Add completion for Ada catch commands
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
42a4f53d 1@c Copyright (C) 2008-2019 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
05c6bdc1
TT
21@value{GDBN} can be built against either Python 2 or Python 3; which
22one you have depends on this configure-time option.
329baa95
DE
23
24@cindex python directory
25Python scripts used by @value{GDBN} should be installed in
26@file{@var{data-directory}/python}, where @var{data-directory} is
27the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
28This directory, known as the @dfn{python directory},
29is automatically added to the Python Search Path in order to allow
30the Python interpreter to locate all scripts installed at this location.
31
32Additionally, @value{GDBN} commands and convenience functions which
33are written in Python and are located in the
34@file{@var{data-directory}/python/gdb/command} or
35@file{@var{data-directory}/python/gdb/function} directories are
36automatically imported when @value{GDBN} starts.
37
38@menu
39* Python Commands:: Accessing Python from @value{GDBN}.
40* Python API:: Accessing @value{GDBN} from Python.
41* Python Auto-loading:: Automatically loading Python code.
42* Python modules:: Python modules provided by @value{GDBN}.
43@end menu
44
45@node Python Commands
46@subsection Python Commands
47@cindex python commands
48@cindex commands to access python
49
50@value{GDBN} provides two commands for accessing the Python interpreter,
51and one related setting:
52
53@table @code
54@kindex python-interactive
55@kindex pi
56@item python-interactive @r{[}@var{command}@r{]}
57@itemx pi @r{[}@var{command}@r{]}
58Without an argument, the @code{python-interactive} command can be used
59to start an interactive Python prompt. To return to @value{GDBN},
60type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
61
62Alternatively, a single-line Python command can be given as an
63argument and evaluated. If the command is an expression, the result
64will be printed; otherwise, nothing will be printed. For example:
65
66@smallexample
67(@value{GDBP}) python-interactive 2 + 3
685
69@end smallexample
70
71@kindex python
72@kindex py
73@item python @r{[}@var{command}@r{]}
74@itemx py @r{[}@var{command}@r{]}
75The @code{python} command can be used to evaluate Python code.
76
77If given an argument, the @code{python} command will evaluate the
78argument as a Python command. For example:
79
80@smallexample
81(@value{GDBP}) python print 23
8223
83@end smallexample
84
85If you do not provide an argument to @code{python}, it will act as a
86multi-line command, like @code{define}. In this case, the Python
87script is made up of subsequent command lines, given after the
88@code{python} command. This command list is terminated using a line
89containing @code{end}. For example:
90
91@smallexample
92(@value{GDBP}) python
93Type python script
94End with a line saying just "end".
95>print 23
96>end
9723
98@end smallexample
99
100@kindex set python print-stack
101@item set python print-stack
102By default, @value{GDBN} will print only the message component of a
103Python exception when an error occurs in a Python script. This can be
104controlled using @code{set python print-stack}: if @code{full}, then
105full Python stack printing is enabled; if @code{none}, then Python stack
106and message printing is disabled; if @code{message}, the default, only
107the message component of the error is printed.
108@end table
109
110It is also possible to execute a Python script from the @value{GDBN}
111interpreter:
112
113@table @code
114@item source @file{script-name}
115The script name must end with @samp{.py} and @value{GDBN} must be configured
116to recognize the script language based on filename extension using
117the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
329baa95
DE
118@end table
119
120@node Python API
121@subsection Python API
122@cindex python api
123@cindex programming in python
124
125You can get quick online help for @value{GDBN}'s Python API by issuing
126the command @w{@kbd{python help (gdb)}}.
127
128Functions and methods which have two or more optional arguments allow
129them to be specified using keyword syntax. This allows passing some
130optional arguments while skipping others. Example:
131@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
132
133@menu
134* Basic Python:: Basic Python Functions.
135* Exception Handling:: How Python exceptions are translated.
136* Values From Inferior:: Python representation of values.
137* Types In Python:: Python representation of types.
138* Pretty Printing API:: Pretty-printing values.
139* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
140* Writing a Pretty-Printer:: Writing a Pretty-Printer.
141* Type Printing API:: Pretty-printing types.
142* Frame Filter API:: Filtering Frames.
143* Frame Decorator API:: Decorating Frames.
144* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 145* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
146* Xmethods In Python:: Adding and replacing methods of C++ classes.
147* Xmethod API:: Xmethod types.
148* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
149* Inferiors In Python:: Python representation of inferiors (processes)
150* Events In Python:: Listening for events from @value{GDBN}.
151* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 152* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
153* Commands In Python:: Implementing new commands in Python.
154* Parameters In Python:: Adding new @value{GDBN} parameters.
155* Functions In Python:: Writing new convenience functions.
156* Progspaces In Python:: Program spaces.
157* Objfiles In Python:: Object files.
158* Frames In Python:: Accessing inferior stack frames from Python.
159* Blocks In Python:: Accessing blocks from Python.
160* Symbols In Python:: Python representation of symbols.
161* Symbol Tables In Python:: Python representation of symbol tables.
162* Line Tables In Python:: Python representation of line tables.
163* Breakpoints In Python:: Manipulating breakpoints using Python.
164* Finish Breakpoints in Python:: Setting Breakpoints on function return
165 using Python.
166* Lazy Strings In Python:: Python representation of lazy strings.
167* Architectures In Python:: Python representation of architectures.
168@end menu
169
170@node Basic Python
171@subsubsection Basic Python
172
173@cindex python stdout
174@cindex python pagination
175At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
176@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
177A Python program which outputs to one of these streams may have its
178output interrupted by the user (@pxref{Screen Size}). In this
179situation, a Python @code{KeyboardInterrupt} exception is thrown.
180
181Some care must be taken when writing Python code to run in
182@value{GDBN}. Two things worth noting in particular:
183
184@itemize @bullet
185@item
186@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
187Python code must not override these, or even change the options using
188@code{sigaction}. If your program changes the handling of these
189signals, @value{GDBN} will most likely stop working correctly. Note
190that it is unfortunately common for GUI toolkits to install a
191@code{SIGCHLD} handler.
192
193@item
194@value{GDBN} takes care to mark its internal file descriptors as
195close-on-exec. However, this cannot be done in a thread-safe way on
196all platforms. Your Python programs should be aware of this and
197should both create new file descriptors with the close-on-exec flag
198set and arrange to close unneeded file descriptors before starting a
199child process.
200@end itemize
201
202@cindex python functions
203@cindex python module
204@cindex gdb module
205@value{GDBN} introduces a new Python module, named @code{gdb}. All
206methods and classes added by @value{GDBN} are placed in this module.
207@value{GDBN} automatically @code{import}s the @code{gdb} module for
208use in all scripts evaluated by the @code{python} command.
209
1256af7d
SM
210Some types of the @code{gdb} module come with a textual representation
211(accessible through the @code{repr} or @code{str} functions). These are
212offered for debugging purposes only, expect them to change over time.
213
329baa95
DE
214@findex gdb.PYTHONDIR
215@defvar gdb.PYTHONDIR
216A string containing the python directory (@pxref{Python}).
217@end defvar
218
219@findex gdb.execute
220@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
221Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
222If a GDB exception happens while @var{command} runs, it is
223translated as described in @ref{Exception Handling,,Exception Handling}.
224
697aa1b7 225The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
226command as having originated from the user invoking it interactively.
227It must be a boolean value. If omitted, it defaults to @code{False}.
228
229By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
230@value{GDBN}'s standard output (and to the log output if logging is
231turned on). If the @var{to_string} parameter is
329baa95
DE
232@code{True}, then output will be collected by @code{gdb.execute} and
233returned as a string. The default is @code{False}, in which case the
234return value is @code{None}. If @var{to_string} is @code{True}, the
235@value{GDBN} virtual terminal will be temporarily set to unlimited width
236and height, and its pagination will be disabled; @pxref{Screen Size}.
237@end defun
238
239@findex gdb.breakpoints
240@defun gdb.breakpoints ()
241Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
242@xref{Breakpoints In Python}, for more information. In @value{GDBN}
243version 7.11 and earlier, this function returned @code{None} if there
244were no breakpoints. This peculiarity was subsequently fixed, and now
245@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
246@end defun
247
d8ae99a7
PM
248@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
249Return a Python list holding a collection of newly set
250@code{gdb.Breakpoint} objects matching function names defined by the
251@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
252system functions (those not explicitly defined in the inferior) will
253also be included in the match. The @var{throttle} keyword takes an
254integer that defines the maximum number of pattern matches for
255functions matched by the @var{regex} pattern. If the number of
256matches exceeds the integer value of @var{throttle}, a
257@code{RuntimeError} will be raised and no breakpoints will be created.
258If @var{throttle} is not defined then there is no imposed limit on the
259maximum number of matches and breakpoints to be created. The
260@var{symtabs} keyword takes a Python iterable that yields a collection
261of @code{gdb.Symtab} objects and will restrict the search to those
262functions only contained within the @code{gdb.Symtab} objects.
263@end defun
264
329baa95
DE
265@findex gdb.parameter
266@defun gdb.parameter (parameter)
697aa1b7
EZ
267Return the value of a @value{GDBN} @var{parameter} given by its name,
268a string; the parameter name string may contain spaces if the parameter has a
269multi-part name. For example, @samp{print object} is a valid
270parameter name.
329baa95
DE
271
272If the named parameter does not exist, this function throws a
273@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
274parameter's value is converted to a Python value of the appropriate
275type, and returned.
276@end defun
277
278@findex gdb.history
279@defun gdb.history (number)
280Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 281History}). The @var{number} argument indicates which history element to return.
329baa95
DE
282If @var{number} is negative, then @value{GDBN} will take its absolute value
283and count backward from the last element (i.e., the most recent element) to
284find the value to return. If @var{number} is zero, then @value{GDBN} will
285return the most recent element. If the element specified by @var{number}
286doesn't exist in the value history, a @code{gdb.error} exception will be
287raised.
288
289If no exception is raised, the return value is always an instance of
290@code{gdb.Value} (@pxref{Values From Inferior}).
291@end defun
292
7729052b
TT
293@findex gdb.convenience_variable
294@defun gdb.convenience_variable (name)
295Return the value of the convenience variable (@pxref{Convenience
296Vars}) named @var{name}. @var{name} must be a string. The name
297should not include the @samp{$} that is used to mark a convenience
298variable in an expression. If the convenience variable does not
299exist, then @code{None} is returned.
300@end defun
301
302@findex gdb.set_convenience_variable
303@defun gdb.set_convenience_variable (name, value)
304Set the value of the convenience variable (@pxref{Convenience Vars})
305named @var{name}. @var{name} must be a string. The name should not
306include the @samp{$} that is used to mark a convenience variable in an
307expression. If @var{value} is @code{None}, then the convenience
308variable is removed. Otherwise, if @var{value} is not a
309@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
310using the @code{gdb.Value} constructor.
311@end defun
312
329baa95
DE
313@findex gdb.parse_and_eval
314@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
315Parse @var{expression}, which must be a string, as an expression in
316the current language, evaluate it, and return the result as a
317@code{gdb.Value}.
329baa95
DE
318
319This function can be useful when implementing a new command
320(@pxref{Commands In Python}), as it provides a way to parse the
321command's argument as an expression. It is also useful simply to
7729052b 322compute values.
329baa95
DE
323@end defun
324
325@findex gdb.find_pc_line
326@defun gdb.find_pc_line (pc)
327Return the @code{gdb.Symtab_and_line} object corresponding to the
328@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
329value of @var{pc} is passed as an argument, then the @code{symtab} and
330@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
8743a9cd
TT
331will be @code{None} and 0 respectively. This is identical to
332@code{gdb.current_progspace().find_pc_line(pc)} and is included for
333historical compatibility.
329baa95
DE
334@end defun
335
336@findex gdb.post_event
337@defun gdb.post_event (event)
338Put @var{event}, a callable object taking no arguments, into
339@value{GDBN}'s internal event queue. This callable will be invoked at
340some later point, during @value{GDBN}'s event processing. Events
341posted using @code{post_event} will be run in the order in which they
342were posted; however, there is no way to know when they will be
343processed relative to other events inside @value{GDBN}.
344
345@value{GDBN} is not thread-safe. If your Python program uses multiple
346threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 347functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
348this. For example:
349
350@smallexample
351(@value{GDBP}) python
352>import threading
353>
354>class Writer():
355> def __init__(self, message):
356> self.message = message;
357> def __call__(self):
358> gdb.write(self.message)
359>
360>class MyThread1 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("Hello "))
363>
364>class MyThread2 (threading.Thread):
365> def run (self):
366> gdb.post_event(Writer("World\n"))
367>
368>MyThread1().start()
369>MyThread2().start()
370>end
371(@value{GDBP}) Hello World
372@end smallexample
373@end defun
374
375@findex gdb.write
376@defun gdb.write (string @r{[}, stream{]})
377Print a string to @value{GDBN}'s paginated output stream. The
378optional @var{stream} determines the stream to print to. The default
379stream is @value{GDBN}'s standard output stream. Possible stream
380values are:
381
382@table @code
383@findex STDOUT
384@findex gdb.STDOUT
385@item gdb.STDOUT
386@value{GDBN}'s standard output stream.
387
388@findex STDERR
389@findex gdb.STDERR
390@item gdb.STDERR
391@value{GDBN}'s standard error stream.
392
393@findex STDLOG
394@findex gdb.STDLOG
395@item gdb.STDLOG
396@value{GDBN}'s log stream (@pxref{Logging Output}).
397@end table
398
399Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
400call this function and will automatically direct the output to the
401relevant stream.
402@end defun
403
404@findex gdb.flush
405@defun gdb.flush ()
406Flush the buffer of a @value{GDBN} paginated stream so that the
407contents are displayed immediately. @value{GDBN} will flush the
408contents of a stream automatically when it encounters a newline in the
409buffer. The optional @var{stream} determines the stream to flush. The
410default stream is @value{GDBN}'s standard output stream. Possible
411stream values are:
412
413@table @code
414@findex STDOUT
415@findex gdb.STDOUT
416@item gdb.STDOUT
417@value{GDBN}'s standard output stream.
418
419@findex STDERR
420@findex gdb.STDERR
421@item gdb.STDERR
422@value{GDBN}'s standard error stream.
423
424@findex STDLOG
425@findex gdb.STDLOG
426@item gdb.STDLOG
427@value{GDBN}'s log stream (@pxref{Logging Output}).
428
429@end table
430
431Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
432call this function for the relevant stream.
433@end defun
434
435@findex gdb.target_charset
436@defun gdb.target_charset ()
437Return the name of the current target character set (@pxref{Character
438Sets}). This differs from @code{gdb.parameter('target-charset')} in
439that @samp{auto} is never returned.
440@end defun
441
442@findex gdb.target_wide_charset
443@defun gdb.target_wide_charset ()
444Return the name of the current target wide character set
445(@pxref{Character Sets}). This differs from
446@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
447never returned.
448@end defun
449
450@findex gdb.solib_name
451@defun gdb.solib_name (address)
452Return the name of the shared library holding the given @var{address}
8743a9cd
TT
453as a string, or @code{None}. This is identical to
454@code{gdb.current_progspace().solib_name(address)} and is included for
455historical compatibility.
329baa95
DE
456@end defun
457
458@findex gdb.decode_line
0d2a5839 459@defun gdb.decode_line (@r{[}expression@r{]})
329baa95
DE
460Return locations of the line specified by @var{expression}, or of the
461current line if no argument was given. This function returns a Python
462tuple containing two elements. The first element contains a string
463holding any unparsed section of @var{expression} (or @code{None} if
464the expression has been fully parsed). The second element contains
465either @code{None} or another tuple that contains all the locations
466that match the expression represented as @code{gdb.Symtab_and_line}
467objects (@pxref{Symbol Tables In Python}). If @var{expression} is
468provided, it is decoded the way that @value{GDBN}'s inbuilt
469@code{break} or @code{edit} commands do (@pxref{Specify Location}).
470@end defun
471
472@defun gdb.prompt_hook (current_prompt)
473@anchor{prompt_hook}
474
475If @var{prompt_hook} is callable, @value{GDBN} will call the method
476assigned to this operation before a prompt is displayed by
477@value{GDBN}.
478
479The parameter @code{current_prompt} contains the current @value{GDBN}
480prompt. This method must return a Python string, or @code{None}. If
481a string is returned, the @value{GDBN} prompt will be set to that
482string. If @code{None} is returned, @value{GDBN} will continue to use
483the current prompt.
484
485Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
486such as those used by readline for command input, and annotation
487related prompts are prohibited from being changed.
488@end defun
489
490@node Exception Handling
491@subsubsection Exception Handling
492@cindex python exceptions
493@cindex exceptions, python
494
495When executing the @code{python} command, Python exceptions
496uncaught within the Python code are translated to calls to
497@value{GDBN} error-reporting mechanism. If the command that called
498@code{python} does not handle the error, @value{GDBN} will
499terminate it and print an error message containing the Python
500exception name, the associated value, and the Python call stack
501backtrace at the point where the exception was raised. Example:
502
503@smallexample
504(@value{GDBP}) python print foo
505Traceback (most recent call last):
506 File "<string>", line 1, in <module>
507NameError: name 'foo' is not defined
508@end smallexample
509
510@value{GDBN} errors that happen in @value{GDBN} commands invoked by
511Python code are converted to Python exceptions. The type of the
512Python exception depends on the error.
513
514@ftable @code
515@item gdb.error
516This is the base class for most exceptions generated by @value{GDBN}.
517It is derived from @code{RuntimeError}, for compatibility with earlier
518versions of @value{GDBN}.
519
520If an error occurring in @value{GDBN} does not fit into some more
521specific category, then the generated exception will have this type.
522
523@item gdb.MemoryError
524This is a subclass of @code{gdb.error} which is thrown when an
525operation tried to access invalid memory in the inferior.
526
527@item KeyboardInterrupt
528User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
529prompt) is translated to a Python @code{KeyboardInterrupt} exception.
530@end ftable
531
532In all cases, your exception handler will see the @value{GDBN} error
533message as its value and the Python call stack backtrace at the Python
534statement closest to where the @value{GDBN} error occured as the
535traceback.
536
4a5a194a
TT
537
538When implementing @value{GDBN} commands in Python via
539@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
540to be able to throw an exception that doesn't cause a traceback to be
541printed. For example, the user may have invoked the command
542incorrectly. @value{GDBN} provides a special exception class that can
543be used for this purpose.
544
545@ftable @code
546@item gdb.GdbError
547When thrown from a command or function, this exception will cause the
548command or function to fail, but the Python stack will not be
549displayed. @value{GDBN} does not throw this exception itself, but
550rather recognizes it when thrown from user Python code. Example:
329baa95
DE
551
552@smallexample
553(gdb) python
554>class HelloWorld (gdb.Command):
555> """Greet the whole world."""
556> def __init__ (self):
557> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
558> def invoke (self, args, from_tty):
559> argv = gdb.string_to_argv (args)
560> if len (argv) != 0:
561> raise gdb.GdbError ("hello-world takes no arguments")
562> print "Hello, World!"
563>HelloWorld ()
564>end
565(gdb) hello-world 42
566hello-world takes no arguments
567@end smallexample
4a5a194a 568@end ftable
329baa95
DE
569
570@node Values From Inferior
571@subsubsection Values From Inferior
572@cindex values from inferior, with Python
573@cindex python, working with values from inferior
574
575@cindex @code{gdb.Value}
576@value{GDBN} provides values it obtains from the inferior program in
577an object of type @code{gdb.Value}. @value{GDBN} uses this object
578for its internal bookkeeping of the inferior's values, and for
579fetching values when necessary.
580
581Inferior values that are simple scalars can be used directly in
582Python expressions that are valid for the value's data type. Here's
583an example for an integer or floating-point value @code{some_val}:
584
585@smallexample
586bar = some_val + 2
587@end smallexample
588
589@noindent
590As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
591whose values are of the same type as those of @code{some_val}. Valid
592Python operations can also be performed on @code{gdb.Value} objects
593representing a @code{struct} or @code{class} object. For such cases,
594the overloaded operator (if present), is used to perform the operation.
595For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
596representing instances of a @code{class} which overloads the @code{+}
597operator, then one can use the @code{+} operator in their Python script
598as follows:
599
600@smallexample
601val3 = val1 + val2
602@end smallexample
603
604@noindent
605The result of the operation @code{val3} is also a @code{gdb.Value}
606object corresponding to the value returned by the overloaded @code{+}
607operator. In general, overloaded operators are invoked for the
608following operations: @code{+} (binary addition), @code{-} (binary
609subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
610@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
611
612Inferior values that are structures or instances of some class can
613be accessed using the Python @dfn{dictionary syntax}. For example, if
614@code{some_val} is a @code{gdb.Value} instance holding a structure, you
615can access its @code{foo} element with:
616
617@smallexample
618bar = some_val['foo']
619@end smallexample
620
621@cindex getting structure elements using gdb.Field objects as subscripts
622Again, @code{bar} will also be a @code{gdb.Value} object. Structure
623elements can also be accessed by using @code{gdb.Field} objects as
624subscripts (@pxref{Types In Python}, for more information on
625@code{gdb.Field} objects). For example, if @code{foo_field} is a
626@code{gdb.Field} object corresponding to element @code{foo} of the above
627structure, then @code{bar} can also be accessed as follows:
628
629@smallexample
630bar = some_val[foo_field]
631@end smallexample
632
633A @code{gdb.Value} that represents a function can be executed via
634inferior function call. Any arguments provided to the call must match
635the function's prototype, and must be provided in the order specified
636by that prototype.
637
638For example, @code{some_val} is a @code{gdb.Value} instance
639representing a function that takes two integers as arguments. To
640execute this function, call it like so:
641
642@smallexample
643result = some_val (10,20)
644@end smallexample
645
646Any values returned from a function call will be stored as a
647@code{gdb.Value}.
648
649The following attributes are provided:
650
651@defvar Value.address
652If this object is addressable, this read-only attribute holds a
653@code{gdb.Value} object representing the address. Otherwise,
654this attribute holds @code{None}.
655@end defvar
656
657@cindex optimized out value in Python
658@defvar Value.is_optimized_out
659This read-only boolean attribute is true if the compiler optimized out
660this value, thus it is not available for fetching from the inferior.
661@end defvar
662
663@defvar Value.type
664The type of this @code{gdb.Value}. The value of this attribute is a
665@code{gdb.Type} object (@pxref{Types In Python}).
666@end defvar
667
668@defvar Value.dynamic_type
9da10427
TT
669The dynamic type of this @code{gdb.Value}. This uses the object's
670virtual table and the C@t{++} run-time type information
671(@acronym{RTTI}) to determine the dynamic type of the value. If this
672value is of class type, it will return the class in which the value is
673embedded, if any. If this value is of pointer or reference to a class
674type, it will compute the dynamic type of the referenced object, and
675return a pointer or reference to that type, respectively. In all
676other cases, it will return the value's static type.
329baa95
DE
677
678Note that this feature will only work when debugging a C@t{++} program
679that includes @acronym{RTTI} for the object in question. Otherwise,
680it will just return the static type of the value as in @kbd{ptype foo}
681(@pxref{Symbols, ptype}).
682@end defvar
683
684@defvar Value.is_lazy
685The value of this read-only boolean attribute is @code{True} if this
686@code{gdb.Value} has not yet been fetched from the inferior.
687@value{GDBN} does not fetch values until necessary, for efficiency.
688For example:
689
690@smallexample
691myval = gdb.parse_and_eval ('somevar')
692@end smallexample
693
694The value of @code{somevar} is not fetched at this time. It will be
695fetched when the value is needed, or when the @code{fetch_lazy}
696method is invoked.
697@end defvar
698
699The following methods are provided:
700
701@defun Value.__init__ (@var{val})
702Many Python values can be converted directly to a @code{gdb.Value} via
703this object initializer. Specifically:
704
705@table @asis
706@item Python boolean
707A Python boolean is converted to the boolean type from the current
708language.
709
710@item Python integer
711A Python integer is converted to the C @code{long} type for the
712current architecture.
713
714@item Python long
715A Python long is converted to the C @code{long long} type for the
716current architecture.
717
718@item Python float
719A Python float is converted to the C @code{double} type for the
720current architecture.
721
722@item Python string
b3ce5e5f
DE
723A Python string is converted to a target string in the current target
724language using the current target encoding.
725If a character cannot be represented in the current target encoding,
726then an exception is thrown.
329baa95
DE
727
728@item @code{gdb.Value}
729If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
730
731@item @code{gdb.LazyString}
732If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
733Python}), then the lazy string's @code{value} method is called, and
734its result is used.
735@end table
736@end defun
737
ff6c8b35 738@defun Value.__init__ (@var{val}, @var{type})
af54ade9
KB
739This second form of the @code{gdb.Value} constructor returns a
740@code{gdb.Value} of type @var{type} where the value contents are taken
741from the Python buffer object specified by @var{val}. The number of
742bytes in the Python buffer object must be greater than or equal to the
743size of @var{type}.
744@end defun
745
329baa95
DE
746@defun Value.cast (type)
747Return a new instance of @code{gdb.Value} that is the result of
748casting this instance to the type described by @var{type}, which must
749be a @code{gdb.Type} object. If the cast cannot be performed for some
750reason, this method throws an exception.
751@end defun
752
753@defun Value.dereference ()
754For pointer data types, this method returns a new @code{gdb.Value} object
755whose contents is the object pointed to by the pointer. For example, if
756@code{foo} is a C pointer to an @code{int}, declared in your C program as
757
758@smallexample
759int *foo;
760@end smallexample
761
762@noindent
763then you can use the corresponding @code{gdb.Value} to access what
764@code{foo} points to like this:
765
766@smallexample
767bar = foo.dereference ()
768@end smallexample
769
770The result @code{bar} will be a @code{gdb.Value} object holding the
771value pointed to by @code{foo}.
772
773A similar function @code{Value.referenced_value} exists which also
774returns @code{gdb.Value} objects corresonding to the values pointed to
775by pointer values (and additionally, values referenced by reference
776values). However, the behavior of @code{Value.dereference}
777differs from @code{Value.referenced_value} by the fact that the
778behavior of @code{Value.dereference} is identical to applying the C
779unary operator @code{*} on a given value. For example, consider a
780reference to a pointer @code{ptrref}, declared in your C@t{++} program
781as
782
783@smallexample
784typedef int *intptr;
785...
786int val = 10;
787intptr ptr = &val;
788intptr &ptrref = ptr;
789@end smallexample
790
791Though @code{ptrref} is a reference value, one can apply the method
792@code{Value.dereference} to the @code{gdb.Value} object corresponding
793to it and obtain a @code{gdb.Value} which is identical to that
794corresponding to @code{val}. However, if you apply the method
795@code{Value.referenced_value}, the result would be a @code{gdb.Value}
796object identical to that corresponding to @code{ptr}.
797
798@smallexample
799py_ptrref = gdb.parse_and_eval ("ptrref")
800py_val = py_ptrref.dereference ()
801py_ptr = py_ptrref.referenced_value ()
802@end smallexample
803
804The @code{gdb.Value} object @code{py_val} is identical to that
805corresponding to @code{val}, and @code{py_ptr} is identical to that
806corresponding to @code{ptr}. In general, @code{Value.dereference} can
807be applied whenever the C unary operator @code{*} can be applied
808to the corresponding C value. For those cases where applying both
809@code{Value.dereference} and @code{Value.referenced_value} is allowed,
810the results obtained need not be identical (as we have seen in the above
811example). The results are however identical when applied on
812@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
813objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
814@end defun
815
816@defun Value.referenced_value ()
817For pointer or reference data types, this method returns a new
818@code{gdb.Value} object corresponding to the value referenced by the
819pointer/reference value. For pointer data types,
820@code{Value.dereference} and @code{Value.referenced_value} produce
821identical results. The difference between these methods is that
822@code{Value.dereference} cannot get the values referenced by reference
823values. For example, consider a reference to an @code{int}, declared
824in your C@t{++} program as
825
826@smallexample
827int val = 10;
828int &ref = val;
829@end smallexample
830
831@noindent
832then applying @code{Value.dereference} to the @code{gdb.Value} object
833corresponding to @code{ref} will result in an error, while applying
834@code{Value.referenced_value} will result in a @code{gdb.Value} object
835identical to that corresponding to @code{val}.
836
837@smallexample
838py_ref = gdb.parse_and_eval ("ref")
839er_ref = py_ref.dereference () # Results in error
840py_val = py_ref.referenced_value () # Returns the referenced value
841@end smallexample
842
843The @code{gdb.Value} object @code{py_val} is identical to that
844corresponding to @code{val}.
845@end defun
846
4c082a81
SC
847@defun Value.reference_value ()
848Return a @code{gdb.Value} object which is a reference to the value
849encapsulated by this instance.
850@end defun
851
852@defun Value.const_value ()
853Return a @code{gdb.Value} object which is a @code{const} version of the
854value encapsulated by this instance.
855@end defun
856
329baa95
DE
857@defun Value.dynamic_cast (type)
858Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
859operator were used. Consult a C@t{++} reference for details.
860@end defun
861
862@defun Value.reinterpret_cast (type)
863Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
864operator were used. Consult a C@t{++} reference for details.
865@end defun
866
52093e1b
MB
867@defun Value.format_string (...)
868Convert a @code{gdb.Value} to a string, similarly to what the @code{print}
869command does. Invoked with no arguments, this is equivalent to calling
870the @code{str} function on the @code{gdb.Value}. The representation of
871the same value may change across different versions of @value{GDBN}, so
872you shouldn't, for instance, parse the strings returned by this method.
873
874All the arguments are keyword only. If an argument is not specified, the
875current global default setting is used.
876
877@table @code
878@item raw
879@code{True} if pretty-printers (@pxref{Pretty Printing}) should not be
880used to format the value. @code{False} if enabled pretty-printers
881matching the type represented by the @code{gdb.Value} should be used to
882format it.
883
884@item pretty_arrays
885@code{True} if arrays should be pretty printed to be more convenient to
886read, @code{False} if they shouldn't (see @code{set print array} in
887@ref{Print Settings}).
888
889@item pretty_structs
890@code{True} if structs should be pretty printed to be more convenient to
891read, @code{False} if they shouldn't (see @code{set print pretty} in
892@ref{Print Settings}).
893
894@item array_indexes
895@code{True} if array indexes should be included in the string
896representation of arrays, @code{False} if they shouldn't (see @code{set
897print array-indexes} in @ref{Print Settings}).
898
899@item symbols
900@code{True} if the string representation of a pointer should include the
901corresponding symbol name (if one exists), @code{False} if it shouldn't
902(see @code{set print symbol} in @ref{Print Settings}).
903
904@item unions
905@code{True} if unions which are contained in other structures or unions
906should be expanded, @code{False} if they shouldn't (see @code{set print
907union} in @ref{Print Settings}).
908
909@item deref_refs
910@code{True} if C@t{++} references should be resolved to the value they
911refer to, @code{False} (the default) if they shouldn't. Note that, unlike
912for the @code{print} command, references are not automatically expanded
913when using the @code{format_string} method or the @code{str}
914function. There is no global @code{print} setting to change the default
915behaviour.
916
917@item actual_objects
918@code{True} if the representation of a pointer to an object should
919identify the @emph{actual} (derived) type of the object rather than the
920@emph{declared} type, using the virtual function table. @code{False} if
921the @emph{declared} type should be used. (See @code{set print object} in
922@ref{Print Settings}).
923
924@item static_fields
925@code{True} if static members should be included in the string
926representation of a C@t{++} object, @code{False} if they shouldn't (see
927@code{set print static-members} in @ref{Print Settings}).
928
929@item max_elements
930Number of array elements to print, or @code{0} to print an unlimited
931number of elements (see @code{set print elements} in @ref{Print
932Settings}).
933
2e62ab40
AB
934@item max_depth
935The maximum depth to print for nested structs and unions, or @code{-1}
936to print an unlimited number of elements (see @code{set print
937max-depth} in @ref{Print Settings}).
938
52093e1b
MB
939@item repeat_threshold
940Set the threshold for suppressing display of repeated array elements, or
941@code{0} to represent all elements, even if repeated. (See @code{set
942print repeats} in @ref{Print Settings}).
943
944@item format
945A string containing a single character representing the format to use for
946the returned string. For instance, @code{'x'} is equivalent to using the
947@value{GDBN} command @code{print} with the @code{/x} option and formats
948the value as a hexadecimal number.
949@end table
950@end defun
951
329baa95
DE
952@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
953If this @code{gdb.Value} represents a string, then this method
954converts the contents to a Python string. Otherwise, this method will
955throw an exception.
956
b3ce5e5f
DE
957Values are interpreted as strings according to the rules of the
958current language. If the optional length argument is given, the
959string will be converted to that length, and will include any embedded
960zeroes that the string may contain. Otherwise, for languages
961where the string is zero-terminated, the entire string will be
962converted.
329baa95 963
b3ce5e5f
DE
964For example, in C-like languages, a value is a string if it is a pointer
965to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
966or @code{char32_t}.
329baa95
DE
967
968If the optional @var{encoding} argument is given, it must be a string
969naming the encoding of the string in the @code{gdb.Value}, such as
970@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
971the same encodings as the corresponding argument to Python's
972@code{string.decode} method, and the Python codec machinery will be used
973to convert the string. If @var{encoding} is not given, or if
974@var{encoding} is the empty string, then either the @code{target-charset}
975(@pxref{Character Sets}) will be used, or a language-specific encoding
976will be used, if the current language is able to supply one.
977
978The optional @var{errors} argument is the same as the corresponding
979argument to Python's @code{string.decode} method.
980
981If the optional @var{length} argument is given, the string will be
982fetched and converted to the given length.
983@end defun
984
985@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
986If this @code{gdb.Value} represents a string, then this method
987converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
988In Python}). Otherwise, this method will throw an exception.
989
990If the optional @var{encoding} argument is given, it must be a string
991naming the encoding of the @code{gdb.LazyString}. Some examples are:
992@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
993@var{encoding} argument is an encoding that @value{GDBN} does
994recognize, @value{GDBN} will raise an error.
995
996When a lazy string is printed, the @value{GDBN} encoding machinery is
997used to convert the string during printing. If the optional
998@var{encoding} argument is not provided, or is an empty string,
999@value{GDBN} will automatically select the encoding most suitable for
1000the string type. For further information on encoding in @value{GDBN}
1001please see @ref{Character Sets}.
1002
1003If the optional @var{length} argument is given, the string will be
1004fetched and encoded to the length of characters specified. If
1005the @var{length} argument is not provided, the string will be fetched
1006and encoded until a null of appropriate width is found.
1007@end defun
1008
1009@defun Value.fetch_lazy ()
1010If the @code{gdb.Value} object is currently a lazy value
1011(@code{gdb.Value.is_lazy} is @code{True}), then the value is
1012fetched from the inferior. Any errors that occur in the process
1013will produce a Python exception.
1014
1015If the @code{gdb.Value} object is not a lazy value, this method
1016has no effect.
1017
1018This method does not return a value.
1019@end defun
1020
1021
1022@node Types In Python
1023@subsubsection Types In Python
1024@cindex types in Python
1025@cindex Python, working with types
1026
1027@tindex gdb.Type
1028@value{GDBN} represents types from the inferior using the class
1029@code{gdb.Type}.
1030
1031The following type-related functions are available in the @code{gdb}
1032module:
1033
1034@findex gdb.lookup_type
1035@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 1036This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
1037
1038If @var{block} is given, then @var{name} is looked up in that scope.
1039Otherwise, it is searched for globally.
1040
1041Ordinarily, this function will return an instance of @code{gdb.Type}.
1042If the named type cannot be found, it will throw an exception.
1043@end defun
1044
1045If the type is a structure or class type, or an enum type, the fields
1046of that type can be accessed using the Python @dfn{dictionary syntax}.
1047For example, if @code{some_type} is a @code{gdb.Type} instance holding
1048a structure type, you can access its @code{foo} field with:
1049
1050@smallexample
1051bar = some_type['foo']
1052@end smallexample
1053
1054@code{bar} will be a @code{gdb.Field} object; see below under the
1055description of the @code{Type.fields} method for a description of the
1056@code{gdb.Field} class.
1057
1058An instance of @code{Type} has the following attributes:
1059
6d7bb824
TT
1060@defvar Type.alignof
1061The alignment of this type, in bytes. Type alignment comes from the
1062debugging information; if it was not specified, then @value{GDBN} will
1063use the relevant ABI to try to determine the alignment. In some
1064cases, even this is not possible, and zero will be returned.
1065@end defvar
1066
329baa95
DE
1067@defvar Type.code
1068The type code for this type. The type code will be one of the
1069@code{TYPE_CODE_} constants defined below.
1070@end defvar
1071
1072@defvar Type.name
1073The name of this type. If this type has no name, then @code{None}
1074is returned.
1075@end defvar
1076
1077@defvar Type.sizeof
1078The size of this type, in target @code{char} units. Usually, a
1079target's @code{char} type will be an 8-bit byte. However, on some
1080unusual platforms, this type may have a different size.
1081@end defvar
1082
1083@defvar Type.tag
1084The tag name for this type. The tag name is the name after
1085@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
1086languages have this concept. If this type has no tag name, then
1087@code{None} is returned.
1088@end defvar
1089
1090The following methods are provided:
1091
1092@defun Type.fields ()
1093For structure and union types, this method returns the fields. Range
1094types have two fields, the minimum and maximum values. Enum types
1095have one field per enum constant. Function and method types have one
1096field per parameter. The base types of C@t{++} classes are also
1097represented as fields. If the type has no fields, or does not fit
1098into one of these categories, an empty sequence will be returned.
1099
1100Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1101@table @code
1102@item bitpos
1103This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1104(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1105in bits, from the start of the containing type.
1106
1107@item enumval
1108This attribute is only available for @code{enum} fields, and its value
1109is the enumeration member's integer representation.
1110
1111@item name
1112The name of the field, or @code{None} for anonymous fields.
1113
1114@item artificial
1115This is @code{True} if the field is artificial, usually meaning that
1116it was provided by the compiler and not the user. This attribute is
1117always provided, and is @code{False} if the field is not artificial.
1118
1119@item is_base_class
1120This is @code{True} if the field represents a base class of a C@t{++}
1121structure. This attribute is always provided, and is @code{False}
1122if the field is not a base class of the type that is the argument of
1123@code{fields}, or if that type was not a C@t{++} class.
1124
1125@item bitsize
1126If the field is packed, or is a bitfield, then this will have a
1127non-zero value, which is the size of the field in bits. Otherwise,
1128this will be zero; in this case the field's size is given by its type.
1129
1130@item type
1131The type of the field. This is usually an instance of @code{Type},
1132but it can be @code{None} in some situations.
1133
1134@item parent_type
1135The type which contains this field. This is an instance of
1136@code{gdb.Type}.
1137@end table
1138@end defun
1139
1140@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1141Return a new @code{gdb.Type} object which represents an array of this
1142type. If one argument is given, it is the inclusive upper bound of
1143the array; in this case the lower bound is zero. If two arguments are
1144given, the first argument is the lower bound of the array, and the
1145second argument is the upper bound of the array. An array's length
1146must not be negative, but the bounds can be.
1147@end defun
1148
1149@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1150Return a new @code{gdb.Type} object which represents a vector of this
1151type. If one argument is given, it is the inclusive upper bound of
1152the vector; in this case the lower bound is zero. If two arguments are
1153given, the first argument is the lower bound of the vector, and the
1154second argument is the upper bound of the vector. A vector's length
1155must not be negative, but the bounds can be.
1156
1157The difference between an @code{array} and a @code{vector} is that
1158arrays behave like in C: when used in expressions they decay to a pointer
1159to the first element whereas vectors are treated as first class values.
1160@end defun
1161
1162@defun Type.const ()
1163Return a new @code{gdb.Type} object which represents a
1164@code{const}-qualified variant of this type.
1165@end defun
1166
1167@defun Type.volatile ()
1168Return a new @code{gdb.Type} object which represents a
1169@code{volatile}-qualified variant of this type.
1170@end defun
1171
1172@defun Type.unqualified ()
1173Return a new @code{gdb.Type} object which represents an unqualified
1174variant of this type. That is, the result is neither @code{const} nor
1175@code{volatile}.
1176@end defun
1177
1178@defun Type.range ()
1179Return a Python @code{Tuple} object that contains two elements: the
1180low bound of the argument type and the high bound of that type. If
1181the type does not have a range, @value{GDBN} will raise a
1182@code{gdb.error} exception (@pxref{Exception Handling}).
1183@end defun
1184
1185@defun Type.reference ()
1186Return a new @code{gdb.Type} object which represents a reference to this
1187type.
1188@end defun
1189
1190@defun Type.pointer ()
1191Return a new @code{gdb.Type} object which represents a pointer to this
1192type.
1193@end defun
1194
1195@defun Type.strip_typedefs ()
1196Return a new @code{gdb.Type} that represents the real type,
1197after removing all layers of typedefs.
1198@end defun
1199
1200@defun Type.target ()
1201Return a new @code{gdb.Type} object which represents the target type
1202of this type.
1203
1204For a pointer type, the target type is the type of the pointed-to
1205object. For an array type (meaning C-like arrays), the target type is
1206the type of the elements of the array. For a function or method type,
1207the target type is the type of the return value. For a complex type,
1208the target type is the type of the elements. For a typedef, the
1209target type is the aliased type.
1210
1211If the type does not have a target, this method will throw an
1212exception.
1213@end defun
1214
1215@defun Type.template_argument (n @r{[}, block@r{]})
1216If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1217return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1218value of the @var{n}th template argument (indexed starting at 0).
329baa95 1219
1a6a384b
JL
1220If this @code{gdb.Type} is not a template type, or if the type has fewer
1221than @var{n} template arguments, this will throw an exception.
1222Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1223
1224If @var{block} is given, then @var{name} is looked up in that scope.
1225Otherwise, it is searched for globally.
1226@end defun
1227
59fb7612
SS
1228@defun Type.optimized_out ()
1229Return @code{gdb.Value} instance of this type whose value is optimized
1230out. This allows a frame decorator to indicate that the value of an
1231argument or a local variable is not known.
1232@end defun
329baa95
DE
1233
1234Each type has a code, which indicates what category this type falls
1235into. The available type categories are represented by constants
1236defined in the @code{gdb} module:
1237
b3ce5e5f
DE
1238@vtable @code
1239@vindex TYPE_CODE_PTR
329baa95
DE
1240@item gdb.TYPE_CODE_PTR
1241The type is a pointer.
1242
b3ce5e5f 1243@vindex TYPE_CODE_ARRAY
329baa95
DE
1244@item gdb.TYPE_CODE_ARRAY
1245The type is an array.
1246
b3ce5e5f 1247@vindex TYPE_CODE_STRUCT
329baa95
DE
1248@item gdb.TYPE_CODE_STRUCT
1249The type is a structure.
1250
b3ce5e5f 1251@vindex TYPE_CODE_UNION
329baa95
DE
1252@item gdb.TYPE_CODE_UNION
1253The type is a union.
1254
b3ce5e5f 1255@vindex TYPE_CODE_ENUM
329baa95
DE
1256@item gdb.TYPE_CODE_ENUM
1257The type is an enum.
1258
b3ce5e5f 1259@vindex TYPE_CODE_FLAGS
329baa95
DE
1260@item gdb.TYPE_CODE_FLAGS
1261A bit flags type, used for things such as status registers.
1262
b3ce5e5f 1263@vindex TYPE_CODE_FUNC
329baa95
DE
1264@item gdb.TYPE_CODE_FUNC
1265The type is a function.
1266
b3ce5e5f 1267@vindex TYPE_CODE_INT
329baa95
DE
1268@item gdb.TYPE_CODE_INT
1269The type is an integer type.
1270
b3ce5e5f 1271@vindex TYPE_CODE_FLT
329baa95
DE
1272@item gdb.TYPE_CODE_FLT
1273A floating point type.
1274
b3ce5e5f 1275@vindex TYPE_CODE_VOID
329baa95
DE
1276@item gdb.TYPE_CODE_VOID
1277The special type @code{void}.
1278
b3ce5e5f 1279@vindex TYPE_CODE_SET
329baa95
DE
1280@item gdb.TYPE_CODE_SET
1281A Pascal set type.
1282
b3ce5e5f 1283@vindex TYPE_CODE_RANGE
329baa95
DE
1284@item gdb.TYPE_CODE_RANGE
1285A range type, that is, an integer type with bounds.
1286
b3ce5e5f 1287@vindex TYPE_CODE_STRING
329baa95
DE
1288@item gdb.TYPE_CODE_STRING
1289A string type. Note that this is only used for certain languages with
1290language-defined string types; C strings are not represented this way.
1291
b3ce5e5f 1292@vindex TYPE_CODE_BITSTRING
329baa95
DE
1293@item gdb.TYPE_CODE_BITSTRING
1294A string of bits. It is deprecated.
1295
b3ce5e5f 1296@vindex TYPE_CODE_ERROR
329baa95
DE
1297@item gdb.TYPE_CODE_ERROR
1298An unknown or erroneous type.
1299
b3ce5e5f 1300@vindex TYPE_CODE_METHOD
329baa95 1301@item gdb.TYPE_CODE_METHOD
9c37b5ae 1302A method type, as found in C@t{++}.
329baa95 1303
b3ce5e5f 1304@vindex TYPE_CODE_METHODPTR
329baa95
DE
1305@item gdb.TYPE_CODE_METHODPTR
1306A pointer-to-member-function.
1307
b3ce5e5f 1308@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1309@item gdb.TYPE_CODE_MEMBERPTR
1310A pointer-to-member.
1311
b3ce5e5f 1312@vindex TYPE_CODE_REF
329baa95
DE
1313@item gdb.TYPE_CODE_REF
1314A reference type.
1315
3fcf899d
AV
1316@vindex TYPE_CODE_RVALUE_REF
1317@item gdb.TYPE_CODE_RVALUE_REF
1318A C@t{++}11 rvalue reference type.
1319
b3ce5e5f 1320@vindex TYPE_CODE_CHAR
329baa95
DE
1321@item gdb.TYPE_CODE_CHAR
1322A character type.
1323
b3ce5e5f 1324@vindex TYPE_CODE_BOOL
329baa95
DE
1325@item gdb.TYPE_CODE_BOOL
1326A boolean type.
1327
b3ce5e5f 1328@vindex TYPE_CODE_COMPLEX
329baa95
DE
1329@item gdb.TYPE_CODE_COMPLEX
1330A complex float type.
1331
b3ce5e5f 1332@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1333@item gdb.TYPE_CODE_TYPEDEF
1334A typedef to some other type.
1335
b3ce5e5f 1336@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1337@item gdb.TYPE_CODE_NAMESPACE
1338A C@t{++} namespace.
1339
b3ce5e5f 1340@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1341@item gdb.TYPE_CODE_DECFLOAT
1342A decimal floating point type.
1343
b3ce5e5f 1344@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1345@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1346A function internal to @value{GDBN}. This is the type used to represent
1347convenience functions.
b3ce5e5f 1348@end vtable
329baa95
DE
1349
1350Further support for types is provided in the @code{gdb.types}
1351Python module (@pxref{gdb.types}).
1352
1353@node Pretty Printing API
1354@subsubsection Pretty Printing API
b3ce5e5f 1355@cindex python pretty printing api
329baa95 1356
329baa95 1357A pretty-printer is just an object that holds a value and implements a
27a9fec6
TT
1358specific interface, defined here. An example output is provided
1359(@pxref{Pretty Printing}).
329baa95
DE
1360
1361@defun pretty_printer.children (self)
1362@value{GDBN} will call this method on a pretty-printer to compute the
1363children of the pretty-printer's value.
1364
1365This method must return an object conforming to the Python iterator
1366protocol. Each item returned by the iterator must be a tuple holding
1367two elements. The first element is the ``name'' of the child; the
1368second element is the child's value. The value can be any Python
1369object which is convertible to a @value{GDBN} value.
1370
1371This method is optional. If it does not exist, @value{GDBN} will act
1372as though the value has no children.
2e62ab40
AB
1373
1374Children may be hidden from display based on the value of @samp{set
1375print max-depth} (@pxref{Print Settings}).
329baa95
DE
1376@end defun
1377
1378@defun pretty_printer.display_hint (self)
1379The CLI may call this method and use its result to change the
1380formatting of a value. The result will also be supplied to an MI
1381consumer as a @samp{displayhint} attribute of the variable being
1382printed.
1383
1384This method is optional. If it does exist, this method must return a
9f9aa852 1385string or the special value @code{None}.
329baa95
DE
1386
1387Some display hints are predefined by @value{GDBN}:
1388
1389@table @samp
1390@item array
1391Indicate that the object being printed is ``array-like''. The CLI
1392uses this to respect parameters such as @code{set print elements} and
1393@code{set print array}.
1394
1395@item map
1396Indicate that the object being printed is ``map-like'', and that the
1397children of this value can be assumed to alternate between keys and
1398values.
1399
1400@item string
1401Indicate that the object being printed is ``string-like''. If the
1402printer's @code{to_string} method returns a Python string of some
1403kind, then @value{GDBN} will call its internal language-specific
1404string-printing function to format the string. For the CLI this means
1405adding quotation marks, possibly escaping some characters, respecting
1406@code{set print elements}, and the like.
1407@end table
9f9aa852
AB
1408
1409The special value @code{None} causes @value{GDBN} to apply the default
1410display rules.
329baa95
DE
1411@end defun
1412
1413@defun pretty_printer.to_string (self)
1414@value{GDBN} will call this method to display the string
1415representation of the value passed to the object's constructor.
1416
1417When printing from the CLI, if the @code{to_string} method exists,
1418then @value{GDBN} will prepend its result to the values returned by
1419@code{children}. Exactly how this formatting is done is dependent on
1420the display hint, and may change as more hints are added. Also,
1421depending on the print settings (@pxref{Print Settings}), the CLI may
1422print just the result of @code{to_string} in a stack trace, omitting
1423the result of @code{children}.
1424
1425If this method returns a string, it is printed verbatim.
1426
1427Otherwise, if this method returns an instance of @code{gdb.Value},
1428then @value{GDBN} prints this value. This may result in a call to
1429another pretty-printer.
1430
1431If instead the method returns a Python value which is convertible to a
1432@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1433the resulting value. Again, this may result in a call to another
1434pretty-printer. Python scalars (integers, floats, and booleans) and
1435strings are convertible to @code{gdb.Value}; other types are not.
1436
1437Finally, if this method returns @code{None} then no further operations
1438are peformed in this method and nothing is printed.
1439
1440If the result is not one of these types, an exception is raised.
1441@end defun
1442
1443@value{GDBN} provides a function which can be used to look up the
1444default pretty-printer for a @code{gdb.Value}:
1445
1446@findex gdb.default_visualizer
1447@defun gdb.default_visualizer (value)
1448This function takes a @code{gdb.Value} object as an argument. If a
1449pretty-printer for this value exists, then it is returned. If no such
1450printer exists, then this returns @code{None}.
1451@end defun
1452
1453@node Selecting Pretty-Printers
1454@subsubsection Selecting Pretty-Printers
b3ce5e5f 1455@cindex selecting python pretty-printers
329baa95 1456
48869a5f
TT
1457@value{GDBN} provides several ways to register a pretty-printer:
1458globally, per program space, and per objfile. When choosing how to
1459register your pretty-printer, a good rule is to register it with the
1460smallest scope possible: that is prefer a specific objfile first, then
1461a program space, and only register a printer globally as a last
1462resort.
1463
1464@findex gdb.pretty_printers
1465@defvar gdb.pretty_printers
329baa95
DE
1466The Python list @code{gdb.pretty_printers} contains an array of
1467functions or callable objects that have been registered via addition
1468as a pretty-printer. Printers in this list are called @code{global}
1469printers, they're available when debugging all inferiors.
48869a5f
TT
1470@end defvar
1471
329baa95
DE
1472Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1473Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1474attribute.
1475
1476Each function on these lists is passed a single @code{gdb.Value}
1477argument and should return a pretty-printer object conforming to the
1478interface definition above (@pxref{Pretty Printing API}). If a function
1479cannot create a pretty-printer for the value, it should return
1480@code{None}.
1481
1482@value{GDBN} first checks the @code{pretty_printers} attribute of each
1483@code{gdb.Objfile} in the current program space and iteratively calls
1484each enabled lookup routine in the list for that @code{gdb.Objfile}
1485until it receives a pretty-printer object.
1486If no pretty-printer is found in the objfile lists, @value{GDBN} then
1487searches the pretty-printer list of the current program space,
1488calling each enabled function until an object is returned.
1489After these lists have been exhausted, it tries the global
1490@code{gdb.pretty_printers} list, again calling each enabled function until an
1491object is returned.
1492
1493The order in which the objfiles are searched is not specified. For a
1494given list, functions are always invoked from the head of the list,
1495and iterated over sequentially until the end of the list, or a printer
1496object is returned.
1497
1498For various reasons a pretty-printer may not work.
1499For example, the underlying data structure may have changed and
1500the pretty-printer is out of date.
1501
1502The consequences of a broken pretty-printer are severe enough that
1503@value{GDBN} provides support for enabling and disabling individual
1504printers. For example, if @code{print frame-arguments} is on,
1505a backtrace can become highly illegible if any argument is printed
1506with a broken printer.
1507
1508Pretty-printers are enabled and disabled by attaching an @code{enabled}
1509attribute to the registered function or callable object. If this attribute
1510is present and its value is @code{False}, the printer is disabled, otherwise
1511the printer is enabled.
1512
1513@node Writing a Pretty-Printer
1514@subsubsection Writing a Pretty-Printer
1515@cindex writing a pretty-printer
1516
1517A pretty-printer consists of two parts: a lookup function to detect
1518if the type is supported, and the printer itself.
1519
1520Here is an example showing how a @code{std::string} printer might be
1521written. @xref{Pretty Printing API}, for details on the API this class
1522must provide.
1523
1524@smallexample
1525class StdStringPrinter(object):
1526 "Print a std::string"
1527
1528 def __init__(self, val):
1529 self.val = val
1530
1531 def to_string(self):
1532 return self.val['_M_dataplus']['_M_p']
1533
1534 def display_hint(self):
1535 return 'string'
1536@end smallexample
1537
1538And here is an example showing how a lookup function for the printer
1539example above might be written.
1540
1541@smallexample
1542def str_lookup_function(val):
1543 lookup_tag = val.type.tag
1544 if lookup_tag == None:
1545 return None
1546 regex = re.compile("^std::basic_string<char,.*>$")
1547 if regex.match(lookup_tag):
1548 return StdStringPrinter(val)
1549 return None
1550@end smallexample
1551
1552The example lookup function extracts the value's type, and attempts to
1553match it to a type that it can pretty-print. If it is a type the
1554printer can pretty-print, it will return a printer object. If not, it
1555returns @code{None}.
1556
1557We recommend that you put your core pretty-printers into a Python
1558package. If your pretty-printers are for use with a library, we
1559further recommend embedding a version number into the package name.
1560This practice will enable @value{GDBN} to load multiple versions of
1561your pretty-printers at the same time, because they will have
1562different names.
1563
1564You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1565can be evaluated multiple times without changing its meaning. An
1566ideal auto-load file will consist solely of @code{import}s of your
1567printer modules, followed by a call to a register pretty-printers with
1568the current objfile.
1569
1570Taken as a whole, this approach will scale nicely to multiple
1571inferiors, each potentially using a different library version.
1572Embedding a version number in the Python package name will ensure that
1573@value{GDBN} is able to load both sets of printers simultaneously.
1574Then, because the search for pretty-printers is done by objfile, and
1575because your auto-loaded code took care to register your library's
1576printers with a specific objfile, @value{GDBN} will find the correct
1577printers for the specific version of the library used by each
1578inferior.
1579
1580To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1581this code might appear in @code{gdb.libstdcxx.v6}:
1582
1583@smallexample
1584def register_printers(objfile):
1585 objfile.pretty_printers.append(str_lookup_function)
1586@end smallexample
1587
1588@noindent
1589And then the corresponding contents of the auto-load file would be:
1590
1591@smallexample
1592import gdb.libstdcxx.v6
1593gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1594@end smallexample
1595
1596The previous example illustrates a basic pretty-printer.
1597There are a few things that can be improved on.
1598The printer doesn't have a name, making it hard to identify in a
1599list of installed printers. The lookup function has a name, but
1600lookup functions can have arbitrary, even identical, names.
1601
1602Second, the printer only handles one type, whereas a library typically has
1603several types. One could install a lookup function for each desired type
1604in the library, but one could also have a single lookup function recognize
1605several types. The latter is the conventional way this is handled.
1606If a pretty-printer can handle multiple data types, then its
1607@dfn{subprinters} are the printers for the individual data types.
1608
1609The @code{gdb.printing} module provides a formal way of solving these
1610problems (@pxref{gdb.printing}).
1611Here is another example that handles multiple types.
1612
1613These are the types we are going to pretty-print:
1614
1615@smallexample
1616struct foo @{ int a, b; @};
1617struct bar @{ struct foo x, y; @};
1618@end smallexample
1619
1620Here are the printers:
1621
1622@smallexample
1623class fooPrinter:
1624 """Print a foo object."""
1625
1626 def __init__(self, val):
1627 self.val = val
1628
1629 def to_string(self):
1630 return ("a=<" + str(self.val["a"]) +
1631 "> b=<" + str(self.val["b"]) + ">")
1632
1633class barPrinter:
1634 """Print a bar object."""
1635
1636 def __init__(self, val):
1637 self.val = val
1638
1639 def to_string(self):
1640 return ("x=<" + str(self.val["x"]) +
1641 "> y=<" + str(self.val["y"]) + ">")
1642@end smallexample
1643
1644This example doesn't need a lookup function, that is handled by the
1645@code{gdb.printing} module. Instead a function is provided to build up
1646the object that handles the lookup.
1647
1648@smallexample
1649import gdb.printing
1650
1651def build_pretty_printer():
1652 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1653 "my_library")
1654 pp.add_printer('foo', '^foo$', fooPrinter)
1655 pp.add_printer('bar', '^bar$', barPrinter)
1656 return pp
1657@end smallexample
1658
1659And here is the autoload support:
1660
1661@smallexample
1662import gdb.printing
1663import my_library
1664gdb.printing.register_pretty_printer(
1665 gdb.current_objfile(),
1666 my_library.build_pretty_printer())
1667@end smallexample
1668
1669Finally, when this printer is loaded into @value{GDBN}, here is the
1670corresponding output of @samp{info pretty-printer}:
1671
1672@smallexample
1673(gdb) info pretty-printer
1674my_library.so:
1675 my_library
1676 foo
1677 bar
1678@end smallexample
1679
1680@node Type Printing API
1681@subsubsection Type Printing API
1682@cindex type printing API for Python
1683
1684@value{GDBN} provides a way for Python code to customize type display.
1685This is mainly useful for substituting canonical typedef names for
1686types.
1687
1688@cindex type printer
1689A @dfn{type printer} is just a Python object conforming to a certain
1690protocol. A simple base class implementing the protocol is provided;
1691see @ref{gdb.types}. A type printer must supply at least:
1692
1693@defivar type_printer enabled
1694A boolean which is True if the printer is enabled, and False
1695otherwise. This is manipulated by the @code{enable type-printer}
1696and @code{disable type-printer} commands.
1697@end defivar
1698
1699@defivar type_printer name
1700The name of the type printer. This must be a string. This is used by
1701the @code{enable type-printer} and @code{disable type-printer}
1702commands.
1703@end defivar
1704
1705@defmethod type_printer instantiate (self)
1706This is called by @value{GDBN} at the start of type-printing. It is
1707only called if the type printer is enabled. This method must return a
1708new object that supplies a @code{recognize} method, as described below.
1709@end defmethod
1710
1711
1712When displaying a type, say via the @code{ptype} command, @value{GDBN}
1713will compute a list of type recognizers. This is done by iterating
1714first over the per-objfile type printers (@pxref{Objfiles In Python}),
1715followed by the per-progspace type printers (@pxref{Progspaces In
1716Python}), and finally the global type printers.
1717
1718@value{GDBN} will call the @code{instantiate} method of each enabled
1719type printer. If this method returns @code{None}, then the result is
1720ignored; otherwise, it is appended to the list of recognizers.
1721
1722Then, when @value{GDBN} is going to display a type name, it iterates
1723over the list of recognizers. For each one, it calls the recognition
1724function, stopping if the function returns a non-@code{None} value.
1725The recognition function is defined as:
1726
1727@defmethod type_recognizer recognize (self, type)
1728If @var{type} is not recognized, return @code{None}. Otherwise,
1729return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1730The @var{type} argument will be an instance of @code{gdb.Type}
1731(@pxref{Types In Python}).
329baa95
DE
1732@end defmethod
1733
1734@value{GDBN} uses this two-pass approach so that type printers can
1735efficiently cache information without holding on to it too long. For
1736example, it can be convenient to look up type information in a type
1737printer and hold it for a recognizer's lifetime; if a single pass were
1738done then type printers would have to make use of the event system in
1739order to avoid holding information that could become stale as the
1740inferior changed.
1741
1742@node Frame Filter API
521b499b 1743@subsubsection Filtering Frames
329baa95
DE
1744@cindex frame filters api
1745
1746Frame filters are Python objects that manipulate the visibility of a
1747frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1748@value{GDBN}.
1749
1750Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1751commands (@pxref{GDB/MI}), those that return a collection of frames
1752are affected. The commands that work with frame filters are:
1753
1754@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1755@code{-stack-list-frames}
1756(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1757@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1758-stack-list-variables command}), @code{-stack-list-arguments}
1759@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1760@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1761-stack-list-locals command}).
1762
1763A frame filter works by taking an iterator as an argument, applying
1764actions to the contents of that iterator, and returning another
1765iterator (or, possibly, the same iterator it was provided in the case
1766where the filter does not perform any operations). Typically, frame
1767filters utilize tools such as the Python's @code{itertools} module to
1768work with and create new iterators from the source iterator.
1769Regardless of how a filter chooses to apply actions, it must not alter
1770the underlying @value{GDBN} frame or frames, or attempt to alter the
1771call-stack within @value{GDBN}. This preserves data integrity within
1772@value{GDBN}. Frame filters are executed on a priority basis and care
1773should be taken that some frame filters may have been executed before,
1774and that some frame filters will be executed after.
1775
1776An important consideration when designing frame filters, and well
1777worth reflecting upon, is that frame filters should avoid unwinding
1778the call stack if possible. Some stacks can run very deep, into the
1779tens of thousands in some cases. To search every frame when a frame
1780filter executes may be too expensive at that step. The frame filter
1781cannot know how many frames it has to iterate over, and it may have to
1782iterate through them all. This ends up duplicating effort as
1783@value{GDBN} performs this iteration when it prints the frames. If
1784the filter can defer unwinding frames until frame decorators are
1785executed, after the last filter has executed, it should. @xref{Frame
1786Decorator API}, for more information on decorators. Also, there are
1787examples for both frame decorators and filters in later chapters.
1788@xref{Writing a Frame Filter}, for more information.
1789
1790The Python dictionary @code{gdb.frame_filters} contains key/object
1791pairings that comprise a frame filter. Frame filters in this
1792dictionary are called @code{global} frame filters, and they are
1793available when debugging all inferiors. These frame filters must
1794register with the dictionary directly. In addition to the
1795@code{global} dictionary, there are other dictionaries that are loaded
1796with different inferiors via auto-loading (@pxref{Python
1797Auto-loading}). The two other areas where frame filter dictionaries
1798can be found are: @code{gdb.Progspace} which contains a
1799@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1800object which also contains a @code{frame_filters} dictionary
1801attribute.
1802
1803When a command is executed from @value{GDBN} that is compatible with
1804frame filters, @value{GDBN} combines the @code{global},
1805@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1806loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1807several frames, and thus several object files, might be in use.
1808@value{GDBN} then prunes any frame filter whose @code{enabled}
1809attribute is @code{False}. This pruned list is then sorted according
1810to the @code{priority} attribute in each filter.
1811
1812Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1813creates an iterator which wraps each frame in the call stack in a
1814@code{FrameDecorator} object, and calls each filter in order. The
1815output from the previous filter will always be the input to the next
1816filter, and so on.
1817
1818Frame filters have a mandatory interface which each frame filter must
1819implement, defined here:
1820
1821@defun FrameFilter.filter (iterator)
1822@value{GDBN} will call this method on a frame filter when it has
1823reached the order in the priority list for that filter.
1824
1825For example, if there are four frame filters:
1826
1827@smallexample
1828Name Priority
1829
1830Filter1 5
1831Filter2 10
1832Filter3 100
1833Filter4 1
1834@end smallexample
1835
1836The order that the frame filters will be called is:
1837
1838@smallexample
1839Filter3 -> Filter2 -> Filter1 -> Filter4
1840@end smallexample
1841
1842Note that the output from @code{Filter3} is passed to the input of
1843@code{Filter2}, and so on.
1844
1845This @code{filter} method is passed a Python iterator. This iterator
1846contains a sequence of frame decorators that wrap each
1847@code{gdb.Frame}, or a frame decorator that wraps another frame
1848decorator. The first filter that is executed in the sequence of frame
1849filters will receive an iterator entirely comprised of default
1850@code{FrameDecorator} objects. However, after each frame filter is
1851executed, the previous frame filter may have wrapped some or all of
1852the frame decorators with their own frame decorator. As frame
1853decorators must also conform to a mandatory interface, these
1854decorators can be assumed to act in a uniform manner (@pxref{Frame
1855Decorator API}).
1856
1857This method must return an object conforming to the Python iterator
1858protocol. Each item in the iterator must be an object conforming to
1859the frame decorator interface. If a frame filter does not wish to
1860perform any operations on this iterator, it should return that
1861iterator untouched.
1862
1863This method is not optional. If it does not exist, @value{GDBN} will
1864raise and print an error.
1865@end defun
1866
1867@defvar FrameFilter.name
1868The @code{name} attribute must be Python string which contains the
1869name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1870Management}). This attribute may contain any combination of letters
1871or numbers. Care should be taken to ensure that it is unique. This
1872attribute is mandatory.
1873@end defvar
1874
1875@defvar FrameFilter.enabled
1876The @code{enabled} attribute must be Python boolean. This attribute
1877indicates to @value{GDBN} whether the frame filter is enabled, and
1878should be considered when frame filters are executed. If
1879@code{enabled} is @code{True}, then the frame filter will be executed
1880when any of the backtrace commands detailed earlier in this chapter
1881are executed. If @code{enabled} is @code{False}, then the frame
1882filter will not be executed. This attribute is mandatory.
1883@end defvar
1884
1885@defvar FrameFilter.priority
1886The @code{priority} attribute must be Python integer. This attribute
1887controls the order of execution in relation to other frame filters.
1888There are no imposed limits on the range of @code{priority} other than
1889it must be a valid integer. The higher the @code{priority} attribute,
1890the sooner the frame filter will be executed in relation to other
1891frame filters. Although @code{priority} can be negative, it is
1892recommended practice to assume zero is the lowest priority that a
1893frame filter can be assigned. Frame filters that have the same
1894priority are executed in unsorted order in that priority slot. This
521b499b 1895attribute is mandatory. 100 is a good default priority.
329baa95
DE
1896@end defvar
1897
1898@node Frame Decorator API
521b499b 1899@subsubsection Decorating Frames
329baa95
DE
1900@cindex frame decorator api
1901
1902Frame decorators are sister objects to frame filters (@pxref{Frame
1903Filter API}). Frame decorators are applied by a frame filter and can
1904only be used in conjunction with frame filters.
1905
1906The purpose of a frame decorator is to customize the printed content
1907of each @code{gdb.Frame} in commands where frame filters are executed.
1908This concept is called decorating a frame. Frame decorators decorate
1909a @code{gdb.Frame} with Python code contained within each API call.
1910This separates the actual data contained in a @code{gdb.Frame} from
1911the decorated data produced by a frame decorator. This abstraction is
1912necessary to maintain integrity of the data contained in each
1913@code{gdb.Frame}.
1914
1915Frame decorators have a mandatory interface, defined below.
1916
1917@value{GDBN} already contains a frame decorator called
1918@code{FrameDecorator}. This contains substantial amounts of
1919boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1920recommended that other frame decorators inherit and extend this
1921object, and only to override the methods needed.
1922
521b499b
TT
1923@tindex gdb.FrameDecorator
1924@code{FrameDecorator} is defined in the Python module
1925@code{gdb.FrameDecorator}, so your code can import it like:
1926@smallexample
1927from gdb.FrameDecorator import FrameDecorator
1928@end smallexample
1929
329baa95
DE
1930@defun FrameDecorator.elided (self)
1931
1932The @code{elided} method groups frames together in a hierarchical
1933system. An example would be an interpreter, where multiple low-level
1934frames make up a single call in the interpreted language. In this
1935example, the frame filter would elide the low-level frames and present
1936a single high-level frame, representing the call in the interpreted
1937language, to the user.
1938
1939The @code{elided} function must return an iterable and this iterable
1940must contain the frames that are being elided wrapped in a suitable
1941frame decorator. If no frames are being elided this function may
1942return an empty iterable, or @code{None}. Elided frames are indented
1943from normal frames in a @code{CLI} backtrace, or in the case of
1944@code{GDB/MI}, are placed in the @code{children} field of the eliding
1945frame.
1946
1947It is the frame filter's task to also filter out the elided frames from
1948the source iterator. This will avoid printing the frame twice.
1949@end defun
1950
1951@defun FrameDecorator.function (self)
1952
1953This method returns the name of the function in the frame that is to
1954be printed.
1955
1956This method must return a Python string describing the function, or
1957@code{None}.
1958
1959If this function returns @code{None}, @value{GDBN} will not print any
1960data for this field.
1961@end defun
1962
1963@defun FrameDecorator.address (self)
1964
1965This method returns the address of the frame that is to be printed.
1966
1967This method must return a Python numeric integer type of sufficient
1968size to describe the address of the frame, or @code{None}.
1969
1970If this function returns a @code{None}, @value{GDBN} will not print
1971any data for this field.
1972@end defun
1973
1974@defun FrameDecorator.filename (self)
1975
1976This method returns the filename and path associated with this frame.
1977
1978This method must return a Python string containing the filename and
1979the path to the object file backing the frame, or @code{None}.
1980
1981If this function returns a @code{None}, @value{GDBN} will not print
1982any data for this field.
1983@end defun
1984
1985@defun FrameDecorator.line (self):
1986
1987This method returns the line number associated with the current
1988position within the function addressed by this frame.
1989
1990This method must return a Python integer type, or @code{None}.
1991
1992If this function returns a @code{None}, @value{GDBN} will not print
1993any data for this field.
1994@end defun
1995
1996@defun FrameDecorator.frame_args (self)
1997@anchor{frame_args}
1998
1999This method must return an iterable, or @code{None}. Returning an
2000empty iterable, or @code{None} means frame arguments will not be
2001printed for this frame. This iterable must contain objects that
2002implement two methods, described here.
2003
2004This object must implement a @code{argument} method which takes a
2005single @code{self} parameter and must return a @code{gdb.Symbol}
2006(@pxref{Symbols In Python}), or a Python string. The object must also
2007implement a @code{value} method which takes a single @code{self}
2008parameter and must return a @code{gdb.Value} (@pxref{Values From
2009Inferior}), a Python value, or @code{None}. If the @code{value}
2010method returns @code{None}, and the @code{argument} method returns a
2011@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
2012the @code{gdb.Symbol} automatically.
2013
2014A brief example:
2015
2016@smallexample
2017class SymValueWrapper():
2018
2019 def __init__(self, symbol, value):
2020 self.sym = symbol
2021 self.val = value
2022
2023 def value(self):
2024 return self.val
2025
2026 def symbol(self):
2027 return self.sym
2028
2029class SomeFrameDecorator()
2030...
2031...
2032 def frame_args(self):
2033 args = []
2034 try:
2035 block = self.inferior_frame.block()
2036 except:
2037 return None
2038
2039 # Iterate over all symbols in a block. Only add
2040 # symbols that are arguments.
2041 for sym in block:
2042 if not sym.is_argument:
2043 continue
2044 args.append(SymValueWrapper(sym,None))
2045
2046 # Add example synthetic argument.
2047 args.append(SymValueWrapper(``foo'', 42))
2048
2049 return args
2050@end smallexample
2051@end defun
2052
2053@defun FrameDecorator.frame_locals (self)
2054
2055This method must return an iterable or @code{None}. Returning an
2056empty iterable, or @code{None} means frame local arguments will not be
2057printed for this frame.
2058
2059The object interface, the description of the various strategies for
2060reading frame locals, and the example are largely similar to those
2061described in the @code{frame_args} function, (@pxref{frame_args,,The
2062frame filter frame_args function}). Below is a modified example:
2063
2064@smallexample
2065class SomeFrameDecorator()
2066...
2067...
2068 def frame_locals(self):
2069 vars = []
2070 try:
2071 block = self.inferior_frame.block()
2072 except:
2073 return None
2074
2075 # Iterate over all symbols in a block. Add all
2076 # symbols, except arguments.
2077 for sym in block:
2078 if sym.is_argument:
2079 continue
2080 vars.append(SymValueWrapper(sym,None))
2081
2082 # Add an example of a synthetic local variable.
2083 vars.append(SymValueWrapper(``bar'', 99))
2084
2085 return vars
2086@end smallexample
2087@end defun
2088
2089@defun FrameDecorator.inferior_frame (self):
2090
2091This method must return the underlying @code{gdb.Frame} that this
2092frame decorator is decorating. @value{GDBN} requires the underlying
2093frame for internal frame information to determine how to print certain
2094values when printing a frame.
2095@end defun
2096
2097@node Writing a Frame Filter
2098@subsubsection Writing a Frame Filter
2099@cindex writing a frame filter
2100
2101There are three basic elements that a frame filter must implement: it
2102must correctly implement the documented interface (@pxref{Frame Filter
2103API}), it must register itself with @value{GDBN}, and finally, it must
2104decide if it is to work on the data provided by @value{GDBN}. In all
2105cases, whether it works on the iterator or not, each frame filter must
2106return an iterator. A bare-bones frame filter follows the pattern in
2107the following example.
2108
2109@smallexample
2110import gdb
2111
2112class FrameFilter():
2113
2114 def __init__(self):
2115 # Frame filter attribute creation.
2116 #
2117 # 'name' is the name of the filter that GDB will display.
2118 #
2119 # 'priority' is the priority of the filter relative to other
2120 # filters.
2121 #
2122 # 'enabled' is a boolean that indicates whether this filter is
2123 # enabled and should be executed.
2124
2125 self.name = "Foo"
2126 self.priority = 100
2127 self.enabled = True
2128
2129 # Register this frame filter with the global frame_filters
2130 # dictionary.
2131 gdb.frame_filters[self.name] = self
2132
2133 def filter(self, frame_iter):
2134 # Just return the iterator.
2135 return frame_iter
2136@end smallexample
2137
2138The frame filter in the example above implements the three
2139requirements for all frame filters. It implements the API, self
2140registers, and makes a decision on the iterator (in this case, it just
2141returns the iterator untouched).
2142
2143The first step is attribute creation and assignment, and as shown in
2144the comments the filter assigns the following attributes: @code{name},
2145@code{priority} and whether the filter should be enabled with the
2146@code{enabled} attribute.
2147
2148The second step is registering the frame filter with the dictionary or
2149dictionaries that the frame filter has interest in. As shown in the
2150comments, this filter just registers itself with the global dictionary
2151@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2152is a dictionary that is initialized in the @code{gdb} module when
2153@value{GDBN} starts. What dictionary a filter registers with is an
2154important consideration. Generally, if a filter is specific to a set
2155of code, it should be registered either in the @code{objfile} or
2156@code{progspace} dictionaries as they are specific to the program
2157currently loaded in @value{GDBN}. The global dictionary is always
2158present in @value{GDBN} and is never unloaded. Any filters registered
2159with the global dictionary will exist until @value{GDBN} exits. To
2160avoid filters that may conflict, it is generally better to register
2161frame filters against the dictionaries that more closely align with
2162the usage of the filter currently in question. @xref{Python
2163Auto-loading}, for further information on auto-loading Python scripts.
2164
2165@value{GDBN} takes a hands-off approach to frame filter registration,
2166therefore it is the frame filter's responsibility to ensure
2167registration has occurred, and that any exceptions are handled
2168appropriately. In particular, you may wish to handle exceptions
2169relating to Python dictionary key uniqueness. It is mandatory that
2170the dictionary key is the same as frame filter's @code{name}
2171attribute. When a user manages frame filters (@pxref{Frame Filter
2172Management}), the names @value{GDBN} will display are those contained
2173in the @code{name} attribute.
2174
2175The final step of this example is the implementation of the
2176@code{filter} method. As shown in the example comments, we define the
2177@code{filter} method and note that the method must take an iterator,
2178and also must return an iterator. In this bare-bones example, the
2179frame filter is not very useful as it just returns the iterator
2180untouched. However this is a valid operation for frame filters that
2181have the @code{enabled} attribute set, but decide not to operate on
2182any frames.
2183
2184In the next example, the frame filter operates on all frames and
2185utilizes a frame decorator to perform some work on the frames.
2186@xref{Frame Decorator API}, for further information on the frame
2187decorator interface.
2188
2189This example works on inlined frames. It highlights frames which are
2190inlined by tagging them with an ``[inlined]'' tag. By applying a
2191frame decorator to all frames with the Python @code{itertools imap}
2192method, the example defers actions to the frame decorator. Frame
2193decorators are only processed when @value{GDBN} prints the backtrace.
2194
2195This introduces a new decision making topic: whether to perform
2196decision making operations at the filtering step, or at the printing
2197step. In this example's approach, it does not perform any filtering
2198decisions at the filtering step beyond mapping a frame decorator to
2199each frame. This allows the actual decision making to be performed
2200when each frame is printed. This is an important consideration, and
2201well worth reflecting upon when designing a frame filter. An issue
2202that frame filters should avoid is unwinding the stack if possible.
2203Some stacks can run very deep, into the tens of thousands in some
2204cases. To search every frame to determine if it is inlined ahead of
2205time may be too expensive at the filtering step. The frame filter
2206cannot know how many frames it has to iterate over, and it would have
2207to iterate through them all. This ends up duplicating effort as
2208@value{GDBN} performs this iteration when it prints the frames.
2209
2210In this example decision making can be deferred to the printing step.
2211As each frame is printed, the frame decorator can examine each frame
2212in turn when @value{GDBN} iterates. From a performance viewpoint,
2213this is the most appropriate decision to make as it avoids duplicating
2214the effort that the printing step would undertake anyway. Also, if
2215there are many frame filters unwinding the stack during filtering, it
2216can substantially delay the printing of the backtrace which will
2217result in large memory usage, and a poor user experience.
2218
2219@smallexample
2220class InlineFilter():
2221
2222 def __init__(self):
2223 self.name = "InlinedFrameFilter"
2224 self.priority = 100
2225 self.enabled = True
2226 gdb.frame_filters[self.name] = self
2227
2228 def filter(self, frame_iter):
2229 frame_iter = itertools.imap(InlinedFrameDecorator,
2230 frame_iter)
2231 return frame_iter
2232@end smallexample
2233
2234This frame filter is somewhat similar to the earlier example, except
2235that the @code{filter} method applies a frame decorator object called
2236@code{InlinedFrameDecorator} to each element in the iterator. The
2237@code{imap} Python method is light-weight. It does not proactively
2238iterate over the iterator, but rather creates a new iterator which
2239wraps the existing one.
2240
2241Below is the frame decorator for this example.
2242
2243@smallexample
2244class InlinedFrameDecorator(FrameDecorator):
2245
2246 def __init__(self, fobj):
2247 super(InlinedFrameDecorator, self).__init__(fobj)
2248
2249 def function(self):
2250 frame = fobj.inferior_frame()
2251 name = str(frame.name())
2252
2253 if frame.type() == gdb.INLINE_FRAME:
2254 name = name + " [inlined]"
2255
2256 return name
2257@end smallexample
2258
2259This frame decorator only defines and overrides the @code{function}
2260method. It lets the supplied @code{FrameDecorator}, which is shipped
2261with @value{GDBN}, perform the other work associated with printing
2262this frame.
2263
2264The combination of these two objects create this output from a
2265backtrace:
2266
2267@smallexample
2268#0 0x004004e0 in bar () at inline.c:11
2269#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2270#2 0x00400566 in main () at inline.c:31
2271@end smallexample
2272
2273So in the case of this example, a frame decorator is applied to all
2274frames, regardless of whether they may be inlined or not. As
2275@value{GDBN} iterates over the iterator produced by the frame filters,
2276@value{GDBN} executes each frame decorator which then makes a decision
2277on what to print in the @code{function} callback. Using a strategy
2278like this is a way to defer decisions on the frame content to printing
2279time.
2280
2281@subheading Eliding Frames
2282
2283It might be that the above example is not desirable for representing
2284inlined frames, and a hierarchical approach may be preferred. If we
2285want to hierarchically represent frames, the @code{elided} frame
2286decorator interface might be preferable.
2287
2288This example approaches the issue with the @code{elided} method. This
2289example is quite long, but very simplistic. It is out-of-scope for
2290this section to write a complete example that comprehensively covers
2291all approaches of finding and printing inlined frames. However, this
2292example illustrates the approach an author might use.
2293
2294This example comprises of three sections.
2295
2296@smallexample
2297class InlineFrameFilter():
2298
2299 def __init__(self):
2300 self.name = "InlinedFrameFilter"
2301 self.priority = 100
2302 self.enabled = True
2303 gdb.frame_filters[self.name] = self
2304
2305 def filter(self, frame_iter):
2306 return ElidingInlineIterator(frame_iter)
2307@end smallexample
2308
2309This frame filter is very similar to the other examples. The only
2310difference is this frame filter is wrapping the iterator provided to
2311it (@code{frame_iter}) with a custom iterator called
2312@code{ElidingInlineIterator}. This again defers actions to when
2313@value{GDBN} prints the backtrace, as the iterator is not traversed
2314until printing.
2315
2316The iterator for this example is as follows. It is in this section of
2317the example where decisions are made on the content of the backtrace.
2318
2319@smallexample
2320class ElidingInlineIterator:
2321 def __init__(self, ii):
2322 self.input_iterator = ii
2323
2324 def __iter__(self):
2325 return self
2326
2327 def next(self):
2328 frame = next(self.input_iterator)
2329
2330 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2331 return frame
2332
2333 try:
2334 eliding_frame = next(self.input_iterator)
2335 except StopIteration:
2336 return frame
2337 return ElidingFrameDecorator(eliding_frame, [frame])
2338@end smallexample
2339
2340This iterator implements the Python iterator protocol. When the
2341@code{next} function is called (when @value{GDBN} prints each frame),
2342the iterator checks if this frame decorator, @code{frame}, is wrapping
2343an inlined frame. If it is not, it returns the existing frame decorator
2344untouched. If it is wrapping an inlined frame, it assumes that the
2345inlined frame was contained within the next oldest frame,
2346@code{eliding_frame}, which it fetches. It then creates and returns a
2347frame decorator, @code{ElidingFrameDecorator}, which contains both the
2348elided frame, and the eliding frame.
2349
2350@smallexample
2351class ElidingInlineDecorator(FrameDecorator):
2352
2353 def __init__(self, frame, elided_frames):
2354 super(ElidingInlineDecorator, self).__init__(frame)
2355 self.frame = frame
2356 self.elided_frames = elided_frames
2357
2358 def elided(self):
2359 return iter(self.elided_frames)
2360@end smallexample
2361
2362This frame decorator overrides one function and returns the inlined
2363frame in the @code{elided} method. As before it lets
2364@code{FrameDecorator} do the rest of the work involved in printing
2365this frame. This produces the following output.
2366
2367@smallexample
2368#0 0x004004e0 in bar () at inline.c:11
2369#2 0x00400529 in main () at inline.c:25
2370 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2371@end smallexample
2372
2373In that output, @code{max} which has been inlined into @code{main} is
2374printed hierarchically. Another approach would be to combine the
2375@code{function} method, and the @code{elided} method to both print a
2376marker in the inlined frame, and also show the hierarchical
2377relationship.
2378
d11916aa
SS
2379@node Unwinding Frames in Python
2380@subsubsection Unwinding Frames in Python
2381@cindex unwinding frames in Python
2382
2383In @value{GDBN} terminology ``unwinding'' is the process of finding
2384the previous frame (that is, caller's) from the current one. An
2385unwinder has three methods. The first one checks if it can handle
2386given frame (``sniff'' it). For the frames it can sniff an unwinder
2387provides two additional methods: it can return frame's ID, and it can
2388fetch registers from the previous frame. A running @value{GDBN}
2389mantains a list of the unwinders and calls each unwinder's sniffer in
2390turn until it finds the one that recognizes the current frame. There
2391is an API to register an unwinder.
2392
2393The unwinders that come with @value{GDBN} handle standard frames.
2394However, mixed language applications (for example, an application
2395running Java Virtual Machine) sometimes use frame layouts that cannot
2396be handled by the @value{GDBN} unwinders. You can write Python code
2397that can handle such custom frames.
2398
2399You implement a frame unwinder in Python as a class with which has two
2400attributes, @code{name} and @code{enabled}, with obvious meanings, and
2401a single method @code{__call__}, which examines a given frame and
2402returns an object (an instance of @code{gdb.UnwindInfo class)}
2403describing it. If an unwinder does not recognize a frame, it should
2404return @code{None}. The code in @value{GDBN} that enables writing
2405unwinders in Python uses this object to return frame's ID and previous
2406frame registers when @value{GDBN} core asks for them.
2407
e7b5068c
TT
2408An unwinder should do as little work as possible. Some otherwise
2409innocuous operations can cause problems (even crashes, as this code is
2410not not well-hardened yet). For example, making an inferior call from
2411an unwinder is unadvisable, as an inferior call will reset
2412@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2413unwinding.
2414
d11916aa
SS
2415@subheading Unwinder Input
2416
2417An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2418provides a method to read frame's registers:
2419
2420@defun PendingFrame.read_register (reg)
e7b5068c 2421This method returns the contents of the register @var{reg} in the
d11916aa
SS
2422frame as a @code{gdb.Value} object. @var{reg} can be either a
2423register number or a register name; the values are platform-specific.
2424They are usually found in the corresponding
e7b5068c
TT
2425@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2426@var{reg} does not name a register for the current architecture, this
2427method will throw an exception.
2428
2429Note that this method will always return a @code{gdb.Value} for a
2430valid register name. This does not mean that the value will be valid.
2431For example, you may request a register that an earlier unwinder could
2432not unwind---the value will be unavailable. Instead, the
2433@code{gdb.Value} returned from this method will be lazy; that is, its
2434underlying bits will not be fetched until it is first used. So,
2435attempting to use such a value will cause an exception at the point of
2436use.
2437
2438The type of the returned @code{gdb.Value} depends on the register and
2439the architecture. It is common for registers to have a scalar type,
2440like @code{long long}; but many other types are possible, such as
2441pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2442@end defun
2443
2444It also provides a factory method to create a @code{gdb.UnwindInfo}
2445instance to be returned to @value{GDBN}:
2446
2447@defun PendingFrame.create_unwind_info (frame_id)
2448Returns a new @code{gdb.UnwindInfo} instance identified by given
2449@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2450using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2451determine which function will be used, as follows:
2452
2453@table @code
d11916aa 2454@item sp, pc
e7b5068c
TT
2455The frame is identified by the given stack address and PC. The stack
2456address must be chosen so that it is constant throughout the lifetime
2457of the frame, so a typical choice is the value of the stack pointer at
2458the start of the function---in the DWARF standard, this would be the
2459``Call Frame Address''.
d11916aa 2460
e7b5068c
TT
2461This is the most common case by far. The other cases are documented
2462for completeness but are only useful in specialized situations.
2463
2464@item sp, pc, special
2465The frame is identified by the stack address, the PC, and a
2466``special'' address. The special address is used on architectures
2467that can have frames that do not change the stack, but which are still
2468distinct, for example the IA-64, which has a second stack for
2469registers. Both @var{sp} and @var{special} must be constant
2470throughout the lifetime of the frame.
d11916aa
SS
2471
2472@item sp
e7b5068c
TT
2473The frame is identified by the stack address only. Any other stack
2474frame with a matching @var{sp} will be considered to match this frame.
2475Inside gdb, this is called a ``wild frame''. You will never need
2476this.
d11916aa 2477@end table
e7b5068c
TT
2478
2479Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2480
2481@end defun
2482
2483@subheading Unwinder Output: UnwindInfo
2484
2485Use @code{PendingFrame.create_unwind_info} method described above to
2486create a @code{gdb.UnwindInfo} instance. Use the following method to
2487specify caller registers that have been saved in this frame:
2488
2489@defun gdb.UnwindInfo.add_saved_register (reg, value)
2490@var{reg} identifies the register. It can be a number or a name, just
2491as for the @code{PendingFrame.read_register} method above.
2492@var{value} is a register value (a @code{gdb.Value} object).
2493@end defun
2494
2495@subheading Unwinder Skeleton Code
2496
2497@value{GDBN} comes with the module containing the base @code{Unwinder}
2498class. Derive your unwinder class from it and structure the code as
2499follows:
2500
2501@smallexample
2502from gdb.unwinders import Unwinder
2503
2504class FrameId(object):
2505 def __init__(self, sp, pc):
2506 self.sp = sp
2507 self.pc = pc
2508
2509
2510class MyUnwinder(Unwinder):
2511 def __init__(....):
2512 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2513
2514 def __call__(pending_frame):
2515 if not <we recognize frame>:
2516 return None
2517 # Create UnwindInfo. Usually the frame is identified by the stack
2518 # pointer and the program counter.
2519 sp = pending_frame.read_register(<SP number>)
2520 pc = pending_frame.read_register(<PC number>)
2521 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2522
2523 # Find the values of the registers in the caller's frame and
2524 # save them in the result:
2525 unwind_info.add_saved_register(<register>, <value>)
2526 ....
2527
2528 # Return the result:
2529 return unwind_info
2530
2531@end smallexample
2532
2533@subheading Registering a Unwinder
2534
2535An object file, a program space, and the @value{GDBN} proper can have
2536unwinders registered with it.
2537
2538The @code{gdb.unwinders} module provides the function to register a
2539unwinder:
2540
2541@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2542@var{locus} is specifies an object file or a program space to which
2543@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2544@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2545added @var{unwinder} will be called before any other unwinder from the
2546same locus. Two unwinders in the same locus cannot have the same
2547name. An attempt to add a unwinder with already existing name raises
2548an exception unless @var{replace} is @code{True}, in which case the
2549old unwinder is deleted.
2550@end defun
2551
2552@subheading Unwinder Precedence
2553
2554@value{GDBN} first calls the unwinders from all the object files in no
2555particular order, then the unwinders from the current program space,
2556and finally the unwinders from @value{GDBN}.
2557
0c6e92a5
SC
2558@node Xmethods In Python
2559@subsubsection Xmethods In Python
2560@cindex xmethods in Python
2561
2562@dfn{Xmethods} are additional methods or replacements for existing
2563methods of a C@t{++} class. This feature is useful for those cases
2564where a method defined in C@t{++} source code could be inlined or
2565optimized out by the compiler, making it unavailable to @value{GDBN}.
2566For such cases, one can define an xmethod to serve as a replacement
2567for the method defined in the C@t{++} source code. @value{GDBN} will
2568then invoke the xmethod, instead of the C@t{++} method, to
2569evaluate expressions. One can also use xmethods when debugging
2570with core files. Moreover, when debugging live programs, invoking an
2571xmethod need not involve running the inferior (which can potentially
2572perturb its state). Hence, even if the C@t{++} method is available, it
2573is better to use its replacement xmethod if one is defined.
2574
2575The xmethods feature in Python is available via the concepts of an
2576@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2577implement an xmethod, one has to implement a matcher and a
2578corresponding worker for it (more than one worker can be
2579implemented, each catering to a different overloaded instance of the
2580method). Internally, @value{GDBN} invokes the @code{match} method of a
2581matcher to match the class type and method name. On a match, the
2582@code{match} method returns a list of matching @emph{worker} objects.
2583Each worker object typically corresponds to an overloaded instance of
2584the xmethod. They implement a @code{get_arg_types} method which
2585returns a sequence of types corresponding to the arguments the xmethod
2586requires. @value{GDBN} uses this sequence of types to perform
2587overload resolution and picks a winning xmethod worker. A winner
2588is also selected from among the methods @value{GDBN} finds in the
2589C@t{++} source code. Next, the winning xmethod worker and the
2590winning C@t{++} method are compared to select an overall winner. In
2591case of a tie between a xmethod worker and a C@t{++} method, the
2592xmethod worker is selected as the winner. That is, if a winning
2593xmethod worker is found to be equivalent to the winning C@t{++}
2594method, then the xmethod worker is treated as a replacement for
2595the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2596method. If the winning xmethod worker is the overall winner, then
897c3d32 2597the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2598of the worker object.
2599
2600If one wants to implement an xmethod as a replacement for an
2601existing C@t{++} method, then they have to implement an equivalent
2602xmethod which has exactly the same name and takes arguments of
2603exactly the same type as the C@t{++} method. If the user wants to
2604invoke the C@t{++} method even though a replacement xmethod is
2605available for that method, then they can disable the xmethod.
2606
2607@xref{Xmethod API}, for API to implement xmethods in Python.
2608@xref{Writing an Xmethod}, for implementing xmethods in Python.
2609
2610@node Xmethod API
2611@subsubsection Xmethod API
2612@cindex xmethod API
2613
2614The @value{GDBN} Python API provides classes, interfaces and functions
2615to implement, register and manipulate xmethods.
2616@xref{Xmethods In Python}.
2617
2618An xmethod matcher should be an instance of a class derived from
2619@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2620object with similar interface and attributes. An instance of
2621@code{XMethodMatcher} has the following attributes:
2622
2623@defvar name
2624The name of the matcher.
2625@end defvar
2626
2627@defvar enabled
2628A boolean value indicating whether the matcher is enabled or disabled.
2629@end defvar
2630
2631@defvar methods
2632A list of named methods managed by the matcher. Each object in the list
2633is an instance of the class @code{XMethod} defined in the module
2634@code{gdb.xmethod}, or any object with the following attributes:
2635
2636@table @code
2637
2638@item name
2639Name of the xmethod which should be unique for each xmethod
2640managed by the matcher.
2641
2642@item enabled
2643A boolean value indicating whether the xmethod is enabled or
2644disabled.
2645
2646@end table
2647
2648The class @code{XMethod} is a convenience class with same
2649attributes as above along with the following constructor:
2650
dd5d5494 2651@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2652Constructs an enabled xmethod with name @var{name}.
2653@end defun
2654@end defvar
2655
2656@noindent
2657The @code{XMethodMatcher} class has the following methods:
2658
dd5d5494 2659@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2660Constructs an enabled xmethod matcher with name @var{name}. The
2661@code{methods} attribute is initialized to @code{None}.
2662@end defun
2663
dd5d5494 2664@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2665Derived classes should override this method. It should return a
2666xmethod worker object (or a sequence of xmethod worker
2667objects) matching the @var{class_type} and @var{method_name}.
2668@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2669is a string value. If the matcher manages named methods as listed in
2670its @code{methods} attribute, then only those worker objects whose
2671corresponding entries in the @code{methods} list are enabled should be
2672returned.
2673@end defun
2674
2675An xmethod worker should be an instance of a class derived from
2676@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2677or support the following interface:
2678
dd5d5494 2679@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2680This method returns a sequence of @code{gdb.Type} objects corresponding
2681to the arguments that the xmethod takes. It can return an empty
2682sequence or @code{None} if the xmethod does not take any arguments.
2683If the xmethod takes a single argument, then a single
2684@code{gdb.Type} object corresponding to it can be returned.
2685@end defun
2686
2ce1cdbf
DE
2687@defun XMethodWorker.get_result_type (self, *args)
2688This method returns a @code{gdb.Type} object representing the type
2689of the result of invoking this xmethod.
2690The @var{args} argument is the same tuple of arguments that would be
2691passed to the @code{__call__} method of this worker.
2692@end defun
2693
dd5d5494 2694@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2695This is the method which does the @emph{work} of the xmethod. The
2696@var{args} arguments is the tuple of arguments to the xmethod. Each
2697element in this tuple is a gdb.Value object. The first element is
2698always the @code{this} pointer value.
2699@end defun
2700
2701For @value{GDBN} to lookup xmethods, the xmethod matchers
2702should be registered using the following function defined in the module
2703@code{gdb.xmethod}:
2704
dd5d5494 2705@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2706The @code{matcher} is registered with @code{locus}, replacing an
2707existing matcher with the same name as @code{matcher} if
2708@code{replace} is @code{True}. @code{locus} can be a
2709@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2710@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2711@code{None}. If it is @code{None}, then @code{matcher} is registered
2712globally.
2713@end defun
2714
2715@node Writing an Xmethod
2716@subsubsection Writing an Xmethod
2717@cindex writing xmethods in Python
2718
2719Implementing xmethods in Python will require implementing xmethod
2720matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2721the following C@t{++} class:
2722
2723@smallexample
2724class MyClass
2725@{
2726public:
2727 MyClass (int a) : a_(a) @{ @}
2728
2729 int geta (void) @{ return a_; @}
2730 int operator+ (int b);
2731
2732private:
2733 int a_;
2734@};
2735
2736int
2737MyClass::operator+ (int b)
2738@{
2739 return a_ + b;
2740@}
2741@end smallexample
2742
2743@noindent
2744Let us define two xmethods for the class @code{MyClass}, one
2745replacing the method @code{geta}, and another adding an overloaded
2746flavor of @code{operator+} which takes a @code{MyClass} argument (the
2747C@t{++} code above already has an overloaded @code{operator+}
2748which takes an @code{int} argument). The xmethod matcher can be
2749defined as follows:
2750
2751@smallexample
2752class MyClass_geta(gdb.xmethod.XMethod):
2753 def __init__(self):
2754 gdb.xmethod.XMethod.__init__(self, 'geta')
2755
2756 def get_worker(self, method_name):
2757 if method_name == 'geta':
2758 return MyClassWorker_geta()
2759
2760
2761class MyClass_sum(gdb.xmethod.XMethod):
2762 def __init__(self):
2763 gdb.xmethod.XMethod.__init__(self, 'sum')
2764
2765 def get_worker(self, method_name):
2766 if method_name == 'operator+':
2767 return MyClassWorker_plus()
2768
2769
2770class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2771 def __init__(self):
2772 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2773 # List of methods 'managed' by this matcher
2774 self.methods = [MyClass_geta(), MyClass_sum()]
2775
2776 def match(self, class_type, method_name):
2777 if class_type.tag != 'MyClass':
2778 return None
2779 workers = []
2780 for method in self.methods:
2781 if method.enabled:
2782 worker = method.get_worker(method_name)
2783 if worker:
2784 workers.append(worker)
2785
2786 return workers
2787@end smallexample
2788
2789@noindent
2790Notice that the @code{match} method of @code{MyClassMatcher} returns
2791a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2792method, and a worker object of type @code{MyClassWorker_plus} for the
2793@code{operator+} method. This is done indirectly via helper classes
2794derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2795@code{methods} attribute in a matcher as it is optional. However, if a
2796matcher manages more than one xmethod, it is a good practice to list the
2797xmethods in the @code{methods} attribute of the matcher. This will then
2798facilitate enabling and disabling individual xmethods via the
2799@code{enable/disable} commands. Notice also that a worker object is
2800returned only if the corresponding entry in the @code{methods} attribute
2801of the matcher is enabled.
2802
2803The implementation of the worker classes returned by the matcher setup
2804above is as follows:
2805
2806@smallexample
2807class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2808 def get_arg_types(self):
2809 return None
2ce1cdbf
DE
2810
2811 def get_result_type(self, obj):
2812 return gdb.lookup_type('int')
0c6e92a5
SC
2813
2814 def __call__(self, obj):
2815 return obj['a_']
2816
2817
2818class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2819 def get_arg_types(self):
2820 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2821
2822 def get_result_type(self, obj):
2823 return gdb.lookup_type('int')
0c6e92a5
SC
2824
2825 def __call__(self, obj, other):
2826 return obj['a_'] + other['a_']
2827@end smallexample
2828
2829For @value{GDBN} to actually lookup a xmethod, it has to be
2830registered with it. The matcher defined above is registered with
2831@value{GDBN} globally as follows:
2832
2833@smallexample
2834gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2835@end smallexample
2836
2837If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2838code as follows:
2839
2840@smallexample
2841MyClass obj(5);
2842@end smallexample
2843
2844@noindent
2845then, after loading the Python script defining the xmethod matchers
2846and workers into @code{GDBN}, invoking the method @code{geta} or using
2847the operator @code{+} on @code{obj} will invoke the xmethods
2848defined above:
2849
2850@smallexample
2851(gdb) p obj.geta()
2852$1 = 5
2853
2854(gdb) p obj + obj
2855$2 = 10
2856@end smallexample
2857
2858Consider another example with a C++ template class:
2859
2860@smallexample
2861template <class T>
2862class MyTemplate
2863@{
2864public:
2865 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2866 ~MyTemplate () @{ delete [] data_; @}
2867
2868 int footprint (void)
2869 @{
2870 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2871 @}
2872
2873private:
2874 int dsize_;
2875 T *data_;
2876@};
2877@end smallexample
2878
2879Let us implement an xmethod for the above class which serves as a
2880replacement for the @code{footprint} method. The full code listing
2881of the xmethod workers and xmethod matchers is as follows:
2882
2883@smallexample
2884class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2885 def __init__(self, class_type):
2886 self.class_type = class_type
2ce1cdbf 2887
0c6e92a5
SC
2888 def get_arg_types(self):
2889 return None
2ce1cdbf
DE
2890
2891 def get_result_type(self):
2892 return gdb.lookup_type('int')
2893
0c6e92a5
SC
2894 def __call__(self, obj):
2895 return (self.class_type.sizeof +
2896 obj['dsize_'] *
2897 self.class_type.template_argument(0).sizeof)
2898
2899
2900class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2901 def __init__(self):
2902 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2903
2904 def match(self, class_type, method_name):
2905 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2906 class_type.tag) and
2907 method_name == 'footprint'):
2908 return MyTemplateWorker_footprint(class_type)
2909@end smallexample
2910
2911Notice that, in this example, we have not used the @code{methods}
2912attribute of the matcher as the matcher manages only one xmethod. The
2913user can enable/disable this xmethod by enabling/disabling the matcher
2914itself.
2915
329baa95
DE
2916@node Inferiors In Python
2917@subsubsection Inferiors In Python
2918@cindex inferiors in Python
2919
2920@findex gdb.Inferior
2921Programs which are being run under @value{GDBN} are called inferiors
2922(@pxref{Inferiors and Programs}). Python scripts can access
2923information about and manipulate inferiors controlled by @value{GDBN}
2924via objects of the @code{gdb.Inferior} class.
2925
2926The following inferior-related functions are available in the @code{gdb}
2927module:
2928
2929@defun gdb.inferiors ()
2930Return a tuple containing all inferior objects.
2931@end defun
2932
2933@defun gdb.selected_inferior ()
2934Return an object representing the current inferior.
2935@end defun
2936
2937A @code{gdb.Inferior} object has the following attributes:
2938
2939@defvar Inferior.num
2940ID of inferior, as assigned by GDB.
2941@end defvar
2942
2943@defvar Inferior.pid
2944Process ID of the inferior, as assigned by the underlying operating
2945system.
2946@end defvar
2947
2948@defvar Inferior.was_attached
2949Boolean signaling whether the inferior was created using `attach', or
2950started by @value{GDBN} itself.
2951@end defvar
2952
a40bf0c2
SM
2953@defvar Inferior.progspace
2954The inferior's program space. @xref{Progspaces In Python}.
2955@end defvar
2956
329baa95
DE
2957A @code{gdb.Inferior} object has the following methods:
2958
2959@defun Inferior.is_valid ()
2960Returns @code{True} if the @code{gdb.Inferior} object is valid,
2961@code{False} if not. A @code{gdb.Inferior} object will become invalid
2962if the inferior no longer exists within @value{GDBN}. All other
2963@code{gdb.Inferior} methods will throw an exception if it is invalid
2964at the time the method is called.
2965@end defun
2966
2967@defun Inferior.threads ()
2968This method returns a tuple holding all the threads which are valid
2969when it is called. If there are no valid threads, the method will
2970return an empty tuple.
2971@end defun
2972
add5ded5
TT
2973@defun Inferior.architecture ()
2974Return the @code{gdb.Architecture} (@pxref{Architectures In Python})
2975for this inferior. This represents the architecture of the inferior
2976as a whole. Some platforms can have multiple architectures in a
2977single address space, so this may not match the architecture of a
163cffef 2978particular frame (@pxref{Frames In Python}).
9e1698c6 2979@end defun
add5ded5 2980
329baa95
DE
2981@findex Inferior.read_memory
2982@defun Inferior.read_memory (address, length)
a86c90e6 2983Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2984@var{address}. Returns a buffer object, which behaves much like an array
2985or a string. It can be modified and given to the
79778b30 2986@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2987value is a @code{memoryview} object.
2988@end defun
2989
2990@findex Inferior.write_memory
2991@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2992Write the contents of @var{buffer} to the inferior, starting at
2993@var{address}. The @var{buffer} parameter must be a Python object
2994which supports the buffer protocol, i.e., a string, an array or the
2995object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2996determines the number of addressable memory units from @var{buffer} to be
2997written.
329baa95
DE
2998@end defun
2999
3000@findex gdb.search_memory
3001@defun Inferior.search_memory (address, length, pattern)
3002Search a region of the inferior memory starting at @var{address} with
3003the given @var{length} using the search pattern supplied in
3004@var{pattern}. The @var{pattern} parameter must be a Python object
3005which supports the buffer protocol, i.e., a string, an array or the
3006object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
3007containing the address where the pattern was found, or @code{None} if
3008the pattern could not be found.
3009@end defun
3010
2b0c8b01 3011@findex Inferior.thread_from_handle
da2c323b 3012@findex Inferior.thread_from_thread_handle
2b0c8b01
KB
3013@defun Inferior.thread_from_handle (handle)
3014Return the thread object corresponding to @var{handle}, a thread
da2c323b
KB
3015library specific data structure such as @code{pthread_t} for pthreads
3016library implementations.
2b0c8b01
KB
3017
3018The function @code{Inferior.thread_from_thread_handle} provides
3019the same functionality, but use of @code{Inferior.thread_from_thread_handle}
3020is deprecated.
da2c323b
KB
3021@end defun
3022
329baa95
DE
3023@node Events In Python
3024@subsubsection Events In Python
3025@cindex inferior events in Python
3026
3027@value{GDBN} provides a general event facility so that Python code can be
3028notified of various state changes, particularly changes that occur in
3029the inferior.
3030
3031An @dfn{event} is just an object that describes some state change. The
3032type of the object and its attributes will vary depending on the details
3033of the change. All the existing events are described below.
3034
3035In order to be notified of an event, you must register an event handler
3036with an @dfn{event registry}. An event registry is an object in the
3037@code{gdb.events} module which dispatches particular events. A registry
3038provides methods to register and unregister event handlers:
3039
3040@defun EventRegistry.connect (object)
3041Add the given callable @var{object} to the registry. This object will be
3042called when an event corresponding to this registry occurs.
3043@end defun
3044
3045@defun EventRegistry.disconnect (object)
3046Remove the given @var{object} from the registry. Once removed, the object
3047will no longer receive notifications of events.
3048@end defun
3049
3050Here is an example:
3051
3052@smallexample
3053def exit_handler (event):
3054 print "event type: exit"
3055 print "exit code: %d" % (event.exit_code)
3056
3057gdb.events.exited.connect (exit_handler)
3058@end smallexample
3059
3060In the above example we connect our handler @code{exit_handler} to the
3061registry @code{events.exited}. Once connected, @code{exit_handler} gets
3062called when the inferior exits. The argument @dfn{event} in this example is
3063of type @code{gdb.ExitedEvent}. As you can see in the example the
3064@code{ExitedEvent} object has an attribute which indicates the exit code of
3065the inferior.
3066
3067The following is a listing of the event registries that are available and
3068details of the events they emit:
3069
3070@table @code
3071
3072@item events.cont
3073Emits @code{gdb.ThreadEvent}.
3074
3075Some events can be thread specific when @value{GDBN} is running in non-stop
3076mode. When represented in Python, these events all extend
3077@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
3078events which are emitted by this or other modules might extend this event.
3079Examples of these events are @code{gdb.BreakpointEvent} and
3080@code{gdb.ContinueEvent}.
3081
3082@defvar ThreadEvent.inferior_thread
3083In non-stop mode this attribute will be set to the specific thread which was
3084involved in the emitted event. Otherwise, it will be set to @code{None}.
3085@end defvar
3086
3087Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
3088
3089This event indicates that the inferior has been continued after a stop. For
3090inherited attribute refer to @code{gdb.ThreadEvent} above.
3091
3092@item events.exited
3093Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
3094@code{events.ExitedEvent} has two attributes:
3095@defvar ExitedEvent.exit_code
3096An integer representing the exit code, if available, which the inferior
3097has returned. (The exit code could be unavailable if, for example,
3098@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
3099the attribute does not exist.
3100@end defvar
373832b6 3101@defvar ExitedEvent.inferior
329baa95
DE
3102A reference to the inferior which triggered the @code{exited} event.
3103@end defvar
3104
3105@item events.stop
3106Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
3107
3108Indicates that the inferior has stopped. All events emitted by this registry
3109extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
3110will indicate the stopped thread when @value{GDBN} is running in non-stop
3111mode. Refer to @code{gdb.ThreadEvent} above for more details.
3112
3113Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
3114
3115This event indicates that the inferior or one of its threads has received as
3116signal. @code{gdb.SignalEvent} has the following attributes:
3117
3118@defvar SignalEvent.stop_signal
3119A string representing the signal received by the inferior. A list of possible
3120signal values can be obtained by running the command @code{info signals} in
3121the @value{GDBN} command prompt.
3122@end defvar
3123
3124Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
3125
3126@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
3127been hit, and has the following attributes:
3128
3129@defvar BreakpointEvent.breakpoints
3130A sequence containing references to all the breakpoints (type
3131@code{gdb.Breakpoint}) that were hit.
3132@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3133@end defvar
3134@defvar BreakpointEvent.breakpoint
3135A reference to the first breakpoint that was hit.
3136This function is maintained for backward compatibility and is now deprecated
3137in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3138@end defvar
3139
3140@item events.new_objfile
3141Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3142been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3143
3144@defvar NewObjFileEvent.new_objfile
3145A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3146@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3147@end defvar
3148
4ffbba72
DE
3149@item events.clear_objfiles
3150Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3151files for a program space has been reset.
3152@code{gdb.ClearObjFilesEvent} has one attribute:
3153
3154@defvar ClearObjFilesEvent.progspace
3155A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3156been cleared. @xref{Progspaces In Python}.
3157@end defvar
3158
fb5af5e3
TT
3159@item events.inferior_call
3160Emits events just before and after a function in the inferior is
3161called by @value{GDBN}. Before an inferior call, this emits an event
3162of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3163this emits an event of type @code{gdb.InferiorCallPostEvent}.
3164
3165@table @code
3166@tindex gdb.InferiorCallPreEvent
3167@item @code{gdb.InferiorCallPreEvent}
3168Indicates that a function in the inferior is about to be called.
162078c8
NB
3169
3170@defvar InferiorCallPreEvent.ptid
3171The thread in which the call will be run.
3172@end defvar
3173
3174@defvar InferiorCallPreEvent.address
3175The location of the function to be called.
3176@end defvar
3177
fb5af5e3
TT
3178@tindex gdb.InferiorCallPostEvent
3179@item @code{gdb.InferiorCallPostEvent}
3180Indicates that a function in the inferior has just been called.
162078c8
NB
3181
3182@defvar InferiorCallPostEvent.ptid
3183The thread in which the call was run.
3184@end defvar
3185
3186@defvar InferiorCallPostEvent.address
3187The location of the function that was called.
3188@end defvar
fb5af5e3 3189@end table
162078c8
NB
3190
3191@item events.memory_changed
3192Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3193inferior has been modified by the @value{GDBN} user, for instance via a
3194command like @w{@code{set *addr = value}}. The event has the following
3195attributes:
3196
3197@defvar MemoryChangedEvent.address
3198The start address of the changed region.
3199@end defvar
3200
3201@defvar MemoryChangedEvent.length
3202Length in bytes of the changed region.
3203@end defvar
3204
3205@item events.register_changed
3206Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3207inferior has been modified by the @value{GDBN} user.
3208
3209@defvar RegisterChangedEvent.frame
3210A gdb.Frame object representing the frame in which the register was modified.
3211@end defvar
3212@defvar RegisterChangedEvent.regnum
3213Denotes which register was modified.
3214@end defvar
3215
dac790e1
TT
3216@item events.breakpoint_created
3217This is emitted when a new breakpoint has been created. The argument
3218that is passed is the new @code{gdb.Breakpoint} object.
3219
3220@item events.breakpoint_modified
3221This is emitted when a breakpoint has been modified in some way. The
3222argument that is passed is the new @code{gdb.Breakpoint} object.
3223
3224@item events.breakpoint_deleted
3225This is emitted when a breakpoint has been deleted. The argument that
3226is passed is the @code{gdb.Breakpoint} object. When this event is
3227emitted, the @code{gdb.Breakpoint} object will already be in its
3228invalid state; that is, the @code{is_valid} method will return
3229@code{False}.
3230
3f77c769
TT
3231@item events.before_prompt
3232This event carries no payload. It is emitted each time @value{GDBN}
3233presents a prompt to the user.
3234
7c96f8c1
TT
3235@item events.new_inferior
3236This is emitted when a new inferior is created. Note that the
3237inferior is not necessarily running; in fact, it may not even have an
3238associated executable.
3239
3240The event is of type @code{gdb.NewInferiorEvent}. This has a single
3241attribute:
3242
3243@defvar NewInferiorEvent.inferior
3244The new inferior, a @code{gdb.Inferior} object.
3245@end defvar
3246
3247@item events.inferior_deleted
3248This is emitted when an inferior has been deleted. Note that this is
3249not the same as process exit; it is notified when the inferior itself
3250is removed, say via @code{remove-inferiors}.
3251
3252The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3253attribute:
3254
3255@defvar NewInferiorEvent.inferior
3256The inferior that is being removed, a @code{gdb.Inferior} object.
3257@end defvar
3258
3259@item events.new_thread
3260This is emitted when @value{GDBN} notices a new thread. The event is of
3261type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3262This has a single attribute:
3263
3264@defvar NewThreadEvent.inferior_thread
3265The new thread.
3266@end defvar
3267
329baa95
DE
3268@end table
3269
3270@node Threads In Python
3271@subsubsection Threads In Python
3272@cindex threads in python
3273
3274@findex gdb.InferiorThread
3275Python scripts can access information about, and manipulate inferior threads
3276controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3277
3278The following thread-related functions are available in the @code{gdb}
3279module:
3280
3281@findex gdb.selected_thread
3282@defun gdb.selected_thread ()
3283This function returns the thread object for the selected thread. If there
3284is no selected thread, this will return @code{None}.
3285@end defun
3286
3287A @code{gdb.InferiorThread} object has the following attributes:
3288
3289@defvar InferiorThread.name
3290The name of the thread. If the user specified a name using
3291@code{thread name}, then this returns that name. Otherwise, if an
3292OS-supplied name is available, then it is returned. Otherwise, this
3293returns @code{None}.
3294
3295This attribute can be assigned to. The new value must be a string
3296object, which sets the new name, or @code{None}, which removes any
3297user-specified thread name.
3298@end defvar
3299
3300@defvar InferiorThread.num
5d5658a1 3301The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3302@end defvar
3303
22a02324
PA
3304@defvar InferiorThread.global_num
3305The global ID of the thread, as assigned by GDB. You can use this to
3306make Python breakpoints thread-specific, for example
3307(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3308@end defvar
3309
329baa95
DE
3310@defvar InferiorThread.ptid
3311ID of the thread, as assigned by the operating system. This attribute is a
3312tuple containing three integers. The first is the Process ID (PID); the second
3313is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3314Either the LWPID or TID may be 0, which indicates that the operating system
3315does not use that identifier.
3316@end defvar
3317
84654457
PA
3318@defvar InferiorThread.inferior
3319The inferior this thread belongs to. This attribute is represented as
3320a @code{gdb.Inferior} object. This attribute is not writable.
3321@end defvar
3322
329baa95
DE
3323A @code{gdb.InferiorThread} object has the following methods:
3324
3325@defun InferiorThread.is_valid ()
3326Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3327@code{False} if not. A @code{gdb.InferiorThread} object will become
3328invalid if the thread exits, or the inferior that the thread belongs
3329is deleted. All other @code{gdb.InferiorThread} methods will throw an
3330exception if it is invalid at the time the method is called.
3331@end defun
3332
3333@defun InferiorThread.switch ()
3334This changes @value{GDBN}'s currently selected thread to the one represented
3335by this object.
3336@end defun
3337
3338@defun InferiorThread.is_stopped ()
3339Return a Boolean indicating whether the thread is stopped.
3340@end defun
3341
3342@defun InferiorThread.is_running ()
3343Return a Boolean indicating whether the thread is running.
3344@end defun
3345
3346@defun InferiorThread.is_exited ()
3347Return a Boolean indicating whether the thread is exited.
3348@end defun
3349
c369f8f0
KB
3350@defun InferiorThread.handle ()
3351Return the thread object's handle, represented as a Python @code{bytes}
3352object. A @code{gdb.Value} representation of the handle may be
3353constructed via @code{gdb.Value(bufobj, type)} where @var{bufobj} is
3354the Python @code{bytes} representation of the handle and @var{type} is
3355a @code{gdb.Type} for the handle type.
3356@end defun
3357
0a0faf9f
TW
3358@node Recordings In Python
3359@subsubsection Recordings In Python
3360@cindex recordings in python
3361
3362The following recordings-related functions
3363(@pxref{Process Record and Replay}) are available in the @code{gdb}
3364module:
3365
3366@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3367Start a recording using the given @var{method} and @var{format}. If
3368no @var{format} is given, the default format for the recording method
3369is used. If no @var{method} is given, the default method will be used.
3370Returns a @code{gdb.Record} object on success. Throw an exception on
3371failure.
3372
3373The following strings can be passed as @var{method}:
3374
3375@itemize @bullet
3376@item
3377@code{"full"}
3378@item
3379@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3380@code{"bts"} or leave out for default format.
3381@end itemize
3382@end defun
3383
3384@defun gdb.current_recording ()
3385Access a currently running recording. Return a @code{gdb.Record}
3386object on success. Return @code{None} if no recording is currently
3387active.
3388@end defun
3389
3390@defun gdb.stop_recording ()
3391Stop the current recording. Throw an exception if no recording is
3392currently active. All record objects become invalid after this call.
3393@end defun
3394
3395A @code{gdb.Record} object has the following attributes:
3396
0a0faf9f
TW
3397@defvar Record.method
3398A string with the current recording method, e.g.@: @code{full} or
3399@code{btrace}.
3400@end defvar
3401
3402@defvar Record.format
3403A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3404@code{None}.
3405@end defvar
3406
3407@defvar Record.begin
3408A method specific instruction object representing the first instruction
3409in this recording.
3410@end defvar
3411
3412@defvar Record.end
3413A method specific instruction object representing the current
3414instruction, that is not actually part of the recording.
3415@end defvar
3416
3417@defvar Record.replay_position
3418The instruction representing the current replay position. If there is
3419no replay active, this will be @code{None}.
3420@end defvar
3421
3422@defvar Record.instruction_history
3423A list with all recorded instructions.
3424@end defvar
3425
3426@defvar Record.function_call_history
3427A list with all recorded function call segments.
3428@end defvar
3429
3430A @code{gdb.Record} object has the following methods:
3431
3432@defun Record.goto (instruction)
3433Move the replay position to the given @var{instruction}.
3434@end defun
3435
d050f7d7
TW
3436The common @code{gdb.Instruction} class that recording method specific
3437instruction objects inherit from, has the following attributes:
0a0faf9f 3438
d050f7d7 3439@defvar Instruction.pc
913aeadd 3440An integer representing this instruction's address.
0a0faf9f
TW
3441@end defvar
3442
d050f7d7 3443@defvar Instruction.data
913aeadd
TW
3444A buffer with the raw instruction data. In Python 3, the return value is a
3445@code{memoryview} object.
0a0faf9f
TW
3446@end defvar
3447
d050f7d7 3448@defvar Instruction.decoded
913aeadd 3449A human readable string with the disassembled instruction.
0a0faf9f
TW
3450@end defvar
3451
d050f7d7 3452@defvar Instruction.size
913aeadd 3453The size of the instruction in bytes.
0a0faf9f
TW
3454@end defvar
3455
d050f7d7
TW
3456Additionally @code{gdb.RecordInstruction} has the following attributes:
3457
3458@defvar RecordInstruction.number
3459An integer identifying this instruction. @code{number} corresponds to
3460the numbers seen in @code{record instruction-history}
3461(@pxref{Process Record and Replay}).
3462@end defvar
3463
3464@defvar RecordInstruction.sal
3465A @code{gdb.Symtab_and_line} object representing the associated symtab
3466and line of this instruction. May be @code{None} if no debug information is
3467available.
3468@end defvar
3469
0ed5da75 3470@defvar RecordInstruction.is_speculative
d050f7d7 3471A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3472@end defvar
3473
3474If an error occured during recording or decoding a recording, this error is
3475represented by a @code{gdb.RecordGap} object in the instruction list. It has
3476the following attributes:
3477
3478@defvar RecordGap.number
3479An integer identifying this gap. @code{number} corresponds to the numbers seen
3480in @code{record instruction-history} (@pxref{Process Record and Replay}).
3481@end defvar
3482
3483@defvar RecordGap.error_code
3484A numerical representation of the reason for the gap. The value is specific to
3485the current recording method.
3486@end defvar
3487
3488@defvar RecordGap.error_string
3489A human readable string with the reason for the gap.
0a0faf9f
TW
3490@end defvar
3491
14f819c8 3492A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3493
14f819c8
TW
3494@defvar RecordFunctionSegment.number
3495An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3496the numbers seen in @code{record function-call-history}
3497(@pxref{Process Record and Replay}).
3498@end defvar
3499
14f819c8 3500@defvar RecordFunctionSegment.symbol
0a0faf9f 3501A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3502@code{None} if no debug information is available.
0a0faf9f
TW
3503@end defvar
3504
14f819c8 3505@defvar RecordFunctionSegment.level
0a0faf9f
TW
3506An integer representing the function call's stack level. May be
3507@code{None} if the function call is a gap.
3508@end defvar
3509
14f819c8 3510@defvar RecordFunctionSegment.instructions
0ed5da75 3511A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3512associated with this function call.
0a0faf9f
TW
3513@end defvar
3514
14f819c8
TW
3515@defvar RecordFunctionSegment.up
3516A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3517function segment. If the call has not been recorded, this will be the
3518function segment to which control returns. If neither the call nor the
3519return have been recorded, this will be @code{None}.
3520@end defvar
3521
14f819c8
TW
3522@defvar RecordFunctionSegment.prev
3523A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3524segment of this function call. May be @code{None}.
3525@end defvar
3526
14f819c8
TW
3527@defvar RecordFunctionSegment.next
3528A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3529this function call. May be @code{None}.
3530@end defvar
3531
3532The following example demonstrates the usage of these objects and
3533functions to create a function that will rewind a record to the last
3534time a function in a different file was executed. This would typically
3535be used to track the execution of user provided callback functions in a
3536library which typically are not visible in a back trace.
3537
3538@smallexample
3539def bringback ():
3540 rec = gdb.current_recording ()
3541 if not rec:
3542 return
3543
3544 insn = rec.instruction_history
3545 if len (insn) == 0:
3546 return
3547
3548 try:
3549 position = insn.index (rec.replay_position)
3550 except:
3551 position = -1
3552 try:
3553 filename = insn[position].sal.symtab.fullname ()
3554 except:
3555 filename = None
3556
3557 for i in reversed (insn[:position]):
3558 try:
3559 current = i.sal.symtab.fullname ()
3560 except:
3561 current = None
3562
3563 if filename == current:
3564 continue
3565
3566 rec.goto (i)
3567 return
3568@end smallexample
3569
3570Another possible application is to write a function that counts the
3571number of code executions in a given line range. This line range can
3572contain parts of functions or span across several functions and is not
3573limited to be contiguous.
3574
3575@smallexample
3576def countrange (filename, linerange):
3577 count = 0
3578
3579 def filter_only (file_name):
3580 for call in gdb.current_recording ().function_call_history:
3581 try:
3582 if file_name in call.symbol.symtab.fullname ():
3583 yield call
3584 except:
3585 pass
3586
3587 for c in filter_only (filename):
3588 for i in c.instructions:
3589 try:
3590 if i.sal.line in linerange:
3591 count += 1
3592 break;
3593 except:
3594 pass
3595
3596 return count
3597@end smallexample
3598
329baa95
DE
3599@node Commands In Python
3600@subsubsection Commands In Python
3601
3602@cindex commands in python
3603@cindex python commands
3604You can implement new @value{GDBN} CLI commands in Python. A CLI
3605command is implemented using an instance of the @code{gdb.Command}
3606class, most commonly using a subclass.
3607
3608@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3609The object initializer for @code{Command} registers the new command
3610with @value{GDBN}. This initializer is normally invoked from the
3611subclass' own @code{__init__} method.
3612
3613@var{name} is the name of the command. If @var{name} consists of
3614multiple words, then the initial words are looked for as prefix
3615commands. In this case, if one of the prefix commands does not exist,
3616an exception is raised.
3617
3618There is no support for multi-line commands.
3619
3620@var{command_class} should be one of the @samp{COMMAND_} constants
3621defined below. This argument tells @value{GDBN} how to categorize the
3622new command in the help system.
3623
3624@var{completer_class} is an optional argument. If given, it should be
3625one of the @samp{COMPLETE_} constants defined below. This argument
3626tells @value{GDBN} how to perform completion for this command. If not
3627given, @value{GDBN} will attempt to complete using the object's
3628@code{complete} method (see below); if no such method is found, an
3629error will occur when completion is attempted.
3630
3631@var{prefix} is an optional argument. If @code{True}, then the new
3632command is a prefix command; sub-commands of this command may be
3633registered.
3634
3635The help text for the new command is taken from the Python
3636documentation string for the command's class, if there is one. If no
3637documentation string is provided, the default value ``This command is
3638not documented.'' is used.
3639@end defun
3640
3641@cindex don't repeat Python command
3642@defun Command.dont_repeat ()
3643By default, a @value{GDBN} command is repeated when the user enters a
3644blank line at the command prompt. A command can suppress this
3645behavior by invoking the @code{dont_repeat} method. This is similar
3646to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3647@end defun
3648
3649@defun Command.invoke (argument, from_tty)
3650This method is called by @value{GDBN} when this command is invoked.
3651
3652@var{argument} is a string. It is the argument to the command, after
3653leading and trailing whitespace has been stripped.
3654
3655@var{from_tty} is a boolean argument. When true, this means that the
3656command was entered by the user at the terminal; when false it means
3657that the command came from elsewhere.
3658
3659If this method throws an exception, it is turned into a @value{GDBN}
3660@code{error} call. Otherwise, the return value is ignored.
3661
3662@findex gdb.string_to_argv
3663To break @var{argument} up into an argv-like string use
3664@code{gdb.string_to_argv}. This function behaves identically to
3665@value{GDBN}'s internal argument lexer @code{buildargv}.
3666It is recommended to use this for consistency.
3667Arguments are separated by spaces and may be quoted.
3668Example:
3669
3670@smallexample
3671print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3672['1', '2 "3', '4 "5', "6 '7"]
3673@end smallexample
3674
3675@end defun
3676
3677@cindex completion of Python commands
3678@defun Command.complete (text, word)
3679This method is called by @value{GDBN} when the user attempts
3680completion on this command. All forms of completion are handled by
3681this method, that is, the @key{TAB} and @key{M-?} key bindings
3682(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3683complete}).
3684
697aa1b7
EZ
3685The arguments @var{text} and @var{word} are both strings; @var{text}
3686holds the complete command line up to the cursor's location, while
329baa95
DE
3687@var{word} holds the last word of the command line; this is computed
3688using a word-breaking heuristic.
3689
3690The @code{complete} method can return several values:
3691@itemize @bullet
3692@item
3693If the return value is a sequence, the contents of the sequence are
3694used as the completions. It is up to @code{complete} to ensure that the
3695contents actually do complete the word. A zero-length sequence is
3696allowed, it means that there were no completions available. Only
3697string elements of the sequence are used; other elements in the
3698sequence are ignored.
3699
3700@item
3701If the return value is one of the @samp{COMPLETE_} constants defined
3702below, then the corresponding @value{GDBN}-internal completion
3703function is invoked, and its result is used.
3704
3705@item
3706All other results are treated as though there were no available
3707completions.
3708@end itemize
3709@end defun
3710
3711When a new command is registered, it must be declared as a member of
3712some general class of commands. This is used to classify top-level
3713commands in the on-line help system; note that prefix commands are not
3714listed under their own category but rather that of their top-level
3715command. The available classifications are represented by constants
3716defined in the @code{gdb} module:
3717
3718@table @code
3719@findex COMMAND_NONE
3720@findex gdb.COMMAND_NONE
3721@item gdb.COMMAND_NONE
3722The command does not belong to any particular class. A command in
3723this category will not be displayed in any of the help categories.
3724
3725@findex COMMAND_RUNNING
3726@findex gdb.COMMAND_RUNNING
3727@item gdb.COMMAND_RUNNING
3728The command is related to running the inferior. For example,
3729@code{start}, @code{step}, and @code{continue} are in this category.
3730Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3731commands in this category.
3732
3733@findex COMMAND_DATA
3734@findex gdb.COMMAND_DATA
3735@item gdb.COMMAND_DATA
3736The command is related to data or variables. For example,
3737@code{call}, @code{find}, and @code{print} are in this category. Type
3738@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3739in this category.
3740
3741@findex COMMAND_STACK
3742@findex gdb.COMMAND_STACK
3743@item gdb.COMMAND_STACK
3744The command has to do with manipulation of the stack. For example,
3745@code{backtrace}, @code{frame}, and @code{return} are in this
3746category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3747list of commands in this category.
3748
3749@findex COMMAND_FILES
3750@findex gdb.COMMAND_FILES
3751@item gdb.COMMAND_FILES
3752This class is used for file-related commands. For example,
3753@code{file}, @code{list} and @code{section} are in this category.
3754Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3755commands in this category.
3756
3757@findex COMMAND_SUPPORT
3758@findex gdb.COMMAND_SUPPORT
3759@item gdb.COMMAND_SUPPORT
3760This should be used for ``support facilities'', generally meaning
3761things that are useful to the user when interacting with @value{GDBN},
3762but not related to the state of the inferior. For example,
3763@code{help}, @code{make}, and @code{shell} are in this category. Type
3764@kbd{help support} at the @value{GDBN} prompt to see a list of
3765commands in this category.
3766
3767@findex COMMAND_STATUS
3768@findex gdb.COMMAND_STATUS
3769@item gdb.COMMAND_STATUS
3770The command is an @samp{info}-related command, that is, related to the
3771state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3772and @code{show} are in this category. Type @kbd{help status} at the
3773@value{GDBN} prompt to see a list of commands in this category.
3774
3775@findex COMMAND_BREAKPOINTS
3776@findex gdb.COMMAND_BREAKPOINTS
3777@item gdb.COMMAND_BREAKPOINTS
3778The command has to do with breakpoints. For example, @code{break},
3779@code{clear}, and @code{delete} are in this category. Type @kbd{help
3780breakpoints} at the @value{GDBN} prompt to see a list of commands in
3781this category.
3782
3783@findex COMMAND_TRACEPOINTS
3784@findex gdb.COMMAND_TRACEPOINTS
3785@item gdb.COMMAND_TRACEPOINTS
3786The command has to do with tracepoints. For example, @code{trace},
3787@code{actions}, and @code{tfind} are in this category. Type
3788@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3789commands in this category.
3790
3791@findex COMMAND_USER
3792@findex gdb.COMMAND_USER
3793@item gdb.COMMAND_USER
3794The command is a general purpose command for the user, and typically
3795does not fit in one of the other categories.
3796Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3797a list of commands in this category, as well as the list of gdb macros
3798(@pxref{Sequences}).
3799
3800@findex COMMAND_OBSCURE
3801@findex gdb.COMMAND_OBSCURE
3802@item gdb.COMMAND_OBSCURE
3803The command is only used in unusual circumstances, or is not of
3804general interest to users. For example, @code{checkpoint},
3805@code{fork}, and @code{stop} are in this category. Type @kbd{help
3806obscure} at the @value{GDBN} prompt to see a list of commands in this
3807category.
3808
3809@findex COMMAND_MAINTENANCE
3810@findex gdb.COMMAND_MAINTENANCE
3811@item gdb.COMMAND_MAINTENANCE
3812The command is only useful to @value{GDBN} maintainers. The
3813@code{maintenance} and @code{flushregs} commands are in this category.
3814Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3815commands in this category.
3816@end table
3817
3818A new command can use a predefined completion function, either by
3819specifying it via an argument at initialization, or by returning it
3820from the @code{complete} method. These predefined completion
3821constants are all defined in the @code{gdb} module:
3822
b3ce5e5f
DE
3823@vtable @code
3824@vindex COMPLETE_NONE
329baa95
DE
3825@item gdb.COMPLETE_NONE
3826This constant means that no completion should be done.
3827
b3ce5e5f 3828@vindex COMPLETE_FILENAME
329baa95
DE
3829@item gdb.COMPLETE_FILENAME
3830This constant means that filename completion should be performed.
3831
b3ce5e5f 3832@vindex COMPLETE_LOCATION
329baa95
DE
3833@item gdb.COMPLETE_LOCATION
3834This constant means that location completion should be done.
3835@xref{Specify Location}.
3836
b3ce5e5f 3837@vindex COMPLETE_COMMAND
329baa95
DE
3838@item gdb.COMPLETE_COMMAND
3839This constant means that completion should examine @value{GDBN}
3840command names.
3841
b3ce5e5f 3842@vindex COMPLETE_SYMBOL
329baa95
DE
3843@item gdb.COMPLETE_SYMBOL
3844This constant means that completion should be done using symbol names
3845as the source.
3846
b3ce5e5f 3847@vindex COMPLETE_EXPRESSION
329baa95
DE
3848@item gdb.COMPLETE_EXPRESSION
3849This constant means that completion should be done on expressions.
3850Often this means completing on symbol names, but some language
3851parsers also have support for completing on field names.
b3ce5e5f 3852@end vtable
329baa95
DE
3853
3854The following code snippet shows how a trivial CLI command can be
3855implemented in Python:
3856
3857@smallexample
3858class HelloWorld (gdb.Command):
3859 """Greet the whole world."""
3860
3861 def __init__ (self):
3862 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3863
3864 def invoke (self, arg, from_tty):
3865 print "Hello, World!"
3866
3867HelloWorld ()
3868@end smallexample
3869
3870The last line instantiates the class, and is necessary to trigger the
3871registration of the command with @value{GDBN}. Depending on how the
3872Python code is read into @value{GDBN}, you may need to import the
3873@code{gdb} module explicitly.
3874
3875@node Parameters In Python
3876@subsubsection Parameters In Python
3877
3878@cindex parameters in python
3879@cindex python parameters
3880@tindex gdb.Parameter
3881@tindex Parameter
3882You can implement new @value{GDBN} parameters using Python. A new
3883parameter is implemented as an instance of the @code{gdb.Parameter}
3884class.
3885
3886Parameters are exposed to the user via the @code{set} and
3887@code{show} commands. @xref{Help}.
3888
3889There are many parameters that already exist and can be set in
3890@value{GDBN}. Two examples are: @code{set follow fork} and
3891@code{set charset}. Setting these parameters influences certain
3892behavior in @value{GDBN}. Similarly, you can define parameters that
3893can be used to influence behavior in custom Python scripts and commands.
3894
3895@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3896The object initializer for @code{Parameter} registers the new
3897parameter with @value{GDBN}. This initializer is normally invoked
3898from the subclass' own @code{__init__} method.
3899
3900@var{name} is the name of the new parameter. If @var{name} consists
3901of multiple words, then the initial words are looked for as prefix
3902parameters. An example of this can be illustrated with the
3903@code{set print} set of parameters. If @var{name} is
3904@code{print foo}, then @code{print} will be searched as the prefix
3905parameter. In this case the parameter can subsequently be accessed in
3906@value{GDBN} as @code{set print foo}.
3907
3908If @var{name} consists of multiple words, and no prefix parameter group
3909can be found, an exception is raised.
3910
3911@var{command-class} should be one of the @samp{COMMAND_} constants
3912(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3913categorize the new parameter in the help system.
3914
3915@var{parameter-class} should be one of the @samp{PARAM_} constants
3916defined below. This argument tells @value{GDBN} the type of the new
3917parameter; this information is used for input validation and
3918completion.
3919
3920If @var{parameter-class} is @code{PARAM_ENUM}, then
3921@var{enum-sequence} must be a sequence of strings. These strings
3922represent the possible values for the parameter.
3923
3924If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3925of a fourth argument will cause an exception to be thrown.
3926
3927The help text for the new parameter is taken from the Python
3928documentation string for the parameter's class, if there is one. If
3929there is no documentation string, a default value is used.
3930@end defun
3931
3932@defvar Parameter.set_doc
3933If this attribute exists, and is a string, then its value is used as
3934the help text for this parameter's @code{set} command. The value is
3935examined when @code{Parameter.__init__} is invoked; subsequent changes
3936have no effect.
3937@end defvar
3938
3939@defvar Parameter.show_doc
3940If this attribute exists, and is a string, then its value is used as
3941the help text for this parameter's @code{show} command. The value is
3942examined when @code{Parameter.__init__} is invoked; subsequent changes
3943have no effect.
3944@end defvar
3945
3946@defvar Parameter.value
3947The @code{value} attribute holds the underlying value of the
3948parameter. It can be read and assigned to just as any other
3949attribute. @value{GDBN} does validation when assignments are made.
3950@end defvar
3951
984ee559
TT
3952There are two methods that may be implemented in any @code{Parameter}
3953class. These are:
329baa95
DE
3954
3955@defun Parameter.get_set_string (self)
984ee559
TT
3956If this method exists, @value{GDBN} will call it when a
3957@var{parameter}'s value has been changed via the @code{set} API (for
3958example, @kbd{set foo off}). The @code{value} attribute has already
3959been populated with the new value and may be used in output. This
3960method must return a string. If the returned string is not empty,
3961@value{GDBN} will present it to the user.
ae778caf
TT
3962
3963If this method raises the @code{gdb.GdbError} exception
3964(@pxref{Exception Handling}), then @value{GDBN} will print the
3965exception's string and the @code{set} command will fail. Note,
3966however, that the @code{value} attribute will not be reset in this
3967case. So, if your parameter must validate values, it should store the
3968old value internally and reset the exposed value, like so:
3969
3970@smallexample
3971class ExampleParam (gdb.Parameter):
3972 def __init__ (self, name):
3973 super (ExampleParam, self).__init__ (name,
3974 gdb.COMMAND_DATA,
3975 gdb.PARAM_BOOLEAN)
3976 self.value = True
3977 self.saved_value = True
3978 def validate(self):
3979 return False
3980 def get_set_string (self):
3981 if not self.validate():
3982 self.value = self.saved_value
3983 raise gdb.GdbError('Failed to validate')
3984 self.saved_value = self.value
3985@end smallexample
329baa95
DE
3986@end defun
3987
3988@defun Parameter.get_show_string (self, svalue)
3989@value{GDBN} will call this method when a @var{parameter}'s
3990@code{show} API has been invoked (for example, @kbd{show foo}). The
3991argument @code{svalue} receives the string representation of the
3992current value. This method must return a string.
3993@end defun
3994
3995When a new parameter is defined, its type must be specified. The
3996available types are represented by constants defined in the @code{gdb}
3997module:
3998
3999@table @code
4000@findex PARAM_BOOLEAN
4001@findex gdb.PARAM_BOOLEAN
4002@item gdb.PARAM_BOOLEAN
4003The value is a plain boolean. The Python boolean values, @code{True}
4004and @code{False} are the only valid values.
4005
4006@findex PARAM_AUTO_BOOLEAN
4007@findex gdb.PARAM_AUTO_BOOLEAN
4008@item gdb.PARAM_AUTO_BOOLEAN
4009The value has three possible states: true, false, and @samp{auto}. In
4010Python, true and false are represented using boolean constants, and
4011@samp{auto} is represented using @code{None}.
4012
4013@findex PARAM_UINTEGER
4014@findex gdb.PARAM_UINTEGER
4015@item gdb.PARAM_UINTEGER
4016The value is an unsigned integer. The value of 0 should be
4017interpreted to mean ``unlimited''.
4018
4019@findex PARAM_INTEGER
4020@findex gdb.PARAM_INTEGER
4021@item gdb.PARAM_INTEGER
4022The value is a signed integer. The value of 0 should be interpreted
4023to mean ``unlimited''.
4024
4025@findex PARAM_STRING
4026@findex gdb.PARAM_STRING
4027@item gdb.PARAM_STRING
4028The value is a string. When the user modifies the string, any escape
4029sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
4030translated into corresponding characters and encoded into the current
4031host charset.
4032
4033@findex PARAM_STRING_NOESCAPE
4034@findex gdb.PARAM_STRING_NOESCAPE
4035@item gdb.PARAM_STRING_NOESCAPE
4036The value is a string. When the user modifies the string, escapes are
4037passed through untranslated.
4038
4039@findex PARAM_OPTIONAL_FILENAME
4040@findex gdb.PARAM_OPTIONAL_FILENAME
4041@item gdb.PARAM_OPTIONAL_FILENAME
4042The value is a either a filename (a string), or @code{None}.
4043
4044@findex PARAM_FILENAME
4045@findex gdb.PARAM_FILENAME
4046@item gdb.PARAM_FILENAME
4047The value is a filename. This is just like
4048@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
4049
4050@findex PARAM_ZINTEGER
4051@findex gdb.PARAM_ZINTEGER
4052@item gdb.PARAM_ZINTEGER
4053The value is an integer. This is like @code{PARAM_INTEGER}, except 0
4054is interpreted as itself.
4055
0489430a
TT
4056@findex PARAM_ZUINTEGER
4057@findex gdb.PARAM_ZUINTEGER
4058@item gdb.PARAM_ZUINTEGER
4059The value is an unsigned integer. This is like @code{PARAM_INTEGER},
4060except 0 is interpreted as itself, and the value cannot be negative.
4061
4062@findex PARAM_ZUINTEGER_UNLIMITED
4063@findex gdb.PARAM_ZUINTEGER_UNLIMITED
4064@item gdb.PARAM_ZUINTEGER_UNLIMITED
4065The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
4066except the special value -1 should be interpreted to mean
4067``unlimited''. Other negative values are not allowed.
4068
329baa95
DE
4069@findex PARAM_ENUM
4070@findex gdb.PARAM_ENUM
4071@item gdb.PARAM_ENUM
4072The value is a string, which must be one of a collection string
4073constants provided when the parameter is created.
4074@end table
4075
4076@node Functions In Python
4077@subsubsection Writing new convenience functions
4078
4079@cindex writing convenience functions
4080@cindex convenience functions in python
4081@cindex python convenience functions
4082@tindex gdb.Function
4083@tindex Function
4084You can implement new convenience functions (@pxref{Convenience Vars})
4085in Python. A convenience function is an instance of a subclass of the
4086class @code{gdb.Function}.
4087
4088@defun Function.__init__ (name)
4089The initializer for @code{Function} registers the new function with
4090@value{GDBN}. The argument @var{name} is the name of the function,
4091a string. The function will be visible to the user as a convenience
4092variable of type @code{internal function}, whose name is the same as
4093the given @var{name}.
4094
4095The documentation for the new function is taken from the documentation
4096string for the new class.
4097@end defun
4098
4099@defun Function.invoke (@var{*args})
4100When a convenience function is evaluated, its arguments are converted
4101to instances of @code{gdb.Value}, and then the function's
4102@code{invoke} method is called. Note that @value{GDBN} does not
4103predetermine the arity of convenience functions. Instead, all
4104available arguments are passed to @code{invoke}, following the
4105standard Python calling convention. In particular, a convenience
4106function can have default values for parameters without ill effect.
4107
4108The return value of this method is used as its value in the enclosing
4109expression. If an ordinary Python value is returned, it is converted
4110to a @code{gdb.Value} following the usual rules.
4111@end defun
4112
4113The following code snippet shows how a trivial convenience function can
4114be implemented in Python:
4115
4116@smallexample
4117class Greet (gdb.Function):
4118 """Return string to greet someone.
4119Takes a name as argument."""
4120
4121 def __init__ (self):
4122 super (Greet, self).__init__ ("greet")
4123
4124 def invoke (self, name):
4125 return "Hello, %s!" % name.string ()
4126
4127Greet ()
4128@end smallexample
4129
4130The last line instantiates the class, and is necessary to trigger the
4131registration of the function with @value{GDBN}. Depending on how the
4132Python code is read into @value{GDBN}, you may need to import the
4133@code{gdb} module explicitly.
4134
4135Now you can use the function in an expression:
4136
4137@smallexample
4138(gdb) print $greet("Bob")
4139$1 = "Hello, Bob!"
4140@end smallexample
4141
4142@node Progspaces In Python
4143@subsubsection Program Spaces In Python
4144
4145@cindex progspaces in python
4146@tindex gdb.Progspace
4147@tindex Progspace
4148A program space, or @dfn{progspace}, represents a symbolic view
4149of an address space.
4150It consists of all of the objfiles of the program.
4151@xref{Objfiles In Python}.
4152@xref{Inferiors and Programs, program spaces}, for more details
4153about program spaces.
4154
4155The following progspace-related functions are available in the
4156@code{gdb} module:
4157
4158@findex gdb.current_progspace
4159@defun gdb.current_progspace ()
4160This function returns the program space of the currently selected inferior.
a40bf0c2
SM
4161@xref{Inferiors and Programs}. This is identical to
4162@code{gdb.selected_inferior().progspace} (@pxref{Inferiors In Python}) and is
4163included for historical compatibility.
329baa95
DE
4164@end defun
4165
4166@findex gdb.progspaces
4167@defun gdb.progspaces ()
4168Return a sequence of all the progspaces currently known to @value{GDBN}.
4169@end defun
4170
4171Each progspace is represented by an instance of the @code{gdb.Progspace}
4172class.
4173
4174@defvar Progspace.filename
4175The file name of the progspace as a string.
4176@end defvar
4177
4178@defvar Progspace.pretty_printers
4179The @code{pretty_printers} attribute is a list of functions. It is
4180used to look up pretty-printers. A @code{Value} is passed to each
4181function in order; if the function returns @code{None}, then the
4182search continues. Otherwise, the return value should be an object
4183which is used to format the value. @xref{Pretty Printing API}, for more
4184information.
4185@end defvar
4186
4187@defvar Progspace.type_printers
4188The @code{type_printers} attribute is a list of type printer objects.
4189@xref{Type Printing API}, for more information.
4190@end defvar
4191
4192@defvar Progspace.frame_filters
4193The @code{frame_filters} attribute is a dictionary of frame filter
4194objects. @xref{Frame Filter API}, for more information.
4195@end defvar
4196
8743a9cd
TT
4197A program space has the following methods:
4198
4199@findex Progspace.block_for_pc
4200@defun Progspace.block_for_pc (pc)
4201Return the innermost @code{gdb.Block} containing the given @var{pc}
4202value. If the block cannot be found for the @var{pc} value specified,
4203the function will return @code{None}.
4204@end defun
4205
4206@findex Progspace.find_pc_line
4207@defun Progspace.find_pc_line (pc)
4208Return the @code{gdb.Symtab_and_line} object corresponding to the
4209@var{pc} value. @xref{Symbol Tables In Python}. If an invalid value
4210of @var{pc} is passed as an argument, then the @code{symtab} and
4211@code{line} attributes of the returned @code{gdb.Symtab_and_line}
4212object will be @code{None} and 0 respectively.
4213@end defun
4214
4215@findex Progspace.is_valid
4216@defun Progspace.is_valid ()
4217Returns @code{True} if the @code{gdb.Progspace} object is valid,
4218@code{False} if not. A @code{gdb.Progspace} object can become invalid
4219if the program space file it refers to is not referenced by any
4220inferior. All other @code{gdb.Progspace} methods will throw an
4221exception if it is invalid at the time the method is called.
4222@end defun
4223
4224@findex Progspace.objfiles
4225@defun Progspace.objfiles ()
4226Return a sequence of all the objfiles referenced by this program
4227space. @xref{Objfiles In Python}.
4228@end defun
4229
4230@findex Progspace.solib_name
4231@defun Progspace.solib_name (address)
4232Return the name of the shared library holding the given @var{address}
4233as a string, or @code{None}.
4234@end defun
4235
02be9a71
DE
4236One may add arbitrary attributes to @code{gdb.Progspace} objects
4237in the usual Python way.
4238This is useful if, for example, one needs to do some extra record keeping
4239associated with the program space.
4240
4241In this contrived example, we want to perform some processing when
4242an objfile with a certain symbol is loaded, but we only want to do
4243this once because it is expensive. To achieve this we record the results
4244with the program space because we can't predict when the desired objfile
4245will be loaded.
4246
4247@smallexample
4248(gdb) python
4249def clear_objfiles_handler(event):
4250 event.progspace.expensive_computation = None
4251def expensive(symbol):
4252 """A mock routine to perform an "expensive" computation on symbol."""
4253 print "Computing the answer to the ultimate question ..."
4254 return 42
4255def new_objfile_handler(event):
4256 objfile = event.new_objfile
4257 progspace = objfile.progspace
4258 if not hasattr(progspace, 'expensive_computation') or \
4259 progspace.expensive_computation is None:
4260 # We use 'main' for the symbol to keep the example simple.
4261 # Note: There's no current way to constrain the lookup
4262 # to one objfile.
4263 symbol = gdb.lookup_global_symbol('main')
4264 if symbol is not None:
4265 progspace.expensive_computation = expensive(symbol)
4266gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4267gdb.events.new_objfile.connect(new_objfile_handler)
4268end
4269(gdb) file /tmp/hello
4270Reading symbols from /tmp/hello...done.
4271Computing the answer to the ultimate question ...
4272(gdb) python print gdb.current_progspace().expensive_computation
427342
4274(gdb) run
4275Starting program: /tmp/hello
4276Hello.
4277[Inferior 1 (process 4242) exited normally]
4278@end smallexample
4279
329baa95
DE
4280@node Objfiles In Python
4281@subsubsection Objfiles In Python
4282
4283@cindex objfiles in python
4284@tindex gdb.Objfile
4285@tindex Objfile
4286@value{GDBN} loads symbols for an inferior from various
4287symbol-containing files (@pxref{Files}). These include the primary
4288executable file, any shared libraries used by the inferior, and any
4289separate debug info files (@pxref{Separate Debug Files}).
4290@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4291
4292The following objfile-related functions are available in the
4293@code{gdb} module:
4294
4295@findex gdb.current_objfile
4296@defun gdb.current_objfile ()
4297When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4298sets the ``current objfile'' to the corresponding objfile. This
4299function returns the current objfile. If there is no current objfile,
4300this function returns @code{None}.
4301@end defun
4302
4303@findex gdb.objfiles
4304@defun gdb.objfiles ()
74d3fbbb
SM
4305Return a sequence of objfiles referenced by the current program space.
4306@xref{Objfiles In Python}, and @ref{Progspaces In Python}. This is identical
4307to @code{gdb.selected_inferior().progspace.objfiles()} and is included for
4308historical compatibility.
329baa95
DE
4309@end defun
4310
6dddd6a5
DE
4311@findex gdb.lookup_objfile
4312@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4313Look up @var{name}, a file name or build ID, in the list of objfiles
4314for the current program space (@pxref{Progspaces In Python}).
4315If the objfile is not found throw the Python @code{ValueError} exception.
4316
4317If @var{name} is a relative file name, then it will match any
4318source file name with the same trailing components. For example, if
4319@var{name} is @samp{gcc/expr.c}, then it will match source file
4320name of @file{/build/trunk/gcc/expr.c}, but not
4321@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4322
4323If @var{by_build_id} is provided and is @code{True} then @var{name}
4324is the build ID of the objfile. Otherwise, @var{name} is a file name.
4325This is supported only on some operating systems, notably those which use
4326the ELF format for binary files and the @sc{gnu} Binutils. For more details
4327about this feature, see the description of the @option{--build-id}
f5a476a7 4328command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4329The GNU Linker}.
4330@end defun
4331
329baa95
DE
4332Each objfile is represented by an instance of the @code{gdb.Objfile}
4333class.
4334
4335@defvar Objfile.filename
1b549396
DE
4336The file name of the objfile as a string, with symbolic links resolved.
4337
4338The value is @code{None} if the objfile is no longer valid.
4339See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4340@end defvar
4341
3a8b707a
DE
4342@defvar Objfile.username
4343The file name of the objfile as specified by the user as a string.
4344
4345The value is @code{None} if the objfile is no longer valid.
4346See the @code{gdb.Objfile.is_valid} method, described below.
4347@end defvar
4348
a0be3e44
DE
4349@defvar Objfile.owner
4350For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4351object that debug info is being provided for.
4352Otherwise this is @code{None}.
4353Separate debug info objfiles are added with the
4354@code{gdb.Objfile.add_separate_debug_file} method, described below.
4355@end defvar
4356
7c50a931
DE
4357@defvar Objfile.build_id
4358The build ID of the objfile as a string.
4359If the objfile does not have a build ID then the value is @code{None}.
4360
4361This is supported only on some operating systems, notably those which use
4362the ELF format for binary files and the @sc{gnu} Binutils. For more details
4363about this feature, see the description of the @option{--build-id}
f5a476a7 4364command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4365The GNU Linker}.
4366@end defvar
4367
d096d8c1
DE
4368@defvar Objfile.progspace
4369The containing program space of the objfile as a @code{gdb.Progspace}
4370object. @xref{Progspaces In Python}.
4371@end defvar
4372
329baa95
DE
4373@defvar Objfile.pretty_printers
4374The @code{pretty_printers} attribute is a list of functions. It is
4375used to look up pretty-printers. A @code{Value} is passed to each
4376function in order; if the function returns @code{None}, then the
4377search continues. Otherwise, the return value should be an object
4378which is used to format the value. @xref{Pretty Printing API}, for more
4379information.
4380@end defvar
4381
4382@defvar Objfile.type_printers
4383The @code{type_printers} attribute is a list of type printer objects.
4384@xref{Type Printing API}, for more information.
4385@end defvar
4386
4387@defvar Objfile.frame_filters
4388The @code{frame_filters} attribute is a dictionary of frame filter
4389objects. @xref{Frame Filter API}, for more information.
4390@end defvar
4391
02be9a71
DE
4392One may add arbitrary attributes to @code{gdb.Objfile} objects
4393in the usual Python way.
4394This is useful if, for example, one needs to do some extra record keeping
4395associated with the objfile.
4396
4397In this contrived example we record the time when @value{GDBN}
4398loaded the objfile.
4399
4400@smallexample
4401(gdb) python
4402import datetime
4403def new_objfile_handler(event):
4404 # Set the time_loaded attribute of the new objfile.
4405 event.new_objfile.time_loaded = datetime.datetime.today()
4406gdb.events.new_objfile.connect(new_objfile_handler)
4407end
4408(gdb) file ./hello
4409Reading symbols from ./hello...done.
4410(gdb) python print gdb.objfiles()[0].time_loaded
44112014-10-09 11:41:36.770345
4412@end smallexample
4413
329baa95
DE
4414A @code{gdb.Objfile} object has the following methods:
4415
4416@defun Objfile.is_valid ()
4417Returns @code{True} if the @code{gdb.Objfile} object is valid,
4418@code{False} if not. A @code{gdb.Objfile} object can become invalid
4419if the object file it refers to is not loaded in @value{GDBN} any
4420longer. All other @code{gdb.Objfile} methods will throw an exception
4421if it is invalid at the time the method is called.
4422@end defun
4423
86e4ed39
DE
4424@defun Objfile.add_separate_debug_file (file)
4425Add @var{file} to the list of files that @value{GDBN} will search for
4426debug information for the objfile.
4427This is useful when the debug info has been removed from the program
4428and stored in a separate file. @value{GDBN} has built-in support for
4429finding separate debug info files (@pxref{Separate Debug Files}), but if
4430the file doesn't live in one of the standard places that @value{GDBN}
4431searches then this function can be used to add a debug info file
4432from a different place.
4433@end defun
4434
329baa95 4435@node Frames In Python
849cba3b 4436@subsubsection Accessing inferior stack frames from Python
329baa95
DE
4437
4438@cindex frames in python
4439When the debugged program stops, @value{GDBN} is able to analyze its call
4440stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4441represents a frame in the stack. A @code{gdb.Frame} object is only valid
4442while its corresponding frame exists in the inferior's stack. If you try
4443to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4444exception (@pxref{Exception Handling}).
4445
4446Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4447operator, like:
4448
4449@smallexample
4450(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4451True
4452@end smallexample
4453
4454The following frame-related functions are available in the @code{gdb} module:
4455
4456@findex gdb.selected_frame
4457@defun gdb.selected_frame ()
4458Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4459@end defun
4460
4461@findex gdb.newest_frame
4462@defun gdb.newest_frame ()
4463Return the newest frame object for the selected thread.
4464@end defun
4465
4466@defun gdb.frame_stop_reason_string (reason)
4467Return a string explaining the reason why @value{GDBN} stopped unwinding
4468frames, as expressed by the given @var{reason} code (an integer, see the
4469@code{unwind_stop_reason} method further down in this section).
4470@end defun
4471
e0f3fd7c
TT
4472@findex gdb.invalidate_cached_frames
4473@defun gdb.invalidate_cached_frames
4474@value{GDBN} internally keeps a cache of the frames that have been
4475unwound. This function invalidates this cache.
4476
4477This function should not generally be called by ordinary Python code.
4478It is documented for the sake of completeness.
4479@end defun
4480
329baa95
DE
4481A @code{gdb.Frame} object has the following methods:
4482
4483@defun Frame.is_valid ()
4484Returns true if the @code{gdb.Frame} object is valid, false if not.
4485A frame object can become invalid if the frame it refers to doesn't
4486exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4487an exception if it is invalid at the time the method is called.
4488@end defun
4489
4490@defun Frame.name ()
4491Returns the function name of the frame, or @code{None} if it can't be
4492obtained.
4493@end defun
4494
4495@defun Frame.architecture ()
4496Returns the @code{gdb.Architecture} object corresponding to the frame's
4497architecture. @xref{Architectures In Python}.
4498@end defun
4499
4500@defun Frame.type ()
4501Returns the type of the frame. The value can be one of:
4502@table @code
4503@item gdb.NORMAL_FRAME
4504An ordinary stack frame.
4505
4506@item gdb.DUMMY_FRAME
4507A fake stack frame that was created by @value{GDBN} when performing an
4508inferior function call.
4509
4510@item gdb.INLINE_FRAME
4511A frame representing an inlined function. The function was inlined
4512into a @code{gdb.NORMAL_FRAME} that is older than this one.
4513
4514@item gdb.TAILCALL_FRAME
4515A frame representing a tail call. @xref{Tail Call Frames}.
4516
4517@item gdb.SIGTRAMP_FRAME
4518A signal trampoline frame. This is the frame created by the OS when
4519it calls into a signal handler.
4520
4521@item gdb.ARCH_FRAME
4522A fake stack frame representing a cross-architecture call.
4523
4524@item gdb.SENTINEL_FRAME
4525This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4526newest frame.
4527@end table
4528@end defun
4529
4530@defun Frame.unwind_stop_reason ()
4531Return an integer representing the reason why it's not possible to find
4532more frames toward the outermost frame. Use
4533@code{gdb.frame_stop_reason_string} to convert the value returned by this
4534function to a string. The value can be one of:
4535
4536@table @code
4537@item gdb.FRAME_UNWIND_NO_REASON
4538No particular reason (older frames should be available).
4539
4540@item gdb.FRAME_UNWIND_NULL_ID
4541The previous frame's analyzer returns an invalid result. This is no
4542longer used by @value{GDBN}, and is kept only for backward
4543compatibility.
4544
4545@item gdb.FRAME_UNWIND_OUTERMOST
4546This frame is the outermost.
4547
4548@item gdb.FRAME_UNWIND_UNAVAILABLE
4549Cannot unwind further, because that would require knowing the
4550values of registers or memory that have not been collected.
4551
4552@item gdb.FRAME_UNWIND_INNER_ID
4553This frame ID looks like it ought to belong to a NEXT frame,
4554but we got it for a PREV frame. Normally, this is a sign of
4555unwinder failure. It could also indicate stack corruption.
4556
4557@item gdb.FRAME_UNWIND_SAME_ID
4558This frame has the same ID as the previous one. That means
4559that unwinding further would almost certainly give us another
4560frame with exactly the same ID, so break the chain. Normally,
4561this is a sign of unwinder failure. It could also indicate
4562stack corruption.
4563
4564@item gdb.FRAME_UNWIND_NO_SAVED_PC
4565The frame unwinder did not find any saved PC, but we needed
4566one to unwind further.
4567
53e8a631
AB
4568@item gdb.FRAME_UNWIND_MEMORY_ERROR
4569The frame unwinder caused an error while trying to access memory.
4570
329baa95
DE
4571@item gdb.FRAME_UNWIND_FIRST_ERROR
4572Any stop reason greater or equal to this value indicates some kind
4573of error. This special value facilitates writing code that tests
4574for errors in unwinding in a way that will work correctly even if
4575the list of the other values is modified in future @value{GDBN}
4576versions. Using it, you could write:
4577@smallexample
4578reason = gdb.selected_frame().unwind_stop_reason ()
4579reason_str = gdb.frame_stop_reason_string (reason)
4580if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4581 print "An error occured: %s" % reason_str
4582@end smallexample
4583@end table
4584
4585@end defun
4586
4587@defun Frame.pc ()
4588Returns the frame's resume address.
4589@end defun
4590
4591@defun Frame.block ()
60c0454d
TT
4592Return the frame's code block. @xref{Blocks In Python}. If the frame
4593does not have a block -- for example, if there is no debugging
4594information for the code in question -- then this will throw an
4595exception.
329baa95
DE
4596@end defun
4597
4598@defun Frame.function ()
4599Return the symbol for the function corresponding to this frame.
4600@xref{Symbols In Python}.
4601@end defun
4602
4603@defun Frame.older ()
4604Return the frame that called this frame.
4605@end defun
4606
4607@defun Frame.newer ()
4608Return the frame called by this frame.
4609@end defun
4610
4611@defun Frame.find_sal ()
4612Return the frame's symtab and line object.
4613@xref{Symbol Tables In Python}.
4614@end defun
4615
5f3b99cf
SS
4616@defun Frame.read_register (register)
4617Return the value of @var{register} in this frame. The @var{register}
4618argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4619Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4620does not exist.
4621@end defun
4622
329baa95
DE
4623@defun Frame.read_var (variable @r{[}, block@r{]})
4624Return the value of @var{variable} in this frame. If the optional
4625argument @var{block} is provided, search for the variable from that
4626block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4627determined by the frame's current program counter). The @var{variable}
4628argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4629@code{gdb.Block} object.
4630@end defun
4631
4632@defun Frame.select ()
4633Set this frame to be the selected frame. @xref{Stack, ,Examining the
4634Stack}.
4635@end defun
4636
4637@node Blocks In Python
849cba3b 4638@subsubsection Accessing blocks from Python
329baa95
DE
4639
4640@cindex blocks in python
4641@tindex gdb.Block
4642
4643In @value{GDBN}, symbols are stored in blocks. A block corresponds
4644roughly to a scope in the source code. Blocks are organized
4645hierarchically, and are represented individually in Python as a
4646@code{gdb.Block}. Blocks rely on debugging information being
4647available.
4648
4649A frame has a block. Please see @ref{Frames In Python}, for a more
4650in-depth discussion of frames.
4651
4652The outermost block is known as the @dfn{global block}. The global
4653block typically holds public global variables and functions.
4654
4655The block nested just inside the global block is the @dfn{static
4656block}. The static block typically holds file-scoped variables and
4657functions.
4658
4659@value{GDBN} provides a method to get a block's superblock, but there
4660is currently no way to examine the sub-blocks of a block, or to
4661iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4662Python}).
4663
4664Here is a short example that should help explain blocks:
4665
4666@smallexample
4667/* This is in the global block. */
4668int global;
4669
4670/* This is in the static block. */
4671static int file_scope;
4672
4673/* 'function' is in the global block, and 'argument' is
4674 in a block nested inside of 'function'. */
4675int function (int argument)
4676@{
4677 /* 'local' is in a block inside 'function'. It may or may
4678 not be in the same block as 'argument'. */
4679 int local;
4680
4681 @{
4682 /* 'inner' is in a block whose superblock is the one holding
4683 'local'. */
4684 int inner;
4685
4686 /* If this call is expanded by the compiler, you may see
4687 a nested block here whose function is 'inline_function'
4688 and whose superblock is the one holding 'inner'. */
4689 inline_function ();
4690 @}
4691@}
4692@end smallexample
4693
4694A @code{gdb.Block} is iterable. The iterator returns the symbols
4695(@pxref{Symbols In Python}) local to the block. Python programs
4696should not assume that a specific block object will always contain a
4697given symbol, since changes in @value{GDBN} features and
4698infrastructure may cause symbols move across blocks in a symbol
4699table.
4700
4701The following block-related functions are available in the @code{gdb}
4702module:
4703
4704@findex gdb.block_for_pc
4705@defun gdb.block_for_pc (pc)
4706Return the innermost @code{gdb.Block} containing the given @var{pc}
4707value. If the block cannot be found for the @var{pc} value specified,
8743a9cd
TT
4708the function will return @code{None}. This is identical to
4709@code{gdb.current_progspace().block_for_pc(pc)} and is included for
4710historical compatibility.
329baa95
DE
4711@end defun
4712
4713A @code{gdb.Block} object has the following methods:
4714
4715@defun Block.is_valid ()
4716Returns @code{True} if the @code{gdb.Block} object is valid,
4717@code{False} if not. A block object can become invalid if the block it
4718refers to doesn't exist anymore in the inferior. All other
4719@code{gdb.Block} methods will throw an exception if it is invalid at
4720the time the method is called. The block's validity is also checked
4721during iteration over symbols of the block.
4722@end defun
4723
4724A @code{gdb.Block} object has the following attributes:
4725
4726@defvar Block.start
4727The start address of the block. This attribute is not writable.
4728@end defvar
4729
4730@defvar Block.end
22eb9e92
TT
4731One past the last address that appears in the block. This attribute
4732is not writable.
329baa95
DE
4733@end defvar
4734
4735@defvar Block.function
4736The name of the block represented as a @code{gdb.Symbol}. If the
4737block is not named, then this attribute holds @code{None}. This
4738attribute is not writable.
4739
4740For ordinary function blocks, the superblock is the static block.
4741However, you should note that it is possible for a function block to
4742have a superblock that is not the static block -- for instance this
4743happens for an inlined function.
4744@end defvar
4745
4746@defvar Block.superblock
4747The block containing this block. If this parent block does not exist,
4748this attribute holds @code{None}. This attribute is not writable.
4749@end defvar
4750
4751@defvar Block.global_block
4752The global block associated with this block. This attribute is not
4753writable.
4754@end defvar
4755
4756@defvar Block.static_block
4757The static block associated with this block. This attribute is not
4758writable.
4759@end defvar
4760
4761@defvar Block.is_global
4762@code{True} if the @code{gdb.Block} object is a global block,
4763@code{False} if not. This attribute is not
4764writable.
4765@end defvar
4766
4767@defvar Block.is_static
4768@code{True} if the @code{gdb.Block} object is a static block,
4769@code{False} if not. This attribute is not writable.
4770@end defvar
4771
4772@node Symbols In Python
849cba3b 4773@subsubsection Python representation of Symbols
329baa95
DE
4774
4775@cindex symbols in python
4776@tindex gdb.Symbol
4777
4778@value{GDBN} represents every variable, function and type as an
4779entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4780Similarly, Python represents these symbols in @value{GDBN} with the
4781@code{gdb.Symbol} object.
4782
4783The following symbol-related functions are available in the @code{gdb}
4784module:
4785
4786@findex gdb.lookup_symbol
4787@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4788This function searches for a symbol by name. The search scope can be
4789restricted to the parameters defined in the optional domain and block
4790arguments.
4791
4792@var{name} is the name of the symbol. It must be a string. The
4793optional @var{block} argument restricts the search to symbols visible
4794in that @var{block}. The @var{block} argument must be a
4795@code{gdb.Block} object. If omitted, the block for the current frame
4796is used. The optional @var{domain} argument restricts
4797the search to the domain type. The @var{domain} argument must be a
4798domain constant defined in the @code{gdb} module and described later
4799in this chapter.
4800
4801The result is a tuple of two elements.
4802The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4803is not found.
4804If the symbol is found, the second element is @code{True} if the symbol
4805is a field of a method's object (e.g., @code{this} in C@t{++}),
4806otherwise it is @code{False}.
4807If the symbol is not found, the second element is @code{False}.
4808@end defun
4809
4810@findex gdb.lookup_global_symbol
4811@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4812This function searches for a global symbol by name.
4813The search scope can be restricted to by the domain argument.
4814
4815@var{name} is the name of the symbol. It must be a string.
4816The optional @var{domain} argument restricts the search to the domain type.
4817The @var{domain} argument must be a domain constant defined in the @code{gdb}
4818module and described later in this chapter.
4819
4820The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4821is not found.
4822@end defun
4823
4824A @code{gdb.Symbol} object has the following attributes:
4825
4826@defvar Symbol.type
4827The type of the symbol or @code{None} if no type is recorded.
4828This attribute is represented as a @code{gdb.Type} object.
4829@xref{Types In Python}. This attribute is not writable.
4830@end defvar
4831
4832@defvar Symbol.symtab
4833The symbol table in which the symbol appears. This attribute is
4834represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4835Python}. This attribute is not writable.
4836@end defvar
4837
4838@defvar Symbol.line
4839The line number in the source code at which the symbol was defined.
4840This is an integer.
4841@end defvar
4842
4843@defvar Symbol.name
4844The name of the symbol as a string. This attribute is not writable.
4845@end defvar
4846
4847@defvar Symbol.linkage_name
4848The name of the symbol, as used by the linker (i.e., may be mangled).
4849This attribute is not writable.
4850@end defvar
4851
4852@defvar Symbol.print_name
4853The name of the symbol in a form suitable for output. This is either
4854@code{name} or @code{linkage_name}, depending on whether the user
4855asked @value{GDBN} to display demangled or mangled names.
4856@end defvar
4857
4858@defvar Symbol.addr_class
4859The address class of the symbol. This classifies how to find the value
4860of a symbol. Each address class is a constant defined in the
4861@code{gdb} module and described later in this chapter.
4862@end defvar
4863
4864@defvar Symbol.needs_frame
4865This is @code{True} if evaluating this symbol's value requires a frame
4866(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4867local variables will require a frame, but other symbols will not.
4868@end defvar
4869
4870@defvar Symbol.is_argument
4871@code{True} if the symbol is an argument of a function.
4872@end defvar
4873
4874@defvar Symbol.is_constant
4875@code{True} if the symbol is a constant.
4876@end defvar
4877
4878@defvar Symbol.is_function
4879@code{True} if the symbol is a function or a method.
4880@end defvar
4881
4882@defvar Symbol.is_variable
4883@code{True} if the symbol is a variable.
4884@end defvar
4885
4886A @code{gdb.Symbol} object has the following methods:
4887
4888@defun Symbol.is_valid ()
4889Returns @code{True} if the @code{gdb.Symbol} object is valid,
4890@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4891the symbol it refers to does not exist in @value{GDBN} any longer.
4892All other @code{gdb.Symbol} methods will throw an exception if it is
4893invalid at the time the method is called.
4894@end defun
4895
4896@defun Symbol.value (@r{[}frame@r{]})
4897Compute the value of the symbol, as a @code{gdb.Value}. For
4898functions, this computes the address of the function, cast to the
4899appropriate type. If the symbol requires a frame in order to compute
4900its value, then @var{frame} must be given. If @var{frame} is not
4901given, or if @var{frame} is invalid, then this method will throw an
4902exception.
4903@end defun
4904
4905The available domain categories in @code{gdb.Symbol} are represented
4906as constants in the @code{gdb} module:
4907
b3ce5e5f
DE
4908@vtable @code
4909@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4910@item gdb.SYMBOL_UNDEF_DOMAIN
4911This is used when a domain has not been discovered or none of the
4912following domains apply. This usually indicates an error either
4913in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4914
4915@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4916@item gdb.SYMBOL_VAR_DOMAIN
4917This domain contains variables, function names, typedef names and enum
4918type values.
b3ce5e5f
DE
4919
4920@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4921@item gdb.SYMBOL_STRUCT_DOMAIN
4922This domain holds struct, union and enum type names.
b3ce5e5f
DE
4923
4924@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4925@item gdb.SYMBOL_LABEL_DOMAIN
4926This domain contains names of labels (for gotos).
b3ce5e5f 4927
51e78fc5
TT
4928@vindex SYMBOL_MODULE_DOMAIN
4929@item gdb.SYMBOL_MODULE_DOMAIN
4930This domain contains names of Fortran module types.
4931
4932@vindex SYMBOL_COMMON_BLOCK_DOMAIN
4933@item gdb.SYMBOL_COMMON_BLOCK_DOMAIN
4934This domain contains names of Fortran common blocks.
b3ce5e5f 4935@end vtable
329baa95
DE
4936
4937The available address class categories in @code{gdb.Symbol} are represented
4938as constants in the @code{gdb} module:
4939
b3ce5e5f
DE
4940@vtable @code
4941@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4942@item gdb.SYMBOL_LOC_UNDEF
4943If this is returned by address class, it indicates an error either in
4944the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4945
4946@vindex SYMBOL_LOC_CONST
329baa95
DE
4947@item gdb.SYMBOL_LOC_CONST
4948Value is constant int.
b3ce5e5f
DE
4949
4950@vindex SYMBOL_LOC_STATIC
329baa95
DE
4951@item gdb.SYMBOL_LOC_STATIC
4952Value is at a fixed address.
b3ce5e5f
DE
4953
4954@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4955@item gdb.SYMBOL_LOC_REGISTER
4956Value is in a register.
b3ce5e5f
DE
4957
4958@vindex SYMBOL_LOC_ARG
329baa95
DE
4959@item gdb.SYMBOL_LOC_ARG
4960Value is an argument. This value is at the offset stored within the
4961symbol inside the frame's argument list.
b3ce5e5f
DE
4962
4963@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4964@item gdb.SYMBOL_LOC_REF_ARG
4965Value address is stored in the frame's argument list. Just like
4966@code{LOC_ARG} except that the value's address is stored at the
4967offset, not the value itself.
b3ce5e5f
DE
4968
4969@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4970@item gdb.SYMBOL_LOC_REGPARM_ADDR
4971Value is a specified register. Just like @code{LOC_REGISTER} except
4972the register holds the address of the argument instead of the argument
4973itself.
b3ce5e5f
DE
4974
4975@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4976@item gdb.SYMBOL_LOC_LOCAL
4977Value is a local variable.
b3ce5e5f
DE
4978
4979@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4980@item gdb.SYMBOL_LOC_TYPEDEF
4981Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4982have this class.
b3ce5e5f
DE
4983
4984@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4985@item gdb.SYMBOL_LOC_BLOCK
4986Value is a block.
b3ce5e5f
DE
4987
4988@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4989@item gdb.SYMBOL_LOC_CONST_BYTES
4990Value is a byte-sequence.
b3ce5e5f
DE
4991
4992@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4993@item gdb.SYMBOL_LOC_UNRESOLVED
4994Value is at a fixed address, but the address of the variable has to be
4995determined from the minimal symbol table whenever the variable is
4996referenced.
b3ce5e5f
DE
4997
4998@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4999@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
5000The value does not actually exist in the program.
b3ce5e5f
DE
5001
5002@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
5003@item gdb.SYMBOL_LOC_COMPUTED
5004The value's address is a computed location.
51e78fc5
TT
5005
5006@vindex SYMBOL_LOC_COMPUTED
5007@item gdb.SYMBOL_LOC_COMPUTED
5008The value's address is a symbol. This is only used for Fortran common
5009blocks.
b3ce5e5f 5010@end vtable
329baa95
DE
5011
5012@node Symbol Tables In Python
849cba3b 5013@subsubsection Symbol table representation in Python
329baa95
DE
5014
5015@cindex symbol tables in python
5016@tindex gdb.Symtab
5017@tindex gdb.Symtab_and_line
5018
5019Access to symbol table data maintained by @value{GDBN} on the inferior
5020is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
5021@code{gdb.Symtab}. Symbol table and line data for a frame is returned
5022from the @code{find_sal} method in @code{gdb.Frame} object.
5023@xref{Frames In Python}.
5024
5025For more information on @value{GDBN}'s symbol table management, see
5026@ref{Symbols, ,Examining the Symbol Table}, for more information.
5027
5028A @code{gdb.Symtab_and_line} object has the following attributes:
5029
5030@defvar Symtab_and_line.symtab
5031The symbol table object (@code{gdb.Symtab}) for this frame.
5032This attribute is not writable.
5033@end defvar
5034
5035@defvar Symtab_and_line.pc
5036Indicates the start of the address range occupied by code for the
5037current source line. This attribute is not writable.
5038@end defvar
5039
5040@defvar Symtab_and_line.last
5041Indicates the end of the address range occupied by code for the current
5042source line. This attribute is not writable.
5043@end defvar
5044
5045@defvar Symtab_and_line.line
5046Indicates the current line number for this object. This
5047attribute is not writable.
5048@end defvar
5049
5050A @code{gdb.Symtab_and_line} object has the following methods:
5051
5052@defun Symtab_and_line.is_valid ()
5053Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
5054@code{False} if not. A @code{gdb.Symtab_and_line} object can become
5055invalid if the Symbol table and line object it refers to does not
5056exist in @value{GDBN} any longer. All other
5057@code{gdb.Symtab_and_line} methods will throw an exception if it is
5058invalid at the time the method is called.
5059@end defun
5060
5061A @code{gdb.Symtab} object has the following attributes:
5062
5063@defvar Symtab.filename
5064The symbol table's source filename. This attribute is not writable.
5065@end defvar
5066
5067@defvar Symtab.objfile
5068The symbol table's backing object file. @xref{Objfiles In Python}.
5069This attribute is not writable.
5070@end defvar
5071
2b4fd423
DE
5072@defvar Symtab.producer
5073The name and possibly version number of the program that
5074compiled the code in the symbol table.
5075The contents of this string is up to the compiler.
5076If no producer information is available then @code{None} is returned.
5077This attribute is not writable.
5078@end defvar
5079
329baa95
DE
5080A @code{gdb.Symtab} object has the following methods:
5081
5082@defun Symtab.is_valid ()
5083Returns @code{True} if the @code{gdb.Symtab} object is valid,
5084@code{False} if not. A @code{gdb.Symtab} object can become invalid if
5085the symbol table it refers to does not exist in @value{GDBN} any
5086longer. All other @code{gdb.Symtab} methods will throw an exception
5087if it is invalid at the time the method is called.
5088@end defun
5089
5090@defun Symtab.fullname ()
5091Return the symbol table's source absolute file name.
5092@end defun
5093
5094@defun Symtab.global_block ()
5095Return the global block of the underlying symbol table.
5096@xref{Blocks In Python}.
5097@end defun
5098
5099@defun Symtab.static_block ()
5100Return the static block of the underlying symbol table.
5101@xref{Blocks In Python}.
5102@end defun
5103
5104@defun Symtab.linetable ()
5105Return the line table associated with the symbol table.
5106@xref{Line Tables In Python}.
5107@end defun
5108
5109@node Line Tables In Python
5110@subsubsection Manipulating line tables using Python
5111
5112@cindex line tables in python
5113@tindex gdb.LineTable
5114
5115Python code can request and inspect line table information from a
5116symbol table that is loaded in @value{GDBN}. A line table is a
5117mapping of source lines to their executable locations in memory. To
5118acquire the line table information for a particular symbol table, use
5119the @code{linetable} function (@pxref{Symbol Tables In Python}).
5120
5121A @code{gdb.LineTable} is iterable. The iterator returns
5122@code{LineTableEntry} objects that correspond to the source line and
5123address for each line table entry. @code{LineTableEntry} objects have
5124the following attributes:
5125
5126@defvar LineTableEntry.line
5127The source line number for this line table entry. This number
5128corresponds to the actual line of source. This attribute is not
5129writable.
5130@end defvar
5131
5132@defvar LineTableEntry.pc
5133The address that is associated with the line table entry where the
5134executable code for that source line resides in memory. This
5135attribute is not writable.
5136@end defvar
5137
5138As there can be multiple addresses for a single source line, you may
5139receive multiple @code{LineTableEntry} objects with matching
5140@code{line} attributes, but with different @code{pc} attributes. The
5141iterator is sorted in ascending @code{pc} order. Here is a small
5142example illustrating iterating over a line table.
5143
5144@smallexample
5145symtab = gdb.selected_frame().find_sal().symtab
5146linetable = symtab.linetable()
5147for line in linetable:
5148 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
5149@end smallexample
5150
5151This will have the following output:
5152
5153@smallexample
5154Line: 33 Address: 0x4005c8L
5155Line: 37 Address: 0x4005caL
5156Line: 39 Address: 0x4005d2L
5157Line: 40 Address: 0x4005f8L
5158Line: 42 Address: 0x4005ffL
5159Line: 44 Address: 0x400608L
5160Line: 42 Address: 0x40060cL
5161Line: 45 Address: 0x400615L
5162@end smallexample
5163
5164In addition to being able to iterate over a @code{LineTable}, it also
5165has the following direct access methods:
5166
5167@defun LineTable.line (line)
5168Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
5169entries in the line table for the given @var{line}, which specifies
5170the source code line. If there are no entries for that source code
329baa95
DE
5171@var{line}, the Python @code{None} is returned.
5172@end defun
5173
5174@defun LineTable.has_line (line)
5175Return a Python @code{Boolean} indicating whether there is an entry in
5176the line table for this source line. Return @code{True} if an entry
5177is found, or @code{False} if not.
5178@end defun
5179
5180@defun LineTable.source_lines ()
5181Return a Python @code{List} of the source line numbers in the symbol
5182table. Only lines with executable code locations are returned. The
5183contents of the @code{List} will just be the source line entries
5184represented as Python @code{Long} values.
5185@end defun
5186
5187@node Breakpoints In Python
5188@subsubsection Manipulating breakpoints using Python
5189
5190@cindex breakpoints in python
5191@tindex gdb.Breakpoint
5192
5193Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
5194class.
5195
0b982d68
SM
5196A breakpoint can be created using one of the two forms of the
5197@code{gdb.Breakpoint} constructor. The first one accepts a string
5198like one would pass to the @code{break}
5199(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
5200(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
5201create both breakpoints and watchpoints. The second accepts separate Python
5202arguments similar to @ref{Explicit Locations}, and can only be used to create
5203breakpoints.
5204
b89641ba 5205@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5206Create a new breakpoint according to @var{spec}, which is a string naming the
5207location of a breakpoint, or an expression that defines a watchpoint. The
5208string should describe a location in a format recognized by the @code{break}
5209command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5210watchpoint, by the @code{watch} command
5211(@pxref{Set Watchpoints, , Setting Watchpoints}).
5212
5213The optional @var{type} argument specifies the type of the breakpoint to create,
5214as defined below.
5215
5216The optional @var{wp_class} argument defines the class of watchpoint to create,
5217if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5218defaults to @code{gdb.WP_WRITE}.
5219
5220The optional @var{internal} argument allows the breakpoint to become invisible
5221to the user. The breakpoint will neither be reported when created, nor will it
5222be listed in the output from @code{info breakpoints} (but will be listed with
5223the @code{maint info breakpoints} command).
5224
5225The optional @var{temporary} argument makes the breakpoint a temporary
5226breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5227further access to the Python breakpoint after it has been hit will result in a
5228runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5229
5230The optional @var{qualified} argument is a boolean that allows interpreting
5231the function passed in @code{spec} as a fully-qualified name. It is equivalent
5232to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5233@ref{Explicit Locations}).
5234
0b982d68
SM
5235@end defun
5236
b89641ba 5237@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5238This second form of creating a new breakpoint specifies the explicit
5239location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5240be created in the specified source file @var{source}, at the specified
5241@var{function}, @var{label} and @var{line}.
5242
b89641ba
SM
5243@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5244explained previously.
329baa95
DE
5245@end defun
5246
cda75e70
TT
5247The available types are represented by constants defined in the @code{gdb}
5248module:
5249
5250@vtable @code
5251@vindex BP_BREAKPOINT
5252@item gdb.BP_BREAKPOINT
5253Normal code breakpoint.
5254
5255@vindex BP_WATCHPOINT
5256@item gdb.BP_WATCHPOINT
5257Watchpoint breakpoint.
5258
5259@vindex BP_HARDWARE_WATCHPOINT
5260@item gdb.BP_HARDWARE_WATCHPOINT
5261Hardware assisted watchpoint.
5262
5263@vindex BP_READ_WATCHPOINT
5264@item gdb.BP_READ_WATCHPOINT
5265Hardware assisted read watchpoint.
5266
5267@vindex BP_ACCESS_WATCHPOINT
5268@item gdb.BP_ACCESS_WATCHPOINT
5269Hardware assisted access watchpoint.
5270@end vtable
5271
5272The available watchpoint types represented by constants are defined in the
5273@code{gdb} module:
5274
5275@vtable @code
5276@vindex WP_READ
5277@item gdb.WP_READ
5278Read only watchpoint.
5279
5280@vindex WP_WRITE
5281@item gdb.WP_WRITE
5282Write only watchpoint.
5283
5284@vindex WP_ACCESS
5285@item gdb.WP_ACCESS
5286Read/Write watchpoint.
5287@end vtable
5288
329baa95
DE
5289@defun Breakpoint.stop (self)
5290The @code{gdb.Breakpoint} class can be sub-classed and, in
5291particular, you may choose to implement the @code{stop} method.
5292If this method is defined in a sub-class of @code{gdb.Breakpoint},
5293it will be called when the inferior reaches any location of a
5294breakpoint which instantiates that sub-class. If the method returns
5295@code{True}, the inferior will be stopped at the location of the
5296breakpoint, otherwise the inferior will continue.
5297
5298If there are multiple breakpoints at the same location with a
5299@code{stop} method, each one will be called regardless of the
5300return status of the previous. This ensures that all @code{stop}
5301methods have a chance to execute at that location. In this scenario
5302if one of the methods returns @code{True} but the others return
5303@code{False}, the inferior will still be stopped.
5304
5305You should not alter the execution state of the inferior (i.e.@:, step,
5306next, etc.), alter the current frame context (i.e.@:, change the current
5307active frame), or alter, add or delete any breakpoint. As a general
5308rule, you should not alter any data within @value{GDBN} or the inferior
5309at this time.
5310
5311Example @code{stop} implementation:
5312
5313@smallexample
5314class MyBreakpoint (gdb.Breakpoint):
5315 def stop (self):
5316 inf_val = gdb.parse_and_eval("foo")
5317 if inf_val == 3:
5318 return True
5319 return False
5320@end smallexample
5321@end defun
5322
329baa95
DE
5323@defun Breakpoint.is_valid ()
5324Return @code{True} if this @code{Breakpoint} object is valid,
5325@code{False} otherwise. A @code{Breakpoint} object can become invalid
5326if the user deletes the breakpoint. In this case, the object still
5327exists, but the underlying breakpoint does not. In the cases of
5328watchpoint scope, the watchpoint remains valid even if execution of the
5329inferior leaves the scope of that watchpoint.
5330@end defun
5331
fab3a15d 5332@defun Breakpoint.delete ()
329baa95
DE
5333Permanently deletes the @value{GDBN} breakpoint. This also
5334invalidates the Python @code{Breakpoint} object. Any further access
5335to this object's attributes or methods will raise an error.
5336@end defun
5337
5338@defvar Breakpoint.enabled
5339This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5340@code{False} otherwise. This attribute is writable. You can use it to enable
5341or disable the breakpoint.
329baa95
DE
5342@end defvar
5343
5344@defvar Breakpoint.silent
5345This attribute is @code{True} if the breakpoint is silent, and
5346@code{False} otherwise. This attribute is writable.
5347
5348Note that a breakpoint can also be silent if it has commands and the
5349first command is @code{silent}. This is not reported by the
5350@code{silent} attribute.
5351@end defvar
5352
93daf339
TT
5353@defvar Breakpoint.pending
5354This attribute is @code{True} if the breakpoint is pending, and
5355@code{False} otherwise. @xref{Set Breaks}. This attribute is
5356read-only.
5357@end defvar
5358
22a02324 5359@anchor{python_breakpoint_thread}
329baa95 5360@defvar Breakpoint.thread
5d5658a1
PA
5361If the breakpoint is thread-specific, this attribute holds the
5362thread's global id. If the breakpoint is not thread-specific, this
5363attribute is @code{None}. This attribute is writable.
329baa95
DE
5364@end defvar
5365
5366@defvar Breakpoint.task
5367If the breakpoint is Ada task-specific, this attribute holds the Ada task
5368id. If the breakpoint is not task-specific (or the underlying
5369language is not Ada), this attribute is @code{None}. This attribute
5370is writable.
5371@end defvar
5372
5373@defvar Breakpoint.ignore_count
5374This attribute holds the ignore count for the breakpoint, an integer.
5375This attribute is writable.
5376@end defvar
5377
5378@defvar Breakpoint.number
5379This attribute holds the breakpoint's number --- the identifier used by
5380the user to manipulate the breakpoint. This attribute is not writable.
5381@end defvar
5382
5383@defvar Breakpoint.type
5384This attribute holds the breakpoint's type --- the identifier used to
5385determine the actual breakpoint type or use-case. This attribute is not
5386writable.
5387@end defvar
5388
5389@defvar Breakpoint.visible
5390This attribute tells whether the breakpoint is visible to the user
5391when set, or when the @samp{info breakpoints} command is run. This
5392attribute is not writable.
5393@end defvar
5394
5395@defvar Breakpoint.temporary
5396This attribute indicates whether the breakpoint was created as a
5397temporary breakpoint. Temporary breakpoints are automatically deleted
5398after that breakpoint has been hit. Access to this attribute, and all
5399other attributes and functions other than the @code{is_valid}
5400function, will result in an error after the breakpoint has been hit
5401(as it has been automatically deleted). This attribute is not
5402writable.
5403@end defvar
5404
329baa95
DE
5405@defvar Breakpoint.hit_count
5406This attribute holds the hit count for the breakpoint, an integer.
5407This attribute is writable, but currently it can only be set to zero.
5408@end defvar
5409
5410@defvar Breakpoint.location
5411This attribute holds the location of the breakpoint, as specified by
5412the user. It is a string. If the breakpoint does not have a location
5413(that is, it is a watchpoint) the attribute's value is @code{None}. This
5414attribute is not writable.
5415@end defvar
5416
5417@defvar Breakpoint.expression
5418This attribute holds a breakpoint expression, as specified by
5419the user. It is a string. If the breakpoint does not have an
5420expression (the breakpoint is not a watchpoint) the attribute's value
5421is @code{None}. This attribute is not writable.
5422@end defvar
5423
5424@defvar Breakpoint.condition
5425This attribute holds the condition of the breakpoint, as specified by
5426the user. It is a string. If there is no condition, this attribute's
5427value is @code{None}. This attribute is writable.
5428@end defvar
5429
5430@defvar Breakpoint.commands
5431This attribute holds the commands attached to the breakpoint. If
5432there are commands, this attribute's value is a string holding all the
5433commands, separated by newlines. If there are no commands, this
a913fffb 5434attribute is @code{None}. This attribute is writable.
329baa95
DE
5435@end defvar
5436
5437@node Finish Breakpoints in Python
5438@subsubsection Finish Breakpoints
5439
5440@cindex python finish breakpoints
5441@tindex gdb.FinishBreakpoint
5442
5443A finish breakpoint is a temporary breakpoint set at the return address of
5444a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5445extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5446and deleted when the execution will run out of the breakpoint scope (i.e.@:
5447@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5448Finish breakpoints are thread specific and must be create with the right
5449thread selected.
5450
5451@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5452Create a finish breakpoint at the return address of the @code{gdb.Frame}
5453object @var{frame}. If @var{frame} is not provided, this defaults to the
5454newest frame. The optional @var{internal} argument allows the breakpoint to
5455become invisible to the user. @xref{Breakpoints In Python}, for further
5456details about this argument.
5457@end defun
5458
5459@defun FinishBreakpoint.out_of_scope (self)
5460In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5461@code{return} command, @dots{}), a function may not properly terminate, and
5462thus never hit the finish breakpoint. When @value{GDBN} notices such a
5463situation, the @code{out_of_scope} callback will be triggered.
5464
5465You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5466method:
5467
5468@smallexample
5469class MyFinishBreakpoint (gdb.FinishBreakpoint)
5470 def stop (self):
5471 print "normal finish"
5472 return True
5473
5474 def out_of_scope ():
5475 print "abnormal finish"
5476@end smallexample
5477@end defun
5478
5479@defvar FinishBreakpoint.return_value
5480When @value{GDBN} is stopped at a finish breakpoint and the frame
5481used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5482attribute will contain a @code{gdb.Value} object corresponding to the return
5483value of the function. The value will be @code{None} if the function return
5484type is @code{void} or if the return value was not computable. This attribute
5485is not writable.
5486@end defvar
5487
5488@node Lazy Strings In Python
849cba3b 5489@subsubsection Python representation of lazy strings
329baa95
DE
5490
5491@cindex lazy strings in python
5492@tindex gdb.LazyString
5493
5494A @dfn{lazy string} is a string whose contents is not retrieved or
5495encoded until it is needed.
5496
5497A @code{gdb.LazyString} is represented in @value{GDBN} as an
5498@code{address} that points to a region of memory, an @code{encoding}
5499that will be used to encode that region of memory, and a @code{length}
5500to delimit the region of memory that represents the string. The
5501difference between a @code{gdb.LazyString} and a string wrapped within
5502a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5503differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5504retrieved and encoded during printing, while a @code{gdb.Value}
5505wrapping a string is immediately retrieved and encoded on creation.
5506
5507A @code{gdb.LazyString} object has the following functions:
5508
5509@defun LazyString.value ()
5510Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5511will point to the string in memory, but will lose all the delayed
5512retrieval, encoding and handling that @value{GDBN} applies to a
5513@code{gdb.LazyString}.
5514@end defun
5515
5516@defvar LazyString.address
5517This attribute holds the address of the string. This attribute is not
5518writable.
5519@end defvar
5520
5521@defvar LazyString.length
5522This attribute holds the length of the string in characters. If the
5523length is -1, then the string will be fetched and encoded up to the
5524first null of appropriate width. This attribute is not writable.
5525@end defvar
5526
5527@defvar LazyString.encoding
5528This attribute holds the encoding that will be applied to the string
5529when the string is printed by @value{GDBN}. If the encoding is not
5530set, or contains an empty string, then @value{GDBN} will select the
5531most appropriate encoding when the string is printed. This attribute
5532is not writable.
5533@end defvar
5534
5535@defvar LazyString.type
5536This attribute holds the type that is represented by the lazy string's
f8d99587 5537type. For a lazy string this is a pointer or array type. To
329baa95
DE
5538resolve this to the lazy string's character type, use the type's
5539@code{target} method. @xref{Types In Python}. This attribute is not
5540writable.
5541@end defvar
5542
5543@node Architectures In Python
5544@subsubsection Python representation of architectures
5545@cindex Python architectures
5546
5547@value{GDBN} uses architecture specific parameters and artifacts in a
5548number of its various computations. An architecture is represented
5549by an instance of the @code{gdb.Architecture} class.
5550
5551A @code{gdb.Architecture} class has the following methods:
5552
5553@defun Architecture.name ()
5554Return the name (string value) of the architecture.
5555@end defun
5556
5557@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5558Return a list of disassembled instructions starting from the memory
5559address @var{start_pc}. The optional arguments @var{end_pc} and
5560@var{count} determine the number of instructions in the returned list.
5561If both the optional arguments @var{end_pc} and @var{count} are
5562specified, then a list of at most @var{count} disassembled instructions
5563whose start address falls in the closed memory address interval from
5564@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5565specified, but @var{count} is specified, then @var{count} number of
5566instructions starting from the address @var{start_pc} are returned. If
5567@var{count} is not specified but @var{end_pc} is specified, then all
5568instructions whose start address falls in the closed memory address
5569interval from @var{start_pc} to @var{end_pc} are returned. If neither
5570@var{end_pc} nor @var{count} are specified, then a single instruction at
5571@var{start_pc} is returned. For all of these cases, each element of the
5572returned list is a Python @code{dict} with the following string keys:
5573
5574@table @code
5575
5576@item addr
5577The value corresponding to this key is a Python long integer capturing
5578the memory address of the instruction.
5579
5580@item asm
5581The value corresponding to this key is a string value which represents
5582the instruction with assembly language mnemonics. The assembly
5583language flavor used is the same as that specified by the current CLI
5584variable @code{disassembly-flavor}. @xref{Machine Code}.
5585
5586@item length
5587The value corresponding to this key is the length (integer value) of the
5588instruction in bytes.
5589
5590@end table
5591@end defun
5592
5593@node Python Auto-loading
5594@subsection Python Auto-loading
5595@cindex Python auto-loading
5596
5597When a new object file is read (for example, due to the @code{file}
5598command, or because the inferior has loaded a shared library),
5599@value{GDBN} will look for Python support scripts in several ways:
5600@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5601@xref{Auto-loading extensions}.
5602
5603The auto-loading feature is useful for supplying application-specific
5604debugging commands and scripts.
5605
5606Auto-loading can be enabled or disabled,
5607and the list of auto-loaded scripts can be printed.
5608
5609@table @code
5610@anchor{set auto-load python-scripts}
5611@kindex set auto-load python-scripts
5612@item set auto-load python-scripts [on|off]
5613Enable or disable the auto-loading of Python scripts.
5614
5615@anchor{show auto-load python-scripts}
5616@kindex show auto-load python-scripts
5617@item show auto-load python-scripts
5618Show whether auto-loading of Python scripts is enabled or disabled.
5619
5620@anchor{info auto-load python-scripts}
5621@kindex info auto-load python-scripts
5622@cindex print list of auto-loaded Python scripts
5623@item info auto-load python-scripts [@var{regexp}]
5624Print the list of all Python scripts that @value{GDBN} auto-loaded.
5625
5626Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5627the @code{.debug_gdb_scripts} section and were either not found
5628(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5629@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5630This is useful because their names are not printed when @value{GDBN}
5631tries to load them and fails. There may be many of them, and printing
5632an error message for each one is problematic.
5633
5634If @var{regexp} is supplied only Python scripts with matching names are printed.
5635
5636Example:
5637
5638@smallexample
5639(gdb) info auto-load python-scripts
5640Loaded Script
5641Yes py-section-script.py
5642 full name: /tmp/py-section-script.py
5643No my-foo-pretty-printers.py
5644@end smallexample
5645@end table
5646
9f050062 5647When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5648@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5649function (@pxref{Objfiles In Python}). This can be useful for
5650registering objfile-specific pretty-printers and frame-filters.
5651
5652@node Python modules
5653@subsection Python modules
5654@cindex python modules
5655
5656@value{GDBN} comes with several modules to assist writing Python code.
5657
5658@menu
5659* gdb.printing:: Building and registering pretty-printers.
5660* gdb.types:: Utilities for working with types.
5661* gdb.prompt:: Utilities for prompt value substitution.
5662@end menu
5663
5664@node gdb.printing
5665@subsubsection gdb.printing
5666@cindex gdb.printing
5667
5668This module provides a collection of utilities for working with
5669pretty-printers.
5670
5671@table @code
5672@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5673This class specifies the API that makes @samp{info pretty-printer},
5674@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5675Pretty-printers should generally inherit from this class.
5676
5677@item SubPrettyPrinter (@var{name})
5678For printers that handle multiple types, this class specifies the
5679corresponding API for the subprinters.
5680
5681@item RegexpCollectionPrettyPrinter (@var{name})
5682Utility class for handling multiple printers, all recognized via
5683regular expressions.
5684@xref{Writing a Pretty-Printer}, for an example.
5685
5686@item FlagEnumerationPrinter (@var{name})
5687A pretty-printer which handles printing of @code{enum} values. Unlike
5688@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5689work properly when there is some overlap between the enumeration
697aa1b7
EZ
5690constants. The argument @var{name} is the name of the printer and
5691also the name of the @code{enum} type to look up.
329baa95
DE
5692
5693@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5694Register @var{printer} with the pretty-printer list of @var{obj}.
5695If @var{replace} is @code{True} then any existing copy of the printer
5696is replaced. Otherwise a @code{RuntimeError} exception is raised
5697if a printer with the same name already exists.
5698@end table
5699
5700@node gdb.types
5701@subsubsection gdb.types
5702@cindex gdb.types
5703
5704This module provides a collection of utilities for working with
5705@code{gdb.Type} objects.
5706
5707@table @code
5708@item get_basic_type (@var{type})
5709Return @var{type} with const and volatile qualifiers stripped,
5710and with typedefs and C@t{++} references converted to the underlying type.
5711
5712C@t{++} example:
5713
5714@smallexample
5715typedef const int const_int;
5716const_int foo (3);
5717const_int& foo_ref (foo);
5718int main () @{ return 0; @}
5719@end smallexample
5720
5721Then in gdb:
5722
5723@smallexample
5724(gdb) start
5725(gdb) python import gdb.types
5726(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5727(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5728int
5729@end smallexample
5730
5731@item has_field (@var{type}, @var{field})
5732Return @code{True} if @var{type}, assumed to be a type with fields
5733(e.g., a structure or union), has field @var{field}.
5734
5735@item make_enum_dict (@var{enum_type})
5736Return a Python @code{dictionary} type produced from @var{enum_type}.
5737
5738@item deep_items (@var{type})
5739Returns a Python iterator similar to the standard
5740@code{gdb.Type.iteritems} method, except that the iterator returned
5741by @code{deep_items} will recursively traverse anonymous struct or
5742union fields. For example:
5743
5744@smallexample
5745struct A
5746@{
5747 int a;
5748 union @{
5749 int b0;
5750 int b1;
5751 @};
5752@};
5753@end smallexample
5754
5755@noindent
5756Then in @value{GDBN}:
5757@smallexample
5758(@value{GDBP}) python import gdb.types
5759(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5760(@value{GDBP}) python print struct_a.keys ()
5761@{['a', '']@}
5762(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5763@{['a', 'b0', 'b1']@}
5764@end smallexample
5765
5766@item get_type_recognizers ()
5767Return a list of the enabled type recognizers for the current context.
5768This is called by @value{GDBN} during the type-printing process
5769(@pxref{Type Printing API}).
5770
5771@item apply_type_recognizers (recognizers, type_obj)
5772Apply the type recognizers, @var{recognizers}, to the type object
5773@var{type_obj}. If any recognizer returns a string, return that
5774string. Otherwise, return @code{None}. This is called by
5775@value{GDBN} during the type-printing process (@pxref{Type Printing
5776API}).
5777
5778@item register_type_printer (locus, printer)
697aa1b7
EZ
5779This is a convenience function to register a type printer
5780@var{printer}. The printer must implement the type printer protocol.
5781The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5782the printer is registered with that objfile; a @code{gdb.Progspace},
5783in which case the printer is registered with that progspace; or
5784@code{None}, in which case the printer is registered globally.
329baa95
DE
5785
5786@item TypePrinter
5787This is a base class that implements the type printer protocol. Type
5788printers are encouraged, but not required, to derive from this class.
5789It defines a constructor:
5790
5791@defmethod TypePrinter __init__ (self, name)
5792Initialize the type printer with the given name. The new printer
5793starts in the enabled state.
5794@end defmethod
5795
5796@end table
5797
5798@node gdb.prompt
5799@subsubsection gdb.prompt
5800@cindex gdb.prompt
5801
5802This module provides a method for prompt value-substitution.
5803
5804@table @code
5805@item substitute_prompt (@var{string})
5806Return @var{string} with escape sequences substituted by values. Some
5807escape sequences take arguments. You can specify arguments inside
5808``@{@}'' immediately following the escape sequence.
5809
5810The escape sequences you can pass to this function are:
5811
5812@table @code
5813@item \\
5814Substitute a backslash.
5815@item \e
5816Substitute an ESC character.
5817@item \f
5818Substitute the selected frame; an argument names a frame parameter.
5819@item \n
5820Substitute a newline.
5821@item \p
5822Substitute a parameter's value; the argument names the parameter.
5823@item \r
5824Substitute a carriage return.
5825@item \t
5826Substitute the selected thread; an argument names a thread parameter.
5827@item \v
5828Substitute the version of GDB.
5829@item \w
5830Substitute the current working directory.
5831@item \[
5832Begin a sequence of non-printing characters. These sequences are
5833typically used with the ESC character, and are not counted in the string
5834length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5835blue-colored ``(gdb)'' prompt where the length is five.
5836@item \]
5837End a sequence of non-printing characters.
5838@end table
5839
5840For example:
5841
5842@smallexample
5843substitute_prompt (``frame: \f,
5844 print arguments: \p@{print frame-arguments@}'')
5845@end smallexample
5846
5847@exdent will return the string:
5848
5849@smallexample
5850"frame: main, print arguments: scalars"
5851@end smallexample
5852@end table
This page took 0.700053 seconds and 4 git commands to generate.