Commit | Line | Data |
---|---|---|
d16aafd8 | 1 | /* Floating point routines for GDB, the GNU debugger. |
f1908289 | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
4c38e0a4 | 4 | 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007, 2008, 2009, 2010 |
0a3e99f6 | 5 | Free Software Foundation, Inc. |
d16aafd8 AC |
6 | |
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
d16aafd8 AC |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
d16aafd8 AC |
21 | |
22 | /* Support for converting target fp numbers into host DOUBLEST format. */ | |
23 | ||
24 | /* XXX - This code should really be in libiberty/floatformat.c, | |
25 | however configuration issues with libiberty made this very | |
26 | difficult to do in the available time. */ | |
27 | ||
28 | #include "defs.h" | |
29 | #include "doublest.h" | |
30 | #include "floatformat.h" | |
31 | #include "gdb_assert.h" | |
32 | #include "gdb_string.h" | |
96d2f608 | 33 | #include "gdbtypes.h" |
d16aafd8 AC |
34 | #include <math.h> /* ldexp */ |
35 | ||
36 | /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not | |
37 | going to bother with trying to muck around with whether it is defined in | |
38 | a system header, what we do if not, etc. */ | |
39 | #define FLOATFORMAT_CHAR_BIT 8 | |
40 | ||
fcab3fb5 RE |
41 | /* The number of bytes that the largest floating-point type that we |
42 | can convert to doublest will need. */ | |
43 | #define FLOATFORMAT_LARGEST_BYTES 16 | |
44 | ||
d16aafd8 AC |
45 | /* Extract a field which starts at START and is LEN bytes long. DATA and |
46 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
47 | static unsigned long | |
108d6ead | 48 | get_field (const bfd_byte *data, enum floatformat_byteorders order, |
d16aafd8 AC |
49 | unsigned int total_len, unsigned int start, unsigned int len) |
50 | { | |
51 | unsigned long result; | |
52 | unsigned int cur_byte; | |
53 | int cur_bitshift; | |
54 | ||
fcab3fb5 RE |
55 | /* Caller must byte-swap words before calling this routine. */ |
56 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
57 | ||
d16aafd8 | 58 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 59 | if (order == floatformat_little) |
d16aafd8 AC |
60 | { |
61 | /* We start counting from the other end (i.e, from the high bytes | |
62 | rather than the low bytes). As such, we need to be concerned | |
63 | with what happens if bit 0 doesn't start on a byte boundary. | |
64 | I.e, we need to properly handle the case where total_len is | |
65 | not evenly divisible by 8. So we compute ``excess'' which | |
66 | represents the number of bits from the end of our starting | |
67 | byte needed to get to bit 0. */ | |
68 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
9a619af0 | 69 | |
d16aafd8 AC |
70 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) |
71 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
72 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
73 | - FLOATFORMAT_CHAR_BIT; | |
74 | } | |
75 | else | |
76 | { | |
77 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
78 | cur_bitshift = | |
79 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
80 | } | |
81 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
82 | result = *(data + cur_byte) >> (-cur_bitshift); | |
83 | else | |
84 | result = 0; | |
85 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 86 | if (order == floatformat_little) |
d16aafd8 AC |
87 | ++cur_byte; |
88 | else | |
89 | --cur_byte; | |
90 | ||
91 | /* Move towards the most significant part of the field. */ | |
92 | while (cur_bitshift < len) | |
93 | { | |
94 | result |= (unsigned long)*(data + cur_byte) << cur_bitshift; | |
95 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
c35f4ffc AC |
96 | switch (order) |
97 | { | |
98 | case floatformat_little: | |
99 | ++cur_byte; | |
100 | break; | |
101 | case floatformat_big: | |
102 | --cur_byte; | |
103 | break; | |
c35f4ffc | 104 | } |
d16aafd8 AC |
105 | } |
106 | if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT) | |
107 | /* Mask out bits which are not part of the field */ | |
108 | result &= ((1UL << len) - 1); | |
109 | return result; | |
110 | } | |
111 | ||
0a3e99f6 MK |
112 | /* Normalize the byte order of FROM into TO. If no normalization is |
113 | needed then FMT->byteorder is returned and TO is not changed; | |
114 | otherwise the format of the normalized form in TO is returned. */ | |
115 | ||
fcab3fb5 RE |
116 | static enum floatformat_byteorders |
117 | floatformat_normalize_byteorder (const struct floatformat *fmt, | |
118 | const void *from, void *to) | |
119 | { | |
120 | const unsigned char *swapin; | |
121 | unsigned char *swapout; | |
122 | int words; | |
123 | ||
124 | if (fmt->byteorder == floatformat_little | |
125 | || fmt->byteorder == floatformat_big) | |
126 | return fmt->byteorder; | |
127 | ||
fcab3fb5 RE |
128 | words = fmt->totalsize / FLOATFORMAT_CHAR_BIT; |
129 | words >>= 2; | |
130 | ||
131 | swapout = (unsigned char *)to; | |
132 | swapin = (const unsigned char *)from; | |
133 | ||
0a3e99f6 MK |
134 | if (fmt->byteorder == floatformat_vax) |
135 | { | |
136 | while (words-- > 0) | |
137 | { | |
138 | *swapout++ = swapin[1]; | |
139 | *swapout++ = swapin[0]; | |
140 | *swapout++ = swapin[3]; | |
141 | *swapout++ = swapin[2]; | |
142 | swapin += 4; | |
143 | } | |
144 | /* This may look weird, since VAX is little-endian, but it is | |
145 | easier to translate to big-endian than to little-endian. */ | |
146 | return floatformat_big; | |
147 | } | |
148 | else | |
fcab3fb5 | 149 | { |
0a3e99f6 MK |
150 | gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword); |
151 | ||
152 | while (words-- > 0) | |
153 | { | |
154 | *swapout++ = swapin[3]; | |
155 | *swapout++ = swapin[2]; | |
156 | *swapout++ = swapin[1]; | |
157 | *swapout++ = swapin[0]; | |
158 | swapin += 4; | |
159 | } | |
160 | return floatformat_big; | |
fcab3fb5 | 161 | } |
fcab3fb5 RE |
162 | } |
163 | ||
d16aafd8 AC |
164 | /* Convert from FMT to a DOUBLEST. |
165 | FROM is the address of the extended float. | |
166 | Store the DOUBLEST in *TO. */ | |
167 | ||
c422e771 AC |
168 | static void |
169 | convert_floatformat_to_doublest (const struct floatformat *fmt, | |
170 | const void *from, | |
171 | DOUBLEST *to) | |
d16aafd8 AC |
172 | { |
173 | unsigned char *ufrom = (unsigned char *) from; | |
174 | DOUBLEST dto; | |
175 | long exponent; | |
176 | unsigned long mant; | |
177 | unsigned int mant_bits, mant_off; | |
178 | int mant_bits_left; | |
179 | int special_exponent; /* It's a NaN, denorm or zero */ | |
fcab3fb5 RE |
180 | enum floatformat_byteorders order; |
181 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 182 | enum float_kind kind; |
fcab3fb5 RE |
183 | |
184 | gdb_assert (fmt->totalsize | |
185 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
d16aafd8 | 186 | |
20389057 DJ |
187 | /* For non-numbers, reuse libiberty's logic to find the correct |
188 | format. We do not lose any precision in this case by passing | |
189 | through a double. */ | |
190 | kind = floatformat_classify (fmt, from); | |
191 | if (kind == float_infinite || kind == float_nan) | |
192 | { | |
193 | double dto; | |
9a619af0 | 194 | |
20389057 DJ |
195 | floatformat_to_double (fmt, from, &dto); |
196 | *to = (DOUBLEST) dto; | |
197 | return; | |
198 | } | |
199 | ||
fcab3fb5 | 200 | order = floatformat_normalize_byteorder (fmt, ufrom, newfrom); |
d16aafd8 | 201 | |
fcab3fb5 RE |
202 | if (order != fmt->byteorder) |
203 | ufrom = newfrom; | |
d16aafd8 | 204 | |
b14d30e1 JM |
205 | if (fmt->split_half) |
206 | { | |
542a88d0 | 207 | DOUBLEST dtop, dbot; |
9a619af0 | 208 | |
542a88d0 | 209 | floatformat_to_doublest (fmt->split_half, ufrom, &dtop); |
b14d30e1 JM |
210 | /* Preserve the sign of 0, which is the sign of the top |
211 | half. */ | |
212 | if (dtop == 0.0) | |
213 | { | |
542a88d0 | 214 | *to = dtop; |
b14d30e1 JM |
215 | return; |
216 | } | |
542a88d0 | 217 | floatformat_to_doublest (fmt->split_half, |
b14d30e1 JM |
218 | ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2, |
219 | &dbot); | |
542a88d0 | 220 | *to = dtop + dbot; |
b14d30e1 JM |
221 | return; |
222 | } | |
223 | ||
fcab3fb5 RE |
224 | exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start, |
225 | fmt->exp_len); | |
d16aafd8 AC |
226 | /* Note that if exponent indicates a NaN, we can't really do anything useful |
227 | (not knowing if the host has NaN's, or how to build one). So it will | |
228 | end up as an infinity or something close; that is OK. */ | |
229 | ||
230 | mant_bits_left = fmt->man_len; | |
231 | mant_off = fmt->man_start; | |
232 | dto = 0.0; | |
233 | ||
234 | special_exponent = exponent == 0 || exponent == fmt->exp_nan; | |
235 | ||
38c52d5a DJ |
236 | /* Don't bias NaNs. Use minimum exponent for denorms. For simplicity, |
237 | we don't check for zero as the exponent doesn't matter. Note the cast | |
238 | to int; exp_bias is unsigned, so it's important to make sure the | |
239 | operation is done in signed arithmetic. */ | |
d16aafd8 AC |
240 | if (!special_exponent) |
241 | exponent -= fmt->exp_bias; | |
242 | else if (exponent == 0) | |
1c704f11 | 243 | exponent = 1 - fmt->exp_bias; |
d16aafd8 AC |
244 | |
245 | /* Build the result algebraically. Might go infinite, underflow, etc; | |
246 | who cares. */ | |
247 | ||
248 | /* If this format uses a hidden bit, explicitly add it in now. Otherwise, | |
249 | increment the exponent by one to account for the integer bit. */ | |
250 | ||
251 | if (!special_exponent) | |
252 | { | |
253 | if (fmt->intbit == floatformat_intbit_no) | |
254 | dto = ldexp (1.0, exponent); | |
255 | else | |
256 | exponent++; | |
257 | } | |
258 | ||
259 | while (mant_bits_left > 0) | |
260 | { | |
261 | mant_bits = min (mant_bits_left, 32); | |
262 | ||
fcab3fb5 | 263 | mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
264 | |
265 | dto += ldexp ((double) mant, exponent - mant_bits); | |
266 | exponent -= mant_bits; | |
267 | mant_off += mant_bits; | |
268 | mant_bits_left -= mant_bits; | |
269 | } | |
270 | ||
271 | /* Negate it if negative. */ | |
fcab3fb5 | 272 | if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1)) |
d16aafd8 AC |
273 | dto = -dto; |
274 | *to = dto; | |
275 | } | |
276 | \f | |
277 | static void put_field (unsigned char *, enum floatformat_byteorders, | |
278 | unsigned int, | |
279 | unsigned int, unsigned int, unsigned long); | |
280 | ||
281 | /* Set a field which starts at START and is LEN bytes long. DATA and | |
282 | TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ | |
283 | static void | |
284 | put_field (unsigned char *data, enum floatformat_byteorders order, | |
285 | unsigned int total_len, unsigned int start, unsigned int len, | |
286 | unsigned long stuff_to_put) | |
287 | { | |
288 | unsigned int cur_byte; | |
289 | int cur_bitshift; | |
290 | ||
fcab3fb5 RE |
291 | /* Caller must byte-swap words before calling this routine. */ |
292 | gdb_assert (order == floatformat_little || order == floatformat_big); | |
293 | ||
d16aafd8 | 294 | /* Start at the least significant part of the field. */ |
fcab3fb5 | 295 | if (order == floatformat_little) |
d16aafd8 AC |
296 | { |
297 | int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT); | |
9a619af0 | 298 | |
d16aafd8 AC |
299 | cur_byte = (total_len / FLOATFORMAT_CHAR_BIT) |
300 | - ((start + len + excess) / FLOATFORMAT_CHAR_BIT); | |
301 | cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT) | |
302 | - FLOATFORMAT_CHAR_BIT; | |
303 | } | |
304 | else | |
305 | { | |
306 | cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT; | |
307 | cur_bitshift = | |
308 | ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT; | |
309 | } | |
310 | if (cur_bitshift > -FLOATFORMAT_CHAR_BIT) | |
311 | { | |
312 | *(data + cur_byte) &= | |
313 | ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1) | |
314 | << (-cur_bitshift)); | |
315 | *(data + cur_byte) |= | |
316 | (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift); | |
317 | } | |
318 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 319 | if (order == floatformat_little) |
d16aafd8 AC |
320 | ++cur_byte; |
321 | else | |
322 | --cur_byte; | |
323 | ||
324 | /* Move towards the most significant part of the field. */ | |
325 | while (cur_bitshift < len) | |
326 | { | |
327 | if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT) | |
328 | { | |
329 | /* This is the last byte. */ | |
330 | *(data + cur_byte) &= | |
331 | ~((1 << (len - cur_bitshift)) - 1); | |
332 | *(data + cur_byte) |= (stuff_to_put >> cur_bitshift); | |
333 | } | |
334 | else | |
335 | *(data + cur_byte) = ((stuff_to_put >> cur_bitshift) | |
336 | & ((1 << FLOATFORMAT_CHAR_BIT) - 1)); | |
337 | cur_bitshift += FLOATFORMAT_CHAR_BIT; | |
fcab3fb5 | 338 | if (order == floatformat_little) |
d16aafd8 AC |
339 | ++cur_byte; |
340 | else | |
341 | --cur_byte; | |
342 | } | |
343 | } | |
344 | ||
345 | #ifdef HAVE_LONG_DOUBLE | |
346 | /* Return the fractional part of VALUE, and put the exponent of VALUE in *EPTR. | |
347 | The range of the returned value is >= 0.5 and < 1.0. This is equivalent to | |
348 | frexp, but operates on the long double data type. */ | |
349 | ||
350 | static long double ldfrexp (long double value, int *eptr); | |
351 | ||
352 | static long double | |
353 | ldfrexp (long double value, int *eptr) | |
354 | { | |
355 | long double tmp; | |
356 | int exp; | |
357 | ||
358 | /* Unfortunately, there are no portable functions for extracting the exponent | |
359 | of a long double, so we have to do it iteratively by multiplying or dividing | |
360 | by two until the fraction is between 0.5 and 1.0. */ | |
361 | ||
362 | if (value < 0.0l) | |
363 | value = -value; | |
364 | ||
365 | tmp = 1.0l; | |
366 | exp = 0; | |
367 | ||
368 | if (value >= tmp) /* Value >= 1.0 */ | |
369 | while (value >= tmp) | |
370 | { | |
371 | tmp *= 2.0l; | |
372 | exp++; | |
373 | } | |
374 | else if (value != 0.0l) /* Value < 1.0 and > 0.0 */ | |
375 | { | |
376 | while (value < tmp) | |
377 | { | |
378 | tmp /= 2.0l; | |
379 | exp--; | |
380 | } | |
381 | tmp *= 2.0l; | |
382 | exp++; | |
383 | } | |
384 | ||
385 | *eptr = exp; | |
386 | return value / tmp; | |
387 | } | |
388 | #endif /* HAVE_LONG_DOUBLE */ | |
389 | ||
390 | ||
0a3e99f6 MK |
391 | /* The converse: convert the DOUBLEST *FROM to an extended float and |
392 | store where TO points. Neither FROM nor TO have any alignment | |
d16aafd8 AC |
393 | restrictions. */ |
394 | ||
c422e771 AC |
395 | static void |
396 | convert_doublest_to_floatformat (CONST struct floatformat *fmt, | |
0a3e99f6 | 397 | const DOUBLEST *from, void *to) |
d16aafd8 AC |
398 | { |
399 | DOUBLEST dfrom; | |
400 | int exponent; | |
401 | DOUBLEST mant; | |
402 | unsigned int mant_bits, mant_off; | |
403 | int mant_bits_left; | |
404 | unsigned char *uto = (unsigned char *) to; | |
fcab3fb5 | 405 | enum floatformat_byteorders order = fmt->byteorder; |
0a3e99f6 | 406 | unsigned char newto[FLOATFORMAT_LARGEST_BYTES]; |
fcab3fb5 | 407 | |
0a3e99f6 | 408 | if (order != floatformat_little) |
fcab3fb5 | 409 | order = floatformat_big; |
d16aafd8 | 410 | |
0a3e99f6 MK |
411 | if (order != fmt->byteorder) |
412 | uto = newto; | |
413 | ||
d16aafd8 AC |
414 | memcpy (&dfrom, from, sizeof (dfrom)); |
415 | memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1) | |
416 | / FLOATFORMAT_CHAR_BIT); | |
b14d30e1 JM |
417 | |
418 | if (fmt->split_half) | |
419 | { | |
420 | /* Use static volatile to ensure that any excess precision is | |
421 | removed via storing in memory, and so the top half really is | |
422 | the result of converting to double. */ | |
423 | static volatile double dtop, dbot; | |
542a88d0 | 424 | DOUBLEST dtopnv, dbotnv; |
9a619af0 | 425 | |
b14d30e1 JM |
426 | dtop = (double) dfrom; |
427 | /* If the rounded top half is Inf, the bottom must be 0 not NaN | |
428 | or Inf. */ | |
429 | if (dtop + dtop == dtop && dtop != 0.0) | |
430 | dbot = 0.0; | |
431 | else | |
432 | dbot = (double) (dfrom - (DOUBLEST) dtop); | |
433 | dtopnv = dtop; | |
434 | dbotnv = dbot; | |
542a88d0 LM |
435 | floatformat_from_doublest (fmt->split_half, &dtopnv, uto); |
436 | floatformat_from_doublest (fmt->split_half, &dbotnv, | |
b14d30e1 JM |
437 | (uto |
438 | + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2)); | |
439 | return; | |
440 | } | |
441 | ||
d16aafd8 AC |
442 | if (dfrom == 0) |
443 | return; /* Result is zero */ | |
444 | if (dfrom != dfrom) /* Result is NaN */ | |
445 | { | |
446 | /* From is NaN */ | |
fcab3fb5 | 447 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 AC |
448 | fmt->exp_len, fmt->exp_nan); |
449 | /* Be sure it's not infinity, but NaN value is irrel */ | |
fcab3fb5 | 450 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
d16aafd8 | 451 | 32, 1); |
fcab3fb5 | 452 | goto finalize_byteorder; |
d16aafd8 AC |
453 | } |
454 | ||
455 | /* If negative, set the sign bit. */ | |
456 | if (dfrom < 0) | |
457 | { | |
fcab3fb5 | 458 | put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1); |
d16aafd8 AC |
459 | dfrom = -dfrom; |
460 | } | |
461 | ||
462 | if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity */ | |
463 | { | |
464 | /* Infinity exponent is same as NaN's. */ | |
fcab3fb5 | 465 | put_field (uto, order, fmt->totalsize, fmt->exp_start, |
d16aafd8 AC |
466 | fmt->exp_len, fmt->exp_nan); |
467 | /* Infinity mantissa is all zeroes. */ | |
fcab3fb5 | 468 | put_field (uto, order, fmt->totalsize, fmt->man_start, |
d16aafd8 | 469 | fmt->man_len, 0); |
fcab3fb5 | 470 | goto finalize_byteorder; |
d16aafd8 AC |
471 | } |
472 | ||
473 | #ifdef HAVE_LONG_DOUBLE | |
474 | mant = ldfrexp (dfrom, &exponent); | |
475 | #else | |
476 | mant = frexp (dfrom, &exponent); | |
477 | #endif | |
478 | ||
fcab3fb5 | 479 | put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len, |
d16aafd8 AC |
480 | exponent + fmt->exp_bias - 1); |
481 | ||
482 | mant_bits_left = fmt->man_len; | |
483 | mant_off = fmt->man_start; | |
484 | while (mant_bits_left > 0) | |
485 | { | |
486 | unsigned long mant_long; | |
9a619af0 | 487 | |
d16aafd8 AC |
488 | mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; |
489 | ||
490 | mant *= 4294967296.0; | |
491 | mant_long = ((unsigned long) mant) & 0xffffffffL; | |
492 | mant -= mant_long; | |
493 | ||
494 | /* If the integer bit is implicit, then we need to discard it. | |
495 | If we are discarding a zero, we should be (but are not) creating | |
496 | a denormalized number which means adjusting the exponent | |
497 | (I think). */ | |
498 | if (mant_bits_left == fmt->man_len | |
499 | && fmt->intbit == floatformat_intbit_no) | |
500 | { | |
501 | mant_long <<= 1; | |
502 | mant_long &= 0xffffffffL; | |
06194148 JJ |
503 | /* If we are processing the top 32 mantissa bits of a doublest |
504 | so as to convert to a float value with implied integer bit, | |
505 | we will only be putting 31 of those 32 bits into the | |
506 | final value due to the discarding of the top bit. In the | |
507 | case of a small float value where the number of mantissa | |
508 | bits is less than 32, discarding the top bit does not alter | |
509 | the number of bits we will be adding to the result. */ | |
510 | if (mant_bits == 32) | |
511 | mant_bits -= 1; | |
d16aafd8 AC |
512 | } |
513 | ||
514 | if (mant_bits < 32) | |
515 | { | |
516 | /* The bits we want are in the most significant MANT_BITS bits of | |
517 | mant_long. Move them to the least significant. */ | |
518 | mant_long >>= 32 - mant_bits; | |
519 | } | |
520 | ||
fcab3fb5 | 521 | put_field (uto, order, fmt->totalsize, |
d16aafd8 AC |
522 | mant_off, mant_bits, mant_long); |
523 | mant_off += mant_bits; | |
524 | mant_bits_left -= mant_bits; | |
525 | } | |
fcab3fb5 RE |
526 | |
527 | finalize_byteorder: | |
528 | /* Do we need to byte-swap the words in the result? */ | |
529 | if (order != fmt->byteorder) | |
0a3e99f6 | 530 | floatformat_normalize_byteorder (fmt, newto, to); |
d16aafd8 AC |
531 | } |
532 | ||
533 | /* Check if VAL (which is assumed to be a floating point number whose | |
534 | format is described by FMT) is negative. */ | |
535 | ||
536 | int | |
108d6ead AC |
537 | floatformat_is_negative (const struct floatformat *fmt, |
538 | const bfd_byte *uval) | |
d16aafd8 | 539 | { |
fcab3fb5 RE |
540 | enum floatformat_byteorders order; |
541 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
542 | ||
069e84fd | 543 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
544 | gdb_assert (fmt->totalsize |
545 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
546 | ||
547 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
548 | ||
549 | if (order != fmt->byteorder) | |
550 | uval = newfrom; | |
551 | ||
552 | return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1); | |
d16aafd8 AC |
553 | } |
554 | ||
555 | /* Check if VAL is "not a number" (NaN) for FMT. */ | |
556 | ||
20389057 DJ |
557 | enum float_kind |
558 | floatformat_classify (const struct floatformat *fmt, | |
559 | const bfd_byte *uval) | |
d16aafd8 | 560 | { |
d16aafd8 AC |
561 | long exponent; |
562 | unsigned long mant; | |
563 | unsigned int mant_bits, mant_off; | |
564 | int mant_bits_left; | |
fcab3fb5 RE |
565 | enum floatformat_byteorders order; |
566 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
20389057 | 567 | int mant_zero; |
fcab3fb5 | 568 | |
069e84fd | 569 | gdb_assert (fmt != NULL); |
fcab3fb5 RE |
570 | gdb_assert (fmt->totalsize |
571 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
572 | ||
573 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
574 | ||
575 | if (order != fmt->byteorder) | |
576 | uval = newfrom; | |
069e84fd | 577 | |
fcab3fb5 RE |
578 | exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start, |
579 | fmt->exp_len); | |
d16aafd8 | 580 | |
d16aafd8 AC |
581 | mant_bits_left = fmt->man_len; |
582 | mant_off = fmt->man_start; | |
583 | ||
20389057 | 584 | mant_zero = 1; |
d16aafd8 AC |
585 | while (mant_bits_left > 0) |
586 | { | |
587 | mant_bits = min (mant_bits_left, 32); | |
588 | ||
fcab3fb5 | 589 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 AC |
590 | |
591 | /* If there is an explicit integer bit, mask it off. */ | |
592 | if (mant_off == fmt->man_start | |
593 | && fmt->intbit == floatformat_intbit_yes) | |
594 | mant &= ~(1 << (mant_bits - 1)); | |
595 | ||
596 | if (mant) | |
20389057 DJ |
597 | { |
598 | mant_zero = 0; | |
599 | break; | |
600 | } | |
d16aafd8 AC |
601 | |
602 | mant_off += mant_bits; | |
603 | mant_bits_left -= mant_bits; | |
604 | } | |
605 | ||
20389057 DJ |
606 | /* If exp_nan is not set, assume that inf, NaN, and subnormals are not |
607 | supported. */ | |
608 | if (! fmt->exp_nan) | |
609 | { | |
610 | if (mant_zero) | |
611 | return float_zero; | |
612 | else | |
613 | return float_normal; | |
614 | } | |
615 | ||
616 | if (exponent == 0 && !mant_zero) | |
617 | return float_subnormal; | |
618 | ||
619 | if (exponent == fmt->exp_nan) | |
620 | { | |
621 | if (mant_zero) | |
622 | return float_infinite; | |
623 | else | |
624 | return float_nan; | |
625 | } | |
626 | ||
627 | if (mant_zero) | |
628 | return float_zero; | |
629 | ||
630 | return float_normal; | |
d16aafd8 AC |
631 | } |
632 | ||
633 | /* Convert the mantissa of VAL (which is assumed to be a floating | |
634 | point number whose format is described by FMT) into a hexadecimal | |
635 | and store it in a static string. Return a pointer to that string. */ | |
636 | ||
108d6ead AC |
637 | const char * |
638 | floatformat_mantissa (const struct floatformat *fmt, | |
639 | const bfd_byte *val) | |
d16aafd8 AC |
640 | { |
641 | unsigned char *uval = (unsigned char *) val; | |
642 | unsigned long mant; | |
643 | unsigned int mant_bits, mant_off; | |
644 | int mant_bits_left; | |
645 | static char res[50]; | |
646 | char buf[9]; | |
27df76f3 | 647 | int len; |
fcab3fb5 RE |
648 | enum floatformat_byteorders order; |
649 | unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES]; | |
650 | ||
651 | gdb_assert (fmt != NULL); | |
652 | gdb_assert (fmt->totalsize | |
653 | <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT); | |
654 | ||
655 | order = floatformat_normalize_byteorder (fmt, uval, newfrom); | |
656 | ||
657 | if (order != fmt->byteorder) | |
658 | uval = newfrom; | |
659 | ||
660 | if (! fmt->exp_nan) | |
661 | return 0; | |
d16aafd8 AC |
662 | |
663 | /* Make sure we have enough room to store the mantissa. */ | |
664 | gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2); | |
665 | ||
666 | mant_off = fmt->man_start; | |
667 | mant_bits_left = fmt->man_len; | |
668 | mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32; | |
669 | ||
fcab3fb5 | 670 | mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits); |
d16aafd8 | 671 | |
27df76f3 | 672 | len = xsnprintf (res, sizeof res, "%lx", mant); |
d16aafd8 AC |
673 | |
674 | mant_off += mant_bits; | |
675 | mant_bits_left -= mant_bits; | |
27df76f3 | 676 | |
d16aafd8 AC |
677 | while (mant_bits_left > 0) |
678 | { | |
fcab3fb5 | 679 | mant = get_field (uval, order, fmt->totalsize, mant_off, 32); |
d16aafd8 | 680 | |
27df76f3 MK |
681 | xsnprintf (buf, sizeof buf, "%08lx", mant); |
682 | gdb_assert (len + strlen (buf) <= sizeof res); | |
d16aafd8 AC |
683 | strcat (res, buf); |
684 | ||
685 | mant_off += 32; | |
686 | mant_bits_left -= 32; | |
687 | } | |
688 | ||
689 | return res; | |
690 | } | |
691 | ||
d16aafd8 | 692 | \f |
c422e771 AC |
693 | /* Convert TO/FROM target to the hosts DOUBLEST floating-point format. |
694 | ||
695 | If the host and target formats agree, we just copy the raw data | |
696 | into the appropriate type of variable and return, letting the host | |
697 | increase precision as necessary. Otherwise, we call the conversion | |
698 | routine and let it do the dirty work. */ | |
699 | ||
c35f4ffc AC |
700 | static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT; |
701 | static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT; | |
702 | static const struct floatformat *host_long_double_format = GDB_HOST_LONG_DOUBLE_FORMAT; | |
c422e771 AC |
703 | |
704 | void | |
705 | floatformat_to_doublest (const struct floatformat *fmt, | |
706 | const void *in, DOUBLEST *out) | |
707 | { | |
708 | gdb_assert (fmt != NULL); | |
709 | if (fmt == host_float_format) | |
710 | { | |
711 | float val; | |
9a619af0 | 712 | |
c422e771 AC |
713 | memcpy (&val, in, sizeof (val)); |
714 | *out = val; | |
715 | } | |
716 | else if (fmt == host_double_format) | |
717 | { | |
718 | double val; | |
9a619af0 | 719 | |
c422e771 AC |
720 | memcpy (&val, in, sizeof (val)); |
721 | *out = val; | |
722 | } | |
723 | else if (fmt == host_long_double_format) | |
724 | { | |
725 | long double val; | |
9a619af0 | 726 | |
c422e771 AC |
727 | memcpy (&val, in, sizeof (val)); |
728 | *out = val; | |
729 | } | |
730 | else | |
731 | convert_floatformat_to_doublest (fmt, in, out); | |
732 | } | |
733 | ||
734 | void | |
735 | floatformat_from_doublest (const struct floatformat *fmt, | |
736 | const DOUBLEST *in, void *out) | |
737 | { | |
738 | gdb_assert (fmt != NULL); | |
739 | if (fmt == host_float_format) | |
740 | { | |
741 | float val = *in; | |
9a619af0 | 742 | |
c422e771 AC |
743 | memcpy (out, &val, sizeof (val)); |
744 | } | |
745 | else if (fmt == host_double_format) | |
746 | { | |
747 | double val = *in; | |
9a619af0 | 748 | |
c422e771 AC |
749 | memcpy (out, &val, sizeof (val)); |
750 | } | |
751 | else if (fmt == host_long_double_format) | |
752 | { | |
753 | long double val = *in; | |
9a619af0 | 754 | |
c422e771 AC |
755 | memcpy (out, &val, sizeof (val)); |
756 | } | |
757 | else | |
758 | convert_doublest_to_floatformat (fmt, in, out); | |
759 | } | |
d16aafd8 | 760 | |
c422e771 | 761 | \f |
87ffba60 | 762 | /* Return a floating-point format for a floating-point variable of |
47b3f456 AC |
763 | length LEN. If no suitable floating-point format is found, an |
764 | error is thrown. | |
d16aafd8 | 765 | |
87ffba60 MK |
766 | We need this functionality since information about the |
767 | floating-point format of a type is not always available to GDB; the | |
768 | debug information typically only tells us the size of a | |
769 | floating-point type. | |
770 | ||
771 | FIXME: kettenis/2001-10-28: In many places, particularly in | |
772 | target-dependent code, the format of floating-point types is known, | |
773 | but not passed on by GDB. This should be fixed. */ | |
774 | ||
b9362cc7 | 775 | static const struct floatformat * |
50810684 | 776 | floatformat_from_length (struct gdbarch *gdbarch, int len) |
d16aafd8 | 777 | { |
47b3f456 | 778 | const struct floatformat *format; |
9a619af0 | 779 | |
f9e9243a UW |
780 | if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch)) |
781 | format = gdbarch_half_format (gdbarch) | |
782 | [gdbarch_byte_order (gdbarch)]; | |
783 | else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch)) | |
50810684 UW |
784 | format = gdbarch_float_format (gdbarch) |
785 | [gdbarch_byte_order (gdbarch)]; | |
786 | else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch)) | |
787 | format = gdbarch_double_format (gdbarch) | |
788 | [gdbarch_byte_order (gdbarch)]; | |
789 | else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch)) | |
790 | format = gdbarch_long_double_format (gdbarch) | |
791 | [gdbarch_byte_order (gdbarch)]; | |
ddbfdd06 PM |
792 | /* On i386 the 'long double' type takes 96 bits, |
793 | while the real number of used bits is only 80, | |
794 | both in processor and in memory. | |
795 | The code below accepts the real bit size. */ | |
50810684 | 796 | else if ((gdbarch_long_double_format (gdbarch) != NULL) |
905e0470 PM |
797 | && (len * TARGET_CHAR_BIT |
798 | == gdbarch_long_double_format (gdbarch)[0]->totalsize)) | |
50810684 UW |
799 | format = gdbarch_long_double_format (gdbarch) |
800 | [gdbarch_byte_order (gdbarch)]; | |
47b3f456 AC |
801 | else |
802 | format = NULL; | |
803 | if (format == NULL) | |
8a3fe4f8 | 804 | error (_("Unrecognized %d-bit floating-point type."), |
9b0dea39 | 805 | len * TARGET_CHAR_BIT); |
47b3f456 | 806 | return format; |
87ffba60 MK |
807 | } |
808 | ||
c2f05ac9 AC |
809 | const struct floatformat * |
810 | floatformat_from_type (const struct type *type) | |
811 | { | |
50810684 | 812 | struct gdbarch *gdbarch = get_type_arch (type); |
9a619af0 | 813 | |
c2f05ac9 AC |
814 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
815 | if (TYPE_FLOATFORMAT (type) != NULL) | |
50810684 | 816 | return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)]; |
c2f05ac9 | 817 | else |
50810684 | 818 | return floatformat_from_length (gdbarch, TYPE_LENGTH (type)); |
c2f05ac9 AC |
819 | } |
820 | ||
87ffba60 MK |
821 | /* Extract a floating-point number of type TYPE from a target-order |
822 | byte-stream at ADDR. Returns the value as type DOUBLEST. */ | |
96d2f608 AC |
823 | |
824 | DOUBLEST | |
825 | extract_typed_floating (const void *addr, const struct type *type) | |
826 | { | |
e035e373 | 827 | const struct floatformat *fmt = floatformat_from_type (type); |
96d2f608 | 828 | DOUBLEST retval; |
87ffba60 | 829 | |
e035e373 | 830 | floatformat_to_doublest (fmt, addr, &retval); |
96d2f608 AC |
831 | return retval; |
832 | } | |
833 | ||
87ffba60 MK |
834 | /* Store VAL as a floating-point number of type TYPE to a target-order |
835 | byte-stream at ADDR. */ | |
836 | ||
96d2f608 AC |
837 | void |
838 | store_typed_floating (void *addr, const struct type *type, DOUBLEST val) | |
839 | { | |
e035e373 | 840 | const struct floatformat *fmt = floatformat_from_type (type); |
87ffba60 MK |
841 | |
842 | /* FIXME: kettenis/2001-10-28: It is debatable whether we should | |
843 | zero out any remaining bytes in the target buffer when TYPE is | |
844 | longer than the actual underlying floating-point format. Perhaps | |
845 | we should store a fixed bitpattern in those remaining bytes, | |
846 | instead of zero, or perhaps we shouldn't touch those remaining | |
847 | bytes at all. | |
848 | ||
849 | NOTE: cagney/2001-10-28: With the way things currently work, it | |
850 | isn't a good idea to leave the end bits undefined. This is | |
851 | because GDB writes out the entire sizeof(<floating>) bits of the | |
852 | floating-point type even though the value might only be stored | |
853 | in, and the target processor may only refer to, the first N < | |
854 | TYPE_LENGTH (type) bits. If the end of the buffer wasn't | |
855 | initialized, GDB would write undefined data to the target. An | |
856 | errant program, refering to that undefined data, would then | |
43686d64 MK |
857 | become non-deterministic. |
858 | ||
859 | See also the function convert_typed_floating below. */ | |
96d2f608 | 860 | memset (addr, 0, TYPE_LENGTH (type)); |
87ffba60 | 861 | |
e035e373 | 862 | floatformat_from_doublest (fmt, &val, addr); |
96d2f608 | 863 | } |
43686d64 MK |
864 | |
865 | /* Convert a floating-point number of type FROM_TYPE from a | |
866 | target-order byte-stream at FROM to a floating-point number of type | |
867 | TO_TYPE, and store it to a target-order byte-stream at TO. */ | |
868 | ||
869 | void | |
870 | convert_typed_floating (const void *from, const struct type *from_type, | |
871 | void *to, const struct type *to_type) | |
872 | { | |
c2f05ac9 AC |
873 | const struct floatformat *from_fmt = floatformat_from_type (from_type); |
874 | const struct floatformat *to_fmt = floatformat_from_type (to_type); | |
43686d64 | 875 | |
43686d64 MK |
876 | if (from_fmt == NULL || to_fmt == NULL) |
877 | { | |
878 | /* If we don't know the floating-point format of FROM_TYPE or | |
879 | TO_TYPE, there's not much we can do. We might make the | |
880 | assumption that if the length of FROM_TYPE and TO_TYPE match, | |
881 | their floating-point format would match too, but that | |
882 | assumption might be wrong on targets that support | |
883 | floating-point types that only differ in endianness for | |
884 | example. So we warn instead, and zero out the target buffer. */ | |
8a3fe4f8 | 885 | warning (_("Can't convert floating-point number to desired type.")); |
43686d64 MK |
886 | memset (to, 0, TYPE_LENGTH (to_type)); |
887 | } | |
888 | else if (from_fmt == to_fmt) | |
889 | { | |
890 | /* We're in business. The floating-point format of FROM_TYPE | |
891 | and TO_TYPE match. However, even though the floating-point | |
892 | format matches, the length of the type might still be | |
893 | different. Make sure we don't overrun any buffers. See | |
894 | comment in store_typed_floating for a discussion about | |
895 | zeroing out remaining bytes in the target buffer. */ | |
896 | memset (to, 0, TYPE_LENGTH (to_type)); | |
897 | memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type))); | |
898 | } | |
899 | else | |
900 | { | |
901 | /* The floating-point types don't match. The best we can do | |
938f5214 | 902 | (apart from simulating the target FPU) is converting to the |
43686d64 MK |
903 | widest floating-point type supported by the host, and then |
904 | again to the desired type. */ | |
905 | DOUBLEST d; | |
906 | ||
907 | floatformat_to_doublest (from_fmt, from, &d); | |
908 | floatformat_from_doublest (to_fmt, &d, to); | |
909 | } | |
910 | } | |
5ef2d0aa AC |
911 | |
912 | const struct floatformat *floatformat_ieee_single[BFD_ENDIAN_UNKNOWN]; | |
913 | const struct floatformat *floatformat_ieee_double[BFD_ENDIAN_UNKNOWN]; | |
49c54768 | 914 | const struct floatformat *floatformat_ieee_quad[BFD_ENDIAN_UNKNOWN]; |
5ef2d0aa AC |
915 | const struct floatformat *floatformat_arm_ext[BFD_ENDIAN_UNKNOWN]; |
916 | const struct floatformat *floatformat_ia64_spill[BFD_ENDIAN_UNKNOWN]; | |
5ef2d0aa AC |
917 | |
918 | extern void _initialize_doublest (void); | |
919 | ||
920 | extern void | |
921 | _initialize_doublest (void) | |
922 | { | |
923 | floatformat_ieee_single[BFD_ENDIAN_LITTLE] = &floatformat_ieee_single_little; | |
924 | floatformat_ieee_single[BFD_ENDIAN_BIG] = &floatformat_ieee_single_big; | |
925 | floatformat_ieee_double[BFD_ENDIAN_LITTLE] = &floatformat_ieee_double_little; | |
926 | floatformat_ieee_double[BFD_ENDIAN_BIG] = &floatformat_ieee_double_big; | |
927 | floatformat_arm_ext[BFD_ENDIAN_LITTLE] = &floatformat_arm_ext_littlebyte_bigword; | |
928 | floatformat_arm_ext[BFD_ENDIAN_BIG] = &floatformat_arm_ext_big; | |
929 | floatformat_ia64_spill[BFD_ENDIAN_LITTLE] = &floatformat_ia64_spill_little; | |
930 | floatformat_ia64_spill[BFD_ENDIAN_BIG] = &floatformat_ia64_spill_big; | |
49c54768 AC |
931 | floatformat_ieee_quad[BFD_ENDIAN_LITTLE] = &floatformat_ia64_quad_little; |
932 | floatformat_ieee_quad[BFD_ENDIAN_BIG] = &floatformat_ia64_quad_big; | |
5ef2d0aa | 933 | } |