Update Python unwinder documentation
[deliverable/binutils-gdb.git] / gdb / doc / python.texi
CommitLineData
e2882c85 1@c Copyright (C) 2008-2018 Free Software Foundation, Inc.
329baa95
DE
2@c Permission is granted to copy, distribute and/or modify this document
3@c under the terms of the GNU Free Documentation License, Version 1.3 or
4@c any later version published by the Free Software Foundation; with the
5@c Invariant Sections being ``Free Software'' and ``Free Software Needs
6@c Free Documentation'', with the Front-Cover Texts being ``A GNU Manual,''
7@c and with the Back-Cover Texts as in (a) below.
8@c
9@c (a) The FSF's Back-Cover Text is: ``You are free to copy and modify
10@c this GNU Manual. Buying copies from GNU Press supports the FSF in
11@c developing GNU and promoting software freedom.''
12
13@node Python
14@section Extending @value{GDBN} using Python
15@cindex python scripting
16@cindex scripting with python
17
18You can extend @value{GDBN} using the @uref{http://www.python.org/,
19Python programming language}. This feature is available only if
20@value{GDBN} was configured using @option{--with-python}.
21
22@cindex python directory
23Python scripts used by @value{GDBN} should be installed in
24@file{@var{data-directory}/python}, where @var{data-directory} is
25the data directory as determined at @value{GDBN} startup (@pxref{Data Files}).
26This directory, known as the @dfn{python directory},
27is automatically added to the Python Search Path in order to allow
28the Python interpreter to locate all scripts installed at this location.
29
30Additionally, @value{GDBN} commands and convenience functions which
31are written in Python and are located in the
32@file{@var{data-directory}/python/gdb/command} or
33@file{@var{data-directory}/python/gdb/function} directories are
34automatically imported when @value{GDBN} starts.
35
36@menu
37* Python Commands:: Accessing Python from @value{GDBN}.
38* Python API:: Accessing @value{GDBN} from Python.
39* Python Auto-loading:: Automatically loading Python code.
40* Python modules:: Python modules provided by @value{GDBN}.
41@end menu
42
43@node Python Commands
44@subsection Python Commands
45@cindex python commands
46@cindex commands to access python
47
48@value{GDBN} provides two commands for accessing the Python interpreter,
49and one related setting:
50
51@table @code
52@kindex python-interactive
53@kindex pi
54@item python-interactive @r{[}@var{command}@r{]}
55@itemx pi @r{[}@var{command}@r{]}
56Without an argument, the @code{python-interactive} command can be used
57to start an interactive Python prompt. To return to @value{GDBN},
58type the @code{EOF} character (e.g., @kbd{Ctrl-D} on an empty prompt).
59
60Alternatively, a single-line Python command can be given as an
61argument and evaluated. If the command is an expression, the result
62will be printed; otherwise, nothing will be printed. For example:
63
64@smallexample
65(@value{GDBP}) python-interactive 2 + 3
665
67@end smallexample
68
69@kindex python
70@kindex py
71@item python @r{[}@var{command}@r{]}
72@itemx py @r{[}@var{command}@r{]}
73The @code{python} command can be used to evaluate Python code.
74
75If given an argument, the @code{python} command will evaluate the
76argument as a Python command. For example:
77
78@smallexample
79(@value{GDBP}) python print 23
8023
81@end smallexample
82
83If you do not provide an argument to @code{python}, it will act as a
84multi-line command, like @code{define}. In this case, the Python
85script is made up of subsequent command lines, given after the
86@code{python} command. This command list is terminated using a line
87containing @code{end}. For example:
88
89@smallexample
90(@value{GDBP}) python
91Type python script
92End with a line saying just "end".
93>print 23
94>end
9523
96@end smallexample
97
98@kindex set python print-stack
99@item set python print-stack
100By default, @value{GDBN} will print only the message component of a
101Python exception when an error occurs in a Python script. This can be
102controlled using @code{set python print-stack}: if @code{full}, then
103full Python stack printing is enabled; if @code{none}, then Python stack
104and message printing is disabled; if @code{message}, the default, only
105the message component of the error is printed.
106@end table
107
108It is also possible to execute a Python script from the @value{GDBN}
109interpreter:
110
111@table @code
112@item source @file{script-name}
113The script name must end with @samp{.py} and @value{GDBN} must be configured
114to recognize the script language based on filename extension using
115the @code{script-extension} setting. @xref{Extending GDB, ,Extending GDB}.
116
117@item python execfile ("script-name")
118This method is based on the @code{execfile} Python built-in function,
119and thus is always available.
120@end table
121
122@node Python API
123@subsection Python API
124@cindex python api
125@cindex programming in python
126
127You can get quick online help for @value{GDBN}'s Python API by issuing
128the command @w{@kbd{python help (gdb)}}.
129
130Functions and methods which have two or more optional arguments allow
131them to be specified using keyword syntax. This allows passing some
132optional arguments while skipping others. Example:
133@w{@code{gdb.some_function ('foo', bar = 1, baz = 2)}}.
134
135@menu
136* Basic Python:: Basic Python Functions.
137* Exception Handling:: How Python exceptions are translated.
138* Values From Inferior:: Python representation of values.
139* Types In Python:: Python representation of types.
140* Pretty Printing API:: Pretty-printing values.
141* Selecting Pretty-Printers:: How GDB chooses a pretty-printer.
142* Writing a Pretty-Printer:: Writing a Pretty-Printer.
143* Type Printing API:: Pretty-printing types.
144* Frame Filter API:: Filtering Frames.
145* Frame Decorator API:: Decorating Frames.
146* Writing a Frame Filter:: Writing a Frame Filter.
d11916aa 147* Unwinding Frames in Python:: Writing frame unwinder.
0c6e92a5
SC
148* Xmethods In Python:: Adding and replacing methods of C++ classes.
149* Xmethod API:: Xmethod types.
150* Writing an Xmethod:: Writing an xmethod.
329baa95
DE
151* Inferiors In Python:: Python representation of inferiors (processes)
152* Events In Python:: Listening for events from @value{GDBN}.
153* Threads In Python:: Accessing inferior threads from Python.
0a0faf9f 154* Recordings In Python:: Accessing recordings from Python.
329baa95
DE
155* Commands In Python:: Implementing new commands in Python.
156* Parameters In Python:: Adding new @value{GDBN} parameters.
157* Functions In Python:: Writing new convenience functions.
158* Progspaces In Python:: Program spaces.
159* Objfiles In Python:: Object files.
160* Frames In Python:: Accessing inferior stack frames from Python.
161* Blocks In Python:: Accessing blocks from Python.
162* Symbols In Python:: Python representation of symbols.
163* Symbol Tables In Python:: Python representation of symbol tables.
164* Line Tables In Python:: Python representation of line tables.
165* Breakpoints In Python:: Manipulating breakpoints using Python.
166* Finish Breakpoints in Python:: Setting Breakpoints on function return
167 using Python.
168* Lazy Strings In Python:: Python representation of lazy strings.
169* Architectures In Python:: Python representation of architectures.
170@end menu
171
172@node Basic Python
173@subsubsection Basic Python
174
175@cindex python stdout
176@cindex python pagination
177At startup, @value{GDBN} overrides Python's @code{sys.stdout} and
178@code{sys.stderr} to print using @value{GDBN}'s output-paging streams.
179A Python program which outputs to one of these streams may have its
180output interrupted by the user (@pxref{Screen Size}). In this
181situation, a Python @code{KeyboardInterrupt} exception is thrown.
182
183Some care must be taken when writing Python code to run in
184@value{GDBN}. Two things worth noting in particular:
185
186@itemize @bullet
187@item
188@value{GDBN} install handlers for @code{SIGCHLD} and @code{SIGINT}.
189Python code must not override these, or even change the options using
190@code{sigaction}. If your program changes the handling of these
191signals, @value{GDBN} will most likely stop working correctly. Note
192that it is unfortunately common for GUI toolkits to install a
193@code{SIGCHLD} handler.
194
195@item
196@value{GDBN} takes care to mark its internal file descriptors as
197close-on-exec. However, this cannot be done in a thread-safe way on
198all platforms. Your Python programs should be aware of this and
199should both create new file descriptors with the close-on-exec flag
200set and arrange to close unneeded file descriptors before starting a
201child process.
202@end itemize
203
204@cindex python functions
205@cindex python module
206@cindex gdb module
207@value{GDBN} introduces a new Python module, named @code{gdb}. All
208methods and classes added by @value{GDBN} are placed in this module.
209@value{GDBN} automatically @code{import}s the @code{gdb} module for
210use in all scripts evaluated by the @code{python} command.
211
212@findex gdb.PYTHONDIR
213@defvar gdb.PYTHONDIR
214A string containing the python directory (@pxref{Python}).
215@end defvar
216
217@findex gdb.execute
218@defun gdb.execute (command @r{[}, from_tty @r{[}, to_string@r{]]})
219Evaluate @var{command}, a string, as a @value{GDBN} CLI command.
220If a GDB exception happens while @var{command} runs, it is
221translated as described in @ref{Exception Handling,,Exception Handling}.
222
697aa1b7 223The @var{from_tty} flag specifies whether @value{GDBN} ought to consider this
329baa95
DE
224command as having originated from the user invoking it interactively.
225It must be a boolean value. If omitted, it defaults to @code{False}.
226
227By default, any output produced by @var{command} is sent to
b3ce5e5f
DE
228@value{GDBN}'s standard output (and to the log output if logging is
229turned on). If the @var{to_string} parameter is
329baa95
DE
230@code{True}, then output will be collected by @code{gdb.execute} and
231returned as a string. The default is @code{False}, in which case the
232return value is @code{None}. If @var{to_string} is @code{True}, the
233@value{GDBN} virtual terminal will be temporarily set to unlimited width
234and height, and its pagination will be disabled; @pxref{Screen Size}.
235@end defun
236
237@findex gdb.breakpoints
238@defun gdb.breakpoints ()
239Return a sequence holding all of @value{GDBN}'s breakpoints.
1957f6b8
TT
240@xref{Breakpoints In Python}, for more information. In @value{GDBN}
241version 7.11 and earlier, this function returned @code{None} if there
242were no breakpoints. This peculiarity was subsequently fixed, and now
243@code{gdb.breakpoints} returns an empty sequence in this case.
329baa95
DE
244@end defun
245
d8ae99a7
PM
246@defun gdb.rbreak (regex @r{[}, minsyms @r{[}, throttle, @r{[}, symtabs @r{]]]})
247Return a Python list holding a collection of newly set
248@code{gdb.Breakpoint} objects matching function names defined by the
249@var{regex} pattern. If the @var{minsyms} keyword is @code{True}, all
250system functions (those not explicitly defined in the inferior) will
251also be included in the match. The @var{throttle} keyword takes an
252integer that defines the maximum number of pattern matches for
253functions matched by the @var{regex} pattern. If the number of
254matches exceeds the integer value of @var{throttle}, a
255@code{RuntimeError} will be raised and no breakpoints will be created.
256If @var{throttle} is not defined then there is no imposed limit on the
257maximum number of matches and breakpoints to be created. The
258@var{symtabs} keyword takes a Python iterable that yields a collection
259of @code{gdb.Symtab} objects and will restrict the search to those
260functions only contained within the @code{gdb.Symtab} objects.
261@end defun
262
329baa95
DE
263@findex gdb.parameter
264@defun gdb.parameter (parameter)
697aa1b7
EZ
265Return the value of a @value{GDBN} @var{parameter} given by its name,
266a string; the parameter name string may contain spaces if the parameter has a
267multi-part name. For example, @samp{print object} is a valid
268parameter name.
329baa95
DE
269
270If the named parameter does not exist, this function throws a
271@code{gdb.error} (@pxref{Exception Handling}). Otherwise, the
272parameter's value is converted to a Python value of the appropriate
273type, and returned.
274@end defun
275
276@findex gdb.history
277@defun gdb.history (number)
278Return a value from @value{GDBN}'s value history (@pxref{Value
697aa1b7 279History}). The @var{number} argument indicates which history element to return.
329baa95
DE
280If @var{number} is negative, then @value{GDBN} will take its absolute value
281and count backward from the last element (i.e., the most recent element) to
282find the value to return. If @var{number} is zero, then @value{GDBN} will
283return the most recent element. If the element specified by @var{number}
284doesn't exist in the value history, a @code{gdb.error} exception will be
285raised.
286
287If no exception is raised, the return value is always an instance of
288@code{gdb.Value} (@pxref{Values From Inferior}).
289@end defun
290
7729052b
TT
291@findex gdb.convenience_variable
292@defun gdb.convenience_variable (name)
293Return the value of the convenience variable (@pxref{Convenience
294Vars}) named @var{name}. @var{name} must be a string. The name
295should not include the @samp{$} that is used to mark a convenience
296variable in an expression. If the convenience variable does not
297exist, then @code{None} is returned.
298@end defun
299
300@findex gdb.set_convenience_variable
301@defun gdb.set_convenience_variable (name, value)
302Set the value of the convenience variable (@pxref{Convenience Vars})
303named @var{name}. @var{name} must be a string. The name should not
304include the @samp{$} that is used to mark a convenience variable in an
305expression. If @var{value} is @code{None}, then the convenience
306variable is removed. Otherwise, if @var{value} is not a
307@code{gdb.Value} (@pxref{Values From Inferior}), it is is converted
308using the @code{gdb.Value} constructor.
309@end defun
310
329baa95
DE
311@findex gdb.parse_and_eval
312@defun gdb.parse_and_eval (expression)
697aa1b7
EZ
313Parse @var{expression}, which must be a string, as an expression in
314the current language, evaluate it, and return the result as a
315@code{gdb.Value}.
329baa95
DE
316
317This function can be useful when implementing a new command
318(@pxref{Commands In Python}), as it provides a way to parse the
319command's argument as an expression. It is also useful simply to
7729052b 320compute values.
329baa95
DE
321@end defun
322
323@findex gdb.find_pc_line
324@defun gdb.find_pc_line (pc)
325Return the @code{gdb.Symtab_and_line} object corresponding to the
326@var{pc} value. @xref{Symbol Tables In Python}. If an invalid
327value of @var{pc} is passed as an argument, then the @code{symtab} and
328@code{line} attributes of the returned @code{gdb.Symtab_and_line} object
329will be @code{None} and 0 respectively.
330@end defun
331
332@findex gdb.post_event
333@defun gdb.post_event (event)
334Put @var{event}, a callable object taking no arguments, into
335@value{GDBN}'s internal event queue. This callable will be invoked at
336some later point, during @value{GDBN}'s event processing. Events
337posted using @code{post_event} will be run in the order in which they
338were posted; however, there is no way to know when they will be
339processed relative to other events inside @value{GDBN}.
340
341@value{GDBN} is not thread-safe. If your Python program uses multiple
342threads, you must be careful to only call @value{GDBN}-specific
b3ce5e5f 343functions in the @value{GDBN} thread. @code{post_event} ensures
329baa95
DE
344this. For example:
345
346@smallexample
347(@value{GDBP}) python
348>import threading
349>
350>class Writer():
351> def __init__(self, message):
352> self.message = message;
353> def __call__(self):
354> gdb.write(self.message)
355>
356>class MyThread1 (threading.Thread):
357> def run (self):
358> gdb.post_event(Writer("Hello "))
359>
360>class MyThread2 (threading.Thread):
361> def run (self):
362> gdb.post_event(Writer("World\n"))
363>
364>MyThread1().start()
365>MyThread2().start()
366>end
367(@value{GDBP}) Hello World
368@end smallexample
369@end defun
370
371@findex gdb.write
372@defun gdb.write (string @r{[}, stream{]})
373Print a string to @value{GDBN}'s paginated output stream. The
374optional @var{stream} determines the stream to print to. The default
375stream is @value{GDBN}'s standard output stream. Possible stream
376values are:
377
378@table @code
379@findex STDOUT
380@findex gdb.STDOUT
381@item gdb.STDOUT
382@value{GDBN}'s standard output stream.
383
384@findex STDERR
385@findex gdb.STDERR
386@item gdb.STDERR
387@value{GDBN}'s standard error stream.
388
389@findex STDLOG
390@findex gdb.STDLOG
391@item gdb.STDLOG
392@value{GDBN}'s log stream (@pxref{Logging Output}).
393@end table
394
395Writing to @code{sys.stdout} or @code{sys.stderr} will automatically
396call this function and will automatically direct the output to the
397relevant stream.
398@end defun
399
400@findex gdb.flush
401@defun gdb.flush ()
402Flush the buffer of a @value{GDBN} paginated stream so that the
403contents are displayed immediately. @value{GDBN} will flush the
404contents of a stream automatically when it encounters a newline in the
405buffer. The optional @var{stream} determines the stream to flush. The
406default stream is @value{GDBN}'s standard output stream. Possible
407stream values are:
408
409@table @code
410@findex STDOUT
411@findex gdb.STDOUT
412@item gdb.STDOUT
413@value{GDBN}'s standard output stream.
414
415@findex STDERR
416@findex gdb.STDERR
417@item gdb.STDERR
418@value{GDBN}'s standard error stream.
419
420@findex STDLOG
421@findex gdb.STDLOG
422@item gdb.STDLOG
423@value{GDBN}'s log stream (@pxref{Logging Output}).
424
425@end table
426
427Flushing @code{sys.stdout} or @code{sys.stderr} will automatically
428call this function for the relevant stream.
429@end defun
430
431@findex gdb.target_charset
432@defun gdb.target_charset ()
433Return the name of the current target character set (@pxref{Character
434Sets}). This differs from @code{gdb.parameter('target-charset')} in
435that @samp{auto} is never returned.
436@end defun
437
438@findex gdb.target_wide_charset
439@defun gdb.target_wide_charset ()
440Return the name of the current target wide character set
441(@pxref{Character Sets}). This differs from
442@code{gdb.parameter('target-wide-charset')} in that @samp{auto} is
443never returned.
444@end defun
445
446@findex gdb.solib_name
447@defun gdb.solib_name (address)
448Return the name of the shared library holding the given @var{address}
449as a string, or @code{None}.
450@end defun
451
452@findex gdb.decode_line
453@defun gdb.decode_line @r{[}expression@r{]}
454Return locations of the line specified by @var{expression}, or of the
455current line if no argument was given. This function returns a Python
456tuple containing two elements. The first element contains a string
457holding any unparsed section of @var{expression} (or @code{None} if
458the expression has been fully parsed). The second element contains
459either @code{None} or another tuple that contains all the locations
460that match the expression represented as @code{gdb.Symtab_and_line}
461objects (@pxref{Symbol Tables In Python}). If @var{expression} is
462provided, it is decoded the way that @value{GDBN}'s inbuilt
463@code{break} or @code{edit} commands do (@pxref{Specify Location}).
464@end defun
465
466@defun gdb.prompt_hook (current_prompt)
467@anchor{prompt_hook}
468
469If @var{prompt_hook} is callable, @value{GDBN} will call the method
470assigned to this operation before a prompt is displayed by
471@value{GDBN}.
472
473The parameter @code{current_prompt} contains the current @value{GDBN}
474prompt. This method must return a Python string, or @code{None}. If
475a string is returned, the @value{GDBN} prompt will be set to that
476string. If @code{None} is returned, @value{GDBN} will continue to use
477the current prompt.
478
479Some prompts cannot be substituted in @value{GDBN}. Secondary prompts
480such as those used by readline for command input, and annotation
481related prompts are prohibited from being changed.
482@end defun
483
484@node Exception Handling
485@subsubsection Exception Handling
486@cindex python exceptions
487@cindex exceptions, python
488
489When executing the @code{python} command, Python exceptions
490uncaught within the Python code are translated to calls to
491@value{GDBN} error-reporting mechanism. If the command that called
492@code{python} does not handle the error, @value{GDBN} will
493terminate it and print an error message containing the Python
494exception name, the associated value, and the Python call stack
495backtrace at the point where the exception was raised. Example:
496
497@smallexample
498(@value{GDBP}) python print foo
499Traceback (most recent call last):
500 File "<string>", line 1, in <module>
501NameError: name 'foo' is not defined
502@end smallexample
503
504@value{GDBN} errors that happen in @value{GDBN} commands invoked by
505Python code are converted to Python exceptions. The type of the
506Python exception depends on the error.
507
508@ftable @code
509@item gdb.error
510This is the base class for most exceptions generated by @value{GDBN}.
511It is derived from @code{RuntimeError}, for compatibility with earlier
512versions of @value{GDBN}.
513
514If an error occurring in @value{GDBN} does not fit into some more
515specific category, then the generated exception will have this type.
516
517@item gdb.MemoryError
518This is a subclass of @code{gdb.error} which is thrown when an
519operation tried to access invalid memory in the inferior.
520
521@item KeyboardInterrupt
522User interrupt (via @kbd{C-c} or by typing @kbd{q} at a pagination
523prompt) is translated to a Python @code{KeyboardInterrupt} exception.
524@end ftable
525
526In all cases, your exception handler will see the @value{GDBN} error
527message as its value and the Python call stack backtrace at the Python
528statement closest to where the @value{GDBN} error occured as the
529traceback.
530
4a5a194a
TT
531
532When implementing @value{GDBN} commands in Python via
533@code{gdb.Command}, or functions via @code{gdb.Function}, it is useful
534to be able to throw an exception that doesn't cause a traceback to be
535printed. For example, the user may have invoked the command
536incorrectly. @value{GDBN} provides a special exception class that can
537be used for this purpose.
538
539@ftable @code
540@item gdb.GdbError
541When thrown from a command or function, this exception will cause the
542command or function to fail, but the Python stack will not be
543displayed. @value{GDBN} does not throw this exception itself, but
544rather recognizes it when thrown from user Python code. Example:
329baa95
DE
545
546@smallexample
547(gdb) python
548>class HelloWorld (gdb.Command):
549> """Greet the whole world."""
550> def __init__ (self):
551> super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
552> def invoke (self, args, from_tty):
553> argv = gdb.string_to_argv (args)
554> if len (argv) != 0:
555> raise gdb.GdbError ("hello-world takes no arguments")
556> print "Hello, World!"
557>HelloWorld ()
558>end
559(gdb) hello-world 42
560hello-world takes no arguments
561@end smallexample
4a5a194a 562@end ftable
329baa95
DE
563
564@node Values From Inferior
565@subsubsection Values From Inferior
566@cindex values from inferior, with Python
567@cindex python, working with values from inferior
568
569@cindex @code{gdb.Value}
570@value{GDBN} provides values it obtains from the inferior program in
571an object of type @code{gdb.Value}. @value{GDBN} uses this object
572for its internal bookkeeping of the inferior's values, and for
573fetching values when necessary.
574
575Inferior values that are simple scalars can be used directly in
576Python expressions that are valid for the value's data type. Here's
577an example for an integer or floating-point value @code{some_val}:
578
579@smallexample
580bar = some_val + 2
581@end smallexample
582
583@noindent
584As result of this, @code{bar} will also be a @code{gdb.Value} object
f7bd0f78
SC
585whose values are of the same type as those of @code{some_val}. Valid
586Python operations can also be performed on @code{gdb.Value} objects
587representing a @code{struct} or @code{class} object. For such cases,
588the overloaded operator (if present), is used to perform the operation.
589For example, if @code{val1} and @code{val2} are @code{gdb.Value} objects
590representing instances of a @code{class} which overloads the @code{+}
591operator, then one can use the @code{+} operator in their Python script
592as follows:
593
594@smallexample
595val3 = val1 + val2
596@end smallexample
597
598@noindent
599The result of the operation @code{val3} is also a @code{gdb.Value}
600object corresponding to the value returned by the overloaded @code{+}
601operator. In general, overloaded operators are invoked for the
602following operations: @code{+} (binary addition), @code{-} (binary
603subtraction), @code{*} (multiplication), @code{/}, @code{%}, @code{<<},
604@code{>>}, @code{|}, @code{&}, @code{^}.
329baa95
DE
605
606Inferior values that are structures or instances of some class can
607be accessed using the Python @dfn{dictionary syntax}. For example, if
608@code{some_val} is a @code{gdb.Value} instance holding a structure, you
609can access its @code{foo} element with:
610
611@smallexample
612bar = some_val['foo']
613@end smallexample
614
615@cindex getting structure elements using gdb.Field objects as subscripts
616Again, @code{bar} will also be a @code{gdb.Value} object. Structure
617elements can also be accessed by using @code{gdb.Field} objects as
618subscripts (@pxref{Types In Python}, for more information on
619@code{gdb.Field} objects). For example, if @code{foo_field} is a
620@code{gdb.Field} object corresponding to element @code{foo} of the above
621structure, then @code{bar} can also be accessed as follows:
622
623@smallexample
624bar = some_val[foo_field]
625@end smallexample
626
627A @code{gdb.Value} that represents a function can be executed via
628inferior function call. Any arguments provided to the call must match
629the function's prototype, and must be provided in the order specified
630by that prototype.
631
632For example, @code{some_val} is a @code{gdb.Value} instance
633representing a function that takes two integers as arguments. To
634execute this function, call it like so:
635
636@smallexample
637result = some_val (10,20)
638@end smallexample
639
640Any values returned from a function call will be stored as a
641@code{gdb.Value}.
642
643The following attributes are provided:
644
645@defvar Value.address
646If this object is addressable, this read-only attribute holds a
647@code{gdb.Value} object representing the address. Otherwise,
648this attribute holds @code{None}.
649@end defvar
650
651@cindex optimized out value in Python
652@defvar Value.is_optimized_out
653This read-only boolean attribute is true if the compiler optimized out
654this value, thus it is not available for fetching from the inferior.
655@end defvar
656
657@defvar Value.type
658The type of this @code{gdb.Value}. The value of this attribute is a
659@code{gdb.Type} object (@pxref{Types In Python}).
660@end defvar
661
662@defvar Value.dynamic_type
663The dynamic type of this @code{gdb.Value}. This uses C@t{++} run-time
664type information (@acronym{RTTI}) to determine the dynamic type of the
665value. If this value is of class type, it will return the class in
666which the value is embedded, if any. If this value is of pointer or
667reference to a class type, it will compute the dynamic type of the
668referenced object, and return a pointer or reference to that type,
669respectively. In all other cases, it will return the value's static
670type.
671
672Note that this feature will only work when debugging a C@t{++} program
673that includes @acronym{RTTI} for the object in question. Otherwise,
674it will just return the static type of the value as in @kbd{ptype foo}
675(@pxref{Symbols, ptype}).
676@end defvar
677
678@defvar Value.is_lazy
679The value of this read-only boolean attribute is @code{True} if this
680@code{gdb.Value} has not yet been fetched from the inferior.
681@value{GDBN} does not fetch values until necessary, for efficiency.
682For example:
683
684@smallexample
685myval = gdb.parse_and_eval ('somevar')
686@end smallexample
687
688The value of @code{somevar} is not fetched at this time. It will be
689fetched when the value is needed, or when the @code{fetch_lazy}
690method is invoked.
691@end defvar
692
693The following methods are provided:
694
695@defun Value.__init__ (@var{val})
696Many Python values can be converted directly to a @code{gdb.Value} via
697this object initializer. Specifically:
698
699@table @asis
700@item Python boolean
701A Python boolean is converted to the boolean type from the current
702language.
703
704@item Python integer
705A Python integer is converted to the C @code{long} type for the
706current architecture.
707
708@item Python long
709A Python long is converted to the C @code{long long} type for the
710current architecture.
711
712@item Python float
713A Python float is converted to the C @code{double} type for the
714current architecture.
715
716@item Python string
b3ce5e5f
DE
717A Python string is converted to a target string in the current target
718language using the current target encoding.
719If a character cannot be represented in the current target encoding,
720then an exception is thrown.
329baa95
DE
721
722@item @code{gdb.Value}
723If @code{val} is a @code{gdb.Value}, then a copy of the value is made.
724
725@item @code{gdb.LazyString}
726If @code{val} is a @code{gdb.LazyString} (@pxref{Lazy Strings In
727Python}), then the lazy string's @code{value} method is called, and
728its result is used.
729@end table
730@end defun
731
732@defun Value.cast (type)
733Return a new instance of @code{gdb.Value} that is the result of
734casting this instance to the type described by @var{type}, which must
735be a @code{gdb.Type} object. If the cast cannot be performed for some
736reason, this method throws an exception.
737@end defun
738
739@defun Value.dereference ()
740For pointer data types, this method returns a new @code{gdb.Value} object
741whose contents is the object pointed to by the pointer. For example, if
742@code{foo} is a C pointer to an @code{int}, declared in your C program as
743
744@smallexample
745int *foo;
746@end smallexample
747
748@noindent
749then you can use the corresponding @code{gdb.Value} to access what
750@code{foo} points to like this:
751
752@smallexample
753bar = foo.dereference ()
754@end smallexample
755
756The result @code{bar} will be a @code{gdb.Value} object holding the
757value pointed to by @code{foo}.
758
759A similar function @code{Value.referenced_value} exists which also
760returns @code{gdb.Value} objects corresonding to the values pointed to
761by pointer values (and additionally, values referenced by reference
762values). However, the behavior of @code{Value.dereference}
763differs from @code{Value.referenced_value} by the fact that the
764behavior of @code{Value.dereference} is identical to applying the C
765unary operator @code{*} on a given value. For example, consider a
766reference to a pointer @code{ptrref}, declared in your C@t{++} program
767as
768
769@smallexample
770typedef int *intptr;
771...
772int val = 10;
773intptr ptr = &val;
774intptr &ptrref = ptr;
775@end smallexample
776
777Though @code{ptrref} is a reference value, one can apply the method
778@code{Value.dereference} to the @code{gdb.Value} object corresponding
779to it and obtain a @code{gdb.Value} which is identical to that
780corresponding to @code{val}. However, if you apply the method
781@code{Value.referenced_value}, the result would be a @code{gdb.Value}
782object identical to that corresponding to @code{ptr}.
783
784@smallexample
785py_ptrref = gdb.parse_and_eval ("ptrref")
786py_val = py_ptrref.dereference ()
787py_ptr = py_ptrref.referenced_value ()
788@end smallexample
789
790The @code{gdb.Value} object @code{py_val} is identical to that
791corresponding to @code{val}, and @code{py_ptr} is identical to that
792corresponding to @code{ptr}. In general, @code{Value.dereference} can
793be applied whenever the C unary operator @code{*} can be applied
794to the corresponding C value. For those cases where applying both
795@code{Value.dereference} and @code{Value.referenced_value} is allowed,
796the results obtained need not be identical (as we have seen in the above
797example). The results are however identical when applied on
798@code{gdb.Value} objects corresponding to pointers (@code{gdb.Value}
799objects with type code @code{TYPE_CODE_PTR}) in a C/C@t{++} program.
800@end defun
801
802@defun Value.referenced_value ()
803For pointer or reference data types, this method returns a new
804@code{gdb.Value} object corresponding to the value referenced by the
805pointer/reference value. For pointer data types,
806@code{Value.dereference} and @code{Value.referenced_value} produce
807identical results. The difference between these methods is that
808@code{Value.dereference} cannot get the values referenced by reference
809values. For example, consider a reference to an @code{int}, declared
810in your C@t{++} program as
811
812@smallexample
813int val = 10;
814int &ref = val;
815@end smallexample
816
817@noindent
818then applying @code{Value.dereference} to the @code{gdb.Value} object
819corresponding to @code{ref} will result in an error, while applying
820@code{Value.referenced_value} will result in a @code{gdb.Value} object
821identical to that corresponding to @code{val}.
822
823@smallexample
824py_ref = gdb.parse_and_eval ("ref")
825er_ref = py_ref.dereference () # Results in error
826py_val = py_ref.referenced_value () # Returns the referenced value
827@end smallexample
828
829The @code{gdb.Value} object @code{py_val} is identical to that
830corresponding to @code{val}.
831@end defun
832
4c082a81
SC
833@defun Value.reference_value ()
834Return a @code{gdb.Value} object which is a reference to the value
835encapsulated by this instance.
836@end defun
837
838@defun Value.const_value ()
839Return a @code{gdb.Value} object which is a @code{const} version of the
840value encapsulated by this instance.
841@end defun
842
329baa95
DE
843@defun Value.dynamic_cast (type)
844Like @code{Value.cast}, but works as if the C@t{++} @code{dynamic_cast}
845operator were used. Consult a C@t{++} reference for details.
846@end defun
847
848@defun Value.reinterpret_cast (type)
849Like @code{Value.cast}, but works as if the C@t{++} @code{reinterpret_cast}
850operator were used. Consult a C@t{++} reference for details.
851@end defun
852
853@defun Value.string (@r{[}encoding@r{[}, errors@r{[}, length@r{]]]})
854If this @code{gdb.Value} represents a string, then this method
855converts the contents to a Python string. Otherwise, this method will
856throw an exception.
857
b3ce5e5f
DE
858Values are interpreted as strings according to the rules of the
859current language. If the optional length argument is given, the
860string will be converted to that length, and will include any embedded
861zeroes that the string may contain. Otherwise, for languages
862where the string is zero-terminated, the entire string will be
863converted.
329baa95 864
b3ce5e5f
DE
865For example, in C-like languages, a value is a string if it is a pointer
866to or an array of characters or ints of type @code{wchar_t}, @code{char16_t},
867or @code{char32_t}.
329baa95
DE
868
869If the optional @var{encoding} argument is given, it must be a string
870naming the encoding of the string in the @code{gdb.Value}, such as
871@code{"ascii"}, @code{"iso-8859-6"} or @code{"utf-8"}. It accepts
872the same encodings as the corresponding argument to Python's
873@code{string.decode} method, and the Python codec machinery will be used
874to convert the string. If @var{encoding} is not given, or if
875@var{encoding} is the empty string, then either the @code{target-charset}
876(@pxref{Character Sets}) will be used, or a language-specific encoding
877will be used, if the current language is able to supply one.
878
879The optional @var{errors} argument is the same as the corresponding
880argument to Python's @code{string.decode} method.
881
882If the optional @var{length} argument is given, the string will be
883fetched and converted to the given length.
884@end defun
885
886@defun Value.lazy_string (@r{[}encoding @r{[}, length@r{]]})
887If this @code{gdb.Value} represents a string, then this method
888converts the contents to a @code{gdb.LazyString} (@pxref{Lazy Strings
889In Python}). Otherwise, this method will throw an exception.
890
891If the optional @var{encoding} argument is given, it must be a string
892naming the encoding of the @code{gdb.LazyString}. Some examples are:
893@samp{ascii}, @samp{iso-8859-6} or @samp{utf-8}. If the
894@var{encoding} argument is an encoding that @value{GDBN} does
895recognize, @value{GDBN} will raise an error.
896
897When a lazy string is printed, the @value{GDBN} encoding machinery is
898used to convert the string during printing. If the optional
899@var{encoding} argument is not provided, or is an empty string,
900@value{GDBN} will automatically select the encoding most suitable for
901the string type. For further information on encoding in @value{GDBN}
902please see @ref{Character Sets}.
903
904If the optional @var{length} argument is given, the string will be
905fetched and encoded to the length of characters specified. If
906the @var{length} argument is not provided, the string will be fetched
907and encoded until a null of appropriate width is found.
908@end defun
909
910@defun Value.fetch_lazy ()
911If the @code{gdb.Value} object is currently a lazy value
912(@code{gdb.Value.is_lazy} is @code{True}), then the value is
913fetched from the inferior. Any errors that occur in the process
914will produce a Python exception.
915
916If the @code{gdb.Value} object is not a lazy value, this method
917has no effect.
918
919This method does not return a value.
920@end defun
921
922
923@node Types In Python
924@subsubsection Types In Python
925@cindex types in Python
926@cindex Python, working with types
927
928@tindex gdb.Type
929@value{GDBN} represents types from the inferior using the class
930@code{gdb.Type}.
931
932The following type-related functions are available in the @code{gdb}
933module:
934
935@findex gdb.lookup_type
936@defun gdb.lookup_type (name @r{[}, block@r{]})
697aa1b7 937This function looks up a type by its @var{name}, which must be a string.
329baa95
DE
938
939If @var{block} is given, then @var{name} is looked up in that scope.
940Otherwise, it is searched for globally.
941
942Ordinarily, this function will return an instance of @code{gdb.Type}.
943If the named type cannot be found, it will throw an exception.
944@end defun
945
946If the type is a structure or class type, or an enum type, the fields
947of that type can be accessed using the Python @dfn{dictionary syntax}.
948For example, if @code{some_type} is a @code{gdb.Type} instance holding
949a structure type, you can access its @code{foo} field with:
950
951@smallexample
952bar = some_type['foo']
953@end smallexample
954
955@code{bar} will be a @code{gdb.Field} object; see below under the
956description of the @code{Type.fields} method for a description of the
957@code{gdb.Field} class.
958
959An instance of @code{Type} has the following attributes:
960
6d7bb824
TT
961@defvar Type.alignof
962The alignment of this type, in bytes. Type alignment comes from the
963debugging information; if it was not specified, then @value{GDBN} will
964use the relevant ABI to try to determine the alignment. In some
965cases, even this is not possible, and zero will be returned.
966@end defvar
967
329baa95
DE
968@defvar Type.code
969The type code for this type. The type code will be one of the
970@code{TYPE_CODE_} constants defined below.
971@end defvar
972
973@defvar Type.name
974The name of this type. If this type has no name, then @code{None}
975is returned.
976@end defvar
977
978@defvar Type.sizeof
979The size of this type, in target @code{char} units. Usually, a
980target's @code{char} type will be an 8-bit byte. However, on some
981unusual platforms, this type may have a different size.
982@end defvar
983
984@defvar Type.tag
985The tag name for this type. The tag name is the name after
986@code{struct}, @code{union}, or @code{enum} in C and C@t{++}; not all
987languages have this concept. If this type has no tag name, then
988@code{None} is returned.
989@end defvar
990
991The following methods are provided:
992
993@defun Type.fields ()
994For structure and union types, this method returns the fields. Range
995types have two fields, the minimum and maximum values. Enum types
996have one field per enum constant. Function and method types have one
997field per parameter. The base types of C@t{++} classes are also
998represented as fields. If the type has no fields, or does not fit
999into one of these categories, an empty sequence will be returned.
1000
1001Each field is a @code{gdb.Field} object, with some pre-defined attributes:
1002@table @code
1003@item bitpos
1004This attribute is not available for @code{enum} or @code{static}
9c37b5ae 1005(as in C@t{++}) fields. The value is the position, counting
329baa95
DE
1006in bits, from the start of the containing type.
1007
1008@item enumval
1009This attribute is only available for @code{enum} fields, and its value
1010is the enumeration member's integer representation.
1011
1012@item name
1013The name of the field, or @code{None} for anonymous fields.
1014
1015@item artificial
1016This is @code{True} if the field is artificial, usually meaning that
1017it was provided by the compiler and not the user. This attribute is
1018always provided, and is @code{False} if the field is not artificial.
1019
1020@item is_base_class
1021This is @code{True} if the field represents a base class of a C@t{++}
1022structure. This attribute is always provided, and is @code{False}
1023if the field is not a base class of the type that is the argument of
1024@code{fields}, or if that type was not a C@t{++} class.
1025
1026@item bitsize
1027If the field is packed, or is a bitfield, then this will have a
1028non-zero value, which is the size of the field in bits. Otherwise,
1029this will be zero; in this case the field's size is given by its type.
1030
1031@item type
1032The type of the field. This is usually an instance of @code{Type},
1033but it can be @code{None} in some situations.
1034
1035@item parent_type
1036The type which contains this field. This is an instance of
1037@code{gdb.Type}.
1038@end table
1039@end defun
1040
1041@defun Type.array (@var{n1} @r{[}, @var{n2}@r{]})
1042Return a new @code{gdb.Type} object which represents an array of this
1043type. If one argument is given, it is the inclusive upper bound of
1044the array; in this case the lower bound is zero. If two arguments are
1045given, the first argument is the lower bound of the array, and the
1046second argument is the upper bound of the array. An array's length
1047must not be negative, but the bounds can be.
1048@end defun
1049
1050@defun Type.vector (@var{n1} @r{[}, @var{n2}@r{]})
1051Return a new @code{gdb.Type} object which represents a vector of this
1052type. If one argument is given, it is the inclusive upper bound of
1053the vector; in this case the lower bound is zero. If two arguments are
1054given, the first argument is the lower bound of the vector, and the
1055second argument is the upper bound of the vector. A vector's length
1056must not be negative, but the bounds can be.
1057
1058The difference between an @code{array} and a @code{vector} is that
1059arrays behave like in C: when used in expressions they decay to a pointer
1060to the first element whereas vectors are treated as first class values.
1061@end defun
1062
1063@defun Type.const ()
1064Return a new @code{gdb.Type} object which represents a
1065@code{const}-qualified variant of this type.
1066@end defun
1067
1068@defun Type.volatile ()
1069Return a new @code{gdb.Type} object which represents a
1070@code{volatile}-qualified variant of this type.
1071@end defun
1072
1073@defun Type.unqualified ()
1074Return a new @code{gdb.Type} object which represents an unqualified
1075variant of this type. That is, the result is neither @code{const} nor
1076@code{volatile}.
1077@end defun
1078
1079@defun Type.range ()
1080Return a Python @code{Tuple} object that contains two elements: the
1081low bound of the argument type and the high bound of that type. If
1082the type does not have a range, @value{GDBN} will raise a
1083@code{gdb.error} exception (@pxref{Exception Handling}).
1084@end defun
1085
1086@defun Type.reference ()
1087Return a new @code{gdb.Type} object which represents a reference to this
1088type.
1089@end defun
1090
1091@defun Type.pointer ()
1092Return a new @code{gdb.Type} object which represents a pointer to this
1093type.
1094@end defun
1095
1096@defun Type.strip_typedefs ()
1097Return a new @code{gdb.Type} that represents the real type,
1098after removing all layers of typedefs.
1099@end defun
1100
1101@defun Type.target ()
1102Return a new @code{gdb.Type} object which represents the target type
1103of this type.
1104
1105For a pointer type, the target type is the type of the pointed-to
1106object. For an array type (meaning C-like arrays), the target type is
1107the type of the elements of the array. For a function or method type,
1108the target type is the type of the return value. For a complex type,
1109the target type is the type of the elements. For a typedef, the
1110target type is the aliased type.
1111
1112If the type does not have a target, this method will throw an
1113exception.
1114@end defun
1115
1116@defun Type.template_argument (n @r{[}, block@r{]})
1117If this @code{gdb.Type} is an instantiation of a template, this will
1a6a384b
JL
1118return a new @code{gdb.Value} or @code{gdb.Type} which represents the
1119value of the @var{n}th template argument (indexed starting at 0).
329baa95 1120
1a6a384b
JL
1121If this @code{gdb.Type} is not a template type, or if the type has fewer
1122than @var{n} template arguments, this will throw an exception.
1123Ordinarily, only C@t{++} code will have template types.
329baa95
DE
1124
1125If @var{block} is given, then @var{name} is looked up in that scope.
1126Otherwise, it is searched for globally.
1127@end defun
1128
59fb7612
SS
1129@defun Type.optimized_out ()
1130Return @code{gdb.Value} instance of this type whose value is optimized
1131out. This allows a frame decorator to indicate that the value of an
1132argument or a local variable is not known.
1133@end defun
329baa95
DE
1134
1135Each type has a code, which indicates what category this type falls
1136into. The available type categories are represented by constants
1137defined in the @code{gdb} module:
1138
b3ce5e5f
DE
1139@vtable @code
1140@vindex TYPE_CODE_PTR
329baa95
DE
1141@item gdb.TYPE_CODE_PTR
1142The type is a pointer.
1143
b3ce5e5f 1144@vindex TYPE_CODE_ARRAY
329baa95
DE
1145@item gdb.TYPE_CODE_ARRAY
1146The type is an array.
1147
b3ce5e5f 1148@vindex TYPE_CODE_STRUCT
329baa95
DE
1149@item gdb.TYPE_CODE_STRUCT
1150The type is a structure.
1151
b3ce5e5f 1152@vindex TYPE_CODE_UNION
329baa95
DE
1153@item gdb.TYPE_CODE_UNION
1154The type is a union.
1155
b3ce5e5f 1156@vindex TYPE_CODE_ENUM
329baa95
DE
1157@item gdb.TYPE_CODE_ENUM
1158The type is an enum.
1159
b3ce5e5f 1160@vindex TYPE_CODE_FLAGS
329baa95
DE
1161@item gdb.TYPE_CODE_FLAGS
1162A bit flags type, used for things such as status registers.
1163
b3ce5e5f 1164@vindex TYPE_CODE_FUNC
329baa95
DE
1165@item gdb.TYPE_CODE_FUNC
1166The type is a function.
1167
b3ce5e5f 1168@vindex TYPE_CODE_INT
329baa95
DE
1169@item gdb.TYPE_CODE_INT
1170The type is an integer type.
1171
b3ce5e5f 1172@vindex TYPE_CODE_FLT
329baa95
DE
1173@item gdb.TYPE_CODE_FLT
1174A floating point type.
1175
b3ce5e5f 1176@vindex TYPE_CODE_VOID
329baa95
DE
1177@item gdb.TYPE_CODE_VOID
1178The special type @code{void}.
1179
b3ce5e5f 1180@vindex TYPE_CODE_SET
329baa95
DE
1181@item gdb.TYPE_CODE_SET
1182A Pascal set type.
1183
b3ce5e5f 1184@vindex TYPE_CODE_RANGE
329baa95
DE
1185@item gdb.TYPE_CODE_RANGE
1186A range type, that is, an integer type with bounds.
1187
b3ce5e5f 1188@vindex TYPE_CODE_STRING
329baa95
DE
1189@item gdb.TYPE_CODE_STRING
1190A string type. Note that this is only used for certain languages with
1191language-defined string types; C strings are not represented this way.
1192
b3ce5e5f 1193@vindex TYPE_CODE_BITSTRING
329baa95
DE
1194@item gdb.TYPE_CODE_BITSTRING
1195A string of bits. It is deprecated.
1196
b3ce5e5f 1197@vindex TYPE_CODE_ERROR
329baa95
DE
1198@item gdb.TYPE_CODE_ERROR
1199An unknown or erroneous type.
1200
b3ce5e5f 1201@vindex TYPE_CODE_METHOD
329baa95 1202@item gdb.TYPE_CODE_METHOD
9c37b5ae 1203A method type, as found in C@t{++}.
329baa95 1204
b3ce5e5f 1205@vindex TYPE_CODE_METHODPTR
329baa95
DE
1206@item gdb.TYPE_CODE_METHODPTR
1207A pointer-to-member-function.
1208
b3ce5e5f 1209@vindex TYPE_CODE_MEMBERPTR
329baa95
DE
1210@item gdb.TYPE_CODE_MEMBERPTR
1211A pointer-to-member.
1212
b3ce5e5f 1213@vindex TYPE_CODE_REF
329baa95
DE
1214@item gdb.TYPE_CODE_REF
1215A reference type.
1216
3fcf899d
AV
1217@vindex TYPE_CODE_RVALUE_REF
1218@item gdb.TYPE_CODE_RVALUE_REF
1219A C@t{++}11 rvalue reference type.
1220
b3ce5e5f 1221@vindex TYPE_CODE_CHAR
329baa95
DE
1222@item gdb.TYPE_CODE_CHAR
1223A character type.
1224
b3ce5e5f 1225@vindex TYPE_CODE_BOOL
329baa95
DE
1226@item gdb.TYPE_CODE_BOOL
1227A boolean type.
1228
b3ce5e5f 1229@vindex TYPE_CODE_COMPLEX
329baa95
DE
1230@item gdb.TYPE_CODE_COMPLEX
1231A complex float type.
1232
b3ce5e5f 1233@vindex TYPE_CODE_TYPEDEF
329baa95
DE
1234@item gdb.TYPE_CODE_TYPEDEF
1235A typedef to some other type.
1236
b3ce5e5f 1237@vindex TYPE_CODE_NAMESPACE
329baa95
DE
1238@item gdb.TYPE_CODE_NAMESPACE
1239A C@t{++} namespace.
1240
b3ce5e5f 1241@vindex TYPE_CODE_DECFLOAT
329baa95
DE
1242@item gdb.TYPE_CODE_DECFLOAT
1243A decimal floating point type.
1244
b3ce5e5f 1245@vindex TYPE_CODE_INTERNAL_FUNCTION
329baa95
DE
1246@item gdb.TYPE_CODE_INTERNAL_FUNCTION
1247A function internal to @value{GDBN}. This is the type used to represent
1248convenience functions.
b3ce5e5f 1249@end vtable
329baa95
DE
1250
1251Further support for types is provided in the @code{gdb.types}
1252Python module (@pxref{gdb.types}).
1253
1254@node Pretty Printing API
1255@subsubsection Pretty Printing API
b3ce5e5f 1256@cindex python pretty printing api
329baa95
DE
1257
1258An example output is provided (@pxref{Pretty Printing}).
1259
1260A pretty-printer is just an object that holds a value and implements a
1261specific interface, defined here.
1262
1263@defun pretty_printer.children (self)
1264@value{GDBN} will call this method on a pretty-printer to compute the
1265children of the pretty-printer's value.
1266
1267This method must return an object conforming to the Python iterator
1268protocol. Each item returned by the iterator must be a tuple holding
1269two elements. The first element is the ``name'' of the child; the
1270second element is the child's value. The value can be any Python
1271object which is convertible to a @value{GDBN} value.
1272
1273This method is optional. If it does not exist, @value{GDBN} will act
1274as though the value has no children.
1275@end defun
1276
1277@defun pretty_printer.display_hint (self)
1278The CLI may call this method and use its result to change the
1279formatting of a value. The result will also be supplied to an MI
1280consumer as a @samp{displayhint} attribute of the variable being
1281printed.
1282
1283This method is optional. If it does exist, this method must return a
1284string.
1285
1286Some display hints are predefined by @value{GDBN}:
1287
1288@table @samp
1289@item array
1290Indicate that the object being printed is ``array-like''. The CLI
1291uses this to respect parameters such as @code{set print elements} and
1292@code{set print array}.
1293
1294@item map
1295Indicate that the object being printed is ``map-like'', and that the
1296children of this value can be assumed to alternate between keys and
1297values.
1298
1299@item string
1300Indicate that the object being printed is ``string-like''. If the
1301printer's @code{to_string} method returns a Python string of some
1302kind, then @value{GDBN} will call its internal language-specific
1303string-printing function to format the string. For the CLI this means
1304adding quotation marks, possibly escaping some characters, respecting
1305@code{set print elements}, and the like.
1306@end table
1307@end defun
1308
1309@defun pretty_printer.to_string (self)
1310@value{GDBN} will call this method to display the string
1311representation of the value passed to the object's constructor.
1312
1313When printing from the CLI, if the @code{to_string} method exists,
1314then @value{GDBN} will prepend its result to the values returned by
1315@code{children}. Exactly how this formatting is done is dependent on
1316the display hint, and may change as more hints are added. Also,
1317depending on the print settings (@pxref{Print Settings}), the CLI may
1318print just the result of @code{to_string} in a stack trace, omitting
1319the result of @code{children}.
1320
1321If this method returns a string, it is printed verbatim.
1322
1323Otherwise, if this method returns an instance of @code{gdb.Value},
1324then @value{GDBN} prints this value. This may result in a call to
1325another pretty-printer.
1326
1327If instead the method returns a Python value which is convertible to a
1328@code{gdb.Value}, then @value{GDBN} performs the conversion and prints
1329the resulting value. Again, this may result in a call to another
1330pretty-printer. Python scalars (integers, floats, and booleans) and
1331strings are convertible to @code{gdb.Value}; other types are not.
1332
1333Finally, if this method returns @code{None} then no further operations
1334are peformed in this method and nothing is printed.
1335
1336If the result is not one of these types, an exception is raised.
1337@end defun
1338
1339@value{GDBN} provides a function which can be used to look up the
1340default pretty-printer for a @code{gdb.Value}:
1341
1342@findex gdb.default_visualizer
1343@defun gdb.default_visualizer (value)
1344This function takes a @code{gdb.Value} object as an argument. If a
1345pretty-printer for this value exists, then it is returned. If no such
1346printer exists, then this returns @code{None}.
1347@end defun
1348
1349@node Selecting Pretty-Printers
1350@subsubsection Selecting Pretty-Printers
b3ce5e5f 1351@cindex selecting python pretty-printers
329baa95
DE
1352
1353The Python list @code{gdb.pretty_printers} contains an array of
1354functions or callable objects that have been registered via addition
1355as a pretty-printer. Printers in this list are called @code{global}
1356printers, they're available when debugging all inferiors.
1357Each @code{gdb.Progspace} contains a @code{pretty_printers} attribute.
1358Each @code{gdb.Objfile} also contains a @code{pretty_printers}
1359attribute.
1360
1361Each function on these lists is passed a single @code{gdb.Value}
1362argument and should return a pretty-printer object conforming to the
1363interface definition above (@pxref{Pretty Printing API}). If a function
1364cannot create a pretty-printer for the value, it should return
1365@code{None}.
1366
1367@value{GDBN} first checks the @code{pretty_printers} attribute of each
1368@code{gdb.Objfile} in the current program space and iteratively calls
1369each enabled lookup routine in the list for that @code{gdb.Objfile}
1370until it receives a pretty-printer object.
1371If no pretty-printer is found in the objfile lists, @value{GDBN} then
1372searches the pretty-printer list of the current program space,
1373calling each enabled function until an object is returned.
1374After these lists have been exhausted, it tries the global
1375@code{gdb.pretty_printers} list, again calling each enabled function until an
1376object is returned.
1377
1378The order in which the objfiles are searched is not specified. For a
1379given list, functions are always invoked from the head of the list,
1380and iterated over sequentially until the end of the list, or a printer
1381object is returned.
1382
1383For various reasons a pretty-printer may not work.
1384For example, the underlying data structure may have changed and
1385the pretty-printer is out of date.
1386
1387The consequences of a broken pretty-printer are severe enough that
1388@value{GDBN} provides support for enabling and disabling individual
1389printers. For example, if @code{print frame-arguments} is on,
1390a backtrace can become highly illegible if any argument is printed
1391with a broken printer.
1392
1393Pretty-printers are enabled and disabled by attaching an @code{enabled}
1394attribute to the registered function or callable object. If this attribute
1395is present and its value is @code{False}, the printer is disabled, otherwise
1396the printer is enabled.
1397
1398@node Writing a Pretty-Printer
1399@subsubsection Writing a Pretty-Printer
1400@cindex writing a pretty-printer
1401
1402A pretty-printer consists of two parts: a lookup function to detect
1403if the type is supported, and the printer itself.
1404
1405Here is an example showing how a @code{std::string} printer might be
1406written. @xref{Pretty Printing API}, for details on the API this class
1407must provide.
1408
1409@smallexample
1410class StdStringPrinter(object):
1411 "Print a std::string"
1412
1413 def __init__(self, val):
1414 self.val = val
1415
1416 def to_string(self):
1417 return self.val['_M_dataplus']['_M_p']
1418
1419 def display_hint(self):
1420 return 'string'
1421@end smallexample
1422
1423And here is an example showing how a lookup function for the printer
1424example above might be written.
1425
1426@smallexample
1427def str_lookup_function(val):
1428 lookup_tag = val.type.tag
1429 if lookup_tag == None:
1430 return None
1431 regex = re.compile("^std::basic_string<char,.*>$")
1432 if regex.match(lookup_tag):
1433 return StdStringPrinter(val)
1434 return None
1435@end smallexample
1436
1437The example lookup function extracts the value's type, and attempts to
1438match it to a type that it can pretty-print. If it is a type the
1439printer can pretty-print, it will return a printer object. If not, it
1440returns @code{None}.
1441
1442We recommend that you put your core pretty-printers into a Python
1443package. If your pretty-printers are for use with a library, we
1444further recommend embedding a version number into the package name.
1445This practice will enable @value{GDBN} to load multiple versions of
1446your pretty-printers at the same time, because they will have
1447different names.
1448
1449You should write auto-loaded code (@pxref{Python Auto-loading}) such that it
1450can be evaluated multiple times without changing its meaning. An
1451ideal auto-load file will consist solely of @code{import}s of your
1452printer modules, followed by a call to a register pretty-printers with
1453the current objfile.
1454
1455Taken as a whole, this approach will scale nicely to multiple
1456inferiors, each potentially using a different library version.
1457Embedding a version number in the Python package name will ensure that
1458@value{GDBN} is able to load both sets of printers simultaneously.
1459Then, because the search for pretty-printers is done by objfile, and
1460because your auto-loaded code took care to register your library's
1461printers with a specific objfile, @value{GDBN} will find the correct
1462printers for the specific version of the library used by each
1463inferior.
1464
1465To continue the @code{std::string} example (@pxref{Pretty Printing API}),
1466this code might appear in @code{gdb.libstdcxx.v6}:
1467
1468@smallexample
1469def register_printers(objfile):
1470 objfile.pretty_printers.append(str_lookup_function)
1471@end smallexample
1472
1473@noindent
1474And then the corresponding contents of the auto-load file would be:
1475
1476@smallexample
1477import gdb.libstdcxx.v6
1478gdb.libstdcxx.v6.register_printers(gdb.current_objfile())
1479@end smallexample
1480
1481The previous example illustrates a basic pretty-printer.
1482There are a few things that can be improved on.
1483The printer doesn't have a name, making it hard to identify in a
1484list of installed printers. The lookup function has a name, but
1485lookup functions can have arbitrary, even identical, names.
1486
1487Second, the printer only handles one type, whereas a library typically has
1488several types. One could install a lookup function for each desired type
1489in the library, but one could also have a single lookup function recognize
1490several types. The latter is the conventional way this is handled.
1491If a pretty-printer can handle multiple data types, then its
1492@dfn{subprinters} are the printers for the individual data types.
1493
1494The @code{gdb.printing} module provides a formal way of solving these
1495problems (@pxref{gdb.printing}).
1496Here is another example that handles multiple types.
1497
1498These are the types we are going to pretty-print:
1499
1500@smallexample
1501struct foo @{ int a, b; @};
1502struct bar @{ struct foo x, y; @};
1503@end smallexample
1504
1505Here are the printers:
1506
1507@smallexample
1508class fooPrinter:
1509 """Print a foo object."""
1510
1511 def __init__(self, val):
1512 self.val = val
1513
1514 def to_string(self):
1515 return ("a=<" + str(self.val["a"]) +
1516 "> b=<" + str(self.val["b"]) + ">")
1517
1518class barPrinter:
1519 """Print a bar object."""
1520
1521 def __init__(self, val):
1522 self.val = val
1523
1524 def to_string(self):
1525 return ("x=<" + str(self.val["x"]) +
1526 "> y=<" + str(self.val["y"]) + ">")
1527@end smallexample
1528
1529This example doesn't need a lookup function, that is handled by the
1530@code{gdb.printing} module. Instead a function is provided to build up
1531the object that handles the lookup.
1532
1533@smallexample
1534import gdb.printing
1535
1536def build_pretty_printer():
1537 pp = gdb.printing.RegexpCollectionPrettyPrinter(
1538 "my_library")
1539 pp.add_printer('foo', '^foo$', fooPrinter)
1540 pp.add_printer('bar', '^bar$', barPrinter)
1541 return pp
1542@end smallexample
1543
1544And here is the autoload support:
1545
1546@smallexample
1547import gdb.printing
1548import my_library
1549gdb.printing.register_pretty_printer(
1550 gdb.current_objfile(),
1551 my_library.build_pretty_printer())
1552@end smallexample
1553
1554Finally, when this printer is loaded into @value{GDBN}, here is the
1555corresponding output of @samp{info pretty-printer}:
1556
1557@smallexample
1558(gdb) info pretty-printer
1559my_library.so:
1560 my_library
1561 foo
1562 bar
1563@end smallexample
1564
1565@node Type Printing API
1566@subsubsection Type Printing API
1567@cindex type printing API for Python
1568
1569@value{GDBN} provides a way for Python code to customize type display.
1570This is mainly useful for substituting canonical typedef names for
1571types.
1572
1573@cindex type printer
1574A @dfn{type printer} is just a Python object conforming to a certain
1575protocol. A simple base class implementing the protocol is provided;
1576see @ref{gdb.types}. A type printer must supply at least:
1577
1578@defivar type_printer enabled
1579A boolean which is True if the printer is enabled, and False
1580otherwise. This is manipulated by the @code{enable type-printer}
1581and @code{disable type-printer} commands.
1582@end defivar
1583
1584@defivar type_printer name
1585The name of the type printer. This must be a string. This is used by
1586the @code{enable type-printer} and @code{disable type-printer}
1587commands.
1588@end defivar
1589
1590@defmethod type_printer instantiate (self)
1591This is called by @value{GDBN} at the start of type-printing. It is
1592only called if the type printer is enabled. This method must return a
1593new object that supplies a @code{recognize} method, as described below.
1594@end defmethod
1595
1596
1597When displaying a type, say via the @code{ptype} command, @value{GDBN}
1598will compute a list of type recognizers. This is done by iterating
1599first over the per-objfile type printers (@pxref{Objfiles In Python}),
1600followed by the per-progspace type printers (@pxref{Progspaces In
1601Python}), and finally the global type printers.
1602
1603@value{GDBN} will call the @code{instantiate} method of each enabled
1604type printer. If this method returns @code{None}, then the result is
1605ignored; otherwise, it is appended to the list of recognizers.
1606
1607Then, when @value{GDBN} is going to display a type name, it iterates
1608over the list of recognizers. For each one, it calls the recognition
1609function, stopping if the function returns a non-@code{None} value.
1610The recognition function is defined as:
1611
1612@defmethod type_recognizer recognize (self, type)
1613If @var{type} is not recognized, return @code{None}. Otherwise,
1614return a string which is to be printed as the name of @var{type}.
697aa1b7
EZ
1615The @var{type} argument will be an instance of @code{gdb.Type}
1616(@pxref{Types In Python}).
329baa95
DE
1617@end defmethod
1618
1619@value{GDBN} uses this two-pass approach so that type printers can
1620efficiently cache information without holding on to it too long. For
1621example, it can be convenient to look up type information in a type
1622printer and hold it for a recognizer's lifetime; if a single pass were
1623done then type printers would have to make use of the event system in
1624order to avoid holding information that could become stale as the
1625inferior changed.
1626
1627@node Frame Filter API
521b499b 1628@subsubsection Filtering Frames
329baa95
DE
1629@cindex frame filters api
1630
1631Frame filters are Python objects that manipulate the visibility of a
1632frame or frames when a backtrace (@pxref{Backtrace}) is printed by
1633@value{GDBN}.
1634
1635Only commands that print a backtrace, or, in the case of @sc{gdb/mi}
1636commands (@pxref{GDB/MI}), those that return a collection of frames
1637are affected. The commands that work with frame filters are:
1638
1639@code{backtrace} (@pxref{backtrace-command,, The backtrace command}),
1640@code{-stack-list-frames}
1641(@pxref{-stack-list-frames,, The -stack-list-frames command}),
1642@code{-stack-list-variables} (@pxref{-stack-list-variables,, The
1643-stack-list-variables command}), @code{-stack-list-arguments}
1644@pxref{-stack-list-arguments,, The -stack-list-arguments command}) and
1645@code{-stack-list-locals} (@pxref{-stack-list-locals,, The
1646-stack-list-locals command}).
1647
1648A frame filter works by taking an iterator as an argument, applying
1649actions to the contents of that iterator, and returning another
1650iterator (or, possibly, the same iterator it was provided in the case
1651where the filter does not perform any operations). Typically, frame
1652filters utilize tools such as the Python's @code{itertools} module to
1653work with and create new iterators from the source iterator.
1654Regardless of how a filter chooses to apply actions, it must not alter
1655the underlying @value{GDBN} frame or frames, or attempt to alter the
1656call-stack within @value{GDBN}. This preserves data integrity within
1657@value{GDBN}. Frame filters are executed on a priority basis and care
1658should be taken that some frame filters may have been executed before,
1659and that some frame filters will be executed after.
1660
1661An important consideration when designing frame filters, and well
1662worth reflecting upon, is that frame filters should avoid unwinding
1663the call stack if possible. Some stacks can run very deep, into the
1664tens of thousands in some cases. To search every frame when a frame
1665filter executes may be too expensive at that step. The frame filter
1666cannot know how many frames it has to iterate over, and it may have to
1667iterate through them all. This ends up duplicating effort as
1668@value{GDBN} performs this iteration when it prints the frames. If
1669the filter can defer unwinding frames until frame decorators are
1670executed, after the last filter has executed, it should. @xref{Frame
1671Decorator API}, for more information on decorators. Also, there are
1672examples for both frame decorators and filters in later chapters.
1673@xref{Writing a Frame Filter}, for more information.
1674
1675The Python dictionary @code{gdb.frame_filters} contains key/object
1676pairings that comprise a frame filter. Frame filters in this
1677dictionary are called @code{global} frame filters, and they are
1678available when debugging all inferiors. These frame filters must
1679register with the dictionary directly. In addition to the
1680@code{global} dictionary, there are other dictionaries that are loaded
1681with different inferiors via auto-loading (@pxref{Python
1682Auto-loading}). The two other areas where frame filter dictionaries
1683can be found are: @code{gdb.Progspace} which contains a
1684@code{frame_filters} dictionary attribute, and each @code{gdb.Objfile}
1685object which also contains a @code{frame_filters} dictionary
1686attribute.
1687
1688When a command is executed from @value{GDBN} that is compatible with
1689frame filters, @value{GDBN} combines the @code{global},
1690@code{gdb.Progspace} and all @code{gdb.Objfile} dictionaries currently
1691loaded. All of the @code{gdb.Objfile} dictionaries are combined, as
1692several frames, and thus several object files, might be in use.
1693@value{GDBN} then prunes any frame filter whose @code{enabled}
1694attribute is @code{False}. This pruned list is then sorted according
1695to the @code{priority} attribute in each filter.
1696
1697Once the dictionaries are combined, pruned and sorted, @value{GDBN}
1698creates an iterator which wraps each frame in the call stack in a
1699@code{FrameDecorator} object, and calls each filter in order. The
1700output from the previous filter will always be the input to the next
1701filter, and so on.
1702
1703Frame filters have a mandatory interface which each frame filter must
1704implement, defined here:
1705
1706@defun FrameFilter.filter (iterator)
1707@value{GDBN} will call this method on a frame filter when it has
1708reached the order in the priority list for that filter.
1709
1710For example, if there are four frame filters:
1711
1712@smallexample
1713Name Priority
1714
1715Filter1 5
1716Filter2 10
1717Filter3 100
1718Filter4 1
1719@end smallexample
1720
1721The order that the frame filters will be called is:
1722
1723@smallexample
1724Filter3 -> Filter2 -> Filter1 -> Filter4
1725@end smallexample
1726
1727Note that the output from @code{Filter3} is passed to the input of
1728@code{Filter2}, and so on.
1729
1730This @code{filter} method is passed a Python iterator. This iterator
1731contains a sequence of frame decorators that wrap each
1732@code{gdb.Frame}, or a frame decorator that wraps another frame
1733decorator. The first filter that is executed in the sequence of frame
1734filters will receive an iterator entirely comprised of default
1735@code{FrameDecorator} objects. However, after each frame filter is
1736executed, the previous frame filter may have wrapped some or all of
1737the frame decorators with their own frame decorator. As frame
1738decorators must also conform to a mandatory interface, these
1739decorators can be assumed to act in a uniform manner (@pxref{Frame
1740Decorator API}).
1741
1742This method must return an object conforming to the Python iterator
1743protocol. Each item in the iterator must be an object conforming to
1744the frame decorator interface. If a frame filter does not wish to
1745perform any operations on this iterator, it should return that
1746iterator untouched.
1747
1748This method is not optional. If it does not exist, @value{GDBN} will
1749raise and print an error.
1750@end defun
1751
1752@defvar FrameFilter.name
1753The @code{name} attribute must be Python string which contains the
1754name of the filter displayed by @value{GDBN} (@pxref{Frame Filter
1755Management}). This attribute may contain any combination of letters
1756or numbers. Care should be taken to ensure that it is unique. This
1757attribute is mandatory.
1758@end defvar
1759
1760@defvar FrameFilter.enabled
1761The @code{enabled} attribute must be Python boolean. This attribute
1762indicates to @value{GDBN} whether the frame filter is enabled, and
1763should be considered when frame filters are executed. If
1764@code{enabled} is @code{True}, then the frame filter will be executed
1765when any of the backtrace commands detailed earlier in this chapter
1766are executed. If @code{enabled} is @code{False}, then the frame
1767filter will not be executed. This attribute is mandatory.
1768@end defvar
1769
1770@defvar FrameFilter.priority
1771The @code{priority} attribute must be Python integer. This attribute
1772controls the order of execution in relation to other frame filters.
1773There are no imposed limits on the range of @code{priority} other than
1774it must be a valid integer. The higher the @code{priority} attribute,
1775the sooner the frame filter will be executed in relation to other
1776frame filters. Although @code{priority} can be negative, it is
1777recommended practice to assume zero is the lowest priority that a
1778frame filter can be assigned. Frame filters that have the same
1779priority are executed in unsorted order in that priority slot. This
521b499b 1780attribute is mandatory. 100 is a good default priority.
329baa95
DE
1781@end defvar
1782
1783@node Frame Decorator API
521b499b 1784@subsubsection Decorating Frames
329baa95
DE
1785@cindex frame decorator api
1786
1787Frame decorators are sister objects to frame filters (@pxref{Frame
1788Filter API}). Frame decorators are applied by a frame filter and can
1789only be used in conjunction with frame filters.
1790
1791The purpose of a frame decorator is to customize the printed content
1792of each @code{gdb.Frame} in commands where frame filters are executed.
1793This concept is called decorating a frame. Frame decorators decorate
1794a @code{gdb.Frame} with Python code contained within each API call.
1795This separates the actual data contained in a @code{gdb.Frame} from
1796the decorated data produced by a frame decorator. This abstraction is
1797necessary to maintain integrity of the data contained in each
1798@code{gdb.Frame}.
1799
1800Frame decorators have a mandatory interface, defined below.
1801
1802@value{GDBN} already contains a frame decorator called
1803@code{FrameDecorator}. This contains substantial amounts of
1804boilerplate code to decorate the content of a @code{gdb.Frame}. It is
1805recommended that other frame decorators inherit and extend this
1806object, and only to override the methods needed.
1807
521b499b
TT
1808@tindex gdb.FrameDecorator
1809@code{FrameDecorator} is defined in the Python module
1810@code{gdb.FrameDecorator}, so your code can import it like:
1811@smallexample
1812from gdb.FrameDecorator import FrameDecorator
1813@end smallexample
1814
329baa95
DE
1815@defun FrameDecorator.elided (self)
1816
1817The @code{elided} method groups frames together in a hierarchical
1818system. An example would be an interpreter, where multiple low-level
1819frames make up a single call in the interpreted language. In this
1820example, the frame filter would elide the low-level frames and present
1821a single high-level frame, representing the call in the interpreted
1822language, to the user.
1823
1824The @code{elided} function must return an iterable and this iterable
1825must contain the frames that are being elided wrapped in a suitable
1826frame decorator. If no frames are being elided this function may
1827return an empty iterable, or @code{None}. Elided frames are indented
1828from normal frames in a @code{CLI} backtrace, or in the case of
1829@code{GDB/MI}, are placed in the @code{children} field of the eliding
1830frame.
1831
1832It is the frame filter's task to also filter out the elided frames from
1833the source iterator. This will avoid printing the frame twice.
1834@end defun
1835
1836@defun FrameDecorator.function (self)
1837
1838This method returns the name of the function in the frame that is to
1839be printed.
1840
1841This method must return a Python string describing the function, or
1842@code{None}.
1843
1844If this function returns @code{None}, @value{GDBN} will not print any
1845data for this field.
1846@end defun
1847
1848@defun FrameDecorator.address (self)
1849
1850This method returns the address of the frame that is to be printed.
1851
1852This method must return a Python numeric integer type of sufficient
1853size to describe the address of the frame, or @code{None}.
1854
1855If this function returns a @code{None}, @value{GDBN} will not print
1856any data for this field.
1857@end defun
1858
1859@defun FrameDecorator.filename (self)
1860
1861This method returns the filename and path associated with this frame.
1862
1863This method must return a Python string containing the filename and
1864the path to the object file backing the frame, or @code{None}.
1865
1866If this function returns a @code{None}, @value{GDBN} will not print
1867any data for this field.
1868@end defun
1869
1870@defun FrameDecorator.line (self):
1871
1872This method returns the line number associated with the current
1873position within the function addressed by this frame.
1874
1875This method must return a Python integer type, or @code{None}.
1876
1877If this function returns a @code{None}, @value{GDBN} will not print
1878any data for this field.
1879@end defun
1880
1881@defun FrameDecorator.frame_args (self)
1882@anchor{frame_args}
1883
1884This method must return an iterable, or @code{None}. Returning an
1885empty iterable, or @code{None} means frame arguments will not be
1886printed for this frame. This iterable must contain objects that
1887implement two methods, described here.
1888
1889This object must implement a @code{argument} method which takes a
1890single @code{self} parameter and must return a @code{gdb.Symbol}
1891(@pxref{Symbols In Python}), or a Python string. The object must also
1892implement a @code{value} method which takes a single @code{self}
1893parameter and must return a @code{gdb.Value} (@pxref{Values From
1894Inferior}), a Python value, or @code{None}. If the @code{value}
1895method returns @code{None}, and the @code{argument} method returns a
1896@code{gdb.Symbol}, @value{GDBN} will look-up and print the value of
1897the @code{gdb.Symbol} automatically.
1898
1899A brief example:
1900
1901@smallexample
1902class SymValueWrapper():
1903
1904 def __init__(self, symbol, value):
1905 self.sym = symbol
1906 self.val = value
1907
1908 def value(self):
1909 return self.val
1910
1911 def symbol(self):
1912 return self.sym
1913
1914class SomeFrameDecorator()
1915...
1916...
1917 def frame_args(self):
1918 args = []
1919 try:
1920 block = self.inferior_frame.block()
1921 except:
1922 return None
1923
1924 # Iterate over all symbols in a block. Only add
1925 # symbols that are arguments.
1926 for sym in block:
1927 if not sym.is_argument:
1928 continue
1929 args.append(SymValueWrapper(sym,None))
1930
1931 # Add example synthetic argument.
1932 args.append(SymValueWrapper(``foo'', 42))
1933
1934 return args
1935@end smallexample
1936@end defun
1937
1938@defun FrameDecorator.frame_locals (self)
1939
1940This method must return an iterable or @code{None}. Returning an
1941empty iterable, or @code{None} means frame local arguments will not be
1942printed for this frame.
1943
1944The object interface, the description of the various strategies for
1945reading frame locals, and the example are largely similar to those
1946described in the @code{frame_args} function, (@pxref{frame_args,,The
1947frame filter frame_args function}). Below is a modified example:
1948
1949@smallexample
1950class SomeFrameDecorator()
1951...
1952...
1953 def frame_locals(self):
1954 vars = []
1955 try:
1956 block = self.inferior_frame.block()
1957 except:
1958 return None
1959
1960 # Iterate over all symbols in a block. Add all
1961 # symbols, except arguments.
1962 for sym in block:
1963 if sym.is_argument:
1964 continue
1965 vars.append(SymValueWrapper(sym,None))
1966
1967 # Add an example of a synthetic local variable.
1968 vars.append(SymValueWrapper(``bar'', 99))
1969
1970 return vars
1971@end smallexample
1972@end defun
1973
1974@defun FrameDecorator.inferior_frame (self):
1975
1976This method must return the underlying @code{gdb.Frame} that this
1977frame decorator is decorating. @value{GDBN} requires the underlying
1978frame for internal frame information to determine how to print certain
1979values when printing a frame.
1980@end defun
1981
1982@node Writing a Frame Filter
1983@subsubsection Writing a Frame Filter
1984@cindex writing a frame filter
1985
1986There are three basic elements that a frame filter must implement: it
1987must correctly implement the documented interface (@pxref{Frame Filter
1988API}), it must register itself with @value{GDBN}, and finally, it must
1989decide if it is to work on the data provided by @value{GDBN}. In all
1990cases, whether it works on the iterator or not, each frame filter must
1991return an iterator. A bare-bones frame filter follows the pattern in
1992the following example.
1993
1994@smallexample
1995import gdb
1996
1997class FrameFilter():
1998
1999 def __init__(self):
2000 # Frame filter attribute creation.
2001 #
2002 # 'name' is the name of the filter that GDB will display.
2003 #
2004 # 'priority' is the priority of the filter relative to other
2005 # filters.
2006 #
2007 # 'enabled' is a boolean that indicates whether this filter is
2008 # enabled and should be executed.
2009
2010 self.name = "Foo"
2011 self.priority = 100
2012 self.enabled = True
2013
2014 # Register this frame filter with the global frame_filters
2015 # dictionary.
2016 gdb.frame_filters[self.name] = self
2017
2018 def filter(self, frame_iter):
2019 # Just return the iterator.
2020 return frame_iter
2021@end smallexample
2022
2023The frame filter in the example above implements the three
2024requirements for all frame filters. It implements the API, self
2025registers, and makes a decision on the iterator (in this case, it just
2026returns the iterator untouched).
2027
2028The first step is attribute creation and assignment, and as shown in
2029the comments the filter assigns the following attributes: @code{name},
2030@code{priority} and whether the filter should be enabled with the
2031@code{enabled} attribute.
2032
2033The second step is registering the frame filter with the dictionary or
2034dictionaries that the frame filter has interest in. As shown in the
2035comments, this filter just registers itself with the global dictionary
2036@code{gdb.frame_filters}. As noted earlier, @code{gdb.frame_filters}
2037is a dictionary that is initialized in the @code{gdb} module when
2038@value{GDBN} starts. What dictionary a filter registers with is an
2039important consideration. Generally, if a filter is specific to a set
2040of code, it should be registered either in the @code{objfile} or
2041@code{progspace} dictionaries as they are specific to the program
2042currently loaded in @value{GDBN}. The global dictionary is always
2043present in @value{GDBN} and is never unloaded. Any filters registered
2044with the global dictionary will exist until @value{GDBN} exits. To
2045avoid filters that may conflict, it is generally better to register
2046frame filters against the dictionaries that more closely align with
2047the usage of the filter currently in question. @xref{Python
2048Auto-loading}, for further information on auto-loading Python scripts.
2049
2050@value{GDBN} takes a hands-off approach to frame filter registration,
2051therefore it is the frame filter's responsibility to ensure
2052registration has occurred, and that any exceptions are handled
2053appropriately. In particular, you may wish to handle exceptions
2054relating to Python dictionary key uniqueness. It is mandatory that
2055the dictionary key is the same as frame filter's @code{name}
2056attribute. When a user manages frame filters (@pxref{Frame Filter
2057Management}), the names @value{GDBN} will display are those contained
2058in the @code{name} attribute.
2059
2060The final step of this example is the implementation of the
2061@code{filter} method. As shown in the example comments, we define the
2062@code{filter} method and note that the method must take an iterator,
2063and also must return an iterator. In this bare-bones example, the
2064frame filter is not very useful as it just returns the iterator
2065untouched. However this is a valid operation for frame filters that
2066have the @code{enabled} attribute set, but decide not to operate on
2067any frames.
2068
2069In the next example, the frame filter operates on all frames and
2070utilizes a frame decorator to perform some work on the frames.
2071@xref{Frame Decorator API}, for further information on the frame
2072decorator interface.
2073
2074This example works on inlined frames. It highlights frames which are
2075inlined by tagging them with an ``[inlined]'' tag. By applying a
2076frame decorator to all frames with the Python @code{itertools imap}
2077method, the example defers actions to the frame decorator. Frame
2078decorators are only processed when @value{GDBN} prints the backtrace.
2079
2080This introduces a new decision making topic: whether to perform
2081decision making operations at the filtering step, or at the printing
2082step. In this example's approach, it does not perform any filtering
2083decisions at the filtering step beyond mapping a frame decorator to
2084each frame. This allows the actual decision making to be performed
2085when each frame is printed. This is an important consideration, and
2086well worth reflecting upon when designing a frame filter. An issue
2087that frame filters should avoid is unwinding the stack if possible.
2088Some stacks can run very deep, into the tens of thousands in some
2089cases. To search every frame to determine if it is inlined ahead of
2090time may be too expensive at the filtering step. The frame filter
2091cannot know how many frames it has to iterate over, and it would have
2092to iterate through them all. This ends up duplicating effort as
2093@value{GDBN} performs this iteration when it prints the frames.
2094
2095In this example decision making can be deferred to the printing step.
2096As each frame is printed, the frame decorator can examine each frame
2097in turn when @value{GDBN} iterates. From a performance viewpoint,
2098this is the most appropriate decision to make as it avoids duplicating
2099the effort that the printing step would undertake anyway. Also, if
2100there are many frame filters unwinding the stack during filtering, it
2101can substantially delay the printing of the backtrace which will
2102result in large memory usage, and a poor user experience.
2103
2104@smallexample
2105class InlineFilter():
2106
2107 def __init__(self):
2108 self.name = "InlinedFrameFilter"
2109 self.priority = 100
2110 self.enabled = True
2111 gdb.frame_filters[self.name] = self
2112
2113 def filter(self, frame_iter):
2114 frame_iter = itertools.imap(InlinedFrameDecorator,
2115 frame_iter)
2116 return frame_iter
2117@end smallexample
2118
2119This frame filter is somewhat similar to the earlier example, except
2120that the @code{filter} method applies a frame decorator object called
2121@code{InlinedFrameDecorator} to each element in the iterator. The
2122@code{imap} Python method is light-weight. It does not proactively
2123iterate over the iterator, but rather creates a new iterator which
2124wraps the existing one.
2125
2126Below is the frame decorator for this example.
2127
2128@smallexample
2129class InlinedFrameDecorator(FrameDecorator):
2130
2131 def __init__(self, fobj):
2132 super(InlinedFrameDecorator, self).__init__(fobj)
2133
2134 def function(self):
2135 frame = fobj.inferior_frame()
2136 name = str(frame.name())
2137
2138 if frame.type() == gdb.INLINE_FRAME:
2139 name = name + " [inlined]"
2140
2141 return name
2142@end smallexample
2143
2144This frame decorator only defines and overrides the @code{function}
2145method. It lets the supplied @code{FrameDecorator}, which is shipped
2146with @value{GDBN}, perform the other work associated with printing
2147this frame.
2148
2149The combination of these two objects create this output from a
2150backtrace:
2151
2152@smallexample
2153#0 0x004004e0 in bar () at inline.c:11
2154#1 0x00400566 in max [inlined] (b=6, a=12) at inline.c:21
2155#2 0x00400566 in main () at inline.c:31
2156@end smallexample
2157
2158So in the case of this example, a frame decorator is applied to all
2159frames, regardless of whether they may be inlined or not. As
2160@value{GDBN} iterates over the iterator produced by the frame filters,
2161@value{GDBN} executes each frame decorator which then makes a decision
2162on what to print in the @code{function} callback. Using a strategy
2163like this is a way to defer decisions on the frame content to printing
2164time.
2165
2166@subheading Eliding Frames
2167
2168It might be that the above example is not desirable for representing
2169inlined frames, and a hierarchical approach may be preferred. If we
2170want to hierarchically represent frames, the @code{elided} frame
2171decorator interface might be preferable.
2172
2173This example approaches the issue with the @code{elided} method. This
2174example is quite long, but very simplistic. It is out-of-scope for
2175this section to write a complete example that comprehensively covers
2176all approaches of finding and printing inlined frames. However, this
2177example illustrates the approach an author might use.
2178
2179This example comprises of three sections.
2180
2181@smallexample
2182class InlineFrameFilter():
2183
2184 def __init__(self):
2185 self.name = "InlinedFrameFilter"
2186 self.priority = 100
2187 self.enabled = True
2188 gdb.frame_filters[self.name] = self
2189
2190 def filter(self, frame_iter):
2191 return ElidingInlineIterator(frame_iter)
2192@end smallexample
2193
2194This frame filter is very similar to the other examples. The only
2195difference is this frame filter is wrapping the iterator provided to
2196it (@code{frame_iter}) with a custom iterator called
2197@code{ElidingInlineIterator}. This again defers actions to when
2198@value{GDBN} prints the backtrace, as the iterator is not traversed
2199until printing.
2200
2201The iterator for this example is as follows. It is in this section of
2202the example where decisions are made on the content of the backtrace.
2203
2204@smallexample
2205class ElidingInlineIterator:
2206 def __init__(self, ii):
2207 self.input_iterator = ii
2208
2209 def __iter__(self):
2210 return self
2211
2212 def next(self):
2213 frame = next(self.input_iterator)
2214
2215 if frame.inferior_frame().type() != gdb.INLINE_FRAME:
2216 return frame
2217
2218 try:
2219 eliding_frame = next(self.input_iterator)
2220 except StopIteration:
2221 return frame
2222 return ElidingFrameDecorator(eliding_frame, [frame])
2223@end smallexample
2224
2225This iterator implements the Python iterator protocol. When the
2226@code{next} function is called (when @value{GDBN} prints each frame),
2227the iterator checks if this frame decorator, @code{frame}, is wrapping
2228an inlined frame. If it is not, it returns the existing frame decorator
2229untouched. If it is wrapping an inlined frame, it assumes that the
2230inlined frame was contained within the next oldest frame,
2231@code{eliding_frame}, which it fetches. It then creates and returns a
2232frame decorator, @code{ElidingFrameDecorator}, which contains both the
2233elided frame, and the eliding frame.
2234
2235@smallexample
2236class ElidingInlineDecorator(FrameDecorator):
2237
2238 def __init__(self, frame, elided_frames):
2239 super(ElidingInlineDecorator, self).__init__(frame)
2240 self.frame = frame
2241 self.elided_frames = elided_frames
2242
2243 def elided(self):
2244 return iter(self.elided_frames)
2245@end smallexample
2246
2247This frame decorator overrides one function and returns the inlined
2248frame in the @code{elided} method. As before it lets
2249@code{FrameDecorator} do the rest of the work involved in printing
2250this frame. This produces the following output.
2251
2252@smallexample
2253#0 0x004004e0 in bar () at inline.c:11
2254#2 0x00400529 in main () at inline.c:25
2255 #1 0x00400529 in max (b=6, a=12) at inline.c:15
2256@end smallexample
2257
2258In that output, @code{max} which has been inlined into @code{main} is
2259printed hierarchically. Another approach would be to combine the
2260@code{function} method, and the @code{elided} method to both print a
2261marker in the inlined frame, and also show the hierarchical
2262relationship.
2263
d11916aa
SS
2264@node Unwinding Frames in Python
2265@subsubsection Unwinding Frames in Python
2266@cindex unwinding frames in Python
2267
2268In @value{GDBN} terminology ``unwinding'' is the process of finding
2269the previous frame (that is, caller's) from the current one. An
2270unwinder has three methods. The first one checks if it can handle
2271given frame (``sniff'' it). For the frames it can sniff an unwinder
2272provides two additional methods: it can return frame's ID, and it can
2273fetch registers from the previous frame. A running @value{GDBN}
2274mantains a list of the unwinders and calls each unwinder's sniffer in
2275turn until it finds the one that recognizes the current frame. There
2276is an API to register an unwinder.
2277
2278The unwinders that come with @value{GDBN} handle standard frames.
2279However, mixed language applications (for example, an application
2280running Java Virtual Machine) sometimes use frame layouts that cannot
2281be handled by the @value{GDBN} unwinders. You can write Python code
2282that can handle such custom frames.
2283
2284You implement a frame unwinder in Python as a class with which has two
2285attributes, @code{name} and @code{enabled}, with obvious meanings, and
2286a single method @code{__call__}, which examines a given frame and
2287returns an object (an instance of @code{gdb.UnwindInfo class)}
2288describing it. If an unwinder does not recognize a frame, it should
2289return @code{None}. The code in @value{GDBN} that enables writing
2290unwinders in Python uses this object to return frame's ID and previous
2291frame registers when @value{GDBN} core asks for them.
2292
e7b5068c
TT
2293An unwinder should do as little work as possible. Some otherwise
2294innocuous operations can cause problems (even crashes, as this code is
2295not not well-hardened yet). For example, making an inferior call from
2296an unwinder is unadvisable, as an inferior call will reset
2297@value{GDBN}'s stack unwinding process, potentially causing re-entrant
2298unwinding.
2299
d11916aa
SS
2300@subheading Unwinder Input
2301
2302An object passed to an unwinder (a @code{gdb.PendingFrame} instance)
2303provides a method to read frame's registers:
2304
2305@defun PendingFrame.read_register (reg)
e7b5068c 2306This method returns the contents of the register @var{reg} in the
d11916aa
SS
2307frame as a @code{gdb.Value} object. @var{reg} can be either a
2308register number or a register name; the values are platform-specific.
2309They are usually found in the corresponding
e7b5068c
TT
2310@file{@var{platform}-tdep.h} file in the @value{GDBN} source tree. If
2311@var{reg} does not name a register for the current architecture, this
2312method will throw an exception.
2313
2314Note that this method will always return a @code{gdb.Value} for a
2315valid register name. This does not mean that the value will be valid.
2316For example, you may request a register that an earlier unwinder could
2317not unwind---the value will be unavailable. Instead, the
2318@code{gdb.Value} returned from this method will be lazy; that is, its
2319underlying bits will not be fetched until it is first used. So,
2320attempting to use such a value will cause an exception at the point of
2321use.
2322
2323The type of the returned @code{gdb.Value} depends on the register and
2324the architecture. It is common for registers to have a scalar type,
2325like @code{long long}; but many other types are possible, such as
2326pointer, pointer-to-function, floating point or vector types.
d11916aa
SS
2327@end defun
2328
2329It also provides a factory method to create a @code{gdb.UnwindInfo}
2330instance to be returned to @value{GDBN}:
2331
2332@defun PendingFrame.create_unwind_info (frame_id)
2333Returns a new @code{gdb.UnwindInfo} instance identified by given
2334@var{frame_id}. The argument is used to build @value{GDBN}'s frame ID
2335using one of functions provided by @value{GDBN}. @var{frame_id}'s attributes
2336determine which function will be used, as follows:
2337
2338@table @code
d11916aa 2339@item sp, pc
e7b5068c
TT
2340The frame is identified by the given stack address and PC. The stack
2341address must be chosen so that it is constant throughout the lifetime
2342of the frame, so a typical choice is the value of the stack pointer at
2343the start of the function---in the DWARF standard, this would be the
2344``Call Frame Address''.
d11916aa 2345
e7b5068c
TT
2346This is the most common case by far. The other cases are documented
2347for completeness but are only useful in specialized situations.
2348
2349@item sp, pc, special
2350The frame is identified by the stack address, the PC, and a
2351``special'' address. The special address is used on architectures
2352that can have frames that do not change the stack, but which are still
2353distinct, for example the IA-64, which has a second stack for
2354registers. Both @var{sp} and @var{special} must be constant
2355throughout the lifetime of the frame.
d11916aa
SS
2356
2357@item sp
e7b5068c
TT
2358The frame is identified by the stack address only. Any other stack
2359frame with a matching @var{sp} will be considered to match this frame.
2360Inside gdb, this is called a ``wild frame''. You will never need
2361this.
d11916aa 2362@end table
e7b5068c
TT
2363
2364Each attribute value should be an instance of @code{gdb.Value}.
d11916aa
SS
2365
2366@end defun
2367
2368@subheading Unwinder Output: UnwindInfo
2369
2370Use @code{PendingFrame.create_unwind_info} method described above to
2371create a @code{gdb.UnwindInfo} instance. Use the following method to
2372specify caller registers that have been saved in this frame:
2373
2374@defun gdb.UnwindInfo.add_saved_register (reg, value)
2375@var{reg} identifies the register. It can be a number or a name, just
2376as for the @code{PendingFrame.read_register} method above.
2377@var{value} is a register value (a @code{gdb.Value} object).
2378@end defun
2379
2380@subheading Unwinder Skeleton Code
2381
2382@value{GDBN} comes with the module containing the base @code{Unwinder}
2383class. Derive your unwinder class from it and structure the code as
2384follows:
2385
2386@smallexample
2387from gdb.unwinders import Unwinder
2388
2389class FrameId(object):
2390 def __init__(self, sp, pc):
2391 self.sp = sp
2392 self.pc = pc
2393
2394
2395class MyUnwinder(Unwinder):
2396 def __init__(....):
2397 supe(MyUnwinder, self).__init___(<expects unwinder name argument>)
2398
2399 def __call__(pending_frame):
2400 if not <we recognize frame>:
2401 return None
2402 # Create UnwindInfo. Usually the frame is identified by the stack
2403 # pointer and the program counter.
2404 sp = pending_frame.read_register(<SP number>)
2405 pc = pending_frame.read_register(<PC number>)
2406 unwind_info = pending_frame.create_unwind_info(FrameId(sp, pc))
2407
2408 # Find the values of the registers in the caller's frame and
2409 # save them in the result:
2410 unwind_info.add_saved_register(<register>, <value>)
2411 ....
2412
2413 # Return the result:
2414 return unwind_info
2415
2416@end smallexample
2417
2418@subheading Registering a Unwinder
2419
2420An object file, a program space, and the @value{GDBN} proper can have
2421unwinders registered with it.
2422
2423The @code{gdb.unwinders} module provides the function to register a
2424unwinder:
2425
2426@defun gdb.unwinder.register_unwinder (locus, unwinder, replace=False)
2427@var{locus} is specifies an object file or a program space to which
2428@var{unwinder} is added. Passing @code{None} or @code{gdb} adds
2429@var{unwinder} to the @value{GDBN}'s global unwinder list. The newly
2430added @var{unwinder} will be called before any other unwinder from the
2431same locus. Two unwinders in the same locus cannot have the same
2432name. An attempt to add a unwinder with already existing name raises
2433an exception unless @var{replace} is @code{True}, in which case the
2434old unwinder is deleted.
2435@end defun
2436
2437@subheading Unwinder Precedence
2438
2439@value{GDBN} first calls the unwinders from all the object files in no
2440particular order, then the unwinders from the current program space,
2441and finally the unwinders from @value{GDBN}.
2442
0c6e92a5
SC
2443@node Xmethods In Python
2444@subsubsection Xmethods In Python
2445@cindex xmethods in Python
2446
2447@dfn{Xmethods} are additional methods or replacements for existing
2448methods of a C@t{++} class. This feature is useful for those cases
2449where a method defined in C@t{++} source code could be inlined or
2450optimized out by the compiler, making it unavailable to @value{GDBN}.
2451For such cases, one can define an xmethod to serve as a replacement
2452for the method defined in the C@t{++} source code. @value{GDBN} will
2453then invoke the xmethod, instead of the C@t{++} method, to
2454evaluate expressions. One can also use xmethods when debugging
2455with core files. Moreover, when debugging live programs, invoking an
2456xmethod need not involve running the inferior (which can potentially
2457perturb its state). Hence, even if the C@t{++} method is available, it
2458is better to use its replacement xmethod if one is defined.
2459
2460The xmethods feature in Python is available via the concepts of an
2461@dfn{xmethod matcher} and an @dfn{xmethod worker}. To
2462implement an xmethod, one has to implement a matcher and a
2463corresponding worker for it (more than one worker can be
2464implemented, each catering to a different overloaded instance of the
2465method). Internally, @value{GDBN} invokes the @code{match} method of a
2466matcher to match the class type and method name. On a match, the
2467@code{match} method returns a list of matching @emph{worker} objects.
2468Each worker object typically corresponds to an overloaded instance of
2469the xmethod. They implement a @code{get_arg_types} method which
2470returns a sequence of types corresponding to the arguments the xmethod
2471requires. @value{GDBN} uses this sequence of types to perform
2472overload resolution and picks a winning xmethod worker. A winner
2473is also selected from among the methods @value{GDBN} finds in the
2474C@t{++} source code. Next, the winning xmethod worker and the
2475winning C@t{++} method are compared to select an overall winner. In
2476case of a tie between a xmethod worker and a C@t{++} method, the
2477xmethod worker is selected as the winner. That is, if a winning
2478xmethod worker is found to be equivalent to the winning C@t{++}
2479method, then the xmethod worker is treated as a replacement for
2480the C@t{++} method. @value{GDBN} uses the overall winner to invoke the
2481method. If the winning xmethod worker is the overall winner, then
897c3d32 2482the corresponding xmethod is invoked via the @code{__call__} method
0c6e92a5
SC
2483of the worker object.
2484
2485If one wants to implement an xmethod as a replacement for an
2486existing C@t{++} method, then they have to implement an equivalent
2487xmethod which has exactly the same name and takes arguments of
2488exactly the same type as the C@t{++} method. If the user wants to
2489invoke the C@t{++} method even though a replacement xmethod is
2490available for that method, then they can disable the xmethod.
2491
2492@xref{Xmethod API}, for API to implement xmethods in Python.
2493@xref{Writing an Xmethod}, for implementing xmethods in Python.
2494
2495@node Xmethod API
2496@subsubsection Xmethod API
2497@cindex xmethod API
2498
2499The @value{GDBN} Python API provides classes, interfaces and functions
2500to implement, register and manipulate xmethods.
2501@xref{Xmethods In Python}.
2502
2503An xmethod matcher should be an instance of a class derived from
2504@code{XMethodMatcher} defined in the module @code{gdb.xmethod}, or an
2505object with similar interface and attributes. An instance of
2506@code{XMethodMatcher} has the following attributes:
2507
2508@defvar name
2509The name of the matcher.
2510@end defvar
2511
2512@defvar enabled
2513A boolean value indicating whether the matcher is enabled or disabled.
2514@end defvar
2515
2516@defvar methods
2517A list of named methods managed by the matcher. Each object in the list
2518is an instance of the class @code{XMethod} defined in the module
2519@code{gdb.xmethod}, or any object with the following attributes:
2520
2521@table @code
2522
2523@item name
2524Name of the xmethod which should be unique for each xmethod
2525managed by the matcher.
2526
2527@item enabled
2528A boolean value indicating whether the xmethod is enabled or
2529disabled.
2530
2531@end table
2532
2533The class @code{XMethod} is a convenience class with same
2534attributes as above along with the following constructor:
2535
dd5d5494 2536@defun XMethod.__init__ (self, name)
0c6e92a5
SC
2537Constructs an enabled xmethod with name @var{name}.
2538@end defun
2539@end defvar
2540
2541@noindent
2542The @code{XMethodMatcher} class has the following methods:
2543
dd5d5494 2544@defun XMethodMatcher.__init__ (self, name)
0c6e92a5
SC
2545Constructs an enabled xmethod matcher with name @var{name}. The
2546@code{methods} attribute is initialized to @code{None}.
2547@end defun
2548
dd5d5494 2549@defun XMethodMatcher.match (self, class_type, method_name)
0c6e92a5
SC
2550Derived classes should override this method. It should return a
2551xmethod worker object (or a sequence of xmethod worker
2552objects) matching the @var{class_type} and @var{method_name}.
2553@var{class_type} is a @code{gdb.Type} object, and @var{method_name}
2554is a string value. If the matcher manages named methods as listed in
2555its @code{methods} attribute, then only those worker objects whose
2556corresponding entries in the @code{methods} list are enabled should be
2557returned.
2558@end defun
2559
2560An xmethod worker should be an instance of a class derived from
2561@code{XMethodWorker} defined in the module @code{gdb.xmethod},
2562or support the following interface:
2563
dd5d5494 2564@defun XMethodWorker.get_arg_types (self)
0c6e92a5
SC
2565This method returns a sequence of @code{gdb.Type} objects corresponding
2566to the arguments that the xmethod takes. It can return an empty
2567sequence or @code{None} if the xmethod does not take any arguments.
2568If the xmethod takes a single argument, then a single
2569@code{gdb.Type} object corresponding to it can be returned.
2570@end defun
2571
2ce1cdbf
DE
2572@defun XMethodWorker.get_result_type (self, *args)
2573This method returns a @code{gdb.Type} object representing the type
2574of the result of invoking this xmethod.
2575The @var{args} argument is the same tuple of arguments that would be
2576passed to the @code{__call__} method of this worker.
2577@end defun
2578
dd5d5494 2579@defun XMethodWorker.__call__ (self, *args)
0c6e92a5
SC
2580This is the method which does the @emph{work} of the xmethod. The
2581@var{args} arguments is the tuple of arguments to the xmethod. Each
2582element in this tuple is a gdb.Value object. The first element is
2583always the @code{this} pointer value.
2584@end defun
2585
2586For @value{GDBN} to lookup xmethods, the xmethod matchers
2587should be registered using the following function defined in the module
2588@code{gdb.xmethod}:
2589
dd5d5494 2590@defun register_xmethod_matcher (locus, matcher, replace=False)
0c6e92a5
SC
2591The @code{matcher} is registered with @code{locus}, replacing an
2592existing matcher with the same name as @code{matcher} if
2593@code{replace} is @code{True}. @code{locus} can be a
2594@code{gdb.Objfile} object (@pxref{Objfiles In Python}), or a
1e47491b 2595@code{gdb.Progspace} object (@pxref{Progspaces In Python}), or
0c6e92a5
SC
2596@code{None}. If it is @code{None}, then @code{matcher} is registered
2597globally.
2598@end defun
2599
2600@node Writing an Xmethod
2601@subsubsection Writing an Xmethod
2602@cindex writing xmethods in Python
2603
2604Implementing xmethods in Python will require implementing xmethod
2605matchers and xmethod workers (@pxref{Xmethods In Python}). Consider
2606the following C@t{++} class:
2607
2608@smallexample
2609class MyClass
2610@{
2611public:
2612 MyClass (int a) : a_(a) @{ @}
2613
2614 int geta (void) @{ return a_; @}
2615 int operator+ (int b);
2616
2617private:
2618 int a_;
2619@};
2620
2621int
2622MyClass::operator+ (int b)
2623@{
2624 return a_ + b;
2625@}
2626@end smallexample
2627
2628@noindent
2629Let us define two xmethods for the class @code{MyClass}, one
2630replacing the method @code{geta}, and another adding an overloaded
2631flavor of @code{operator+} which takes a @code{MyClass} argument (the
2632C@t{++} code above already has an overloaded @code{operator+}
2633which takes an @code{int} argument). The xmethod matcher can be
2634defined as follows:
2635
2636@smallexample
2637class MyClass_geta(gdb.xmethod.XMethod):
2638 def __init__(self):
2639 gdb.xmethod.XMethod.__init__(self, 'geta')
2640
2641 def get_worker(self, method_name):
2642 if method_name == 'geta':
2643 return MyClassWorker_geta()
2644
2645
2646class MyClass_sum(gdb.xmethod.XMethod):
2647 def __init__(self):
2648 gdb.xmethod.XMethod.__init__(self, 'sum')
2649
2650 def get_worker(self, method_name):
2651 if method_name == 'operator+':
2652 return MyClassWorker_plus()
2653
2654
2655class MyClassMatcher(gdb.xmethod.XMethodMatcher):
2656 def __init__(self):
2657 gdb.xmethod.XMethodMatcher.__init__(self, 'MyClassMatcher')
2658 # List of methods 'managed' by this matcher
2659 self.methods = [MyClass_geta(), MyClass_sum()]
2660
2661 def match(self, class_type, method_name):
2662 if class_type.tag != 'MyClass':
2663 return None
2664 workers = []
2665 for method in self.methods:
2666 if method.enabled:
2667 worker = method.get_worker(method_name)
2668 if worker:
2669 workers.append(worker)
2670
2671 return workers
2672@end smallexample
2673
2674@noindent
2675Notice that the @code{match} method of @code{MyClassMatcher} returns
2676a worker object of type @code{MyClassWorker_geta} for the @code{geta}
2677method, and a worker object of type @code{MyClassWorker_plus} for the
2678@code{operator+} method. This is done indirectly via helper classes
2679derived from @code{gdb.xmethod.XMethod}. One does not need to use the
2680@code{methods} attribute in a matcher as it is optional. However, if a
2681matcher manages more than one xmethod, it is a good practice to list the
2682xmethods in the @code{methods} attribute of the matcher. This will then
2683facilitate enabling and disabling individual xmethods via the
2684@code{enable/disable} commands. Notice also that a worker object is
2685returned only if the corresponding entry in the @code{methods} attribute
2686of the matcher is enabled.
2687
2688The implementation of the worker classes returned by the matcher setup
2689above is as follows:
2690
2691@smallexample
2692class MyClassWorker_geta(gdb.xmethod.XMethodWorker):
2693 def get_arg_types(self):
2694 return None
2ce1cdbf
DE
2695
2696 def get_result_type(self, obj):
2697 return gdb.lookup_type('int')
0c6e92a5
SC
2698
2699 def __call__(self, obj):
2700 return obj['a_']
2701
2702
2703class MyClassWorker_plus(gdb.xmethod.XMethodWorker):
2704 def get_arg_types(self):
2705 return gdb.lookup_type('MyClass')
2ce1cdbf
DE
2706
2707 def get_result_type(self, obj):
2708 return gdb.lookup_type('int')
0c6e92a5
SC
2709
2710 def __call__(self, obj, other):
2711 return obj['a_'] + other['a_']
2712@end smallexample
2713
2714For @value{GDBN} to actually lookup a xmethod, it has to be
2715registered with it. The matcher defined above is registered with
2716@value{GDBN} globally as follows:
2717
2718@smallexample
2719gdb.xmethod.register_xmethod_matcher(None, MyClassMatcher())
2720@end smallexample
2721
2722If an object @code{obj} of type @code{MyClass} is initialized in C@t{++}
2723code as follows:
2724
2725@smallexample
2726MyClass obj(5);
2727@end smallexample
2728
2729@noindent
2730then, after loading the Python script defining the xmethod matchers
2731and workers into @code{GDBN}, invoking the method @code{geta} or using
2732the operator @code{+} on @code{obj} will invoke the xmethods
2733defined above:
2734
2735@smallexample
2736(gdb) p obj.geta()
2737$1 = 5
2738
2739(gdb) p obj + obj
2740$2 = 10
2741@end smallexample
2742
2743Consider another example with a C++ template class:
2744
2745@smallexample
2746template <class T>
2747class MyTemplate
2748@{
2749public:
2750 MyTemplate () : dsize_(10), data_ (new T [10]) @{ @}
2751 ~MyTemplate () @{ delete [] data_; @}
2752
2753 int footprint (void)
2754 @{
2755 return sizeof (T) * dsize_ + sizeof (MyTemplate<T>);
2756 @}
2757
2758private:
2759 int dsize_;
2760 T *data_;
2761@};
2762@end smallexample
2763
2764Let us implement an xmethod for the above class which serves as a
2765replacement for the @code{footprint} method. The full code listing
2766of the xmethod workers and xmethod matchers is as follows:
2767
2768@smallexample
2769class MyTemplateWorker_footprint(gdb.xmethod.XMethodWorker):
2770 def __init__(self, class_type):
2771 self.class_type = class_type
2ce1cdbf 2772
0c6e92a5
SC
2773 def get_arg_types(self):
2774 return None
2ce1cdbf
DE
2775
2776 def get_result_type(self):
2777 return gdb.lookup_type('int')
2778
0c6e92a5
SC
2779 def __call__(self, obj):
2780 return (self.class_type.sizeof +
2781 obj['dsize_'] *
2782 self.class_type.template_argument(0).sizeof)
2783
2784
2785class MyTemplateMatcher_footprint(gdb.xmethod.XMethodMatcher):
2786 def __init__(self):
2787 gdb.xmethod.XMethodMatcher.__init__(self, 'MyTemplateMatcher')
2788
2789 def match(self, class_type, method_name):
2790 if (re.match('MyTemplate<[ \t\n]*[_a-zA-Z][ _a-zA-Z0-9]*>',
2791 class_type.tag) and
2792 method_name == 'footprint'):
2793 return MyTemplateWorker_footprint(class_type)
2794@end smallexample
2795
2796Notice that, in this example, we have not used the @code{methods}
2797attribute of the matcher as the matcher manages only one xmethod. The
2798user can enable/disable this xmethod by enabling/disabling the matcher
2799itself.
2800
329baa95
DE
2801@node Inferiors In Python
2802@subsubsection Inferiors In Python
2803@cindex inferiors in Python
2804
2805@findex gdb.Inferior
2806Programs which are being run under @value{GDBN} are called inferiors
2807(@pxref{Inferiors and Programs}). Python scripts can access
2808information about and manipulate inferiors controlled by @value{GDBN}
2809via objects of the @code{gdb.Inferior} class.
2810
2811The following inferior-related functions are available in the @code{gdb}
2812module:
2813
2814@defun gdb.inferiors ()
2815Return a tuple containing all inferior objects.
2816@end defun
2817
2818@defun gdb.selected_inferior ()
2819Return an object representing the current inferior.
2820@end defun
2821
2822A @code{gdb.Inferior} object has the following attributes:
2823
2824@defvar Inferior.num
2825ID of inferior, as assigned by GDB.
2826@end defvar
2827
2828@defvar Inferior.pid
2829Process ID of the inferior, as assigned by the underlying operating
2830system.
2831@end defvar
2832
2833@defvar Inferior.was_attached
2834Boolean signaling whether the inferior was created using `attach', or
2835started by @value{GDBN} itself.
2836@end defvar
2837
2838A @code{gdb.Inferior} object has the following methods:
2839
2840@defun Inferior.is_valid ()
2841Returns @code{True} if the @code{gdb.Inferior} object is valid,
2842@code{False} if not. A @code{gdb.Inferior} object will become invalid
2843if the inferior no longer exists within @value{GDBN}. All other
2844@code{gdb.Inferior} methods will throw an exception if it is invalid
2845at the time the method is called.
2846@end defun
2847
2848@defun Inferior.threads ()
2849This method returns a tuple holding all the threads which are valid
2850when it is called. If there are no valid threads, the method will
2851return an empty tuple.
2852@end defun
2853
2854@findex Inferior.read_memory
2855@defun Inferior.read_memory (address, length)
a86c90e6 2856Read @var{length} addressable memory units from the inferior, starting at
329baa95
DE
2857@var{address}. Returns a buffer object, which behaves much like an array
2858or a string. It can be modified and given to the
79778b30 2859@code{Inferior.write_memory} function. In Python 3, the return
329baa95
DE
2860value is a @code{memoryview} object.
2861@end defun
2862
2863@findex Inferior.write_memory
2864@defun Inferior.write_memory (address, buffer @r{[}, length@r{]})
2865Write the contents of @var{buffer} to the inferior, starting at
2866@var{address}. The @var{buffer} parameter must be a Python object
2867which supports the buffer protocol, i.e., a string, an array or the
2868object returned from @code{Inferior.read_memory}. If given, @var{length}
a86c90e6
SM
2869determines the number of addressable memory units from @var{buffer} to be
2870written.
329baa95
DE
2871@end defun
2872
2873@findex gdb.search_memory
2874@defun Inferior.search_memory (address, length, pattern)
2875Search a region of the inferior memory starting at @var{address} with
2876the given @var{length} using the search pattern supplied in
2877@var{pattern}. The @var{pattern} parameter must be a Python object
2878which supports the buffer protocol, i.e., a string, an array or the
2879object returned from @code{gdb.read_memory}. Returns a Python @code{Long}
2880containing the address where the pattern was found, or @code{None} if
2881the pattern could not be found.
2882@end defun
2883
da2c323b
KB
2884@findex Inferior.thread_from_thread_handle
2885@defun Inferior.thread_from_thread_handle (thread_handle)
2886Return the thread object corresponding to @var{thread_handle}, a thread
2887library specific data structure such as @code{pthread_t} for pthreads
2888library implementations.
2889@end defun
2890
329baa95
DE
2891@node Events In Python
2892@subsubsection Events In Python
2893@cindex inferior events in Python
2894
2895@value{GDBN} provides a general event facility so that Python code can be
2896notified of various state changes, particularly changes that occur in
2897the inferior.
2898
2899An @dfn{event} is just an object that describes some state change. The
2900type of the object and its attributes will vary depending on the details
2901of the change. All the existing events are described below.
2902
2903In order to be notified of an event, you must register an event handler
2904with an @dfn{event registry}. An event registry is an object in the
2905@code{gdb.events} module which dispatches particular events. A registry
2906provides methods to register and unregister event handlers:
2907
2908@defun EventRegistry.connect (object)
2909Add the given callable @var{object} to the registry. This object will be
2910called when an event corresponding to this registry occurs.
2911@end defun
2912
2913@defun EventRegistry.disconnect (object)
2914Remove the given @var{object} from the registry. Once removed, the object
2915will no longer receive notifications of events.
2916@end defun
2917
2918Here is an example:
2919
2920@smallexample
2921def exit_handler (event):
2922 print "event type: exit"
2923 print "exit code: %d" % (event.exit_code)
2924
2925gdb.events.exited.connect (exit_handler)
2926@end smallexample
2927
2928In the above example we connect our handler @code{exit_handler} to the
2929registry @code{events.exited}. Once connected, @code{exit_handler} gets
2930called when the inferior exits. The argument @dfn{event} in this example is
2931of type @code{gdb.ExitedEvent}. As you can see in the example the
2932@code{ExitedEvent} object has an attribute which indicates the exit code of
2933the inferior.
2934
2935The following is a listing of the event registries that are available and
2936details of the events they emit:
2937
2938@table @code
2939
2940@item events.cont
2941Emits @code{gdb.ThreadEvent}.
2942
2943Some events can be thread specific when @value{GDBN} is running in non-stop
2944mode. When represented in Python, these events all extend
2945@code{gdb.ThreadEvent}. Note, this event is not emitted directly; instead,
2946events which are emitted by this or other modules might extend this event.
2947Examples of these events are @code{gdb.BreakpointEvent} and
2948@code{gdb.ContinueEvent}.
2949
2950@defvar ThreadEvent.inferior_thread
2951In non-stop mode this attribute will be set to the specific thread which was
2952involved in the emitted event. Otherwise, it will be set to @code{None}.
2953@end defvar
2954
2955Emits @code{gdb.ContinueEvent} which extends @code{gdb.ThreadEvent}.
2956
2957This event indicates that the inferior has been continued after a stop. For
2958inherited attribute refer to @code{gdb.ThreadEvent} above.
2959
2960@item events.exited
2961Emits @code{events.ExitedEvent} which indicates that the inferior has exited.
2962@code{events.ExitedEvent} has two attributes:
2963@defvar ExitedEvent.exit_code
2964An integer representing the exit code, if available, which the inferior
2965has returned. (The exit code could be unavailable if, for example,
2966@value{GDBN} detaches from the inferior.) If the exit code is unavailable,
2967the attribute does not exist.
2968@end defvar
373832b6 2969@defvar ExitedEvent.inferior
329baa95
DE
2970A reference to the inferior which triggered the @code{exited} event.
2971@end defvar
2972
2973@item events.stop
2974Emits @code{gdb.StopEvent} which extends @code{gdb.ThreadEvent}.
2975
2976Indicates that the inferior has stopped. All events emitted by this registry
2977extend StopEvent. As a child of @code{gdb.ThreadEvent}, @code{gdb.StopEvent}
2978will indicate the stopped thread when @value{GDBN} is running in non-stop
2979mode. Refer to @code{gdb.ThreadEvent} above for more details.
2980
2981Emits @code{gdb.SignalEvent} which extends @code{gdb.StopEvent}.
2982
2983This event indicates that the inferior or one of its threads has received as
2984signal. @code{gdb.SignalEvent} has the following attributes:
2985
2986@defvar SignalEvent.stop_signal
2987A string representing the signal received by the inferior. A list of possible
2988signal values can be obtained by running the command @code{info signals} in
2989the @value{GDBN} command prompt.
2990@end defvar
2991
2992Also emits @code{gdb.BreakpointEvent} which extends @code{gdb.StopEvent}.
2993
2994@code{gdb.BreakpointEvent} event indicates that one or more breakpoints have
2995been hit, and has the following attributes:
2996
2997@defvar BreakpointEvent.breakpoints
2998A sequence containing references to all the breakpoints (type
2999@code{gdb.Breakpoint}) that were hit.
3000@xref{Breakpoints In Python}, for details of the @code{gdb.Breakpoint} object.
3001@end defvar
3002@defvar BreakpointEvent.breakpoint
3003A reference to the first breakpoint that was hit.
3004This function is maintained for backward compatibility and is now deprecated
3005in favor of the @code{gdb.BreakpointEvent.breakpoints} attribute.
3006@end defvar
3007
3008@item events.new_objfile
3009Emits @code{gdb.NewObjFileEvent} which indicates that a new object file has
3010been loaded by @value{GDBN}. @code{gdb.NewObjFileEvent} has one attribute:
3011
3012@defvar NewObjFileEvent.new_objfile
3013A reference to the object file (@code{gdb.Objfile}) which has been loaded.
3014@xref{Objfiles In Python}, for details of the @code{gdb.Objfile} object.
3015@end defvar
3016
4ffbba72
DE
3017@item events.clear_objfiles
3018Emits @code{gdb.ClearObjFilesEvent} which indicates that the list of object
3019files for a program space has been reset.
3020@code{gdb.ClearObjFilesEvent} has one attribute:
3021
3022@defvar ClearObjFilesEvent.progspace
3023A reference to the program space (@code{gdb.Progspace}) whose objfile list has
3024been cleared. @xref{Progspaces In Python}.
3025@end defvar
3026
fb5af5e3
TT
3027@item events.inferior_call
3028Emits events just before and after a function in the inferior is
3029called by @value{GDBN}. Before an inferior call, this emits an event
3030of type @code{gdb.InferiorCallPreEvent}, and after an inferior call,
3031this emits an event of type @code{gdb.InferiorCallPostEvent}.
3032
3033@table @code
3034@tindex gdb.InferiorCallPreEvent
3035@item @code{gdb.InferiorCallPreEvent}
3036Indicates that a function in the inferior is about to be called.
162078c8
NB
3037
3038@defvar InferiorCallPreEvent.ptid
3039The thread in which the call will be run.
3040@end defvar
3041
3042@defvar InferiorCallPreEvent.address
3043The location of the function to be called.
3044@end defvar
3045
fb5af5e3
TT
3046@tindex gdb.InferiorCallPostEvent
3047@item @code{gdb.InferiorCallPostEvent}
3048Indicates that a function in the inferior has just been called.
162078c8
NB
3049
3050@defvar InferiorCallPostEvent.ptid
3051The thread in which the call was run.
3052@end defvar
3053
3054@defvar InferiorCallPostEvent.address
3055The location of the function that was called.
3056@end defvar
fb5af5e3 3057@end table
162078c8
NB
3058
3059@item events.memory_changed
3060Emits @code{gdb.MemoryChangedEvent} which indicates that the memory of the
3061inferior has been modified by the @value{GDBN} user, for instance via a
3062command like @w{@code{set *addr = value}}. The event has the following
3063attributes:
3064
3065@defvar MemoryChangedEvent.address
3066The start address of the changed region.
3067@end defvar
3068
3069@defvar MemoryChangedEvent.length
3070Length in bytes of the changed region.
3071@end defvar
3072
3073@item events.register_changed
3074Emits @code{gdb.RegisterChangedEvent} which indicates that a register in the
3075inferior has been modified by the @value{GDBN} user.
3076
3077@defvar RegisterChangedEvent.frame
3078A gdb.Frame object representing the frame in which the register was modified.
3079@end defvar
3080@defvar RegisterChangedEvent.regnum
3081Denotes which register was modified.
3082@end defvar
3083
dac790e1
TT
3084@item events.breakpoint_created
3085This is emitted when a new breakpoint has been created. The argument
3086that is passed is the new @code{gdb.Breakpoint} object.
3087
3088@item events.breakpoint_modified
3089This is emitted when a breakpoint has been modified in some way. The
3090argument that is passed is the new @code{gdb.Breakpoint} object.
3091
3092@item events.breakpoint_deleted
3093This is emitted when a breakpoint has been deleted. The argument that
3094is passed is the @code{gdb.Breakpoint} object. When this event is
3095emitted, the @code{gdb.Breakpoint} object will already be in its
3096invalid state; that is, the @code{is_valid} method will return
3097@code{False}.
3098
3f77c769
TT
3099@item events.before_prompt
3100This event carries no payload. It is emitted each time @value{GDBN}
3101presents a prompt to the user.
3102
7c96f8c1
TT
3103@item events.new_inferior
3104This is emitted when a new inferior is created. Note that the
3105inferior is not necessarily running; in fact, it may not even have an
3106associated executable.
3107
3108The event is of type @code{gdb.NewInferiorEvent}. This has a single
3109attribute:
3110
3111@defvar NewInferiorEvent.inferior
3112The new inferior, a @code{gdb.Inferior} object.
3113@end defvar
3114
3115@item events.inferior_deleted
3116This is emitted when an inferior has been deleted. Note that this is
3117not the same as process exit; it is notified when the inferior itself
3118is removed, say via @code{remove-inferiors}.
3119
3120The event is of type @code{gdb.InferiorDeletedEvent}. This has a single
3121attribute:
3122
3123@defvar NewInferiorEvent.inferior
3124The inferior that is being removed, a @code{gdb.Inferior} object.
3125@end defvar
3126
3127@item events.new_thread
3128This is emitted when @value{GDBN} notices a new thread. The event is of
3129type @code{gdb.NewThreadEvent}, which extends @code{gdb.ThreadEvent}.
3130This has a single attribute:
3131
3132@defvar NewThreadEvent.inferior_thread
3133The new thread.
3134@end defvar
3135
329baa95
DE
3136@end table
3137
3138@node Threads In Python
3139@subsubsection Threads In Python
3140@cindex threads in python
3141
3142@findex gdb.InferiorThread
3143Python scripts can access information about, and manipulate inferior threads
3144controlled by @value{GDBN}, via objects of the @code{gdb.InferiorThread} class.
3145
3146The following thread-related functions are available in the @code{gdb}
3147module:
3148
3149@findex gdb.selected_thread
3150@defun gdb.selected_thread ()
3151This function returns the thread object for the selected thread. If there
3152is no selected thread, this will return @code{None}.
3153@end defun
3154
3155A @code{gdb.InferiorThread} object has the following attributes:
3156
3157@defvar InferiorThread.name
3158The name of the thread. If the user specified a name using
3159@code{thread name}, then this returns that name. Otherwise, if an
3160OS-supplied name is available, then it is returned. Otherwise, this
3161returns @code{None}.
3162
3163This attribute can be assigned to. The new value must be a string
3164object, which sets the new name, or @code{None}, which removes any
3165user-specified thread name.
3166@end defvar
3167
3168@defvar InferiorThread.num
5d5658a1 3169The per-inferior number of the thread, as assigned by GDB.
329baa95
DE
3170@end defvar
3171
22a02324
PA
3172@defvar InferiorThread.global_num
3173The global ID of the thread, as assigned by GDB. You can use this to
3174make Python breakpoints thread-specific, for example
3175(@pxref{python_breakpoint_thread,,The Breakpoint.thread attribute}).
3176@end defvar
3177
329baa95
DE
3178@defvar InferiorThread.ptid
3179ID of the thread, as assigned by the operating system. This attribute is a
3180tuple containing three integers. The first is the Process ID (PID); the second
3181is the Lightweight Process ID (LWPID), and the third is the Thread ID (TID).
3182Either the LWPID or TID may be 0, which indicates that the operating system
3183does not use that identifier.
3184@end defvar
3185
84654457
PA
3186@defvar InferiorThread.inferior
3187The inferior this thread belongs to. This attribute is represented as
3188a @code{gdb.Inferior} object. This attribute is not writable.
3189@end defvar
3190
329baa95
DE
3191A @code{gdb.InferiorThread} object has the following methods:
3192
3193@defun InferiorThread.is_valid ()
3194Returns @code{True} if the @code{gdb.InferiorThread} object is valid,
3195@code{False} if not. A @code{gdb.InferiorThread} object will become
3196invalid if the thread exits, or the inferior that the thread belongs
3197is deleted. All other @code{gdb.InferiorThread} methods will throw an
3198exception if it is invalid at the time the method is called.
3199@end defun
3200
3201@defun InferiorThread.switch ()
3202This changes @value{GDBN}'s currently selected thread to the one represented
3203by this object.
3204@end defun
3205
3206@defun InferiorThread.is_stopped ()
3207Return a Boolean indicating whether the thread is stopped.
3208@end defun
3209
3210@defun InferiorThread.is_running ()
3211Return a Boolean indicating whether the thread is running.
3212@end defun
3213
3214@defun InferiorThread.is_exited ()
3215Return a Boolean indicating whether the thread is exited.
3216@end defun
3217
0a0faf9f
TW
3218@node Recordings In Python
3219@subsubsection Recordings In Python
3220@cindex recordings in python
3221
3222The following recordings-related functions
3223(@pxref{Process Record and Replay}) are available in the @code{gdb}
3224module:
3225
3226@defun gdb.start_recording (@r{[}method@r{]}, @r{[}format@r{]})
3227Start a recording using the given @var{method} and @var{format}. If
3228no @var{format} is given, the default format for the recording method
3229is used. If no @var{method} is given, the default method will be used.
3230Returns a @code{gdb.Record} object on success. Throw an exception on
3231failure.
3232
3233The following strings can be passed as @var{method}:
3234
3235@itemize @bullet
3236@item
3237@code{"full"}
3238@item
3239@code{"btrace"}: Possible values for @var{format}: @code{"pt"},
3240@code{"bts"} or leave out for default format.
3241@end itemize
3242@end defun
3243
3244@defun gdb.current_recording ()
3245Access a currently running recording. Return a @code{gdb.Record}
3246object on success. Return @code{None} if no recording is currently
3247active.
3248@end defun
3249
3250@defun gdb.stop_recording ()
3251Stop the current recording. Throw an exception if no recording is
3252currently active. All record objects become invalid after this call.
3253@end defun
3254
3255A @code{gdb.Record} object has the following attributes:
3256
0a0faf9f
TW
3257@defvar Record.method
3258A string with the current recording method, e.g.@: @code{full} or
3259@code{btrace}.
3260@end defvar
3261
3262@defvar Record.format
3263A string with the current recording format, e.g.@: @code{bt}, @code{pts} or
3264@code{None}.
3265@end defvar
3266
3267@defvar Record.begin
3268A method specific instruction object representing the first instruction
3269in this recording.
3270@end defvar
3271
3272@defvar Record.end
3273A method specific instruction object representing the current
3274instruction, that is not actually part of the recording.
3275@end defvar
3276
3277@defvar Record.replay_position
3278The instruction representing the current replay position. If there is
3279no replay active, this will be @code{None}.
3280@end defvar
3281
3282@defvar Record.instruction_history
3283A list with all recorded instructions.
3284@end defvar
3285
3286@defvar Record.function_call_history
3287A list with all recorded function call segments.
3288@end defvar
3289
3290A @code{gdb.Record} object has the following methods:
3291
3292@defun Record.goto (instruction)
3293Move the replay position to the given @var{instruction}.
3294@end defun
3295
d050f7d7
TW
3296The common @code{gdb.Instruction} class that recording method specific
3297instruction objects inherit from, has the following attributes:
0a0faf9f 3298
d050f7d7 3299@defvar Instruction.pc
913aeadd 3300An integer representing this instruction's address.
0a0faf9f
TW
3301@end defvar
3302
d050f7d7 3303@defvar Instruction.data
913aeadd
TW
3304A buffer with the raw instruction data. In Python 3, the return value is a
3305@code{memoryview} object.
0a0faf9f
TW
3306@end defvar
3307
d050f7d7 3308@defvar Instruction.decoded
913aeadd 3309A human readable string with the disassembled instruction.
0a0faf9f
TW
3310@end defvar
3311
d050f7d7 3312@defvar Instruction.size
913aeadd 3313The size of the instruction in bytes.
0a0faf9f
TW
3314@end defvar
3315
d050f7d7
TW
3316Additionally @code{gdb.RecordInstruction} has the following attributes:
3317
3318@defvar RecordInstruction.number
3319An integer identifying this instruction. @code{number} corresponds to
3320the numbers seen in @code{record instruction-history}
3321(@pxref{Process Record and Replay}).
3322@end defvar
3323
3324@defvar RecordInstruction.sal
3325A @code{gdb.Symtab_and_line} object representing the associated symtab
3326and line of this instruction. May be @code{None} if no debug information is
3327available.
3328@end defvar
3329
0ed5da75 3330@defvar RecordInstruction.is_speculative
d050f7d7 3331A boolean indicating whether the instruction was executed speculatively.
913aeadd
TW
3332@end defvar
3333
3334If an error occured during recording or decoding a recording, this error is
3335represented by a @code{gdb.RecordGap} object in the instruction list. It has
3336the following attributes:
3337
3338@defvar RecordGap.number
3339An integer identifying this gap. @code{number} corresponds to the numbers seen
3340in @code{record instruction-history} (@pxref{Process Record and Replay}).
3341@end defvar
3342
3343@defvar RecordGap.error_code
3344A numerical representation of the reason for the gap. The value is specific to
3345the current recording method.
3346@end defvar
3347
3348@defvar RecordGap.error_string
3349A human readable string with the reason for the gap.
0a0faf9f
TW
3350@end defvar
3351
14f819c8 3352A @code{gdb.RecordFunctionSegment} object has the following attributes:
0a0faf9f 3353
14f819c8
TW
3354@defvar RecordFunctionSegment.number
3355An integer identifying this function segment. @code{number} corresponds to
0a0faf9f
TW
3356the numbers seen in @code{record function-call-history}
3357(@pxref{Process Record and Replay}).
3358@end defvar
3359
14f819c8 3360@defvar RecordFunctionSegment.symbol
0a0faf9f 3361A @code{gdb.Symbol} object representing the associated symbol. May be
14f819c8 3362@code{None} if no debug information is available.
0a0faf9f
TW
3363@end defvar
3364
14f819c8 3365@defvar RecordFunctionSegment.level
0a0faf9f
TW
3366An integer representing the function call's stack level. May be
3367@code{None} if the function call is a gap.
3368@end defvar
3369
14f819c8 3370@defvar RecordFunctionSegment.instructions
0ed5da75 3371A list of @code{gdb.RecordInstruction} or @code{gdb.RecordGap} objects
913aeadd 3372associated with this function call.
0a0faf9f
TW
3373@end defvar
3374
14f819c8
TW
3375@defvar RecordFunctionSegment.up
3376A @code{gdb.RecordFunctionSegment} object representing the caller's
0a0faf9f
TW
3377function segment. If the call has not been recorded, this will be the
3378function segment to which control returns. If neither the call nor the
3379return have been recorded, this will be @code{None}.
3380@end defvar
3381
14f819c8
TW
3382@defvar RecordFunctionSegment.prev
3383A @code{gdb.RecordFunctionSegment} object representing the previous
0a0faf9f
TW
3384segment of this function call. May be @code{None}.
3385@end defvar
3386
14f819c8
TW
3387@defvar RecordFunctionSegment.next
3388A @code{gdb.RecordFunctionSegment} object representing the next segment of
0a0faf9f
TW
3389this function call. May be @code{None}.
3390@end defvar
3391
3392The following example demonstrates the usage of these objects and
3393functions to create a function that will rewind a record to the last
3394time a function in a different file was executed. This would typically
3395be used to track the execution of user provided callback functions in a
3396library which typically are not visible in a back trace.
3397
3398@smallexample
3399def bringback ():
3400 rec = gdb.current_recording ()
3401 if not rec:
3402 return
3403
3404 insn = rec.instruction_history
3405 if len (insn) == 0:
3406 return
3407
3408 try:
3409 position = insn.index (rec.replay_position)
3410 except:
3411 position = -1
3412 try:
3413 filename = insn[position].sal.symtab.fullname ()
3414 except:
3415 filename = None
3416
3417 for i in reversed (insn[:position]):
3418 try:
3419 current = i.sal.symtab.fullname ()
3420 except:
3421 current = None
3422
3423 if filename == current:
3424 continue
3425
3426 rec.goto (i)
3427 return
3428@end smallexample
3429
3430Another possible application is to write a function that counts the
3431number of code executions in a given line range. This line range can
3432contain parts of functions or span across several functions and is not
3433limited to be contiguous.
3434
3435@smallexample
3436def countrange (filename, linerange):
3437 count = 0
3438
3439 def filter_only (file_name):
3440 for call in gdb.current_recording ().function_call_history:
3441 try:
3442 if file_name in call.symbol.symtab.fullname ():
3443 yield call
3444 except:
3445 pass
3446
3447 for c in filter_only (filename):
3448 for i in c.instructions:
3449 try:
3450 if i.sal.line in linerange:
3451 count += 1
3452 break;
3453 except:
3454 pass
3455
3456 return count
3457@end smallexample
3458
329baa95
DE
3459@node Commands In Python
3460@subsubsection Commands In Python
3461
3462@cindex commands in python
3463@cindex python commands
3464You can implement new @value{GDBN} CLI commands in Python. A CLI
3465command is implemented using an instance of the @code{gdb.Command}
3466class, most commonly using a subclass.
3467
3468@defun Command.__init__ (name, @var{command_class} @r{[}, @var{completer_class} @r{[}, @var{prefix}@r{]]})
3469The object initializer for @code{Command} registers the new command
3470with @value{GDBN}. This initializer is normally invoked from the
3471subclass' own @code{__init__} method.
3472
3473@var{name} is the name of the command. If @var{name} consists of
3474multiple words, then the initial words are looked for as prefix
3475commands. In this case, if one of the prefix commands does not exist,
3476an exception is raised.
3477
3478There is no support for multi-line commands.
3479
3480@var{command_class} should be one of the @samp{COMMAND_} constants
3481defined below. This argument tells @value{GDBN} how to categorize the
3482new command in the help system.
3483
3484@var{completer_class} is an optional argument. If given, it should be
3485one of the @samp{COMPLETE_} constants defined below. This argument
3486tells @value{GDBN} how to perform completion for this command. If not
3487given, @value{GDBN} will attempt to complete using the object's
3488@code{complete} method (see below); if no such method is found, an
3489error will occur when completion is attempted.
3490
3491@var{prefix} is an optional argument. If @code{True}, then the new
3492command is a prefix command; sub-commands of this command may be
3493registered.
3494
3495The help text for the new command is taken from the Python
3496documentation string for the command's class, if there is one. If no
3497documentation string is provided, the default value ``This command is
3498not documented.'' is used.
3499@end defun
3500
3501@cindex don't repeat Python command
3502@defun Command.dont_repeat ()
3503By default, a @value{GDBN} command is repeated when the user enters a
3504blank line at the command prompt. A command can suppress this
3505behavior by invoking the @code{dont_repeat} method. This is similar
3506to the user command @code{dont-repeat}, see @ref{Define, dont-repeat}.
3507@end defun
3508
3509@defun Command.invoke (argument, from_tty)
3510This method is called by @value{GDBN} when this command is invoked.
3511
3512@var{argument} is a string. It is the argument to the command, after
3513leading and trailing whitespace has been stripped.
3514
3515@var{from_tty} is a boolean argument. When true, this means that the
3516command was entered by the user at the terminal; when false it means
3517that the command came from elsewhere.
3518
3519If this method throws an exception, it is turned into a @value{GDBN}
3520@code{error} call. Otherwise, the return value is ignored.
3521
3522@findex gdb.string_to_argv
3523To break @var{argument} up into an argv-like string use
3524@code{gdb.string_to_argv}. This function behaves identically to
3525@value{GDBN}'s internal argument lexer @code{buildargv}.
3526It is recommended to use this for consistency.
3527Arguments are separated by spaces and may be quoted.
3528Example:
3529
3530@smallexample
3531print gdb.string_to_argv ("1 2\ \\\"3 '4 \"5' \"6 '7\"")
3532['1', '2 "3', '4 "5', "6 '7"]
3533@end smallexample
3534
3535@end defun
3536
3537@cindex completion of Python commands
3538@defun Command.complete (text, word)
3539This method is called by @value{GDBN} when the user attempts
3540completion on this command. All forms of completion are handled by
3541this method, that is, the @key{TAB} and @key{M-?} key bindings
3542(@pxref{Completion}), and the @code{complete} command (@pxref{Help,
3543complete}).
3544
697aa1b7
EZ
3545The arguments @var{text} and @var{word} are both strings; @var{text}
3546holds the complete command line up to the cursor's location, while
329baa95
DE
3547@var{word} holds the last word of the command line; this is computed
3548using a word-breaking heuristic.
3549
3550The @code{complete} method can return several values:
3551@itemize @bullet
3552@item
3553If the return value is a sequence, the contents of the sequence are
3554used as the completions. It is up to @code{complete} to ensure that the
3555contents actually do complete the word. A zero-length sequence is
3556allowed, it means that there were no completions available. Only
3557string elements of the sequence are used; other elements in the
3558sequence are ignored.
3559
3560@item
3561If the return value is one of the @samp{COMPLETE_} constants defined
3562below, then the corresponding @value{GDBN}-internal completion
3563function is invoked, and its result is used.
3564
3565@item
3566All other results are treated as though there were no available
3567completions.
3568@end itemize
3569@end defun
3570
3571When a new command is registered, it must be declared as a member of
3572some general class of commands. This is used to classify top-level
3573commands in the on-line help system; note that prefix commands are not
3574listed under their own category but rather that of their top-level
3575command. The available classifications are represented by constants
3576defined in the @code{gdb} module:
3577
3578@table @code
3579@findex COMMAND_NONE
3580@findex gdb.COMMAND_NONE
3581@item gdb.COMMAND_NONE
3582The command does not belong to any particular class. A command in
3583this category will not be displayed in any of the help categories.
3584
3585@findex COMMAND_RUNNING
3586@findex gdb.COMMAND_RUNNING
3587@item gdb.COMMAND_RUNNING
3588The command is related to running the inferior. For example,
3589@code{start}, @code{step}, and @code{continue} are in this category.
3590Type @kbd{help running} at the @value{GDBN} prompt to see a list of
3591commands in this category.
3592
3593@findex COMMAND_DATA
3594@findex gdb.COMMAND_DATA
3595@item gdb.COMMAND_DATA
3596The command is related to data or variables. For example,
3597@code{call}, @code{find}, and @code{print} are in this category. Type
3598@kbd{help data} at the @value{GDBN} prompt to see a list of commands
3599in this category.
3600
3601@findex COMMAND_STACK
3602@findex gdb.COMMAND_STACK
3603@item gdb.COMMAND_STACK
3604The command has to do with manipulation of the stack. For example,
3605@code{backtrace}, @code{frame}, and @code{return} are in this
3606category. Type @kbd{help stack} at the @value{GDBN} prompt to see a
3607list of commands in this category.
3608
3609@findex COMMAND_FILES
3610@findex gdb.COMMAND_FILES
3611@item gdb.COMMAND_FILES
3612This class is used for file-related commands. For example,
3613@code{file}, @code{list} and @code{section} are in this category.
3614Type @kbd{help files} at the @value{GDBN} prompt to see a list of
3615commands in this category.
3616
3617@findex COMMAND_SUPPORT
3618@findex gdb.COMMAND_SUPPORT
3619@item gdb.COMMAND_SUPPORT
3620This should be used for ``support facilities'', generally meaning
3621things that are useful to the user when interacting with @value{GDBN},
3622but not related to the state of the inferior. For example,
3623@code{help}, @code{make}, and @code{shell} are in this category. Type
3624@kbd{help support} at the @value{GDBN} prompt to see a list of
3625commands in this category.
3626
3627@findex COMMAND_STATUS
3628@findex gdb.COMMAND_STATUS
3629@item gdb.COMMAND_STATUS
3630The command is an @samp{info}-related command, that is, related to the
3631state of @value{GDBN} itself. For example, @code{info}, @code{macro},
3632and @code{show} are in this category. Type @kbd{help status} at the
3633@value{GDBN} prompt to see a list of commands in this category.
3634
3635@findex COMMAND_BREAKPOINTS
3636@findex gdb.COMMAND_BREAKPOINTS
3637@item gdb.COMMAND_BREAKPOINTS
3638The command has to do with breakpoints. For example, @code{break},
3639@code{clear}, and @code{delete} are in this category. Type @kbd{help
3640breakpoints} at the @value{GDBN} prompt to see a list of commands in
3641this category.
3642
3643@findex COMMAND_TRACEPOINTS
3644@findex gdb.COMMAND_TRACEPOINTS
3645@item gdb.COMMAND_TRACEPOINTS
3646The command has to do with tracepoints. For example, @code{trace},
3647@code{actions}, and @code{tfind} are in this category. Type
3648@kbd{help tracepoints} at the @value{GDBN} prompt to see a list of
3649commands in this category.
3650
3651@findex COMMAND_USER
3652@findex gdb.COMMAND_USER
3653@item gdb.COMMAND_USER
3654The command is a general purpose command for the user, and typically
3655does not fit in one of the other categories.
3656Type @kbd{help user-defined} at the @value{GDBN} prompt to see
3657a list of commands in this category, as well as the list of gdb macros
3658(@pxref{Sequences}).
3659
3660@findex COMMAND_OBSCURE
3661@findex gdb.COMMAND_OBSCURE
3662@item gdb.COMMAND_OBSCURE
3663The command is only used in unusual circumstances, or is not of
3664general interest to users. For example, @code{checkpoint},
3665@code{fork}, and @code{stop} are in this category. Type @kbd{help
3666obscure} at the @value{GDBN} prompt to see a list of commands in this
3667category.
3668
3669@findex COMMAND_MAINTENANCE
3670@findex gdb.COMMAND_MAINTENANCE
3671@item gdb.COMMAND_MAINTENANCE
3672The command is only useful to @value{GDBN} maintainers. The
3673@code{maintenance} and @code{flushregs} commands are in this category.
3674Type @kbd{help internals} at the @value{GDBN} prompt to see a list of
3675commands in this category.
3676@end table
3677
3678A new command can use a predefined completion function, either by
3679specifying it via an argument at initialization, or by returning it
3680from the @code{complete} method. These predefined completion
3681constants are all defined in the @code{gdb} module:
3682
b3ce5e5f
DE
3683@vtable @code
3684@vindex COMPLETE_NONE
329baa95
DE
3685@item gdb.COMPLETE_NONE
3686This constant means that no completion should be done.
3687
b3ce5e5f 3688@vindex COMPLETE_FILENAME
329baa95
DE
3689@item gdb.COMPLETE_FILENAME
3690This constant means that filename completion should be performed.
3691
b3ce5e5f 3692@vindex COMPLETE_LOCATION
329baa95
DE
3693@item gdb.COMPLETE_LOCATION
3694This constant means that location completion should be done.
3695@xref{Specify Location}.
3696
b3ce5e5f 3697@vindex COMPLETE_COMMAND
329baa95
DE
3698@item gdb.COMPLETE_COMMAND
3699This constant means that completion should examine @value{GDBN}
3700command names.
3701
b3ce5e5f 3702@vindex COMPLETE_SYMBOL
329baa95
DE
3703@item gdb.COMPLETE_SYMBOL
3704This constant means that completion should be done using symbol names
3705as the source.
3706
b3ce5e5f 3707@vindex COMPLETE_EXPRESSION
329baa95
DE
3708@item gdb.COMPLETE_EXPRESSION
3709This constant means that completion should be done on expressions.
3710Often this means completing on symbol names, but some language
3711parsers also have support for completing on field names.
b3ce5e5f 3712@end vtable
329baa95
DE
3713
3714The following code snippet shows how a trivial CLI command can be
3715implemented in Python:
3716
3717@smallexample
3718class HelloWorld (gdb.Command):
3719 """Greet the whole world."""
3720
3721 def __init__ (self):
3722 super (HelloWorld, self).__init__ ("hello-world", gdb.COMMAND_USER)
3723
3724 def invoke (self, arg, from_tty):
3725 print "Hello, World!"
3726
3727HelloWorld ()
3728@end smallexample
3729
3730The last line instantiates the class, and is necessary to trigger the
3731registration of the command with @value{GDBN}. Depending on how the
3732Python code is read into @value{GDBN}, you may need to import the
3733@code{gdb} module explicitly.
3734
3735@node Parameters In Python
3736@subsubsection Parameters In Python
3737
3738@cindex parameters in python
3739@cindex python parameters
3740@tindex gdb.Parameter
3741@tindex Parameter
3742You can implement new @value{GDBN} parameters using Python. A new
3743parameter is implemented as an instance of the @code{gdb.Parameter}
3744class.
3745
3746Parameters are exposed to the user via the @code{set} and
3747@code{show} commands. @xref{Help}.
3748
3749There are many parameters that already exist and can be set in
3750@value{GDBN}. Two examples are: @code{set follow fork} and
3751@code{set charset}. Setting these parameters influences certain
3752behavior in @value{GDBN}. Similarly, you can define parameters that
3753can be used to influence behavior in custom Python scripts and commands.
3754
3755@defun Parameter.__init__ (name, @var{command-class}, @var{parameter-class} @r{[}, @var{enum-sequence}@r{]})
3756The object initializer for @code{Parameter} registers the new
3757parameter with @value{GDBN}. This initializer is normally invoked
3758from the subclass' own @code{__init__} method.
3759
3760@var{name} is the name of the new parameter. If @var{name} consists
3761of multiple words, then the initial words are looked for as prefix
3762parameters. An example of this can be illustrated with the
3763@code{set print} set of parameters. If @var{name} is
3764@code{print foo}, then @code{print} will be searched as the prefix
3765parameter. In this case the parameter can subsequently be accessed in
3766@value{GDBN} as @code{set print foo}.
3767
3768If @var{name} consists of multiple words, and no prefix parameter group
3769can be found, an exception is raised.
3770
3771@var{command-class} should be one of the @samp{COMMAND_} constants
3772(@pxref{Commands In Python}). This argument tells @value{GDBN} how to
3773categorize the new parameter in the help system.
3774
3775@var{parameter-class} should be one of the @samp{PARAM_} constants
3776defined below. This argument tells @value{GDBN} the type of the new
3777parameter; this information is used for input validation and
3778completion.
3779
3780If @var{parameter-class} is @code{PARAM_ENUM}, then
3781@var{enum-sequence} must be a sequence of strings. These strings
3782represent the possible values for the parameter.
3783
3784If @var{parameter-class} is not @code{PARAM_ENUM}, then the presence
3785of a fourth argument will cause an exception to be thrown.
3786
3787The help text for the new parameter is taken from the Python
3788documentation string for the parameter's class, if there is one. If
3789there is no documentation string, a default value is used.
3790@end defun
3791
3792@defvar Parameter.set_doc
3793If this attribute exists, and is a string, then its value is used as
3794the help text for this parameter's @code{set} command. The value is
3795examined when @code{Parameter.__init__} is invoked; subsequent changes
3796have no effect.
3797@end defvar
3798
3799@defvar Parameter.show_doc
3800If this attribute exists, and is a string, then its value is used as
3801the help text for this parameter's @code{show} command. The value is
3802examined when @code{Parameter.__init__} is invoked; subsequent changes
3803have no effect.
3804@end defvar
3805
3806@defvar Parameter.value
3807The @code{value} attribute holds the underlying value of the
3808parameter. It can be read and assigned to just as any other
3809attribute. @value{GDBN} does validation when assignments are made.
3810@end defvar
3811
984ee559
TT
3812There are two methods that may be implemented in any @code{Parameter}
3813class. These are:
329baa95
DE
3814
3815@defun Parameter.get_set_string (self)
984ee559
TT
3816If this method exists, @value{GDBN} will call it when a
3817@var{parameter}'s value has been changed via the @code{set} API (for
3818example, @kbd{set foo off}). The @code{value} attribute has already
3819been populated with the new value and may be used in output. This
3820method must return a string. If the returned string is not empty,
3821@value{GDBN} will present it to the user.
329baa95
DE
3822@end defun
3823
3824@defun Parameter.get_show_string (self, svalue)
3825@value{GDBN} will call this method when a @var{parameter}'s
3826@code{show} API has been invoked (for example, @kbd{show foo}). The
3827argument @code{svalue} receives the string representation of the
3828current value. This method must return a string.
3829@end defun
3830
3831When a new parameter is defined, its type must be specified. The
3832available types are represented by constants defined in the @code{gdb}
3833module:
3834
3835@table @code
3836@findex PARAM_BOOLEAN
3837@findex gdb.PARAM_BOOLEAN
3838@item gdb.PARAM_BOOLEAN
3839The value is a plain boolean. The Python boolean values, @code{True}
3840and @code{False} are the only valid values.
3841
3842@findex PARAM_AUTO_BOOLEAN
3843@findex gdb.PARAM_AUTO_BOOLEAN
3844@item gdb.PARAM_AUTO_BOOLEAN
3845The value has three possible states: true, false, and @samp{auto}. In
3846Python, true and false are represented using boolean constants, and
3847@samp{auto} is represented using @code{None}.
3848
3849@findex PARAM_UINTEGER
3850@findex gdb.PARAM_UINTEGER
3851@item gdb.PARAM_UINTEGER
3852The value is an unsigned integer. The value of 0 should be
3853interpreted to mean ``unlimited''.
3854
3855@findex PARAM_INTEGER
3856@findex gdb.PARAM_INTEGER
3857@item gdb.PARAM_INTEGER
3858The value is a signed integer. The value of 0 should be interpreted
3859to mean ``unlimited''.
3860
3861@findex PARAM_STRING
3862@findex gdb.PARAM_STRING
3863@item gdb.PARAM_STRING
3864The value is a string. When the user modifies the string, any escape
3865sequences, such as @samp{\t}, @samp{\f}, and octal escapes, are
3866translated into corresponding characters and encoded into the current
3867host charset.
3868
3869@findex PARAM_STRING_NOESCAPE
3870@findex gdb.PARAM_STRING_NOESCAPE
3871@item gdb.PARAM_STRING_NOESCAPE
3872The value is a string. When the user modifies the string, escapes are
3873passed through untranslated.
3874
3875@findex PARAM_OPTIONAL_FILENAME
3876@findex gdb.PARAM_OPTIONAL_FILENAME
3877@item gdb.PARAM_OPTIONAL_FILENAME
3878The value is a either a filename (a string), or @code{None}.
3879
3880@findex PARAM_FILENAME
3881@findex gdb.PARAM_FILENAME
3882@item gdb.PARAM_FILENAME
3883The value is a filename. This is just like
3884@code{PARAM_STRING_NOESCAPE}, but uses file names for completion.
3885
3886@findex PARAM_ZINTEGER
3887@findex gdb.PARAM_ZINTEGER
3888@item gdb.PARAM_ZINTEGER
3889The value is an integer. This is like @code{PARAM_INTEGER}, except 0
3890is interpreted as itself.
3891
0489430a
TT
3892@findex PARAM_ZUINTEGER
3893@findex gdb.PARAM_ZUINTEGER
3894@item gdb.PARAM_ZUINTEGER
3895The value is an unsigned integer. This is like @code{PARAM_INTEGER},
3896except 0 is interpreted as itself, and the value cannot be negative.
3897
3898@findex PARAM_ZUINTEGER_UNLIMITED
3899@findex gdb.PARAM_ZUINTEGER_UNLIMITED
3900@item gdb.PARAM_ZUINTEGER_UNLIMITED
3901The value is a signed integer. This is like @code{PARAM_ZUINTEGER},
3902except the special value -1 should be interpreted to mean
3903``unlimited''. Other negative values are not allowed.
3904
329baa95
DE
3905@findex PARAM_ENUM
3906@findex gdb.PARAM_ENUM
3907@item gdb.PARAM_ENUM
3908The value is a string, which must be one of a collection string
3909constants provided when the parameter is created.
3910@end table
3911
3912@node Functions In Python
3913@subsubsection Writing new convenience functions
3914
3915@cindex writing convenience functions
3916@cindex convenience functions in python
3917@cindex python convenience functions
3918@tindex gdb.Function
3919@tindex Function
3920You can implement new convenience functions (@pxref{Convenience Vars})
3921in Python. A convenience function is an instance of a subclass of the
3922class @code{gdb.Function}.
3923
3924@defun Function.__init__ (name)
3925The initializer for @code{Function} registers the new function with
3926@value{GDBN}. The argument @var{name} is the name of the function,
3927a string. The function will be visible to the user as a convenience
3928variable of type @code{internal function}, whose name is the same as
3929the given @var{name}.
3930
3931The documentation for the new function is taken from the documentation
3932string for the new class.
3933@end defun
3934
3935@defun Function.invoke (@var{*args})
3936When a convenience function is evaluated, its arguments are converted
3937to instances of @code{gdb.Value}, and then the function's
3938@code{invoke} method is called. Note that @value{GDBN} does not
3939predetermine the arity of convenience functions. Instead, all
3940available arguments are passed to @code{invoke}, following the
3941standard Python calling convention. In particular, a convenience
3942function can have default values for parameters without ill effect.
3943
3944The return value of this method is used as its value in the enclosing
3945expression. If an ordinary Python value is returned, it is converted
3946to a @code{gdb.Value} following the usual rules.
3947@end defun
3948
3949The following code snippet shows how a trivial convenience function can
3950be implemented in Python:
3951
3952@smallexample
3953class Greet (gdb.Function):
3954 """Return string to greet someone.
3955Takes a name as argument."""
3956
3957 def __init__ (self):
3958 super (Greet, self).__init__ ("greet")
3959
3960 def invoke (self, name):
3961 return "Hello, %s!" % name.string ()
3962
3963Greet ()
3964@end smallexample
3965
3966The last line instantiates the class, and is necessary to trigger the
3967registration of the function with @value{GDBN}. Depending on how the
3968Python code is read into @value{GDBN}, you may need to import the
3969@code{gdb} module explicitly.
3970
3971Now you can use the function in an expression:
3972
3973@smallexample
3974(gdb) print $greet("Bob")
3975$1 = "Hello, Bob!"
3976@end smallexample
3977
3978@node Progspaces In Python
3979@subsubsection Program Spaces In Python
3980
3981@cindex progspaces in python
3982@tindex gdb.Progspace
3983@tindex Progspace
3984A program space, or @dfn{progspace}, represents a symbolic view
3985of an address space.
3986It consists of all of the objfiles of the program.
3987@xref{Objfiles In Python}.
3988@xref{Inferiors and Programs, program spaces}, for more details
3989about program spaces.
3990
3991The following progspace-related functions are available in the
3992@code{gdb} module:
3993
3994@findex gdb.current_progspace
3995@defun gdb.current_progspace ()
3996This function returns the program space of the currently selected inferior.
3997@xref{Inferiors and Programs}.
3998@end defun
3999
4000@findex gdb.progspaces
4001@defun gdb.progspaces ()
4002Return a sequence of all the progspaces currently known to @value{GDBN}.
4003@end defun
4004
4005Each progspace is represented by an instance of the @code{gdb.Progspace}
4006class.
4007
4008@defvar Progspace.filename
4009The file name of the progspace as a string.
4010@end defvar
4011
4012@defvar Progspace.pretty_printers
4013The @code{pretty_printers} attribute is a list of functions. It is
4014used to look up pretty-printers. A @code{Value} is passed to each
4015function in order; if the function returns @code{None}, then the
4016search continues. Otherwise, the return value should be an object
4017which is used to format the value. @xref{Pretty Printing API}, for more
4018information.
4019@end defvar
4020
4021@defvar Progspace.type_printers
4022The @code{type_printers} attribute is a list of type printer objects.
4023@xref{Type Printing API}, for more information.
4024@end defvar
4025
4026@defvar Progspace.frame_filters
4027The @code{frame_filters} attribute is a dictionary of frame filter
4028objects. @xref{Frame Filter API}, for more information.
4029@end defvar
4030
02be9a71
DE
4031One may add arbitrary attributes to @code{gdb.Progspace} objects
4032in the usual Python way.
4033This is useful if, for example, one needs to do some extra record keeping
4034associated with the program space.
4035
4036In this contrived example, we want to perform some processing when
4037an objfile with a certain symbol is loaded, but we only want to do
4038this once because it is expensive. To achieve this we record the results
4039with the program space because we can't predict when the desired objfile
4040will be loaded.
4041
4042@smallexample
4043(gdb) python
4044def clear_objfiles_handler(event):
4045 event.progspace.expensive_computation = None
4046def expensive(symbol):
4047 """A mock routine to perform an "expensive" computation on symbol."""
4048 print "Computing the answer to the ultimate question ..."
4049 return 42
4050def new_objfile_handler(event):
4051 objfile = event.new_objfile
4052 progspace = objfile.progspace
4053 if not hasattr(progspace, 'expensive_computation') or \
4054 progspace.expensive_computation is None:
4055 # We use 'main' for the symbol to keep the example simple.
4056 # Note: There's no current way to constrain the lookup
4057 # to one objfile.
4058 symbol = gdb.lookup_global_symbol('main')
4059 if symbol is not None:
4060 progspace.expensive_computation = expensive(symbol)
4061gdb.events.clear_objfiles.connect(clear_objfiles_handler)
4062gdb.events.new_objfile.connect(new_objfile_handler)
4063end
4064(gdb) file /tmp/hello
4065Reading symbols from /tmp/hello...done.
4066Computing the answer to the ultimate question ...
4067(gdb) python print gdb.current_progspace().expensive_computation
406842
4069(gdb) run
4070Starting program: /tmp/hello
4071Hello.
4072[Inferior 1 (process 4242) exited normally]
4073@end smallexample
4074
329baa95
DE
4075@node Objfiles In Python
4076@subsubsection Objfiles In Python
4077
4078@cindex objfiles in python
4079@tindex gdb.Objfile
4080@tindex Objfile
4081@value{GDBN} loads symbols for an inferior from various
4082symbol-containing files (@pxref{Files}). These include the primary
4083executable file, any shared libraries used by the inferior, and any
4084separate debug info files (@pxref{Separate Debug Files}).
4085@value{GDBN} calls these symbol-containing files @dfn{objfiles}.
4086
4087The following objfile-related functions are available in the
4088@code{gdb} module:
4089
4090@findex gdb.current_objfile
4091@defun gdb.current_objfile ()
4092When auto-loading a Python script (@pxref{Python Auto-loading}), @value{GDBN}
4093sets the ``current objfile'' to the corresponding objfile. This
4094function returns the current objfile. If there is no current objfile,
4095this function returns @code{None}.
4096@end defun
4097
4098@findex gdb.objfiles
4099@defun gdb.objfiles ()
4100Return a sequence of all the objfiles current known to @value{GDBN}.
4101@xref{Objfiles In Python}.
4102@end defun
4103
6dddd6a5
DE
4104@findex gdb.lookup_objfile
4105@defun gdb.lookup_objfile (name @r{[}, by_build_id{]})
4106Look up @var{name}, a file name or build ID, in the list of objfiles
4107for the current program space (@pxref{Progspaces In Python}).
4108If the objfile is not found throw the Python @code{ValueError} exception.
4109
4110If @var{name} is a relative file name, then it will match any
4111source file name with the same trailing components. For example, if
4112@var{name} is @samp{gcc/expr.c}, then it will match source file
4113name of @file{/build/trunk/gcc/expr.c}, but not
4114@file{/build/trunk/libcpp/expr.c} or @file{/build/trunk/gcc/x-expr.c}.
4115
4116If @var{by_build_id} is provided and is @code{True} then @var{name}
4117is the build ID of the objfile. Otherwise, @var{name} is a file name.
4118This is supported only on some operating systems, notably those which use
4119the ELF format for binary files and the @sc{gnu} Binutils. For more details
4120about this feature, see the description of the @option{--build-id}
f5a476a7 4121command-line option in @ref{Options, , Command Line Options, ld,
6dddd6a5
DE
4122The GNU Linker}.
4123@end defun
4124
329baa95
DE
4125Each objfile is represented by an instance of the @code{gdb.Objfile}
4126class.
4127
4128@defvar Objfile.filename
1b549396
DE
4129The file name of the objfile as a string, with symbolic links resolved.
4130
4131The value is @code{None} if the objfile is no longer valid.
4132See the @code{gdb.Objfile.is_valid} method, described below.
329baa95
DE
4133@end defvar
4134
3a8b707a
DE
4135@defvar Objfile.username
4136The file name of the objfile as specified by the user as a string.
4137
4138The value is @code{None} if the objfile is no longer valid.
4139See the @code{gdb.Objfile.is_valid} method, described below.
4140@end defvar
4141
a0be3e44
DE
4142@defvar Objfile.owner
4143For separate debug info objfiles this is the corresponding @code{gdb.Objfile}
4144object that debug info is being provided for.
4145Otherwise this is @code{None}.
4146Separate debug info objfiles are added with the
4147@code{gdb.Objfile.add_separate_debug_file} method, described below.
4148@end defvar
4149
7c50a931
DE
4150@defvar Objfile.build_id
4151The build ID of the objfile as a string.
4152If the objfile does not have a build ID then the value is @code{None}.
4153
4154This is supported only on some operating systems, notably those which use
4155the ELF format for binary files and the @sc{gnu} Binutils. For more details
4156about this feature, see the description of the @option{--build-id}
f5a476a7 4157command-line option in @ref{Options, , Command Line Options, ld,
7c50a931
DE
4158The GNU Linker}.
4159@end defvar
4160
d096d8c1
DE
4161@defvar Objfile.progspace
4162The containing program space of the objfile as a @code{gdb.Progspace}
4163object. @xref{Progspaces In Python}.
4164@end defvar
4165
329baa95
DE
4166@defvar Objfile.pretty_printers
4167The @code{pretty_printers} attribute is a list of functions. It is
4168used to look up pretty-printers. A @code{Value} is passed to each
4169function in order; if the function returns @code{None}, then the
4170search continues. Otherwise, the return value should be an object
4171which is used to format the value. @xref{Pretty Printing API}, for more
4172information.
4173@end defvar
4174
4175@defvar Objfile.type_printers
4176The @code{type_printers} attribute is a list of type printer objects.
4177@xref{Type Printing API}, for more information.
4178@end defvar
4179
4180@defvar Objfile.frame_filters
4181The @code{frame_filters} attribute is a dictionary of frame filter
4182objects. @xref{Frame Filter API}, for more information.
4183@end defvar
4184
02be9a71
DE
4185One may add arbitrary attributes to @code{gdb.Objfile} objects
4186in the usual Python way.
4187This is useful if, for example, one needs to do some extra record keeping
4188associated with the objfile.
4189
4190In this contrived example we record the time when @value{GDBN}
4191loaded the objfile.
4192
4193@smallexample
4194(gdb) python
4195import datetime
4196def new_objfile_handler(event):
4197 # Set the time_loaded attribute of the new objfile.
4198 event.new_objfile.time_loaded = datetime.datetime.today()
4199gdb.events.new_objfile.connect(new_objfile_handler)
4200end
4201(gdb) file ./hello
4202Reading symbols from ./hello...done.
4203(gdb) python print gdb.objfiles()[0].time_loaded
42042014-10-09 11:41:36.770345
4205@end smallexample
4206
329baa95
DE
4207A @code{gdb.Objfile} object has the following methods:
4208
4209@defun Objfile.is_valid ()
4210Returns @code{True} if the @code{gdb.Objfile} object is valid,
4211@code{False} if not. A @code{gdb.Objfile} object can become invalid
4212if the object file it refers to is not loaded in @value{GDBN} any
4213longer. All other @code{gdb.Objfile} methods will throw an exception
4214if it is invalid at the time the method is called.
4215@end defun
4216
86e4ed39
DE
4217@defun Objfile.add_separate_debug_file (file)
4218Add @var{file} to the list of files that @value{GDBN} will search for
4219debug information for the objfile.
4220This is useful when the debug info has been removed from the program
4221and stored in a separate file. @value{GDBN} has built-in support for
4222finding separate debug info files (@pxref{Separate Debug Files}), but if
4223the file doesn't live in one of the standard places that @value{GDBN}
4224searches then this function can be used to add a debug info file
4225from a different place.
4226@end defun
4227
329baa95
DE
4228@node Frames In Python
4229@subsubsection Accessing inferior stack frames from Python.
4230
4231@cindex frames in python
4232When the debugged program stops, @value{GDBN} is able to analyze its call
4233stack (@pxref{Frames,,Stack frames}). The @code{gdb.Frame} class
4234represents a frame in the stack. A @code{gdb.Frame} object is only valid
4235while its corresponding frame exists in the inferior's stack. If you try
4236to use an invalid frame object, @value{GDBN} will throw a @code{gdb.error}
4237exception (@pxref{Exception Handling}).
4238
4239Two @code{gdb.Frame} objects can be compared for equality with the @code{==}
4240operator, like:
4241
4242@smallexample
4243(@value{GDBP}) python print gdb.newest_frame() == gdb.selected_frame ()
4244True
4245@end smallexample
4246
4247The following frame-related functions are available in the @code{gdb} module:
4248
4249@findex gdb.selected_frame
4250@defun gdb.selected_frame ()
4251Return the selected frame object. (@pxref{Selection,,Selecting a Frame}).
4252@end defun
4253
4254@findex gdb.newest_frame
4255@defun gdb.newest_frame ()
4256Return the newest frame object for the selected thread.
4257@end defun
4258
4259@defun gdb.frame_stop_reason_string (reason)
4260Return a string explaining the reason why @value{GDBN} stopped unwinding
4261frames, as expressed by the given @var{reason} code (an integer, see the
4262@code{unwind_stop_reason} method further down in this section).
4263@end defun
4264
e0f3fd7c
TT
4265@findex gdb.invalidate_cached_frames
4266@defun gdb.invalidate_cached_frames
4267@value{GDBN} internally keeps a cache of the frames that have been
4268unwound. This function invalidates this cache.
4269
4270This function should not generally be called by ordinary Python code.
4271It is documented for the sake of completeness.
4272@end defun
4273
329baa95
DE
4274A @code{gdb.Frame} object has the following methods:
4275
4276@defun Frame.is_valid ()
4277Returns true if the @code{gdb.Frame} object is valid, false if not.
4278A frame object can become invalid if the frame it refers to doesn't
4279exist anymore in the inferior. All @code{gdb.Frame} methods will throw
4280an exception if it is invalid at the time the method is called.
4281@end defun
4282
4283@defun Frame.name ()
4284Returns the function name of the frame, or @code{None} if it can't be
4285obtained.
4286@end defun
4287
4288@defun Frame.architecture ()
4289Returns the @code{gdb.Architecture} object corresponding to the frame's
4290architecture. @xref{Architectures In Python}.
4291@end defun
4292
4293@defun Frame.type ()
4294Returns the type of the frame. The value can be one of:
4295@table @code
4296@item gdb.NORMAL_FRAME
4297An ordinary stack frame.
4298
4299@item gdb.DUMMY_FRAME
4300A fake stack frame that was created by @value{GDBN} when performing an
4301inferior function call.
4302
4303@item gdb.INLINE_FRAME
4304A frame representing an inlined function. The function was inlined
4305into a @code{gdb.NORMAL_FRAME} that is older than this one.
4306
4307@item gdb.TAILCALL_FRAME
4308A frame representing a tail call. @xref{Tail Call Frames}.
4309
4310@item gdb.SIGTRAMP_FRAME
4311A signal trampoline frame. This is the frame created by the OS when
4312it calls into a signal handler.
4313
4314@item gdb.ARCH_FRAME
4315A fake stack frame representing a cross-architecture call.
4316
4317@item gdb.SENTINEL_FRAME
4318This is like @code{gdb.NORMAL_FRAME}, but it is only used for the
4319newest frame.
4320@end table
4321@end defun
4322
4323@defun Frame.unwind_stop_reason ()
4324Return an integer representing the reason why it's not possible to find
4325more frames toward the outermost frame. Use
4326@code{gdb.frame_stop_reason_string} to convert the value returned by this
4327function to a string. The value can be one of:
4328
4329@table @code
4330@item gdb.FRAME_UNWIND_NO_REASON
4331No particular reason (older frames should be available).
4332
4333@item gdb.FRAME_UNWIND_NULL_ID
4334The previous frame's analyzer returns an invalid result. This is no
4335longer used by @value{GDBN}, and is kept only for backward
4336compatibility.
4337
4338@item gdb.FRAME_UNWIND_OUTERMOST
4339This frame is the outermost.
4340
4341@item gdb.FRAME_UNWIND_UNAVAILABLE
4342Cannot unwind further, because that would require knowing the
4343values of registers or memory that have not been collected.
4344
4345@item gdb.FRAME_UNWIND_INNER_ID
4346This frame ID looks like it ought to belong to a NEXT frame,
4347but we got it for a PREV frame. Normally, this is a sign of
4348unwinder failure. It could also indicate stack corruption.
4349
4350@item gdb.FRAME_UNWIND_SAME_ID
4351This frame has the same ID as the previous one. That means
4352that unwinding further would almost certainly give us another
4353frame with exactly the same ID, so break the chain. Normally,
4354this is a sign of unwinder failure. It could also indicate
4355stack corruption.
4356
4357@item gdb.FRAME_UNWIND_NO_SAVED_PC
4358The frame unwinder did not find any saved PC, but we needed
4359one to unwind further.
4360
53e8a631
AB
4361@item gdb.FRAME_UNWIND_MEMORY_ERROR
4362The frame unwinder caused an error while trying to access memory.
4363
329baa95
DE
4364@item gdb.FRAME_UNWIND_FIRST_ERROR
4365Any stop reason greater or equal to this value indicates some kind
4366of error. This special value facilitates writing code that tests
4367for errors in unwinding in a way that will work correctly even if
4368the list of the other values is modified in future @value{GDBN}
4369versions. Using it, you could write:
4370@smallexample
4371reason = gdb.selected_frame().unwind_stop_reason ()
4372reason_str = gdb.frame_stop_reason_string (reason)
4373if reason >= gdb.FRAME_UNWIND_FIRST_ERROR:
4374 print "An error occured: %s" % reason_str
4375@end smallexample
4376@end table
4377
4378@end defun
4379
4380@defun Frame.pc ()
4381Returns the frame's resume address.
4382@end defun
4383
4384@defun Frame.block ()
60c0454d
TT
4385Return the frame's code block. @xref{Blocks In Python}. If the frame
4386does not have a block -- for example, if there is no debugging
4387information for the code in question -- then this will throw an
4388exception.
329baa95
DE
4389@end defun
4390
4391@defun Frame.function ()
4392Return the symbol for the function corresponding to this frame.
4393@xref{Symbols In Python}.
4394@end defun
4395
4396@defun Frame.older ()
4397Return the frame that called this frame.
4398@end defun
4399
4400@defun Frame.newer ()
4401Return the frame called by this frame.
4402@end defun
4403
4404@defun Frame.find_sal ()
4405Return the frame's symtab and line object.
4406@xref{Symbol Tables In Python}.
4407@end defun
4408
5f3b99cf
SS
4409@defun Frame.read_register (register)
4410Return the value of @var{register} in this frame. The @var{register}
4411argument must be a string (e.g., @code{'sp'} or @code{'rax'}).
4412Returns a @code{Gdb.Value} object. Throws an exception if @var{register}
4413does not exist.
4414@end defun
4415
329baa95
DE
4416@defun Frame.read_var (variable @r{[}, block@r{]})
4417Return the value of @var{variable} in this frame. If the optional
4418argument @var{block} is provided, search for the variable from that
4419block; otherwise start at the frame's current block (which is
697aa1b7
EZ
4420determined by the frame's current program counter). The @var{variable}
4421argument must be a string or a @code{gdb.Symbol} object; @var{block} must be a
329baa95
DE
4422@code{gdb.Block} object.
4423@end defun
4424
4425@defun Frame.select ()
4426Set this frame to be the selected frame. @xref{Stack, ,Examining the
4427Stack}.
4428@end defun
4429
4430@node Blocks In Python
4431@subsubsection Accessing blocks from Python.
4432
4433@cindex blocks in python
4434@tindex gdb.Block
4435
4436In @value{GDBN}, symbols are stored in blocks. A block corresponds
4437roughly to a scope in the source code. Blocks are organized
4438hierarchically, and are represented individually in Python as a
4439@code{gdb.Block}. Blocks rely on debugging information being
4440available.
4441
4442A frame has a block. Please see @ref{Frames In Python}, for a more
4443in-depth discussion of frames.
4444
4445The outermost block is known as the @dfn{global block}. The global
4446block typically holds public global variables and functions.
4447
4448The block nested just inside the global block is the @dfn{static
4449block}. The static block typically holds file-scoped variables and
4450functions.
4451
4452@value{GDBN} provides a method to get a block's superblock, but there
4453is currently no way to examine the sub-blocks of a block, or to
4454iterate over all the blocks in a symbol table (@pxref{Symbol Tables In
4455Python}).
4456
4457Here is a short example that should help explain blocks:
4458
4459@smallexample
4460/* This is in the global block. */
4461int global;
4462
4463/* This is in the static block. */
4464static int file_scope;
4465
4466/* 'function' is in the global block, and 'argument' is
4467 in a block nested inside of 'function'. */
4468int function (int argument)
4469@{
4470 /* 'local' is in a block inside 'function'. It may or may
4471 not be in the same block as 'argument'. */
4472 int local;
4473
4474 @{
4475 /* 'inner' is in a block whose superblock is the one holding
4476 'local'. */
4477 int inner;
4478
4479 /* If this call is expanded by the compiler, you may see
4480 a nested block here whose function is 'inline_function'
4481 and whose superblock is the one holding 'inner'. */
4482 inline_function ();
4483 @}
4484@}
4485@end smallexample
4486
4487A @code{gdb.Block} is iterable. The iterator returns the symbols
4488(@pxref{Symbols In Python}) local to the block. Python programs
4489should not assume that a specific block object will always contain a
4490given symbol, since changes in @value{GDBN} features and
4491infrastructure may cause symbols move across blocks in a symbol
4492table.
4493
4494The following block-related functions are available in the @code{gdb}
4495module:
4496
4497@findex gdb.block_for_pc
4498@defun gdb.block_for_pc (pc)
4499Return the innermost @code{gdb.Block} containing the given @var{pc}
4500value. If the block cannot be found for the @var{pc} value specified,
4501the function will return @code{None}.
4502@end defun
4503
4504A @code{gdb.Block} object has the following methods:
4505
4506@defun Block.is_valid ()
4507Returns @code{True} if the @code{gdb.Block} object is valid,
4508@code{False} if not. A block object can become invalid if the block it
4509refers to doesn't exist anymore in the inferior. All other
4510@code{gdb.Block} methods will throw an exception if it is invalid at
4511the time the method is called. The block's validity is also checked
4512during iteration over symbols of the block.
4513@end defun
4514
4515A @code{gdb.Block} object has the following attributes:
4516
4517@defvar Block.start
4518The start address of the block. This attribute is not writable.
4519@end defvar
4520
4521@defvar Block.end
22eb9e92
TT
4522One past the last address that appears in the block. This attribute
4523is not writable.
329baa95
DE
4524@end defvar
4525
4526@defvar Block.function
4527The name of the block represented as a @code{gdb.Symbol}. If the
4528block is not named, then this attribute holds @code{None}. This
4529attribute is not writable.
4530
4531For ordinary function blocks, the superblock is the static block.
4532However, you should note that it is possible for a function block to
4533have a superblock that is not the static block -- for instance this
4534happens for an inlined function.
4535@end defvar
4536
4537@defvar Block.superblock
4538The block containing this block. If this parent block does not exist,
4539this attribute holds @code{None}. This attribute is not writable.
4540@end defvar
4541
4542@defvar Block.global_block
4543The global block associated with this block. This attribute is not
4544writable.
4545@end defvar
4546
4547@defvar Block.static_block
4548The static block associated with this block. This attribute is not
4549writable.
4550@end defvar
4551
4552@defvar Block.is_global
4553@code{True} if the @code{gdb.Block} object is a global block,
4554@code{False} if not. This attribute is not
4555writable.
4556@end defvar
4557
4558@defvar Block.is_static
4559@code{True} if the @code{gdb.Block} object is a static block,
4560@code{False} if not. This attribute is not writable.
4561@end defvar
4562
4563@node Symbols In Python
4564@subsubsection Python representation of Symbols.
4565
4566@cindex symbols in python
4567@tindex gdb.Symbol
4568
4569@value{GDBN} represents every variable, function and type as an
4570entry in a symbol table. @xref{Symbols, ,Examining the Symbol Table}.
4571Similarly, Python represents these symbols in @value{GDBN} with the
4572@code{gdb.Symbol} object.
4573
4574The following symbol-related functions are available in the @code{gdb}
4575module:
4576
4577@findex gdb.lookup_symbol
4578@defun gdb.lookup_symbol (name @r{[}, block @r{[}, domain@r{]]})
4579This function searches for a symbol by name. The search scope can be
4580restricted to the parameters defined in the optional domain and block
4581arguments.
4582
4583@var{name} is the name of the symbol. It must be a string. The
4584optional @var{block} argument restricts the search to symbols visible
4585in that @var{block}. The @var{block} argument must be a
4586@code{gdb.Block} object. If omitted, the block for the current frame
4587is used. The optional @var{domain} argument restricts
4588the search to the domain type. The @var{domain} argument must be a
4589domain constant defined in the @code{gdb} module and described later
4590in this chapter.
4591
4592The result is a tuple of two elements.
4593The first element is a @code{gdb.Symbol} object or @code{None} if the symbol
4594is not found.
4595If the symbol is found, the second element is @code{True} if the symbol
4596is a field of a method's object (e.g., @code{this} in C@t{++}),
4597otherwise it is @code{False}.
4598If the symbol is not found, the second element is @code{False}.
4599@end defun
4600
4601@findex gdb.lookup_global_symbol
4602@defun gdb.lookup_global_symbol (name @r{[}, domain@r{]})
4603This function searches for a global symbol by name.
4604The search scope can be restricted to by the domain argument.
4605
4606@var{name} is the name of the symbol. It must be a string.
4607The optional @var{domain} argument restricts the search to the domain type.
4608The @var{domain} argument must be a domain constant defined in the @code{gdb}
4609module and described later in this chapter.
4610
4611The result is a @code{gdb.Symbol} object or @code{None} if the symbol
4612is not found.
4613@end defun
4614
4615A @code{gdb.Symbol} object has the following attributes:
4616
4617@defvar Symbol.type
4618The type of the symbol or @code{None} if no type is recorded.
4619This attribute is represented as a @code{gdb.Type} object.
4620@xref{Types In Python}. This attribute is not writable.
4621@end defvar
4622
4623@defvar Symbol.symtab
4624The symbol table in which the symbol appears. This attribute is
4625represented as a @code{gdb.Symtab} object. @xref{Symbol Tables In
4626Python}. This attribute is not writable.
4627@end defvar
4628
4629@defvar Symbol.line
4630The line number in the source code at which the symbol was defined.
4631This is an integer.
4632@end defvar
4633
4634@defvar Symbol.name
4635The name of the symbol as a string. This attribute is not writable.
4636@end defvar
4637
4638@defvar Symbol.linkage_name
4639The name of the symbol, as used by the linker (i.e., may be mangled).
4640This attribute is not writable.
4641@end defvar
4642
4643@defvar Symbol.print_name
4644The name of the symbol in a form suitable for output. This is either
4645@code{name} or @code{linkage_name}, depending on whether the user
4646asked @value{GDBN} to display demangled or mangled names.
4647@end defvar
4648
4649@defvar Symbol.addr_class
4650The address class of the symbol. This classifies how to find the value
4651of a symbol. Each address class is a constant defined in the
4652@code{gdb} module and described later in this chapter.
4653@end defvar
4654
4655@defvar Symbol.needs_frame
4656This is @code{True} if evaluating this symbol's value requires a frame
4657(@pxref{Frames In Python}) and @code{False} otherwise. Typically,
4658local variables will require a frame, but other symbols will not.
4659@end defvar
4660
4661@defvar Symbol.is_argument
4662@code{True} if the symbol is an argument of a function.
4663@end defvar
4664
4665@defvar Symbol.is_constant
4666@code{True} if the symbol is a constant.
4667@end defvar
4668
4669@defvar Symbol.is_function
4670@code{True} if the symbol is a function or a method.
4671@end defvar
4672
4673@defvar Symbol.is_variable
4674@code{True} if the symbol is a variable.
4675@end defvar
4676
4677A @code{gdb.Symbol} object has the following methods:
4678
4679@defun Symbol.is_valid ()
4680Returns @code{True} if the @code{gdb.Symbol} object is valid,
4681@code{False} if not. A @code{gdb.Symbol} object can become invalid if
4682the symbol it refers to does not exist in @value{GDBN} any longer.
4683All other @code{gdb.Symbol} methods will throw an exception if it is
4684invalid at the time the method is called.
4685@end defun
4686
4687@defun Symbol.value (@r{[}frame@r{]})
4688Compute the value of the symbol, as a @code{gdb.Value}. For
4689functions, this computes the address of the function, cast to the
4690appropriate type. If the symbol requires a frame in order to compute
4691its value, then @var{frame} must be given. If @var{frame} is not
4692given, or if @var{frame} is invalid, then this method will throw an
4693exception.
4694@end defun
4695
4696The available domain categories in @code{gdb.Symbol} are represented
4697as constants in the @code{gdb} module:
4698
b3ce5e5f
DE
4699@vtable @code
4700@vindex SYMBOL_UNDEF_DOMAIN
329baa95
DE
4701@item gdb.SYMBOL_UNDEF_DOMAIN
4702This is used when a domain has not been discovered or none of the
4703following domains apply. This usually indicates an error either
4704in the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4705
4706@vindex SYMBOL_VAR_DOMAIN
329baa95
DE
4707@item gdb.SYMBOL_VAR_DOMAIN
4708This domain contains variables, function names, typedef names and enum
4709type values.
b3ce5e5f
DE
4710
4711@vindex SYMBOL_STRUCT_DOMAIN
329baa95
DE
4712@item gdb.SYMBOL_STRUCT_DOMAIN
4713This domain holds struct, union and enum type names.
b3ce5e5f
DE
4714
4715@vindex SYMBOL_LABEL_DOMAIN
329baa95
DE
4716@item gdb.SYMBOL_LABEL_DOMAIN
4717This domain contains names of labels (for gotos).
b3ce5e5f
DE
4718
4719@vindex SYMBOL_VARIABLES_DOMAIN
329baa95
DE
4720@item gdb.SYMBOL_VARIABLES_DOMAIN
4721This domain holds a subset of the @code{SYMBOLS_VAR_DOMAIN}; it
4722contains everything minus functions and types.
b3ce5e5f
DE
4723
4724@vindex SYMBOL_FUNCTIONS_DOMAIN
eb83230b 4725@item gdb.SYMBOL_FUNCTIONS_DOMAIN
329baa95 4726This domain contains all functions.
b3ce5e5f
DE
4727
4728@vindex SYMBOL_TYPES_DOMAIN
329baa95
DE
4729@item gdb.SYMBOL_TYPES_DOMAIN
4730This domain contains all types.
b3ce5e5f 4731@end vtable
329baa95
DE
4732
4733The available address class categories in @code{gdb.Symbol} are represented
4734as constants in the @code{gdb} module:
4735
b3ce5e5f
DE
4736@vtable @code
4737@vindex SYMBOL_LOC_UNDEF
329baa95
DE
4738@item gdb.SYMBOL_LOC_UNDEF
4739If this is returned by address class, it indicates an error either in
4740the symbol information or in @value{GDBN}'s handling of symbols.
b3ce5e5f
DE
4741
4742@vindex SYMBOL_LOC_CONST
329baa95
DE
4743@item gdb.SYMBOL_LOC_CONST
4744Value is constant int.
b3ce5e5f
DE
4745
4746@vindex SYMBOL_LOC_STATIC
329baa95
DE
4747@item gdb.SYMBOL_LOC_STATIC
4748Value is at a fixed address.
b3ce5e5f
DE
4749
4750@vindex SYMBOL_LOC_REGISTER
329baa95
DE
4751@item gdb.SYMBOL_LOC_REGISTER
4752Value is in a register.
b3ce5e5f
DE
4753
4754@vindex SYMBOL_LOC_ARG
329baa95
DE
4755@item gdb.SYMBOL_LOC_ARG
4756Value is an argument. This value is at the offset stored within the
4757symbol inside the frame's argument list.
b3ce5e5f
DE
4758
4759@vindex SYMBOL_LOC_REF_ARG
329baa95
DE
4760@item gdb.SYMBOL_LOC_REF_ARG
4761Value address is stored in the frame's argument list. Just like
4762@code{LOC_ARG} except that the value's address is stored at the
4763offset, not the value itself.
b3ce5e5f
DE
4764
4765@vindex SYMBOL_LOC_REGPARM_ADDR
329baa95
DE
4766@item gdb.SYMBOL_LOC_REGPARM_ADDR
4767Value is a specified register. Just like @code{LOC_REGISTER} except
4768the register holds the address of the argument instead of the argument
4769itself.
b3ce5e5f
DE
4770
4771@vindex SYMBOL_LOC_LOCAL
329baa95
DE
4772@item gdb.SYMBOL_LOC_LOCAL
4773Value is a local variable.
b3ce5e5f
DE
4774
4775@vindex SYMBOL_LOC_TYPEDEF
329baa95
DE
4776@item gdb.SYMBOL_LOC_TYPEDEF
4777Value not used. Symbols in the domain @code{SYMBOL_STRUCT_DOMAIN} all
4778have this class.
b3ce5e5f
DE
4779
4780@vindex SYMBOL_LOC_BLOCK
329baa95
DE
4781@item gdb.SYMBOL_LOC_BLOCK
4782Value is a block.
b3ce5e5f
DE
4783
4784@vindex SYMBOL_LOC_CONST_BYTES
329baa95
DE
4785@item gdb.SYMBOL_LOC_CONST_BYTES
4786Value is a byte-sequence.
b3ce5e5f
DE
4787
4788@vindex SYMBOL_LOC_UNRESOLVED
329baa95
DE
4789@item gdb.SYMBOL_LOC_UNRESOLVED
4790Value is at a fixed address, but the address of the variable has to be
4791determined from the minimal symbol table whenever the variable is
4792referenced.
b3ce5e5f
DE
4793
4794@vindex SYMBOL_LOC_OPTIMIZED_OUT
329baa95
DE
4795@item gdb.SYMBOL_LOC_OPTIMIZED_OUT
4796The value does not actually exist in the program.
b3ce5e5f
DE
4797
4798@vindex SYMBOL_LOC_COMPUTED
329baa95
DE
4799@item gdb.SYMBOL_LOC_COMPUTED
4800The value's address is a computed location.
b3ce5e5f 4801@end vtable
329baa95
DE
4802
4803@node Symbol Tables In Python
4804@subsubsection Symbol table representation in Python.
4805
4806@cindex symbol tables in python
4807@tindex gdb.Symtab
4808@tindex gdb.Symtab_and_line
4809
4810Access to symbol table data maintained by @value{GDBN} on the inferior
4811is exposed to Python via two objects: @code{gdb.Symtab_and_line} and
4812@code{gdb.Symtab}. Symbol table and line data for a frame is returned
4813from the @code{find_sal} method in @code{gdb.Frame} object.
4814@xref{Frames In Python}.
4815
4816For more information on @value{GDBN}'s symbol table management, see
4817@ref{Symbols, ,Examining the Symbol Table}, for more information.
4818
4819A @code{gdb.Symtab_and_line} object has the following attributes:
4820
4821@defvar Symtab_and_line.symtab
4822The symbol table object (@code{gdb.Symtab}) for this frame.
4823This attribute is not writable.
4824@end defvar
4825
4826@defvar Symtab_and_line.pc
4827Indicates the start of the address range occupied by code for the
4828current source line. This attribute is not writable.
4829@end defvar
4830
4831@defvar Symtab_and_line.last
4832Indicates the end of the address range occupied by code for the current
4833source line. This attribute is not writable.
4834@end defvar
4835
4836@defvar Symtab_and_line.line
4837Indicates the current line number for this object. This
4838attribute is not writable.
4839@end defvar
4840
4841A @code{gdb.Symtab_and_line} object has the following methods:
4842
4843@defun Symtab_and_line.is_valid ()
4844Returns @code{True} if the @code{gdb.Symtab_and_line} object is valid,
4845@code{False} if not. A @code{gdb.Symtab_and_line} object can become
4846invalid if the Symbol table and line object it refers to does not
4847exist in @value{GDBN} any longer. All other
4848@code{gdb.Symtab_and_line} methods will throw an exception if it is
4849invalid at the time the method is called.
4850@end defun
4851
4852A @code{gdb.Symtab} object has the following attributes:
4853
4854@defvar Symtab.filename
4855The symbol table's source filename. This attribute is not writable.
4856@end defvar
4857
4858@defvar Symtab.objfile
4859The symbol table's backing object file. @xref{Objfiles In Python}.
4860This attribute is not writable.
4861@end defvar
4862
2b4fd423
DE
4863@defvar Symtab.producer
4864The name and possibly version number of the program that
4865compiled the code in the symbol table.
4866The contents of this string is up to the compiler.
4867If no producer information is available then @code{None} is returned.
4868This attribute is not writable.
4869@end defvar
4870
329baa95
DE
4871A @code{gdb.Symtab} object has the following methods:
4872
4873@defun Symtab.is_valid ()
4874Returns @code{True} if the @code{gdb.Symtab} object is valid,
4875@code{False} if not. A @code{gdb.Symtab} object can become invalid if
4876the symbol table it refers to does not exist in @value{GDBN} any
4877longer. All other @code{gdb.Symtab} methods will throw an exception
4878if it is invalid at the time the method is called.
4879@end defun
4880
4881@defun Symtab.fullname ()
4882Return the symbol table's source absolute file name.
4883@end defun
4884
4885@defun Symtab.global_block ()
4886Return the global block of the underlying symbol table.
4887@xref{Blocks In Python}.
4888@end defun
4889
4890@defun Symtab.static_block ()
4891Return the static block of the underlying symbol table.
4892@xref{Blocks In Python}.
4893@end defun
4894
4895@defun Symtab.linetable ()
4896Return the line table associated with the symbol table.
4897@xref{Line Tables In Python}.
4898@end defun
4899
4900@node Line Tables In Python
4901@subsubsection Manipulating line tables using Python
4902
4903@cindex line tables in python
4904@tindex gdb.LineTable
4905
4906Python code can request and inspect line table information from a
4907symbol table that is loaded in @value{GDBN}. A line table is a
4908mapping of source lines to their executable locations in memory. To
4909acquire the line table information for a particular symbol table, use
4910the @code{linetable} function (@pxref{Symbol Tables In Python}).
4911
4912A @code{gdb.LineTable} is iterable. The iterator returns
4913@code{LineTableEntry} objects that correspond to the source line and
4914address for each line table entry. @code{LineTableEntry} objects have
4915the following attributes:
4916
4917@defvar LineTableEntry.line
4918The source line number for this line table entry. This number
4919corresponds to the actual line of source. This attribute is not
4920writable.
4921@end defvar
4922
4923@defvar LineTableEntry.pc
4924The address that is associated with the line table entry where the
4925executable code for that source line resides in memory. This
4926attribute is not writable.
4927@end defvar
4928
4929As there can be multiple addresses for a single source line, you may
4930receive multiple @code{LineTableEntry} objects with matching
4931@code{line} attributes, but with different @code{pc} attributes. The
4932iterator is sorted in ascending @code{pc} order. Here is a small
4933example illustrating iterating over a line table.
4934
4935@smallexample
4936symtab = gdb.selected_frame().find_sal().symtab
4937linetable = symtab.linetable()
4938for line in linetable:
4939 print "Line: "+str(line.line)+" Address: "+hex(line.pc)
4940@end smallexample
4941
4942This will have the following output:
4943
4944@smallexample
4945Line: 33 Address: 0x4005c8L
4946Line: 37 Address: 0x4005caL
4947Line: 39 Address: 0x4005d2L
4948Line: 40 Address: 0x4005f8L
4949Line: 42 Address: 0x4005ffL
4950Line: 44 Address: 0x400608L
4951Line: 42 Address: 0x40060cL
4952Line: 45 Address: 0x400615L
4953@end smallexample
4954
4955In addition to being able to iterate over a @code{LineTable}, it also
4956has the following direct access methods:
4957
4958@defun LineTable.line (line)
4959Return a Python @code{Tuple} of @code{LineTableEntry} objects for any
697aa1b7
EZ
4960entries in the line table for the given @var{line}, which specifies
4961the source code line. If there are no entries for that source code
329baa95
DE
4962@var{line}, the Python @code{None} is returned.
4963@end defun
4964
4965@defun LineTable.has_line (line)
4966Return a Python @code{Boolean} indicating whether there is an entry in
4967the line table for this source line. Return @code{True} if an entry
4968is found, or @code{False} if not.
4969@end defun
4970
4971@defun LineTable.source_lines ()
4972Return a Python @code{List} of the source line numbers in the symbol
4973table. Only lines with executable code locations are returned. The
4974contents of the @code{List} will just be the source line entries
4975represented as Python @code{Long} values.
4976@end defun
4977
4978@node Breakpoints In Python
4979@subsubsection Manipulating breakpoints using Python
4980
4981@cindex breakpoints in python
4982@tindex gdb.Breakpoint
4983
4984Python code can manipulate breakpoints via the @code{gdb.Breakpoint}
4985class.
4986
0b982d68
SM
4987A breakpoint can be created using one of the two forms of the
4988@code{gdb.Breakpoint} constructor. The first one accepts a string
4989like one would pass to the @code{break}
4990(@pxref{Set Breaks,,Setting Breakpoints}) and @code{watch}
4991(@pxref{Set Watchpoints, , Setting Watchpoints}) commands, and can be used to
4992create both breakpoints and watchpoints. The second accepts separate Python
4993arguments similar to @ref{Explicit Locations}, and can only be used to create
4994breakpoints.
4995
b89641ba 4996@defun Breakpoint.__init__ (spec @r{[}, type @r{][}, wp_class @r{][}, internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
4997Create a new breakpoint according to @var{spec}, which is a string naming the
4998location of a breakpoint, or an expression that defines a watchpoint. The
4999string should describe a location in a format recognized by the @code{break}
5000command (@pxref{Set Breaks,,Setting Breakpoints}) or, in the case of a
5001watchpoint, by the @code{watch} command
5002(@pxref{Set Watchpoints, , Setting Watchpoints}).
5003
5004The optional @var{type} argument specifies the type of the breakpoint to create,
5005as defined below.
5006
5007The optional @var{wp_class} argument defines the class of watchpoint to create,
5008if @var{type} is @code{gdb.BP_WATCHPOINT}. If @var{wp_class} is omitted, it
5009defaults to @code{gdb.WP_WRITE}.
5010
5011The optional @var{internal} argument allows the breakpoint to become invisible
5012to the user. The breakpoint will neither be reported when created, nor will it
5013be listed in the output from @code{info breakpoints} (but will be listed with
5014the @code{maint info breakpoints} command).
5015
5016The optional @var{temporary} argument makes the breakpoint a temporary
5017breakpoint. Temporary breakpoints are deleted after they have been hit. Any
5018further access to the Python breakpoint after it has been hit will result in a
5019runtime error (as that breakpoint has now been automatically deleted).
b89641ba
SM
5020
5021The optional @var{qualified} argument is a boolean that allows interpreting
5022the function passed in @code{spec} as a fully-qualified name. It is equivalent
5023to @code{break}'s @code{-qualified} flag (@pxref{Linespec Locations} and
5024@ref{Explicit Locations}).
5025
0b982d68
SM
5026@end defun
5027
b89641ba 5028@defun Breakpoint.__init__ (@r{[} source @r{][}, function @r{][}, label @r{][}, line @r{]}, @r{][} internal @r{][}, temporary @r{][}, qualified @r{]})
0b982d68
SM
5029This second form of creating a new breakpoint specifies the explicit
5030location (@pxref{Explicit Locations}) using keywords. The new breakpoint will
5031be created in the specified source file @var{source}, at the specified
5032@var{function}, @var{label} and @var{line}.
5033
b89641ba
SM
5034@var{internal}, @var{temporary} and @var{qualified} have the same usage as
5035explained previously.
329baa95
DE
5036@end defun
5037
cda75e70
TT
5038The available types are represented by constants defined in the @code{gdb}
5039module:
5040
5041@vtable @code
5042@vindex BP_BREAKPOINT
5043@item gdb.BP_BREAKPOINT
5044Normal code breakpoint.
5045
5046@vindex BP_WATCHPOINT
5047@item gdb.BP_WATCHPOINT
5048Watchpoint breakpoint.
5049
5050@vindex BP_HARDWARE_WATCHPOINT
5051@item gdb.BP_HARDWARE_WATCHPOINT
5052Hardware assisted watchpoint.
5053
5054@vindex BP_READ_WATCHPOINT
5055@item gdb.BP_READ_WATCHPOINT
5056Hardware assisted read watchpoint.
5057
5058@vindex BP_ACCESS_WATCHPOINT
5059@item gdb.BP_ACCESS_WATCHPOINT
5060Hardware assisted access watchpoint.
5061@end vtable
5062
5063The available watchpoint types represented by constants are defined in the
5064@code{gdb} module:
5065
5066@vtable @code
5067@vindex WP_READ
5068@item gdb.WP_READ
5069Read only watchpoint.
5070
5071@vindex WP_WRITE
5072@item gdb.WP_WRITE
5073Write only watchpoint.
5074
5075@vindex WP_ACCESS
5076@item gdb.WP_ACCESS
5077Read/Write watchpoint.
5078@end vtable
5079
329baa95
DE
5080@defun Breakpoint.stop (self)
5081The @code{gdb.Breakpoint} class can be sub-classed and, in
5082particular, you may choose to implement the @code{stop} method.
5083If this method is defined in a sub-class of @code{gdb.Breakpoint},
5084it will be called when the inferior reaches any location of a
5085breakpoint which instantiates that sub-class. If the method returns
5086@code{True}, the inferior will be stopped at the location of the
5087breakpoint, otherwise the inferior will continue.
5088
5089If there are multiple breakpoints at the same location with a
5090@code{stop} method, each one will be called regardless of the
5091return status of the previous. This ensures that all @code{stop}
5092methods have a chance to execute at that location. In this scenario
5093if one of the methods returns @code{True} but the others return
5094@code{False}, the inferior will still be stopped.
5095
5096You should not alter the execution state of the inferior (i.e.@:, step,
5097next, etc.), alter the current frame context (i.e.@:, change the current
5098active frame), or alter, add or delete any breakpoint. As a general
5099rule, you should not alter any data within @value{GDBN} or the inferior
5100at this time.
5101
5102Example @code{stop} implementation:
5103
5104@smallexample
5105class MyBreakpoint (gdb.Breakpoint):
5106 def stop (self):
5107 inf_val = gdb.parse_and_eval("foo")
5108 if inf_val == 3:
5109 return True
5110 return False
5111@end smallexample
5112@end defun
5113
329baa95
DE
5114@defun Breakpoint.is_valid ()
5115Return @code{True} if this @code{Breakpoint} object is valid,
5116@code{False} otherwise. A @code{Breakpoint} object can become invalid
5117if the user deletes the breakpoint. In this case, the object still
5118exists, but the underlying breakpoint does not. In the cases of
5119watchpoint scope, the watchpoint remains valid even if execution of the
5120inferior leaves the scope of that watchpoint.
5121@end defun
5122
fab3a15d 5123@defun Breakpoint.delete ()
329baa95
DE
5124Permanently deletes the @value{GDBN} breakpoint. This also
5125invalidates the Python @code{Breakpoint} object. Any further access
5126to this object's attributes or methods will raise an error.
5127@end defun
5128
5129@defvar Breakpoint.enabled
5130This attribute is @code{True} if the breakpoint is enabled, and
fab3a15d
SM
5131@code{False} otherwise. This attribute is writable. You can use it to enable
5132or disable the breakpoint.
329baa95
DE
5133@end defvar
5134
5135@defvar Breakpoint.silent
5136This attribute is @code{True} if the breakpoint is silent, and
5137@code{False} otherwise. This attribute is writable.
5138
5139Note that a breakpoint can also be silent if it has commands and the
5140first command is @code{silent}. This is not reported by the
5141@code{silent} attribute.
5142@end defvar
5143
93daf339
TT
5144@defvar Breakpoint.pending
5145This attribute is @code{True} if the breakpoint is pending, and
5146@code{False} otherwise. @xref{Set Breaks}. This attribute is
5147read-only.
5148@end defvar
5149
22a02324 5150@anchor{python_breakpoint_thread}
329baa95 5151@defvar Breakpoint.thread
5d5658a1
PA
5152If the breakpoint is thread-specific, this attribute holds the
5153thread's global id. If the breakpoint is not thread-specific, this
5154attribute is @code{None}. This attribute is writable.
329baa95
DE
5155@end defvar
5156
5157@defvar Breakpoint.task
5158If the breakpoint is Ada task-specific, this attribute holds the Ada task
5159id. If the breakpoint is not task-specific (or the underlying
5160language is not Ada), this attribute is @code{None}. This attribute
5161is writable.
5162@end defvar
5163
5164@defvar Breakpoint.ignore_count
5165This attribute holds the ignore count for the breakpoint, an integer.
5166This attribute is writable.
5167@end defvar
5168
5169@defvar Breakpoint.number
5170This attribute holds the breakpoint's number --- the identifier used by
5171the user to manipulate the breakpoint. This attribute is not writable.
5172@end defvar
5173
5174@defvar Breakpoint.type
5175This attribute holds the breakpoint's type --- the identifier used to
5176determine the actual breakpoint type or use-case. This attribute is not
5177writable.
5178@end defvar
5179
5180@defvar Breakpoint.visible
5181This attribute tells whether the breakpoint is visible to the user
5182when set, or when the @samp{info breakpoints} command is run. This
5183attribute is not writable.
5184@end defvar
5185
5186@defvar Breakpoint.temporary
5187This attribute indicates whether the breakpoint was created as a
5188temporary breakpoint. Temporary breakpoints are automatically deleted
5189after that breakpoint has been hit. Access to this attribute, and all
5190other attributes and functions other than the @code{is_valid}
5191function, will result in an error after the breakpoint has been hit
5192(as it has been automatically deleted). This attribute is not
5193writable.
5194@end defvar
5195
329baa95
DE
5196@defvar Breakpoint.hit_count
5197This attribute holds the hit count for the breakpoint, an integer.
5198This attribute is writable, but currently it can only be set to zero.
5199@end defvar
5200
5201@defvar Breakpoint.location
5202This attribute holds the location of the breakpoint, as specified by
5203the user. It is a string. If the breakpoint does not have a location
5204(that is, it is a watchpoint) the attribute's value is @code{None}. This
5205attribute is not writable.
5206@end defvar
5207
5208@defvar Breakpoint.expression
5209This attribute holds a breakpoint expression, as specified by
5210the user. It is a string. If the breakpoint does not have an
5211expression (the breakpoint is not a watchpoint) the attribute's value
5212is @code{None}. This attribute is not writable.
5213@end defvar
5214
5215@defvar Breakpoint.condition
5216This attribute holds the condition of the breakpoint, as specified by
5217the user. It is a string. If there is no condition, this attribute's
5218value is @code{None}. This attribute is writable.
5219@end defvar
5220
5221@defvar Breakpoint.commands
5222This attribute holds the commands attached to the breakpoint. If
5223there are commands, this attribute's value is a string holding all the
5224commands, separated by newlines. If there are no commands, this
a913fffb 5225attribute is @code{None}. This attribute is writable.
329baa95
DE
5226@end defvar
5227
5228@node Finish Breakpoints in Python
5229@subsubsection Finish Breakpoints
5230
5231@cindex python finish breakpoints
5232@tindex gdb.FinishBreakpoint
5233
5234A finish breakpoint is a temporary breakpoint set at the return address of
5235a frame, based on the @code{finish} command. @code{gdb.FinishBreakpoint}
5236extends @code{gdb.Breakpoint}. The underlying breakpoint will be disabled
5237and deleted when the execution will run out of the breakpoint scope (i.e.@:
5238@code{Breakpoint.stop} or @code{FinishBreakpoint.out_of_scope} triggered).
5239Finish breakpoints are thread specific and must be create with the right
5240thread selected.
5241
5242@defun FinishBreakpoint.__init__ (@r{[}frame@r{]} @r{[}, internal@r{]})
5243Create a finish breakpoint at the return address of the @code{gdb.Frame}
5244object @var{frame}. If @var{frame} is not provided, this defaults to the
5245newest frame. The optional @var{internal} argument allows the breakpoint to
5246become invisible to the user. @xref{Breakpoints In Python}, for further
5247details about this argument.
5248@end defun
5249
5250@defun FinishBreakpoint.out_of_scope (self)
5251In some circumstances (e.g.@: @code{longjmp}, C@t{++} exceptions, @value{GDBN}
5252@code{return} command, @dots{}), a function may not properly terminate, and
5253thus never hit the finish breakpoint. When @value{GDBN} notices such a
5254situation, the @code{out_of_scope} callback will be triggered.
5255
5256You may want to sub-class @code{gdb.FinishBreakpoint} and override this
5257method:
5258
5259@smallexample
5260class MyFinishBreakpoint (gdb.FinishBreakpoint)
5261 def stop (self):
5262 print "normal finish"
5263 return True
5264
5265 def out_of_scope ():
5266 print "abnormal finish"
5267@end smallexample
5268@end defun
5269
5270@defvar FinishBreakpoint.return_value
5271When @value{GDBN} is stopped at a finish breakpoint and the frame
5272used to build the @code{gdb.FinishBreakpoint} object had debug symbols, this
5273attribute will contain a @code{gdb.Value} object corresponding to the return
5274value of the function. The value will be @code{None} if the function return
5275type is @code{void} or if the return value was not computable. This attribute
5276is not writable.
5277@end defvar
5278
5279@node Lazy Strings In Python
5280@subsubsection Python representation of lazy strings.
5281
5282@cindex lazy strings in python
5283@tindex gdb.LazyString
5284
5285A @dfn{lazy string} is a string whose contents is not retrieved or
5286encoded until it is needed.
5287
5288A @code{gdb.LazyString} is represented in @value{GDBN} as an
5289@code{address} that points to a region of memory, an @code{encoding}
5290that will be used to encode that region of memory, and a @code{length}
5291to delimit the region of memory that represents the string. The
5292difference between a @code{gdb.LazyString} and a string wrapped within
5293a @code{gdb.Value} is that a @code{gdb.LazyString} will be treated
5294differently by @value{GDBN} when printing. A @code{gdb.LazyString} is
5295retrieved and encoded during printing, while a @code{gdb.Value}
5296wrapping a string is immediately retrieved and encoded on creation.
5297
5298A @code{gdb.LazyString} object has the following functions:
5299
5300@defun LazyString.value ()
5301Convert the @code{gdb.LazyString} to a @code{gdb.Value}. This value
5302will point to the string in memory, but will lose all the delayed
5303retrieval, encoding and handling that @value{GDBN} applies to a
5304@code{gdb.LazyString}.
5305@end defun
5306
5307@defvar LazyString.address
5308This attribute holds the address of the string. This attribute is not
5309writable.
5310@end defvar
5311
5312@defvar LazyString.length
5313This attribute holds the length of the string in characters. If the
5314length is -1, then the string will be fetched and encoded up to the
5315first null of appropriate width. This attribute is not writable.
5316@end defvar
5317
5318@defvar LazyString.encoding
5319This attribute holds the encoding that will be applied to the string
5320when the string is printed by @value{GDBN}. If the encoding is not
5321set, or contains an empty string, then @value{GDBN} will select the
5322most appropriate encoding when the string is printed. This attribute
5323is not writable.
5324@end defvar
5325
5326@defvar LazyString.type
5327This attribute holds the type that is represented by the lazy string's
f8d99587 5328type. For a lazy string this is a pointer or array type. To
329baa95
DE
5329resolve this to the lazy string's character type, use the type's
5330@code{target} method. @xref{Types In Python}. This attribute is not
5331writable.
5332@end defvar
5333
5334@node Architectures In Python
5335@subsubsection Python representation of architectures
5336@cindex Python architectures
5337
5338@value{GDBN} uses architecture specific parameters and artifacts in a
5339number of its various computations. An architecture is represented
5340by an instance of the @code{gdb.Architecture} class.
5341
5342A @code{gdb.Architecture} class has the following methods:
5343
5344@defun Architecture.name ()
5345Return the name (string value) of the architecture.
5346@end defun
5347
5348@defun Architecture.disassemble (@var{start_pc} @r{[}, @var{end_pc} @r{[}, @var{count}@r{]]})
5349Return a list of disassembled instructions starting from the memory
5350address @var{start_pc}. The optional arguments @var{end_pc} and
5351@var{count} determine the number of instructions in the returned list.
5352If both the optional arguments @var{end_pc} and @var{count} are
5353specified, then a list of at most @var{count} disassembled instructions
5354whose start address falls in the closed memory address interval from
5355@var{start_pc} to @var{end_pc} are returned. If @var{end_pc} is not
5356specified, but @var{count} is specified, then @var{count} number of
5357instructions starting from the address @var{start_pc} are returned. If
5358@var{count} is not specified but @var{end_pc} is specified, then all
5359instructions whose start address falls in the closed memory address
5360interval from @var{start_pc} to @var{end_pc} are returned. If neither
5361@var{end_pc} nor @var{count} are specified, then a single instruction at
5362@var{start_pc} is returned. For all of these cases, each element of the
5363returned list is a Python @code{dict} with the following string keys:
5364
5365@table @code
5366
5367@item addr
5368The value corresponding to this key is a Python long integer capturing
5369the memory address of the instruction.
5370
5371@item asm
5372The value corresponding to this key is a string value which represents
5373the instruction with assembly language mnemonics. The assembly
5374language flavor used is the same as that specified by the current CLI
5375variable @code{disassembly-flavor}. @xref{Machine Code}.
5376
5377@item length
5378The value corresponding to this key is the length (integer value) of the
5379instruction in bytes.
5380
5381@end table
5382@end defun
5383
5384@node Python Auto-loading
5385@subsection Python Auto-loading
5386@cindex Python auto-loading
5387
5388When a new object file is read (for example, due to the @code{file}
5389command, or because the inferior has loaded a shared library),
5390@value{GDBN} will look for Python support scripts in several ways:
5391@file{@var{objfile}-gdb.py} and @code{.debug_gdb_scripts} section.
5392@xref{Auto-loading extensions}.
5393
5394The auto-loading feature is useful for supplying application-specific
5395debugging commands and scripts.
5396
5397Auto-loading can be enabled or disabled,
5398and the list of auto-loaded scripts can be printed.
5399
5400@table @code
5401@anchor{set auto-load python-scripts}
5402@kindex set auto-load python-scripts
5403@item set auto-load python-scripts [on|off]
5404Enable or disable the auto-loading of Python scripts.
5405
5406@anchor{show auto-load python-scripts}
5407@kindex show auto-load python-scripts
5408@item show auto-load python-scripts
5409Show whether auto-loading of Python scripts is enabled or disabled.
5410
5411@anchor{info auto-load python-scripts}
5412@kindex info auto-load python-scripts
5413@cindex print list of auto-loaded Python scripts
5414@item info auto-load python-scripts [@var{regexp}]
5415Print the list of all Python scripts that @value{GDBN} auto-loaded.
5416
5417Also printed is the list of Python scripts that were mentioned in
9f050062
DE
5418the @code{.debug_gdb_scripts} section and were either not found
5419(@pxref{dotdebug_gdb_scripts section}) or were not auto-loaded due to
5420@code{auto-load safe-path} rejection (@pxref{Auto-loading}).
329baa95
DE
5421This is useful because their names are not printed when @value{GDBN}
5422tries to load them and fails. There may be many of them, and printing
5423an error message for each one is problematic.
5424
5425If @var{regexp} is supplied only Python scripts with matching names are printed.
5426
5427Example:
5428
5429@smallexample
5430(gdb) info auto-load python-scripts
5431Loaded Script
5432Yes py-section-script.py
5433 full name: /tmp/py-section-script.py
5434No my-foo-pretty-printers.py
5435@end smallexample
5436@end table
5437
9f050062 5438When reading an auto-loaded file or script, @value{GDBN} sets the
329baa95
DE
5439@dfn{current objfile}. This is available via the @code{gdb.current_objfile}
5440function (@pxref{Objfiles In Python}). This can be useful for
5441registering objfile-specific pretty-printers and frame-filters.
5442
5443@node Python modules
5444@subsection Python modules
5445@cindex python modules
5446
5447@value{GDBN} comes with several modules to assist writing Python code.
5448
5449@menu
5450* gdb.printing:: Building and registering pretty-printers.
5451* gdb.types:: Utilities for working with types.
5452* gdb.prompt:: Utilities for prompt value substitution.
5453@end menu
5454
5455@node gdb.printing
5456@subsubsection gdb.printing
5457@cindex gdb.printing
5458
5459This module provides a collection of utilities for working with
5460pretty-printers.
5461
5462@table @code
5463@item PrettyPrinter (@var{name}, @var{subprinters}=None)
5464This class specifies the API that makes @samp{info pretty-printer},
5465@samp{enable pretty-printer} and @samp{disable pretty-printer} work.
5466Pretty-printers should generally inherit from this class.
5467
5468@item SubPrettyPrinter (@var{name})
5469For printers that handle multiple types, this class specifies the
5470corresponding API for the subprinters.
5471
5472@item RegexpCollectionPrettyPrinter (@var{name})
5473Utility class for handling multiple printers, all recognized via
5474regular expressions.
5475@xref{Writing a Pretty-Printer}, for an example.
5476
5477@item FlagEnumerationPrinter (@var{name})
5478A pretty-printer which handles printing of @code{enum} values. Unlike
5479@value{GDBN}'s built-in @code{enum} printing, this printer attempts to
5480work properly when there is some overlap between the enumeration
697aa1b7
EZ
5481constants. The argument @var{name} is the name of the printer and
5482also the name of the @code{enum} type to look up.
329baa95
DE
5483
5484@item register_pretty_printer (@var{obj}, @var{printer}, @var{replace}=False)
5485Register @var{printer} with the pretty-printer list of @var{obj}.
5486If @var{replace} is @code{True} then any existing copy of the printer
5487is replaced. Otherwise a @code{RuntimeError} exception is raised
5488if a printer with the same name already exists.
5489@end table
5490
5491@node gdb.types
5492@subsubsection gdb.types
5493@cindex gdb.types
5494
5495This module provides a collection of utilities for working with
5496@code{gdb.Type} objects.
5497
5498@table @code
5499@item get_basic_type (@var{type})
5500Return @var{type} with const and volatile qualifiers stripped,
5501and with typedefs and C@t{++} references converted to the underlying type.
5502
5503C@t{++} example:
5504
5505@smallexample
5506typedef const int const_int;
5507const_int foo (3);
5508const_int& foo_ref (foo);
5509int main () @{ return 0; @}
5510@end smallexample
5511
5512Then in gdb:
5513
5514@smallexample
5515(gdb) start
5516(gdb) python import gdb.types
5517(gdb) python foo_ref = gdb.parse_and_eval("foo_ref")
5518(gdb) python print gdb.types.get_basic_type(foo_ref.type)
5519int
5520@end smallexample
5521
5522@item has_field (@var{type}, @var{field})
5523Return @code{True} if @var{type}, assumed to be a type with fields
5524(e.g., a structure or union), has field @var{field}.
5525
5526@item make_enum_dict (@var{enum_type})
5527Return a Python @code{dictionary} type produced from @var{enum_type}.
5528
5529@item deep_items (@var{type})
5530Returns a Python iterator similar to the standard
5531@code{gdb.Type.iteritems} method, except that the iterator returned
5532by @code{deep_items} will recursively traverse anonymous struct or
5533union fields. For example:
5534
5535@smallexample
5536struct A
5537@{
5538 int a;
5539 union @{
5540 int b0;
5541 int b1;
5542 @};
5543@};
5544@end smallexample
5545
5546@noindent
5547Then in @value{GDBN}:
5548@smallexample
5549(@value{GDBP}) python import gdb.types
5550(@value{GDBP}) python struct_a = gdb.lookup_type("struct A")
5551(@value{GDBP}) python print struct_a.keys ()
5552@{['a', '']@}
5553(@value{GDBP}) python print [k for k,v in gdb.types.deep_items(struct_a)]
5554@{['a', 'b0', 'b1']@}
5555@end smallexample
5556
5557@item get_type_recognizers ()
5558Return a list of the enabled type recognizers for the current context.
5559This is called by @value{GDBN} during the type-printing process
5560(@pxref{Type Printing API}).
5561
5562@item apply_type_recognizers (recognizers, type_obj)
5563Apply the type recognizers, @var{recognizers}, to the type object
5564@var{type_obj}. If any recognizer returns a string, return that
5565string. Otherwise, return @code{None}. This is called by
5566@value{GDBN} during the type-printing process (@pxref{Type Printing
5567API}).
5568
5569@item register_type_printer (locus, printer)
697aa1b7
EZ
5570This is a convenience function to register a type printer
5571@var{printer}. The printer must implement the type printer protocol.
5572The @var{locus} argument is either a @code{gdb.Objfile}, in which case
5573the printer is registered with that objfile; a @code{gdb.Progspace},
5574in which case the printer is registered with that progspace; or
5575@code{None}, in which case the printer is registered globally.
329baa95
DE
5576
5577@item TypePrinter
5578This is a base class that implements the type printer protocol. Type
5579printers are encouraged, but not required, to derive from this class.
5580It defines a constructor:
5581
5582@defmethod TypePrinter __init__ (self, name)
5583Initialize the type printer with the given name. The new printer
5584starts in the enabled state.
5585@end defmethod
5586
5587@end table
5588
5589@node gdb.prompt
5590@subsubsection gdb.prompt
5591@cindex gdb.prompt
5592
5593This module provides a method for prompt value-substitution.
5594
5595@table @code
5596@item substitute_prompt (@var{string})
5597Return @var{string} with escape sequences substituted by values. Some
5598escape sequences take arguments. You can specify arguments inside
5599``@{@}'' immediately following the escape sequence.
5600
5601The escape sequences you can pass to this function are:
5602
5603@table @code
5604@item \\
5605Substitute a backslash.
5606@item \e
5607Substitute an ESC character.
5608@item \f
5609Substitute the selected frame; an argument names a frame parameter.
5610@item \n
5611Substitute a newline.
5612@item \p
5613Substitute a parameter's value; the argument names the parameter.
5614@item \r
5615Substitute a carriage return.
5616@item \t
5617Substitute the selected thread; an argument names a thread parameter.
5618@item \v
5619Substitute the version of GDB.
5620@item \w
5621Substitute the current working directory.
5622@item \[
5623Begin a sequence of non-printing characters. These sequences are
5624typically used with the ESC character, and are not counted in the string
5625length. Example: ``\[\e[0;34m\](gdb)\[\e[0m\]'' will return a
5626blue-colored ``(gdb)'' prompt where the length is five.
5627@item \]
5628End a sequence of non-printing characters.
5629@end table
5630
5631For example:
5632
5633@smallexample
5634substitute_prompt (``frame: \f,
5635 print arguments: \p@{print frame-arguments@}'')
5636@end smallexample
5637
5638@exdent will return the string:
5639
5640@smallexample
5641"frame: main, print arguments: scalars"
5642@end smallexample
5643@end table
This page took 0.577586 seconds and 4 git commands to generate.