* gdb.texinfo (Remote configuration): Document "set/show
[deliverable/binutils-gdb.git] / gdb / dve3900-rom.c
CommitLineData
c906108c
SS
1/* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
b6ba6518 3 Copyright 1997, 1998, 2000, 2001 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdbcore.h"
24#include "target.h"
25#include "monitor.h"
26#include "serial.h"
27#include "inferior.h"
28#include "command.h"
29#include "gdb_string.h"
30#include <time.h>
4e052eda 31#include "regcache.h"
56cea623 32#include "mips-tdep.h"
c906108c
SS
33
34/* Type of function passed to bfd_map_over_sections. */
35
4efb68b1 36typedef void (*section_map_func) (bfd * abfd, asection * sect, void *obj);
c906108c
SS
37
38/* Packet escape character used by Densan monitor. */
39
40#define PESC 0xdc
41
42/* Maximum packet size. This is actually smaller than necessary
43 just to be safe. */
44
45#define MAXPSIZE 1024
46
47/* External functions. */
48
a14ed312 49extern void report_transfer_performance (unsigned long, time_t, time_t);
c906108c
SS
50
51/* Certain registers are "bitmapped", in that the monitor can only display
52 them or let the user modify them as a series of named bitfields.
53 This structure describes a field in a bitmapped register. */
54
55struct bit_field
c5aa993b
JM
56 {
57 char *prefix; /* string appearing before the value */
58 char *suffix; /* string appearing after the value */
59 char *user_name; /* name used by human when entering field value */
60 int length; /* number of bits in the field */
61 int start; /* starting (least significant) bit number of field */
62 };
63
c906108c
SS
64/* Local functions for register manipulation. */
65
a14ed312
KB
66static void r3900_supply_register (char *regname, int regnamelen,
67 char *val, int vallen);
68static void fetch_bad_vaddr (void);
69static unsigned long fetch_fields (struct bit_field *bf);
70static void fetch_bitmapped_register (int regno, struct bit_field *bf);
71static void r3900_fetch_registers (int regno);
72static void store_bitmapped_register (int regno, struct bit_field *bf);
73static void r3900_store_registers (int regno);
c906108c
SS
74
75/* Local functions for fast binary loading. */
76
a14ed312
KB
77static void write_long (char *buf, long n);
78static void write_long_le (char *buf, long n);
79static int debug_readchar (int hex);
80static void debug_write (unsigned char *buf, int buflen);
81static void ignore_packet (void);
82static void send_packet (char type, unsigned char *buf, int buflen, int seq);
83static void process_read_request (unsigned char *buf, int buflen);
84static void count_section (bfd * abfd, asection * s,
85 unsigned int *section_count);
86static void load_section (bfd * abfd, asection * s, unsigned int *data_count);
87static void r3900_load (char *filename, int from_tty);
c906108c
SS
88
89/* Miscellaneous local functions. */
90
a14ed312 91static void r3900_open (char *args, int from_tty);
c906108c
SS
92
93
94/* Pointers to static functions in monitor.c for fetching and storing
95 registers. We can't use these function in certain cases where the Densan
96 monitor acts perversely: for registers that it displays in bit-map
97 format, and those that can't be modified at all. In those cases
98 we have to use our own functions to fetch and store their values. */
99
507f3c78
KB
100static void (*orig_monitor_fetch_registers) (int regno);
101static void (*orig_monitor_store_registers) (int regno);
c906108c
SS
102
103/* Pointer to static function in monitor. for loading programs.
104 We use this function for loading S-records via the serial link. */
105
507f3c78 106static void (*orig_monitor_load) (char *file, int from_tty);
c906108c
SS
107
108/* This flag is set if a fast ethernet download should be used. */
109
110static int ethernet = 0;
111
112/* This array of registers needs to match the indexes used by GDB. The
113 whole reason this exists is because the various ROM monitors use
114 different names than GDB does, and don't support all the registers
115 either. */
116
6819ae38 117static char *r3900_regnames[] =
c906108c 118{
c5aa993b
JM
119 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
120 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
121 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
122 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
123
124 "S", /* PS_REGNUM */
56cea623
AC
125 "l", /* MIPS_EMBED_LO_REGNUM */
126 "h", /* MIPS_EMBED_HI_REGNUM */
127 "B", /* MIPS_EMBED_BADVADDR_REGNUM */
128 "Pcause", /* MIPS_EMBED_CAUSE_REGNUM */
129 "p" /* MIPS_EMBED_PC_REGNUM */
c906108c
SS
130};
131
132
133/* Table of register names produced by monitor's register dump command. */
134
135static struct reg_entry
c5aa993b
JM
136 {
137 char *name;
138 int regno;
139 }
140reg_table[] =
c906108c 141{
c5aa993b
JM
142 {
143 "r0_zero", 0
144 }
145 ,
146 {
147 "r1_at", 1
148 }
149 ,
150 {
151 "r2_v0", 2
152 }
153 ,
154 {
155 "r3_v1", 3
156 }
157 ,
158 {
159 "r4_a0", 4
160 }
161 ,
162 {
163 "r5_a1", 5
164 }
165 ,
166 {
167 "r6_a2", 6
168 }
169 ,
170 {
171 "r7_a3", 7
172 }
173 ,
174 {
175 "r8_t0", 8
176 }
177 ,
178 {
179 "r9_t1", 9
180 }
181 ,
182 {
183 "r10_t2", 10
184 }
185 ,
186 {
187 "r11_t3", 11
188 }
189 ,
190 {
191 "r12_t4", 12
192 }
193 ,
194 {
195 "r13_t5", 13
196 }
197 ,
198 {
199 "r14_t6", 14
200 }
201 ,
202 {
203 "r15_t7", 15
204 }
205 ,
206 {
207 "r16_s0", 16
208 }
209 ,
210 {
211 "r17_s1", 17
212 }
213 ,
214 {
215 "r18_s2", 18
216 }
217 ,
218 {
219 "r19_s3", 19
220 }
221 ,
222 {
223 "r20_s4", 20
224 }
225 ,
226 {
227 "r21_s5", 21
228 }
229 ,
230 {
231 "r22_s6", 22
232 }
233 ,
234 {
235 "r23_s7", 23
236 }
237 ,
238 {
239 "r24_t8", 24
240 }
241 ,
242 {
243 "r25_t9", 25
244 }
245 ,
246 {
247 "r26_k0", 26
248 }
249 ,
250 {
251 "r27_k1", 27
252 }
253 ,
254 {
255 "r28_gp", 28
256 }
257 ,
258 {
259 "r29_sp", 29
260 }
261 ,
262 {
263 "r30_fp", 30
264 }
265 ,
266 {
267 "r31_ra", 31
268 }
269 ,
270 {
56cea623 271 "HI", MIPS_EMBED_HI_REGNUM
c5aa993b
JM
272 }
273 ,
274 {
56cea623 275 "LO", MIPS_EMBED_LO_REGNUM
c5aa993b
JM
276 }
277 ,
278 {
56cea623 279 "PC", MIPS_EMBED_PC_REGNUM
c5aa993b
JM
280 }
281 ,
282 {
56cea623 283 "BadV", MIPS_EMBED_BADVADDR_REGNUM
c5aa993b
JM
284 }
285 ,
286 {
287 NULL, 0
288 }
c906108c
SS
289};
290
291
292/* The monitor displays the cache register along with the status register,
293 as if they were a single register. So when we want to fetch the
294 status register, parse but otherwise ignore the fields of the
295 cache register that the monitor displays. Register fields that should
296 be ignored have a length of zero in the tables below. */
297
c5aa993b 298static struct bit_field status_fields[] =
c906108c
SS
299{
300 /* Status register portion */
c5aa993b
JM
301 {"SR[<CU=", " ", "cu", 4, 28},
302 {"RE=", " ", "re", 1, 25},
303 {"BEV=", " ", "bev", 1, 22},
304 {"TS=", " ", "ts", 1, 21},
305 {"Nmi=", " ", "nmi", 1, 20},
306 {"INT=", " ", "int", 6, 10},
307 {"SW=", ">]", "sw", 2, 8},
308 {"[<KUO=", " ", "kuo", 1, 5},
309 {"IEO=", " ", "ieo", 1, 4},
310 {"KUP=", " ", "kup", 1, 3},
311 {"IEP=", " ", "iep", 1, 2},
312 {"KUC=", " ", "kuc", 1, 1},
313 {"IEC=", ">]", "iec", 1, 0},
c906108c
SS
314
315 /* Cache register portion (dummy for parsing only) */
c5aa993b
JM
316 {"CR[<IalO=", " ", "ialo", 0, 13},
317 {"DalO=", " ", "dalo", 0, 12},
318 {"IalP=", " ", "ialp", 0, 11},
319 {"DalP=", " ", "dalp", 0, 10},
320 {"IalC=", " ", "ialc", 0, 9},
321 {"DalC=", ">] ", "dalc", 0, 8},
322
323 {NULL, NULL, 0, 0} /* end of table marker */
c906108c
SS
324};
325
326
c5aa993b
JM
327#if 0 /* FIXME: Enable when we add support for modifying cache register. */
328static struct bit_field cache_fields[] =
c906108c
SS
329{
330 /* Status register portion (dummy for parsing only) */
c5aa993b
JM
331 {"SR[<CU=", " ", "cu", 0, 28},
332 {"RE=", " ", "re", 0, 25},
333 {"BEV=", " ", "bev", 0, 22},
334 {"TS=", " ", "ts", 0, 21},
335 {"Nmi=", " ", "nmi", 0, 20},
336 {"INT=", " ", "int", 0, 10},
337 {"SW=", ">]", "sw", 0, 8},
338 {"[<KUO=", " ", "kuo", 0, 5},
339 {"IEO=", " ", "ieo", 0, 4},
340 {"KUP=", " ", "kup", 0, 3},
341 {"IEP=", " ", "iep", 0, 2},
342 {"KUC=", " ", "kuc", 0, 1},
343 {"IEC=", ">]", "iec", 0, 0},
c906108c
SS
344
345 /* Cache register portion */
c5aa993b
JM
346 {"CR[<IalO=", " ", "ialo", 1, 13},
347 {"DalO=", " ", "dalo", 1, 12},
348 {"IalP=", " ", "ialp", 1, 11},
349 {"DalP=", " ", "dalp", 1, 10},
350 {"IalC=", " ", "ialc", 1, 9},
351 {"DalC=", ">] ", "dalc", 1, 8},
352
353 {NULL, NULL, NULL, 0, 0} /* end of table marker */
c906108c
SS
354};
355#endif
356
357
c5aa993b 358static struct bit_field cause_fields[] =
c906108c 359{
c5aa993b
JM
360 {"<BD=", " ", "bd", 1, 31},
361 {"CE=", " ", "ce", 2, 28},
362 {"IP=", " ", "ip", 6, 10},
363 {"SW=", " ", "sw", 2, 8},
364 {"EC=", ">]", "ec", 5, 2},
c906108c 365
c5aa993b 366 {NULL, NULL, NULL, 0, 0} /* end of table marker */
c906108c
SS
367};
368
369
370/* The monitor prints register values in the form
371
c5aa993b 372 regname = xxxx xxxx
c906108c
SS
373
374 We look up the register name in a table, and remove the embedded space in
375 the hex value before passing it to monitor_supply_register. */
376
377static void
fba45db2 378r3900_supply_register (char *regname, int regnamelen, char *val, int vallen)
c906108c
SS
379{
380 int regno = -1;
381 int i;
382 char valbuf[10];
383 char *p;
384
385 /* Perform some sanity checks on the register name and value. */
386 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
387 return;
388
389 /* Look up the register name. */
390 for (i = 0; reg_table[i].name != NULL; i++)
391 {
392 int rlen = strlen (reg_table[i].name);
393 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
394 {
395 regno = reg_table[i].regno;
396 break;
397 }
398 }
399 if (regno == -1)
400 return;
401
402 /* Copy the hex value to a buffer and eliminate the embedded space. */
403 for (i = 0, p = valbuf; i < vallen; i++)
404 if (val[i] != ' ')
405 *p++ = val[i];
406 *p = '\0';
407
408 monitor_supply_register (regno, valbuf);
409}
410
411
412/* Fetch the BadVaddr register. Unlike the other registers, this
413 one can't be modified, and the monitor won't even prompt to let
414 you modify it. */
415
416static void
fba45db2 417fetch_bad_vaddr (void)
c906108c
SS
418{
419 char buf[20];
420
421 monitor_printf ("xB\r");
422 monitor_expect ("BadV=", NULL, 0);
c5aa993b 423 monitor_expect_prompt (buf, sizeof (buf));
56cea623 424 monitor_supply_register (mips_regnum (current_gdbarch)->badvaddr, buf);
c906108c
SS
425}
426
c5aa993b 427
c906108c
SS
428/* Read a series of bit fields from the monitor, and return their
429 combined binary value. */
430
431static unsigned long
fba45db2 432fetch_fields (struct bit_field *bf)
c906108c
SS
433{
434 char buf[20];
435 unsigned long val = 0;
436 unsigned long bits;
437
c5aa993b 438 for (; bf->prefix != NULL; bf++)
c906108c 439 {
c5aa993b 440 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
c906108c
SS
441 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
442 if (bf->length != 0)
c5aa993b 443 {
c906108c
SS
444 bits = strtoul (buf, NULL, 16); /* get field value */
445 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
c5aa993b 446 val |= bits << bf->start; /* insert into register */
c906108c 447 }
c5aa993b 448
c906108c
SS
449 }
450
451 return val;
452}
453
454
455static void
fba45db2 456fetch_bitmapped_register (int regno, struct bit_field *bf)
c906108c
SS
457{
458 unsigned long val;
123a958e 459 unsigned char regbuf[MAX_REGISTER_SIZE];
6819ae38 460 char *regname = NULL;
c906108c 461
6819ae38
KB
462 if (regno >= sizeof (r3900_regnames) / sizeof (r3900_regnames[0]))
463 internal_error (__FILE__, __LINE__,
e2e0b3e5 464 _("fetch_bitmapped_register: regno out of bounds"));
6819ae38
KB
465 else
466 regname = r3900_regnames[regno];
467
468 monitor_printf ("x%s\r", regname);
c906108c
SS
469 val = fetch_fields (bf);
470 monitor_printf (".\r");
471 monitor_expect_prompt (NULL, 0);
472
473 /* supply register stores in target byte order, so swap here */
474
3acba339 475 store_unsigned_integer (regbuf, register_size (current_gdbarch, regno), val);
23a6d369 476 regcache_raw_supply (current_regcache, regno, regbuf);
c906108c
SS
477
478}
479
480
481/* Fetch all registers (if regno is -1), or one register from the
482 monitor. For most registers, we can use the generic monitor_
483 monitor_fetch_registers function. But others are displayed in
484 a very unusual fashion by the monitor, and must be handled specially. */
485
486static void
fba45db2 487r3900_fetch_registers (int regno)
c906108c 488{
56cea623
AC
489 if (regno == mips_regnum (current_gdbarch)->badvaddr)
490 fetch_bad_vaddr ();
491 else if (regno == PS_REGNUM)
492 fetch_bitmapped_register (PS_REGNUM, status_fields);
493 else if (regno == mips_regnum (current_gdbarch)->cause)
494 fetch_bitmapped_register (mips_regnum (current_gdbarch)->cause,
495 cause_fields);
496 else
497 orig_monitor_fetch_registers (regno);
c906108c
SS
498}
499
500
501/* Write the new value of the bitmapped register to the monitor. */
502
503static void
fba45db2 504store_bitmapped_register (int regno, struct bit_field *bf)
c906108c
SS
505{
506 unsigned long oldval, newval;
6819ae38
KB
507 char *regname = NULL;
508
509 if (regno >= sizeof (r3900_regnames) / sizeof (r3900_regnames[0]))
510 internal_error (__FILE__, __LINE__,
e2e0b3e5 511 _("fetch_bitmapped_register: regno out of bounds"));
6819ae38
KB
512 else
513 regname = r3900_regnames[regno];
c906108c
SS
514
515 /* Fetch the current value of the register. */
6819ae38 516 monitor_printf ("x%s\r", regname);
c906108c
SS
517 oldval = fetch_fields (bf);
518 newval = read_register (regno);
519
520 /* To save time, write just the fields that have changed. */
c5aa993b 521 for (; bf->prefix != NULL; bf++)
c906108c
SS
522 {
523 if (bf->length != 0)
c5aa993b 524 {
c906108c
SS
525 unsigned long oldbits, newbits, mask;
526
527 mask = (1 << bf->length) - 1;
528 oldbits = (oldval >> bf->start) & mask;
529 newbits = (newval >> bf->start) & mask;
530 if (oldbits != newbits)
d4f3574e 531 monitor_printf ("%s %lx ", bf->user_name, newbits);
c906108c
SS
532 }
533 }
534
535 monitor_printf (".\r");
536 monitor_expect_prompt (NULL, 0);
537}
538
539
540static void
fba45db2 541r3900_store_registers (int regno)
c906108c 542{
56cea623
AC
543 if (regno == PS_REGNUM)
544 store_bitmapped_register (PS_REGNUM, status_fields);
545 else if (regno == mips_regnum (current_gdbarch)->cause)
546 store_bitmapped_register (mips_regnum (current_gdbarch)->cause,
547 cause_fields);
548 else
549 orig_monitor_store_registers (regno);
c906108c
SS
550}
551
552
553/* Write a 4-byte integer to the buffer in big-endian order. */
554
555static void
fba45db2 556write_long (char *buf, long n)
c906108c
SS
557{
558 buf[0] = (n >> 24) & 0xff;
559 buf[1] = (n >> 16) & 0xff;
560 buf[2] = (n >> 8) & 0xff;
561 buf[3] = n & 0xff;
562}
563
564
565/* Write a 4-byte integer to the buffer in little-endian order. */
566
567static void
fba45db2 568write_long_le (char *buf, long n)
c906108c
SS
569{
570 buf[0] = n & 0xff;
571 buf[1] = (n >> 8) & 0xff;
572 buf[2] = (n >> 16) & 0xff;
573 buf[3] = (n >> 24) & 0xff;
574}
575
576
577/* Read a character from the monitor. If remote debugging is on,
578 print the received character. If HEX is non-zero, print the
579 character in hexadecimal; otherwise, print it in ASCII. */
580
581static int
fba45db2 582debug_readchar (int hex)
c906108c 583{
c5aa993b 584 char buf[10];
c906108c
SS
585 int c = monitor_readchar ();
586
587 if (remote_debug > 0)
588 {
589 if (hex)
590 sprintf (buf, "[%02x]", c & 0xff);
591 else if (c == '\0')
592 strcpy (buf, "\\0");
c5aa993b 593 else
c906108c
SS
594 {
595 buf[0] = c;
596 buf[1] = '\0';
597 }
598 puts_debug ("Read -->", buf, "<--");
599 }
600 return c;
601}
602
603
604/* Send a buffer of characters to the monitor. If remote debugging is on,
605 print the sent buffer in hex. */
606
607static void
fba45db2 608debug_write (unsigned char *buf, int buflen)
c906108c
SS
609{
610 char s[10];
611
612 monitor_write (buf, buflen);
613
614 if (remote_debug > 0)
615 {
616 while (buflen-- > 0)
617 {
618 sprintf (s, "[%02x]", *buf & 0xff);
619 puts_debug ("Sent -->", s, "<--");
620 buf++;
621 }
622 }
623}
624
625
626/* Ignore a packet sent to us by the monitor. It send packets
627 when its console is in "communications interface" mode. A packet
628 is of this form:
629
c5aa993b
JM
630 start of packet flag (one byte: 0xdc)
631 packet type (one byte)
632 length (low byte)
633 length (high byte)
634 data (length bytes)
c906108c
SS
635
636 The last two bytes of the data field are a checksum, but we don't
637 bother to verify it.
c5aa993b 638 */
c906108c
SS
639
640static void
fba45db2 641ignore_packet (void)
c906108c 642{
56cea623 643 int c = -1;
c5aa993b 644 int len;
c906108c
SS
645
646 /* Ignore lots of trash (messages about section addresses, for example)
647 until we see the start of a packet. */
648 for (len = 0; len < 256; len++)
649 {
650 c = debug_readchar (0);
651 if (c == PESC)
652 break;
653 }
654 if (len == 8)
8a3fe4f8 655 error (_("Packet header byte not found; %02x seen instead."), c);
c906108c
SS
656
657 /* Read the packet type and length. */
c5aa993b 658 c = debug_readchar (1); /* type */
c906108c 659
c5aa993b 660 c = debug_readchar (1); /* low byte of length */
c906108c
SS
661 len = c & 0xff;
662
c5aa993b 663 c = debug_readchar (1); /* high byte of length */
c906108c
SS
664 len += (c & 0xff) << 8;
665
666 /* Ignore the rest of the packet. */
667 while (len-- > 0)
668 c = debug_readchar (1);
669}
670
671
672/* Encapsulate some data into a packet and send it to the monitor.
673
674 The 'p' packet is a special case. This is a packet we send
675 in response to a read ('r') packet from the monitor. This function
676 appends a one-byte sequence number to the data field of such a packet.
c5aa993b 677 */
c906108c
SS
678
679static void
fba45db2 680send_packet (char type, unsigned char *buf, int buflen, int seq)
c906108c
SS
681{
682 unsigned char hdr[4];
683 int len = buflen;
684 int sum, i;
685
686 /* If this is a 'p' packet, add one byte for a sequence number. */
687 if (type == 'p')
688 len++;
689
690 /* If the buffer has a non-zero length, add two bytes for a checksum. */
691 if (len > 0)
692 len += 2;
693
694 /* Write the packet header. */
695 hdr[0] = PESC;
696 hdr[1] = type;
697 hdr[2] = len & 0xff;
698 hdr[3] = (len >> 8) & 0xff;
699 debug_write (hdr, sizeof (hdr));
700
701 if (len)
702 {
703 /* Write the packet data. */
704 debug_write (buf, buflen);
705
706 /* Write the sequence number if this is a 'p' packet. */
707 if (type == 'p')
708 {
709 hdr[0] = seq;
710 debug_write (hdr, 1);
711 }
712
713 /* Write the checksum. */
714 sum = 0;
715 for (i = 0; i < buflen; i++)
716 {
717 int tmp = (buf[i] & 0xff);
718 if (i & 1)
719 sum += tmp;
720 else
721 sum += tmp << 8;
722 }
723 if (type == 'p')
c5aa993b 724 {
c906108c
SS
725 if (buflen & 1)
726 sum += (seq & 0xff);
727 else
728 sum += (seq & 0xff) << 8;
729 }
730 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
731 sum += (sum >> 16) & 1;
c5aa993b 732 sum = ~sum;
c906108c
SS
733
734 hdr[0] = (sum >> 8) & 0xff;
735 hdr[1] = sum & 0xff;
736 debug_write (hdr, 2);
737 }
738}
739
740
741/* Respond to an expected read request from the monitor by sending
742 data in chunks. Handle all acknowledgements and handshaking packets.
743
744 The monitor expects a response consisting of a one or more 'p' packets,
745 each followed by a portion of the data requested. The 'p' packet
746 contains only a four-byte integer, the value of which is the number
747 of bytes of data we are about to send. Following the 'p' packet,
748 the monitor expects the data bytes themselves in raw, unpacketized,
749 form, without even a checksum.
750 */
751
752static void
fba45db2 753process_read_request (unsigned char *buf, int buflen)
c906108c
SS
754{
755 unsigned char len[4];
756 int i, chunk;
757 unsigned char seq;
758
759 /* Discard the read request. FIXME: we have to hope it's for
760 the exact number of bytes we want to send; should check for this. */
761 ignore_packet ();
762
763 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
764 {
765 /* Don't send more than MAXPSIZE bytes at a time. */
766 chunk = buflen - i;
767 if (chunk > MAXPSIZE)
768 chunk = MAXPSIZE;
769
770 /* Write a packet containing the number of bytes we are sending. */
771 write_long_le (len, chunk);
772 send_packet ('p', len, sizeof (len), seq);
773
774 /* Write the data in raw form following the packet. */
775 debug_write (&buf[i], chunk);
776
777 /* Discard the ACK packet. */
778 ignore_packet ();
779 }
780
781 /* Send an "end of data" packet. */
782 send_packet ('e', "", 0, 0);
783}
784
785
786/* Count loadable sections (helper function for r3900_load). */
787
788static void
fba45db2 789count_section (bfd *abfd, asection *s, unsigned int *section_count)
c906108c
SS
790{
791 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
792 (*section_count)++;
793}
794
795
796/* Load a single BFD section (helper function for r3900_load).
797
798 WARNING: this code is filled with assumptions about how
799 the Densan monitor loads programs. The monitor issues
800 packets containing read requests, but rather than respond
801 to them in an general way, we expect them to following
802 a certain pattern.
c5aa993b 803
c906108c
SS
804 For example, we know that the monitor will start loading by
805 issuing an 8-byte read request for the binary file header.
806 We know this is coming and ignore the actual contents
807 of the read request packet.
c5aa993b 808 */
c906108c
SS
809
810static void
fba45db2 811load_section (bfd *abfd, asection *s, unsigned int *data_count)
c906108c
SS
812{
813 if (s->flags & SEC_LOAD)
814 {
815 bfd_size_type section_size = bfd_section_size (abfd, s);
c5aa993b 816 bfd_vma section_base = bfd_section_lma (abfd, s);
c906108c
SS
817 unsigned char *buffer;
818 unsigned char header[8];
819
820 /* Don't output zero-length sections. */
821 if (section_size == 0)
c5aa993b 822 return;
c906108c
SS
823 if (data_count)
824 *data_count += section_size;
825
826 /* Print some fluff about the section being loaded. */
827 printf_filtered ("Loading section %s, size 0x%lx lma ",
c5aa993b 828 bfd_section_name (abfd, s), (long) section_size);
66bf4b3a 829 deprecated_print_address_numeric (section_base, 1, gdb_stdout);
c906108c
SS
830 printf_filtered ("\n");
831 gdb_flush (gdb_stdout);
832
833 /* Write the section header (location and size). */
c5aa993b
JM
834 write_long (&header[0], (long) section_base);
835 write_long (&header[4], (long) section_size);
c906108c
SS
836 process_read_request (header, sizeof (header));
837
838 /* Read the section contents into a buffer, write it out,
839 then free the buffer. */
840 buffer = (unsigned char *) xmalloc (section_size);
841 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
842 process_read_request (buffer, section_size);
b8c9b27d 843 xfree (buffer);
c5aa993b 844 }
c906108c
SS
845}
846
847
848/* When the ethernet is used as the console port on the Densan board,
849 we can use the "Rm" command to do a fast binary load. The format
850 of the download data is:
851
c5aa993b
JM
852 number of sections (4 bytes)
853 starting address (4 bytes)
854 repeat for each section:
855 location address (4 bytes)
856 section size (4 bytes)
857 binary data
c906108c
SS
858
859 The 4-byte fields are all in big-endian order.
860
861 Using this command is tricky because we have to put the monitor
862 into a special funky "communications interface" mode, in which
863 it sends and receives packets of data along with the normal prompt.
864 */
865
866static void
fba45db2 867r3900_load (char *filename, int from_tty)
c906108c
SS
868{
869 bfd *abfd;
870 unsigned int data_count = 0;
871 time_t start_time, end_time; /* for timing of download */
872 int section_count = 0;
873 unsigned char buffer[8];
874
875 /* If we are not using the ethernet, use the normal monitor load,
876 which sends S-records over the serial link. */
877 if (!ethernet)
878 {
879 orig_monitor_load (filename, from_tty);
880 return;
881 }
882
883 /* Open the file. */
884 if (filename == NULL || filename[0] == 0)
885 filename = get_exec_file (1);
886 abfd = bfd_openr (filename, 0);
887 if (!abfd)
8a3fe4f8 888 error (_("Unable to open file %s."), filename);
c906108c 889 if (bfd_check_format (abfd, bfd_object) == 0)
8a3fe4f8 890 error (_("File is not an object file."));
c906108c
SS
891
892 /* Output the "vconsi" command to get the monitor in the communication
893 state where it will accept a load command. This will cause
894 the monitor to emit a packet before each prompt, so ignore the packet. */
895 monitor_printf ("vconsi\r");
896 ignore_packet ();
897 monitor_expect_prompt (NULL, 0);
898
899 /* Output the "Rm" (load) command and respond to the subsequent "open"
900 packet by sending an ACK packet. */
901 monitor_printf ("Rm\r");
902 ignore_packet ();
903 send_packet ('a', "", 0, 0);
c5aa993b 904
c906108c
SS
905 /* Output the fast load header (number of sections and starting address). */
906 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
907 &section_count);
c5aa993b 908 write_long (&buffer[0], (long) section_count);
c906108c 909 if (exec_bfd)
c5aa993b 910 write_long (&buffer[4], (long) bfd_get_start_address (exec_bfd));
c906108c
SS
911 else
912 write_long (&buffer[4], 0);
913 process_read_request (buffer, sizeof (buffer));
914
915 /* Output the section data. */
916 start_time = time (NULL);
917 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
918 end_time = time (NULL);
919
920 /* Acknowledge the close packet and put the monitor back into
921 "normal" mode so it won't send packets any more. */
922 ignore_packet ();
923 send_packet ('a', "", 0, 0);
924 monitor_expect_prompt (NULL, 0);
925 monitor_printf ("vconsx\r");
926 monitor_expect_prompt (NULL, 0);
927
928 /* Print start address and download performance information. */
c5aa993b 929 printf_filtered ("Start address 0x%lx\n", (long) bfd_get_start_address (abfd));
c906108c
SS
930 report_transfer_performance (data_count, start_time, end_time);
931
932 /* Finally, make the PC point at the start address */
933 if (exec_bfd)
934 write_pc (bfd_get_start_address (exec_bfd));
935
39f77062 936 inferior_ptid = null_ptid; /* No process now */
c906108c
SS
937
938 /* This is necessary because many things were based on the PC at the
939 time that we attached to the monitor, which is no longer valid
940 now that we have loaded new code (and just changed the PC).
941 Another way to do this might be to call normal_stop, except that
942 the stack may not be valid, and things would get horribly
943 confused... */
944 clear_symtab_users ();
945}
946
947
948/* Commands to send to the monitor when first connecting:
c5aa993b
JM
949 * The bare carriage return forces a prompt from the monitor
950 (monitor doesn't prompt immediately after a reset).
951 * The "vconsx" switches the monitor back to interactive mode
952 in case an aborted download had left it in packet mode.
953 * The "Xtr" command causes subsequent "t" (trace) commands to display
954 the general registers only.
955 * The "Xxr" command does the same thing for the "x" (examine
956 registers) command.
957 * The "bx" command clears all breakpoints.
958 */
959
960static char *r3900_inits[] =
961{"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
962static char *dummy_inits[] =
963{NULL};
c906108c
SS
964
965static struct target_ops r3900_ops;
966static struct monitor_ops r3900_cmds;
967
968static void
fba45db2 969r3900_open (char *args, int from_tty)
c906108c
SS
970{
971 char buf[64];
972 int i;
973
974 monitor_open (args, &r3900_cmds, from_tty);
975
976 /* We have to handle sending the init strings ourselves, because
977 the first two strings we send (carriage returns) may not be echoed
978 by the monitor, but the rest will be. */
979 monitor_printf_noecho ("\r\r");
980 for (i = 0; r3900_inits[i] != NULL; i++)
981 {
982 monitor_printf (r3900_inits[i]);
983 monitor_expect_prompt (NULL, 0);
984 }
985
986 /* Attempt to determine whether the console device is ethernet or serial.
987 This will tell us which kind of load to use (S-records over a serial
988 link, or the Densan fast binary multi-section format over the net). */
989
990 ethernet = 0;
991 monitor_printf ("v\r");
992 if (monitor_expect ("console device :", NULL, 0) != -1)
c5aa993b
JM
993 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
994 if (strstr (buf, "ethernet") != NULL)
995 ethernet = 1;
c906108c
SS
996 monitor_expect_prompt (NULL, 0);
997}
998
999void
fba45db2 1000_initialize_r3900_rom (void)
c906108c
SS
1001{
1002 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
c5aa993b
JM
1003 MO_ADDR_BITS_REMOVE |
1004 MO_CLR_BREAK_USES_ADDR |
1005 MO_GETMEM_READ_SINGLE |
1006 MO_PRINT_PROGRAM_OUTPUT;
c906108c
SS
1007
1008 r3900_cmds.init = dummy_inits;
1009 r3900_cmds.cont = "g\r";
1010 r3900_cmds.step = "t\r";
c5aa993b
JM
1011 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
1012 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
1013 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
c906108c
SS
1014
1015 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
1016 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
1017 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
1018
c5aa993b
JM
1019 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
1020 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
1021 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
c906108c
SS
1022 r3900_cmds.getmem.resp_delim = " : ";
1023 r3900_cmds.getmem.term = " ";
1024 r3900_cmds.getmem.term_cmd = ".\r";
1025
c5aa993b 1026 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
c906108c 1027
c5aa993b 1028 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
c906108c
SS
1029 r3900_cmds.getreg.resp_delim = "=";
1030 r3900_cmds.getreg.term = " ";
1031 r3900_cmds.getreg.term_cmd = ".\r";
1032
1033 r3900_cmds.dump_registers = "x\r";
1034 r3900_cmds.register_pattern =
c5aa993b 1035 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
c906108c
SS
1036 r3900_cmds.supply_register = r3900_supply_register;
1037 /* S-record download, via "keyboard port". */
1038 r3900_cmds.load = "r0\r";
1039 r3900_cmds.prompt = "#";
1040 r3900_cmds.line_term = "\r";
1041 r3900_cmds.target = &r3900_ops;
1042 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
1043 r3900_cmds.regnames = r3900_regnames;
1044 r3900_cmds.magic = MONITOR_OPS_MAGIC;
1045
1046 init_monitor_ops (&r3900_ops);
1047
1048 r3900_ops.to_shortname = "r3900";
1049 r3900_ops.to_longname = "R3900 monitor";
1050 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
1051Specify the serial device it is connected to (e.g. /dev/ttya).";
1052 r3900_ops.to_open = r3900_open;
1053
1054 /* Override the functions to fetch and store registers. But save the
1055 addresses of the default functions, because we will use those functions
1056 for "normal" registers. */
1057
1058 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
1059 orig_monitor_store_registers = r3900_ops.to_store_registers;
1060 r3900_ops.to_fetch_registers = r3900_fetch_registers;
1061 r3900_ops.to_store_registers = r3900_store_registers;
1062
1063 /* Override the load function, but save the address of the default
1064 function to use when loading S-records over a serial link. */
1065 orig_monitor_load = r3900_ops.to_load;
1066 r3900_ops.to_load = r3900_load;
1067
1068 add_target (&r3900_ops);
1069}
This page took 0.4284 seconds and 4 git commands to generate.