Merge handle_inferior_event and handle_inferior_event_1
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
42a4f53d 1@c Copyright (C) 2008-2019 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
774returns @code{gdb.Value} objects corresonding to the values pointed to
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
867@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
868If this @code{gdb.Value} represents a string, then this method
869converts the contents to a Python string. Otherwise, this method will
870throw an exception.
871
b3ce5e5f
DE
872Values are interpreted as strings according to the rules of the
873current language. If the optional length argument is given, the
874string will be converted to that length, and will include any embedded
875zeroes that the string may contain. Otherwise, for languages
876where the string is zero-terminated, the entire string will be
877converted.
329baa95 878
b3ce5e5f
DE
879For example, in C-like languages, a value is a string if it is a pointer
880to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
881or @code{char32_t}.
329baa95
DE
882
883If the optional @var{encoding} argument is given, it must be a string
884naming the encoding of the string in the @code{gdb.Value}, such as
885@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
886the same encodings as the corresponding argument to Python's
887@code{string.decode} method, and the Python codec machinery will be used
888to convert the string. If @var{encoding} is not given, or if
889@var{encoding} is the empty string, then either the @code{target-charset}
890(@pxref{Character Sets}) will be used, or a language-specific encoding
891will be used, if the current language is able to supply one.
892
893The optional @var{errors} argument is the same as the corresponding
894argument to Python's @code{string.decode} method.
895
896If the optional @var{length} argument is given, the string will be
897fetched and converted to the given length.
898@end defun
899
900@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
901If this @code{gdb.Value} represents a string, then this method
902converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
903In Python}). Otherwise, this method will throw an exception.
904
905If the optional @var{encoding} argument is given, it must be a string
906naming the encoding of the @code{gdb.LazyString}. Some examples are:
907@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
908@var{encoding} argument is an encoding that @value{GDBN} does
909recognize, @value{GDBN} will raise an error.
910
911When a lazy string is printed, the @value{GDBN} encoding machinery is
912used to convert the string during printing. If the optional
913@var{encoding} argument is not provided, or is an empty string,
914@value{GDBN} will automatically select the encoding most suitable for
915the string type. For further information on encoding in @value{GDBN}
916please see @ref{Character Sets}.
917
918If the optional @var{length} argument is given, the string will be
919fetched and encoded to the length of characters specified. If
920the @var{length} argument is not provided, the string will be fetched
921and encoded until a null of appropriate width is found.
922@end defun
923
924@defun Value.fetch_lazy ()
925If the @code{gdb.Value} object is currently a lazy value
926(@code{gdb.Value.is_lazy} is @code{True}), then the value is
927fetched from the inferior. Any errors that occur in the process
928will produce a Python exception.
929
930If the @code{gdb.Value} object is not a lazy value, this method
931has no effect.
932
933This method does not return a value.
934@end defun
935
936
937@node Types In Python
938@subsubsection Types In Python
939@cindex types in Python
940@cindex Python, working with types
941
942@tindex gdb.Type
943@value{GDBN} represents types from the inferior using the class
944@code{gdb.Type}.
945
946The following type-related functions are available in the @code{gdb}
947module:
948
949@findex gdb.lookup_type
950@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 951This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
952
953If @var{block} is given, then @var{name} is looked up in that scope.
954Otherwise, it is searched for globally.
955
956Ordinarily, this function will return an instance of @code{gdb.Type}.
957If the named type cannot be found, it will throw an exception.
958@end defun
959
960If the type is a structure or class type, or an enum type, the fields
961of that type can be accessed using the Python @dfn{dictionary syntax}.
962For example, if @code{some_type} is a @code{gdb.Type} instance holding
963a structure type, you can access its @code{foo} field with:
964
965@smallexample
966bar = some_type['foo']
967@end smallexample
968
969@code{bar} will be a @code{gdb.Field} object; see below under the
970description of the @code{Type.fields} method for a description of the
971@code{gdb.Field} class.
972
973An instance of @code{Type} has the following attributes:
974
6d7bb824
TT
975@defvar Type.alignof
976The alignment of this type, in bytes. Type alignment comes from the
977debugging information; if it was not specified, then @value{GDBN} will
978use the relevant ABI to try to determine the alignment. In some
979cases, even this is not possible, and zero will be returned.
980@end defvar
981
329baa95
DE
982@defvar Type.code
983The type code for this type. The type code will be one of the
984@code{TYPE_CODE_} constants defined below.
985@end defvar
986
987@defvar Type.name
988The name of this type. If this type has no name, then @code{None}
989is returned.
990@end defvar
991
992@defvar Type.sizeof
993The size of this type, in target @code{char} units. Usually, a
994target's @code{char} type will be an 8-bit byte. However, on some
995unusual platforms, this type may have a different size.
996@end defvar
997
998@defvar Type.tag
999The tag name for this type. The tag name is the name after
1000@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1001languages have this concept. If this type has no tag name, then
1002@code{None} is returned.
1003@end defvar
1004
1005The following methods are provided:
1006
1007@defun Type.fields ()
1008For structure and union types, this method returns the fields. Range
1009types have two fields, the minimum and maximum values. Enum types
1010have one field per enum constant. Function and method types have one
1011field per parameter. The base types of C@t{++} classes are also
1012represented as fields. If the type has no fields, or does not fit
1013into one of these categories, an empty sequence will be returned.
1014
1015Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1016@table @code
1017@item bitpos
1018This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1019(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1020in bits, from the start of the containing type.
1021
1022@item enumval
1023This attribute is only available for @code{enum} fields, and its value
1024is the enumeration member's integer representation.
1025
1026@item name
1027The name of the field, or @code{None} for anonymous fields.
1028
1029@item artificial
1030This is @code{True} if the field is artificial, usually meaning that
1031it was provided by the compiler and not the user. This attribute is
1032always provided, and is @code{False} if the field is not artificial.
1033
1034@item is_base_class
1035This is @code{True} if the field represents a base class of a C@t{++}
1036structure. This attribute is always provided, and is @code{False}
1037if the field is not a base class of the type that is the argument of
1038@code{fields}, or if that type was not a C@t{++} class.
1039
1040@item bitsize
1041If the field is packed, or is a bitfield, then this will have a
1042non-zero value, which is the size of the field in bits. Otherwise,
1043this will be zero; in this case the field's size is given by its type.
1044
1045@item type
1046The type of the field. This is usually an instance of @code{Type},
1047but it can be @code{None} in some situations.
1048
1049@item parent_type
1050The type which contains this field. This is an instance of
1051@code{gdb.Type}.
1052@end table
1053@end defun
1054
1055@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1056Return a new @code{gdb.Type} object which represents an array of this
1057type. If one argument is given, it is the inclusive upper bound of
1058the array; in this case the lower bound is zero. If two arguments are
1059given, the first argument is the lower bound of the array, and the
1060second argument is the upper bound of the array. An array's length
1061must not be negative, but the bounds can be.
1062@end defun
1063
1064@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1065Return a new @code{gdb.Type} object which represents a vector of this
1066type. If one argument is given, it is the inclusive upper bound of
1067the vector; in this case the lower bound is zero. If two arguments are
1068given, the first argument is the lower bound of the vector, and the
1069second argument is the upper bound of the vector. A vector's length
1070must not be negative, but the bounds can be.
1071
1072The difference between an @code{array} and a @code{vector} is that
1073arrays behave like in C: when used in expressions they decay to a pointer
1074to the first element whereas vectors are treated as first class values.
1075@end defun
1076
1077@defun Type.const ()
1078Return a new @code{gdb.Type} object which represents a
1079@code{const}-qualified variant of this type.
1080@end defun
1081
1082@defun Type.volatile ()
1083Return a new @code{gdb.Type} object which represents a
1084@code{volatile}-qualified variant of this type.
1085@end defun
1086
1087@defun Type.unqualified ()
1088Return a new @code{gdb.Type} object which represents an unqualified
1089variant of this type. That is, the result is neither @code{const} nor
1090@code{volatile}.
1091@end defun
1092
1093@defun Type.range ()
1094Return a Python @code{Tuple} object that contains two elements: the
1095low bound of the argument type and the high bound of that type. If
1096the type does not have a range, @value{GDBN} will raise a
1097@code{gdb.error} exception (@pxref{Exception Handling}).
1098@end defun
1099
1100@defun Type.reference ()
1101Return a new @code{gdb.Type} object which represents a reference to this
1102type.
1103@end defun
1104
1105@defun Type.pointer ()
1106Return a new @code{gdb.Type} object which represents a pointer to this
1107type.
1108@end defun
1109
1110@defun Type.strip_typedefs ()
1111Return a new @code{gdb.Type} that represents the real type,
1112after removing all layers of typedefs.
1113@end defun
1114
1115@defun Type.target ()
1116Return a new @code{gdb.Type} object which represents the target type
1117of this type.
1118
1119For a pointer type, the target type is the type of the pointed-to
1120object. For an array type (meaning C-like arrays), the target type is
1121the type of the elements of the array. For a function or method type,
1122the target type is the type of the return value. For a complex type,
1123the target type is the type of the elements. For a typedef, the
1124target type is the aliased type.
1125
1126If the type does not have a target, this method will throw an
1127exception.
1128@end defun
1129
1130@defun Type.template_argument (n @r{[}, block@r{]})
1131If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1132return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1133value of the @var{n}th template argument (indexed starting at 0).
329baa95 1134
1a6a384b
JL
1135If this @code{gdb.Type} is not a template type, or if the type has fewer
1136than @var{n} template arguments, this will throw an exception.
1137Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1138
1139If @var{block} is given, then @var{name} is looked up in that scope.
1140Otherwise, it is searched for globally.
1141@end defun
1142
59fb7612
SS
1143@defun Type.optimized_out ()
1144Return @code{gdb.Value} instance of this type whose value is optimized
1145out. This allows a frame decorator to indicate that the value of an
1146argument or a local variable is not known.
1147@end defun
329baa95
DE
1148
1149Each type has a code, which indicates what category this type falls
1150into. The available type categories are represented by constants
1151defined in the @code{gdb} module:
1152
b3ce5e5f
DE
1153@vtable @code
1154@vindex TYPE_CODE_PTR
329baa95
DE
1155@item gdb.TYPE_CODE_PTR
1156The type is a pointer.
1157
b3ce5e5f 1158@vindex TYPE_CODE_ARRAY
329baa95
DE
1159@item gdb.TYPE_CODE_ARRAY
1160The type is an array.
1161
b3ce5e5f 1162@vindex TYPE_CODE_STRUCT
329baa95
DE
1163@item gdb.TYPE_CODE_STRUCT
1164The type is a structure.
1165
b3ce5e5f 1166@vindex TYPE_CODE_UNION
329baa95
DE
1167@item gdb.TYPE_CODE_UNION
1168The type is a union.
1169
b3ce5e5f 1170@vindex TYPE_CODE_ENUM
329baa95
DE
1171@item gdb.TYPE_CODE_ENUM
1172The type is an enum.
1173
b3ce5e5f 1174@vindex TYPE_CODE_FLAGS
329baa95
DE
1175@item gdb.TYPE_CODE_FLAGS
1176A bit flags type, used for things such as status registers.
1177
b3ce5e5f 1178@vindex TYPE_CODE_FUNC
329baa95
DE
1179@item gdb.TYPE_CODE_FUNC
1180The type is a function.
1181
b3ce5e5f 1182@vindex TYPE_CODE_INT
329baa95
DE
1183@item gdb.TYPE_CODE_INT
1184The type is an integer type.
1185
b3ce5e5f 1186@vindex TYPE_CODE_FLT
329baa95
DE
1187@item gdb.TYPE_CODE_FLT
1188A floating point type.
1189
b3ce5e5f 1190@vindex TYPE_CODE_VOID
329baa95
DE
1191@item gdb.TYPE_CODE_VOID
1192The special type @code{void}.
1193
b3ce5e5f 1194@vindex TYPE_CODE_SET
329baa95
DE
1195@item gdb.TYPE_CODE_SET
1196A Pascal set type.
1197
b3ce5e5f 1198@vindex TYPE_CODE_RANGE
329baa95
DE
1199@item gdb.TYPE_CODE_RANGE
1200A range type, that is, an integer type with bounds.
1201
b3ce5e5f 1202@vindex TYPE_CODE_STRING
329baa95
DE
1203@item gdb.TYPE_CODE_STRING
1204A string type. Note that this is only used for certain languages with
1205language-defined string types; C strings are not represented this way.
1206
b3ce5e5f 1207@vindex TYPE_CODE_BITSTRING
329baa95
DE
1208@item gdb.TYPE_CODE_BITSTRING
1209A string of bits. It is deprecated.
1210
b3ce5e5f 1211@vindex TYPE_CODE_ERROR
329baa95
DE
1212@item gdb.TYPE_CODE_ERROR
1213An unknown or erroneous type.
1214
b3ce5e5f 1215@vindex TYPE_CODE_METHOD
329baa95 1216@item gdb.TYPE_CODE_METHOD
9c37b5ae 1217A method type, as found in C@t{++}.
329baa95 1218
b3ce5e5f 1219@vindex TYPE_CODE_METHODPTR
329baa95
DE
1220@item gdb.TYPE_CODE_METHODPTR
1221A pointer-to-member-function.
1222
b3ce5e5f 1223@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1224@item gdb.TYPE_CODE_MEMBERPTR
1225A pointer-to-member.
1226
b3ce5e5f 1227@vindex TYPE_CODE_REF
329baa95
DE
1228@item gdb.TYPE_CODE_REF
1229A reference type.
1230
3fcf899d
AV
1231@vindex TYPE_CODE_RVALUE_REF
1232@item gdb.TYPE_CODE_RVALUE_REF
1233A C@t{++}11 rvalue reference type.
1234
b3ce5e5f 1235@vindex TYPE_CODE_CHAR
329baa95
DE
1236@item gdb.TYPE_CODE_CHAR
1237A character type.
1238
b3ce5e5f 1239@vindex TYPE_CODE_BOOL
329baa95
DE
1240@item gdb.TYPE_CODE_BOOL
1241A boolean type.
1242
b3ce5e5f 1243@vindex TYPE_CODE_COMPLEX
329baa95
DE
1244@item gdb.TYPE_CODE_COMPLEX
1245A complex float type.
1246
b3ce5e5f 1247@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1248@item gdb.TYPE_CODE_TYPEDEF
1249A typedef to some other type.
1250
b3ce5e5f 1251@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1252@item gdb.TYPE_CODE_NAMESPACE
1253A C@t{++} namespace.
1254
b3ce5e5f 1255@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1256@item gdb.TYPE_CODE_DECFLOAT
1257A decimal floating point type.
1258
b3ce5e5f 1259@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1260@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1261A function internal to @value{GDBN}. This is the type used to represent
1262convenience functions.
b3ce5e5f 1263@end vtable
329baa95
DE
1264
1265Further support for types is provided in the @code{gdb.types}
1266Python module (@pxref{gdb.types}).
1267
1268@node Pretty Printing API
1269@subsubsection Pretty Printing API
b3ce5e5f 1270@cindex python pretty printing api
329baa95 1271
329baa95 1272A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1273specific interface, defined here. An example output is provided
1274(@pxref{Pretty Printing}).
329baa95
DE
1275
1276@defun pretty_printer.children (self)
1277@value{GDBN} will call this method on a pretty-printer to compute the
1278children of the pretty-printer's value.
1279
1280This method must return an object conforming to the Python iterator
1281protocol. Each item returned by the iterator must be a tuple holding
1282two elements. The first element is the ``name'' of the child; the
1283second element is the child's value. The value can be any Python
1284object which is convertible to a @value{GDBN} value.
1285
1286This method is optional. If it does not exist, @value{GDBN} will act
1287as though the value has no children.
1288@end defun
1289
1290@defun pretty_printer.display_hint (self)
1291The CLI may call this method and use its result to change the
1292formatting of a value. The result will also be supplied to an MI
1293consumer as a @samp{displayhint} attribute of the variable being
1294printed.
1295
1296This method is optional. If it does exist, this method must return a
1297string.
1298
1299Some display hints are predefined by @value{GDBN}:
1300
1301@table @samp
1302@item array
1303Indicate that the object being printed is ``array-like''. The CLI
1304uses this to respect parameters such as @code{set print elements} and
1305@code{set print array}.
1306
1307@item map
1308Indicate that the object being printed is ``map-like'', and that the
1309children of this value can be assumed to alternate between keys and
1310values.
1311
1312@item string
1313Indicate that the object being printed is ``string-like''. If the
1314printer's @code{to_string} method returns a Python string of some
1315kind, then @value{GDBN} will call its internal language-specific
1316string-printing function to format the string. For the CLI this means
1317adding quotation marks, possibly escaping some characters, respecting
1318@code{set print elements}, and the like.
1319@end table
1320@end defun
1321
1322@defun pretty_printer.to_string (self)
1323@value{GDBN} will call this method to display the string
1324representation of the value passed to the object's constructor.
1325
1326When printing from the CLI, if the @code{to_string} method exists,
1327then @value{GDBN} will prepend its result to the values returned by
1328@code{children}. Exactly how this formatting is done is dependent on
1329the display hint, and may change as more hints are added. Also,
1330depending on the print settings (@pxref{Print Settings}), the CLI may
1331print just the result of @code{to_string} in a stack trace, omitting
1332the result of @code{children}.
1333
1334If this method returns a string, it is printed verbatim.
1335
1336Otherwise, if this method returns an instance of @code{gdb.Value},
1337then @value{GDBN} prints this value. This may result in a call to
1338another pretty-printer.
1339
1340If instead the method returns a Python value which is convertible to a
1341@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1342the resulting value. Again, this may result in a call to another
1343pretty-printer. Python scalars (integers, floats, and booleans) and
1344strings are convertible to @code{gdb.Value}; other types are not.
1345
1346Finally, if this method returns @code{None} then no further operations
1347are peformed in this method and nothing is printed.
1348
1349If the result is not one of these types, an exception is raised.
1350@end defun
1351
1352@value{GDBN} provides a function which can be used to look up the
1353default pretty-printer for a @code{gdb.Value}:
1354
1355@findex gdb.default_visualizer
1356@defun gdb.default_visualizer (value)
1357This function takes a @code{gdb.Value} object as an argument. If a
1358pretty-printer for this value exists, then it is returned. If no such
1359printer exists, then this returns @code{None}.
1360@end defun
1361
1362@node Selecting Pretty-Printers
1363@subsubsection Selecting Pretty-Printers
b3ce5e5f 1364@cindex selecting python pretty-printers
329baa95
DE
1365
1366The Python list @code{gdb.pretty_printers} contains an array of
1367functions or callable objects that have been registered via addition
1368as a pretty-printer. Printers in this list are called @code{global}
1369printers, they're available when debugging all inferiors.
1370Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1371Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1372attribute.
1373
1374Each function on these lists is passed a single @code{gdb.Value}
1375argument and should return a pretty-printer object conforming to the
1376interface definition above (@pxref{Pretty Printing API}). If a function
1377cannot create a pretty-printer for the value, it should return
1378@code{None}.
1379
1380@value{GDBN} first checks the @code{pretty_printers} attribute of each
1381@code{gdb.Objfile} in the current program space and iteratively calls
1382each enabled lookup routine in the list for that @code{gdb.Objfile}
1383until it receives a pretty-printer object.
1384If no pretty-printer is found in the objfile lists, @value{GDBN} then
1385searches the pretty-printer list of the current program space,
1386calling each enabled function until an object is returned.
1387After these lists have been exhausted, it tries the global
1388@code{gdb.pretty_printers} list, again calling each enabled function until an
1389object is returned.
1390
1391The order in which the objfiles are searched is not specified. For a
1392given list, functions are always invoked from the head of the list,
1393and iterated over sequentially until the end of the list, or a printer
1394object is returned.
1395
1396For various reasons a pretty-printer may not work.
1397For example, the underlying data structure may have changed and
1398the pretty-printer is out of date.
1399
1400The consequences of a broken pretty-printer are severe enough that
1401@value{GDBN} provides support for enabling and disabling individual
1402printers. For example, if @code{print frame-arguments} is on,
1403a backtrace can become highly illegible if any argument is printed
1404with a broken printer.
1405
1406Pretty-printers are enabled and disabled by attaching an @code{enabled}
1407attribute to the registered function or callable object. If this attribute
1408is present and its value is @code{False}, the printer is disabled, otherwise
1409the printer is enabled.
1410
1411@node Writing a Pretty-Printer
1412@subsubsection Writing a Pretty-Printer
1413@cindex writing a pretty-printer
1414
1415A pretty-printer consists of two parts: a lookup function to detect
1416if the type is supported, and the printer itself.
1417
1418Here is an example showing how a @code{std::string} printer might be
1419written. @xref{Pretty Printing API}, for details on the API this class
1420must provide.
1421
1422@smallexample
1423class StdStringPrinter(object):
1424 "Print a std::string"
1425
1426 def __init__(self, val):
1427 self.val = val
1428
1429 def to_string(self):
1430 return self.val['_M_dataplus']['_M_p']
1431
1432 def display_hint(self):
1433 return 'string'
1434@end smallexample
1435
1436And here is an example showing how a lookup function for the printer
1437example above might be written.
1438
1439@smallexample
1440def str_lookup_function(val):
1441 lookup_tag = val.type.tag
1442 if lookup_tag == None:
1443 return None
1444 regex = re.compile("^std::basic_string<char,.*>$")
1445 if regex.match(lookup_tag):
1446 return StdStringPrinter(val)
1447 return None
1448@end smallexample
1449
1450The example lookup function extracts the value's type, and attempts to
1451match it to a type that it can pretty-print. If it is a type the
1452printer can pretty-print, it will return a printer object. If not, it
1453returns @code{None}.
1454
1455We recommend that you put your core pretty-printers into a Python
1456package. If your pretty-printers are for use with a library, we
1457further recommend embedding a version number into the package name.
1458This practice will enable @value{GDBN} to load multiple versions of
1459your pretty-printers at the same time, because they will have
1460different names.
1461
1462You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1463can be evaluated multiple times without changing its meaning. An
1464ideal auto-load file will consist solely of @code{import}s of your
1465printer modules, followed by a call to a register pretty-printers with
1466the current objfile.
1467
1468Taken as a whole, this approach will scale nicely to multiple
1469inferiors, each potentially using a different library version.
1470Embedding a version number in the Python package name will ensure that
1471@value{GDBN} is able to load both sets of printers simultaneously.
1472Then, because the search for pretty-printers is done by objfile, and
1473because your auto-loaded code took care to register your library's
1474printers with a specific objfile, @value{GDBN} will find the correct
1475printers for the specific version of the library used by each
1476inferior.
1477
1478To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1479this code might appear in @code{gdb.libstdcxx.v6}:
1480
1481@smallexample
1482def register_printers(objfile):
1483 objfile.pretty_printers.append(str_lookup_function)
1484@end smallexample
1485
1486@noindent
1487And then the corresponding contents of the auto-load file would be:
1488
1489@smallexample
1490import gdb.libstdcxx.v6
1491gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1492@end smallexample
1493
1494The previous example illustrates a basic pretty-printer.
1495There are a few things that can be improved on.
1496The printer doesn't have a name, making it hard to identify in a
1497list of installed printers. The lookup function has a name, but
1498lookup functions can have arbitrary, even identical, names.
1499
1500Second, the printer only handles one type, whereas a library typically has
1501several types. One could install a lookup function for each desired type
1502in the library, but one could also have a single lookup function recognize
1503several types. The latter is the conventional way this is handled.
1504If a pretty-printer can handle multiple data types, then its
1505@dfn{subprinters} are the printers for the individual data types.
1506
1507The @code{gdb.printing} module provides a formal way of solving these
1508problems (@pxref{gdb.printing}).
1509Here is another example that handles multiple types.
1510
1511These are the types we are going to pretty-print:
1512
1513@smallexample
1514struct foo @{ int a, b; @};
1515struct bar @{ struct foo x, y; @};
1516@end smallexample
1517
1518Here are the printers:
1519
1520@smallexample
1521class fooPrinter:
1522 """Print a foo object."""
1523
1524 def __init__(self, val):
1525 self.val = val
1526
1527 def to_string(self):
1528 return ("a=<" + str(self.val["a"]) +
1529 "> b=<" + str(self.val["b"]) + ">")
1530
1531class barPrinter:
1532 """Print a bar object."""
1533
1534 def __init__(self, val):
1535 self.val = val
1536
1537 def to_string(self):
1538 return ("x=<" + str(self.val["x"]) +
1539 "> y=<" + str(self.val["y"]) + ">")
1540@end smallexample
1541
1542This example doesn't need a lookup function, that is handled by the
1543@code{gdb.printing} module. Instead a function is provided to build up
1544the object that handles the lookup.
1545
1546@smallexample
1547import gdb.printing
1548
1549def build_pretty_printer():
1550 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1551 "my_library")
1552 pp.add_printer('foo', '^foo$', fooPrinter)
1553 pp.add_printer('bar', '^bar$', barPrinter)
1554 return pp
1555@end smallexample
1556
1557And here is the autoload support:
1558
1559@smallexample
1560import gdb.printing
1561import my_library
1562gdb.printing.register_pretty_printer(
1563 gdb.current_objfile(),
1564 my_library.build_pretty_printer())
1565@end smallexample
1566
1567Finally, when this printer is loaded into @value{GDBN}, here is the
1568corresponding output of @samp{info pretty-printer}:
1569
1570@smallexample
1571(gdb) info pretty-printer
1572my_library.so:
1573 my_library
1574 foo
1575 bar
1576@end smallexample
1577
1578@node Type Printing API
1579@subsubsection Type Printing API
1580@cindex type printing API for Python
1581
1582@value{GDBN} provides a way for Python code to customize type display.
1583This is mainly useful for substituting canonical typedef names for
1584types.
1585
1586@cindex type printer
1587A @dfn{type printer} is just a Python object conforming to a certain
1588protocol. A simple base class implementing the protocol is provided;
1589see @ref{gdb.types}. A type printer must supply at least:
1590
1591@defivar type_printer enabled
1592A boolean which is True if the printer is enabled, and False
1593otherwise. This is manipulated by the @code{enable type-printer}
1594and @code{disable type-printer} commands.
1595@end defivar
1596
1597@defivar type_printer name
1598The name of the type printer. This must be a string. This is used by
1599the @code{enable type-printer} and @code{disable type-printer}
1600commands.
1601@end defivar
1602
1603@defmethod type_printer instantiate (self)
1604This is called by @value{GDBN} at the start of type-printing. It is
1605only called if the type printer is enabled. This method must return a
1606new object that supplies a @code{recognize} method, as described below.
1607@end defmethod
1608
1609
1610When displaying a type, say via the @code{ptype} command, @value{GDBN}
1611will compute a list of type recognizers. This is done by iterating
1612first over the per-objfile type printers (@pxref{Objfiles In Python}),
1613followed by the per-progspace type printers (@pxref{Progspaces In
1614Python}), and finally the global type printers.
1615
1616@value{GDBN} will call the @code{instantiate} method of each enabled
1617type printer. If this method returns @code{None}, then the result is
1618ignored; otherwise, it is appended to the list of recognizers.
1619
1620Then, when @value{GDBN} is going to display a type name, it iterates
1621over the list of recognizers. For each one, it calls the recognition
1622function, stopping if the function returns a non-@code{None} value.
1623The recognition function is defined as:
1624
1625@defmethod type_recognizer recognize (self, type)
1626If @var{type} is not recognized, return @code{None}. Otherwise,
1627return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1628The @var{type} argument will be an instance of @code{gdb.Type}
1629(@pxref{Types In Python}).
329baa95
DE
1630@end defmethod
1631
1632@value{GDBN} uses this two-pass approach so that type printers can
1633efficiently cache information without holding on to it too long. For
1634example, it can be convenient to look up type information in a type
1635printer and hold it for a recognizer's lifetime; if a single pass were
1636done then type printers would have to make use of the event system in
1637order to avoid holding information that could become stale as the
1638inferior changed.
1639
1640@node Frame Filter API
521b499b 1641@subsubsection Filtering Frames
329baa95
DE
1642@cindex frame filters api
1643
1644Frame filters are Python objects that manipulate the visibility of a
1645frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1646@value{GDBN}.
1647
1648Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1649commands (@pxref{GDB/MI}), those that return a collection of frames
1650are affected. The commands that work with frame filters are:
1651
1652@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1653@code{-stack-list-frames}
1654(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1655@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1656-stack-list-variables command}), @code{-stack-list-arguments}
1657@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1658@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1659-stack-list-locals command}).
1660
1661A frame filter works by taking an iterator as an argument, applying
1662actions to the contents of that iterator, and returning another
1663iterator (or, possibly, the same iterator it was provided in the case
1664where the filter does not perform any operations). Typically, frame
1665filters utilize tools such as the Python's @code{itertools} module to
1666work with and create new iterators from the source iterator.
1667Regardless of how a filter chooses to apply actions, it must not alter
1668the underlying @value{GDBN} frame or frames, or attempt to alter the
1669call-stack within @value{GDBN}. This preserves data integrity within
1670@value{GDBN}. Frame filters are executed on a priority basis and care
1671should be taken that some frame filters may have been executed before,
1672and that some frame filters will be executed after.
1673
1674An important consideration when designing frame filters, and well
1675worth reflecting upon, is that frame filters should avoid unwinding
1676the call stack if possible. Some stacks can run very deep, into the
1677tens of thousands in some cases. To search every frame when a frame
1678filter executes may be too expensive at that step. The frame filter
1679cannot know how many frames it has to iterate over, and it may have to
1680iterate through them all. This ends up duplicating effort as
1681@value{GDBN} performs this iteration when it prints the frames. If
1682the filter can defer unwinding frames until frame decorators are
1683executed, after the last filter has executed, it should. @xref{Frame
1684Decorator API}, for more information on decorators. Also, there are
1685examples for both frame decorators and filters in later chapters.
1686@xref{Writing a Frame Filter}, for more information.
1687
1688The Python dictionary @code{gdb.frame_filters} contains key/object
1689pairings that comprise a frame filter. Frame filters in this
1690dictionary are called @code{global} frame filters, and they are
1691available when debugging all inferiors. These frame filters must
1692register with the dictionary directly. In addition to the
1693@code{global} dictionary, there are other dictionaries that are loaded
1694with different inferiors via auto-loading (@pxref{Python
1695Auto-loading}). The two other areas where frame filter dictionaries
1696can be found are: @code{gdb.Progspace} which contains a
1697@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1698object which also contains a @code{frame_filters} dictionary
1699attribute.
1700
1701When a command is executed from @value{GDBN} that is compatible with
1702frame filters, @value{GDBN} combines the @code{global},
1703@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1704loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1705several frames, and thus several object files, might be in use.
1706@value{GDBN} then prunes any frame filter whose @code{enabled}
1707attribute is @code{False}. This pruned list is then sorted according
1708to the @code{priority} attribute in each filter.
1709
1710Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1711creates an iterator which wraps each frame in the call stack in a
1712@code{FrameDecorator} object, and calls each filter in order. The
1713output from the previous filter will always be the input to the next
1714filter, and so on.
1715
1716Frame filters have a mandatory interface which each frame filter must
1717implement, defined here:
1718
1719@defun FrameFilter.filter (iterator)
1720@value{GDBN} will call this method on a frame filter when it has
1721reached the order in the priority list for that filter.
1722
1723For example, if there are four frame filters:
1724
1725@smallexample
1726Name Priority
1727
1728Filter1 5
1729Filter2 10
1730Filter3 100
1731Filter4 1
1732@end smallexample
1733
1734The order that the frame filters will be called is:
1735
1736@smallexample
1737Filter3 -> Filter2 -> Filter1 -> Filter4
1738@end smallexample
1739
1740Note that the output from @code{Filter3} is passed to the input of
1741@code{Filter2}, and so on.
1742
1743This @code{filter} method is passed a Python iterator. This iterator
1744contains a sequence of frame decorators that wrap each
1745@code{gdb.Frame}, or a frame decorator that wraps another frame
1746decorator. The first filter that is executed in the sequence of frame
1747filters will receive an iterator entirely comprised of default
1748@code{FrameDecorator} objects. However, after each frame filter is
1749executed, the previous frame filter may have wrapped some or all of
1750the frame decorators with their own frame decorator. As frame
1751decorators must also conform to a mandatory interface, these
1752decorators can be assumed to act in a uniform manner (@pxref{Frame
1753Decorator API}).
1754
1755This method must return an object conforming to the Python iterator
1756protocol. Each item in the iterator must be an object conforming to
1757the frame decorator interface. If a frame filter does not wish to
1758perform any operations on this iterator, it should return that
1759iterator untouched.
1760
1761This method is not optional. If it does not exist, @value{GDBN} will
1762raise and print an error.
1763@end defun
1764
1765@defvar FrameFilter.name
1766The @code{name} attribute must be Python string which contains the
1767name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1768Management}). This attribute may contain any combination of letters
1769or numbers. Care should be taken to ensure that it is unique. This
1770attribute is mandatory.
1771@end defvar
1772
1773@defvar FrameFilter.enabled
1774The @code{enabled} attribute must be Python boolean. This attribute
1775indicates to @value{GDBN} whether the frame filter is enabled, and
1776should be considered when frame filters are executed. If
1777@code{enabled} is @code{True}, then the frame filter will be executed
1778when any of the backtrace commands detailed earlier in this chapter
1779are executed. If @code{enabled} is @code{False}, then the frame
1780filter will not be executed. This attribute is mandatory.
1781@end defvar
1782
1783@defvar FrameFilter.priority
1784The @code{priority} attribute must be Python integer. This attribute
1785controls the order of execution in relation to other frame filters.
1786There are no imposed limits on the range of @code{priority} other than
1787it must be a valid integer. The higher the @code{priority} attribute,
1788the sooner the frame filter will be executed in relation to other
1789frame filters. Although @code{priority} can be negative, it is
1790recommended practice to assume zero is the lowest priority that a
1791frame filter can be assigned. Frame filters that have the same
1792priority are executed in unsorted order in that priority slot. This
521b499b 1793attribute is mandatory. 100 is a good default priority.
329baa95
DE
1794@end defvar
1795
1796@node Frame Decorator API
521b499b 1797@subsubsection Decorating Frames
329baa95
DE
1798@cindex frame decorator api
1799
1800Frame decorators are sister objects to frame filters (@pxref{Frame
1801Filter API}). Frame decorators are applied by a frame filter and can
1802only be used in conjunction with frame filters.
1803
1804The purpose of a frame decorator is to customize the printed content
1805of each @code{gdb.Frame} in commands where frame filters are executed.
1806This concept is called decorating a frame. Frame decorators decorate
1807a @code{gdb.Frame} with Python code contained within each API call.
1808This separates the actual data contained in a @code{gdb.Frame} from
1809the decorated data produced by a frame decorator. This abstraction is
1810necessary to maintain integrity of the data contained in each
1811@code{gdb.Frame}.
1812
1813Frame decorators have a mandatory interface, defined below.
1814
1815@value{GDBN} already contains a frame decorator called
1816@code{FrameDecorator}. This contains substantial amounts of
1817boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1818recommended that other frame decorators inherit and extend this
1819object, and only to override the methods needed.
1820
521b499b
TT
1821@tindex gdb.FrameDecorator
1822@code{FrameDecorator} is defined in the Python module
1823@code{gdb.FrameDecorator}, so your code can import it like:
1824@smallexample
1825from gdb.FrameDecorator import FrameDecorator
1826@end smallexample
1827
329baa95
DE
1828@defun FrameDecorator.elided (self)
1829
1830The @code{elided} method groups frames together in a hierarchical
1831system. An example would be an interpreter, where multiple low-level
1832frames make up a single call in the interpreted language. In this
1833example, the frame filter would elide the low-level frames and present
1834a single high-level frame, representing the call in the interpreted
1835language, to the user.
1836
1837The @code{elided} function must return an iterable and this iterable
1838must contain the frames that are being elided wrapped in a suitable
1839frame decorator. If no frames are being elided this function may
1840return an empty iterable, or @code{None}. Elided frames are indented
1841from normal frames in a @code{CLI} backtrace, or in the case of
1842@code{GDB/MI}, are placed in the @code{children} field of the eliding
1843frame.
1844
1845It is the frame filter's task to also filter out the elided frames from
1846the source iterator. This will avoid printing the frame twice.
1847@end defun
1848
1849@defun FrameDecorator.function (self)
1850
1851This method returns the name of the function in the frame that is to
1852be printed.
1853
1854This method must return a Python string describing the function, or
1855@code{None}.
1856
1857If this function returns @code{None}, @value{GDBN} will not print any
1858data for this field.
1859@end defun
1860
1861@defun FrameDecorator.address (self)
1862
1863This method returns the address of the frame that is to be printed.
1864
1865This method must return a Python numeric integer type of sufficient
1866size to describe the address of the frame, or @code{None}.
1867
1868If this function returns a @code{None}, @value{GDBN} will not print
1869any data for this field.
1870@end defun
1871
1872@defun FrameDecorator.filename (self)
1873
1874This method returns the filename and path associated with this frame.
1875
1876This method must return a Python string containing the filename and
1877the path to the object file backing the frame, or @code{None}.
1878
1879If this function returns a @code{None}, @value{GDBN} will not print
1880any data for this field.
1881@end defun
1882
1883@defun FrameDecorator.line (self):
1884
1885This method returns the line number associated with the current
1886position within the function addressed by this frame.
1887
1888This method must return a Python integer type, or @code{None}.
1889
1890If this function returns a @code{None}, @value{GDBN} will not print
1891any data for this field.
1892@end defun
1893
1894@defun FrameDecorator.frame_args (self)
1895@anchor{frame_args}
1896
1897This method must return an iterable, or @code{None}. Returning an
1898empty iterable, or @code{None} means frame arguments will not be
1899printed for this frame. This iterable must contain objects that
1900implement two methods, described here.
1901
1902This object must implement a @code{argument} method which takes a
1903single @code{self} parameter and must return a @code{gdb.Symbol}
1904(@pxref{Symbols In Python}), or a Python string. The object must also
1905implement a @code{value} method which takes a single @code{self}
1906parameter and must return a @code{gdb.Value} (@pxref{Values From
1907Inferior}), a Python value, or @code{None}. If the @code{value}
1908method returns @code{None}, and the @code{argument} method returns a
1909@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1910the @code{gdb.Symbol} automatically.
1911
1912A brief example:
1913
1914@smallexample
1915class SymValueWrapper():
1916
1917 def __init__(self, symbol, value):
1918 self.sym = symbol
1919 self.val = value
1920
1921 def value(self):
1922 return self.val
1923
1924 def symbol(self):
1925 return self.sym
1926
1927class SomeFrameDecorator()
1928...
1929...
1930 def frame_args(self):
1931 args = []
1932 try:
1933 block = self.inferior_frame.block()
1934 except:
1935 return None
1936
1937 # Iterate over all symbols in a block. Only add
1938 # symbols that are arguments.
1939 for sym in block:
1940 if not sym.is_argument:
1941 continue
1942 args.append(SymValueWrapper(sym,None))
1943
1944 # Add example synthetic argument.
1945 args.append(SymValueWrapper(``foo'', 42))
1946
1947 return args
1948@end smallexample
1949@end defun
1950
1951@defun FrameDecorator.frame_locals (self)
1952
1953This method must return an iterable or @code{None}. Returning an
1954empty iterable, or @code{None} means frame local arguments will not be
1955printed for this frame.
1956
1957The object interface, the description of the various strategies for
1958reading frame locals, and the example are largely similar to those
1959described in the @code{frame_args} function, (@pxref{frame_args,,The
1960frame filter frame_args function}). Below is a modified example:
1961
1962@smallexample
1963class SomeFrameDecorator()
1964...
1965...
1966 def frame_locals(self):
1967 vars = []
1968 try:
1969 block = self.inferior_frame.block()
1970 except:
1971 return None
1972
1973 # Iterate over all symbols in a block. Add all
1974 # symbols, except arguments.
1975 for sym in block:
1976 if sym.is_argument:
1977 continue
1978 vars.append(SymValueWrapper(sym,None))
1979
1980 # Add an example of a synthetic local variable.
1981 vars.append(SymValueWrapper(``bar'', 99))
1982
1983 return vars
1984@end smallexample
1985@end defun
1986
1987@defun FrameDecorator.inferior_frame (self):
1988
1989This method must return the underlying @code{gdb.Frame} that this
1990frame decorator is decorating. @value{GDBN} requires the underlying
1991frame for internal frame information to determine how to print certain
1992values when printing a frame.
1993@end defun
1994
1995@node Writing a Frame Filter
1996@subsubsection Writing a Frame Filter
1997@cindex writing a frame filter
1998
1999There are three basic elements that a frame filter must implement: it
2000must correctly implement the documented interface (@pxref{Frame Filter
2001API}), it must register itself with @value{GDBN}, and finally, it must
2002decide if it is to work on the data provided by @value{GDBN}. In all
2003cases, whether it works on the iterator or not, each frame filter must
2004return an iterator. A bare-bones frame filter follows the pattern in
2005the following example.
2006
2007@smallexample
2008import gdb
2009
2010class FrameFilter():
2011
2012 def __init__(self):
2013 # Frame filter attribute creation.
2014 #
2015 # 'name' is the name of the filter that GDB will display.
2016 #
2017 # 'priority' is the priority of the filter relative to other
2018 # filters.
2019 #
2020 # 'enabled' is a boolean that indicates whether this filter is
2021 # enabled and should be executed.
2022
2023 self.name = "Foo"
2024 self.priority = 100
2025 self.enabled = True
2026
2027 # Register this frame filter with the global frame_filters
2028 # dictionary.
2029 gdb.frame_filters[self.name] = self
2030
2031 def filter(self, frame_iter):
2032 # Just return the iterator.
2033 return frame_iter
2034@end smallexample
2035
2036The frame filter in the example above implements the three
2037requirements for all frame filters. It implements the API, self
2038registers, and makes a decision on the iterator (in this case, it just
2039returns the iterator untouched).
2040
2041The first step is attribute creation and assignment, and as shown in
2042the comments the filter assigns the following attributes: @code{name},
2043@code{priority} and whether the filter should be enabled with the
2044@code{enabled} attribute.
2045
2046The second step is registering the frame filter with the dictionary or
2047dictionaries that the frame filter has interest in. As shown in the
2048comments, this filter just registers itself with the global dictionary
2049@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2050is a dictionary that is initialized in the @code{gdb} module when
2051@value{GDBN} starts. What dictionary a filter registers with is an
2052important consideration. Generally, if a filter is specific to a set
2053of code, it should be registered either in the @code{objfile} or
2054@code{progspace} dictionaries as they are specific to the program
2055currently loaded in @value{GDBN}. The global dictionary is always
2056present in @value{GDBN} and is never unloaded. Any filters registered
2057with the global dictionary will exist until @value{GDBN} exits. To
2058avoid filters that may conflict, it is generally better to register
2059frame filters against the dictionaries that more closely align with
2060the usage of the filter currently in question. @xref{Python
2061Auto-loading}, for further information on auto-loading Python scripts.
2062
2063@value{GDBN} takes a hands-off approach to frame filter registration,
2064therefore it is the frame filter's responsibility to ensure
2065registration has occurred, and that any exceptions are handled
2066appropriately. In particular, you may wish to handle exceptions
2067relating to Python dictionary key uniqueness. It is mandatory that
2068the dictionary key is the same as frame filter's @code{name}
2069attribute. When a user manages frame filters (@pxref{Frame Filter
2070Management}), the names @value{GDBN} will display are those contained
2071in the @code{name} attribute.
2072
2073The final step of this example is the implementation of the
2074@code{filter} method. As shown in the example comments, we define the
2075@code{filter} method and note that the method must take an iterator,
2076and also must return an iterator. In this bare-bones example, the
2077frame filter is not very useful as it just returns the iterator
2078untouched. However this is a valid operation for frame filters that
2079have the @code{enabled} attribute set, but decide not to operate on
2080any frames.
2081
2082In the next example, the frame filter operates on all frames and
2083utilizes a frame decorator to perform some work on the frames.
2084@xref{Frame Decorator API}, for further information on the frame
2085decorator interface.
2086
2087This example works on inlined frames. It highlights frames which are
2088inlined by tagging them with an ``[inlined]'' tag. By applying a
2089frame decorator to all frames with the Python @code{itertools imap}
2090method, the example defers actions to the frame decorator. Frame
2091decorators are only processed when @value{GDBN} prints the backtrace.
2092
2093This introduces a new decision making topic: whether to perform
2094decision making operations at the filtering step, or at the printing
2095step. In this example's approach, it does not perform any filtering
2096decisions at the filtering step beyond mapping a frame decorator to
2097each frame. This allows the actual decision making to be performed
2098when each frame is printed. This is an important consideration, and
2099well worth reflecting upon when designing a frame filter. An issue
2100that frame filters should avoid is unwinding the stack if possible.
2101Some stacks can run very deep, into the tens of thousands in some
2102cases. To search every frame to determine if it is inlined ahead of
2103time may be too expensive at the filtering step. The frame filter
2104cannot know how many frames it has to iterate over, and it would have
2105to iterate through them all. This ends up duplicating effort as
2106@value{GDBN} performs this iteration when it prints the frames.
2107
2108In this example decision making can be deferred to the printing step.
2109As each frame is printed, the frame decorator can examine each frame
2110in turn when @value{GDBN} iterates. From a performance viewpoint,
2111this is the most appropriate decision to make as it avoids duplicating
2112the effort that the printing step would undertake anyway. Also, if
2113there are many frame filters unwinding the stack during filtering, it
2114can substantially delay the printing of the backtrace which will
2115result in large memory usage, and a poor user experience.
2116
2117@smallexample
2118class InlineFilter():
2119
2120 def __init__(self):
2121 self.name = "InlinedFrameFilter"
2122 self.priority = 100
2123 self.enabled = True
2124 gdb.frame_filters[self.name] = self
2125
2126 def filter(self, frame_iter):
2127 frame_iter = itertools.imap(InlinedFrameDecorator,
2128 frame_iter)
2129 return frame_iter
2130@end smallexample
2131
2132This frame filter is somewhat similar to the earlier example, except
2133that the @code{filter} method applies a frame decorator object called
2134@code{InlinedFrameDecorator} to each element in the iterator. The
2135@code{imap} Python method is light-weight. It does not proactively
2136iterate over the iterator, but rather creates a new iterator which
2137wraps the existing one.
2138
2139Below is the frame decorator for this example.
2140
2141@smallexample
2142class InlinedFrameDecorator(FrameDecorator):
2143
2144 def __init__(self, fobj):
2145 super(InlinedFrameDecorator, self).__init__(fobj)
2146
2147 def function(self):
2148 frame = fobj.inferior_frame()
2149 name = str(frame.name())
2150
2151 if frame.type() == gdb.INLINE_FRAME:
2152 name = name + " [inlined]"
2153
2154 return name
2155@end smallexample
2156
2157This frame decorator only defines and overrides the @code{function}
2158method. It lets the supplied @code{FrameDecorator}, which is shipped
2159with @value{GDBN}, perform the other work associated with printing
2160this frame.
2161
2162The combination of these two objects create this output from a
2163backtrace:
2164
2165@smallexample
2166#0 0x004004e0 in bar () at inline.c:11
2167#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2168#2 0x00400566 in main () at inline.c:31
2169@end smallexample
2170
2171So in the case of this example, a frame decorator is applied to all
2172frames, regardless of whether they may be inlined or not. As
2173@value{GDBN} iterates over the iterator produced by the frame filters,
2174@value{GDBN} executes each frame decorator which then makes a decision
2175on what to print in the @code{function} callback. Using a strategy
2176like this is a way to defer decisions on the frame content to printing
2177time.
2178
2179@subheading Eliding Frames
2180
2181It might be that the above example is not desirable for representing
2182inlined frames, and a hierarchical approach may be preferred. If we
2183want to hierarchically represent frames, the @code{elided} frame
2184decorator interface might be preferable.
2185
2186This example approaches the issue with the @code{elided} method. This
2187example is quite long, but very simplistic. It is out-of-scope for
2188this section to write a complete example that comprehensively covers
2189all approaches of finding and printing inlined frames. However, this
2190example illustrates the approach an author might use.
2191
2192This example comprises of three sections.
2193
2194@smallexample
2195class InlineFrameFilter():
2196
2197 def __init__(self):
2198 self.name = "InlinedFrameFilter"
2199 self.priority = 100
2200 self.enabled = True
2201 gdb.frame_filters[self.name] = self
2202
2203 def filter(self, frame_iter):
2204 return ElidingInlineIterator(frame_iter)
2205@end smallexample
2206
2207This frame filter is very similar to the other examples. The only
2208difference is this frame filter is wrapping the iterator provided to
2209it (@code{frame_iter}) with a custom iterator called
2210@code{ElidingInlineIterator}. This again defers actions to when
2211@value{GDBN} prints the backtrace, as the iterator is not traversed
2212until printing.
2213
2214The iterator for this example is as follows. It is in this section of
2215the example where decisions are made on the content of the backtrace.
2216
2217@smallexample
2218class ElidingInlineIterator:
2219 def __init__(self, ii):
2220 self.input_iterator = ii
2221
2222 def __iter__(self):
2223 return self
2224
2225 def next(self):
2226 frame = next(self.input_iterator)
2227
2228 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2229 return frame
2230
2231 try:
2232 eliding_frame = next(self.input_iterator)
2233 except StopIteration:
2234 return frame
2235 return ElidingFrameDecorator(eliding_frame, [frame])
2236@end smallexample
2237
2238This iterator implements the Python iterator protocol. When the
2239@code{next} function is called (when @value{GDBN} prints each frame),
2240the iterator checks if this frame decorator, @code{frame}, is wrapping
2241an inlined frame. If it is not, it returns the existing frame decorator
2242untouched. If it is wrapping an inlined frame, it assumes that the
2243inlined frame was contained within the next oldest frame,
2244@code{eliding_frame}, which it fetches. It then creates and returns a
2245frame decorator, @code{ElidingFrameDecorator}, which contains both the
2246elided frame, and the eliding frame.
2247
2248@smallexample
2249class ElidingInlineDecorator(FrameDecorator):
2250
2251 def __init__(self, frame, elided_frames):
2252 super(ElidingInlineDecorator, self).__init__(frame)
2253 self.frame = frame
2254 self.elided_frames = elided_frames
2255
2256 def elided(self):
2257 return iter(self.elided_frames)
2258@end smallexample
2259
2260This frame decorator overrides one function and returns the inlined
2261frame in the @code{elided} method. As before it lets
2262@code{FrameDecorator} do the rest of the work involved in printing
2263this frame. This produces the following output.
2264
2265@smallexample
2266#0 0x004004e0 in bar () at inline.c:11
2267#2 0x00400529 in main () at inline.c:25
2268 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2269@end smallexample
2270
2271In that output, @code{max} which has been inlined into @code{main} is
2272printed hierarchically. Another approach would be to combine the
2273@code{function} method, and the @code{elided} method to both print a
2274marker in the inlined frame, and also show the hierarchical
2275relationship.
2276
d11916aa
SS
2277@node Unwinding Frames in Python
2278@subsubsection Unwinding Frames in Python
2279@cindex unwinding frames in Python
2280
2281In @value{GDBN} terminology ``unwinding'' is the process of finding
2282the previous frame (that is, caller's) from the current one. An
2283unwinder has three methods. The first one checks if it can handle
2284given frame (``sniff'' it). For the frames it can sniff an unwinder
2285provides two additional methods: it can return frame's ID, and it can
2286fetch registers from the previous frame. A running @value{GDBN}
2287mantains a list of the unwinders and calls each unwinder's sniffer in
2288turn until it finds the one that recognizes the current frame. There
2289is an API to register an unwinder.
2290
2291The unwinders that come with @value{GDBN} handle standard frames.
2292However, mixed language applications (for example, an application
2293running Java Virtual Machine) sometimes use frame layouts that cannot
2294be handled by the @value{GDBN} unwinders. You can write Python code
2295that can handle such custom frames.
2296
2297You implement a frame unwinder in Python as a class with which has two
2298attributes, @code{name} and @code{enabled}, with obvious meanings, and
2299a single method @code{__call__}, which examines a given frame and
2300returns an object (an instance of @code{gdb.UnwindInfo class)}
2301describing it. If an unwinder does not recognize a frame, it should
2302return @code{None}. The code in @value{GDBN} that enables writing
2303unwinders in Python uses this object to return frame's ID and previous
2304frame registers when @value{GDBN} core asks for them.
2305
e7b5068c
TT
2306An unwinder should do as little work as possible. Some otherwise
2307innocuous operations can cause problems (even crashes, as this code is
2308not not well-hardened yet). For example, making an inferior call from
2309an unwinder is unadvisable, as an inferior call will reset
2310@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2311unwinding.
2312
d11916aa
SS
2313@subheading Unwinder Input
2314
2315An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2316provides a method to read frame's registers:
2317
2318@defun PendingFrame.read_register (reg)
e7b5068c 2319This method returns the contents of the register @var{reg} in the
d11916aa
SS
2320frame as a @code{gdb.Value} object. @var{reg} can be either a
2321register number or a register name; the values are platform-specific.
2322They are usually found in the corresponding
e7b5068c
TT
2323@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2324@var{reg} does not name a register for the current architecture, this
2325method will throw an exception.
2326
2327Note that this method will always return a @code{gdb.Value} for a
2328valid register name. This does not mean that the value will be valid.
2329For example, you may request a register that an earlier unwinder could
2330not unwind---the value will be unavailable. Instead, the
2331@code{gdb.Value} returned from this method will be lazy; that is, its
2332underlying bits will not be fetched until it is first used. So,
2333attempting to use such a value will cause an exception at the point of
2334use.
2335
2336The type of the returned @code{gdb.Value} depends on the register and
2337the architecture. It is common for registers to have a scalar type,
2338like @code{long long}; but many other types are possible, such as
2339pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2340@end defun
2341
2342It also provides a factory method to create a @code{gdb.UnwindInfo}
2343instance to be returned to @value{GDBN}:
2344
2345@defun PendingFrame.create_unwind_info (frame_id)
2346Returns a new @code{gdb.UnwindInfo} instance identified by given
2347@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2348using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2349determine which function will be used, as follows:
2350
2351@table @code
d11916aa 2352@item sp, pc
e7b5068c
TT
2353The frame is identified by the given stack address and PC. The stack
2354address must be chosen so that it is constant throughout the lifetime
2355of the frame, so a typical choice is the value of the stack pointer at
2356the start of the function---in the DWARF standard, this would be the
2357``Call Frame Address''.
d11916aa 2358
e7b5068c
TT
2359This is the most common case by far. The other cases are documented
2360for completeness but are only useful in specialized situations.
2361
2362@item sp, pc, special
2363The frame is identified by the stack address, the PC, and a
2364``special'' address. The special address is used on architectures
2365that can have frames that do not change the stack, but which are still
2366distinct, for example the IA-64, which has a second stack for
2367registers. Both @var{sp} and @var{special} must be constant
2368throughout the lifetime of the frame.
d11916aa
SS
2369
2370@item sp
e7b5068c
TT
2371The frame is identified by the stack address only. Any other stack
2372frame with a matching @var{sp} will be considered to match this frame.
2373Inside gdb, this is called a ``wild frame''. You will never need
2374this.
d11916aa 2375@end table
e7b5068c
TT
2376
2377Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2378
2379@end defun
2380
2381@subheading Unwinder Output: UnwindInfo
2382
2383Use @code{PendingFrame.create_unwind_info} method described above to
2384create a @code{gdb.UnwindInfo} instance. Use the following method to
2385specify caller registers that have been saved in this frame:
2386
2387@defun gdb.UnwindInfo.add_saved_register (reg, value)
2388@var{reg} identifies the register. It can be a number or a name, just
2389as for the @code{PendingFrame.read_register} method above.
2390@var{value} is a register value (a @code{gdb.Value} object).
2391@end defun
2392
2393@subheading Unwinder Skeleton Code
2394
2395@value{GDBN} comes with the module containing the base @code{Unwinder}
2396class. Derive your unwinder class from it and structure the code as
2397follows:
2398
2399@smallexample
2400from gdb.unwinders import Unwinder
2401
2402class FrameId(object):
2403 def __init__(self, sp, pc):
2404 self.sp = sp
2405 self.pc = pc
2406
2407
2408class MyUnwinder(Unwinder):
2409 def __init__(....):
2410 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2411
2412 def __call__(pending_frame):
2413 if not <we recognize frame>:
2414 return None
2415 # Create UnwindInfo. Usually the frame is identified by the stack
2416 # pointer and the program counter.
2417 sp = pending_frame.read_register(<SP number>)
2418 pc = pending_frame.read_register(<PC number>)
2419 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2420
2421 # Find the values of the registers in the caller's frame and
2422 # save them in the result:
2423 unwind_info.add_saved_register(<register>, <value>)
2424 ....
2425
2426 # Return the result:
2427 return unwind_info
2428
2429@end smallexample
2430
2431@subheading Registering a Unwinder
2432
2433An object file, a program space, and the @value{GDBN} proper can have
2434unwinders registered with it.
2435
2436The @code{gdb.unwinders} module provides the function to register a
2437unwinder:
2438
2439@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2440@var{locus} is specifies an object file or a program space to which
2441@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2442@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2443added @var{unwinder} will be called before any other unwinder from the
2444same locus. Two unwinders in the same locus cannot have the same
2445name. An attempt to add a unwinder with already existing name raises
2446an exception unless @var{replace} is @code{True}, in which case the
2447old unwinder is deleted.
2448@end defun
2449
2450@subheading Unwinder Precedence
2451
2452@value{GDBN} first calls the unwinders from all the object files in no
2453particular order, then the unwinders from the current program space,
2454and finally the unwinders from @value{GDBN}.
2455
0c6e92a5
SC
2456@node Xmethods In Python
2457@subsubsection Xmethods In Python
2458@cindex xmethods in Python
2459
2460@dfn{Xmethods} are additional methods or replacements for existing
2461methods of a C@t{++} class. This feature is useful for those cases
2462where a method defined in C@t{++} source code could be inlined or
2463optimized out by the compiler, making it unavailable to @value{GDBN}.
2464For such cases, one can define an xmethod to serve as a replacement
2465for the method defined in the C@t{++} source code. @value{GDBN} will
2466then invoke the xmethod, instead of the C@t{++} method, to
2467evaluate expressions. One can also use xmethods when debugging
2468with core files. Moreover, when debugging live programs, invoking an
2469xmethod need not involve running the inferior (which can potentially
2470perturb its state). Hence, even if the C@t{++} method is available, it
2471is better to use its replacement xmethod if one is defined.
2472
2473The xmethods feature in Python is available via the concepts of an
2474@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2475implement an xmethod, one has to implement a matcher and a
2476corresponding worker for it (more than one worker can be
2477implemented, each catering to a different overloaded instance of the
2478method). Internally, @value{GDBN} invokes the @code{match} method of a
2479matcher to match the class type and method name. On a match, the
2480@code{match} method returns a list of matching @emph{worker} objects.
2481Each worker object typically corresponds to an overloaded instance of
2482the xmethod. They implement a @code{get_arg_types} method which
2483returns a sequence of types corresponding to the arguments the xmethod
2484requires. @value{GDBN} uses this sequence of types to perform
2485overload resolution and picks a winning xmethod worker. A winner
2486is also selected from among the methods @value{GDBN} finds in the
2487C@t{++} source code. Next, the winning xmethod worker and the
2488winning C@t{++} method are compared to select an overall winner. In
2489case of a tie between a xmethod worker and a C@t{++} method, the
2490xmethod worker is selected as the winner. That is, if a winning
2491xmethod worker is found to be equivalent to the winning C@t{++}
2492method, then the xmethod worker is treated as a replacement for
2493the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2494method. If the winning xmethod worker is the overall winner, then
897c3d32 2495the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2496of the worker object.
2497
2498If one wants to implement an xmethod as a replacement for an
2499existing C@t{++} method, then they have to implement an equivalent
2500xmethod which has exactly the same name and takes arguments of
2501exactly the same type as the C@t{++} method. If the user wants to
2502invoke the C@t{++} method even though a replacement xmethod is
2503available for that method, then they can disable the xmethod.
2504
2505@xref{Xmethod API}, for API to implement xmethods in Python.
2506@xref{Writing an Xmethod}, for implementing xmethods in Python.
2507
2508@node Xmethod API
2509@subsubsection Xmethod API
2510@cindex xmethod API
2511
2512The @value{GDBN} Python API provides classes, interfaces and functions
2513to implement, register and manipulate xmethods.
2514@xref{Xmethods In Python}.
2515
2516An xmethod matcher should be an instance of a class derived from
2517@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2518object with similar interface and attributes. An instance of
2519@code{XMethodMatcher} has the following attributes:
2520
2521@defvar name
2522The name of the matcher.
2523@end defvar
2524
2525@defvar enabled
2526A boolean value indicating whether the matcher is enabled or disabled.
2527@end defvar
2528
2529@defvar methods
2530A list of named methods managed by the matcher. Each object in the list
2531is an instance of the class @code{XMethod} defined in the module
2532@code{gdb.xmethod}, or any object with the following attributes:
2533
2534@table @code
2535
2536@item name
2537Name of the xmethod which should be unique for each xmethod
2538managed by the matcher.
2539
2540@item enabled
2541A boolean value indicating whether the xmethod is enabled or
2542disabled.
2543
2544@end table
2545
2546The class @code{XMethod} is a convenience class with same
2547attributes as above along with the following constructor:
2548
dd5d5494 2549@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2550Constructs an enabled xmethod with name @var{name}.
2551@end defun
2552@end defvar
2553
2554@noindent
2555The @code{XMethodMatcher} class has the following methods:
2556
dd5d5494 2557@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2558Constructs an enabled xmethod matcher with name @var{name}. The
2559@code{methods} attribute is initialized to @code{None}.
2560@end defun
2561
dd5d5494 2562@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2563Derived classes should override this method. It should return a
2564xmethod worker object (or a sequence of xmethod worker
2565objects) matching the @var{class_type} and @var{method_name}.
2566@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2567is a string value. If the matcher manages named methods as listed in
2568its @code{methods} attribute, then only those worker objects whose
2569corresponding entries in the @code{methods} list are enabled should be
2570returned.
2571@end defun
2572
2573An xmethod worker should be an instance of a class derived from
2574@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2575or support the following interface:
2576
dd5d5494 2577@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2578This method returns a sequence of @code{gdb.Type} objects corresponding
2579to the arguments that the xmethod takes. It can return an empty
2580sequence or @code{None} if the xmethod does not take any arguments.
2581If the xmethod takes a single argument, then a single
2582@code{gdb.Type} object corresponding to it can be returned.
2583@end defun
2584
2ce1cdbf
DE
2585@defun XMethodWorker.get_result_type (self, *args)
2586This method returns a @code{gdb.Type} object representing the type
2587of the result of invoking this xmethod.
2588The @var{args} argument is the same tuple of arguments that would be
2589passed to the @code{__call__} method of this worker.
2590@end defun
2591
dd5d5494 2592@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2593This is the method which does the @emph{work} of the xmethod. The
2594@var{args} arguments is the tuple of arguments to the xmethod. Each
2595element in this tuple is a gdb.Value object. The first element is
2596always the @code{this} pointer value.
2597@end defun
2598
2599For @value{GDBN} to lookup xmethods, the xmethod matchers
2600should be registered using the following function defined in the module
2601@code{gdb.xmethod}:
2602
dd5d5494 2603@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2604The @code{matcher} is registered with @code{locus}, replacing an
2605existing matcher with the same name as @code{matcher} if
2606@code{replace} is @code{True}. @code{locus} can be a
2607@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2608@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2609@code{None}. If it is @code{None}, then @code{matcher} is registered
2610globally.
2611@end defun
2612
2613@node Writing an Xmethod
2614@subsubsection Writing an Xmethod
2615@cindex writing xmethods in Python
2616
2617Implementing xmethods in Python will require implementing xmethod
2618matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2619the following C@t{++} class:
2620
2621@smallexample
2622class MyClass
2623@{
2624public:
2625 MyClass (int a) : a_(a) @{ @}
2626
2627 int geta (void) @{ return a_; @}
2628 int operator+ (int b);
2629
2630private:
2631 int a_;
2632@};
2633
2634int
2635MyClass::operator+ (int b)
2636@{
2637 return a_ + b;
2638@}
2639@end smallexample
2640
2641@noindent
2642Let us define two xmethods for the class @code{MyClass}, one
2643replacing the method @code{geta}, and another adding an overloaded
2644flavor of @code{operator+} which takes a @code{MyClass} argument (the
2645C@t{++} code above already has an overloaded @code{operator+}
2646which takes an @code{int} argument). The xmethod matcher can be
2647defined as follows:
2648
2649@smallexample
2650class MyClass_geta(gdb.xmethod.XMethod):
2651 def __init__(self):
2652 gdb.xmethod.XMethod.__init__(self, 'geta')
2653
2654 def get_worker(self, method_name):
2655 if method_name == 'geta':
2656 return MyClassWorker_geta()
2657
2658
2659class MyClass_sum(gdb.xmethod.XMethod):
2660 def __init__(self):
2661 gdb.xmethod.XMethod.__init__(self, 'sum')
2662
2663 def get_worker(self, method_name):
2664 if method_name == 'operator+':
2665 return MyClassWorker_plus()
2666
2667
2668class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2669 def __init__(self):
2670 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2671 # List of methods 'managed' by this matcher
2672 self.methods = [MyClass_geta(), MyClass_sum()]
2673
2674 def match(self, class_type, method_name):
2675 if class_type.tag != 'MyClass':
2676 return None
2677 workers = []
2678 for method in self.methods:
2679 if method.enabled:
2680 worker = method.get_worker(method_name)
2681 if worker:
2682 workers.append(worker)
2683
2684 return workers
2685@end smallexample
2686
2687@noindent
2688Notice that the @code{match} method of @code{MyClassMatcher} returns
2689a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2690method, and a worker object of type @code{MyClassWorker_plus} for the
2691@code{operator+} method. This is done indirectly via helper classes
2692derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2693@code{methods} attribute in a matcher as it is optional. However, if a
2694matcher manages more than one xmethod, it is a good practice to list the
2695xmethods in the @code{methods} attribute of the matcher. This will then
2696facilitate enabling and disabling individual xmethods via the
2697@code{enable/disable} commands. Notice also that a worker object is
2698returned only if the corresponding entry in the @code{methods} attribute
2699of the matcher is enabled.
2700
2701The implementation of the worker classes returned by the matcher setup
2702above is as follows:
2703
2704@smallexample
2705class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2706 def get_arg_types(self):
2707 return None
2ce1cdbf
DE
2708
2709 def get_result_type(self, obj):
2710 return gdb.lookup_type('int')
0c6e92a5
SC
2711
2712 def __call__(self, obj):
2713 return obj['a_']
2714
2715
2716class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2717 def get_arg_types(self):
2718 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2719
2720 def get_result_type(self, obj):
2721 return gdb.lookup_type('int')
0c6e92a5
SC
2722
2723 def __call__(self, obj, other):
2724 return obj['a_'] + other['a_']
2725@end smallexample
2726
2727For @value{GDBN} to actually lookup a xmethod, it has to be
2728registered with it. The matcher defined above is registered with
2729@value{GDBN} globally as follows:
2730
2731@smallexample
2732gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2733@end smallexample
2734
2735If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2736code as follows:
2737
2738@smallexample
2739MyClass obj(5);
2740@end smallexample
2741
2742@noindent
2743then, after loading the Python script defining the xmethod matchers
2744and workers into @code{GDBN}, invoking the method @code{geta} or using
2745the operator @code{+} on @code{obj} will invoke the xmethods
2746defined above:
2747
2748@smallexample
2749(gdb) p obj.geta()
2750$1 = 5
2751
2752(gdb) p obj + obj
2753$2 = 10
2754@end smallexample
2755
2756Consider another example with a C++ template class:
2757
2758@smallexample
2759template <class T>
2760class MyTemplate
2761@{
2762public:
2763 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2764 ~MyTemplate () @{ delete [] data_; @}
2765
2766 int footprint (void)
2767 @{
2768 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2769 @}
2770
2771private:
2772 int dsize_;
2773 T *data_;
2774@};
2775@end smallexample
2776
2777Let us implement an xmethod for the above class which serves as a
2778replacement for the @code{footprint} method. The full code listing
2779of the xmethod workers and xmethod matchers is as follows:
2780
2781@smallexample
2782class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2783 def __init__(self, class_type):
2784 self.class_type = class_type
2ce1cdbf 2785
0c6e92a5
SC
2786 def get_arg_types(self):
2787 return None
2ce1cdbf
DE
2788
2789 def get_result_type(self):
2790 return gdb.lookup_type('int')
2791
0c6e92a5
SC
2792 def __call__(self, obj):
2793 return (self.class_type.sizeof +
2794 obj['dsize_'] *
2795 self.class_type.template_argument(0).sizeof)
2796
2797
2798class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2799 def __init__(self):
2800 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2801
2802 def match(self, class_type, method_name):
2803 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2804 class_type.tag) and
2805 method_name == 'footprint'):
2806 return MyTemplateWorker_footprint(class_type)
2807@end smallexample
2808
2809Notice that, in this example, we have not used the @code{methods}
2810attribute of the matcher as the matcher manages only one xmethod. The
2811user can enable/disable this xmethod by enabling/disabling the matcher
2812itself.
2813
329baa95
DE
2814@node Inferiors In Python
2815@subsubsection Inferiors In Python
2816@cindex inferiors in Python
2817
2818@findex gdb.Inferior
2819Programs which are being run under @value{GDBN} are called inferiors
2820(@pxref{Inferiors and Programs}). Python scripts can access
2821information about and manipulate inferiors controlled by @value{GDBN}
2822via objects of the @code{gdb.Inferior} class.
2823
2824The following inferior-related functions are available in the @code{gdb}
2825module:
2826
2827@defun gdb.inferiors ()
2828Return a tuple containing all inferior objects.
2829@end defun
2830
2831@defun gdb.selected_inferior ()
2832Return an object representing the current inferior.
2833@end defun
2834
2835A @code{gdb.Inferior} object has the following attributes:
2836
2837@defvar Inferior.num
2838ID of inferior, as assigned by GDB.
2839@end defvar
2840
2841@defvar Inferior.pid
2842Process ID of the inferior, as assigned by the underlying operating
2843system.
2844@end defvar
2845
2846@defvar Inferior.was_attached
2847Boolean signaling whether the inferior was created using `attach', or
2848started by @value{GDBN} itself.
2849@end defvar
2850
a40bf0c2
SM
2851@defvar Inferior.progspace
2852The inferior's program space. @xref{Progspaces In Python}.
2853@end defvar
2854
329baa95
DE
2855A @code{gdb.Inferior} object has the following methods:
2856
2857@defun Inferior.is_valid ()
2858Returns @code{True} if the @code{gdb.Inferior} object is valid,
2859@code{False} if not. A @code{gdb.Inferior} object will become invalid
2860if the inferior no longer exists within @value{GDBN}. All other
2861@code{gdb.Inferior} methods will throw an exception if it is invalid
2862at the time the method is called.
2863@end defun
2864
2865@defun Inferior.threads ()
2866This method returns a tuple holding all the threads which are valid
2867when it is called. If there are no valid threads, the method will
2868return an empty tuple.
2869@end defun
2870
add5ded5
TT
2871@defun Inferior.architecture ()
2872Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2873for this inferior. This represents the architecture of the inferior
2874as a whole. Some platforms can have multiple architectures in a
2875single address space, so this may not match the architecture of a
163cffef 2876particular frame (@pxref{Frames In Python}).
9e1698c6 2877@end defun
add5ded5 2878
329baa95
DE
2879@findex Inferior.read_memory
2880@defun Inferior.read_memory (address, length)
a86c90e6 2881Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2882@var{address}. Returns a buffer object, which behaves much like an array
2883or a string. It can be modified and given to the
79778b30 2884@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2885value is a @code{memoryview} object.
2886@end defun
2887
2888@findex Inferior.write_memory
2889@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2890Write the contents of @var{buffer} to the inferior, starting at
2891@var{address}. The @var{buffer} parameter must be a Python object
2892which supports the buffer protocol, i.e., a string, an array or the
2893object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2894determines the number of addressable memory units from @var{buffer} to be
2895written.
329baa95
DE
2896@end defun
2897
2898@findex gdb.search_memory
2899@defun Inferior.search_memory (address, length, pattern)
2900Search a region of the inferior memory starting at @var{address} with
2901the given @var{length} using the search pattern supplied in
2902@var{pattern}. The @var{pattern} parameter must be a Python object
2903which supports the buffer protocol, i.e., a string, an array or the
2904object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2905containing the address where the pattern was found, or @code{None} if
2906the pattern could not be found.
2907@end defun
2908
da2c323b
KB
2909@findex Inferior.thread_from_thread_handle
2910@defun Inferior.thread_from_thread_handle (thread_handle)
2911Return the thread object corresponding to @var{thread_handle}, a thread
2912library specific data structure such as @code{pthread_t} for pthreads
2913library implementations.
2914@end defun
2915
329baa95
DE
2916@node Events In Python
2917@subsubsection Events In Python
2918@cindex inferior events in Python
2919
2920@value{GDBN} provides a general event facility so that Python code can be
2921notified of various state changes, particularly changes that occur in
2922the inferior.
2923
2924An @dfn{event} is just an object that describes some state change. The
2925type of the object and its attributes will vary depending on the details
2926of the change. All the existing events are described below.
2927
2928In order to be notified of an event, you must register an event handler
2929with an @dfn{event registry}. An event registry is an object in the
2930@code{gdb.events} module which dispatches particular events. A registry
2931provides methods to register and unregister event handlers:
2932
2933@defun EventRegistry.connect (object)
2934Add the given callable @var{object} to the registry. This object will be
2935called when an event corresponding to this registry occurs.
2936@end defun
2937
2938@defun EventRegistry.disconnect (object)
2939Remove the given @var{object} from the registry. Once removed, the object
2940will no longer receive notifications of events.
2941@end defun
2942
2943Here is an example:
2944
2945@smallexample
2946def exit_handler (event):
2947 print "event type: exit"
2948 print "exit code: %d" % (event.exit_code)
2949
2950gdb.events.exited.connect (exit_handler)
2951@end smallexample
2952
2953In the above example we connect our handler @code{exit_handler} to the
2954registry @code{events.exited}. Once connected, @code{exit_handler} gets
2955called when the inferior exits. The argument @dfn{event} in this example is
2956of type @code{gdb.ExitedEvent}. As you can see in the example the
2957@code{ExitedEvent} object has an attribute which indicates the exit code of
2958the inferior.
2959
2960The following is a listing of the event registries that are available and
2961details of the events they emit:
2962
2963@table @code
2964
2965@item events.cont
2966Emits @code{gdb.ThreadEvent}.
2967
2968Some events can be thread specific when @value{GDBN} is running in non-stop
2969mode. When represented in Python, these events all extend
2970@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2971events which are emitted by this or other modules might extend this event.
2972Examples of these events are @code{gdb.BreakpointEvent} and
2973@code{gdb.ContinueEvent}.
2974
2975@defvar ThreadEvent.inferior_thread
2976In non-stop mode this attribute will be set to the specific thread which was
2977involved in the emitted event. Otherwise, it will be set to @code{None}.
2978@end defvar
2979
2980Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2981
2982This event indicates that the inferior has been continued after a stop. For
2983inherited attribute refer to @code{gdb.ThreadEvent} above.
2984
2985@item events.exited
2986Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2987@code{events.ExitedEvent} has two attributes:
2988@defvar ExitedEvent.exit_code
2989An integer representing the exit code, if available, which the inferior
2990has returned. (The exit code could be unavailable if, for example,
2991@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2992the attribute does not exist.
2993@end defvar
373832b6 2994@defvar ExitedEvent.inferior
329baa95
DE
2995A reference to the inferior which triggered the @code{exited} event.
2996@end defvar
2997
2998@item events.stop
2999Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3000
3001Indicates that the inferior has stopped. All events emitted by this registry
3002extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3003will indicate the stopped thread when @value{GDBN} is running in non-stop
3004mode. Refer to @code{gdb.ThreadEvent} above for more details.
3005
3006Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3007
3008This event indicates that the inferior or one of its threads has received as
3009signal. @code{gdb.SignalEvent} has the following attributes:
3010
3011@defvar SignalEvent.stop_signal
3012A string representing the signal received by the inferior. A list of possible
3013signal values can be obtained by running the command @code{info signals} in
3014the @value{GDBN} command prompt.
3015@end defvar
3016
3017Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3018
3019@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3020been hit, and has the following attributes:
3021
3022@defvar BreakpointEvent.breakpoints
3023A sequence containing references to all the breakpoints (type
3024@code{gdb.Breakpoint}) that were hit.
3025@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3026@end defvar
3027@defvar BreakpointEvent.breakpoint
3028A reference to the first breakpoint that was hit.
3029This function is maintained for backward compatibility and is now deprecated
3030in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3031@end defvar
3032
3033@item events.new_objfile
3034Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3035been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3036
3037@defvar NewObjFileEvent.new_objfile
3038A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3039@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3040@end defvar
3041
4ffbba72
DE
3042@item events.clear_objfiles
3043Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3044files for a program space has been reset.
3045@code{gdb.ClearObjFilesEvent} has one attribute:
3046
3047@defvar ClearObjFilesEvent.progspace
3048A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3049been cleared. @xref{Progspaces In Python}.
3050@end defvar
3051
fb5af5e3
TT
3052@item events.inferior_call
3053Emits events just before and after a function in the inferior is
3054called by @value{GDBN}. Before an inferior call, this emits an event
3055of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3056this emits an event of type @code{gdb.InferiorCallPostEvent}.
3057
3058@table @code
3059@tindex gdb.InferiorCallPreEvent
3060@item @code{gdb.InferiorCallPreEvent}
3061Indicates that a function in the inferior is about to be called.
162078c8
NB
3062
3063@defvar InferiorCallPreEvent.ptid
3064The thread in which the call will be run.
3065@end defvar
3066
3067@defvar InferiorCallPreEvent.address
3068The location of the function to be called.
3069@end defvar
3070
fb5af5e3
TT
3071@tindex gdb.InferiorCallPostEvent
3072@item @code{gdb.InferiorCallPostEvent}
3073Indicates that a function in the inferior has just been called.
162078c8
NB
3074
3075@defvar InferiorCallPostEvent.ptid
3076The thread in which the call was run.
3077@end defvar
3078
3079@defvar InferiorCallPostEvent.address
3080The location of the function that was called.
3081@end defvar
fb5af5e3 3082@end table
162078c8
NB
3083
3084@item events.memory_changed
3085Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3086inferior has been modified by the @value{GDBN} user, for instance via a
3087command like @w{@code{set *addr = value}}. The event has the following
3088attributes:
3089
3090@defvar MemoryChangedEvent.address
3091The start address of the changed region.
3092@end defvar
3093
3094@defvar MemoryChangedEvent.length
3095Length in bytes of the changed region.
3096@end defvar
3097
3098@item events.register_changed
3099Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3100inferior has been modified by the @value{GDBN} user.
3101
3102@defvar RegisterChangedEvent.frame
3103A gdb.Frame object representing the frame in which the register was modified.
3104@end defvar
3105@defvar RegisterChangedEvent.regnum
3106Denotes which register was modified.
3107@end defvar
3108
dac790e1
TT
3109@item events.breakpoint_created
3110This is emitted when a new breakpoint has been created. The argument
3111that is passed is the new @code{gdb.Breakpoint} object.
3112
3113@item events.breakpoint_modified
3114This is emitted when a breakpoint has been modified in some way. The
3115argument that is passed is the new @code{gdb.Breakpoint} object.
3116
3117@item events.breakpoint_deleted
3118This is emitted when a breakpoint has been deleted. The argument that
3119is passed is the @code{gdb.Breakpoint} object. When this event is
3120emitted, the @code{gdb.Breakpoint} object will already be in its
3121invalid state; that is, the @code{is_valid} method will return
3122@code{False}.
3123
3f77c769
TT
3124@item events.before_prompt
3125This event carries no payload. It is emitted each time @value{GDBN}
3126presents a prompt to the user.
3127
7c96f8c1
TT
3128@item events.new_inferior
3129This is emitted when a new inferior is created. Note that the
3130inferior is not necessarily running; in fact, it may not even have an
3131associated executable.
3132
3133The event is of type @code{gdb.NewInferiorEvent}. This has a single
3134attribute:
3135
3136@defvar NewInferiorEvent.inferior
3137The new inferior, a @code{gdb.Inferior} object.
3138@end defvar
3139
3140@item events.inferior_deleted
3141This is emitted when an inferior has been deleted. Note that this is
3142not the same as process exit; it is notified when the inferior itself
3143is removed, say via @code{remove-inferiors}.
3144
3145The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3146attribute:
3147
3148@defvar NewInferiorEvent.inferior
3149The inferior that is being removed, a @code{gdb.Inferior} object.
3150@end defvar
3151
3152@item events.new_thread
3153This is emitted when @value{GDBN} notices a new thread. The event is of
3154type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3155This has a single attribute:
3156
3157@defvar NewThreadEvent.inferior_thread
3158The new thread.
3159@end defvar
3160
329baa95
DE
3161@end table
3162
3163@node Threads In Python
3164@subsubsection Threads In Python
3165@cindex threads in python
3166
3167@findex gdb.InferiorThread
3168Python scripts can access information about, and manipulate inferior threads
3169controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3170
3171The following thread-related functions are available in the @code{gdb}
3172module:
3173
3174@findex gdb.selected_thread
3175@defun gdb.selected_thread ()
3176This function returns the thread object for the selected thread. If there
3177is no selected thread, this will return @code{None}.
3178@end defun
3179
3180A @code{gdb.InferiorThread} object has the following attributes:
3181
3182@defvar InferiorThread.name
3183The name of the thread. If the user specified a name using
3184@code{thread name}, then this returns that name. Otherwise, if an
3185OS-supplied name is available, then it is returned. Otherwise, this
3186returns @code{None}.
3187
3188This attribute can be assigned to. The new value must be a string
3189object, which sets the new name, or @code{None}, which removes any
3190user-specified thread name.
3191@end defvar
3192
3193@defvar InferiorThread.num
5d5658a1 3194The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3195@end defvar
3196
22a02324
PA
3197@defvar InferiorThread.global_num
3198The global ID of the thread, as assigned by GDB. You can use this to
3199make Python breakpoints thread-specific, for example
3200(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3201@end defvar
3202
329baa95
DE
3203@defvar InferiorThread.ptid
3204ID of the thread, as assigned by the operating system. This attribute is a
3205tuple containing three integers. The first is the Process ID (PID); the second
3206is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3207Either the LWPID or TID may be 0, which indicates that the operating system
3208does not use that identifier.
3209@end defvar
3210
84654457
PA
3211@defvar InferiorThread.inferior
3212The inferior this thread belongs to. This attribute is represented as
3213a @code{gdb.Inferior} object. This attribute is not writable.
3214@end defvar
3215
329baa95
DE
3216A @code{gdb.InferiorThread} object has the following methods:
3217
3218@defun InferiorThread.is_valid ()
3219Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3220@code{False} if not. A @code{gdb.InferiorThread} object will become
3221invalid if the thread exits, or the inferior that the thread belongs
3222is deleted. All other @code{gdb.InferiorThread} methods will throw an
3223exception if it is invalid at the time the method is called.
3224@end defun
3225
3226@defun InferiorThread.switch ()
3227This changes @value{GDBN}'s currently selected thread to the one represented
3228by this object.
3229@end defun
3230
3231@defun InferiorThread.is_stopped ()
3232Return a Boolean indicating whether the thread is stopped.
3233@end defun
3234
3235@defun InferiorThread.is_running ()
3236Return a Boolean indicating whether the thread is running.
3237@end defun
3238
3239@defun InferiorThread.is_exited ()
3240Return a Boolean indicating whether the thread is exited.
3241@end defun
3242
0a0faf9f
TW
3243@node Recordings In Python
3244@subsubsection Recordings In Python
3245@cindex recordings in python
3246
3247The following recordings-related functions
3248(@pxref{Process Record and Replay}) are available in the @code{gdb}
3249module:
3250
3251@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3252Start a recording using the given @var{method} and @var{format}. If
3253no @var{format} is given, the default format for the recording method
3254is used. If no @var{method} is given, the default method will be used.
3255Returns a @code{gdb.Record} object on success. Throw an exception on
3256failure.
3257
3258The following strings can be passed as @var{method}:
3259
3260@itemize @bullet
3261@item
3262@code{"full"}
3263@item
3264@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3265@code{"bts"} or leave out for default format.
3266@end itemize
3267@end defun
3268
3269@defun gdb.current_recording ()
3270Access a currently running recording. Return a @code{gdb.Record}
3271object on success. Return @code{None} if no recording is currently
3272active.
3273@end defun
3274
3275@defun gdb.stop_recording ()
3276Stop the current recording. Throw an exception if no recording is
3277currently active. All record objects become invalid after this call.
3278@end defun
3279
3280A @code{gdb.Record} object has the following attributes:
3281
0a0faf9f
TW
3282@defvar Record.method
3283A string with the current recording method, e.g.@: @code{full} or
3284@code{btrace}.
3285@end defvar
3286
3287@defvar Record.format
3288A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3289@code{None}.
3290@end defvar
3291
3292@defvar Record.begin
3293A method specific instruction object representing the first instruction
3294in this recording.
3295@end defvar
3296
3297@defvar Record.end
3298A method specific instruction object representing the current
3299instruction, that is not actually part of the recording.
3300@end defvar
3301
3302@defvar Record.replay_position
3303The instruction representing the current replay position. If there is
3304no replay active, this will be @code{None}.
3305@end defvar
3306
3307@defvar Record.instruction_history
3308A list with all recorded instructions.
3309@end defvar
3310
3311@defvar Record.function_call_history
3312A list with all recorded function call segments.
3313@end defvar
3314
3315A @code{gdb.Record} object has the following methods:
3316
3317@defun Record.goto (instruction)
3318Move the replay position to the given @var{instruction}.
3319@end defun
3320
d050f7d7
TW
3321The common @code{gdb.Instruction} class that recording method specific
3322instruction objects inherit from, has the following attributes:
0a0faf9f 3323
d050f7d7 3324@defvar Instruction.pc
913aeadd 3325An integer representing this instruction's address.
0a0faf9f
TW
3326@end defvar
3327
d050f7d7 3328@defvar Instruction.data
913aeadd
TW
3329A buffer with the raw instruction data. In Python 3, the return value is a
3330@code{memoryview} object.
0a0faf9f
TW
3331@end defvar
3332
d050f7d7 3333@defvar Instruction.decoded
913aeadd 3334A human readable string with the disassembled instruction.
0a0faf9f
TW
3335@end defvar
3336
d050f7d7 3337@defvar Instruction.size
913aeadd 3338The size of the instruction in bytes.
0a0faf9f
TW
3339@end defvar
3340
d050f7d7
TW
3341Additionally @code{gdb.RecordInstruction} has the following attributes:
3342
3343@defvar RecordInstruction.number
3344An integer identifying this instruction. @code{number} corresponds to
3345the numbers seen in @code{record instruction-history}
3346(@pxref{Process Record and Replay}).
3347@end defvar
3348
3349@defvar RecordInstruction.sal
3350A @code{gdb.Symtab_and_line} object representing the associated symtab
3351and line of this instruction. May be @code{None} if no debug information is
3352available.
3353@end defvar
3354
0ed5da75 3355@defvar RecordInstruction.is_speculative
d050f7d7 3356A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3357@end defvar
3358
3359If an error occured during recording or decoding a recording, this error is
3360represented by a @code{gdb.RecordGap} object in the instruction list. It has
3361the following attributes:
3362
3363@defvar RecordGap.number
3364An integer identifying this gap. @code{number} corresponds to the numbers seen
3365in @code{record instruction-history} (@pxref{Process Record and Replay}).
3366@end defvar
3367
3368@defvar RecordGap.error_code
3369A numerical representation of the reason for the gap. The value is specific to
3370the current recording method.
3371@end defvar
3372
3373@defvar RecordGap.error_string
3374A human readable string with the reason for the gap.
0a0faf9f
TW
3375@end defvar
3376
14f819c8 3377A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3378
14f819c8
TW
3379@defvar RecordFunctionSegment.number
3380An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3381the numbers seen in @code{record function-call-history}
3382(@pxref{Process Record and Replay}).
3383@end defvar
3384
14f819c8 3385@defvar RecordFunctionSegment.symbol
0a0faf9f 3386A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3387@code{None} if no debug information is available.
0a0faf9f
TW
3388@end defvar
3389
14f819c8 3390@defvar RecordFunctionSegment.level
0a0faf9f
TW
3391An integer representing the function call's stack level. May be
3392@code{None} if the function call is a gap.
3393@end defvar
3394
14f819c8 3395@defvar RecordFunctionSegment.instructions
0ed5da75 3396A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3397associated with this function call.
0a0faf9f
TW
3398@end defvar
3399
14f819c8
TW
3400@defvar RecordFunctionSegment.up
3401A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3402function segment. If the call has not been recorded, this will be the
3403function segment to which control returns. If neither the call nor the
3404return have been recorded, this will be @code{None}.
3405@end defvar
3406
14f819c8
TW
3407@defvar RecordFunctionSegment.prev
3408A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3409segment of this function call. May be @code{None}.
3410@end defvar
3411
14f819c8
TW
3412@defvar RecordFunctionSegment.next
3413A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3414this function call. May be @code{None}.
3415@end defvar
3416
3417The following example demonstrates the usage of these objects and
3418functions to create a function that will rewind a record to the last
3419time a function in a different file was executed. This would typically
3420be used to track the execution of user provided callback functions in a
3421library which typically are not visible in a back trace.
3422
3423@smallexample
3424def bringback ():
3425 rec = gdb.current_recording ()
3426 if not rec:
3427 return
3428
3429 insn = rec.instruction_history
3430 if len (insn) == 0:
3431 return
3432
3433 try:
3434 position = insn.index (rec.replay_position)
3435 except:
3436 position = -1
3437 try:
3438 filename = insn[position].sal.symtab.fullname ()
3439 except:
3440 filename = None
3441
3442 for i in reversed (insn[:position]):
3443 try:
3444 current = i.sal.symtab.fullname ()
3445 except:
3446 current = None
3447
3448 if filename == current:
3449 continue
3450
3451 rec.goto (i)
3452 return
3453@end smallexample
3454
3455Another possible application is to write a function that counts the
3456number of code executions in a given line range. This line range can
3457contain parts of functions or span across several functions and is not
3458limited to be contiguous.
3459
3460@smallexample
3461def countrange (filename, linerange):
3462 count = 0
3463
3464 def filter_only (file_name):
3465 for call in gdb.current_recording ().function_call_history:
3466 try:
3467 if file_name in call.symbol.symtab.fullname ():
3468 yield call
3469 except:
3470 pass
3471
3472 for c in filter_only (filename):
3473 for i in c.instructions:
3474 try:
3475 if i.sal.line in linerange:
3476 count += 1
3477 break;
3478 except:
3479 pass
3480
3481 return count
3482@end smallexample
3483
329baa95
DE
3484@node Commands In Python
3485@subsubsection Commands In Python
3486
3487@cindex commands in python
3488@cindex python commands
3489You can implement new @value{GDBN} CLI commands in Python. A CLI
3490command is implemented using an instance of the @code{gdb.Command}
3491class, most commonly using a subclass.
3492
3493@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3494The object initializer for @code{Command} registers the new command
3495with @value{GDBN}. This initializer is normally invoked from the
3496subclass' own @code{__init__} method.
3497
3498@var{name} is the name of the command. If @var{name} consists of
3499multiple words, then the initial words are looked for as prefix
3500commands. In this case, if one of the prefix commands does not exist,
3501an exception is raised.
3502
3503There is no support for multi-line commands.
3504
3505@var{command_class} should be one of the @samp{COMMAND_} constants
3506defined below. This argument tells @value{GDBN} how to categorize the
3507new command in the help system.
3508
3509@var{completer_class} is an optional argument. If given, it should be
3510one of the @samp{COMPLETE_} constants defined below. This argument
3511tells @value{GDBN} how to perform completion for this command. If not
3512given, @value{GDBN} will attempt to complete using the object's
3513@code{complete} method (see below); if no such method is found, an
3514error will occur when completion is attempted.
3515
3516@var{prefix} is an optional argument. If @code{True}, then the new
3517command is a prefix command; sub-commands of this command may be
3518registered.
3519
3520The help text for the new command is taken from the Python
3521documentation string for the command's class, if there is one. If no
3522documentation string is provided, the default value ``This command is
3523not documented.'' is used.
3524@end defun
3525
3526@cindex don't repeat Python command
3527@defun Command.dont_repeat ()
3528By default, a @value{GDBN} command is repeated when the user enters a
3529blank line at the command prompt. A command can suppress this
3530behavior by invoking the @code{dont_repeat} method. This is similar
3531to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3532@end defun
3533
3534@defun Command.invoke (argument, from_tty)
3535This method is called by @value{GDBN} when this command is invoked.
3536
3537@var{argument} is a string. It is the argument to the command, after
3538leading and trailing whitespace has been stripped.
3539
3540@var{from_tty} is a boolean argument. When true, this means that the
3541command was entered by the user at the terminal; when false it means
3542that the command came from elsewhere.
3543
3544If this method throws an exception, it is turned into a @value{GDBN}
3545@code{error} call. Otherwise, the return value is ignored.
3546
3547@findex gdb.string_to_argv
3548To break @var{argument} up into an argv-like string use
3549@code{gdb.string_to_argv}. This function behaves identically to
3550@value{GDBN}'s internal argument lexer @code{buildargv}.
3551It is recommended to use this for consistency.
3552Arguments are separated by spaces and may be quoted.
3553Example:
3554
3555@smallexample
3556print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3557['1', '2 "3', '4 "5', "6 '7"]
3558@end smallexample
3559
3560@end defun
3561
3562@cindex completion of Python commands
3563@defun Command.complete (text, word)
3564This method is called by @value{GDBN} when the user attempts
3565completion on this command. All forms of completion are handled by
3566this method, that is, the @key{TAB} and @key{M-?} key bindings
3567(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3568complete}).
3569
697aa1b7
EZ
3570The arguments @var{text} and @var{word} are both strings; @var{text}
3571holds the complete command line up to the cursor's location, while
329baa95
DE
3572@var{word} holds the last word of the command line; this is computed
3573using a word-breaking heuristic.
3574
3575The @code{complete} method can return several values:
3576@itemize @bullet
3577@item
3578If the return value is a sequence, the contents of the sequence are
3579used as the completions. It is up to @code{complete} to ensure that the
3580contents actually do complete the word. A zero-length sequence is
3581allowed, it means that there were no completions available. Only
3582string elements of the sequence are used; other elements in the
3583sequence are ignored.
3584
3585@item
3586If the return value is one of the @samp{COMPLETE_} constants defined
3587below, then the corresponding @value{GDBN}-internal completion
3588function is invoked, and its result is used.
3589
3590@item
3591All other results are treated as though there were no available
3592completions.
3593@end itemize
3594@end defun
3595
3596When a new command is registered, it must be declared as a member of
3597some general class of commands. This is used to classify top-level
3598commands in the on-line help system; note that prefix commands are not
3599listed under their own category but rather that of their top-level
3600command. The available classifications are represented by constants
3601defined in the @code{gdb} module:
3602
3603@table @code
3604@findex COMMAND_NONE
3605@findex gdb.COMMAND_NONE
3606@item gdb.COMMAND_NONE
3607The command does not belong to any particular class. A command in
3608this category will not be displayed in any of the help categories.
3609
3610@findex COMMAND_RUNNING
3611@findex gdb.COMMAND_RUNNING
3612@item gdb.COMMAND_RUNNING
3613The command is related to running the inferior. For example,
3614@code{start}, @code{step}, and @code{continue} are in this category.
3615Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3616commands in this category.
3617
3618@findex COMMAND_DATA
3619@findex gdb.COMMAND_DATA
3620@item gdb.COMMAND_DATA
3621The command is related to data or variables. For example,
3622@code{call}, @code{find}, and @code{print} are in this category. Type
3623@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3624in this category.
3625
3626@findex COMMAND_STACK
3627@findex gdb.COMMAND_STACK
3628@item gdb.COMMAND_STACK
3629The command has to do with manipulation of the stack. For example,
3630@code{backtrace}, @code{frame}, and @code{return} are in this
3631category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3632list of commands in this category.
3633
3634@findex COMMAND_FILES
3635@findex gdb.COMMAND_FILES
3636@item gdb.COMMAND_FILES
3637This class is used for file-related commands. For example,
3638@code{file}, @code{list} and @code{section} are in this category.
3639Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3640commands in this category.
3641
3642@findex COMMAND_SUPPORT
3643@findex gdb.COMMAND_SUPPORT
3644@item gdb.COMMAND_SUPPORT
3645This should be used for ``support facilities'', generally meaning
3646things that are useful to the user when interacting with @value{GDBN},
3647but not related to the state of the inferior. For example,
3648@code{help}, @code{make}, and @code{shell} are in this category. Type
3649@kbd{help support} at the @value{GDBN} prompt to see a list of
3650commands in this category.
3651
3652@findex COMMAND_STATUS
3653@findex gdb.COMMAND_STATUS
3654@item gdb.COMMAND_STATUS
3655The command is an @samp{info}-related command, that is, related to the
3656state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3657and @code{show} are in this category. Type @kbd{help status} at the
3658@value{GDBN} prompt to see a list of commands in this category.
3659
3660@findex COMMAND_BREAKPOINTS
3661@findex gdb.COMMAND_BREAKPOINTS
3662@item gdb.COMMAND_BREAKPOINTS
3663The command has to do with breakpoints. For example, @code{break},
3664@code{clear}, and @code{delete} are in this category. Type @kbd{help
3665breakpoints} at the @value{GDBN} prompt to see a list of commands in
3666this category.
3667
3668@findex COMMAND_TRACEPOINTS
3669@findex gdb.COMMAND_TRACEPOINTS
3670@item gdb.COMMAND_TRACEPOINTS
3671The command has to do with tracepoints. For example, @code{trace},
3672@code{actions}, and @code{tfind} are in this category. Type
3673@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3674commands in this category.
3675
3676@findex COMMAND_USER
3677@findex gdb.COMMAND_USER
3678@item gdb.COMMAND_USER
3679The command is a general purpose command for the user, and typically
3680does not fit in one of the other categories.
3681Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3682a list of commands in this category, as well as the list of gdb macros
3683(@pxref{Sequences}).
3684
3685@findex COMMAND_OBSCURE
3686@findex gdb.COMMAND_OBSCURE
3687@item gdb.COMMAND_OBSCURE
3688The command is only used in unusual circumstances, or is not of
3689general interest to users. For example, @code{checkpoint},
3690@code{fork}, and @code{stop} are in this category. Type @kbd{help
3691obscure} at the @value{GDBN} prompt to see a list of commands in this
3692category.
3693
3694@findex COMMAND_MAINTENANCE
3695@findex gdb.COMMAND_MAINTENANCE
3696@item gdb.COMMAND_MAINTENANCE
3697The command is only useful to @value{GDBN} maintainers. The
3698@code{maintenance} and @code{flushregs} commands are in this category.
3699Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3700commands in this category.
3701@end table
3702
3703A new command can use a predefined completion function, either by
3704specifying it via an argument at initialization, or by returning it
3705from the @code{complete} method. These predefined completion
3706constants are all defined in the @code{gdb} module:
3707
b3ce5e5f
DE
3708@vtable @code
3709@vindex COMPLETE_NONE
329baa95
DE
3710@item gdb.COMPLETE_NONE
3711This constant means that no completion should be done.
3712
b3ce5e5f 3713@vindex COMPLETE_FILENAME
329baa95
DE
3714@item gdb.COMPLETE_FILENAME
3715This constant means that filename completion should be performed.
3716
b3ce5e5f 3717@vindex COMPLETE_LOCATION
329baa95
DE
3718@item gdb.COMPLETE_LOCATION
3719This constant means that location completion should be done.
3720@xref{Specify Location}.
3721
b3ce5e5f 3722@vindex COMPLETE_COMMAND
329baa95
DE
3723@item gdb.COMPLETE_COMMAND
3724This constant means that completion should examine @value{GDBN}
3725command names.
3726
b3ce5e5f 3727@vindex COMPLETE_SYMBOL
329baa95
DE
3728@item gdb.COMPLETE_SYMBOL
3729This constant means that completion should be done using symbol names
3730as the source.
3731
b3ce5e5f 3732@vindex COMPLETE_EXPRESSION
329baa95
DE
3733@item gdb.COMPLETE_EXPRESSION
3734This constant means that completion should be done on expressions.
3735Often this means completing on symbol names, but some language
3736parsers also have support for completing on field names.
b3ce5e5f 3737@end vtable
329baa95
DE
3738
3739The following code snippet shows how a trivial CLI command can be
3740implemented in Python:
3741
3742@smallexample
3743class HelloWorld (gdb.Command):
3744 """Greet the whole world."""
3745
3746 def __init__ (self):
3747 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3748
3749 def invoke (self, arg, from_tty):
3750 print "Hello, World!"
3751
3752HelloWorld ()
3753@end smallexample
3754
3755The last line instantiates the class, and is necessary to trigger the
3756registration of the command with @value{GDBN}. Depending on how the
3757Python code is read into @value{GDBN}, you may need to import the
3758@code{gdb} module explicitly.
3759
3760@node Parameters In Python
3761@subsubsection Parameters In Python
3762
3763@cindex parameters in python
3764@cindex python parameters
3765@tindex gdb.Parameter
3766@tindex Parameter
3767You can implement new @value{GDBN} parameters using Python. A new
3768parameter is implemented as an instance of the @code{gdb.Parameter}
3769class.
3770
3771Parameters are exposed to the user via the @code{set} and
3772@code{show} commands. @xref{Help}.
3773
3774There are many parameters that already exist and can be set in
3775@value{GDBN}. Two examples are: @code{set follow fork} and
3776@code{set charset}. Setting these parameters influences certain
3777behavior in @value{GDBN}. Similarly, you can define parameters that
3778can be used to influence behavior in custom Python scripts and commands.
3779
3780@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3781The object initializer for @code{Parameter} registers the new
3782parameter with @value{GDBN}. This initializer is normally invoked
3783from the subclass' own @code{__init__} method.
3784
3785@var{name} is the name of the new parameter. If @var{name} consists
3786of multiple words, then the initial words are looked for as prefix
3787parameters. An example of this can be illustrated with the
3788@code{set print} set of parameters. If @var{name} is
3789@code{print foo}, then @code{print} will be searched as the prefix
3790parameter. In this case the parameter can subsequently be accessed in
3791@value{GDBN} as @code{set print foo}.
3792
3793If @var{name} consists of multiple words, and no prefix parameter group
3794can be found, an exception is raised.
3795
3796@var{command-class} should be one of the @samp{COMMAND_} constants
3797(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3798categorize the new parameter in the help system.
3799
3800@var{parameter-class} should be one of the @samp{PARAM_} constants
3801defined below. This argument tells @value{GDBN} the type of the new
3802parameter; this information is used for input validation and
3803completion.
3804
3805If @var{parameter-class} is @code{PARAM_ENUM}, then
3806@var{enum-sequence} must be a sequence of strings. These strings
3807represent the possible values for the parameter.
3808
3809If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3810of a fourth argument will cause an exception to be thrown.
3811
3812The help text for the new parameter is taken from the Python
3813documentation string for the parameter's class, if there is one. If
3814there is no documentation string, a default value is used.
3815@end defun
3816
3817@defvar Parameter.set_doc
3818If this attribute exists, and is a string, then its value is used as
3819the help text for this parameter's @code{set} command. The value is
3820examined when @code{Parameter.__init__} is invoked; subsequent changes
3821have no effect.
3822@end defvar
3823
3824@defvar Parameter.show_doc
3825If this attribute exists, and is a string, then its value is used as
3826the help text for this parameter's @code{show} command. The value is
3827examined when @code{Parameter.__init__} is invoked; subsequent changes
3828have no effect.
3829@end defvar
3830
3831@defvar Parameter.value
3832The @code{value} attribute holds the underlying value of the
3833parameter. It can be read and assigned to just as any other
3834attribute. @value{GDBN} does validation when assignments are made.
3835@end defvar
3836
984ee559
TT
3837There are two methods that may be implemented in any @code{Parameter}
3838class. These are:
329baa95
DE
3839
3840@defun Parameter.get_set_string (self)
984ee559
TT
3841If this method exists, @value{GDBN} will call it when a
3842@var{parameter}'s value has been changed via the @code{set} API (for
3843example, @kbd{set foo off}). The @code{value} attribute has already
3844been populated with the new value and may be used in output. This
3845method must return a string. If the returned string is not empty,
3846@value{GDBN} will present it to the user.
ae778caf
TT
3847
3848If this method raises the @code{gdb.GdbError} exception
3849(@pxref{Exception Handling}), then @value{GDBN} will print the
3850exception's string and the @code{set} command will fail. Note,
3851however, that the @code{value} attribute will not be reset in this
3852case. So, if your parameter must validate values, it should store the
3853old value internally and reset the exposed value, like so:
3854
3855@smallexample
3856class ExampleParam (gdb.Parameter):
3857 def __init__ (self, name):
3858 super (ExampleParam, self).__init__ (name,
3859 gdb.COMMAND_DATA,
3860 gdb.PARAM_BOOLEAN)
3861 self.value = True
3862 self.saved_value = True
3863 def validate(self):
3864 return False
3865 def get_set_string (self):
3866 if not self.validate():
3867 self.value = self.saved_value
3868 raise gdb.GdbError('Failed to validate')
3869 self.saved_value = self.value
3870@end smallexample
329baa95
DE
3871@end defun
3872
3873@defun Parameter.get_show_string (self, svalue)
3874@value{GDBN} will call this method when a @var{parameter}'s
3875@code{show} API has been invoked (for example, @kbd{show foo}). The
3876argument @code{svalue} receives the string representation of the
3877current value. This method must return a string.
3878@end defun
3879
3880When a new parameter is defined, its type must be specified. The
3881available types are represented by constants defined in the @code{gdb}
3882module:
3883
3884@table @code
3885@findex PARAM_BOOLEAN
3886@findex gdb.PARAM_BOOLEAN
3887@item gdb.PARAM_BOOLEAN
3888The value is a plain boolean. The Python boolean values, @code{True}
3889and @code{False} are the only valid values.
3890
3891@findex PARAM_AUTO_BOOLEAN
3892@findex gdb.PARAM_AUTO_BOOLEAN
3893@item gdb.PARAM_AUTO_BOOLEAN
3894The value has three possible states: true, false, and @samp{auto}. In
3895Python, true and false are represented using boolean constants, and
3896@samp{auto} is represented using @code{None}.
3897
3898@findex PARAM_UINTEGER
3899@findex gdb.PARAM_UINTEGER
3900@item gdb.PARAM_UINTEGER
3901The value is an unsigned integer. The value of 0 should be
3902interpreted to mean ``unlimited''.
3903
3904@findex PARAM_INTEGER
3905@findex gdb.PARAM_INTEGER
3906@item gdb.PARAM_INTEGER
3907The value is a signed integer. The value of 0 should be interpreted
3908to mean ``unlimited''.
3909
3910@findex PARAM_STRING
3911@findex gdb.PARAM_STRING
3912@item gdb.PARAM_STRING
3913The value is a string. When the user modifies the string, any escape
3914sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3915translated into corresponding characters and encoded into the current
3916host charset.
3917
3918@findex PARAM_STRING_NOESCAPE
3919@findex gdb.PARAM_STRING_NOESCAPE
3920@item gdb.PARAM_STRING_NOESCAPE
3921The value is a string. When the user modifies the string, escapes are
3922passed through untranslated.
3923
3924@findex PARAM_OPTIONAL_FILENAME
3925@findex gdb.PARAM_OPTIONAL_FILENAME
3926@item gdb.PARAM_OPTIONAL_FILENAME
3927The value is a either a filename (a string), or @code{None}.
3928
3929@findex PARAM_FILENAME
3930@findex gdb.PARAM_FILENAME
3931@item gdb.PARAM_FILENAME
3932The value is a filename. This is just like
3933@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3934
3935@findex PARAM_ZINTEGER
3936@findex gdb.PARAM_ZINTEGER
3937@item gdb.PARAM_ZINTEGER
3938The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3939is interpreted as itself.
3940
0489430a
TT
3941@findex PARAM_ZUINTEGER
3942@findex gdb.PARAM_ZUINTEGER
3943@item gdb.PARAM_ZUINTEGER
3944The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3945except 0 is interpreted as itself, and the value cannot be negative.
3946
3947@findex PARAM_ZUINTEGER_UNLIMITED
3948@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3949@item gdb.PARAM_ZUINTEGER_UNLIMITED
3950The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3951except the special value -1 should be interpreted to mean
3952``unlimited''. Other negative values are not allowed.
3953
329baa95
DE
3954@findex PARAM_ENUM
3955@findex gdb.PARAM_ENUM
3956@item gdb.PARAM_ENUM
3957The value is a string, which must be one of a collection string
3958constants provided when the parameter is created.
3959@end table
3960
3961@node Functions In Python
3962@subsubsection Writing new convenience functions
3963
3964@cindex writing convenience functions
3965@cindex convenience functions in python
3966@cindex python convenience functions
3967@tindex gdb.Function
3968@tindex Function
3969You can implement new convenience functions (@pxref{Convenience Vars})
3970in Python. A convenience function is an instance of a subclass of the
3971class @code{gdb.Function}.
3972
3973@defun Function.__init__ (name)
3974The initializer for @code{Function} registers the new function with
3975@value{GDBN}. The argument @var{name} is the name of the function,
3976a string. The function will be visible to the user as a convenience
3977variable of type @code{internal function}, whose name is the same as
3978the given @var{name}.
3979
3980The documentation for the new function is taken from the documentation
3981string for the new class.
3982@end defun
3983
3984@defun Function.invoke (@var{*args})
3985When a convenience function is evaluated, its arguments are converted
3986to instances of @code{gdb.Value}, and then the function's
3987@code{invoke} method is called. Note that @value{GDBN} does not
3988predetermine the arity of convenience functions. Instead, all
3989available arguments are passed to @code{invoke}, following the
3990standard Python calling convention. In particular, a convenience
3991function can have default values for parameters without ill effect.
3992
3993The return value of this method is used as its value in the enclosing
3994expression. If an ordinary Python value is returned, it is converted
3995to a @code{gdb.Value} following the usual rules.
3996@end defun
3997
3998The following code snippet shows how a trivial convenience function can
3999be implemented in Python:
4000
4001@smallexample
4002class Greet (gdb.Function):
4003 """Return string to greet someone.
4004Takes a name as argument."""
4005
4006 def __init__ (self):
4007 super (Greet, self).__init__ ("greet")
4008
4009 def invoke (self, name):
4010 return "Hello, %s!" % name.string ()
4011
4012Greet ()
4013@end smallexample
4014
4015The last line instantiates the class, and is necessary to trigger the
4016registration of the function with @value{GDBN}. Depending on how the
4017Python code is read into @value{GDBN}, you may need to import the
4018@code{gdb} module explicitly.
4019
4020Now you can use the function in an expression:
4021
4022@smallexample
4023(gdb) print $greet("Bob")
4024$1 = "Hello, Bob!"
4025@end smallexample
4026
4027@node Progspaces In Python
4028@subsubsection Program Spaces In Python
4029
4030@cindex progspaces in python
4031@tindex gdb.Progspace
4032@tindex Progspace
4033A program space, or @dfn{progspace}, represents a symbolic view
4034of an address space.
4035It consists of all of the objfiles of the program.
4036@xref{Objfiles In Python}.
4037@xref{Inferiors and Programs, program spaces}, for more details
4038about program spaces.
4039
4040The following progspace-related functions are available in the
4041@code{gdb} module:
4042
4043@findex gdb.current_progspace
4044@defun gdb.current_progspace ()
4045This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4046@xref{Inferiors and Programs}. This is identical to
4047@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4048included for historical compatibility.
329baa95
DE
4049@end defun
4050
4051@findex gdb.progspaces
4052@defun gdb.progspaces ()
4053Return a sequence of all the progspaces currently known to @value{GDBN}.
4054@end defun
4055
4056Each progspace is represented by an instance of the @code{gdb.Progspace}
4057class.
4058
4059@defvar Progspace.filename
4060The file name of the progspace as a string.
4061@end defvar
4062
4063@defvar Progspace.pretty_printers
4064The @code{pretty_printers} attribute is a list of functions. It is
4065used to look up pretty-printers. A @code{Value} is passed to each
4066function in order; if the function returns @code{None}, then the
4067search continues. Otherwise, the return value should be an object
4068which is used to format the value. @xref{Pretty Printing API}, for more
4069information.
4070@end defvar
4071
4072@defvar Progspace.type_printers
4073The @code{type_printers} attribute is a list of type printer objects.
4074@xref{Type Printing API}, for more information.
4075@end defvar
4076
4077@defvar Progspace.frame_filters
4078The @code{frame_filters} attribute is a dictionary of frame filter
4079objects. @xref{Frame Filter API}, for more information.
4080@end defvar
4081
8743a9cd
TT
4082A program space has the following methods:
4083
4084@findex Progspace.block_for_pc
4085@defun Progspace.block_for_pc (pc)
4086Return the innermost @code{gdb.Block} containing the given @var{pc}
4087value. If the block cannot be found for the @var{pc} value specified,
4088the function will return @code{None}.
4089@end defun
4090
4091@findex Progspace.find_pc_line
4092@defun Progspace.find_pc_line (pc)
4093Return the @code{gdb.Symtab_and_line} object corresponding to the
4094@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4095of @var{pc} is passed as an argument, then the @code{symtab} and
4096@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4097object will be @code{None} and 0 respectively.
4098@end defun
4099
4100@findex Progspace.is_valid
4101@defun Progspace.is_valid ()
4102Returns @code{True} if the @code{gdb.Progspace} object is valid,
4103@code{False} if not. A @code{gdb.Progspace} object can become invalid
4104if the program space file it refers to is not referenced by any
4105inferior. All other @code{gdb.Progspace} methods will throw an
4106exception if it is invalid at the time the method is called.
4107@end defun
4108
4109@findex Progspace.objfiles
4110@defun Progspace.objfiles ()
4111Return a sequence of all the objfiles referenced by this program
4112space. @xref{Objfiles In Python}.
4113@end defun
4114
4115@findex Progspace.solib_name
4116@defun Progspace.solib_name (address)
4117Return the name of the shared library holding the given @var{address}
4118as a string, or @code{None}.
4119@end defun
4120
02be9a71
DE
4121One may add arbitrary attributes to @code{gdb.Progspace} objects
4122in the usual Python way.
4123This is useful if, for example, one needs to do some extra record keeping
4124associated with the program space.
4125
4126In this contrived example, we want to perform some processing when
4127an objfile with a certain symbol is loaded, but we only want to do
4128this once because it is expensive. To achieve this we record the results
4129with the program space because we can't predict when the desired objfile
4130will be loaded.
4131
4132@smallexample
4133(gdb) python
4134def clear_objfiles_handler(event):
4135 event.progspace.expensive_computation = None
4136def expensive(symbol):
4137 """A mock routine to perform an "expensive" computation on symbol."""
4138 print "Computing the answer to the ultimate question ..."
4139 return 42
4140def new_objfile_handler(event):
4141 objfile = event.new_objfile
4142 progspace = objfile.progspace
4143 if not hasattr(progspace, 'expensive_computation') or \
4144 progspace.expensive_computation is None:
4145 # We use 'main' for the symbol to keep the example simple.
4146 # Note: There's no current way to constrain the lookup
4147 # to one objfile.
4148 symbol = gdb.lookup_global_symbol('main')
4149 if symbol is not None:
4150 progspace.expensive_computation = expensive(symbol)
4151gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4152gdb.events.new_objfile.connect(new_objfile_handler)
4153end
4154(gdb) file /tmp/hello
4155Reading symbols from /tmp/hello...done.
4156Computing the answer to the ultimate question ...
4157(gdb) python print gdb.current_progspace().expensive_computation
415842
4159(gdb) run
4160Starting program: /tmp/hello
4161Hello.
4162[Inferior 1 (process 4242) exited normally]
4163@end smallexample
4164
329baa95
DE
4165@node Objfiles In Python
4166@subsubsection Objfiles In Python
4167
4168@cindex objfiles in python
4169@tindex gdb.Objfile
4170@tindex Objfile
4171@value{GDBN} loads symbols for an inferior from various
4172symbol-containing files (@pxref{Files}). These include the primary
4173executable file, any shared libraries used by the inferior, and any
4174separate debug info files (@pxref{Separate Debug Files}).
4175@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4176
4177The following objfile-related functions are available in the
4178@code{gdb} module:
4179
4180@findex gdb.current_objfile
4181@defun gdb.current_objfile ()
4182When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4183sets the ``current objfile'' to the corresponding objfile. This
4184function returns the current objfile. If there is no current objfile,
4185this function returns @code{None}.
4186@end defun
4187
4188@findex gdb.objfiles
4189@defun gdb.objfiles ()
74d3fbbb
SM
4190Return a sequence of objfiles referenced by the current program space.
4191@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4192to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4193historical compatibility.
329baa95
DE
4194@end defun
4195
6dddd6a5
DE
4196@findex gdb.lookup_objfile
4197@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4198Look up @var{name}, a file name or build ID, in the list of objfiles
4199for the current program space (@pxref{Progspaces In Python}).
4200If the objfile is not found throw the Python @code{ValueError} exception.
4201
4202If @var{name} is a relative file name, then it will match any
4203source file name with the same trailing components. For example, if
4204@var{name} is @samp{gcc/expr.c}, then it will match source file
4205name of @file{/build/trunk/gcc/expr.c}, but not
4206@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4207
4208If @var{by_build_id} is provided and is @code{True} then @var{name}
4209is the build ID of the objfile. Otherwise, @var{name} is a file name.
4210This is supported only on some operating systems, notably those which use
4211the ELF format for binary files and the @sc{gnu} Binutils. For more details
4212about this feature, see the description of the @option{--build-id}
f5a476a7 4213command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4214The GNU Linker}.
4215@end defun
4216
329baa95
DE
4217Each objfile is represented by an instance of the @code{gdb.Objfile}
4218class.
4219
4220@defvar Objfile.filename
1b549396
DE
4221The file name of the objfile as a string, with symbolic links resolved.
4222
4223The value is @code{None} if the objfile is no longer valid.
4224See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4225@end defvar
4226
3a8b707a
DE
4227@defvar Objfile.username
4228The file name of the objfile as specified by the user as a string.
4229
4230The value is @code{None} if the objfile is no longer valid.
4231See the @code{gdb.Objfile.is_valid} method, described below.
4232@end defvar
4233
a0be3e44
DE
4234@defvar Objfile.owner
4235For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4236object that debug info is being provided for.
4237Otherwise this is @code{None}.
4238Separate debug info objfiles are added with the
4239@code{gdb.Objfile.add_separate_debug_file} method, described below.
4240@end defvar
4241
7c50a931
DE
4242@defvar Objfile.build_id
4243The build ID of the objfile as a string.
4244If the objfile does not have a build ID then the value is @code{None}.
4245
4246This is supported only on some operating systems, notably those which use
4247the ELF format for binary files and the @sc{gnu} Binutils. For more details
4248about this feature, see the description of the @option{--build-id}
f5a476a7 4249command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4250The GNU Linker}.
4251@end defvar
4252
d096d8c1
DE
4253@defvar Objfile.progspace
4254The containing program space of the objfile as a @code{gdb.Progspace}
4255object. @xref{Progspaces In Python}.
4256@end defvar
4257
329baa95
DE
4258@defvar Objfile.pretty_printers
4259The @code{pretty_printers} attribute is a list of functions. It is
4260used to look up pretty-printers. A @code{Value} is passed to each
4261function in order; if the function returns @code{None}, then the
4262search continues. Otherwise, the return value should be an object
4263which is used to format the value. @xref{Pretty Printing API}, for more
4264information.
4265@end defvar
4266
4267@defvar Objfile.type_printers
4268The @code{type_printers} attribute is a list of type printer objects.
4269@xref{Type Printing API}, for more information.
4270@end defvar
4271
4272@defvar Objfile.frame_filters
4273The @code{frame_filters} attribute is a dictionary of frame filter
4274objects. @xref{Frame Filter API}, for more information.
4275@end defvar
4276
02be9a71
DE
4277One may add arbitrary attributes to @code{gdb.Objfile} objects
4278in the usual Python way.
4279This is useful if, for example, one needs to do some extra record keeping
4280associated with the objfile.
4281
4282In this contrived example we record the time when @value{GDBN}
4283loaded the objfile.
4284
4285@smallexample
4286(gdb) python
4287import datetime
4288def new_objfile_handler(event):
4289 # Set the time_loaded attribute of the new objfile.
4290 event.new_objfile.time_loaded = datetime.datetime.today()
4291gdb.events.new_objfile.connect(new_objfile_handler)
4292end
4293(gdb) file ./hello
4294Reading symbols from ./hello...done.
4295(gdb) python print gdb.objfiles()[0].time_loaded
42962014-10-09 11:41:36.770345
4297@end smallexample
4298
329baa95
DE
4299A @code{gdb.Objfile} object has the following methods:
4300
4301@defun Objfile.is_valid ()
4302Returns @code{True} if the @code{gdb.Objfile} object is valid,
4303@code{False} if not. A @code{gdb.Objfile} object can become invalid
4304if the object file it refers to is not loaded in @value{GDBN} any
4305longer. All other @code{gdb.Objfile} methods will throw an exception
4306if it is invalid at the time the method is called.
4307@end defun
4308
86e4ed39
DE
4309@defun Objfile.add_separate_debug_file (file)
4310Add @var{file} to the list of files that @value{GDBN} will search for
4311debug information for the objfile.
4312This is useful when the debug info has been removed from the program
4313and stored in a separate file. @value{GDBN} has built-in support for
4314finding separate debug info files (@pxref{Separate Debug Files}), but if
4315the file doesn't live in one of the standard places that @value{GDBN}
4316searches then this function can be used to add a debug info file
4317from a different place.
4318@end defun
4319
329baa95 4320@node Frames In Python
849cba3b 4321@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4322
4323@cindex frames in python
4324When the debugged program stops, @value{GDBN} is able to analyze its call
4325stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4326represents a frame in the stack. A @code{gdb.Frame} object is only valid
4327while its corresponding frame exists in the inferior's stack. If you try
4328to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4329exception (@pxref{Exception Handling}).
4330
4331Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4332operator, like:
4333
4334@smallexample
4335(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4336True
4337@end smallexample
4338
4339The following frame-related functions are available in the @code{gdb} module:
4340
4341@findex gdb.selected_frame
4342@defun gdb.selected_frame ()
4343Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4344@end defun
4345
4346@findex gdb.newest_frame
4347@defun gdb.newest_frame ()
4348Return the newest frame object for the selected thread.
4349@end defun
4350
4351@defun gdb.frame_stop_reason_string (reason)
4352Return a string explaining the reason why @value{GDBN} stopped unwinding
4353frames, as expressed by the given @var{reason} code (an integer, see the
4354@code{unwind_stop_reason} method further down in this section).
4355@end defun
4356
e0f3fd7c
TT
4357@findex gdb.invalidate_cached_frames
4358@defun gdb.invalidate_cached_frames
4359@value{GDBN} internally keeps a cache of the frames that have been
4360unwound. This function invalidates this cache.
4361
4362This function should not generally be called by ordinary Python code.
4363It is documented for the sake of completeness.
4364@end defun
4365
329baa95
DE
4366A @code{gdb.Frame} object has the following methods:
4367
4368@defun Frame.is_valid ()
4369Returns true if the @code{gdb.Frame} object is valid, false if not.
4370A frame object can become invalid if the frame it refers to doesn't
4371exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4372an exception if it is invalid at the time the method is called.
4373@end defun
4374
4375@defun Frame.name ()
4376Returns the function name of the frame, or @code{None} if it can't be
4377obtained.
4378@end defun
4379
4380@defun Frame.architecture ()
4381Returns the @code{gdb.Architecture} object corresponding to the frame's
4382architecture. @xref{Architectures In Python}.
4383@end defun
4384
4385@defun Frame.type ()
4386Returns the type of the frame. The value can be one of:
4387@table @code
4388@item gdb.NORMAL_FRAME
4389An ordinary stack frame.
4390
4391@item gdb.DUMMY_FRAME
4392A fake stack frame that was created by @value{GDBN} when performing an
4393inferior function call.
4394
4395@item gdb.INLINE_FRAME
4396A frame representing an inlined function. The function was inlined
4397into a @code{gdb.NORMAL_FRAME} that is older than this one.
4398
4399@item gdb.TAILCALL_FRAME
4400A frame representing a tail call. @xref{Tail Call Frames}.
4401
4402@item gdb.SIGTRAMP_FRAME
4403A signal trampoline frame. This is the frame created by the OS when
4404it calls into a signal handler.
4405
4406@item gdb.ARCH_FRAME
4407A fake stack frame representing a cross-architecture call.
4408
4409@item gdb.SENTINEL_FRAME
4410This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4411newest frame.
4412@end table
4413@end defun
4414
4415@defun Frame.unwind_stop_reason ()
4416Return an integer representing the reason why it's not possible to find
4417more frames toward the outermost frame. Use
4418@code{gdb.frame_stop_reason_string} to convert the value returned by this
4419function to a string. The value can be one of:
4420
4421@table @code
4422@item gdb.FRAME_UNWIND_NO_REASON
4423No particular reason (older frames should be available).
4424
4425@item gdb.FRAME_UNWIND_NULL_ID
4426The previous frame's analyzer returns an invalid result. This is no
4427longer used by @value{GDBN}, and is kept only for backward
4428compatibility.
4429
4430@item gdb.FRAME_UNWIND_OUTERMOST
4431This frame is the outermost.
4432
4433@item gdb.FRAME_UNWIND_UNAVAILABLE
4434Cannot unwind further, because that would require knowing the
4435values of registers or memory that have not been collected.
4436
4437@item gdb.FRAME_UNWIND_INNER_ID
4438This frame ID looks like it ought to belong to a NEXT frame,
4439but we got it for a PREV frame. Normally, this is a sign of
4440unwinder failure. It could also indicate stack corruption.
4441
4442@item gdb.FRAME_UNWIND_SAME_ID
4443This frame has the same ID as the previous one. That means
4444that unwinding further would almost certainly give us another
4445frame with exactly the same ID, so break the chain. Normally,
4446this is a sign of unwinder failure. It could also indicate
4447stack corruption.
4448
4449@item gdb.FRAME_UNWIND_NO_SAVED_PC
4450The frame unwinder did not find any saved PC, but we needed
4451one to unwind further.
4452
53e8a631
AB
4453@item gdb.FRAME_UNWIND_MEMORY_ERROR
4454The frame unwinder caused an error while trying to access memory.
4455
329baa95
DE
4456@item gdb.FRAME_UNWIND_FIRST_ERROR
4457Any stop reason greater or equal to this value indicates some kind
4458of error. This special value facilitates writing code that tests
4459for errors in unwinding in a way that will work correctly even if
4460the list of the other values is modified in future @value{GDBN}
4461versions. Using it, you could write:
4462@smallexample
4463reason = gdb.selected_frame().unwind_stop_reason ()
4464reason_str = gdb.frame_stop_reason_string (reason)
4465if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4466 print "An error occured: %s" % reason_str
4467@end smallexample
4468@end table
4469
4470@end defun
4471
4472@defun Frame.pc ()
4473Returns the frame's resume address.
4474@end defun
4475
4476@defun Frame.block ()
60c0454d
TT
4477Return the frame's code block. @xref{Blocks In Python}. If the frame
4478does not have a block -- for example, if there is no debugging
4479information for the code in question -- then this will throw an
4480exception.
329baa95
DE
4481@end defun
4482
4483@defun Frame.function ()
4484Return the symbol for the function corresponding to this frame.
4485@xref{Symbols In Python}.
4486@end defun
4487
4488@defun Frame.older ()
4489Return the frame that called this frame.
4490@end defun
4491
4492@defun Frame.newer ()
4493Return the frame called by this frame.
4494@end defun
4495
4496@defun Frame.find_sal ()
4497Return the frame's symtab and line object.
4498@xref{Symbol Tables In Python}.
4499@end defun
4500
5f3b99cf
SS
4501@defun Frame.read_register (register)
4502Return the value of @var{register} in this frame. The @var{register}
4503argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4504Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4505does not exist.
4506@end defun
4507
329baa95
DE
4508@defun Frame.read_var (variable @r{[}, block@r{]})
4509Return the value of @var{variable} in this frame. If the optional
4510argument @var{block} is provided, search for the variable from that
4511block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4512determined by the frame's current program counter). The @var{variable}
4513argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4514@code{gdb.Block} object.
4515@end defun
4516
4517@defun Frame.select ()
4518Set this frame to be the selected frame. @xref{Stack, ,Examining the
4519Stack}.
4520@end defun
4521
4522@node Blocks In Python
849cba3b 4523@subsubsection Accessing blocks from Python
329baa95
DE
4524
4525@cindex blocks in python
4526@tindex gdb.Block
4527
4528In @value{GDBN}, symbols are stored in blocks. A block corresponds
4529roughly to a scope in the source code. Blocks are organized
4530hierarchically, and are represented individually in Python as a
4531@code{gdb.Block}. Blocks rely on debugging information being
4532available.
4533
4534A frame has a block. Please see @ref{Frames In Python}, for a more
4535in-depth discussion of frames.
4536
4537The outermost block is known as the @dfn{global block}. The global
4538block typically holds public global variables and functions.
4539
4540The block nested just inside the global block is the @dfn{static
4541block}. The static block typically holds file-scoped variables and
4542functions.
4543
4544@value{GDBN} provides a method to get a block's superblock, but there
4545is currently no way to examine the sub-blocks of a block, or to
4546iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4547Python}).
4548
4549Here is a short example that should help explain blocks:
4550
4551@smallexample
4552/* This is in the global block. */
4553int global;
4554
4555/* This is in the static block. */
4556static int file_scope;
4557
4558/* 'function' is in the global block, and 'argument' is
4559 in a block nested inside of 'function'. */
4560int function (int argument)
4561@{
4562 /* 'local' is in a block inside 'function'. It may or may
4563 not be in the same block as 'argument'. */
4564 int local;
4565
4566 @{
4567 /* 'inner' is in a block whose superblock is the one holding
4568 'local'. */
4569 int inner;
4570
4571 /* If this call is expanded by the compiler, you may see
4572 a nested block here whose function is 'inline_function'
4573 and whose superblock is the one holding 'inner'. */
4574 inline_function ();
4575 @}
4576@}
4577@end smallexample
4578
4579A @code{gdb.Block} is iterable. The iterator returns the symbols
4580(@pxref{Symbols In Python}) local to the block. Python programs
4581should not assume that a specific block object will always contain a
4582given symbol, since changes in @value{GDBN} features and
4583infrastructure may cause symbols move across blocks in a symbol
4584table.
4585
4586The following block-related functions are available in the @code{gdb}
4587module:
4588
4589@findex gdb.block_for_pc
4590@defun gdb.block_for_pc (pc)
4591Return the innermost @code{gdb.Block} containing the given @var{pc}
4592value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4593the function will return @code{None}. This is identical to
4594@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4595historical compatibility.
329baa95
DE
4596@end defun
4597
4598A @code{gdb.Block} object has the following methods:
4599
4600@defun Block.is_valid ()
4601Returns @code{True} if the @code{gdb.Block} object is valid,
4602@code{False} if not. A block object can become invalid if the block it
4603refers to doesn't exist anymore in the inferior. All other
4604@code{gdb.Block} methods will throw an exception if it is invalid at
4605the time the method is called. The block's validity is also checked
4606during iteration over symbols of the block.
4607@end defun
4608
4609A @code{gdb.Block} object has the following attributes:
4610
4611@defvar Block.start
4612The start address of the block. This attribute is not writable.
4613@end defvar
4614
4615@defvar Block.end
22eb9e92
TT
4616One past the last address that appears in the block. This attribute
4617is not writable.
329baa95
DE
4618@end defvar
4619
4620@defvar Block.function
4621The name of the block represented as a @code{gdb.Symbol}. If the
4622block is not named, then this attribute holds @code{None}. This
4623attribute is not writable.
4624
4625For ordinary function blocks, the superblock is the static block.
4626However, you should note that it is possible for a function block to
4627have a superblock that is not the static block -- for instance this
4628happens for an inlined function.
4629@end defvar
4630
4631@defvar Block.superblock
4632The block containing this block. If this parent block does not exist,
4633this attribute holds @code{None}. This attribute is not writable.
4634@end defvar
4635
4636@defvar Block.global_block
4637The global block associated with this block. This attribute is not
4638writable.
4639@end defvar
4640
4641@defvar Block.static_block
4642The static block associated with this block. This attribute is not
4643writable.
4644@end defvar
4645
4646@defvar Block.is_global
4647@code{True} if the @code{gdb.Block} object is a global block,
4648@code{False} if not. This attribute is not
4649writable.
4650@end defvar
4651
4652@defvar Block.is_static
4653@code{True} if the @code{gdb.Block} object is a static block,
4654@code{False} if not. This attribute is not writable.
4655@end defvar
4656
4657@node Symbols In Python
849cba3b 4658@subsubsection Python representation of Symbols
329baa95
DE
4659
4660@cindex symbols in python
4661@tindex gdb.Symbol
4662
4663@value{GDBN} represents every variable, function and type as an
4664entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4665Similarly, Python represents these symbols in @value{GDBN} with the
4666@code{gdb.Symbol} object.
4667
4668The following symbol-related functions are available in the @code{gdb}
4669module:
4670
4671@findex gdb.lookup_symbol
4672@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4673This function searches for a symbol by name. The search scope can be
4674restricted to the parameters defined in the optional domain and block
4675arguments.
4676
4677@var{name} is the name of the symbol. It must be a string. The
4678optional @var{block} argument restricts the search to symbols visible
4679in that @var{block}. The @var{block} argument must be a
4680@code{gdb.Block} object. If omitted, the block for the current frame
4681is used. The optional @var{domain} argument restricts
4682the search to the domain type. The @var{domain} argument must be a
4683domain constant defined in the @code{gdb} module and described later
4684in this chapter.
4685
4686The result is a tuple of two elements.
4687The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4688is not found.
4689If the symbol is found, the second element is @code{True} if the symbol
4690is a field of a method's object (e.g., @code{this} in C@t{++}),
4691otherwise it is @code{False}.
4692If the symbol is not found, the second element is @code{False}.
4693@end defun
4694
4695@findex gdb.lookup_global_symbol
4696@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4697This function searches for a global symbol by name.
4698The search scope can be restricted to by the domain argument.
4699
4700@var{name} is the name of the symbol. It must be a string.
4701The optional @var{domain} argument restricts the search to the domain type.
4702The @var{domain} argument must be a domain constant defined in the @code{gdb}
4703module and described later in this chapter.
4704
4705The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4706is not found.
4707@end defun
4708
4709A @code{gdb.Symbol} object has the following attributes:
4710
4711@defvar Symbol.type
4712The type of the symbol or @code{None} if no type is recorded.
4713This attribute is represented as a @code{gdb.Type} object.
4714@xref{Types In Python}. This attribute is not writable.
4715@end defvar
4716
4717@defvar Symbol.symtab
4718The symbol table in which the symbol appears. This attribute is
4719represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4720Python}. This attribute is not writable.
4721@end defvar
4722
4723@defvar Symbol.line
4724The line number in the source code at which the symbol was defined.
4725This is an integer.
4726@end defvar
4727
4728@defvar Symbol.name
4729The name of the symbol as a string. This attribute is not writable.
4730@end defvar
4731
4732@defvar Symbol.linkage_name
4733The name of the symbol, as used by the linker (i.e., may be mangled).
4734This attribute is not writable.
4735@end defvar
4736
4737@defvar Symbol.print_name
4738The name of the symbol in a form suitable for output. This is either
4739@code{name} or @code{linkage_name}, depending on whether the user
4740asked @value{GDBN} to display demangled or mangled names.
4741@end defvar
4742
4743@defvar Symbol.addr_class
4744The address class of the symbol. This classifies how to find the value
4745of a symbol. Each address class is a constant defined in the
4746@code{gdb} module and described later in this chapter.
4747@end defvar
4748
4749@defvar Symbol.needs_frame
4750This is @code{True} if evaluating this symbol's value requires a frame
4751(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4752local variables will require a frame, but other symbols will not.
4753@end defvar
4754
4755@defvar Symbol.is_argument
4756@code{True} if the symbol is an argument of a function.
4757@end defvar
4758
4759@defvar Symbol.is_constant
4760@code{True} if the symbol is a constant.
4761@end defvar
4762
4763@defvar Symbol.is_function
4764@code{True} if the symbol is a function or a method.
4765@end defvar
4766
4767@defvar Symbol.is_variable
4768@code{True} if the symbol is a variable.
4769@end defvar
4770
4771A @code{gdb.Symbol} object has the following methods:
4772
4773@defun Symbol.is_valid ()
4774Returns @code{True} if the @code{gdb.Symbol} object is valid,
4775@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4776the symbol it refers to does not exist in @value{GDBN} any longer.
4777All other @code{gdb.Symbol} methods will throw an exception if it is
4778invalid at the time the method is called.
4779@end defun
4780
4781@defun Symbol.value (@r{[}frame@r{]})
4782Compute the value of the symbol, as a @code{gdb.Value}. For
4783functions, this computes the address of the function, cast to the
4784appropriate type. If the symbol requires a frame in order to compute
4785its value, then @var{frame} must be given. If @var{frame} is not
4786given, or if @var{frame} is invalid, then this method will throw an
4787exception.
4788@end defun
4789
4790The available domain categories in @code{gdb.Symbol} are represented
4791as constants in the @code{gdb} module:
4792
b3ce5e5f
DE
4793@vtable @code
4794@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4795@item gdb.SYMBOL_UNDEF_DOMAIN
4796This is used when a domain has not been discovered or none of the
4797following domains apply. This usually indicates an error either
4798in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4799
4800@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4801@item gdb.SYMBOL_VAR_DOMAIN
4802This domain contains variables, function names, typedef names and enum
4803type values.
b3ce5e5f
DE
4804
4805@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4806@item gdb.SYMBOL_STRUCT_DOMAIN
4807This domain holds struct, union and enum type names.
b3ce5e5f
DE
4808
4809@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4810@item gdb.SYMBOL_LABEL_DOMAIN
4811This domain contains names of labels (for gotos).
b3ce5e5f 4812
51e78fc5
TT
4813@vindex SYMBOL_MODULE_DOMAIN
4814@item gdb.SYMBOL_MODULE_DOMAIN
4815This domain contains names of Fortran module types.
4816
4817@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4818@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4819This domain contains names of Fortran common blocks.
b3ce5e5f 4820@end vtable
329baa95
DE
4821
4822The available address class categories in @code{gdb.Symbol} are represented
4823as constants in the @code{gdb} module:
4824
b3ce5e5f
DE
4825@vtable @code
4826@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4827@item gdb.SYMBOL_LOC_UNDEF
4828If this is returned by address class, it indicates an error either in
4829the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4830
4831@vindex SYMBOL_LOC_CONST
329baa95
DE
4832@item gdb.SYMBOL_LOC_CONST
4833Value is constant int.
b3ce5e5f
DE
4834
4835@vindex SYMBOL_LOC_STATIC
329baa95
DE
4836@item gdb.SYMBOL_LOC_STATIC
4837Value is at a fixed address.
b3ce5e5f
DE
4838
4839@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4840@item gdb.SYMBOL_LOC_REGISTER
4841Value is in a register.
b3ce5e5f
DE
4842
4843@vindex SYMBOL_LOC_ARG
329baa95
DE
4844@item gdb.SYMBOL_LOC_ARG
4845Value is an argument. This value is at the offset stored within the
4846symbol inside the frame's argument list.
b3ce5e5f
DE
4847
4848@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4849@item gdb.SYMBOL_LOC_REF_ARG
4850Value address is stored in the frame's argument list. Just like
4851@code{LOC_ARG} except that the value's address is stored at the
4852offset, not the value itself.
b3ce5e5f
DE
4853
4854@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4855@item gdb.SYMBOL_LOC_REGPARM_ADDR
4856Value is a specified register. Just like @code{LOC_REGISTER} except
4857the register holds the address of the argument instead of the argument
4858itself.
b3ce5e5f
DE
4859
4860@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4861@item gdb.SYMBOL_LOC_LOCAL
4862Value is a local variable.
b3ce5e5f
DE
4863
4864@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4865@item gdb.SYMBOL_LOC_TYPEDEF
4866Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4867have this class.
b3ce5e5f
DE
4868
4869@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4870@item gdb.SYMBOL_LOC_BLOCK
4871Value is a block.
b3ce5e5f
DE
4872
4873@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4874@item gdb.SYMBOL_LOC_CONST_BYTES
4875Value is a byte-sequence.
b3ce5e5f
DE
4876
4877@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4878@item gdb.SYMBOL_LOC_UNRESOLVED
4879Value is at a fixed address, but the address of the variable has to be
4880determined from the minimal symbol table whenever the variable is
4881referenced.
b3ce5e5f
DE
4882
4883@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4884@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4885The value does not actually exist in the program.
b3ce5e5f
DE
4886
4887@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4888@item gdb.SYMBOL_LOC_COMPUTED
4889The value's address is a computed location.
51e78fc5
TT
4890
4891@vindex SYMBOL_LOC_COMPUTED
4892@item gdb.SYMBOL_LOC_COMPUTED
4893The value's address is a symbol. This is only used for Fortran common
4894blocks.
b3ce5e5f 4895@end vtable
329baa95
DE
4896
4897@node Symbol Tables In Python
849cba3b 4898@subsubsection Symbol table representation in Python
329baa95
DE
4899
4900@cindex symbol tables in python
4901@tindex gdb.Symtab
4902@tindex gdb.Symtab_and_line
4903
4904Access to symbol table data maintained by @value{GDBN} on the inferior
4905is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4906@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4907from the @code{find_sal} method in @code{gdb.Frame} object.
4908@xref{Frames In Python}.
4909
4910For more information on @value{GDBN}'s symbol table management, see
4911@ref{Symbols, ,Examining the Symbol Table}, for more information.
4912
4913A @code{gdb.Symtab_and_line} object has the following attributes:
4914
4915@defvar Symtab_and_line.symtab
4916The symbol table object (@code{gdb.Symtab}) for this frame.
4917This attribute is not writable.
4918@end defvar
4919
4920@defvar Symtab_and_line.pc
4921Indicates the start of the address range occupied by code for the
4922current source line. This attribute is not writable.
4923@end defvar
4924
4925@defvar Symtab_and_line.last
4926Indicates the end of the address range occupied by code for the current
4927source line. This attribute is not writable.
4928@end defvar
4929
4930@defvar Symtab_and_line.line
4931Indicates the current line number for this object. This
4932attribute is not writable.
4933@end defvar
4934
4935A @code{gdb.Symtab_and_line} object has the following methods:
4936
4937@defun Symtab_and_line.is_valid ()
4938Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4939@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4940invalid if the Symbol table and line object it refers to does not
4941exist in @value{GDBN} any longer. All other
4942@code{gdb.Symtab_and_line} methods will throw an exception if it is
4943invalid at the time the method is called.
4944@end defun
4945
4946A @code{gdb.Symtab} object has the following attributes:
4947
4948@defvar Symtab.filename
4949The symbol table's source filename. This attribute is not writable.
4950@end defvar
4951
4952@defvar Symtab.objfile
4953The symbol table's backing object file. @xref{Objfiles In Python}.
4954This attribute is not writable.
4955@end defvar
4956
2b4fd423
DE
4957@defvar Symtab.producer
4958The name and possibly version number of the program that
4959compiled the code in the symbol table.
4960The contents of this string is up to the compiler.
4961If no producer information is available then @code{None} is returned.
4962This attribute is not writable.
4963@end defvar
4964
329baa95
DE
4965A @code{gdb.Symtab} object has the following methods:
4966
4967@defun Symtab.is_valid ()
4968Returns @code{True} if the @code{gdb.Symtab} object is valid,
4969@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4970the symbol table it refers to does not exist in @value{GDBN} any
4971longer. All other @code{gdb.Symtab} methods will throw an exception
4972if it is invalid at the time the method is called.
4973@end defun
4974
4975@defun Symtab.fullname ()
4976Return the symbol table's source absolute file name.
4977@end defun
4978
4979@defun Symtab.global_block ()
4980Return the global block of the underlying symbol table.
4981@xref{Blocks In Python}.
4982@end defun
4983
4984@defun Symtab.static_block ()
4985Return the static block of the underlying symbol table.
4986@xref{Blocks In Python}.
4987@end defun
4988
4989@defun Symtab.linetable ()
4990Return the line table associated with the symbol table.
4991@xref{Line Tables In Python}.
4992@end defun
4993
4994@node Line Tables In Python
4995@subsubsection Manipulating line tables using Python
4996
4997@cindex line tables in python
4998@tindex gdb.LineTable
4999
5000Python code can request and inspect line table information from a
5001symbol table that is loaded in @value{GDBN}. A line table is a
5002mapping of source lines to their executable locations in memory. To
5003acquire the line table information for a particular symbol table, use
5004the @code{linetable} function (@pxref{Symbol Tables In Python}).
5005
5006A @code{gdb.LineTable} is iterable. The iterator returns
5007@code{LineTableEntry} objects that correspond to the source line and
5008address for each line table entry. @code{LineTableEntry} objects have
5009the following attributes:
5010
5011@defvar LineTableEntry.line
5012The source line number for this line table entry. This number
5013corresponds to the actual line of source. This attribute is not
5014writable.
5015@end defvar
5016
5017@defvar LineTableEntry.pc
5018The address that is associated with the line table entry where the
5019executable code for that source line resides in memory. This
5020attribute is not writable.
5021@end defvar
5022
5023As there can be multiple addresses for a single source line, you may
5024receive multiple @code{LineTableEntry} objects with matching
5025@code{line} attributes, but with different @code{pc} attributes. The
5026iterator is sorted in ascending @code{pc} order. Here is a small
5027example illustrating iterating over a line table.
5028
5029@smallexample
5030symtab = gdb.selected_frame().find_sal().symtab
5031linetable = symtab.linetable()
5032for line in linetable:
5033 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5034@end smallexample
5035
5036This will have the following output:
5037
5038@smallexample
5039Line: 33 Address: 0x4005c8L
5040Line: 37 Address: 0x4005caL
5041Line: 39 Address: 0x4005d2L
5042Line: 40 Address: 0x4005f8L
5043Line: 42 Address: 0x4005ffL
5044Line: 44 Address: 0x400608L
5045Line: 42 Address: 0x40060cL
5046Line: 45 Address: 0x400615L
5047@end smallexample
5048
5049In addition to being able to iterate over a @code{LineTable}, it also
5050has the following direct access methods:
5051
5052@defun LineTable.line (line)
5053Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5054entries in the line table for the given @var{line}, which specifies
5055the source code line. If there are no entries for that source code
329baa95
DE
5056@var{line}, the Python @code{None} is returned.
5057@end defun
5058
5059@defun LineTable.has_line (line)
5060Return a Python @code{Boolean} indicating whether there is an entry in
5061the line table for this source line. Return @code{True} if an entry
5062is found, or @code{False} if not.
5063@end defun
5064
5065@defun LineTable.source_lines ()
5066Return a Python @code{List} of the source line numbers in the symbol
5067table. Only lines with executable code locations are returned. The
5068contents of the @code{List} will just be the source line entries
5069represented as Python @code{Long} values.
5070@end defun
5071
5072@node Breakpoints In Python
5073@subsubsection Manipulating breakpoints using Python
5074
5075@cindex breakpoints in python
5076@tindex gdb.Breakpoint
5077
5078Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5079class.
5080
0b982d68
SM
5081A breakpoint can be created using one of the two forms of the
5082@code{gdb.Breakpoint} constructor. The first one accepts a string
5083like one would pass to the @code{break}
5084(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5085(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5086create both breakpoints and watchpoints. The second accepts separate Python
5087arguments similar to @ref{Explicit Locations}, and can only be used to create
5088breakpoints.
5089
b89641ba 5090@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5091Create a new breakpoint according to @var{spec}, which is a string naming the
5092location of a breakpoint, or an expression that defines a watchpoint. The
5093string should describe a location in a format recognized by the @code{break}
5094command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5095watchpoint, by the @code{watch} command
5096(@pxref{Set Watchpoints, , Setting Watchpoints}).
5097
5098The optional @var{type} argument specifies the type of the breakpoint to create,
5099as defined below.
5100
5101The optional @var{wp_class} argument defines the class of watchpoint to create,
5102if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5103defaults to @code{gdb.WP_WRITE}.
5104
5105The optional @var{internal} argument allows the breakpoint to become invisible
5106to the user. The breakpoint will neither be reported when created, nor will it
5107be listed in the output from @code{info breakpoints} (but will be listed with
5108the @code{maint info breakpoints} command).
5109
5110The optional @var{temporary} argument makes the breakpoint a temporary
5111breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5112further access to the Python breakpoint after it has been hit will result in a
5113runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5114
5115The optional @var{qualified} argument is a boolean that allows interpreting
5116the function passed in @code{spec} as a fully-qualified name. It is equivalent
5117to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5118@ref{Explicit Locations}).
5119
0b982d68
SM
5120@end defun
5121
b89641ba 5122@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5123This second form of creating a new breakpoint specifies the explicit
5124location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5125be created in the specified source file @var{source}, at the specified
5126@var{function}, @var{label} and @var{line}.
5127
b89641ba
SM
5128@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5129explained previously.
329baa95
DE
5130@end defun
5131
cda75e70
TT
5132The available types are represented by constants defined in the @code{gdb}
5133module:
5134
5135@vtable @code
5136@vindex BP_BREAKPOINT
5137@item gdb.BP_BREAKPOINT
5138Normal code breakpoint.
5139
5140@vindex BP_WATCHPOINT
5141@item gdb.BP_WATCHPOINT
5142Watchpoint breakpoint.
5143
5144@vindex BP_HARDWARE_WATCHPOINT
5145@item gdb.BP_HARDWARE_WATCHPOINT
5146Hardware assisted watchpoint.
5147
5148@vindex BP_READ_WATCHPOINT
5149@item gdb.BP_READ_WATCHPOINT
5150Hardware assisted read watchpoint.
5151
5152@vindex BP_ACCESS_WATCHPOINT
5153@item gdb.BP_ACCESS_WATCHPOINT
5154Hardware assisted access watchpoint.
5155@end vtable
5156
5157The available watchpoint types represented by constants are defined in the
5158@code{gdb} module:
5159
5160@vtable @code
5161@vindex WP_READ
5162@item gdb.WP_READ
5163Read only watchpoint.
5164
5165@vindex WP_WRITE
5166@item gdb.WP_WRITE
5167Write only watchpoint.
5168
5169@vindex WP_ACCESS
5170@item gdb.WP_ACCESS
5171Read/Write watchpoint.
5172@end vtable
5173
329baa95
DE
5174@defun Breakpoint.stop (self)
5175The @code{gdb.Breakpoint} class can be sub-classed and, in
5176particular, you may choose to implement the @code{stop} method.
5177If this method is defined in a sub-class of @code{gdb.Breakpoint},
5178it will be called when the inferior reaches any location of a
5179breakpoint which instantiates that sub-class. If the method returns
5180@code{True}, the inferior will be stopped at the location of the
5181breakpoint, otherwise the inferior will continue.
5182
5183If there are multiple breakpoints at the same location with a
5184@code{stop} method, each one will be called regardless of the
5185return status of the previous. This ensures that all @code{stop}
5186methods have a chance to execute at that location. In this scenario
5187if one of the methods returns @code{True} but the others return
5188@code{False}, the inferior will still be stopped.
5189
5190You should not alter the execution state of the inferior (i.e.@:, step,
5191next, etc.), alter the current frame context (i.e.@:, change the current
5192active frame), or alter, add or delete any breakpoint. As a general
5193rule, you should not alter any data within @value{GDBN} or the inferior
5194at this time.
5195
5196Example @code{stop} implementation:
5197
5198@smallexample
5199class MyBreakpoint (gdb.Breakpoint):
5200 def stop (self):
5201 inf_val = gdb.parse_and_eval("foo")
5202 if inf_val == 3:
5203 return True
5204 return False
5205@end smallexample
5206@end defun
5207
329baa95
DE
5208@defun Breakpoint.is_valid ()
5209Return @code{True} if this @code{Breakpoint} object is valid,
5210@code{False} otherwise. A @code{Breakpoint} object can become invalid
5211if the user deletes the breakpoint. In this case, the object still
5212exists, but the underlying breakpoint does not. In the cases of
5213watchpoint scope, the watchpoint remains valid even if execution of the
5214inferior leaves the scope of that watchpoint.
5215@end defun
5216
fab3a15d 5217@defun Breakpoint.delete ()
329baa95
DE
5218Permanently deletes the @value{GDBN} breakpoint. This also
5219invalidates the Python @code{Breakpoint} object. Any further access
5220to this object's attributes or methods will raise an error.
5221@end defun
5222
5223@defvar Breakpoint.enabled
5224This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5225@code{False} otherwise. This attribute is writable. You can use it to enable
5226or disable the breakpoint.
329baa95
DE
5227@end defvar
5228
5229@defvar Breakpoint.silent
5230This attribute is @code{True} if the breakpoint is silent, and
5231@code{False} otherwise. This attribute is writable.
5232
5233Note that a breakpoint can also be silent if it has commands and the
5234first command is @code{silent}. This is not reported by the
5235@code{silent} attribute.
5236@end defvar
5237
93daf339
TT
5238@defvar Breakpoint.pending
5239This attribute is @code{True} if the breakpoint is pending, and
5240@code{False} otherwise. @xref{Set Breaks}. This attribute is
5241read-only.
5242@end defvar
5243
22a02324 5244@anchor{python_breakpoint_thread}
329baa95 5245@defvar Breakpoint.thread
5d5658a1
PA
5246If the breakpoint is thread-specific, this attribute holds the
5247thread's global id. If the breakpoint is not thread-specific, this
5248attribute is @code{None}. This attribute is writable.
329baa95
DE
5249@end defvar
5250
5251@defvar Breakpoint.task
5252If the breakpoint is Ada task-specific, this attribute holds the Ada task
5253id. If the breakpoint is not task-specific (or the underlying
5254language is not Ada), this attribute is @code{None}. This attribute
5255is writable.
5256@end defvar
5257
5258@defvar Breakpoint.ignore_count
5259This attribute holds the ignore count for the breakpoint, an integer.
5260This attribute is writable.
5261@end defvar
5262
5263@defvar Breakpoint.number
5264This attribute holds the breakpoint's number --- the identifier used by
5265the user to manipulate the breakpoint. This attribute is not writable.
5266@end defvar
5267
5268@defvar Breakpoint.type
5269This attribute holds the breakpoint's type --- the identifier used to
5270determine the actual breakpoint type or use-case. This attribute is not
5271writable.
5272@end defvar
5273
5274@defvar Breakpoint.visible
5275This attribute tells whether the breakpoint is visible to the user
5276when set, or when the @samp{info breakpoints} command is run. This
5277attribute is not writable.
5278@end defvar
5279
5280@defvar Breakpoint.temporary
5281This attribute indicates whether the breakpoint was created as a
5282temporary breakpoint. Temporary breakpoints are automatically deleted
5283after that breakpoint has been hit. Access to this attribute, and all
5284other attributes and functions other than the @code{is_valid}
5285function, will result in an error after the breakpoint has been hit
5286(as it has been automatically deleted). This attribute is not
5287writable.
5288@end defvar
5289
329baa95
DE
5290@defvar Breakpoint.hit_count
5291This attribute holds the hit count for the breakpoint, an integer.
5292This attribute is writable, but currently it can only be set to zero.
5293@end defvar
5294
5295@defvar Breakpoint.location
5296This attribute holds the location of the breakpoint, as specified by
5297the user. It is a string. If the breakpoint does not have a location
5298(that is, it is a watchpoint) the attribute's value is @code{None}. This
5299attribute is not writable.
5300@end defvar
5301
5302@defvar Breakpoint.expression
5303This attribute holds a breakpoint expression, as specified by
5304the user. It is a string. If the breakpoint does not have an
5305expression (the breakpoint is not a watchpoint) the attribute's value
5306is @code{None}. This attribute is not writable.
5307@end defvar
5308
5309@defvar Breakpoint.condition
5310This attribute holds the condition of the breakpoint, as specified by
5311the user. It is a string. If there is no condition, this attribute's
5312value is @code{None}. This attribute is writable.
5313@end defvar
5314
5315@defvar Breakpoint.commands
5316This attribute holds the commands attached to the breakpoint. If
5317there are commands, this attribute's value is a string holding all the
5318commands, separated by newlines. If there are no commands, this
a913fffb 5319attribute is @code{None}. This attribute is writable.
329baa95
DE
5320@end defvar
5321
5322@node Finish Breakpoints in Python
5323@subsubsection Finish Breakpoints
5324
5325@cindex python finish breakpoints
5326@tindex gdb.FinishBreakpoint
5327
5328A finish breakpoint is a temporary breakpoint set at the return address of
5329a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5330extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5331and deleted when the execution will run out of the breakpoint scope (i.e.@:
5332@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5333Finish breakpoints are thread specific and must be create with the right
5334thread selected.
5335
5336@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5337Create a finish breakpoint at the return address of the @code{gdb.Frame}
5338object @var{frame}. If @var{frame} is not provided, this defaults to the
5339newest frame. The optional @var{internal} argument allows the breakpoint to
5340become invisible to the user. @xref{Breakpoints In Python}, for further
5341details about this argument.
5342@end defun
5343
5344@defun FinishBreakpoint.out_of_scope (self)
5345In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5346@code{return} command, @dots{}), a function may not properly terminate, and
5347thus never hit the finish breakpoint. When @value{GDBN} notices such a
5348situation, the @code{out_of_scope} callback will be triggered.
5349
5350You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5351method:
5352
5353@smallexample
5354class MyFinishBreakpoint (gdb.FinishBreakpoint)
5355 def stop (self):
5356 print "normal finish"
5357 return True
5358
5359 def out_of_scope ():
5360 print "abnormal finish"
5361@end smallexample
5362@end defun
5363
5364@defvar FinishBreakpoint.return_value
5365When @value{GDBN} is stopped at a finish breakpoint and the frame
5366used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5367attribute will contain a @code{gdb.Value} object corresponding to the return
5368value of the function. The value will be @code{None} if the function return
5369type is @code{void} or if the return value was not computable. This attribute
5370is not writable.
5371@end defvar
5372
5373@node Lazy Strings In Python
849cba3b 5374@subsubsection Python representation of lazy strings
329baa95
DE
5375
5376@cindex lazy strings in python
5377@tindex gdb.LazyString
5378
5379A @dfn{lazy string} is a string whose contents is not retrieved or
5380encoded until it is needed.
5381
5382A @code{gdb.LazyString} is represented in @value{GDBN} as an
5383@code{address} that points to a region of memory, an @code{encoding}
5384that will be used to encode that region of memory, and a @code{length}
5385to delimit the region of memory that represents the string. The
5386difference between a @code{gdb.LazyString} and a string wrapped within
5387a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5388differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5389retrieved and encoded during printing, while a @code{gdb.Value}
5390wrapping a string is immediately retrieved and encoded on creation.
5391
5392A @code{gdb.LazyString} object has the following functions:
5393
5394@defun LazyString.value ()
5395Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5396will point to the string in memory, but will lose all the delayed
5397retrieval, encoding and handling that @value{GDBN} applies to a
5398@code{gdb.LazyString}.
5399@end defun
5400
5401@defvar LazyString.address
5402This attribute holds the address of the string. This attribute is not
5403writable.
5404@end defvar
5405
5406@defvar LazyString.length
5407This attribute holds the length of the string in characters. If the
5408length is -1, then the string will be fetched and encoded up to the
5409first null of appropriate width. This attribute is not writable.
5410@end defvar
5411
5412@defvar LazyString.encoding
5413This attribute holds the encoding that will be applied to the string
5414when the string is printed by @value{GDBN}. If the encoding is not
5415set, or contains an empty string, then @value{GDBN} will select the
5416most appropriate encoding when the string is printed. This attribute
5417is not writable.
5418@end defvar
5419
5420@defvar LazyString.type
5421This attribute holds the type that is represented by the lazy string's
f8d99587 5422type. For a lazy string this is a pointer or array type. To
329baa95
DE
5423resolve this to the lazy string's character type, use the type's
5424@code{target} method. @xref{Types In Python}. This attribute is not
5425writable.
5426@end defvar
5427
5428@node Architectures In Python
5429@subsubsection Python representation of architectures
5430@cindex Python architectures
5431
5432@value{GDBN} uses architecture specific parameters and artifacts in a
5433number of its various computations. An architecture is represented
5434by an instance of the @code{gdb.Architecture} class.
5435
5436A @code{gdb.Architecture} class has the following methods:
5437
5438@defun Architecture.name ()
5439Return the name (string value) of the architecture.
5440@end defun
5441
5442@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5443Return a list of disassembled instructions starting from the memory
5444address @var{start_pc}. The optional arguments @var{end_pc} and
5445@var{count} determine the number of instructions in the returned list.
5446If both the optional arguments @var{end_pc} and @var{count} are
5447specified, then a list of at most @var{count} disassembled instructions
5448whose start address falls in the closed memory address interval from
5449@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5450specified, but @var{count} is specified, then @var{count} number of
5451instructions starting from the address @var{start_pc} are returned. If
5452@var{count} is not specified but @var{end_pc} is specified, then all
5453instructions whose start address falls in the closed memory address
5454interval from @var{start_pc} to @var{end_pc} are returned. If neither
5455@var{end_pc} nor @var{count} are specified, then a single instruction at
5456@var{start_pc} is returned. For all of these cases, each element of the
5457returned list is a Python @code{dict} with the following string keys:
5458
5459@table @code
5460
5461@item addr
5462The value corresponding to this key is a Python long integer capturing
5463the memory address of the instruction.
5464
5465@item asm
5466The value corresponding to this key is a string value which represents
5467the instruction with assembly language mnemonics. The assembly
5468language flavor used is the same as that specified by the current CLI
5469variable @code{disassembly-flavor}. @xref{Machine Code}.
5470
5471@item length
5472The value corresponding to this key is the length (integer value) of the
5473instruction in bytes.
5474
5475@end table
5476@end defun
5477
5478@node Python Auto-loading
5479@subsection Python Auto-loading
5480@cindex Python auto-loading
5481
5482When a new object file is read (for example, due to the @code{file}
5483command, or because the inferior has loaded a shared library),
5484@value{GDBN} will look for Python support scripts in several ways:
5485@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5486@xref{Auto-loading extensions}.
5487
5488The auto-loading feature is useful for supplying application-specific
5489debugging commands and scripts.
5490
5491Auto-loading can be enabled or disabled,
5492and the list of auto-loaded scripts can be printed.
5493
5494@table @code
5495@anchor{set auto-load python-scripts}
5496@kindex set auto-load python-scripts
5497@item set auto-load python-scripts [on|off]
5498Enable or disable the auto-loading of Python scripts.
5499
5500@anchor{show auto-load python-scripts}
5501@kindex show auto-load python-scripts
5502@item show auto-load python-scripts
5503Show whether auto-loading of Python scripts is enabled or disabled.
5504
5505@anchor{info auto-load python-scripts}
5506@kindex info auto-load python-scripts
5507@cindex print list of auto-loaded Python scripts
5508@item info auto-load python-scripts [@var{regexp}]
5509Print the list of all Python scripts that @value{GDBN} auto-loaded.
5510
5511Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5512the @code{.debug_gdb_scripts} section and were either not found
5513(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5514@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5515This is useful because their names are not printed when @value{GDBN}
5516tries to load them and fails. There may be many of them, and printing
5517an error message for each one is problematic.
5518
5519If @var{regexp} is supplied only Python scripts with matching names are printed.
5520
5521Example:
5522
5523@smallexample
5524(gdb) info auto-load python-scripts
5525Loaded Script
5526Yes py-section-script.py
5527 full name: /tmp/py-section-script.py
5528No my-foo-pretty-printers.py
5529@end smallexample
5530@end table
5531
9f050062 5532When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5533@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5534function (@pxref{Objfiles In Python}). This can be useful for
5535registering objfile-specific pretty-printers and frame-filters.
5536
5537@node Python modules
5538@subsection Python modules
5539@cindex python modules
5540
5541@value{GDBN} comes with several modules to assist writing Python code.
5542
5543@menu
5544* gdb.printing:: Building and registering pretty-printers.
5545* gdb.types:: Utilities for working with types.
5546* gdb.prompt:: Utilities for prompt value substitution.
5547@end menu
5548
5549@node gdb.printing
5550@subsubsection gdb.printing
5551@cindex gdb.printing
5552
5553This module provides a collection of utilities for working with
5554pretty-printers.
5555
5556@table @code
5557@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5558This class specifies the API that makes @samp{info pretty-printer},
5559@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5560Pretty-printers should generally inherit from this class.
5561
5562@item SubPrettyPrinter (@var{name})
5563For printers that handle multiple types, this class specifies the
5564corresponding API for the subprinters.
5565
5566@item RegexpCollectionPrettyPrinter (@var{name})
5567Utility class for handling multiple printers, all recognized via
5568regular expressions.
5569@xref{Writing a Pretty-Printer}, for an example.
5570
5571@item FlagEnumerationPrinter (@var{name})
5572A pretty-printer which handles printing of @code{enum} values. Unlike
5573@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5574work properly when there is some overlap between the enumeration
697aa1b7
EZ
5575constants. The argument @var{name} is the name of the printer and
5576also the name of the @code{enum} type to look up.
329baa95
DE
5577
5578@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5579Register @var{printer} with the pretty-printer list of @var{obj}.
5580If @var{replace} is @code{True} then any existing copy of the printer
5581is replaced. Otherwise a @code{RuntimeError} exception is raised
5582if a printer with the same name already exists.
5583@end table
5584
5585@node gdb.types
5586@subsubsection gdb.types
5587@cindex gdb.types
5588
5589This module provides a collection of utilities for working with
5590@code{gdb.Type} objects.
5591
5592@table @code
5593@item get_basic_type (@var{type})
5594Return @var{type} with const and volatile qualifiers stripped,
5595and with typedefs and C@t{++} references converted to the underlying type.
5596
5597C@t{++} example:
5598
5599@smallexample
5600typedef const int const_int;
5601const_int foo (3);
5602const_int& foo_ref (foo);
5603int main () @{ return 0; @}
5604@end smallexample
5605
5606Then in gdb:
5607
5608@smallexample
5609(gdb) start
5610(gdb) python import gdb.types
5611(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5612(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5613int
5614@end smallexample
5615
5616@item has_field (@var{type}, @var{field})
5617Return @code{True} if @var{type}, assumed to be a type with fields
5618(e.g., a structure or union), has field @var{field}.
5619
5620@item make_enum_dict (@var{enum_type})
5621Return a Python @code{dictionary} type produced from @var{enum_type}.
5622
5623@item deep_items (@var{type})
5624Returns a Python iterator similar to the standard
5625@code{gdb.Type.iteritems} method, except that the iterator returned
5626by @code{deep_items} will recursively traverse anonymous struct or
5627union fields. For example:
5628
5629@smallexample
5630struct A
5631@{
5632 int a;
5633 union @{
5634 int b0;
5635 int b1;
5636 @};
5637@};
5638@end smallexample
5639
5640@noindent
5641Then in @value{GDBN}:
5642@smallexample
5643(@value{GDBP}) python import gdb.types
5644(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5645(@value{GDBP}) python print struct_a.keys ()
5646@{['a', '']@}
5647(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5648@{['a', 'b0', 'b1']@}
5649@end smallexample
5650
5651@item get_type_recognizers ()
5652Return a list of the enabled type recognizers for the current context.
5653This is called by @value{GDBN} during the type-printing process
5654(@pxref{Type Printing API}).
5655
5656@item apply_type_recognizers (recognizers, type_obj)
5657Apply the type recognizers, @var{recognizers}, to the type object
5658@var{type_obj}. If any recognizer returns a string, return that
5659string. Otherwise, return @code{None}. This is called by
5660@value{GDBN} during the type-printing process (@pxref{Type Printing
5661API}).
5662
5663@item register_type_printer (locus, printer)
697aa1b7
EZ
5664This is a convenience function to register a type printer
5665@var{printer}. The printer must implement the type printer protocol.
5666The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5667the printer is registered with that objfile; a @code{gdb.Progspace},
5668in which case the printer is registered with that progspace; or
5669@code{None}, in which case the printer is registered globally.
329baa95
DE
5670
5671@item TypePrinter
5672This is a base class that implements the type printer protocol. Type
5673printers are encouraged, but not required, to derive from this class.
5674It defines a constructor:
5675
5676@defmethod TypePrinter __init__ (self, name)
5677Initialize the type printer with the given name. The new printer
5678starts in the enabled state.
5679@end defmethod
5680
5681@end table
5682
5683@node gdb.prompt
5684@subsubsection gdb.prompt
5685@cindex gdb.prompt
5686
5687This module provides a method for prompt value-substitution.
5688
5689@table @code
5690@item substitute_prompt (@var{string})
5691Return @var{string} with escape sequences substituted by values. Some
5692escape sequences take arguments. You can specify arguments inside
5693``@{@}'' immediately following the escape sequence.
5694
5695The escape sequences you can pass to this function are:
5696
5697@table @code
5698@item \\
5699Substitute a backslash.
5700@item \e
5701Substitute an ESC character.
5702@item \f
5703Substitute the selected frame; an argument names a frame parameter.
5704@item \n
5705Substitute a newline.
5706@item \p
5707Substitute a parameter's value; the argument names the parameter.
5708@item \r
5709Substitute a carriage return.
5710@item \t
5711Substitute the selected thread; an argument names a thread parameter.
5712@item \v
5713Substitute the version of GDB.
5714@item \w
5715Substitute the current working directory.
5716@item \[
5717Begin a sequence of non-printing characters. These sequences are
5718typically used with the ESC character, and are not counted in the string
5719length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5720blue-colored ``(gdb)'' prompt where the length is five.
5721@item \]
5722End a sequence of non-printing characters.
5723@end table
5724
5725For example:
5726
5727@smallexample
5728substitute_prompt (``frame: \f,
5729 print arguments: \p@{print frame-arguments@}'')
5730@end smallexample
5731
5732@exdent will return the string:
5733
5734@smallexample
5735"frame: main, print arguments: scalars"
5736@end smallexample
5737@end table
This page took 0.658125 seconds and 4 git commands to generate.