import strstr and strerror modules
[deliverable/binutils-gdb.git] / gdb / doublest.c
CommitLineData
d16aafd8 1/* Floating point routines for GDB, the GNU debugger.
f1908289 2
28e7fd62 3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
d16aafd8
AC
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
d16aafd8
AC
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
d16aafd8
AC
19
20/* Support for converting target fp numbers into host DOUBLEST format. */
21
22/* XXX - This code should really be in libiberty/floatformat.c,
23 however configuration issues with libiberty made this very
24 difficult to do in the available time. */
25
26#include "defs.h"
27#include "doublest.h"
28#include "floatformat.h"
29#include "gdb_assert.h"
30#include "gdb_string.h"
96d2f608 31#include "gdbtypes.h"
d16aafd8
AC
32#include <math.h> /* ldexp */
33
34/* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
35 going to bother with trying to muck around with whether it is defined in
36 a system header, what we do if not, etc. */
37#define FLOATFORMAT_CHAR_BIT 8
38
fcab3fb5
RE
39/* The number of bytes that the largest floating-point type that we
40 can convert to doublest will need. */
41#define FLOATFORMAT_LARGEST_BYTES 16
42
d16aafd8
AC
43/* Extract a field which starts at START and is LEN bytes long. DATA and
44 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
45static unsigned long
108d6ead 46get_field (const bfd_byte *data, enum floatformat_byteorders order,
d16aafd8
AC
47 unsigned int total_len, unsigned int start, unsigned int len)
48{
49 unsigned long result;
50 unsigned int cur_byte;
51 int cur_bitshift;
52
fcab3fb5
RE
53 /* Caller must byte-swap words before calling this routine. */
54 gdb_assert (order == floatformat_little || order == floatformat_big);
55
d16aafd8 56 /* Start at the least significant part of the field. */
fcab3fb5 57 if (order == floatformat_little)
d16aafd8
AC
58 {
59 /* We start counting from the other end (i.e, from the high bytes
60 rather than the low bytes). As such, we need to be concerned
0963b4bd 61 with what happens if bit 0 doesn't start on a byte boundary.
d16aafd8
AC
62 I.e, we need to properly handle the case where total_len is
63 not evenly divisible by 8. So we compute ``excess'' which
64 represents the number of bits from the end of our starting
0963b4bd 65 byte needed to get to bit 0. */
d16aafd8 66 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
9a619af0 67
d16aafd8
AC
68 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
69 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
70 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
71 - FLOATFORMAT_CHAR_BIT;
72 }
73 else
74 {
75 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
76 cur_bitshift =
77 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
78 }
79 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
80 result = *(data + cur_byte) >> (-cur_bitshift);
81 else
82 result = 0;
83 cur_bitshift += FLOATFORMAT_CHAR_BIT;
fcab3fb5 84 if (order == floatformat_little)
d16aafd8
AC
85 ++cur_byte;
86 else
87 --cur_byte;
88
89 /* Move towards the most significant part of the field. */
90 while (cur_bitshift < len)
91 {
92 result |= (unsigned long)*(data + cur_byte) << cur_bitshift;
93 cur_bitshift += FLOATFORMAT_CHAR_BIT;
c35f4ffc
AC
94 switch (order)
95 {
96 case floatformat_little:
97 ++cur_byte;
98 break;
99 case floatformat_big:
100 --cur_byte;
101 break;
c35f4ffc 102 }
d16aafd8
AC
103 }
104 if (len < sizeof(result) * FLOATFORMAT_CHAR_BIT)
0963b4bd 105 /* Mask out bits which are not part of the field. */
d16aafd8
AC
106 result &= ((1UL << len) - 1);
107 return result;
108}
109
0a3e99f6
MK
110/* Normalize the byte order of FROM into TO. If no normalization is
111 needed then FMT->byteorder is returned and TO is not changed;
112 otherwise the format of the normalized form in TO is returned. */
113
fcab3fb5
RE
114static enum floatformat_byteorders
115floatformat_normalize_byteorder (const struct floatformat *fmt,
116 const void *from, void *to)
117{
118 const unsigned char *swapin;
119 unsigned char *swapout;
120 int words;
121
122 if (fmt->byteorder == floatformat_little
123 || fmt->byteorder == floatformat_big)
124 return fmt->byteorder;
125
fcab3fb5
RE
126 words = fmt->totalsize / FLOATFORMAT_CHAR_BIT;
127 words >>= 2;
128
129 swapout = (unsigned char *)to;
130 swapin = (const unsigned char *)from;
131
0a3e99f6
MK
132 if (fmt->byteorder == floatformat_vax)
133 {
134 while (words-- > 0)
135 {
136 *swapout++ = swapin[1];
137 *swapout++ = swapin[0];
138 *swapout++ = swapin[3];
139 *swapout++ = swapin[2];
140 swapin += 4;
141 }
142 /* This may look weird, since VAX is little-endian, but it is
143 easier to translate to big-endian than to little-endian. */
144 return floatformat_big;
145 }
146 else
fcab3fb5 147 {
0a3e99f6
MK
148 gdb_assert (fmt->byteorder == floatformat_littlebyte_bigword);
149
150 while (words-- > 0)
151 {
152 *swapout++ = swapin[3];
153 *swapout++ = swapin[2];
154 *swapout++ = swapin[1];
155 *swapout++ = swapin[0];
156 swapin += 4;
157 }
158 return floatformat_big;
fcab3fb5 159 }
fcab3fb5
RE
160}
161
d16aafd8
AC
162/* Convert from FMT to a DOUBLEST.
163 FROM is the address of the extended float.
164 Store the DOUBLEST in *TO. */
165
c422e771
AC
166static void
167convert_floatformat_to_doublest (const struct floatformat *fmt,
168 const void *from,
169 DOUBLEST *to)
d16aafd8
AC
170{
171 unsigned char *ufrom = (unsigned char *) from;
172 DOUBLEST dto;
173 long exponent;
174 unsigned long mant;
175 unsigned int mant_bits, mant_off;
176 int mant_bits_left;
0963b4bd 177 int special_exponent; /* It's a NaN, denorm or zero. */
fcab3fb5
RE
178 enum floatformat_byteorders order;
179 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
20389057 180 enum float_kind kind;
fcab3fb5
RE
181
182 gdb_assert (fmt->totalsize
183 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
d16aafd8 184
20389057
DJ
185 /* For non-numbers, reuse libiberty's logic to find the correct
186 format. We do not lose any precision in this case by passing
187 through a double. */
188 kind = floatformat_classify (fmt, from);
189 if (kind == float_infinite || kind == float_nan)
190 {
191 double dto;
9a619af0 192
f5aee5ee
AM
193 floatformat_to_double (fmt->split_half ? fmt->split_half : fmt,
194 from, &dto);
20389057
DJ
195 *to = (DOUBLEST) dto;
196 return;
197 }
198
fcab3fb5 199 order = floatformat_normalize_byteorder (fmt, ufrom, newfrom);
d16aafd8 200
fcab3fb5
RE
201 if (order != fmt->byteorder)
202 ufrom = newfrom;
d16aafd8 203
b14d30e1
JM
204 if (fmt->split_half)
205 {
542a88d0 206 DOUBLEST dtop, dbot;
9a619af0 207
542a88d0 208 floatformat_to_doublest (fmt->split_half, ufrom, &dtop);
b14d30e1
JM
209 /* Preserve the sign of 0, which is the sign of the top
210 half. */
211 if (dtop == 0.0)
212 {
542a88d0 213 *to = dtop;
b14d30e1
JM
214 return;
215 }
542a88d0 216 floatformat_to_doublest (fmt->split_half,
b14d30e1
JM
217 ufrom + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2,
218 &dbot);
542a88d0 219 *to = dtop + dbot;
b14d30e1
JM
220 return;
221 }
222
fcab3fb5
RE
223 exponent = get_field (ufrom, order, fmt->totalsize, fmt->exp_start,
224 fmt->exp_len);
d16aafd8
AC
225 /* Note that if exponent indicates a NaN, we can't really do anything useful
226 (not knowing if the host has NaN's, or how to build one). So it will
227 end up as an infinity or something close; that is OK. */
228
229 mant_bits_left = fmt->man_len;
230 mant_off = fmt->man_start;
231 dto = 0.0;
232
233 special_exponent = exponent == 0 || exponent == fmt->exp_nan;
234
0963b4bd
MS
235 /* Don't bias NaNs. Use minimum exponent for denorms. For
236 simplicity, we don't check for zero as the exponent doesn't matter.
237 Note the cast to int; exp_bias is unsigned, so it's important to
238 make sure the operation is done in signed arithmetic. */
d16aafd8
AC
239 if (!special_exponent)
240 exponent -= fmt->exp_bias;
241 else if (exponent == 0)
1c704f11 242 exponent = 1 - fmt->exp_bias;
d16aafd8
AC
243
244 /* Build the result algebraically. Might go infinite, underflow, etc;
0963b4bd 245 who cares. */
d16aafd8
AC
246
247/* If this format uses a hidden bit, explicitly add it in now. Otherwise,
248 increment the exponent by one to account for the integer bit. */
249
250 if (!special_exponent)
251 {
252 if (fmt->intbit == floatformat_intbit_no)
253 dto = ldexp (1.0, exponent);
254 else
255 exponent++;
256 }
257
258 while (mant_bits_left > 0)
259 {
260 mant_bits = min (mant_bits_left, 32);
261
fcab3fb5 262 mant = get_field (ufrom, order, fmt->totalsize, mant_off, mant_bits);
d16aafd8
AC
263
264 dto += ldexp ((double) mant, exponent - mant_bits);
265 exponent -= mant_bits;
266 mant_off += mant_bits;
267 mant_bits_left -= mant_bits;
268 }
269
270 /* Negate it if negative. */
fcab3fb5 271 if (get_field (ufrom, order, fmt->totalsize, fmt->sign_start, 1))
d16aafd8
AC
272 dto = -dto;
273 *to = dto;
274}
275\f
d16aafd8
AC
276/* Set a field which starts at START and is LEN bytes long. DATA and
277 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */
278static void
279put_field (unsigned char *data, enum floatformat_byteorders order,
280 unsigned int total_len, unsigned int start, unsigned int len,
281 unsigned long stuff_to_put)
282{
283 unsigned int cur_byte;
284 int cur_bitshift;
285
fcab3fb5
RE
286 /* Caller must byte-swap words before calling this routine. */
287 gdb_assert (order == floatformat_little || order == floatformat_big);
288
d16aafd8 289 /* Start at the least significant part of the field. */
fcab3fb5 290 if (order == floatformat_little)
d16aafd8
AC
291 {
292 int excess = FLOATFORMAT_CHAR_BIT - (total_len % FLOATFORMAT_CHAR_BIT);
9a619af0 293
d16aafd8
AC
294 cur_byte = (total_len / FLOATFORMAT_CHAR_BIT)
295 - ((start + len + excess) / FLOATFORMAT_CHAR_BIT);
296 cur_bitshift = ((start + len + excess) % FLOATFORMAT_CHAR_BIT)
297 - FLOATFORMAT_CHAR_BIT;
298 }
299 else
300 {
301 cur_byte = (start + len) / FLOATFORMAT_CHAR_BIT;
302 cur_bitshift =
303 ((start + len) % FLOATFORMAT_CHAR_BIT) - FLOATFORMAT_CHAR_BIT;
304 }
305 if (cur_bitshift > -FLOATFORMAT_CHAR_BIT)
306 {
307 *(data + cur_byte) &=
308 ~(((1 << ((start + len) % FLOATFORMAT_CHAR_BIT)) - 1)
309 << (-cur_bitshift));
310 *(data + cur_byte) |=
311 (stuff_to_put & ((1 << FLOATFORMAT_CHAR_BIT) - 1)) << (-cur_bitshift);
312 }
313 cur_bitshift += FLOATFORMAT_CHAR_BIT;
fcab3fb5 314 if (order == floatformat_little)
d16aafd8
AC
315 ++cur_byte;
316 else
317 --cur_byte;
318
319 /* Move towards the most significant part of the field. */
320 while (cur_bitshift < len)
321 {
322 if (len - cur_bitshift < FLOATFORMAT_CHAR_BIT)
323 {
324 /* This is the last byte. */
325 *(data + cur_byte) &=
326 ~((1 << (len - cur_bitshift)) - 1);
327 *(data + cur_byte) |= (stuff_to_put >> cur_bitshift);
328 }
329 else
330 *(data + cur_byte) = ((stuff_to_put >> cur_bitshift)
331 & ((1 << FLOATFORMAT_CHAR_BIT) - 1));
332 cur_bitshift += FLOATFORMAT_CHAR_BIT;
fcab3fb5 333 if (order == floatformat_little)
d16aafd8
AC
334 ++cur_byte;
335 else
336 --cur_byte;
337 }
338}
339
0a3e99f6
MK
340/* The converse: convert the DOUBLEST *FROM to an extended float and
341 store where TO points. Neither FROM nor TO have any alignment
d16aafd8
AC
342 restrictions. */
343
c422e771
AC
344static void
345convert_doublest_to_floatformat (CONST struct floatformat *fmt,
0a3e99f6 346 const DOUBLEST *from, void *to)
d16aafd8
AC
347{
348 DOUBLEST dfrom;
349 int exponent;
350 DOUBLEST mant;
351 unsigned int mant_bits, mant_off;
352 int mant_bits_left;
353 unsigned char *uto = (unsigned char *) to;
fcab3fb5 354 enum floatformat_byteorders order = fmt->byteorder;
0a3e99f6 355 unsigned char newto[FLOATFORMAT_LARGEST_BYTES];
fcab3fb5 356
0a3e99f6 357 if (order != floatformat_little)
fcab3fb5 358 order = floatformat_big;
d16aafd8 359
0a3e99f6
MK
360 if (order != fmt->byteorder)
361 uto = newto;
362
d16aafd8
AC
363 memcpy (&dfrom, from, sizeof (dfrom));
364 memset (uto, 0, (fmt->totalsize + FLOATFORMAT_CHAR_BIT - 1)
365 / FLOATFORMAT_CHAR_BIT);
b14d30e1
JM
366
367 if (fmt->split_half)
368 {
369 /* Use static volatile to ensure that any excess precision is
370 removed via storing in memory, and so the top half really is
371 the result of converting to double. */
372 static volatile double dtop, dbot;
542a88d0 373 DOUBLEST dtopnv, dbotnv;
9a619af0 374
b14d30e1
JM
375 dtop = (double) dfrom;
376 /* If the rounded top half is Inf, the bottom must be 0 not NaN
377 or Inf. */
378 if (dtop + dtop == dtop && dtop != 0.0)
379 dbot = 0.0;
380 else
381 dbot = (double) (dfrom - (DOUBLEST) dtop);
382 dtopnv = dtop;
383 dbotnv = dbot;
542a88d0
LM
384 floatformat_from_doublest (fmt->split_half, &dtopnv, uto);
385 floatformat_from_doublest (fmt->split_half, &dbotnv,
b14d30e1
JM
386 (uto
387 + fmt->totalsize / FLOATFORMAT_CHAR_BIT / 2));
388 return;
389 }
390
d16aafd8
AC
391 if (dfrom == 0)
392 return; /* Result is zero */
393 if (dfrom != dfrom) /* Result is NaN */
394 {
395 /* From is NaN */
fcab3fb5 396 put_field (uto, order, fmt->totalsize, fmt->exp_start,
d16aafd8 397 fmt->exp_len, fmt->exp_nan);
0963b4bd 398 /* Be sure it's not infinity, but NaN value is irrel. */
fcab3fb5 399 put_field (uto, order, fmt->totalsize, fmt->man_start,
fbe12357 400 fmt->man_len, 1);
fcab3fb5 401 goto finalize_byteorder;
d16aafd8
AC
402 }
403
404 /* If negative, set the sign bit. */
405 if (dfrom < 0)
406 {
fcab3fb5 407 put_field (uto, order, fmt->totalsize, fmt->sign_start, 1, 1);
d16aafd8
AC
408 dfrom = -dfrom;
409 }
410
0963b4bd 411 if (dfrom + dfrom == dfrom && dfrom != 0.0) /* Result is Infinity. */
d16aafd8
AC
412 {
413 /* Infinity exponent is same as NaN's. */
fcab3fb5 414 put_field (uto, order, fmt->totalsize, fmt->exp_start,
d16aafd8
AC
415 fmt->exp_len, fmt->exp_nan);
416 /* Infinity mantissa is all zeroes. */
fcab3fb5 417 put_field (uto, order, fmt->totalsize, fmt->man_start,
d16aafd8 418 fmt->man_len, 0);
fcab3fb5 419 goto finalize_byteorder;
d16aafd8
AC
420 }
421
422#ifdef HAVE_LONG_DOUBLE
85d3b769 423 mant = frexpl (dfrom, &exponent);
d16aafd8
AC
424#else
425 mant = frexp (dfrom, &exponent);
426#endif
427
33d7655b
JB
428 if (exponent + fmt->exp_bias <= 0)
429 {
430 /* The value is too small to be expressed in the destination
431 type (not enough bits in the exponent. Treat as 0. */
432 put_field (uto, order, fmt->totalsize, fmt->exp_start,
433 fmt->exp_len, 0);
434 put_field (uto, order, fmt->totalsize, fmt->man_start,
435 fmt->man_len, 0);
436 goto finalize_byteorder;
437 }
438
32560274 439 if (exponent + fmt->exp_bias >= (1 << fmt->exp_len))
33d7655b
JB
440 {
441 /* The value is too large to fit into the destination.
442 Treat as infinity. */
443 put_field (uto, order, fmt->totalsize, fmt->exp_start,
444 fmt->exp_len, fmt->exp_nan);
445 put_field (uto, order, fmt->totalsize, fmt->man_start,
446 fmt->man_len, 0);
447 goto finalize_byteorder;
448 }
449
fcab3fb5 450 put_field (uto, order, fmt->totalsize, fmt->exp_start, fmt->exp_len,
d16aafd8
AC
451 exponent + fmt->exp_bias - 1);
452
453 mant_bits_left = fmt->man_len;
454 mant_off = fmt->man_start;
455 while (mant_bits_left > 0)
456 {
457 unsigned long mant_long;
9a619af0 458
d16aafd8
AC
459 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
460
461 mant *= 4294967296.0;
462 mant_long = ((unsigned long) mant) & 0xffffffffL;
463 mant -= mant_long;
464
465 /* If the integer bit is implicit, then we need to discard it.
466 If we are discarding a zero, we should be (but are not) creating
467 a denormalized number which means adjusting the exponent
468 (I think). */
469 if (mant_bits_left == fmt->man_len
470 && fmt->intbit == floatformat_intbit_no)
471 {
472 mant_long <<= 1;
473 mant_long &= 0xffffffffL;
06194148
JJ
474 /* If we are processing the top 32 mantissa bits of a doublest
475 so as to convert to a float value with implied integer bit,
476 we will only be putting 31 of those 32 bits into the
477 final value due to the discarding of the top bit. In the
478 case of a small float value where the number of mantissa
479 bits is less than 32, discarding the top bit does not alter
480 the number of bits we will be adding to the result. */
481 if (mant_bits == 32)
482 mant_bits -= 1;
d16aafd8
AC
483 }
484
485 if (mant_bits < 32)
486 {
487 /* The bits we want are in the most significant MANT_BITS bits of
488 mant_long. Move them to the least significant. */
489 mant_long >>= 32 - mant_bits;
490 }
491
fcab3fb5 492 put_field (uto, order, fmt->totalsize,
d16aafd8
AC
493 mant_off, mant_bits, mant_long);
494 mant_off += mant_bits;
495 mant_bits_left -= mant_bits;
496 }
fcab3fb5
RE
497
498 finalize_byteorder:
499 /* Do we need to byte-swap the words in the result? */
500 if (order != fmt->byteorder)
0a3e99f6 501 floatformat_normalize_byteorder (fmt, newto, to);
d16aafd8
AC
502}
503
504/* Check if VAL (which is assumed to be a floating point number whose
505 format is described by FMT) is negative. */
506
507int
108d6ead
AC
508floatformat_is_negative (const struct floatformat *fmt,
509 const bfd_byte *uval)
d16aafd8 510{
fcab3fb5
RE
511 enum floatformat_byteorders order;
512 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
513
069e84fd 514 gdb_assert (fmt != NULL);
fcab3fb5
RE
515 gdb_assert (fmt->totalsize
516 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
517
f5aee5ee
AM
518 /* An IBM long double (a two element array of double) always takes the
519 sign of the first double. */
520 if (fmt->split_half)
521 fmt = fmt->split_half;
522
fcab3fb5
RE
523 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
524
525 if (order != fmt->byteorder)
526 uval = newfrom;
527
528 return get_field (uval, order, fmt->totalsize, fmt->sign_start, 1);
d16aafd8
AC
529}
530
531/* Check if VAL is "not a number" (NaN) for FMT. */
532
20389057
DJ
533enum float_kind
534floatformat_classify (const struct floatformat *fmt,
535 const bfd_byte *uval)
d16aafd8 536{
d16aafd8
AC
537 long exponent;
538 unsigned long mant;
539 unsigned int mant_bits, mant_off;
540 int mant_bits_left;
fcab3fb5
RE
541 enum floatformat_byteorders order;
542 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
20389057 543 int mant_zero;
fcab3fb5 544
069e84fd 545 gdb_assert (fmt != NULL);
fcab3fb5
RE
546 gdb_assert (fmt->totalsize
547 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
548
f5aee5ee
AM
549 /* An IBM long double (a two element array of double) can be classified
550 by looking at the first double. inf and nan are specified as
551 ignoring the second double. zero and subnormal will always have
552 the second double 0.0 if the long double is correctly rounded. */
553 if (fmt->split_half)
554 fmt = fmt->split_half;
555
fcab3fb5
RE
556 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
557
558 if (order != fmt->byteorder)
559 uval = newfrom;
069e84fd 560
fcab3fb5
RE
561 exponent = get_field (uval, order, fmt->totalsize, fmt->exp_start,
562 fmt->exp_len);
d16aafd8 563
d16aafd8
AC
564 mant_bits_left = fmt->man_len;
565 mant_off = fmt->man_start;
566
20389057 567 mant_zero = 1;
d16aafd8
AC
568 while (mant_bits_left > 0)
569 {
570 mant_bits = min (mant_bits_left, 32);
571
fcab3fb5 572 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
d16aafd8
AC
573
574 /* If there is an explicit integer bit, mask it off. */
575 if (mant_off == fmt->man_start
576 && fmt->intbit == floatformat_intbit_yes)
577 mant &= ~(1 << (mant_bits - 1));
578
579 if (mant)
20389057
DJ
580 {
581 mant_zero = 0;
582 break;
583 }
d16aafd8
AC
584
585 mant_off += mant_bits;
586 mant_bits_left -= mant_bits;
587 }
588
20389057
DJ
589 /* If exp_nan is not set, assume that inf, NaN, and subnormals are not
590 supported. */
591 if (! fmt->exp_nan)
592 {
593 if (mant_zero)
594 return float_zero;
595 else
596 return float_normal;
597 }
598
599 if (exponent == 0 && !mant_zero)
600 return float_subnormal;
601
602 if (exponent == fmt->exp_nan)
603 {
604 if (mant_zero)
605 return float_infinite;
606 else
607 return float_nan;
608 }
609
610 if (mant_zero)
611 return float_zero;
612
613 return float_normal;
d16aafd8
AC
614}
615
616/* Convert the mantissa of VAL (which is assumed to be a floating
617 point number whose format is described by FMT) into a hexadecimal
618 and store it in a static string. Return a pointer to that string. */
619
108d6ead
AC
620const char *
621floatformat_mantissa (const struct floatformat *fmt,
622 const bfd_byte *val)
d16aafd8
AC
623{
624 unsigned char *uval = (unsigned char *) val;
625 unsigned long mant;
626 unsigned int mant_bits, mant_off;
627 int mant_bits_left;
628 static char res[50];
629 char buf[9];
27df76f3 630 int len;
fcab3fb5
RE
631 enum floatformat_byteorders order;
632 unsigned char newfrom[FLOATFORMAT_LARGEST_BYTES];
633
634 gdb_assert (fmt != NULL);
635 gdb_assert (fmt->totalsize
636 <= FLOATFORMAT_LARGEST_BYTES * FLOATFORMAT_CHAR_BIT);
637
f5aee5ee
AM
638 /* For IBM long double (a two element array of double), return the
639 mantissa of the first double. The problem with returning the
640 actual mantissa from both doubles is that there can be an
641 arbitrary number of implied 0's or 1's between the mantissas
642 of the first and second double. In any case, this function
643 is only used for dumping out nans, and a nan is specified to
644 ignore the value in the second double. */
645 if (fmt->split_half)
646 fmt = fmt->split_half;
647
fcab3fb5
RE
648 order = floatformat_normalize_byteorder (fmt, uval, newfrom);
649
650 if (order != fmt->byteorder)
651 uval = newfrom;
652
653 if (! fmt->exp_nan)
654 return 0;
d16aafd8
AC
655
656 /* Make sure we have enough room to store the mantissa. */
657 gdb_assert (sizeof res > ((fmt->man_len + 7) / 8) * 2);
658
659 mant_off = fmt->man_start;
660 mant_bits_left = fmt->man_len;
661 mant_bits = (mant_bits_left % 32) > 0 ? mant_bits_left % 32 : 32;
662
fcab3fb5 663 mant = get_field (uval, order, fmt->totalsize, mant_off, mant_bits);
d16aafd8 664
27df76f3 665 len = xsnprintf (res, sizeof res, "%lx", mant);
d16aafd8
AC
666
667 mant_off += mant_bits;
668 mant_bits_left -= mant_bits;
27df76f3 669
d16aafd8
AC
670 while (mant_bits_left > 0)
671 {
fcab3fb5 672 mant = get_field (uval, order, fmt->totalsize, mant_off, 32);
d16aafd8 673
27df76f3
MK
674 xsnprintf (buf, sizeof buf, "%08lx", mant);
675 gdb_assert (len + strlen (buf) <= sizeof res);
d16aafd8
AC
676 strcat (res, buf);
677
678 mant_off += 32;
679 mant_bits_left -= 32;
680 }
681
682 return res;
683}
684
d16aafd8 685\f
c422e771
AC
686/* Convert TO/FROM target to the hosts DOUBLEST floating-point format.
687
688 If the host and target formats agree, we just copy the raw data
689 into the appropriate type of variable and return, letting the host
690 increase precision as necessary. Otherwise, we call the conversion
691 routine and let it do the dirty work. */
692
c35f4ffc
AC
693static const struct floatformat *host_float_format = GDB_HOST_FLOAT_FORMAT;
694static const struct floatformat *host_double_format = GDB_HOST_DOUBLE_FORMAT;
3e43a32a
MS
695static const struct floatformat *host_long_double_format
696 = GDB_HOST_LONG_DOUBLE_FORMAT;
c422e771
AC
697
698void
699floatformat_to_doublest (const struct floatformat *fmt,
700 const void *in, DOUBLEST *out)
701{
702 gdb_assert (fmt != NULL);
703 if (fmt == host_float_format)
704 {
705 float val;
9a619af0 706
c422e771
AC
707 memcpy (&val, in, sizeof (val));
708 *out = val;
709 }
710 else if (fmt == host_double_format)
711 {
712 double val;
9a619af0 713
c422e771
AC
714 memcpy (&val, in, sizeof (val));
715 *out = val;
716 }
717 else if (fmt == host_long_double_format)
718 {
719 long double val;
9a619af0 720
c422e771
AC
721 memcpy (&val, in, sizeof (val));
722 *out = val;
723 }
724 else
725 convert_floatformat_to_doublest (fmt, in, out);
726}
727
728void
729floatformat_from_doublest (const struct floatformat *fmt,
730 const DOUBLEST *in, void *out)
731{
732 gdb_assert (fmt != NULL);
733 if (fmt == host_float_format)
734 {
735 float val = *in;
9a619af0 736
c422e771
AC
737 memcpy (out, &val, sizeof (val));
738 }
739 else if (fmt == host_double_format)
740 {
741 double val = *in;
9a619af0 742
c422e771
AC
743 memcpy (out, &val, sizeof (val));
744 }
745 else if (fmt == host_long_double_format)
746 {
747 long double val = *in;
9a619af0 748
c422e771
AC
749 memcpy (out, &val, sizeof (val));
750 }
751 else
752 convert_doublest_to_floatformat (fmt, in, out);
753}
d16aafd8 754
c422e771 755\f
87ffba60 756/* Return a floating-point format for a floating-point variable of
47b3f456
AC
757 length LEN. If no suitable floating-point format is found, an
758 error is thrown.
d16aafd8 759
87ffba60
MK
760 We need this functionality since information about the
761 floating-point format of a type is not always available to GDB; the
762 debug information typically only tells us the size of a
763 floating-point type.
764
765 FIXME: kettenis/2001-10-28: In many places, particularly in
766 target-dependent code, the format of floating-point types is known,
767 but not passed on by GDB. This should be fixed. */
768
b9362cc7 769static const struct floatformat *
50810684 770floatformat_from_length (struct gdbarch *gdbarch, int len)
d16aafd8 771{
47b3f456 772 const struct floatformat *format;
9a619af0 773
f9e9243a
UW
774 if (len * TARGET_CHAR_BIT == gdbarch_half_bit (gdbarch))
775 format = gdbarch_half_format (gdbarch)
776 [gdbarch_byte_order (gdbarch)];
777 else if (len * TARGET_CHAR_BIT == gdbarch_float_bit (gdbarch))
50810684
UW
778 format = gdbarch_float_format (gdbarch)
779 [gdbarch_byte_order (gdbarch)];
780 else if (len * TARGET_CHAR_BIT == gdbarch_double_bit (gdbarch))
781 format = gdbarch_double_format (gdbarch)
782 [gdbarch_byte_order (gdbarch)];
783 else if (len * TARGET_CHAR_BIT == gdbarch_long_double_bit (gdbarch))
784 format = gdbarch_long_double_format (gdbarch)
785 [gdbarch_byte_order (gdbarch)];
ddbfdd06
PM
786 /* On i386 the 'long double' type takes 96 bits,
787 while the real number of used bits is only 80,
0963b4bd 788 both in processor and in memory.
ddbfdd06 789 The code below accepts the real bit size. */
50810684 790 else if ((gdbarch_long_double_format (gdbarch) != NULL)
905e0470
PM
791 && (len * TARGET_CHAR_BIT
792 == gdbarch_long_double_format (gdbarch)[0]->totalsize))
50810684
UW
793 format = gdbarch_long_double_format (gdbarch)
794 [gdbarch_byte_order (gdbarch)];
47b3f456
AC
795 else
796 format = NULL;
797 if (format == NULL)
8a3fe4f8 798 error (_("Unrecognized %d-bit floating-point type."),
9b0dea39 799 len * TARGET_CHAR_BIT);
47b3f456 800 return format;
87ffba60
MK
801}
802
c2f05ac9
AC
803const struct floatformat *
804floatformat_from_type (const struct type *type)
805{
50810684 806 struct gdbarch *gdbarch = get_type_arch (type);
9a619af0 807
c2f05ac9
AC
808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
809 if (TYPE_FLOATFORMAT (type) != NULL)
50810684 810 return TYPE_FLOATFORMAT (type)[gdbarch_byte_order (gdbarch)];
c2f05ac9 811 else
50810684 812 return floatformat_from_length (gdbarch, TYPE_LENGTH (type));
c2f05ac9
AC
813}
814
87ffba60
MK
815/* Extract a floating-point number of type TYPE from a target-order
816 byte-stream at ADDR. Returns the value as type DOUBLEST. */
96d2f608
AC
817
818DOUBLEST
819extract_typed_floating (const void *addr, const struct type *type)
820{
e035e373 821 const struct floatformat *fmt = floatformat_from_type (type);
96d2f608 822 DOUBLEST retval;
87ffba60 823
e035e373 824 floatformat_to_doublest (fmt, addr, &retval);
96d2f608
AC
825 return retval;
826}
827
87ffba60
MK
828/* Store VAL as a floating-point number of type TYPE to a target-order
829 byte-stream at ADDR. */
830
96d2f608
AC
831void
832store_typed_floating (void *addr, const struct type *type, DOUBLEST val)
833{
e035e373 834 const struct floatformat *fmt = floatformat_from_type (type);
87ffba60
MK
835
836 /* FIXME: kettenis/2001-10-28: It is debatable whether we should
837 zero out any remaining bytes in the target buffer when TYPE is
838 longer than the actual underlying floating-point format. Perhaps
839 we should store a fixed bitpattern in those remaining bytes,
840 instead of zero, or perhaps we shouldn't touch those remaining
841 bytes at all.
842
843 NOTE: cagney/2001-10-28: With the way things currently work, it
844 isn't a good idea to leave the end bits undefined. This is
845 because GDB writes out the entire sizeof(<floating>) bits of the
846 floating-point type even though the value might only be stored
847 in, and the target processor may only refer to, the first N <
848 TYPE_LENGTH (type) bits. If the end of the buffer wasn't
849 initialized, GDB would write undefined data to the target. An
850 errant program, refering to that undefined data, would then
43686d64
MK
851 become non-deterministic.
852
853 See also the function convert_typed_floating below. */
96d2f608 854 memset (addr, 0, TYPE_LENGTH (type));
87ffba60 855
e035e373 856 floatformat_from_doublest (fmt, &val, addr);
96d2f608 857}
43686d64
MK
858
859/* Convert a floating-point number of type FROM_TYPE from a
860 target-order byte-stream at FROM to a floating-point number of type
861 TO_TYPE, and store it to a target-order byte-stream at TO. */
862
863void
864convert_typed_floating (const void *from, const struct type *from_type,
865 void *to, const struct type *to_type)
866{
c2f05ac9
AC
867 const struct floatformat *from_fmt = floatformat_from_type (from_type);
868 const struct floatformat *to_fmt = floatformat_from_type (to_type);
43686d64 869
43686d64
MK
870 if (from_fmt == NULL || to_fmt == NULL)
871 {
872 /* If we don't know the floating-point format of FROM_TYPE or
873 TO_TYPE, there's not much we can do. We might make the
874 assumption that if the length of FROM_TYPE and TO_TYPE match,
875 their floating-point format would match too, but that
876 assumption might be wrong on targets that support
877 floating-point types that only differ in endianness for
878 example. So we warn instead, and zero out the target buffer. */
8a3fe4f8 879 warning (_("Can't convert floating-point number to desired type."));
43686d64
MK
880 memset (to, 0, TYPE_LENGTH (to_type));
881 }
882 else if (from_fmt == to_fmt)
883 {
884 /* We're in business. The floating-point format of FROM_TYPE
885 and TO_TYPE match. However, even though the floating-point
886 format matches, the length of the type might still be
887 different. Make sure we don't overrun any buffers. See
888 comment in store_typed_floating for a discussion about
889 zeroing out remaining bytes in the target buffer. */
890 memset (to, 0, TYPE_LENGTH (to_type));
891 memcpy (to, from, min (TYPE_LENGTH (from_type), TYPE_LENGTH (to_type)));
892 }
893 else
894 {
895 /* The floating-point types don't match. The best we can do
938f5214 896 (apart from simulating the target FPU) is converting to the
43686d64
MK
897 widest floating-point type supported by the host, and then
898 again to the desired type. */
899 DOUBLEST d;
900
901 floatformat_to_doublest (from_fmt, from, &d);
902 floatformat_from_doublest (to_fmt, &d, to);
903 }
904}
This page took 0.931994 seconds and 4 git commands to generate.