid.
4331See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4332@end defvar
4333
3a8b707a
DE
4334@defvar Objfile.username
4335The file name of the objfile as specified by the user as a string.
4336
4337The value is @code{None} if the objfile is no longer valid.
4338See the @code{gdb.Objfile.is_valid} method, described below.
4339@end defvar
4340
a0be3e44
DE
4341@defvar Objfile.owner
4342For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4343object that debug info is being provided for.
4344Otherwise this is @code{None}.
4345Separate debug info objfiles are added with the
4346@code{gdb.Objfile.add_separate_debug_file} method, described below.
4347@end defvar
4348
7c50a931
DE
4349@defvar Objfile.build_id
4350The build ID of the objfile as a string.
4351If the objfile does not have a build ID then the value is @code{None}.
4352
4353This is supported only on some operating systems, notably those which use
4354the ELF format for binary files and the @sc{gnu} Binutils. For more details
4355about this feature, see the description of the @option{--build-id}
f5a476a7 4356command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4357The GNU Linker}.
4358@end defvar
4359
d096d8c1
DE
4360@defvar Objfile.progspace
4361The containing program space of the objfile as a @code{gdb.Progspace}
4362object. @xref{Progspaces In Python}.
4363@end defvar
4364
329baa95
DE
4365@defvar Objfile.pretty_printers
4366The @code{pretty_printers} attribute is a list of functions. It is
4367used to look up pretty-printers. A @code{Value} is passed to each
4368function in order; if the function returns @code{None}, then the
4369search continues. Otherwise, the return value should be an object
4370which is used to format the value. @xref{Pretty Printing API}, for more
4371information.
4372@end defvar
4373
4374@defvar Objfile.type_printers
4375The @code{type_printers} attribute is a list of type printer objects.
4376@xref{Type Printing API}, for more information.
4377@end defvar
4378
4379@defvar Objfile.frame_filters
4380The @code{frame_filters} attribute is a dictionary of frame filter
4381objects. @xref{Frame Filter API}, for more information.
4382@end defvar
4383
02be9a71
DE
4384One may add arbitrary attributes to @code{gdb.Objfile} objects
4385in the usual Python way.
4386This is useful if, for example, one needs to do some extra record keeping
4387associated with the objfile.
4388
4389In this contrived example we record the time when @value{GDBN}
4390loaded the objfile.
4391
4392@smallexample
4393(gdb) python
4394import datetime
4395def new_objfile_handler(event):
4396 # Set the time_loaded attribute of the new objfile.
4397 event.new_objfile.time_loaded = datetime.datetime.today()
4398gdb.events.new_objfile.connect(new_objfile_handler)
4399end
4400(gdb) file ./hello
4401Reading symbols from ./hello...done.
4402(gdb) python print gdb.objfiles()[0].time_loaded
44032014-10-09 11:41:36.770345
4404@end smallexample
4405
329baa95
DE
4406A @code{gdb.Objfile} object has the following methods:
4407
4408@defun Objfile.is_valid ()
4409Returns @code{True} if the @code{gdb.Objfile} object is valid,
4410@code{False} if not. A @code{gdb.Objfile} object can become invalid
4411if the object file it refers to is not loaded in @value{GDBN} any
4412longer. All other @code{gdb.Objfile} methods will throw an exception
4413if it is invalid at the time the method is called.
4414@end defun
4415
86e4ed39
DE
4416@defun Objfile.add_separate_debug_file (file)
4417Add @var{file} to the list of files that @value{GDBN} will search for
4418debug information for the objfile.
4419This is useful when the debug info has been removed from the program
4420and stored in a separate file. @value{GDBN} has built-in support for
4421finding separate debug info files (@pxref{Separate Debug Files}), but if
4422the file doesn't live in one of the standard places that @value{GDBN}
4423searches then this function can be used to add a debug info file
4424from a different place.
4425@end defun
4426
329baa95 4427@node Frames In Python
849cba3b 4428@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4429
4430@cindex frames in python
4431When the debugged program stops, @value{GDBN} is able to analyze its call
4432stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4433represents a frame in the stack. A @code{gdb.Frame} object is only valid
4434while its corresponding frame exists in the inferior's stack. If you try
4435to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4436exception (@pxref{Exception Handling}).
4437
4438Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4439operator, like:
4440
4441@smallexample
4442(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4443True
4444@end smallexample
4445
4446The following frame-related functions are available in the @code{gdb} module:
4447
4448@findex gdb.selected_frame
4449@defun gdb.selected_frame ()
4450Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4451@end defun
4452
4453@findex gdb.newest_frame
4454@defun gdb.newest_frame ()
4455Return the newest frame object for the selected thread.
4456@end defun
4457
4458@defun gdb.frame_stop_reason_string (reason)
4459Return a string explaining the reason why @value{GDBN} stopped unwinding
4460frames, as expressed by the given @var{reason} code (an integer, see the
4461@code{unwind_stop_reason} method further down in this section).
4462@end defun
4463
e0f3fd7c
TT
4464@findex gdb.invalidate_cached_frames
4465@defun gdb.invalidate_cached_frames
4466@value{GDBN} internally keeps a cache of the frames that have been
4467unwound. This function invalidates this cache.
4468
4469This function should not generally be called by ordinary Python code.
4470It is documented for the sake of completeness.
4471@end defun
4472
329baa95
DE
4473A @code{gdb.Frame} object has the following methods:
4474
4475@defun Frame.is_valid ()
4476Returns true if the @code{gdb.Frame} object is valid, false if not.
4477A frame object can become invalid if the frame it refers to doesn't
4478exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4479an exception if it is invalid at the time the method is called.
4480@end defun
4481
4482@defun Frame.name ()
4483Returns the function name of the frame, or @code{None} if it can't be
4484obtained.
4485@end defun
4486
4487@defun Frame.architecture ()
4488Returns the @code{gdb.Architecture} object corresponding to the frame's
4489architecture. @xref{Architectures In Python}.
4490@end defun
4491
4492@defun Frame.type ()
4493Returns the type of the frame. The value can be one of:
4494@table @code
4495@item gdb.NORMAL_FRAME
4496An ordinary stack frame.
4497
4498@item gdb.DUMMY_FRAME
4499A fake stack frame that was created by @value{GDBN} when performing an
4500inferior function call.
4501
4502@item gdb.INLINE_FRAME
4503A frame representing an inlined function. The function was inlined
4504into a @code{gdb.NORMAL_FRAME} that is older than this one.
4505
4506@item gdb.TAILCALL_FRAME
4507A frame representing a tail call. @xref{Tail Call Frames}.
4508
4509@item gdb.SIGTRAMP_FRAME
4510A signal trampoline frame. This is the frame created by the OS when
4511it calls into a signal handler.
4512
4513@item gdb.ARCH_FRAME
4514A fake stack frame representing a cross-architecture call.
4515
4516@item gdb.SENTINEL_FRAME
4517This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4518newest frame.
4519@end table
4520@end defun
4521
4522@defun Frame.unwind_stop_reason ()
4523Return an integer representing the reason why it's not possible to find
4524more frames toward the outermost frame. Use
4525@code{gdb.frame_stop_reason_string} to convert the value returned by this
4526function to a string. The value can be one of:
4527
4528@table @code
4529@item gdb.FRAME_UNWIND_NO_REASON
4530No particular reason (older frames should be available).
4531
4532@item gdb.FRAME_UNWIND_NULL_ID
4533The previous frame's analyzer returns an invalid result. This is no
4534longer used by @value{GDBN}, and is kept only for backward
4535compatibility.
4536
4537@item gdb.FRAME_UNWIND_OUTERMOST
4538This frame is the outermost.
4539
4540@item gdb.FRAME_UNWIND_UNAVAILABLE
4541Cannot unwind further, because that would require knowing the
4542values of registers or memory that have not been collected.
4543
4544@item gdb.FRAME_UNWIND_INNER_ID
4545This frame ID looks like it ought to belong to a NEXT frame,
4546but we got it for a PREV frame. Normally, this is a sign of
4547unwinder failure. It could also indicate stack corruption.
4548
4549@item gdb.FRAME_UNWIND_SAME_ID
4550This frame has the same ID as the previous one. That means
4551that unwinding further would almost certainly give us another
4552frame with exactly the same ID, so break the chain. Normally,
4553this is a sign of unwinder failure. It could also indicate
4554stack corruption.
4555
4556@item gdb.FRAME_UNWIND_NO_SAVED_PC
4557The frame unwinder did not find any saved PC, but we needed
4558one to unwind further.
4559
53e8a631
AB
4560@item gdb.FRAME_UNWIND_MEMORY_ERROR
4561The frame unwinder caused an error while trying to access memory.
4562
329baa95
DE
4563@item gdb.FRAME_UNWIND_FIRST_ERROR
4564Any stop reason greater or equal to this value indicates some kind
4565of error. This special value facilitates writing code that tests
4566for errors in unwinding in a way that will work correctly even if
4567the list of the other values is modified in future @value{GDBN}
4568versions. Using it, you could write:
4569@smallexample
4570reason = gdb.selected_frame().unwind_stop_reason ()
4571reason_str = gdb.frame_stop_reason_string (reason)
4572if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4573 print "An error occured: %s" % reason_str
4574@end smallexample
4575@end table
4576
4577@end defun
4578
4579@defun Frame.pc ()
4580Returns the frame's resume address.
4581@end defun
4582
4583@defun Frame.block ()
60c0454d
TT
4584Return the frame's code block. @xref{Blocks In Python}. If the frame
4585does not have a block -- for example, if there is no debugging
4586information for the code in question -- then this will throw an
4587exception.
329baa95
DE
4588@end defun
4589
4590@defun Frame.function ()
4591Return the symbol for the function corresponding to this frame.
4592@xref{Symbols In Python}.
4593@end defun
4594
4595@defun Frame.older ()
4596Return the frame that called this frame.
4597@end defun
4598
4599@defun Frame.newer ()
4600Return the frame called by this frame.
4601@end defun
4602
4603@defun Frame.find_sal ()
4604Return the frame's symtab and line object.
4605@xref{Symbol Tables In Python}.
4606@end defun
4607
5f3b99cf
SS
4608@defun Frame.read_register (register)
4609Return the value of @var{register} in this frame. The @var{register}
4610argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4611Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4612does not exist.
4613@end defun
4614
329baa95
DE
4615@defun Frame.read_var (variable @r{[}, block@r{]})
4616Return the value of @var{variable} in this frame. If the optional
4617argument @var{block} is provided, search for the variable from that
4618block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4619determined by the frame's current program counter). The @var{variable}
4620argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4621@code{gdb.Block} object.
4622@end defun
4623
4624@defun Frame.select ()
4625Set this frame to be the selected frame. @xref{Stack, ,Examining the
4626Stack}.
4627@end defun
4628
4629@node Blocks In Python
849cba3b 4630@subsubsection Accessing blocks from Python
329baa95
DE
4631
4632@cindex blocks in python
4633@tindex gdb.Block
4634
4635In @value{GDBN}, symbols are stored in blocks. A block corresponds
4636roughly to a scope in the source code. Blocks are organized
4637hierarchically, and are represented individually in Python as a
4638@code{gdb.Block}. Blocks rely on debugging information being
4639available.
4640
4641A frame has a block. Please see @ref{Frames In Python}, for a more
4642in-depth discussion of frames.
4643
4644The outermost block is known as the @dfn{global block}. The global
4645block typically holds public global variables and functions.
4646
4647The block nested just inside the global block is the @dfn{static
4648block}. The static block typically holds file-scoped variables and
4649functions.
4650
4651@value{GDBN} provides a method to get a block's superblock, but there
4652is currently no way to examine the sub-blocks of a block, or to
4653iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4654Python}).
4655
4656Here is a short example that should help explain blocks:
4657
4658@smallexample
4659/* This is in the global block. */
4660int global;
4661
4662/* This is in the static block. */
4663static int file_scope;
4664
4665/* 'function' is in the global block, and 'argument' is
4666 in a block nested inside of 'function'. */
4667int function (int argument)
4668@{
4669 /* 'local' is in a block inside 'function'. It may or may
4670 not be in the same block as 'argument'. */
4671 int local;
4672
4673 @{
4674 /* 'inner' is in a block whose superblock is the one holding
4675 'local'. */
4676 int inner;
4677
4678 /* If this call is expanded by the compiler, you may see
4679 a nested block here whose function is 'inline_function'
4680 and whose superblock is the one holding 'inner'. */
4681 inline_function ();
4682 @}
4683@}
4684@end smallexample
4685
4686A @code{gdb.Block} is iterable. The iterator returns the symbols
4687(@pxref{Symbols In Python}) local to the block. Python programs
4688should not assume that a specific block object will always contain a
4689given symbol, since changes in @value{GDBN} features and
4690infrastructure may cause symbols move across blocks in a symbol
4691table.
4692
4693The following block-related functions are available in the @code{gdb}
4694module:
4695
4696@findex gdb.block_for_pc
4697@defun gdb.block_for_pc (pc)
4698Return the innermost @code{gdb.Block} containing the given @var{pc}
4699value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4700the function will return @code{None}. This is identical to
4701@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4702historical compatibility.
329baa95
DE
4703@end defun
4704
4705A @code{gdb.Block} object has the following methods:
4706
4707@defun Block.is_valid ()
4708Returns @code{True} if the @code{gdb.Block} object is valid,
4709@code{False} if not. A block object can become invalid if the block it
4710refers to doesn't exist anymore in the inferior. All other
4711@code{gdb.Block} methods will throw an exception if it is invalid at
4712the time the method is called. The block's validity is also checked
4713during iteration over symbols of the block.
4714@end defun
4715
4716A @code{gdb.Block} object has the following attributes:
4717
4718@defvar Block.start
4719The start address of the block. This attribute is not writable.
4720@end defvar
4721
4722@defvar Block.end
22eb9e92
TT
4723One past the last address that appears in the block. This attribute
4724is not writable.
329baa95
DE
4725@end defvar
4726
4727@defvar Block.function
4728The name of the block represented as a @code{gdb.Symbol}. If the
4729block is not named, then this attribute holds @code{None}. This
4730attribute is not writable.
4731
4732For ordinary function blocks, the superblock is the static block.
4733However, you should note that it is possible for a function block to
4734have a superblock that is not the static block -- for instance this
4735happens for an inlined function.
4736@end defvar
4737
4738@defvar Block.superblock
4739The block containing this block. If this parent block does not exist,
4740this attribute holds @code{None}. This attribute is not writable.
4741@end defvar
4742
4743@defvar Block.global_block
4744The global block associated with this block. This attribute is not
4745writable.
4746@end defvar
4747
4748@defvar Block.static_block
4749The static block associated with this block. This attribute is not
4750writable.
4751@end defvar
4752
4753@defvar Block.is_global
4754@code{True} if the @code{gdb.Block} object is a global block,
4755@code{False} if not. This attribute is not
4756writable.
4757@end defvar
4758
4759@defvar Block.is_static
4760@code{True} if the @code{gdb.Block} object is a static block,
4761@code{False} if not. This attribute is not writable.
4762@end defvar
4763
4764@node Symbols In Python
849cba3b 4765@subsubsection Python representation of Symbols
329baa95
DE
4766
4767@cindex symbols in python
4768@tindex gdb.Symbol
4769
4770@value{GDBN} represents every variable, function and type as an
4771entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4772Similarly, Python represents these symbols in @value{GDBN} with the
4773@code{gdb.Symbol} object.
4774
4775The following symbol-related functions are available in the @code{gdb}
4776module:
4777
4778@findex gdb.lookup_symbol
4779@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4780This function searches for a symbol by name. The search scope can be
4781restricted to the parameters defined in the optional domain and block
4782arguments.
4783
4784@var{name} is the name of the symbol. It must be a string. The
4785optional @var{block} argument restricts the search to symbols visible
4786in that @var{block}. The @var{block} argument must be a
4787@code{gdb.Block} object. If omitted, the block for the current frame
4788is used. The optional @var{domain} argument restricts
4789the search to the domain type. The @var{domain} argument must be a
4790domain constant defined in the @code{gdb} module and described later
4791in this chapter.
4792
4793The result is a tuple of two elements.
4794The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4795is not found.
4796If the symbol is found, the second element is @code{True} if the symbol
4797is a field of a method's object (e.g., @code{this} in C@t{++}),
4798otherwise it is @code{False}.
4799If the symbol is not found, the second element is @code{False}.
4800@end defun
4801
4802@findex gdb.lookup_global_symbol
4803@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4804This function searches for a global symbol by name.
4805The search scope can be restricted to by the domain argument.
4806
4807@var{name} is the name of the symbol. It must be a string.
4808The optional @var{domain} argument restricts the search to the domain type.
4809The @var{domain} argument must be a domain constant defined in the @code{gdb}
4810module and described later in this chapter.
4811
4812The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4813is not found.
4814@end defun
4815
4816A @code{gdb.Symbol} object has the following attributes:
4817
4818@defvar Symbol.type
4819The type of the symbol or @code{None} if no type is recorded.
4820This attribute is represented as a @code{gdb.Type} object.
4821@xref{Types In Python}. This attribute is not writable.
4822@end defvar
4823
4824@defvar Symbol.symtab
4825The symbol table in which the symbol appears. This attribute is
4826represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4827Python}. This attribute is not writable.
4828@end defvar
4829
4830@defvar Symbol.line
4831The line number in the source code at which the symbol was defined.
4832This is an integer.
4833@end defvar
4834
4835@defvar Symbol.name
4836The name of the symbol as a string. This attribute is not writable.
4837@end defvar
4838
4839@defvar Symbol.linkage_name
4840The name of the symbol, as used by the linker (i.e., may be mangled).
4841This attribute is not writable.
4842@end defvar
4843
4844@defvar Symbol.print_name
4845The name of the symbol in a form suitable for output. This is either
4846@code{name} or @code{linkage_name}, depending on whether the user
4847asked @value{GDBN} to display demangled or mangled names.
4848@end defvar
4849
4850@defvar Symbol.addr_class
4851The address class of the symbol. This classifies how to find the value
4852of a symbol. Each address class is a constant defined in the
4853@code{gdb} module and described later in this chapter.
4854@end defvar
4855
4856@defvar Symbol.needs_frame
4857This is @code{True} if evaluating this symbol's value requires a frame
4858(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4859local variables will require a frame, but other symbols will not.
4860@end defvar
4861
4862@defvar Symbol.is_argument
4863@code{True} if the symbol is an argument of a function.
4864@end defvar
4865
4866@defvar Symbol.is_constant
4867@code{True} if the symbol is a constant.
4868@end defvar
4869
4870@defvar Symbol.is_function
4871@code{True} if the symbol is a function or a method.
4872@end defvar
4873
4874@defvar Symbol.is_variable
4875@code{True} if the symbol is a variable.
4876@end defvar
4877
4878A @code{gdb.Symbol} object has the following methods:
4879
4880@defun Symbol.is_valid ()
4881Returns @code{True} if the @code{gdb.Symbol} object is valid,
4882@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4883the symbol it refers to does not exist in @value{GDBN} any longer.
4884All other @code{gdb.Symbol} methods will throw an exception if it is
4885invalid at the time the method is called.
4886@end defun
4887
4888@defun Symbol.value (@r{[}frame@r{]})
4889Compute the value of the symbol, as a @code{gdb.Value}. For
4890functions, this computes the address of the function, cast to the
4891appropriate type. If the symbol requires a frame in order to compute
4892its value, then @var{frame} must be given. If @var{frame} is not
4893given, or if @var{frame} is invalid, then this method will throw an
4894exception.
4895@end defun
4896
4897The available domain categories in @code{gdb.Symbol} are represented
4898as constants in the @code{gdb} module:
4899
b3ce5e5f
DE
4900@vtable @code
4901@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4902@item gdb.SYMBOL_UNDEF_DOMAIN
4903This is used when a domain has not been discovered or none of the
4904following domains apply. This usually indicates an error either
4905in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4906
4907@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4908@item gdb.SYMBOL_VAR_DOMAIN
4909This domain contains variables, function names, typedef names and enum
4910type values.
b3ce5e5f
DE
4911
4912@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4913@item gdb.SYMBOL_STRUCT_DOMAIN
4914This domain holds struct, union and enum type names.
b3ce5e5f
DE
4915
4916@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4917@item gdb.SYMBOL_LABEL_DOMAIN
4918This domain contains names of labels (for gotos).
b3ce5e5f 4919
51e78fc5
TT
4920@vindex SYMBOL_MODULE_DOMAIN
4921@item gdb.SYMBOL_MODULE_DOMAIN
4922This domain contains names of Fortran module types.
4923
4924@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4925@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4926This domain contains names of Fortran common blocks.
b3ce5e5f 4927@end vtable
329baa95
DE
4928
4929The available address class categories in @code{gdb.Symbol} are represented
4930as constants in the @code{gdb} module:
4931
b3ce5e5f
DE
4932@vtable @code
4933@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4934@item gdb.SYMBOL_LOC_UNDEF
4935If this is returned by address class, it indicates an error either in
4936the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4937
4938@vindex SYMBOL_LOC_CONST
329baa95
DE
4939@item gdb.SYMBOL_LOC_CONST
4940Value is constant int.
b3ce5e5f
DE
4941
4942@vindex SYMBOL_LOC_STATIC
329baa95
DE
4943@item gdb.SYMBOL_LOC_STATIC
4944Value is at a fixed address.
b3ce5e5f
DE
4945
4946@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4947@item gdb.SYMBOL_LOC_REGISTER
4948Value is in a register.
b3ce5e5f
DE
4949
4950@vindex SYMBOL_LOC_ARG
329baa95
DE
4951@item gdb.SYMBOL_LOC_ARG
4952Value is an argument. This value is at the offset stored within the
4953symbol inside the frame's argument list.
b3ce5e5f
DE
4954
4955@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4956@item gdb.SYMBOL_LOC_REF_ARG
4957Value address is stored in the frame's argument list. Just like
4958@code{LOC_ARG} except that the value's address is stored at the
4959offset, not the value itself.
b3ce5e5f
DE
4960
4961@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4962@item gdb.SYMBOL_LOC_REGPARM_ADDR
4963Value is a specified register. Just like @code{LOC_REGISTER} except
4964the register holds the address of the argument instead of the argument
4965itself.
b3ce5e5f
DE
4966
4967@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4968@item gdb.SYMBOL_LOC_LOCAL
4969Value is a local variable.
b3ce5e5f
DE
4970
4971@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4972@item gdb.SYMBOL_LOC_TYPEDEF
4973Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4974have this class.
b3ce5e5f
DE
4975
4976@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4977@item gdb.SYMBOL_LOC_BLOCK
4978Value is a block.
b3ce5e5f
DE
4979
4980@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4981@item gdb.SYMBOL_LOC_CONST_BYTES
4982Value is a byte-sequence.
b3ce5e5f
DE
4983
4984@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4985@item gdb.SYMBOL_LOC_UNRESOLVED
4986Value is at a fixed address, but the address of the variable has to be
4987determined from the minimal symbol table whenever the variable is
4988referenced.
b3ce5e5f
DE
4989
4990@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4991@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4992The value does not actually exist in the program.
b3ce5e5f
DE
4993
4994@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4995@item gdb.SYMBOL_LOC_COMPUTED
4996The value's address is a computed location.
51e78fc5
TT
4997
4998@vindex SYMBOL_LOC_COMPUTED
4999@item gdb.SYMBOL_LOC_COMPUTED
5000The value's address is a symbol. This is only used for Fortran common
5001blocks.
b3ce5e5f 5002@end vtable
329baa95
DE
5003
5004@node Symbol Tables In Python
849cba3b 5005@subsubsection Symbol table representation in Python
329baa95
DE
5006
5007@cindex symbol tables in python
5008@tindex gdb.Symtab
5009@tindex gdb.Symtab_and_line
5010
5011Access to symbol table data maintained by @value{GDBN} on the inferior
5012is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5013@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5014from the @code{find_sal} method in @code{gdb.Frame} object.
5015@xref{Frames In Python}.
5016
5017For more information on @value{GDBN}'s symbol table management, see
5018@ref{Symbols, ,Examining the Symbol Table}, for more information.
5019
5020A @code{gdb.Symtab_and_line} object has the following attributes:
5021
5022@defvar Symtab_and_line.symtab
5023The symbol table object (@code{gdb.Symtab}) for this frame.
5024This attribute is not writable.
5025@end defvar
5026
5027@defvar Symtab_and_line.pc
5028Indicates the start of the address range occupied by code for the
5029current source line. This attribute is not writable.
5030@end defvar
5031
5032@defvar Symtab_and_line.last
5033Indicates the end of the address range occupied by code for the current
5034source line. This attribute is not writable.
5035@end defvar
5036
5037@defvar Symtab_and_line.line
5038Indicates the current line number for this object. This
5039attribute is not writable.
5040@end defvar
5041
5042A @code{gdb.Symtab_and_line} object has the following methods:
5043
5044@defun Symtab_and_line.is_valid ()
5045Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5046@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5047invalid if the Symbol table and line object it refers to does not
5048exist in @value{GDBN} any longer. All other
5049@code{gdb.Symtab_and_line} methods will throw an exception if it is
5050invalid at the time the method is called.
5051@end defun
5052
5053A @code{gdb.Symtab} object has the following attributes:
5054
5055@defvar Symtab.filename
5056The symbol table's source filename. This attribute is not writable.
5057@end defvar
5058
5059@defvar Symtab.objfile
5060The symbol table's backing object file. @xref{Objfiles In Python}.
5061This attribute is not writable.
5062@end defvar
5063
2b4fd423
DE
5064@defvar Symtab.producer
5065The name and possibly version number of the program that
5066compiled the code in the symbol table.
5067The contents of this string is up to the compiler.
5068If no producer information is available then @code{None} is returned.
5069This attribute is not writable.
5070@end defvar
5071
329baa95
DE
5072A @code{gdb.Symtab} object has the following methods:
5073
5074@defun Symtab.is_valid ()
5075Returns @code{True} if the @code{gdb.Symtab} object is valid,
5076@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5077the symbol table it refers to does not exist in @value{GDBN} any
5078longer. All other @code{gdb.Symtab} methods will throw an exception
5079if it is invalid at the time the method is called.
5080@end defun
5081
5082@defun Symtab.fullname ()
5083Return the symbol table's source absolute file name.
5084@end defun
5085
5086@defun Symtab.global_block ()
5087Return the global block of the underlying symbol table.
5088@xref{Blocks In Python}.
5089@end defun
5090
5091@defun Symtab.static_block ()
5092Return the static block of the underlying symbol table.
5093@xref{Blocks In Python}.
5094@end defun
5095
5096@defun Symtab.linetable ()
5097Return the line table associated with the symbol table.
5098@xref{Line Tables In Python}.
5099@end defun
5100
5101@node Line Tables In Python
5102@subsubsection Manipulating line tables using Python
5103
5104@cindex line tables in python
5105@tindex gdb.LineTable
5106
5107Python code can request and inspect line table information from a
5108symbol table that is loaded in @value{GDBN}. A line table is a
5109mapping of source lines to their executable locations in memory. To
5110acquire the line table information for a particular symbol table, use
5111the @code{linetable} function (@pxref{Symbol Tables In Python}).
5112
5113A @code{gdb.LineTable} is iterable. The iterator returns
5114@code{LineTableEntry} objects that correspond to the source line and
5115address for each line table entry. @code{LineTableEntry} objects have
5116the following attributes:
5117
5118@defvar LineTableEntry.line
5119The source line number for this line table entry. This number
5120corresponds to the actual line of source. This attribute is not
5121writable.
5122@end defvar
5123
5124@defvar LineTableEntry.pc
5125The address that is associated with the line table entry where the
5126executable code for that source line resides in memory. This
5127attribute is not writable.
5128@end defvar
5129
5130As there can be multiple addresses for a single source line, you may
5131receive multiple @code{LineTableEntry} objects with matching
5132@code{line} attributes, but with different @code{pc} attributes. The
5133iterator is sorted in ascending @code{pc} order. Here is a small
5134example illustrating iterating over a line table.
5135
5136@smallexample
5137symtab = gdb.selected_frame().find_sal().symtab
5138linetable = symtab.linetable()
5139for line in linetable:
5140 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5141@end smallexample
5142
5143This will have the following output:
5144
5145@smallexample
5146Line: 33 Address: 0x4005c8L
5147Line: 37 Address: 0x4005caL
5148Line: 39 Address: 0x4005d2L
5149Line: 40 Address: 0x4005f8L
5150Line: 42 Address: 0x4005ffL
5151Line: 44 Address: 0x400608L
5152Line: 42 Address: 0x40060cL
5153Line: 45 Address: 0x400615L
5154@end smallexample
5155
5156In addition to being able to iterate over a @code{LineTable}, it also
5157has the following direct access methods:
5158
5159@defun LineTable.line (line)
5160Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5161entries in the line table for the given @var{line}, which specifies
5162the source code line. If there are no entries for that source code
329baa95
DE
5163@var{line}, the Python @code{None} is returned.
5164@end defun
5165
5166@defun LineTable.has_line (line)
5167Return a Python @code{Boolean} indicating whether there is an entry in
5168the line table for this source line. Return @code{True} if an entry
5169is found, or @code{False} if not.
5170@end defun
5171
5172@defun LineTable.source_lines ()
5173Return a Python @code{List} of the source line numbers in the symbol
5174table. Only lines with executable code locations are returned. The
5175contents of the @code{List} will just be the source line entries
5176represented as Python @code{Long} values.
5177@end defun
5178
5179@node Breakpoints In Python
5180@subsubsection Manipulating breakpoints using Python
5181
5182@cindex breakpoints in python
5183@tindex gdb.Breakpoint
5184
5185Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5186class.
5187
0b982d68
SM
5188A breakpoint can be created using one of the two forms of the
5189@code{gdb.Breakpoint} constructor. The first one accepts a string
5190like one would pass to the @code{break}
5191(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5192(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5193create both breakpoints and watchpoints. The second accepts separate Python
5194arguments similar to @ref{Explicit Locations}, and can only be used to create
5195breakpoints.
5196
b89641ba 5197@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5198Create a new breakpoint according to @var{spec}, which is a string naming the
5199location of a breakpoint, or an expression that defines a watchpoint. The
5200string should describe a location in a format recognized by the @code{break}
5201command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5202watchpoint, by the @code{watch} command
5203(@pxref{Set Watchpoints, , Setting Watchpoints}).
5204
5205The optional @var{type} argument specifies the type of the breakpoint to create,
5206as defined below.
5207
5208The optional @var{wp_class} argument defines the class of watchpoint to create,
5209if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5210defaults to @code{gdb.WP_WRITE}.
5211
5212The optional @var{internal} argument allows the breakpoint to become invisible
5213to the user. The breakpoint will neither be reported when created, nor will it
5214be listed in the output from @code{info breakpoints} (but will be listed with
5215the @code{maint info breakpoints} command).
5216
5217The optional @var{temporary} argument makes the breakpoint a temporary
5218breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5219further access to the Python breakpoint after it has been hit will result in a
5220runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5221
5222The optional @var{qualified} argument is a boolean that allows interpreting
5223the function passed in @code{spec} as a fully-qualified name. It is equivalent
5224to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5225@ref{Explicit Locations}).
5226
0b982d68
SM
5227@end defun
5228
b89641ba 5229@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5230This second form of creating a new breakpoint specifies the explicit
5231location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5232be created in the specified source file @var{source}, at the specified
5233@var{function}, @var{label} and @var{line}.
5234
b89641ba
SM
5235@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5236explained previously.
329baa95
DE
5237@end defun
5238
cda75e70
TT
5239The available types are represented by constants defined in the @code{gdb}
5240module:
5241
5242@vtable @code
5243@vindex BP_BREAKPOINT
5244@item gdb.BP_BREAKPOINT
5245Normal code breakpoint.
5246
5247@vindex BP_WATCHPOINT
5248@item gdb.BP_WATCHPOINT
5249Watchpoint breakpoint.
5250
5251@vindex BP_HARDWARE_WATCHPOINT
5252@item gdb.BP_HARDWARE_WATCHPOINT
5253Hardware assisted watchpoint.
5254
5255@vindex BP_READ_WATCHPOINT
5256@item gdb.BP_READ_WATCHPOINT
5257Hardware assisted read watchpoint.
5258
5259@vindex BP_ACCESS_WATCHPOINT
5260@item gdb.BP_ACCESS_WATCHPOINT
5261Hardware assisted access watchpoint.
5262@end vtable
5263
5264The available watchpoint types represented by constants are defined in the
5265@code{gdb} module:
5266
5267@vtable @code
5268@vindex WP_READ
5269@item gdb.WP_READ
5270Read only watchpoint.
5271
5272@vindex WP_WRITE
5273@item gdb.WP_WRITE
5274Write only watchpoint.
5275
5276@vindex WP_ACCESS
5277@item gdb.WP_ACCESS
5278Read/Write watchpoint.
5279@end vtable
5280
329baa95
DE
5281@defun Breakpoint.stop (self)
5282The @code{gdb.Breakpoint} class can be sub-classed and, in
5283particular, you may choose to implement the @code{stop} method.
5284If this method is defined in a sub-class of @code{gdb.Breakpoint},
5285it will be called when the inferior reaches any location of a
5286breakpoint which instantiates that sub-class. If the method returns
5287@code{True}, the inferior will be stopped at the location of the
5288breakpoint, otherwise the inferior will continue.
5289
5290If there are multiple breakpoints at the same location with a
5291@code{stop} method, each one will be called regardless of the
5292return status of the previous. This ensures that all @code{stop}
5293methods have a chance to execute at that location. In this scenario
5294if one of the methods returns @code{True} but the others return
5295@code{False}, the inferior will still be stopped.
5296
5297You should not alter the execution state of the inferior (i.e.@:, step,
5298next, etc.), alter the current frame context (i.e.@:, change the current
5299active frame), or alter, add or delete any breakpoint. As a general
5300rule, you should not alter any data within @value{GDBN} or the inferior
5301at this time.
5302
5303Example @code{stop} implementation:
5304
5305@smallexample
5306class MyBreakpoint (gdb.Breakpoint):
5307 def stop (self):
5308 inf_val = gdb.parse_and_eval("foo")
5309 if inf_val == 3:
5310 return True
5311 return False
5312@end smallexample
5313@end defun
5314
329baa95
DE
5315@defun Breakpoint.is_valid ()
5316Return @code{True} if this @code{Breakpoint} object is valid,
5317@code{False} otherwise. A @code{Breakpoint} object can become invalid
5318if the user deletes the breakpoint. In this case, the object still
5319exists, but the underlying breakpoint does not. In the cases of
5320watchpoint scope, the watchpoint remains valid even if execution of the
5321inferior leaves the scope of that watchpoint.
5322@end defun
5323
fab3a15d 5324@defun Breakpoint.delete ()
329baa95
DE
5325Permanently deletes the @value{GDBN} breakpoint. This also
5326invalidates the Python @code{Breakpoint} object. Any further access
5327to this object's attributes or methods will raise an error.
5328@end defun
5329
5330@defvar Breakpoint.enabled
5331This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5332@code{False} otherwise. This attribute is writable. You can use it to enable
5333or disable the breakpoint.
329baa95
DE
5334@end defvar
5335
5336@defvar Breakpoint.silent
5337This attribute is @code{True} if the breakpoint is silent, and
5338@code{False} otherwise. This attribute is writable.
5339
5340Note that a breakpoint can also be silent if it has commands and the
5341first command is @code{silent}. This is not reported by the
5342@code{silent} attribute.
5343@end defvar
5344
93daf339
TT
5345@defvar Breakpoint.pending
5346This attribute is @code{True} if the breakpoint is pending, and
5347@code{False} otherwise. @xref{Set Breaks}. This attribute is
5348read-only.
5349@end defvar
5350
22a02324 5351@anchor{python_breakpoint_thread}
329baa95 5352@defvar Breakpoint.thread
5d5658a1
PA
5353If the breakpoint is thread-specific, this attribute holds the
5354thread's global id. If the breakpoint is not thread-specific, this
5355attribute is @code{None}. This attribute is writable.
329baa95
DE
5356@end defvar
5357
5358@defvar Breakpoint.task
5359If the breakpoint is Ada task-specific, this attribute holds the Ada task
5360id. If the breakpoint is not task-specific (or the underlying
5361language is not Ada), this attribute is @code{None}. This attribute
5362is writable.
5363@end defvar
5364
5365@defvar Breakpoint.ignore_count
5366This attribute holds the ignore count for the breakpoint, an integer.
5367This attribute is writable.
5368@end defvar
5369
5370@defvar Breakpoint.number
5371This attribute holds the breakpoint's number --- the identifier used by
5372the user to manipulate the breakpoint. This attribute is not writable.
5373@end defvar
5374
5375@defvar Breakpoint.type
5376This attribute holds the breakpoint's type --- the identifier used to
5377determine the actual breakpoint type or use-case. This attribute is not
5378writable.
5379@end defvar
5380
5381@defvar Breakpoint.visible
5382This attribute tells whether the breakpoint is visible to the user
5383when set, or when the @samp{info breakpoints} command is run. This
5384attribute is not writable.
5385@end defvar
5386
5387@defvar Breakpoint.temporary
5388This attribute indicates whether the breakpoint was created as a
5389temporary breakpoint. Temporary breakpoints are automatically deleted
5390after that breakpoint has been hit. Access to this attribute, and all
5391other attributes and functions other than the @code{is_valid}
5392function, will result in an error after the breakpoint has been hit
5393(as it has been automatically deleted). This attribute is not
5394writable.
5395@end defvar
5396
329baa95
DE
5397@defvar Breakpoint.hit_count
5398This attribute holds the hit count for the breakpoint, an integer.
5399This attribute is writable, but currently it can only be set to zero.
5400@end defvar
5401
5402@defvar Breakpoint.location
5403This attribute holds the location of the breakpoint, as specified by
5404the user. It is a string. If the breakpoint does not have a location
5405(that is, it is a watchpoint) the attribute's value is @code{None}. This
5406attribute is not writable.
5407@end defvar
5408
5409@defvar Breakpoint.expression
5410This attribute holds a breakpoint expression, as specified by
5411the user. It is a string. If the breakpoint does not have an
5412expression (the breakpoint is not a watchpoint) the attribute's value
5413is @code{None}. This attribute is not writable.
5414@end defvar
5415
5416@defvar Breakpoint.condition
5417This attribute holds the condition of the breakpoint, as specified by
5418the user. It is a string. If there is no condition, this attribute's
5419value is @code{None}. This attribute is writable.
5420@end defvar
5421
5422@defvar Breakpoint.commands
5423This attribute holds the commands attached to the breakpoint. If
5424there are commands, this attribute's value is a string holding all the
5425commands, separated by newlines. If there are no commands, this
a913fffb 5426attribute is @code{None}. This attribute is writable.
329baa95
DE
5427@end defvar
5428
5429@node Finish Breakpoints in Python
5430@subsubsection Finish Breakpoints
5431
5432@cindex python finish breakpoints
5433@tindex gdb.FinishBreakpoint
5434
5435A finish breakpoint is a temporary breakpoint set at the return address of
5436a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5437extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5438and deleted when the execution will run out of the breakpoint scope (i.e.@:
5439@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5440Finish breakpoints are thread specific and must be create with the right
5441thread selected.
5442
5443@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5444Create a finish breakpoint at the return address of the @code{gdb.Frame}
5445object @var{frame}. If @var{frame} is not provided, this defaults to the
5446newest frame. The optional @var{internal} argument allows the breakpoint to
5447become invisible to the user. @xref{Breakpoints In Python}, for further
5448details about this argument.
5449@end defun
5450
5451@defun FinishBreakpoint.out_of_scope (self)
5452In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5453@code{return} command, @dots{}), a function may not properly terminate, and
5454thus never hit the finish breakpoint. When @value{GDBN} notices such a
5455situation, the @code{out_of_scope} callback will be triggered.
5456
5457You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5458method:
5459
5460@smallexample
5461class MyFinishBreakpoint (gdb.FinishBreakpoint)
5462 def stop (self):
5463 print "normal finish"
5464 return True
5465
5466 def out_of_scope ():
5467 print "abnormal finish"
5468@end smallexample
5469@end defun
5470
5471@defvar FinishBreakpoint.return_value
5472When @value{GDBN} is stopped at a finish breakpoint and the frame
5473used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5474attribute will contain a @code{gdb.Value} object corresponding to the return
5475value of the function. The value will be @code{None} if the function return
5476type is @code{void} or if the return value was not computable. This attribute
5477is not writable.
5478@end defvar
5479
5480@node Lazy Strings In Python
849cba3b 5481@subsubsection Python representation of lazy strings
329baa95
DE
5482
5483@cindex lazy strings in python
5484@tindex gdb.LazyString
5485
5486A @dfn{lazy string} is a string whose contents is not retrieved or
5487encoded until it is needed.
5488
5489A @code{gdb.LazyString} is represented in @value{GDBN} as an
5490@code{address} that points to a region of memory, an @code{encoding}
5491that will be used to encode that region of memory, and a @code{length}
5492to delimit the region of memory that represents the string. The
5493difference between a @code{gdb.LazyString} and a string wrapped within
5494a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5495differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5496retrieved and encoded during printing, while a @code{gdb.Value}
5497wrapping a string is immediately retrieved and encoded on creation.
5498
5499A @code{gdb.LazyString} object has the following functions:
5500
5501@defun LazyString.value ()
5502Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5503will point to the string in memory, but will lose all the delayed
5504retrieval, encoding and handling that @value{GDBN} applies to a
5505@code{gdb.LazyString}.
5506@end defun
5507
5508@defvar LazyString.address
5509This attribute holds the address of the string. This attribute is not
5510writable.
5511@end defvar
5512
5513@defvar LazyString.length
5514This attribute holds the length of the string in characters. If the
5515length is -1, then the string will be fetched and encoded up to the
5516first null of appropriate width. This attribute is not writable.
5517@end defvar
5518
5519@defvar LazyString.encoding
5520This attribute holds the encoding that will be applied to the string
5521when the string is printed by @value{GDBN}. If the encoding is not
5522set, or contains an empty string, then @value{GDBN} will select the
5523most appropriate encoding when the string is printed. This attribute
5524is not writable.
5525@end defvar
5526
5527@defvar LazyString.type
5528This attribute holds the type that is represented by the lazy string's
f8d99587 5529type. For a lazy string this is a pointer or array type. To
329baa95
DE
5530resolve this to the lazy string's character type, use the type's
5531@code{target} method. @xref{Types In Python}. This attribute is not
5532writable.
5533@end defvar
5534
5535@node Architectures In Python
5536@subsubsection Python representation of architectures
5537@cindex Python architectures
5538
5539@value{GDBN} uses architecture specific parameters and artifacts in a
5540number of its various computations. An architecture is represented
5541by an instance of the @code{gdb.Architecture} class.
5542
5543A @code{gdb.Architecture} class has the following methods:
5544
5545@defun Architecture.name ()
5546Return the name (string value) of the architecture.
5547@end defun
5548
5549@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5550Return a list of disassembled instructions starting from the memory
5551address @var{start_pc}. The optional arguments @var{end_pc} and
5552@var{count} determine the number of instructions in the returned list.
5553If both the optional arguments @var{end_pc} and @var{count} are
5554specified, then a list of at most @var{count} disassembled instructions
5555whose start address falls in the closed memory address interval from
5556@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5557specified, but @var{count} is specified, then @var{count} number of
5558instructions starting from the address @var{start_pc} are returned. If
5559@var{count} is not specified but @var{end_pc} is specified, then all
5560instructions whose start address falls in the closed memory address
5561interval from @var{start_pc} to @var{end_pc} are returned. If neither
5562@var{end_pc} nor @var{count} are specified, then a single instruction at
5563@var{start_pc} is returned. For all of these cases, each element of the
5564returned list is a Python @code{dict} with the following string keys:
5565
5566@table @code
5567
5568@item addr
5569The value corresponding to this key is a Python long integer capturing
5570the memory address of the instruction.
5571
5572@item asm
5573The value corresponding to this key is a string value which represents
5574the instruction with assembly language mnemonics. The assembly
5575language flavor used is the same as that specified by the current CLI
5576variable @code{disassembly-flavor}. @xref{Machine Code}.
5577
5578@item length
5579The value corresponding to this key is the length (integer value) of the
5580instruction in bytes.
5581
5582@end table
5583@end defun
5584
5585@node Python Auto-loading
5586@subsection Python Auto-loading
5587@cindex Python auto-loading
5588
5589When a new object file is read (for example, due to the @code{file}
5590command, or because the inferior has loaded a shared library),
5591@value{GDBN} will look for Python support scripts in several ways:
5592@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5593@xref{Auto-loading extensions}.
5594
5595The auto-loading feature is useful for supplying application-specific
5596debugging commands and scripts.
5597
5598Auto-loading can be enabled or disabled,
5599and the list of auto-loaded scripts can be printed.
5600
5601@table @code
5602@anchor{set auto-load python-scripts}
5603@kindex set auto-load python-scripts
5604@item set auto-load python-scripts [on|off]
5605Enable or disable the auto-loading of Python scripts.
5606
5607@anchor{show auto-load python-scripts}
5608@kindex show auto-load python-scripts
5609@item show auto-load python-scripts
5610Show whether auto-loading of Python scripts is enabled or disabled.
5611
5612@anchor{info auto-load python-scripts}
5613@kindex info auto-load python-scripts
5614@cindex print list of auto-loaded Python scripts
5615@item info auto-load python-scripts [@var{regexp}]
5616Print the list of all Python scripts that @value{GDBN} auto-loaded.
5617
5618Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5619the @code{.debug_gdb_scripts} section and were either not found
5620(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5621@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5622This is useful because their names are not printed when @value{GDBN}
5623tries to load them and fails. There may be many of them, and printing
5624an error message for each one is problematic.
5625
5626If @var{regexp} is supplied only Python scripts with matching names are printed.
5627
5628Example:
5629
5630@smallexample
5631(gdb) info auto-load python-scripts
5632Loaded Script
5633Yes py-section-script.py
5634 full name: /tmp/py-section-script.py
5635No my-foo-pretty-printers.py
5636@end smallexample
5637@end table
5638
9f050062 5639When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5640@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5641function (@pxref{Objfiles In Python}). This can be useful for
5642registering objfile-specific pretty-printers and frame-filters.
5643
5644@node Python modules
5645@subsection Python modules
5646@cindex python modules
5647
5648@value{GDBN} comes with several modules to assist writing Python code.
5649
5650@menu
5651* gdb.printing:: Building and registering pretty-printers.
5652* gdb.types:: Utilities for working with types.
5653* gdb.prompt:: Utilities for prompt value substitution.
5654@end menu
5655
5656@node gdb.printing
5657@subsubsection gdb.printing
5658@cindex gdb.printing
5659
5660This module provides a collection of utilities for working with
5661pretty-printers.
5662
5663@table @code
5664@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5665This class specifies the API that makes @samp{info pretty-printer},
5666@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5667Pretty-printers should generally inherit from this class.
5668
5669@item SubPrettyPrinter (@var{name})
5670For printers that handle multiple types, this class specifies the
5671corresponding API for the subprinters.
5672
5673@item RegexpCollectionPrettyPrinter (@var{name})
5674Utility class for handling multiple printers, all recognized via
5675regular expressions.
5676@xref{Writing a Pretty-Printer}, for an example.
5677
5678@item FlagEnumerationPrinter (@var{name})
5679A pretty-printer which handles printing of @code{enum} values. Unlike
5680@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5681work properly when there is some overlap between the enumeration
697aa1b7
EZ
5682constants. The argument @var{name} is the name of the printer and
5683also the name of the @code{enum} type to look up.
329baa95
DE
5684
5685@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5686Register @var{printer} with the pretty-printer list of @var{obj}.
5687If @var{replace} is @code{True} then any existing copy of the printer
5688is replaced. Otherwise a @code{RuntimeError} exception is raised
5689if a printer with the same name already exists.
5690@end table
5691
5692@node gdb.types
5693@subsubsection gdb.types
5694@cindex gdb.types
5695
5696This module provides a collection of utilities for working with
5697@code{gdb.Type} objects.
5698
5699@table @code
5700@item get_basic_type (@var{type})
5701Return @var{type} with const and volatile qualifiers stripped,
5702and with typedefs and C@t{++} references converted to the underlying type.
5703
5704C@t{++} example:
5705
5706@smallexample
5707typedef const int const_int;
5708const_int foo (3);
5709const_int& foo_ref (foo);
5710int main () @{ return 0; @}
5711@end smallexample
5712
5713Then in gdb:
5714
5715@smallexample
5716(gdb) start
5717(gdb) python import gdb.types
5718(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5719(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5720int
5721@end smallexample
5722
5723@item has_field (@var{type}, @var{field})
5724Return @code{True} if @var{type}, assumed to be a type with fields
5725(e.g., a structure or union), has field @var{field}.
5726
5727@item make_enum_dict (@var{enum_type})
5728Return a Python @code{dictionary} type produced from @var{enum_type}.
5729
5730@item deep_items (@var{type})
5731Returns a Python iterator similar to the standard
5732@code{gdb.Type.iteritems} method, except that the iterator returned
5733by @code{deep_items} will recursively traverse anonymous struct or
5734union fields. For example:
5735
5736@smallexample
5737struct A
5738@{
5739 int a;
5740 union @{
5741 int b0;
5742 int b1;
5743 @};
5744@};
5745@end smallexample
5746
5747@noindent
5748Then in @value{GDBN}:
5749@smallexample
5750(@value{GDBP}) python import gdb.types
5751(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5752(@value{GDBP}) python print struct_a.keys ()
5753@{['a', '']@}
5754(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5755@{['a', 'b0', 'b1']@}
5756@end smallexample
5757
5758@item get_type_recognizers ()
5759Return a list of the enabled type recognizers for the current context.
5760This is called by @value{GDBN} during the type-printing process
5761(@pxref{Type Printing API}).
5762
5763@item apply_type_recognizers (recognizers, type_obj)
5764Apply the type recognizers, @var{recognizers}, to the type object
5765@var{type_obj}. If any recognizer returns a string, return that
5766string. Otherwise, return @code{None}. This is called by
5767@value{GDBN} during the type-printing process (@pxref{Type Printing
5768API}).
5769
5770@item register_type_printer (locus, printer)
697aa1b7
EZ
5771This is a convenience function to register a type printer
5772@var{printer}. The printer must implement the type printer protocol.
5773The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5774the printer is registered with that objfile; a @code{gdb.Progspace},
5775in which case the printer is registered with that progspace; or
5776@code{None}, in which case the printer is registered globally.
329baa95
DE
5777
5778@item TypePrinter
5779This is a base class that implements the type printer protocol. Type
5780printers are encouraged, but not required, to derive from this class.
5781It defines a constructor:
5782
5783@defmethod TypePrinter __init__ (self, name)
5784Initialize the type printer with the given name. The new printer
5785starts in the enabled state.
5786@end defmethod
5787
5788@end table
5789
5790@node gdb.prompt
5791@subsubsection gdb.prompt
5792@cindex gdb.prompt
5793
5794This module provides a method for prompt value-substitution.
5795
5796@table @code
5797@item substitute_prompt (@var{string})
5798Return @var{string} with escape sequences substituted by values. Some
5799escape sequences take arguments. You can specify arguments inside
5800``@{@}'' immediately following the escape sequence.
5801
5802The escape sequences you can pass to this function are:
5803
5804@table @code
5805@item \\
5806Substitute a backslash.
5807@item \e
5808Substitute an ESC character.
5809@item \f
5810Substitute the selected frame; an argument names a frame parameter.
5811@item \n
5812Substitute a newline.
5813@item \p
5814Substitute a parameter's value; the argument names the parameter.
5815@item \r
5816Substitute a carriage return.
5817@item \t
5818Substitute the selected thread; an argument names a thread parameter.
5819@item \v
5820Substitute the version of GDB.
5821@item \w
5822Substitute the current working directory.
5823@item \[
5824Begin a sequence of non-printing characters. These sequences are
5825typically used with the ESC character, and are not counted in the string
5826length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5827blue-colored ``(gdb)'' prompt where the length is five.
5828@item \]
5829End a sequence of non-printing characters.
5830@end table
5831
5832For example:
5833
5834@smallexample
5835substitute_prompt (``frame: \f,
5836 print arguments: \p@{print frame-arguments@}'')
5837@end smallexample
5838
5839@exdent will return the string:
5840
5841@smallexample
5842"frame: main, print arguments: scalars"
5843@end smallexample
5844@end table
This page took 0.644888 seconds and 4 git commands to generate.