Commit | Line | Data |
---|---|---|
d16aafd8 | 1 | /* Floating point routines for GDB, the GNU debugger. |
f1908289 | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
9b254dd1 | 4 | 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008 |
0a3e99f6 | 5 | Free Software Foundation, Inc. |
d16aafd8 AC |
6 | |
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
d16aafd8 AC |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
d16aafd8 AC |
21 | |
22 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
23 | ||
24 | /* XXX - This code should really be in libiberty/floatformat.c, | |
25 | however configuration issues with libiberty made this very | |
26 | difficult to do in the available time. */ | |
27 | ||
28 | #include "defs.h" | |
29 | #include "doublest.h" | |
30 | #include "floatformat.h" | |
31 | #include "gdb_assert.h" | |
32 | #include "gdb_string.h" | |
96d2f608 | 33 | #include "gdbtypes.h" |
d16aafd8 AC |
34 | #include <math.h> /* ldexp */ |
35 | ||
36 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
37 | going to bother with trying to muck around with whether it is defined in | |
38 | a system header, what we do if not, etc. */ | |
39 | #define FLOATFORMAT_CHAR_BIT 8 | |
40 | ||
fcab3fb5 RE |
41 | /* The number of bytes that the largest floating-point type that we |
42 | can convert to doublest will need. */ | |
43 | #define FLOATFORMAT_LARGEST_BYTES 16 | |
44 | ||
d16aafd8 AC |
45 | /* Extract a field which starts at START and is LEN bytes long. DATA and |
46 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
47 | static unsigned long | |
108d6ead | 48 | get_field (const bfd_byte *data, enum floatformat_byteorders order, |
d16aafd8 AC |
49 | unsigned int total_len, unsigned int start, unsigned int len) |
50 | { | |
51 | unsigned long result; | |
52 | unsigned int cur_byte; | |
53 | int cur_bitshift; | |
54 | ||
fcab3fb5 RE |
55 | /* Caller must byte-swap words before calling this routine. */ |
56 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
57 | ||
d16aafd8 | 58 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 59 | if (order == floatformat_little) |
d16aafd8 AC |
60 | { |
61 | /* We start counting from the other end (i.e, from the high bytes | |
62 | rather than the low bytes). As such, we need to be concerned | |
63 | with what happens if bit 0 doesn't start on a byte boundary. | |
64 | I.e, we need to properly handle the case where total_len is | |
65 | not evenly divisible by 8. So we compute ``excess'' which | |
66 | represents the number of bits from the end of our starting | |
67 | byte needed to get to bit 0. */ | |
68 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
69 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
70 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
71 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
72 | - FLOATFORMAT_CHAR_BIT; | |
73 | } | |
74 | else | |
75 | { | |
76 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
77 | cur_bitshift = | |
78 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
79 | } | |
80 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
81 | result = *(data + cur_byte) >> (-cur_bitshift); | |
82 | else | |
83 | result = 0; | |
84 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 85 | if (order == floatformat_little) |
d16aafd8 AC |
86 | ++cur_byte; |
87 | else | |
88 | --cur_byte; | |
89 | ||
90 | /* Move towards the most significant part of the field. */ | |
91 | while (cur_bitshift < len) | |
92 | { | |
93 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; | |
94 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
c35f4ffc AC |
95 | switch (order) |
96 | { | |
97 | case floatformat_little: | |
98 | ++cur_byte; | |
99 | break; | |
100 | case floatformat_big: | |
101 | --cur_byte; | |
102 | break; | |
c35f4ffc | 103 | } |
d16aafd8 AC |
104 | } |
105 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) | |
106 | /* Mask out bits which are not part of the field */ | |
107 | result &= ((1UL << len) - 1); | |
108 | return result; | |
109 | } | |
110 | ||
0a3e99f6 MK |
111 | /* Normalize the byte order of FROM into TO. If no normalization is |
112 | needed then FMT->byteorder is returned and TO is not changed; | |
113 | otherwise the format of the normalized form in TO is returned. */ | |
114 | ||
fcab3fb5 RE |
115 | static enum floatformat_byteorders |
116 | floatformat_normalize_byteorder (const struct floatformat *fmt, | |
117 | const void *from, void *to) | |
118 | { | |
119 | const unsigned char *swapin; | |
120 | unsigned char *swapout; | |
121 | int words; | |
122 | ||
123 | if (fmt->byteorder == floatformat_little | |
124 | || fmt->byteorder == floatformat_big) | |
125 | return fmt->byteorder; | |
126 | ||
fcab3fb5 RE |
127 | words = fmt->totalsize / FLOATFORMAT_CHAR_BIT; |
128 | words >>= 2; | |
129 | ||
130 | swapout = (unsigned char *)to; | |
131 | swapin = (const unsigned char *)from; | |
132 | ||
0a3e99f6 MK |
133 | if (fmt->byteorder == floatformat_vax) |
134 | { | |
135 | while (words-- > 0) | |
136 | { | |
137 | *swapout++ = swapin[1]; | |
138 | *swapout++ = swapin[0]; | |
139 | *swapout++ = swapin[3]; | |
140 | *swapout++ = swapin[2]; | |
141 | swapin += 4; | |
142 | } | |
143 | /* This may look weird, since VAX is little-endian, but it is | |
144 | easier to translate to big-endian than to little-endian. */ | |
145 | return floatformat_big; | |
146 | } | |
147 | else | |
fcab3fb5 | 148 | { |
0a3e99f6 MK |
149 | gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword); |
150 | ||
151 | while (words-- > 0) | |
152 | { | |
153 | *swapout++ = swapin[3]; | |
154 | *swapout++ = swapin[2]; | |
155 | *swapout++ = swapin[1]; | |
156 | *swapout++ = swapin[0]; | |
157 | swapin += 4; | |
158 | } | |
159 | return floatformat_big; | |
fcab3fb5 | 160 | } |
fcab3fb5 RE |
161 | } |
162 | ||
d16aafd8 AC |
163 | /* Convert from FMT to a DOUBLEST. |
164 | FROM is the address of the extended float. | |
165 | Store the DOUBLEST in *TO. */ | |
166 | ||
c422e771 AC |
167 | static void |
168 | convert_floatformat_to_doublest (const struct floatformat *fmt, | |
169 | const void *from, | |
170 | DOUBLEST *to) | |
d16aafd8 AC |
171 | { |
172 | unsigned char *ufrom = (unsigned char *) from; | |
173 | DOUBLEST dto; | |
174 | long exponent; | |
175 | unsigned long mant; | |
176 | unsigned int mant_bits, mant_off; | |
177 | int mant_bits_left; | |
178 | int special_exponent; /* It's a NaN, denorm or zero */ | |
fcab3fb5 RE |
179 | enum floatformat_byteorders order; |
180 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 181 | enum float_kind kind; |
fcab3fb5 RE |
182 | |
183 | gdb_assert (fmt->totalsize | |
184 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
d16aafd8 | 185 | |
20389057 DJ |
186 | /* For non-numbers, reuse libiberty's logic to find the correct |
187 | format. We do not lose any precision in this case by passing | |
188 | through a double. */ | |
189 | kind = floatformat_classify (fmt, from); | |
190 | if (kind == float_infinite || kind == float_nan) | |
191 | { | |
192 | double dto; | |
193 | floatformat_to_double (fmt, from, &dto); | |
194 | *to = (DOUBLEST) dto; | |
195 | return; | |
196 | } | |
197 | ||
fcab3fb5 | 198 | order = floatformat_normalize_byteorder (fmt, ufrom, newfrom); |
d16aafd8 | 199 | |
fcab3fb5 RE |
200 | if (order != fmt->byteorder) |
201 | ufrom = newfrom; | |
d16aafd8 | 202 | |
b14d30e1 JM |
203 | if (fmt->split_half) |
204 | { | |
542a88d0 LM |
205 | DOUBLEST dtop, dbot; |
206 | floatformat_to_doublest (fmt->split_half, ufrom, &dtop); | |
b14d30e1 JM |
207 | /* Preserve the sign of 0, which is the sign of the top |
208 | half. */ | |
209 | if (dtop == 0.0) | |
210 | { | |
542a88d0 | 211 | *to = dtop; |
b14d30e1 JM |
212 | return; |
213 | } | |
542a88d0 | 214 | floatformat_to_doublest (fmt->split_half, |
b14d30e1 JM |
215 | ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, |
216 | &dbot); | |
542a88d0 | 217 | *to = dtop + dbot; |
b14d30e1 JM |
218 | return; |
219 | } | |
220 | ||
fcab3fb5 RE |
221 | exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start, |
222 | fmt->exp_len); | |
d16aafd8 AC |
223 | /* Note that if exponent indicates a NaN, we can't really do anything useful |
224 | (not knowing if the host has NaN's, or how to build one). So it will | |
225 | end up as an infinity or something close; that is OK. */ | |
226 | ||
227 | mant_bits_left = fmt->man_len; | |
228 | mant_off = fmt->man_start; | |
229 | dto = 0.0; | |
230 | ||
231 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
232 | ||
38c52d5a DJ |
233 | /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity, |
234 | we don't check for zero as the exponent doesn't matter. Note the cast | |
235 | to int; exp_bias is unsigned, so it's important to make sure the | |
236 | operation is done in signed arithmetic. */ | |
d16aafd8 AC |
237 | if (!special_exponent) |
238 | exponent -= fmt->exp_bias; | |
239 | else if (exponent == 0) | |
1c704f11 | 240 | exponent = 1 - fmt->exp_bias; |
d16aafd8 AC |
241 | |
242 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
243 | who cares. */ | |
244 | ||
245 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
246 | increment the exponent by one to account for the integer bit. */ | |
247 | ||
248 | if (!special_exponent) | |
249 | { | |
250 | if (fmt->intbit == floatformat_intbit_no) | |
251 | dto = ldexp (1.0, exponent); | |
252 | else | |
253 | exponent++; | |
254 | } | |
255 | ||
256 | while (mant_bits_left > 0) | |
257 | { | |
258 | mant_bits = min (mant_bits_left, 32); | |
259 | ||
fcab3fb5 | 260 | mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
261 | |
262 | dto += ldexp ((double) mant, exponent - mant_bits); | |
263 | exponent -= mant_bits; | |
264 | mant_off += mant_bits; | |
265 | mant_bits_left -= mant_bits; | |
266 | } | |
267 | ||
268 | /* Negate it if negative. */ | |
fcab3fb5 | 269 | if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1)) |
d16aafd8 AC |
270 | dto = -dto; |
271 | *to = dto; | |
272 | } | |
273 | \f | |
274 | static void put_field (unsigned char *, enum floatformat_byteorders, | |
275 | unsigned int, | |
276 | unsigned int, unsigned int, unsigned long); | |
277 | ||
278 | /* Set a field which starts at START and is LEN bytes long. DATA and | |
279 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
280 | static void | |
281 | put_field (unsigned char *data, enum floatformat_byteorders order, | |
282 | unsigned int total_len, unsigned int start, unsigned int len, | |
283 | unsigned long stuff_to_put) | |
284 | { | |
285 | unsigned int cur_byte; | |
286 | int cur_bitshift; | |
287 | ||
fcab3fb5 RE |
288 | /* Caller must byte-swap words before calling this routine. */ |
289 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
290 | ||
d16aafd8 | 291 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 292 | if (order == floatformat_little) |
d16aafd8 AC |
293 | { |
294 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
295 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) | |
296 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
297 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
298 | - FLOATFORMAT_CHAR_BIT; | |
299 | } | |
300 | else | |
301 | { | |
302 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
303 | cur_bitshift = | |
304 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
305 | } | |
306 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
307 | { | |
308 | *(data + cur_byte) &= | |
309 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
310 | << (-cur_bitshift)); | |
311 | *(data + cur_byte) |= | |
312 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
313 | } | |
314 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 315 | if (order == floatformat_little) |
d16aafd8 AC |
316 | ++cur_byte; |
317 | else | |
318 | --cur_byte; | |
319 | ||
320 | /* Move towards the most significant part of the field. */ | |
321 | while (cur_bitshift < len) | |
322 | { | |
323 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
324 | { | |
325 | /* This is the last byte. */ | |
326 | *(data + cur_byte) &= | |
327 | ~((1 << (len - cur_bitshift)) - 1); | |
328 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
329 | } | |
330 | else | |
331 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
332 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
333 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 334 | if (order == floatformat_little) |
d16aafd8 AC |
335 | ++cur_byte; |
336 | else | |
337 | --cur_byte; | |
338 | } | |
339 | } | |
340 | ||
341 | #ifdef HAVE_LONG_DOUBLE | |
342 | /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. | |
343 | The range of the returned value is >= 0.5 and < 1.0. This is equivalent to | |
344 | frexp, but operates on the long double data type. */ | |
345 | ||
346 | static long double ldfrexp (long double value, int *eptr); | |
347 | ||
348 | static long double | |
349 | ldfrexp (long double value, int *eptr) | |
350 | { | |
351 | long double tmp; | |
352 | int exp; | |
353 | ||
354 | /* Unfortunately, there are no portable functions for extracting the exponent | |
355 | of a long double, so we have to do it iteratively by multiplying or dividing | |
356 | by two until the fraction is between 0.5 and 1.0. */ | |
357 | ||
358 | if (value < 0.0l) | |
359 | value = -value; | |
360 | ||
361 | tmp = 1.0l; | |
362 | exp = 0; | |
363 | ||
364 | if (value >= tmp) /* Value >= 1.0 */ | |
365 | while (value >= tmp) | |
366 | { | |
367 | tmp *= 2.0l; | |
368 | exp++; | |
369 | } | |
370 | else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ | |
371 | { | |
372 | while (value < tmp) | |
373 | { | |
374 | tmp /= 2.0l; | |
375 | exp--; | |
376 | } | |
377 | tmp *= 2.0l; | |
378 | exp++; | |
379 | } | |
380 | ||
381 | *eptr = exp; | |
382 | return value / tmp; | |
383 | } | |
384 | #endif /* HAVE_LONG_DOUBLE */ | |
385 | ||
386 | ||
0a3e99f6 MK |
387 | /* The converse: convert the DOUBLEST *FROM to an extended float and |
388 | store where TO points. Neither FROM nor TO have any alignment | |
d16aafd8 AC |
389 | restrictions. */ |
390 | ||
c422e771 AC |
391 | static void |
392 | convert_doublest_to_floatformat (CONST struct floatformat *fmt, | |
0a3e99f6 | 393 | const DOUBLEST *from, void *to) |
d16aafd8 AC |
394 | { |
395 | DOUBLEST dfrom; | |
396 | int exponent; | |
397 | DOUBLEST mant; | |
398 | unsigned int mant_bits, mant_off; | |
399 | int mant_bits_left; | |
400 | unsigned char *uto = (unsigned char *) to; | |
fcab3fb5 | 401 | enum floatformat_byteorders order = fmt->byteorder; |
0a3e99f6 | 402 | unsigned char newto[FLOATFORMAT_LARGEST_BYTES]; |
fcab3fb5 | 403 | |
0a3e99f6 | 404 | if (order != floatformat_little) |
fcab3fb5 | 405 | order = floatformat_big; |
d16aafd8 | 406 | |
0a3e99f6 MK |
407 | if (order != fmt->byteorder) |
408 | uto = newto; | |
409 | ||
d16aafd8 AC |
410 | memcpy (&dfrom, from, sizeof (dfrom)); |
411 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) | |
412 | / FLOATFORMAT_CHAR_BIT); | |
b14d30e1 JM |
413 | |
414 | if (fmt->split_half) | |
415 | { | |
416 | /* Use static volatile to ensure that any excess precision is | |
417 | removed via storing in memory, and so the top half really is | |
418 | the result of converting to double. */ | |
419 | static volatile double dtop, dbot; | |
542a88d0 | 420 | DOUBLEST dtopnv, dbotnv; |
b14d30e1 JM |
421 | dtop = (double) dfrom; |
422 | /* If the rounded top half is Inf, the bottom must be 0 not NaN | |
423 | or Inf. */ | |
424 | if (dtop + dtop == dtop && dtop != 0.0) | |
425 | dbot = 0.0; | |
426 | else | |
427 | dbot = (double) (dfrom - (DOUBLEST) dtop); | |
428 | dtopnv = dtop; | |
429 | dbotnv = dbot; | |
542a88d0 LM |
430 | floatformat_from_doublest (fmt->split_half, &dtopnv, uto); |
431 | floatformat_from_doublest (fmt->split_half, &dbotnv, | |
b14d30e1 JM |
432 | (uto |
433 | + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2)); | |
434 | return; | |
435 | } | |
436 | ||
d16aafd8 AC |
437 | if (dfrom == 0) |
438 | return; /* Result is zero */ | |
439 | if (dfrom != dfrom) /* Result is NaN */ | |
440 | { | |
441 | /* From is NaN */ | |
fcab3fb5 | 442 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 AC |
443 | fmt->exp_len, fmt->exp_nan); |
444 | /* Be sure it's not infinity, but NaN value is irrel */ | |
fcab3fb5 | 445 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
d16aafd8 | 446 | 32, 1); |
fcab3fb5 | 447 | goto finalize_byteorder; |
d16aafd8 AC |
448 | } |
449 | ||
450 | /* If negative, set the sign bit. */ | |
451 | if (dfrom < 0) | |
452 | { | |
fcab3fb5 | 453 | put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1); |
d16aafd8 AC |
454 | dfrom = -dfrom; |
455 | } | |
456 | ||
457 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */ | |
458 | { | |
459 | /* Infinity exponent is same as NaN's. */ | |
fcab3fb5 | 460 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 AC |
461 | fmt->exp_len, fmt->exp_nan); |
462 | /* Infinity mantissa is all zeroes. */ | |
fcab3fb5 | 463 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
d16aafd8 | 464 | fmt->man_len, 0); |
fcab3fb5 | 465 | goto finalize_byteorder; |
d16aafd8 AC |
466 | } |
467 | ||
468 | #ifdef HAVE_LONG_DOUBLE | |
469 | mant = ldfrexp (dfrom, &exponent); | |
470 | #else | |
471 | mant = frexp (dfrom, &exponent); | |
472 | #endif | |
473 | ||
fcab3fb5 | 474 | put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len, |
d16aafd8 AC |
475 | exponent + fmt->exp_bias - 1); |
476 | ||
477 | mant_bits_left = fmt->man_len; | |
478 | mant_off = fmt->man_start; | |
479 | while (mant_bits_left > 0) | |
480 | { | |
481 | unsigned long mant_long; | |
482 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; | |
483 | ||
484 | mant *= 4294967296.0; | |
485 | mant_long = ((unsigned long) mant) & 0xffffffffL; | |
486 | mant -= mant_long; | |
487 | ||
488 | /* If the integer bit is implicit, then we need to discard it. | |
489 | If we are discarding a zero, we should be (but are not) creating | |
490 | a denormalized number which means adjusting the exponent | |
491 | (I think). */ | |
492 | if (mant_bits_left == fmt->man_len | |
493 | && fmt->intbit == floatformat_intbit_no) | |
494 | { | |
495 | mant_long <<= 1; | |
496 | mant_long &= 0xffffffffL; | |
06194148 JJ |
497 | /* If we are processing the top 32 mantissa bits of a doublest |
498 | so as to convert to a float value with implied integer bit, | |
499 | we will only be putting 31 of those 32 bits into the | |
500 | final value due to the discarding of the top bit. In the | |
501 | case of a small float value where the number of mantissa | |
502 | bits is less than 32, discarding the top bit does not alter | |
503 | the number of bits we will be adding to the result. */ | |
504 | if (mant_bits == 32) | |
505 | mant_bits -= 1; | |
d16aafd8 AC |
506 | } |
507 | ||
508 | if (mant_bits < 32) | |
509 | { | |
510 | /* The bits we want are in the most significant MANT_BITS bits of | |
511 | mant_long. Move them to the least significant. */ | |
512 | mant_long >>= 32 - mant_bits; | |
513 | } | |
514 | ||
fcab3fb5 | 515 | put_field (uto, order, fmt->totalsize, |
d16aafd8 AC |
516 | mant_off, mant_bits, mant_long); |
517 | mant_off += mant_bits; | |
518 | mant_bits_left -= mant_bits; | |
519 | } | |
fcab3fb5 RE |
520 | |
521 | finalize_byteorder: | |
522 | /* Do we need to byte-swap the words in the result? */ | |
523 | if (order != fmt->byteorder) | |
0a3e99f6 | 524 | floatformat_normalize_byteorder (fmt, newto, to); |
d16aafd8 AC |
525 | } |
526 | ||
527 | /* Check if VAL (which is assumed to be a floating point number whose | |
528 | format is described by FMT) is negative. */ | |
529 | ||
530 | int | |
108d6ead AC |
531 | floatformat_is_negative (const struct floatformat *fmt, |
532 | const bfd_byte *uval) | |
d16aafd8 | 533 | { |
fcab3fb5 RE |
534 | enum floatformat_byteorders order; |
535 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
536 | ||
069e84fd | 537 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
538 | gdb_assert (fmt->totalsize |
539 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
540 | ||
541 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
542 | ||
543 | if (order != fmt->byteorder) | |
544 | uval = newfrom; | |
545 | ||
546 | return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1); | |
d16aafd8 AC |
547 | } |
548 | ||
549 | /* Check if VAL is "not a number" (NaN) for FMT. */ | |
550 | ||
20389057 DJ |
551 | enum float_kind |
552 | floatformat_classify (const struct floatformat *fmt, | |
553 | const bfd_byte *uval) | |
d16aafd8 | 554 | { |
d16aafd8 AC |
555 | long exponent; |
556 | unsigned long mant; | |
557 | unsigned int mant_bits, mant_off; | |
558 | int mant_bits_left; | |
fcab3fb5 RE |
559 | enum floatformat_byteorders order; |
560 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 561 | int mant_zero; |
fcab3fb5 | 562 | |
069e84fd | 563 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
564 | gdb_assert (fmt->totalsize |
565 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
566 | ||
567 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
568 | ||
569 | if (order != fmt->byteorder) | |
570 | uval = newfrom; | |
069e84fd | 571 | |
fcab3fb5 RE |
572 | exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start, |
573 | fmt->exp_len); | |
d16aafd8 | 574 | |
d16aafd8 AC |
575 | mant_bits_left = fmt->man_len; |
576 | mant_off = fmt->man_start; | |
577 | ||
20389057 | 578 | mant_zero = 1; |
d16aafd8 AC |
579 | while (mant_bits_left > 0) |
580 | { | |
581 | mant_bits = min (mant_bits_left, 32); | |
582 | ||
fcab3fb5 | 583 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
584 | |
585 | /* If there is an explicit integer bit, mask it off. */ | |
586 | if (mant_off == fmt->man_start | |
587 | && fmt->intbit == floatformat_intbit_yes) | |
588 | mant &= ~(1 << (mant_bits - 1)); | |
589 | ||
590 | if (mant) | |
20389057 DJ |
591 | { |
592 | mant_zero = 0; | |
593 | break; | |
594 | } | |
d16aafd8 AC |
595 | |
596 | mant_off += mant_bits; | |
597 | mant_bits_left -= mant_bits; | |
598 | } | |
599 | ||
20389057 DJ |
600 | /* If exp_nan is not set, assume that inf, NaN, and subnormals are not |
601 | supported. */ | |
602 | if (! fmt->exp_nan) | |
603 | { | |
604 | if (mant_zero) | |
605 | return float_zero; | |
606 | else | |
607 | return float_normal; | |
608 | } | |
609 | ||
610 | if (exponent == 0 && !mant_zero) | |
611 | return float_subnormal; | |
612 | ||
613 | if (exponent == fmt->exp_nan) | |
614 | { | |
615 | if (mant_zero) | |
616 | return float_infinite; | |
617 | else | |
618 | return float_nan; | |
619 | } | |
620 | ||
621 | if (mant_zero) | |
622 | return float_zero; | |
623 | ||
624 | return float_normal; | |
d16aafd8 AC |
625 | } |
626 | ||
627 | /* Convert the mantissa of VAL (which is assumed to be a floating | |
628 | point number whose format is described by FMT) into a hexadecimal | |
629 | and store it in a static string. Return a pointer to that string. */ | |
630 | ||
108d6ead AC |
631 | const char * |
632 | floatformat_mantissa (const struct floatformat *fmt, | |
633 | const bfd_byte *val) | |
d16aafd8 AC |
634 | { |
635 | unsigned char *uval = (unsigned char *) val; | |
636 | unsigned long mant; | |
637 | unsigned int mant_bits, mant_off; | |
638 | int mant_bits_left; | |
639 | static char res[50]; | |
640 | char buf[9]; | |
27df76f3 | 641 | int len; |
fcab3fb5 RE |
642 | enum floatformat_byteorders order; |
643 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
644 | ||
645 | gdb_assert (fmt != NULL); | |
646 | gdb_assert (fmt->totalsize | |
647 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
648 | ||
649 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
650 | ||
651 | if (order != fmt->byteorder) | |
652 | uval = newfrom; | |
653 | ||
654 | if (! fmt->exp_nan) | |
655 | return 0; | |
d16aafd8 AC |
656 | |
657 | /* Make sure we have enough room to store the mantissa. */ | |
658 | gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); | |
659 | ||
660 | mant_off = fmt->man_start; | |
661 | mant_bits_left = fmt->man_len; | |
662 | mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; | |
663 | ||
fcab3fb5 | 664 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 | 665 | |
27df76f3 | 666 | len = xsnprintf (res, sizeof res, "%lx", mant); |
d16aafd8 AC |
667 | |
668 | mant_off += mant_bits; | |
669 | mant_bits_left -= mant_bits; | |
27df76f3 | 670 | |
d16aafd8 AC |
671 | while (mant_bits_left > 0) |
672 | { | |
fcab3fb5 | 673 | mant = get_field (uval, order, fmt->totalsize, mant_off, 32); |
d16aafd8 | 674 | |
27df76f3 MK |
675 | xsnprintf (buf, sizeof buf, "%08lx", mant); |
676 | gdb_assert (len + strlen (buf) <= sizeof res); | |
d16aafd8 AC |
677 | strcat (res, buf); |
678 | ||
679 | mant_off += 32; | |
680 | mant_bits_left -= 32; | |
681 | } | |
682 | ||
683 | return res; | |
684 | } | |
685 | ||
d16aafd8 | 686 | \f |
c422e771 AC |
687 | /* Convert TO/FROM target to the hosts DOUBLEST floating-point format. |
688 | ||
689 | If the host and target formats agree, we just copy the raw data | |
690 | into the appropriate type of variable and return, letting the host | |
691 | increase precision as necessary. Otherwise, we call the conversion | |
692 | routine and let it do the dirty work. */ | |
693 | ||
c35f4ffc AC |
694 | static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT; |
695 | static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT; | |
696 | static const struct floatformat *host_long_double_format = GDB_HOST_LONG_DOUBLE_FORMAT; | |
c422e771 AC |
697 | |
698 | void | |
699 | floatformat_to_doublest (const struct floatformat *fmt, | |
700 | const void *in, DOUBLEST *out) | |
701 | { | |
702 | gdb_assert (fmt != NULL); | |
703 | if (fmt == host_float_format) | |
704 | { | |
705 | float val; | |
706 | memcpy (&val, in, sizeof (val)); | |
707 | *out = val; | |
708 | } | |
709 | else if (fmt == host_double_format) | |
710 | { | |
711 | double val; | |
712 | memcpy (&val, in, sizeof (val)); | |
713 | *out = val; | |
714 | } | |
715 | else if (fmt == host_long_double_format) | |
716 | { | |
717 | long double val; | |
718 | memcpy (&val, in, sizeof (val)); | |
719 | *out = val; | |
720 | } | |
721 | else | |
722 | convert_floatformat_to_doublest (fmt, in, out); | |
723 | } | |
724 | ||
725 | void | |
726 | floatformat_from_doublest (const struct floatformat *fmt, | |
727 | const DOUBLEST *in, void *out) | |
728 | { | |
729 | gdb_assert (fmt != NULL); | |
730 | if (fmt == host_float_format) | |
731 | { | |
732 | float val = *in; | |
733 | memcpy (out, &val, sizeof (val)); | |
734 | } | |
735 | else if (fmt == host_double_format) | |
736 | { | |
737 | double val = *in; | |
738 | memcpy (out, &val, sizeof (val)); | |
739 | } | |
740 | else if (fmt == host_long_double_format) | |
741 | { | |
742 | long double val = *in; | |
743 | memcpy (out, &val, sizeof (val)); | |
744 | } | |
745 | else | |
746 | convert_doublest_to_floatformat (fmt, in, out); | |
747 | } | |
d16aafd8 | 748 | |
c422e771 | 749 | \f |
87ffba60 | 750 | /* Return a floating-point format for a floating-point variable of |
47b3f456 AC |
751 | length LEN. If no suitable floating-point format is found, an |
752 | error is thrown. | |
d16aafd8 | 753 | |
87ffba60 MK |
754 | We need this functionality since information about the |
755 | floating-point format of a type is not always available to GDB; the | |
756 | debug information typically only tells us the size of a | |
757 | floating-point type. | |
758 | ||
759 | FIXME: kettenis/2001-10-28: In many places, particularly in | |
760 | target-dependent code, the format of floating-point types is known, | |
761 | but not passed on by GDB. This should be fixed. */ | |
762 | ||
b9362cc7 | 763 | static const struct floatformat * |
87ffba60 | 764 | floatformat_from_length (int len) |
d16aafd8 | 765 | { |
47b3f456 | 766 | const struct floatformat *format; |
ea06eb3d UW |
767 | if (len * TARGET_CHAR_BIT == gdbarch_float_bit (current_gdbarch)) |
768 | format = gdbarch_float_format (current_gdbarch) | |
769 | [gdbarch_byte_order (current_gdbarch)]; | |
770 | else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (current_gdbarch)) | |
771 | format = gdbarch_double_format (current_gdbarch) | |
772 | [gdbarch_byte_order (current_gdbarch)]; | |
773 | else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (current_gdbarch)) | |
774 | format = gdbarch_long_double_format (current_gdbarch) | |
775 | [gdbarch_byte_order (current_gdbarch)]; | |
ddbfdd06 PM |
776 | /* On i386 the 'long double' type takes 96 bits, |
777 | while the real number of used bits is only 80, | |
778 | both in processor and in memory. | |
779 | The code below accepts the real bit size. */ | |
ea06eb3d | 780 | else if ((gdbarch_long_double_format (current_gdbarch) != NULL) |
ddbfdd06 | 781 | && (len * TARGET_CHAR_BIT == |
ea06eb3d UW |
782 | gdbarch_long_double_format (current_gdbarch)[0]->totalsize)) |
783 | format = gdbarch_long_double_format (current_gdbarch) | |
784 | [gdbarch_byte_order (current_gdbarch)]; | |
47b3f456 AC |
785 | else |
786 | format = NULL; | |
787 | if (format == NULL) | |
8a3fe4f8 | 788 | error (_("Unrecognized %d-bit floating-point type."), |
9b0dea39 | 789 | len * TARGET_CHAR_BIT); |
47b3f456 | 790 | return format; |
87ffba60 MK |
791 | } |
792 | ||
c2f05ac9 AC |
793 | const struct floatformat * |
794 | floatformat_from_type (const struct type *type) | |
795 | { | |
796 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
797 | if (TYPE_FLOATFORMAT (type) != NULL) | |
0d20ae72 | 798 | return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (current_gdbarch)]; |
c2f05ac9 AC |
799 | else |
800 | return floatformat_from_length (TYPE_LENGTH (type)); | |
801 | } | |
802 | ||
87ffba60 MK |
803 | /* If the host doesn't define NAN, use zero instead. */ |
804 | #ifndef NAN | |
805 | #define NAN 0.0 | |
806 | #endif | |
807 | ||
808 | /* Extract a floating-point number of length LEN from a target-order | |
809 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
810 | ||
f1908289 AC |
811 | static DOUBLEST |
812 | extract_floating_by_length (const void *addr, int len) | |
87ffba60 MK |
813 | { |
814 | const struct floatformat *fmt = floatformat_from_length (len); | |
815 | DOUBLEST val; | |
816 | ||
87ffba60 MK |
817 | floatformat_to_doublest (fmt, addr, &val); |
818 | return val; | |
d16aafd8 AC |
819 | } |
820 | ||
f1908289 AC |
821 | DOUBLEST |
822 | deprecated_extract_floating (const void *addr, int len) | |
823 | { | |
824 | return extract_floating_by_length (addr, len); | |
825 | } | |
826 | ||
87ffba60 MK |
827 | /* Store VAL as a floating-point number of length LEN to a |
828 | target-order byte-stream at ADDR. */ | |
829 | ||
f1908289 AC |
830 | static void |
831 | store_floating_by_length (void *addr, int len, DOUBLEST val) | |
d16aafd8 | 832 | { |
87ffba60 MK |
833 | const struct floatformat *fmt = floatformat_from_length (len); |
834 | ||
87ffba60 | 835 | floatformat_from_doublest (fmt, &val, addr); |
d16aafd8 | 836 | } |
96d2f608 | 837 | |
f1908289 AC |
838 | void |
839 | deprecated_store_floating (void *addr, int len, DOUBLEST val) | |
840 | { | |
841 | store_floating_by_length (addr, len, val); | |
842 | } | |
843 | ||
87ffba60 MK |
844 | /* Extract a floating-point number of type TYPE from a target-order |
845 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
96d2f608 AC |
846 | |
847 | DOUBLEST | |
848 | extract_typed_floating (const void *addr, const struct type *type) | |
849 | { | |
850 | DOUBLEST retval; | |
87ffba60 | 851 | |
96d2f608 | 852 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
87ffba60 | 853 | |
96d2f608 | 854 | if (TYPE_FLOATFORMAT (type) == NULL) |
f1908289 AC |
855 | /* Not all code remembers to set the FLOATFORMAT (language |
856 | specific code? stabs?) so handle that here as a special case. */ | |
857 | return extract_floating_by_length (addr, TYPE_LENGTH (type)); | |
87ffba60 | 858 | |
0d20ae72 UW |
859 | floatformat_to_doublest |
860 | (TYPE_FLOATFORMAT (type)[gdbarch_byte_order (current_gdbarch)], | |
8da61cc4 | 861 | addr, &retval); |
96d2f608 AC |
862 | return retval; |
863 | } | |
864 | ||
87ffba60 MK |
865 | /* Store VAL as a floating-point number of type TYPE to a target-order |
866 | byte-stream at ADDR. */ | |
867 | ||
96d2f608 AC |
868 | void |
869 | store_typed_floating (void *addr, const struct type *type, DOUBLEST val) | |
870 | { | |
871 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); | |
87ffba60 MK |
872 | |
873 | /* FIXME: kettenis/2001-10-28: It is debatable whether we should | |
874 | zero out any remaining bytes in the target buffer when TYPE is | |
875 | longer than the actual underlying floating-point format. Perhaps | |
876 | we should store a fixed bitpattern in those remaining bytes, | |
877 | instead of zero, or perhaps we shouldn't touch those remaining | |
878 | bytes at all. | |
879 | ||
880 | NOTE: cagney/2001-10-28: With the way things currently work, it | |
881 | isn't a good idea to leave the end bits undefined. This is | |
882 | because GDB writes out the entire sizeof(<floating>) bits of the | |
883 | floating-point type even though the value might only be stored | |
884 | in, and the target processor may only refer to, the first N < | |
885 | TYPE_LENGTH (type) bits. If the end of the buffer wasn't | |
886 | initialized, GDB would write undefined data to the target. An | |
887 | errant program, refering to that undefined data, would then | |
43686d64 MK |
888 | become non-deterministic. |
889 | ||
890 | See also the function convert_typed_floating below. */ | |
96d2f608 | 891 | memset (addr, 0, TYPE_LENGTH (type)); |
87ffba60 | 892 | |
96d2f608 | 893 | if (TYPE_FLOATFORMAT (type) == NULL) |
f1908289 AC |
894 | /* Not all code remembers to set the FLOATFORMAT (language |
895 | specific code? stabs?) so handle that here as a special case. */ | |
896 | store_floating_by_length (addr, TYPE_LENGTH (type), val); | |
0b87a11d | 897 | else |
0d20ae72 UW |
898 | floatformat_from_doublest |
899 | (TYPE_FLOATFORMAT (type)[gdbarch_byte_order (current_gdbarch)], | |
900 | &val, addr); | |
96d2f608 | 901 | } |
43686d64 MK |
902 | |
903 | /* Convert a floating-point number of type FROM_TYPE from a | |
904 | target-order byte-stream at FROM to a floating-point number of type | |
905 | TO_TYPE, and store it to a target-order byte-stream at TO. */ | |
906 | ||
907 | void | |
908 | convert_typed_floating (const void *from, const struct type *from_type, | |
909 | void *to, const struct type *to_type) | |
910 | { | |
c2f05ac9 AC |
911 | const struct floatformat *from_fmt = floatformat_from_type (from_type); |
912 | const struct floatformat *to_fmt = floatformat_from_type (to_type); | |
43686d64 MK |
913 | |
914 | gdb_assert (TYPE_CODE (from_type) == TYPE_CODE_FLT); | |
915 | gdb_assert (TYPE_CODE (to_type) == TYPE_CODE_FLT); | |
916 | ||
43686d64 MK |
917 | if (from_fmt == NULL || to_fmt == NULL) |
918 | { | |
919 | /* If we don't know the floating-point format of FROM_TYPE or | |
920 | TO_TYPE, there's not much we can do. We might make the | |
921 | assumption that if the length of FROM_TYPE and TO_TYPE match, | |
922 | their floating-point format would match too, but that | |
923 | assumption might be wrong on targets that support | |
924 | floating-point types that only differ in endianness for | |
925 | example. So we warn instead, and zero out the target buffer. */ | |
8a3fe4f8 | 926 | warning (_("Can't convert floating-point number to desired type.")); |
43686d64 MK |
927 | memset (to, 0, TYPE_LENGTH (to_type)); |
928 | } | |
929 | else if (from_fmt == to_fmt) | |
930 | { | |
931 | /* We're in business. The floating-point format of FROM_TYPE | |
932 | and TO_TYPE match. However, even though the floating-point | |
933 | format matches, the length of the type might still be | |
934 | different. Make sure we don't overrun any buffers. See | |
935 | comment in store_typed_floating for a discussion about | |
936 | zeroing out remaining bytes in the target buffer. */ | |
937 | memset (to, 0, TYPE_LENGTH (to_type)); | |
938 | memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type))); | |
939 | } | |
940 | else | |
941 | { | |
942 | /* The floating-point types don't match. The best we can do | |
943 | (aport from simulating the target FPU) is converting to the | |
944 | widest floating-point type supported by the host, and then | |
945 | again to the desired type. */ | |
946 | DOUBLEST d; | |
947 | ||
948 | floatformat_to_doublest (from_fmt, from, &d); | |
949 | floatformat_from_doublest (to_fmt, &d, to); | |
950 | } | |
951 | } | |
5ef2d0aa AC |
952 | |
953 | const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN]; | |
954 | const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN]; | |
49c54768 | 955 | const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN]; |
5ef2d0aa AC |
956 | const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN]; |
957 | const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN]; | |
5ef2d0aa AC |
958 | |
959 | extern void _initialize_doublest (void); | |
960 | ||
961 | extern void | |
962 | _initialize_doublest (void) | |
963 | { | |
964 | floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little; | |
965 | floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big; | |
966 | floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little; | |
967 | floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big; | |
968 | floatformat_arm_ext[BFD_ENDIAN_LITTLE] = &floatformat_arm_ext_littlebyte_bigword; | |
969 | floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big; | |
970 | floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little; | |
971 | floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big; | |
49c54768 AC |
972 | floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little; |
973 | floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big; | |
5ef2d0aa | 974 | } |